prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ @author: VHOEYS """ import os import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset from matplotlib.transforms import offset_copy from .sensitivity_base import * from .extrafunctions import * from .plot_functions_rev import plotbar, scatterwithtext # from .latextablegenerator import * class MorrisScreening(SensitivityAnalysis): ''' Morris screening method, with the improved sampling strategy, selecting a subset of the trajectories to improve the sampled space. Working with groups is possible. Parameters ----------- parsin : list either a list of (min,max,'name') values, [(min,max,'name'),(min,max,'name'),...(min,max,'name')] or a list of ModPar instances ModelType : pyFUSE | PCRaster | external Give the type of model working withµ Attributes ------------ _ndim : int number of factors examined. In case the groups are chosen the number of factors is stores in NumFact and sizea becomes the number of created groups, (k) NumFact : int number of factors examined in the case when groups are chosen intervals(p) : int number of intervals considered in (0, 1) UB : ndarray Upper Bound for each factor in list or array, (sizea,1) LB : ndarray Lower Bound for each factor in list or array, (sizea,1) GroupNumber : int Number of groups (eventually 0) GroupMat : ndarray Array which describes the chosen groups. Each column represents a group and its elements are set to 1 in correspondence of the factors that belong to the fixed group. All the other elements are zero, (NumFact,GroupNumber) Delta : float jump value to calculate screening intervals : int number of intervals used in the sampling noptimized : int r-value of the number of base runs are done in the optimize sampling OutMatrix : ndarray not-optimized sample matrix OutFact : ndarray not-optimzed matrix of changing factors Groupnumber : int number of groups used sizeb : int when using groups, sizeb is determined by the number of groups, otherwise the number of factors OptMatrix_b : ndarray the not-adapted version of the OptMatrix, with all sampled values between, 0 and 1 parset2run : ndarrar every row is a parameter set to run the model for. All sensitivity methods have this attribute to interact with base-class running Notes --------- Original Matlab code from: http://sensitivity-analysis.jrc.it/software/index.htm Original method described in [M1]_, improved by the optimization of [M2]_. The option to work with groups is added, as described in [M2]_. Examples ------------ >>> Xi = [(0.0,5.0,r'$X_1$'),(4.0,7.0,r'$X_2$'),(0.0,1.0,r'$X_3$'), (0.0,1.0,r'$X_4$'), (0.0,1.0,r'$X_5$'),(0.5,0.9,r'$X_6$')] >>> # Set up the morris class instance with uncertain factors Xi >>> sm = MorrisScreening(Xi,ModelType = 'external') >>> # calculate an optimized set of parameter sets to run model >>> OptMatrix, OptOutVec = sm.Optimized_Groups(nbaseruns=100, intervals = 4, noptimized=4, Delta = 0.4) >>> # Check the quality of the selected trajects >>> sm.Optimized_diagnostic(width=0.15) >>> #RUN A MODEL AND GET OUTPUT (EXTERNAL) -> get output >>> #Calculate the Morris screening diagnostics >>> sm.Morris_Measure_Groups(output) >>> #plot a barplot of mu, mustar and sigma (edgecolor and facecolor grey) >>> sm.plotmu(ec='grey',fc='grey') >>> sm.plotmustar(outputid = 1,ec='grey',fc='grey') >>> sm.plotsigma(ec='grey',fc='grey') >>> #plot the mu* sigma plain >>> sm.plotmustarsigma(zoomperc = 0.05, outputid = 1, loc = 2) >>> #export the results in txt file >>> sm.txtresults(name='MorrisTestOut.txt') >>> #export the results in tex-table >>> sm.latexresults(name='MorrisTestOut.tex') References ------------ .. [M1] Morris, <NAME>. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 33, no. 2 (1991): 161–174. .. [M2] Campolongo, Francesca, <NAME>, and <NAME>. An Effective Screening Design for Sensitivity Analysis of Large Models. Environmental Modelling & Software 22, no. 10 (October 2007): 1509–1518. http://linkinghub.elsevier.com/retrieve/pii/S1364815206002805. .. [M3] Saltelli, Andrea, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Global Sensitivity Analysis, The Primer. John Wiley & Sons Ltd, 2008. ''' def __init__(self, parsin, ModelType = 'external'): SensitivityAnalysis.__init__(self, parsin) self._methodname = 'MorrisScreening' if ModelType == 'pyFUSE': self.modeltype = 'pyFUSE' print('The analysed model is built up by the pyFUSE environment') elif ModelType == 'external': self.modeltype = 'pyFUSE' print('The analysed model is externally run') elif ModelType == 'PCRaster': self.modeltype = 'PCRasterPython' print('The analysed model is a PCRasterPython Framework instance') elif ModelType == 'testmodel': self.modeltype = 'testmodel' print('The analysed model is a testmodel') else: raise Exception('Not supported model type') self.LB = np.array([el[0] for el in self._parsin]) self.UB = np.array([el[1] for el in self._parsin]) def Sampling_Function_2(self, nbaseruns, LB, UB): ''' Python version of the Morris sampling function Parameters ----------- nbaseruns : int sample size Returns --------- OutMatrix(sizeb*r, sizea) : for the entire sample size computed In(i,j) matrices, values to run model for OutFact(sizea*r,1) : for the entire sample size computed Fact(i,1) vectors, indicates the factor changing at specific line Notes ------- B0 is constructed as in Morris design when groups are not considered. When groups are considered the routine follows the following steps 1. Creation of P0 and DD0 matrices defined in Morris for the groups. This means that the dimensions of these 2 matrices are (GroupNumber,GroupNumber). 2. Creation of AuxMat matrix with (GroupNumber+1,GroupNumber) elements. 3. Definition of GroupB0 starting from AuxMat, GroupMat and P0. 4. The final B0 for groups is obtained as [ones(sizeb,1)*x0' + GroupB0]. The P0 permutation is present in GroupB0 and it's not necessary to permute the matrix (ones(sizeb,1)*x0') because it's already randomly created. Adapted from the matlab version of 15 November 2005 by J.Cariboni References ------------- .. [M4] <NAME>, <NAME>, <NAME>, Sensitivity Analysis on page 68 ss .. [M5] <NAME>, <NAME>, JRC - IPSC Ispra, Varese, IT ''' #The integration in class version not optimal, therefor this mapping k = self._ndim self.nbaseruns = nbaseruns r = nbaseruns p = self.intervals GroupMat = self.GroupMat # Parameters and initialisation of the output matrix sizea = k Delta = self.Delta NumFact = sizea if GroupMat.shape[0]==GroupMat.size: Groupnumber=0 else: Groupnumber = GroupMat.shape[1] #size(GroupMat,2) sizea = GroupMat.shape[1] sizeb = sizea + 1 # sizec = 1 Outmatrix = np.zeros(((sizea+1)*r,NumFact)) OutFact = np.zeros(((sizea+1)*r,1)) # For each i generate a trajectory for i in range(r): Fact=np.zeros(sizea+1) # Construct DD0 DD0 = np.matrix(np.diagflat(np.sign(np.random.random(k)*2-1))) # Construct B (lower triangular) B = np.matrix(np.tri((sizeb), sizea,k=-1, dtype=int)) # Construct A0, A A0 = np.ones((sizeb,1)) A = np.ones((sizeb,NumFact)) # Construct the permutation matrix P0. In each column of P0 one randomly chosen element equals 1 # while all the others equal zero. # P0 tells the order in which order factors are changed in each # Note that P0 is then used reading it by rows. I = np.matrix(np.eye(sizea)) P0 = I[:,np.random.permutation(sizea)] # When groups are present the random permutation is done only on B. The effect is the same since # the added part (A0*x0') is completely random. if Groupnumber != 0: B = B * (np.matrix(GroupMat)*P0.transpose()).transpose() # Compute AuxMat both for single factors and groups analysis. For Single factors analysis # AuxMat is added to (A0*X0) and then permutated through P0. When groups are active AuxMat is # used to build GroupB0. AuxMat is created considering DD0. If the element on DD0 diagonal # is 1 then AuxMat will start with zero and add Delta. If the element on DD0 diagonal is -1 # then DD0 will start Delta and goes to zero. AuxMat = Delta* 0.5 *((2*B - A) * DD0 + A) #---------------------------------------------------------------------- # a --> Define the random vector x0 for the factors. Note that x0 takes value in the hypercube # [0,...,1-Delta]*[0,...,1-Delta]*[0,...,1-Delta]*[0,...,1-Delta] xset=np.arange(0.0,1.0-Delta,1.0/(p-1)) try: x0 = np.matrix(xset.take(list(np.ceil(np.random.random(k)*np.floor(p/2))-1))) #.transpose() except: raise Exception('invalid p (intervals) and Delta combination, please adapt') #---------------------------------------------------------------------- # b --> Compute the matrix B*, here indicated as B0. Each row in B0 is a # trajectory for Morris Calculations. The dimension of B0 is (Numfactors+1,Numfactors) if Groupnumber != 0: B0 = (A0*x0 + AuxMat) else: B0 = (A0*x0 + AuxMat)*P0 #---------------------------------------------------------------------- # c --> Compute values in the original intervals # B0 has values x(i,j) in [0, 1/(p -1), 2/(p -1), ... , 1]. # To obtain values in the original intervals [LB, UB] we compute # LB(j) + x(i,j)*(UB(j)-LB(j)) In=np.tile(LB, (sizeb,1)) + np.array(B0)*np.tile((UB-LB), (sizeb,1)) #array!! ???? # Create the Factor vector. Each component of this vector indicate which factor or group of factor # has been changed in each step of the trajectory. for j in range(sizea): Fact[j] = np.where(P0[j,:])[1] Fact[sizea] = int(-1) #Enkel om vorm logisch te houden. of Fact kleiner maken #append the create traject to the others Outmatrix[i*(sizea+1):i*(sizea+1)+(sizea+1),:]=np.array(In) OutFact[i*(sizea+1):i*(sizea+1)+(sizea+1)]=np.array(Fact).reshape((sizea+1,1)) return Outmatrix, OutFact def Optimized_Groups(self, nbaseruns=500, intervals = 4, noptimized=10, GroupMat=np.array([]), Delta = 'default'): ''' Optimization in the choice of trajectories for the Morris experiment. Starting from an initial set of nbaseruns, a set of noptimized runs is selected to use for the screening techique Groups can be used to evaluate parameters together Parameters ------------ nbaseruns : int (default 500) Total number of trajectories intervals : int (default 4) Number of levels noptimized : int (default 10) Final number of optimal trajectories GroupMat : [NumFact,NumGroups] Matrix describing the groups. Each column represents a group and its elements are set to 1 in correspondence of the factors that belong to the fixed group. All the other elements are zero. Delta : 'default'|float (0-1) When default, the value is calculated from the p value (intervals), otherwise the given number is taken Returns -------- OptMatrix/ self.OptOutMatrix : ndarray Optimized sampled values giving the matrix too run the model for OptOutVec/ self.OptOutFact : ndarray Optimized sampled values giving the matrix indicating the factor changed at a specific line Notes ----- The combination of Delta and intervals is important to get an good overview. The user is directed to [M3]_ ''' #number of trajectorie (r) N = nbaseruns #check the p and Delta value workaround if not intervals%2==0: print('It is adviced to use an even number for the p-value, number \ of intervals, since currently not all levels are explored') if Delta == 'default': self.Delta = intervals/(2.*(intervals-1.)) else: if Delta > 0.0 and Delta < 1.0: self.Delta = Delta else: raise Exception('Invalid Delta value, please use default or float number') self.intervals = intervals # p = intervals self.noptimized = noptimized r = noptimized self.GroupMat = GroupMat NumFact = self._ndim LBt = np.zeros(NumFact) UBt = np.ones(NumFact) OutMatrix, OutFact = self.Sampling_Function_2(nbaseruns, LBt, UBt) #Version with Groups #again mapping (not optimal) self.OutMatrix = OutMatrix self.OutFact = OutFact try: Groupnumber = GroupMat.shape[1] except: Groupnumber = 0 self.Groupnumber = Groupnumber if Groupnumber != 0: sizeb = Groupnumber +1 else: sizeb = NumFact +1 self.sizeb = sizeb Dist = np.zeros((N,N)) Diff_Traj = np.arange(0.0,N,1.0) # Compute the distance between all pair of trajectories (sum of the distances between points) # The distance matrix is a matrix N*N # The distance is defined as the sum of the distances between all pairs of points # if the two trajectories differ, 0 otherwise for j in range(N): #combine all trajectories: eg N=3: 0&1; 0&2; 1&2 (is not dependent from sequence) for z in range(j+1,N): MyDist = np.zeros((sizeb,sizeb)) for i in range(sizeb): for k in range(sizeb): MyDist[i,k] = (np.sum((OutMatrix[sizeb*(j)+i,:]-OutMatrix[sizeb*(z)+k,:])**2))**0.5 #indices aan te passen if np.where(MyDist==0)[0].size == sizeb: # Same trajectory. If the number of zeros in Dist matrix is equal to # (NumFact+1) then the trajectory is a replica. In fact (NumFact+1) is the maximum numebr of # points that two trajectories can have in common Dist[j,z] = 0. Dist[z,j] = 0. # Memorise the replicated trajectory Diff_Traj[z] = -1. #the z value identifies the duplicate else: # Define the distance between two trajectories as # the minimum distance among their points Dist[j,z] = np.sum(MyDist) Dist[z,j] = np.sum(MyDist) #prepare array with excluded duplicates (alternative would be deleting rows) dupli=np.where(Diff_Traj == -1)[0].size New_OutMatrix = np.zeros(((sizeb)*(N-dupli),NumFact)) New_OutFact = np.zeros(((sizeb)*(N-dupli),1)) # Eliminate replicated trajectories in the sampled matrix ID=0 for i in range(N): if Diff_Traj[i]!= -1.: New_OutMatrix[ID*sizeb:ID*sizeb+sizeb,:] = OutMatrix[i*(sizeb) : i*(sizeb) + sizeb,:] New_OutFact[ID*sizeb:ID*sizeb+sizeb,:] = OutFact[i*(sizeb) : i*(sizeb) + sizeb,:] ID+=1 # Select in the distance matrix only the rows and columns of different trajectories Dist_Diff = Dist[np.where(Diff_Traj != -1)[0],:] #moet 2D matrix zijn... wis rijen ipv hou bij Dist_Diff = Dist_Diff[:,np.where(Diff_Traj != -1)[0]] #moet 2D matrix zijn... wis rijen ipv hou bij # Dist_Diff = np.delete(Dist_Diff,np.where(Diff_Traj==-1.)[0]) New_N = np.size(np.where(Diff_Traj != -1)[0]) # Select the optimal set of trajectories Traj_Vec = np.zeros((New_N, r)) OptDist = np.zeros((New_N, r)) for m in range(New_N): #each row in Traj_Vec Traj_Vec[m,0]=m for z in range(1,r): #elements in columns after first Max_New_Dist_Diff = 0.0 for j in range(New_N): # Check that trajectory j is not already in Is_done = False for h in range(z): if j == Traj_Vec[m,h]: Is_done=True if Is_done == False: New_Dist_Diff = 0.0 #compute distance for k in range(z): New_Dist_Diff = New_Dist_Diff + (Dist_Diff[int(Traj_Vec[m, k]),j])**2 # Check if the distance is greater than the old one if New_Dist_Diff**0.5 > Max_New_Dist_Diff: Max_New_Dist_Diff = New_Dist_Diff**0.5 Pippo = j # Set the new trajectory Traj_Vec[m,z] = Pippo OptDist[m,z] = Max_New_Dist_Diff # Construct optimal matrix SumOptDist = np.sum(OptDist, axis=1) # Find the maximum distance Pluto = np.where(SumOptDist == np.max(SumOptDist))[0] Opt_Traj_Vec = Traj_Vec[Pluto[0],:] OptMatrix = np.zeros(((sizeb)*r,NumFact)) OptOutVec = np.zeros(((sizeb)*r,1)) for k in range(r): OptMatrix[k*(sizeb):k*(sizeb)+(sizeb),:]= New_OutMatrix[(sizeb)*(int(Opt_Traj_Vec[k])):(sizeb)*(int(Opt_Traj_Vec[k])) + sizeb,:] OptOutVec[k*(sizeb):k*(sizeb)+(sizeb)]= New_OutFact[(sizeb)*(int(Opt_Traj_Vec[k])):(sizeb)*(int(Opt_Traj_Vec[k]))+ sizeb,:] #---------------------------------------------------------------------- # Compute values in the original intervals # Optmatrix has values x(i,j) in [0, 1/(p -1), 2/(p -1), ... , 1]. # To obtain values in the original intervals [LB, UB] we compute # LB(j) + x(i,j)*(UB(j)-LB(j)) self.OptMatrix_b = OptMatrix.copy() OptMatrix=np.tile(self.LB, (sizeb*r,1)) + OptMatrix*np.tile((self.UB-self.LB), (sizeb*r,1)) self.OptOutMatrix = OptMatrix self.OptOutFact = OptOutVec self.parset2run = OptMatrix self.totalnumberruns = self.parset2run.shape[0] return OptMatrix, OptOutVec def Optimized_diagnostic(self, width = 0.1): ''' Evaluate the optimized trajects in their space distirbution, evaluation is done based on the [0-1] boundaries of the sampling Returns quality measure and 2 figures to compare the optimized version Parameters ----------- width : float width of the bars in the plot (default 0.1) Examples --------- >>> sm.Optimized_diagnostic() The quality of the sampling strategy changed from 0.76 with the old strategy to 0.88 for the optimized strategy ''' NumFact = self._ndim sizeb = self.sizeb p = self.intervals r = self.noptimized # Clean the trajectories from repetitions and plot the histograms hplot=np.zeros((2*r,NumFact)) for i in range(NumFact): for j in range(r): # select the first value of the factor hplot[j*2,i] = self.OptMatrix_b[j*sizeb,i] # search the second value for ii in range(1,sizeb): if self.OptMatrix_b[j*sizeb+ii,i] != self.OptMatrix_b[j*sizeb,i]: kk = 1 hplot[j*2+kk,i] = self.OptMatrix_b[j*sizeb+ii,i] fig=plt.figure() fig.subplots_adjust(hspace=0.3,wspace = 0.1) fig.suptitle('Optimized sampling') # DimPlots = np.round(NumFact/2) DimPlots = int(np.ceil(NumFact/2.)) # print hplot.shape for i in range(NumFact): ax=fig.add_subplot(DimPlots,2,i+1) # n, bins, patches = ax.hist(hplot[:,i], p, color='k',ec='white') n, bin_edges = np.histogram(hplot[:,i], bins = p,) bwidth = width xlocations = np.linspace(0.,1.,self.intervals)-bwidth/2. ax.bar(xlocations, n, width = bwidth, color='k') majloc1 = MaxNLocator(nbins=4, prune='lower', integer=True) ax.yaxis.set_major_locator(majloc1) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(10) ax.set_xlim([-0.25,1.25]) ax.set_ylim([0,n.max()+n.max()*0.1]) ax.xaxis.set_ticks([0.0,1.0]) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(10) ax.set_xlabel(self._namelist[i],fontsize=10) ax.xaxis.set_label_coords(0.5, -0.08) # Plot the histogram for the original sampling strategy # Select the matrix OrigSample = self.OutMatrix[:r*(sizeb),:] Orihplot = np.zeros((2*r,NumFact)) for i in range(NumFact): for j in range(r): # select the first value of the factor Orihplot[j*2,i] = OrigSample[j*sizeb,i] # search the second value for ii in range(1,sizeb): if OrigSample[j*sizeb+ii,i] != OrigSample[j*sizeb,i]: kk = 1 Orihplot[j*2+kk,i] = OrigSample[j*sizeb+ii,i] fig=plt.figure() fig.subplots_adjust(hspace=0.25,wspace=0.1) fig.suptitle('Original sampling') # DimPlots = np.round(NumFact/2) DimPlots = int(np.ceil(NumFact/2.)) for i in range(NumFact): ax=fig.add_subplot(DimPlots,2,i+1) n, bin_edges = np.histogram(Orihplot[:,i], bins = p,) bwidth = width xlocations = np.linspace(0.,1.,self.intervals)-bwidth/2. ax.bar(xlocations, n, width = bwidth, color='k') majloc1 = MaxNLocator(nbins=4, prune='lower', integer=True) ax.yaxis.set_major_locator(majloc1) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(10) ax.set_xlim([-0.25,1.25]) ax.set_ylim([0,n.max()+n.max()*0.1]) ax.xaxis.set_ticks([0.0,1.0]) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(10) ax.set_xlabel(self._namelist[i],fontsize=10) ax.xaxis.set_label_coords(0.5, -0.08) # Measure the quality of the sampling strategy levels = np.arange(0.0, 1.1, 1.0/(p-1)) NumSPoint = np.zeros((NumFact,p)) NumSOrigPoint=
np.zeros((NumFact,p))
numpy.zeros
""" Class definition for an Implicit Component. """ import numpy as np # pylint: disable=E0611,F0401 from openmdao.main.array_helpers import flattened_value from openmdao.main.component import Component from openmdao.main.datatypes.api import Bool from openmdao.main.interfaces import IImplicitComponent, IVariableTree, \ implements from openmdao.main.mp_support import has_interface from openmdao.main.rbac import rbac class ImplicitComponent(Component): """This is the base class for a component that represents an implicit function """ implements(IImplicitComponent) eval_only = Bool(True, iotype='in', framework_var=True, desc='Set to False if you define your own solver. ' 'Otherwise, OpenMDAO must solve the implicit ' 'equations for this component.') def __init__(self): super(ImplicitComponent, self).__init__() self._state_names = None self._resid_names = None self._shape_cache = {} # register callbacks for all of our 'state' traits for name, trait in self.class_traits().items(): if trait.iotype == 'state': self._set_input_callback(name) # This flag is for testing. Set to True to run this as an explicit # component so you can test derivatives. self._run_explicit = False @rbac(('owner', 'user')) def list_states(self): """Return a list of names of state variables in alphabetical order. This specifies the order the state vector, so if you use a different ordering internally, override this function to return the states in the desired order. """ if self._run_explicit == True: return [] if self._state_names is None: self._state_names = \ sorted([k for k, _ in self.items(iotype='state')]) return self._state_names @rbac(('owner', 'user')) def list_residuals(self): """Return a list of names of residual variables in alphabetical order. This specifies the order the residual vector, so if you use a different order internally, override this function to return the residuals in the desired order. """ if self._run_explicit == True: return [] if self._resid_names is None: self._resid_names = \ sorted([k for k, _ in self.items(iotype='residual')]) return self._resid_names def evaluate(self): """run a single step to calculate the residual values for the given state var values. This must be overridden in derived classes. """ raise NotImplementedError('%s.evaluate' % self.get_pathname()) @rbac(('owner', 'user')) def config_changed(self, update_parent=True): """Reset internally cached values.""" super(ImplicitComponent, self).config_changed(update_parent) self._state_names = None self._resid_names = None self._shape_cache = {} def check_config(self, strict=False): """ Override this function to perform configuration checks specific to your class. Bad configurations should raise an exception. """ super(ImplicitComponent, self).check_config(strict=strict) # TODO: add check that total width of states == total widtJh of # residuals def execute(self): """ Performs either an internal solver or a single evaluation. Do not override this function. """ if self.eval_only: self.evaluate() else: self.solve() def get_residuals(self): """Return a vector of residual values.""" resids = [] if self._run_explicit == False: for name in self.list_residuals(): resids.extend(flattened_value(name, getattr(self, name))) return
np.array(resids)
numpy.array
from itertools import product from random import randint from io import BytesIO import pathlib import ui import numpy as np from PIL import Image as ImageP from cpu import CPU from cartridge import Rom from bus import Bus PATH = '../' ROM = 'snake' NES_PATH = pathlib.Path(PATH + ROM + '.nes') init_img = ImageP.new('RGB', (32, 32)) base_array = np.asarray(init_img) diff_array = np.zeros((32, 32, 3), dtype=np.uint8) BLACK = '#000000' WHITE = '#ffffff' GREY = '#808080' RED = '#ff0000' GREEN = '#008000' BLUE = '#0000ff' MAGENTA = '#ff00ff' YELLOW = '#ffff00' CYAN = '#00ffff' def palette(c_byt: 'u8'): if c_byt == 0: # 0 => BLACK return BLACK elif c_byt == 1: # 1 => WHITE return WHITE elif c_byt in (2, 9): # 2 | 9 => GREY return GREY elif c_byt in (3, 10): # 3 | 10 => RED return RED elif c_byt in (4, 11): # 4 | 11 => GREEN return GREEN elif c_byt in (5, 12): # 5 | 12 => BLUE return BLUE elif c_byt in (6, 13): # 6 | 13 => MAGENTA return MAGENTA elif c_byt in (7, 14): # 7 | 14 => YELLOW return YELLOW else: # _ => CYAN return CYAN def color(byt: str) -> list: head = '0x' r = int(head + byt[1:3], 16) g = int(head + byt[3:5], 16) b = int(head + byt[5:7], 16) num_rgb = np.array([r, g, b], dtype=np.uint8) return num_rgb def show_canvas(_cpu): #canvas = _cpu.memory[0x200:0x600] #canvas = [_cpu.mem_read(i) for i in range(0x200, 0x600)] canvas = _cpu.bus.cpu_vram[0x200:0x600] count = 0 for x, y in product(range(32), range(32)): byt = canvas[count] diff_array[x][y] = color(palette(byt)) count += 1 #del canvas out_array = base_array + diff_array out_img = ImageP.fromarray(out_array) re_out = out_img.resize((320, 320)) with BytesIO() as bIO: re_out.save(bIO, 'png') re_img = ui.Image.from_data(bIO.getvalue()) del bIO return re_img class Key(ui.View): def __init__(self, call: 'CPU.mem_write', byte_key: int): self.call = call self.byte_key = byte_key self.bg_color = GREY self.height = 64 self.width = 64 self.alpha = 1 def touch_began(self, touch): self.alpha = .25 self.call(0xff, self.byte_key) def touch_ended(self, touch): self.alpha = 1 class View(ui.View): def __init__(self): self.name = 'View' self.bg_color = .128 self.update_interval = 1 / (2**14) # --- load the game # xxx: list or tuple ? nes_bytes = pathlib.Path.read_bytes(NES_PATH) rom = Rom(nes_bytes) bus = Bus(rom) self.cpu = CPU(bus) self.cpu.reset() self.screen_state = np.array([0] * (32 * 32), dtype=np.uint8) self.im_view = ui.ImageView() self.im_view.bg_color = 0 self.im_view.height = 320 self.im_view.width = 320 self.im_view.image = show_canvas(self.cpu) self.add_subview(self.im_view) self.key_W = Key(self.cpu.mem_write, 0x77) self.key_S = Key(self.cpu.mem_write, 0x73) self.key_A = Key(self.cpu.mem_write, 0x61) self.key_D = Key(self.cpu.mem_write, 0x64) self.add_subview(self.key_W) self.add_subview(self.key_S) self.add_subview(self.key_A) self.add_subview(self.key_D) def read_screen_state(self, _cpu: '&CPU') -> bool: update = False pre_array = self.screen_state #memory = [_cpu.mem_read(i) for i in range(0x200, 0x600)] memory = _cpu.bus.cpu_vram[0x200:0x600] mem_array =
np.array(memory, dtype=np.uint8)
numpy.array
from typing import Tuple, Dict, Any, Union, Callable import numpy as np import scipy.ndimage as ndi from common.exceptionmanager import catch_error_exception from common.functionutil import ImagesUtil from preprocessing.imagegenerator import ImageGenerator _epsilon = 1e-6 class TransformRigidImages(ImageGenerator): def __init__(self, size_image: Union[Tuple[int, int, int], Tuple[int, int]], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, is_inverse_transform: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: super(TransformRigidImages, self).__init__(size_image, num_images=1) if is_normalize_data: if type_normalize_data == 'featurewise': self._featurewise_center = True self._featurewise_std_normalization = True self._samplewise_center = False self._samplewise_std_normalization = False else: # type_normalize_data == 'samplewise' self._featurewise_center = False self._featurewise_std_normalization = False self._samplewise_center = True self._samplewise_std_normalization = True else: self._featurewise_center = False self._featurewise_std_normalization = False self._samplewise_center = False self._samplewise_std_normalization = False self._is_zca_whitening = is_zca_whitening self._zca_epsilon = 1e-6 self._rescale_factor = rescale_factor self._preprocessing_function = preprocessing_function self._mean = None self._std = None self._principal_components = None self._is_inverse_transform = is_inverse_transform self._initialize_gendata() def update_image_data(self, in_shape_image: Tuple[int, ...]) -> None: # self._num_images = in_shape_image[0] pass def _initialize_gendata(self) -> None: self._transform_matrix = None self._transform_params = None self._count_trans_in_images = 0 def _update_gendata(self, **kwargs) -> None: seed = kwargs['seed'] (self._transform_matrix, self._transform_params) = self._calc_gendata_random_transform(seed) self._count_trans_in_images = 0 def _get_image(self, in_image: np.ndarray) -> np.ndarray: is_type_input_image = (self._count_trans_in_images == 0) self._count_trans_in_images += 1 return self._get_transformed_image(in_image, is_type_input_image=is_type_input_image) def _get_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: if ImagesUtil.is_without_channels(self._size_image, in_image.shape): in_image = np.expand_dims(in_image, axis=-1) is_reshape_input_image = True else: is_reshape_input_image = False in_image = self._calc_transformed_image(in_image, is_type_input_image=is_type_input_image) if is_type_input_image: in_image = self._standardize(in_image) if is_reshape_input_image: in_image = np.squeeze(in_image, axis=-1) return in_image def _get_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: if ImagesUtil.is_without_channels(self._size_image, in_image.shape): in_image = np.expand_dims(in_image, axis=-1) is_reshape_input_image = True else: is_reshape_input_image = False if is_type_input_image: in_image = self._standardize_inverse(in_image) in_image = self._calc_inverse_transformed_image(in_image, is_type_input_image=is_type_input_image) if is_reshape_input_image: in_image = np.squeeze(in_image, axis=-1) return in_image def _calc_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: raise NotImplementedError def _calc_inverse_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: raise NotImplementedError def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: raise NotImplementedError def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: raise NotImplementedError def _standardize(self, in_image: np.ndarray) -> np.ndarray: if self._preprocessing_function: in_image = self._preprocessing_function(in_image) if self._rescale_factor: in_image *= self._rescale_factor if self._samplewise_center: in_image -= np.mean(in_image, keepdims=True) if self._samplewise_std_normalization: in_image /= (np.std(in_image, keepdims=True) + _epsilon) template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \ 'training data. Fit it first by calling \'fit(numpy_data)\'.' if self._featurewise_center: if self._mean is not None: in_image -= self._mean else: message = template_message_error % ('featurewise_center') catch_error_exception(message) if self._featurewise_std_normalization: if self._std is not None: in_image /= (self._std + _epsilon) else: message = template_message_error % ('featurewise_std_normalization') catch_error_exception(template_message_error % (message)) if self._is_zca_whitening: if self._principal_components is not None: flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:]))) whitex = np.dot(flatx, self._principal_components) in_image = np.reshape(whitex, in_image.shape) else: message = template_message_error % ('zca_whitening') catch_error_exception(message) return in_image def _standardize_inverse(self, in_image: np.ndarray) -> np.ndarray: template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \ 'training data. Fit it first by calling \'fit(numpy_data)\'.' if self._is_zca_whitening: if self._principal_components is not None: flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:]))) inverse_principal_componens = np.divide(1.0, self._principal_components) whitex = np.dot(flatx, inverse_principal_componens) in_image = np.reshape(whitex, in_image.shape) else: message = template_message_error % ('zca_whitening') catch_error_exception(message) if self._featurewise_std_normalization: if self._std is not None: in_image *= self._std else: message = template_message_error % ('featurewise_std_normalization') catch_error_exception(message) if self._featurewise_center: if self._mean is not None: in_image += self._mean else: message = template_message_error % ('featurewise_center') catch_error_exception(message) if self._samplewise_std_normalization: in_image *= np.std(in_image, keepdims=True) if self._samplewise_center: in_image += np.mean(in_image, keepdims=True) if self._rescale_factor: in_image /= self._rescale_factor if self._preprocessing_function: catch_error_exception('Not implemented inverse preprocessing function') return in_image @staticmethod def _flip_axis(in_image: np.ndarray, axis: int) -> np.ndarray: in_image = np.asarray(in_image).swapaxes(axis, 0) in_image = in_image[::-1, ...] in_image = in_image.swapaxes(0, axis) return in_image @staticmethod def _apply_channel_shift(in_image: np.ndarray, intensity: int, channel_axis: int = 0) -> np.ndarray: in_image = np.rollaxis(in_image, channel_axis, 0) min_x, max_x = np.min(in_image), np.max(in_image) channel_images = [np.clip(x_channel + intensity, min_x, max_x) for x_channel in in_image] in_image = np.stack(channel_images, axis=0) in_image = np.rollaxis(in_image, 0, channel_axis + 1) return in_image def _apply_brightness_shift(self, in_image: np.ndarray, brightness: int) -> np.ndarray: catch_error_exception('Not implemented brightness shifting option...') # in_image = array_to_img(in_image) # in_image = imgenhancer_Brightness = ImageEnhance.Brightness(in_image) # in_image = imgenhancer_Brightness.enhance(brightness) # in_image = img_to_array(in_image) def get_text_description(self) -> str: raise NotImplementedError class TransformRigidImages2D(TransformRigidImages): _img_row_axis = 0 _img_col_axis = 1 _img_channel_axis = 2 def __init__(self, size_image: Tuple[int, int], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, rotation_range: float = 0.0, width_shift_range: float = 0.0, height_shift_range: float = 0.0, brightness_range: Tuple[float, float] = None, shear_range: float = 0.0, zoom_range: Union[float, Tuple[float, float]] = 0.0, channel_shift_range: float = 0.0, fill_mode: str = 'nearest', cval: float = 0.0, horizontal_flip: bool = False, vertical_flip: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: self._rotation_range = rotation_range self._width_shift_range = width_shift_range self._height_shift_range = height_shift_range self._brightness_range = brightness_range self._shear_range = shear_range self._channel_shift_range = channel_shift_range self._fill_mode = fill_mode self._cval = cval self._horizontal_flip = horizontal_flip self._vertical_flip = vertical_flip if np.isscalar(zoom_range): self._zoom_range = (1 - zoom_range, 1 + zoom_range) elif len(zoom_range) == 2: self._zoom_range = (zoom_range[0], zoom_range[1]) else: message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range)) catch_error_exception(message) if self._brightness_range is not None: if len(self._brightness_range) != 2: message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range)) catch_error_exception(message) super(TransformRigidImages2D, self).__init__(size_image, is_normalize_data=is_normalize_data, type_normalize_data=type_normalize_data, is_zca_whitening=is_zca_whitening, rescale_factor=rescale_factor, preprocessing_function=preprocessing_function) def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: rigid transformations # 2nd: channel shift intensity / flipping if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) return in_image def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: channel shift intensity / flipping # 2nd: rigid transformations if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) return in_image def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_range: theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range)) else: theta = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if np.max(self._height_shift_range) < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if np.max(self._width_shift_range) < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._shear_range: shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range)) else: shear = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis] transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w) # **************************************************** return (transform_matrix, transform_parameters) def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of inverse homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_range: theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range)) else: theta = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._shear_range: shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range)) else: shear = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), np.sin(theta), 0], [-np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, -tx], [0, 1, -ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, np.tan(shear), 0], [0, 1.0 / np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[1.0 / zx, 0, 0], [0, 1.0 / zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis] transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w) # **************************************************** return (transform_matrix, transform_parameters) @staticmethod def _transform_matrix_offset_center(matrix: np.ndarray, x: int, y: int) -> np.ndarray: o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix @staticmethod def _apply_transform(in_image: np.ndarray, transform_matrix: np.ndarray, channel_axis: int = 0, fill_mode: str = 'nearest', cval: float = 0.0) -> np.ndarray: in_image = np.rollaxis(in_image, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=1, mode=fill_mode, cval=cval) for x_channel in in_image] in_image = np.stack(channel_images, axis=0) in_image = np.rollaxis(in_image, 0, channel_axis + 1) return in_image def get_text_description(self) -> str: message = 'Rigid 2D transformations of images, with parameters...\n' message += 'rotation (plane_XY) range: \'%s\'...\n' % (self._rotation_range) message += 'shift (width, height) range: \'(%s, %s)\'...\n' \ % (self._width_shift_range, self._height_shift_range) message += 'flip (horizontal, vertical): \'(%s, %s)\'...\n' \ % (self._horizontal_flip, self._vertical_flip) message += 'zoom (min, max) range: \'(%s, %s)\'...\n' % (self._zoom_range[0], self._zoom_range[1]) message += 'shear (plane_XY) range: \'%s\'...\n' % (self._shear_range) message += 'fill mode, when applied transformation: \'%s\'...\n' % (self._fill_mode) return message class TransformRigidImages3D(TransformRigidImages): _img_dep_axis = 0 _img_row_axis = 1 _img_col_axis = 2 _img_channel_axis = 3 def __init__(self, size_image: Tuple[int, int, int], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, rotation_xy_range: float = 0.0, rotation_xz_range: float = 0.0, rotation_yz_range: float = 0.0, width_shift_range: float = 0.0, height_shift_range: float = 0.0, depth_shift_range: float = 0.0, brightness_range: Tuple[float, float] = None, shear_xy_range: float = 0.0, shear_xz_range: float = 0.0, shear_yz_range: float = 0.0, zoom_range: Union[float, Tuple[float, float]] = 0.0, channel_shift_range: float = 0.0, fill_mode: str = 'nearest', cval: float = 0.0, horizontal_flip: bool = False, vertical_flip: bool = False, axialdir_flip: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: self._rotation_xy_range = rotation_xy_range self._rotation_xz_range = rotation_xz_range self._rotation_yz_range = rotation_yz_range self._width_shift_range = width_shift_range self._height_shift_range = height_shift_range self._depth_shift_range = depth_shift_range self._brightness_range = brightness_range self._shear_xy_range = shear_xy_range self._shear_xz_range = shear_xz_range self._shear_yz_range = shear_yz_range self._channel_shift_range = channel_shift_range self._fill_mode = fill_mode self._cval = cval self._horizontal_flip = horizontal_flip self._vertical_flip = vertical_flip self._axialdir_flip = axialdir_flip if np.isscalar(zoom_range): self._zoom_range = (1 - zoom_range, 1 + zoom_range) elif len(zoom_range) == 2: self._zoom_range = (zoom_range[0], zoom_range[1]) else: message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range)) catch_error_exception(message) if self._brightness_range is not None: if len(self._brightness_range) != 2: message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range)) catch_error_exception(message) super(TransformRigidImages3D, self).__init__(size_image, is_normalize_data=is_normalize_data, type_normalize_data=type_normalize_data, is_zca_whitening=is_zca_whitening, rescale_factor=rescale_factor, preprocessing_function=preprocessing_function) def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: rigid transformations # 2nd: channel shift intensity / flipping if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_axialdir', False): in_image = self._flip_axis(in_image, axis=self._img_dep_axis) if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) return in_image def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: channel shift intensity / flipping # 2nd: rigid transformations if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) if self._transform_params.get('flip_axialdir', False): in_image = self._flip_axis(in_image, axis=self._img_dep_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) return in_image def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_xy_range: angle_xy = np.deg2rad(np.random.uniform(-self._rotation_xy_range, self._rotation_xy_range)) else: angle_xy = 0 if self._rotation_xz_range: angle_xz = np.deg2rad(np.random.uniform(-self._rotation_xz_range, self._rotation_xz_range)) else: angle_xz = 0 if self._rotation_yz_range: angle_yz = np.deg2rad(np.random.uniform(-self._rotation_yz_range, self._rotation_yz_range)) else: angle_yz = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._depth_shift_range: tz = np.random.uniform(-self._depth_shift_range, self._depth_shift_range) if self._depth_shift_range < 1: tz *= self._size_image[self._img_dep_axis] else: tz = 0 if self._shear_xy_range: shear_xy = np.deg2rad(np.random.uniform(-self._shear_xy_range, self._shear_xy_range)) else: shear_xy = 0 if self._shear_xz_range: shear_xz = np.deg2rad(np.random.uniform(-self._shear_xz_range, self._shear_xz_range)) else: shear_xz = 0 if self._shear_yz_range: shear_yz = np.deg2rad(np.random.uniform(-self._shear_yz_range, self._shear_yz_range)) else: shear_yz = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: (zx, zy, zz) = (1, 1, 1) else: (zx, zy, zz) = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 3) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip flip_axialdir = (np.random.random() < 0.5) * self._axialdir_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'flip_axialdir': flip_axialdir, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if angle_xy != 0: rotation_matrix = np.array([[1, 0, 0, 0], [0, np.cos(angle_xy), -np.sin(angle_xy), 0], [0, np.sin(angle_xy), np.cos(angle_xy), 0], [0, 0, 0, 1]]) transform_matrix = rotation_matrix if angle_xz != 0: rotation_matrix = np.array([[np.cos(angle_xz), np.sin(angle_xz), 0, 0], [-np.sin(angle_xz), np.cos(angle_xz), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) transform_matrix = \ rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix) if angle_yz != 0: rotation_matrix = np.array([[np.cos(angle_yz), 0, np.sin(angle_yz), 0], [0, 1, 0, 0], [-np.sin(angle_yz), 0, np.cos(angle_yz), 0], [0, 0, 0, 1]]) transform_matrix = \ rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix) if tx != 0 or ty != 0 or tz != 0: shift_matrix = np.array([[1, 0, 0, tz], [0, 1, 0, tx], [0, 0, 1, ty], [0, 0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else
np.dot(transform_matrix, shift_matrix)
numpy.dot
""" Library of standardized plotting functions for basic plot formats """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import xarray as xr from scipy.interpolate import interp1d from scipy.signal import welch # Standard field labels # - default: e.g., "Km/s" # - all superscript: e.g., "K m s^{-1}" fieldlabels_default_units = { 'wspd': r'Wind speed [m/s]', 'wdir': r'Wind direction [$^\circ$]', 'u': r'u [m/s]', 'v': r'v [m/s]', 'w': r'Vertical wind speed [m/s]', 'theta': r'$\theta$ [K]', 'thetav': r'$\theta_v$ [K]', 'uu': r'$\langle u^\prime u^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'vv': r'$\langle v^\prime v^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'ww': r'$\langle w^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'uv': r'$\langle u^\prime v^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'uw': r'$\langle u^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'vw': r'$\langle v^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'tw': r'$\langle w^\prime \theta^\prime \rangle \;[\mathrm{Km/s}]$', 'TI': r'TI $[-]$', 'TKE': r'TKE $[\mathrm{m^2/s^2}]$', } fieldlabels_superscript_units = { 'wspd': r'Wind speed [m s$^{-1}$]', 'wdir': r'Wind direction [$^\circ$]', 'u': r'u [m s$^{-1}$]', 'v': r'v [m s$^{-1}$]', 'w': r'Vertical wind speed [m s$^{-1}$]', 'theta': r'$\theta$ [K]', 'thetav': r'$\theta_v$ [K]', 'uu': r'$\langle u^\prime u^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'vv': r'$\langle v^\prime v^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'ww': r'$\langle w^\prime w^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'uv': r'$\langle u^\prime v^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'uw': r'$\langle u^\prime w^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'vw': r'$\langle v^\prime w^\prime \rangle \;[\mathrm{m^2 s^{-2}}]$', 'tw': r'$\langle w^\prime \theta^\prime \rangle \;[\mathrm{K m s^{-1}}]$', 'TI': r'TI $[-]$', 'TKE': r'TKE $[\mathrm{m^2 s^{-2}}]$', } # Standard field labels for frequency spectra spectrumlabels_default_units = { 'u': r'$E_{uu}\;[\mathrm{m^2/s}]$', 'v': r'$E_{vv}\;[\mathrm{m^2/s}]$', 'w': r'$E_{ww}\;[\mathrm{m^2/s}]$', 'theta': r'$E_{\theta\theta}\;[\mathrm{K^2 s}]$', 'thetav': r'$E_{\theta\theta}\;[\mathrm{K^2 s}]$', 'wspd': r'$E_{UU}\;[\mathrm{m^2/s}]$', } spectrumlabels_superscript_units = { 'u': r'$E_{uu}\;[\mathrm{m^2\;s^{-1}}]$', 'v': r'$E_{vv}\;[\mathrm{m^2\;s^{-1}}]$', 'w': r'$E_{ww}\;[\mathrm{m^2\;s^{-1}}]$', 'theta': r'$E_{\theta\theta}\;[\mathrm{K^2\;s}]$', 'thetav': r'$E_{\theta\theta}\;[\mathrm{K^2\;s}]$', 'wspd': r'$E_{UU}\;[\mathrm{m^2\;s^{-1}}]$', } # Default settings default_colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] standard_fieldlabels = fieldlabels_default_units standard_spectrumlabels = spectrumlabels_default_units # Supported dimensions and associated names dimension_names = { 'time': ['datetime','time','Time'], 'height': ['height','heights','z'], 'frequency': ['frequency','f',] } # Show debug information debug = False def plot_timeheight(datasets, fields=None, fig=None,ax=None, colorschemes={}, fieldlimits=None, heightlimits=None, timelimits=None, fieldlabels={}, labelsubplots=False, showcolorbars=True, fieldorder='C', ncols=1, subfigsize=(12,4), plot_local_time=False, local_time_offset=0, datasetkwargs={}, **kwargs ): """ Plot time-height contours for different datasets and fields Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are MultiIndex Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal ndatasets*nfields colorschemes : str or dict Name of colorschemes. If only one field is plotted, colorschemes can be a string. Otherwise, it should be a dictionary with entries <fieldname>: name_of_colorschemes Missing colorschemess are set to 'viridis' fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically heightlimits : list or tuple Height axis limits timelimits : list or tuple Time axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel labelsubplots : bool, list or tuple Label subplots as (a), (b), (c), ... If a list or tuple is given their values should be the horizontal and vertical position relative to each subaxis. showcolorbars : bool Show colorbar per subplot fieldorder : 'C' or 'F' Index ordering for assigning fields and datasets to axes grid (row by row). Fields is considered the first axis, so 'C' means fields change slowest, 'F' means fields change fastest. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures plot_local_time : bool or str Plot dual x axes with both UTC time and local time. If a str is provided, then plot_local_time is assumed to be True and the str is used as the datetime format. local_time_offset : float Local time offset from UTC datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets and fields and can not be used to set dataset or field specific limits, colorschemess, norms, etc. Example uses include setting shading, rasterized, etc. """ args = PlottingInput( datasets=datasets, fields=fields, fieldlimits=fieldlimits, fieldlabels=fieldlabels, colorschemes=colorschemes, fieldorder=fieldorder ) args.set_missing_fieldlimits() nfields = len(args.fields) ndatasets = len(args.datasets) ntotal = nfields * ndatasets # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, sharex=True, sharey=True, subfigsize=subfigsize, hspace=0.2, fig=fig, ax=ax ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Initialise list of colorbars cbars = [] # Loop over datasets, fields and times for i, dfname in enumerate(args.datasets): df = args.datasets[dfname] heightvalues = _get_dim_values(df,'height') timevalues = _get_dim_values(df,'time') assert(heightvalues is not None), 'timeheight plot needs a height axis' assert(timevalues is not None), 'timeheight plot needs a time axis' if isinstance(timevalues, pd.DatetimeIndex): # If plot local time, shift timevalues if plot_local_time is not False: timevalues = timevalues + pd.to_timedelta(local_time_offset,'h') # Convert to days since 0001-01-01 00:00 UTC, plus one numerical_timevalues = mdates.date2num(timevalues.values) else: if isinstance(timevalues, pd.TimedeltaIndex): timevalues = timevalues.total_seconds() # Timevalues is already a numerical array numerical_timevalues = timevalues # Create time-height mesh grid tst = _get_staggered_grid(numerical_timevalues) zst = _get_staggered_grid(heightvalues) Ts,Zs = np.meshgrid(tst,zst,indexing='xy') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # Pivot all fields in a dataset at once df_pivot = _get_pivot_table(df,'height',available_fields) for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue # Store plotting options in dictionary plotting_properties = { 'vmin': args.fieldlimits[field][0], 'vmax': args.fieldlimits[field][1], 'cmap': args.cmap[field] } # Index of axis corresponding to dataset i and field j if args.fieldorder=='C': axi = i*nfields + j else: axi = j*ndatasets + i # Extract data from dataframe fieldvalues = _get_pivoted_field(df_pivot,field) # Gather label, color, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Plot data im = axv[axi].pcolormesh(Ts,Zs,fieldvalues.T,**plotting_properties) # Colorbar mark up if showcolorbars: cbar = fig.colorbar(im,ax=axv[axi],shrink=1.0) # Set field label if known try: cbar.set_label(args.fieldlabels[field]) except KeyError: pass # Save colorbar cbars.append(cbar) # Set title if more than one dataset if ndatasets>1: axv[axi].set_title(dfname,fontsize=16) # Format time axis if isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): ax2 = _format_time_axis(fig,axv[(nrows-1)*ncols:],plot_local_time,local_time_offset,timelimits) else: ax2 = None # Set time limits if specified if not timelimits is None: axv[-1].set_xlim(timelimits) # Set time label for axi in axv[(nrows-1)*ncols:]: axi.set_xlabel('time [s]') if not heightlimits is None: axv[-1].set_ylim(heightlimits) # Add y labels for r in range(nrows): axv[r*ncols].set_ylabel(r'Height [m]') # Align time, height and color labels _align_labels(fig,axv,nrows,ncols) if showcolorbars: _align_labels(fig,[cb.ax for cb in cbars],nrows,ncols) # Number sub figures as a, b, c, ... if labelsubplots is not False: try: hoffset, voffset = labelsubplots except (TypeError, ValueError): hoffset, voffset = -0.14, 1.0 for i,axi in enumerate(axv): axi.text(hoffset,voffset,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Return cbar instead of array if ntotal==1 if len(cbars)==1: cbars=cbars[0] if (plot_local_time is not False) and ax2 is not None: return fig, ax, ax2, cbars else: return fig, ax, cbars def plot_timehistory_at_height(datasets, fields=None, heights=None, fig=None,ax=None, fieldlimits=None, timelimits=None, fieldlabels={}, cmap=None, stack_by_datasets=None, labelsubplots=False, showlegend=None, ncols=1, subfigsize=(12,3), plot_local_time=False, local_time_offset=0, datasetkwargs={}, **kwargs ): """ Plot time history at specified height(s) for various dataset(s) and/or field(s). By default, data for multiple datasets or multiple heights are stacked in a single subplot. When multiple datasets and multiple heights are specified together, heights are stacked in a subplot per field and per dataset. Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) heights : float, list, 'all' (or None) Height(s) for which time history is plotted. heights can be None if all datasets combined have no more than one height value. 'all' means the time history for all heights in the datasets will be plotted (in this case all datasets should have the same heights) fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal nfields * (ndatasets or nheights) fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically timelimits : list or tuple Time axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel cmap : str Colormap used when stacking heights stack_by_datasets : bool (or None) Flag to specify what is plotted ("stacked") together per subfigure. If True, stack datasets together, otherwise stack by heights. If None, stack_by_datasets will be set based on the number of heights and datasets. labelsubplots : bool, list or tuple Label subplots as (a), (b), (c), ... If a list or tuple is given their values should be the horizontal and vertical position relative to each subaxis. showlegend : bool (or None) Label different plots and show legend. If None, showlegend is set to True if legend will have more than one entry, otherwise it is set to False. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures plot_local_time : bool or str Plot dual x axes with both UTC time and local time. If a str is provided, then plot_local_time is assumed to be True and the str is used as the datetime format. local_time_offset : float Local time offset from UTC datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets, fields and heights, and they can not be used to set dataset, field or height specific colors, limits, etc. Example uses include setting linestyle/width, marker, etc. """ # Avoid FutureWarning concerning the use of an implicitly registered # datetime converter for a matplotlib plotting method. The converter # was registered by pandas on import. Future versions of pandas will # require explicit registration of matplotlib converters, as done here. from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() args = PlottingInput( datasets=datasets, fields=fields, heights=heights, fieldlimits=fieldlimits, fieldlabels=fieldlabels, ) nfields = len(args.fields) nheights = len(args.heights) ndatasets = len(args.datasets) # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} # Set up subplot grid if stack_by_datasets is None: if nheights>1: stack_by_datasets = False else: stack_by_datasets = True if stack_by_datasets: ntotal = nfields*nheights else: ntotal = nfields*ndatasets fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, sharex=True, subfigsize=subfigsize, hspace=0.2, fig=fig, ax=ax ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Set showlegend if not specified if showlegend is None: if (stack_by_datasets and ndatasets>1) or (not stack_by_datasets and nheights>1): showlegend = True else: showlegend = False # Loop over datasets and fields for i,dfname in enumerate(args.datasets): df = args.datasets[dfname] timevalues = _get_dim_values(df,'time',default_idx=True) assert(timevalues is not None), 'timehistory plot needs a time axis' heightvalues = _get_dim_values(df,'height') if isinstance(timevalues, pd.TimedeltaIndex): timevalues = timevalues.total_seconds() # If plot local time, shift timevalues if (plot_local_time is not False) and \ isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): timevalues = timevalues + pd.to_timedelta(local_time_offset,'h') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # If any of the requested heights is not available, # pivot the dataframe to allow interpolation. # Pivot all fields in a dataset at once to reduce computation time if (not heightvalues is None) and (not all([h in heightvalues for h in args.heights])): df_pivot = _get_pivot_table(df,'height',available_fields) pivoted = True if debug: print('Pivoting '+dfname) else: pivoted = False for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue for k, height in enumerate(args.heights): # Store plotting options in dictionary # Set default linestyle to '-' and no markers plotting_properties = { 'linestyle':'-', 'marker':None, } # Axis order, label and title depend on value of stack_by_datasets if stack_by_datasets: # Index of axis corresponding to field j and height k axi = k*nfields + j # Use datasetname as label if showlegend: plotting_properties['label'] = dfname # Set title if multiple heights are compared if nheights>1: axv[axi].set_title('z = {:.1f} m'.format(height),fontsize=16) # Set colors plotting_properties['color'] = default_colors[i % len(default_colors)] else: # Index of axis corresponding to field j and dataset i axi = i*nfields + j # Use height as label if showlegend: plotting_properties['label'] = 'z = {:.1f} m'.format(height) # Set title if multiple datasets are compared if ndatasets>1: axv[axi].set_title(dfname,fontsize=16) # Set colors if cmap is not None: cmap = mpl.cm.get_cmap(cmap) plotting_properties['color'] = cmap(k/(nheights-1)) else: plotting_properties['color'] = default_colors[k % len(default_colors)] # Extract data from dataframe if pivoted: signal = interp1d(heightvalues,_get_pivoted_field(df_pivot,field).values,axis=-1,fill_value="extrapolate")(height) else: slice_z = _get_slice(df,height,'height') signal = _get_field(slice_z,field).values # Gather label, color, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Plot data axv[axi].plot(timevalues,signal,**plotting_properties) # Set field label if known try: axv[axi].set_ylabel(args.fieldlabels[field]) except KeyError: pass # Set field limits if specified try: axv[axi].set_ylim(args.fieldlimits[field]) except KeyError: pass # Set axis grid for axi in axv: axi.xaxis.grid(True,which='both') axi.yaxis.grid(True) # Format time axis if isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): ax2 = _format_time_axis(fig,axv[(nrows-1)*ncols:],plot_local_time,local_time_offset,timelimits) else: ax2 = None # Set time limits if specified if not timelimits is None: axv[-1].set_xlim(timelimits) # Set time label for axi in axv[(nrows-1)*ncols:]: axi.set_xlabel('time [s]') # Number sub figures as a, b, c, ... if labelsubplots is not False: try: hoffset, voffset = labelsubplots except (TypeError, ValueError): hoffset, voffset = -0.14, 1.0 for i,axi in enumerate(axv): axi.text(hoffset,voffset,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Add legend if showlegend: leg = _format_legend(axv,index=ncols-1) # Align labels _align_labels(fig,axv,nrows,ncols) if (plot_local_time is not False) and ax2 is not None: return fig, ax, ax2 else: return fig, ax def plot_profile(datasets, fields=None, times=None, timerange=None, fig=None,ax=None, fieldlimits=None, heightlimits=None, fieldlabels={}, cmap=None, stack_by_datasets=None, labelsubplots=False, showlegend=None, fieldorder='C', ncols=None, subfigsize=(4,5), plot_local_time=False, local_time_offset=0, datasetkwargs={}, **kwargs ): """ Plot vertical profile at specified time(s) for various dataset(s) and/or field(s). By default, data for multiple datasets or multiple times are stacked in a single subplot. When multiple datasets and multiple times are specified together, times are stacked in a subplot per field and per dataset. Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) times : str, int, float, list (or None) Time(s) for which vertical profiles are plotted, specified as either datetime strings or numerical values (seconds, e.g., simulation time). times can be None if all datasets combined have no more than one time value, or if timerange is specified. timerange : tuple or list Start and end times (inclusive) between which all times are plotted. If cmap is None, then it will automatically be set to viridis by default. This overrides times when specified. fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal nfields * (ndatasets or ntimes) fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically heightlimits : list or tuple Height axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel cmap : str Colormap used when stacking times stack_by_datasets : bool (or None) Flag to specify what is plotted ("stacked") together per subfigure. If True, stack datasets together, otherwise stack by times. If None, stack_by_datasets will be set based on the number of times and datasets. labelsubplots : bool, list or tuple Label subplots as (a), (b), (c), ... If a list or tuple is given their values should be the horizontal and vertical position relative to each subaxis. showlegend : bool (or None) Label different plots and show legend. If None, showlegend is set to True if legend will have more than one entry, otherwise it is set to False. fieldorder : 'C' or 'F' Index ordering for assigning fields and datasets/times (depending on stack_by_datasets) to axes grid (row by row). Fields is considered the first axis, so 'C' means fields change slowest, 'F' means fields change fastest. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures plot_local_time : bool or str Plot dual x axes with both UTC time and local time. If a str is provided, then plot_local_time is assumed to be True and the str is used as the datetime format. local_time_offset : float Local time offset from UTC datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets, fields and times, and they can not be used to set dataset, field or time specific colors, limits, etc. Example uses include setting linestyle/width, marker, etc. """ args = PlottingInput( datasets=datasets, fields=fields, times=times, timerange=timerange, fieldlimits=fieldlimits, fieldlabels=fieldlabels, fieldorder=fieldorder, ) nfields = len(args.fields) ntimes = len(args.times) ndatasets = len(args.datasets) # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} # Set up subplot grid if stack_by_datasets is None: if ntimes>1: stack_by_datasets = False else: stack_by_datasets = True if stack_by_datasets: ntotal = nfields * ntimes else: ntotal = nfields * ndatasets fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, default_ncols=int(ntotal/nfields), fieldorder=args.fieldorder, avoid_single_column=True, sharey=True, subfigsize=subfigsize, hspace=0.4, fig=fig, ax=ax, ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Set showlegend if not specified if showlegend is None: if (stack_by_datasets and ndatasets>1) or (not stack_by_datasets and ntimes>1): showlegend = True else: showlegend = False # Set default sequential colormap if timerange was specified if (timerange is not None) and (cmap is None): cmap = 'viridis' # Loop over datasets, fields and times for i, dfname in enumerate(args.datasets): df = args.datasets[dfname] heightvalues = _get_dim_values(df,'height',default_idx=True) assert(heightvalues is not None), 'profile plot needs a height axis' timevalues = _get_dim_values(df,'time') # If plot local time, shift timevalues timedelta_to_local = None if plot_local_time is not False: timedelta_to_local = pd.to_timedelta(local_time_offset,'h') timevalues = timevalues + timedelta_to_local # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # Pivot all fields in a dataset at once if timevalues is not None: df_pivot = _get_pivot_table(df,'height',available_fields) for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue for k, time in enumerate(args.times): plotting_properties = {} # Axis order, label and title depend on value of stack_by_datasets if stack_by_datasets: # Index of axis corresponding to field j and time k if args.fieldorder == 'C': axi = j*ntimes + k else: axi = k*nfields + j # Use datasetname as label if showlegend: plotting_properties['label'] = dfname # Set title if multiple times are compared if ntimes>1: if isinstance(time, (int,float,np.number)): tstr = '{:g} s'.format(time) else: if plot_local_time is False: tstr = pd.to_datetime(time).strftime('%Y-%m-%d %H%M UTC') elif plot_local_time is True: tstr = pd.to_datetime(time).strftime('%Y-%m-%d %H:%M') else: assert isinstance(plot_local_time,str), 'Unexpected plot_local_time format' tstr = pd.to_datetime(time).strftime(plot_local_time) axv[axi].set_title(tstr, fontsize=16) # Set color plotting_properties['color'] = default_colors[i % len(default_colors)] else: # Index of axis corresponding to field j and dataset i if args.fieldorder == 'C': axi = j*ndatasets + i else: axi = i*nfields + j # Use time as label if showlegend: if isinstance(time, (int,float,np.number)): plotting_properties['label'] = '{:g} s'.format(time) else: if plot_local_time is False: plotting_properties['label'] = pd.to_datetime(time).strftime('%Y-%m-%d %H%M UTC') elif plot_local_time is True: plotting_properties['label'] = pd.to_datetime(time).strftime('%Y-%m-%d %H:%M') else: assert isinstance(plot_local_time,str), 'Unexpected plot_local_time format' plotting_properties['label'] = pd.to_datetime(time).strftime(plot_local_time) # Set title if multiple datasets are compared if ndatasets>1: axv[axi].set_title(dfname,fontsize=16) # Set colors if cmap is not None: cmap = mpl.cm.get_cmap(cmap) plotting_properties['color'] = cmap(k/(ntimes-1)) else: plotting_properties['color'] = default_colors[k % len(default_colors)] # Extract data from dataframe if timevalues is None: # Dataset will not be pivoted fieldvalues = _get_field(df,field).values else: if plot_local_time is not False: # specified times are in local time, convert back to UTC slice_t = _get_slice(df_pivot,time-timedelta_to_local,'time') else: slice_t = _get_slice(df_pivot,time,'time') fieldvalues = _get_pivoted_field(slice_t,field).values.squeeze() # Gather label, color, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Plot data try: axv[axi].plot(fieldvalues,heightvalues,**plotting_properties) except ValueError as e: print(e,'--', time, 'not found in index?') # Set field label if known try: axv[axi].set_xlabel(args.fieldlabels[field]) except KeyError: pass # Set field limits if specified try: axv[axi].set_xlim(args.fieldlimits[field]) except KeyError: pass for axi in axv: axi.grid(True,which='both') # Set height limits if specified if not heightlimits is None: axv[0].set_ylim(heightlimits) # Add y labels for r in range(nrows): axv[r*ncols].set_ylabel(r'Height [m]') # Align labels _align_labels(fig,axv,nrows,ncols) # Number sub figures as a, b, c, ... if labelsubplots is not False: try: hoffset, voffset = labelsubplots except (TypeError, ValueError): hoffset, voffset = -0.14, -0.18 for i,axi in enumerate(axv): axi.text(hoffset,voffset,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Add legend if showlegend: leg = _format_legend(axv,index=ncols-1) return fig,ax def plot_spectrum(datasets, fields=None, height=None, times=None, fig=None,ax=None, fieldlimits=None, freqlimits=None, fieldlabels={}, labelsubplots=False, showlegend=None, ncols=None, subfigsize=(4,5), datasetkwargs={}, **kwargs ): """ Plot frequency spectrum at a given height for different datasets, time(s) and field(s), using a subplot per time and per field. Note that this function does not interpolate to the requested height, i.e., if height is not None, the specified value should be available in all datasets. Usage ===== datasets : pandas.DataFrame or dict Dataset(s) with spectrum data. If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) height : float (or None) Height for which frequency spectra is plotted. If datasets have no height dimension, height does not need to be specified. times : str, int, float, list (or None) Time(s) for which frequency spectra are plotted, specified as either datetime strings or numerical values (seconds, e.g., simulation time). times can be None if all datasets combined have no more than one time value. fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal nfields * ntimes fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically freqlimits : list or tuple Frequency axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel labelsubplots : bool, list or tuple Label subplots as (a), (b), (c), ... If a list or tuple is given their values should be the horizontal and vertical position relative to each subaxis. showlegend : bool (or None) Label different plots and show legend. If None, showlegend is set to True if legend will have more than one entry, otherwise it is set to False. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets, fields and times, and they can not be used to set dataset, field or time specific colors, limits, etc. Example uses include setting linestyle/width, marker, etc. """ args = PlottingInput( datasets=datasets, fields=fields, times=times, fieldlimits=fieldlimits, fieldlabels=fieldlabels, ) nfields = len(args.fields) ntimes = len(args.times) ndatasets = len(args.datasets) ntotal = nfields * ntimes # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_spectrumlabels, **args.fieldlabels} fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, default_ncols=ntimes, avoid_single_column=True, sharex=True, subfigsize=subfigsize, wspace=0.3, fig=fig, ax=ax, ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Set showlegend if not specified if showlegend is None: if ndatasets>1: showlegend = True else: showlegend = False # Loop over datasets, fields and times for i, dfname in enumerate(args.datasets): df = args.datasets[dfname] frequencyvalues = _get_dim_values(df,'frequency',default_idx=True) assert(frequencyvalues is not None), 'spectrum plot needs a frequency axis' timevalues = _get_dim_values(df,'time') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue for k, time in enumerate(args.times): plotting_properties = {} if showlegend: plotting_properties['label'] = dfname # Index of axis corresponding to field j and time k axi = j*ntimes + k # Axes mark up if i==0 and ntimes>1: axv[axi].set_title(pd.to_datetime(time).strftime('%Y-%m-%d %H%M UTC'),fontsize=16) # Gather label, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Get field spectrum slice_t = _get_slice(df,time,'time') slice_tz = _get_slice(slice_t,height,'height') spectrum = _get_field(slice_tz,field).values # Plot data axv[axi].loglog(frequencyvalues[1:],spectrum[1:],**plotting_properties) # Specify field limits if specified try: axv[axi].set_ylim(args.fieldlimits[field]) except KeyError: pass # Set frequency label for c in range(ncols): axv[ncols*(nrows-1)+c].set_xlabel('$f$ [Hz]') # Specify field label if specified for r in range(nrows): try: axv[r*ncols].set_ylabel(args.fieldlabels[args.fields[r]]) except KeyError: pass # Align labels _align_labels(fig,axv,nrows,ncols) # Set frequency limits if specified if not freqlimits is None: axv[0].set_xlim(freqlimits) # Number sub figures as a, b, c, ... if labelsubplots is not False: try: hoffset, voffset = labelsubplots except (TypeError, ValueError): hoffset, voffset = -0.14, -0.18 for i,axi in enumerate(axv): axi.text(hoffset,voffset,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Add legend if showlegend: leg = _format_legend(axv,index=ncols-1) return fig, ax # --------------------------------------------- # # DEFINITION OF AUXILIARY CLASSES AND FUNCTIONS # # --------------------------------------------- class InputError(Exception): """Exception raised for errors in the input. Attributes: message -- explanation of the error """ def __init__(self, message): self.message = message class PlottingInput(object): """ Auxiliary class to collect input data and options for plotting functions, and to check if the inputs are consistent """ supported_datatypes = ( pd.Series, pd.DataFrame, xr.DataArray, xr.Dataset, ) def __init__(self, datasets, fields, **argd): # Add all arguments as class attributes self.__dict__.update({'datasets':datasets, 'fields':fields, **argd}) # Check consistency of all attributes self._check_consistency() def _check_consistency(self): """ Check consistency of all input data """ # ---------------------- # Check dataset argument # ---------------------- # If a single dataset is provided, convert to a dictionary # under a generic key 'Dataset' if isinstance(self.datasets, self.supported_datatypes): self.datasets = {'Dataset': self.datasets} for dfname,df in self.datasets.items(): # convert dataset types here if isinstance(df, (xr.Dataset,xr.DataArray)): # handle xarray datatypes self.datasets[dfname] = df.to_dataframe() columns = self.datasets[dfname].columns if len(columns) == 1: # convert to pd.Series self.datasets[dfname] = self.datasets[dfname][columns[0]] else: assert(isinstance(df, self.supported_datatypes)), \ "Dataset {:s} of type {:s} not supported".format(dfname,str(type(df))) # ---------------------- # Check fields argument # ---------------------- # If no fields are specified, check that # - all datasets are series # - the name of every series is either None or matches other series names if self.fields is None: assert(all([isinstance(self.datasets[dfname],pd.Series) for dfname in self.datasets])), \ "'fields' argument must be specified unless all datasets are pandas Series" series_names = set() for dfname in self.datasets: series_names.add(self.datasets[dfname].name) if len(series_names)==1: self.fields = list(series_names) else: raise InputError('attempting to plot multiple series with different field names') elif isinstance(self.fields,str): # If fields='all', retrieve fields from dataset if self.fields=='all': self.fields = _get_fieldnames(list(self.datasets.values())[0]) assert(all([_get_fieldnames(df)==self.fields for df in self.datasets.values()])), \ "The option fields = 'all' only works when all datasets have the same fields" # If fields is a single instance, convert to a list else: self.fields = [self.fields,] # ---------------------------------- # Check match of fields and datasets # ---------------------------------- # Check if all datasets have at least one of the requested fields for dfname in self.datasets: df = self.datasets[dfname] if isinstance(df,pd.DataFrame): assert(any([field in df.columns for field in self.fields])), \ 'DataFrame '+dfname+' does not contain any of the requested fields' elif isinstance(df,pd.Series): if df.name is None: assert(len(self.fields)==1), \ 'Series must have a name if more than one fields is specified' else: assert(df.name in self.fields), \ 'Series '+dfname+' does not match any of the requested fields' # --------------------------------- # Check heights argument (optional) # --------------------------------- try: # If no heights are specified, check that all datasets combined have # no more than one height value if self.heights is None: av_heights = set() for df in self.datasets.values(): heightvalues = _get_dim_values(df,'height') try: for height in heightvalues: av_heights.add(height) except TypeError: # heightvalues is None pass if len(av_heights)==0: # None of the datasets have height values self.heights = [None,] elif len(av_heights)==1: self.heights = list(av_heights) else: raise InputError("found more than one height value so 'heights' argument must be specified") # If heights='all', retrieve heights from dataset elif isinstance(self.heights,str) and self.heights=='all': self.heights = _get_dim_values(list(self.datasets.values())[0],'height') assert(all([np.allclose(_get_dim_values(df,'height'),self.heights) for df in self.datasets.values()])), \ "The option heights = 'all' only works when all datasets have the same vertical levels" # If heights is single instance, convert to list elif isinstance(self.heights,(int,float)): self.heights = [self.heights,] except AttributeError: pass # ----------------------------------- # Check timerange argument (optional) # ----------------------------------- try: if self.timerange is not None: if self.times is not None: print('Using specified time range',self.timerange, 'and ignoring',self.times) assert isinstance(self.timerange,(tuple,list)), \ 'Need to specify timerange as (starttime,endtime)' assert (len(self.timerange) == 2) try: starttime = pd.to_datetime(self.timerange[0]) endtime = pd.to_datetime(self.timerange[1]) except ValueError: print('Unable to convert timerange to timestamps') else: # get unique times from all datasets alltimes = [] for df in self.datasets.values(): alltimes += list(_get_dim_values(df,'time')) alltimes = pd.DatetimeIndex(np.unique(alltimes)) inrange = (alltimes >= starttime) & (alltimes <= endtime) self.times = alltimes[inrange] except AttributeError: pass # --------------------------------- # Check times argument (optional) # --------------------------------- # If times is single instance, convert to list try: # If no times are specified, check that all datasets combined have # no more than one time value if self.times is None: av_times = set() for df in self.datasets.values(): timevalues = _get_dim_values(df,'time') try: for time in timevalues.values: av_times.add(time) except AttributeError: pass if len(av_times)==0: # None of the datasets have time values self.times = [None,] elif len(av_times)==1: self.times = list(av_times) else: raise InputError("found more than one time value so 'times' argument must be specified") elif isinstance(self.times,(str,int,float,np.number,pd.Timestamp)): self.times = [self.times,] except AttributeError: pass # ------------------------------------- # Check fieldlimits argument (optional) # ------------------------------------- # If one set of fieldlimits is specified, check number of fields # and convert to dictionary try: if self.fieldlimits is None: self.fieldlimits = {} elif isinstance(self.fieldlimits, (list, tuple)): assert(len(self.fields)==1), 'Unclear to what field fieldlimits corresponds' self.fieldlimits = {self.fields[0]:self.fieldlimits} except AttributeError: self.fieldlimits = {} # ------------------------------------- # Check fieldlabels argument (optional) # ------------------------------------- # If one fieldlabel is specified, check number of fields try: if isinstance(self.fieldlabels, str): assert(len(self.fields)==1), 'Unclear to what field fieldlabels corresponds' self.fieldlabels = {self.fields[0]: self.fieldlabels} except AttributeError: self.fieldlabels = {} # ------------------------------------- # Check colorscheme argument (optional) # ------------------------------------- # If one colorscheme is specified, check number of fields try: self.cmap = {} if isinstance(self.colorschemes, str): assert(len(self.fields)==1), 'Unclear to what field colorschemes corresponds' self.cmap[self.fields[0]] = mpl.cm.get_cmap(self.colorschemes) else: # Set missing colorschemes to viridis for field in self.fields: if field not in self.colorschemes.keys(): if field == 'wdir': self.colorschemes[field] = 'twilight' else: self.colorschemes[field] = 'viridis' self.cmap[field] = mpl.cm.get_cmap(self.colorschemes[field]) except AttributeError: pass # ------------------------------------- # Check fieldorder argument (optional) # ------------------------------------- # Make sure fieldorder is recognized try: assert(self.fieldorder in ['C','F']), "Error: fieldorder '"\ +self.fieldorder+"' not recognized, must be either 'C' or 'F'" except AttributeError: pass def set_missing_fieldlimits(self): """ Set missing fieldlimits to min and max over all datasets """ for field in self.fields: if field not in self.fieldlimits.keys(): try: self.fieldlimits[field] = [ min([_get_field(df,field).min() for df in self.datasets.values() if _contains_field(df,field)]), max([_get_field(df,field).max() for df in self.datasets.values() if _contains_field(df,field)]) ] except ValueError: self.fieldlimits[field] = [None,None] def _get_dim(df,dim,default_idx=False): """ Search for specified dimension in dataset and return level (referred to by either label or position) and axis {0 or ‘index’, 1 or ‘columns’} If default_idx is True, return a single unnamed index if present """ assert(dim in dimension_names.keys()), \ "Dimension '"+dim+"' not supported" # 1. Try to find dim based on name for name in dimension_names[dim]: if name in df.index.names: if debug: print("Found "+dim+" dimension in index with name '{}'".format(name)) return name, 0 else: try: if name in df.columns: if debug: print("Found "+dim+" dimension in column with name '{}'".format(name)) return name, 1 except AttributeError: # pandas Series has no columns pass # 2. Look for Datetime or Timedelta index if dim=='time': for idx in range(len(df.index.names)): if isinstance(df.index.get_level_values(idx),(pd.DatetimeIndex,pd.TimedeltaIndex,pd.PeriodIndex)): if debug: print("Found "+dim+" dimension in index with level {} without a name ".format(idx)) return idx, 0 # 3. If default index is True, assume that a # single nameless index corresponds to the # requested dimension if (not isinstance(df.index,(pd.MultiIndex,pd.DatetimeIndex,pd.TimedeltaIndex,pd.PeriodIndex)) and default_idx and (df.index.name is None) ): if debug: print("Assuming nameless index corresponds to '{}' dimension".format(dim)) return 0,0 # 4. Did not found requested dimension if debug: print("Found no "+dim+" dimension") return None, None def _get_available_fieldnames(df,fieldnames): """ Return subset of fields available in df """ available_fieldnames = [] if isinstance(df,pd.DataFrame): for field in fieldnames: if field in df.columns: available_fieldnames.append(field) # A Series only has one field, so return that field name # (if that field is not in fields, an error would have been raised) elif isinstance(df,pd.Series): available_fieldnames.append(df.name) return available_fieldnames def _get_fieldnames(df): """ Return list of fieldnames in df """ if isinstance(df,pd.DataFrame): fieldnames = list(df.columns) # Remove any column corresponding to # a dimension (time, height or frequency) for dim in dimension_names.keys(): name, axis = _get_dim(df,dim) if axis==1: fieldnames.remove(name) return fieldnames elif isinstance(df,pd.Series): return [df.name,] def _contains_field(df,fieldname): if isinstance(df,pd.DataFrame): return fieldname in df.columns elif isinstance(df,pd.Series): return (df.name is None) or (df.name==fieldname) def _get_dim_values(df,dim,default_idx=False): """ Return values for a given dimension """ level, axis = _get_dim(df,dim,default_idx) # Requested dimension is an index if axis==0: return df.index.get_level_values(level).unique() # Requested dimension is a column elif axis==1: return df[level].unique() # Requested dimension not available else: return None def _get_pivot_table(df,dim,fieldnames): """ Return pivot table with given fieldnames as columns """ level, axis = _get_dim(df,dim) # Unstack an index if axis==0: return df.unstack(level=level) # Pivot about a column elif axis==1: return df.pivot(columns=level,values=fieldnames) # Dimension not found, return dataframe else: return df def _get_slice(df,key,dim): """ Return cross-section of dataset """ if key is None: return df # Get dimension level and axis level, axis = _get_dim(df,dim) # Requested dimension is an index if axis==0: if isinstance(df.index,pd.MultiIndex): return df.xs(key,level=level) else: return df.loc[df.index==key] # Requested dimension is a column elif axis==1: return df.loc[df[level]==key] # Requested dimension not available, return dataframe else: return df def _get_field(df,fieldname): """ Return field from dataset """ if isinstance(df,pd.DataFrame): return df[fieldname] elif isinstance(df,pd.Series): if df.name is None or df.name==fieldname: return df else: return None def _get_pivoted_field(df,fieldname): """ Return field from pivoted dataset """ if isinstance(df.columns,pd.MultiIndex): return df[fieldname] else: return df def _create_subplots_if_needed(ntotal, ncols=None, default_ncols=1, fieldorder='C', avoid_single_column=False, sharex=False, sharey=False, subfigsize=(12,3), wspace=0.2, hspace=0.2, fig=None, ax=None ): """ Auxiliary function to create fig and ax If fig and ax are None: - Set nrows and ncols based on ntotal and specified ncols, accounting for fieldorder and avoid_single_column - Create fig and ax with nrows and ncols, taking into account sharex, sharey, subfigsize, wspace, hspace If fig and ax are not None: - Try to determine nrows and ncols from ax - Check whether size of ax corresponds to ntotal """ if ax is None: if not ncols is None: # Use ncols if specified and appropriate assert(ntotal%ncols==0), 'Error: Specified number of columns is not a true divisor of total number of subplots' nrows = int(ntotal/ncols) else: # Defaut number of columns ncols = default_ncols nrows = int(ntotal/ncols) if fieldorder=='F': # Swap number of rows and columns nrows, ncols = ncols, nrows if avoid_single_column and ncols==1: # Swap number of rows and columns nrows, ncols = ncols, nrows # Create fig and ax with nrows and ncols fig,ax = plt.subplots(nrows=nrows,ncols=ncols,sharex=sharex,sharey=sharey,figsize=(subfigsize[0]*ncols,subfigsize[1]*nrows)) # Adjust subplot spacing fig.subplots_adjust(wspace=wspace,hspace=hspace) else: # Make sure user-specified axes has appropriate size assert(np.asarray(ax).size==ntotal), 'Specified axes does not have the right size' # Determine nrows and ncols in specified axes if isinstance(ax,mpl.axes.Axes): nrows, ncols = (1,1) else: try: nrows,ncols = np.asarray(ax).shape except ValueError: # ax array has only one dimension # Determine whether ax is single row or single column based # on individual ax positions x0 and y0 x0s = [axi.get_position().x0 for axi in ax] y0s = [axi.get_position().y0 for axi in ax] if all(x0==x0s[0] for x0 in x0s): # All axis have same relative x0 position nrows = np.asarray(ax).size ncols = 1 elif all(y0==y0s[0] for y0 in y0s): # All axis have same relative y0 position nrows = 1 ncols = np.asarray(ax).size else: # More complex axes configuration, # currently not supported raise InputError('could not determine nrows and ncols in specified axes, complex axes configuration currently not supported') return fig, ax, nrows, ncols def _format_legend(axv,index): """ Auxiliary function to format legend Usage ===== axv : numpy 1d array Flattened array of axes index : int Index of the axis where to place the legend """ all_handles = [] all_labels = [] # Check each axes and add new handle for axi in axv: handles, labels = axi.get_legend_handles_labels() for handle,label in zip(handles,labels): if not label in all_labels: all_labels.append(label) all_handles.append(handle) leg = axv[index].legend(all_handles,all_labels,loc='upper left',bbox_to_anchor=(1.05,1.0),fontsize=16) return leg def _format_time_axis(fig,ax, plot_local_time, local_time_offset, timelimits ): """ Auxiliary function to format time axis """ ax[-1].xaxis_date() if timelimits is not None: timelimits = [pd.to_datetime(tlim) for tlim in timelimits] hour_interval = _determine_hourlocator_interval(ax[-1],timelimits) if plot_local_time is not False: if plot_local_time is True: localtimefmt = '%I %p' else: assert isinstance(plot_local_time,str), 'Unexpected plot_local_time format' localtimefmt = plot_local_time # Format first axis (local time) ax[-1].xaxis.set_minor_locator(mdates.HourLocator(byhour=range(0,24,hour_interval))) ax[-1].xaxis.set_minor_formatter(mdates.DateFormatter(localtimefmt)) ax[-1].xaxis.set_major_locator(mdates.DayLocator(interval=12)) #Choose large interval so dates are not plotted ax[-1].xaxis.set_major_formatter(mdates.DateFormatter('')) # Set time limits if specified if not timelimits is None: local_timelimits = pd.to_datetime(timelimits) + pd.to_timedelta(local_time_offset,'h') ax[-1].set_xlim(local_timelimits) tstr = 'Local time' ax2 = [] for axi in ax: # Format second axis (UTC time) ax2i = axi.twiny() ax2i.xaxis_date() # Set time limits if specified if not timelimits is None: ax2i.set_xlim(timelimits) else: # Extract timelimits from main axis local_timelimits = mdates.num2date(axi.get_xlim()) timelimits = pd.to_datetime(local_timelimits) - pd.to_timedelta(local_time_offset,'h') ax2i.set_xlim(timelimits) # Move twinned axis ticks and label from top to bottom ax2i.xaxis.set_ticks_position("bottom") ax2i.xaxis.set_label_position("bottom") # Offset the twin axis below the host ax2i.spines["bottom"].set_position(("axes", -0.35)) # Turn on the frame for the twin axis, but then hide all # but the bottom spine ax2i.set_frame_on(True) ax2i.patch.set_visible(False) #for sp in ax2.spines.itervalues(): # sp.set_visible(False) ax2i.spines["bottom"].set_visible(True) ax2i.xaxis.set_minor_locator(mdates.HourLocator(byhour=range(24),interval=hour_interval)) ax2i.xaxis.set_minor_formatter(mdates.DateFormatter('%H%M')) ax2i.xaxis.set_major_locator(mdates.DayLocator()) ax2i.xaxis.set_major_formatter(mdates.DateFormatter('\n%Y-%m-%d')) ax2i.set_xlabel('UTC time') ax2.append(ax2i) if len(ax2)==1: ax2 = ax2[0] else: ax2 = np.array(ax2) fig.align_xlabels(ax2) else: ax[-1].xaxis.set_minor_locator(mdates.HourLocator(byhour=range(0,24,hour_interval))) ax[-1].xaxis.set_minor_formatter(mdates.DateFormatter('%H%M')) ax[-1].xaxis.set_major_locator(mdates.DayLocator()) ax[-1].xaxis.set_major_formatter(mdates.DateFormatter('\n%Y-%m-%d')) # Set time limits if specified if not timelimits is None: ax[-1].set_xlim(timelimits) tstr = 'UTC time' ax2 = None # Now, update all axes for axi in ax: # Make sure both major and minor axis labels are visible when they are # at the same time axi.xaxis.remove_overlapping_locs = False # Set time label axi.set_xlabel(tstr) return ax2 def _determine_hourlocator_interval(ax,timelimits=None): """ Determine hour interval based on timelimits If plotted time period is - less than 36 hours: interval = 3 - less than 72 hours: interval = 6 - otherwise: interval = 12 """ # Get timelimits if timelimits is None: timelimits = pd.to_datetime(mdates.num2date(ax.get_xlim())) elif isinstance(timelimits[0],str): timelimits = pd.to_datetime(timelimits) # Determine time period in hours timeperiod = (timelimits[1] - timelimits[0])/pd.to_timedelta(1,'h') # HourLocator interval if timeperiod < 36: return 3 elif timeperiod < 72: return 6 else: return 12 def _get_staggered_grid(x): """ Return staggered grid locations For input array size N, output array has a size of N+1 """ idx = np.arange(x.size) f = interp1d(idx,x,fill_value='extrapolate') return f(np.arange(-0.5,x.size+0.5,1)) def _align_labels(fig,ax,nrows,ncols): """ Align labels of a given axes grid """ # Align xlabels row by row for r in range(nrows): fig.align_xlabels(ax[r*ncols:(r+1)*ncols]) # Align ylabels column by column for c in range(ncols): fig.align_ylabels(ax[c::ncols]) class TaylorDiagram(object): """ Taylor diagram. Plot model standard deviation and correlation to reference (data) sample in a single-quadrant polar plot, with r=stddev and theta=arccos(correlation). Based on code from <NAME> <<EMAIL>> Downloaded from https://gist.github.com/ycopin/3342888 on 2020-06-19 """ def __init__(self, refstd, fig=None, rect=111, label='_', srange=(0, 1.5), extend=False, normalize=False, corrticks=[0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1], minorcorrticks=None, stdevticks=None, labelsize=None): """ Set up Taylor diagram axes, i.e. single quadrant polar plot, using `mpl_toolkits.axisartist.floating_axes`. Usage ===== refstd: np.ndarray Reference standard deviation to be compared to fig: plt.Figure, optional Input figure or None to create a new figure rect: 3-digit integer Subplot position, described by: nrows, ncols, index label: str, optional Legend label for reference point srange: tuple, optional Stdev axis limits, in units of *refstd* extend: bool, optional Extend diagram to negative correlations normalize: bool, optional Normalize stdev axis by `refstd` corrticks: list-like, optional Specify ticks positions on azimuthal correlation axis minorcorrticks: list-like, optional Specify minor tick positions on azimuthal correlation axis stdevticks: int or list-like, optional Specify stdev axis grid locator based on MaxNLocator (with integer input) or FixedLocator (with list-like input) labelsize: int or str, optional Font size (e.g., 16 or 'x-large') for all axes labels """ from matplotlib.projections import PolarAxes from mpl_toolkits.axisartist import floating_axes from mpl_toolkits.axisartist import grid_finder self.refstd = refstd # Reference standard deviation self.normalize = normalize tr = PolarAxes.PolarTransform() # Correlation labels if minorcorrticks is None: rlocs = np.array(corrticks) else: rlocs = np.array(sorted(list(corrticks) + list(minorcorrticks))) if extend: # Diagram extended to negative correlations self.tmax = np.pi rlocs = np.concatenate((-rlocs[:0:-1], rlocs)) else: # Diagram limited to positive correlations self.tmax = np.pi/2 if minorcorrticks is None: rlocstrs = [str(rloc) for rloc in rlocs] else: rlocstrs = [str(rloc) if abs(rloc) in corrticks else '' for rloc in rlocs] tlocs = np.arccos(rlocs) # Conversion to polar angles gl1 = grid_finder.FixedLocator(tlocs) # Positions tf1 = grid_finder.DictFormatter(dict(zip(tlocs, rlocstrs))) # Stdev labels if isinstance(stdevticks, int): gl2 = grid_finder.MaxNLocator(stdevticks) elif hasattr(stdevticks, '__iter__'): gl2 = grid_finder.FixedLocator(stdevticks) else: gl2 = None # Standard deviation axis extent (in units of reference stddev) self.smin, self.smax = srange if not normalize: self.smin *= self.refstd self.smax *= self.refstd ghelper = floating_axes.GridHelperCurveLinear( tr, extremes=(0, self.tmax, self.smin, self.smax), grid_locator1=gl1, grid_locator2=gl2, tick_formatter1=tf1, #tick_formatter2=tf2 ) if fig is None: fig = plt.figure() ax = floating_axes.FloatingSubplot(fig, rect, grid_helper=ghelper) fig.add_subplot(ax) # Adjust axes # - angle axis ax.axis["top"].set_axis_direction("bottom") ax.axis["top"].toggle(ticklabels=True, label=True) ax.axis["top"].major_ticklabels.set_axis_direction("top") ax.axis["top"].label.set_axis_direction("top") ax.axis["top"].label.set_text("Correlation") # - "x" axis ax.axis["left"].set_axis_direction("bottom") if normalize: ax.axis["left"].label.set_text("Normalized standard deviation") else: ax.axis["left"].label.set_text("Standard deviation") # - "y" axis ax.axis["right"].set_axis_direction("top") # "Y-axis" ax.axis["right"].toggle(ticklabels=True) ax.axis["right"].major_ticklabels.set_axis_direction( "bottom" if extend else "left") # Set label sizes if labelsize is not None: ax.axis["top"].label.set_fontsize(labelsize) ax.axis["left"].label.set_fontsize(labelsize) ax.axis["right"].label.set_fontsize(labelsize) ax.axis["top"].major_ticklabels.set_fontsize(labelsize) ax.axis["left"].major_ticklabels.set_fontsize(labelsize) ax.axis["right"].major_ticklabels.set_fontsize(labelsize) if self.smin: # get rid of cluster of labels at origin ax.axis["bottom"].toggle(ticklabels=False, label=False) else: ax.axis["bottom"].set_visible(False) # Unused self._ax = ax # Graphical axes self.ax = ax.get_aux_axes(tr) # Polar coordinates # Add reference point and stddev contour t = np.linspace(0, self.tmax) r = np.ones_like(t) if self.normalize: l, = self.ax.plot([0], [1], 'k*', ls='', ms=10, label=label) else: l, = self.ax.plot([0], self.refstd, 'k*', ls='', ms=10, label=label) r *= refstd self.ax.plot(t, r, 'k--', label='_') # Collect sample points for latter use (e.g. legend) self.samplePoints = [l] def set_ref(self, refstd): """ Update the reference standard deviation value Useful for cases in which datasets with different reference values (e.g., originating from different reference heights) are to be overlaid on the same diagram. """ self.refstd = refstd def add_sample(self, stddev, corrcoef, norm=None, *args, **kwargs): """ Add sample (*stddev*, *corrcoeff*) to the Taylor diagram. *args* and *kwargs* are directly propagated to the `Figure.plot` command. `norm` may be specified to override the default normalization value if TaylorDiagram was initialized with normalize=True """ if (corrcoef < 0) and (self.tmax == np.pi/2): print('Note: ({:g},{:g}) not shown for R2 < 0, set extend=True'.format(stddev,corrcoef)) return None if self.normalize: if norm is None: norm = self.refstd elif norm is False: norm = 1 stddev /= norm l, = self.ax.plot(np.arccos(corrcoef), stddev, *args, **kwargs) # (theta, radius) self.samplePoints.append(l) return l def add_grid(self, *args, **kwargs): """Add a grid.""" self._ax.grid(*args, **kwargs) def add_contours(self, levels=5, scale=1.0, **kwargs): """ Add constant centered RMS difference contours, defined by *levels*. """ rs, ts = np.meshgrid(np.linspace(self.smin, self.smax), np.linspace(0, self.tmax)) # Compute centered RMS difference if self.normalize: # - normalized refstd == 1 # - rs values were previously normalized in __init__ # - premultiply with (scale==refstd) to get correct rms diff rms = scale * np.sqrt(1 + rs**2 - 2*rs*
np.cos(ts)
numpy.cos
#!/usr/bin/env python # coding: utf-8 # DO NOT EDIT # Autogenerated from the notebook ordinal_regression.ipynb. # Edit the notebook and then sync the output with this file. # # flake8: noqa # DO NOT EDIT # # Ordinal Regression import numpy as np import pandas as pd import scipy.stats as stats from statsmodels.miscmodels.ordinal_model import OrderedModel # Loading a stata data file from the UCLA website.This notebook is # inspired by https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/ # which is a R notebook from UCLA. url = "https://stats.idre.ucla.edu/stat/data/ologit.dta" data_student = pd.read_stata(url) data_student.head(5) data_student.dtypes data_student['apply'].dtype # This dataset is about the probability for undergraduate students to # apply to graduate school given three exogenous variables: # - their grade point average(`gpa`), a float between 0 and 4. # - `pared`, a binary that indicates if at least one parent went to # graduate school. # - and `public`, a binary that indicates if the current undergraduate # institution of the student is public or private. # # `apply`, the target variable is categorical with ordered categories: # `unlikely` < `somewhat likely` < `very likely`. It is a `pd.Serie` of # categorical type, this is preferred over NumPy arrays. # The model is based on a numerical latent variable $y_{latent}$ that we # cannot observe but that we can compute thanks to exogenous variables. # Moreover we can use this $y_{latent}$ to define $y$ that we can observe. # # For more details see the the Documentation of OrderedModel, [the UCLA # webpage](https://stats.idre.ucla.edu/r/dae/ordinal-logistic-regression/) # or this # [book](https://onlinelibrary.wiley.com/doi/book/10.1002/9780470594001). # # ### Probit ordinal regression: mod_prob = OrderedModel(data_student['apply'], data_student[['pared', 'public', 'gpa']], distr='probit') res_prob = mod_prob.fit(method='bfgs') res_prob.summary() # In our model, we have 3 exogenous variables(the $\beta$s if we keep the # documentation's notations) so we have 3 coefficients that need to be # estimated. # # Those 3 estimations and their standard errors can be retrieved in the # summary table. # # Since there are 3 categories in the target variable(`unlikely`, # `somewhat likely`, `very likely`), we have two thresholds to estimate. # As explained in the doc of the method # `OrderedModel.transform_threshold_params`, the first estimated threshold # is the actual value and all the other thresholds are in terms of # cumulative exponentiated increments. Actual thresholds values can be # computed as follows: num_of_thresholds = 2 mod_prob.transform_threshold_params(res_prob.params[-num_of_thresholds:]) # ### Logit ordinal regression: mod_log = OrderedModel(data_student['apply'], data_student[['pared', 'public', 'gpa']], distr='logit') res_log = mod_log.fit(method='bfgs', disp=False) res_log.summary() predicted = res_log.model.predict(res_log.params, exog=data_student[['pared', 'public', 'gpa']]) predicted pred_choice = predicted.argmax(1) print('Fraction of correct choice predictions') print((np.asarray(data_student['apply'].values.codes) == pred_choice).mean()) # ### Ordinal regression with a custom cumulative cLogLog distribution: # In addition to `logit` and `probit` regression, any continuous # distribution from `SciPy.stats` package can be used for the `distr` # argument. Alternatively, one can define its own distribution simply # creating a subclass from `rv_continuous` and implementing a few methods. # using a SciPy distribution res_exp = OrderedModel(data_student['apply'], data_student[['pared', 'public', 'gpa']], distr=stats.expon).fit(method='bfgs', disp=False) res_exp.summary() # minimal definition of a custom scipy distribution. class CLogLog(stats.rv_continuous): def _ppf(self, q): return np.log(-np.log(1 - q)) def _cdf(self, x): return 1 - np.exp(-np.exp(x)) cloglog = CLogLog() # definition of the model and fitting res_cloglog = OrderedModel(data_student['apply'], data_student[['pared', 'public', 'gpa']], distr=cloglog).fit(method='bfgs', disp=False) res_cloglog.summary() # ### Using formulas - treatment of endog # # Pandas' ordered categorical and numeric values are supported as # dependent variable in formulas. Other types will raise a ValueError. modf_logit = OrderedModel.from_formula("apply ~ 0 + pared + public + gpa", data_student, distr='logit') resf_logit = modf_logit.fit(method='bfgs') resf_logit.summary() # Using numerical codes for the dependent variable is supported but loses # the names of the category levels. The levels and names correspond to the # unique values of the dependent variable sorted in alphanumeric order as in # the case without using formulas. data_student["apply_codes"] = data_student['apply'].cat.codes * 2 + 5 data_student["apply_codes"].head() OrderedModel.from_formula("apply_codes ~ 0 + pared + public + gpa", data_student, distr='logit').fit().summary() resf_logit.predict(data_student.iloc[:5]) # Using string values directly as dependent variable raises a ValueError. data_student["apply_str"] =
np.asarray(data_student["apply"])
numpy.asarray
import contextlib import tempfile import shutil import os from pandas.api.types import is_numeric_dtype import numpy as np import cooler @contextlib.contextmanager def isolated_filesystem(): """A context manager that creates a temporary folder and changes the current working directory to it for isolated filesystem tests. """ cwd = os.getcwd() t = tempfile.mkdtemp() os.chdir(t) try: yield t finally: os.chdir(cwd) try: shutil.rmtree(t) except (OSError, IOError): pass def cooler_cmp(uri1, uri2): c1 = cooler.Cooler(uri1) c2 = cooler.Cooler(uri2) with c1.open("r") as f1, c2.open("r") as f2: for path in ( "chroms/name", "chroms/length", "bins/chrom", "bins/start", "bins/end", "pixels/bin1_id", "pixels/bin2_id", "pixels/count", ): dset1, dset2 = f1[path], f2[path] dtype1 = dset1.dtype dtype2 = dset2.dtype if dtype1.kind == "S": # Null padding of ascii arrays is not guaranteed to be # preserved so we only check the kind. assert dtype2.kind == "S" else: assert dtype1 == dtype2 if is_numeric_dtype(dtype1): assert np.allclose(dset1[:], dset2[:]) else: assert
np.all(dset1[:] == dset2[:])
numpy.all
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """convert dataset to mindrecord""" from io import BytesIO import os import csv import argparse import glob from PIL import Image import numpy as np import pandas as pd from mindspore.mindrecord import FileWriter parser = argparse.ArgumentParser(description='MindSpore delf eval') parser.add_argument('--train_directory', type=str, default="/tmp/", help='Training data directory.') parser.add_argument('--output_directory', type=str, default="/tmp/", help='Output data directory.') parser.add_argument('--train_csv_path', type=str, default="/tmp/train.csv", help='Training data csv file path.') parser.add_argument('--train_clean_csv_path', type=str, default=None, help='(Optional) Clean training data csv file path. ') parser.add_argument('--num_shards', type=int, default=128, help='Number of shards in output data.') parser.add_argument( '--generate_train_validation_splits', type=bool, default=True, help='(Optional) Whether to split the train dataset') parser.add_argument( '--validation_split_size', type=float, default=0.2, help='(Optional)The size of the VALIDATION split as a fraction') parser.add_argument('--seed', type=int, default=0, help='(Optional) The seed to be used while shuffling the train') FLAGS = parser.parse_known_args()[0] _FILE_IDS_KEY = 'file_ids' _IMAGE_PATHS_KEY = 'image_paths' _LABELS_KEY = 'labels' _TEST_SPLIT = 'test' _TRAIN_SPLIT = 'train' _VALIDATION_SPLIT = 'validation' def _get_all_image_files_and_labels(name, csv_path, image_dir): """Process input and get the image file paths, image ids and the labels. Args: name: 'train' or 'test'. csv_path: path to the Google-landmark Dataset csv Data Sources files. image_dir: directory that stores downloaded images. Returns: image_paths: the paths to all images in the image_dir. file_ids: the unique ids of images. labels: the landmark id of all images. When name='test', the returned labels will be an empty list. Raises: ValueError: if input name is not supported. """ image_paths = glob.glob(os.path.join(image_dir, '*.jpg')) file_ids = [os.path.basename(os.path.normpath(f))[:-4] for f in image_paths] if name == _TRAIN_SPLIT: csv_file = open(csv_path, 'rb') df = pd.read_csv(csv_file) df = df.set_index('id') labels = [int(df.loc[fid]['landmark_id']) for fid in file_ids] elif name == _TEST_SPLIT: labels = [] else: raise ValueError('Unsupported dataset split name: %s' % name) return image_paths, file_ids, labels def _get_clean_train_image_files_and_labels(csv_path, image_dir): """Get image file paths, image ids and labels for the clean training split. Args: csv_path: path to the Google-landmark Dataset v2 CSV Data Sources files of the clean train dataset. Assumes CSV header landmark_id;images. image_dir: directory that stores downloaded images. Returns: image_paths: the paths to all images in the image_dir. file_ids: the unique ids of images. labels: the landmark id of all images. relabeling: relabeling rules created to replace actual labels with a continuous set of labels. """ # Load the content of the CSV file (landmark_id/label -> images). csv_file = open(csv_path, 'rb') df = pd.read_csv(csv_file) # Create the dictionary (key = file_id, value = {label, file_id}). images = {} for _, row in df.iterrows(): label = row['landmark_id'] for file_id in row['images'].split(' '): images[file_id] = {} images[file_id]['label'] = label images[file_id]['file_id'] = file_id # Add the full image path to the dictionary of images. image_paths = glob.glob(os.path.join(image_dir, '*.jpg')) for image_path in image_paths: file_id = os.path.basename(os.path.normpath(image_path))[:-4] if file_id in images: images[file_id]['image_path'] = image_path # Explode the dictionary into lists (1 per image attribute). image_paths = [] file_ids = [] labels = [] for _, value in images.items(): image_paths.append(value['image_path']) file_ids.append(value['file_id']) labels.append(value['label']) # Relabel image labels to contiguous values. unique_labels = sorted(set(labels)) relabeling = {label: index for index, label in enumerate(unique_labels)} new_labels = [relabeling[label] for label in labels] return image_paths, file_ids, new_labels, relabeling def _process_image(filename): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.jpg'. Returns: image_buffer: string, JPEG encoding of RGB image. Raises: ValueError: if parsed image has wrong number of dimensions or channels. """ white_io = BytesIO() Image.open(filename).save(white_io, 'JPEG') image_data = white_io.getvalue() os.remove(filename) return image_data def _write_mindrecord(output_prefix, image_paths, file_ids, labels): """Read image files and write image and label data into MindRecord files. Args: output_prefix: string, the prefix of output files, e.g. 'train'. image_paths: list of strings, the paths to images to be converted. file_ids: list of strings, the image unique ids. labels: list of integers, the landmark ids of images. It is an empty list when output_prefix='test'. Raises: ValueError: if the length of input images, ids and labels don't match """ if output_prefix == _TEST_SPLIT: labels = [None] * len(image_paths) if not len(image_paths) == len(file_ids) == len(labels): raise ValueError('length of image_paths, file_ids, labels should be the' + ' same. But they are %d, %d, %d, respectively' % (len(image_paths), len(file_ids), len(labels))) output_file = os.path.join( FLAGS.output_directory, '%s.mindrecord' % (output_prefix)) writer = FileWriter(file_name=output_file, shard_num=FLAGS.num_shards) cv_schema = {"file_id": {"type": "string"}, "label": { "type": "int64"}, "data": {"type": "bytes"}} writer.add_schema(cv_schema, "GLDv2") writer.add_index(["file_id", "label"]) data = [] for i in range(len(image_paths)): sample = {} image_bytes = _process_image(image_paths[i]) sample['file_id'] = file_ids[i] sample['label'] = labels[i] sample['data'] = image_bytes data.append(sample) if i % 10 == 0: writer.write_raw_data(data) data = [] if data: writer.write_raw_data(data) print(writer.commit()) def _write_relabeling_rules(relabeling_rules): """Write to a file the relabeling rules when the clean train dataset is used. Args: relabeling_rules: dictionary of relabeling rules applied when the clean train dataset is used (key = old_label, value = new_label). """ relabeling_file_name = os.path.join( FLAGS.output_directory, 'relabeling.csv') relabeling_file = open(relabeling_file_name, 'w') csv_writer = csv.writer(relabeling_file, delimiter=',') csv_writer.writerow(['new_label', 'old_label']) for old_label, new_label in relabeling_rules.items(): csv_writer.writerow([new_label, old_label]) def _shuffle_by_columns(np_array, random_state): """Shuffle the columns of a 2D numpy array. Args: np_array: array to shuffle. random_state: numpy RandomState to be used for shuffling. Returns: The shuffled array. """ columns = np_array.shape[1] columns_indices = np.arange(columns) random_state.shuffle(columns_indices) return np_array[:, columns_indices] def _build_train_and_validation_splits(image_paths, file_ids, labels, validation_split_size, seed): """Create TRAIN and VALIDATION splits containing all labels in equal proportion. Args: image_paths: list of paths to the image files in the train dataset. file_ids: list of image file ids in the train dataset. labels: list of image labels in the train dataset. validation_split_size: size of the VALIDATION split as a ratio of the train dataset. seed: seed to use for shuffling the dataset for reproducibility purposes. Returns: splits : tuple containing the TRAIN and VALIDATION splits. Raises: ValueError: if the image attributes arrays don't all have the same length, which makes the shuffling impossible. """ # Ensure all image attribute arrays have the same length. total_images = len(file_ids) if not (len(image_paths) == total_images and len(labels) == total_images): raise ValueError('Inconsistencies between number of file_ids (%d), number ' 'of image_paths (%d) and number of labels (%d). Cannot' 'shuffle the train dataset.' % (total_images, len(image_paths), len(labels))) # Stack all image attributes arrays in a single 2D array of dimensions # (3, number of images) and group by label the indices of datapoins in the # image attributes arrays. Explicitly convert label types from 'int' to 'str' # to avoid implicit conversion during stacking with image_paths and file_ids # which are 'str'. labels_str = [str(label) for label in labels] image_attrs = np.stack((image_paths, file_ids, labels_str)) image_attrs_idx_by_label = {} for index, label in enumerate(labels): if label not in image_attrs_idx_by_label: image_attrs_idx_by_label[label] = [] image_attrs_idx_by_label[label].append(index) # Create subsets of image attributes by label, shuffle them separately and # split each subset into TRAIN and VALIDATION splits based on the size of the # validation split. splits = { _VALIDATION_SPLIT: [], _TRAIN_SPLIT: [] } rs = np.random.RandomState(np.random.MT19937(np.random.SeedSequence(seed))) for label, indexes in image_attrs_idx_by_label.items(): # Create the subset for the current label. image_attrs_label = image_attrs[:, indexes] # Shuffle the current label subset. image_attrs_label = _shuffle_by_columns(image_attrs_label, rs) # Split the current label subset into TRAIN and VALIDATION splits and add # each split to the list of all splits. images_per_label = image_attrs_label.shape[1] cutoff_idx = max(1, int(validation_split_size * images_per_label)) splits[_VALIDATION_SPLIT].append(image_attrs_label[:, 0: cutoff_idx]) splits[_TRAIN_SPLIT].append(image_attrs_label[:, cutoff_idx:]) # Concatenate all subsets of image attributes into TRAIN and VALIDATION splits # and reshuffle them again to ensure variance of labels across batches. validation_split = _shuffle_by_columns( np.concatenate(splits[_VALIDATION_SPLIT], axis=1), rs) train_split = _shuffle_by_columns(
np.concatenate(splits[_TRAIN_SPLIT], axis=1)
numpy.concatenate
#!/usr/bin/python # Script that uses katsdpcal's calprocs to reduce data consisting of offset tracks on multiple point sources. # from katsdpcal import calprocs import pickle import katdal import numpy as np import scikits.fitting as fit import katpoint import optparse #TODO Remove this function once katdal has this functionality def activity(h5,state = 'track'): """Activity Sensor because some of antennas have a mind of their own, others appear to have lost theirs entirely """ antlist = [a.name for a in h5.ants] activityV = np.zeros((len(antlist),h5.shape[0]) ,dtype=np.bool) for i,ant in enumerate(antlist) : sensor = h5.sensor['%s_activity'%(ant)] ==state if ~np.any(sensor): print("Antenna %s has no valid %s data"%(ant,state)) noise_diode = ~h5.sensor['Antennas/%s/nd_coupler'%(ant)] activityV[i,:] += noise_diode & sensor return np.all(activityV,axis=0) def w_average(arr,axis=None, weights=None): return np.nansum(arr*weights,axis=axis)/np.nansum(weights,axis=axis) def reduce_compscan_inf(h5,rfi_static_flags=None,chunks=16,return_raw=False,use_weights=False,compscan_index=None,debug=False): """Break the band up into chunks""" chunk_size = chunks rfi_static_flags = np.full(h5.shape[1], False) if (rfi_static_flags is None) else rfi_static_flags gains_p = {} stdv = {} calibrated = False # placeholder for calibration h5.select(compscans=compscan_index) # Combine target indices if they refer to the same target for the purpose of this analysis TGT = h5.catalogue.targets[h5.target_indices[0]].description.split(",") def _eq_TGT_(tgt): # tgt==TGT, "tags" don't matter tgt = tgt.description.split(",") return (tgt[0] == TGT[0]) and (tgt[2] == TGT[2]) and (tgt[3] == TGT[3]) target_indices = [TI for TI in h5.target_indices if _eq_TGT_(h5.catalogue.targets[TI])] if len(h5.target_indices) > len(target_indices): print("Warning multiple targets in the compscan, using %s instead of %s"%(target_indices,h5.target_indices)) target = h5.catalogue.targets[h5.target_indices[0]] if not return_raw: # Calculate average target flux over entire band flux_spectrum = h5.catalogue.targets[h5.target_indices[0]].flux_density(h5.freqs) # include flags average_flux = np.mean([flux for flux in flux_spectrum if not np.isnan(flux)]) temperature = np.mean(h5.temperature) pressure = np.mean(h5.pressure) humidity = np.mean(h5.humidity) wind_speed = np.mean(h5.wind_speed) wind_direction = np.degrees(np.angle(np.mean(np.exp(1j*np.radians(h5.wind_direction)))) )# Vector Mean sun = katpoint.Target('Sun, special') # Calculate pointing offset # Obtain middle timestamp of compound scan, where all pointing calculations are done middle_time = np.median(h5.timestamps[:], axis=None) # Start with requested (az, el) coordinates, as they apply at the middle time for a moving target requested_azel = target.azel(middle_time) # Correct for refraction, which becomes the requested value at input of pointing model rc = katpoint.RefractionCorrection() requested_azel = [requested_azel[0], rc.apply(requested_azel[1], temperature, pressure, humidity)] requested_azel = katpoint.rad2deg(np.array(requested_azel)) gaussian_centre = np.full((chunk_size * 2, 2, len(h5.ants)), np.nan) gaussian_centre_std = np.full((chunk_size * 2, 2, len(h5.ants)), np.nan) gaussian_width = np.full((chunk_size * 2, 2, len(h5.ants)), np.nan) gaussian_width_std = np.full((chunk_size * 2, 2, len(h5.ants)), np.nan) gaussian_height = np.full((chunk_size * 2, len(h5.ants)), np.nan) gaussian_height_std = np.full((chunk_size * 2, len(h5.ants)), np.nan) if debug :#debug_text debug_text = [] line = [] line.append("#AntennaPol") line.append("Target") line.append("Freq(MHz)") #MHz line.append("Centre Az") line.append("Centre El") line.append("Centre Az Std") line.append("Centre El Std") line.append("Centre Az Width") line.append("Centre El Width") line.append("Centre Az Width Std") line.append("Centre El Width Std") line.append("Height") line.append("Height Std") debug_text.append(','.join(line) ) pols = ["H","V"] # Put in logic for Intensity for i,pol in enumerate(pols) : gains_p[pol] = [] pos = [] stdv[pol] = [] h5.select(pol=pol,corrprods='cross',ants=h5.antlist,targets=[h5.catalogue.targets[TI] for TI in target_indices],compscans=compscan_index) h5.bls_lookup = calprocs.get_bls_lookup(h5.antlist,h5.corr_products) for scan in h5.scans() : if scan[1] != 'track': continue valid_index = activity(h5,state = 'track') data = h5.vis[valid_index] if data.shape[0] > 0 : # need at least one data point #g0 = np.ones(len(h5.ants),np.complex) if use_weights : weights = h5.weights[valid_index].mean(axis=0) else: weights = np.ones(data.shape[1:]).astype(np.float) gains_p[pol].append(calprocs.g_fit(data[:].mean(axis=0),weights,h5.bls_lookup,refant=0) ) stdv[pol].append(np.ones((data.shape[0],data.shape[1],len(h5.ants))).sum(axis=0))#number of data points # Get coords in (x(time,ants),y(time,ants) coords) pos.append( [h5.target_x[valid_index,:].mean(axis=0), h5.target_y[valid_index,:].mean(axis=0)] ) for ant in range(len(h5.ants)): for chunk in range(chunks): freq = slice(chunk*(h5.shape[1]//chunks),(chunk+1)*(h5.shape[1]//chunks)) rfi = ~rfi_static_flags[freq] if (np.array(pos).shape[0] > 4) and np.any(rfi): # Make sure there is enough data for a fit fitobj = fit.GaussianFit(np.array(pos)[:,:,ant].mean(axis=0),[1.,1.],1) x = np.column_stack((np.array(pos)[:,0,ant],np.array(pos)[:,1,ant])) y = np.abs(
np.array(gains_p[pol])
numpy.array
#!/usr/bin/env python # coding: utf-8 """ This script has to be executed after hi_freq_data_to_csv.py and get_interval.py have succesfully run. This script should be called with 1 (or 2) arguments. The 1st mandatory argument is the ABSOLUTE path of the top directory for the flight campaign. /media/spectors/HDD320/lidar/20201218_fresh <<----- This is it! ----------------------------/20201218_fresh/p_00_joined_pcap_files ----------------------------/20201218_fresh/p_01_apx_csv_shapefile <<----- This must be present and will be used as input. ----------------------------/20201218_fresh/p_02_plt <<----- Not used. Just for reference. ----------------------------/20201218_fresh/p_03_pcap <<----- This must be present and will be used as input. ----------------------------/20201218_fresh/2_planned_mision ----------------------------/20201218_fresh/ ..... ----------------------------/20201218_fresh/logging <<----- This is where the logs will be stored. ----------------------------/20201218_fresh/transl_table.txt <<----- This must be present and will be used as input. The 2nd optional argument can be a boresight-calibration string. It must contain the boresight angles and be of the following form: # RabcdefghPijklmnopYqrstuvwx # Where abcdefgh is milionths of degree to ROLL. a is sign (p/n) # ..... ijklmnop is milionths of degree to PITCH. i is sign (p/n) # ..... qrstuvwx is milionths of degree to YAW. q is sign (p/n) # In this order! ROLL -> PITCH -> YAW ! # Theoretically can encode up to 9.9° around each axis This script combines .csv files with each of the .pcap flight lines and writes point clouds in .txt files. It then calls a lew lastools to convert them to las, denoise and set the correct (georeference) metadata. The script is run non-interactively. The only exception is choosing the p_01_apx_csv_shapefile and p__03_pcap folders at the beginning if there are muktiple of them. TO DO: add support for different EPSG codes. """ import time import os import sys import datetime import platform import logging import shutil import re from collections import OrderedDict from multiprocessing import Pool, cpu_count from multiprocessing.managers import SharedMemoryManager from multiprocessing.shared_memory import SharedMemory from scipy.interpolate import interp1d import numpy as np import pandas as pd import matplotlib.pyplot as plt from scapy.all import rdpcap #from vlp16_tables import * import vlp16_tables log_dir = 'p_logging' txt_dir_in = 'p_01_apx_csv_shapefile' txt_in_base_len = len(txt_dir_in) pcap_dir_in = 'p_03_pcap' pcap_in_base_len = len(pcap_dir_in) out_dir_ascii = 'p_04_ascii' out_ascii_base_len = len(out_dir_ascii) out_dir_las = 'p_05_las' out_las_base_len = len(out_dir_las) transl_table_fn = 'p_transl_table.txt' fn_keyword = 'hi_freq_apx' nl = '\n' def shorten_string(text_string): """ Function to remove all duplicates from string and keep the order of characters same https://www.geeksforgeeks.org/remove-duplicates-given-string-python/ """ return "".join(OrderedDict.fromkeys(text_string)) def remove_min_sec(ts): return (int(ts) // 3600) * 3600 # ### Function to calculate the gaps between given azimuths. Needed to interpolate azimuths that are not given. def get_azim_gap(azimuths, dual=True, preserve_shape=False): """ Only works for dual returns now. preserve_shape is relevant for dual, where the azimuths repeat. if False: return only unique gaps. if True: return same shape as azimuths """ if dual: azimuths_gap_flat = np.zeros_like(azimuths[:,0::2]).flatten() azimuths_gap_flat[:-1] = ((azimuths[:,0::2].flatten()[1:] -\ azimuths[:,0::2].flatten()[:-1]) % 36000) azimuths_gap_flat[-1] = azimuths_gap_flat[-2] azimuths_gap = azimuths_gap_flat.reshape(azimuths[:,0::2].shape) if preserve_shape: azimuths_gap = np.tile(azimuths_gap,2) return azimuths_gap else: raise NotImplementedError def get_micros_pulses(micros, dual=True, preserve_shape=False): """ preserve_shape is relevant for dual, where the azimuths repeat. if False: return only unique gaps. if True: return same shape as azimuths """ if dual: if preserve_shape: micros_pulses = np.expand_dims(micros, axis=1) +\ vlp16_tables.TIMING_OFFSETS_DUAL.T.flatten() * 1e6 else: micros_pulses = np.expand_dims(micros, axis=1) +\ vlp16_tables.TIMING_OFFSETS_DUAL.T[0::2,:].flatten() * 1e6 else: micros_pulses = np.expand_dims(micros, axis=1) +\ vlp16_tables.TIMING_OFFSETS_SINGLE.T.flatten() * 1e6 return micros_pulses def get_precision_azimuth(az_simple, azimuths_gap, dual=True, minimal_shape=True): if dual: timing_offsets_within_block = vlp16_tables.TIMING_OFFSETS_DUAL[:,0] az_pulses = np.tile(az_simple,(vlp16_tables.LASERS_PER_DATA_BLOCK)).reshape(\ az_simple.shape[0], vlp16_tables.LASERS_PER_DATA_BLOCK, az_simple.shape[1]) az_pulses = az_pulses.transpose((0,2,1)) precision_azimuth = az_pulses[:,:,:] +\ timing_offsets_within_block / (2 * vlp16_tables.T_CYCLE) *\ np.expand_dims(azimuths_gap, axis=2) precision_azimuth = precision_azimuth % 36000 if not minimal_shape: precision_azimuth = np.tile(\ precision_azimuth.transpose((0,2,1)), (1,2,1)).transpose((0,2,1)) precision_azimuth = precision_azimuth.reshape(\ (precision_azimuth.shape[0], precision_azimuth.shape[1] * precision_azimuth.shape[2])) return precision_azimuth else: raise NotImplementedError def process_file(pcap_file_in, pcap_dir_in, out_dir_ascii, out_dir_las, shm_name, shm_shp, shm_dtp, b_roll, b_pitch, b_yaw, concat_cmd, wine_cmd): print(f"Processing {pcap_file_in}") logging.info(f"Processing {pcap_file_in}") loc_shm = SharedMemory(shm_name) loc_apx_arr = np.recarray(shape=shm_shp, dtype=shm_dtp, buf=loc_shm.buf) ### Temporary plug-in here. # This is not a proper solution, just a quick proof-of-concept # Before hand must manually copy the file yaw_correction.csv into the appropriate folder if 'yaw_correction.csv' in os.listdir(pcap_dir_in): yaw_agisoft = pd.read_csv(os.path.join(pcap_dir_in, 'yaw_correction.csv'), index_col=0) else: # just have a dataframe that when interpolated will result in 0 everywhere idx = pd.Index([0, 1, 2597835528, 2597835529], name='utc_time') yaw_agisoft = pd.DataFrame(data =
np.array([[0],[0],[0],[0]])
numpy.array
import json import os import numpy as np from tqdm import tqdm from mmhuman3d.core.conventions.keypoints_mapping import convert_kps from mmhuman3d.data.data_converters.base_converter import BaseModeConverter from mmhuman3d.data.data_converters.builder import DATA_CONVERTERS from mmhuman3d.data.data_structures.human_data import HumanData from mmhuman3d.data.datasets.pipelines.hybrik_transforms import ( get_bbox, get_intrinsic_matrix, ) @DATA_CONVERTERS.register_module() class MpiInf3dhpHybrIKConverter(BaseModeConverter): """MPI-INF-3DHP dataset for HybrIK `Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision' 3DC`2017 More details can be found in the `paper. <https://arxiv.org/pdf/1611.09813.pdf>`__. Args: modes (list): 'test' or 'train' for accepted modes """ ACCEPTED_MODES = ['test', 'train'] def __init__(self, modes=[]): super(MpiInf3dhpHybrIKConverter, self).__init__(modes) @staticmethod def cam2pixel_matrix(cam_coord: np.ndarray, intrinsic_param: np.ndarray) -> np.ndarray: """Convert coordinates from camera to image frame given intrinsic matrix Args: cam_coord (np.ndarray): Coordinates in camera frame intrinsic_param (np.ndarray): 3x3 Intrinsic matrix Returns: img_coord (np.ndarray): Coordinates in image frame """ cam_coord = cam_coord.transpose(1, 0) cam_homogeneous_coord = np.concatenate( (cam_coord, np.ones((1, cam_coord.shape[1]), dtype=np.float32)), axis=0) img_coord = np.dot(intrinsic_param, cam_homogeneous_coord) / ( cam_coord[2, :] + 1e-8) img_coord = np.concatenate((img_coord[:2, :], cam_coord[2:3, :]), axis=0) return img_coord.transpose(1, 0) def convert_by_mode(self, dataset_path: str, out_path: str, mode: str) -> dict: """ Args: dataset_path (str): Path to directory where hybrik preprocessed json files are stored out_path (str): Path to directory to save preprocessed npz file mode (str): Mode in accepted modes Returns: dict: A dict containing keys image_path, image_height, image_width, bbox_xywh, cam_param, root_cam, depth_factor, keypoints3d, keypoints3d_mask, keypoints3d_cam, keypoints3d_cam_mask stored in HumanData() format """ if mode == 'train': ann_file = os.path.join(dataset_path, 'annotation_mpi_inf_3dhp_train_v2.json') elif mode == 'test': ann_file = os.path.join(dataset_path, 'annotation_mpi_inf_3dhp_test.json') with open(ann_file, 'r') as fid: database = json.load(fid) # use HumanData to store all data human_data = HumanData() # structs we use image_path_, bbox_xywh_, root_cam_, image_width_, image_height_, \ joint_cam_, joint_img_, depth_factor_ = \ [], [], [], [], [], [], [], [] smpl = {} smpl['thetas'] = [] smpl['betas'] = [] cam_param = {} cam_param['f'] = [] cam_param['c'] = [] cam_param['intrinsic'] = [] num_datapoints = len(database['images']) for ann_image, ann_annotations in tqdm( zip(database['images'], database['annotations']), total=num_datapoints): ann = dict() for k, v in ann_image.items(): assert k not in ann.keys() ann[k] = v for k, v in ann_annotations.items(): ann[k] = v width, height = ann['width'], ann['height'] bbox = ann['bbox'] bbox = get_bbox(np.array(bbox), width, height) K = np.array(ann['cam_param']['intrinsic_param']) f = np.array([K[0, 0], K[1, 1]]) c = np.array([K[0, 2], K[1, 2]]) intrinsic = get_intrinsic_matrix(f, c, inv=True) joint_cam = np.array(ann['keypoints_cam']) num_joints = joint_cam.shape[0] # if train if mode == 'train': root_idx = 4 _, sub, seq, vid, im = ann['file_name'].split('/')[-1].split( '_') fname = '{}/{}/{}/{}'.format(sub, seq, vid.replace('V', 'video_'), im) # fname = '{}/{}/imageFrames/{}/frame_{}'.format( # sub, seq, vid.replace('V', 'video_'), im) elif mode == 'test': root_idx = 14 fname = 'mpi_inf_3dhp_test_set/' + ann['file_name'] # fname = 'mpi_inf_3dhp_test_set/mpi_inf_3dhp_test_set/' + ann[ # 'file_name'] joint_img = self.cam2pixel_matrix(joint_cam, K) joint_img[:, 2] = joint_img[:, 2] - joint_cam[root_idx, 2] root_cam = joint_cam[root_idx] joint_img = np.hstack([joint_img, np.ones([num_joints, 1])]) joint_cam = np.hstack([joint_cam, np.ones([num_joints, 1])]) image_path_.append(fname) image_height_.append(height) image_width_.append(width) bbox_xywh_.append(bbox) depth_factor_.append(2000.) cam_param['f'].append(f.reshape((-1, 2))) cam_param['c'].append(c.reshape((-1, 2))) cam_param['intrinsic'].append(intrinsic) joint_cam_.append(joint_cam) joint_img_.append(joint_img) root_cam_.append(root_cam) cam_param['f'] = np.array(cam_param['f']).reshape((-1, 2)) cam_param['c'] = np.array(cam_param['c']).reshape((-1, 2)) cam_param['intrinsic'] =
np.array(cam_param['intrinsic'])
numpy.array
# _*_coding:utf-8_*_ # Author: xiaoran # Time: 2017-12-08 21:10 # DecisionTreeClassifier import numpy as np import scipy as sp import pandas as pd class DecisionTreeClassifier(object): """决策树分类器,主要基于ID3和C4.5 criterion: string optional (default="gini") 选择特征的基础: entropy [enrtopy]: 熵 for ID3 information_gain [i_gain]: 信息增益 for ID3 information_gain_ratio [i_gain_r]: 信息增益比 for C4.5 gini [gini]: gini 指数 for CART max_depth: int or None, optional (default = None) 最大深度,if None, 则知道所有叶子都是一个类,或者剩下min_sample_split个例子.(用来防止过拟合) min_sample_split: int float, optional (default=2) 剩余最少几个例子的时候不在进行分割,使用例子中出现最多的类,作为这个叶子节点的标签label.(用来防止过拟合) IF float向上取整. 属性: classes_ : 所有的类别. feature_importances_: 特征重要性,根据分类的正确数进行递减排序,一共两维数据,[(feature1, nums1),...,(featureN,numsN)],首先给出一维 这是根据创建树的过程生成的,并不对应验证集的结果,而且返回的对应特征的列编号. numpy: [column0,...,columni,...] DataFrame: [DataFrame.columns] tree_: 决策树的原型. 实现函数: fit(),predict(),apply(), score(), """ def __init__(self,criterion='i_gain_r',max_depth=None,min_sample_split=2): '''构造函数 ''' self.__criterion = criterion self.__max_depth = max_depth self.__min_sample_plite = min_sample_split self.__featureLen = None self.__tree_ = None self.classes_ = None self.feature_importances_ = [] self.tree_ = None def __check_array(self,x): ''' 检查x的数据, None:自动填充0, if isinstance(x,list)--> x = np.array(x) if x只有一个元素,将其变为二维的数据.x = np.array([x]) ''' if isinstance(x,list): x = np.array(x) if self.__featureLen == None: self.__featureLen = x.shape[1] if len(x.shape) == 1: x = np.array([x]) if x.shape[1] != self.__featureLen: raise ValueError("输入数据的格式与训练数据的格式不匹配.") return x def __spliteDataWithFeature(self,data,featureColumn,dataType='numpy'): '''根据给定的特征,分割数据集,返回对应的数据子集,这里的特征使用列号[0,...,n]给出, 参数: data: 被分割的数据 featureColumn: 特征的列索引 dataType: 数据类型,默认"ndarray",还有一种是pd.DataFrame,注意numpy的ndarry兼容DataFrame return 对应的分离数据和对应得到这个子集的特征的值 ''' splitdataSet = [] if dataType == 'numpy': featureSet = set(data[:,featureColumn]) # print("featureSet",featureSet) for feature in featureSet: tmp =
np.copy(data[data[:,featureColumn] == feature])
numpy.copy
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # General imports. import numpy as np from warnings import warn from scipy.integrate import AccuracyWarning from scipy.sparse import find, diags, identity, csr_matrix from scipy.sparse.linalg import spsolve from scipy.interpolate import interp1d, RectBivariateSpline # Plotting. import matplotlib.pyplot as plt from matplotlib.colors import LogNorm # ============================================================================== # Code for generating indices on the oversampled wavelength grid. # ============================================================================== def arange_2d(starts, stops, dtype=None): """Create a 2D array containing a series of ranges. The ranges do not have to be of equal length. :param starts: start values for each range. :param stops: end values for each range. :param dtype: the type of the output values. :type starts: int or array[int] :type stops: int or array[int] :type dtype: str :returns: out, mask - 2D array of ranges and a mask indicating valid elements. :rtype: Tuple(array[int], array[bool]) """ # Ensure starts and stops are arrays. starts = np.asarray(starts) stops = np.asarray(stops) # Check input for starts and stops is valid. if (starts.shape != stops.shape) & (starts.shape != ()): msg = ('Shapes of starts and stops are not compatible, ' 'they must either have the same shape or starts must be scalar.') raise ValueError(msg) if np.any(stops < starts): msg = 'stops must be everywhere greater or equal to starts.' raise ValueError(msg) # If starts was given as a scalar match its shape to stops. if starts.shape == (): starts = starts * np.ones_like(stops) # Compute the length of each range. lengths = (stops - starts).astype(int) # Initialize the output arrays. nrows = len(stops) ncols = np.amax(lengths) out = np.ones((nrows, ncols), dtype=dtype) mask = np.ones((nrows, ncols), dtype='bool') # Compute the indices. for irow in range(nrows): out[irow, :lengths[irow]] = np.arange(starts[irow], stops[irow]) mask[irow, :lengths[irow]] = False return out, mask # ============================================================================== # Code for converting to a sparse matrix and back. # ============================================================================== def sparse_k(val, k, n_k): """ Transform a 2D array `val` to a sparse matrix. `k` is use for the position in the second axis of the matrix. The resulting sparse matrix will have the shape : ((len(k), n_k)) Set k elements to a negative value when not defined """ # Length of axis 0 n_i = len(k) # Get row index i_k = np.indices(k.shape)[0] # Take only well defined coefficients row = i_k[k >= 0] col = k[k >= 0] data = val[k >= 0] mat = csr_matrix((data, (row, col)), shape=(n_i, n_k)) return mat def unsparse(matrix, fill_value=np.nan): """ Convert a sparse matrix to a 2D array of values and a 2D array of position. Returns ------ out: 2d array values of the matrix. The shape of the array is given by: (matrix.shape[0], maximum number of defined value in a column). col_out: 2d array position of the columns. Same shape as `out`. """ col, row, val = find(matrix.T) n_row, n_col = matrix.shape good_rows, counts = np.unique(row, return_counts=True) # Define the new position in columns i_col = np.indices((n_row, counts.max()))[1] i_col = i_col[good_rows] i_col = i_col[i_col < counts[:, None]] # Create outputs and assign values col_out = np.ones((n_row, counts.max()), dtype=int) * -1 col_out[row, i_col] = col out = np.ones((n_row, counts.max())) * fill_value out[row, i_col] = val return out, col_out # ============================================================================== # Code for building wavelength grids. # ============================================================================== def get_wave_p_or_m(wave_map): # TODO rename function? """Compute lambda_plus and lambda_minus of pixel map, given the pixel central value. :param wave_map: Array of the pixel wavelengths for a given order. :type wave_map: array[float] :returns: wave_plus, wave_minus - The wavelength edges of each pixel, given the central value. :rtype: Tuple(array[float], array[float]) """ wave_map = wave_map.T # Simpler to use transpose # Iniitialize arrays. wave_left = np.zeros_like(wave_map) wave_right = np.zeros_like(wave_map) # Compute the change in wavelength. delta_wave = np.diff(wave_map, axis=0) # Compute the wavelength values on the left and right edges of each pixel. wave_left[1:] = wave_map[:-1] + delta_wave/2 # TODO check this logic. wave_left[0] = wave_map[0] - delta_wave[0]/2 wave_right[:-1] = wave_map[:-1] + delta_wave/2 wave_right[-1] = wave_map[-1] + delta_wave[-1]/2 # The outputs depend on the direction of the spectral axis. if (wave_right >= wave_left).all(): wave_plus, wave_minus = wave_right.T, wave_left.T elif (wave_right <= wave_left).all(): wave_plus, wave_minus = wave_left.T, wave_right.T else: raise ValueError('Bad pixel values for wavelength.') return wave_plus, wave_minus def oversample_grid(wave_grid, n_os=1): """Create an oversampled version of the input 1D wavelength grid. :param wave_grid: Wavelength grid to be oversampled. :param n_os: Oversampling factor. If it is a scalar, take the same value for each interval of the grid. If it is an array, n_os specifies the oversampling at each interval of the grid, so len(n_os) = len(wave_grid) - 1. :type wave_grid: array[float] :type n_os: int or array[int] :returns: wave_grid_os - The oversampled wavelength grid. :rtype: array[float] """ # Convert n_os to an array. n_os = np.asarray(n_os) # n_os needs to have the dimension: len(wave_grid) - 1. if n_os.ndim == 0: # A scalar was given, repeat the value. n_os = np.repeat(n_os, len(wave_grid) - 1) elif len(n_os) != (len(wave_grid) - 1): # An array of incorrect size was given. msg = 'n_os must be a scalar or an array of size len(wave_grid) - 1.' raise ValueError(msg) # Grid intervals. delta_wave = np.diff(wave_grid) # Initialize the new oversampled wavelength grid. wave_grid_os = wave_grid.copy() # Iterate over oversampling factors to generate new grid points. for i_os in range(1, n_os.max()): # Consider only intervals that are not complete yet. mask = n_os > i_os # Compute the new grid points. sub_grid = (wave_grid[:-1][mask] + i_os*delta_wave[mask]/n_os[mask]) # Add the grid points to the oversampled wavelength grid. wave_grid_os = np.concatenate([wave_grid_os, sub_grid]) # Take only uniqyue values and sort them. wave_grid_os = np.unique(wave_grid_os) return wave_grid_os def extrapolate_grid(wave_grid, wave_range, poly_ord): """Extrapolate the given 1D wavelength grid to cover a given range of values by fitting the derivate with a polynomial of a given order and using it to compute subsequent values at both ends of the grid. :param wave_grid: Wavelength grid to be extrapolated. :param wave_range: Wavelength range the new grid should cover. :param poly_ord: Order of the polynomial used to fit the derivative of wave_grid. :type wave_grid: array[float] :type wave_range: list[float] :type poly_ord: int :returns: wave_grid_ext - The extrapolated 1D wavelength grid. :rtype: array[float] """ # Define delta_wave as a function of wavelength by fitting a polynomial. delta_wave = np.diff(wave_grid) pars = np.polyfit(wave_grid[:-1], delta_wave, poly_ord) f_delta = np.poly1d(pars) # Extrapolate out-of-bound values on the left-side of the grid. grid_left = [] if wave_range[0] < wave_grid.min(): # Compute the first extrapolated grid point. grid_left = [wave_grid.min() - f_delta(wave_grid.min())] # Iterate until the end of wave_range is reached. while True: next_val = grid_left[-1] - f_delta(grid_left[-1]) if next_val < wave_range[0]: break else: grid_left.append(next_val) # Sort extrapolated vales (and keep only unique). grid_left = np.unique(grid_left) # Extrapolate out-of-bound values on the right-side of the grid. grid_right = [] if wave_range[-1] > wave_grid.max(): # Compute the first extrapolated grid point. grid_right = [wave_grid.max() + f_delta(wave_grid.max())] # Iterate until the end of wave_range is reached. while True: next_val = grid_right[-1] + f_delta(grid_right[-1]) if next_val > wave_range[-1]: break else: grid_right.append(next_val) # Sort extrapolated vales (and keep only unique). grid_right = np.unique(grid_right) # Combine the extrapolated sections with the original grid. wave_grid_ext = np.concatenate([grid_left, wave_grid, grid_right]) return wave_grid_ext def _grid_from_map(wave_map, aperture, out_col=False): # TODO is out_col still needed. """Define a wavelength grid by taking the wavelength of each column at the center of mass of the spatial profile. :param wave_map: Array of the pixel wavelengths for a given order. :param aperture: Array of the spatial profile for a given order. :param out_col: :type wave_map: array[float] :type aperture: array[float] :type out_col: bool :returns: :rtype: """ # Use only valid columns. mask = (aperture > 0).any(axis=0) & (wave_map > 0).any(axis=0) # Get central wavelength using PSF as weights. num = (aperture * wave_map).sum(axis=0) denom = aperture.sum(axis=0) center_wv = num[mask]/denom[mask] # Make sure the wavelength values are in ascending order. sort =
np.argsort(center_wv)
numpy.argsort
import numpy as np import quicklens as ql import scipy import config r2d = 180./np.pi d2r = np.pi/180. #pass array of form [img_id,:,:,channel], return same array normalized channel wise, and also return variances def normalize_channelwise(images): # #remove mean per image # for img_id in range(images.shape[0]): # for channel_id in range(images.shape[-1]): # avg = (images[img_id,:,:,channel_id]).sum() / images[img_id,:,:,channel_id].size # images[img_id,:,:,channel_id] = images[img_id,:,:,channel_id]-avg #calculate variance over all images per channel variances = np.zeros(images.shape[-1]) for channel_id in range(images.shape[-1]): if len(images.shape) == 4: variances[channel_id] = (images[:,:,:,channel_id]*images[:,:,:,channel_id]).sum() / images[:,:,:,channel_id].size images[:,:,:,channel_id] = (images[:,:,:,channel_id])/variances[channel_id]**(1./2.) if len(images.shape) == 3: variances[channel_id] = (images[:,:,channel_id]*images[:,:,channel_id]).sum() / images[:,:,channel_id].size images[:,:,channel_id] = (images[:,:,channel_id])/variances[channel_id]**(1./2.) return images,variances def ell_filter_maps(maps, nx, dx, lmax, lmin=0): nsims = maps.shape[0] ell_filter = np.ones(10000) #itlib.lib_qlm.ellmax=5133 for some reason ell_filter[lmax:] = 0 #3500 ell_filter[0:lmin] = 0 for map_id in range(nsims): fullmap_cfft = ql.maps.rmap(nx, dx,map=maps[map_id]).get_cfft() filteredmap_cfft = fullmap_cfft * ell_filter filteredmap_cfft.fft[0,0] = 0. filteredmap = filteredmap_cfft.get_rffts()[0].get_rmap().map maps[map_id] = filteredmap return maps def estimate_ps(maps, binnr=30, lmin=2, lmax=3000): nmaps = maps.shape[0] lbins = np.linspace(lmin, lmax, binnr) ell_binned = lbins[:-1] + np.diff(lbins) power_avg = np.zeros(ell_binned.shape[0]) for map_id in range(nmaps): rmap = maps[map_id,:,:] cfft = ql.maps.rmap(config.nx, config.dx,map=rmap).get_cfft() power = cfft.get_cl(lbins) power_avg += power.cl.real power_avg = power_avg/nmaps return ell_binned, power_avg #periodic padding for image array (img_id,x,y,channels) def periodic_padding(images,npad): if len(images.shape)==4: images = np.pad(images,pad_width=((0,0),(npad,npad),(npad,npad),(0,0)),mode='wrap') if len(images.shape)==3: images = np.pad(images,pad_width=((npad,npad),(npad,npad),(0,0)),mode='wrap') return images #pass true kappa and max like kappa #find the spectrum S and N. #wiener filter S/(S+N)*kappa_true def wiener_filter_kappa(data_input, deg, nx,dx): nsims = data_input.shape[0] #################### calc S and N power spectra needed for WF #calculate kappa correlation coeff lmax = 3500 #3500 lbins = np.linspace(100, lmax, 20) ell_binned = lbins[:-1] + np.diff(lbins) #kappa corr_coeff_qe_avg = np.zeros(ell_binned.shape[0]) corr_coeff_it_avg = np.zeros(ell_binned.shape[0]) auto_qe_avg =
np.zeros(ell_binned.shape[0])
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Aug 9 19:58:05 2020 @author: mlampert """ import os import copy import pickle import pandas import numpy as np import matplotlib from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt from scipy.optimize import curve_fit, root import flap import flap_nstx from flap_nstx.analysis import calculate_nstx_gpi_frame_by_frame_velocity, calculate_nstx_gpi_tde_velocity from flap_nstx import flap_nstx_thomson_data, get_nstx_thomson_gradient, get_fit_nstx_thomson_profiles from flap_nstx.publications import read_ahmed_fit_parameters, read_ahmed_edge_current, read_ahmed_matlab_file from flap_nstx.analysis import thick_wire_estimation_numerical thisdir = os.path.dirname(os.path.realpath(__file__)) fn = os.path.join(thisdir,'../flap_nstx.cfg') flap.config.read(file_name=fn) flap_nstx.register() styled=True if styled: plt.rc('font', family='serif', serif='Helvetica') labelsize=12. linewidth=0.5 major_ticksize=6. plt.rc('text', usetex=False) plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams['lines.linewidth'] = linewidth plt.rcParams['axes.linewidth'] = linewidth plt.rcParams['axes.labelsize'] = labelsize plt.rcParams['axes.titlesize'] = labelsize plt.rcParams['xtick.labelsize'] = labelsize plt.rcParams['xtick.major.size'] = major_ticksize plt.rcParams['xtick.major.width'] = linewidth plt.rcParams['xtick.minor.width'] = linewidth/2 plt.rcParams['xtick.minor.size'] = major_ticksize/2 plt.rcParams['ytick.labelsize'] = labelsize plt.rcParams['ytick.major.width'] = linewidth plt.rcParams['ytick.major.size'] = major_ticksize plt.rcParams['ytick.minor.width'] = linewidth/2 plt.rcParams['ytick.minor.size'] = major_ticksize/2 plt.rcParams['legend.fontsize'] = labelsize else: import matplotlib.style as pltstyle pltstyle.use('default') def calculate_phase_diagram(averaging='before', parameter='grad_glob', normalized_structure=True, normalized_velocity=True, subtraction_order=4, test=False, recalc=True, elm_window=500e-6, elm_duration=100e-6, correlation_threshold=0.6, plot=False, auto_x_range=True, auto_y_range=True, plot_error=True, pdf=True, dependence_error_threshold=0.5, plot_only_good=False, plot_linear_fit=False, pressure_grad_range=None, #Plot range for the pressure gradient density_grad_range=None, #Plot range for the density gradient temperature_grad_range=None, #Plot range for the temperature gradient (no outliers, no range) ): coeff_r=np.asarray([3.7183594,-0.77821046,1402.8097])/1000. #The coordinates are in meters, the coefficients are in mm coeff_r=np.asarray([3.7183594,-0.77821046,1402.8097])/1000. #The coordinates are in meters, the coefficients are in mm coeff_z=np.asarray([0.18090118,3.0657776,70.544312])/1000. #The coordinates are in meters, the coefficients are in mm coeff_r_new=3./800. coeff_z_new=3./800. flap.delete_data_object('*') wd=flap.config.get_all_section('Module NSTX_GPI')['Working directory'] result_filename=wd+'/processed_data/'+'elm_profile_dependence' result_filename+='_'+averaging+'_avg' if normalized_structure: result_filename+='_ns' if normalized_velocity: result_filename+='_nv' result_filename+='_so'+str(subtraction_order) scaling_db_file=result_filename+'.pickle' db=read_ahmed_fit_parameters() X=[] Y=[] if not os.path.exists(scaling_db_file) or recalc: #Load and process the ELM database database_file='/Users/mlampert/work/NSTX_workspace/db/ELM_findings_mlampert_velocity_good.csv' db=pandas.read_csv(database_file, index_col=0) elm_index=list(db.index) for elm_ind in elm_index: elm_time=db.loc[elm_ind]['ELM time']/1000. shot=int(db.loc[elm_ind]['Shot']) if normalized_velocity: if normalized_structure: str_add='_ns' else: str_add='' filename=flap_nstx.analysis.filename(exp_id=shot, working_directory=wd+'/processed_data', time_range=[elm_time-2e-3,elm_time+2e-3], comment='ccf_velocity_pfit_o'+str(subtraction_order)+'_fst_0.0'+str_add+'_nv', extension='pickle') else: filename=wd+'/processed_data/'+db.loc[elm_ind]['Filename']+'.pickle' #grad.slice_data(slicing=time_slicing) status=db.loc[elm_ind]['OK/NOT OK'] if status != 'NO': velocity_results=pickle.load(open(filename, 'rb')) det=coeff_r[0]*coeff_z[1]-coeff_z[0]*coeff_r[1] for key in ['Velocity ccf','Velocity str max','Velocity str avg','Size max','Size avg']: orig=copy.deepcopy(velocity_results[key]) velocity_results[key][:,0]=coeff_r_new/det*(coeff_z[1]*orig[:,0]-coeff_r[1]*orig[:,1]) velocity_results[key][:,1]=coeff_z_new/det*(-coeff_z[0]*orig[:,0]+coeff_r[0]*orig[:,1]) velocity_results['Elongation max'][:]=(velocity_results['Size max'][:,0]-velocity_results['Size max'][:,1])/(velocity_results['Size max'][:,0]+velocity_results['Size max'][:,1]) velocity_results['Elongation avg'][:]=(velocity_results['Size avg'][:,0]-velocity_results['Size avg'][:,1])/(velocity_results['Size avg'][:,0]+velocity_results['Size avg'][:,1]) velocity_results['Velocity ccf'][np.where(velocity_results['Correlation max'] < correlation_threshold),:]=[np.nan,np.nan] time=velocity_results['Time'] elm_time_interval_ind=np.where(np.logical_and(time >= elm_time-elm_duration, time <= elm_time+elm_duration)) elm_time=(time[elm_time_interval_ind])[np.argmin(velocity_results['Frame similarity'][elm_time_interval_ind])] elm_time_ind=int(np.argmin(np.abs(time-elm_time))) try: if velocity_results['Position max'][elm_time_ind,0] != 0.: b_pol=flap.get_data('NSTX_MDSPlus', name='EFIT02::BZZ0', exp_id=shot, object_name='BZZ0').slice_data(slicing={'Time':elm_time, 'Device R':velocity_results['Position max'][elm_time_ind,0]}).data except: pass try: if velocity_results['Position max'][elm_time_ind,0] != 0.: b_tor=flap.get_data('NSTX_MDSPlus', name='EFIT02::BTZ0', exp_id=shot, object_name='BTZ0').slice_data(slicing={'Time':elm_time, 'Device R':velocity_results['Position max'][elm_time_ind,0]}).data except: pass try: if velocity_results['Position max'][elm_time_ind,0] != 0.: b_rad=flap.get_data('NSTX_MDSPlus', name='EFIT02::BRZ0', exp_id=shot, object_name='BRZ0').slice_data(slicing={'Time':elm_time, 'Device R':velocity_results['Position max'][elm_time_ind,0]}).data except: pass try: shot_inds=np.where(db['shot'] == shot) ind_db=tuple(shot_inds[0][np.where(np.abs(db['time2'][shot_inds]/1000.-elm_time) == np.min(np.abs(db['time2'][shot_inds]/1000.-elm_time)))]) n_e=db['Density']['value_at_max_grad'][ind_db]*1e20 #Conversion to 1/m3 T_e=db['Temperature']['value_at_max_grad'][ind_db]*1e3*1.16e4 #Conversion to K k_x=2*np.pi/velocity_results['Size max'][elm_time_ind,0] k_y=2*np.pi/velocity_results['Size max'][elm_time_ind,1] R=velocity_results['Position max'][elm_time_ind,0] L_N=velocity_results['Size max'][elm_time_ind,0] m_e=9.1093835e-31 B=np.sqrt(b_pol**2+b_tor**2+b_rad**2) q_e=1.6e-19 epsilon_0=8.854e-12 omega_pe=np.sqrt(n_e*q_e**2/m_e/epsilon_0) v_e=velocity_results['Velocity ccf'][elm_time_ind,0] gamma=5/3. Z=1. k=1.38e-23 #Boltzmann constant m_i=2.014*1.66e-27 # Deuterium mass c_s=np.sqrt(gamma*Z*k*(T_e)/m_i) c=3e8 delta_e=c/omega_pe omega_A=B/np.sqrt(4*np.pi*1e-7*n_e*m_e) omega_A_CGS=B/np.sqrt(4*np.pi*n_e*m_e) omega_eta=v_e*(np.sqrt(k_x**2 + k_y**2)*delta_e)**2 gamma_MHD=c_s**2/(R*L_N) X.append(omega_eta/omega_A_CGS) Y.append(gamma_MHD**2/omega_A**2) except: pass plt.figure() plt.scatter(np.abs(X),np.abs(Y)) plt.xscale('log') plt.yscale('log') plt.xlim(min(X),max(X)) plt.ylim(min(Y),max(Y)) plt.title('Curvature vs. resistivity') plt.xlabel('omega_eta / omega_A') plt.ylabel('gamma_MHD^2 / omega_A^2') def calculate_radial_acceleration_diagram(elm_window=500e-6, elm_duration=100e-6, correlation_threshold=0.6, elm_time_base='frame similarity', #'radial acceleration', 'radial velocity', 'frame similarity' acceleration_base='numdev', #numdev or linefit calculate_thick_wire=True, delta_b_threshold=1, plot=False, plot_velocity=False, auto_x_range=True, auto_y_range=True, plot_error=True, plot_clear_peak=False, calculate_acceleration=False, calculate_dependence=False, #Calculate and plot dependence between the filament parameters and plasma parameters calculate_ion_drift_velocity=False, calculate_greenwald_fraction=False, calculate_collisionality=False, recalc=True, test=False, ): def linear_fit_function(x,a,b): return a*x+b def mtanh_function(x,a,b,c,h,x0): return (h+b)/2 + (h-b)/2*((1 - a*2*(x - x0)/c)*np.exp(-2*(x - x0)/c) - np.exp(2*(x-x0)/c))/(np.exp(2*(x - x0)/c) + np.exp(-2*(x - x0)/c)) def mtanh_dx_function(x,a,b,c,h,x0): return ((h-b)*((4*a*(x-x0)+(-a-4)*c)*np.exp((4*(x-x0))/c)-a*c))/(c**2*(np.exp((4*(x-x0))/c)+1)**2) def mtanh_dxdx_function(x,a,b,c,h,x0): return -(8*(h-b)*np.exp((4*(x-x0))/c)*((2*a*x-2*a*x0+(-a-2)*c)*np.exp((4*(x-x0))/c)-2*a*x+2*a*x0+(2-a)*c))/(c**3*(np.exp((4*(x-x0))/c)+1)**3) if acceleration_base not in ['numdev','linefit']: raise ValueError('acceleration_base should be either "numdev" or "linefit"') coeff_r=np.asarray([3.7183594,-0.77821046,1402.8097])/1000. #The coordinates are in meters, the coefficients are in mm coeff_r=np.asarray([3.7183594,-0.77821046,1402.8097])/1000. #The coordinates are in meters, the coefficients are in mm coeff_z=np.asarray([0.18090118,3.0657776,70.544312])/1000. #The coordinates are in meters, the coefficients are in mm coeff_r_new=3./800. coeff_z_new=3./800. sampling_time=2.5e-6 gamma=5/3. Z=1. k_B=1.38e-23 #Boltzmann constant mu0=4*np.pi*1e-7 q_e=1.602e-19 m_e=9.1e-31 # Deuterium mass m_i=2.014*1.66e-27 epsilon_0=8.85e-12 flap.delete_data_object('*') wd=flap.config.get_all_section('Module NSTX_GPI')['Working directory'] result_filename='radial_acceleration_analysis' if elm_time_base == 'frame similarity': result_filename+='_fs' elif elm_time_base == 'radial velocity': result_filename+='_rv' elif elm_time_base == 'radial acceleration': result_filename+='_ra' if calculate_thick_wire: result_filename+='_thick' result_filename+='_dblim_'+str(delta_b_threshold) db_nt=read_ahmed_fit_parameters() db_cur=read_ahmed_edge_current() db_data=read_ahmed_matlab_file() db_data_shotlist=[] for i_shotind in range(len(db_data)): db_data_shotlist.append(db_data[i_shotind]['shot']) db_data_shotlist=np.asarray(db_data_shotlist) db_data_timelist=[] for i_shotind in range(len(db_data)): db_data_timelist.append(db_data[i_shotind]['time2']) db_data_timelist=np.asarray(db_data_timelist) dependence_db={'Current':[], 'Pressure grad':[], 'Pressure grad own':[], 'Density grad':[], 'Density grad own':[], 'Temperature grad':[], 'Temperature grad own':[], 'Triangularity':[], 'Velocity ccf':[], 'Size max':[]} dependence_db_err=copy.deepcopy(dependence_db) ion_drift_velocity_db={'Drift vel':[], 'ExB vel':[], 'Error':[], 'Poloidal vel':[], 'Crossing psi':[], } greenwald_limit_db={'nG':[], 'ne maxgrad':[], 'Greenwald fraction':[], 'Velocity ccf':[], 'Size max':[], 'Elongation max':[], 'Str number':[],} collisionality_db={'ei collision rate':[], 'Temperature':[], 'Collisionality':[], 'Velocity ccf':[], 'Size max':[], 'Elongation max':[], 'Str number':[],} a_curvature=[] a_curvature_error=[] a_thin_wire=[] a_thin_wire_error=[] a_measurement=[] a_measurement_error=[] append_index=0 good_peak_indices=[] lower_pol_vel=0. plt.figure() if not os.path.exists(wd+'/processed_data/'+result_filename+'.pickle') or recalc: if not recalc and not wd+'/processed_data/'+result_filename+'.pickle': print('Pickle file not found. Results will be recalculated!') if plot_velocity: matplotlib.use('agg') pdf_velocities=PdfPages(wd+'/plots/velocity_results_for_ELMs.pdf') plt.figure() #Load and process the ELM database database_file='/Users/mlampert/work/NSTX_workspace/db/ELM_findings_mlampert_velocity_good.csv' db=pandas.read_csv(database_file, index_col=0) elm_index=list(db.index) for elm_ind in elm_index: elm_time=db.loc[elm_ind]['ELM time']/1000. shot=int(db.loc[elm_ind]['Shot']) filename=flap_nstx.analysis.filename(exp_id=shot, working_directory=wd+'/processed_data', time_range=[elm_time-2e-3,elm_time+2e-3], comment='ccf_velocity_pfit_o4_fst_0.0_ns_nv', extension='pickle') #grad.slice_data(slicing=time_slicing) status=db.loc[elm_ind]['OK/NOT OK'] radial_velocity_status=db.loc[elm_ind]['Radial velocity peak'] radial_peak_status=db.loc[elm_ind]['Clear peak'] if status != 'NO' and radial_velocity_status != 'No': velocity_results=pickle.load(open(filename, 'rb')) velocity_results['Separatrix dist avg']=np.zeros(velocity_results['Position avg'].shape[0]) velocity_results['Separatrix dist max']=np.zeros(velocity_results['Position max'].shape[0]) R_sep=flap.get_data('NSTX_MDSPlus', name='\EFIT01::\RBDRY', exp_id=shot, object_name='SEP R OBJ').slice_data(slicing={'Time':elm_time}).data z_sep=flap.get_data('NSTX_MDSPlus', name='\EFIT01::\ZBDRY', exp_id=shot, object_name='SEP Z OBJ').slice_data(slicing={'Time':elm_time}).data sep_GPI_ind=np.where(np.logical_and(R_sep > coeff_r[2], np.logical_and(z_sep > coeff_z[2], z_sep < coeff_z[2]+79*coeff_z[0]+64*coeff_z[1]))) try: sep_GPI_ind=np.asarray(sep_GPI_ind[0]) sep_GPI_ind=np.insert(sep_GPI_ind,0,sep_GPI_ind[0]-1) sep_GPI_ind=np.insert(sep_GPI_ind,len(sep_GPI_ind),sep_GPI_ind[-1]+1) z_sep_GPI=z_sep[(sep_GPI_ind)] R_sep_GPI=R_sep[sep_GPI_ind] GPI_z_vert=coeff_z[0]*np.arange(80)/80*64+coeff_z[1]*np.arange(80)+coeff_z[2] R_sep_GPI_interp=np.interp(GPI_z_vert,np.flip(z_sep_GPI),np.flip(R_sep_GPI)) z_sep_GPI_interp=GPI_z_vert for key in ['max','avg']: for ind_time in range(len(velocity_results['Position '+key][:,0])): velocity_results['Separatrix dist '+key][ind_time]=np.min(np.sqrt((velocity_results['Position '+key][ind_time,0]-R_sep_GPI_interp)**2 + (velocity_results['Position '+key][ind_time,1]-z_sep_GPI_interp)**2)) ind_z_min=np.argmin(np.abs(z_sep_GPI-velocity_results['Position '+key][ind_time,1])) if z_sep_GPI[ind_z_min] >= velocity_results['Position '+key][ind_time,1]: ind1=ind_z_min ind2=ind_z_min+1 else: ind1=ind_z_min-1 ind2=ind_z_min radial_distance=velocity_results['Position '+key][ind_time,0]-((velocity_results['Position '+key][ind_time,1]-z_sep_GPI[ind2])/(z_sep_GPI[ind1]-z_sep_GPI[ind2])*(R_sep_GPI[ind1]-R_sep_GPI[ind2])+R_sep_GPI[ind2]) if radial_distance < 0: velocity_results['Separatrix dist '+key][ind_time]*=-1 except: pass det=coeff_r[0]*coeff_z[1]-coeff_z[0]*coeff_r[1] for key in ['Velocity ccf','Velocity str max','Velocity str avg','Size max','Size avg']: orig=copy.deepcopy(velocity_results[key]) velocity_results[key][:,0]=coeff_r_new/det*(coeff_z[1]*orig[:,0]-coeff_r[1]*orig[:,1]) velocity_results[key][:,1]=coeff_z_new/det*(-coeff_z[0]*orig[:,0]+coeff_r[0]*orig[:,1]) velocity_results['Elongation max'][:]=(velocity_results['Size max'][:,0]-velocity_results['Size max'][:,1])/(velocity_results['Size max'][:,0]+velocity_results['Size max'][:,1]) velocity_results['Elongation avg'][:]=(velocity_results['Size avg'][:,0]-velocity_results['Size avg'][:,1])/(velocity_results['Size avg'][:,0]+velocity_results['Size avg'][:,1]) velocity_results['Velocity ccf'][np.where(velocity_results['Correlation max'] < correlation_threshold),:]=[np.nan,np.nan] #THIS NEEDS REVISION AS THE DATA IS TOO NOISY FOR DIFFERENTIAL CALCULATION velocity_results['Acceleration ccf']=copy.deepcopy(velocity_results['Velocity ccf']) velocity_results['Acceleration ccf'][1:,0]=(velocity_results['Velocity ccf'][1:,0]-velocity_results['Velocity ccf'][0:-1,0])/sampling_time velocity_results['Acceleration ccf'][1:,1]=(velocity_results['Velocity ccf'][1:,1]-velocity_results['Velocity ccf'][0:-1,1])/sampling_time time=velocity_results['Time'] elm_time_interval_ind=np.where(np.logical_and(time >= elm_time-elm_duration, time <= elm_time+elm_duration)) elm_time=(time[elm_time_interval_ind])[np.argmin(velocity_results['Frame similarity'][elm_time_interval_ind])] elm_time_ind=int(np.argmin(np.abs(time-elm_time))) print(time[0], elm_time) if elm_time_base == 'radial velocity': ind_notnan=np.logical_not(np.isnan(velocity_results['Velocity ccf'][elm_time_ind-40:elm_time_ind+40,0])) elm_time=(time[elm_time_ind-40:elm_time_ind+40][ind_notnan])[np.argmax(velocity_results['Velocity ccf'][elm_time_ind-40:elm_time_ind+40,0][ind_notnan])] elm_time_ind=int(np.argmin(np.abs(time-elm_time))) elif elm_time_base == 'radial acceleration': ind_notnan=np.logical_not(np.isnan(velocity_results['Acceleration ccf'][elm_time_ind-40:elm_time_ind+40,0])) elm_time=(time[elm_time_ind-40:elm_time_ind+40][ind_notnan])[np.argmax(velocity_results['Acceleration ccf'][elm_time_ind-40:elm_time_ind+40,0][ind_notnan])] elm_time_ind=int(np.argmin(np.abs(time-elm_time))) else: pass shot_inds=np.where(db_nt['shot'] == shot) ind_db=tuple(shot_inds[0][np.where(np.abs(db_nt['time2'][shot_inds]/1000.-elm_time) == np.min(np.abs(db_nt['time2'][shot_inds]/1000.-elm_time)))]) shot_inds_2=np.where(db_data_shotlist == shot) ind_db_2=(shot_inds_2[0][np.where(np.abs(db_data_timelist[shot_inds_2]/1000.-elm_time) == np.min(np.abs(db_data_timelist[shot_inds_2]/1000.-elm_time)))]) n_e=db_nt['Density']['value_at_max_grad'][ind_db]*1e20 #Conversion to 1/m3 ind_error_ne=np.where(np.logical_and(db_data[ind_db_2[0]]['psi_n'] < 1.1, db_data[ind_db_2[0]]['psi_n'] > 0.7)) n_e_error=np.mean(db_data[ind_db_2[0]]['n_e_err_psi'][ind_error_ne]) T_e=db_nt['Temperature']['value_at_max_grad'][ind_db]*1e3*1.16e4 #Conversion to K ind_error_te=np.where(np.logical_and(db_data[ind_db_2[0]]['psi_t'] < 1.1, db_data[ind_db_2[0]]['psi_t'] > 0.7)) T_e_error=np.mean(db_data[ind_db_2[0]]['t_e_err_psi'][ind_error_te]) j_edge=db_cur['Current'][ind_db]*1e6 j_edge_error=j_edge*0.10 #Suspected fitting error of the edge current. psi_n_e=db_data[ind_db_2[0]]['psi_n'] dev_n_e=db_data[ind_db_2[0]]['dev_n'] a_param=db_nt['Density']['a'][ind_db] b_param=db_nt['Density']['b'][ind_db] c_param=db_nt['Density']['c'][ind_db] h_param=db_nt['Density']['h'][ind_db] x0_param=db_nt['Density']['xo'][ind_db] max_n_e_grad_psi=root(mtanh_dxdx_function, x0_param, args=(a_param,b_param,c_param,h_param,x0_param), method='hybr') sep_inner_dist_max_grad=np.interp(max_n_e_grad_psi.x, np.asarray(psi_n_e)[:,0], np.asarray(dev_n_e)[:,0]) sep_inner_dist_max_grad=np.interp(x0_param, np.asarray(psi_n_e)[:,0], np.asarray(dev_n_e)[:,0]) # plt.plot(dev_n_e[:,0], db_data[ind_db_2[0]]['n_e_dev']) # plt.pause(1.0) if sep_inner_dist_max_grad > 0.1: sep_inner_dist_max_grad=np.nan n_i=n_e #Quasi neutrality n_i_error=n_e_error R=velocity_results['Position max'][elm_time_ind,0] R_error=3.75e-3 c_s2=gamma*Z*k_B*(T_e)/m_i delta_b=np.mean(velocity_results['Size max'][elm_time_ind-4:elm_time_ind+1,0]) delta_b_error=10e-3 """ HIJACKING INFO FOR DEPENDENCE CALCULATION """ if calculate_dependence: dependence_db['Velocity ccf'].append(velocity_results['Velocity ccf'][elm_time_ind,:]) dependence_db_err['Velocity ccf'].append(np.asarray([3.75e-3/2.5e-6,3.75e-3/2.5e-6])) dependence_db['Size max'].append(velocity_results['Size max'][elm_time_ind,:]) dependence_db_err['Size max'].append([delta_b_error,delta_b_error]) dependence_db['Current'].append(j_edge) dependence_db_err['Current'].append(j_edge*0.1) for key in ['Density','Temperature', 'Pressure']: a_param=db_nt[key]['a'][ind_db] b_param=db_nt[key]['b'][ind_db] c_param=db_nt[key]['c'][ind_db] h_param=db_nt[key]['h'][ind_db] x0_param=db_nt[key]['xo'][ind_db] if key== 'Density': profile_bl=[True,False,False] elif key == 'Temperature': profile_bl=[False,True,False] elif key == 'Pressure': profile_bl=[False,False,True] thomson_profiles=get_fit_nstx_thomson_profiles(exp_id=shot, density=profile_bl[0], temperature=profile_bl[1], pressure=profile_bl[2], flux_coordinates=True, return_parameters=True) time_ind=np.argmin(np.abs(thomson_profiles['Time']-elm_time)) dependence_db[key+' grad'].append(max(mtanh_dx_function(np.arange(0,1.4,0.01),a_param,b_param,c_param,h_param,x0_param))) dependence_db_err[key+' grad'].append(thomson_profiles['Error']['Max gradient'][time_ind]) """ END OF HIJACKING """ try: if velocity_results['Position max'][elm_time_ind,0] != 0.: b_pol=flap.get_data('NSTX_MDSPlus', name='\EFIT02::\BZZ0', exp_id=shot, object_name='BZZ0').slice_data(slicing={'Time':elm_time, 'Device R':velocity_results['Position max'][elm_time_ind,0]}).data except: pass try: if velocity_results['Position max'][elm_time_ind,0] != 0.: b_tor=flap.get_data('NSTX_MDSPlus', name='\EFIT02::\BTZ0', exp_id=shot, object_name='BTZ0').slice_data(slicing={'Time':elm_time, 'Device R':velocity_results['Position max'][elm_time_ind,0]}).data except: pass try: if velocity_results['Position max'][elm_time_ind,0] != 0.: b_rad=flap.get_data('NSTX_MDSPlus', name='\EFIT02::\BRZ0', exp_id=shot, object_name='BRZ0').slice_data(slicing={'Time':elm_time, 'Device R':velocity_results['Position max'][elm_time_ind,0]}).data except: pass B=np.sqrt(b_pol**2+b_tor**2+b_rad**2) omega_i=q_e*B/m_i """ HIJACKING FOR ION DIAMAGNETIC DRIFT VELOCITY CALCULATION """ if calculate_ion_drift_velocity: d=flap_nstx_thomson_data(exp_id=shot, pressure=True, add_flux_coordinates=True, output_name='pressure') time_index=np.argmin(np.abs(d.coordinate('Time')[0][0,:]-elm_time)) dpsi_per_dr=((d.coordinate('Device R')[0][0:-1,0]-d.coordinate('Device R')[0][1:,0])/(d.coordinate('Flux r')[0][0:-1,time_index]-d.coordinate('Flux r')[0][1:,time_index]))[-10:] a_param=db_nt['Pressure']['a'][ind_db] b_param=db_nt['Pressure']['b'][ind_db] c_param=db_nt['Pressure']['c'][ind_db] h_param=db_nt['Pressure']['h'][ind_db] x0_param=db_nt['Pressure']['xo'][ind_db] psi_prof=d.coordinate('Flux r')[0][-10:,time_index] grad_p=mtanh_dx_function(psi_prof,a_param,b_param,c_param,h_param,x0_param)*dpsi_per_dr a_param=db_nt['Density']['a'][ind_db] b_param=db_nt['Density']['b'][ind_db] c_param=db_nt['Density']['c'][ind_db] h_param=db_nt['Density']['h'][ind_db] x0_param=db_nt['Density']['xo'][ind_db] n_i_profile=mtanh_function(psi_prof,a_param,b_param,c_param,h_param,x0_param)*dpsi_per_dr*1e20 poloidal_velocity=velocity_results['Velocity ccf'][elm_time_ind,1] drift_velocity=-grad_p /(q_e * n_i_profile * B) if -poloidal_velocity/1e3 < max(drift_velocity) and -poloidal_velocity > 0: max_ind=np.argmax(drift_velocity) drift_velocity_trunk=drift_velocity[max_ind:] sort_ind=np.argsort(drift_velocity_trunk) psi_crossing=
np.interp(-poloidal_velocity/1e3, drift_velocity_trunk[sort_ind], psi_prof[max_ind:][sort_ind])
numpy.interp
import pdb import numpy as np import os import tensorflow as tf import math from .data_utils import minibatches, pad_sequences, get_chunks from .general_utils import Progbar from .base_model import BaseModel class NERModel(BaseModel): """Specialized class of Model for NER""" def __init__(self, config): super(NERModel, self).__init__(config) self.idx_to_tag = {idx: tag for tag, idx in self.config.vocab_tags.items()} self.tag_to_idx = {tag: idx for tag, idx in self.config.vocab_tags.items()} def add_placeholders(self): """Define placeholders = entries to computational graph""" # shape = (batch size, max length of sentence in batch) self.word_ids = tf.placeholder(tf.int32, shape=[None, None], name="word_ids") # shape = (batch size) self.sequence_lengths = tf.placeholder(tf.int32, shape=[None], name="sequence_lengths") # shape = (batch size, max length of sentence, max length of word) self.char_ids = tf.placeholder(tf.int32, shape=[None, None, None], name="char_ids") # shape = (batch_size, max_length of sentence) self.word_lengths = tf.placeholder(tf.int32, shape=[None, None], name="word_lengths") # shape = (batch size, max length of sentence in batch) self.labels = tf.placeholder(tf.int32, shape=[None, None], name="labels") # hyper parameters self.dropout = tf.placeholder(dtype=tf.float32, shape=[], name="dropout") self.lr = tf.placeholder(dtype=tf.float32, shape=[], name="lr") def get_feed_dict(self, words, labels=None, lr=None, dropout=None): """Given some data, pad it and build a feed dictionary Args: words: list of sentences. A sentence is a list of ids of a list of words. A word is a list of ids labels: list of ids lr: (float) learning rate dropout: (float) keep prob Returns: dict {placeholder: value} """ # perform padding of the given data if self.config.use_chars: char_ids, word_ids = zip(*words) word_ids, sequence_lengths = pad_sequences(word_ids, 0) char_ids, word_lengths = pad_sequences(char_ids, pad_tok=0, nlevels=2) else: word_ids, sequence_lengths = pad_sequences(words, 0) # build feed dictionary feed = { self.word_ids: word_ids, self.sequence_lengths: sequence_lengths } if self.config.use_chars: feed[self.char_ids] = char_ids feed[self.word_lengths] = word_lengths if labels is not None: labels, _ = pad_sequences(labels, 0) feed[self.labels] = labels if lr is not None: feed[self.lr] = lr if dropout is not None: feed[self.dropout] = dropout return feed, sequence_lengths def add_word_embeddings_op(self): """Defines self.word_embeddings If self.config.embeddings is not None and is a np array initialized with pre-trained word vectors, the word embeddings is just a look-up and we don't train the vectors. Otherwise, a random matrix with the correct shape is initialized. """ with tf.variable_scope("words"): if self.config.embeddings is None: self.logger.info("WARNING: randomly initializing word vectors") _word_embeddings = tf.get_variable( name="_word_embeddings", dtype=tf.float32, shape=[self.config.nwords, self.config.dim_word]) else: _word_embeddings = tf.Variable( self.config.embeddings, name="_word_embeddings", dtype=tf.float32, trainable=self.config.train_embeddings) word_embeddings = tf.nn.embedding_lookup(_word_embeddings, self.word_ids, name="word_embeddings") with tf.variable_scope("chars"): if self.config.use_chars: # get char embeddings matrix _char_embeddings = tf.get_variable( name="_char_embeddings", dtype=tf.float32, shape=[self.config.nchars, self.config.dim_char]) char_embeddings = tf.nn.embedding_lookup(_char_embeddings, self.char_ids, name="char_embeddings") # put the time dimension on axis=1 s = tf.shape(char_embeddings) char_embeddings = tf.reshape(char_embeddings, shape=[s[0]*s[1], s[-2], self.config.dim_char]) word_lengths = tf.reshape(self.word_lengths, shape=[s[0]*s[1]]) # bi lstm on chars cell_fw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_char, state_is_tuple=True) cell_bw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_char, state_is_tuple=True) _output = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, char_embeddings, sequence_length=word_lengths, dtype=tf.float32) # read and concat output _, ((_, output_fw), (_, output_bw)) = _output output = tf.concat([output_fw, output_bw], axis=-1) # shape = (batch size, max sentence length, char hidden size) output = tf.reshape(output, shape=[s[0], s[1], 2*self.config.hidden_size_char]) word_embeddings = tf.concat([word_embeddings, output], axis=-1) self.word_embeddings = tf.nn.dropout(word_embeddings, self.dropout) def add_logits_op(self): """Defines self.logits For each word in each sentence of the batch, it corresponds to a vector of scores, of dimension equal to the number of tags. """ with tf.variable_scope("bi-lstm"): cell_fw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm) cell_bw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm) (output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, self.word_embeddings, sequence_length=self.sequence_lengths, dtype=tf.float32) output = tf.concat([output_fw, output_bw], axis=-1) output = tf.nn.dropout(output, self.dropout) with tf.variable_scope("proj"): W = tf.get_variable("W", dtype=tf.float32, shape=[2*self.config.hidden_size_lstm, self.config.ntags]) b = tf.get_variable("b", shape=[self.config.ntags], dtype=tf.float32, initializer=tf.zeros_initializer()) nsteps = tf.shape(output)[1] output = tf.reshape(output, [-1, 2*self.config.hidden_size_lstm]) pred = tf.matmul(output, W) + b self.logits = tf.reshape(pred, [-1, nsteps, self.config.ntags]) def add_pred_op(self): """Defines self.labels_pred This op is defined only in the case where we don't use a CRF since in that case we can make the prediction "in the graph" (thanks to tf functions in other words). With theCRF, as the inference is coded in python and not in pure tensroflow, we have to make the prediciton outside the graph. """ if not self.config.use_crf: self.labels_pred = tf.cast(tf.argmax(self.logits, axis=-1), tf.int32) def add_loss_op(self): """Defines the loss""" if self.config.use_crf: log_likelihood, trans_params = tf.contrib.crf.crf_log_likelihood( self.logits, self.labels, self.sequence_lengths) self.trans_params = trans_params # need to evaluate it for decoding self.loss = tf.reduce_mean(-log_likelihood) else: losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=self.logits, labels=self.labels) mask = tf.sequence_mask(self.sequence_lengths) losses = tf.boolean_mask(losses, mask) self.loss = tf.reduce_mean(losses) # for tensorboard tf.summary.scalar("loss", self.loss) def build(self): # NER specific functions self.add_placeholders() self.add_word_embeddings_op() self.add_logits_op() self.add_pred_op() self.add_loss_op() # Generic functions that add training op and initialize session self.add_train_op(self.config.lr_method, self.lr, self.loss, self.config.clip) self.initialize_session() # now self.sess is defined and vars are init def predict_batch(self, words): """ Args: words: list of sentences Returns: labels_pred: list of labels for each sentence sequence_length """ fd, sequence_lengths = self.get_feed_dict(words, dropout=1.0) if self.config.use_crf: # get tag scores and transition params of CRF viterbi_sequences = [] scores = [] logits, trans_params = self.sess.run( [self.logits, self.trans_params], feed_dict=fd) #logits = sigmoid_v(logits) #trans_params = sigmoid_v(trans_params) # iterate over the sentences because no batching in vitervi_decode for logit, sequence_length in zip(logits, sequence_lengths): logit = logit[:sequence_length] # keep only the valid steps #print("Logit ", logit) viterbi_seq, viterbi_score = tf.contrib.crf.viterbi_decode( logit, trans_params) viterbi_sequences += [viterbi_seq] #print('trans_params ', trans_params) #print('Sequence ', viterbi_seq) #print(sequence_length) #print(len(viterbi_seq)) #print('Score ', viterbi_score)#Use to decide least-uncertainty if self.config.active_strategy=="nus": viterbi_score = float(viterbi_score/sequence_length) else: viterbi_score = active_strategy(logit, trans_params, self.config.active_strategy, self.tag_to_idx) scores.append(viterbi_score) return viterbi_sequences, sequence_lengths, scores else: labels_pred = self.sess.run(self.labels_pred, feed_dict=fd) return labels_pred, sequence_lengths, None def run_epoch(self, train, dev, epoch): """Performs one complete pass over the train set and evaluate on dev Args: train: dataset that yields tuple of sentences, tags dev: dataset epoch: (int) index of the current epoch Returns: f1: (python float), score to select model on, higher is better """ # progbar stuff for logging batch_size = self.config.batch_size nbatches = (len(train) + batch_size - 1) // batch_size #prog = Progbar(target=nbatches) # iterate over dataset for i, (words, labels) in enumerate(minibatches(train, batch_size)): #print(words, labels) fd, _ = self.get_feed_dict(words, labels, self.config.lr, self.config.dropout) _, train_loss, summary = self.sess.run( [self.train_op, self.loss, self.merged], feed_dict=fd) #prog.update(i + 1, [("train loss", train_loss)]) # tensorboard if i % 10 == 0: self.file_writer.add_summary(summary, epoch*nbatches + i) metrics = self.run_evaluate(dev) msg = "Accuracy " + str(metrics["acc"]) + " - F1 " + str(metrics["f1"]) #msg = " - ".join(["{} {:04.2f}".format(k, v) # for k, v in metrics.items()]) print(msg) self.logger.info(msg) return metrics["f1"] def run_evaluate(self, test, mode="train"): """Evaluates performance on test set Args: test: dataset that yields tuple of (sentences, tags) Returns: metrics: (dict) metrics["acc"] = 98.4, ... """ accs = [] l = [] #correct_preds_ne, total_correct_ne, total_preds_ne = 0.,0.,0. s= "" correct_preds, total_correct, total_preds = 0., 0., 0. for words, labels in minibatches(test, self.config.batch_size): #print(words,labels) labels_pred, sequence_lengths, prob = self.predict_batch(words) #pdb.set_trace() #l.append((list(words),prob)) #list of words, list of scores corresponding #l += prob #print('labels_pred ', labels_pred) if 'test' in mode: for lab, pred in zip(labels, labels_pred): #print('lab',lab) #print('pred',pred) for i,j in zip(lab,pred): s+=self.idx_to_tag[i] + '\t' + self.idx_to_tag[j] + '\n' s+='\n' for lab, lab_pred, length in zip(labels, labels_pred, sequence_lengths): lab = lab[:length] lab_pred = lab_pred[:length] accs += [a==b for (a, b) in zip(lab, lab_pred)] lab_chunks = set(get_chunks(lab, self.config.vocab_tags)) lab_pred_chunks = set(get_chunks(lab_pred, self.config.vocab_tags)) correct_preds += len(lab_chunks & lab_pred_chunks) total_preds += len(lab_pred_chunks) total_correct += len(lab_chunks) #print("Total Preds ", total_preds) #print("Total correct ", total_correct) #print("Correct preds ", correct_preds) p = correct_preds / total_preds if correct_preds > 0 else 0 r = correct_preds / total_correct if correct_preds > 0 else 0 f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0 acc = np.mean(accs) if "test" in mode: f = open(self.config.file_out + "_" + mode,'w') f.write(s) f.close() #Sort l to get most/least uncertain #l2 = sorted(l) #mu = [] #lu = [] #for i in range(0,self.config.num_query): # mu.append(l.index(l2[i])) # lu.append(l.index(l2[len(l2)-i-1])) #l = sorted(l, key=lambda pr: pr[2]) #pdb.set_trace() #print("l",l) #return acc, f1, list of most uncertainty and list of least uncertainty examples #return {"acc": 100*acc, "f1": 100*f1, "out":l} return {"acc": 100*acc, "f1": 100*f1} #return {"acc": 100*acc, "f1": 100*f1, "mu": l[0:self.config.num_query], "lu": l[len(l)-self.config.num_query: len(l)]} def predict(self, words_raw): """Returns list of tags Args: words_raw: list of words (string), just one sentence (no batch) Returns: preds: list of tags (string), one for each word in the sentence """ #words = [self.config.processing_word(w) for w in words_raw] #this is used for word raw #print(words) words = words_raw words_o = list(words) #print(words_o) if type(words[0]) == tuple: words = zip(*words) #print(words) pred_ids, _, scores = self.predict_batch([words]) #print("Prediction: ") #print(pred_ids, _, scores) preds = [self.idx_to_tag[idx] for idx in list(pred_ids[0])] return (words_o, scores) #return preds def active_strategy(score, transition_params, active_strategy, tag_to_idx): """ Args: output of CRF score: A [seq_len, num_tags] matrix of unary potentials. transition_params: A [num_tags, num_tags] matrix of binary potentials. """ if active_strategy=="cluster": return score trellis = np.zeros_like(score) backpointers = np.zeros_like(score, dtype=np.int32) trellis[0] = score[0] for t in range(1, score.shape[0]): v = np.expand_dims(trellis[t - 1], 1) + transition_params trellis[t] = score[t] + np.max(v, 0) backpointers[t] = np.argmax(v, 0) viterbi = [np.argmax(trellis[-1])] for bp in reversed(backpointers[1:]): viterbi.append(bp[viterbi[-1]]) viterbi.reverse() score_final = np.max(trellis[-1]) #Score of sequences (higher = better) if (active_strategy=='mg'): top_scores = trellis[-1][np.argsort(trellis[-1])[-2:]] margin = abs(top_scores[0]-top_scores[1]) score_final = margin elif (active_strategy=='ne'): #print("Calling ne strategy") #print("score", score) #tag_to_idx = {tag: indx for tag, indx in self.config.vocab_tags.items()} ne = ['NE.AMBIG','NE.DE', 'NE.LANG3', 'NE.MIXED', 'NE.OTHER','NE.TR'] ne_idx = [] for i in tag_to_idx: if i in ne: ne_idx.append(tag_to_idx[i]) #print('ne_idx ', ne_idx) #print('score ', score) #Get the highest score of NE max_ne = [] #for i in ne_idx: # max_ne.append(np.max(score[:,i])) score_final = 0 for i in viterbi: if i in ne_idx: score_final+=1 #give higher score to sequences that have more named entities #score_final = np.max(max_ne) elif (active_strategy=='nemg'): #ne margin ne_idx = tag_to_idx['NE.DE'] ne_de = tag_to_idx['DE'] margin = np.add(score[:,ne_idx],score[:,ne_de]) margin2 = abs(np.multiply(score[:,ne_idx],score[:,ne_de])) margin = np.divide(margin, margin2) sum_margin = np.sum(margin) score_final = sum_margin if (active_strategy=='entropy'): #Find the highest prob for each token ntoken = len(score) ntags = len(score[0]) l = [] #max prob of each token for i in range(0,ntoken): l.append(np.max(score[i])) ne_idx = tag_to_idx #Compute entropy score_final = 0.0 for i in range(0,ntoken): score_final+=l[i]*
np.log(l[i])
numpy.log
# pre/test_shift_scale.py """Tests for rom_operator_inference.pre._shift_scale.py.""" import os import h5py import pytest import itertools import numpy as np import rom_operator_inference as opinf # Data preprocessing: shifting and MinMax scaling / unscaling ================= def test_shift(set_up_basis_data): """Test pre._shift_scale.shift().""" X = set_up_basis_data # Try with bad data shape. with pytest.raises(ValueError) as ex: opinf.pre.shift(np.random.random((3,3,3))) assert ex.value.args[0] == "data X must be two-dimensional" # Try with bad shift vector. with pytest.raises(ValueError) as ex: opinf.pre.shift(X, X) assert ex.value.args[0] == "shift_by must be one-dimensional" # Correct usage. Xshifted, xbar = opinf.pre.shift(X) assert xbar.shape == (X.shape[0],) assert Xshifted.shape == X.shape assert np.allclose(np.mean(Xshifted, axis=1), np.zeros(X.shape[0])) for j in range(X.shape[1]): assert np.allclose(Xshifted[:,j], X[:,j] - xbar) Y = np.random.random(X.shape) Yshifted = opinf.pre.shift(Y, xbar) for j in range(Y.shape[1]): assert np.allclose(Yshifted[:,j], Y[:,j] - xbar) # Verify inverse shifting. assert np.allclose(X, opinf.pre.shift(Xshifted, -xbar)) def test_scale(set_up_basis_data): """Test pre._shift_scale.scale().""" X = set_up_basis_data # Try with bad scales. with pytest.raises(ValueError) as ex: opinf.pre.scale(X, (1,2,3), (4,5)) assert ex.value.args[0] == "scale_to must have exactly 2 elements" with pytest.raises(ValueError) as ex: opinf.pre.scale(X, (1,2), (3,4,5)) assert ex.value.args[0] == "scale_from must have exactly 2 elements" # Scale X to [-1,1] and then scale Y with the same transformation. Xscaled, scaled_to, scaled_from = opinf.pre.scale(X, (-1,1)) assert Xscaled.shape == X.shape assert scaled_to == (-1,1) assert isinstance(scaled_from, tuple) assert len(scaled_from) == 2 assert round(scaled_from[0],8) == round(X.min(),8) assert round(scaled_from[1],8) == round(X.max(),8) assert round(Xscaled.min(),8) == -1 assert round(Xscaled.max(),8) == 1 # Verify inverse scaling. assert np.allclose(opinf.pre.scale(Xscaled, scaled_from, scaled_to), X) # Transformer classes for centering and scaling =============================== class TestSnapshotTransformer: """Test pre.SnapshotTransformer.""" def test_init(self): """Test pre.SnapshotTransformer.__init__().""" st = opinf.pre.SnapshotTransformer() for attr in ["scaling", "center", "verbose"]: assert hasattr(st, attr) # Properties -------------------------------------------------------------- def test_properties(self): """Test pre.SnapshotTransformer properties (attribute protection).""" st = opinf.pre.SnapshotTransformer() # Test center. with pytest.raises(TypeError) as ex: st.center = "nope" assert ex.value.args[0] == "'center' must be True or False" st.center = True st.center = False # Test scale. with pytest.raises(ValueError) as ex: st.scaling = "minimaxii" assert ex.value.args[0].startswith("invalid scaling 'minimaxii'") with pytest.raises(TypeError) as ex: st.scaling = [2, 1] assert ex.value.args[0] == "'scaling' must be of type 'str'" for s in st._VALID_SCALINGS: st.scaling = s st.scaling = None def test_eq(self, n=200): """Test pre.SnapshotTransformer.__eq__().""" µ = np.random.randint(0, 100, (n,)) a, b = 10, -3 # Null transformers. st1 = opinf.pre.SnapshotTransformer() st2 = opinf.pre.SnapshotTransformer() assert st1 == st2 assert st1 != 100 # Mismatched attributes. st1.center = True st2.center = False assert not (st1 == st2) assert st1 != st2 # Centering attributes. st1.mean_ = µ st2.center = True assert st1 != st2 st2.mean_ = µ assert st1 == st2 st2.mean_ = µ - 5 assert st1 != st2 # Scaling attributes. st1.scaling = "standard" st2.scaling = None assert st1 != st2 st2.scaling = "minmax" assert st1 != st2 st2.scaling = "standard" assert st1 == st2 st1.scale_, st1.shift_ = a, b assert st1 != st2 st2.scale_, st2.shift_ = a - 1, b + 1 assert st1 != st2 st2.scale_, st2.shift_ = a, b assert st1 == st2 # Printing ---------------------------------------------------------------- def test_str(self): """Test pre.SnapshotTransformer.__str__().""" st = opinf.pre.SnapshotTransformer() st.center = False st.scaling = None assert str(st) == "Snapshot transformer" st.center = True trn = "(call fit_transform() to train)" msc = "Snapshot transformer with mean-snapshot centering" assert str(st) == f"{msc} {trn}" for s in st._VALID_SCALINGS: st.scaling = s assert str(st) == f"{msc} and '{s}' scaling {trn}" st.center = False for s in st._VALID_SCALINGS: st.scaling = s assert str(st) == f"Snapshot transformer with '{s}' scaling {trn}" def test_statistics_report(self): """Test pre.SnapshotTransformer._statistics_report().""" X =
np.arange(10)
numpy.arange
import numpy as np from abc import ABC, abstractmethod from pathlib import Path import subprocess import numpy.ma as ma import scipy.constants as const from multiprocessing import Pool from scipy.interpolate import interp1d from dans_pymodules import Vector2D import matplotlib.pyplot as plt # from scipy import meshgrid from scipy.special import iv as bessel1 from scipy.optimize import root # import pickle # import scipy.constants as const # import numpy as np # import platform # import matplotlib.pyplot as plt # import gc import datetime import time import copy import os import sys import shutil from matplotlib.patches import Arc as Arc load_previous = False # Check if we can connect to a display, if not disable all plotting and windowed stuff (like gmsh) # TODO: This does not remotely cover all cases! if "DISPLAY" in os.environ.keys(): x11disp = True else: x11disp = False # --- Try importing BEMPP HAVE_BEMPP = False try: import bempp.api from bempp.api.shapes.shapes import __generate_grid_from_geo_string as generate_from_string HAVE_BEMPP = True except ImportError: print("Couldn't import BEMPP, no meshing or BEM field calculation will be possible.") bempp = None generate_from_string = None # --- Try importing mpi4py, if it fails, we fall back to single processor try: from mpi4py import MPI COMM = MPI.COMM_WORLD RANK = COMM.Get_rank() SIZE = COMM.Get_size() HOST = MPI.Get_processor_name() print("Process {} of {} on host {} started!".format(RANK + 1, SIZE, HOST)) sys.stdout.flush() except ImportError: MPI = None COMM = None RANK = 0 SIZE = 1 import socket HOST = socket.gethostname() print("Could not import mpi4py, falling back to single core (and python multiprocessing in some instances)!") # --- Try importing pythonocc-core HAVE_OCC = False try: from OCC.Extend.DataExchange import read_stl_file from OCC.Display.SimpleGui import init_display from OCC.Core.BRepPrimAPI import BRepPrimAPI_MakeBox, BRepPrimAPI_MakeTorus, BRepPrimAPI_MakeSweep from OCC.Core.BRepTools import breptools_Write from OCC.Core.BRepBndLib import brepbndlib_Add from OCC.Core.Bnd import Bnd_Box from OCC.Core.gp import gp_Pnt, gp_Pnt2d from OCC.Core.BRepClass3d import BRepClass3d_SolidClassifier from OCC.Core.TopAbs import TopAbs_ON, TopAbs_OUT, TopAbs_IN from OCC.Core.GeomAPI import GeomAPI_Interpolate, GeomAPI_PointsToBSpline from OCC.Core.Geom import Geom_BSplineCurve from OCC.Core.Geom2d import Geom2d_BSplineCurve from OCC.Core.TColgp import TColgp_HArray1OfPnt, TColgp_Array1OfPnt from OCC.Core.TColStd import TColStd_Array1OfInteger, TColStd_Array1OfReal from OCC.Core.GeomAbs import GeomAbs_C1, GeomAbs_C2, GeomAbs_G1 from OCC.Core.Geom2dAPI import Geom2dAPI_Interpolate, Geom2dAPI_PointsToBSpline from OCC.Core.TColgp import TColgp_HArray1OfPnt2d, TColgp_Array1OfPnt2d from OCCUtils.Common import * from py_electrodes import ElectrodeObject HAVE_OCC = True except ImportError: ElectrodeObject = None print("Something went wrong during OCC import. No CAD support possible!") USE_MULTIPROC = True # In case we are not using mpi or only using 1 processor, fall back on multiprocessing GMSH_EXE = "/home/daniel/src/gmsh-4.0.6-Linux64/bin/gmsh" # GMSH_EXE = "E:/gmsh4/gmsh.exe" HAVE_TEMP_FOLDER = False np.set_printoptions(threshold=10000) HAVE_GMSH = True # Quick test if gmsh path is correct if not Path(GMSH_EXE).is_file(): print("Gmsh path seems to be wrong! No meshing will be possible!") HAVE_GMSH = False # For now, everything involving the pymodules with be done on master proc (RANK 0) if RANK == 0: from dans_pymodules import * colors = MyColors() else: colors = None decimals = 12 __author__ = "<NAME>, <NAME>" __doc__ = """Calculate RFQ fields from loaded cell parameters""" # Initialize some global constants amu = const.value("atomic mass constant energy equivalent in MeV") echarge = const.value("elementary charge") clight = const.value("speed of light in vacuum") # Define the axis directions and vane rotations: X = 0 Y = 1 Z = 2 XYZ = range(3) AXES = {"X": 0, "Y": 1, "Z": 2} rot_map = {"yp": 0.0, "ym": 180.0, "xp": 270.0, "xm": 90.0} class Polygon2D(object): """ Simple class to handle polygon operations such as point in polygon or orientation of rotation (cw or ccw), area, etc. """ def add_point(self, p=None): """ Append a point to the polygon """ if p is not None: if isinstance(p, tuple) and len(p) == 2: self.poly.append(p) else: print("Error in add_point of Polygon: p is not a 2-tuple!") else: print("Error in add_point of Polygon: No p given!") return 0 def add_polygon(self, poly=None): """ Append a polygon object to the end of this polygon """ if poly is not None: if isinstance(poly, Polygon2D): self.poly.extend(poly.poly) # if isinstance(poly.poly, list) and len(poly.poly) > 0: # # if isinstance(poly.poly[0], tuple) and len(poly.poly[0]) == 2: # self.poly.extend(poly.poly) return 0 def area(self): """ Calculates the area of the polygon. only works if there are no crossings Taken from http://paulbourke.net, algorithm written by <NAME>, 1998 If area is positive -> polygon is given clockwise If area is negative -> polygon is given counter clockwise """ area = 0 poly = self.poly npts = len(poly) j = npts - 1 i = 0 for _ in poly: p1 = poly[i] p2 = poly[j] area += (p1[0] * p2[1]) area -= p1[1] * p2[0] j = i i += 1 area /= 2 return area def centroid(self): """ Calculate the centroid of the polygon Taken from http://paulbourke.net, algorithm written by <NAME>, 1998 """ poly = self.poly npts = len(poly) x = 0 y = 0 j = npts - 1 i = 0 for _ in poly: p1 = poly[i] p2 = poly[j] f = p1[0] * p2[1] - p2[0] * p1[1] x += (p1[0] + p2[0]) * f y += (p1[1] + p2[1]) * f j = i i += 1 f = self.area() * 6 return x / f, y / f def clockwise(self): """ Returns True if the polygon points are ordered clockwise If area is positive -> polygon is given clockwise If area is negative -> polygon is given counter clockwise """ if self.area() > 0: return True else: return False def closed(self): """ Checks whether the polygon is closed (i.e first point == last point) """ if self.poly[0] == self.poly[-1]: return True else: return False def nvertices(self): """ Returns the number of vertices in the polygon """ return len(self.poly) def point_in_poly(self, p=None): """ Check if a point p (tuple of x,y) is inside the polygon This is called the "ray casting method": If a ray cast from p crosses the polygon an even number of times, it's outside, otherwise inside From: http://www.ariel.com.au/a/python-point-int-poly.html Note: Points directly on the edge or identical with a vertex are not considered "inside" the polygon! """ if p is None: return None poly = self.poly x = p[0] y = p[1] n = len(poly) inside = False p1x, p1y = poly[0] for i in range(n + 1): p2x, p2y = poly[i % n] if y > min(p1y, p2y): if y <= max(p1y, p2y): if x <= max(p1x, p2x): if p1y != p2y: xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x if p1x == p2x or x <= xinters: inside = not inside p1x, p1y = p2x, p2y return inside def remove_last(self): """ Remove the last tuple in the ploygon """ self.poly.pop(-1) return 0 def reverse(self): """ Reverses the ordering of the polygon (from cw to ccw or vice versa) """ temp_poly = [] nv = self.nvertices() for i in range(self.nvertices() - 1, -1, -1): temp_poly.append(self.poly[i]) self.poly = temp_poly return temp_poly def rotate(self, index): """ rotates the polygon, so that the point with index 'index' before now has index 0 """ if index > self.nvertices() - 1: return 1 for i in range(index): self.poly.append(self.poly.pop(0)) return 0 def __init__(self, poly=None): """ construct a polygon object If poly is not specified, an empty polygon is created if poly is specified, it has to be a list of 2-tuples! """ self.poly = [] if poly is not None: if isinstance(poly, list) and len(poly) > 0: if isinstance(poly[0], tuple) and len(poly[0]) == 2: self.poly = poly def __getitem__(self, index): return self.poly[index] def __setitem__(self, index, value): if isinstance(value, tuple) and len(value) == 2: self.poly[index] = value class PyRFQCell(object): def __init__(self, cell_type, prev_cell=None, next_cell=None, debug=False, **kwargs): """ :param cell_type: STA: Start cell without length (necessary at beginning of RMS if there are no previous cells) RMS: Radial Matching Section. NCS: Normal Cell. A regular RFQ cell TCS: Transition Cell. DCS: Drift Cell. No modulation. TRC: Trapezoidal cell (experimental, for re-bunching only!). :param prev_cell: :param next_cell: :param debug: Keyword Arguments (mostly from Parmteq Output File): V: Intervane voltage in V Wsyn: Energy of the synchronous particle in MeV Sig0T: Transverse zero-current phase advance in degrees per period Sig0L: Longitudinal zero-current phase advance in degrees per period A10: Acceleration term [first theta-independent term in expansion] Phi: Synchronous phase in degrees a: Minimum radial aperture in m m: Modulation (dimensionless) B: Focusing parameter (dimensionless) B = q V lambda^2/(m c^2 r0^2) L: Cell length in cm A0: Quadrupole term [first z-independent term in expansion] RFdef: RF defocusing term Oct: Octupole term A1: Duodecapole term [second z-independent term in expansion] """ assert cell_type in ["start", "rms", "regular", "transition", "transition_auto", "drift", "trapezoidal"], \ "cell_type not recognized!" self._type = cell_type self._params = {"voltage": None, "Wsyn": None, "Sig0T": None, "Sig0L": None, "A10": None, "Phi": None, "a": None, "m": None, "B": None, "L": None, "A0": None, "RFdef": None, "Oct": None, "A1": None, "flip_z": False, "shift_cell_no": False, "fillet_radius": None } self._prev_cell = prev_cell self._next_cell = next_cell self._debug = debug for key, item in self._params.items(): if key in kwargs.keys(): self._params[key] = kwargs[key] if self.initialize() != 0: print("Cell failed self-check! Aborting.") exit(1) self._profile_itp = None # Interpolation of the cell profile def __str__(self): return "Type: '{}', Aperture: {:.6f}, Modulation: {:.4f}, " \ "Length: {:.6f}, flip: {}, shift: {}".format(self._type, self._params["a"], self._params["m"], self._params["L"], self._params["flip_z"], self._params["shift_cell_no"]) @property def length(self): return self._params["L"] @property def aperture(self): return self._params["a"] @property def avg_radius(self): return 0.5 * (self._params["a"] + self._params["m"] * self._params["a"]) @property def cell_type(self): return self._type @property def modulation(self): return self._params["m"] @property def prev_cell(self): return self._prev_cell @property def next_cell(self): return self._next_cell def calculate_transition_cell_length(self): le = self._params["L"] m = self._params["m"] a = self._params["a"] r0 = self.avg_radius k = np.pi / np.sqrt(3.0) / le def eta(kk): return bessel1(0.0, kk * r0) / (3.0 * bessel1(0.0, 3.0 * kk * r0)) def func(kk): return (bessel1(0.0, kk * m * a) + eta(kk) * bessel1(0.0, 3.0 * kk * m * a)) / \ (bessel1(0.0, kk * a) + eta(kk) * bessel1(0.0, 3.0 * kk * a)) \ + ((m * a / r0) ** 2.0 - 1.0) / ((a / r0) ** 2.0 - 1.0) k = root(func, k).x[0] tcs_length = np.pi / 2.0 / k print("Transition cell has length {} which is {} * cell length, ".format(tcs_length, tcs_length / le), end="") assert tcs_length <= le, "Numerical determination of transition cell length " \ "yielded value larger than cell length parameter!" if tcs_length > le: print("the remainder will be filled with a drift.") return tcs_length def initialize(self): # TODO: Refactor this maybe? seems overly complicated... # Here we check the different cell types for consistency and minimum necessary parameters if self._type in ["transition", "transition_auto"]: assert self.prev_cell is not None, "A transition cell needs a preceeeding cell." assert self.prev_cell.cell_type == "regular", "Currently a transition cell must follow a regular cell." # Aperture: assert self._params["a"] is not None, "No aperture given for {} cell".format(self._type) if self._params["a"] == 'auto': assert self._type in ["drift", "trapezoidal", "transition", "transition_auto"], \ "Unsupported cell type '{}' for auto-aperture".format(self._type) assert self.prev_cell is not None, "Need a preceeding cell for auto aperture!" if self.prev_cell.cell_type in ["transition", "transition_auto"]: self._params["a"] = self.prev_cell.avg_radius else: self._params["a"] = self.prev_cell.aperture self._params["a"] = np.round(self._params["a"], decimals) # Modulation: if self._type in ["start", "rms", "drift"]: self._params["m"] = 1.0 assert self._params["m"] is not None, "No modulation given for {} cell".format(self._type) if self._params["m"] == 'auto': assert self._type in ["transition", "transition_auto"], \ "Only transition cell can have 'auto' modulation at the moment!" self._params["m"] = self.prev_cell.modulation self._params["m"] = np.round(self._params["m"], decimals) # Length: if self._type == "start": self._params["L"] = 0.0 assert self._params["L"] is not None, "No length given for {} cell".format(self._type) if self._params["L"] == "auto": assert self._type == "transition_auto", "Only transition_auto cells allow auto-length!" self._params["L"] = self.prev_cell.length # use preceeding cell length L for calculation of L' self._params["L"] = self.calculate_transition_cell_length() self._params["L"] = np.round(self._params["L"], decimals) if self._type == "trapezoidal": assert self._params["fillet_radius"] is not None, "For 'TRC' cell a fillet radius must be given!" return 0 def set_prev_cell(self, prev_cell): assert isinstance(prev_cell, PyRFQCell), "You are trying to set a PyRFQCell with a non-cell object!" self._prev_cell = prev_cell def set_next_cell(self, next_cell): assert isinstance(next_cell, PyRFQCell), "You are trying to set a PyRFQCell with a non-cell object!" self._next_cell = next_cell def calculate_profile_rms(self, vane_type, cell_no): # Assemble RMS section by finding adjacent RMS cells and get their apertures cc = self pc = cc.prev_cell rms_cells = [cc] shift = 0.0 while pc is not None and pc.cell_type == "rms": rms_cells = [pc] + rms_cells shift += pc.length cc = pc pc = cc.prev_cell cc = self nc = cc._next_cell while nc is not None and nc.cell_type == "rms": rms_cells = rms_cells + [nc] cc = nc nc = cc.next_cell # Check for starting cell assert rms_cells[0].prev_cell is not None, "Cannot assemble RMS section without a preceding cell! " \ "At the beginning ofthe RFQ consider using a start (STA) cell." a = [0.5 * rms_cells[0].prev_cell.aperture * (1.0 + rms_cells[0].prev_cell.modulation)] z = [0.0] for _cell in rms_cells: a.append(_cell.aperture) z.append(z[-1] + _cell.length) self._profile_itp = interp1d(np.array(z) - shift, np.array(a), kind='cubic') return 0 def calculate_profile_transition(self, vane_type, cell_no): le = self._params["L"] m = self._params["m"] a = self._params["a"] k = np.pi / np.sqrt(3.0) / le # Initial guess r0 = 0.5 * (a + m * a) if self.cell_type == "transition_auto": tcl = le else: tcl = self.calculate_transition_cell_length() z = np.linspace(0.0, le, 200) idx = np.where(z <= tcl) vane = np.ones(z.shape) * r0 print("Average radius of transition cell (a + ma) / 2 = {}".format(r0)) def eta(kk): return bessel1(0.0, kk * r0) / (3.0 * bessel1(0.0, 3.0 * kk * r0)) def a10(kk): return ((m * a / r0) ** 2.0 - 1.0) / ( bessel1(0.0, kk * m * a) + eta(kk) * bessel1(0.0, 3.0 * kk * m * a)) def a30(kk): return eta(kk) * a10(kk) def func(kk): return (bessel1(0.0, kk * m * a) + eta(kk) * bessel1(0.0, 3.0 * kk * m * a)) / \ (bessel1(0.0, kk * a) + eta(kk) * bessel1(0.0, 3.0 * kk * a)) \ + ((m * a / r0) ** 2.0 - 1.0) / ((a / r0) ** 2.0 - 1.0) k = root(func, k).x[0] if self._params["shift_cell_no"]: sign = (-1.0) ** (cell_no + 1) else: sign = (-1.0) ** cell_no _vane = [] if "x" in vane_type: def vane_x(xx): return - (xx / r0) ** 2.0 \ + sign * a10(k) * bessel1(0.0, k * xx) * np.cos(k * _z) \ + sign * a30(k) * bessel1(0.0, 3.0 * k * xx) * np.cos(3.0 * k * _z) + 1.0 for _z in z[idx]: _vane.append(root(vane_x, r0).x[0]) else: def vane_y(yy): return + (yy / r0) ** 2.0 \ + sign * a10(k) * bessel1(0.0, k * yy) * np.cos(k * _z) \ + sign * a30(k) * bessel1(0.0, 3.0 * k * yy) * np.cos(3.0 * k * _z) - 1.0 for _z in z[idx]: _vane.append(root(vane_y, r0).x[0]) if self._params["flip_z"]: _vane = _vane[::-1] vane[np.where(z >= le - tcl)] = _vane else: vane[idx] = _vane self._profile_itp = interp1d(z, vane, bounds_error=False, fill_value=0) return 0 def calculate_profile_trapezoidal(self, vane_type, cell_no): # TODO: This is a rough test of a trapezoidal cell: _/-\_ # TODO: tilted parts are as long as roof and start and end (cell_length/5) fillet_radius = self._params["fillet_radius"] # m def intersection(_p1, _v1, _p2, _v2): s = (_v2[1] * (_p2[0] - _p1[0]) + _v2[0] * (_p1[1] - _p2[1])) / (_v1[0] * _v2[1] - _v1[1] * _v2[0]) return _p1 + s * _v1 def arc_to_poly(z1, r1, z2, r2, r_curv, invert): """ transform an arc into a polygon """ polygon = Polygon2D() cur = 1 if invert: cur = -1 dp = np.sqrt((z2 - z1) ** 2 + (r2 - r1) ** 2) if r_curv < 0.5 * dp: return None dx = np.sqrt(abs((0.5 * dp) ** 2.0 - r_curv ** 2.0)) zc = (z1 + z2) * 0.5 - cur * dx * (r1 - r2) / dp rc = (r1 + r2) * 0.5 + cur * dx * (z1 - z2) / dp if round(z1 - zc, 8) == 0: if r1 > rc: p1 = 90 else: p1 = 270 else: p1 = np.arctan((r1 - rc) / (z1 - zc)) / np.pi * 180.0 if z1 < zc: p1 += 180 if p1 < 0: p1 += 360 if round(z2 - zc, 8) == 0: if r2 > rc: p2 = 90 else: p2 = 270 else: p2 = np.arctan((r2 - rc) / (z2 - zc)) / np.pi * 180.0 if z2 < zc: p2 += 180 if p2 < 0: p2 += 360 diff = p2 - p1 if diff < 0: diff += 360 if diff > 180: p3 = p1 p1 = p2 p2 = p3 num_vert = 10 # No need for too many, just spline guide points if p2 < p1: dp = float((p2 + 360.0 - p1) / (float(num_vert) - 1.0)) else: dp = float((p2 - p1) / (float(num_vert) - 1.0)) for j in range(num_vert): phi = np.deg2rad(p1 + dp * j) z_temp = zc + (r_curv * np.cos(phi)) r_temp = rc + (r_curv * np.sin(phi)) polygon.add_point((z_temp, r_temp)) if not invert: polygon.reverse() return polygon, p1, p2 # Flip for y vane flip_r = ("y" in vane_type) ^ self._params["shift_cell_no"] # 6 vertices for 5 segments of the trapezoidal cell _z = np.linspace(0, self._params["L"], 6, endpoint=True) if flip_r: _r = np.array([self._params["a"], self._params["a"], self._params["a"] * (2.0 - self._params["m"]), self._params["a"] * (2.0 - self._params["m"]), self._params["a"], self._params["a"] ]) else: _r = np.array([self._params["a"], self._params["a"], self._params["a"] * self._params["m"], self._params["a"] * self._params["m"], self._params["a"], self._params["a"] ]) # Now we replace the inner vertices with fillets _vertices = np.array(list(zip(_z, _r))) _new_verts = Polygon2D([tuple(_vertices[0])]) for i in range(4): temp_poly = Polygon2D([tuple(_vertices[0 + i]), tuple(_vertices[1 + i]), tuple(_vertices[i + 2])]) clockwise = temp_poly.clockwise() # Calculate maximum radius for fillet _v1 = Vector2D(p0=_vertices[i + 1], p1=_vertices[i + 0]) _v2 = Vector2D(p0=_vertices[i + 1], p1=_vertices[i + 2]) if clockwise: p_in_line1 = Vector2D(_vertices[i + 1]) + _v1.rotate_ccw().normalize() * fillet_radius # belongs to v1 p_in_line2 = Vector2D(_vertices[i + 1]) + _v2.rotate_cw().normalize() * fillet_radius # belongs to v2 else: p_in_line1 = Vector2D(_vertices[i + 1]) + _v1.rotate_cw().normalize() * fillet_radius # belongs to v1 p_in_line2 = Vector2D(_vertices[i + 1]) + _v2.rotate_ccw().normalize() * fillet_radius # belongs to v2 m_center = intersection(p_in_line1, _v1, p_in_line2, _v2) v_new1 = intersection(Vector2D(_vertices[i + 1]), _v1.normalize(), m_center, _v1.rotate_cw().normalize()) v_new2 = intersection(Vector2D(_vertices[i + 1]), _v2.normalize(), m_center, _v2.rotate_cw().normalize()) arcpoly, ps, pe = arc_to_poly(v_new1[0], v_new1[1], v_new2[0], v_new2[1], fillet_radius, not clockwise) _new_verts.add_polygon(arcpoly) _new_verts.add_point(tuple(_vertices[-1])) _new_verts = np.array(_new_verts[:]) self._profile_itp = interp1d(_new_verts[:, 0], _new_verts[:, 1]) return 0 def calculate_profile(self, cell_no, vane_type, fudge=False): print("cell_no: " + str(cell_no)) assert vane_type in ["xp", "xm", "yp", "ym"], "Did not understand vane type {}".format(vane_type) if self._type == "start": # Don't do anything for start cell return 0 elif self._type == "trapezoidal": assert self._prev_cell.cell_type == "drift", "Rebunching cell must follow a drift cell (DCS)!" self.calculate_profile_trapezoidal(vane_type, cell_no) return 0 elif self._type == "drift": self._profile_itp = interp1d([0.0, self._params["L"]], [self._params["a"], self._params["a"] * self._params["m"]]) return 0 elif self._type == "rms": self.calculate_profile_rms(vane_type, cell_no) return 0 elif self._type in ["transition", "transition_auto"]: self.calculate_profile_transition(vane_type, cell_no) return 0 # Else: regular cell: z = np.linspace(0.0, self._params["L"], 100) a = self.aperture m = self.modulation pc = self._prev_cell if pc is not None and pc.cell_type in ["rms", "drift"]: pc = None nc = self._next_cell if nc is not None and nc.cell_type in ["rms", "drift"]: nc = None if pc is None or not fudge: a_fudge_begin = ma_fudge_begin = 1.0 else: ma_fudge_begin = 0.5 * (1.0 + pc.aperture * pc.modulation / m / a) a_fudge_begin = 0.5 * (1.0 + pc.aperture / a) if nc is None or not fudge: a_fudge_end = ma_fudge_end = 1.0 else: ma_fudge_end = 0.5 * (1.0 + nc.aperture * nc.modulation / m / a) a_fudge_end = 0.5 * (1.0 + nc.aperture / a) a_fudge = interp1d([0.0, self.length], [a_fudge_begin, a_fudge_end]) ma_fudge = interp1d([0.0, self.length], [ma_fudge_begin, ma_fudge_end]) kp = np.pi / self.length sign = (-1.0) ** (cell_no + 1) def ap(zz): return a * a_fudge(zz) def mp(zz): return m * ma_fudge(zz) / a_fudge(zz) def a10(zz): return (mp(zz) ** 2.0 - 1.0) / (mp(zz) ** 2.0 * bessel1(0, kp * ap(zz)) + bessel1(0, mp(zz) * kp * ap(zz))) def r0(zz): return ap(zz) / np.sqrt(1.0 - (mp(zz) ** 2.0 * bessel1(0, kp * ap(zz)) - bessel1(0, kp * ap(zz))) / (mp(zz) ** 2.0 * bessel1(0, kp * ap(zz)) + bessel1(0, mp(zz) * kp * ap(zz)))) _vane = [] if "x" in vane_type: def vane_x(xx): return + sign * (xx / r0(_z)) ** 2.0 + a10(_z) * bessel1(0.0, kp * xx) * np.cos(kp * _z) - sign for _z in z: _vane.append(root(vane_x, ap(_z)).x[0]) else: def vane_y(yy): return - sign * (yy / r0(_z)) ** 2.0 + a10(_z) * bessel1(0.0, kp * yy) * np.cos(kp * _z) + sign for _z in z: _vane.append(root(vane_y, ap(_z)).x[0]) self._profile_itp = interp1d(z, _vane) return 0 def profile(self, z): return self._profile_itp(z) class PyRFQElectrode(object): def __init__(self, name, parent, zmin, zlen, voltage, reverse_normals=False, h=0.025, debug=False): self._name = name self._parent = parent self._domain_idx = None self._voltage = voltage self._debug = debug self._zmin = zmin self._zlen = zlen self._geo_str = None self._occ_obj = None self._occ_npart = 1 self._mesh_fn = None self._reverse_normals = reverse_normals self._h = h self._refine_steps = 0 @property def domain_idx(self): return self._domain_idx @property def mesh_fn(self): return self._mesh_fn @property def name(self): return self._name @property def parent(self): return self._parent @property def voltage(self): return self._voltage @abstractmethod def generate_geo_str(self, *args, **kwargs): pass def generate_gmsh_files(self): tmp_dir = self._parent.temp_dir if tmp_dir is not None: geo_fn = os.path.join(tmp_dir, "{}.geo".format(self.name)) msh_fn = os.path.splitext(geo_fn)[0] + ".msh" stl_fn = os.path.splitext(geo_fn)[0] + ".stl" brep_fn = os.path.splitext(geo_fn)[0] + ".brep" refine_fn = os.path.join(tmp_dir, "refine_{}.geo".format(self.name)) gmsh_success = 0 with open(geo_fn, "w") as _of: _of.write(self._geo_str) command = "{} \"{}\" -0 -o \"{}\" -format brep".format(GMSH_EXE, geo_fn, brep_fn) if self._debug: print("Running", command) sys.stdout.flush() gmsh_success += os.system(command) refine_str = """ Merge "{}"; Mesh.SecondOrderLinear = 0; RefineMesh; """.format(msh_fn) with open(refine_fn, "w") as _of: _of.write(refine_str) # TODO: Could we use higher order (i.e. curved) meshes? -DW # For now, we need to save in msh2 format for BEMPP compability command = "{} \"{}\" -2 -o \"{}\" -format msh2".format(GMSH_EXE, geo_fn, msh_fn) if self._debug: print("Running", command) sys.stdout.flush() gmsh_success += os.system(command) for i in range(self._refine_steps): command = "{} \"{}\" -0 -o \"{}\" -format msh2".format(GMSH_EXE, refine_fn, msh_fn) if self._debug: print("Running", command) sys.stdout.flush() gmsh_success += os.system(command) # --- TODO: For testing: save stl mesh file also command = "{} \"{}\" -0 -o \"{}\" -format stl".format(GMSH_EXE, msh_fn, stl_fn) if self._debug: print("Running", command) sys.stdout.flush() gmsh_success += os.system(command) # --- # if gmsh_success != 0: # or not os.path.isfile("shape.stl"): print("Something went wrong with gmsh, be sure you defined " "the correct path at the beginning of the file!") return 1 self._mesh_fn = msh_fn return 0 def generate_occ(self): if HAVE_OCC: tmp_dir = self._parent.temp_dir brep_fn = os.path.join(tmp_dir, "{}.brep".format(self._name)) self._occ_obj = ElectrodeObject() self._occ_obj.load_from_brep(brep_fn) self._occ_obj.partition_z(self._occ_npart) return 0 else: print("Couldn't load PythonOCC-Core earlier, cannot create OpenCasCade object!") return 1 def points_inside(self, _points): """ Function that calculates whether the point(s) is/are inside the vane or not. Currently this only works with pythonocc-core installed and can be very slow for a large number of points. :param _points: any shape (N, 3) structure holding the points to check. Can be a list of tuples, a list of lists, a numpy array of points (N, 3)... Alternatively: a single point with three coordinates (list, tuple or numpy array) :return: boolean numpy array of True or False depending on whether the points are inside or outside (on the surface is counted as inside!) """ if self._occ_obj is not None: return self._occ_obj.points_inside(_points) else: return 1 class PyRFQAnnulus(PyRFQElectrode): def __init__(self, name, parent, zmin, zlen, voltage=0.0, debug=False, reverse_normals=False, h=0.05, plate_dia=1.0, aperture_dia=0.0): super().__init__(name, parent, zmin, zlen, voltage, reverse_normals, h, debug) self._aperture_dia = aperture_dia self._plate_dia = plate_dia self._domain_idx = 100 def generate_geo_str(self): zlen = self._zlen r_plate = self._plate_dia / 2.0 r_ap = self._aperture_dia / 2.0 zmin = self._zmin reverse_normals = self._reverse_normals h = self._h self._geo_str = """SetFactory("OpenCASCADE"); Geometry.NumSubEdges = 100; // nicer display of curve Mesh.CharacteristicLengthMax = {}; """.format(h) self._geo_str += "// Create Plate \n" self._geo_str += "Cylinder(1) = {{ 0, 0, {}, 0, 0, {}, {}, 2 * Pi }};\n".format(zmin, zlen, r_plate) if r_ap > 0.0: self._geo_str += "Cylinder(2) = {{ 0, 0, {}, 0, 0, {}, {}, 2 * Pi }};\n".format(zmin - 0.001, zlen + 0.002, r_ap) self._geo_str += "BooleanDifference{ Volume{1}; Delete; }{ Volume{2}; Delete; }\n" self._geo_str += """ s() = Surface "*"; Physical Surface({}) = {{ s() }}; """.format(self._domain_idx) if reverse_normals: self._geo_str += """ ReverseMesh Surface { s() }; """ return 0 class PyRFQVane(PyRFQElectrode): def __init__(self, parent, vane_type, cells, voltage, occ_tolerance=1e-5, occ_npart=1, debug=False, reverse_normals=False, h=0.05): self._cells = cells self._length = np.sum([cell.length for cell in self._cells]) # type: float super().__init__(name="vane_" + vane_type, parent=parent, zmin=0.0, zlen=self._length, voltage=voltage, reverse_normals=reverse_normals, h=h, debug=debug) self._occ_npart = occ_npart self._type = vane_type self._has_profile = False self._fudge = False self._mesh_params = {"dx": 0.001, # step length along z (m) "nz": 100, # Number of steps along z, consolidate with dx! "h": 0.005, # gmsh meshing parameter (m) "tip": "semi-circle", "r_tip": 0.005, # Radius of curvature of vane tip (m) "h_block": 0.01, # height of block sitting atop the curvature (m) "h_type": 'absolute', # whether the block height is measured from midplane or modulation "symmetry": False, "mirror": False, "geo_str": None, "msh_fn": None, "refine_steps": 0, # Number of times gmsh is called to "refine by splitting" "reverse_mesh": False } self._occ_params = {"tolerance": occ_tolerance, "solid": None, # The OCC solid body, "bbox": None, # The bounding box ofthe OCC solid body } self._mesh = None @property def has_profile(self): return self._has_profile @property def length(self): return self.length # type: float @property def mesh(self): return self._mesh @property def vane_type(self): return self._type @property def vertices_elements(self): if self._mesh is not None: return self._mesh.leaf_view.vertices, self._mesh.leaf_view.elements else: return None, None def set_vane_type(self, vane_type=None): if vane_type is not None: self._type = vane_type self._name = "vane_" + vane_type def set_mesh_parameter(self, keyword=None, value=None): if keyword is None or value is None: print("In 'set_mesh_parameter': Either keyword or value were not specified.") return 1 if keyword not in self._mesh_params.keys(): print("In 'set_mesh_parameter': Unrecognized keyword '{}'.".format(keyword)) return 1 self._mesh_params[keyword] = value return 0 def get_parameter(self, key): if key in self._mesh_params.keys(): return self._mesh_params[key] else: return None def set_voltage(self, voltage): self._voltage = voltage def set_domain_index(self, idx): self._mesh_params["domain_idx"] = idx def generate_geo_str(self): r_tip = None h_block = None h_type = None symmetry = None mirror = None reverse_mesh = None h = dx = self._h if symmetry is not None: self._mesh_params["symmetry"] = symmetry else: symmetry = self._mesh_params["symmetry"] if mirror is not None: self._mesh_params["mirror"] = mirror else: mirror = self._mesh_params["mirror"] assert not (symmetry is True and mirror is True), "Cannot have mirroring and symmetry at the same time!" if dx is not None: self._mesh_params["dx"] = dx else: dx = self._mesh_params["dx"] if h is not None: self._mesh_params["h"] = h else: h = self._mesh_params["h"] if r_tip is not None: self._mesh_params["r_tip"] = r_tip else: r_tip = self._mesh_params["r_tip"] if h_block is not None: self._mesh_params["h_block"] = h_block else: h_block = self._mesh_params["h_block"] if h_type is not None: self._mesh_params["h_type"] = h_type else: h_type = self._mesh_params["h_type"] if reverse_mesh is not None: self._mesh_params["reverse_mesh"] = reverse_mesh else: reverse_mesh = self._mesh_params["reverse_mesh"] # Calculate z_data and vane profile: z, profile = self.get_profile(nz=self._mesh_params["nz"]) pmax = profile.max() # Calculate minimum possible absolute height (1 mm above the maximum vane modulation): h_min = 0.0 has_rms = False for _cell in self._cells: if _cell.cell_type == "rms": has_rms = True # Check for maximum modulated vanes plus 1 mm for safety. if _cell.cell_type not in ["start", "rms"]: _h = _cell.aperture * _cell.modulation + 0.001 if h_min < _h: h_min = _h # Consistency check for absolute h_type if h_type == 'absolute': if h_block >= pmax: ymax = h_block elif h_block >= h_min: print("*** Warning: h_block < pmax, but larger than maximum vane modulation. " "This will cut into the RMS Section! Continuing.") ymax = h_block else: print("It seems that the 'absolute' h_block (height) value is too small" \ " and would leave less than 1 mm material in some places above the modulation. " \ "Aborting.") return 1 elif h_type == 'relative': ymax = pmax + h_block print("h_type 'relative' deactivated for the moment. Aborting. -DW") return 1 else: print("Unknown 'h_type'.") return 1 # TODO: Look into what the best meshing parameters are! # TODO: Look into number of threads! geo_str = """SetFactory("OpenCASCADE"); Geometry.NumSubEdges = 500; // nicer display of curve //General.NumThreads = 2; Mesh.CharacteristicLengthMax = {}; h = {}; """.format(h, h) if symmetry: assert self._type not in ["ym", "xm"], "Sorry, mesh generation with symmetry only works for vanes " \ "located in positive axis directions (i.e. 'yp', 'xp'). " # if "x" in self._type: # sign = -1 if "y" in self._type: self._domain_idx = 2 else: self._domain_idx = 1 new_pt = 1 new_ln = 1 new_loop = 1 new_surf = 1 new_vol = 1 spline1_pts = [new_pt] # Center spline # TODO: Here we could add an option for the cut-ins -DW geo_str += "// Center Spline:\n" for _z, _a in zip(z, profile): geo_str += "Point({}) = {{ {}, {}, {}, h }};\n".format(spline1_pts[-1], 0.0, _a, _z) spline1_pts.append(spline1_pts[-1] + 1) new_pt = spline1_pts[-1] spline1_pts.pop(-1) geo_str += """ Spline({}) = {{ {}:{} }}; """.format(new_ln, spline1_pts[0], spline1_pts[-1]) # Immediately delete the points used up in the spline geo_str += "Recursive Delete {{ Point{{ {}:{} }}; }}\n".format(spline1_pts[1], spline1_pts[-2]) spline_ln = new_ln new_ln += 1 # --- Make a profile to follow the modulation path ('sweep' in Inventor, 'pipe' in OpenCascade) --- # profile_start_angle = np.arctan2(profile[1] - profile[0], z[1] - z[0]) profile_end_angle = np.arctan2(profile[-1] - profile[-2], z[-1] - z[-2]) print("Profile Start Angle = {} deg".format(-np.rad2deg(profile_start_angle))) print("Profile End Angle = {} deg".format(-np.rad2deg(profile_end_angle))) adj_psa_deg = -np.rad2deg(profile_start_angle) adj_pea_deg = np.rad2deg(profile_end_angle) geo_str += "// Points making up the sweep face:\n" face_pts = list(range(new_pt, new_pt + 4)) # Square points: geo_str += "Point({}) = {{ {}, {}, {}, h }};\n".format(face_pts[0], -r_tip, profile[0] + r_tip, z[0]) geo_str += "Point({}) = {{ {}, {}, {}, h }};\n".format(face_pts[1], r_tip, profile[0] + r_tip, z[0]) # Semi-circle center: geo_str += "Point({}) = {{ {}, {}, {}, h }};\n".format(face_pts[2], 0.0, profile[0] + r_tip, z[0]) geo_str += "\n" # Lines for sweep face: face_lns = [] for i in range(1): face_lns.append(new_ln) geo_str += "Line({}) = {{ {}, {} }};\n".format(new_ln, face_pts[i], face_pts[i + 1]) new_ln += 1 # Semi-circle: face_lns.append(new_ln) geo_str += "Circle({}) = {{ {}, {}, {}}};\n".format(new_ln, face_pts[1], face_pts[2], face_pts[0]) geo_str += "\n" new_ln += 1 # Sweep Face: geo_str += "Curve Loop({}) = {{ {}, {} }};\n".format(new_loop, face_lns[0], face_lns[1], ) new_loop += 1 sweep_surf = new_surf geo_str += "Plane Surface({}) = {{ {} }};\n".format(new_surf, new_loop - 1) geo_str += "Rotate {{{{1, 0, 0}}, {{ {}, {}, {}}}, {}}} {{Surface {{ {} }}; }}\n".format(0.0, profile[0], z[0], -profile_start_angle, new_surf) geo_str += "\n" new_surf += 1 # Delete now unused center-point of circle (was duplicated) geo_str += "Recursive Delete {{ Point{{ {} }}; }}\n".format(face_pts[2]) # Extrusion: geo_str += "Wire({}) = {{ {} }};\n".format(new_loop, spline_ln) geo_str += "Extrude {{ Surface{{ {} }}; }} Using Wire {{ {} }}\n".format(sweep_surf, new_loop) new_loop += 1 extrude_vol_1 = new_vol new_vol += 1 # Extrude creates a volume # Delete initial sweep surface (now redundant) geo_str += "Recursive Delete {{ Surface {{ {} }}; }}\n".format(sweep_surf) # Delete the spline (now redundant) geo_str += "Recursive Delete {{ Curve{{ {} }}; }}\n".format(spline_ln) # We now have a volume of the modulated part regardless of h_block and RMS section yes/no. # All redundant points, lines and surfaces have been deleted. # ------------------------------------------------------------------------------------------------------------ # # --- Next step: Fill up the volume above to make height of vane = ymax -------------------------------------- # # - Cases: # 1. Both start and end angles are tilted inwards /===\ (using minimum tilt of 1 deg for now). # 2. Both start and end angles are straight or tilted outwards |===| or \===/ # 3. Start angle is tilted inwards, end angle is straight or tilted outwards /===| (e.g. ony using start RMS) # 4. Start angle is straight or tilted outwards, end angle is tilted inwards |===\ (e.g. only using exit RMS) if adj_psa_deg >= 1.0 and adj_pea_deg >= 1.0: case = 1 elif adj_psa_deg < 1.0 and adj_pea_deg < 1.0: case = 2 elif adj_pea_deg < 1.0 <= adj_psa_deg: case = 3 else: case = 4 # In case 1, we can extend the end-caps upwards 1 m (just some large number), # then cut off a big block from the top. End caps will be surfaces 2 and 5 if case == 1: geo_str += "Extrude {0, 1, 0} { Surface{ 2 }; }\n" geo_str += "Extrude {0, 1, 0} { Surface{ 5 }; }\n\n" geo_str += "// Delete redundant volumes, surfaces, lines to form a new volume later\n" geo_str += "Delete { Volume{ 1, 2, 3 }; }\n" geo_str += "Delete { Surface{ 2, 3, 5, 6, 9 }; }\n" geo_str += "Delete { Curve{ 4, 8 }; }\n" geo_str += "Line(18) = {{ {}, {} }};\n".format(new_pt + 12, new_pt + 10) geo_str += "Line(19) = {{ {}, {} }};\n".format(new_pt + 9, new_pt + 11) geo_str += """ Curve Loop(13) = {19, 16, 18, -12}; Plane Surface(12) = {13}; Curve Loop(14) = {18, -11, 7, 15}; Plane Surface(13) = {14}; Curve Loop(15) = {19, -14, -6, 10}; Plane Surface(14) = {15}; Surface Loop(4) = {13, 12, 14, 10, 11, 4, 7, 8}; Volume(1) = {4}; Delete { Surface{ 7, 10}; } """ # In case 2 we create a block above the 4 endpoints of the semi-circles elif case == 2: geo_str += "Translate {{ 0, 1, 0 }} {{ Duplicata{{ Point{{ {}, {}, {}, {} }}; }} }}\n".format(new_pt + 5, new_pt + 6, new_pt + 7, new_pt + 8) geo_str += "Delete { Volume{ 1 }; }\n" geo_str += "Delete { Surface{ 3 }; }\n" geo_str += "Line(10) = {{ {}, {} }};\n".format(new_pt + 10, new_pt + 9) geo_str += "Line(11) = {{ {}, {} }};\n".format(new_pt + 9, new_pt + 11) geo_str += "Line(12) = {{ {}, {} }};\n".format(new_pt + 11, new_pt + 12) geo_str += "Line(13) = {{ {}, {} }};\n".format(new_pt + 12, new_pt + 10) geo_str += "Line(14) = {{ {}, {} }};\n".format(new_pt + 8, new_pt + 12) geo_str += "Line(15) = {{ {}, {} }};\n".format(new_pt + 11, new_pt + 7) geo_str += "Line(16) = {{ {}, {} }};\n".format(new_pt + 6, new_pt + 10) geo_str += "Line(17) = {{ {}, {}}};\n".format(new_pt + 9, new_pt + 5) geo_str += """ Curve Loop(7) = {13, 10, 11, 12}; Plane Surface(6) = {7}; Curve Loop(8) = {12, -14, -8, -15}; Plane Surface(7) = {8}; Curve Loop(9) = {16, 10, 17, 4}; Plane Surface(8) = {9}; Curve Loop(10) = {13, -16, 7, 14}; Plane Surface(9) = {10}; Curve Loop(11) = {15, -6, -17, 11}; Plane Surface(10) = {11}; Surface Loop(2) = {6, 9, 8, 10, 7, 5, 4, 2}; Volume(1) = {2}; """ elif case == 3: geo_str += "Extrude {0, 1, 0} { Surface{ 2 }; }\n" geo_str += "Translate {{ 0, 1, 0 }} {{ Duplicata{{ Point{{ {}, {} }}; }} }}\n".format(new_pt + 7, new_pt + 8) geo_str += "// Delete redundant volumes, surfaces, lines to form a new volume later\n" geo_str += "Delete { Volume{ 1, 2 }; }\n" geo_str += "Delete { Surface{ 2, 3, 6}; }\n" geo_str += "Delete { Curve{ 4 }; }\n" geo_str += "Line(14) = {{ {}, {} }};\n".format(new_pt + 10, new_pt + 12) geo_str += "Line(15) = {{ {}, {} }};\n".format(new_pt + 9, new_pt + 11) geo_str += "Line(16) = {{ {}, {} }};\n".format(new_pt + 11, new_pt + 12) geo_str += "Line(17) = {{ {}, {}}};\n".format(new_pt + 12, new_pt + 8) geo_str += "Line(18) = {{ {}, {} }};\n".format(new_pt + 11, new_pt + 7) geo_str += """ Curve Loop(10) = {16, -14, -12, 15}; Plane Surface(9) = {10}; Curve Loop(11) = {17, -7, 11, 14}; Plane Surface(10) = {11}; Curve Loop(12) = {17, -8, -18, 16}; Plane Surface(11) = {12}; Curve Loop(13) = {18, -6, 10, 15}; Plane Surface(12) = {13}; Surface Loop(3) = {10, 11, 5, 4, 12, 7, 8, 9}; Volume(1) = {3}; """ geo_str += "Delete { Surface{ 7 }; }\n" elif case == 4: geo_str += "Extrude {0, 1, 0} { Surface{ 5 }; }\n\n" geo_str += "Translate {{ 0, 1, 0 }} {{ Duplicata{{ Point{{ {}, {} }}; }} }}\n".format(new_pt + 5, new_pt + 6) geo_str += "// Delete redundant volumes, surfaces, lines to form a new volume later\n" geo_str += "Delete { Volume{ 1, 2 }; }\n" geo_str += "Delete { Surface{3, 5, 6}; }\n" geo_str += "Delete { Curve{ 8 }; }\n" geo_str += "Line(14) = {{ {}, {} }};\n".format(new_pt + 10, new_pt + 12) geo_str += "Line(15) = {{ {}, {} }};\n".format(new_pt + 9, new_pt + 11) geo_str += "Line(16) = {{ {}, {} }};\n".format(new_pt + 12, new_pt + 11) geo_str += "Line(17) = {{ {}, {}}};\n".format(new_pt + 6, new_pt + 12) geo_str += "Line(18) = {{ {}, {} }};\n".format(new_pt + 5, new_pt + 11) geo_str += """ Curve Loop(10) = {14, 16, -15, 12}; Plane Surface(9) = {10}; Curve Loop(11) = {14, -17, 7, 11}; Plane Surface(10) = {11}; Curve Loop(12) = {6, 10, 15, -18}; Plane Surface(11) = {12}; Curve Loop(13) = {16, -18, 4, 17}; Plane Surface(12) = {13}; Surface Loop(3) = {10, 9, 12, 11, 4, 7, 8, 2}; Volume(1) = {3}; """ geo_str += "Delete { Surface{ 7 }; }\n" # ------------------------------------------------ END CASES ------------------------------------------------- # geo_str += "Box(2) = {{ -0.5, {}, {}, 1, 2, {} }};\n".format(ymax, z[0] - 0.25, z[-1] - z[0] + 0.5) geo_str += """ BooleanDifference{ Volume{1}; Delete; }{ Volume{2}; Delete; } """ # Add physical surface to identify this vane in gmsh (unmirrored) geo_str += """ s() = Surface "*"; Physical Surface({}) = {{ s() }}; """.format(self._domain_idx) # Rotate according to vane type if self.vane_type == "xp": geo_str += "Rotate {{{{0, 0, 1}}, {{0, 0, 0}}, {}}} " \ "{{Volume {{ {} }}; }}\n".format(-0.5 * np.pi, extrude_vol_1) elif self.vane_type == "xm": geo_str += "Rotate {{{{0, 0, 1}}, {{0, 0, 0}}, {}}} " \ "{{Volume {{ {} }}; }}\n".format(0.5 * np.pi, extrude_vol_1) elif self.vane_type == "ym": geo_str += "Rotate {{{{0, 0, 1}}, {{0, 0, 0}}, {}}} " \ "{{Volume {{ {} }}; }}\n".format(np.pi, extrude_vol_1) if reverse_mesh: geo_str += """ ReverseMesh Surface { s() }; """ # TODO: Adjust the transfinite surfaces for all the correct ones for the different cases. if case == 1: geo_str += """ Transfinite Surface { 2, 3 }; """ elif case == 2: geo_str += """ Transfinite Surface { 3 }; """ elif case == 3: geo_str += """ Transfinite Surface { 3, 4 }; """ elif case == 4: geo_str += """ Transfinite Surface { 3 }; """ self._geo_str = geo_str return geo_str def calculate_profile(self, fudge=None): if fudge is None: fudge = self._fudge for cell_no in range(len(self._cells)): self._cells[cell_no].calculate_profile(cell_no, self._type, fudge=fudge) sys.stdout.flush() self._has_profile = True return 0 def get_profile(self, nz=1000): assert self._has_profile, "No profile has been generated!" # Cutting the RFQ short by 1e-10 to not get out of bound error in interpolation z = np.round(np.linspace(0.0, self._length - 1e-10, nz), decimals) vane = np.zeros(z.shape) cum_len = 0.0 # count = 0 for cell in self._cells: if cell.cell_type != "start": _z_end = np.round(cum_len + cell.length, decimals) idx = np.where((z >= cum_len) & (z <= _z_end)) # print("") # print("Cell # {}".format(count)) # print("Cell extent: {} to {}".format(cum_len, _z_end)) # print("z_lab = [{};{}]".format(z[idx][0], z[idx][-1])) # print("z_loc = [{};{}]".format(z[idx][0] - cum_len, z[idx][-1] - cum_len)) vane[idx] = cell.profile(np.round(z[idx] - cum_len, decimals)) cum_len = np.round(cum_len + cell.length, decimals) # count += 1 return z, vane # noinspection PyUnresolvedReferences class PyRFQ(object): def __init__(self, voltage, occ_tolerance=1e-5, debug=False, fudge_vanes=False): self._debug = debug self._fudge_vanes = fudge_vanes self._voltage = voltage self._vanes = [] self._elec_objects = [] self._cells = [] self._cell_nos = [] self._length = 0.0 self._full_mesh = None self._full_mesh_fn = None self._occ_tolerance = occ_tolerance # Tolerace for bounding box and intersection tests in pythonocc-core self._temp_dir = None # Flags self._have_geo_str = False self._have_occ_obj = False self._have_bem_obj = False self._initialized = False self._variables_gmtry = {"vane_type": "hybrid", "vane_radius": 0.005, # m "vane_height": 0.05, # m "vane_height_type": 'absolute', "nz": 500 # number of points to use for modulation spline along z # TODO: nz is confusing, now we have dx, numz and nz that could all determine # TODO: the step length along axis for geometry purposes! -DW } self._variables_bempp = { # "solution": None, # "f_space": None, # "operator": None, # "grid_fun": None, "grid_res": 0.005, # grid resolution in (m) "refine_steps": 0, "reverse_mesh": False, "n_fun_coeff": None, # Coefficients of the Neumann GridFunction "d_fun_coeff": None, # Coefficients of the Dirichlet GridFunction "ef_itp": None, # type: Field "ef_phi": None, # type: np.ndarray "ef_mask": None, # A numpy boolean array holding flags for points inside electrodes # This can help with jitter on z axis where pot ~ 0 otherwise # TODO: Should put pot in its own class that also holds dx, nx, etc. "add_cyl": False, # Do we want to add a grounded cylinder to the BEMPP problem "add_endplates": False, # Or just grounded end plates "cyl_id": 0.2, # Inner diameter of surrounding cylinder "ap_id": 0.02, # Entrance and exit aperture diameter TODO: Make this asymmetric! "cyl_gap": 0.01, # gap between vanes and cylinder TODO: Make this asymmetric! "d": None, "n": None, "limits": None } self.create_temp_dir() @property def temp_dir(self): return self._temp_dir def create_temp_dir(self): if RANK == 0: tmp_path = os.path.join(os.getcwd(), "temp") if not os.path.exists(tmp_path): os.mkdir(tmp_path) else: shutil.rmtree(tmp_path) os.mkdir(tmp_path) if os.path.exists(tmp_path): global HAVE_TEMP_FOLDER HAVE_TEMP_FOLDER = True else: print("Could not create temp folder. Aborting.") exit(1) mpi_data = {"tmp_path": tmp_path} else: mpi_data = None if MPI is not None: mpi_data = COMM.bcast(mpi_data, root=0) self._temp_dir = mpi_data["tmp_path"] return self._temp_dir def __str__(self): text = "\nPyRFQ object with {} cells and length {:.4f} m. Vane voltage = {} V\n".format(self._cell_nos[-1], self._length, self._voltage) text += "Cells:\n" for i, cell in enumerate(self._cells): text += "Cell {}: ".format(i) + cell.__str__() + "\n" return text def set_bempp_parameter(self, keyword=None, value=None): if keyword is None or value is None: print("In 'set_bempp_parameter': Either keyword or value were not specified.") return 1 if keyword not in self._variables_bempp.keys(): print("In 'set_bempp_parameter': Unrecognized keyword '{}'.".format(keyword)) return 1 self._variables_bempp[keyword] = value return 0 def get_bempp_parameter(self, keyword=None): if keyword is None: print("In 'set_bempp_parameter': No keyword specified.") return 1 if keyword not in self._variables_bempp.keys(): print("In 'set_bempp_parameter': Unrecognized keyword '{}'.".format(keyword)) return 1 return self._variables_bempp[keyword] def set_geometry_parameter(self, keyword=None, value=None): if keyword is None or value is None: print("In 'set_geometry_parameter': Either keyword or value were not specified.") return 1 if keyword not in self._variables_gmtry.keys(): print("In 'set_geometry_parameter': Unrecognized keyword '{}'.".format(keyword)) return 1 self._variables_gmtry[keyword] = value return 0 def get_geometry_parameter(self, keyword=None): if keyword is None: print("In 'set_geometry_parameter': No keyword specified.") return 1 if keyword not in self._variables_gmtry.keys(): print("In 'set_geometry_parameter': Unrecognized keyword '{}'.".format(keyword)) return 1 return self._variables_gmtry[keyword] def add_cells_from_file(self, filename=None, ignore_rms=False): """ Reads a file with cell parameters and generates the respective RFQCell objects :param filename: :param ignore_rms: Bool. If True, any radial matching cells in the file are ignored. :return: """ if filename is None: if RANK == 0: fd = FileDialog() mpi_data = {"fn": fd.get_filename('open')} else: mpi_data = None if MPI is not None: mpi_data = COMM.bcast(mpi_data, root=0) filename = mpi_data["fn"] if filename is None: return 1 with open(filename, "r") as infile: if "Parmteqm" in infile.readline(): # Detected Parmteqm file self.read_input_parmteq(filename, ignore_rms) else: # Assume only other case is VECC input file for now self.read_input_vecc(filename, ignore_rms) return 0 def add_cylinder(self): for _elec_obj in self._elec_objects: if "plate" in _elec_obj.name: print("Cannot create cylinder if there are endplates already!") return 1 print("Cylinder not yet implemented :(") return 0 def add_endplates(self, gap_sta, gap_end, thickness, plate_dia, voltage=0.0, aperture_dia=0.0): for _elec_obj in self._elec_objects: if "cylinder" in _elec_obj.name: print("Cannot create endplates if there is an outer cylinder already!") return 1 # Delete all existing plate objects self._elec_objects = [_elec_obj for _elec_obj in self._elec_objects if "plate" not in _elec_obj.name] # Entrance Plate zmin = 0.0 - gap_sta - thickness plate_sta = PyRFQAnnulus(name="entrance_plate", parent=self, zmin=zmin, zlen=thickness, voltage=voltage, debug=self._debug, reverse_normals=self._variables_bempp["reverse_mesh"], h=self._variables_bempp["grid_res"], plate_dia=plate_dia, aperture_dia=aperture_dia) self._elec_objects.append(plate_sta) # Exit Plate zmin = self._length + gap_end plate_sta = PyRFQAnnulus(name="exit_plate", parent=self, zmin=zmin, zlen=thickness, voltage=voltage, debug=self._debug, reverse_normals=self._variables_bempp["reverse_mesh"], h=self._variables_bempp["grid_res"], plate_dia=plate_dia, aperture_dia=aperture_dia) self._elec_objects.append(plate_sta) return 0 def append_cell(self, cell_type, **kwargs): assert cell_type in ["start", "rms", "regular", "transition", "transition_auto", "drift", "trapezoidal"], \ "cell_type not recognized!" if len(self._cells) > 0: pc = self._cells[-1] else: pc = None self.reset() self._cells.append(PyRFQCell(cell_type=cell_type, prev_cell=pc, next_cell=None, debug=self._debug, **kwargs)) if len(self._cells) > 1: self._cells[-2].set_next_cell(self._cells[-1]) self._cell_nos = range(len(self._cells)) self._length = np.sum([cell.length for cell in self._cells]) return 0 def read_input_parmteq(self, filename, ignore_rms): with open(filename, "r") as infile: # Some user feedback: version = infile.readline().strip().split()[1].split(",")[0] print("Loading cells from Parmteqm v{} output file...".format(version)) # Find begin of cell information for line in infile: if "Cell" in line and "V" in line: break for line in infile: # Last line in cell data is repetition of header line if "Cell" in line and "V" in line: break # Cell number is a string (has key sometimes) items = line.strip().split() cell_no = items[0] params = [float(item) for item in items[1:]] if len(items) == 10 and cell_no == "0": # This is the start cell, only there to provide a starting aperture if len(self._cells) == 0 and not ignore_rms: # We use this only if there are no previous cells in the pyRFQ # Else we ignore it... self._cells.append(PyRFQCell(cell_type="start", V=params[0] * 1000.0, Wsyn=params[1], Sig0T=params[2], Sig0L=params[3], A10=params[4], Phi=params[5], a=params[6] * 0.01, B=params[8], debug=self._debug)) continue # For now we ignore "special" cells and add them manually if "T" in cell_no or "M" in cell_no or "F" in cell_no: print("Ignored cell {}".format(cell_no)) continue if "R" in cell_no: cell_type = "rms" if ignore_rms: print("Ignored cell {}".format(cell_no)) continue else: cell_type = "regular" if len(self._cells) > 0: pc = self._cells[-1] else: pc = None if cell_type == "rms": self._cells.append(PyRFQCell(cell_type=cell_type, V=params[0] * 1000.0, Wsyn=params[1], Sig0T=params[2], Sig0L=params[3], A10=params[4], Phi=params[5], a=params[6] * 0.01, m=params[7], B=params[8], L=params[9] * 0.01, prev_cell=pc, debug=self._debug)) else: self._cells.append(PyRFQCell(cell_type=cell_type, V=params[0] * 1000.0, Wsyn=params[1], Sig0T=params[2], Sig0L=params[3], A10=params[4], Phi=params[5], a=params[6] * 0.01, m=params[7], B=params[8], L=params[9] * 0.01, A0=params[11], RFdef=params[12], Oct=params[13], A1=params[14], prev_cell=pc, debug=self._debug)) if len(self._cells) > 1: self._cells[-2].set_next_cell(self._cells[-1]) self._cell_nos = range(len(self._cells)) self._length = np.sum([cell.length for cell in self._cells]) return 0 def read_input_vecc(self, filename, ignore_rms): print("Loading from VECC files is currently not supported (function needs to be mofernized)!") exit(1) with open(filename, "r") as infile: for line in infile: params = [float(item) for item in line.strip().split()] if params[4] == 1.0: cell_type = "rms" if ignore_rms: continue else: cell_type = "regular" if len(self._cells) > 0: pc = self._cells[-1] else: pc = None self._cells.append(PyRFQCell(cell_type=cell_type, aperture=params[3], modulation=params[4], length=params[6], flip_z=False, shift_cell_no=False, prev_cell=pc, next_cell=None)) if len(self._cells) > 1: self._cells[-2].set_next_cell(self._cells[-1]) self._cell_nos = range(len(self._cells)) self._length = np.sum([cell.length for cell in self._cells]) return 0 def calculate_efield(self): assert self._variables_bempp["ef_phi"] is not None, \ "Please calculate the potential first!" # TODO: Replace gradient with something that accepts mask _d = self._variables_bempp["d"] phi_masked = np.ma.masked_array(self._variables_bempp["ef_phi"], mask=self._variables_bempp["ef_mask"]) ex, ey, ez = np.gradient(phi_masked, _d[X], _d[Y], _d[Z]) if RANK == 0: _field = Field("RFQ E-Field", dim=3, field={"x": RegularGridInterpolator(points=_r, values=-ex, bounds_error=False, fill_value=0.0), "y": RegularGridInterpolator(points=_r, values=-ey, bounds_error=False, fill_value=0.0), "z": RegularGridInterpolator(points=_r, values=-ez, bounds_error=False, fill_value=0.0) }) mpi_data = {"efield": _field} else: mpi_data = None mpi_data = COMM.bcast(mpi_data, root=0) self._variables_bempp["ef_itp"] = mpi_data["efield"] return 0 def calculate_potential(self, limits=((None, None), (None, None), (None, None)), res=(0.002, 0.002, 0.002), domain_decomp=(4, 4, 4), overlap=0): """ Calculates the E-Field from the BEMPP solution using the user defined cube or the cube corresponding to the cyclindrical outer boundary. TODO: This function is not very MPI aware and could be optimized! TODO: BEMPP uses all available processors on the node to calculate the potential. TODO: But if we run on multiple nodes, we could partition the domains. :param limits: tuple, list or np.ndarray of shape (3, 2) containing xmin, xmax, ymin, ymax, zmin, zmax use None to use the individual limit from the electrode system. :param res: resolution of the 3D mesh :param domain_decomp: how many subdomains to use for calculation in the three directions x, y, z Note: it can significantly increase computation speed to use more subdomains, up to a point... :param overlap: overlap of the subdomains in cell numbers, does not have effect at the moment. Note: There is a minimum overlap of one cell at overlap = 0 :return: """ limits = np.array(limits) if limits.shape != (3, 2): print("Wrong shape of limits: {}. " "Must be ((xmin, xmax), (ymin, ymax), (zmin, zmax)) = (3, 2).".format(limits.shape)) return 1 _mesh_data = self._full_mesh _n_data = self._variables_bempp["n_fun_coeff"] # _d_data = self._variables_bempp["d_fun_coeff"] assert _mesh_data is not None and _n_data is not None, \ "One of grid, dirichlet_function, neumann_function is None!" _ts = time.time() self.message("Re-Generating Grid, GridFunctions, and FunctionSpace") _mesh = bempp.api.grid.grid_from_element_data(_mesh_data["verts"], _mesh_data["elems"], _mesh_data["domns"]) dp0_space = bempp.api.function_space(_mesh, "DP", 0) n_fun = bempp.api.GridFunction(dp0_space, coefficients=_n_data) # d_fun = bempp.api.GridFunction(dp0_space, coefficients=_d_data) # dp0_space = self._variables_bempp["dp0_space"] # p1_space = self._variables_bempp["p1_space"] self.message("Re-Generating took {}".format(time.strftime('%H:%M:%S', time.gmtime(int(time.time() - _ts))))) # noinspection PyUnresolvedReferences all_vert = self._full_mesh["verts"] # get limits from electrodes limits_elec = np.array([[np.min(all_vert[i, :]), np.max(all_vert[i, :])] for i in XYZ]) # replace None limits with electrode limits limits[np.where(limits is None)] = limits_elec[np.where(limits is None)] res = np.array([res]).ravel() _n = np.array(np.round((limits[:, 1] - limits[:, 0]) / res, 10), int) + 1 # Recalculate resolution to match integer n's _d = (limits[:, 1] - limits[:, 0]) / (_n - 1) # Generate a full mesh to be indexed later _r = np.array([np.linspace(limits[i, 0], limits[i, 1], _n[i]) for i in XYZ]) mesh = np.meshgrid(_r[X], _r[Y], _r[Z], indexing='ij') # type: np.ndarray # Initialize potential array pot = np.zeros(mesh[0].shape) # Index borders (can be float) borders = np.array([np.linspace(0, _n[i], domain_decomp[i] + 1) for i in XYZ]) # Indices (must be int) # note: rounding will likely lead to domains that are off in size by one index, but that's fine start_idxs = np.array([np.array(borders[i][:-1], int) - overlap for i in XYZ]) end_idxs = np.array([np.array(borders[i][1:], int) + overlap for i in XYZ]) for i in XYZ: start_idxs[i][0] = 0 end_idxs[i][-1] = int(borders[i][-1]) # Print out domain information if RANK == 0 and self._debug: print("Potential Calculation. " "Grid spacings: ({:.4f}, {:.4f}, {:.4f}), number of meshes: {}".format(_d[0], _d[1], _d[2], _n)) print("Number of Subdomains: {}, " "Domain decomposition {}:".format(np.product(domain_decomp), domain_decomp)) for i, dirs in enumerate(["x", "y", "z"]): print("{}: Indices {} to {}".format(dirs, start_idxs[i], end_idxs[i] - 1)) # Calculate mask (True if inside/on surface of an electrode) all_grid_pts = np.vstack([_mesh.ravel() for _mesh in mesh]).T mymask = np.zeros(all_grid_pts.shape[0], dtype=bool) _ts = time.time() if RANK == 0: print("\n*** Calculating mask for {} points ***".format(all_grid_pts.shape[0])) for _elec_object in self._elec_objects: self.message("[{}] Working on electrode object {}".format( time.strftime('%H:%M:%S', time.gmtime(int(time.time() - _ts))), _elec_object.name)) mymask = mymask | _elec_object.points_inside(all_grid_pts) # Number of masked points n_masked = np.where(mymask is True)[0].shape[0] # Reshape mask to match original mesh mymask = mymask.T.reshape(mesh[0].shape) self.message("Generating mask took {}".format(time.strftime('%H:%M:%S', time.gmtime(int(time.time() - _ts))))) self.message("\n*** Calculating potential for {} points ***".format(all_grid_pts.shape[0] - n_masked)) _ts = time.time() # Iterate over all the dimensions, calculate the subset of potential if RANK == 0: domain_idx = 1 for x1, x2 in zip(start_idxs[X], end_idxs[X]): for y1, y2 in zip(start_idxs[Y], end_idxs[Y]): for z1, z2 in zip(start_idxs[Z], end_idxs[Z]): # Create mask subset for this set of points and only calculate those local_mask = mymask[x1:x2, y1:y2, z1:z2].ravel() grid_pts = np.vstack([_mesh[x1:x2, y1:y2, z1:z2].ravel() for _mesh in mesh]) grid_pts_len = grid_pts.shape[1] # save shape for later grid_pts = grid_pts[:, ~local_mask] # reduce for faster calculation self.message( "[{}] Domain {}/{}, Index Limits: x = ({}, {}), y = ({}, {}), z = ({}, {})".format( time.strftime('%H:%M:%S', time.gmtime(int(time.time() - _ts))), domain_idx, np.product(domain_decomp), x1, x2 - 1, y1, y2 - 1, z1, z2 - 1)) self.message("Removed {} points due to mask".format(grid_pts_len - grid_pts.shape[1])) temp_pot = bempp.api.operators.potential.laplace.single_layer(dp0_space, grid_pts) * n_fun # Create array of original shape and fill with result at right place, # then move into master array _pot = np.zeros(grid_pts_len) _pot[~local_mask] = temp_pot[0] pot[x1:x2, y1:y2, z1:z2] = _pot.reshape([x2 - x1, y2 - y1, z2 - z1]) domain_idx += 1 try: del grid_pts del _pot del temp_pot except Exception as _e: print("Exception {} happened, but trying to carry on...".format(_e)) # TODO: Distribute results to other nodes -DW self._variables_bempp["ef_phi"] = pot self._variables_bempp["ef_mask"] = mymask self._variables_bempp["d"] = _d self._variables_bempp["n"] = _n self._variables_bempp["limits"] = limits return 0 def plot_combo(self, xypos=0.000, xyscale=1.0, zlim=None): assert self._variables_bempp["ef_itp"] is not None, "No E-Field calculated yet!" numpts = 5000 if zlim is None: zmin = np.min(self._variables_bempp["rf_itp"]._field["z"].grid[2]) # TODO: Field() should have limits zmax = np.min(self._variables_bempp["rf_itp"]._field["z"].grid[2]) else: zmin, zmax = zlim # Bz of z at x = y = 0 x = np.zeros(numpts) y = np.zeros(numpts) z = np.linspace(zmin, zmax, numpts) points = np.vstack([x, y, z]).T _, _, ez = self._variables_bempp["ef_itp"](points) plt.plot(z, ez, color=colors[0], label="$E_z$") # Bx of z at x = 0.005, y = 0 x = np.ones(numpts) * xypos points = np.vstack([x, y, z]).T ex, _, _ = self._variables_bempp["ef_itp"](points) plt.plot(z, xyscale * ex, color=colors[1], label="$\mathrm{{E}}_\mathrm{{x}}$ at x = {} m".format(xypos)) # By of z at x = 0.0, y = 0.005 x = np.zeros(numpts) y = np.ones(numpts) * xypos points = np.vstack([x, y, z]).T _, ey, _ = self._variables_bempp["ef_itp"](points) plt.plot(z, xyscale * ey, color=colors[2], label="$\mathrm{{E}}_\mathrm{{y}}$ at y = {} m".format(xypos)) plt.xlabel("z (m)") plt.ylabel("Field (V/m)") plt.legend(loc=2) plt.show() def get_phi(self): return {"phi": self._variables_bempp["ef_phi"], "mask": self._variables_bempp["ef_mask"], "limits": self._variables_bempp["limits"], "d": self._variables_bempp["d"], "n": self._variables_bempp["n"]} def solve_bempp(self): if self._full_mesh is None: print("No mesh generated, trying now...") mesh = self.generate_full_mesh() else: mesh = bempp.api.grid.grid_from_element_data(self._full_mesh["verts"], self._full_mesh["elems"], self._full_mesh["domns"]) dp0_space = bempp.api.function_space(mesh, "DP", 0) domain_mapping = {} for _elec_obj in self._elec_objects: domain_mapping[_elec_obj.domain_idx] = _elec_obj.voltage def f(*args): domain_index = args[2] result = args[3] result[0] = domain_mapping[domain_index] dirichlet_fun = bempp.api.GridFunction(dp0_space, fun=f) self._variables_bempp["d_fun_coeff"] = dirichlet_fun.coefficients if self._debug and RANK == 0: dirichlet_fun.plot() # Solve BEMPP problem only on 1 cpu (has internal multiprocessing) if RANK == 0: slp = bempp.api.operators.boundary.laplace.single_layer(dp0_space, dp0_space, dp0_space) neumann_fun, info = bempp.api.linalg.gmres(slp, dirichlet_fun, tol=1e-6, use_strong_form=True) mpi_data = {"n_coeff": neumann_fun.coefficients, "info": info} else: mpi_data = None mpi_data = COMM.bcast(mpi_data, root=0) COMM.barrier() self._variables_bempp["n_fun_coeff"] = mpi_data["n_coeff"] return 0 def initialize(self): assert len(self._cells) > 0, "No cells have been added, no vanes can be generated." # Delete all existing vane objects self._elec_objects = [_elec_obj for _elec_obj in self._elec_objects if "vane" not in _elec_obj.name] # There are four vanes (rods) in the RFQ # x = horizontal, y = vertical, with p, m denoting positive and negative axis directions # but they are symmetric, so we createonly two and copy them later local_vanes = [PyRFQVane(parent=self, vane_type="yp", cells=self._cells, voltage=self._voltage * 0.5, # Given voltage is 'inter-vane' occ_tolerance=self._occ_tolerance, occ_npart=15, h=self._variables_bempp["grid_res"], debug=self._debug), PyRFQVane(parent=self, vane_type="xp", cells=self._cells, voltage=-self._voltage * 0.5, # Given voltage is 'inter-vane' occ_tolerance=self._occ_tolerance, occ_npart=15, h=self._variables_bempp["grid_res"], debug=self._debug)] for _vane in local_vanes: _vane.set_mesh_parameter("r_tip", self.get_geometry_parameter("vane_radius")) _vane.set_mesh_parameter("h_type", self.get_geometry_parameter("vane_height_type")) _vane.set_mesh_parameter("h_block", self.get_geometry_parameter("vane_height")) _vane.set_mesh_parameter("refine_steps", self.get_bempp_parameter("refine_steps")) _vane.set_mesh_parameter("reverse_mesh", self.get_bempp_parameter("reverse_mesh")) _vane.set_mesh_parameter("nz", self.get_geometry_parameter("nz")) # Generate the two vanes in parallel: if MPI is None or SIZE == 1: if USE_MULTIPROC: p = Pool(2) local_vanes = p.map(self._worker_generate_vane_profile, local_vanes) else: for i, _vane in enumerate(local_vanes): local_vanes[i] = self._worker_generate_vane_profile(_vane) else: if RANK == 0: self.message("Proc {} working on vane {}".format(RANK, local_vanes[0].vane_type), rank=RANK) _vane = self._worker_generate_vane_profile(local_vanes[0]) mpi_data = {"vanes": [_vane, COMM.recv(source=1)]} elif RANK == 1: self.message("Proc {} working on vane {}".format(RANK, local_vanes[1].vane_type), rank=RANK) _vane = self._worker_generate_vane_profile(local_vanes[1]) COMM.send(_vane, dest=0) mpi_data = None else: if self._debug: self.message("Proc {} idle.".format(RANK), rank=RANK) mpi_data = None mpi_data = COMM.bcast(mpi_data, root=0) local_vanes = mpi_data["vanes"] # --- Now make copies, set vane_type self.message("Copying vanes...") for i, vane_type in enumerate(["ym", "xm"]): new_vane = copy.deepcopy(local_vanes[i]) # First one is y direction new_vane.set_vane_type(vane_type) local_vanes.append(new_vane) for _vane in local_vanes: self._elec_objects.append(_vane) self._initialized = True COMM.barrier() # TODO: Necessary? return 0 def generate_full_mesh(self): assert HAVE_BEMPP, "Can only create the full mesh with BEMPP at the moment!" # TODO: Better assertion/init/generate # assert self._vanes is not None, "No vanes generated yet, cannot mesh..." assert len(self._elec_objects) != 0, "Need at least one electrode object to generate full mesh!" # Initialize empty arrays of the correct shape (3 x n) vertices = np.zeros([3, 0]) elements = np.zeros([3, 0]) vertex_counter = 0 domains = np.zeros([0], int) # For now, do this only on the first node if RANK == 0: # Trying to do this with gmsh, but running into trouble with identical surface numbers # self._full_mesh_fn = os.path.join(self._temp_dir, "full_rfq.msh") # command = [GMSH_EXE, '-merge'] # # for _elec in self._elec_objects: # command.append(_elec.mesh_fn) # # command.append('-o') # command.append(self._full_mesh_fn) # command.append('-format') # command.append('msh2') # command.append('-save') # # output = subprocess.run(command) # # if self._debug: # print(output) for _elec in self._elec_objects: mesh = bempp.api.import_grid(_elec.mesh_fn) _vertices = mesh.leaf_view.vertices _elements = mesh.leaf_view.elements _domain_ids = mesh.leaf_view.domain_indices vertices = np.concatenate((vertices, _vertices), axis=1) elements = np.concatenate((elements, _elements + vertex_counter), axis=1) domains = np.concatenate((domains, _domain_ids), axis=0) # Increase the running counters vertex_counter += _vertices.shape[1] self._full_mesh = {"verts": vertices, "elems": elements, "domns": domains} if self._debug: bempp.api.grid.grid_from_element_data(vertices, elements, domains).plot() # Broadcast results to all nodes self._full_mesh = COMM.bcast(self._full_mesh, root=0) COMM.barrier() return self._full_mesh def generate_geo_str(self): # Check if RFQ has been initialized if not self._initialized: print("RFQ needs to be initialized, attempting now...") # if MPI is None or SIZE == 1: if RANK == 0: # no mpi or single core: use python multiprocessing and at least have threads for speedup if USE_MULTIPROC: p = Pool() _elec_objects = p.map(self._worker_generate_geo_str, self._elec_objects) else: _elec_objects = [] for i, _elec_obj in enumerate(self._elec_objects): _elec_objects.append(self._worker_generate_geo_str(_elec_obj)) mpi_data = {"elecs": _elec_objects} else: mpi_data = None self._elec_objects = COMM.bcast(mpi_data, root=0)["elecs"] COMM.barrier() # TODO: MPI-ify this? # elif SIZE >= 4: # # We have 4 or more procs and can use a single processor per vane # # if RANK <= 3: # # Generate on proc 0-3 # print("Proc {} working on electrode {}.".format(RANK + 1, self._elec_objects[RANK].name)) # sys.stdout.flush() # _vane = self._worker_generate_geo_str(self._elec_objects[RANK]) # # if RANK == 0: # # Assemble on proc 0 # mpi_data = {"vanes": [_vane, # COMM.recv(source=1), # COMM.recv(source=2), # COMM.recv(source=3)]} # else: # COMM.send(_vane, dest=0) # mpi_data = None # # else: # print("Proc {} idle.".format(RANK + 1)) # sys.stdout.flush() # mpi_data = None # # # Distribute # self._elec_objects = COMM.bcast(mpi_data, root=0)["vanes"] # COMM.barrier() # else: # # We have 2 or 3 procs, so do two vanes each on proc 0 and proc 1 # if RANK <= 1: # # Generate on proc 0, 1 # print("Proc {} working on vanes {} and {}.".format(RANK + 1, # self._elec_objects[RANK].vane_type, # self._elec_objects[RANK + 2].vane_type)) # sys.stdout.flush() # local_vanes = [self._worker_generate_geo_str(self._elec_objects[RANK]), # self._worker_generate_geo_str(self._elec_objects[RANK + 2])] # # if RANK == 0: # # Assemble on proc 0 # other_vanes = COMM.recv(source=1) # mpi_data = {"vanes": [local_vanes[0], # other_vanes[0], # local_vanes[1], # other_vanes[1]]} # else: # COMM.send(local_vanes, dest=0) # mpi_data = None # # else: # print("Proc {} idle.".format(RANK + 1)) # sys.stdout.flush() # mpi_data = None # # # Distribute # self._elec_objects = COMM.bcast(mpi_data, root=0)["vanes"] # COMM.barrier() self._have_geo_str = True return 0 def generate_gmsh_files(self): if not HAVE_GMSH: print("Gmsh could not be found (check path?) not creating msh files and brep.") return 1 # Check for existing geo string if not self._have_geo_str: print("No geo string has been generated, attemting to do so now...") self.generate_geo_str() if RANK == 0: print("Generating gmsh files of the electrodes.") sys.stdout.flush() # no mpi or single core: use python multiprocessing and at least have threads for speedup if USE_MULTIPROC: p = Pool() _elec_objects = p.map(self._worker_generate_gmsh_files, self._elec_objects) else: _elec_objects = [] for i, _elec_obj in enumerate(self._elec_objects): _elec_objects.append(self._worker_generate_gmsh_files(_elec_obj)) mpi_data = {"elecs": _elec_objects} else: mpi_data = None self._elec_objects = COMM.bcast(mpi_data, root=0)["elecs"] COMM.barrier() # if MPI is None or SIZE == 1: # # no mpi or single core: use python multiprocessing and at least have threads for speedup # if USE_MULTIPROC: # p = Pool() # self._elec_objects = p.map(self._worker_generate_gmsh_files, self._elec_objects) # else: # for i, _vane in enumerate(self._elec_objects): # self._elec_objects[i] = self._worker_generate_gmsh_files(_vane) # # elif SIZE >= 4: # # We have 4 or more procs and can use a single processor per vane # # if RANK <= 3: # # Generate on proc 0-3 # print("Proc {} working on vane {}.".format(RANK + 1, self._elec_objects[RANK].vane_type)) # sys.stdout.flush() # _vane = self._worker_generate_gmsh_files(self._elec_objects[RANK]) # # if RANK == 0: # # Assemble on proc 0 # mpi_data = {"vanes": [_vane, # COMM.recv(source=1), # COMM.recv(source=2), # COMM.recv(source=3)]} # else: # COMM.send(_vane, dest=0) # mpi_data = None # # else: # print("Proc {} idle.".format(RANK + 1)) # sys.stdout.flush() # mpi_data = None # # # Distribute # self._elec_objects = COMM.bcast(mpi_data, root=0)["vanes"] # COMM.barrier() # # else: # # We have 2 or 3 procs, so do two vanes each on proc 0 and proc 1 # if RANK <= 1: # # Generate on proc 0, 1 # print("Proc {} working on vanes {} and {}.".format(RANK + 1, # self._elec_objects[RANK].vane_type, # self._elec_objects[RANK + 2].vane_type)) # sys.stdout.flush() # local_vanes = [self._worker_generate_gmsh_files(self._elec_objects[RANK]), # self._worker_generate_gmsh_files(self._elec_objects[RANK + 2])] # # if RANK == 0: # # Assemble on proc 0 # other_vanes = COMM.recv(source=1) # mpi_data = {"vanes": [local_vanes[0], # other_vanes[0], # local_vanes[1], # other_vanes[1]]} # else: # COMM.send(local_vanes, dest=0) # mpi_data = None # # else: # print("Proc {} idle.".format(RANK + 1)) # sys.stdout.flush() # mpi_data = None # # # Distribute # self._elec_objects = COMM.bcast(mpi_data, root=0)["vanes"] # COMM.barrier() return 0 def generate_occ(self): # Unfortunately, multiprocessing/MPI can't handle SwigPyObject objects for _elec_object in self._elec_objects: _elec_object.generate_occ() return 0 def plot_vane_profile(self): _vanes = [_elec_obj for _elec_obj in self._elec_objects if "vane" in _elec_obj.name] assert len(_vanes) != 0, "No vanes calculated yet!" _fig, _ax = plt.subplots() for vane in _vanes: if vane.vane_type == "xp": z, x = vane.get_profile(nz=10000) _ax.plot(z, x, color=colors[0], label="x-profile") print("X Vane starting point", z[0], x[0]) if vane.vane_type == "yp": z, y = vane.get_profile(nz=10000) _ax.plot(z, -y, color=colors[1], label="y-profile") print("Y Vane starting point", z[0], y[0]) plt.xlabel("z (m)") plt.ylabel("x/y (m)") plt.legend(loc=1) plt.show() def print_cells(self): for number, cell in enumerate(self._cells): print("RFQ Cell {}: ".format(number + 1), cell) return 0 @staticmethod def message(*args, rank=0): if RANK == rank: print(*args) sys.stdout.flush() return 0 def reset(self): self._vanes = [] self._elec_objects = [] self._full_mesh = None self._have_geo_str = False self._have_occ_obj = False self._have_bem_obj = False self._initialized = False return 0 def save_to_file(self, filename=None): # if RANK == 0: # if filename is None: # filename = FileDialog().get_filename(action="save") for key, item in self.__dict__.items(): print(key, ":", item) # with open(filename, "wb") as of: # pass return 0 @staticmethod def _worker_generate_gmsh_files(electrode): electrode.generate_gmsh_files() return electrode @staticmethod def _worker_generate_geo_str(electrode): electrode.generate_geo_str() return electrode def _worker_generate_vane_profile(self, vane): vane.calculate_profile(fudge=self._fudge_vanes) return vane def write_inventor_macro(self, save_folder=None, **kwargs): """ This function writes out the vane profiles for X and Y and Inventor VBA macros that can be run immediately to generate 3D solid models in Autodesk Inventor (c). kwargs: vane_type: one of 'rod', 'vane', default is 'vane' TODO: Only 'vane' implemented as of now. vane_radius: radius of curvature of circular vanes, default is 0.005 m TODO: add hyperbolic vanes vane_height: height of a single vane either from the minimum point (vane_height_type = 'relative') or from the center of the RFQ (vane_height_type = 'absolute') default is 0.05 m vane_height_type: see above. default is absolute nz: number of points to use for spline in z direction. default is 500. :param save_folder: If None, a prompt is opened :return: """ # TODO: assert that height and absolute/relative combination work out geometrically # TODO: with the amplitude ofthe modulations (i.e. no degenerate geometry) for key, value in kwargs.items(): assert key in self._variables_gmtry.keys(), "write_inventor_macro: Unrecognized kwarg '{}'".format(key) self._variables_gmtry[key] = value assert self._variables_gmtry["vane_type"] != "rod", "vane_type == 'rod' not implemented yet. Aborting" if save_folder is None: fd = FileDialog() save_folder, _ = fd.get_filename('folder') if save_folder is None: return 0 for direction in ["X", "Y"]: # Generate text for Inventor macro header_text = """Sub CreateRFQElectrode{}() Dim oApp As Application Set oApp = ThisApplication ' Get a reference to the TransientGeometry object. Dim tg As TransientGeometry Set tg = oApp.TransientGeometry Dim oPart As PartDocument Dim oCompDef As PartComponentDefinition Dim oSketch3D As Sketch3D Dim oSpline As SketchSpline3D Dim vertexCollection1 As ObjectCollection """.format(direction) electrode_text = """ Set oPart = oApp.Documents.Add(kPartDocumentObject, , True) Set oCompDef = oPart.ComponentDefinition Set oSketch3D = oCompDef.Sketches3D.Add Set vertexCollection1 = oApp.TransientObjects.CreateObjectCollection(Null) FileName = "{}" fileNo = FreeFile 'Get first free file number Dim minHeight As Double minHeight = 10000 'cm, large number Open FileName For Input As #fileNo Do While Not EOF(fileNo) Dim strLine As String Line Input #1, strLine strLine = Trim$(strLine) If strLine <> "" Then ' Break the line up, using commas as the delimiter. Dim astrPieces() As String astrPieces = Split(strLine, ",") End If Call vertexCollection1.Add(tg.CreatePoint(astrPieces(0), astrPieces(1), astrPieces(2))) ' For X vane this is idx 0, for y vane it is idx 1 If CDbl(astrPieces({})) < minHeight Then minHeight = CDbl(astrPieces({})) End If Loop Close #fileNo Set oSpline = oSketch3D.SketchSplines3D.Add(vertexCollection1) """.format(os.path.join(save_folder, "Vane_{}.txt".format(direction)), AXES[direction], AXES[direction]) sweep_text = """ ' Now make a sketch to be swept ' Start with a work plane Dim oWP As WorkPlane Set oWP = oCompDef.WorkPlanes.AddByNormalToCurve(oSpline, oSpline.StartSketchPoint) ' Add a 2D sketch Dim oSketch2D As PlanarSketch Set oSketch2D = oCompDef.Sketches.Add(oWP) """ if direction == "X": sweep_text += """ ' Make sure the orientation of the sketch is correct ' We want the sketch x axis oriented with the lab y axis for X vane oSketch2D.AxisEntity = oCompDef.WorkAxes.Item(2) """ else: sweep_text += """ ' Make sure the orientation of the sketch is correct ' We want the sketch x axis oriented with the lab y axis for X vane oSketch2D.AxisEntity = oCompDef.WorkAxes.Item(1) ' Also, we need to flip the axis for Y vanes oSketch2D.NaturalAxisDirection = False """ sweep_text += """ ' Draw the half circle and block Dim radius As Double Dim height As Double radius = {} 'cm height = {} 'cm Dim oOrigin As SketchEntity Set oOrigin = oSketch2D.AddByProjectingEntity(oSpline.StartSketchPoint) """.format(self._variables_gmtry["vane_radius"] * 100.0, self._variables_gmtry["vane_height"] * 100.0) sweep_text += """ Dim oCenter As Point2d Set oCenter = tg.CreatePoint2d(oOrigin.Geometry.X, oOrigin.Geometry.Y - radius) Dim oCirc1 As Point2d Set oCirc1 = tg.CreatePoint2d(oOrigin.Geometry.X - radius, oOrigin.Geometry.Y - radius) Dim oCirc2 As Point2d Set oCirc2 = tg.CreatePoint2d(oOrigin.Geometry.X + radius, oOrigin.Geometry.Y - radius) Dim arc As SketchArc Set arc = oSketch2D.SketchArcs.AddByThreePoints(oCirc1, oOrigin.Geometry, oCirc2) """ sweep_text += """ Dim line1 As SketchLine Set line1 = oSketch2D.SketchLines.AddByTwoPoints(arc.EndSketchPoint, arc.StartSketchPoint) ' Create a Path Dim oPath As Path Set oPath = oCompDef.Features.CreatePath(oSpline) ' Create a profile. Dim oProfile As Profile Set oProfile = oSketch2D.Profiles.AddForSolid ' Create the sweep feature. Dim oSweep As SweepFeature ' Note: I am not sure if keeping the profile perpendicular to the path is more accurate, ' but unfortunately for trapezoidal cells (small fillets) it doesn't work ' so it has to be a 'parallel to original profile' kinda sweep -- or not? , kParallelToOriginalProfile Set oSweep = oCompDef.Features.SweepFeatures.AddUsingPath(oProfile, oPath, kJoinOperation) """ # Small modification depending on absolute or relative vane height: if self._variables_gmtry["vane_height_type"] == 'relative': sweep_text += """ ' Create another work plane above the vane Dim oWP2 As WorkPlane Set oWP2 = oCompDef.WorkPlanes.AddByPlaneAndOffset(oCompDef.WorkPlanes.Item({}), minHeight + height) """.format(AXES[direction] + 1) # X is 0 and Y is 1, but the correct plane indices are 1 and 2 else: sweep_text += """ ' Create another work plane above the vane Dim oWP2 As WorkPlane Set oWP2 = oCompDef.WorkPlanes.AddByPlaneAndOffset(oCompDef.WorkPlanes.Item({}), height) """.format(AXES[direction] + 1) # X is 0 and Y is 1, but the correct plane indices are 1 and 2 sweep_text += """ ' Start a sketch Set oSketch2D = oCompDef.Sketches.Add(oWP2) ' Project the bottom face of the sweep ' (start and end face might be tilted and contribute) ' at this point I don't know how Inventor orders the faces, 2 is my best guess but ' might be different occasionally... -DW Dim oEdge As Edge For Each oEdge In oSweep.SideFaces.Item(2).Edges Call oSketch2D.AddByProjectingEntity(oEdge) Next ' Create a profile. Set oProfile = oSketch2D.Profiles.AddForSolid ' Extrude Dim oExtDef As ExtrudeDefinition Dim oExt As ExtrudeFeature Set oExtDef = oCompDef.Features.ExtrudeFeatures.CreateExtrudeDefinition(oProfile, kJoinOperation) Call oExtDef.SetToNextExtent(kNegativeExtentDirection, oSweep.SurfaceBody) Set oExt = oCompDef.Features.ExtrudeFeatures.Add(oExtDef) ' Repeat but cutting in the up-direction ' Extrude Set oExtDef = oCompDef.Features.ExtrudeFeatures.CreateExtrudeDefinition(oProfile, kCutOperation) Call oExtDef.SetThroughAllExtent(kPositiveExtentDirection) Set oExt = oCompDef.Features.ExtrudeFeatures.Add(oExtDef) """ footer_text = """ oPart.UnitsOfMeasure.LengthUnits = kMillimeterLengthUnits ThisApplication.ActiveView.Fit End Sub """ # Write the Autodesk Inventor VBA macros: with open(os.path.join(save_folder, "Vane_{}.ivb".format(direction)), "w") as outfile: outfile.write(header_text + electrode_text + sweep_text + footer_text) # Write the vane profile files: with open(os.path.join(save_folder, "Vane_{}.txt".format(direction)), "w") as outfile: if direction == "X": for vane in self._vanes: if vane.vane_type == "xp": z, x = vane.get_profile(nz=self._variables_gmtry["nz"]) min_x = np.min(x) max_x = np.max(x) z_start = np.min(z) z_end = np.max(z) for _x, _z in zip(x, z): outfile.write("{:.6f}, {:.6f}, {:.6f}\r\n".format( _x * 100.0, # For some weird reason Inventor uses cm as default... 0.0, _z * 100.0)) else: for vane in self._vanes: if vane.vane_type == "yp": z, y = vane.get_profile(nz=self._variables_gmtry["nz"]) min_y = np.min(y) max_y =
np.max(y)
numpy.max
""" Tests to make sure deepchem models can overfit on tiny datasets. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals __author__ = "<NAME>" __copyright__ = "Copyright 2016, Stanford University" __license__ = "MIT" import os import tempfile import numpy as np import unittest import sklearn import shutil import tensorflow as tf import deepchem as dc import scipy.io from tensorflow.python.framework import test_util from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from flaky import flaky class TestOverfit(test_util.TensorFlowTestCase): """ Test that models can overfit simple datasets. """ def setUp(self): super(TestOverfit, self).setUp() self.current_dir = os.path.dirname(os.path.abspath(__file__)) def test_sklearn_regression_overfit(self): """Test that sklearn models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.rand(n_samples, n_tasks) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) regression_metric = dc.metrics.Metric(dc.metrics.r2_score) sklearn_model = RandomForestRegressor() model = dc.models.SklearnModel(sklearn_model) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .7 def test_sklearn_classification_overfit(self): """Test that sklearn models can overfit simple classification datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.randint(2, size=(n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) sklearn_model = RandomForestClassifier() model = dc.models.SklearnModel(sklearn_model) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_sklearn_skewed_classification_overfit(self): """Test sklearn models can overfit 0/1 datasets with few actives.""" n_samples = 100 n_features = 3 n_tasks = 1 # Generate dummy dataset np.random.seed(123) p = .05 ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.binomial(1, p, size=(n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) sklearn_model = RandomForestClassifier() model = dc.models.SklearnModel(sklearn_model) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tf_regression_overfit(self): """Test that TensorFlow models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) regression_metric = dc.metrics.Metric(dc.metrics.mean_squared_error) # TODO(rbharath): This breaks with optimizer="momentum". Why? model = dc.models.TensorflowMultiTaskRegressor( n_tasks, n_features, dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[np.sqrt(6) / np.sqrt(1000)], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tg_regression_overfit(self): """Test that TensorGraph models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) regression_metric = dc.metrics.Metric(dc.metrics.mean_squared_error) # TODO(rbharath): This breaks with optimizer="momentum". Why? model = dc.models.TensorGraphMultiTaskRegressor( n_tasks, n_features, dropouts=[0.], weight_init_stddevs=[np.sqrt(6) / np.sqrt(1000)], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tf_classification_overfit(self): """Test that tensorflow models can overfit simple classification datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) model = dc.models.TensorflowMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], learning_rate=0.0003, weight_init_stddevs=[.1], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tg_classification_overfit(self): """Test that TensorGraph models can overfit simple classification datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) model = dc.models.TensorGraphMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], weight_init_stddevs=[.1], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.0003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tf_fittransform_regression_overfit(self): """Test that TensorFlow FitTransform models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) fit_transformers = [dc.trans.CoulombFitTransformer(dataset)] regression_metric = dc.metrics.Metric(dc.metrics.mean_squared_error) model = dc.models.TensorflowMultiTaskFitTransformRegressor( n_tasks, [n_features, n_features], dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[np.sqrt(6) / np.sqrt(1000)], batch_size=n_samples, fit_transformers=fit_transformers, n_evals=1) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tg_fittransform_regression_overfit(self): """Test that TensorGraph FitTransform models can overfit simple regression datasets.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) fit_transformers = [dc.trans.CoulombFitTransformer(dataset)] regression_metric = dc.metrics.Metric(dc.metrics.mean_squared_error) model = dc.models.TensorGraphMultiTaskFitTransformRegressor( n_tasks, [n_features, n_features], dropouts=[0.], weight_init_stddevs=[np.sqrt(6) / np.sqrt(1000)], batch_size=n_samples, fit_transformers=fit_transformers, n_evals=1) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tf_skewed_classification_overfit(self): """Test tensorflow models can overfit 0/1 datasets with few actives.""" #n_samples = 100 n_samples = 100 n_features = 3 n_tasks = 1 n_classes = 2 # Generate dummy dataset np.random.seed(123) p = .05 ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.binomial(1, p, size=(n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) model = dc.models.TensorflowMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[.1], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .75 def test_tg_skewed_classification_overfit(self): """Test TensorGraph models can overfit 0/1 datasets with few actives.""" #n_samples = 100 n_samples = 100 n_features = 3 n_tasks = 1 n_classes = 2 # Generate dummy dataset np.random.seed(123) p = .05 ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.binomial(1, p, size=(n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) model = dc.models.TensorGraphMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], weight_init_stddevs=[.1], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .75 def test_tf_skewed_missing_classification_overfit(self): """TF, skewed data, few actives Test tensorflow models overfit 0/1 datasets with missing data and few actives. This is intended to be as close to singletask MUV datasets as possible. """ n_samples = 5120 n_features = 6 n_tasks = 1 n_classes = 2 # Generate dummy dataset np.random.seed(123) p = .002 ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.binomial(1, p, size=(n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) y_flat, w_flat = np.squeeze(y), np.squeeze(w) y_nonzero = y_flat[w_flat != 0] num_nonzero = np.count_nonzero(y_nonzero) weight_nonzero = len(y_nonzero) / num_nonzero w_flat[y_flat != 0] = weight_nonzero w = np.reshape(w_flat, (n_samples, n_tasks)) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) model = dc.models.TensorflowMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[1.], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=50) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .8 def test_tg_skewed_missing_classification_overfit(self): """TG, skewed data, few actives Test TensorGraph models overfit 0/1 datasets with missing data and few actives. This is intended to be as close to singletask MUV datasets as possible. """ n_samples = 5120 n_features = 6 n_tasks = 1 n_classes = 2 # Generate dummy dataset np.random.seed(123) p = .002 ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.binomial(1, p, size=(n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) y_flat, w_flat = np.squeeze(y), np.squeeze(w) y_nonzero = y_flat[w_flat != 0] num_nonzero = np.count_nonzero(y_nonzero) weight_nonzero = len(y_nonzero) / num_nonzero w_flat[y_flat != 0] = weight_nonzero w = np.reshape(w_flat, (n_samples, n_tasks)) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) model = dc.models.TensorGraphMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], weight_init_stddevs=[1.], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=100) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .7 def test_sklearn_multitask_classification_overfit(self): """Test SKLearn singletask-to-multitask overfits tiny data.""" n_tasks = 10 tasks = ["task%d" % task for task in range(n_tasks)] n_samples = 10 n_features = 3 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.randint(2, size=(n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids) classification_metric = dc.metrics.Metric( dc.metrics.roc_auc_score, task_averager=np.mean) def model_builder(model_dir): sklearn_model = RandomForestClassifier() return dc.models.SklearnModel(sklearn_model, model_dir) model = dc.models.SingletaskToMultitask(tasks, model_builder) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tf_multitask_classification_overfit(self): """Test tf multitask overfits tiny data.""" n_tasks = 10 n_samples = 10 n_features = 3 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric( dc.metrics.accuracy_score, task_averager=np.mean) model = dc.models.TensorflowMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], learning_rate=0.0003, weight_init_stddevs=[.1], batch_size=n_samples) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 @flaky def test_tg_multitask_classification_overfit(self): """Test TensorGraph multitask overfits tiny data.""" n_tasks = 10 n_samples = 10 n_features = 3 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric( dc.metrics.accuracy_score, task_averager=np.mean) model = dc.models.TensorGraphMultiTaskClassifier( n_tasks, n_features, dropouts=[0.], weight_init_stddevs=[.1], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.0003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tf_robust_multitask_classification_overfit(self): """Test tf robust multitask overfits tiny data.""" n_tasks = 10 n_samples = 10 n_features = 3 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric( dc.metrics.accuracy_score, task_averager=np.mean) model = dc.models.RobustMultitaskClassifier( n_tasks, n_features, layer_sizes=[50], bypass_layer_sizes=[10], dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[.1], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=25) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_tf_logreg_multitask_classification_overfit(self): """Test tf multitask overfits tiny data.""" n_tasks = 10 n_samples = 10 n_features = 3 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric( dc.metrics.accuracy_score, task_averager=np.mean) model = dc.models.TensorflowLogisticRegression( n_tasks, n_features, learning_rate=0.5, weight_init_stddevs=[.01], batch_size=n_samples) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9 def test_IRV_multitask_classification_overfit(self): """Test IRV classifier overfits tiny data.""" n_tasks = 5 n_samples = 10 n_features = 128 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.randint(2, size=(n_samples, n_features)) y = np.ones((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) IRV_transformer = dc.trans.IRVTransformer(5, n_tasks, dataset) dataset_trans = IRV_transformer.transform(dataset) classification_metric = dc.metrics.Metric( dc.metrics.accuracy_score, task_averager=np.mean) model = dc.models.TensorflowMultiTaskIRVClassifier( n_tasks, K=5, learning_rate=0.01, batch_size=n_samples) # Fit trained model model.fit(dataset_trans) model.save() # Eval model on train scores = model.evaluate(dataset_trans, [classification_metric]) assert scores[classification_metric.name] > .9 def test_sklearn_multitask_regression_overfit(self): """Test SKLearn singletask-to-multitask overfits tiny regression data.""" n_tasks = 2 tasks = ["task%d" % task for task in range(n_tasks)] n_samples = 10 n_features = 3 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.rand(n_samples, n_tasks) w = np.ones((n_samples, n_tasks)) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids) regression_metric = dc.metrics.Metric( dc.metrics.r2_score, task_averager=np.mean) def model_builder(model_dir): sklearn_model = RandomForestRegressor() return dc.models.SklearnModel(sklearn_model, model_dir) model = dc.models.SingletaskToMultitask(tasks, model_builder) # Fit trained model model.fit(dataset) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .7 def test_tf_multitask_regression_overfit(self): """Test tf multitask overfits tiny data.""" n_tasks = 10 n_samples = 10 n_features = 3 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) regression_metric = dc.metrics.Metric( dc.metrics.mean_squared_error, task_averager=np.mean, mode="regression") model = dc.models.TensorflowMultiTaskRegressor( n_tasks, n_features, dropouts=[0.], learning_rate=0.0003, weight_init_stddevs=[.1], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=50) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tg_multitask_regression_overfit(self): """Test TensorGraph multitask overfits tiny data.""" n_tasks = 10 n_samples = 10 n_features = 3 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) regression_metric = dc.metrics.Metric( dc.metrics.mean_squared_error, task_averager=np.mean, mode="regression") model = dc.models.TensorGraphMultiTaskRegressor( n_tasks, n_features, dropouts=[0.], weight_init_stddevs=[.1], batch_size=n_samples) model.set_optimizer( dc.models.tensorgraph.tensor_graph.TFWrapper( tf.train.AdamOptimizer, learning_rate=0.0003, beta1=0.9, beta2=0.999)) # Fit trained model model.fit(dataset, nb_epoch=50) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .1 def test_tf_robust_multitask_regression_overfit(self): """Test tf robust multitask overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 10 n_samples = 10 n_features = 3 n_classes = 2 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.zeros((n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) regression_metric = dc.metrics.Metric( dc.metrics.mean_squared_error, task_averager=np.mean, mode="regression") model = dc.models.RobustMultitaskRegressor( n_tasks, n_features, layer_sizes=[50], bypass_layer_sizes=[10], dropouts=[0.], learning_rate=0.003, weight_init_stddevs=[.1], batch_size=n_samples) # Fit trained model model.fit(dataset, nb_epoch=25) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] < .2 def test_graph_conv_singletask_classification_overfit(self): """Test graph-conv multitask overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) g = tf.Graph() sess = tf.Session(graph=g) n_tasks = 1 n_samples = 10 n_features = 3 n_classes = 2 # Load mini log-solubility dataset. featurizer = dc.feat.ConvMolFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_classification.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) n_feat = 75 batch_size = 10 graph_model = dc.nn.SequentialGraph(n_feat) graph_model.add(dc.nn.GraphConv(64, n_feat, activation='relu')) graph_model.add(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) graph_model.add(dc.nn.GraphPool()) # Gather Projection graph_model.add(dc.nn.Dense(128, 64, activation='relu')) graph_model.add(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) graph_model.add(dc.nn.GraphGather(batch_size, activation="tanh")) model = dc.models.MultitaskGraphClassifier( graph_model, n_tasks, n_feat, batch_size=batch_size, learning_rate=1e-3, learning_rate_decay_time=1000, optimizer_type="adam", beta1=.9, beta2=.999) # Fit trained model model.fit(dataset, nb_epoch=20) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .65 def test_graph_conv_singletask_regression_overfit(self): """Test graph-conv multitask overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) g = tf.Graph() sess = tf.Session(graph=g) n_tasks = 1 n_samples = 10 n_features = 3 n_classes = 2 # Load mini log-solubility dataset. featurizer = dc.feat.ConvMolFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_regression.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) classification_metric = dc.metrics.Metric( dc.metrics.mean_squared_error, task_averager=np.mean) n_feat = 75 batch_size = 10 graph_model = dc.nn.SequentialGraph(n_feat) graph_model.add(dc.nn.GraphConv(64, n_feat, activation='relu')) graph_model.add(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) graph_model.add(dc.nn.GraphPool()) # Gather Projection graph_model.add(dc.nn.Dense(128, 64)) graph_model.add(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) graph_model.add(dc.nn.GraphGather(batch_size, activation="tanh")) model = dc.models.MultitaskGraphRegressor( graph_model, n_tasks, n_feat, batch_size=batch_size, learning_rate=1e-2, learning_rate_decay_time=1000, optimizer_type="adam", beta1=.9, beta2=.999) # Fit trained model model.fit(dataset, nb_epoch=40) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] < .2 def test_DTNN_multitask_regression_overfit(self): """Test deep tensor neural net overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) input_file = os.path.join(self.current_dir, "example_DTNN.mat") dataset = scipy.io.loadmat(input_file) X = dataset['X'] y = dataset['T'] w = np.ones_like(y) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids=None) regression_metric = dc.metrics.Metric( dc.metrics.pearson_r2_score, task_averager=np.mean) n_tasks = y.shape[1] batch_size = 10 graph_model = dc.nn.SequentialDTNNGraph() graph_model.add(dc.nn.DTNNEmbedding(n_embedding=20)) graph_model.add(dc.nn.DTNNStep(n_embedding=20)) graph_model.add(dc.nn.DTNNStep(n_embedding=20)) graph_model.add(dc.nn.DTNNGather(n_embedding=20)) n_feat = 20 model = dc.models.MultitaskGraphRegressor( graph_model, n_tasks, n_feat, batch_size=batch_size, learning_rate=1e-3, learning_rate_decay_time=1000, optimizer_type="adam", beta1=.9, beta2=.999) # Fit trained model model.fit(dataset, nb_epoch=20) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .9 def test_tensorgraph_DTNN_multitask_regression_overfit(self): """Test deep tensor neural net overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) input_file = os.path.join(self.current_dir, "example_DTNN.mat") dataset = scipy.io.loadmat(input_file) X = dataset['X'] y = dataset['T'] w = np.ones_like(y) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids=None) regression_metric = dc.metrics.Metric( dc.metrics.pearson_r2_score, task_averager=np.mean) n_tasks = y.shape[1] batch_size = 10 model = dc.models.DTNNTensorGraph( n_tasks, n_embedding=20, n_distance=100, batch_size=batch_size, learning_rate=0.001, use_queue=False, mode="regression") # Fit trained model model.fit(dataset, nb_epoch=20) # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .9 def test_ANI_multitask_regression_overfit(self): """Test ANI-1 regression overfits tiny data.""" input_file = os.path.join(self.current_dir, "example_DTNN.mat") np.random.seed(123) tf.set_random_seed(123) dataset = scipy.io.loadmat(input_file) X = np.concatenate([np.expand_dims(dataset['Z'], 2), dataset['R']], axis=2) X = X[:, :13, :] y = dataset['T'] w = np.ones_like(y) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids=None) regression_metric = dc.metrics.Metric( dc.metrics.pearson_r2_score, mode="regression") n_tasks = y.shape[1] batch_size = 10 transformers = [ dc.trans.NormalizationTransformer(transform_y=True, dataset=dataset), dc.trans.ANITransformer( max_atoms=13, atom_cases=[1, 6, 7, 8], radial_cutoff=8., angular_cutoff=5., radial_length=8, angular_length=4) ] for transformer in transformers: dataset = transformer.transform(dataset) n_feat = transformers[-1].get_num_feats() - 1 model = dc.models.ANIRegression( n_tasks, 13, n_feat, atom_number_cases=[1, 6, 7, 8], batch_size=batch_size, learning_rate=0.001, use_queue=False, mode="regression") # Fit trained model model.fit(dataset, nb_epoch=50) # Eval model on train scores = model.evaluate(dataset, [regression_metric], transformers[0:1]) assert scores[regression_metric.name] > .8 def test_BP_symmetry_function_overfit(self): """Test ANI-1 regression overfits tiny data.""" input_file = os.path.join(self.current_dir, "example_DTNN.mat") np.random.seed(123) tf.set_random_seed(123) dataset = scipy.io.loadmat(input_file) X = np.concatenate([np.expand_dims(dataset['Z'], 2), dataset['R']], axis=2) X = X[:, :13, :] y = dataset['T'] w = np.ones_like(y) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids=None) regression_metric = dc.metrics.Metric( dc.metrics.pearson_r2_score, mode="regression") n_tasks = y.shape[1] batch_size = 10 transformers = [ dc.trans.NormalizationTransformer(transform_y=True, dataset=dataset), dc.trans.ANITransformer( max_atoms=13, atom_cases=[1, 6, 7, 8], atomic_number_differentiated=False, radial_cutoff=8., angular_cutoff=5., radial_length=8, angular_length=4) ] for transformer in transformers: dataset = transformer.transform(dataset) n_feat = transformers[-1].get_num_feats() - 1 model = dc.models.ANIRegression( n_tasks, 13, n_feat, atom_number_cases=[1, 6, 7, 8], batch_size=batch_size, learning_rate=0.001, use_queue=False, mode="regression") # Fit trained model model.fit(dataset, nb_epoch=50) # Eval model on train scores = model.evaluate(dataset, [regression_metric], transformers[0:1]) assert scores[regression_metric.name] > .8 def test_DAG_singletask_regression_overfit(self): """Test DAG regressor multitask overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 1 # Load mini log-solubility dataset. featurizer = dc.feat.ConvMolFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_regression.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) regression_metric = dc.metrics.Metric( dc.metrics.pearson_r2_score, task_averager=np.mean) n_feat = 75 batch_size = 10 transformer = dc.trans.DAGTransformer(max_atoms=50) dataset = transformer.transform(dataset) graph = dc.nn.SequentialDAGGraph(n_atom_feat=n_feat, max_atoms=50) graph.add(dc.nn.DAGLayer(30, n_feat, max_atoms=50, batch_size=batch_size)) graph.add(dc.nn.DAGGather(30, max_atoms=50)) model = dc.models.MultitaskGraphRegressor( graph, n_tasks, n_feat, batch_size=batch_size, learning_rate=0.001, learning_rate_decay_time=1000, optimizer_type="adam", beta1=.9, beta2=.999) # Fit trained model model.fit(dataset, nb_epoch=50) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .8 def test_tensorgraph_DAG_singletask_regression_overfit(self): """Test DAG regressor multitask overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 1 # Load mini log-solubility dataset. featurizer = dc.feat.ConvMolFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_regression.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) regression_metric = dc.metrics.Metric( dc.metrics.pearson_r2_score, task_averager=np.mean) n_feat = 75 batch_size = 10 transformer = dc.trans.DAGTransformer(max_atoms=50) dataset = transformer.transform(dataset) model = dc.models.DAGTensorGraph( n_tasks, max_atoms=50, n_atom_feat=n_feat, batch_size=batch_size, learning_rate=0.001, use_queue=False, mode="regression") # Fit trained model model.fit(dataset, nb_epoch=50) # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .8 def test_weave_singletask_classification_overfit(self): """Test weave model overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 1 # Load mini log-solubility dataset. featurizer = dc.feat.WeaveFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_classification.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) n_atom_feat = 75 n_pair_feat = 14 n_feat = 128 batch_size = 10 max_atoms = 50 graph = dc.nn.AlternateSequentialWeaveGraph( batch_size, max_atoms=max_atoms, n_atom_feat=n_atom_feat, n_pair_feat=n_pair_feat) graph.add(dc.nn.AlternateWeaveLayer(max_atoms, 75, 14)) graph.add(dc.nn.AlternateWeaveLayer(max_atoms, 50, 50, update_pair=False)) graph.add(dc.nn.Dense(n_feat, 50, activation='tanh')) graph.add(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) graph.add( dc.nn.AlternateWeaveGather( batch_size, n_input=n_feat, gaussian_expand=True)) model = dc.models.MultitaskGraphClassifier( graph, n_tasks, n_feat, batch_size=batch_size, learning_rate=1e-3, learning_rate_decay_time=1000, optimizer_type="adam", beta1=.9, beta2=.999) # Fit trained model model.fit(dataset, nb_epoch=20) model.save() # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .65 def test_tensorgraph_weave_singletask_classification_overfit(self): """Test weave model overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 1 # Load mini log-solubility dataset. featurizer = dc.feat.WeaveFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_classification.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) n_atom_feat = 75 n_pair_feat = 14 n_feat = 128 batch_size = 10 model = dc.models.WeaveTensorGraph( n_tasks, n_atom_feat=n_atom_feat, n_pair_feat=n_pair_feat, n_graph_feat=n_feat, batch_size=batch_size, learning_rate=0.001, use_queue=False, mode="classification") # Fit trained model model.fit(dataset, nb_epoch=20) # Eval model on train scores = model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .65 def test_weave_singletask_regression_overfit(self): """Test weave model overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 1 # Load mini log-solubility dataset. featurizer = dc.feat.WeaveFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_regression.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) regression_metric = dc.metrics.Metric( dc.metrics.pearson_r2_score, task_averager=np.mean) n_atom_feat = 75 n_pair_feat = 14 n_feat = 128 batch_size = 10 max_atoms = 50 graph = dc.nn.AlternateSequentialWeaveGraph( batch_size, max_atoms=max_atoms, n_atom_feat=n_atom_feat, n_pair_feat=n_pair_feat) graph.add(dc.nn.AlternateWeaveLayer(max_atoms, 75, 14)) graph.add(dc.nn.AlternateWeaveLayer(max_atoms, 50, 50, update_pair=False)) graph.add(dc.nn.Dense(n_feat, 50, activation='tanh')) graph.add(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) graph.add( dc.nn.AlternateWeaveGather( batch_size, n_input=n_feat, gaussian_expand=True)) model = dc.models.MultitaskGraphRegressor( graph, n_tasks, n_feat, batch_size=batch_size, learning_rate=1e-3, learning_rate_decay_time=1000, optimizer_type="adam", beta1=.9, beta2=.999) # Fit trained model model.fit(dataset, nb_epoch=40) model.save() # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .9 def test_tensorgraph_weave_singletask_regression_overfit(self): """Test weave model overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 1 # Load mini log-solubility dataset. featurizer = dc.feat.WeaveFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_regression.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) regression_metric = dc.metrics.Metric( dc.metrics.pearson_r2_score, task_averager=np.mean) n_atom_feat = 75 n_pair_feat = 14 n_feat = 128 batch_size = 10 model = dc.models.WeaveTensorGraph( n_tasks, n_atom_feat=n_atom_feat, n_pair_feat=n_pair_feat, n_graph_feat=n_feat, batch_size=batch_size, learning_rate=0.001, use_queue=False, mode="regression") # Fit trained model model.fit(dataset, nb_epoch=120) # Eval model on train scores = model.evaluate(dataset, [regression_metric]) assert scores[regression_metric.name] > .8 def test_siamese_singletask_classification_overfit(self): """Test siamese singletask model overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 1 n_feat = 75 max_depth = 4 n_pos = 6 n_neg = 4 test_batch_size = 10 n_train_trials = 80 support_batch_size = n_pos + n_neg # Load mini log-solubility dataset. featurizer = dc.feat.ConvMolFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_classification.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) support_model = dc.nn.SequentialSupportGraph(n_feat) # Add layers # output will be (n_atoms, 64) support_model.add(dc.nn.GraphConv(64, n_feat, activation='relu')) # Need to add batch-norm separately to test/support due to differing # shapes. # output will be (n_atoms, 64) support_model.add_test(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) # output will be (n_atoms, 64) support_model.add_support(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) support_model.add(dc.nn.GraphPool()) support_model.add_test(dc.nn.GraphGather(test_batch_size)) support_model.add_support(dc.nn.GraphGather(support_batch_size)) model = dc.models.SupportGraphClassifier( support_model, test_batch_size=test_batch_size, support_batch_size=support_batch_size, learning_rate=1e-3) # Fit trained model. Dataset has 6 positives and 4 negatives, so set # n_pos/n_neg accordingly. model.fit( dataset, n_episodes_per_epoch=n_train_trials, n_pos=n_pos, n_neg=n_neg) model.save() # Eval model on train. Dataset has 6 positives and 4 negatives, so set # n_pos/n_neg accordingly. Note that support is *not* excluded (so we # can measure model has memorized support). Replacement is turned off to # ensure that support contains full training set. This checks that the # model has mastered memorization of provided support. scores, _ = model.evaluate( dataset, classification_metric, n_trials=5, n_pos=n_pos, n_neg=n_neg, exclude_support=False) ##################################################### DEBUG # TODO(rbharath): Check if something went wrong here... # Measure performance on 0-th task. #assert scores[0] > .9 assert scores[0] > .75 ##################################################### DEBUG def test_attn_lstm_singletask_classification_overfit(self): """Test attn lstm singletask overfits tiny data.""" np.random.seed(123) tf.set_random_seed(123) n_tasks = 1 n_feat = 75 max_depth = 4 n_pos = 6 n_neg = 4 test_batch_size = 10 support_batch_size = n_pos + n_neg n_train_trials = 80 # Load mini log-solubility dataset. featurizer = dc.feat.ConvMolFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_classification.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) support_model = dc.nn.SequentialSupportGraph(n_feat) # Add layers # output will be (n_atoms, 64) support_model.add(dc.nn.GraphConv(64, n_feat, activation='relu')) # Need to add batch-norm separately to test/support due to differing # shapes. # output will be (n_atoms, 64) support_model.add_test(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) # output will be (n_atoms, 64) support_model.add_support(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) support_model.add(dc.nn.GraphPool()) support_model.add_test(dc.nn.GraphGather(test_batch_size)) support_model.add_support(dc.nn.GraphGather(support_batch_size)) # Apply an attention lstm layer support_model.join( dc.nn.AttnLSTMEmbedding(test_batch_size, support_batch_size, 64, max_depth)) model = dc.models.SupportGraphClassifier( support_model, test_batch_size=test_batch_size, support_batch_size=support_batch_size, learning_rate=1e-3) # Fit trained model. Dataset has 6 positives and 4 negatives, so set # n_pos/n_neg accordingly. model.fit( dataset, n_episodes_per_epoch=n_train_trials, n_pos=n_pos, n_neg=n_neg) model.save() # Eval model on train. Dataset has 6 positives and 4 negatives, so set # n_pos/n_neg accordingly. Note that support is *not* excluded (so we # can measure model has memorized support). Replacement is turned off to # ensure that support contains full training set. This checks that the # model has mastered memorization of provided support. scores, _ = model.evaluate( dataset, classification_metric, n_trials=5, n_pos=n_pos, n_neg=n_neg, exclude_support=False) # Measure performance on 0-th task. ##################################################### DEBUG # TODO(rbharath): Check if something went wrong here... # Measure performance on 0-th task. #assert scores[0] > .85 assert scores[0] > .79 ##################################################### DEBUG def test_residual_lstm_singletask_classification_overfit(self): """Test resi-lstm multitask overfits tiny data.""" n_tasks = 1 n_feat = 75 max_depth = 4 n_pos = 6 n_neg = 4 test_batch_size = 10 support_batch_size = n_pos + n_neg n_train_trials = 80 # Load mini log-solubility dataset. featurizer = dc.feat.ConvMolFeaturizer() tasks = ["outcome"] input_file = os.path.join(self.current_dir, "example_classification.csv") loader = dc.data.CSVLoader( tasks=tasks, smiles_field="smiles", featurizer=featurizer) dataset = loader.featurize(input_file) classification_metric = dc.metrics.Metric(dc.metrics.accuracy_score) support_model = dc.nn.SequentialSupportGraph(n_feat) # Add layers # output will be (n_atoms, 64) support_model.add(dc.nn.GraphConv(64, n_feat, activation='relu')) # Need to add batch-norm separately to test/support due to differing # shapes. # output will be (n_atoms, 64) support_model.add_test(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) # output will be (n_atoms, 64) support_model.add_support(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) support_model.add(dc.nn.GraphPool()) support_model.add_test(dc.nn.GraphGather(test_batch_size)) support_model.add_support(dc.nn.GraphGather(support_batch_size)) # Apply a residual lstm layer support_model.join( dc.nn.ResiLSTMEmbedding(test_batch_size, support_batch_size, 64, max_depth)) model = dc.models.SupportGraphClassifier( support_model, test_batch_size=test_batch_size, support_batch_size=support_batch_size, learning_rate=1e-3) # Fit trained model. Dataset has 6 positives and 4 negatives, so set # n_pos/n_neg accordingly. model.fit( dataset, n_episodes_per_epoch=n_train_trials, n_pos=n_pos, n_neg=n_neg) model.save() # Eval model on train. Dataset has 6 positives and 4 negatives, so set # n_pos/n_neg accordingly. Note that support is *not* excluded (so we # can measure model has memorized support). Replacement is turned off to # ensure that support contains full training set. This checks that the # model has mastered memorization of provided support. scores, _ = model.evaluate( dataset, classification_metric, n_trials=5, n_pos=n_pos, n_neg=n_neg, exclude_support=False) # Measure performance on 0-th task. ##################################################### DEBUG # TODO(rbharath): Check if something went wrong here... # Measure performance on 0-th task. #assert scores[0] > .9 assert scores[0] > .65 ##################################################### DEBUG def test_tf_progressive_regression_overfit(self): """Test tf progressive multitask overfits tiny data.""" np.random.seed(123) n_tasks = 9 n_samples = 10 n_features = 3 n_classes = 2 # Generate dummy dataset
np.random.seed(123)
numpy.random.seed
# cvstitch.py # --------------------------- # Contains the logic for stitching masks. See class doc for details. import numpy as np import cv2 import sys import time from math import ceil import matplotlib.pyplot as plt import warnings import pandas as pd class CVMaskStitcher(): """ Implements basic stitching between mask subtiles of semi-uniform size (see constraints below). Initialized with the pixel overlap between masks and the threshold over which an overlap is considered to be one cell, and returns the full set of masks for the passed in rows and cols. """ def __init__(self, overlap=80, threshold=8): self.overlap = overlap self.threshold = threshold self.memory_max = 15 #reindexes masks for final stitching so no two masks have same id number def renumber_masks(self, masks): prev_max = 0 for i, crop in enumerate(masks): if np.any(crop.astype(bool)): newcrop =
np.copy(crop)
numpy.copy
import numpy as np from jax import numpy as jnp from ff import nonbonded from typing import Union, Optional try: from scipy.optimize import root_scalar except ImportError as error: import scipy print(f"scipy version is {scipy.__version__}, but `scipy.optimize.root_scalar` was added in 1.2") raise error array = Union[np.array, jnp.array] def _taylor_first_order(x: array, f_x: float, grad: array) -> callable: """ Notes: TODO: is it preferable to use jax linearize? https://jax.readthedocs.io/en/latest/jax.html#jax.linearize """ def f_prime(y: array) -> float: return f_x +
np.dot(grad, y - x)
numpy.dot
import time , os ,cv2 from options.train_options import TrainOptions from data.data_loader import CreateDataLoader from models.models import create_model import ntpath import numpy as np import skvideo.io import time output_video = False opt = TrainOptions().parse() data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() print(dataset) dataset_size = len(data_loader) print('#training videos = %d' % dataset_size) model = create_model(opt) opt.results_dir = './results/' total_steps = 0 web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) def ck_array(i,o): i_A = np.transpose(127.5*(i['A']+1.)[0],(1,2,3,0)) i_B = np.transpose(127.5*(i['B']+1.)[0],(1,2,3,0)) o_A = o['real_A'] o_B = o['real_B'] a_diff = i_A - o_A b_diff = i_B - o_B print('diffa',a_diff.max(),a_diff.min(),a_diff.mean()) print('diffb', b_diff.max(), b_diff.min(), b_diff.mean()) def save_videos(web_dir, visuals, vid_path, epoch): vid_dir = os.path.join(web_dir, 'videos') #name = ntpath.basename(vid_path).split('.')[0] # add data generation time as name name = time.strftime('%Y%m%d-%H%M%S') #print("vid_dir: {}".format(vid_dir)) #print("name: {}".format(name)) A = visuals['real_A'] last_A = np.tile(A[-1], (A.shape[0], 1, 1, 1)) #print("A_last shape: {}".format(A[-1].shape)) #print('last_A: {}'.format(last_A.shape)) B = visuals['real_B'] first_B = np.tile(B[0], (A.shape[0], 1, 1, 1)) fake = visuals['fake_B'] first_fake =
np.tile(fake[0], (A.shape[0], 1, 1, 1))
numpy.tile
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(
np.min(pr)
numpy.min
# coding=utf-8 # Copyright 2020 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tensor2tensor.layers.transformer_glow_layers. 1. Actnorm test (zero mean and unit variance). 2. Invertibility tests for: * actnorm * actnorm with weight normalization * 1x1 invertible convolution * multi-head 1x1 invertible convolution * affine coupling * split * 1 step of flow * k steps of flow * entire pipeline (tested up to 3 levels, 32 steps: tca/tca/ca, 12/12/8) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile from absl.testing import parameterized import numpy as np from tensor2tensor.layers import common_attention from tensor2tensor.layers import transformer_glow_layers as glow from tensor2tensor.layers import transformer_glow_layers_ops as gops from tensor2tensor.models import transformer import tensorflow.compat.v1 as tf BATCH_SIZE = 20 INPUT_LENGTH = 3 TARGET_LENGTH = 16 N_CHANNELS = 256 HIDDEN_SIZE = 64 N_1X1_HEADS = 4 DTYPE = tf.float32 def float32_bottleneck(x): return tf.cast(tf.cast(x, tf.float32), tf.float64) def get_diff(l1, l2): l2 = l2[::-1] for i1, i2 in zip(l1, l2): print (i1 - i2) for i1, i2 in zip(l1, l2): print (np.max(np.abs(i1 - i2))) class TransformerGlowLayersTest(parameterized.TestCase, tf.test.TestCase): def get_hparams(self): hparams = transformer.transformer_small() hparams.add_hparam("prior_type", "affine") hparams.add_hparam("factor", 2) # squeezing factor hparams.add_hparam("n_layers_transform_params", 1) hparams.add_hparam("n_1x1_heads", N_1X1_HEADS) hparams.add_hparam("flow_num_1x1_heads", 4) hparams.add_hparam("flow_num_heads", 4) hparams.add_hparam("flow_hidden_size", 64) hparams.add_hparam("flow_filter_size", 128) hparams.add_hparam("flow_layer_prepostprocess_dropout", 0.0) hparams.add_hparam("flow_attention_dropout", 0.0) hparams.add_hparam("flow_relu_dropout", 0.0) hparams.add_hparam("latent_size", N_CHANNELS) hparams.add_hparam("use_weightnorm", True) hparams.add_hparam("kl_startup_steps", 2000) hparams.add_hparam("affine_scale", "glow") hparams.add_hparam("scale_width", 0.999) hparams.add_hparam("step_fn", "glow") # glow / chunting hparams.add_hparam("conv_fn", "np") # np / tf hparams.add_hparam("posterior_type", "diagonal_normal") hparams.causal_decoder_self_attention = False hparams.hidden_size = HIDDEN_SIZE hparams.weight_dtype = "float32" hparams.add_hparam("pos_attn", False) return hparams def get_data(self): x = tf.random_normal( (BATCH_SIZE, TARGET_LENGTH, N_CHANNELS), dtype=DTYPE) x_lengths = np.random.randint( low=1, high=TARGET_LENGTH+1, size=BATCH_SIZE) x_lengths = np.ceil(x_lengths / 4.0) * 4.0 x_lengths = x_lengths.astype(int) x_mask = tf.sequence_mask(x_lengths, maxlen=TARGET_LENGTH, dtype=DTYPE) return x, x_mask, x_lengths def get_kwargs(self, x_mask, hparams=None): if hparams is None: hparams = self.get_hparams() encoder_output = tf.random.uniform( (BATCH_SIZE, INPUT_LENGTH, HIDDEN_SIZE), dtype=DTYPE) encoder_decoder_attention_bias = tf.zeros( (BATCH_SIZE, 1, 1, INPUT_LENGTH), dtype=DTYPE) decoder_self_attention_bias = 1.0 - x_mask[:, tf.newaxis, tf.newaxis, :] decoder_self_attention_bias *= -1e9 kwargs = {"hparams": hparams, "encoder_output": encoder_output, "encoder_decoder_attention_bias": encoder_decoder_attention_bias, "decoder_self_attention_bias": decoder_self_attention_bias} return kwargs def test_actnorm(self): _, x_mask, _ = self.get_data() x = tf.random_normal((BATCH_SIZE, TARGET_LENGTH, N_CHANNELS), mean=50.0, stddev=10.0, dtype=DTYPE) x_act, logabsdet = glow.actnorm( "actnorm", x, x_mask, inverse=False, init=True) x_act_nopad = tf.boolean_mask(x_act, x_mask) x_mean, x_var = tf.nn.moments(x_act_nopad, axes=[0]) self.evaluate(tf.global_variables_initializer()) x, x_act, logabsdet, x_mean, x_var = ( self.evaluate([x, x_act, logabsdet, x_mean, x_var])) self.assertEqual(x_act.shape, (BATCH_SIZE, TARGET_LENGTH, N_CHANNELS)) self.assertEqual(logabsdet.shape, (BATCH_SIZE,)) self.assertTrue(np.allclose(x_mean, 0.0, atol=1e-5)) self.assertTrue(np.allclose(x_var, 1.0, atol=1e-5)) def test_actnorm_invertibility(self): name = "actnorm" x, x_mask, _ = self.get_data() x_inv, logabsdet = glow.actnorm( name, x, x_mask, inverse=False, init=False) x_inv_inv, logabsdet_inv = glow.actnorm( name, x_inv, x_mask, inverse=True, init=False) self.evaluate(tf.global_variables_initializer()) x, x_inv, x_inv_inv, x_mask, logabsdet, logabsdet_inv = ( self.evaluate( [x, x_inv, x_inv_inv, x_mask, logabsdet, logabsdet_inv])) diff = x - x_inv_inv logabsdet_sum = logabsdet + logabsdet_inv self.assertEqual(x.shape, (BATCH_SIZE, TARGET_LENGTH, N_CHANNELS)) self.assertEqual(x_inv.shape, (BATCH_SIZE, TARGET_LENGTH, N_CHANNELS)) self.assertEqual(x_inv_inv.shape, (BATCH_SIZE, TARGET_LENGTH, N_CHANNELS)) self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) self.assertTrue(np.allclose(logabsdet_sum, 0.0, atol=1e-5)) @parameterized.parameters( (glow.multihead_invertible_1x1_conv_np, "a"), (glow.multihead_invertible_1x1_conv_np, "c"), ) def test_multi_1x1_invertibility( self, func, multihead_split): name = "multi_1x1" x, x_mask, _ = self.get_data() x_inv, logabsdet = func( name, x, x_mask, multihead_split, inverse=False, dtype=DTYPE) x_inv_inv, logabsdet_inv = func( name, x_inv, x_mask, multihead_split, inverse=True, dtype=DTYPE) self.evaluate(tf.global_variables_initializer()) x, x_mask, x_inv, x_inv_inv, logabsdet, logabsdet_inv = ( self.evaluate( [x, x_mask, x_inv, x_inv_inv, logabsdet, logabsdet_inv])) diff = x - x_inv_inv logabsdet_sum = logabsdet + logabsdet_inv logabsdet_ = logabsdet / np.sum(x_mask, -1) self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) self.assertTrue(np.allclose(logabsdet_, 0.0, atol=1e-5)) self.assertTrue(np.allclose(logabsdet_sum, 0.0, atol=1e-5)) @parameterized.parameters( (glow.additive_coupling, "c"), (glow.additive_coupling, "t"), (glow.additive_coupling, "a"), (glow.affine_coupling, "c"), (glow.affine_coupling, "t"), (glow.affine_coupling, "a"), ) def test_coupling_invertibility(self, func, split_dim): name = "affine" x, x_mask, _ = self.get_data() kwargs = self.get_kwargs(x_mask) x_inv, logabsdet = func( name, x, x_mask, split_dim=split_dim, identity_first=True, inverse=False, init=False, disable_dropout=True, **kwargs) x_inv_inv, logabsdet_inv = func( name, x_inv, x_mask, split_dim=split_dim, identity_first=True, inverse=True, init=False, disable_dropout=True, **kwargs) self.evaluate(tf.global_variables_initializer()) x, x_mask, x_inv, x_inv_inv, logabsdet, logabsdet_inv = ( self.evaluate( [x, x_mask, x_inv, x_inv_inv, logabsdet, logabsdet_inv])) diff = x - x_inv_inv logabsdet_sum = logabsdet + logabsdet_inv self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) self.assertTrue(np.allclose(logabsdet_sum, 0.0, atol=1e-5)) def test_split(self): x, x_mask, _ = self.get_data() x_inv, z, log_p = glow.split( "split", x, x_mask, inverse=False) x_inv_inv, _, log_p_inv = glow.split( "split", x_inv, x_mask, z=z, inverse=True) self.evaluate(tf.global_variables_initializer()) x, x_inv, x_inv_inv, z, log_p, log_p_inv = self.evaluate( [x, x_inv, x_inv_inv, z, log_p, log_p_inv]) diff = x - x_inv_inv log_p_diff = log_p - log_p_inv self.assertEqual( x_inv.shape, (BATCH_SIZE, TARGET_LENGTH, N_CHANNELS//2)) self.assertEqual( z.shape, (BATCH_SIZE, TARGET_LENGTH, N_CHANNELS//2)) self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) self.assertTrue(np.allclose(log_p_diff, 0.0, atol=1e-5)) def test_flow_invertibility(self): name = "flow_step" split_dims = "cat" x, x_mask, _ = self.get_data() kwargs = self.get_kwargs(x_mask) x_inv, logabsdet = glow.flow_step_glow( name, x, x_mask, split_dims, inverse=False, init=False, dtype=DTYPE, disable_dropout=True, **kwargs) x_inv_inv, logabsdet_inv = glow.flow_step_glow( name, x_inv, x_mask, split_dims, inverse=True, init=False, dtype=DTYPE, disable_dropout=True, **kwargs) self.evaluate(tf.global_variables_initializer()) x, x_mask, x_inv, x_inv_inv, logabsdet, logabsdet_inv = ( self.evaluate( [x, x_mask, x_inv, x_inv_inv, logabsdet, logabsdet_inv])) diff = x - x_inv_inv logabsdet_sum = logabsdet + logabsdet_inv self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) self.assertTrue(np.allclose(logabsdet_sum, 0.0, atol=1e-5)) @parameterized.parameters( ("1", "cat", "affine"), ("1/1", "cat/cat", "affine"), ("1/1/1", "cat/cat/ca", "affine"), ) def test_aaa_glow_training(self, depths, split_plans, prior_type): with tf.Graph().as_default(): _, x_mask, _ = self.get_data() x = tf.random_normal((BATCH_SIZE, TARGET_LENGTH, N_CHANNELS), mean=10.0, stddev=3.0, dtype=DTYPE) bias = common_attention.attention_bias_ignore_padding(1.0 - x_mask) hparams = self.get_hparams() hparams.prior_type = prior_type hparams.depths = depths hparams.split_plans = split_plans n_levels = len(hparams.depths.split("/")) kwargs = self.get_kwargs(x_mask, hparams) _ = kwargs.pop("decoder_self_attention_bias") x_inv, _, _, _ = glow.glow( "glow", x, x_mask, bias, inverse=False, init=True, disable_dropout=True, **kwargs) curr_dir = tempfile.mkdtemp() model_path = os.path.join(curr_dir, "model") with tf.Session() as session: saver = tf.train.Saver() session.run(tf.global_variables_initializer()) session.run(x_inv) saver.save(session, model_path) with tf.Graph().as_default(): _, x_mask, _ = self.get_data() x = tf.random_normal((BATCH_SIZE, TARGET_LENGTH, N_CHANNELS), mean=10.0, stddev=3.0, dtype=DTYPE) bias = common_attention.attention_bias_ignore_padding(1.0 - x_mask) hparams = self.get_hparams() hparams.depths = depths hparams.split_plans = split_plans kwargs = self.get_kwargs(x_mask, hparams) _ = kwargs.pop("decoder_self_attention_bias") log_q_z = gops.standard_normal_density(x, x_mask) log_q_z = tf.reduce_sum(log_q_z) / tf.reduce_sum(x_mask) x_inv, logabsdets, log_ps, zs = glow.glow( "glow", x, x_mask, bias, inverse=False, init=False, disable_dropout=True, **kwargs) x_inv_inv, logabsdets_inv, log_ps_inv, _ = glow.glow( "glow", x_inv, x_mask, bias, inverse=True, split_zs=zs, init=False, disable_dropout=True, **kwargs) logabsdets = tf.reduce_sum( logabsdets, axis=0) / tf.reduce_sum(x_mask) logabsdets_inv = tf.reduce_sum( logabsdets_inv, axis=0) / tf.reduce_sum(x_mask) log_ps = tf.reduce_sum(log_ps, axis=0) / tf.reduce_sum(x_mask) log_ps_inv = tf.reduce_sum(log_ps_inv, axis=0) / tf.reduce_sum(x_mask) with tf.Session() as session: saver = tf.train.Saver() saver.restore(session, model_path) (x, x_inv, x_inv_inv, log_q_z, logabsdets, log_ps, logabsdets_inv, log_ps_inv) = session.run([ x, x_inv, x_inv_inv, log_q_z, logabsdets, log_ps, logabsdets_inv, log_ps_inv]) diff = x - x_inv_inv log_ps_diff = log_ps - log_ps_inv logabsdets_sum = logabsdets + logabsdets_inv self.assertEqual( x_inv.shape, (BATCH_SIZE, TARGET_LENGTH//(2**(n_levels-1)), N_CHANNELS)) print (np.max(np.abs(diff))) print (np.max(np.abs(log_ps_diff))) print (np.max(np.abs(logabsdets_sum))) self.assertTrue(np.allclose(diff, 0.0, atol=1e-4), msg=np.max(
np.abs(diff)
numpy.abs
#!/usr/bin/env python """Tests for `mpipartition` package.""" import pytest from mpipartition import Partition, distribute, overload import numpy as np def _overloading(dimensions, n, ol): assert dimensions < 7 labels = "xyzuvw"[:dimensions] partition = Partition(dimensions) for i in range(dimensions): assert ol < partition.extent[i] rank = partition.rank nranks = partition.nranks
np.random.seed(rank)
numpy.random.seed
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 14 21:31:56 2017 @author: Franz """ import scipy.signal import numpy as np import scipy.io as so import os.path import re import matplotlib.pylab as plt import h5py import matplotlib.patches as patches import numpy.random as rand import seaborn as sns import pandas as pd from functools import reduce import random import pdb class Mouse : def __init__(self, idf, list=None, typ='') : self.recordings = [] self.recordings.append(list) self.typ = typ self.idf = idf def add(self, rec) : self.recordings.append(rec) def __len__(self) : return len(self.recordings) def __repr__(self) : return ", ".join(self.recordings) ### PROCESSING OF RECORDING DATA ############################################## def load_stateidx(ppath, name, ann_name=''): """ load the sleep state file of recording (folder) $ppath/$name @Return: M,K sequence of sleep states, sequence of 0'1 and 1's indicating non- and annotated states """ ddir = os.path.join(ppath, name) ppath, name = os.path.split(ddir) if ann_name == '': ann_name = name sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt') f = open(sfile, 'r') lines = f.readlines() f.close() n = 0 for l in lines: if re.match('\d', l): n += 1 M = np.zeros(n, dtype='int') K = np.zeros(n, dtype='int') i = 0 for l in lines : if re.search('^\s+$', l) : continue if re.search('\s*#', l) : continue if re.match('\d+\s+-?\d+', l) : a = re.split('\s+', l) M[i] = int(a[0]) K[i] = int(a[1]) i += 1 return M,K def load_recordings(ppath, rec_file) : """ load_recordings(ppath, rec_file) load recording listing with syntax: [E|C] \s+ recording_name #COMMENT @RETURN: (list of controls, lis of experiments) """ exp_list = [] ctr_list = [] rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() for l in lines : if re.search('^\s+$', l) : continue if re.search('^\s*#', l) : continue a = re.split('\s+', l) if re.search('E', a[0]) : exp_list.append(a[1]) if re.search('C', a[0]) : ctr_list.append(a[1]) return ctr_list, exp_list def load_dose_recordings(ppath, rec_file): """ load recording list with following syntax: A line is either control or experiments; Control recordings look like: C \s recording_name Experimental recordings also come with an additional dose parameter (allowing for comparison of multiple doses with controls) E \s recording_name \s dose_1 E \s recording_name \s dose_2 """ rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() # first get all potential doses doses = {} ctr_list = [] for l in lines : if re.search('^\s+$', l): continue if re.search('^\s*#', l): continue a = re.split('\s+', l) if re.search('E', a[0]): if a[2] in doses: doses[a[2]].append(a[1]) else: doses[a[2]] = [a[1]] if re.search('C', a[0]): ctr_list.append(a[1]) return ctr_list, doses def get_snr(ppath, name): """ read and return sampling rate (SR) from file $ppath/$name/info.txt """ fid = open(os.path.join(ppath, name, 'info.txt'), newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + 'SR' + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return float(values[0]) def get_infoparam(ifile, field): """ NOTE: field is a single string and the function does not check for the type of the values for field. In fact, it just returns the string following field """ fid = open(ifile, newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + field + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return values def add_infoparam(ifile, field, vals): """ :param ifile: info file :param field: Parameters specifier, e.g. 'SR' :param vals: list with parameters """ fid = open(ifile, 'a') vals = [str(s) for s in vals] param = " ".join(vals) fid.write('%s:\t%s' % (field, param)) fid.write(os.linesep) fid.close() def laser_start_end(laser, SR=1525.88, intval=5): """laser_start_end(ppath, name) print start and end index of laser stimulation trains: For example, if you was stimulated for 2min every 20 min with 20 Hz, return the start and end index of the each 2min stimulation period (train) returns the tuple (istart, iend), both indices are inclusive, i.e. part of the sequence @Param: laser - laser, vector of 0s and 1s intval - minimum time separation [s] between two laser trains @Return: (istart, iend) - tuple of two np.arrays with laser start and end indices """ idx = np.where(laser > 0.5)[0] if len(idx) == 0 : return ([], []) idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0] istart = np.hstack([idx[0], idx[idx2+1]]) iend = np.hstack([idx[idx2], idx[-1]]) return (istart, iend) def load_laser(ppath, name): """ load laser from recording ppath/name @RETURN: @laser, vector of 0's and 1's """ # laser might be .mat or h5py file # perhaps we could find a better way of testing that file = os.path.join(ppath, name, 'laser_'+name+'.mat') try: laser = np.array(h5py.File(file,'r').get('laser')) except: laser = so.loadmat(file)['laser'] return np.squeeze(laser) def laser_protocol(ppath, name): """ What was the stimulation frequency and the inter-stimulation interval for recording $ppath/$name? @Return: iinter-stimulation intervals, avg. inter-stimulation interval, frequency """ laser = load_laser(ppath, name) SR = get_snr(ppath, name) # first get inter-stimulation interval (istart, iend) = laser_start_end(laser, SR) intv = np.diff(np.array(istart/float(SR))) d = intv/60.0 print("The laser was turned on in average every %.2f min," % (np.mean(d))) print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d))) print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean()))) # print laser start times print("Start time of each laser trial:") j=1 for t in istart: print("trial %d: %.2f" % (j, (t / float(SR)) / 60)) j += 1 # for each laser stimulation interval, check laser stimulation frequency dt = 1/float(SR) freq = [] laser_up = [] laser_down = [] for (i,j) in zip(istart, iend): part = laser[i:j+1] (a,b) = laser_start_end(part, SR, 0.005) dur = (j-i+1)*dt freq.append(len(a) / dur) up_dur = (b-a+1)*dt*1000 down_dur = (a[1:]-b[0:-1]-1)*dt*1000 laser_up.append(np.mean(up_dur)) laser_down.append(np.mean(down_dur)) print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq))) print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down)))) return d, np.mean(d), np.mean(np.array(freq)) def swap_eeg(ppath, rec, ch='EEG'): """ swap EEG and EEG2 or EMG with EMG2 if $ch='EMG' """ if ch == 'EEG': name = 'EEG' else: name = ch EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name] EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2'] tmp = EEG EEG = EEG2 EEG2 = tmp file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name) file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name) so.savemat(file_eeg1, {name : EEG}) so.savemat(file_eeg2, {name+'2' : EEG2}) def eeg_conversion(ppath, rec, conv_factor=0.195): """ multiply all EEG and EMG channels with the given conversion factor and write the conversion factor as parameter (conversion:) into the info file. Only if there's no conversion factor in the info file specified, the conversion will be executed :param ppath: base filder :param rec: recording :param conv_factor: conversion factor :return: n/s """ ifile = os.path.join(ppath, rec, 'info.txt') conv = get_infoparam(ifile, 'conversion') if len(conv) > 0: print("found conversion: parameter in info file") print("returning: no conversion necessary!!!") return else: files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EEG', f)] for f in files: name = re.split('\.', f)[0] EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EEG[0].dtype == 'int16': EEG = EEG * conv_factor file_eeg = os.path.join(ppath, rec, '%s.mat' % name) print(file_eeg) so.savemat(file_eeg, {name: EEG}) else: print('Wrong datatype! probably already converted; returning...') return files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EMG', f)] for f in files: name = re.split('\.', f)[0] EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EMG[0].dtype == 'int16': EMG = EMG * conv_factor file_emg = os.path.join(ppath, rec, '%s.mat' % name) print(file_emg) so.savemat(file_emg, {name: EMG}) else: print('Wrong datatype! probably already converted; returning...') return add_infoparam(ifile, 'conversion', [conv_factor]) calculate_spectrum(ppath, rec) ### DEPRICATED ############################################ def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01): """ return index of each video frame onset ppath/rec - recording @Optional SR - sampling rate of EEG(!) recording iv - minimum time inverval (in seconds) between two frames @Return index of each video frame onset """ V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video']) TS = np.arange(0, len(V)) # indices where there's a jump in the signal t = TS[np.where(V<0.5)]; if len(t) == 0: idx = [] return idx # time points where the interval between jumps is longer than iv t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0] idx = np.concatenate(([t[0]],t[t2+1])) return idx # SIGNAL PROCESSING ########################################################### def my_lpfilter(x, w0, N=4): """ create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate. The nice thing about this filter is that is has zero-phase distortion. A conventional lowpass filter would introduce a phase lag. w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency. So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by w0 = 2 * x / sampling_rate N - order of filter @Return: low-pass filtered signal See also my hp_filter, or my_bpfilter """ from scipy import signal b,a = signal.butter(N, w0) y = signal.filtfilt(b,a, x) return y def my_hpfilter(x, w0, N=4): """ create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2 """ from scipy import signal # use scipy.signal.firwin to generate filter #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) b,a = signal.butter(N, w0, 'high') y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1) return y def my_bpfilter(x, w0, w1, N=4,bf=True): """ create N-th order bandpass Butterworth filter with corner frequencies w0*sampling_rate/2 and w1*sampling_rate/2 """ #from scipy import signal #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) #return y from scipy import signal b,a = signal.butter(N, [w0, w1], 'bandpass') if bf: y = signal.filtfilt(b,a, x) else: y = signal.lfilter(b,a, x) return y def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'): from scipy.signal import iirfilter,lfilter fs = sr nyq = fs/2.0 low = freq - band/2.0 high = freq + band/2.0 low = low/nyq high = high/nyq b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop', analog=False, ftype=filter_type) filtered_data = lfilter(b, a, x) return filtered_data def downsample_vec(x, nbin): """ y = downsample_vec(x, nbin) downsample the vector x by replacing nbin consecutive \ bin by their mean \ @RETURN: the downsampled vector """ n_down = int(np.floor(len(x) / nbin)) x = x[0:n_down*nbin] x_down = np.zeros((n_down,)) # 0 1 2 | 3 4 5 | 6 7 8 for i in range(nbin) : idx = list(range(i, int(n_down*nbin), int(nbin))) x_down += x[idx] return x_down / nbin def smooth_data(x, sig): """ y = smooth_data(x, sig) smooth data vector @x with gaussian kernel with standard deviation $sig """ sig = float(sig) if sig == 0.0: return x # gaussian: gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig)) bound = 1.0/10000 L = 10. p = gauss(L, sig) while (p > bound): L = L+10 p = gauss(L, sig) #F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.)) # py3: F = [gauss(x, sig) for x in
np.arange(-L, L+1.)
numpy.arange
# # BSD 3-Clause License # # Copyright (c) 2022 University of Wisconsin - Madison # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.# import torch import torchvision # import torch.nn as nn # import torch.optim as optim import torchvision.transforms as transforms import time import os import glob import numpy as np from PIL import Image, ImageEnhance, ImageFilter import matplotlib.pyplot as plt import matplotlib.patches as patches # import cv2 class SegImgLoader(): def __init__(self, data_root, max_samples=-1, img_format=".png", seg_format=".png"): self.imgs = [] self.seg_imgs = [] self.data_root = data_root self.img_dir = os.path.join(data_root, "imgs") self.seg_dir = os.path.join(data_root, "seg_imgs") self.max_samples = max_samples if(not os.path.exists(self.img_dir)): print("Error, img directory not found: {}".format(self.img_dir)) exit(1) if(not os.path.exists(self.seg_dir)): print("Error, segmented img directory not found: {}".format(self.seg_dir)) exit(1) self.imgs = glob.glob(self.img_dir + "/*"+img_format) if(len(self.imgs) == 0): print("Error: no images found in {}".format( os.path.join(self.data_root, "imgs/*"+img_format))) exit(1) for f in self.imgs: basename = os.path.splitext(os.path.basename(f))[0] self.seg_imgs.append(os.path.join( self.seg_dir, basename+seg_format)) if(self.max_samples > 0 and self.max_samples < len(self.imgs)): self.imgs = self.imgs[0:self.max_samples] self.seg_imgs = self.seg_imgs[0:self.max_samples] print("Data loaded. Imgs={}, Seg Imgs={}".format( len(self.imgs), len(self.seg_imgs))) def ConvertSegToBoxes(self, semantic_maps): # boxes = np.asarray( # [0, 0, 1, 1]*self.max_boxes).reshape((self.max_boxes, 4)) # labels = np.zeros(self.max_boxes).reshape( # (self.max_boxes)).astype(np.int64) boxes = [] labels = [] box_count = 0 for c in range(1, np.max(semantic_maps[:, :, 0])+1): for i in range(1, np.max(semantic_maps[:, :, 1])+1): indices = np.where( np.logical_and(semantic_maps[:, :, 1] == i, semantic_maps[:, :, 0] == c)) if(indices[0].shape[0] > 1): y0 = np.min(indices[0]) y1 = np.max(indices[0]) x0 = np.min(indices[1]) x1 = np.max(indices[1]) if(x1 > x0 and y1 > y0 ): #change x0,y0,x1,y1 to normalized center (x,y) and width, height x_center = .5 * (x0 + x1) / float(semantic_maps.shape[1]) y_center = .5 * (y0 + y1) / float(semantic_maps.shape[0]) x_size = (x1-x0) / float(semantic_maps.shape[1]) y_size = (y1-y0) / float(semantic_maps.shape[0]) # boxes.append(np.array([x0, y0, x1, y1])) boxes.append(np.array([x_center, y_center, x_size, y_size])) labels.append(c) box_count += 1 boxes = np.asarray(boxes)#.astype(np.int32) labels = np.asarray(labels).astype(np.int32) return boxes, labels def GenerateAAVBBFromSeg(self,label_format=".txt"): label_dir = os.path.join(self.data_root, "labels") if(not os.path.exists(label_dir)): os.mkdir(label_dir) for i in range(len(self.imgs)): #load segmentation img seg_img = np.array(Image.open(self.seg_imgs[i])).view(np.uint16)[:, :, :] #generate boxes and labels from segmentation img boxes,classes = self.ConvertSegToBoxes(seg_img) if(len(classes)>0): classes -= np.ones(classes.shape).astype(np.int32) classes = np.reshape(classes, (len(classes),1)) output = np.append(classes,boxes,axis=1) basename = os.path.splitext(os.path.basename(self.imgs[i]))[0] file_name = os.path.join(label_dir, basename+label_format) np.savetxt(file_name,output,fmt='%.6f') print("Generated AABB file {}/{}".format(i+1,len(self.imgs))) class ObjectDetectionImgLoader(torch.utils.data.Dataset): def __init__(self, data_root, max_boxes, apply_transforms=False, max_samples=-1, img_format=".png", box_format=".txt"): self.name = "Object Detection Image Loader" self.data_root = data_root self.max_boxes = max_boxes self.max_samples = max_samples self.img_dir = os.path.join(self.data_root, "imgs") self.label_dir = os.path.join(self.data_root, "labels") self.imgs = [] self.labels = [] #transform parameters self.use_transforms = apply_transforms np.random.seed(1) self.flip_prob = 0.5 self.max_translation = (0.2,0.2) self.brightness = (0.75,1.33) self.sharpness = (0.25,4.0) self.saturation = (0.75,1.33) self.contrast = (0.75,1.33) self.max_zoom = 2.0 if(not os.path.exists(self.data_root)): print("Error: directory not found. Data root = {}".format(self.data_root)) exit(1) if(not os.path.exists(self.img_dir)): print("Error: directory not found. Image directory = {}".format(self.img_dir)) exit(1) if(not os.path.exists(self.label_dir)): print("Error: directory not found. Label directory = {}".format(self.label_dir)) exit(1) self.imgs = glob.glob(os.path.join(self.data_root, "imgs/*")) if(len(self.imgs) == 0): print("Error: no images found in {}".format( os.path.join(self.data_root, "imgs/*"))) exit(1) for f in self.imgs: basename = os.path.splitext(os.path.basename(f))[0] self.labels.append(os.path.join(self.label_dir, basename+box_format)) if(self.max_samples > 0 and self.max_samples < len(self.imgs)): self.imgs = self.imgs[0:self.max_samples] self.labels = self.labels[0:self.max_samples] print("Data loaded. Imgs={}, Labels={}".format( len(self.imgs), len(self.labels))) def __len__(self): return len(self.imgs) def ApplyTransforms(self,img,boxes,classes): #get height and width parameters height = np.asarray(img).shape[0] width = np.asarray(img).shape[1] #=== random horizontal flip === if(np.random.rand() > self.flip_prob): #flip image horizontally img = img.transpose(Image.FLIP_LEFT_RIGHT) #flip boxes horizontally boxes_x_0 = width - 1 - boxes[:,0] boxes_x_1 = width - 1 - boxes[:,2] boxes[:,0] = boxes_x_1 boxes[:,2] = boxes_x_0 #=== random zoom and crop === zoom = np.random.uniform(1.0,self.max_zoom) img = img.resize((int(zoom*width),int(zoom*height)),resample=Image.BILINEAR) crop_pt = np.random.uniform(0.0,0.9,(2)) # crop_pt = [0,0] crop_pt = (crop_pt * (zoom*width - width, zoom*height - height)).astype(np.int) crop_pt[0] = np.clip(crop_pt[0],0,img.size[0] - width) crop_pt[1] = np.clip(crop_pt[1],0,img.size[1] - height) # img = img[crop_pt[1],crop_pt[1]+height,crop_pt[0],crop_pt[0]+width,:] img = img.crop((crop_pt[0],crop_pt[1],crop_pt[0]+width,crop_pt[1]+height)) boxes = (boxes * zoom).astype(np.int) boxes = boxes - (crop_pt[0],crop_pt[1],crop_pt[0],crop_pt[1]) boxes[:,0] = np.clip(boxes[:,0],0,width-1) #clip x0 value boxes[:,2] = np.clip(boxes[:,2],0,width-1) #clip x1 value boxes[:,1] = np.clip(boxes[:,1],0,height-1) #clip y0 value boxes[:,3] = np.clip(boxes[:,3],0,height-1) #clip y1 value for i in range(len(classes)): #if box moved out of image, set label to 0 if(abs(boxes[i,0] - boxes[i,2]) < 0.5 or abs(boxes[i,1] - boxes[i,3]) < 0.5): classes[i] = 0 #reset label boxes[i,:] = np.array([0,1,0,1]) #reset to valid box coords #=== random translation === #get translation parameters t_x,t_y = np.random.uniform(-1,1,size=2) * self.max_translation * (height,width) t_x = int(t_x) t_y = int(t_y) #apply translation to img img = img.transform(img.size,Image.AFFINE,(1,0,t_x,0,1,t_y)) # img = img.rotate(1,translate=(t_x,t_y)) #apply translation to boxes, cutting any that fully leave the image boxes = boxes - np.array([t_x,t_y,t_x,t_y]) boxes[:,0] = np.clip(boxes[:,0],0,width-1) #clip x0 value boxes[:,2] = np.clip(boxes[:,2],0,width-1) #clip x1 value boxes[:,1] = np.clip(boxes[:,1],0,height-1) #clip y0 value boxes[:,3] = np.clip(boxes[:,3],0,height-1) #clip y1 value for i in range(len(classes)): #if box moved out of image, set label to 0 if(abs(boxes[i,0] - boxes[i,2]) < 0.5 or abs(boxes[i,1] - boxes[i,3]) < 0.5): classes[i] = 0 #reset label boxes[i,:] = np.array([0,1,0,1]) #reset to valid box coords #=== random brightness, hue, saturation changes === brighten = ImageEnhance.Brightness(img) img = brighten.enhance(np.random.uniform(self.brightness[0],self.brightness[1],size=1)) sharpen = ImageEnhance.Sharpness(img) img = sharpen.enhance(np.random.uniform(self.sharpness[0],self.sharpness[1],size=1)) saturate = ImageEnhance.Color(img) img = saturate.enhance(np.random.uniform(self.saturation[0],self.saturation[1],size=1)) contrast = ImageEnhance.Contrast(img) img = saturate.enhance(np.random.uniform(self.contrast[0],self.contrast[1],size=1)) return img,boxes,classes def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() # load files img = Image.open(self.imgs[idx]) boxes = np.asarray([.5, .5, .2, .2]*self.max_boxes).reshape((self.max_boxes, 4)) classes = np.zeros(self.max_boxes) #if the boxes file doesn't exist, it means there were no boxes in that image if(not os.path.exists(self.labels[idx])): #ensure correct datatypes img = np.asarray(img)/255.0 img =
np.transpose(img, (2, 0, 1))
numpy.transpose
# # Copyright 2021 Budapest Quantum Computing Group # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple, List import numpy as np from scipy.linalg import sqrtm from piquasso.api.config import Config from piquasso.api.errors import InvalidState, InvalidParameter, PiquassoException from piquasso.api.state import State from piquasso._math.functions import gaussian_wigner_function from piquasso._math.linalg import ( is_symmetric, is_positive_semidefinite, ) from piquasso._math.symplectic import symplectic_form, xp_symplectic_form from piquasso._math.combinatorics import get_occupation_numbers from piquasso._math.transformations import from_xxpp_to_xpxp_transformation_matrix from .probabilities import ( DensityMatrixCalculation, DisplacedDensityMatrixCalculation, NondisplacedDensityMatrixCalculation, ) class GaussianState(State): r"""Class to represent a Gaussian state.""" def __init__(self, d: int, config: Config = None) -> None: """ Args: d (int): The number of modes. """ super().__init__(config=config) self._d = d self.reset() def __len__(self) -> int: return self._d @property def d(self) -> int: return len(self) def reset(self) -> None: r"""Resets the state to a vacuum.""" vector_shape = (self.d,) matrix_shape = vector_shape * 2 self._m = np.zeros(vector_shape, dtype=complex) self._G = np.zeros(matrix_shape, dtype=complex) self._C = np.zeros(matrix_shape, dtype=complex) @classmethod def _from_representation( cls, *, m: np.ndarray, G: np.ndarray, C: np.ndarray, config: Config, ) -> "GaussianState": obj = cls(d=len(m), config=config) obj._m = m obj._G = G obj._C = C return obj def __eq__(self, other: object) -> bool: if not isinstance(other, GaussianState): return False return (
np.allclose(self._C, other._C)
numpy.allclose
import pytest import numpy as np import pandas as pd import numpy.testing as npt import pandas.testing as pdt from scipy.stats import logistic import zepid as ze from zepid import (RiskRatio, RiskDifference, OddsRatio, NNT, IncidenceRateRatio, IncidenceRateDifference, Sensitivity, Specificity, Diagnostics, interaction_contrast, interaction_contrast_ratio, spline, table1_generator) from zepid.calc import sensitivity, specificity @pytest.fixture def data_set(): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 df['dis'] = [1]*25 + [0]*25 + [1]*25 + [0]*25 return df @pytest.fixture def multi_exposures(): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 + [2]*50 df['dis'] = [1]*25 + [0]*25 + [1]*25 + [0]*25 + [1]*25 + [0]*25 return df @pytest.fixture def time_data(): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 df['dis'] = [1]*6 + [0]*44 + [1]*14 + [0]*36 df['t'] = [2]*50 + [8]*50 return df class TestRiskRatio: def test_risk_ratio_reference_equal_to_1(self, data_set): rr = RiskRatio() rr.fit(data_set, exposure='exp', outcome='dis') assert rr.risk_ratio[0] == 1 def test_risk_ratio_equal_to_1(self, data_set): rr = RiskRatio() rr.fit(data_set, exposure='exp', outcome='dis') assert rr.risk_ratio[1] == 1 def test_multiple_exposures(self, multi_exposures): rr = RiskRatio() rr.fit(multi_exposures, exposure='exp', outcome='dis') assert rr.results.shape[0] == 3 assert list(rr.results.index) == ['Ref:0', '1', '2'] def test_match_sas_ci(self, data_set): sas_ci = 0.6757, 1.4799 rr = RiskRatio() rr.fit(data_set, exposure='exp', outcome='dis') df = rr.results npt.assert_allclose(np.round(df.loc[df.index == '1'][['RR_LCL', 'RR_UCL']], 4), [sas_ci]) def test_match_sas_sampledata(self): sas_rd = 0.742118331 sas_se = 0.312612740 sas_ci = 0.402139480, 1.369523870 df = ze.load_sample_data(False) rr = RiskRatio() rr.fit(df, exposure='art', outcome='dead') npt.assert_allclose(rr.risk_ratio[1], sas_rd, rtol=1e-5) rf = rr.results npt.assert_allclose(rf.loc[rf.index == '1'][['RR_LCL', 'RR_UCL']], [sas_ci], rtol=1e-5) npt.assert_allclose(rf.loc[rf.index == '1'][['SD(RR)']], sas_se, rtol=1e-5) class TestRiskDifference: def test_risk_difference_reference_equal_to_0(self, data_set): rd = RiskDifference() rd.fit(data_set, exposure='exp', outcome='dis') assert rd.risk_difference[0] == 0 def test_risk_difference_equal_to_0(self, data_set): rd = RiskDifference() rd.fit(data_set, exposure='exp', outcome='dis') assert rd.risk_difference[1] == 0 def test_multiple_exposures(self, multi_exposures): rd = RiskDifference() rd.fit(multi_exposures, exposure='exp', outcome='dis') assert rd.results.shape[0] == 3 assert list(rd.results.index) == ['Ref:0', '1', '2'] def test_match_sas_ci(self, data_set): sas_ci = -0.195996398, 0.195996398 rd = RiskDifference() rd.fit(data_set, exposure='exp', outcome='dis') df = rd.results npt.assert_allclose(df.loc[df.index == '1'][['RD_LCL', 'RD_UCL']], [sas_ci]) def test_match_sas_se(self, data_set): sas_se = 0.1 rd = RiskDifference() rd.fit(data_set, exposure='exp', outcome='dis') df = rd.results npt.assert_allclose(df.loc[df.index == '1'][['SD(RD)']], sas_se) def test_match_sas_sampledata(self): sas_rr = -0.045129870 sas_se = 0.042375793 sas_ci = -0.128184899, 0.037925158 df = ze.load_sample_data(False) rd = RiskDifference() rd.fit(df, exposure='art', outcome='dead') npt.assert_allclose(rd.risk_difference[1], sas_rr) rf = rd.results npt.assert_allclose(rf.loc[rf.index == '1'][['RD_LCL', 'RD_UCL']], [sas_ci]) npt.assert_allclose(rf.loc[rf.index == '1'][['SD(RD)']], sas_se) def test_frechet_bounds(self): df = ze.load_sample_data(False) rd = RiskDifference() rd.fit(df, exposure='art', outcome='dead') npt.assert_allclose(rd.results['UpperBound'][1] - rd.results['LowerBound'][1], 1.0000) def test_frechet_bounds2(self, multi_exposures): rd = RiskDifference() rd.fit(multi_exposures, exposure='exp', outcome='dis') npt.assert_allclose(rd.results['UpperBound'][1:] - rd.results['LowerBound'][1:], [1.0000, 1.0000]) class TestOddsRatio: def test_odds_ratio_reference_equal_to_1(self, data_set): ord = OddsRatio() ord.fit(data_set, exposure='exp', outcome='dis') assert ord.odds_ratio[0] == 1 def test_odds_ratio_equal_to_1(self, data_set): ord = OddsRatio() ord.fit(data_set, exposure='exp', outcome='dis') assert ord.odds_ratio[1] == 1 def test_multiple_exposures(self, multi_exposures): ord = OddsRatio() ord.fit(multi_exposures, exposure='exp', outcome='dis') assert ord.results.shape[0] == 3 assert list(ord.results.index) == ['Ref:0', '1', '2'] def test_match_sas_ci(self, data_set): sas_ci = 0.4566, 2.1902 ord = OddsRatio() ord.fit(data_set, exposure='exp', outcome='dis') df = ord.results npt.assert_allclose(df.loc[df.index == '1'][['OR_LCL', 'OR_UCL']], [sas_ci], rtol=1e-4) def test_match_sas_sampledata(self): sas_or = 0.7036 sas_se = 0.361479191 sas_ci = 0.3465, 1.4290 df = ze.load_sample_data(False) ord = OddsRatio() ord.fit(df, exposure='art', outcome='dead') npt.assert_allclose(ord.odds_ratio[1], sas_or, rtol=1e-4) rf = ord.results npt.assert_allclose(rf.loc[rf.index == '1'][['OR_LCL', 'OR_UCL']], [sas_ci], rtol=1e-3) npt.assert_allclose(rf.loc[rf.index == '1'][['SD(OR)']], sas_se, rtol=1e-4) class TestNNT: def test_return_infinity(self, data_set): nnt = NNT() nnt.fit(data_set, exposure='exp', outcome='dis') assert np.isinf(nnt.number_needed_to_treat[1]) def test_match_inverse_of_risk_difference(self): df = ze.load_sample_data(False) rd = RiskDifference() rd.fit(df, exposure='art', outcome='dead') nnt = NNT() nnt.fit(df, exposure='art', outcome='dead') npt.assert_allclose(nnt.number_needed_to_treat[1], 1/rd.risk_difference[1]) rf = rd.results nf = nnt.results npt.assert_allclose(nf.loc[nf.index == '1'][['NNT_LCL', 'NNT_UCL']], 1 / rf.loc[rf.index == '1'][['RD_LCL', 'RD_UCL']]) npt.assert_allclose(nf.loc[nf.index == '1'][['SD(RD)']], rf.loc[rf.index == '1'][['SD(RD)']]) def test_multiple_exposures(self, multi_exposures): nnt = NNT() nnt.fit(multi_exposures, exposure='exp', outcome='dis') assert nnt.results.shape[0] == 3 assert list(nnt.results.index) == ['Ref:0', '1', '2'] class TestIncidenceRateRatio: def test_incidence_rate_ratio_reference_equal_to_1(self, time_data): irr = IncidenceRateRatio() irr.fit(time_data, exposure='exp', outcome='dis', time='t') assert irr.incidence_rate_ratio[0] == 1 def test_incidence_rate_ratio_equal_to_expected(self, time_data): sas_irr = 1.714285714 sas_se = 0.487950036 sas_ci = 0.658778447, 4.460946657 irr = IncidenceRateRatio() irr.fit(time_data, exposure='exp', outcome='dis', time='t') npt.assert_allclose(irr.incidence_rate_ratio[1], sas_irr, rtol=1e-4) rf = irr.results npt.assert_allclose(rf.loc[rf.index == '1'][['IRR_LCL', 'IRR_UCL']], [sas_ci], rtol=1e-4) npt.assert_allclose(rf.loc[rf.index == '1'][['SD(IRR)']], sas_se, rtol=1e-4) def test_multiple_exposures(self): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 + [2]*50 df['dis'] = [1]*25 + [0]*25 + [1]*25 + [0]*25 + [1]*25 + [0]*25 df['t'] = 2 irr = IncidenceRateRatio() irr.fit(df, exposure='exp', outcome='dis', time='t') assert irr.results.shape[0] == 3 assert list(irr.results.index) == ['Ref:0', '1', '2'] def test_match_sas_sampledata(self): sas_irr = 0.753956 sas_se = 0.336135409 sas_ci = 0.390146, 1.457017 df = ze.load_sample_data(False) irr = IncidenceRateRatio() irr.fit(df, exposure='art', outcome='dead', time='t') npt.assert_allclose(irr.incidence_rate_ratio[1], sas_irr, rtol=1e-5) rf = irr.results npt.assert_allclose(rf.loc[rf.index == '1'][['IRR_LCL', 'IRR_UCL']], [sas_ci], rtol=1e-5) npt.assert_allclose(rf.loc[rf.index == '1'][['SD(IRR)']], sas_se, rtol=1e-5) class TestIncidenceRateDifference: def test_incidence_rate_difference_reference_equal_to_0(self, time_data): ird = IncidenceRateDifference() ird.fit(time_data, exposure='exp', outcome='dis', time='t') assert ird.incidence_rate_difference[0] == 0 def test_multiple_exposures(self): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 + [2]*50 df['dis'] = [1]*25 + [0]*25 + [1]*25 + [0]*25 + [1]*25 + [0]*25 df['t'] = 2 ird = IncidenceRateDifference() ird.fit(df, exposure='exp', outcome='dis', time='t') assert ird.results.shape[0] == 3 assert list(ird.results.index) == ['Ref:0', '1', '2'] def test_match_openepi_sampledata(self): oe_irr = -0.001055 oe_ci = -0.003275, 0.001166 df = ze.load_sample_data(False) ird = IncidenceRateDifference() ird.fit(df, exposure='art', outcome='dead', time='t') npt.assert_allclose(ird.incidence_rate_difference[1], oe_irr, atol=1e-5) rf = ird.results npt.assert_allclose(rf.loc[rf.index == '1'][['IRD_LCL', 'IRD_UCL']], [oe_ci], atol=1e-5) class TestDiagnostics: @pytest.fixture def test_data(self): df = pd.DataFrame() df['test'] = [1]*50 + [0]*50 df['case'] = [1]*40 + [0]*10 + [1]*15 + [0]*35 return df def test_sensitivity_same_as_calc(self, test_data): se = Sensitivity() se.fit(test_data, test='test', disease='case') sens = sensitivity(40, 50) npt.assert_allclose(se.sensitivity, sens[0]) def test_specificity_same_as_calc(self, test_data): sp = Specificity() sp.fit(test_data, test='test', disease='case') spec = specificity(15, 50) npt.assert_allclose(sp.specificity, spec[0]) def test_diagnostic_same_as_compositions(self, test_data): se = Sensitivity() se.fit(test_data, test='test', disease='case') sp = Specificity() sp.fit(test_data, test='test', disease='case') diag = Diagnostics() diag.fit(test_data, test='test', disease='case') npt.assert_allclose(diag.sensitivity.sensitivity, se.sensitivity) npt.assert_allclose(diag.specificity.specificity, sp.specificity) def test_match_sas_sensitivity_ci(self, test_data): sas_ci = [0.689127694, 0.910872306] diag = Diagnostics() diag.fit(test_data, test='test', disease='case')
npt.assert_allclose(diag.sensitivity.results[['Se_LCL', 'Se_UCL']], [sas_ci])
numpy.testing.assert_allclose
#!/usr/bin/python # -*- coding: utf-8 -*- ################# ## Import modules ################# import sys # walk directories import glob # access to OS functionality import os # copy things import copy # numpy import numpy as np # open3d import open3d # matplotlib for colormaps import matplotlib.cm import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # struct for reading binary ply files import struct # the main class that loads raw 3D scans class Kitti360Viewer3DRaw(object): # Constructor def __init__(self, seq=0, mode='velodyne'): if 'KITTI360_DATASET' in os.environ: kitti360Path = os.environ['KITTI360_DATASET'] else: kitti360Path = os.path.join(os.path.dirname( os.path.realpath(__file__)), '..', '..') if mode=='velodyne': self.sensor_dir='velodyne_points' elif mode=='sick': self.sensor_dir='sick_points' else: raise RuntimeError('Unknown sensor type!') sequence = '2013_05_28_drive_%04d_sync' % seq self.raw3DPcdPath = os.path.join(kitti360Path, 'data_3d_raw', sequence, self.sensor_dir, 'data') def loadVelodyneData(self, frame=0): pcdFile = os.path.join(self.raw3DPcdPath, '%010d.bin' % frame) if not os.path.isfile(pcdFile): raise RuntimeError('%s does not exist!' % pcdFile) pcd = np.fromfile(pcdFile, dtype=np.float32) pcd =
np.reshape(pcd,[-1,4])
numpy.reshape
import numpy as np from collections import Counter import sklearn.metrics as metrics class DataHandler: def __init__(self, config, load_data=True): """ The initialiser for the DataHandler class. :param config: A ArgumentParser object. """ # Creates the lists to store data. self.train_x, self.train_y = np.array([]), np.array([]) self.test_x, self.test_y = np.array([]), np.array([]) self.val_x, self.val_y = np.array([]), np.array([]) self.data_x, self.data_y = np.array([]), np.array([]) # Sets the class members. self.val_per = config.val_per self.verbose = config.verbose self.config = config self.pseudo_indices = [] # Loads the training data into the unannotated data stores. if load_data: self.load_training_data(config.data_dir) self.load_testing_data(config.data_dir) def log(self, message): """ Method to handle printing and logging of messages. :param message: String of message to be printed and logged. """ if self.config.verbose: print(message) if self.config.log_file != '': print(message, file=open(self.config.log_file, 'a')) def load_training_data(self, data_dir): """ Loads the training data to the unannotated lists. :param data_dir: The data directory. """ values = np.load(data_dir + "Training/values.npy") self.data_x = np.array(values[:, 0]) self.data_x = np.array(["Training/" + i for i in self.data_x]) self.data_y = values[:, 1].astype(int) self.log("Loaded " + str(int(len(self.data_y) / self.config.cell_patches)) + " Unannotated Cells") def load_testing_data(self, data_dir): """ Loads the testing data to the testing data lists. :param data_dir: The data directory. """ values = np.load(data_dir + "Testing/values.npy") self.test_x = np.array(values[:, 0]) self.test_x = np.array(["Testing/" + i for i in self.test_x]) self.test_y = values[:,1].astype(int) self.log("Loaded " + str(int(len(self.test_y) / self.config.cell_patches)) + " Testing Cells") def balance(self, x_list, y_list): """ A method to balance a set of data. :param x_list: A list of data. :param y_list: A list of labels. :return: balanced x and y lists. """ # TODO - make this work with cell patches balance = Counter(y_list) min_values = min(list(balance.values())) indices = [] for c in range(self.config.num_classes): class_values = balance[c] indices.append(np.random.permutation([j for j, i in enumerate(y_list) if i == c]) [:class_values - min_values]) x_list = np.array([i for j, i in enumerate(x_list) if j not in indices]) y_list = np.array([i for j, i in enumerate(y_list) if j not in indices]) return x_list, y_list def set_validation_set(self, x, y): """ Sets the validation set from the training data. """ num_val = int((len(y) / self.config.cell_patches) * self.val_per) indices = [] cell_indices = np.random.choice(list(range(len(y) // self.config.cell_patches)), num_val, False) for i in cell_indices: index = i * self.config.cell_patches indices += list(range(index, index + self.config.cell_patches)) val_x = np.take(x, indices) val_y = np.take(y, indices) x = np.delete(x, indices) y =
np.delete(y, indices)
numpy.delete
from __future__ import print_function import argparse import brain import h5py import math import numpy import sys def compute_frames_per_block(cells_to_frames_ratio, report, block_values, gids=None): # The number of frames per block is fixed using the median number of # compartments per cell, the expected block size and the cells to frames # ratio. Chunks are later guaranteed to not exceed the size of a block. if gids is None: gids = report.gids view = report.create_view(gids) mapping = view.mapping counts = numpy.zeros((len(gids)), dtype="u4") for i in range(len(gids)): counts[i] = mapping.num_compartments(i) total_compartments =
numpy.sum(counts)
numpy.sum
from collections import OrderedDict import numpy as np import pytest from gym.spaces import Box, Dict, Discrete, MultiBinary, MultiDiscrete, Tuple, utils @pytest.mark.parametrize(["space", "flatdim"], [ (Discrete(3), 3), (Box(low=0., high=np.inf, shape=(2, 2)), 4), (Tuple([Discrete(5), Discrete(10)]), 15), (Tuple([Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)]), 7), (Tuple((Discrete(5), Discrete(2), Discrete(2))), 9), (MultiDiscrete([2, 2, 100]), 3), (MultiBinary(10), 10), (Dict({"position": Discrete(5), "velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)}), 7), ]) def test_flatdim(space, flatdim): dim = utils.flatdim(space) assert dim == flatdim, "Expected {} to equal {}".format(dim, flatdim) @pytest.mark.parametrize("space", [ Discrete(3), Box(low=0., high=np.inf, shape=(2, 2)), Tuple([Discrete(5), Discrete(10)]), Tuple([Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)]), Tuple((Discrete(5), Discrete(2), Discrete(2))), MultiDiscrete([2, 2, 100]), MultiBinary(10), Dict({"position": Discrete(5), "velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)}), ]) def test_flatten_space_boxes(space): flat_space = utils.flatten_space(space) assert isinstance(flat_space, Box), "Expected {} to equal {}".format(type(flat_space), Box) flatdim = utils.flatdim(space) (single_dim, ) = flat_space.shape assert single_dim == flatdim, "Expected {} to equal {}".format(single_dim, flatdim) @pytest.mark.parametrize("space", [ Discrete(3), Box(low=0., high=np.inf, shape=(2, 2)), Tuple([Discrete(5), Discrete(10)]), Tuple([Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)]), Tuple((Discrete(5), Discrete(2), Discrete(2))), MultiDiscrete([2, 2, 100]), MultiBinary(10), Dict({"position": Discrete(5), "velocity": Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)}), ]) def test_flat_space_contains_flat_points(space): some_samples = [space.sample() for _ in range(10)] flattened_samples = [utils.flatten(space, sample) for sample in some_samples] flat_space = utils.flatten_space(space) for i, flat_sample in enumerate(flattened_samples): assert flat_sample in flat_space,\ 'Expected sample #{} {} to be in {}'.format(i, flat_sample, flat_space) @pytest.mark.parametrize("space", [ Discrete(3), Box(low=0., high=np.inf, shape=(2, 2)), Tuple([Discrete(5), Discrete(10)]), Tuple([Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32)]), Tuple((Discrete(5), Discrete(2), Discrete(2))), MultiDiscrete([2, 2, 100]), MultiBinary(10), Dict({"position": Discrete(5), "velocity": Box(low=np.array([0, 0]), high=
np.array([1, 5])
numpy.array
import numpy as np import math import cv2 import os from skimage.measure import compare_ssim as ssim def psnr(img1, img2): mse =
np.mean((img1 - img2) ** 2)
numpy.mean
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection from mpl_toolkits.axes_grid1.inset_locator import inset_axes from fatiando.vis import mpl from fatiando.gravmag import polyprism import scipy.stats as sp def plot_prisms(prisms, scale=1.): ''' Returns a list of ordered vertices to build the model on matplotlib 3D input prisms: list - objects of fatiando.mesher.polyprisms scale: float - factor used to scale the coordinate values output verts: list - ordered vertices ''' assert np.isscalar(scale), 'scale must be a scalar' assert scale > 0., 'scale must be positive' verts = [] for o in prisms: top = [] bottom = [] for x, y in zip(o.x, o.y): top.append(scale*np.array([y,x,o.z1])) bottom.append(scale*np.array([y,x,o.z2])) verts.append(top) verts.append(bottom) for i in range(o.x.size-1): sides = [] sides.append(scale*np.array([o.y[i], o.x[i], o.z1])) sides.append(scale*np.array([o.y[i+1], o.x[i+1], o.z1])) sides.append(scale*np.array([o.y[i+1], o.x[i+1], o.z2])) sides.append(scale*np.array([o.y[i], o.x[i], o.z2])) verts.append(sides) sides = [] sides.append(scale*np.array([o.y[-1], o.x[-1], o.z1])) sides.append(scale*np.array([o.y[0], o.x[0], o.z1])) sides.append(scale*np.array([o.y[0], o.x[0], o.z2])) sides.append(scale*np.array([o.y[-1], o.x[-1], o.z2])) verts.append(sides) return verts def plot_simple_model_data(x, y, obs, initial, model, filename): ''' Returns a plot of synthetic total-field anomaly data produced by the simple model and the true model input x, y: 1D array - Cartesian coordinates of the upward continued total-field anomaly data xa, ya: 1D array - Cartesian coordinates of the observations obs: 1D array - synthetic total-field anomaly data initial: list - fatiando.mesher.PolygonalPrism of the initial approximate model: list - list of fatiando.mesher.PolygonalPrism of the simple model filename: string - directory and filename of the figure output fig: figure - plot ''' plt.figure(figsize=(11,5)) # sinthetic data ax=plt.subplot(1,2,1) plt.tricontour(y, x, obs, 20, linewidths=0.5, colors='k') plt.tricontourf(y, x, obs, 20, cmap='RdBu_r', vmin=np.min(obs), vmax=-np.min(obs)).ax.tick_params(labelsize=12) plt.plot(y, x, 'ko', markersize=.25) mpl.polygon(initial, '.-r', xy2ne=True) plt.xlabel('$y$(km)', fontsize=14) plt.ylabel('$x$(km)', fontsize=14) clb = plt.colorbar(pad=0.01, aspect=20, shrink=1) clb.ax.set_title('nT', pad=-305) mpl.m2km() clb.ax.tick_params(labelsize=14) plt.text(-6700, 3800, '(a)', fontsize=20) verts_true = plot_prisms(model, scale=0.001) # true model ax = plt.subplot(1,2,2, projection='3d') ax.add_collection3d(Poly3DCollection(verts_true, alpha=0.3, facecolor='b', linewidths=0.5, edgecolors='k')) ax.set_xlim(-2.5, 2.5, 100) ax.set_ylim(-2.5, 2.5, 100) ax.set_zlim(2, -0.1, 100) ax.tick_params(labelsize=14) ax.set_ylabel('y (km)', fontsize= 14) ax.set_xlabel('x (km)', fontsize= 14) ax.set_zlabel('z (km)', fontsize= 14) ax.view_init(10, 50) ax.text2D(-0.1, 0.07, '(b)', fontsize=20) plt.tight_layout() plt.savefig(filename, dpi=300, bbox_inches='tight') return plt.show() def plot_matrix(z0, intensity, matrix, vmin, vmax, solutions, xtitle, ytitle, unity, figsize, dpi=300, truevalues=[], filename=''): ''' Returns a plot of the goal function values for each inversion organized in a matrix input z0: 1D array - range of depth to the top values in meters intensity: 1D array - range of total-magnetization intensity values in nT matrix: 2D array - values for the goal or misfit function produced by the solutions of the multiple inversions vmin: float - minimum value for the colorbar vmin: float - maximum value for the colorbar solutions: list - list of position on the map of the chosen solutions for the plots [[x1, y1],[x2, y2]] xtitle: string - x axis title ytitle: string - y axis title unity: string - unity of the function figsize: tuple - size of the figure dpi: integer - resolution of the figure truevalues: list - list of position [x, y] on the map of the true values for the parameters z0 and intensity filename: string - directory and filename of the figure output fig: figure - plot of the result ''' n = z0.size m = intensity.size fig, ax = fig, ax = plt.subplots(1,1) fig.set_size_inches(6,5) w = 3 img = ax.imshow(matrix, vmin=vmin, vmax=vmax, origin='lower',extent=[0,w,0,w]) img.axes.tick_params(labelsize=14) plt.ylabel(ytitle, fontsize=14) plt.xlabel(xtitle, fontsize=14) if truevalues == []: pass else: plt.plot((2.*truevalues[1]+1.)*w/(2.*m), (2.*truevalues[0]+1.)*w/(2.*n), '^r', markersize=12) colors = ['Dw', 'Dm'] for s, c in zip(solutions, colors): plt.plot((2.*s[1]+1.)*w/(2.*m), (2.*s[0]+1.)*w/(2.*n), c, markersize=12) x_label_list = [] y_label_list = [] for xl, yl in zip(intensity,z0): x_label_list.append(str(xl)[:-2]) y_label_list.append(str(yl)[:-2]) ax.set_xticks(np.linspace(w/(2.*n), w - w/(2.*n), n)) ax.set_yticks(np.linspace(w/(2.*m), w - w/(2.*m), m)) ax.set_xticklabels(x_label_list) ax.set_yticklabels(y_label_list) # Minor ticks ax.set_xticks(np.linspace(0, w, n+1), minor=True) ax.set_yticks(np.linspace(0, w, m+1), minor=True) ax.grid(which='minor', color='k', linewidth=2) clb = plt.colorbar(img, pad=0.01, aspect=20, shrink=1) clb.ax.set_title(unity, pad=-288) clb.ax.tick_params(labelsize=14) if filename == '': pass else: plt.savefig(filename, dpi=300, bbox_inches='tight') return plt.show() def plot_complex_model_data(x, y, obs, alt, initial, model, figsize, dpi=300, filename=''): ''' Returns a plot of synthetic total-field anomaly data produced by the complex model and the true model input x, y: 1D array - Cartesian coordinates of the upward continued total-field anomaly data xa, ya: 1D array - Cartesian coordinates of the observations obs: 1D array - synthetic total-field anomaly data alt: 1D array - geometric heigt of the observations initial: list - fatiando.mesher.PolygonalPrism of the initial approximate model: list - list of fatiando.mesher.PolygonalPrism of the simple model figsize: tuple - size of the figure dpi: integer - resolution of the figure filename: string - directory and filename of the figure output fig: figure - plot ''' verts_true = plot_prisms(model, scale=0.001) plt.figure(figsize=figsize) # sinthetic data ax=plt.subplot(2,2,1) plt.tricontour(y, x, obs, 20, linewidths=0.5, colors='k') plt.tricontourf(y, x, obs, 20, cmap='RdBu_r', vmin=np.min(obs), vmax=-
np.min(obs)
numpy.min
from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np import copy from collections import defaultdict import sys import warnings try: from torchreid.eval_cylib.eval_metrics_cy import evaluate_cy IS_CYTHON_AVAI = True print("Using Cython evaluation code as the backend") except ImportError: IS_CYTHON_AVAI = False warnings.warn("Cython evaluation is UNAVAILABLE, which is highly recommended") def eval_cuhk03(distmat, q_pids, g_pids, q_camids, g_camids, max_rank): """Evaluation with cuhk03 metric Key: one image for each gallery identity is randomly sampled for each query identity. Random sampling is performed num_repeats times. """ num_repeats = 10 num_q, num_g = distmat.shape if num_g < max_rank: max_rank = num_g print("Note: number of gallery samples is quite small, got {}".format(num_g)) indices =
np.argsort(distmat, axis=1)
numpy.argsort
# Copyright (c) 2021, <NAME> # May 2021. Started on May 17 for Localized Conflict Modeling. # First, read GPW population count data as GeoTIFF. # Write-up and theoretical results in late May. #------------------------------------------------------------------- # # conda activate tf36 # python # from topoflow.utils import conflict # pop_grid = conflict.read_geotiff() # #------------------------------------------------------------------- # # test1() # test2() # # class conflict() # initialize() # initialize_U() # initialize_C1() # initialize_C2() #----------------------- # update() # update_U() # update_C1() # update_C2() #----------------------- # update_p() # update_S() # update_S1() # update_S2() # (obsolete soon?) # update_S_old() # (obsolete soon?) # update_time() #-------------------------------------- # get_neighbor_cols_and_rows() # get_neighbor_values() # spread_conflicts1() # spread_conflicts2() # finalize() # run_model() # # get_raster_cellsize() # get_raster_bounds() # bounds_disjoint() # read_geotiff() # can also create RTG and RTI files # regrid_geotiff() # # read_acled_data() # #------------------------------------------------------------------- import numpy as np import numpy.random as rn #### import random as rn import pandas as pd import time # For read_geotiff(), etc. try: from osgeo import gdal except ImportError: import gdal import glob, sys import os, os.path from . import rti_files from . import rtg_files #------------------------------------------------------------------- def test1(): cfg_file = 'conflict.cfg' c = conflict() c.run_model( cfg_file ) # test1() #------------------------------------------------------------------- def test2(): pop_grid = read_geotiff() # test2() #------------------------------------------------------------------- def test3( SUBSAMPLE=False ): #-------------------------------- # Use Horn of Africa as a test. #-------------------------------- in_dir = '/Users/peckhams/Conflict/Data/GPW-v4/' in_file = 'gpw_v4_population_count_rev11_2020_30_sec.tif' in_file = in_dir + in_file # Bounds = [ minlon, minlat, maxlon, maxlat ] out_bounds = [ 25.0, -5.0, 55.0, 25.0] if not(SUBSAMPLE): #-------------------------------------- # 3600 cols x 3600 rows, 30 arcseconds #-------------------------------------- out_file = 'Horn_of_Africa_GPW-v4_pop_count_2020_30sec.tif' out_file = in_dir + out_file out_xres_sec = None # will default to in_xres_sec out_yres_sec = None # will default to in_yres_sec print('Reading & clipping GeoTIFF file...') else: #-------------------------------------- # 360 cols x 360 rows, 300 arcseconds #-------------------------------------- out_file = 'Horn_of_Africa_GPW-v4_pop_count_2020_450sec.tif' out_file = in_dir + out_file out_xres_sec = 450.0 # (15 times lower resolution) out_yres_sec = 450.0 # (15 times lower resolution) print('Reading, clipping & subsampling GeoTIFF file...') #-------------------------------------- # 360 cols x 360 rows, 300 arcseconds #-------------------------------------- # out_file = 'Horn_of_Africa_GPW-v4_pop_count_2020_300sec.tif' # out_file = in_dir + out_file # out_xres_sec = 300.0 # (10 times lower resolution) # out_yres_sec = 300.0 # (10 times lower resolution) # print('Reading, clipping & subsampling GeoTIFF file...') regrid_geotiff(in_file=in_file, out_file=out_file, out_bounds=out_bounds, out_xres_sec=out_xres_sec, out_yres_sec=out_yres_sec, RESAMPLE_ALGO='bilinear', REPORT=True) # test3() #------------------------------------------------------------------- class conflict(): #--------------------------------------------------------------- def initialize( self, cfg_file=None ): home_dir = os.path.expanduser('~') + os.sep if (cfg_file is None): self.in_dir = home_dir + 'Conflict/Data/GPW-v4/' self.out_dir = home_dir + 'Conflict/Output/' cfg_file = self.in_dir + 'conflict.cfg' self.out_file = self.out_dir + 'conflicts.rts' self.IDs_file = self.out_dir + 'conflict_IDs.rts' self.C1_file = '' self.C2_file = '' #--------------------------- # Was good for pop count U #--------------------------- # self.U_file = 'Horn_of_Africa_GPW-v4_pop_count_2020_300sec.tif' # self.nx = 360 # self.ny = 360 # self.c_emerge = 0.01 # (must be in (0,1]) # self.c_spread = 0.1 # ## self.c_spread = 0.03 # ## self.c_spread = 0.05 # ## self.p_geom = 0.2 # self.p_geom = 0.4 #-------------------------- # Is good for pop count U #-------------------------- # self.U_file = 'Horn_of_Africa_GPW-v4_pop_count_2020_450sec.tif' # self.nx = 240 # self.ny = 240 # self.c_emerge = 0.5 # (must be in (0,1]) # ## self.c_emerge = 0.1 # (must be in (0,1]) # ## self.c_emerge = 0.01 # (must be in (0,1]) # self.c_spread = 0.5 # ## self.c_spread = 0.1 # self.p_resolve = 0.4 # self.p_geom = 0.4 # (not used now) #------------------------- # Was good for uniform U #------------------------- self.U_file = '' # (To use uniform U) self.nx = 240 self.ny = 240 self.c_emerge = 0.001 #### ## self.c_emerge = 0.2 ## self.c_emerge = 0.001 # (must be in (0,1]) ## self.c_spread = 0.1 #### self.c_spread = 0.4 #### ## self.c_spread = 0.03 ## self.c_spread = 0.05 ## self.p_geom = 0.2 self.p_resolve = 0.4 self.p_geom = 0.4 self.spread_method = 1 #-------------------------- self.time_lag = 1 # (not used yet) self.n_steps = 100 self.REPORT = True else: #----------------------------------- # Read params from the config file #----------------------------------- dum = 0 self.cfg_file = cfg_file self.time_index = 0 self.n_conflict_cells = 0 self.grid_shape = (self.ny, self.nx) ## self.start_time = time.time() self.start_ID = 1 self.start_index = 0 #---------------------------- # Change to input directory #---------------------------- os.chdir( self.in_dir ) #----------------------------- # Open output files to write #----------------------------- self.out_unit = open( self.out_file, 'wb') self.IDs_unit = open( self.IDs_file, 'wb') #-------------------------------------- # Make grids with col and row numbers #-------------------------------------- cols = np.arange( self.nx ) rows = np.arange( self.ny ) cg, rg = np.meshgrid( cols, rows ) self.col_grid = cg self.row_grid = rg self.initialize_U() self.initialize_C1() self.initialize_C2() #------------------------------------------------------ # Initialize to no conflicts # S will later contain 1s in grid cells with conflict # Initialize durations to zero also. # IDs will contain a unique ID for each conflict. # Using 'float32' for IDs now for viewing the RTS. #------------------------------------------------------ self.S = np.zeros( self.grid_shape, dtype='uint8' ) self.durs = np.zeros( self.grid_shape, dtype='uint32') self.IDs = np.zeros( self.grid_shape, dtype='float32') #---------------------------------------------------------- # Create a set of random integer IDs, without replacement # so when we colorize, it will look better. #---------------------------------------------------------- self.ran_IDs = rn.choice( 10000000, 10000000, replace=False) # This next method used built-in random & and problems. ### self.ran_IDs = rn.sample( range(1000000), 500000) self.start_time = time.time() # initialize() #--------------------------------------------------------------- def initialize_U( self ): #----------------------------------- # Start with U = a population grid #----------------------------------- if (self.U_file != ''): self.U = read_geotiff(in_file=self.U_file, REPORT=True) # In case of negative nodata value np.maximum(self.U, 0.0, self.U) # (in place) else: #--------------------- # Use a grid of ones #--------------------- self.U = np.ones( self.grid_shape, dtype='float32' ) #----------------------------------- # Disallow conflict on the 4 edges #----------------------------------- self.U[0,:] = 0.0 self.U[self.ny - 1,:] = 0.0 self.U[:,0] = 0.0 self.U[:,self.nx - 1] = 0.0 # initialize_U() #--------------------------------------------------------------- def initialize_C1( self ): if (self.C1_file != ''): self.C1 = read_geotiff(in_file=self.C1_file, REPORT=True) else: #--------------------- # Use a grid of ones #--------------------- self.C1 = np.ones( self.grid_shape, dtype='float32' ) # initialize_C1() #--------------------------------------------------------------- def initialize_C2( self ): if (self.C2_file != ''): self.C2 = read_geotiff(in_file=self.C2_file, REPORT=True) else: #--------------------- # Use a grid of ones #--------------------- self.C2 = np.ones( self.grid_shape, dtype='float32' ) # initialize_C2() #--------------------------------------------------------------- def update( self ): self.update_U() self.update_C1() self.update_C2() #------------------- self.update_p() self.update_S() # also updates IDs ## self.update_S1() # same speed as update_S() ## self.update_S2() self.update_time() # update() #--------------------------------------------------------------- def update_U( self ): pass # update_U() #--------------------------------------------------------------- def update_C1( self ): pass # update_C1() #--------------------------------------------------------------- def update_C2( self ): pass # update_C2() #--------------------------------------------------------------- def update_p( self ): #---------------------------------------------------------- # Note: p is the probability that a conflict emerges in # a grid cell, and is a function of the unrest, U. # In order for p to be a probability, in (0,1], # we need 0 < c_emerge <= 1. #---------------------------------------------------------- self.p_emerge = (self.c_emerge / self.U.max()) * self.U # update_p() #--------------------------------------------------------------- def update_S( self ): #----------------------------------------------------------- # Note: The previous version of this method generated # Geometric random variables to model conflict # durations. This new version does not track # durations explicitly, but should produce exactly # the same result. Here, any conflict ends in the # kth time interval with fixed probability, p. # This is modeled with a Bernoulli random variable. #----------------------------------------------------------- # Note: A Bernoulli random variable takes the value 1 # with probability p and 0 with probability (1-p). # It is a special case of a Binomial r.v. (n=1). # np.random.binomial() allows p to be an array. #----------------------------------------------------------- #-------------------------------------------------- # Initiate new conflicts in cells with no conflict #----------------------------------------------------- # Generate Bernoulli random variables with parameter # p_emerge, and initiate conflicts where B1=1. #----------------------------------------------------- # Convert b from dtype='int64' to dtype='uint8' ? # This requires 8 times less memory. #----------------------------------------------------- B1 = np.random.binomial(1, self.p_emerge) w2 = np.logical_and( self.S == 0, B1 == 1 ) n2 = w2.sum() #------------------------------------------------ # Resolve some conflicts in cells with conflict #----------------------------------------------------- # Generate Bernoulli random variables with parameter # p_resolve and terminate conflicts that get B2=1. # Conflict durations will then turn out to be # Geometric random variables, same parameter. #----------------------------------------------------- B2 = np.random.binomial(1, self.p_resolve, size=self.grid_shape) w3 = np.logical_and( self.S == 1, B2 == 1 ) n3 = w3.sum() #------------------------------------ # Perform the required updates to S #------------------------------------ i = self.start_index self.S[ w2 ] = B1[ w2 ] self.IDs[ w2 ] = self.ran_IDs[i:i + n2] self.start_index += n2 self.n_conflict_cells += n2 #--------------------------------------------- self.S[ w3 ] = (1 - B2[ w3 ]) self.n_conflict_cells -= n3 # Reset IDs to zero where resolved (i.e. B2 = 1). self.IDs[ w3 ] = self.IDs[w3] * (1 - B2[w3]) #--------------------------------------------- if (self.REPORT): print('time_index =', self.time_index) print('Number of new conflict cells =', n2) print('Number of resolved conflicts =', n3) if (self.spread_method == 0): print() #---------------------------------- # Attempt to spread the conflicts #------------------------------------------------ # Set spread_method == 0 to turn off spreading, # e.g. to test against theoretical results. #------------------------------------------------ if (self.spread_method == 1): self.spread_conflicts1() # elif (self.spread_method == 2): # self.spread_conflicts2() # elif (self.spread_method == 3): # self.spread_conflicts3() # else: # pass SAVE_S = True if (SAVE_S): #--------------------------------- # Write grid as binary to file # (could use .astype('float32')) #--------------------------------- S2 = np.float32(self.S) S2.tofile( self.out_unit ) SAVE_IDs = True if (SAVE_IDs): self.IDs.tofile( self.IDs_unit ) # update_S() #--------------------------------------------------------------- def update_S1( self ): #----------------------------------------------------------- # Note: The previous version of this method generated # Geometric random variables to model conflict # durations. This new version does not track # durations explicitly, but should produce exactly # the same result. Here, any conflict ends in the # kth time interval with fixed probability, p. # This is modeled with a Bernoulli random variable. #----------------------------------------------------------- # Note: A Bernoulli random variable takes the value 1 # with probability p and 0 with probability (1-p). # It is a special case of a Binomial r.v. (n=1). # np.random.binomial() allows p to be an array. #----------------------------------------------------------- #---------------------------------------------- # Make a copy of self.S, i.e. S(k) vs. S(k+1) #---------------------------------------------- # Otherwise, conflicts may be resolved in the # same time step as they were initiated. # Could also apply self.S updates at end. #---------------------------------------------- S = self.S.copy() # This may be costly #-------------------------------------------------- # Initiate new conflicts in cells with no conflict #----------------------------------------------------- # Generate Bernoulli random variables with parameter # p_emerge, and initiate conflicts where B1=1. #----------------------------------------------------- # Convert b from dtype='int64' to dtype='uint8' ? # This requires 8 times less memory. #----------------------------------------------------- B1 = np.random.binomial(1, self.p_emerge) w2 = np.logical_and( S == 0, B1 == 1 ) n2 = w2.sum() i = self.start_index self.S[ w2 ] = B1[ w2 ] self.IDs[ w2 ] = self.ran_IDs[i:i + n2] self.start_index += n2 self.n_conflict_cells += n2 #------------------------------------------------ # Resolve some conflicts in cells with conflict #----------------------------------------------------- # Generate Bernoulli random variables with parameter # p_resolve and terminate conflicts that get B2=1. # Conflict durations will then turn out to be # Geometric random variables, same parameter. #----------------------------------------------------- B2 = np.random.binomial(1, self.p_resolve, size=self.grid_shape) w3 = np.logical_and( S == 1, B2 == 1 ) n3 = w3.sum() self.S[ w3 ] = (1 - B2[ w3 ]) self.n_conflict_cells -= n3 # Reset IDs to zero where resolved (i.e. B2 = 1). self.IDs[ w3 ] = self.IDs[w3] * (1 - B2[w3]) if (self.REPORT): print('time_index =', self.time_index) print('Number of new conflicts =', n2) print('Number of resolved conflicts =', n3) print() #---------------------------------- # Attempt to spread the conflicts #------------------------------------------------ # Set spread_method == 0 to turn off spreading, # e.g. to test against theoretical results. #------------------------------------------------ if (self.spread_method == 1): self.spread_conflicts1() # elif (self.spread_method == 2): # self.spread_conflicts2() # elif (self.spread_method == 3): # self.spread_conflicts3() # else: # pass SAVE_S = True if (SAVE_S): #--------------------------------- # Write grid as binary to file # (could use .astype('float32')) #--------------------------------- S2 = np.float32(self.S) S2.tofile( self.out_unit ) SAVE_IDs = True if (SAVE_IDs): self.IDs.tofile( self.IDs_unit ) # update_S1() #--------------------------------------------------------------- def update_S2( self ): #----------------------------------------------------------- # Note: The previous version of this method generated # Geometric random variables to model conflict # durations. This new version does not track # durations explicitly, but should produce exactly # the same result. Here, any conflict ends in the # kth time interval with fixed probability, p. # This is modeled with a Bernoulli random variable. #----------------------------------------------------------- # Note: A Bernoulli random variable takes the value 1 # with probability p and 0 with probability (1-p). # It is a special case of a Binomial r.v. (n=1). # np.random.binomial() allows p to be an array. #----------------------------------------------------------- #--------------------------------------- # Find cells with and without conflict #--------------------------------------- w1 = (self.S == 1) w0 = np.invert( w1 ) n1 = w1.sum() n0 = w0.sum() ## S = self.S.copy() ######## #-------------------------------------------------- # Initiate new conflicts in cells with no conflict #-------------------------------------------------- # Convert b from dtype='int64' to dtype='uint8' ? # This requires 8 times less memory. #-------------------------------------------------- B1 = np.random.binomial(1, self.p_emerge[w0]) w2 = (B1 == 1) n2 = w2.sum() i = self.start_index self.S.flat[ w2 ] = B1[w2] self.IDs.flat[ w2 ] = self.ran_IDs[i:i + n2] self.start_index += n2 self.n_conflict_cells += n2 if (self.REPORT): print('Number of new conflicts =', n2) #------------------------------ # Update S with new conflicts #------------------------------ # if (n3 > 0): # i = self.start_index # self.S[ w3 ] = 1 # (for method 1) # self.IDs[ w3 ] = self.ran_IDs[i:i + n3] # #--------------------------------------------- # #### self.S[ w0 ] = B1 # (for method 2) # #### self.IDs[ w0 ] = self.ran_IDs[i:i + n3] # #--------------------------------------------- # self.start_index += n3 # self.n_conflict_cells += n3 #------------------------------------------------ # Resolve some conflicts in cells with conflict #----------------------------------------------------- # Generate Bernoulli random variables, and terminate # conflicts that get B2=1. Conflict durations will # then turn out to be Geometric random variables. #----------------------------------------------------- B2 = np.random.binomial(1, self.p_resolve, size=n1) w3 = (B2 == 1) n3 = w3.sum() self.S.flat[ w3 ] = (1 - B2[ w3 ]) self.n_conflict_cells -= n3 # Reset IDs to zero where resolved (i.e. B2 = 1). self.IDs.flat[ w3 ] *= (1 - B2[w3]) #----------------------------------- # Update S with resolved conflicts #----------------------------------- if (self.REPORT): print('time_index =', self.time_index) print('Number of resolved conflicts =', n3) #---------------------------------- # Attempt to spread the conflicts #------------------------------------------------ # Set spread_method == 0 to turn off spreading, # e.g. to test against theoretical results. #------------------------------------------------ if (self.spread_method == 1): self.spread_conflicts1() # elif (self.spread_method == 2): # self.spread_conflicts2() # elif (self.spread_method == 3): # self.spread_conflicts3() # else: # pass SAVE_S = True if (SAVE_S): #--------------------------------- # Write grid as binary to file # (could use .astype('float32')) #--------------------------------- S2 = np.float32(self.S) S2.tofile( self.out_unit ) SAVE_IDs = True if (SAVE_IDs): self.IDs.tofile( self.IDs_unit ) # update_S2() #--------------------------------------------------------------- def update_S_old( self ): #----------------------------------------------------------- # Notes: A Bernoulli random variable takes the value 1 # with probability p and 0 with probability (1-p). # It is a special case of a Binomial r.v. (n=1). # np.random.binomial() allows p to be an array. #----------------------------------------------------------- #------------------------------------------ # Reduce the existing durations by 1 # Durations are integers (# of timesteps) #------------------------------------------ w1 = (self.S == 1) # n1 = w1.sum() self.durs[ w1 ] -= 1 #--------------------------------------------- # Have any conflicts reached their duration? # If so, set their S value to 0. #--------------------------------------------- # S[w1][w2] works for retrieving values, but # it doesn't work for assignments. #--------------------------------------------- # w2 = (self.durs[ w1 ] == 0) # can be empty # self.S[ w1 ][ w2 ] = 0 # conflict is over #----------------------------------------------------- # METHOD 1: Works, but seems no faster than METHOD 2 #----------------------------------------------------- # w2 = (self.durs[ w1 ] == 0) # can be empty # self.S[ w1 ] = (1 - w2.astype('uint8')) #---------------------------------------------------- # METHOD 2 #---------------------------------------------------- w2 = np.logical_and( (self.S == 1),(self.durs == 0) ) self.S[ w2 ] = 0 self.IDs[ w2 ] = 0 # reset the IDs n2 = w2.sum() self.n_conflict_cells -= n2 if (self.REPORT): print('time_index =', self.time_index) print('Number of resolved conflicts =', n2) #-------------------------------------------------- # Initiate new conflicts; inherit size from p #-------------------------------------------------- # Convert b from dtype='int64' to dtype='uint8' ? # This requires 8 times less memory. #-------------------------------------------------- dS = np.random.binomial(1, self.p_emerge) dS = dS.astype('uint8') w3 = np.logical_and(self.S == 0, dS == 1) #-------------------------------------------- # This would allow existing conflicts to be # "reseeded" and causes error in counting. #-------------------------------------------- ### w3 = (dS == 1) n3 = w3.sum() if (self.REPORT): print('Number of new conflicts =', n3) if (n3 > 0): #------------------------------ # Update S with new conflicts #------------------------------ self.S[ w3 ] = 1 ## self.IDs[ w3 ] = np.arange( n3 ) + self.start_ID ## self.start_ID += n3 i = self.start_index self.IDs[ w3 ] = self.ran_IDs[i:i + n3] self.start_index += n3 ### np.maximum( self.S, dS, self.S) # in place #------------------------------------------ # New durations are Geometric random vars #------------------------------------------ g = np.random.geometric( self.p_geom, size=n3 ) self.durs[ w3 ] = g self.n_conflict_cells += n3 #---------------------------------- # Attempt to spread the conflicts #------------------------------------------------ # Set spread_method == 0 to turn off spreading, # e.g. to test against theoretical results. #------------------------------------------------ if (self.spread_method == 1): self.spread_conflicts1() # elif (self.spread_method == 2): # self.spread_conflicts2() # elif (self.spread_method == 3): # self.spread_conflicts3() # else: # pass SAVE_S = True if (SAVE_S): #--------------------------------- # Write grid as binary to file # (could use .astype('float32')) #--------------------------------- S2 = np.float32(self.S) S2.tofile( self.out_unit ) SAVE_IDs = True if (SAVE_IDs): self.IDs.tofile( self.IDs_unit ) # update_S_old() #--------------------------------------------------------------- def update_time( self ): self.time_index += 1 # update_time() #--------------------------------------------------------------- def get_neighbor_cols_and_rows( self, w1, n1 ): cols = self.col_grid[ w1 ] rows = self.row_grid[ w1 ] #-------------------------------------------------- # 1st index is over grid cells that have conflict. # 2nd index is over the 8 nearest neighbors. #-------------------------------------------------- cn = np.zeros( (n1, 8), dtype='int32') cn[:,0] = cols-1 cn[:,1] = cols cn[:,2] = cols+1 cn[:,3] = cols-1 cn[:,4] = cols+1 cn[:,5] = cols-1 cn[:,6] = cols cn[:,7] = cols+1 #--------------------------------------- rn = np.zeros( (n1, 8), dtype='int32') rn[:,0] = rows-1 rn[:,1] = rows-1 rn[:,2] = rows-1 rn[:,3] = rows rn[:,4] = rows rn[:,5] = rows+1 rn[:,6] = rows+1 rn[:,7] = rows+1 #------------------ self.cn = cn self.rn = rn # get_neighbor_cols_and_rows() #--------------------------------------------------------------- def get_neighbor_values( self, var, n1 ): #---------------------------------------- # Get values of 8 nearest neighbors # vals[k,:] = neighbor values of cell k #---------------------------------------- cn = self.cn rn = self.rn vals = np.zeros( (n1, 8), dtype='float32') vals[:,0] = var[rn[:,0], cn[:,0]] # (top left) vals[:,1] = var[rn[:,1], cn[:,1]] # (top center) vals[:,2] = var[rn[:,2], cn[:,2]] # (top right) vals[:,3] = var[rn[:,3], cn[:,3]] # (left center) vals[:,4] = var[rn[:,4], cn[:,4]] # (right center) vals[:,5] = var[rn[:,5], cn[:,5]] # (bottom left) vals[:,6] = var[rn[:,6], cn[:,6]] # (bottom center) vals[:,7] = var[rn[:,7], cn[:,7]] # (bottom right) # vals[:,8] = var[rn[:,8], cn[:,8]] # (center) return vals # get_neighbor_values() #--------------------------------------------------------------- def spread_conflicts1( self, USE_LOOP=False ): #------------------------------------------------- # Note: Can only spread to cells that have S=0. #------------------------------------------------- w1 = (self.S == 1) n1 = w1.sum() if (n1 == 0): print('No conflicts to spread at time:', self.time_index) return if (USE_LOOP): ID_vals = self.IDs[ w1 ] #(for the for loop version) else: ID_vals = np.tile( np.array([self.IDs[w1]]).transpose(), (1,8)) #------------------ # This also works #------------------ # ID_vals = np.zeros((n1,8), dtype='int64') # ID_vals[:,0] = self.IDs[w1] # ID_vals[:,1] = self.IDs[w1] # ID_vals[:,2] = self.IDs[w1] # ID_vals[:,3] = self.IDs[w1] # ID_vals[:,4] = self.IDs[w1] # ID_vals[:,5] = self.IDs[w1] # ID_vals[:,6] = self.IDs[w1] # ID_vals[:,7] = self.IDs[w1] #--------------------------------------------- # Get nearest neighbor values for U, S, & C1 #--------------------------------------------- self.get_neighbor_cols_and_rows( w1, n1 ) #--------------------------------------------- ## Sn = self.get_neighbor_values( self.S, n1) Un = self.get_neighbor_values( self.U, n1) ## C1n = self.get_neighbor_values( self.C1, n1) #------------------------------------------------ # Compute probability of spreading to neighbors #------------------------------------------------ # The "None trick" shown here allows us to do # the following for all k at once: # pn[k,:] = Un[k,:] * (c2 / Un[k,:].max() ) # Need c2 = c_spread to be in (0,1]. # np.amax lets us take the max along an axis. #------------------------------------------------ # NOTE: Un and pn have shape = (n1, 8) # NOTE: pn is initialized & defaults to 0. #------------------------------------------------ Un_max = np.amax( Un, axis=1 ) # a 1D array wg = (Un_max > 0) pn = np.zeros(Un.shape, dtype='float32') pn[ wg,: ] = self.c_spread * Un[wg,:] / (Un_max[wg,None]) #-------------------------------------- # Alternate method that uses U and C1 #-------------------------------------- # Rn = Un * C1n # Rn_max = np.amax( Rn, axis=1 ) # a 1D array # wg = (Rn_max > 0) # pn = np.zeros(Rn.shape, dtype='float32') # pn[ wg,: ] = self.c_spread * Rn[wg,:] / (Rn_max[wg,None]) #--------------------------------------------- # Use Bernoulli r.v.s to determine spreading #--------------------------------------------- cn = self.cn rn = self.rn n_start = self.n_conflict_cells if (USE_LOOP): for k in range(n1): B =
np.random.binomial(1, pn[k,:])
numpy.random.binomial
#!/usr/bin/env python3 import sys import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import multiprocessing as mp import getopt import imageio import os import pylab as pb def create_movie(filenames, fps, output_file): with imageio.get_writer(output_file, fps=fps) as writer: for filename in filenames: writer.append_data(imageio.imread(filename)) writer.close() def createImage(index_list, xyscale, plot_format, log_flag, **kwargs): """ index_list: file index list xyscale: plot x, y scale plot_format: plot format log_flag: if true, color is in logscale kwargs: vmin, vmax """ fig, axes=plt.subplots(1,3,figsize=(8,3), gridspec_kw={'width_ratios': [20, 20, 1]}) plt.subplots_adjust(wspace=0.4) for k in index_list: print('process index ',k) data=dict() labels=['xy','xz'] xylabels=[['X','Y'],['X','Z']] for i in range(len(labels)): axes[i].clear() key=labels[i] data[key]=dict() fname = key+str(k) fp = open(fname, 'r') header = fp.readline() fp.close() time, nx, ny = header.split() nx=int(nx) ny=int(ny) x, y, z, ax, ay, az, pot = np.loadtxt(fname, unpack=True, usecols=(1,2,3,7,8,9,10),skiprows=1) data[key]['x']=x.reshape(nx,ny) data[key]['y']=y.reshape(nx,ny) data[key]['z']=z.reshape(nx,ny) data[key]['pot']=pot.reshape(nx,ny) count = np.log10(-data[key]['pot']) if log_flag else -data[key]['pot'] cset = axes[i].contour(count,linewidths=2,extent=xyscale[i], **kwargs) axes[i].clabel(cset,inline=True,fmt='%1.1f',fontsize=10) axes[i].set_xlabel(xylabels[i][0]) axes[i].set_ylabel(xylabels[i][1]) im = axes[i].imshow(count,cmap=pb.cm.RdBu, aspect=(xyscale[i][1]-xyscale[i][0])/(xyscale[i][3]-xyscale[i][2]), interpolation='bilinear', origin='lower', extent=xyscale[i], **kwargs) axes[0].set_title('Time = %s' % time) cbar = plt.colorbar(im, cax = axes[2]) if log_flag: cbar.set_label(r'$\log{(-P)}$') else: cbar.set_label(r'-P') fig.savefig('pot'+str(k)+'.png', bbox_inches = "tight") if __name__ == '__main__': fps = 30 output_file = 'pot_movie' plot_format='mp4' n_cpu = 0 log_flag = False kwargs=dict() def usage(): print("A tool to generate a movie for the evolution of galpy potential") print("Need to use petar.galpy first to generate snapshots of potential map") print("Usage: petar.galpy.pot.movie [options] [petar.galpy parameter file]") print("Options:") print(" -h(--help): help") print(" -f [F]: output frame FPS: ",fps) print(" -o [S]: output movie filename: ",output_file) print(" --vmin [F]: (positive) potential minimum for color map, if not provided, use first snapshot for reference") print(" --vmax [F]: (positive) potential maximum for color map") print(" --log: color map is in logscale") print(" --n-cpu [I]: number of CPU processors to use: all CPU cores") print(" --format [S]: video format, require imageio installed, for some formats (e.g. avi, mp4) may require ffmpeg and imageio-ffmpeg installed: ", plot_format) try: shortargs = 'f:o:h' longargs = ['help','vmax=','vmin=','format=','n-cpu=','log'] opts, remainder = getopt.getopt(sys.argv[1:], shortargs, longargs) for opt,arg in opts: if opt in ('-h','--help'): usage() sys.exit(1) elif opt in ('-f'): fps = float(arg) elif opt in ('-o'): output_file = arg elif opt in ('--vmin'): kwargs['vmin'] = float(arg) elif opt in ('--vmax'): kwargs['vmax'] = float(arg) elif opt in ('--format'): plot_format = arg elif opt in ('--n-cpu'): n_cpu = int(arg) elif opt in ('--log'): log_flag = True else: assert False, "unhandeld option" except getopt.GetoptError as err: print(err) usage() sys.exit(2) fpar = remainder[0] fp = open(fpar, 'r') header = fp.readline() fp.close() t0, dt, nstep, dt_out, xmin, xmax, nx, ymin, ymax, ny, zmin, zmax, nz = header.split() xmin=float(xmin)*1e-3 xmax=float(xmax)*1e-3 ymin=float(ymin)*1e-3 ymax=float(ymax)*1e-3 zmin=float(zmin)*1e-3 zmax=float(zmax)*1e-3 nstep= int(nstep) xyscale=[[xmin,xmax,ymin,ymax],[xmin,xmax,zmin,zmax]] if (not 'vmin' in kwargs.keys()) | (not 'vmax' in kwargs.keys()) : pot = np.loadtxt('xy0', unpack=True, usecols=(10),skiprows=1) pot_min = pot.min() pot_max = pot.max() pot = np.loadtxt('xz0', unpack=True, usecols=(10),skiprows=1) pot_min = np.minimum(pot_min, pot.min()) pot_max = np.maximum(pot_max, pot.max()) if (not 'vmin' in kwargs.keys()): if (log_flag): kwargs['vmin'] = np.log10(-pot_max) else: kwargs['vmin'] = -pot_max if (not 'vmax' in kwargs.keys()): if (log_flag): kwargs['vmax'] =
np.log10(-pot_min)
numpy.log10
# -*- coding: utf-8 -*- """ v9s model * Input: v5_im Author: Kohei <<EMAIL>> """ from logging import getLogger, Formatter, StreamHandler, INFO, FileHandler from pathlib import Path import subprocess import argparse import math import glob import sys import json import re import warnings import scipy import tqdm import click import tables as tb import pandas as pd import numpy as np from keras.models import Model from keras.engine.topology import merge as merge_l from keras.layers import ( Input, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout, Activation, BatchNormalization) from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, EarlyStopping, History from keras import backend as K import skimage.transform import skimage.morphology import rasterio.features import shapely.wkt import shapely.ops import shapely.geometry MODEL_NAME = 'v9s' ORIGINAL_SIZE = 650 INPUT_SIZE = 256 LOGFORMAT = '%(asctime)s %(levelname)s %(message)s' BASE_DIR = "/data/train" WORKING_DIR = "/data/working" IMAGE_DIR = "/data/working/images/{}".format('v5') MODEL_DIR = "/data/working/models/{}".format(MODEL_NAME) FN_SOLUTION_CSV = "/data/output/{}.csv".format(MODEL_NAME) # Parameters MIN_POLYGON_AREA = 30 # Input files FMT_TRAIN_SUMMARY_PATH = str( Path(BASE_DIR) / Path("{prefix:s}_Train/") / Path("summaryData/{prefix:s}_Train_Building_Solutions.csv")) FMT_TRAIN_RGB_IMAGE_PATH = str( Path(BASE_DIR) / Path("{prefix:s}_Train/") / Path("RGB-PanSharpen/RGB-PanSharpen_{image_id:s}.tif")) FMT_TEST_RGB_IMAGE_PATH = str( Path(BASE_DIR) / Path("{prefix:s}_Test_public/") / Path("RGB-PanSharpen/RGB-PanSharpen_{image_id:s}.tif")) FMT_TRAIN_MSPEC_IMAGE_PATH = str( Path(BASE_DIR) / Path("{prefix:s}_Train/") / Path("MUL-PanSharpen/MUL-PanSharpen_{image_id:s}.tif")) FMT_TEST_MSPEC_IMAGE_PATH = str( Path(BASE_DIR) / Path("{prefix:s}_Test_public/") / Path("MUL-PanSharpen/MUL-PanSharpen_{image_id:s}.tif")) # Preprocessing result FMT_BANDCUT_TH_PATH = IMAGE_DIR + "/bandcut{}.csv" FMT_MUL_BANDCUT_TH_PATH = IMAGE_DIR + "/mul_bandcut{}.csv" # Image list, Image container and mask container FMT_VALTRAIN_IMAGELIST_PATH = IMAGE_DIR + "/{prefix:s}_valtrain_ImageId.csv" FMT_VALTEST_IMAGELIST_PATH = IMAGE_DIR + "/{prefix:s}_valtest_ImageId.csv" FMT_VALTRAIN_IM_STORE = IMAGE_DIR + "/valtrain_{}_im.h5" FMT_VALTEST_IM_STORE = IMAGE_DIR + "/valtest_{}_im.h5" FMT_VALTRAIN_MASK_STORE = IMAGE_DIR + "/valtrain_{}_mask.h5" FMT_VALTEST_MASK_STORE = IMAGE_DIR + "/valtest_{}_mask.h5" FMT_VALTRAIN_MUL_STORE = IMAGE_DIR + "/valtrain_{}_mul.h5" FMT_VALTEST_MUL_STORE = IMAGE_DIR + "/valtest_{}_mul.h5" FMT_TRAIN_IMAGELIST_PATH = IMAGE_DIR + "/{prefix:s}_train_ImageId.csv" FMT_TEST_IMAGELIST_PATH = IMAGE_DIR + "/{prefix:s}_test_ImageId.csv" FMT_TRAIN_IM_STORE = IMAGE_DIR + "/train_{}_im.h5" FMT_TEST_IM_STORE = IMAGE_DIR + "/test_{}_im.h5" FMT_TRAIN_MASK_STORE = IMAGE_DIR + "/train_{}_mask.h5" FMT_TRAIN_MUL_STORE = IMAGE_DIR + "/train_{}_mul.h5" FMT_TEST_MUL_STORE = IMAGE_DIR + "/test_{}_mul.h5" FMT_IMMEAN = IMAGE_DIR + "/{}_immean.h5" FMT_MULMEAN = IMAGE_DIR + "/{}_mulmean.h5" # Model files FMT_VALMODEL_PATH = MODEL_DIR + "/{}_val_weights.h5" FMT_FULLMODEL_PATH = MODEL_DIR + "/{}_full_weights.h5" FMT_VALMODEL_HIST = MODEL_DIR + "/{}_val_hist.csv" FMT_VALMODEL_EVALHIST = MODEL_DIR + "/{}_val_evalhist.csv" FMT_VALMODEL_EVALTHHIST = MODEL_DIR + "/{}_val_evalhist_th.csv" # Prediction & polygon result FMT_TESTPRED_PATH = MODEL_DIR + "/{}_pred.h5" FMT_VALTESTPRED_PATH = MODEL_DIR + "/{}_eval_pred.h5" FMT_VALTESTPOLY_PATH = MODEL_DIR + "/{}_eval_poly.csv" FMT_VALTESTTRUTH_PATH = MODEL_DIR + "/{}_eval_poly_truth.csv" FMT_VALTESTPOLY_OVALL_PATH = MODEL_DIR + "/eval_poly.csv" FMT_VALTESTTRUTH_OVALL_PATH = MODEL_DIR + "/eval_poly_truth.csv" FMT_TESTPOLY_PATH = MODEL_DIR + "/{}_poly.csv" # Model related files (others) FMT_VALMODEL_LAST_PATH = MODEL_DIR + "/{}_val_weights_last.h5" FMT_FULLMODEL_LAST_PATH = MODEL_DIR + "/{}_full_weights_last.h5" # Logger warnings.simplefilter("ignore", UserWarning) handler = StreamHandler() handler.setLevel(INFO) handler.setFormatter(Formatter(LOGFORMAT)) fh_handler = FileHandler(".{}.log".format(MODEL_NAME)) fh_handler.setFormatter(Formatter(LOGFORMAT)) logger = getLogger('spacenet2') logger.setLevel(INFO) if __name__ == '__main__': logger.addHandler(handler) logger.addHandler(fh_handler) # Fix seed for reproducibility np.random.seed(1145141919) def directory_name_to_area_id(datapath): """ Directory name to AOI number Usage: >>> directory_name_to_area_id("/data/test/AOI_2_Vegas") 2 """ dir_name = Path(datapath).name if dir_name.startswith('AOI_2_Vegas'): return 2 elif dir_name.startswith('AOI_3_Paris'): return 3 elif dir_name.startswith('AOI_4_Shanghai'): return 4 elif dir_name.startswith('AOI_5_Khartoum'): return 5 else: raise RuntimeError("Unsupported city id is given.") def _remove_interiors(line): if "), (" in line: line_prefix = line.split('), (')[0] line_terminate = line.split('))",')[-1] line = ( line_prefix + '))",' + line_terminate ) return line def __load_band_cut_th(band_fn, bandsz=3): df = pd.read_csv(band_fn, index_col='area_id') all_band_cut_th = {area_id: {} for area_id in range(2, 6)} for area_id, row in df.iterrows(): for chan_i in range(bandsz): all_band_cut_th[area_id][chan_i] = dict( min=row['chan{}_min'.format(chan_i)], max=row['chan{}_max'.format(chan_i)], ) return all_band_cut_th def _calc_fscore_per_aoi(area_id): prefix = area_id_to_prefix(area_id) truth_file = FMT_VALTESTTRUTH_PATH.format(prefix) poly_file = FMT_VALTESTPOLY_PATH.format(prefix) cmd = [ 'java', '-jar', '/root/visualizer-2.0/visualizer.jar', '-truth', truth_file, '-solution', poly_file, '-no-gui', '-band-triplets', '/root/visualizer-2.0/data/band-triplets.txt', '-image-dir', 'pass', ] proc = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout_data, stderr_data = proc.communicate() lines = [line for line in stdout_data.decode('utf8').split('\n')[-10:]] """ Overall F-score : 0.85029 AOI_2_Vegas: TP : 27827 FP : 4999 FN : 4800 Precision: 0.847712 Recall : 0.852883 F-score : 0.85029 """ if stdout_data.decode('utf8').strip().endswith("Overall F-score : 0"): overall_fscore = 0 tp = 0 fp = 0 fn = 0 precision = 0 recall = 0 fscore = 0 elif len(lines) > 0 and lines[0].startswith("Overall F-score : "): assert lines[0].startswith("Overall F-score : ") assert lines[2].startswith("AOI_") assert lines[3].strip().startswith("TP") assert lines[4].strip().startswith("FP") assert lines[5].strip().startswith("FN") assert lines[6].strip().startswith("Precision") assert lines[7].strip().startswith("Recall") assert lines[8].strip().startswith("F-score") overall_fscore = float(re.findall("([\d\.]+)", lines[0])[0]) tp = int(re.findall("(\d+)", lines[3])[0]) fp = int(re.findall("(\d+)", lines[4])[0]) fn = int(re.findall("(\d+)", lines[5])[0]) precision = float(re.findall("([\d\.]+)", lines[6])[0]) recall = float(re.findall("([\d\.]+)", lines[7])[0]) fscore = float(re.findall("([\d\.]+)", lines[8])[0]) else: logger.warn("Unexpected data >>> " + stdout_data.decode('utf8')) raise RuntimeError("Unsupported format") return { 'overall_fscore': overall_fscore, 'tp': tp, 'fp': fp, 'fn': fn, 'precision': precision, 'recall': recall, 'fscore': fscore, } def prefix_to_area_id(prefix): area_dict = { 'AOI_2_Vegas': 2, 'AOI_3_Paris': 3, 'AOI_4_Shanghai': 4, 'AOI_5_Khartoum': 5, } return area_dict[area_id] def area_id_to_prefix(area_id): area_dict = { 2: 'AOI_2_Vegas', 3: 'AOI_3_Paris', 4: 'AOI_4_Shanghai', 5: 'AOI_5_Khartoum', } return area_dict[area_id] # --------------------------------------------------------- # main def _get_model_parameter(area_id): prefix = area_id_to_prefix(area_id) fn_hist = FMT_VALMODEL_EVALTHHIST.format(prefix) best_row = pd.read_csv(fn_hist).sort_values( by='fscore', ascending=False, ).iloc[0] param = dict( fn_epoch=int(best_row['zero_base_epoch']), min_poly_area=int(best_row['min_area_th']), ) return param def get_resized_raster_3chan_image(image_id, band_cut_th=None): fn = train_image_id_to_path(image_id) with rasterio.open(fn, 'r') as f: values = f.read().astype(np.float32) for chan_i in range(3): min_val = band_cut_th[chan_i]['min'] max_val = band_cut_th[chan_i]['max'] values[chan_i] = np.clip(values[chan_i], min_val, max_val) values[chan_i] = (values[chan_i] - min_val) / (max_val - min_val) values = np.swapaxes(values, 0, 2) values = np.swapaxes(values, 0, 1) values = skimage.transform.resize(values, (INPUT_SIZE, INPUT_SIZE)) return values def get_resized_raster_3chan_image_test(image_id, band_cut_th=None): fn = test_image_id_to_path(image_id) with rasterio.open(fn, 'r') as f: values = f.read().astype(np.float32) for chan_i in range(3): min_val = band_cut_th[chan_i]['min'] max_val = band_cut_th[chan_i]['max'] values[chan_i] = np.clip(values[chan_i], min_val, max_val) values[chan_i] = (values[chan_i] - min_val) / (max_val - min_val) values = np.swapaxes(values, 0, 2) values = np.swapaxes(values, 0, 1) values = skimage.transform.resize(values, (INPUT_SIZE, INPUT_SIZE)) return values def image_mask_resized_from_summary(df, image_id): im_mask = np.zeros((650, 650)) for idx, row in df[df.ImageId == image_id].iterrows(): shape_obj = shapely.wkt.loads(row.PolygonWKT_Pix) if shape_obj.exterior is not None: coords = list(shape_obj.exterior.coords) x = [round(float(pp[0])) for pp in coords] y = [round(float(pp[1])) for pp in coords] yy, xx = skimage.draw.polygon(y, x, (650, 650)) im_mask[yy, xx] = 1 interiors = shape_obj.interiors for interior in interiors: coords = list(interior.coords) x = [round(float(pp[0])) for pp in coords] y = [round(float(pp[1])) for pp in coords] yy, xx = skimage.draw.polygon(y, x, (650, 650)) im_mask[yy, xx] = 0 im_mask = skimage.transform.resize(im_mask, (INPUT_SIZE, INPUT_SIZE)) im_mask = (im_mask > 0.5).astype(np.uint8) return im_mask def train_test_image_prep(area_id): prefix = area_id_to_prefix(area_id) df_train = pd.read_csv( FMT_TRAIN_IMAGELIST_PATH.format(prefix=prefix), index_col='ImageId') df_test = pd.read_csv( FMT_TEST_IMAGELIST_PATH.format(prefix=prefix), index_col='ImageId') band_cut_th = __load_band_cut_th( FMT_BANDCUT_TH_PATH.format(prefix))[area_id] df_summary = _load_train_summary_data(area_id) fn = FMT_TRAIN_IM_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_train.index, total=len(df_train)): im = get_resized_raster_3chan_image(image_id, band_cut_th) atom = tb.Atom.from_dtype(im.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im.shape, filters=filters) ds[:] = im fn = FMT_TEST_IM_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_test.index, total=len(df_test)): im = get_resized_raster_3chan_image_test(image_id, band_cut_th) atom = tb.Atom.from_dtype(im.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im.shape, filters=filters) ds[:] = im fn = FMT_TRAIN_MASK_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_train.index, total=len(df_train)): im_mask = image_mask_resized_from_summary(df_summary, image_id) atom = tb.Atom.from_dtype(im_mask.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im_mask.shape, filters=filters) ds[:] = im_mask def valtrain_test_image_prep(area_id): prefix = area_id_to_prefix(area_id) logger.info("valtrain_test_image_prep for {}".format(prefix)) df_train = pd.read_csv( FMT_VALTRAIN_IMAGELIST_PATH.format(prefix=prefix), index_col='ImageId') df_test = pd.read_csv( FMT_VALTEST_IMAGELIST_PATH.format(prefix=prefix), index_col='ImageId') band_cut_th = __load_band_cut_th( FMT_BANDCUT_TH_PATH.format(prefix))[area_id] df_summary = _load_train_summary_data(area_id) fn = FMT_VALTRAIN_IM_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_train.index, total=len(df_train)): im = get_resized_raster_3chan_image(image_id, band_cut_th) atom = tb.Atom.from_dtype(im.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im.shape, filters=filters) ds[:] = im fn = FMT_VALTEST_IM_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_test.index, total=len(df_test)): im = get_resized_raster_3chan_image(image_id, band_cut_th) atom = tb.Atom.from_dtype(im.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im.shape, filters=filters) ds[:] = im fn = FMT_VALTRAIN_MASK_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_train.index, total=len(df_train)): im_mask = image_mask_resized_from_summary(df_summary, image_id) atom = tb.Atom.from_dtype(im_mask.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im_mask.shape, filters=filters) ds[:] = im_mask fn = FMT_VALTEST_MASK_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_test.index, total=len(df_test)): im_mask = image_mask_resized_from_summary(df_summary, image_id) atom = tb.Atom.from_dtype(im_mask.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im_mask.shape, filters=filters) ds[:] = im_mask def train_test_mul_image_prep(area_id): prefix = area_id_to_prefix(area_id) df_train = pd.read_csv( FMT_TRAIN_IMAGELIST_PATH.format(prefix=prefix), index_col='ImageId') df_test = pd.read_csv( FMT_TEST_IMAGELIST_PATH.format(prefix=prefix), index_col='ImageId') band_rgb_th = __load_band_cut_th( FMT_BANDCUT_TH_PATH.format(prefix))[area_id] band_mul_th = __load_band_cut_th( FMT_MUL_BANDCUT_TH_PATH.format(prefix), bandsz=8)[area_id] df_summary = _load_train_summary_data(area_id) fn = FMT_TRAIN_MUL_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_train.index, total=len(df_train)): im = get_resized_raster_8chan_image( image_id, band_rgb_th, band_mul_th) atom = tb.Atom.from_dtype(im.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im.shape, filters=filters) ds[:] = im fn = FMT_TEST_MUL_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_test.index, total=len(df_test)): im = get_resized_raster_8chan_image_test( image_id, band_rgb_th, band_mul_th) atom = tb.Atom.from_dtype(im.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im.shape, filters=filters) ds[:] = im def valtrain_test_mul_image_prep(area_id): prefix = area_id_to_prefix(area_id) logger.info("valtrain_test_image_prep for {}".format(prefix)) df_train = pd.read_csv( FMT_VALTRAIN_IMAGELIST_PATH.format(prefix=prefix), index_col='ImageId') df_test = pd.read_csv( FMT_VALTEST_IMAGELIST_PATH.format(prefix=prefix), index_col='ImageId') band_rgb_th = __load_band_cut_th( FMT_BANDCUT_TH_PATH.format(prefix))[area_id] band_mul_th = __load_band_cut_th( FMT_MUL_BANDCUT_TH_PATH.format(prefix), bandsz=8)[area_id] df_summary = _load_train_summary_data(area_id) fn = FMT_VALTRAIN_MUL_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_train.index, total=len(df_train)): im = get_resized_raster_8chan_image( image_id, band_rgb_th, band_mul_th) atom = tb.Atom.from_dtype(im.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im.shape, filters=filters) ds[:] = im fn = FMT_VALTEST_MUL_STORE.format(prefix) logger.info("Prepare image container: {}".format(fn)) with tb.open_file(fn, 'w') as f: for image_id in tqdm.tqdm(df_test.index, total=len(df_test)): im = get_resized_raster_8chan_image( image_id, band_rgb_th, band_mul_th) atom = tb.Atom.from_dtype(im.dtype) filters = tb.Filters(complib='blosc', complevel=9) ds = f.create_carray(f.root, image_id, atom, im.shape, filters=filters) ds[:] = im def _load_train_summary_data(area_id): prefix = area_id_to_prefix(area_id) fn = FMT_TRAIN_SUMMARY_PATH.format(prefix=prefix) df = pd.read_csv(fn) return df def split_val_train_test(area_id): prefix = area_id_to_prefix(area_id) df = _load_train_summary_data(area_id) df_agg = df.groupby('ImageId').agg('first') image_id_list = df_agg.index.tolist() np.random.shuffle(image_id_list) sz_valtrain = int(len(image_id_list) * 0.7) sz_valtest = len(image_id_list) - sz_valtrain pd.DataFrame({'ImageId': image_id_list[:sz_valtrain]}).to_csv( FMT_VALTRAIN_IMAGELIST_PATH.format(prefix=prefix), index=False) pd.DataFrame({'ImageId': image_id_list[sz_valtrain:]}).to_csv( FMT_VALTEST_IMAGELIST_PATH.format(prefix=prefix), index=False) def train_image_id_to_mspec_path(image_id): prefix = image_id_to_prefix(image_id) fn = FMT_TRAIN_MSPEC_IMAGE_PATH.format( prefix=prefix, image_id=image_id) return fn def test_image_id_to_mspec_path(image_id): prefix = image_id_to_prefix(image_id) fn = FMT_TEST_MSPEC_IMAGE_PATH.format( prefix=prefix, image_id=image_id) return fn def train_image_id_to_path(image_id): prefix = image_id_to_prefix(image_id) fn = FMT_TRAIN_RGB_IMAGE_PATH.format( prefix=prefix, image_id=image_id) return fn def test_image_id_to_path(image_id): prefix = image_id_to_prefix(image_id) fn = FMT_TEST_RGB_IMAGE_PATH.format( prefix=prefix, image_id=image_id) return fn def image_id_to_prefix(image_id): prefix = image_id.split('img')[0][:-1] return prefix def calc_multiband_cut_threshold(area_id): rows = [] band_cut_th = __calc_multiband_cut_threshold(area_id) prefix = area_id_to_prefix(area_id) row = dict(prefix=area_id_to_prefix(area_id)) row['area_id'] = area_id for chan_i in band_cut_th.keys(): row['chan{}_max'.format(chan_i)] = band_cut_th[chan_i]['max'] row['chan{}_min'.format(chan_i)] = band_cut_th[chan_i]['min'] rows.append(row) pd.DataFrame(rows).to_csv(FMT_BANDCUT_TH_PATH.format(prefix), index=False) def __calc_multiband_cut_threshold(area_id): prefix = area_id_to_prefix(area_id) band_values = {k: [] for k in range(3)} band_cut_th = {k: dict(max=0, min=0) for k in range(3)} image_id_list = pd.read_csv(FMT_VALTRAIN_IMAGELIST_PATH.format( prefix=prefix)).ImageId.tolist() for image_id in tqdm.tqdm(image_id_list[:500]): image_fn = train_image_id_to_path(image_id) with rasterio.open(image_fn, 'r') as f: values = f.read().astype(np.float32) for i_chan in range(3): values_ = values[i_chan].ravel().tolist() values_ = np.array( [v for v in values_ if v != 0] ) # Remove sensored mask band_values[i_chan].append(values_) image_id_list = pd.read_csv(FMT_VALTEST_IMAGELIST_PATH.format( prefix=prefix)).ImageId.tolist() for image_id in tqdm.tqdm(image_id_list[:500]): image_fn = train_image_id_to_path(image_id) with rasterio.open(image_fn, 'r') as f: values = f.read().astype(np.float32) for i_chan in range(3): values_ = values[i_chan].ravel().tolist() values_ = np.array( [v for v in values_ if v != 0] ) # Remove sensored mask band_values[i_chan].append(values_) for i_chan in range(3): band_values[i_chan] = np.concatenate( band_values[i_chan]).ravel() band_cut_th[i_chan]['max'] = scipy.percentile( band_values[i_chan], 98) band_cut_th[i_chan]['min'] = scipy.percentile( band_values[i_chan], 2) return band_cut_th def calc_mul_multiband_cut_threshold(area_id): rows = [] band_cut_th = __calc_mul_multiband_cut_threshold(area_id) prefix = area_id_to_prefix(area_id) row = dict(prefix=area_id_to_prefix(area_id)) row['area_id'] = area_id for chan_i in band_cut_th.keys(): row['chan{}_max'.format(chan_i)] = band_cut_th[chan_i]['max'] row['chan{}_min'.format(chan_i)] = band_cut_th[chan_i]['min'] rows.append(row) pd.DataFrame(rows).to_csv( FMT_MUL_BANDCUT_TH_PATH.format(prefix), index=False) def __calc_mul_multiband_cut_threshold(area_id): prefix = area_id_to_prefix(area_id) band_values = {k: [] for k in range(8)} band_cut_th = {k: dict(max=0, min=0) for k in range(8)} image_id_list = pd.read_csv(FMT_VALTRAIN_IMAGELIST_PATH.format( prefix=prefix)).ImageId.tolist() for image_id in tqdm.tqdm(image_id_list[:500]): image_fn = train_image_id_to_mspec_path(image_id) with rasterio.open(image_fn, 'r') as f: values = f.read().astype(np.float32) for i_chan in range(8): values_ = values[i_chan].ravel().tolist() values_ = np.array( [v for v in values_ if v != 0] ) # Remove sensored mask band_values[i_chan].append(values_) image_id_list = pd.read_csv(FMT_VALTEST_IMAGELIST_PATH.format( prefix=prefix)).ImageId.tolist() for image_id in tqdm.tqdm(image_id_list[:500]): image_fn = train_image_id_to_mspec_path(image_id) with rasterio.open(image_fn, 'r') as f: values = f.read().astype(np.float32) for i_chan in range(8): values_ = values[i_chan].ravel().tolist() values_ = np.array( [v for v in values_ if v != 0] ) # Remove sensored mask band_values[i_chan].append(values_) for i_chan in range(8): band_values[i_chan] = np.concatenate( band_values[i_chan]).ravel() band_cut_th[i_chan]['max'] = scipy.percentile( band_values[i_chan], 98) band_cut_th[i_chan]['min'] = scipy.percentile( band_values[i_chan], 2) return band_cut_th def get_unet(): conv_params = dict(activation='relu', border_mode='same') merge_params = dict(mode='concat', concat_axis=1) inputs = Input((8, 256, 256)) conv1 = Convolution2D(32, 3, 3, **conv_params)(inputs) conv1 = Convolution2D(32, 3, 3, **conv_params)(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Convolution2D(64, 3, 3, **conv_params)(pool1) conv2 = Convolution2D(64, 3, 3, **conv_params)(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Convolution2D(128, 3, 3, **conv_params)(pool2) conv3 = Convolution2D(128, 3, 3, **conv_params)(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Convolution2D(256, 3, 3, **conv_params)(pool3) conv4 = Convolution2D(256, 3, 3, **conv_params)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) conv5 = Convolution2D(512, 3, 3, **conv_params)(pool4) conv5 = Convolution2D(512, 3, 3, **conv_params)(conv5) up6 = merge_l([UpSampling2D(size=(2, 2))(conv5), conv4], **merge_params) conv6 = Convolution2D(256, 3, 3, **conv_params)(up6) conv6 = Convolution2D(256, 3, 3, **conv_params)(conv6) up7 = merge_l([UpSampling2D(size=(2, 2))(conv6), conv3], **merge_params) conv7 = Convolution2D(128, 3, 3, **conv_params)(up7) conv7 = Convolution2D(128, 3, 3, **conv_params)(conv7) up8 = merge_l([UpSampling2D(size=(2, 2))(conv7), conv2], **merge_params) conv8 = Convolution2D(64, 3, 3, **conv_params)(up8) conv8 = Convolution2D(64, 3, 3, **conv_params)(conv8) up9 = merge_l([UpSampling2D(size=(2, 2))(conv8), conv1], **merge_params) conv9 = Convolution2D(32, 3, 3, **conv_params)(up9) conv9 = Convolution2D(32, 3, 3, **conv_params)(conv9) conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9) adam = Adam() model = Model(input=inputs, output=conv10) model.compile(optimizer=adam, loss='binary_crossentropy', metrics=['accuracy', jaccard_coef, jaccard_coef_int]) return model def jaccard_coef(y_true, y_pred): smooth = 1e-12 intersection = K.sum(y_true * y_pred, axis=[0, -1, -2]) sum_ = K.sum(y_true + y_pred, axis=[0, -1, -2]) jac = (intersection + smooth) / (sum_ - intersection + smooth) return K.mean(jac) def jaccard_coef_int(y_true, y_pred): smooth = 1e-12 y_pred_pos = K.round(K.clip(y_pred, 0, 1)) intersection = K.sum(y_true * y_pred_pos, axis=[0, -1, -2]) sum_ = K.sum(y_true + y_pred_pos, axis=[0, -1, -2]) jac = (intersection + smooth) / (sum_ - intersection + smooth) return K.mean(jac) def generate_test_batch(area_id, batch_size=64, immean=None, enable_tqdm=False): prefix = area_id_to_prefix(area_id) df_test = pd.read_csv(FMT_TEST_IMAGELIST_PATH.format(prefix=prefix)) fn_im = FMT_TEST_MUL_STORE.format(prefix) image_id_list = df_test.ImageId.tolist() if enable_tqdm: pbar = tqdm.tqdm(total=len(image_id_list)) while 1: total_sz = len(image_id_list) n_batch = int(math.floor(total_sz / batch_size) + 1) with tb.open_file(fn_im, 'r') as f_im: for i_batch in range(n_batch): target_image_ids = image_id_list[ i_batch*batch_size:(i_batch+1)*batch_size ] if len(target_image_ids) == 0: continue X_test = [] y_test = [] for image_id in target_image_ids: im = np.array(f_im.get_node('/' + image_id)) im = np.swapaxes(im, 0, 2) im = np.swapaxes(im, 1, 2) X_test.append(im) mask = np.zeros((INPUT_SIZE, INPUT_SIZE)).astype(np.uint8) y_test.append(mask) X_test = np.array(X_test) y_test = np.array(y_test) y_test = y_test.reshape((-1, 1, INPUT_SIZE, INPUT_SIZE)) if immean is not None: X_test = X_test - immean if enable_tqdm: pbar.update(y_test.shape[0]) yield (X_test, y_test) if enable_tqdm: pbar.close() def get_resized_raster_8chan_image_test(image_id, band_rgb_th, band_mul_th): """ RGB + multispectral (total: 8 channels) """ im = [] fn = test_image_id_to_path(image_id) with rasterio.open(fn, 'r') as f: values = f.read().astype(np.float32) for chan_i in range(3): min_val = band_rgb_th[chan_i]['min'] max_val = band_rgb_th[chan_i]['max'] values[chan_i] = np.clip(values[chan_i], min_val, max_val) values[chan_i] = (values[chan_i] - min_val) / (max_val - min_val) im.append(skimage.transform.resize( values[chan_i], (INPUT_SIZE, INPUT_SIZE))) fn = test_image_id_to_mspec_path(image_id) with rasterio.open(fn, 'r') as f: values = f.read().astype(np.float32) usechannels = [1, 2, 5, 6, 7] for chan_i in usechannels: min_val = band_mul_th[chan_i]['min'] max_val = band_mul_th[chan_i]['max'] values[chan_i] = np.clip(values[chan_i], min_val, max_val) values[chan_i] = (values[chan_i] - min_val) / (max_val - min_val) im.append(skimage.transform.resize( values[chan_i], (INPUT_SIZE, INPUT_SIZE))) im = np.array(im) # (ch, w, h) im = np.swapaxes(im, 0, 2) # -> (h, w, ch) im = np.swapaxes(im, 0, 1) # -> (w, h, ch) return im def get_resized_raster_8chan_image(image_id, band_rgb_th, band_mul_th): """ RGB + multispectral (total: 8 channels) """ im = [] fn = train_image_id_to_path(image_id) with rasterio.open(fn, 'r') as f: values = f.read().astype(np.float32) for chan_i in range(3): min_val = band_rgb_th[chan_i]['min'] max_val = band_rgb_th[chan_i]['max'] values[chan_i] = np.clip(values[chan_i], min_val, max_val) values[chan_i] = (values[chan_i] - min_val) / (max_val - min_val) im.append(skimage.transform.resize( values[chan_i], (INPUT_SIZE, INPUT_SIZE))) fn = train_image_id_to_mspec_path(image_id) with rasterio.open(fn, 'r') as f: values = f.read().astype(np.float32) usechannels = [1, 2, 5, 6, 7] for chan_i in usechannels: min_val = band_mul_th[chan_i]['min'] max_val = band_mul_th[chan_i]['max'] values[chan_i] = np.clip(values[chan_i], min_val, max_val) values[chan_i] = (values[chan_i] - min_val) / (max_val - min_val) im.append(skimage.transform.resize( values[chan_i], (INPUT_SIZE, INPUT_SIZE))) im = np.array(im) # (ch, w, h) im = np.swapaxes(im, 0, 2) # -> (h, w, ch) im = np.swapaxes(im, 0, 1) # -> (w, h, ch) return im def _get_train_mul_data(area_id): """ RGB + multispectral (total: 8 channels) """ prefix = area_id_to_prefix(area_id) fn_train = FMT_TRAIN_IMAGELIST_PATH.format(prefix=prefix) df_train = pd.read_csv(fn_train) X_train = [] fn_im = FMT_TRAIN_MUL_STORE.format(prefix) with tb.open_file(fn_im, 'r') as f: for idx, image_id in enumerate(df_train.ImageId.tolist()): im = np.array(f.get_node('/' + image_id)) im = np.swapaxes(im, 0, 2) im = np.swapaxes(im, 1, 2) X_train.append(im) X_train = np.array(X_train) y_train = [] fn_mask = FMT_TRAIN_MASK_STORE.format(prefix) with tb.open_file(fn_mask, 'r') as f: for idx, image_id in enumerate(df_train.ImageId.tolist()): mask = np.array(f.get_node('/' + image_id)) mask = (mask > 0.5).astype(np.uint8) y_train.append(mask) y_train = np.array(y_train) y_train = y_train.reshape((-1, 1, INPUT_SIZE, INPUT_SIZE)) return X_train, y_train def _get_test_mul_data(area_id): """ RGB + multispectral (total: 8 channels) """ prefix = area_id_to_prefix(area_id) fn_test = FMT_TEST_IMAGELIST_PATH.format(prefix=prefix) df_test = pd.read_csv(fn_test) X_test = [] fn_im = FMT_TEST_MUL_STORE.format(prefix) with tb.open_file(fn_im, 'r') as f: for idx, image_id in enumerate(df_test.ImageId.tolist()): im = np.array(f.get_node('/' + image_id)) im = np.swapaxes(im, 0, 2) im = np.swapaxes(im, 1, 2) X_test.append(im) X_test = np.array(X_test) return X_test def _get_valtest_mul_data(area_id): prefix = area_id_to_prefix(area_id) fn_test = FMT_VALTEST_IMAGELIST_PATH.format(prefix=prefix) df_test = pd.read_csv(fn_test) X_val = [] fn_im = FMT_VALTEST_MUL_STORE.format(prefix) with tb.open_file(fn_im, 'r') as f: for idx, image_id in enumerate(df_test.ImageId.tolist()): im = np.array(f.get_node('/' + image_id)) im = np.swapaxes(im, 0, 2) im = np.swapaxes(im, 1, 2) X_val.append(im) X_val = np.array(X_val) y_val = [] fn_mask = FMT_VALTEST_MASK_STORE.format(prefix) with tb.open_file(fn_mask, 'r') as f: for idx, image_id in enumerate(df_test.ImageId.tolist()): mask = np.array(f.get_node('/' + image_id)) mask = (mask > 0.5).astype(np.uint8) y_val.append(mask) y_val = np.array(y_val) y_val = y_val.reshape((-1, 1, INPUT_SIZE, INPUT_SIZE)) return X_val, y_val def _get_valtrain_mul_data(area_id): prefix = area_id_to_prefix(area_id) fn_train = FMT_VALTRAIN_IMAGELIST_PATH.format(prefix=prefix) df_train = pd.read_csv(fn_train) X_val = [] fn_im = FMT_VALTRAIN_MUL_STORE.format(prefix) with tb.open_file(fn_im, 'r') as f: for idx, image_id in enumerate(df_train.ImageId.tolist()): im = np.array(f.get_node('/' + image_id)) im = np.swapaxes(im, 0, 2) im = np.swapaxes(im, 1, 2) X_val.append(im) X_val = np.array(X_val) y_val = [] fn_mask = FMT_VALTRAIN_MASK_STORE.format(prefix) with tb.open_file(fn_mask, 'r') as f: for idx, image_id in enumerate(df_train.ImageId.tolist()): mask = np.array(f.get_node('/' + image_id)) mask = (mask > 0.5).astype(np.uint8) y_val.append(mask) y_val = np.array(y_val) y_val = y_val.reshape((-1, 1, INPUT_SIZE, INPUT_SIZE)) return X_val, y_val def get_mul_mean_image(area_id): prefix = area_id_to_prefix(area_id) with tb.open_file(FMT_MULMEAN.format(prefix), 'r') as f: im_mean = np.array(f.get_node('/mulmean')) return im_mean def preproc_stage3(area_id): prefix = area_id_to_prefix(area_id) if not Path(FMT_VALTEST_MUL_STORE.format(prefix)).exists(): valtrain_test_mul_image_prep(area_id) if not Path(FMT_TEST_MUL_STORE.format(prefix)).exists(): train_test_mul_image_prep(area_id) # mean image for subtract preprocessing X1, _ = _get_train_mul_data(area_id) X2 = _get_test_mul_data(area_id) X =
np.vstack([X1, X2])
numpy.vstack
from __future__ import division import unittest import shutil import os import time import warnings import copy import pytest import netCDF4 import numpy as np from numpy.testing import assert_allclose from salem.tests import (requires_travis, requires_geopandas, requires_dask, requires_matplotlib, requires_cartopy) from salem import utils, transform_geopandas, GeoTiff, read_shapefile, sio from salem import read_shapefile_to_grid from salem.utils import get_demo_file current_dir = os.path.dirname(os.path.abspath(__file__)) testdir = os.path.join(current_dir, 'tmp') def is_cartopy_rotated_working(): from salem.gis import proj_to_cartopy from cartopy.crs import PlateCarree import pyproj cp = pyproj.Proj('+ellps=WGS84 +proj=ob_tran +o_proj=latlon ' '+to_meter=0.0174532925199433 +o_lon_p=0.0 +o_lat_p=80.5 ' '+lon_0=357.5 +no_defs') cp = proj_to_cartopy(cp) out = PlateCarree().transform_points(cp, np.array([-20]), np.array([-9])) if not (np.allclose(out[0, 0], -22.243473889042903, atol=1e-5) and np.allclose(out[0, 1], -0.06328365194179102, atol=1e-5)): # Cartopy also had issues return False return True @requires_geopandas def create_dummy_shp(fname): import shapely.geometry as shpg import geopandas as gpd e_line = shpg.LinearRing([(1.5, 1), (2., 1.5), (1.5, 2.), (1, 1.5)]) i_line = shpg.LinearRing([(1.4, 1.4), (1.6, 1.4), (1.6, 1.6), (1.4, 1.6)]) p1 = shpg.Polygon(e_line, [i_line]) p2 = shpg.Polygon([(2.5, 1.3), (3., 1.8), (2.5, 2.3), (2, 1.8)]) p3 = shpg.Point(0.5, 0.5) p4 = shpg.Point(1, 1) df = gpd.GeoDataFrame() df['name'] = ['Polygon', 'Line'] df['geometry'] = gpd.GeoSeries([p1, p2]) of = os.path.join(testdir, fname) df.to_file(of) return of def delete_test_dir(): if os.path.exists(testdir): shutil.rmtree(testdir) class TestUtils(unittest.TestCase): def setUp(self): if not os.path.exists(testdir): os.makedirs(testdir) def tearDown(self): delete_test_dir() @requires_travis def test_empty_cache(self): utils.empty_cache() def test_hash_cache_dir(self): h1 = utils._hash_cache_dir() h2 = utils._hash_cache_dir() self.assertEqual(h1, h2) def test_demofiles(self): self.assertTrue(os.path.exists(utils.get_demo_file('dem_wgs84.nc'))) self.assertTrue(utils.get_demo_file('dummy') is None) def test_read_colormap(self): cl = utils.read_colormap('topo') * 256 assert_allclose(cl[4, :], (177, 242, 196)) assert_allclose(cl[-1, :], (235, 233, 235)) cl = utils.read_colormap('dem') * 256 assert_allclose(cl[4, :], (153,100, 43)) assert_allclose(cl[-1, :], (255,255,255)) def test_reduce(self): arr = [[1, 1, 2, 2], [1, 1, 2, 2]] assert_allclose(utils.reduce(arr, 1), arr) assert_allclose(utils.reduce(arr, 2), [[1, 2]]) assert_allclose(utils.reduce(arr, 2, how=np.sum), [[4, 8]]) arr = np.stack([arr, arr, arr]) assert_allclose(arr.shape, (3, 2, 4)) assert_allclose(utils.reduce(arr, 1), arr) assert_allclose(utils.reduce(arr, 2), [[[1, 2]], [[1, 2]], [[1, 2]]]) assert_allclose(utils.reduce(arr, 2, how=np.sum), [[[4, 8]], [[4, 8]], [[4, 8]]]) arr[0, ...] = 0 assert_allclose(utils.reduce(arr, 2, how=np.sum), [[[0, 0]], [[4, 8]], [[4, 8]]]) arr[1, ...] = 1 assert_allclose(utils.reduce(arr, 2, how=np.sum), [[[0, 0]], [[4, 4]], [[4, 8]]]) class TestIO(unittest.TestCase): def setUp(self): if not os.path.exists(testdir): os.makedirs(testdir) def tearDown(self): delete_test_dir() @requires_geopandas def test_cache_working(self): f1 = 'f1.shp' f1 = create_dummy_shp(f1) cf1 = utils.cached_shapefile_path(f1) self.assertFalse(os.path.exists(cf1)) _ = read_shapefile(f1) self.assertFalse(os.path.exists(cf1)) _ = read_shapefile(f1, cached=True) self.assertTrue(os.path.exists(cf1)) # nested calls self.assertTrue(cf1 == utils.cached_shapefile_path(cf1)) # wait a bit time.sleep(0.1) f1 = create_dummy_shp(f1) cf2 = utils.cached_shapefile_path(f1) self.assertFalse(os.path.exists(cf1)) _ = read_shapefile(f1, cached=True) self.assertFalse(os.path.exists(cf1)) self.assertTrue(os.path.exists(cf2)) df = read_shapefile(f1, cached=True) np.testing.assert_allclose(df.min_x, [1., 2.]) np.testing.assert_allclose(df.max_x, [2., 3.]) np.testing.assert_allclose(df.min_y, [1., 1.3]) np.testing.assert_allclose(df.max_y, [2., 2.3]) self.assertRaises(ValueError, read_shapefile, 'f1.sph') self.assertRaises(ValueError, utils.cached_shapefile_path, 'f1.splash') @requires_geopandas def test_read_to_grid(self): g = GeoTiff(utils.get_demo_file('hef_srtm.tif')) sf = utils.get_demo_file('Hintereisferner_UTM.shp') df1 = read_shapefile_to_grid(sf, g.grid) df2 = transform_geopandas(read_shapefile(sf), to_crs=g.grid) assert_allclose(df1.geometry[0].exterior.coords, df2.geometry[0].exterior.coords) # test for caching d = g.grid.to_dict() # change key ordering by chance d2 = dict((k, v) for k, v in d.items()) from salem.sio import _memory_shapefile_to_grid, cached_shapefile_path shape_cpath = cached_shapefile_path(sf) res = _memory_shapefile_to_grid.call_and_shelve(shape_cpath, grid=g.grid, **d) try: h1 = res.timestamp except AttributeError: h1 = res.argument_hash res = _memory_shapefile_to_grid.call_and_shelve(shape_cpath, grid=g.grid, **d2) try: h2 = res.timestamp except AttributeError: h2 = res.argument_hash self.assertEqual(h1, h2) def test_notimevar(self): import xarray as xr da = xr.DataArray(np.arange(12).reshape(3, 4), dims=['lat', 'lon']) ds = da.to_dataset(name='var') t = sio.netcdf_time(ds) assert t is None class TestSkyIsFalling(unittest.TestCase): @requires_matplotlib def test_projplot(self): # this caused many problems on fabien's laptop. # this is just to be sure that on your system, everything is fine import pyproj import matplotlib.pyplot as plt from salem.gis import transform_proj, check_crs wgs84 = pyproj.Proj(proj='latlong', datum='WGS84') fig = plt.figure() plt.close() srs = '+units=m +proj=lcc +lat_1=29.0 +lat_2=29.0 +lat_0=29.0 +lon_0=89.8' proj_out = check_crs('EPSG:4326') proj_in = pyproj.Proj(srs, preserve_units=True) lon, lat = transform_proj(proj_in, proj_out, -2235000, -2235000) np.testing.assert_allclose(lon, 70.75731, atol=1e-5) def test_gh_152(self): # https://github.com/fmaussion/salem/issues/152 import xarray as xr da = xr.DataArray(np.arange(20).reshape(4, 5), dims=['lat', 'lon'], coords={'lat': np.linspace(0, 30, 4), 'lon': np.linspace(-20, 20, 5)}) da.salem.roi() class TestXarray(unittest.TestCase): def setUp(self): if not os.path.exists(testdir): os.makedirs(testdir) def tearDown(self): delete_test_dir() @requires_dask def test_era(self): ds = sio.open_xr_dataset(get_demo_file('era_interim_tibet.nc')).chunk() self.assertEqual(ds.salem.x_dim, 'longitude') self.assertEqual(ds.salem.y_dim, 'latitude') dss = ds.salem.subset(ds=ds) self.assertEqual(dss.salem.grid, ds.salem.grid) lon = 91.1 lat = 31.1 dss = ds.salem.subset(corners=((lon, lat), (lon, lat)), margin=1) self.assertEqual(len(dss.latitude), 3) self.assertEqual(len(dss.longitude), 3) np.testing.assert_almost_equal(dss.longitude, [90.0, 90.75, 91.5]) def test_roi(self): import xarray as xr # Check that all attrs are preserved with sio.open_xr_dataset(get_demo_file('era_interim_tibet.nc')) as ds: ds.encoding = {'_FillValue': np.NaN} ds['t2m'].encoding = {'_FillValue': np.NaN} ds_ = ds.salem.roi(roi=np.ones_like(ds.t2m.values[0, ...])) xr.testing.assert_identical(ds, ds_) assert ds.encoding == ds_.encoding assert ds.t2m.encoding == ds_.t2m.encoding @requires_geopandas # because of the grid tests, more robust with GDAL def test_basic_wrf(self): import xarray as xr ds = sio.open_xr_dataset(get_demo_file('wrf_tip_d1.nc')).chunk() # this is because read_dataset changes some stuff, let's see if # georef still ok dsxr = xr.open_dataset(get_demo_file('wrf_tip_d1.nc')) assert ds.salem.grid == dsxr.salem.grid lon, lat = ds.salem.grid.ll_coordinates assert_allclose(lon, ds['XLONG'], atol=1e-4) assert_allclose(lat, ds['XLAT'], atol=1e-4) # then something strange happened assert ds.isel(Time=0).salem.grid == ds.salem.grid assert ds.isel(Time=0).T2.salem.grid == ds.salem.grid nlon, nlat = ds.isel(Time=0).T2.salem.grid.ll_coordinates assert_allclose(nlon, ds['XLONG'], atol=1e-4) assert_allclose(nlat, ds['XLAT'], atol=1e-4) # the grid should not be missunderstood as lonlat t2 = ds.T2.isel(Time=0) - 273.15 with pytest.raises(RuntimeError): g = t2.salem.grid @requires_dask def test_geo_em(self): for i in [1, 2, 3]: fg = get_demo_file('geo_em_d0{}_lambert.nc'.format(i)) ds = sio.open_wrf_dataset(fg).chunk() self.assertFalse('Time' in ds.dims) self.assertTrue('time' in ds.dims) self.assertTrue('south_north' in ds.dims) self.assertTrue('south_north' in ds.coords) @requires_geopandas # because of the grid tests, more robust with GDAL def test_wrf(self): import xarray as xr ds = sio.open_wrf_dataset(get_demo_file('wrf_tip_d1.nc')).chunk() # this is because read_dataset changes some stuff, let's see if # georef still ok dsxr = xr.open_dataset(get_demo_file('wrf_tip_d1.nc')) assert ds.salem.grid == dsxr.salem.grid lon, lat = ds.salem.grid.ll_coordinates assert_allclose(lon, ds['lon'], atol=1e-4) assert_allclose(lat, ds['lat'], atol=1e-4) # then something strange happened assert ds.isel(time=0).salem.grid == ds.salem.grid assert ds.isel(time=0).T2.salem.grid == ds.salem.grid nlon, nlat = ds.isel(time=0).T2.salem.grid.ll_coordinates assert_allclose(nlon, ds['lon'], atol=1e-4) assert_allclose(nlat, ds['lat'], atol=1e-4) # the grid should not be missunderstood as lonlat t2 = ds.T2.isel(time=0) - 273.15 with pytest.raises(RuntimeError): g = t2.salem.grid @requires_dask def test_ncl_diagvars(self): import xarray as xr wf = get_demo_file('wrf_cropped.nc') ncl_out = get_demo_file('wrf_cropped_ncl.nc') w = sio.open_wrf_dataset(wf).chunk() nc = xr.open_dataset(ncl_out) ref = nc['TK'] tot = w['TK'] assert_allclose(ref, tot, rtol=1e-6) ref = nc['SLP'] tot = w['SLP'] tot = tot.values assert_allclose(ref, tot, rtol=1e-6) w = w.isel(time=1, south_north=slice(12, 16), west_east=slice(9, 16)) nc = nc.isel(Time=1, south_north=slice(12, 16), west_east=slice(9, 16)) ref = nc['TK'] tot = w['TK'] assert_allclose(ref, tot, rtol=1e-6) ref = nc['SLP'] tot = w['SLP'] tot = tot.values assert_allclose(ref, tot, rtol=1e-6) w = w.isel(bottom_top=slice(3, 5)) nc = nc.isel(bottom_top=slice(3, 5)) ref = nc['TK'] tot = w['TK'] assert_allclose(ref, tot, rtol=1e-6) ref = nc['SLP'] tot = w['SLP'] tot = tot.values assert_allclose(ref, tot, rtol=1e-6) @requires_dask def test_ncl_diagvars_compressed(self): rtol = 2e-5 import xarray as xr wf = get_demo_file('wrf_cropped_compressed.nc') ncl_out = get_demo_file('wrf_cropped_ncl.nc') w = sio.open_wrf_dataset(wf).chunk() nc = xr.open_dataset(ncl_out) ref = nc['TK'] tot = w['TK'] assert_allclose(ref, tot, rtol=rtol) ref = nc['SLP'] tot = w['SLP'].data assert_allclose(ref, tot, rtol=rtol) w = w.isel(time=1, south_north=slice(12, 16), west_east=slice(9, 16)) nc = nc.isel(Time=1, south_north=slice(12, 16), west_east=slice(9, 16)) ref = nc['TK'] tot = w['TK'] assert_allclose(ref, tot, rtol=rtol) ref = nc['SLP'] tot = w['SLP'] assert_allclose(ref, tot, rtol=rtol) w = w.isel(bottom_top=slice(3, 5)) nc = nc.isel(bottom_top=slice(3, 5)) ref = nc['TK'] tot = w['TK'] assert_allclose(ref, tot, rtol=rtol) ref = nc['SLP'] tot = w['SLP'] assert_allclose(ref, tot, rtol=rtol) @requires_dask def test_unstagger(self): wf = get_demo_file('wrf_cropped.nc') w = sio.open_wrf_dataset(wf).chunk() nc = sio.open_xr_dataset(wf).chunk() nc['PH_UNSTAGG'] = nc['P']*0. uns = nc['PH'].isel(bottom_top_stag=slice(0, -1)).values + \ nc['PH'].isel(bottom_top_stag=slice(1, len(nc.bottom_top_stag))).values nc['PH_UNSTAGG'].values = uns * 0.5 assert_allclose(w['PH'], nc['PH_UNSTAGG']) # chunk v = w['PH'].chunk((1, 6, 13, 13)) assert_allclose(v.mean(), nc['PH_UNSTAGG'].mean(), atol=1e-2) wn = w.isel(west_east=slice(4, 8)) ncn = nc.isel(west_east=slice(4, 8)) assert_allclose(wn['PH'], ncn['PH_UNSTAGG']) wn = w.isel(south_north=slice(4, 8), time=1) ncn = nc.isel(south_north=slice(4, 8), Time=1) assert_allclose(wn['PH'], ncn['PH_UNSTAGG']) wn = w.isel(west_east=4) ncn = nc.isel(west_east=4) assert_allclose(wn['PH'], ncn['PH_UNSTAGG']) wn = w.isel(bottom_top=4) ncn = nc.isel(bottom_top=4) assert_allclose(wn['PH'], ncn['PH_UNSTAGG']) wn = w.isel(bottom_top=0) ncn = nc.isel(bottom_top=0) assert_allclose(wn['PH'], ncn['PH_UNSTAGG']) wn = w.isel(bottom_top=-1) ncn = nc.isel(bottom_top=-1) assert_allclose(wn['PH'], ncn['PH_UNSTAGG']) w['PH'].chunk() @requires_dask def test_unstagger_compressed(self): wf = get_demo_file('wrf_cropped.nc') wfc = get_demo_file('wrf_cropped_compressed.nc') w = sio.open_wrf_dataset(wf).chunk() wc = sio.open_wrf_dataset(wfc).chunk() assert_allclose(w['PH'], wc['PH'], rtol=0.003) @requires_dask def test_diagvars(self): wf = get_demo_file('wrf_d01_allvars_cropped.nc') w = sio.open_wrf_dataset(wf).chunk() # ws w['ws_ref'] = np.sqrt(w['U']**2 + w['V']**2) assert_allclose(w['ws_ref'], w['WS']) wcrop = w.isel(west_east=slice(4, 8), bottom_top=4) assert_allclose(wcrop['ws_ref'], wcrop['WS']) @requires_dask def test_diagvars_compressed(self): wf = get_demo_file('wrf_d01_allvars_cropped_compressed.nc') w = sio.open_wrf_dataset(wf).chunk() # ws w['ws_ref'] = np.sqrt(w['U']**2 + w['V']**2) assert_allclose(w['ws_ref'], w['WS']) wcrop = w.isel(west_east=slice(4, 8), bottom_top=4) assert_allclose(wcrop['ws_ref'], wcrop['WS']) @requires_dask def test_prcp(self): wf = get_demo_file('wrfout_d01.nc') w = sio.open_wrf_dataset(wf).chunk() nc = sio.open_xr_dataset(wf) nc['REF_PRCP_NC'] = nc['RAINNC']*0. uns = nc['RAINNC'].isel(Time=slice(1, len(nc.bottom_top_stag))).values - \ nc['RAINNC'].isel(Time=slice(0, -1)).values nc['REF_PRCP_NC'].values[1:, ...] = uns * 60 / 180. # for three hours nc['REF_PRCP_NC'].values[0, ...] = np.NaN nc['REF_PRCP_C'] = nc['RAINC']*0. uns = nc['RAINC'].isel(Time=slice(1, len(nc.bottom_top_stag))).values - \ nc['RAINC'].isel(Time=slice(0, -1)).values nc['REF_PRCP_C'].values[1:, ...] = uns * 60 / 180. # for three hours nc['REF_PRCP_C'].values[0, ...] = np.NaN nc['REF_PRCP'] = nc['REF_PRCP_C'] + nc['REF_PRCP_NC'] for suf in ['_NC', '_C', '']: assert_allclose(w['PRCP' + suf], nc['REF_PRCP' + suf], rtol=1e-5) wn = w.isel(time=slice(1, 3)) ncn = nc.isel(Time=slice(1, 3)) assert_allclose(wn['PRCP' + suf], ncn['REF_PRCP' + suf], rtol=1e-5) wn = w.isel(time=2) ncn = nc.isel(Time=2) assert_allclose(wn['PRCP' + suf], ncn['REF_PRCP' + suf], rtol=1e-5) wn = w.isel(time=1) ncn = nc.isel(Time=1) assert_allclose(wn['PRCP' + suf], ncn['REF_PRCP' + suf], rtol=1e-5) wn = w.isel(time=0) self.assertTrue(~np.any(np.isfinite(wn['PRCP' + suf].values))) wn = w.isel(time=slice(1, 3), south_north=slice(50, -1)) ncn = nc.isel(Time=slice(1, 3), south_north=slice(50, -1)) assert_allclose(wn['PRCP' + suf], ncn['REF_PRCP' + suf], rtol=1e-5) wn = w.isel(time=2, south_north=slice(50, -1)) ncn = nc.isel(Time=2, south_north=slice(50, -1)) assert_allclose(wn['PRCP' + suf], ncn['REF_PRCP' + suf], rtol=1e-5) wn = w.isel(time=1, south_north=slice(50, -1)) ncn = nc.isel(Time=1, south_north=slice(50, -1)) assert_allclose(wn['PRCP' + suf], ncn['REF_PRCP' + suf], rtol=1e-5) wn = w.isel(time=0, south_north=slice(50, -1)) self.assertTrue(~np.any(np.isfinite(wn['PRCP' + suf].values))) @requires_dask def test_prcp_compressed(self): wf = get_demo_file('wrfout_d01.nc') wfc = get_demo_file('wrfout_d01_compressed.nc') w = sio.open_wrf_dataset(wf).chunk().isel(time=slice(1, -1)) wc = sio.open_wrf_dataset(wfc).chunk().isel(time=slice(1, -1)) for suf in ['_NC', '_C', '']: assert_allclose(w['PRCP' + suf], wc['PRCP' + suf], atol=0.0003) @requires_geopandas # because of the grid tests, more robust with GDAL def test_transform_logic(self): # This is just for the naming and dim logic, the rest is tested elsewh ds1 = sio.open_wrf_dataset(get_demo_file('wrfout_d01.nc')).chunk() ds2 = sio.open_wrf_dataset(get_demo_file('wrfout_d01.nc')).chunk() # 2darray case t2 = ds2.T2.isel(time=1) with pytest.raises(ValueError): ds1.salem.transform_and_add(t2.values, grid=t2.salem.grid) ds1.salem.transform_and_add(t2.values, grid=t2.salem.grid, name='t2_2darr') assert 't2_2darr' in ds1 assert_allclose(ds1.t2_2darr.coords['south_north'], t2.coords['south_north']) assert_allclose(ds1.t2_2darr.coords['west_east'], t2.coords['west_east']) assert ds1.salem.grid == ds1.t2_2darr.salem.grid # 3darray case t2 = ds2.T2 ds1.salem.transform_and_add(t2.values, grid=t2.salem.grid, name='t2_3darr') assert 't2_3darr' in ds1 assert_allclose(ds1.t2_3darr.coords['south_north'], t2.coords['south_north']) assert_allclose(ds1.t2_3darr.coords['west_east'], t2.coords['west_east']) assert 'time' in ds1.t2_3darr.coords # dataarray case ds1.salem.transform_and_add(t2, name='NEWT2') assert 'NEWT2' in ds1 assert_allclose(ds1.NEWT2, ds1.T2) assert_allclose(ds1.t2_3darr.coords['south_north'], t2.coords['south_north']) assert_allclose(ds1.t2_3darr.coords['west_east'], t2.coords['west_east']) assert 'time' in ds1.t2_3darr.coords # dataset case ds1.salem.transform_and_add(ds2[['RAINC', 'RAINNC']], name={'RAINC':'PRCPC', 'RAINNC': 'PRCPNC'}) assert 'PRCPC' in ds1 assert_allclose(ds1.PRCPC, ds1.RAINC) assert 'time' in ds1.PRCPNC.coords # what happens with external data? dse = sio.open_xr_dataset(get_demo_file('era_interim_tibet.nc')) out = ds1.salem.transform(dse.t2m, interp='linear') assert_allclose(out.coords['south_north'], t2.coords['south_north']) assert_allclose(out.coords['west_east'], t2.coords['west_east']) @requires_geopandas def test_lookup_transform(self): dsw = sio.open_wrf_dataset(get_demo_file('wrfout_d01.nc')).chunk() dse = sio.open_xr_dataset(get_demo_file('era_interim_tibet.nc')).chunk() out = dse.salem.lookup_transform(dsw.T2C.isel(time=0), method=len) # qualitative tests (quantitative testing done elsewhere) assert out[0, 0] == 0 assert out.mean() > 1 dsw = sio.open_wrf_dataset(get_demo_file('wrfout_d01.nc')) dse = sio.open_xr_dataset(get_demo_file('era_interim_tibet.nc')) _, lut = dse.salem.lookup_transform(dsw.T2C.isel(time=0), method=len, return_lut=True) out2 = dse.salem.lookup_transform(dsw.T2C.isel(time=0), method=len, lut=lut) # qualitative tests (quantitative testing done elsewhere)
assert_allclose(out, out2)
numpy.testing.assert_allclose
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ ''' eval PoseEstNet ''' import csv import math import os import argparse import numpy as np from utils.inference import SdkInfer, get_posenet_preds from utils.transforms import image_proc, flip_back, flip_pairs def calc_dists(preds, target, normalize): ''' calc dists ''' preds = preds.astype(np.float32) target = target.astype(np.float32) dists = np.zeros((preds.shape[1], preds.shape[0])) for n in range(preds.shape[0]): for c in range(preds.shape[1]): if target[n, c, 0] > 1 and target[n, c, 1] > 1: normed_preds = preds[n, c, :] / normalize[n] normed_targets = target[n, c, :] / normalize[n] dists[c, n] = np.linalg.norm(normed_preds - normed_targets) else: dists[c, n] = -1 return dists def dist_acc(dists, thr=0.5): ''' Return percentage below threshold while ignoring values with a -1 ''' dist_cal = np.not_equal(dists, -1) num_dist_cal = dist_cal.sum() if num_dist_cal > 0: return np.less(dists[dist_cal], thr).sum() * 1.0 / num_dist_cal return -1 def accuracy(output, target, hm_type='gaussian'): ''' Calculate accuracy according to PCK, but uses ground truth heatmap rather than x,y locations First value to be returned is average accuracy across 'idxs', followed by individual accuracies ''' idx = list(range(output.shape[1])) norm = 1.0 if hm_type == 'gaussian': pred, _ = get_posenet_preds(output, trans_back=False) target, _ = get_posenet_preds(target, trans_back=False) h = output.shape[2] w = output.shape[3] norm = np.ones((pred.shape[0], 2)) * np.array([h, w]) / 10 dists = calc_dists(pred, target, norm) acc = np.zeros((len(idx) + 1)) avg_acc = 0 cnt = 0 for i in range(len(idx)): acc[i + 1] = dist_acc(dists[idx[i]]) if acc[i + 1] >= 0: avg_acc = avg_acc + acc[i + 1] cnt += 1 avg_acc = avg_acc / cnt if cnt != 0 else 0 if cnt != 0: acc[0] = avg_acc return acc, avg_acc, cnt, pred def eval_posenet(label_path, imgs_path, pipline_path, FLIP_TEST=True, SHIFT_HEATMAP=True): ''' start eval ''' stream = SdkInfer(pipline_path) stream.init_stream() label_csv = open(label_path) reader = csv.reader(label_csv, delimiter=',') hash_annot = {} data = [] for row in reader: img_name = row[0] width = int(row[1]) height = int(row[2]) joints = [] for j in range(36): joint = [int(row[j * 3 + 3]), int(row[j * 3 + 4]), int(row[j * 3 + 5])] joints.append(joint) hash_annot[img_name] = (width, height, joints) center_joints = [] scale_joints = [] all_preds = np.zeros( (len(hash_annot), 36, 3), dtype=np.float32 ) batch_count = 0 idx = 0 for k in sorted(hash_annot.keys()): image_name = k if not image_name.lower().endswith((".jpg", "jpeg")): continue img_path = os.path.join(imgs_path, image_name) _, pe_input, center, scale = image_proc(img_path) pn_id = stream.send_package_buf(b'PoseEstNet0', np.expand_dims( pe_input.astype(np.float32), axis=0), 0) infer_result = stream.get_result(b'PoseEstNet0', pn_id) if FLIP_TEST: input_flipped = np.flip(np.expand_dims( pe_input.astype(np.float32), axis=0), 3) pn_flipped_id = stream.send_package_buf( b'PoseEstNet0', input_flipped, 0) outputs_flipped = stream.get_result(b'PoseEstNet0', pn_flipped_id) if isinstance(outputs_flipped, list): output_flipped = outputs_flipped[-1] else: output_flipped = outputs_flipped output_flipped = flip_back(np.array(output_flipped), flip_pairs) # feature is not aligned, shift flipped heatmap for higher accuracy if SHIFT_HEATMAP: # true output_flipped_copy = output_flipped output_flipped[:, :, :, 1:] = output_flipped_copy[:, :, :, 0:-1] infer_result = (infer_result + output_flipped) * 0.5 data.append(infer_result) center_joints.append(center) scale_joints.append(scale) if batch_count == 31: output = np.array(data, np.float32) output = np.stack(output, axis=1).squeeze(axis=0) preds = get_posenet_preds( output, center=center_joints, scale=scale_joints) all_preds[idx:idx + batch_count + 1, :, 0:3] = preds[:, :, 0:3] print(f'-------- Test: [{int((idx+1)/32 + 1)}/{int(len(hash_annot)/32)}] ---------') name_values = _evaluate(all_preds, label_path) if isinstance(name_values, list): for name_value in name_values: _print_name_value(name_value, 'PoseEstNet') else: _print_name_value(name_values, 'PoseEstNet') data = [] center_joints = [] scale_joints = [] idx += batch_count + 1 batch_count = 0 else: batch_count += 1 stream.destroy() def _print_name_value(name_value, full_arch_name): ''' print accuracy ''' names = name_value.keys() values = name_value.values() num_values = len(name_value) print( '| Arch ' + ' '.join(['| {}'.format(name) for name in names]) + ' |' ) print('| --- ' * (num_values+1) + '|') if len(full_arch_name) > 15: full_arch_name = full_arch_name[:8] + '...' print( '| ' + full_arch_name + ' ' + ' '.join(['| {:.3f}'.format(value) for value in values]) + ' |' ) def _evaluate(preds, label_path): ''' get accuracy set''' SC_BIAS = 0.25 threshold = 0.5 gts = [] viss = [] area_sqrts = [] with open(label_path) as annot_file: reader = csv.reader(annot_file, delimiter=',') for row in reader: joints = [] vis = [] top_lft = btm_rgt = [int(row[3]), int(row[4])] for j in range(36): joint = [int(row[j * 3 + 3]), int(row[j * 3 + 4]), int(row[j * 3 + 5])] joints.append(joint) vis.append(joint[2]) if joint[0] < top_lft[0]: top_lft[0] = joint[0] if joint[1] < top_lft[1]: top_lft[1] = joint[1] if joint[0] > btm_rgt[0]: btm_rgt[0] = joint[0] if joint[1] > btm_rgt[1]: btm_rgt[1] = joint[1] gts.append(joints) viss.append(vis) area_sqrts.append( math.sqrt((btm_rgt[0] - top_lft[0] + 1) * (btm_rgt[1] - top_lft[1] + 1))) jnt_visible = np.array(viss, dtype=np.int) jnt_visible = np.transpose(jnt_visible) pos_pred_src = np.transpose(preds, [1, 2, 0]) pos_gt_src = np.transpose(gts, [1, 2, 0]) uv_error = pos_pred_src - pos_gt_src uv_err = np.linalg.norm(uv_error, axis=1) area_sqrts = np.linalg.norm(area_sqrts, axis=0) area_sqrts *= SC_BIAS scale = np.multiply(area_sqrts, np.ones((len(uv_err), 1))) scaled_uv_err = np.divide(uv_err, scale) scaled_uv_err = np.multiply(scaled_uv_err, jnt_visible) jnt_count =
np.sum(jnt_visible, axis=1)
numpy.sum
# program for the little one to practice spelling (and Spanish!) import cv2 import enum import tensorflow as tf import pandas as pd import numpy as np import os from PIL import Image as im from translate import Translator from threading import Thread from datetime import datetime # only play the spanish word if found and only once found = False numFound = 0 time_found = datetime.now() #play welcome message os.system('mpg123 sounds/welcome.mp3') #video stream class for multithreading class vStream: def __init__(self,src,width,height): self._running = True self.width=width self.height=height self.capture=cv2.VideoCapture(src) self.thread=Thread(target=self.update,args=()) self.thread.daemon=True self.thread.start() def update(self): while self._running: success,self.frame=self.capture.read() if success: self.frame2=cv2.resize(self.frame,(self.width,self.height)) def getFrame(self): return self.frame2 #kill the thread def kill(self): self.capture.release() self._running = False #play the spanish word if the letter is found class spanishAudio: isFound = False fileName = "" def __init__(self): self._running = True self.thread=Thread(target=self.update,args=()) self.thread.daemon=True self.thread.start() def update(self): while self._running: if self.isFound: print("Found1") cmd = 'mpg123 sounds/' + self.fileName os.system(cmd) self.isFound = False def setFound(self,found, file_path): print("Found2") self.isFound=found self.fileName=file_path def kill(self): self._running = False # enumeration of objects to display on the screen class Object(enum.Enum): cat = 1 dog = 2 cow = 3 ball = 4 duck = 5 goat = 6 #increment to the next object def inc(self): v = self.value + 1 #if we reached the end, start over if v > 6: v = 1 return Object(v) #return the missing letter and its position #given that the kiddo is just learning letters, only using the first letter #set up to have the missing letter be anywhere though def letterPos(self): l = 1 if self.value == 1: #l = 1 val = "C" if self.value == 2: #l = 3 val = "D" if self.value == 3: #l = 2 val = "C" if self.value == 4: #l = 2 val = "B" if self.value == 5: #l = 4 val = "D" if self.value == 6: #l = 3 val = "G" return (l,val) # put cat letters on the screen def drawCatText(image): # show the letters and the one to fill in image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) image = cv2.rectangle(image, (130, 175), (245, 305), (255, 0, 0), 3) cv2.putText(image, "A", (250, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (250, 300), (330, 300), (255, 0, 0), 4) cv2.putText(image, "T", (350, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (350, 300), (430, 300), (255, 0, 0), 4) return image # put duck letters on the screen def drawDuckText(image): # show the letters and the one to fill in image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) image = cv2.rectangle(image, (130, 175), (245, 305), (255, 0, 0), 3) #cv2.putText(image, "D", (150, 290), # cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) cv2.putText(image, "U", (250, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) #image = cv2.rectangle(image, (230, 175), (345, 305), (255, 0, 0), 3) image = cv2.line(image, (250, 300), (330, 300), (255, 0, 0), 4) cv2.putText(image, "C", (350, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (350, 300), (430, 300), (255, 0, 0), 4) cv2.putText(image, "K", (450, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (450, 300), (530, 300), (255, 0, 0), 4) return image # put goat letters on the screen def drawGoatText(image): # show the letters and the one to fill in image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) image = cv2.rectangle(image, (130, 175), (245, 305), (255, 0, 0), 3) #cv2.putText(image, "G", (150, 290), # cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) cv2.putText(image, "O", (250, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (250, 300), (330, 300), (255, 0, 0), 4) cv2.putText(image, "A", (350, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) #image = cv2.rectangle(image, (345, 175), (435, 305), (255, 0, 0), 3) image = cv2.line(image, (350, 300), (430, 300), (255, 0, 0), 4) cv2.putText(image, "T", (450, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (450, 300), (530, 300), (255, 0, 0), 4) return image # put ball letters on the screen def drawBallText(image): # show the letters and the one to fill in image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) image = cv2.rectangle(image, (130, 175), (245, 305), (255, 0, 0), 3) #cv2.putText(image, "B", (150, 290), # cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) cv2.putText(image, "A", (250, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (250, 300), (330, 300), (255, 0, 0), 4) cv2.putText(image, "L", (350, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (350, 300), (430, 300), (255, 0, 0), 4) #image = cv2.rectangle(image, (430, 175), (545, 305), (255, 0, 0), 3) cv2.putText(image, "L", (450, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (450, 300), (530, 300), (255, 0, 0), 4) return image # put cow letters on the screen def drawCowText(image): # show the letters and the one to fill in image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) image = cv2.rectangle(image, (130, 175), (245, 305), (255, 0, 0), 3) #cv2.putText(image, "C", (150, 290), # cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) cv2.putText(image, "O", (250, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) #image = cv2.rectangle(image, (230, 175), (345, 305), (255, 0, 0), 3) image = cv2.line(image, (250, 300), (330, 300), (255, 0, 0), 4) cv2.putText(image, "W", (350, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (350, 300), (430, 300), (255, 0, 0), 4) return image # put dog letters on the screen def drawDogText(image): # show the letters and the one to fill in image = cv2.rectangle(image, (130, 175), (245, 305), (255, 0, 0), 3) #cv2.putText(image, "D", (150, 290), # cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (150, 300), (230, 300), (255, 0, 0), 4) cv2.putText(image, "O", (250, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) image = cv2.line(image, (250, 300), (330, 300), (255, 0, 0), 4) cv2.putText(image, "G", (350, 290), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 5) #image = cv2.rectangle(image, (345, 175), (440, 305), (255, 0, 0), 3) image = cv2.line(image, (350, 300), (430, 300), (255, 0, 0), 4) return image #put the letters on the screen depending on which object it is def addLetters(curObject, image): if curObject.name == "cat": image = drawCatText(image) elif curObject.name == "dog": image = drawDogText(image) elif curObject.name == "cow": image = drawCowText(image) elif curObject.name == "ball": image = drawBallText(image) elif curObject.name == "duck": image = drawDuckText(image) elif curObject.name == "goat": image = drawGoatText(image) return image # draw the object picture and letters to the screen def drawScreen(filename, image, curObject): game_pic = cv2.imread(filename, 1) game_pic = cv2.resize(game_pic, (200, 150), interpolation=cv2.INTER_LINEAR) added_image = cv2.addWeighted( image[10:160, 200:400, :], 0.1, game_pic[0:150, 0:200, :], 0.9, 0) # Change the region with the result image[10:160, 200:400] = added_image # add the letters for the given object to the screen image = addLetters(curObject, image) #draw a border around the letters image = cv2.rectangle(image, (0, 0), (100, 480), (185, 185, 185), -1) image = cv2.rectangle(image, (0, 325), (640, 480), (185, 185, 185), -1) image = cv2.rectangle(image, (540, 0), (640, 480), (185, 185, 185), -1) return image # get the input from the screen where the letter goes def getLetter(image, location): get_letter = [] #only doing the first letter, but can eventually have #missing letter anywhere in the word get_letter = image[180:298, 130:240] #if location == 1: # get_letter = image[180:298, 130:240] #if location == 2: # get_letter = image[180:298, 245:335] #if location == 3: # get_letter = image[180:298, 345:435] #if location == 4: # get_letter = image[180:298, 445:535] get_letter = cv2.cvtColor(get_letter, cv2.COLOR_RGB2GRAY) get_letter = cv2.resize(get_letter, (28, 28), interpolation=cv2.INTER_LINEAR) # invert the black and white colows img = cv2.bitwise_not(get_letter) # turn the background black # if the pixel value is less than 160, that means it's background, # so turn it all the way black img[img < 160] = 0 #have dimensions match what goes into the model img = np.expand_dims(img, -1) img = np.expand_dims(img, axis=0) img =
np.array(img, dtype="float32")
numpy.array
from __future__ import division import torch import numpy as np import os.path as osp import torch.nn.functional as F from mmcv.runner import load_checkpoint from vegcn.datasets import build_dataset from vegcn.confidence import confidence_to_peaks from vegcn.deduce import peaks_to_labels from utils import (sparse_mx_to_torch_sparse_tensor, list2dict, write_meta, write_feat, mkdir_if_no_exists, rm_suffix, build_knns, knns2ordered_nbrs, BasicDataset, Timer) from evaluation import evaluate, accuracy def test(model, dataset, cfg, logger): if cfg.load_from: logger.info('load from {}'.format(cfg.load_from)) load_checkpoint(model, cfg.load_from, strict=True, logger=logger) features = torch.FloatTensor(dataset.features) adj = sparse_mx_to_torch_sparse_tensor(dataset.adj) if not dataset.ignore_label: labels = torch.FloatTensor(dataset.labels) if cfg.cuda: model.cuda() features = features.cuda() adj = adj.cuda() if not dataset.ignore_label: labels = labels.cuda() model.eval() output, gcn_feat = model((features, adj), output_feat=True) if not dataset.ignore_label: loss = F.mse_loss(output, labels) loss_test = float(loss) logger.info('[Test] loss = {:.4f}'.format(loss_test)) pred_confs = output.detach().cpu().numpy() gcn_feat = gcn_feat.detach().cpu().numpy() return pred_confs, gcn_feat def test_gcn_v(model, cfg, logger): for k, v in cfg.model['kwargs'].items(): setattr(cfg.test_data, k, v) dataset = build_dataset(cfg.model['type'], cfg.test_data) folder = '{}_gcnv_k_{}_th_{}'.format(cfg.test_name, cfg.knn, cfg.th_sim) oprefix = osp.join(cfg.work_dir, folder) oname = osp.basename(rm_suffix(cfg.load_from)) opath_pred_confs = osp.join(oprefix, 'pred_confs', '{}.npz'.format(oname)) if osp.isfile(opath_pred_confs) and not cfg.force: data =
np.load(opath_pred_confs)
numpy.load
import numpy as np import pandas as pd import theano.tensor as T from random import shuffle from theano import shared, function from patsy import dmatrix from collections import defaultdict class MainClauseModel(object): def __init__(self, nlatfeats=8, alpha=1., discount=None, beta=0.5, gamma=0.9, delta=2., orthogonality_penalty=0., nonparametric=False): ''' Parameters ---------- nlatfeats : int Number of latent features for each verb; the default of 8 is the number of unique subcat frames in the data alpha : float (positive) Beta process hyperparameter as specified in Teh et al. 2007 "Stick-breaking Construction for the Indian Buffet Process"; changes meaning based on Pitman-Yor discount hyperparameter (see Teh et al. 2007, p.3) discount : float (unit) or None If discount is a float, it must satisfy alpha > -discount beta : float (positive) If parametric=True, concetration parameter for verb-specific beta draws based on beta process sample; if nonparametric=False, hyperparameter of a Beta(beta, beta); in the latter case, beta should be on (0,1), otherwise the verb representations are unidentifiable, since their is a flat prior on the selection probability gamma : float (positive) Hyperparameter of a beta distribution on the projection matrix delta : float (positive) Hyperparameter of a beta distribution on the verb feature probability matrix orthogonality_penalty : float (positive) How much to penalize for singularity nonparametric : bool Whether to use a nonparametric prior divergence_weight : float (0 to negative infinity) (ADDED) How much to weight the either-or bias. If 0, no either-or bias. ''' self.nlatfeats = nlatfeats self.alpha = alpha self.discount = discount self.beta = beta self.gamma = gamma self.delta = delta self.orthogonality_penalty = orthogonality_penalty self.nonparametric = nonparametric self.divergence_weight = -1 self._validate_params() self._ident = ''.join(np.random.choice(9, size=10).astype(str)) def _validate_params(self): if self.discount is not None: self._pitman_yor = True try: assert self.alpha > -self.discount except AssertionError: raise ValueError('alpha must be greater than -discount') else: self._pitman_yor = False def _initialize_model(self, data, stochastic): self.data = data self._initialize_counter() self._initialize_reps() self._initialize_loss() self._initialize_updaters(stochastic) def _initialize_counter(self): self._verbcount = T.zeros(self.data.n('verb')) self._verbeye = T.eye(self.data.n('verb')) def _initialize_reps(self): self._reps = {} if self.nonparametric: # nu_aux = np.array([2.]+[-1.]*(self.nlatfeats-1)) nu_aux =
np.array([0.]*self.nlatfeats)
numpy.array
"""Tests for neighbor caching. """ import numpy as np import unittest from pysph.base.nnps import NeighborCache, LinkedListNNPS from pysph.base.utils import get_particle_array from cyarray.carray import UIntArray class TestNeighborCache(unittest.TestCase): def _make_random_parray(self, name, nx=5): x, y, z = np.random.random((3, nx, nx, nx)) x = np.ravel(x) y =
np.ravel(y)
numpy.ravel
import pytest from kbbq import compare_reads from kbbq.gatk import applybqsr import numpy as np import filecmp from pandas.util.testing import assert_frame_equal import pysam ###################### # FASTQ Recalibration ###################### class FakeRead: def __init__(self, name, quality, sequence): self.name = name #string self.quality = quality #string self.sequence = sequence #string def get_quality_array(self, offset = 33): q = np.array(list(self.quality), dtype = np.unicode) quals = np.array(q.view(np.uint32) - offset, dtype = np.uint32) return list(quals) def bamread_to_fakeread(read): complement = {'A' : 'T', 'T' : 'A', 'G' : 'C', 'C' : 'G'} seq = read.query_sequence q = read.get_tag('OQ') if read.is_reverse: seq = ''.join([complement.get(x,'N') for x in reversed(seq)]) q = q[::-1] suffix = ("/2" if read.is_read2 else "/1") name = read.query_name + suffix + '_RG:Z:' + read.get_tag('RG') return FakeRead(name = name, quality = q, sequence = seq) @pytest.mark.slow def test_fastq_calibration(report, recalibratedbam): rg_to_pu = compare_reads.get_rg_to_pu(recalibratedbam) rg_to_int = {r:i for i,r in enumerate(rg_to_pu)} meanq, *vectors = applybqsr.table_to_vectors(report, list(rg_to_pu.values())) dqs = applybqsr.get_delta_qs(meanq, *vectors) for read in recalibratedbam: fastqread = bamread_to_fakeread(read) gatk_calibrated_quals = np.array(read.query_qualities, dtype = np.int) if read.is_reverse: gatk_calibrated_quals = np.flip(gatk_calibrated_quals) rg = rg_to_int[compare_reads.fastq_infer_rg(fastqread)] recalibrated_quals = compare_reads.recalibrate_fastq(fastqread, meanq, *dqs, rg = rg, dinuc_to_int = compare_reads.Dinucleotide.dinuc_to_int, secondinpair = compare_reads.fastq_infer_secondinpair(fastqread)) assert np.array_equal(recalibrated_quals, gatk_calibrated_quals) def test_tstamp(): import datetime correct = datetime.datetime.today() correct = correct.replace(microsecond = 0) test = datetime.datetime.fromisoformat(compare_reads.tstamp()[2:-2]) assert correct == test def test_load_positions(simple_bed): correct = {'ref':list(range(8,46))} assert compare_reads.load_positions(simple_bed) == correct def test_get_var_sites(simple_vcf): correct = {'ref':[9]} assert compare_reads.get_var_sites(simple_vcf) == correct def test_train_regression(): q = np.array([28, 28, 24, 24, 28, 30, 27, 9, 10, 14, 20, 25, 31, 32, 24, 24, 25] #0:16 + [29, 27, 29, 30, 30, 30, 29, 29, 29], dtype = np.int) #17: e = np.zeros(len(q)) e[21] = True lr = compare_reads.train_regression(q, e) q = q[:,np.newaxis] predicted = lr.predict_proba(q) assert predicted.shape[0] == q.shape[0] def test_regression_recalibrate(): q = np.array([28, 28, 24, 24, 28, 30, 27, 9, 10, 14, 20, 25, 31, 32, 24, 24, 25] #0:16 + [29, 27, 29, 30, 30, 30, 29, 29, 29], dtype = np.int) #17: e = np.zeros(len(q)) e[21] = True lr = compare_reads.train_regression(q,e) newq = compare_reads.regression_recalibrate(lr, q) assert newq.shape == q.shape assert not np.all(newq == q) def test_find_read_errors(simple_bam, simple_refdict, simple_fullskips): """ This will need more testing for some edge cases probably """ import collections r1skips = np.zeros(17, dtype = np.bool) r1skips[3] = True #from vcf r1skips[0:2] = True #from BED r2errs = np.zeros(9, dtype = np.bool) r2errs[5] = True bam = pysam.AlignmentFile(simple_bam,'rb') reads = list(bam) e, s = compare_reads.find_read_errors(reads[0], simple_refdict, simple_fullskips) assert np.array_equal(e,np.zeros(17, dtype = np.bool)) assert np.array_equal(s,r1skips) e, s = compare_reads.find_read_errors(reads[1], simple_refdict, simple_fullskips) assert np.array_equal(e,r2errs) assert np.array_equal(s,np.zeros(9, dtype = np.bool)) #test hard clip + n block readstr = 'clipped\t0\tref\t9\t255\t1M9H\t*\t0\t0\tA\t)' clippedread = pysam.AlignedSegment.fromstring(readstr,bam.header) e, s = compare_reads.find_read_errors(clippedread, simple_refdict, simple_fullskips) assert np.array_equal(e, np.array([False])) assert np.array_equal(s, np.array([False], dtype = np.bool)) # test exception for invalid CIGAR # though the amount of effort required to do this means it's unlikely # to ever happen to a user... FakeRead = collections.namedtuple('FakeRead', clippedread.__dir__(), rename = True) shallowvalues = {k:getattr(clippedread,k) for k in clippedread.__dir__()} shallowvalues['cigartuples'] = [('L',9)] clippedread = FakeRead(*shallowvalues) with pytest.raises(ValueError): e, s = compare_reads.find_read_errors(clippedread, simple_refdict, simple_fullskips) def test_RescaledNormal_prior(): assert compare_reads.RescaledNormal.prior(0) == np.log(.9) assert np.array_equal(compare_reads.RescaledNormal.prior(np.arange(43)), compare_reads.RescaledNormal.prior_dist) assert
np.all(compare_reads.RescaledNormal.prior_dist < 0)
numpy.all
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jul 15 16:41:27 2018 @author: xionghaipeng """ __author__ = 'xhp' '''load the dataset''' # from __future__ import print_function, division import os import torch # import pandas as pd #load csv file from skimage import io, transform # import numpy as np # import matplotlib.pyplot as plt from torch.utils.data import Dataset # , DataLoader# # from torchvision import transforms, utils# import glob # use glob.glob to get special flielist import scipy.io as sio # use to import mat as dic,data is ndarray import torch import torch.nn.functional as F import glob import torchvision.transforms as trans import cv2 from PIL import Image from torch.utils.data import Dataset import os import numpy as np import torch from torchvision import transforms import random import h5py import matplotlib.pyplot as plt import pandas as pd from tqdm import tqdm # Ignore warnings import warnings warnings.filterwarnings("ignore") class myDataset(Dataset): """dataset. also can be used for annotation like density map""" def __init__(self, img_dir, tar_dir, rgb_dir, transform=None, if_test=False, \ IF_loadmem=False): """ Args: img_dir (string ): Directory with all the images. tar_dir (string ): Path to the annotations. transform (callable, optional): Optional transform to be applied on a sample. """ self.IF_loadmem = IF_loadmem # whether to load data in memory self.IF_loadFinished = False self.image_mem = [] self.target_mem = [] self.img_dir = img_dir self.tar_dir = tar_dir self.transform = transform mat = sio.loadmat(rgb_dir) self.rgb = mat['rgbMean'].reshape(1, 1, 3) # rgbMean is computed after norm to [0-1] img_name = os.path.join(self.img_dir, '*.jpg') self.filelist = glob.glob(img_name) self.dataset_len = len(self.filelist) # for test process, load data is different self.if_test = if_test def __len__(self): return self.dataset_len def __getitem__(self, idx): # ------------------------------------ # 1. see if load from disk or memory # ------------------------------------ if (not self.IF_loadmem) or (not self.IF_loadFinished): img_name = self.filelist[idx] image = io.imread(img_name) # load as numpy ndarray image = image / 255. - self.rgb # to normalization,auto to change dtype (filepath, tempfilename) = os.path.split(img_name) (name, extension) = os.path.splitext(tempfilename) mat_dir = os.path.join(self.tar_dir, '%s.mat' % (name)) mat = sio.loadmat(mat_dir) # if need to save in memory if self.IF_loadmem: self.image_mem.append(image) self.target_mem.append(mat) # updata if load finished if len(self.image_mem) == self.dataset_len: self.IF_loadFinished = True else: image = self.image_mem[idx] mat = self.target_mem[idx] # target = mat['target'] # for train may need pre load if not self.if_test: target = mat['crop_gtdens'] sample = {'image': image, 'target': target} if self.transform: sample = self.transform(sample) # pad the image sample['image'], sample['target'] = get_pad(sample['image'], DIV=64), get_pad(sample['target'], DIV=64) else: target = mat['all_num'] sample = {'image': image, 'target': target} if self.transform: sample = self.transform(sample) sample['density_map'] = torch.from_numpy(mat['density_map']) # pad the image sample['image'], sample['density_map'] = get_pad(sample['image'], DIV=64), get_pad(sample['density_map'], DIV=64) return sample ###################################################################### class ToTensor(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample): image, target = sample['image'], sample['target'] # swap color axis because # numpy image: H x W x C # torch image: C X H X W image = image.transpose((2, 0, 1)) return {'image': torch.from_numpy(image), 'target': torch.from_numpy(target)} ###################################################################### def get_pad(inputs, DIV=64): h, w = inputs.size()[-2:] ph, pw = (DIV - h % DIV), (DIV - w % DIV) # print(ph,pw) if (ph != DIV) or (pw != DIV): tmp_pad = [pw // 2, pw - pw // 2, ph // 2, ph - ph // 2] # print(tmp_pad) inputs = F.pad(inputs, tmp_pad) return inputs class SHTA(Dataset): def __init__(self, img_root, gt_dmap_root=None, bs=1, scale=[1], crop=1, randomcrop=False, down=1, raw=False, preload=False, phase='train',maintrans=None, imgtrans=None, gttrans=None): ''' img_root: the root path of img. gt_dmap_root: the root path of ground-truth density-map. gt_downsample: default is 0, denote that the output of deep-model is the same size as input image. phase: train or test ''' self.img_root = img_root self.gt_dmap_root = gt_dmap_root self.crop = crop self.raw = raw self.phase = phase self.preload = preload self.bs = bs self.img_files = glob.glob(img_root + '/*.jpg') self.samples = len(self.img_files) self.maintrans = maintrans self.imgtrans = imgtrans self.gttrans = gttrans self.down = down self.randomcrop = randomcrop self.scale_list = scale if self.preload: self.data = read_image_and_gt(self.img_files, preload=True) def __len__(self): return self.samples def __getitem__(self, index): imgs = [] gts = [] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] if self.preload: imgname = self.data[index][0] img = self.data[index][1] gt = self.data[index][2] else: imgname, img, gt = read_image_and_gt(self.img_files[index], preload=False, mean=mean, std=std) # if self.maintrans is not None: # img, den = self.maintrans(img, gt) # if self.imgtrans is not None: # img = self.imgtrans(img) # if self.gttrans is not None: # gt = self.gttrans(gt) if len(self.scale_list) > 1 and self.phase == 'train': temp = random.randint(0, len(self.scale_list)-1) scale_para = self.scale_list[temp] if scale_para!=1: img = cv2.resize(img, (scale_para * img.shape[1], scale_para * img.shape[0])) gt = cv2.resize(gt, (scale_para * gt.shape[1], scale_para * gt.shape[0])) / scale_para / scale_para if random.random()>0.75 and self.phase == 'train': img = img[:, ::-1].copy() # 水平翻转 gt = gt[:, ::-1].copy() # 水平翻转 rh, rw,_ = img.shape ch, cw = rh // 2, rw // 2 img = img.transpose([2, 0, 1]) img = img[np.newaxis,:,:,:] gt = gt[np.newaxis,np.newaxis, :, :] gt = torch.tensor(gt, dtype=torch.float32) img = torch.tensor(img, dtype=torch.float32) if self.crop > 1 and self.randomcrop and self.phase == 'train': gts = [] imgs = [] count = 0 while count < self.crop: sh = random.randint(0, ch) sw = random.randint(0, cw) img.append(imgs[:,:, sh:sh + ch, sw:sw + cw]) gts.append(gts[:, :,sh:sh + ch, sw:sw + cw]) count +=1 imgs = [get_pad(i) for i in imgs] gts = [get_pad(i) for i in gts] img = torch.cat(imgs, 0) gt = torch.cat(gts, 0) elif self.crop > 1 and not self.randomcrop and self.phase == 'train': gts = [] imgs = [] imgs.append(img[:, :, 0:ch, 0:cw]) gts.append(gt[:, :,0:ch, 0:cw]) imgs.append(img[:, :,ch:, 0:cw]) gts.append(gt[:, :, ch:, 0:cw]) imgs.append(img[:, :, 0:ch, cw:]) gts.append(gt[:, :, 0:ch, cw:]) imgs.append(img[:, :, ch:, cw:]) gts.append(gt[:, :,ch:, cw:]) count = 4 while count < self.crop: sh = random.randint(0, ch) sw = random.randint(0, cw) imgs.append(img[:, :, sh:sh + ch, sw:sw + cw]) gts.append(gt[:, :, sh:sh + ch, sw:sw + cw]) count +=1 imgs = [get_pad(i) for i in imgs] gts = [get_pad(i) for i in gts] img = torch.cat(imgs, 0) gt = torch.cat(gts, 0) # img = get_pad(img) # gt = get_pad(gt) return imgname, img, gt def read_image_and_gt(imgfiles, preload, mean, std): if preload: data = [] print('Loading data into ram......') for idx, imgfile in tqdm(enumerate(imgfiles)): img = cv2.imread(imgfile) imgname = imgfile.split('/')[-1] img = img[:, :, ::-1].copy() img = img.astype(np.float32, copy=False) img = (img - mean) / std gtfile = imgfile.replace('original', 'knn_gt').replace('.jpg', '.npy').replace('images', 'ground-truth').replace( 'IMG_', 'GT_IMG_') gt = np.load(gtfile) # gt = torch.tensor(gt,dtype=torch.float32) # img = torch.tensor(img,dtype=torch.float32) # # img = get_pad(img) # gt = get_pad(gt) # # # rh, rw, c = img.shape # # dw = int(rw / 16) * 16 # # dh = int(rh / 16) * 16 # # img = cv2.resize(img, (dw, dh)) # # zoom = rw * rh / dw / dh # # gt = cv2.resize(gt, (dw, dh), interpolation=cv2.INTER_CUBIC) * zoom # # img = img.transpose([2, 0, 1]) # gt = torch.unsqueeze(gt,0) data.append([imgname, img, gt]) return data else: img = cv2.imread(imgfiles) imgname = imgfiles.split('/')[-1] img = img[:, :, ::-1].copy() img = img.astype(np.float32, copy=False) img = (img / 255 - mean) / std gtfile = imgfiles.replace('original', 'knn_gt').replace('.jpg', '.npy').replace('images', 'ground-truth').replace('IMG_', 'GT_IMG_') gt =
np.load(gtfile)
numpy.load
# This file is part of the Extra-P software (http://www.scalasca.org/software/extra-p) # # Copyright (c) 2020-2021, Technical University of Darmstadt, Germany # # This software may be modified and distributed under the terms of a BSD-style license. # See the LICENSE file in the base directory for details. from __future__ import annotations import math import typing import numpy from PySide2.QtCore import * # @UnusedWildImport from PySide2.QtGui import * # @UnusedWildImport from PySide2.QtWidgets import * # @UnusedWildImport from extrap.gui.Utils import formatFormula from extrap.gui.Utils import formatNumber if typing.TYPE_CHECKING: from extrap.gui.MainWidget import MainWidget ##################################################################### class GraphWidget(QWidget): """This class represents a Widget that is used to show the graph on the extrap window. """ ##################################################################### def __init__(self, main_widget: MainWidget, parent): super(GraphWidget, self).__init__(parent) self.main_widget = main_widget self.initUI() self.set_initial_value() self.setMouseTracking(True) def initUI(self): self.setMinimumWidth(300) self.setMinimumHeight(300) self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.showContextMenu) self.show() def setMax(self, axis, maxX): """ This function sets the highest value of x that is being shown on x axis. """ if axis == 0: self.main_widget.data_display.setMaxValue(0, maxX) self.max_x = maxX else: print("[EXTRAP:] Error: Set maximum for axis other than X-axis.") def logicalXtoPixel(self, lValue): """ This function converts an X-value from logical into pixel coordinates. """ return self.left_margin + lValue * self.graph_width / self.max_x def pixelXtoLogical(self, pValue): """ This function converts an X-value from pixel into logical coordinates. """ return (pValue - self.left_margin) * self.max_x / self.graph_width def logicalYtoPixel(self, lValue): """ This function converts an Y-value from logical into pixel coordinates. """ return self.top_margin + (self.max_y - lValue) * self.graph_height / self.max_y def pixelYtoLogical(self, pValue): """ This function converts an Y-value from pixel into logical coordinates. """ return (self.graph_height + self.top_margin - pValue) * self.max_y / self.graph_height def paintEvent(self, event): paint = QPainter() paint.begin(self) paint.setRenderHints(QPainter.Antialiasing | QPainter.TextAntialiasing) self.drawGraph(paint) paint.end() # noinspection PyAttributeOutsideInit def set_initial_value(self): """ This function sets the initial value for different parameters required for graph. """ # Basic geometry constants self.max_x = 40 self.left_margin = 80 self.bottom_margin = 80 self.top_margin = 20 self.right_margin = 20 self.legend_x = 100 # X-coordinate of the upper left corner of the legend self.legend_y = 20 # Y-coordinate of the upper left corner of the legend # the actual value for below 3 variables will be set later in the code self.max_y = 0 self.graph_height = 0 self.graph_width = 0 self.legend_width = 0 self.legend_height = 0 self.clicked_x_pos = None self.clicked_y_pos = None # colors self.BACKGROUND_COLOR = QColor("white") self.TEXT_COLOR = QColor("black") self.AXES_COLOR = QColor("black") self.AGGREGATE_MODEL_COLOR = QColor(self.main_widget.graph_color_list[0]) self.DATA_POINT_COLOR = QColor(self.main_widget.graph_color_list[0]).darker(200) self.DATA_RANGE_COLOR = QColor(self.main_widget.graph_color_list[0]).darker(150) self.minimum_number_points_marked = 2 self.aggregate_callpath = False self.datapoints_type = "" self.datapointType_Int_Map = { 'min': 1, 'mean': 2, 'max': 3, 'median': 4, 'standardDeviation': 5, 'outlier': 6} @property def show_datapoints(self): return not self.combine_all_callpath and self.datapoints_type != '' @property def combine_all_callpath(self): return self.aggregate_callpath and len(self.main_widget.getSelectedCallpath()) > 1 @Slot(QPoint) def showContextMenu(self, point): """ This function takes care of different options and their visibility in the context menu. """ # selected_metric = self.main_widget.getSelectedMetric() selected_callpaths = self.main_widget.getSelectedCallpath() if not selected_callpaths: return menu = QMenu() points_group = QActionGroup(self) points_group.setEnabled(not self.combine_all_callpath) data_point_selection = [ # To show data points for mean values ("Show Mean Points", 'mean'), # To show data points for min values ("Show Minimum Points", 'min'), # To show data points for max values ("Show Maximum Points", 'max'), # To show data points for median values ("Show Median Points", 'median'), # To show data points for standard deviation values ("Show Standard Deviation Points", 'standardDeviation'), # To show outlier points ("Show all data points", 'outlier'), # Hiding any datapoints ("Hide Points", ''), ] for name, type in data_point_selection: action = points_group.addAction(name) action.setCheckable(True) action.setData(type) action.setChecked(self.datapoints_type == type) action.triggered.connect(self.selectDataPoints) menu.addAction(action) # Combining and disjoing Multiple callpaths menu.addSeparator() group = QActionGroup(self) group.setEnabled(len(selected_callpaths) > 1) group.setExclusive(True) action = group.addAction("Combine callpaths") action.setCheckable(True) action.setChecked(self.aggregate_callpath) action.triggered.connect(self.combineCallPaths) menu.addAction(action) action1 = group.addAction("Show all callpaths") action1.setCheckable(True) action1.setChecked(not self.aggregate_callpath) action1.triggered.connect(self.showAllCallPaths) menu.addAction(action1) # Export menu.addSeparator() exportDataAction = menu.addAction("Export Data") exportDataAction.triggered.connect(self.exportData) screenshotAction = menu.addAction("Screenshot") screenshotAction.triggered.connect(self.screenshot) menu.exec_(self.mapToGlobal(point)) @Slot() def selectDataPoints(self): """ This function hides all the datapoints that is being shown on graph. """ self.datapoints_type = QObject.sender(self).data() self.update() @Slot() def combineCallPaths(self): """ This function combines all callpaths shown on graph. """ self.aggregate_callpath = True self.update() @Slot() def showAllCallPaths(self): """ This function shows all callpaths. """ self.aggregate_callpath = False self.update() @Slot() def screenshot(self): selected_callpaths = self.main_widget.getSelectedCallpath() selected_metric = self.main_widget.getSelectedMetric() name_addition = "-" if selected_metric: name_addition = f"-{selected_metric}-" if selected_callpaths: name_addition += ','.join((c.name for c in selected_callpaths)) self.main_widget.screenshot(target=self, name_addition=name_addition) @Slot() def exportData(self): """ This function allows to export the currently shown points and functions in a text format """ selected_metric = self.main_widget.getSelectedMetric() selected_callpaths = self.main_widget.getSelectedCallpath() if not selected_callpaths: return # model_list = list() text = '' model_set = self.main_widget.getCurrentModel() if model_set is None: return model_set_models = model_set.models if not model_set_models: return for selected_callpath in selected_callpaths: model = model_set_models[selected_callpath.path, selected_metric] if model is None: return model_function = model.hypothesis.function data_points = [p for (_, p) in self.calculateDataPoints( selected_metric, selected_callpath, True)] callpath_name = selected_callpath.name parameters = self.main_widget.experiment.parameters model_function_text = 'Model: ' + \ formatFormula( model_function.to_string(*parameters)) data_points_text = '\n'.join( ('(' + str(x) + ', ' + str(y) + ')') for (x, y) in data_points) text += callpath_name + '\n' + data_points_text + \ '\n' + model_function_text + '\n\n' msg = QMessageBox() msg.setIcon(QMessageBox.Information) msg.setText( "Exported data (text can be copied to the clipboard using the context menu):") msg.setInformativeText(text) msg.setWindowTitle("Export Data") # msg.setDetailedText("The details are as follows:") msg.setStandardButtons(QMessageBox.Ok) msg.exec_() def drawGraph(self, paint): """ This function is being called by paintEvent to draw the graph """ # Get data model_set = self.main_widget.getCurrentModel() selected_metric = self.main_widget.getSelectedMetric() selected_callpaths = self.main_widget.getSelectedCallpath() if not selected_callpaths or model_set is None: return model_set_models = model_set.models if not model_set_models: return model_list = list() selected_callpaths_checked=[] for selected_callpath in selected_callpaths: key = (selected_callpath.path, selected_metric) if key in model_set_models: model = model_set_models[key] model_list.append(model) selected_callpaths_checked.append(selected_callpath) # Calculate geometry constraints self.graph_width = self.frameGeometry().width() - self.left_margin - self.right_margin self.graph_height = self.frameGeometry().height() - self.top_margin - self.bottom_margin y = self.calculateMaxY(model_list) * 1.2 self.max_y = y # Draw coordinate system self.drawAxis(paint, selected_metric) # Draw functionss index_indicator = 0 if not self.combine_all_callpath: for model in model_list: color = self.main_widget.getColorForCallPath( selected_callpaths_checked[index_indicator]) self.drawModel(paint, model, color) index_indicator = index_indicator + 1 else: color = self.main_widget.getColorForCallPath(selected_callpaths_checked[0]) self.drawAggregratedModel(paint, model_list) # Draw data points self.drawDataPoints(paint, selected_metric, selected_callpaths_checked) # Draw legend self.drawLegend(paint) def drawDataPoints(self, paint, selectedMetric, selectedCallpaths): if self.show_datapoints is True: pen = QPen(self.DATA_POINT_COLOR) pen.setWidth(4) paint.setPen(pen) # data_points_list = list() for selected_callpath in selectedCallpaths: if self.datapoints_type == "outlier": self.showOutlierPoints( paint, selectedMetric, selected_callpath) else: data_points = self.calculateDataPoints( selectedMetric, selected_callpath) self.plotPointsOnGraph( paint, data_points) def drawLegend(self, paint): # drawing the graph legend px_between = 15 callpath_color_dict = self.main_widget.get_callpath_color_map() dict_size = len(callpath_color_dict) font_size = int(self.main_widget.getFontSize()) paint.setFont(QFont('Decorative', font_size)) paint.setBrush(self.BACKGROUND_COLOR) pen = QPen(self.TEXT_COLOR) pen.setWidth(1) paint.setPen(pen) counter_increment = font_size + 3 if self.combine_all_callpath is False: text_len = 0 for callpath, color in callpath_color_dict.items(): text_len = max(text_len, len(callpath.name)) self.legend_width = 55 + text_len * (font_size - 1) self.legend_height = counter_increment * dict_size + px_between paint.drawRect(self.legend_x, self.legend_y, self.legend_width, self.legend_height) counter = 0 for callpath, color in callpath_color_dict.items(): pen = QPen(QColor(color)) pen.setWidth(2) paint.setPen(pen) paint.drawLine(self.legend_x + 5, self.legend_y + px_between + counter, self.legend_x + 35, self.legend_y + px_between + counter) paint.setPen(self.TEXT_COLOR) paint.drawText(self.legend_x + 45, self.legend_y + px_between + counter, callpath.name) counter = counter + counter_increment else: text_len = 0 callpath_list = list() for callpath, color in callpath_color_dict.items(): callpath_list.append(callpath.name) text_len = max(text_len, text_len + len(callpath.name)) aggregated_callpath_name = str.join('+', callpath_list) self.legend_width = 55 + text_len * (font_size - 1) self.legend_height = counter_increment * 1 + px_between paint.drawRect(self.legend_x, self.legend_y, self.legend_width, self.legend_height) pen = QPen(self.AGGREGATE_MODEL_COLOR) pen.setWidth(2) paint.setPen(pen) paint.drawLine(self.legend_x + 5, self.legend_y + px_between, self.legend_x + 35, self.legend_y + px_between) paint.setPen(self.TEXT_COLOR) paint.drawText(self.legend_x + 45, self.legend_y + px_between, aggregated_callpath_name) def drawModel(self, paint, model, color): function = model.hypothesis.function cord_list = self.calculate_function(function, self.graph_width) pen = QPen(QColor(color)) pen.setWidth(2) paint.setPen(pen) points = [ QPointF(self.logicalXtoPixel(x), self.logicalYtoPixel(y)) for x, y in cord_list ] paint.drawPolyline(points) def drawAggregratedModel(self, paint, model_list): functions = list() for model in model_list: function = model.hypothesis.function functions.append(function) cord_list = self.calculate_aggregate_callpath_function( functions, self.graph_width) pen = QPen(self.AGGREGATE_MODEL_COLOR) pen.setWidth(2) paint.setPen(pen) points = [ QPointF(self.logicalXtoPixel(x), self.logicalYtoPixel(y)) for x, y in cord_list ] paint.drawPolyline(points) def drawAxis(self, paint, selectedMetric): # Determing the number of divisions to be marked on x axis such that there is a minimum distance of 100 pixels # between two of them based on that, then calculating distance between two marks on y axis. x_offset = 100 x_origin = self.left_margin y_origin = self.top_margin + self.graph_height y_other_end = self.top_margin x_other_end = self.graph_width + self.left_margin num_points_marked_on_x_axis = int(self.graph_width / x_offset) if num_points_marked_on_x_axis < self.minimum_number_points_marked: num_points_marked_on_x_axis = self.minimum_number_points_marked x_offset = self.graph_width / num_points_marked_on_x_axis num_points_marked_on_y_axis = int(self.graph_height / x_offset) if num_points_marked_on_y_axis == 0: num_points_marked_on_y_axis = 1 y_offset = self.graph_height / num_points_marked_on_y_axis x_to_mark_cal = self.get_axis_mark_list( self.max_x, num_points_marked_on_x_axis) y_to_mark_cal = self.get_axis_mark_list( self.max_y, num_points_marked_on_y_axis) x_to_mark = self.format_numbers_to_be_displayed(x_to_mark_cal) y_to_mark = self.format_numbers_to_be_displayed(y_to_mark_cal) # setting number of sub division to be marked on x axis and y axis number_of_intermediate_points_on_x = 2 number_of_intermediate_points_on_y = 4 # drawing the rectangular region that would contain the graph paint.setPen(self.BACKGROUND_COLOR) paint.setBrush(self.BACKGROUND_COLOR) paint.drawRect(self.frameGeometry()) # drawing x axis and y axis paint.setPen(self.AXES_COLOR) paint.drawLine(x_origin, y_origin, x_other_end, y_origin) paint.drawLine(x_origin, y_other_end, x_origin, y_origin) # marking divions and subdivisons on x axis y = y_origin paint.drawText(self.left_margin - 5, y + 30, "0") if x_to_mark[0] != 0: intermediate_x_offset = x_offset / \ (number_of_intermediate_points_on_x + 1) intermediate_x = self.left_margin + intermediate_x_offset for _ in range(0, number_of_intermediate_points_on_x, +1): paint.drawLine(intermediate_x, y - 3, intermediate_x, y) intermediate_x = intermediate_x + intermediate_x_offset # x_last_position = self.left_margin # removing the "_" sign form beginning if x_label has x_label = self.main_widget.data_display.getAxisParameter(0).name if x_label.startswith("_"): x_label = x_label[1:] for i in range(len(x_to_mark)): x = self.logicalXtoPixel(x_to_mark_cal[i]) if i == len(x_to_mark) - 1: x = round(x) if i == (int(len(x_to_mark) / 2)): paint.drawText(x, y + 50, x_label) intermediate_x_offset = x_offset / (number_of_intermediate_points_on_x + 1) intermediate_x = x + intermediate_x_offset for _ in range(0, number_of_intermediate_points_on_x, +1): paint.drawLine(intermediate_x, y - 3, intermediate_x, y) intermediate_x = intermediate_x + intermediate_x_offset paint.drawLine(x, y - 6, x, y) paint.drawText(x - 15, y + 30, str(x_to_mark[i])) # x_last_position = x for y_value in range((y_origin - 7), y_other_end, -3): paint.drawPoint(x, y_value) # marking divions and subdivisons on y axis x = self.left_margin if y_to_mark[0] != 0: intermediate_y_offset = y_offset / \ (number_of_intermediate_points_on_y + 1) intermediate_y = y_origin - intermediate_y_offset for _ in range(0, number_of_intermediate_points_on_y, +1): paint.drawLine(x_origin, intermediate_y, x_origin + 3, intermediate_y) intermediate_y = intermediate_y - intermediate_y_offset # y_last_position = y_origin for j in range(len(y_to_mark)): y = self.logicalYtoPixel(y_to_mark_cal[j]) if j + 1 == (int(len(y_to_mark) / 2)): paint.drawText(5, y - (y_offset / 2), selectedMetric.name) intermediate_y_offset = y_offset / (number_of_intermediate_points_on_y + 1) intermediate_y = y - intermediate_y_offset for _ in range(0, number_of_intermediate_points_on_y, +1): paint.drawLine(x_origin, intermediate_y, x_origin + 3, intermediate_y) intermediate_y = intermediate_y - intermediate_y_offset paint.drawLine(x_origin, y, x_origin + 6, y) paint.drawText(x_origin - 70, y + 5, str(y_to_mark[j])) # y_last_position = y for x_value in range((x_origin + 7), x_other_end, +3): paint.drawPoint(x_value, y) def calculate_function(self, function, length_x_axis): """ This function calculates the x values, based on the range that were provided & then it uses ExtraP_Function_Generic to calculate the correspoding y value """ # m_x_lower_bound = 1 number_of_x_points, x_list, x_values = self._calculate_evaluation_points(length_x_axis) previous = numpy.seterr(invalid='ignore', divide='ignore') y_list = function.evaluate(x_list).reshape(-1) numpy.seterr(**previous) cord_list = self._create_drawing_iterator(x_values, y_list) return cord_list def calculate_aggregate_callpath_function(self, functions, length_x_axis): """ This function calculates the x values, based on the range that were provided & then it uses ExtraP_Function_Generic to calculate and aggregate the corresponding y value for all the model functions """ number_of_x_points, x_list, x_values = self._calculate_evaluation_points(length_x_axis) y_list = numpy.zeros(number_of_x_points) previous = numpy.seterr(invalid='ignore', divide='ignore') for function in functions: y_list += function.evaluate(x_list).reshape(-1) numpy.seterr(**previous) cord_list = self._create_drawing_iterator(x_values, y_list) return cord_list def _create_drawing_iterator(self, x_values, y_list): y_list[y_list == math.inf] = numpy.max(y_list[y_list != math.inf]) y_list[y_list == -math.inf] = numpy.min(y_list[y_list != -math.inf]) cord_list_before_filtering = zip(x_values, y_list) cord_list = ((x, y) for x, y in cord_list_before_filtering if not math.isnan(y) and 0 <= y) return cord_list def _calculate_evaluation_points(self, length_x_axis): number_of_x_points = int(length_x_axis / 2) x_values = numpy.linspace(0, self.max_x, number_of_x_points) x_list = numpy.ndarray((len(self.main_widget.experiment.parameters), number_of_x_points)) param = self.main_widget.data_display.getAxisParameter(0).id parameter_value_list = self.main_widget.data_display.getValues() for i, val in parameter_value_list.items(): x_list[i] = numpy.repeat(val, number_of_x_points) x_list[param] = x_values return number_of_x_points, x_list, x_values @staticmethod def get_axis_mark_list(max_val, number_of_points): """ This function takes as parameter as number of points to be marked on an axis, the maximum value to be marked on axis and returns a list of points to be marked on axis. """ axis_points_to_mark = list() axis_range = float((float(max_val - 0)) / number_of_points) value = 0 for _ in range(1, number_of_points + 1): value = value + axis_range if value < 1: digits_after_point = int(math.log10(1 / value)) + 2 value_to_append = float( "{0:.{1}f}".format(value, digits_after_point)) else: value_to_append = float("{0:.2f}".format(value)) axis_points_to_mark.append(float(value_to_append)) return axis_points_to_mark def calculate_absolute_position(self, cord_list, identifier): """ This function calculates the absolute position of the points on the graph widget wrt the coordinate system. """ absolute_position_list = list() if identifier == "x": for cord in cord_list: cur_pixel = self.logicalXtoPixel(cord) absolute_position_list.append(cur_pixel) elif identifier == "y": for cord in cord_list: cur_pixel = self.logicalYtoPixel(cord) absolute_position_list.append(cur_pixel) return absolute_position_list # function to format the numbers to be marked on the graph @staticmethod def format_numbers_to_be_displayed(value_list): """ This function formats and beautify the number to be shown on the graph. """ new_mark_list = list() for value in value_list: if value >= 10: precision = 1 else: precision = 2 value_str = formatNumber(str(value), precision) new_mark_list.append(value_str) return new_mark_list @staticmethod def reduce_length(value): """ This function formats and beautify the number to be shown on the graph. """ splitted_value = value.split('e') first_part = float(splitted_value[0]) first_part = round(first_part, 2) return '{:g}'.format(float(first_part)) + "e" + ''.join(splitted_value[1]) def calculateDataPoints(self, selectedMetric, selectedCallpath, ignore_limit=False): """ This function calculates datapoints to be marked on the graph """ datapoints = self.main_widget.getCurrentModel().models[(selectedCallpath.path, selectedMetric)].measurements parameter_datapoint = self.main_widget.data_display.getAxisParameter(0).id datapoint_x_absolute_pos_list = list() datapoint_y_absolute_pos_list = list() datapoint_x_list = list() datapoint_y_list = list() if self.datapoints_type == "min": datapoint_list = self.getDataPoints( datapoints, parameter_datapoint, ignore_limit, lambda d: d.minimum) elif self.datapoints_type == "mean": datapoint_list = self.getDataPoints( datapoints, parameter_datapoint, ignore_limit, lambda d: d.mean) elif self.datapoints_type == "max": datapoint_list = self.getDataPoints( datapoints, parameter_datapoint, ignore_limit, lambda d: d.maximum) elif self.datapoints_type == "median": datapoint_list = self.getDataPoints( datapoints, parameter_datapoint, ignore_limit, lambda d: d.median) elif self.datapoints_type == "standardDeviation": datapoint_list = self.getDataPoints( datapoints, parameter_datapoint, ignore_limit, lambda d: d.std) # TODO think about drawing as bar around value else: datapoint_list = None if datapoint_list: datapoint_x_list, datapoint_y_list = zip(*datapoint_list) datapoint_x_absolute_pos_list = self.calculate_absolute_position( datapoint_x_list, "x") datapoint_y_absolute_pos_list = self.calculate_absolute_position( datapoint_y_list, "y") datapoint_on_graph_values = zip(datapoint_x_absolute_pos_list, datapoint_y_absolute_pos_list) datapoint_actual_values = zip(datapoint_x_list, datapoint_y_list) return list(zip(datapoint_on_graph_values, datapoint_actual_values)) def getDataPoints(self, datapoints, parameter_datapoint, ignore_limit, key): """ This function calculates datapoints with property selected by the key function to be marked on the graph """ return [ (dp.coordinate[parameter_datapoint], key(dp)) for dp in datapoints if (dp.coordinate[parameter_datapoint] <= self.max_x or ignore_limit) ] def calculateMaxY(self, modelList): y_max = 0 pv_list = self.main_widget.data_display.getValues() param = self.main_widget.data_display.getAxisParameter(0).id pv_list[param] = self.max_x # Check the maximum value of a displayed data point if self.show_datapoints: for model in modelList: y = max(model.predictions) y_max = max(y, y_max) previous =
numpy.seterr(invalid='ignore', divide='ignore')
numpy.seterr
import scipy.linalg as la import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors """ Creating an entire pressure field based on the locations of various sources """ def pressure_field(positions,frequencies, field_points = -1, time = 0.0, areas = [0.001], velocities = [0.01], strengths = [0.01], phases = [0], x_range = [-1,1], y_range = [-1,1], z_range = [-1,1], point_density = 100, directivity_distance = 1000, num_directivity_points = 10000, method = "Monopole Addition", dimensions = 2, directivity_only = False, directivity_plot_alone = False, show_plots = False, pressure_limits = [-100,100]): # Making all arrays that describe the sources be equal lengths num_sources = len(positions) positions = np.asarray(positions) if np.size(frequencies) == 1: frequencies = np.ones(num_sources) * frequencies if np.size(areas) == 1: areas = np.ones(num_sources) * areas if np.size(strengths) == 1: strengths = np.ones(num_sources) * strengths if np.size(phases) == 1: phases = np.ones(num_sources) * phases if np.size(velocities) == 1: velocities = np.ones(num_sources) * velocities # Enabling the user to custom-select points in the field if np.all(field_points == -1): custom_points = False else: custom_points = True time = complex(time) if dimensions == 1 and not custom_points: numPoints_x = int(np.floor((x_range[1] - x_range[0]) * point_density)) x = np.linspace(x_range[0],x_range[1],numPoints_x) x = x[x != 0] field_points = x.reshape(-1,1) grid = x elif dimensions == 2 and not custom_points: numPoints_x = int(np.floor((x_range[1] - x_range[0]) * point_density)) numPoints_y = int(np.floor((y_range[1] - y_range[0]) * point_density)) x = np.linspace(x_range[0],x_range[1],numPoints_x) y = np.linspace(y_range[0],y_range[1],numPoints_y) grid = np.meshgrid(x,y) field_points = np.append(grid[0].reshape(-1,1),grid[1].reshape(-1,1),axis=1) X = grid[0] Y = grid[1] elif dimensions == 3 and not custom_points: numPoints_x = int(np.floor((x_range[1] - x_range[0]) * point_density)) numPoints_y = int(np.floor((y_range[1] - y_range[0]) * point_density)) numPoints_z = int(np.floor((z_range[1] - z_range[0]) * point_density)) x = np.linspace(x_range[0],x_range[1],numPoints_x) y = np.linspace(y_range[0],y_range[1],numPoints_y) z = np.linspace(z_range[0],z_range[1],numPoints_z) grid = np.meshgrid(x,y,z) field_points = np.append(grid[0].reshape(-1,1),np.append(grid[1].reshape(-1,1),grid[2].reshape(-1,1),axis = 1),axis=1) X = grid[0] Y = grid[1] Z = grid[2] if not directivity_only: pressure_field = get_field(positions,frequencies,strengths,velocities,areas,phases,field_points,time,method) if not custom_points: pressure_field = pressure_field.reshape(-1,len(x)) # It's the number of points in the x-direction that you use here else: pressure_field = 0 # Getting the directivity at a given distance. Default is 1000 meters away if not dimensions == 1 and not custom_points: directivity_points, theta = define_arc(directivity_distance,num_directivity_points) directivity = np.abs(get_field(positions,frequencies,strengths,velocities,areas,phases,directivity_points,time,method)) directivity = directivity / np.max(directivity) # Only show plots if you calculated the entirie pressure field if dimensions == 1 and not custom_points: plot_1D(x,pressure_field,positions,show_plots,pressure_limits,directivity_only) theta = 0 directivity = 0 if dimensions == 2 and not custom_points: plot_2D(X,Y,pressure_field,positions,method,theta,directivity,show_plots,directivity_only,directivity_distance,directivity_plot_alone,pressure_limits) if dimensions == 3 and not custom_points: plot_3D(X,Y,Z,pressure_field,positions,method,theta,directivity,show_plots,directivity_only,directivity_distance,directivity_plot_alone,pressure_limits) if not custom_points: return pressure_field, grid, directivity, theta else: return pressure_field def plot_1D(x,pressure_field,positions,show_plots,pressure_limits,directivity_only): if show_plots and not directivity_only: # Defining the figure fig = plt.figure() fig.set_size_inches(8,8) # Plotting the real part ax = fig.add_subplot(221) ax.plot(x,np.real(pressure_field)[0,:]) ax.scatter(positions[:,0],np.zeros(len(positions[:,0])),color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax.set_aspect('auto') ax.set_title("Real Part") ax.set_xlabel("X (m)") ax.set_ylabel("Re{Pressure}") ax.set_ylim(pressure_limits[0],pressure_limits[1]) ax.grid("on") # Plotting the imaginary part ax = fig.add_subplot(223) ax.plot(x,np.imag(pressure_field)[0,:]) ax.scatter(positions[:,0],np.zeros(len(positions[:,0])),color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax.set_aspect('auto') ax.set_title("Imaginary Part") ax.set_xlabel("X (m)") ax.set_ylabel("Im{Pressure}") ax.set_ylim(pressure_limits[0],pressure_limits[1]) ax.grid("on") # Plotting the magnitude ax = fig.add_subplot(222) ax.plot(x,np.abs(pressure_field)[0,:]) ax.scatter(positions[:,0],np.zeros(len(positions[:,0])),color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax.set_aspect('auto') ax.set_title("Magnitude") ax.set_xlabel("X (m)") ax.set_ylabel("|Pressure|") ax.set_ylim(pressure_limits[0]*0.05,pressure_limits[1]) ax.grid("on") fig.tight_layout(pad = 0.5) fig.show() def plot_2D(X,Y,pressure_field,positions,method,theta,directivity,show_plots,directivity_only,directivity_distance,directivity_plot_alone,pressure_limits): if show_plots and not directivity_only: # Defining the figure fig, ax = plt.subplots(2,2) fig.set_size_inches(8,8) # Plotting the real part c = ax[0,0].pcolormesh(X,Y,np.real(pressure_field),shading = "gouraud",cmap = "RdBu",vmin = pressure_limits[0],vmax = pressure_limits[1]) ax[0,0].scatter(positions[:,0],positions[:,1],color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax[0,0].set_aspect('equal') ax[0,0].set_title("Real Part") ax[0,0].set_xlabel("X (m)") ax[0,0].set_ylabel("Y (m)") fig.colorbar(c,ax = ax[0,0],fraction=0.046, pad=0.04) # Plotting the imaginary part c = ax[1,0].pcolormesh(X,Y,np.imag(pressure_field),shading = "gouraud",cmap = "RdBu",vmin = pressure_limits[0],vmax = pressure_limits[1]) ax[1,0].scatter(positions[:,0],positions[:,1],color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax[1,0].set_aspect('equal') ax[1,0].set_title("Imaginary Part") ax[1,0].set_xlabel("X (m)") ax[1,0].set_ylabel("Y (m)") fig.colorbar(c,ax = ax[1,0],fraction=0.046, pad=0.04) # Plotting the magnitude c = ax[0,1].pcolormesh(X,Y,np.abs(pressure_field),shading = "gouraud",cmap = "jet",vmin = 0,vmax = pressure_limits[1]) ax[0,1].scatter(positions[:,0],positions[:,1],color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax[0,1].set_aspect('equal') ax[0,1].set_title("Pressure Magnitude") ax[0,1].set_xlabel("X (m)") ax[0,1].set_ylabel("Y (m)") fig.colorbar(c,ax = ax[0,1],fraction=0.046, pad=0.04) # Plotting the directivity ax[1,1].axis("off") ax = fig.add_subplot(224,projection = 'polar') c = ax.plot(theta,20*np.log10(directivity)) ax.set_rmin(-40) ax.set_rticks([0,-10,-20,-30,-40]) ax.set_aspect('equal') ax.set_title(str("Beam Pattern (dB) at {0} m".format(directivity_distance))) fig.show() if method == "Rayleigh": ax.set_thetamin(-90) ax.set_thetamax(90) fig.tight_layout(pad = 0.5) fig.show() if directivity_plot_alone: fig, ax = plt.subplots(1,2,subplot_kw={'projection': 'polar'}) ax[0].plot(theta,directivity) ax[0].set_title("Normalized Directivity") ax[1].plot(theta,20*np.log10(directivity)) ax[1].set_title("Beam Pattern (dB)") ax[1].set_rmin(-40) ax[1].set_rticks([0,-10,-20,-30,-40]) fig.tight_layout() fig.set_size_inches(8,8) fig.show() def plot_3D(X,Y,Z,pressure_field,positions,method,theta,directivity,show_plots,directivity_only,directivity_distance,directivity_plot_alone,pressure_limits): if show_plots and not directivity_only: # Defining the figure fig = plt.figure() fig.set_size_inches(8,8) # Adding opacity to the colormap cmap = plt.cm.RdBu_r my_RdBu = cmap(np.arange(cmap.N)) my_RdBu[:,-1] = np.linspace(-1,1,cmap.N) my_RdBu[:,-1] = np.abs(my_RdBu[:,-1]) my_RdBu = colors.ListedColormap(my_RdBu) cmap = plt.cm.jet my_jet = cmap(np.arange(cmap.N)) my_jet[:,-1] = np.linspace(0,1,cmap.N) my_jet = colors.ListedColormap(my_jet) # Plotting the real part ax = fig.add_subplot(221,projection = '3d') c = ax.scatter(X,Y,Z,np.real(pressure_field), c = np.real(pressure_field),cmap = my_RdBu,vmin = pressure_limits[0],vmax = pressure_limits[1],edgecolors = None) ax.scatter(positions[:,0],positions[:,1],positions[:,2],color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax.set_aspect('auto') ax.set_title("Real Part") ax.set_xlabel("X (m)") ax.set_ylabel("Y (m)") fig.colorbar(c,ax = ax,fraction=0.046, pad=0.04) # Plotting the imaginary part ax = fig.add_subplot(223,projection = '3d') c = ax.scatter(X,Y,Z,np.imag(pressure_field), c = np.imag(pressure_field),cmap = my_RdBu,vmin = pressure_limits[0],vmax = pressure_limits[1],edgecolors = None) ax.scatter(positions[:,0],positions[:,1],positions[:,2],color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax.set_aspect('auto') ax.set_title("Imaginary Part") ax.set_xlabel("X (m)") ax.set_ylabel("Y (m)") fig.colorbar(c,ax = ax,fraction=0.046, pad=0.04) # Plotting the magnitude ax = fig.add_subplot(222,projection = '3d') c = ax.scatter(X,Y,Z,np.abs(pressure_field), c = np.abs(pressure_field),cmap = my_jet,vmin = 0,vmax = pressure_limits[1],edgecolors = None) ax.scatter(positions[:,0],positions[:,1],positions[:,2],color = "black",marker = "o",facecolors = "white",linewidth = 1.5,s = 10) ax.set_aspect('auto') ax.set_title("Magnitude") ax.set_xlabel("X (m)") ax.set_ylabel("Y (m)") fig.colorbar(c,ax = ax,fraction=0.046, pad=0.04) # Plotting the directivity ax = fig.add_subplot(224,projection = 'polar') c = ax.plot(theta,20*np.log10(directivity)) ax.set_rmin(-40) ax.set_rticks([0,-10,-20,-30,-40]) ax.set_aspect('equal') ax.set_title(str("Beam Pattern (dB) at {0} m".format(directivity_distance))) fig.show() if method == "Rayleigh": ax.set_thetamin(-90) ax.set_thetamax(90) fig.tight_layout(pad = 0.5) fig.show() if directivity_plot_alone: fig, ax = plt.subplots(1,2,subplot_kw={'projection': 'polar'}) ax[0].plot(theta,directivity) ax[0].set_title("Normalized Directivity") ax[1].plot(theta,20*np.log10(directivity)) ax[1].set_title("Beam Pattern (dB)") ax[1].set_rmin(-40) ax[1].set_rticks([0,-10,-20,-30,-40]) fig.tight_layout() fig.set_size_inches(8,8) fig.show() """ Creating a field """ def get_field(positions,frequencies,strengths,velocities,areas,phases,field_points,time,method): # Convert everything to a numpy array positions = np.asarray(positions) strengths =
np.asarray(strengths)
numpy.asarray
import itertools import numpy as np from PartSegCore.segmentation.border_smoothing import IterativeVoteSmoothing, OpeningSmoothing, VoteSmoothing from PartSegCore.segmentation.watershed import NeighType class TestVoteSmoothing: def test_cube_sides(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 3}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 4}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 5}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 6}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_cube_edges(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 6}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 7}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 9}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 10}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 13}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 14}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_cube_vertex(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 7}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 8}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 11}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 12}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 17}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 18}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_square_sides(self): data = np.zeros((1, 50, 50), dtype=np.uint8) data[:, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 1}) assert
np.all(res == data)
numpy.all
#!/usr/bin/env python from __future__ import print_function, division import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.colors import LogNorm, Normalize import h5py import progressbar import os from glob import glob import tensorflow as tf print(f'Tensorflow version {tf.__version__}') import flow_ffjord_tf fig_fmt = 'png' dpi = 120 def cart2cyl(eta): R = np.linalg.norm(eta[:,:2], axis=1) z = eta[:,2] phi = np.arctan2(eta[:,1], eta[:,0]) cos_phi = eta[:,0] / R sin_phi = eta[:,1] / R vR = eta[:,3] * cos_phi + eta[:,4] * sin_phi vT = -eta[:,3] * sin_phi + eta[:,4] * cos_phi vz = eta[:,5] return {'R':R, 'z':z, 'phi':phi, 'vR':vR, 'vz':vz, 'vT':vT} def load_training_data(fname): with h5py.File(fname, 'r') as f: eta = f['eta'][:] return eta def load_flows(fname_patterns): flow_list = [] fnames = [] for fn in fname_patterns: fnames += glob(fn) fnames = sorted(fnames) fnames = [fn[:-6] for fn in fnames] print(f'Found {len(fnames)} flows.') for i,fn in enumerate(fnames): print(f'Loading flow {i+1} of {len(fnames)} ...') print(fn) flow = flow_ffjord_tf.FFJORDFlow.load(fname=fn) flow_list.append(flow) return flow_list def sample_from_flows(flow_list, n_samples, batch_size=1024): n_flows = len(flow_list) # Sample from ensemble of flows n_batches = n_samples // (n_flows * batch_size) eta = np.empty((n_samples,6), dtype='f4') eta[:] = np.nan # Make it obvious if there are unfilled values at the end bar = progressbar.ProgressBar(max_value=n_batches*n_flows) batch_idx = 0 for i,flow in enumerate(flow_list): #print(f'Sampling from flow {i+1} of {n_flows} ...') @tf.function def sample_batch(): print(f'Tracing sample_batch for flow {i+1} of {n_flows} ...') return flow.sample([batch_size]) for k in range(n_batches): j0 = batch_idx * batch_size eta[j0:j0+batch_size] = sample_batch().numpy() batch_idx += 1 bar.update(batch_idx) return eta def plot_1d_marginals(cyl_train, cyl_sample, fig_dir, loss=None): labels = ['$R$', '$z$', r'$\phi$', '$v_R$', '$v_z$', '$v_T$'] keys = ['R', 'z', 'phi', 'vR', 'vz', 'vT'] fig,ax_arr = plt.subplots(2,3, figsize=(12,8), dpi=120) for i,(ax,l,k) in enumerate(zip(ax_arr.flat,labels,keys)): xlim =
np.percentile(cyl_train[k], [1., 99.])
numpy.percentile
# -*- coding: utf-8 -*- """ Created on Fri Mar 5 21:02:07 2021 @author: lukepinkel """ import patsy import numpy as np import scipy as sp import scipy.stats import pandas as pd import scipy.interpolate import matplotlib.pyplot as plt from .smooth_setup import parse_smooths, get_parametric_formula, get_smooth from ..pyglm.families import Gaussian from ..utilities.splines import (crspline_basis, bspline_basis, ccspline_basis, absorb_constraints) class GaussianAdditiveModel: def __init__(self, formula, data): family = Gaussian() smooth_info = parse_smooths(formula, data) formula = get_parametric_formula(formula) y, Xp = patsy.dmatrices(formula, data, return_type='dataframe', eval_env=1) varnames = Xp.columns.tolist() smooths = {} start = p = Xp.shape[1] ns = 0 for key, val in smooth_info.items(): slist = get_smooth(**val) if len(slist)==1: smooths[key], = slist p_i = smooths[key]['X'].shape[1] varnames += [f"{key}{j}" for j in range(1, p_i+1)] p += p_i ns += 1 else: for i, x in enumerate(slist): by_key = f"{key}_{x['by_cat']}" smooths[by_key] = x p_i = x['X'].shape[1] varnames += [f"{by_key}_{j}" for j in range(1, p_i+1)] p += p_i ns += 1 X, S, Sj, ranks, ldS = [Xp], np.zeros((ns, p, p)), [], [], [] for i, (var, s) in enumerate(smooths.items()): p_i = s['X'].shape[1] Si, ix = np.zeros((p, p)), np.arange(start, start+p_i) start += p_i Si[ix, ix.reshape(-1, 1)] = s['S'] smooths[var]['ix'], smooths[var]['Si'] = ix, Si X.append(smooths[var]['X']) S[i] = Si Sj.append(s['S']) ranks.append(np.linalg.matrix_rank(Si)) u = np.linalg.eigvals(s['S']) ldS.append(np.log(u[u>np.finfo(float).eps]).sum()) self.X, self.Xp, self.y = np.concatenate(X, axis=1), Xp.values, y.values[:, 0] self.S, self.Sj, self.ranks, self.ldS = S, Sj, ranks, ldS self.f, self.smooths = family, smooths self.ns, self.n_obs, self.nx = ns, self.X.shape[0], self.X.shape[1] self.mp = self.nx - np.sum(self.ranks) self.data = data theta = np.zeros(self.ns+1) for i, (var, s) in enumerate(smooths.items()): ix = smooths[var]['ix'] a = self.S[i][ix, ix[:, None].T] d = np.diag(self.X[:, ix].T.dot(self.X[:, ix])) lam = (1.5 * (d / a)[a>0]).mean() theta[i] = np.log(lam) varnames += [f"log_smooth_{var}"] theta[-1] = 1.0 varnames += ["log_scale"] self.theta = theta self.varnames = varnames self.smooth_info = smooth_info def get_wz(self, eta): mu = self.f.inv_link(eta) v = self.f.var_func(mu=mu) dg = self.f.dinv_link(eta) r = self.y - mu a = 1.0 + r * (self.f.dvar_dmu(mu) / v + self.f.d2link(mu) * dg) z = eta + r / (dg * a) w = a * dg**2 / v return z, w def solve_pls(self, eta, S): z, w = self.get_wz(eta) Xw = self.X * w[:, None] beta_new = np.linalg.solve(Xw.T.dot(self.X)+S, Xw.T.dot(z)) return beta_new def pirls(self, alpha, n_iters=200, tol=1e-7): beta = np.zeros(self.X.shape[1]) S = self.get_penalty_mat(alpha) eta = self.X.dot(beta) dev = self.f.deviance(self.y, mu=self.f.inv_link(eta)).sum() success = False for i in range(n_iters): beta_new = self.solve_pls(eta, S) eta_new = self.X.dot(beta_new) dev_new = self.f.deviance(self.y, mu=self.f.inv_link(eta_new)).sum() if dev_new > dev: success=False break if abs(dev - dev_new) / dev_new < tol: success = True break eta = eta_new dev = dev_new beta = beta_new return beta, eta, dev, success, i def get_penalty_mat(self, alpha): Sa = np.einsum('i,ijk->jk', alpha, self.S) return Sa def logdetS(self, alpha, phi): logdet = 0.0 for i, (r, lds) in enumerate(list(zip(self.ranks, self.ldS))): logdet += r * np.log(alpha[i]/phi) + lds return logdet def grad_beta_rho(self, beta, alpha): S = self.get_penalty_mat(alpha) A = np.linalg.inv(self.hess_dev_beta(beta, S)) dbdr =
np.zeros((beta.shape[0], alpha.shape[0]))
numpy.zeros
import glob from functools import partial from pathlib import Path from typing import Dict, List, Optional, Tuple import albumentations as albu import librosa import librosa.display import matplotlib.pyplot as plt import numpy as np import pandas as pd import pytorch_lightning as pl import scipy from hydra.utils import get_original_cwd from omegaconf import DictConfig, ListConfig, OmegaConf from sklearn.model_selection import StratifiedKFold from torch.utils.data import DataLoader from src.dataset.dataset import WaveformDataset from src.dataset.utils import calc_triangle_center, get_groundtruth from src.postprocess.postporcess import apply_gauss_smoothing, apply_kf_smoothing from src.postprocess.visualize import add_distance_diff IMG_MEAN = (0.485, 0.456, 0.406, 0.485, 0.456, 0.406, 0.485, 0.456, 0.406) IMG_STD = (0.229, 0.224, 0.225, 0.229, 0.224, 0.225, 0.485, 0.456, 0.406) class GsdcDatamodule(pl.LightningDataModule): def __init__( self, conf: DictConfig, val_fold: int = 0, batch_size: int = 64, num_workers: int = 16, aug_mode: int = 0, is_debug: bool = False, ) -> None: super().__init__() self.conf = conf self.batch_size = batch_size self.aug_mode = aug_mode self.num_workers = num_workers self.is_debug = is_debug self.val_fold = val_fold self.input_width = conf["input_width"] self.num_inchannels = len(conf["stft_targets"]) * 3 self.img_mean = np.array(IMG_MEAN[: self.num_inchannels]) self.img_std = np.array(IMG_STD[: self.num_inchannels]) def prepare_data(self): # check assert Path(get_original_cwd(), self.conf["data_dir"]).is_dir() def _onehot_to_set(self, onehot: np.ndarray): return set(np.where(onehot == 1)[0].astype(str).tolist()) def _use_cached_kalman(self, df: pd.DataFrame, is_test=False) -> pd.DataFrame: print("apply kalman filttering") processed_kf_path = ( "../input/kf_test.csv" if is_test else "../input/kf_train.csv" ) processed_kf_path = Path(get_original_cwd(), processed_kf_path) try: df = pd.read_csv(processed_kf_path) except Exception: df = apply_kf_smoothing(df=df) # nan each phone first or last row df.to_csv(processed_kf_path, index=False) return df def setup(self, stage: Optional[str] = None): # Assign Train/val split(s) for use in Dataloaders conf = self.conf if stage == "fit" or stage is None: # read data data_dir = Path(get_original_cwd(), self.conf["data_dir"]) self.train_df = pd.read_csv(data_dir / "baseline_locations_train.csv") df_path = pd.read_csv( Path(get_original_cwd(), "./src/meta_data/path_meta_info.csv") ) # merge graoundtruth self.train_df = self.train_df.merge( get_groundtruth(data_dir), on=["collectionName", "phoneName", "millisSinceGpsEpoch"], ) if self.conf.apply_kalman_filtering: self.train_df = self._use_cached_kalman(df=self.train_df, is_test=False) # there is nan at being and end... if self.conf.stft_targets[0].find("center") > -1: self.train_df = calc_triangle_center( df=self.train_df, targets=["latDeg", "lngDeg", "latDeg_gt", "lngDeg_gt"], ) else: self.train_df = add_distance_diff(df=self.train_df, is_test=False) # train/val split df_path = make_split(df=df_path, n_splits=3) self.train_df = merge_split_info(data_df=self.train_df, split_df=df_path) self.train_df = choose_paths(df=self.train_df, target=self.conf.target_path) train_df = self.train_df.loc[self.train_df["fold"] != self.val_fold, :] val_df = self.train_df.loc[self.train_df["fold"] == self.val_fold, :] if self.conf.data_aug_with_kf: train_phone = train_df.phone.unique() if self.conf.apply_kalman_filtering: orig_df = pd.read_csv(data_dir / "baseline_locations_train.csv") orig_df = orig_df.merge( get_groundtruth(data_dir), on=["collectionName", "phoneName", "millisSinceGpsEpoch"], ) else: orig_df = self._use_cached_kalman(df=train_df, is_test=False) orig_df = orig_df.loc[orig_df.phone.isin(train_phone)] if self.conf.stft_targets[0].find("center") > -1: orig_df = calc_triangle_center( df=orig_df, targets=["latDeg", "lngDeg", "latDeg_gt", "lngDeg_gt"], ) else: orig_df = add_distance_diff(df=orig_df, is_test=False) split_info_df = train_df.loc[ :, ["phone", "millisSinceGpsEpoch", "location", "fold", "length"] ] orig_df = pd.merge( left=orig_df, right=split_info_df, on=["phone", "millisSinceGpsEpoch"], ) orig_df["phone"] = orig_df["phone"] + "_kf_aug" train_df = pd.concat([train_df, orig_df], axis=0).reset_index(drop=True) if self.conf.data_aug_with_gaussian: train_phone = train_df.phone.unique() orig_df = pd.read_csv(data_dir / "baseline_locations_train.csv") orig_df = orig_df.merge( get_groundtruth(data_dir), on=["collectionName", "phoneName", "millisSinceGpsEpoch"], ) orig_df = orig_df.loc[orig_df.phone.isin(train_phone)] orig_df = apply_gauss_smoothing( df=orig_df, params={"sz_1": 0.85, "sz_2": 5.65, "sz_crit": 1.5} ) if self.conf.stft_targets[0].find("center") > -1: orig_df = calc_triangle_center( df=orig_df, targets=["latDeg", "lngDeg", "latDeg_gt", "lngDeg_gt"], ) else: orig_df = add_distance_diff(df=orig_df, is_test=False) split_info_df = train_df.loc[ :, ["phone", "millisSinceGpsEpoch", "location", "fold", "length"] ] orig_df = pd.merge( left=orig_df, right=split_info_df, on=["phone", "millisSinceGpsEpoch"], ) orig_df["phone"] = orig_df["phone"] + "_gauss" train_df = pd.concat([train_df, orig_df], axis=0).reset_index(drop=True) train_df, train_list = make_sampling_list( df=train_df, input_width=conf["input_width"], sampling_delta=conf["train_sampling_delta"], stft_targets=conf["stft_targets"], is_test=False, remove_starts=True, remove_ends=False if self.conf.stft_targets[0].find("prev") > -1 else True, ) train_sequences = get_phone_sequences( df=train_df, targets=conf["stft_targets"], is_test=False ) val_df, val_list = make_sampling_list( df=val_df, input_width=conf["input_width"], sampling_delta=conf["val_sampling_delta"], stft_targets=conf["stft_targets"], is_test=False, remove_starts=True, remove_ends=False if self.conf.stft_targets[0].find("prev") > -1 else True, ) val_df.to_csv("./val.csv") val_sequences = get_phone_sequences( df=val_df, targets=conf["stft_targets"], is_test=False ) self.train_dataset = WaveformDataset( sampling_list=train_list, phone_sequences=train_sequences, stft_targets=conf["stft_targets"], stft_params=conf["stft_params"], input_width=conf["input_width"], image_transforms=self.train_transform(), is_test=False, gt_as_mask=self.conf.gt_as_mask, rand_freq=self.conf.rand_freq, rand_ratio=self.conf.rand_ratio, sigma=self.conf.sigma, ) self.val_dataset = WaveformDataset( sampling_list=val_list, phone_sequences=val_sequences, stft_targets=conf["stft_targets"], stft_params=conf["stft_params"], input_width=conf["input_width"], image_transforms=self.val_transform(), is_test=False, gt_as_mask=self.conf.gt_as_mask, ) self.plot_dataset(self.train_dataset) self.train_df = train_df self.val_df = val_df # Assign Test split(s) for use in Dataloaders if stage == "test" or stage is None: # read data data_dir = Path(get_original_cwd(), self.conf["data_dir"]) if self.conf.test_with_val: self.train_df = pd.read_csv(data_dir / "baseline_locations_train.csv") df_path = pd.read_csv( Path(get_original_cwd(), "../input/path_meta_info.csv") ) if self.conf.apply_kalman_filtering: self.train_df = self._use_cached_kalman( df=self.train_df, is_test=False ) # train/val split df_path = make_split(df=df_path, n_splits=3) self.train_df = merge_split_info( data_df=self.train_df, split_df=df_path ) self.test_df = self.train_df.loc[ self.train_df["fold"] == self.val_fold, : ] else: self.test_df = pd.read_csv(data_dir / "baseline_locations_test.csv") if self.conf.apply_kalman_filtering: self.test_df = self._use_cached_kalman( df=self.test_df, is_test=True ) # there is nan at being and end... if self.conf.stft_targets[0].find("center") > -1: self.test_df = calc_triangle_center( df=self.test_df, targets=["latDeg", "lngDeg"], ) else: self.test_df = add_distance_diff(df=self.test_df, is_test=True) if self.conf.tta_with_kf: test_phone = self.test_df.phone.unique() if self.conf.apply_kalman_filtering: orig_df = pd.read_csv(data_dir / "baseline_locations_test.csv") orig_df = orig_df.merge( get_groundtruth(data_dir), on=["collectionName", "phoneName", "millisSinceGpsEpoch"], ) else: orig_df = self._use_cached_kalman(df=self.test_df, is_test=True) orig_df = orig_df.loc[orig_df.phone.isin(test_phone)] if self.conf.stft_targets[0].find("center") > -1: orig_df = calc_triangle_center( df=orig_df, targets=["latDeg", "lngDeg", "latDeg_gt", "lngDeg_gt"], ) else: orig_df = add_distance_diff(df=orig_df, is_test=True) split_info_df = self.test_df.loc[ :, ["phone", "millisSinceGpsEpoch", "location", "fold", "length"] ] orig_df = pd.merge( left=orig_df, right=split_info_df, on=["phone", "millisSinceGpsEpoch"], ) orig_df["phone"] = orig_df["phone"] + "_kf_aug" self.test_df = pd.concat([self.test_df, orig_df], axis=0).reset_index( drop=True ) self.test_df, test_list = make_sampling_list( df=self.test_df, input_width=conf["input_width"], sampling_delta=conf["test_sampling_delta"], stft_targets=conf["stft_targets"], is_test=True, remove_starts=True, remove_ends=False if self.conf.stft_targets[0].find("prev") > -1 else True, ) self.test_df.to_csv("./test_input.csv", index=False) test_sequences = get_phone_sequences( df=self.test_df, targets=conf["stft_targets"], is_test=True ) self.test_dataset = WaveformDataset( sampling_list=test_list, phone_sequences=test_sequences, stft_targets=conf["stft_targets"], stft_params=conf["stft_params"], input_width=conf["input_width"], image_transforms=self.test_transform(), is_test=True, gt_as_mask=self.conf.gt_as_mask, ) self.plot_dataset(self.test_dataset) def train_dataloader(self): return DataLoader( self.train_dataset, shuffle=True, batch_size=self.batch_size, num_workers=self.num_workers, ) def val_dataloader(self): return DataLoader( self.val_dataset, shuffle=False, batch_size=self.batch_size, num_workers=self.num_workers, ) def test_dataloader(self): return DataLoader( self.test_dataset, shuffle=False, batch_size=self.batch_size, num_workers=self.num_workers, ) def train_transform(self): return self.get_transforms(mode=self.aug_mode) def val_transform(self): return self.get_transforms(mode=0) def test_transform(self): return self.get_transforms(mode=0) def get_transforms(self, mode: int = 0) -> albu.Compose: self.input_size = WaveformDataset.calc_stft_resize( input_width=self.conf.input_width, n_fft=self.conf.stft_params.n_fft ) def pad_image( image: np.ndarray, input_size: List[int], constant_values: float = 255.0, **kwargs, ): pad_size = (input_size[0] - image.shape[0], input_size[1] - image.shape[1]) if np.any(np.array(pad_size) > 0): image = np.pad( image, [[0, pad_size[0]], [0, pad_size[1]], [0, 0]], mode="reflect", ) # image[:, :, orig_width:] = constant_values return image add_pad_img = partial( pad_image, input_size=self.input_size, constant_values=255.0 ) add_pad_mask = partial( pad_image, input_size=self.input_size, constant_values=1.0 ) if mode == 0: transforms = [ albu.Lambda(image=add_pad_img, mask=add_pad_mask, name="padding"), albu.Normalize(mean=self.img_mean, std=self.img_std), ] elif mode == 1: transforms = [ albu.HorizontalFlip(p=0.5), albu.Lambda(image=add_pad_img, mask=add_pad_mask, name="padding"), albu.Normalize(mean=self.img_mean, std=self.img_std), ] else: raise NotImplementedError if self.conf.gt_as_mask: additional_targets = {"target_image": "mask"} else: additional_targets = {"target_image": "image"} composed = albu.Compose(transforms, additional_targets=additional_targets) return composed def plot_dataset( self, dataset, plot_num: int = 3, df: Optional[pd.DataFrame] = None, ) -> None: inds = np.random.choice(len(dataset), plot_num) h_, w_ = get_input_size_wo_pad( n_fft=self.conf.stft_params.n_fft, input_width=self.conf.input_width ) for i in inds: plt.figure(figsize=(16, 8)) data = dataset[i] im = data["image"].numpy().transpose(1, 2, 0) im = im[:h_, :w_] # === PLOT === nrows = 3 ncols = 3 fig, ax = plt.subplots( nrows=nrows, ncols=ncols, figsize=(12, 6), sharey=True, sharex=True, ) fig.suptitle( "_".join( [ data["phone"], str(data["millisSinceGpsEpoch"]), str(data["phone_time"]), ] ) ) cnum = len(self.conf["stft_targets"]) D_abs, D_cos, D_sin = WaveformDataset.handle_stft_normalize( img=im, cnum=cnum, is_encode=False, is_db=self.conf["stft_params"]["is_db"], img_mean=self.img_mean, img_std=self.img_std, ) for stft_ind, stft_name in enumerate(self.conf["stft_targets"]): show_stft( conf=self.conf, D_abs=D_abs[..., stft_ind], D_cos=D_cos[..., stft_ind], D_sin=D_sin[..., stft_ind], ax=ax, stft_ind=stft_ind, stft_name=stft_name, ) if data["target_image"].shape[0] != 0: im = data["target_image"].numpy().transpose(1, 2, 0) im = im[:h_, :w_] # === PLOT === nrows = 3 ncols = 3 fig, ax = plt.subplots( nrows=nrows, ncols=ncols, figsize=(12, 6), sharey=True, sharex=True, ) fig.suptitle( "_".join( [ data["phone"], str(data["millisSinceGpsEpoch"]), str(data["phone_time"]), ] ) ) cnum = len(self.conf["stft_targets"]) D_abs, D_cos, D_sin = WaveformDataset.handle_stft_normalize( img=im, cnum=cnum, is_encode=False, is_db=self.conf["stft_params"]["is_db"], img_mean=self.img_mean, img_std=self.img_std, gt_as_mask=self.conf.gt_as_mask, ) for stft_ind, stft_name in enumerate(self.conf["stft_targets"]): show_stft( conf=self.conf, D_abs=D_abs[..., stft_ind], D_cos=D_cos[..., stft_ind], D_sin=D_sin[..., stft_ind], ax=ax, stft_ind=stft_ind, stft_name=stft_name.replace("_diff", "_gt_diff"), ) def get_input_size_wo_pad(n_fft: int = 256, input_width: int = 128) -> Tuple[int, int]: input_height = n_fft // 2 + 1 input_width = input_width + 1 return input_height, input_width def show_stft( conf: DictConfig, D_abs: np.ndarray, D_cos: np.ndarray, D_sin: np.ndarray, ax: plt.axes, stft_ind: int, stft_name: str = None, ) -> None: for nrow, mat in enumerate([D_abs, D_cos, D_sin]): img = librosa.display.specshow( mat, sr=1, hop_length=conf["stft_params"]["hop_length"], x_axis="time", y_axis="hz", cmap="cool", ax=ax[nrow][stft_ind], ) plt.colorbar(img, ax=ax[nrow][stft_ind]) ax[0][stft_ind].set_title(stft_name) def choose_paths(df: pd.DataFrame, target: str = "short") -> pd.DataFrame: if target is not None: return df.loc[df["length"].apply(lambda x: x.split("-")[0]) == target, :] else: return df def make_split(df: pd.DataFrame, n_splits: int = 3) -> pd.DataFrame: df["fold"] = -1 df["groups"] = df["location"].apply(lambda x: x.split("-")[0]) df["groups"] = df["groups"] + "_" + df["length"] # gkf = GroupKFold(n_splits=n_splits) gkf = StratifiedKFold(n_splits=n_splits) for i, (train_idx, valid_idx) in enumerate(gkf.split(df, df["groups"])): df.loc[valid_idx, "fold"] = i return df def merge_split_info(data_df: pd.DataFrame, split_df: pd.DataFrame) -> pd.DataFrame: split_col = ["collectionName", "location", "length", "fold"] df = pd.merge(data_df, split_df.loc[:, split_col], on="collectionName") return df def interpolate_vel( velocity: np.ndarray, base_time: np.ndarray, ref_time: np.ndarray, drop_first_vel: bool = True, ) -> np.ndarray: if velocity.ndim == 1: raise NotImplementedError if ref_time.max() > base_time.max(): assert ref_time.max() - base_time.max() <= 1000 base_time = np.pad( base_time, [0, 1], mode="constant", constant_values=base_time.max() + 1000 ) velocity = np.pad(velocity, [[0, 1], [0, 0]], mode="edge") if drop_first_vel: assert np.all(velocity[0] == np.nan) or np.all(velocity[0] == 0.0) velocity = velocity[ 1:, ] # (sequence, feats) rel_posi =
np.cumsum(velocity, axis=0)
numpy.cumsum
import os import numpy as np INPUT = os.path.join(os.path.dirname(__file__), "input.txt") with open(INPUT) as f: lines = f.readlines() lines = [l.rstrip().split(",") for l in lines] lines_arr = np.array(lines) lines_arr = np.squeeze(lines_arr) # Part 1 Naive Numpy Bruteforce lanternfish = np.copy(lines_arr).astype(int) for day in range(80): lanternfish -= 1 n_newborns = lanternfish[lanternfish < 0].size lanternfish[lanternfish < 0] = 6 lanternfish = np.append(lanternfish, np.ones(n_newborns) * 8) print(lanternfish.size) # Part 2 fast_fish, bins = np.histogram(lines_arr, bins=np.arange(0, 10)) for i in range(256): n_newborns = fast_fish[0] fast_fish = np.append(fast_fish[1:], n_newborns) fast_fish[6] += n_newborns print(
np.sum(fast_fish)
numpy.sum
import sys, os from bmtk.simulator import bionet import numpy as np import h5py #import synapses import pandas as pd from neuron import h from matplotlib import cm
np.random.seed(2129)
numpy.random.seed
import nibabel as nib import numpy as np import torch from functools import partial from collections import defaultdict from pairwise_measures import PairwiseMeasures from src.utils import apply_transform, non_geometric_augmentations, generate_affine, to_var_gpu, batch_adaptation, soft_dice def evaluate(args, preds, targets, prefix, metrics=['dice', 'jaccard', 'sensitivity', 'specificity', 'soft_dice', 'loads', 'haus_dist', 'vol_diff', 'ppv', 'connected_elements']): output_dict = defaultdict(list) nifty_metrics = ['dice', 'jaccard', 'sensitivity', 'specificity', 'haus_dist', 'vol_diff', 'ppv', 'connected_elements'] for pred, target in zip(preds, targets): seg = np.where(pred > 0.5, np.ones_like(pred, dtype=np.int64), np.zeros_like(pred, dtype=np.int64)) ref = np.where(target > 0.5, np.ones_like(target, dtype=np.int64), np.zeros_like(target, dtype=np.int64)) pairwise = PairwiseMeasures(seg, ref) for metric in nifty_metrics: if metric in metrics: if metric == 'connected_elements': TPc, FPc, FNc = pairwise.m_dict[metric][0]() output_dict[prefix + 'TPc'].append(TPc) output_dict[prefix + 'FPc'].append(FPc) output_dict[prefix + 'FNc'].append(FNc) else: output_dict[prefix + metric].append(pairwise.m_dict[metric][0]()) if 'soft_dice' in metrics: output_dict[prefix + 'soft_dice'].append(soft_dice(pred, ref, args.labels)) if 'loads' in metrics: output_dict[prefix + 'loads'].append(np.sum(pred)) if 'per_pixel_diff' in metrics: output_dict[prefix + 'per_pixel_diff'].append(np.mean(np.abs(ref - pred))) return output_dict def inference_tumour(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on print('Evaluating on {} subjects'.format(len(range_of_volumes))) for index in range(len(range_of_volumes)): print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] #TODO: inputs is of size (4, 170, 240, 160), need to change inference values accordingly. subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) inputsS = np.zeros(shape=(inputs.shape[0], args.paddtarget, args.paddtarget, inputs.shape[-1])) outputsT = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) outputsAug = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) for slice_index in np.arange(0, inputs.shape[-1], step=args.batch_size): index_start = slice_index index_end = min(slice_index+args.batch_size, inputs.shape[-1]) batch_input = np.einsum('ijkl->lijk', inputs[:, :, :, index_start:index_end]) batch_labels = np.einsum('ijk->kij', labels[:, :, index_start:index_end]) batch_input = torch.tensor(batch_input) batch_labels = torch.tensor(np.expand_dims(batch_labels, axis=1)) batch_input, batch_labels = batch_adaptation(batch_input, batch_labels, args.paddtarget) batch_input, batch_labels = to_var_gpu(batch_input), to_var_gpu(batch_labels) outputs, _, _, _, _, _, _, _, _, _ = model(batch_input) outputs = torch.sigmoid(outputs) if args.method == 'A2': Theta, Theta_inv = generate_affine(batch_input, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(batch_input, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) elif args.method == 'A4': batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) elif args.method in ['A3', 'adversarial', 'mean_teacher']: batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() Theta, Theta_inv = generate_affine(inputstaug, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(inputstaug, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) outputS[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputs.detach().cpu().numpy())) targetL[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(batch_labels.detach().cpu().numpy())) inputsS[:, :, :, index_start:index_end] = np.einsum('ijkl->jkli', np.squeeze(batch_input.detach().cpu().numpy())) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: outputsAug[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputstaug.detach().cpu().numpy())) if args.method in ['A3', 'A2', 'adversarial', 'mean_teacher']: outputsT[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputs_t.detach().cpu().numpy())) format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, iteration) + \ '_{}_' + f'{str(subj_id)}.nii.gz' ema_format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, 'EMA') + \ '_{}_' + f'{str(subj_id)}.nii.gz' if iteration == 0: fn = save_img(format_spec=ema_format_spec, identifier='Prediction', array=outputS) else: pred_zero = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_0__Prediction_{str(subj_id)}.nii.gz' outputs_0 = nib.load(pred_zero).get_data() preds_0.append(outputs_0) alpha = 0.9 pred_ema_filename = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_EMA__Prediction_{str(subj_id)}.nii.gz' pred_ema_t_minus_one = nib.load(pred_ema_filename).get_data() pred_ema = alpha * outputS + (1 - alpha) * pred_ema_t_minus_one preds_ema.append(pred_ema) save_img(format_spec=ema_format_spec, identifier='Prediction', array=pred_ema) save_img(format_spec=format_spec, identifier='Prediction', array=outputS) save_img(format_spec=format_spec, identifier='target', array=targetL) for idx, modality in enumerate(['flair', 't1c', 't1', 't2']): save_img(format_spec=format_spec, identifier='{}_mri'.format(modality), array=inputsS[idx, ...]) preds.append(outputS) targets.append(targetL) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: predsAug.append(outputsAug) save_img(format_spec=format_spec, identifier='Aug', array=outputsAug) if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: predsT.append(outputsT) save_img(format_spec=format_spec, identifier='Transformed', array=outputsT) performance_supervised = evaluate(args=args, preds=preds, targets=targets, prefix='supervised_') performance_i = None if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: performance_i = evaluate(args=args, preds=predsAug, targets=predsT, prefix='consistency_') else: performance_i = evaluate(args=args, preds=predsAug, targets=preds, prefix='consistency_') if iteration == 0: return performance_supervised, performance_i, None, None else: performance_compared_to_0 = evaluate(args=args, preds=preds, targets=preds_0, prefix='diff_to_0_', metrics=['per_pixel_diff']) performance_compared_to_ema = evaluate(args=args, preds=preds, targets=preds_ema, prefix='diff_to_ema_', metrics=['per_pixel_diff']) return performance_supervised, performance_i, performance_compared_to_0, performance_compared_to_ema def inference_ms(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None, eval_diff=True): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] print('Evaluating on {} subjects'.format(len(whole_volume_dataset))) range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on for index in range_of_volumes: print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) inputsS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsT = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsAug = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) for slice_index in np.arange(0, inputs.shape[2], step=args.batch_size): index_start = slice_index index_end = min(slice_index+args.batch_size, inputs.shape[2]) batch_input = np.einsum('ijk->kij', inputs[:, :, index_start:index_end]) batch_labels = np.einsum('ijk->kij', labels[:, :, index_start:index_end]) batch_input = torch.tensor(np.expand_dims(batch_input, axis=1).astype(np.float32)) batch_labels = torch.tensor(np.expand_dims(batch_labels, axis=1)) batch_input, batch_labels = batch_adaptation(batch_input, batch_labels, args.paddtarget) batch_input, batch_labels = to_var_gpu(batch_input), to_var_gpu(batch_labels) outputs, _, _, _, _, _, _, _, _, _ = model(batch_input) outputs = torch.sigmoid(outputs) if args.method == 'A2': Theta, Theta_inv = generate_affine(batch_input, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(batch_input, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) elif args.method == 'A4': batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) elif args.method in ['A3', 'adversarial', 'mean_teacher']: batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() Theta, Theta_inv = generate_affine(inputstaug, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(inputstaug, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) outputS[:, :, index_start:index_end] = np.einsum('ijk->jki', outputs.detach().cpu().numpy()[:, 0, ...]) targetL[:, :, index_start:index_end] = np.einsum('ijk->jki', batch_labels.detach().cpu().numpy()[:, 0, ...]) inputsS[:, :, index_start:index_end] = np.einsum('ijk->jki', batch_input.detach().cpu().numpy()[:, 0, ...]) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: outputsAug[:, :, index_start:index_end] = np.einsum('ijk->jki', outputstaug.detach().cpu().numpy()[:, 0, ...]) if args.method in ['A3', 'A2', 'adversarial', 'mean_teacher']: outputsT[:, :, index_start:index_end] = np.einsum('ijk->jki', outputs_t.detach().cpu().numpy()[:, 0, ...]) format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, iteration) +\ '_{}_' + f'{str(subj_id)}.nii.gz' ema_format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, 'EMA') + \ '_{}_' + f'{str(subj_id)}.nii.gz' if iteration == 0: save_img(format_spec=ema_format_spec, identifier='Prediction', array=outputS) elif eval_diff and iteration > 0: pred_zero = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_{0}__Prediction_{str(subj_id)}.nii.gz' outputs_0 = nib.load(pred_zero).get_data() preds_0.append(outputs_0) alpha = 0.9 pred_ema_filename = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_EMA__Prediction_{str(subj_id)}.nii.gz' print(pred_ema_filename) pred_ema_t_minus_one = nib.load(pred_ema_filename).get_data() pred_ema = alpha * outputS + (1 - alpha) * pred_ema_t_minus_one preds_ema.append(pred_ema) save_img(format_spec=ema_format_spec, identifier='Prediction', array=pred_ema) else: print('Not computing diff') save_img(format_spec=format_spec, identifier='Prediction', array=outputS) save_img(format_spec=format_spec, identifier='target', array=targetL) save_img(format_spec=format_spec, identifier='mri', array=inputsS) preds.append(outputS) targets.append(targetL) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: predsAug.append(outputsAug) save_img(format_spec=format_spec, identifier='Aug', array=outputsAug) if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: predsT.append(outputsT) save_img(format_spec=format_spec, identifier='Transformed', array=outputsT) performance_supervised = evaluate(args=args, preds=preds, targets=targets, prefix='supervised_') performance_i = None if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: performance_i = evaluate(args=args, preds=predsAug, targets=predsT, prefix='consistency_') else: performance_i = evaluate(args=args, preds=predsAug, targets=preds, prefix='consistency_') if iteration == 0: return performance_supervised, performance_i, None, None else: performance_compared_to_0 = evaluate(args=args, preds=preds, targets=preds_0, prefix='diff_to_0_', metrics=['per_pixel_diff']) performance_compared_to_ema = evaluate(args=args, preds=preds, targets=preds_ema, prefix='diff_to_ema_', metrics=['per_pixel_diff']) return performance_supervised, performance_i, performance_compared_to_0, performance_compared_to_ema def inference_crossmoda(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None, eval_diff=True): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] print('Evaluating on {} subjects'.format(len(whole_volume_dataset))) range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on for index in range_of_volumes: print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) inputsS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsT =
np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2]))
numpy.zeros
# # Frequency Domain Filters # import cv2 import numpy as np def square_pad(source: np.ndarray, size_x: int, size_y: int, pad_value: int) -> np.ndarray: """ Pad Image/Array to Desired Output shape :param source: Input Array/Image :param size_x: Desired width size :param size_y: Desired height :param pad_value: value to be added as a padding :return: Padded Square Array """ src = np.copy(source) x, y = src.shape out_x = (size_x - x) // 2 out_xx = size_x - out_x - x out_y = (size_y - y) // 2 out_yy = size_y - out_y - y return np.pad(src, ((out_x, out_xx), (out_y, out_yy)), constant_values=pad_value) def frequency_filter(source: np.ndarray, kernel: np.ndarray) -> np.ndarray: """ Application of a Filter in frequency domain :param source: Source Image :param kernel: Kernel applied on image :return: Filtered Image """ src = np.copy(source) # Covert Image to gray scale src = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # Convert Image to Frequency Domain # and decentralize the output ft_src = np.fft.fft2(src) ft_src_shifted = np.fft.fftshift(ft_src) # apply Kernel out = np.fft.ifftshift(ft_src_shifted * kernel) out = np.fft.ifft2(out) return
np.abs(out)
numpy.abs
# -*- coding: utf-8 -*- """ Created on Tue Jun 15 18:53:22 2021 @author: <NAME> """ import argparse import numpy as np from zdm import zdm #import pcosmic import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cm as cm from scipy import interpolate import matplotlib from pkg_resources import resource_filename import os import sys import scipy as sp import time from matplotlib.ticker import NullFormatter from zdm import iteration as it from zdm import survey from zdm import cosmology as cos from zdm import pcosmic from zdm import beams from zdm import misc_functions import pickle np.seterr(divide='ignore') ####setting up the initial grid and plotting some stuff#### setH0=67.74 cos.set_cosmology(H0=setH0) # get the grid of p(DM|z) zDMgrid, zvals,dmvals,H0=misc_functions.get_zdm_grid(H0=setH0,new=True,plot=False,method='analytic') Wbins=10 Wscale=2 Nbeams=[20,20,20] #Full beam NOT Std thresh=0 method=2 Wlogmean=1.70267 Wlogsigma=0.899148 sdir = os.path.join(resource_filename('zdm', 'data'), 'Surveys/') lat50=survey.survey() lat50.process_survey_file(sdir+'CRAFT_class_I_and_II.dat') DMhalo=50 lat50.init_DMEG(DMhalo) lat50.init_beam(nbins=Nbeams[0],method=2,plot=False,thresh=thresh) # tells the survey to use the beam file pwidths,pprobs=survey.make_widths(lat50,Wlogmean,Wlogsigma,Wbins,scale=Wscale) efficiencies=lat50.get_efficiency_from_wlist(dmvals,pwidths,pprobs) weights=lat50.wplist ics=survey.survey() ics.process_survey_file(sdir+'CRAFT_ICS.dat') DMhalo=50 ics.init_DMEG(DMhalo) ics.init_beam(nbins=Nbeams[0],method=2,plot=False,thresh=thresh) # tells the survey to use the beam file pwidths,pprobs=survey.make_widths(ics,Wlogmean,Wlogsigma,Wbins,scale=Wscale) efficiencies=ics.get_efficiency_from_wlist(dmvals,pwidths,pprobs) weights=ics.wplist pks=survey.survey() pks.process_survey_file(sdir+'parkes_mb_class_I_and_II.dat') DMhalo=50 pks.init_DMEG(DMhalo) pks.init_beam(nbins=Nbeams[0],method=2,plot=False,thresh=thresh) # tells the survey to use the beam file pwidths,pprobs=survey.make_widths(pks,Wlogmean,Wlogsigma,Wbins,scale=Wscale) efficiencies=pks.get_efficiency_from_wlist(dmvals,pwidths,pprobs) weights=pks.wplist ICS892=survey.survey() ICS892.process_survey_file(sdir+'CRAFT_ICS_892.dat') ICS892.init_DMEG(DMhalo) ICS892.init_beam(nbins=Nbeams[0],method=2,plot=False,thresh=thresh) # tells the survey to use the beam file pwidths,pprobs=survey.make_widths(ICS892,Wlogmean,Wlogsigma,Wbins,scale=Wscale) efficiencies892=ICS892.get_efficiency_from_wlist(dmvals,pwidths,pprobs) surveys=[lat50,ics,ICS892,pks] #updated best-fit values alpha_method=0 logmean=2.11 logsigma=0.53 alpha=1.55 gamma=-1.09 Emax=10**(41.7) Emin=10**(30) sfr_n=1.67 C=3.188 #alpha_method=1 #Emin=10**30 #Emax =10**41.40 #alpha =-0.66 #gamma = -1.01 #sfr_n= 0.73 #logmean=2.18 #logsigma=0.48 #C=2.36 ##it.GetFirstConstantEstimate(grids,surveys,pset) pset=[np.log10(float(Emin)),np.log10(float(Emax)),alpha,gamma,sfr_n,logmean,logsigma,C,setH0] it.print_pset(pset) grids=misc_functions.initialise_grids(surveys,zDMgrid, zvals,dmvals,pset,wdist=True,source_evolution=0,alpha_method=0) plots=False zmax=[0.6,1,1,3] DMmax=[1500,2000,2000,3000] zmax2=[0.75,1,1,3] DMmax2=[1000,2000,2000,4000] if plots: for i in range (len(surveys)): grid=grids[i] sv=surveys[i] pcosmic.plot_mean(zvals,'mean_DM.pdf') #misc_functions.plot_efficiencies(lat50) misc_functions.plot_zdm_basic_paper(grid.grid,grid.zvals,grid.dmvals,zmax=3,DMmax=3000, name='Plots/p_dm_z_grid_image.pdf',norm=1,log=True, label='$\\log_{10}p(DM_{\\rm EG}|z)$', conts=[0.16,0.5,0.88],title='Grid at H0 '+str(i), H0=setH0,showplot=True) misc_functions.plot_zdm_basic_paper(grid.smear_grid,grid.zvals,grid.dmvals,zmax=3, DMmax=3000,norm=1,log=True, ylabel='${\\rm DM_{\\rm EG}}$', label='$\\log_{10} p({\\rm DM_{cosmic}+DM_{host}}|z)$', conts=[0.023, 0.159,0.5,0.841,0.977], title='Smear grid at H0 '+str(i),H0=setH0, showplot=True) misc_functions.plot_grid_2(grid.pdv,grid.zvals,grid.dmvals,zmax=zmax[i],DMmax=DMmax[i], name='Plots/pdv.pdf',norm=2,log=True ,label='$p(DM_{\\rm EG},z)dV$ [Mpc$^3$]', title="Pdv at H0" + str(i),showplot=True) muDM=10**pset[5] Macquart=muDM misc_functions.plot_grid_2(grid.rates,grid.zvals,grid.dmvals,zmax=zmax[i],DMmax=DMmax[i], norm=2,log=True,label='$\\log_{10} p({\\rm DM}_{\\rm EG},z)$', project=False,FRBDM=sv.DMEGs,FRBZ=None,Aconts=[0.01,0.1,0.5], Macquart=Macquart,title="H0 value "+str(i),H0= setH0,showplot=True) misc_functions.make_dm_redshift(grid, DMmax=DMmax2[i],zmax=zmax2[i],loc='upper right',Macquart=Macquart, H0=setH0,showplot=True) print ("initial grid setup done") scanoverH0=False # just testing....should NOT be used (update_grid routine should not be modified) if scanoverH0: for k in range (len(surveys)): grid=grids[k] sv=surveys[k] ###### shows how to do a 1D scan of parameter values ####### pset=[np.log10(float(grid.Emin)),np.log10(float(grid.Emax)),grid.alpha,grid.gamma,grid.sfr_n,grid.smear_mean,grid.smear_sigma,C,grid.H0] #lEmaxs=np.linspace(40,44,21) #lscan,lllist,expected=it.scan_likelihoods_1D(grid,pset,lat50,1,lEmaxs,norm=True) #print (lscan, lllist, expected) #misc_functions.plot_1d(lEmaxs,lscan,'$E_{\\rm max}$','Plots/test_lik_fn_emax.pdf') #for H0 t0=time.process_time() H0iter=
np.linspace(50,100,4)
numpy.linspace
# -*- coding: utf-8 -*- """ License: MIT @author: gaj E-mail: <EMAIL> Paper References: [1] <NAME>, <NAME>, and <NAME>, “Improving component substitution Pansharpening through multivariate regression of MS+Pan data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 10, pp. 3230–3239, October 2007. [2] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, “A Critical Comparison Among Pansharpening Algorithms”, IEEE Transaction on Geoscience and Remote Sensing, 2014. """ import numpy as np from methods.utils import upsample_interp23 import cv2 def estimation_alpha(pan, hs, mode='global'): if mode == 'global': IHC = np.reshape(pan, (-1, 1)) ILRC = np.reshape(hs, (hs.shape[0]*hs.shape[1], hs.shape[2])) alpha = np.linalg.lstsq(ILRC, IHC)[0] elif mode == 'local': patch_size = 32 all_alpha = [] print(pan.shape) for i in range(0, hs.shape[0]-patch_size, patch_size): for j in range(0, hs.shape[1]-patch_size, patch_size): patch_pan = pan[i:i+patch_size, j:j+patch_size, :] patch_hs = hs[i:i+patch_size, j:j+patch_size, :] IHC = np.reshape(patch_pan, (-1, 1)) ILRC = np.reshape(patch_hs, (-1, hs.shape[2])) local_alpha = np.linalg.lstsq(ILRC, IHC)[0] all_alpha.append(local_alpha) all_alpha = np.array(all_alpha) alpha = np.mean(all_alpha, axis=0, keepdims=False) return alpha def GSA(pan, hs): M, N, c = pan.shape m, n, C = hs.shape ratio = int(np.round(M/m)) print('get sharpening ratio: ', ratio) assert int(np.round(M/m)) == int(np.round(N/n)) #upsample u_hs = upsample_interp23(hs, ratio) #remove means from u_hs means = np.mean(u_hs, axis=(0, 1)) image_lr = u_hs-means #remove means from hs image_lr_lp = hs-np.mean(hs, axis=(0,1)) #sintetic intensity image_hr = pan-np.mean(pan) image_hr0 = cv2.resize(image_hr, (n, m), cv2.INTER_CUBIC) image_hr0 = np.expand_dims(image_hr0, -1) alpha = estimation_alpha(image_hr0, np.concatenate((image_lr_lp, np.ones((m, n, 1))), axis=-1), mode='global') I = np.dot(np.concatenate((image_lr, np.ones((M, N, 1))), axis=-1), alpha) I0 = I-np.mean(I) #computing coefficients g = [] g.append(1) for i in range(C): temp_h = image_lr[:, :, i] c = np.cov(np.reshape(I0, (-1,)), np.reshape(temp_h, (-1,)), ddof=1) g.append(c[0,1]/np.var(I0)) g = np.array(g) #detail extraction delta = image_hr-I0 deltam = np.tile(delta, (1, 1, C+1)) #fusion V =
np.concatenate((I0, image_lr), axis=-1)
numpy.concatenate
#!/usr/bin/env python import librosa import numpy as np import pyworld as pw import scipy import imageio from sklearn.preprocessing import normalize class conf: """ Configuration Parameter Class """ """ time length of preprocessed audio """ prep_audio_dataset_second=3 # sampling rate sample_ratio = 16000 # 22050 """ Short Time FFT window size librosa default value 2048 stft returned value shape (1 + n_fft/2, t) """ n_fft = 256 #2048 """ Encoderで縦・横方向に畳み込むサイズ倍率 Encが8レイヤ、各レイヤで行列サイズ1/2になるので 256 入力スペクトログラムの行・列のサイズはこの倍数とすること """ Encocer_Feature_Constant=2**7 #2**7:128@n_fft256 #2**8:256 """ enable saving the label(specImage) """ enable_output_labelWav = True """ scaleArray()のscaleFactorを表示するか """ print_scaleFactor=False """ スペクトログラムへの変換時の最小強度  → 対数とったときに-6が最小値になる """ eps= 10**-6 """ 強度スペクトログラムの正規化時のスケール倍率 """ scale_abs=0.1 """ 強度スペクトログラムの正規化時のオフセット epsから決定 """ offset_abs=0.6 """ 位相スペクトログラムの正規化時のスケール倍率 """ scale_phase=1/(np.pi*2) """ 位相スペクトログラムの正規化時のオフセット """ offset_phase=0.5 def convert_to_wave(Dabs, Dphase): D_hat = 10 ** Dabs * np.exp(1j*Dphase) #xp.exp(1j*Dphase) y_hat = librosa.istft(D_hat) return y_hat def convert_to_spectrogram(waveNDArray): """ convert audio 1D Numpy Array to spectrogram 2D Numpy Array. note. Dabs = np.log10(np.abs(D) + 10**-6) :param waveNDArray: :return: Dabs,Dphase """ # スペクトル・位相マップ 作成 D = librosa.stft(waveNDArray, n_fft=conf.n_fft) #D:np.ndarray [shape=(1 + n_fft/2, t), dtype=dtype] Dabs = np.log10(np.abs(D) + conf.eps) Dphase = np.angle(D) return Dabs,Dphase def padding_spectrogram(D): """ スペクトログラムの行列サイズをEncoderに特徴的な値の整数倍にする Encが8レイヤ、各レイヤで行列サイズ1/2になるので、入力スペクトログラムの行・列のサイズは256の倍数とする """ D = D[0:D.shape[0]-1,:] #最後の行を削除 TODO: 0:-1 w_div,w_rem = divmod(D.shape[1], conf.Encocer_Feature_Constant) D = np.pad(D, [(0,0), (0, conf.Encocer_Feature_Constant * (w_div + 1) - D.shape[1])], 'constant', constant_values = np.min(np.abs(D))) return D def anonymization(fs, waveNDArray, f0Value = 0, sp_strechRatio =
np.random.uniform(0.6, 2, size=1)
numpy.random.uniform
from src.network.dqn import DeepQNetwork dqn = DeepQNetwork(input_size=[100, 100, 4], max_steps=1000, \ state_stack_size=4, action_size=9, num_episodes=10000, memory_frame_rate=3) n_simulations = 50 import numpy as np for checkpoint in range(6, 41, 5): restored = dqn.restore_last_checkpoint(checkpoint) avg_reward = 0.0 rewards =
np.array([])
numpy.array
"""Training with long time series. Supplementary code for: <NAME> and <NAME>. "Signal Processing with Recurrent Neural Networks in TensorFlow" """ import numpy as np import tensorflow as tf import matplotlib.pyplot as plt nest = tf.contrib.framework.nest def lstm_func(d, m, n, lr): # Placeholders inputs = tf.placeholder(tf.float32, [None, None, d]) targets = tf.placeholder(tf.float32, [None, None, m]) # Network architecture n_cells_layers = [20, 15] cells = [tf.nn.rnn_cell.LSTMCell(num_units=n) for n in n_cells_layers] cell = tf.nn.rnn_cell.MultiRNNCell(cells) zero_state = cell.zero_state(n, tf.float32) state = nest.map_structure(lambda tensor: tf.Variable(tensor, trainable=False), zero_state) # RNN rnn_output, new_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=state, dtype=tf.float32) # State update update_state = nest.map_structure(tf.assign, state, new_state) update_state = nest.flatten(update_state) reset_state = nest.map_structure(tf.assign, state, zero_state) reset_state = nest.flatten(reset_state) with tf.control_dependencies(update_state): # Update_state is already a list rnn_output = tf.identity(rnn_output) rnn_output_flat = tf.reshape(rnn_output, [-1, n_cells_layers[-1]]) prediction_flat = tf.layers.dense(rnn_output_flat, m, activation=None) targets_flat = tf.reshape(targets, [-1, m]) prediction = tf.reshape(prediction_flat, [-1, tf.shape(inputs)[1], m]) # Error function and optimizer loss = tf.losses.mean_squared_error(targets_flat, prediction_flat) train_step = tf.train.AdamOptimizer(lr).minimize(loss) return inputs, targets, new_state, reset_state, prediction, loss, train_step def main(): # Parameters gap = 5 # Time steps to predict into the future T = 600 # Length of training time series # N = [32] # Size of recurrent neural network n = 1 # Number of training sequences n_test = 1 # Number of test sequences m = 1 # Output dimension d = 1 # Input dimension epochs = 200 # Maximum number of epochs lr = 0.01 # Learning rate # Load and arrange data raw_data = np.genfromtxt('data/data_adjust-1.csv',delimiter = ",") train_X = raw_data[0:T,9] train_X = train_X.copy() train_Y = raw_data[gap:T+gap,9] train_Y = train_Y.copy() test_X = raw_data[T:-gap,9] test_X = test_X.copy() test_Y = raw_data[T+gap:,9] test_Y = test_Y.copy() train_X.resize(n, train_X.size, d) train_Y.resize(n, train_Y.size, m) test_X.resize(n_test, test_X.size, d) test_Y.resize(n_test, test_Y.size, m) time = np.arange(train_X.size)*0.012 inputs, targets, new_state, reset_state, prediction, loss, train_step = lstm_func(d, m, n, lr) path = 'tensorboard/1' # Create session and initialize variables with tf.Session() as sess: # writer = tf.summary.FileWriter(path) # writer.add_graph(sess.graph) init = tf.global_variables_initializer() sess.run(init) sess.graph.finalize() # Graph is read-only after this statement. # Do the learning for i in range(epochs): sess.run(reset_state) # Reset at beginning of each time series chunk_size = 50 for chunk_start in range(0, T, chunk_size): sess.run(train_step, feed_dict={ inputs: train_X[:, chunk_start: chunk_start + chunk_size], targets: train_Y[:, chunk_start: chunk_start + chunk_size]}) if (i+1)%10==0: sess.run(reset_state) temp_loss = sess.run(loss, feed_dict={inputs: train_X, targets: train_Y}) print(i+1, ' loss =', temp_loss) # Visualize modelling of training data sess.run(reset_state) model, final_state = sess.run([prediction, new_state], feed_dict={inputs: train_X}) plt.rc('font', size=14) # plt.plot(train_X[0,:,0], label='input', color='lightgray', linestyle='--') plt.plot(time, train_Y[0,:,0], label='target', linestyle='-', linewidth=3) plt.plot(time, model[0,:,0], label='model', linestyle='-', linewidth=3) plt.legend(loc=1) plt.xlabel('time [t]') plt.ylabel('signal') plt.title('data presented in one batch') # plt.savefig('lorenzTrainChunk.pdf') plt.show() sess.run(reset_state) concatenated = [] for chunk_start in range (0, T, chunk_size): model, _ = sess.run([prediction, new_state], feed_dict={ inputs: train_X[:, chunk_start: chunk_start + chunk_size]}) concatenated.append(model) model =
np.stack(concatenated, axis=0)
numpy.stack
# # Multiscale HiTS Visuals (updated visuals) # ## updated by <NAME> 11/23/2021 # ## created by <NAME>, 05/07/2020 #========================================================= # IMPORT PACKAGES #========================================================= import os import sys import pdb import time import torch import numpy as np import matplotlib.pyplot as plt import yaml #from datetime import datetime #-------------------------------------------------- module_dir = os.path.abspath( os.path.join(os.getcwd(),'src')) if module_dir not in sys.path: sys.path.append(module_dir) import ResNet as net #========================================================= # Input Arguments #========================================================= with open("parameters.yml", 'r') as stream: D = yaml.safe_load(stream) for key in D: globals()[str(key)] = D[key] print('{}: {}'.format(str(key), D[key])) # transforms key-names from dictionary into global variables, then assigns them the dictionary-values #print('TO CONTINUE, PRESS [c] THEN [ENTER]') #print('TO QUIT, PRESS [q] THEN [ENTER]') #pdb.set_trace() #========================================================= # Directories and Paths #========================================================= n_steps = np.int64(model_steps * 2**k_max) print(f"number of time steps = {n_steps}") data_folder = 'data_dt={}_steps={}_period={}-{}_amp={}-{}_train+val+test={}+{}+{}'.format(dt, n_steps, period_min, period_max, amp_min, amp_max, n_train, n_val, n_test) data_dir = os.path.join(os.getcwd(), 'data', data_folder) model_folder = f"models_dt={dt}_steps={n_steps}_period={period_min}-{period_max}_amp={amp_min}-{amp_max}_lr={learn_rate_min}-{learn_rate_max}_resnet={n_inputs}+{n_layers}x{n_neurons}+{n_outputs}" model_dir = os.path.join(os.getcwd(), 'models', model_folder) if not os.path.exists(data_dir): sys.exit("Cannot find folder ../data/{} in current directory".format(data_folder)) if not os.path.exists(model_dir): sys.exit("Cannot find folder ../models/{} in current directory".format(model_folder)) #-------------------------------------------------- # file names for figures file_fig_uniscale = 'plot_uniscale_{}.png'.format(system) file_fig_mse_models = 'plot_MSE_models_{}.png'.format(system) file_fig_mse_multiscale = 'plot_MSE_multiscale_{}.png'.format(system) file_fig_multiscale = 'plot_multiscale_{}.png'.format(system) #======================================================================== # Load Data and Models (then prepare some globals) #======================================================================== # load validation set and test set test_data = np.load(os.path.join(data_dir, 'test.npy')) #-------------------------------------------------- # list of k-values: k = 0 ... k_max ks = list(range(0,k_max+1)) step_sizes = [2**k for k in ks] num_models = k_max+1 #-------------------------------------------------- # load models models = list() for step_size in step_sizes: model_name = 'model_D{}.pt'.format(step_size) models.append(torch.load(os.path.join(model_dir, model_name), map_location='cpu')) num_k = len(models) print('{} models loaded for time-stepping:'.format(num_models) ) print('model index: k = {} .. {}'.format(0, k_max) ) print('step size: 2^k = {} .. {}'.format(1, step_sizes[k_max] ) ) print('step size: dt = {} .. {} \n'.format(dt, dt*step_sizes[k_max]) ) #-------------------------------------------------- # fix model consistencies trained on gpus (optional) for model in models: model.device = 'cpu' model._modules['increment']._modules['activation'] = torch.nn.ReLU() #-------------------------------------------------- # shared info n_steps = test_data.shape[1] - 1 t_space = [dt*(step+1) for step in range(n_steps)] # = 1,2, ... , n (list) criterion = torch.nn.MSELoss(reduction='none') #======================================================================== # Create Directories and Files for Figures #======================================================================== # create directory for figures figure_dir = model_dir if not os.path.exists(figure_dir): os.makedirs(figure_dir) #-------------------------------------------------- # paths for figures file_fig_uniscale = os.path.abspath( os.path.join(figure_dir, file_fig_uniscale) ) file_fig_mse_models = os.path.abspath( os.path.join(figure_dir, file_fig_mse_models) ) file_fig_mse_multiscale = os.path.abspath( os.path.join(figure_dir, file_fig_mse_multiscale) ) file_fig_multiscale = os.path.abspath( os.path.join(figure_dir, file_fig_multiscale) ) #========================================================== # Plot Predictions of Individual ResNet time-steppers #========================================================== idx = 0 iterate_k = iter(ks) colors=iter(plt.cm.rainbow(np.linspace(0, 1, len(ks)))) fig, axs = plt.subplots(num_models, 1, figsize=(plot_x_dim, plot_y_dim*num_models*1.3)) for model in models: rgb = next(colors) k = next(iterate_k) y_preds = model.uni_scale_forecast( torch.tensor(test_data[idx:idx+1, 0, :n_outputs]).float(), n_steps=n_steps, y_known=torch.tensor(test_data[idx:idx+1, :, n_outputs:]).float() ) R = y_preds[0, 0:n_steps, 1].detach().numpy() axs[k].plot(t_space, test_data[idx, 0:n_steps, 1], linestyle='-', color='gray', linewidth=10, label='R(t)') axs[k].plot(t_space, R, linestyle='--', color=rgb, linewidth=6, label='$\Delta t = ${}dt'.format(step_sizes[k]) ) axs[k].legend(fontsize=legend_fontsize, loc='upper center', ncol=5, bbox_to_anchor=(0.5, 1.17)) axs[k].tick_params(axis='both', which='major', labelsize=axis_fontsize) axs[k].grid(axis='y') plt.show() plt.savefig(file_fig_uniscale) #========================================================== # Plot Log(MSE) of Predictions (individual models) #========================================================== # uniscale time-stepping with NN preds_mse = list() times = list() for model in models: start = time.time() y_preds = model.uni_scale_forecast( torch.tensor(test_data[:, 0, :n_outputs]).float(), n_steps=n_steps, y_known=torch.tensor(test_data[:, :, n_outputs:]).float() ) end = time.time() times.append(end - start) preds_mse.append(criterion(torch.tensor(test_data[:, 1:, 0]).float(), y_preds[:,:,0]).mean(-1)) # CHECK THIS! CHECK THIS! #---------------------------------------------------------- fig = plt.figure(figsize=(plot_x_dim, plot_y_dim)) colors=iter( (plt.cm.rainbow(np.linspace(0, 1, len(ks))))) dot_sizes = iter( ( np.linspace(1,20,len(preds_mse)) ) ) t_array = np.array(t_space) m_steps = n_steps-1 max_log = 0 min_log = 0 for k in range(0,k_max+1): err = preds_mse[k] err = err.mean(0).numpy() rgb = next(colors) n_forward = np.int64( np.round( m_steps / 2**k ) ) key = np.int64( np.round( np.linspace(0,m_steps,n_forward+1) ) ) t_k = t_array[key] log_err_k = np.log10(err[key]) plt.plot(t_k, log_err_k, 'o', fillstyle='full', linestyle='-', linewidth=3, markersize=next(dot_sizes), color=rgb, label='$\Delta\ t$={}dt'.format(step_sizes[k])) #max_log = max_log + min(0, np.max(log_err_k[1:])) # accumulate maximum log(MSE) < 0 in order to calculate a average-ceiling < 0 min_log = np.min(err) # err = preds_mse[k_max] from last iteration above d_log = np.abs(max_log-min_log) mid_log = np.mean( [min_log, max_log] ) plt.legend(fontsize=legend_fontsize, loc='upper center', ncol=6, bbox_to_anchor=(0.5, 1.24)) plt.title('time-steps without interpolation', y=1.0, pad=-40, fontsize=title_fontsize) plt.xticks(fontsize=axis_fontsize) plt.yticks(fontsize=axis_fontsize) plt.xlabel('time',fontsize=x_label_fontsize) plt.ylabel('log(MSE)',fontsize=y_label_fontsize) plt.grid(axis = 'y') plt.ylim(ymin=mid_log-d_log, ymax=mid_log+d_log) plt.show() plt.savefig(file_fig_mse_models) #========================================================== # Choose Range of Models that Minimize MSE (when combined) #========================================================== # cross validation (model selections) start_idx = 0 end_idx = k_max # or len(models)-1 best_mse = 1e+5 val_data = np.load(os.path.join(data_dir, 'val_D{}.npy'.format(k_max))) # choose the largest time step for k in range(0, k_max+1): step_size = np.int64(2**k) y_preds = net.vectorized_multi_scale_forecast(torch.tensor(val_data[:, 0, :n_outputs]).float().to('cpu'), n_steps=n_steps, models=models[:len(models)-k], y_known=torch.tensor(val_data[:, 0, n_outputs:]).float().to('cpu')) mse = criterion(torch.tensor(val_data[:, 1:, :n_outputs]).float(), y_preds).mean().item() if mse <= best_mse: end_idx = len(models)-k best_mse = mse #---------------------------------------------------------- # choose the smallest time step for k in range(0, end_idx): step_size = np.int64(2**k) y_preds = net.vectorized_multi_scale_forecast(torch.tensor(val_data[:, 0, :n_outputs]).float().to('cpu'), n_steps=n_steps, models=models[k:end_idx], y_known=torch.tensor(val_data[:, :, n_outputs:]).float().to('cpu')) mse = criterion(torch.tensor(val_data[:, 1:, :n_outputs]).float(), y_preds).mean().item() if mse <= best_mse: start_idx = k best_mse = mse #---------------------------------------------------------- models = models[start_idx:(end_idx+1)] num_k = len(models) print('{} models chosen for Multiscale HiTS:'.format(num_k) ) print(' k = {} .. {}'.format(start_idx, end_idx) ) print(' 2^k = {} .. {}'.format(2**start_idx, 2**end_idx ) ) print('t-steps = {} .. {}\n'.format(dt*2**start_idx, dt * 2**end_idx ) ) del val_data #========================================================== # Plot Log(MSE) for Multi-scale vs Single #========================================================== # multiscale time-stepping with NN start = time.time() y_preds, model_key = net.vectorized_multi_scale_forecast(torch.tensor(test_data[:, 0, :n_outputs]).float().to('cpu'), n_steps=n_steps, models=models, y_known=torch.tensor(test_data[:, :, n_outputs:]).float().to('cpu'), key=True) end = time.time() multiscale_time = end - start multiscale_preds_mse = criterion(torch.tensor(test_data[:, 1:, :]).float(), y_preds).mean(-1) # added additional argument to function 'vectorized_multi_scale_forecast( ... , key=True)' in order to data of each individual ResNet model_key = model_key.detach().numpy() #model_key_plus = np.delete(model_key, np.argwhere(model_key==0) ) #---------------------------------------------------------- # visualize forecasting error at each time step fig = plt.figure(figsize=(plot_x_dim, plot_y_dim)) colors=iter(plt.cm.rainbow(np.linspace(0, 1, len(ks)))) multiscale_err = multiscale_preds_mse.mean(0).detach().numpy() for k in range(len(preds_mse)): err = preds_mse[k] err = err.mean(0).detach().numpy() rgb = next(colors) plt.plot(t_space, np.log10(err), linestyle='-', color=rgb, linewidth=4, label='$\Delta\ t$={}dt'.format(step_sizes[k])) plt.plot(t_space, np.log10(multiscale_err), linestyle='-', color='k', linewidth=4, label='multiscale') plt.legend(fontsize=legend_fontsize, loc='upper center', ncol=6, bbox_to_anchor=(0.5, 1.2)) plt.xticks(fontsize=axis_fontsize) plt.yticks(fontsize=axis_fontsize) plt.xlabel('time',fontsize=x_label_fontsize) plt.ylabel('log(MSE)',fontsize=y_label_fontsize) plt.grid(axis = 'y') plt.ylim(ymin=min_log-d_log) plt.savefig(file_fig_mse_multiscale) #========================================================== # Plot Multiscale Predictions with a color-key for each chosen model #========================================================== idx = 0 dot_min = 6 dot_max = 10 #------------------------------------------------------------- t =
np.linspace(0, (n_steps-1)*dt, n_steps)
numpy.linspace
import matplotlib.pyplot as plt import numpy as np from numpy import cross, eye from scipy.linalg import expm, norm import pandas as pd from scipy.spatial.transform import Rotation as R from pyts.decomposition import SingularSpectrumAnalysis def modeshape_sync_lstsq(mode_shape_vec): """ Creates a straight line fit in the complex plane and alligns the mode shape with the real-axis. :param mode_shape_vec: Mode shape vector :type mode_shape_vec: array(float) :return _n: Alligned mode shape vector """ _n = np.zeros_like(mode_shape_vec) for i in range(np.shape(mode_shape_vec)[1]): _mode = mode_shape_vec[:,i] z = np.arctan(np.average(np.imag(_mode)/np.real(_mode),weights = np.abs(_mode)**1e4)) _n[:,i] = _mode*(np.cos(-1*z)+1j*np.sin(-1*z)) return _n def modeshape_scaling_DP(mode_shape_vec, driving_point,sync = True): """ Scales mode shapes according to the driving point measurement. :param mode_shape_vec: Mode shape vector :type mode_shape_vec: array(float) :param driving_point: Driving point location :type driving_point: int :param sync: Allign mode shape with the real-axis :type sync: bool, optional :return: Scalled mode shape """ _mode = mode_shape_vec for i in range(np.shape(mode_shape_vec)[1]): _mode[:,i] = _mode[:,i]/np.sqrt(mode_shape_vec[driving_point,i]) if sync: _mode = modeshape_sync_lstsq(_mode) return _mode def MCF(mod): """ Calculate Mode Complexity Factor (MCF) :param mod: Mode shape :type mod: array(float) :return: Mode complexity factor """ sxx = np.real(mod).T@
np.real(mod)
numpy.real
""" Testing differentiation of user-defined datatypes. """ import nose import unittest import numpy as np from openmdao.lib.geometry.geom_data import GeomData from openmdao.main.api import Component, Assembly, set_as_top from openmdao.main.datatypes.api import Array, Float, VarTree from openmdao.util.testutil import assert_rel_error class GeomComponent(Component): x = Float(1.0, iotype='in') geom_out = VarTree(GeomData(2, 1), iotype='out') def list_deriv_vars(self): return ('x'), ('geom_out.points',) def provideJ(self): self.J = np.array([[2, 0, 1], [0, 2, 1]], dtype=np.float) def apply_deriv(self, arg, result): result['geom_out.points'][0,:] += self.J[0,:]*arg['x'] result['geom_out.points'][1,:] += self.J[1,:]*arg['x'] def apply_derivT(self, arg, result): result['x'] += np.sum(self.J.T[:,0]*arg['geom_out.points'][0,:]) result['x'] +=
np.sum(self.J.T[:,1]*arg['geom_out.points'][1,:])
numpy.sum
""" Tests different implementations of solve functions. """ from __future__ import print_function from itertools import product from unittest import TestCase, skipIf import numpy as np from numpy.testing import run_module_suite, assert_allclose from pkg_resources import parse_version import gulinalg class TestSolveTriangular(TestCase): """ Test A * x = B and it's variants where A is a triangular matrix. Since names are abbreviated, here is what they mean: LO - A is a Lower triangular matrix. UP - A is a Upper diagonal matrix. TRANS N - No tranpose, T - Transpose, C - Conjuagte Transpose DIAG N - A is non-unit triangular, U - A is unit triangular B - By default B is a matrix, otherwise we specify it in test name. """ def test_LO_TRANS_N_DIAG_N_B_VECTOR(self): """Test A * x = B where A is a lower triangular matrix""" a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) b = np.array([4, 2, 4, 2]) x = gulinalg.solve_triangular(a, b) assert_allclose(np.dot(a, x), b, atol=1e-15) def test_UP_TRANS_N_DIAG_N(self): """Test A * x = B where A is a upper triangular matrix""" a = np.array([[1, 2, 3, 4], [0, 2, 3, 4], [0, 0, 3, 4], [0, 0, 0, 4]]) b = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) x = gulinalg.solve_triangular(a, b, UPLO='U') assert_allclose(np.dot(a, x), b, atol=1e-15) def test_UP_TRANS_T_DIAG_N(self): """Test A.T * x = B where A is a upper triangular matrix""" a = np.array([[1, 2, 3, 4], [0, 2, 3, 4], [0, 0, 3, 4], [0, 0, 0, 4]]) b = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) x = gulinalg.solve_triangular(a, b, UPLO='U', transpose_type='T') assert_allclose(np.dot(a.T, x), b, atol=1e-15) def test_UP_TRANS_C_DIAG_N(self): """Test A.H * x = B where A is a upper triangular matrix""" a = np.array([[1 + 2j, 2 + 2j], [0, 1 + 1j]]) b = np.array([[1 + 0j, 0], [0, 1 + 0j]]) ref = np.array([[0.2+0.4j, -0.0+0.j], [-0.4-0.8j, 0.5+0.5j]]) x = gulinalg.solve_triangular(a, b, UPLO='U', transpose_type='C') assert_allclose(x, ref, atol=1e-15) def test_UP_TRANS_N_DIAG_U(self): """ Test A * x = B where A is a upper triangular matrix and diagonal elements are considered unit diagonal. """ a = np.array([[1, 2, 3, 4], [0, 2, 3, 4], [0, 0, 3, 4], [0, 0, 0, 4]]) b = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) res = gulinalg.solve_triangular(a, b, UPLO='U', unit_diagonal=True) # DIAG='U' assumes that diagonal elements are 1. a_unit_diag = np.array([[1, 2, 3, 4], [0, 1, 3, 4], [0, 0, 1, 4], [0, 0, 0, 1]]) ref = gulinalg.solve_triangular(a_unit_diag, b, UPLO='U') assert_allclose(res, ref, atol=1e-15) def test_UP_TRANS_T_DIAG_U(self): """ Test A.T * x = B where A is a upper triangular matrix and diagonal elements are considered unit diagonal. """ a = np.array([[1, 2, 3, 4], [0, 2, 3, 4], [0, 0, 3, 4], [0, 0, 0, 4]]) b = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) res = gulinalg.solve_triangular( a, b, UPLO='U', transpose_type='T', unit_diagonal=True) # DIAG='U' assumes that diagonal elements are 1. a_unit_diag = np.array([[1, 2, 3, 4], [0, 1, 3, 4], [0, 0, 1, 4], [0, 0, 0, 1]]) ref = gulinalg.solve_triangular( a_unit_diag, b, UPLO='U', transpose_type='T') assert_allclose(res, ref, atol=1e-15) def test_UP_TRANS_C_DIAG_U(self): """ Test A.H * x = B where A is a upper triangular matrix and diagonal elements are considered unit diagonal. """ a = np.array([[1 + 2j, 2 + 2j], [0, 1 + 1j]]) b = np.array([[1, 0], [0, 1]]) res = gulinalg.solve_triangular( a, b, UPLO='U', transpose_type='C', unit_diagonal=True) # DIAG='U' assumes that diagonal elements are 1. a_unit_diag = np.array([[1, 2 + 2j], [0, 1]]) ref = gulinalg.solve_triangular( a_unit_diag, b, UPLO='U', transpose_type='C') assert_allclose(res, ref, atol=1e-15) def test_fortran_layout_matrix(self): """Input matrices have fortran layout""" a = np.asfortranarray([[1, 2, 3, 4], [0, 2, 3, 4], [0, 0, 3, 4], [0, 0, 0, 4]]) b = np.asfortranarray([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) res = gulinalg.solve_triangular( a, b, UPLO='U', transpose_type='T', unit_diagonal=True) # DIAG='U' assumes that diagonal elements are 1. a_unit_diag = np.asfortranarray([[1, 2, 3, 4], [0, 1, 3, 4], [0, 0, 1, 4], [0, 0, 0, 1]]) ref = gulinalg.solve_triangular( a_unit_diag, b, UPLO='U', transpose_type='T' ) assert_allclose(res, ref, atol=1e-15) def test_input_matrix_non_contiguous(self): """Input matrix is not a contiguous matrix""" a = np.asfortranarray( [[[1, 2, 3, 4], [0, 2, 3, 4], [0, 0, 3, 4], [0, 0, 0, 4]], [[1, 2, 3, 4], [0, 2, 3, 4], [0, 0, 3, 4], [0, 0, 0, 4]]])[0] b = np.ascontiguousarray([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) assert not a.flags.c_contiguous and not a.flags.f_contiguous x = gulinalg.solve_triangular(a, b, UPLO='U') assert_allclose(np.dot(a, x), b, atol=1e-15) @skipIf(parse_version(np.__version__) < parse_version('1.13'), "Prior to 1.13, numpy low level iterators didn't support removing " "empty axis. So gufunc couldn't be called with empty inner loop") def test_m_and_n_zero(self): """Corner case of solving where m = 0 and n = 0""" a = np.ascontiguousarray(np.random.randn(0, 0)) b = np.ascontiguousarray(np.random.randn(0, 0)) x = gulinalg.solve_triangular(a, b, UPLO='U') assert x.shape == (0, 0) assert_allclose(np.dot(a, x), b, atol=1e-15) @skipIf(parse_version(np.__version__) < parse_version('1.13'), "Prior to 1.13, numpy low level iterators didn't support removing " "empty axis. So gufunc couldn't be called with empty inner loop") def test_m_zero(self): """Corner case of solving where m = 0""" a = np.ascontiguousarray(np.random.randn(0, 0)) b = np.ascontiguousarray(np.random.randn(0, 2)) x = gulinalg.solve_triangular(a, b, UPLO='U') assert x.shape == (0, 2) assert_allclose(np.dot(a, x), b, atol=1e-15) @skipIf(parse_version(np.__version__) < parse_version('1.13'), "Prior to 1.13, numpy low level iterators didn't support removing " "empty axis. So gufunc couldn't be called with empty inner loop") def test_n_zero(self): """Corner case of solving where n = 0""" a = np.ascontiguousarray(np.random.randn(2, 2)) b = np.ascontiguousarray(np.random.randn(2, 0)) x = gulinalg.solve_triangular(a, b, UPLO='U') assert x.shape == (2, 0) assert_allclose(np.dot(a, x), b, atol=1e-15) def test_size_one_matrices(self): """Corner case of decomposing where m = 1 and n = 1""" a = np.ascontiguousarray(np.random.randn(1, 1)) b = np.ascontiguousarray(np.random.randn(1, 1)) x = gulinalg.solve_triangular(a, b, UPLO='U') assert x.shape == (1, 1) assert_allclose(
np.dot(a, x)
numpy.dot
import json import numpy as np import keras from keras.preprocessing import text from seq2vec import Seq2VecHash, Seq2Seq def load_clickstream_length(): data = np.zeros((21, 9)) for i in range(1, 22): with open(f'./dataset/{i}.json') as f: d = json.load(f) for j in range(0, len(d)): length = len(d[j]['clickstream']) data[i-1][j] = length return data def load_clickstream(user_id, task_id): with open(f'./dataset/{user_id}.json') as f: return json.load(f)[task_id]['clickstream'] def clickstream_length_normalize(): mat_length = load_clickstream_length() mat_length = mat_length / mat_length.sum(axis=1)[:, None] return mat_length def compute_url_overlap_rate(task_id): count = 0 url_map = dict() for user_id in range(1, 22): clickstream = load_clickstream(user_id, task_id) for obj in clickstream: count += 1 key = obj['current_url'] if key not in url_map: url_map[key] = 1 continue url_map[key] += 1 return url_map, len(url_map) / count def compute_url_overlap_rate_all(): for task_id in range(0, 9): _, rate = compute_url_overlap_rate(task_id) print(f'task {task_id} clickstream overlap rate: ', 1 - rate) def compute_url_word_sequence(): clickstream = load_clickstream(1, 1) for obj in clickstream: print(text.text_to_word_sequence(obj['current_url'])) # url_map, rate = compute_url_overlap_rate(1) # print(json.dumps(url_map, sort_keys=True, indent=4)) def compute_url_mapping(task_id): total = {} for user_id in range(1, 22): clickstream = load_clickstream(user_id, task_id) for obj in clickstream: previous = obj['previous_url'] if previous in total: current = obj['current_url'] if current in total[previous]: total[previous][current] += 1 else: total[previous][current] = 1 else: total[previous] = {} with open(f'embeddings/{task_id}.json', 'w+') as f: f.write(json.dumps(total, indent=4)) # for task_id in range(0, 9): # compute_url_embedding(task_id) vec_len = 30 def compute_url_embedding(user_id, task_id): clickstream = load_clickstream(user_id, task_id) urls = [] for obj in clickstream: urls.append(obj['previous_url']) transformer = Seq2VecHash(vec_len=vec_len) result = transformer(urls) print('clickstream: ', result) return result def main(): sos = np.zeros((1, vec_len)) coi = np.zeros((1, vec_len)) - 1 eos = np.zeros((1, vec_len)) - 10 pad = np.zeros((1, vec_len)) - 100 max_length = 0 sentences = [] for user_id in range(1, 22): for task_id in range(0, 9): clickstream = compute_url_embedding(user_id, task_id) pos = clickstream.shape[0]//2 clickstream = np.insert(clickstream, pos, coi, 0) clickstream = np.insert(clickstream, 0, sos, 0) clickstream =
np.insert(clickstream, clickstream.shape[0], eos, 0)
numpy.insert
""" Gmsh format 2.2 """ import numpy as np from flow import Flow from element import Element from element_search import find_neighbors from text.text_flow import write_flow from text.text_elements import write_elements from text.text_geometries import write_geometries #============================================================================== def intIt(l): return np.array([int(e) for e in l]) def floatIt(l): return np.array([float(e) for e in l]) def extract_msh(path_msh): f = open(path_msh, 'r') nodes_X, nodes_Y = [], [] elements = [] line = f.readline() # ... # $Nodes\n # n_nodes # ... while line != '$Nodes\n': line = f.readline() line = f.readline() n_nodes = int(line.strip()) for i in range(n_nodes): # line = id x y z line = f.readline() coord = floatIt(line.strip().split()) nodes_X.append(coord[1]) nodes_Y.append(coord[2]) # ... # $Elements\n # n_elements # ... while line != '$Elements\n': line = f.readline() line = f.readline() n_elements = int(line.strip()) count = 0 for i in range(n_elements): # element_id element_type ... ... nodes_id line = f.readline() coord = intIt(line.strip().split()) element_type = coord[1] if element_type == 9: # 6-node second order triangle count += 1 e = Element(count) e.nodes = np.array(coord[-6:]) elements.append(e) # if element_type == 1: # 2-node line # e.element_type = 1 # e.nodes = coord[-2:] # # elif element_type == 2: # 3-node triangle # e.element_type = 2 # e.nodes = coord[-3:] # # elif element_type == 3: # 4-node quadrangle # e.element_type = 3 # e.nodes = coord[-4:] # # elif element_type == 8: # 3-node second order line # e.element_type = 8 # e.nodes = coord[-3:] # # elif element_type == 9: # 6-node second order triangle # e.element_type = 9 # e.nodes = coord[-6:] # # elif element_type == 10: # 9-node second order quadrangle # e.element_type = 10 # e.nodes = coord[-9:] # # elif element_type == 15: # 1-node point # e.element_type = 15 # e.nodes = coord[-1:] # # elements.append(e) f.close() return np.array(nodes_X),
np.array(nodes_Y)
numpy.array
""" 'power.py' module serves mainly for interacting with C++ library fastsim.py - translate all power spectra, growth functions, correlations functions, etc. into C++ functions for speed - handles numpy arrays - cosmo == C++ class Cosmo_Param, accessible through SimInfo.sim.cosmo - FTYPE_t=[float, double, long double] """ import numpy as np from scipy.optimize import brentq, curve_fit, minimize_scalar from . import fastsim as fs class Non_Linear_Cosmo(object): # private variables and methods _cosmo_emu = None _cosmo_halofit = None _sim_emu = None _sim_halofit = None _corr_func = {} _sigma_func = {} @staticmethod def _init_cosmo(cosmo): if Non_Linear_Cosmo._cosmo_emu is None: Non_Linear_Cosmo._cosmo_emu = Non_Linear_Cosmo._copy_cosmo(cosmo, fs.ccl_emu, transfer_function=fs.ccl_emulator) if Non_Linear_Cosmo._cosmo_halofit is None: Non_Linear_Cosmo._cosmo_halofit = Non_Linear_Cosmo._copy_cosmo(cosmo, fs.ccl_halofit) @staticmethod def _init_sim(sim): Non_Linear_Cosmo._init_cosmo(sim.cosmo) if Non_Linear_Cosmo._sim_emu is None: Non_Linear_Cosmo._sim_emu = Non_Linear_Cosmo._copy_sim(sim, Non_Linear_Cosmo._cosmo_emu) if Non_Linear_Cosmo._sim_halofit is None: Non_Linear_Cosmo._sim_halofit = Non_Linear_Cosmo._copy_sim(sim, Non_Linear_Cosmo._cosmo_halofit) @staticmethod def _copy_cosmo(cosmo_from, matter_power_spectrum_method, transfer_function=None): # create empty Cosmo_Param cosmo_to = fs.Cosmo_Param() # copy basic parameterz cosmo_to.sigma8 = cosmo_from.sigma8 cosmo_to.ns = cosmo_from.ns cosmo_to.k2_G = cosmo_from.k2_G cosmo_to.Omega_m = cosmo_from.Omega_m cosmo_to.Omega_b = cosmo_from.Omega_b cosmo_to.H0 = cosmo_from.H0 # copy ccl methods cosmo_to.config.baryons_power_spectrum_method = cosmo_from.config.baryons_power_spectrum_method cosmo_to.config.mass_function_method = cosmo_from.config.mass_function_method # -> transfer function and matter power spectrum is different if transfer_function is None: cosmo_to.config.transfer_function_method = cosmo_from.config.transfer_function_method else: cosmo_to.config.transfer_function_method = transfer_function cosmo_to.config.matter_power_spectrum_method = matter_power_spectrum_method # initialize Cosmo_Param cosmo_to.init() return cosmo_to @staticmethod def _copy_sim(sim_from, cosmo): sim_to = fs.Sim_Param() sim_to.cosmo = cosmo sim_to.box_opt = sim_from.box_opt sim_to.integ_opt = sim_from.integ_opt sim_to.out_opt = sim_from.out_opt sim_to.comp_app = sim_from.comp_app sim_to.app_opt = sim_from.app_opt sim_to.run_opt = sim_from.run_opt sim_to.other_par = sim_from.other_par sim_to.chi_opt = sim_from.chi_opt sim_to.test_opt = sim_from.test_opt return sim_to @staticmethod def non_lin_pow_spec(a, k, cosmo, lin_scale): """ return ndarray of nonlinear power spectrum """ # initialize emulator cosmology (if not done already) Non_Linear_Cosmo._init_cosmo(cosmo) # for z < 2 use emulator, halofit otherwise if a < 1./3.: cosmo_ = Non_Linear_Cosmo._cosmo_halofit else: cosmo_ = Non_Linear_Cosmo._cosmo_emu # always check for TZA cosmo_.truncated_pk = cosmo.truncated_pk # scale to match linear power spectrum at small scales # TODO # call non-linear power spectrum k = np.array(k) if k.shape: return np.array([fs.non_lin_pow_spec(a, k_, cosmo_) for k_ in k]) else: return fs.non_lin_pow_spec(a, np.asscalar(k), cosmo_) @staticmethod def gen_func(sim, a, data, gen_func, cache): if a not in cache: # initialize emulator cosmology (if not done already) Non_Linear_Cosmo._init_sim(sim) # for z < 2 use emulator, halofit otherwise if a < 1./3.: sim_ = Non_Linear_Cosmo._sim_halofit else: sim_ = Non_Linear_Cosmo._sim_emu # always check fo TZA sim_.cosmo.truncated_pk = sim.cosmo.truncated_pk # call non-linear gen_func gen_func(sim_, a, data) # copy data to cache cache[a] = get_copy_data_vec(data) return cache[a] @staticmethod def non_lin_corr_func(sim, a, data): """ return non-linear correlation function """ return Non_Linear_Cosmo.gen_func(sim, a, data, fs.gen_corr_func_binned_gsl_qawf_nl, Non_Linear_Cosmo._corr_func) @staticmethod def non_lin_sigma_func(sim, a, data): """ return non-linear amplitude of density fluctuations """ return Non_Linear_Cosmo.gen_func(sim, a, data, fs.gen_sigma_func_binned_gsl_qawf_nl, Non_Linear_Cosmo._sigma_func) def get_a_init_from_zs(zs): """ from list of redshifts returns initial scale factor, i.e. value after 'init' """ for z in zs: if z != 'init': return 1/(1.+z) def get_a_fom_zs(zs): try: iter(zs) except TypeError: return 1./(1+zs) else: a = [1./(z + 1) for z in zs if z != 'init'] return np.array(a) def get_z_from_a(a): try: iter(a) except TypeError: return 1./a - 1 else: zs = [1./a_ - 1 for a_ in a] return np.array(zs) def get_a_from_A(cosmo, A): """ return scale factor a at which amplitude of linear power spectrum is A (normalize as A=1 at a=1) """ # 'f = 0' <=> A = D^2 (linear power grows as D^2) A = np.array(A) if A.shape: a_eff = [] for A_ in A: f = lambda a : A_ - fs.growth_factor(a, cosmo)**2 a_eff.append(brentq(f, 0, 2)) return np.array(a_eff) else: f = lambda a : A - fs.growth_factor(a, cosmo)**2 return brentq(f, 0, 2) def get_copy_data_vec(Data_Vec_from): dim = Data_Vec_from.dim() size = Data_Vec_from.size() if dim == 2: Data_Vec = fs.Data_Vec_2(size) elif dim == 3: Data_Vec = fs.Data_Vec_3(size) for i in range(dim): for j in range(size): Data_Vec[i][j] = Data_Vec_from[i][j] return Data_Vec def get_ndarray(Data_Vec): """ copy C++ class Data_Vec<FTYPE_t, N> into numpy array """ dim = Data_Vec.dim() data = [[x for x in Data_Vec[i]] for i in range(dim)] return np.array(data) def get_Data_vec(data): """ copy 2D data 'dim x size' into C++ class Data_Vec<FTYPE_t, dim> """ dim = len(data) size = len(data[0]) if dim == 2: Data_Vec = fs.Data_Vec_2(size) elif dim == 3: Data_Vec = fs.Data_Vec_3(size) else: raise IndexError("only Data_Vec<FTYPE_t, dim> of 'dim' 2 or 3 supported") for j in range(dim): for i in range(size): Data_Vec[j][i] = data[j][i] return Data_Vec def non_lin_pow_spec(a, k, cosmo, lin_scale=False): """ return ndarray of nonlinear power spectrum """ # special wrapper -- use emulator power spectrum regardless of the one in cosmo return Non_Linear_Cosmo.non_lin_pow_spec(a, k, cosmo, lin_scale) def lin_pow_spec(a, k, cosmo): """ return ndarray of linear power spectrum """ k = np.array(k) if k.shape: return np.array([fs.lin_pow_spec(a, k_, cosmo) for k_ in k]) else: return fs.lin_pow_spec(a, np.asscalar(k), cosmo) def chi_bulk_a(a, chi_opt, MPL=1, CHI_A_UNITS=True): """ return bulk value of chameleon field at background level """ if CHI_A_UNITS: return 1 chi_0 = 2*chi_opt["beta"]*MPL*chi_opt["phi"] n = chi_opt["n"] return chi_0*pow(a, 3/(1-n)) def chi_bulk_a_n(a, chi_opt, MPL=1, CHI_A_UNITS=True): """ return bulk value of chameleon field at background level divided by (1-n), i.e. common factor """ n = chi_opt["n"] return chi_bulk_a(a, chi_opt, MPL=MPL, CHI_A_UNITS=CHI_A_UNITS)/(1-n) def chi_psi_a(a, chi_opt): """ return value of screening potential at given time """ phi = chi_opt["phi"] n = chi_opt["n"] phi *= pow(a, (5.-2*n)/(1.-n)) return phi def phi_G_prefactor(cosmo, c_kms=299792.458): mu_ = 3./2*cosmo.Omega_m * pow(cosmo.H0 * cosmo.h / c_kms, 2) return 1/mu_ def phi_G_k(a, k, cosmo, c_kms=299792.458): Pk = lin_pow_spec(a, k, cosmo) Pk_til = Pk*pow(k/(2*np.pi), 3) drho = np.sqrt(Pk_til) mu = phi_G_prefactor(cosmo, c_kms=c_kms) phi = drho/(mu*a*k*k) return phi def chi_psi_k_a_single(a, cosmo, chi_opt, k_min=1e-5, k_max=1e3, rel_tol=1e-1): """ return scale at which hravitational potential is equal to screening potential """ psi_scr_a = chi_psi_a(a, chi_opt) f = lambda k : np.abs(psi_scr_a - phi_G_k(a, k, cosmo)) k_scr = minimize_scalar(f, bracket=(k_min, k_max), bounds=(k_min, np.inf), tol=1e-12).x if f(k_scr)/psi_scr_a < rel_tol: return k_scr else: return 0 def chi_psi_k_a(a, cosmo, chi_opt, k_min=1e-5, k_max=1e3, rel_tol=1e-1): a = np.array(a) fce = lambda a_ : chi_psi_k_a_single(a_, cosmo, chi_opt, k_min=k_min, k_max=k_max, rel_tol=rel_tol) if a.shape: return np.array([fce(a_) for a_ in a]) else: return fce(np.asscalar(a)) def chi_mass_sq(a, cosmo, chi_opt, MPL=1, c_kms=299792.458): """ return mass squared of chameleon field sitting at chi_bulk(a, 0) """ # prefactor = (3*MPL*chi_opt["beta"]*cosmo.Omega_m *pow(cosmo.H0 # beta*rho_m,0 / Mpl # * cosmo.h / c_kms # units factor for 'c = 1' and [L] = Mpc / h # ,2)) # evolve rho_m,0 -> rho_m a = np.array(a) # prefactor /= pow(a, 3) # return prefactor/chi_bulk_a_n(a, chi_opt, MPL=MPL, CHI_A_UNITS=False) n = chi_opt["n"] mu = phi_G_prefactor(cosmo, c_kms=c_kms) phi_a = chi_psi_a(a, chi_opt) return (1-n)/(a*mu*phi_a) def chi_compton_wavelength(a, cosmo, chi_opt, MPL=1, c_kms=299792.458): m_sq = chi_mass_sq(a, cosmo, chi_opt, MPL=MPL, c_kms=c_kms) return 1/np.sqrt(m_sq) def chi_lin_pow_spec(a, k, cosmo, chi_opt, MPL=1, c_kms=299792.458): """ return ndarray of linear power spectrum for chameleon in units of chi_prefactor """ mass_sq = chi_mass_sq(a, cosmo, chi_opt, MPL=MPL, c_kms=c_kms) k = np.array(k) chi_mod = pow(mass_sq/(mass_sq+k*k), 2) if k.shape: return chi_mod*np.array([fs.lin_pow_spec(a, k_, cosmo) for k_ in k]) else: return chi_mod*fs.lin_pow_spec(a, np.asscalar(k), cosmo) def chi_trans_to_supp(a, k, Pk, cosmo, chi_opt, CHI_A_UNITS=True): """ transform input chameleon power spectrum to suppression according to linear prediction """ Pk_lin = chi_lin_pow_spec(a, k, cosmo, chi_opt) return Pk/ (Pk_lin * pow(chi_bulk_a_n(a, chi_opt), 2)) # chi_bulk for normalization of Pk_lin def chi_trans_to_init(data_list, zeropoint=0): """ transform supp (ref: lin) to supp (ref: init) """ reversed_data_list = data_list[::-1] for data in reversed_data_list: data[1] += zeropoint - reversed_data_list[-1][1] def hybrid_pow_spec(a, k, A, cosmo): """ return 'hybrid' power spectrum: (1-A)*P_lin(k, a) + A*P_nl """ return (1-A)*lin_pow_spec(a, k, cosmo) + A*non_lin_pow_spec(a, k, cosmo) def gen_func(sim, fc_par, fce_lin, fc_nl, Pk=None, z=None, non_lin=False): data = fs.Data_Vec_2() if Pk: # compute function from given continuous power spectrum try: fc_par(sim, Pk, data) # GSL integration error except RuntimeError: return None elif z is not None: # compute (non-)linear function a = 1./(1.+z) if z != 'init' else 1.0 if non_lin: data = fc_nl(sim, a, data) else: fce_lin(sim, a, data) else: raise KeyError("Function 'gen_func' called without arguments.") return get_ndarray(data) def corr_func(sim, Pk=None, z=None, non_lin=False): """ return correlation function if given Pk -- C++ class Extrap_Pk or Extrap_Pk_Nl -- computes its corr. func. if given redshift, computes linear or non-linear (emulator) correlation function """ fc_par = fs.gen_corr_func_binned_gsl_qawf fce_lin = fs.gen_corr_func_binned_gsl_qawf_lin fc_nl = Non_Linear_Cosmo.non_lin_corr_func return gen_func(sim, fc_par, fce_lin, fc_nl, Pk=Pk, z=z, non_lin=non_lin) def sigma_R(sim, Pk=None, z=None, non_lin=False): """ return amplitude of density fluctuations if given Pk -- C++ class Extrap_Pk or Extrap_Pk_Nl -- computes its sigma_R. if given redshift, computes linear or non-linear (emulator) amplitude of density fluctuations """ fc_par = fs.gen_sigma_binned_gsl_qawf fce_lin = fs.gen_sigma_func_binned_gsl_qawf_lin fc_nl = Non_Linear_Cosmo.non_lin_sigma_func return gen_func(sim, fc_par, fce_lin, fc_nl, Pk=Pk, z=z, non_lin=non_lin) def get_hybrid_pow_spec_amp(sim, data, k_nyquist_par, a=None, fit_lin=False): """ fit data [k, Pk, std] to hybrid power spectrum (1-A)*P_lin(k) + A*P_nl(k) return dictionary with C++ class Extrap_Pk_Nl, fit values and covariance. If 'fit_lin' is True, fit linear power spectrum and use C++ class Extrap_Pk instead. """ # extract data kk, Pk =
np.array(data[0])
numpy.array
#importing some useful packages import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 import math import pandas as pd import glob from moviepy.editor import VideoFileClip from IPython.display import HTML ''' =============================================================================== CLASS DEFINITION =============================================================================== ''' # Define a class to receive the characteristics of each line detection class Line(): def __init__(self): # was the line detected in the last iteration? self.detected = False # xe values of the last n fits of the line self.recent_xfitted = [] #polynomial coefficients averaged over the last n iterations self.best_fit = None #polynomial coefficients for the most recent fit self.current_fit = [np.array([False])] #radius of curvature of the line in some units self.radius_of_curvature = None #distance in meters of vehicle center from the line self.line_base_pos = None ''' =============================================================================== FUNCTION DEFINITION =============================================================================== ''' def weighted_img(img, initial_img, α=0.8, β=1., γ=0.): return cv2.addWeighted(initial_img, α, img, β, γ) def grayscale(img): """Return an image in grayscale To show the image: plt.imshow(gray, cmap='gray')""" return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) def find_chessboard_corners(img,objpoints,imgpoints,objp): # Convert the image to grayscale gray = grayscale(img) # Find chessboard corners ret, corners = cv2.findChessboardCorners(gray, (9,6), None) # If corners are found, add the object points and image points to the array if ret == True: imgpoints.append(corners) objpoints.append(objp) #Draw and display the corners img = cv2.drawChessboardCorners(img, (9,6), corners, ret) return def get_distortion_param(): global image_folder ''' Obtain the distortion parameters of the camera with the chessboard calibration ''' #Read the list of calibration images images = glob.glob('camera_cal/calibration*.jpg') objpoints = [] # points in real world space imgpoints = [] # points in image space # Define the object points (0,0,0), (1,0,0), ..., (8,5,0) objp = np.zeros((6*9,3),np.float32) objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) for fname in images: # Read each image in the calibration folder img = mpimg.imread(fname) find_chessboard_corners(img, objpoints, imgpoints, objp) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[1:], None, None) undistorted_subfolder = 'undistorted/' for fname in images: img = mpimg.imread(fname) undistorted_img = cv2.undistort(img,mtx,dist,None, mtx) plt.imsave(image_folder + undistorted_subfolder + fname,undistorted_img) return mtx, dist def get_binary_image(img): ''' Function that, given an undistorted image, returns a binary theresholded image using different methods ''' global process_choice global image_folder s_binary = HLS_threshold(img) mag_binary = mag_threshold(img) dir_binary = dir_threshold(img) xsobel_binary = abs_sobel_thresh(img, orient = 'x') ysobel_binary = abs_sobel_thresh(img, orient = 'y') # Combine the two binary thresholds combined_binary = np.zeros_like(mag_binary) combined_binary[((xsobel_binary == 1) & (ysobel_binary == 1)) | ((mag_binary == 1) & (dir_binary == 1)) | (s_binary == 1)] = 1 # #Show the different influences on the combined binary image # combined_binary_1 = np.zeros_like(mag_binary) # combined_binary_1[(xsobel_binary == 1) & (ysobel_binary == 1)] = 1 # combined_binary_2 = np.zeros_like(mag_binary) # combined_binary_2[(mag_binary == 1) & (dir_binary == 1)] = 1 # f, axes = plt.subplots(3, 3, figsize=(32, 16)) # axes[0,0].set_title('Gradient magnitude', fontsize=30) # axes[0,0].imshow(mag_binary) # axes[0,1].set_title('Gradient direction', fontsize=30) # axes[0,1].imshow(dir_binary) # axes[0,2].set_title('Gradient mag + dir', fontsize=30) # axes[0,2].imshow(combined_binary_2) # axes[1,0].set_title('X Sobel', fontsize=30) # axes[1,0].imshow(xsobel_binary) # axes[1,1].set_title('Y Sobel', fontsize=30) # axes[1,1].imshow(ysobel_binary) # axes[1,2].set_title('X + Y Sobel', fontsize=30) # axes[1,2].imshow(combined_binary_1) # axes[2,0].set_title('Original', fontsize=30) # axes[2,0].imshow(img) # axes[2,1].set_title('S component', fontsize=30) # axes[2,1].imshow(s_binary) # axes[2,2].set_title('Combined', fontsize=30) # axes[2,2].imshow(combined_binary) # Save the images in the defined folders if process_choice == 'i': global image_name global image_count binary_img_subfolder = 'binary_images/' X_Sobel_subfolder = 'X_Sobel/' Y_Sobel_subfolder = 'Y_Sobel/' Grad_Magnitude_subfolder = 'Grad_Magnitude/' Grad_Direction_subfolder = 'Grad_Direction/' S_subfolder = 'S_Threshold/' plt.imsave(image_folder + binary_img_subfolder + X_Sobel_subfolder + image_name[image_count],xsobel_binary, cmap='gray') plt.imsave(image_folder + binary_img_subfolder + Y_Sobel_subfolder + image_name[image_count],ysobel_binary, cmap='gray') plt.imsave(image_folder + binary_img_subfolder + Grad_Magnitude_subfolder + image_name[image_count],mag_binary, cmap='gray') plt.imsave(image_folder + binary_img_subfolder + Grad_Direction_subfolder + image_name[image_count],dir_binary, cmap='gray') plt.imsave(image_folder + binary_img_subfolder + S_subfolder + image_name[image_count],s_binary, cmap='gray') return combined_binary def HLS_threshold(img): ''' Convert to HLS color space and separate the S channel Note: img is the undistorted image ''' hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) s_channel = hls[:,:,2] # Threshold color channel s_thresh_min = 170 s_thresh_max = 255 s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= s_thresh_min) & (s_channel <= s_thresh_max)] = 1 return s_binary def mag_threshold(img, sobel_kernel=9, mag_thresh=(30, 100)): ''' Function that returns the binary image computed using the gradient magnitude medthod ''' # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Take both Sobel x and y gradients sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # Calculate the gradient magnitude gradmag = np.sqrt(sobelx**2 + sobely**2) # Rescale to 8 bit scale_factor = np.max(gradmag)/255 gradmag = (gradmag/scale_factor).astype(np.uint8) # Create a binary image of ones where threshold is met, zeros otherwise binary_output = np.zeros_like(gradmag) binary_output[(gradmag >= mag_thresh[0]) & (gradmag <= mag_thresh[1])] = 1 return binary_output def dir_threshold(img, sobel_kernel= 15, thresh=(0.7, 1.3)): ''' Function that returns the binary image computed using the gradient direction medthod ''' # Grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Calculate the x and y gradients sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) # Take the absolute value of the gradient direction, # apply a threshold, and create a binary image result absgraddir = np.arctan2(np.absolute(sobely), np.absolute(sobelx)) binary_output = np.zeros_like(absgraddir) binary_output[(absgraddir >= thresh[0]) & (absgraddir <= thresh[1])] = 1 return binary_output def abs_sobel_thresh(img, orient, thresh_min=20, thresh_max=100): ''' Define a function that takes an image, and perform its Sobel operation ''' # Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Apply x or y gradient with the OpenCV Sobel() function # and take the absolute value if orient == 'x': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 1, 0)) if orient == 'y': abs_sobel = np.absolute(cv2.Sobel(gray, cv2.CV_64F, 0, 1)) # Rescale back to 8 bit integer scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel)) # Create a copy and apply the threshold binary_output = np.zeros_like(scaled_sobel) # Apply the threshold to the binary output binary_output[(scaled_sobel >= thresh_min) & (scaled_sobel <= thresh_max)] = 1 return binary_output def get_perspective_matrix(img,src,dst): ''' Given an image, the source and destination points, obtain the perspective matrix ''' M = cv2.getPerspectiveTransform(src,dst) return M def change_perspective(binary_img): #Choose the four points that define the road plane for the perspective change global src global dst global img_size #Plot the position of the points #plt.figure(figsize=(20,10)) #plt.imshow(binary_img) #plt.plot(276,670,'.', markersize=30) #plt.plot(1026,670,'.', markersize=30) #plt.plot(525,500,'.', markersize=30) #plt.plot(762,500,'.', markersize=30) # ATTENTION: the shape vector is inverted img_size = (binary_img.shape[1],binary_img.shape[0]) src = np.float32([[762,500],[1026,670],[276,670],[525,500]]) dst = np.float32([ [img_size[0]-300, 300], [img_size[0]-300, img_size[1]-100], [300, img_size[1]-100],[300, 300]]) M = get_perspective_matrix(binary_img,src,dst) warped_img = cv2.warpPerspective(binary_img,M,img_size,flags=cv2.INTER_LINEAR) return warped_img def find_lane_pixels(binary_warped): ''' Function that, given a binary warped image, defines the possible pixels belonging to the left and right line ''' # Take a histogram of the bottom half of the image histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0) # Create an output image to draw on and visualize the result out_img = np.dstack((binary_warped, binary_warped, binary_warped)) # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0]//2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # Choose the number of sliding windows nwindows = 15 # Set the width of the windows +/- margin margin = 50 # Set minimum number of pixels found to recenter window minpix = 100 # Set height of windows - based on nwindows above and image shape window_height = np.int(binary_warped.shape[0]//nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated later for each window in nwindows leftx_current = leftx_base rightx_current = rightx_base # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = binary_warped.shape[0] - (window+1)*window_height win_y_high = binary_warped.shape[0] - window*window_height win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin # # Draw the windows on the visualization image # cv2.rectangle(out_img,(win_xleft_low,win_y_low), # (win_xleft_high,win_y_high),(0,255,0), 2) # cv2.rectangle(out_img,(win_xright_low,win_y_low), # (win_xright_high,win_y_high),(0,255,0), 2) # Identify the nonzero pixels in x and y within the window # good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) # If you found > minpix pixels, recenter next window on their mean position if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # Concatenate the arrays of indices try: left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) except ValueError: # Avoids an error if the above is not implemented fully pass # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] return leftx, lefty, rightx, righty, out_img def fit_polynomial(binary_warped): ''' Function that, starting from the histogram peaks of the warped image, estimate the polynomial coefficients. ''' global n global process_choice global image_folder global xm_per_pix global ym_per_pix # Find our lane pixels first leftx, lefty, rightx, righty, out_img = find_lane_pixels(binary_warped) # Fit a second order polynomial to each using `np.polyfit` left_line.current_fit = np.polyfit(lefty, leftx, 2) right_line.current_fit = np.polyfit(righty, rightx, 2) left_line.recent_xfitted.insert(0,left_line.current_fit) right_line.recent_xfitted.insert(0,right_line.current_fit) if len(left_line.recent_xfitted) > n: left_line.recent_xfitted.pop() if len(right_line.recent_xfitted) > n: right_line.recent_xfitted.pop() left_line.best_fit = np.array([0,0,0], dtype='float') for left_count in range(0, len(left_line.recent_xfitted)): left_line.best_fit = left_line.best_fit + left_line.recent_xfitted[left_count] left_line.best_fit = left_line.best_fit/len(left_line.recent_xfitted) right_line.best_fit = np.array([0,0,0], dtype='float') for right_count in range(0, len(right_line.recent_xfitted)): right_line.best_fit = right_line.best_fit + right_line.recent_xfitted[right_count] right_line.best_fit = right_line.best_fit/len(right_line.recent_xfitted) left_line.detected = True right_line.detected = True # Generate x and y values for plotting ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] ) try: left_fitx = left_line.best_fit[0]*ploty**2 + left_line.best_fit[1]*ploty + left_line.best_fit[2] right_fitx = right_line.best_fit[0]*ploty**2 + right_line.best_fit[1]*ploty + right_line.best_fit[2] except TypeError: # Avoids an error if `left` and `right_fit` are still none or incorrect print('The function failed to fit a line!') left_line.detected = False right_line.detected = False left_fitx = 1*ploty**2 + 1*ploty right_fitx = 1*ploty**2 + 1*ploty # Colors in the left and right lane regions out_img[lefty, leftx] = [255, 0, 0] out_img[righty, rightx] = [0, 0, 255] # Save the images in the defined folders if process_choice == 'i': global image_name global image_count warped_img_subfolder = 'warped_images/' line_pixels_subfolder = 'line_pixels/' plt.imsave(image_folder + warped_img_subfolder + line_pixels_subfolder + image_name[image_count],out_img) left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2) right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2) # Create an image to draw the lines on warp_zero = np.zeros_like(binary_warped).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image result = cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0)) return result, left_fitx, right_fitx, ploty, left_fit_cr, right_fit_cr def fit_poly(img_shape, leftx, lefty, rightx, righty): global n global n_left global n_right global max_missed_detection global xm_per_pix global ym_per_pix #Fit a second order polynomial to each with np.polyfit() ### left_line.current_fit = np.polyfit(lefty, leftx, 2) right_line.current_fit = np.polyfit(righty, rightx, 2) if all(left_line.current_fit > 1.2*left_line.recent_xfitted[0]) or all(left_line.current_fit < 0.8*left_line.recent_xfitted[0]): left_line.current_fit = left_line.recent_xfitted[0] n_left = n_left + 1 if n_left >= max_missed_detection: left_line.__init__() if all(right_line.current_fit > 1.2*right_line.recent_xfitted[0]) or all(right_line.current_fit < 0.8*right_line.recent_xfitted[0]): right_line.current_fit = right_line.recent_xfitted[0] n_right = n_right + 1 if n_right >= max_missed_detection: right_line.__init__() left_line.recent_xfitted.insert(0,left_line.current_fit) right_line.recent_xfitted.insert(0,right_line.current_fit) if len(left_line.recent_xfitted) > n: left_line.recent_xfitted.pop() if len(right_line.recent_xfitted) > n: right_line.recent_xfitted.pop() left_line.best_fit = np.array([0,0,0], dtype='float') for left_count in range(0, len(left_line.recent_xfitted)): left_line.best_fit = left_line.best_fit + left_line.recent_xfitted[left_count] left_line.best_fit = left_line.best_fit/len(left_line.recent_xfitted) right_line.best_fit = np.array([0,0,0], dtype='float') for right_count in range(0, len(right_line.recent_xfitted)): right_line.best_fit = right_line.best_fit + right_line.recent_xfitted[right_count] right_line.best_fit = right_line.best_fit/len(right_line.recent_xfitted) # Generate x and y values for plotting ploty = np.linspace(0, img_shape[0]-1, img_shape[0]) left_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2) right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2) left_fitx = left_line.best_fit[0]*ploty**2 + left_line.best_fit[1]*ploty + left_line.best_fit[2] right_fitx = right_line.best_fit[0]*ploty**2 + right_line.best_fit[1]*ploty + right_line.best_fit[2] return left_fitx, right_fitx, ploty, left_fit_cr, right_fit_cr def search_around_poly(binary_warped): # Choose the width of the margin around the previous polynomial to search margin = 50 # Grab activated pixels nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) #Set the area of search based on activated x-values within the +/- margin #of the polynomial function found on the previous frame left_lane_inds = ((nonzerox > (left_line.best_fit[0]*(nonzeroy**2) + left_line.best_fit[1]*nonzeroy + left_line.best_fit[2] - margin)) & (nonzerox < (left_line.best_fit[0]*(nonzeroy**2) + left_line.best_fit[1]*nonzeroy + left_line.best_fit[2] + margin))) right_lane_inds = ((nonzerox > (right_line.best_fit[0]*(nonzeroy**2) + right_line.best_fit[1]*nonzeroy + right_line.best_fit[2] - margin)) & (nonzerox < (right_line.best_fit[0]*(nonzeroy**2) + right_line.best_fit[1]*nonzeroy + right_line.best_fit[2] + margin))) # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit new polynomials left_fitx, right_fitx, ploty, left_fit_cr, right_fit_cr = fit_poly(binary_warped.shape, leftx, lefty, rightx, righty) # Create an image to draw the lines on warp_zero = np.zeros_like(binary_warped).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image result = cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0)) return result, left_fitx, right_fitx, ploty, left_fit_cr, right_fit_cr def measure_curvature_real(ploty, left_fit_cr, right_fit_cr): ''' Calculates the curvature of polynomial functions in meters. ''' # Define conversions in x and y from pixels space to meters global ym_per_pix # meters per pixel in y dimension global xm_per_pix # meters per pixel in x dimension # Define y-value where we want radius of curvature # We'll choose the maximum y-value, corresponding to the bottom of the image y_eval = np.max(ploty) # Calculation of R_curve (radius of curvature) left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) /
np.absolute(2*left_fit_cr[0])
numpy.absolute
import unittest from datetime import datetime import numpy as np from sklearn.metrics.pairwise import cosine_similarity from tweepy import Status, User from twitter_bot_type_classification.dataset.db import DATE_TIME_FORMAT, TWITTER_DATE_TIME_FORMAT from twitter_bot_type_classification.features.tweet import TweetFeatures, TWEET_SOURCES_IDX, COUNTRY_CODES_IDX, \ TWEET_TEXT_SIMILARITY_FEATURES from twitter_bot_type_classification.features.user import UserFeatures, USER_FEATURES_INDEX class UserFeaturesTests(unittest.TestCase): def test_tweet_time_interval_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_time_interval_mean"]])) def test_tweet_time_interval_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:05:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:10:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 3, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:50:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 4, "user_id": 1, "created_at": datetime.strptime("2000-01-01 01:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 5, "user_id": 1, "created_at": datetime.strptime("2000-01-01 01:05:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["tweet_time_interval_mean"]], np.mean([ 946681200.0 - 946681500.0, 946681500.0 - 946681800.0, 946681800.0 - 946684200.0, 946684200.0 - 946684800.0, 946684800.0 - 946685100.0 ]), places=4) def test_tweet_time_interval_std_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_time_interval_std"]])) def test_tweet_time_interval_std(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:05:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:10:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 3, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:50:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 4, "user_id": 1, "created_at": datetime.strptime("2000-01-01 01:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 5, "user_id": 1, "created_at": datetime.strptime("2000-01-01 01:05:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["tweet_time_interval_std"]], np.std([ 946681200.0 - 946681500.0, 946681500.0 - 946681800.0, 946681800.0 - 946684200.0, 946684200.0 - 946684800.0, 946684800.0 - 946685100.0 ]), places=4) def test_tweet_likes_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_likes_mean"]])) def test_tweet_likes_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 10, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 5, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["tweet_likes_mean"]], np.mean([10, 3, 5])) def test_tweet_likes_std_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_likes_std"]])) def test_tweet_likes_std(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 10, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 5, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["tweet_likes_std"]], np.std([10, 3, 5]), places=6) def test_tweet_likes_max_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_likes_max"]])) def test_tweet_likes_max(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 10, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 5, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["tweet_likes_max"]], 10) def test_tweet_likes_min_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_likes_min"]])) def test_tweet_likes_min(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 10, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 5, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["tweet_likes_min"]], 3) def test_tweet_retweets_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_retweets_mean"]])) def test_tweet_retweets_mean(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 1, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 3, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 7, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["tweet_retweets_mean"]], np.mean([1, 3, 7]), places=6) def test_tweet_retweets_std_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_retweets_std"]])) def test_tweet_retweets_std(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 1, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 3, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 7, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["tweet_retweets_std"]], np.std([1, 3, 7]), places=6) def test_tweet_retweets_max_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_retweets_max"]])) def test_tweet_retweets_max(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 1, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 3, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 7, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["tweet_retweets_max"]], 7) def test_tweet_retweets_min_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_retweets_min"]])) def test_tweet_retweets_min(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 1, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 3, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 7, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["tweet_retweets_min"]], 1.0) def test_self_replies_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["self_replies_mean"]])) def test_self_replies_mean(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": 5, "in_reply_to_user_id": 1, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": 5, "in_reply_to_user_id": 1, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["self_replies_mean"]], np.mean([1, 1, 0])) def test_number_of_different_countries_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_different_countries"]])) def test_number_of_different_countries(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": { "country_code": "DE", "name": "Berlin" }, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": { "country_code": "DE", "name": "Berlin" }, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": { "country_code": "EN", "name": "London" }, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["number_of_different_countries"]], 2.0) def test_country_with_most_tweets_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["country_with_most_tweets"]])) def test_country_with_most_tweets(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": { "country_code": "DE", "name": "Berlin" }, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": { "country_code": "DE", "name": "Berlin" }, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": { "country_code": "EN", "name": "London" }, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["country_with_most_tweets"]], COUNTRY_CODES_IDX["DE"]) def test_number_of_different_sources_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_different_sources"]])) def test_number_of_different_sources(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Android App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["number_of_different_sources"]], 2.0) def test_most_used_source_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["most_used_source"]])) def test_most_used_source(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Android App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["most_used_source"]], TWEET_SOURCES_IDX["Twitter Web App"]) def test_retweet_tweets_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["retweet_tweets_mean"]])) def test_retweet_tweets_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT), "retweeted_status": { "id": 12 } }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT), "retweeted_status": { "id": 13 } }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["retweet_tweets_mean"]], np.mean([1, 1, 0])) def test_answer_tweets_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["answer_tweets_mean"]])) def test_answer_tweets_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": 12, "in_reply_to_user_id": 42, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": 13, "in_reply_to_user_id": 42, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["answer_tweets_mean"]], np.mean([1, 1, 0])) def test_number_of_withheld_countries_max_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_withheld_countries_max"]])) def test_number_of_withheld_countries_max(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": ["EN"], "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": ["DE", "EN", "NL"], "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["number_of_withheld_countries_max"]], 3.0) def test_withheld_country_tweets_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["withheld_country_tweets_mean"]])) def test_withheld_country_tweets_mean(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": "DE", "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["withheld_country_tweets_mean"]], np.mean([0, 0, 1])) def test_number_of_different_tweet_coord_groups_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_different_tweet_coord_groups"]])) def test_number_of_different_tweet_coord_groups_group(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": { "coordinates": [15, -74] }, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": { "coordinates": [0, -74] }, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["number_of_different_tweet_coord_groups"]], 2) def test_most_frequent_tweet_coord_group_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["most_frequent_tweet_coord_group"]])) def test_most_frequent_tweet_coord_group(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": { "coordinates": [15, -74] }, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": { "coordinates": [0, -74] }, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["most_frequent_tweet_coord_group"]], 7.0) def test_different_user_interactions_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["different_user_interactions"]])) def test_different_user_interactions_0(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["different_user_interactions"]], 0) def test_different_user_interactions_1(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 12345, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["different_user_interactions"]], 1) def test_different_user_interactions_2(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 12345, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 12345, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["different_user_interactions"]], 1) def test_different_user_interactions_3(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 12345, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 12345, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 56789, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["different_user_interactions"]], 2) def test_different_user_interactions_4(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 12345, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 56789, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": 101112, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["different_user_interactions"]], 3) def test_tweet_text_length_max_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_text_length_max"]])) def test_tweet_text_length_max(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["tweet_text_length_max"]], 108) def test_tweet_text_length_min_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_text_length_min"]])) def test_tweet_text_length_min(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["tweet_text_length_min"]], 53) def test_tweet_text_length_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_text_length_mean"]])) def test_tweet_text_length_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["tweet_text_length_mean"]], np.mean([61, 108, 53]), places=5) def test_tweet_text_length_std_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["tweet_text_length_std"]])) def test_tweet_text_length_std(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["tweet_text_length_std"]], np.std([61, 108, 53]), places=5) def test_number_of_hashtags_max_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_hashtags_max"]])) def test_number_of_hashtags_max(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #ab #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["number_of_hashtags_max"]], 2.0) def test_number_of_hashtags_min_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_hashtags_min"]])) def test_number_of_hashtags_min(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #ab #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["number_of_hashtags_min"]], 0.0) def test_number_of_hashtags_mean_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_hashtags_mean"]])) def test_number_of_hashtags_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #ab #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["number_of_hashtags_mean"]], np.mean([0, 2, 1])) def test_number_of_hashtags_std_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_hashtags_std"]])) def test_number_of_hashtags_std(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #ab #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["number_of_hashtags_std"]], np.std([0, 2, 1])) def test_length_of_hashtag_max_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["length_of_hashtag_max"]])) def test_length_of_hashtag_max(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #test2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #ab #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["length_of_hashtag_max"]], 6.0) def test_length_of_hashtag_min_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["length_of_hashtag_min"]])) def test_length_of_hashtag_min(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #test2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #ab #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. #test", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["length_of_hashtag_min"]], 3.0) def test_cleaned_tweet_text_length_max_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["cleaned_tweet_text_length_max"]])) def test_cleaned_tweet_text_length_max(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["cleaned_tweet_text_length_max"]], 63.0) def test_cleaned_tweet_text_length_min_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["cleaned_tweet_text_length_min"]])) def test_cleaned_tweet_text_length_min(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertEqual(user_features[USER_FEATURES_INDEX["cleaned_tweet_text_length_min"]], 39.0) def test_cleaned_tweet_text_length_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["cleaned_tweet_text_length_mean"]])) def test_cleaned_tweet_text_length_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["cleaned_tweet_text_length_mean"]], np.mean([39, 63, 51])) def test_cleaned_tweet_text_length_std_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["cleaned_tweet_text_length_std"]])) def test_cleaned_tweet_text_length_std(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": " 😀 This is just a simple test tweet text with urls and emojis. http://www.twitter.com http://www.twitter.com", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text with emojis. 😀😀", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["cleaned_tweet_text_length_std"]], np.std([39, 63, 51]), places=6) def test_number_of_user_mentions_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_user_mentions_mean"]])) def test_number_of_user_mentions_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user1 @user2 @user3", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user1 @user2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["number_of_user_mentions_mean"]], np.mean([3, 2, 1])) def test_number_of_user_mentions_std_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_user_mentions_std"]])) def test_number_of_user_mentions_std(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user1 @user2 @user3", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user1 @user2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["number_of_user_mentions_std"]], np.std([3, 2, 1])) def test_number_of_user_mentions_max_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_user_mentions_max"]])) def test_number_of_user_mentions_max(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user1 @user2 @user3", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user1 @user2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["number_of_user_mentions_max"]], 3.0) def test_number_of_user_mentions_min_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_user_mentions_min"]])) def test_number_of_user_mentions_min(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user1 @user2 @user3", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user1 @user2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. @user2", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["number_of_user_mentions_min"]], 1.0) def test_number_of_sentences_mean_nan(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(np.isnan(user_features[USER_FEATURES_INDEX["number_of_sentences_mean"]])) def test_number_of_sentences_mean(self): user_dic = { "id": 1, "name": "Test Account", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) tweets = [ Status.parse(api=None, json={ "id": 0, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 1, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }), Status.parse(api=None, json={ "id": 2, "user_id": 1, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime( TWITTER_DATE_TIME_FORMAT), "text": "This is just a simple test tweet text. This is another sentence.", "coordinates": None, "place": None, "in_reply_to_status_id": None, "in_reply_to_user_id": None, "quoted_status_id": None, "retweet_count": 2, "favorite_count": 3, "lang": "en", "withheld_copyright": False, "withheld_in_countries": None, "entities": { "urls": [] }, "source": "Twitter Web App", "videos": 0, "photos": 0, "gifs": 0, "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) }) ] user_features = UserFeatures(user, tweets) self.assertAlmostEqual(user_features[USER_FEATURES_INDEX["number_of_sentences_mean"]], np.mean([1, 1, 2])) def test_number_of_sentences_std_nan(self): user_dic = { "id": 1, "name": "<NAME>", "screen_name": "test_account", "location": "", "url": None, "expanded_url": None, "description": "", "protected": False, "verified": False, "followers_count": 10, "friends_count": 15, "listed_count": 2, "favourites_count": 50, "statuses_count": 9, "created_at": datetime.strptime("2000-01-01 00:00:00", DATE_TIME_FORMAT).strftime(TWITTER_DATE_TIME_FORMAT), "profile_image_url_https": "", "default_profile": True, "default_profile_image": True, "withheld_in_countries": "", "fetch_date": datetime.strptime("2000-01-01 23:59:59", DATE_TIME_FORMAT) } user = User.parse(api=None, json=user_dic) user_features = UserFeatures(user, []) self.assertTrue(
np.isnan(user_features[USER_FEATURES_INDEX["number_of_sentences_std"]])
numpy.isnan
# -*- coding: utf-8 -*- """Tests of GLSAR and diagnostics against Gretl Created on Thu Feb 02 21:15:47 2012 Author: <NAME> License: BSD-3 """ import os import numpy as np from numpy.testing import (assert_almost_equal, assert_equal, assert_allclose, assert_array_less) from statsmodels.regression.linear_model import OLS, GLSAR from statsmodels.tools.tools import add_constant from statsmodels.datasets import macrodata import statsmodels.stats.sandwich_covariance as sw import statsmodels.stats.diagnostic as smsdia import statsmodels.stats.outliers_influence as oi def compare_ftest(contrast_res, other, decimal=(5,4)): assert_almost_equal(contrast_res.fvalue, other[0], decimal=decimal[0]) assert_almost_equal(contrast_res.pvalue, other[1], decimal=decimal[1]) assert_equal(contrast_res.df_num, other[2]) assert_equal(contrast_res.df_denom, other[3]) assert_equal("f", other[4]) class TestGLSARGretl: def test_all(self): d = macrodata.load_pandas().data #import datasetswsm.greene as g #d = g.load('5-1') #growth rates gs_l_realinv = 400 * np.diff(np.log(d['realinv'].values)) gs_l_realgdp = 400 * np.diff(np.log(d['realgdp'].values)) #simple diff, not growthrate, I want heteroscedasticity later for testing endogd = np.diff(d['realinv']) exogd = add_constant(np.c_[np.diff(d['realgdp'].values), d['realint'][:-1].values]) endogg = gs_l_realinv exogg = add_constant(np.c_[gs_l_realgdp, d['realint'][:-1].values]) res_ols = OLS(endogg, exogg).fit() #print res_ols.params mod_g1 = GLSAR(endogg, exogg, rho=-0.108136) res_g1 = mod_g1.fit() #print res_g1.params mod_g2 = GLSAR(endogg, exogg, rho=-0.108136) #-0.1335859) from R res_g2 = mod_g2.iterative_fit(maxiter=5) #print res_g2.params rho = -0.108136 # coefficient std. error t-ratio p-value 95% CONFIDENCE INTERVAL partable = np.array([ [-9.50990, 0.990456, -9.602, 3.65e-018, -11.4631, -7.55670], # *** [ 4.37040, 0.208146, 21.00, 2.93e-052, 3.95993, 4.78086], # *** [-0.579253, 0.268009, -2.161, 0.0319, -1.10777, -0.0507346]]) # ** #Statistics based on the rho-differenced data: result_gretl_g1 = dict( endog_mean = ("Mean dependent var", 3.113973), endog_std = ("S.D. dependent var", 18.67447), ssr = ("Sum squared resid", 22530.90), mse_resid_sqrt = ("S.E. of regression", 10.66735), rsquared = ("R-squared", 0.676973), rsquared_adj = ("Adjusted R-squared", 0.673710), fvalue = ("F(2, 198)", 221.0475), f_pvalue = ("P-value(F)", 3.56e-51), resid_acf1 = ("rho", -0.003481), dw = ("Durbin-Watson", 1.993858)) #fstatistic, p-value, df1, df2 reset_2_3 = [5.219019, 0.00619, 2, 197, "f"] reset_2 = [7.268492, 0.00762, 1, 198, "f"] reset_3 = [5.248951, 0.023, 1, 198, "f"] #LM-statistic, p-value, df arch_4 = [7.30776, 0.120491, 4, "chi2"] #multicollinearity vif = [1.002, 1.002] cond_1norm = 6862.0664 determinant = 1.0296049e+009 reciprocal_condition_number = 0.013819244 #Chi-square(2): test-statistic, pvalue, df normality = [20.2792, 3.94837e-005, 2] #tests res = res_g1 #with rho from Gretl #basic assert_almost_equal(res.params, partable[:,0], 4) assert_almost_equal(res.bse, partable[:,1], 6) assert_almost_equal(res.tvalues, partable[:,2], 2) assert_almost_equal(res.ssr, result_gretl_g1['ssr'][1], decimal=2) #assert_almost_equal(res.llf, result_gretl_g1['llf'][1], decimal=7) #not in gretl #assert_almost_equal(res.rsquared, result_gretl_g1['rsquared'][1], decimal=7) #FAIL #assert_almost_equal(res.rsquared_adj, result_gretl_g1['rsquared_adj'][1], decimal=7) #FAIL assert_almost_equal(np.sqrt(res.mse_resid), result_gretl_g1['mse_resid_sqrt'][1], decimal=5) assert_almost_equal(res.fvalue, result_gretl_g1['fvalue'][1], decimal=4) assert_allclose(res.f_pvalue, result_gretl_g1['f_pvalue'][1], rtol=1e-2) #assert_almost_equal(res.durbin_watson, result_gretl_g1['dw'][1], decimal=7) #TODO #arch #sm_arch = smsdia.acorr_lm(res.wresid**2, maxlag=4, autolag=None) sm_arch = smsdia.het_arch(res.wresid, nlags=4) assert_almost_equal(sm_arch[0], arch_4[0], decimal=4) assert_almost_equal(sm_arch[1], arch_4[1], decimal=6) #tests res = res_g2 #with estimated rho #estimated lag coefficient assert_almost_equal(res.model.rho, rho, decimal=3) #basic assert_almost_equal(res.params, partable[:,0], 4) assert_almost_equal(res.bse, partable[:,1], 3) assert_almost_equal(res.tvalues, partable[:,2], 2) assert_almost_equal(res.ssr, result_gretl_g1['ssr'][1], decimal=2) #assert_almost_equal(res.llf, result_gretl_g1['llf'][1], decimal=7) #not in gretl #assert_almost_equal(res.rsquared, result_gretl_g1['rsquared'][1], decimal=7) #FAIL #assert_almost_equal(res.rsquared_adj, result_gretl_g1['rsquared_adj'][1], decimal=7) #FAIL assert_almost_equal(np.sqrt(res.mse_resid), result_gretl_g1['mse_resid_sqrt'][1], decimal=5) assert_almost_equal(res.fvalue, result_gretl_g1['fvalue'][1], decimal=0) assert_almost_equal(res.f_pvalue, result_gretl_g1['f_pvalue'][1], decimal=6) #assert_almost_equal(res.durbin_watson, result_gretl_g1['dw'][1], decimal=7) #TODO c = oi.reset_ramsey(res, degree=2) compare_ftest(c, reset_2, decimal=(2,4)) c = oi.reset_ramsey(res, degree=3) compare_ftest(c, reset_2_3, decimal=(2,4)) #arch #sm_arch = smsdia.acorr_lm(res.wresid**2, maxlag=4, autolag=None) sm_arch = smsdia.het_arch(res.wresid, nlags=4)
assert_almost_equal(sm_arch[0], arch_4[0], decimal=1)
numpy.testing.assert_almost_equal
from rkstiff.grids import construct_x_kx_rfft, construct_x_kx_fft from rkstiff.grids import construct_x_Dx_cheb from rkstiff.derivatives import dx_rfft, dx_fft import numpy as np def test_periodic_dx_rfft(): N = 100 a, b = 0, 2*np.pi x,kx = construct_x_kx_rfft(N,a,b) u = np.sin(x) ux_exact = np.cos(x) ux_approx = dx_rfft(kx,u) assert np.allclose(ux_exact,ux_approx) def test_zeroboundaries_dx_rfft(): N = 400 a, b = -30., 30. x,kx = construct_x_kx_rfft(N,a,b) u = 1./np.cosh(x) ux_exact = -np.tanh(x)/np.cosh(x) ux_approx = dx_rfft(kx,u) assert np.allclose(ux_exact,ux_approx) def test_gauss_dx_rfft(): N = 128 a,b = -10,10 x,kx = construct_x_kx_rfft(N,a,b) u = np.exp(-x**2) ux_exact = -2*x*
np.exp(-x**2)
numpy.exp
from itertools import groupby import numbers import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from models.layers.meta_sequential import MetaSequential from models.layers.meta_patch import MetaPatchConv2d, make_meta_patch_conv2d_block class HyperGen(nn.Module): """ Hypernetwork generator comprised of a backbone network, weight mapper, and a decoder. Args: backbone (nn.Module factory): Backbone network weight_mapper (nn.Module factory): Weight mapper network. in_nc (int): input number of channels. num_classes (int): output number of classes. kernel_sizes (int): the kernel size of the decoder layers. level_layers (int): number of layers in each level of the decoder. level_channels (list of int, optional): If specified, sets the output channels of each level in the decoder. expand_ratio (int): inverted residual block's expansion ratio in the decoder. groups (int, optional): Number of blocked connections from input channels to output channels. weight_groups (int, optional): per level signal to weights in the decoder. inference_hflip (bool): If true, enables horizontal flip of input tensor. inference_gather (str): Inference gather type: ``mean'' or ``max''. with_out_fc (bool): If True, add a final fully connected layer to the decoder. decoder_groups (int, optional): per level groups in the decoder. decoder_dropout (float): If specified, enables dropout with the given probability. coords_res (list of tuple of int, optional): list of inference resolutions for caching positional embedding. """ def __init__(self, backbone, weight_mapper, in_nc=3, num_classes=3, kernel_sizes=3, level_layers=1, expand_ratio=1, groups=1, inference_hflip=False, inference_gather='mean', with_out_fc=False, decoder_dropout=None): super(HyperGen, self).__init__() self.inference_hflip = inference_hflip self.inference_gather = inference_gather self.backbone = backbone() feat_channels = [in_nc] + self.backbone.feat_channels[:-1] self.decoder = MultiScaleDecoder(feat_channels, 3, num_classes, kernel_sizes, level_layers, with_out_fc=with_out_fc, out_kernel_size=1, expand_ratio=expand_ratio, dropout=decoder_dropout) self.weight_mapper = weight_mapper(self.backbone.feat_channels[-1], self.decoder.param_groups) @property def hyper_params(self): return self.decoder.hyper_params def process_single_tensor(self, x, hflip=False): x = torch.flip(x, [-1]) if hflip else x features = self.backbone(x) weights = self.weight_mapper(features[-1]) x = [x] + features[:-1] x = self.decoder(x, weights) x = torch.flip(x, [-1]) if hflip else x return x def gather_results(self, x, y=None): assert x is not None if y is None: return x if self.inference_gather == 'mean': return (x + y) * 0.5 else: return torch.max(x, y) def forward(self, x): assert isinstance(x, (list, tuple, torch.Tensor)), f'x must be of type list, tuple, or tensor' if isinstance(x, torch.Tensor): return self.process_single_tensor(x) # Note: the first pyramid will determine the output resolution out_res = x[0].shape[2:] out = None for p in x: if self.inference_hflip: p = torch.max(self.process_single_tensor(p), self.process_single_tensor(p, hflip=True)) else: p = self.process_single_tensor(p) # Resize current image to output resolution if necessary if p.shape[2:] != out_res: p = F.interpolate(p, out_res, mode='bilinear', align_corners=False) out = self.gather_results(p, out) return out class MultiScaleDecoder(nn.Module): """ Dynamic multi-scale decoder. Args: feat_channels (list of int): per level input feature channels. signal_channels (list of int): per level input signal channels. num_classes (int): output number of classes. kernel_sizes (int): the kernel size of the layers. level_layers (int): number of layers in each level. level_channels (list of int, optional): If specified, sets the output channels of each level. norm_layer (nn.Module): Type of feature normalization layer act_layer (nn.Module): Type of activation layer out_kernel_size (int): kernel size of the final output layer. expand_ratio (int): inverted residual block's expansion ratio. groups (int, optional): number of blocked connections from input channels to output channels. weight_groups (int, optional): per level signal to weights. with_out_fc (bool): If True, add a final fully connected layer. dropout (float): If specified, enables dropout with the given probability. coords_res (list of tuple of int, optional): list of inference resolutions for caching positional embedding. """ def __init__(self, feat_channels, in_nc=3, num_classes=3, kernel_sizes=3, level_layers=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU6(inplace=True), out_kernel_size=1, expand_ratio=1, with_out_fc=False, dropout=None): super(MultiScaleDecoder, self).__init__() if isinstance(kernel_sizes, numbers.Number): kernel_sizes = (kernel_sizes,) * len(feat_channels) if isinstance(level_layers, numbers.Number): level_layers = (level_layers,) * len(feat_channels) assert len(kernel_sizes) == len(feat_channels), \ f'kernel_sizes ({len(kernel_sizes)}) must be of size {len(feat_channels)}' assert len(level_layers) == len(feat_channels), \ f'level_layers ({len(level_layers)}) must be of size {len(feat_channels)}' self.level_layers = level_layers self.levels = len(level_layers) self.layer_params = [] feat_channels = feat_channels[::-1] # Reverse the order of the feature channels # For each level prev_channels = 0 for level in range(self.levels): curr_ngf = feat_channels[level] prev_channels += curr_ngf # Accommodate the previous number of channels curr_layers = [] kernel_size = kernel_sizes[level] # For each layer in the current level for layer in range(self.level_layers[level]): if (not with_out_fc) and (level == (self.levels - 1) and (layer == (self.level_layers[level] - 1))): curr_ngf = num_classes if kernel_size > 1: curr_layers.append(HyperPatchInvertedResidual( prev_channels + 2, curr_ngf, kernel_size, expand_ratio=expand_ratio, norm_layer=norm_layer, act_layer=act_layer)) else: curr_layers.append(make_meta_patch_conv2d_block(prev_channels + 2, curr_ngf, kernel_size)) prev_channels = curr_ngf # Add level layers to module self.add_module(f'level_{level}', MetaSequential(*curr_layers)) # Add the last layer if with_out_fc: out_fc_layers = [nn.Dropout2d(dropout, True)] if dropout is not None else [] out_fc_layers.append( MetaPatchConv2d(prev_channels, num_classes, out_kernel_size, padding=out_kernel_size // 2)) self.out_fc = MetaSequential(*out_fc_layers) else: self.out_fc = None # Calculate number of hyper parameters, weight ranges, and total number of hyper parameters per level self.hyper_params = 0 self._ranges = [0] self.param_groups = [] for level in range(self.levels): level_layers = getattr(self, f'level_{level}') self.hyper_params += level_layers.hyper_params self._ranges.append(self.hyper_params) self.param_groups.append(level_layers.hyper_params) if with_out_fc: self.hyper_params += self.out_fc.hyper_params self.param_groups.append(self.out_fc.hyper_params) self._ranges.append(self.hyper_params) def forward(self, x, w): assert isinstance(w, (list, tuple)) assert len(x) <= self.levels # For each level p = None for level in range(len(x)): level_w = w[level] level_layers = getattr(self, f'level_{level}') # Initial layer input if p is None: p = x[-level - 1] else: # p = F.interpolate(p, scale_factor=2, mode='bilinear', align_corners=False) # Upsample x2 if p.shape[2:] != x[-level - 1].shape[2:]: p = F.interpolate(p, x[-level - 1].shape[2:], mode='bilinear', align_corners=False) # Upsample p = torch.cat((x[-level - 1], p), dim=1) # Add image coordinates p = torch.cat([get_image_coordinates(p.shape[0], *p.shape[-2:], p.device), p], dim=1) # Computer the output for the current level p = level_layers(p, level_w) # Last layer if self.out_fc is not None: p = self.out_fc(p, w[-1]) return p class HyperPatchInvertedResidual(nn.Module): def __init__(self, in_nc, out_nc, kernel_size=3, stride=1, expand_ratio=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU6(inplace=True), padding_mode='reflect'): super(HyperPatchInvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(in_nc * expand_ratio)) self.use_res_connect = self.stride == 1 and in_nc == out_nc layers = [] if expand_ratio != 1: # pw layers.append(make_meta_patch_conv2d_block(in_nc, hidden_dim, 1, norm_layer=norm_layer, act_layer=act_layer)) layers.extend([ # dw make_meta_patch_conv2d_block(hidden_dim, hidden_dim, kernel_size, stride=stride, groups=hidden_dim, norm_layer=norm_layer, act_layer=act_layer, padding_mode=padding_mode), # pw-linear make_meta_patch_conv2d_block(hidden_dim, out_nc, 1, stride=stride, norm_layer=norm_layer, act_layer=None) ]) self.conv = MetaSequential(*layers) @property def hyper_params(self): return self.conv.hyper_params def forward(self, x, w): if self.use_res_connect: return x + self.conv(x, w) else: return self.conv(x, w) def get_image_coordinates(b, h, w, device): x = torch.linspace(-1, 1, steps=w, device=device) y = torch.linspace(-1, 1, steps=h, device=device) grid = torch.stack(torch.meshgrid(y, x)[::-1], dim=0).repeat(b, 1, 1, 1) # grid = torch.stack(torch.meshgrid(x, y)[::-1], dim=0).repeat(b, 1, 1, 1) return grid class WeightMapper(nn.Module): """ Weight mapper module (called context head in the paper). Args: in_channels (int): input number of channels. out_channels (int): output number of channels. levels (int): number of levels operating on different strides. bias (bool): if True, enables bias in all convolution operations. min_unit (int): used when dividing the signal channels into parts, must be a multiple of this number. weight_groups (int): per level signal to weights groups. """ def __init__(self, in_channels, out_channels, levels=2, bias=False, min_unit=8, down_groups=1, flat_groups=1, weight_groups=1, avg_pool=False): super(WeightMapper, self).__init__() assert levels > 0, 'levels must be greater than zero' self.in_channels = in_channels self.out_channels = out_channels self.levels = levels self.bias = bias self.avg_pool = avg_pool self.down_groups = down_groups self.flat_groups = flat_groups self.weight_groups = weight_groups min_unit = max(min_unit, weight_groups) for level in range(self.levels - 1): down = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=2, stride=2, bias=bias, groups=down_groups), nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True)) self.add_module(f'down_{level}', down) up = nn.UpsamplingNearest2d(scale_factor=2) self.add_module(f'up_{level}', up) flat = [nn.Conv2d(in_channels * 2, in_channels, kernel_size=1, bias=bias, groups=flat_groups), nn.BatchNorm2d(in_channels)] if level > 0: flat.append(nn.ReLU(inplace=True)) flat = nn.Sequential(*flat) self.add_module(f'flat_{level}', flat) out_channels = [next_multiply(c, weight_groups) for c in out_channels] self.out_conv = Conv2dMulti(in_channels, out_channels, 1, bias=bias, min_unit=min_unit, groups=weight_groups) def forward(self, x): if self.levels <= 1: return self.out_conv(x) # Down stream feat = [x] for level in range(self.levels - 1): down = getattr(self, f'down_{level}') feat.append(down(feat[-1])) # Average the last feature map if self.avg_pool: orig_shape = feat[-1].shape if orig_shape[-2:] != (1, 1): feat[-1] = F.adaptive_avg_pool2d(feat[-1], 1) feat[-1] = F.interpolate(feat[-1], orig_shape[-2:], mode='nearest') # Up stream for level in range(self.levels - 2, -1, -1): up = getattr(self, f'up_{level}') flat = getattr(self, f'flat_{level}') x = up(feat.pop(-1)) feat[-1] = torch.cat((feat[-1], x), dim=1) feat[-1] = flat(feat[-1]) # Output weights w = self.out_conv(feat[-1]) if self.weight_groups > 1: w = [wi[:, :oc] for wi, oc in zip(w, self.out_channels)] return w def extra_repr(self): return f'in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias}' def next_multiply(x, base): return type(x)(
np.ceil(x / base)
numpy.ceil
#<NAME> # # # 2019-11-17 # ----------------------------------------------------------------------------- # This function computes the logarithmic (or ignorance) score. Predictive distributions can # be considered as Gaussian, Gamma distributed, Empirical or "Loi des fuites" # (a Gamma distribution + a Dirac at zero, suitable for daily precip), and Kernel distribution. # # input: # calculation: mxn matrix; m = number of simulations # n = number of member in ensemble # observation: mx1 vector; m = number of records # case: - 'Normal' # - 'Gamma' # - 'Kernel' # - 'Fuites' is made for daily precipitation exclusively # - 'Empirical' # thres: probability density threshold below which we consider that the # event was missed by the forecasting system. This value must be # small (e.g.: 0.0001 means that f(obs) given the forecasts is # only 0.0001 --> not forecasted). # By default, thres = 0 and the logarithmic score is unbounded. # opt_case - if 'case' = 'Fuites', opt_cas is the threshold to determine data # which contributed to gamma distribution and those who are part of the # Dirac impulsion # - if 'case' = 'empirical', opt_cas needed is the number of bins # in which to divide the ensemble, by default, it will be the # number of members (Nan excluded). opt_cas have to be an integer # superior to 1. # # output: # loga: the logarithmic score (n*1 matrix) # ind_miss: Boleans to point out days for which the event was missed according # to the threshold specified by the user (1= missed) (n*1 matrix) # # Reference: # 'Empirical' case is based on Roulston and Smith (2002) with # modifications -> quantile and members with similar values # ----------------------------------------------------------------------------- # History # # MAB June 19: Added 2 cases for the empirical distribution: the # observation can either be the smallest or the largest member of the # augmented ensemble, in which case we can't use the "DeltaX = X(S+1) - # X(S-1);" equation. # ----------------------------------------------------------------------------- import numpy as np from scipy.stats import norm, gamma, gaussian_kde import sys def score_log(calculation, observation, case, thres=0., opt_case=None): # transform input into numpy array calculation = np.array(calculation, dtype='float64') observation = np.array(observation, dtype='float64') dim1 = calculation.shape if len(dim1) == 1: calculation = calculation.reshape((1,dim1[0])) dim2 = observation.shape if len(dim2) == 0: observation = observation.reshape((1,1)) elif len(dim2) == 1: observation = observation.reshape((dim2[0],1)) # preparation n = np.size(calculation, axis=0) loga = np.empty(n) loga[:] = np.nan ind_miss = np.empty(n) ind_miss[:] = np.nan # test input arguments are correct if len(observation) != n: sys.exit('Error! The length of the record of observations doesn''t match the length of the forecasting period') if thres == 0: print('Logarithmic score is unbounded') elif (thres < 0) or (thres > 1): sys.exit('Threshold has to be between 0 and 1.') # calcuation depending on the case if case == 'Empirical': # if no opt_case is given, number of bins are determined by the number of nonNaN members if opt_case == None: print('Bins used for empirical method determined by ensemble members') elif (opt_case < 2) or (not isinstance(opt_case, int)): sys.exit('Format of opt_case is not valide.') if not isinstance(thres, float): sys.exit('Format of threshold is not valide. thres needs to be a list with 2 entries, determining the upper and lower bound for aberrant values') # loop over the records for j in range(n): # determine of observation is in the bound of max min of ensemble if (~np.all(np.isnan(calculation[j,:]))) and (~np.isnan(observation[j])): if (np.nanmin(calculation[j,:]) <= observation[j]) and (observation[j] <= np.nanmax(calculation[j,:])): ind_miss[j] = 0 # suppress NaN from the ensemble to determine the number of members sample_nonnan = calculation[j,:][~np.isnan(calculation[j,:])] sort_sample_nonnan = np.sort(sample_nonnan) # transform data, if bins are specified by user in the opt_case argument if opt_case != None: sort_sample_nonnan = np.quantile(sort_sample_nonnan, np.arange(0, 1, 1/opt_case)) # number of bins N = len(sort_sample_nonnan) # if all members of forcast and obervation are the same -> perfect forecast if len(np.unique(np.append(sort_sample_nonnan, observation[j]))) == 1: proba_obs = 1 else: # if some members are equal, modify slightly the value if len(np.unique(sort_sample_nonnan)) != len(sort_sample_nonnan): uni_sample = np.unique(sort_sample_nonnan) bins = np.append(uni_sample, np.inf) hist, binedges = np.histogram(sort_sample_nonnan, bins) idxs, = np.where(hist > 1) new_sample = uni_sample for idx in idxs: new_val = uni_sample[idx] + 0.01 * np.random.rand(hist[idx]-1) new_sample = np.append(new_sample, new_val) sort_sample_nonnan = np.sort(new_sample) # find position of the observation in the ensemble X = np.sort(np.concatenate((sort_sample_nonnan, observation[j]))) S, = np.where(X == observation[j]) # if observation is at the first or last position of the ensemble -> threshold prob if S[0] == len(X)-1: proba_obs = thres elif S[0] == 0: proba_obs = thres else: #if the observation falls between two members or occupies the first or last rank if len(S) == 1: # If the observation is between the augmented ensemble bounds DeltaX = X[S[0]+1] - X[S[0]-1] proba_obs = min(1/(DeltaX * (N+1)),1) # if observation is equal to one member, choose the maximum of the probability density associated elif len(S) == 2: if S[0] == 0: DeltaX = X[S[1]+1] - X[S[1]] elif S[1] == len(X)-1: DeltaX = X[S[0]] - X[S[0]-1] else: DeltaX1 = X[S[1]+1] - X[S[1]] DeltaX2 = X[S[0]] - X[S[0]-1] DeltaX = min(DeltaX1,DeltaX2) proba_obs = min(1/(DeltaX * (N+1)),1) # test if probability below threshold if proba_obs < thres: proba_obs = thres ind_miss[j] = 1 # if observation is outside of the bound of the ensemble else: ind_miss[j] = 1 proba_obs = thres # calculate the logarithmus loga[j] = - np.log2(proba_obs) # if all values are nan in ensemble else: loga[j] = np.nan ind_miss[j] = np.nan elif case == 'Normal': if (opt_case != None): sys.exit('No optional case possible for Normal distribution') for j in range(n): # filter non nan values sample_nonnan = calculation[j,:][~np.isnan(calculation[j,:])] # if there are values in the ensemble which are not nan if (len(sample_nonnan) > 0) and (~np.isnan(observation[j])): # perfect forecast, all member values equal the observation if len(np.unique(np.append(sample_nonnan, observation[j]))) == 1: proba_obs = 1 ind_miss[j] = 0 loga[j] = - np.log2(proba_obs) else: mu, sig = norm.fit(sample_nonnan) # transform standard deviation to unbiased estimation of standard deviation nb_mb = len(sample_nonnan) sighat = nb_mb/(nb_mb-1) * sig # all member forecasts the same but unequal the observation if sighat == 0: loga[j] = - np.log2(thres) ind_miss[j] = 1 else: proba_obs = min(norm.pdf(observation[j], mu, sighat), 1) if proba_obs >= thres: ind_miss[j] = 0 loga[j] = - np.log2(proba_obs) else: loga[j] = - np.log2(thres) ind_miss[j] = 1 # if all values in the snemble are nan else: loga[j] = np.nan ind_miss[j] = np.nan elif case == 'Gamma': if (opt_case != None): sys.exit('No optional case possible for Gamma distribution') # check if any value is smaller equal zero idxs = np.where(calculation <= 0) if len(idxs[0]) == 0: for j in range(n): # filter non nan values sample_nonnan = calculation[j,:][~np.isnan(calculation[j,:])] # if there are values in the ensemble which are not nan if (len(sample_nonnan) > 0) and (~np.isnan(observation[j])): if len(np.unique(np.append(sample_nonnan, observation[j]))) == 1: proba_obs = 1 ind_miss[j] = 0 loga[j] = - np.log2(proba_obs) else: # fit data to gamma distribtion alpha, loc, beta = gamma.fit(sample_nonnan, floc=0) proba_obs = min(gamma.pdf(observation[j], alpha, loc, beta), 1) if (alpha <= 0) or (beta <= 0): loga[j] = - np.log2(thres) ind_miss[j] = 1 else: if proba_obs >= thres: ind_miss[j] = 0 loga[j] = - np.log2(proba_obs) else: loga[j] = - np.log2(thres) ind_miss[j] = 1 # if all values in the snemble are nan else: loga[j] = np.nan ind_miss[j] = np.nan else: sys.exit('Forecasts contain zeros. You must choose a different distribution.') elif case == 'Kernel': if (opt_case != None): sys.exit('No optional case possible for Kernel distribution') for j in range(n): # filter non nan values sample_nonnan = calculation[j,:][~np.isnan(calculation[j,:])] # if there are values in the ensemble which are not nan if (len(sample_nonnan) > 0) and (~np.isnan(observation[j])): # perfect forecast, all member values equal the observation if len(np.unique(
np.append(sample_nonnan, observation[j])
numpy.append
# ---------------------------------------------------------------------- # # <NAME>, U.S. Geological Survey # <NAME>, GNS Science # <NAME>, University at Buffalo # # This code was developed as part of the Computational Infrastructure # for Geodynamics (http://geodynamics.org). # # Copyright (c) 2010-2021 University of California, Davis # # See LICENSE.md for license information. # # ---------------------------------------------------------------------- # # @file tests/fullscale/poroelasticity/cryer/cryer_soln.py # # @brief Analytical solution to Cryer's problem. # Owing to the symmetry of the problem, we only need consider the quarter # domain case. # # -F # ---------- # | | # Ux=0 | | P=0 # | | # | | # ---------- # Uy=0 # # Dirichlet boundary conditions # Ux(0,y) = 0 # Uy(x,0) = 0 # Neumann boundary conditions # \tau_normal(x,ymax) = -1*Pa import numpy # Physical properties G = 3.0 rho_s = 2500 rho_f = 1000 K_fl = 8.0 K_sg = 10.0 K_d = 4.0 alpha = 0.6 phi = 0.1 k = 1.5 mu_f = 1.0 P_0 = 1.0 R_0 = 1.0 ndim = 3 M = 1.0 / ( phi / K_fl + (alpha - phi) /K_sg) kappa = k/mu_f K_u = K_d + alpha*alpha*M S = (3*K_u + 4*G) / (M*(3*K_d + 4*G)) #(1/M) + ( (3*alpha*alpha) / (3*K_d + 4*G) )# c = kappa / S nu = (3*K_d - 2*G) / (2*(3*K_d + G)) nu_u = (3*K_u - 2*G) / (2*(3*K_u + G)) U_R_inf = -1.*(P_0*R_0*(1.-2.*nu))/(2.*G*(1.+nu)) eta = (alpha*(1-2*nu))/(2*(1-nu)) xmin = 0.0 # m xmax = 1.0 # m ymin = 0.0 # m ymax = 1.0 # m zmin = 0.0 # m zmax = 1.0 # m # Time steps ts = 0.0028666667 # sec nts = 2 tsteps = numpy.arange(0.0, ts * nts, ts) + ts # sec # ---------------------------------------------------------------------- class AnalyticalSoln(object): """ Analytical solution to Cryer's problem """ SPACE_DIM = 3 TENSOR_SIZE = 4 ITERATIONS = 50 EPS = 1e-25 def __init__(self): self.fields = { "displacement": self.displacement, "pressure": self.pressure, #"trace_strain": self.trace_strain, "porosity": self.porosity, "solid_density": self.solid_density, "fluid_density": self.fluid_density, "fluid_viscosity": self.fluid_viscosity, "shear_modulus": self.shear_modulus, "undrained_bulk_modulus": self.undrained_bulk_modulus, "drained_bulk_modulus": self.drained_bulk_modulus, "biot_coefficient": self.biot_coefficient, "biot_modulus": self.biot_modulus, "isotropic_permeability": self.isotropic_permeability, "initial_amplitude": { "x_neg": self.zero_vector, "y_neg": self.zero_vector, "z_neg": self.zero_vector, "surface_traction": self.surface_traction, "surface_pressure": self.zero_scalar } } return def getField(self, name, mesh_entity, pts): if name in "initial_amplitude": field = self.fields[name][mesh_entity](pts) else: field = self.fields[name](pts) return field def zero_scalar(self, locs): (npts, dim) = locs.shape return numpy.zeros((1, npts, 1), dtype=numpy.float64) def zero_vector(self, locs): (npts, dim) = locs.shape return numpy.zeros((1, npts, self.SPACE_DIM), dtype=numpy.float64) def solid_density(self, locs): """ Compute solid_density field at locations. """ (npts, dim) = locs.shape solid_density = rho_s * numpy.ones((1, npts, 1), dtype=numpy.float64) return solid_density def fluid_density(self, locs): """ Compute fluid density field at locations. """ (npts, dim) = locs.shape fluid_density = rho_f * numpy.ones((1, npts, 1), dtype=numpy.float64) return fluid_density def porosity(self, locs): """ Compute solid_density field at locations. """ (npts, dim) = locs.shape porosity = phi * numpy.ones((1, npts, 1), dtype=numpy.float64) return porosity def shear_modulus(self, locs): """ Compute shear modulus field at locations. """ (npts, dim) = locs.shape shear_modulus = G * numpy.ones((1, npts, 1), dtype=numpy.float64) return shear_modulus def fluid_viscosity(self, locs): """ Compute fluid_viscosity field at locations. """ (npts, dim) = locs.shape fluid_viscosity = mu_f * numpy.ones((1, npts, 1), dtype=numpy.float64) return fluid_viscosity def undrained_bulk_modulus(self, locs): """ Compute undrained bulk modulus field at locations. """ (npts, dim) = locs.shape undrained_bulk_modulus = K_u * numpy.ones((1, npts, 1), dtype=numpy.float64) return undrained_bulk_modulus def drained_bulk_modulus(self, locs): """ Compute undrained bulk modulus field at locations. """ (npts, dim) = locs.shape drained_bulk_modulus = K_d * numpy.ones((1, npts, 1), dtype=numpy.float64) return drained_bulk_modulus def biot_coefficient(self, locs): """ Compute biot coefficient field at locations. """ (npts, dim) = locs.shape biot_coefficient = alpha * numpy.ones((1, npts, 1), dtype=numpy.float64) return biot_coefficient def biot_modulus(self, locs): """ Compute biot modulus field at locations. """ (npts, dim) = locs.shape biot_modulus = M * numpy.ones((1, npts, 1), dtype=numpy.float64) return biot_modulus def isotropic_permeability(self, locs): """ Compute isotropic permeability field at locations. """ (npts, dim) = locs.shape isotropic_permeability = k * numpy.ones((1, npts, 1), dtype=numpy.float64) return isotropic_permeability def displacement(self, locs): """ Compute displacement field at locations. """ (npts, dim) = locs.shape ntpts = tsteps.shape[0] displacement = numpy.zeros((ntpts, npts, dim), dtype=numpy.float64) x_n = self.cryerZeros() center = numpy.where(~locs.any(axis=1))[0] R = numpy.sqrt(locs[:,0]*locs[:,0] + locs[:,1]*locs[:,1] + locs[:,2]*locs[:,2]) theta = numpy.nan_to_num( numpy.arctan( numpy.nan_to_num( numpy.sqrt(locs[:,0]**2 + locs[:,1]**2) / locs[:,2] ) ) ) phi = numpy.nan_to_num( numpy.arctan( numpy.nan_to_num( locs[:,1] / locs[:,0] ) ) ) R_star = R.reshape([R.size,1]) / R_0 x_n.reshape([1,x_n.size]) E = numpy.square(1-nu)*numpy.square(1+nu_u)*x_n - 18*(1+nu)*(nu_u-nu)*(1-nu_u) t_track = 0 for t in tsteps: t_star = (c*t)/(R_0**2) r_exact_N = R_star.ravel() - numpy.nan_to_num(numpy.sum(((12*(1 + nu)*(nu_u - nu)) / \ ((1 - 2*nu)*E*R_star*R_star*x_n*numpy.sin(numpy.sqrt(x_n))) ) * \ (3*(nu_u - nu) * (numpy.sin(R_star*numpy.sqrt(x_n)) - R_star*numpy.sqrt(x_n)*numpy.cos(R_star*numpy.sqrt(x_n))) + \ (1 - nu)*(1 - 2*nu)*R_star*R_star*R_star*x_n*numpy.sin(numpy.sqrt(x_n))) * \ numpy.exp(-x_n*t_star),axis=1)) displacement[t_track, :, 0] = (r_exact_N*U_R_inf)*numpy.cos(phi)*
numpy.sin(theta)
numpy.sin
import cv2 import torch import numpy as np def fuse_heatmap_image(img, heatmap, resize=None, keep_heatmap=False): img = img.cpu().numpy() if isinstance(img, torch.Tensor) else np.array(img) heatmap = heatmap.detach().cpu().numpy() if isinstance(heatmap, torch.Tensor) else heatmap if not resize: size = img.shape else: size = resize heatmap = heatmap - np.min(heatmap) heatmap = heatmap / np.max(heatmap) heatmap = np.float32(cv2.resize(heatmap, size)) heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) fused = np.float32(cv2.resize(img/255, size)) +
np.float32(heatmap/255, size)
numpy.float32
"""Script to compare the sensitivity and discovery potential for the LLAGN sample (15887 sources) as a function of injected spectral index for energy decades between 100 GeV and 10 PeV. """ from __future__ import print_function from __future__ import division import numpy as np from flarestack.core.results import ResultsHandler # # from flarestack.data.icecube.ps_tracks.ps_v002_p01 import ps_7year # from flarestack.data.icecube.ps_tracks.ps_v003_p02 import ps_10year # from flarestack.data.icecube.northern_tracks.nt_v002_p05 import diffuse_8year # from flarestack.data.icecube.gfu.gfu_v002_p01 import txs_sample_v1 from flarestack.shared import plot_output_dir, flux_to_k, make_analysis_pickle, k_to_flux from flarestack.data.icecube import diffuse_8_year from flarestack.utils.catalogue_loader import load_catalogue from flarestack.analyses.agn_cores.shared_agncores import \ agn_subset_catalogue, complete_cats_north, complete_cats_north, agn_catalogue_name, agn_subset_catalogue_north from flarestack.core.minimisation import MinimisationHandler from flarestack.cluster import analyse, wait_for_cluster import math import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter # plt.style.use('~/scratch/phdthesis.mpltstyle') import time import logging import os import psutil, resource #to get memory usage info analyses = dict() # Initialise Injectors/LLHs llh_time = { "time_pdf_name": "Steady" } llh_energy = { "energy_pdf_name": "PowerLaw" } llh_dict = { "llh_name": "standard_matrix", "llh_sig_time_pdf": llh_time, "llh_energy_pdf": llh_energy } def base_name(cat_key, gamma): return "analyses/agn_cores/stacking_analysis_8yrNTsample_diff_sens_pre_unblinding/{0}/" \ "{1}/".format(cat_key, gamma) def generate_name(cat_key, n_sources, gamma): return base_name(cat_key, gamma) + "NrSrcs={0}/".format(n_sources) gammas = [2.0, 2.5] # Number of sources in the LLAGN sample nr_brightest_sources = [15887] # Energy bins energies = np.logspace(2, 7, 6) bins = list(zip(energies[:-1], energies[1:])) all_res = dict() for (cat_type, method) in complete_cats_north[-1:]: unique_key = cat_type + "_" + method print(unique_key) gamma_dict = dict() for gamma_index in gammas: res = dict() for j, nr_srcs in enumerate(nr_brightest_sources): cat_path = agn_subset_catalogue(cat_type, method, nr_srcs) print("Loading catalogue", cat_path, " with ", nr_srcs, "sources") catalogue = load_catalogue(cat_path) cat = np.load(cat_path) print("Total flux is: ", cat['base_weight'].sum()*1e-13) full_name = generate_name(unique_key, nr_srcs, gamma_index) res_e_min = dict() # scale factor of neutrino injection, tuned for each energy bin scale_factor_per_decade = [0.2, 0.5, 1, 0.57, 0.29] for i, (e_min, e_max) in enumerate(bins[:]): full_name_en = full_name + 'Emin={0:.2f}'.format(e_min) + "/" print("Full name for ", nr_srcs, " sources is", full_name_en) # Injection parameters injection_time = llh_time injection_energy = dict(llh_energy) injection_energy["gamma"] = gamma_index injection_energy["e_min_gev"] = e_min injection_energy["e_max_gev"] = e_max inj_kwargs = { "injection_energy_pdf": injection_energy, "injection_sig_time_pdf": injection_time, } mh_dict = { "name": full_name_en, "mh_name": "large_catalogue", "dataset": diffuse_8_year.get_seasons(), #subselection_fraction=1), "catalogue": cat_path, "llh_dict": llh_dict, "inj_dict": inj_kwargs, "n_trials": 1, #10, # "n_steps": 15, } mh = MinimisationHandler.create(mh_dict) # scale factor to tune (manually) the number of injected neutrinos scale_factor = 3 * mh.guess_scale()/3/7/scale_factor_per_decade[i] print("Scale Factor: ", scale_factor_per_decade[i], scale_factor) # # # # # How to run on the cluster for sources < 3162 mh_dict["n_steps"] = 15 mh_dict["scale"] = scale_factor analyse(mh_dict, cluster=False, n_cpu=32, n_jobs=150) # How to run on the cluster for sources > 3162 # _n_jobs = 50 # scale_loop = np.linspace(0, scale_factor, 15) # print(scale_loop) # for scale in scale_loop[:4]: # print('Running ' + str(mh_dict["n_trials"]) + ' trials with scale ' + str(scale)) # mh_dict["fixed_scale"] = scale # # # analyse(mh_dict, cluster=False, n_cpu=35, n_jobs=10) # if scale == 0.: # n_jobs = _n_jobs*10 # else: # n_jobs = _n_jobs # print("Submitting " + str(n_jobs) + " jobs") # analyse(mh_dict, cluster=True, n_cpu=1, n_jobs=n_jobs) res_e_min[e_min] = mh_dict res[nr_srcs] = res_e_min gamma_dict[gamma_index] = res all_res[unique_key] = gamma_dict # wait_for_cluster() logging.getLogger().setLevel("INFO") for (cat_key, gamma_dict) in all_res.items(): print(cat_key, cat_key.split("_")) agn_type = cat_key.split("_")[0] xray_cat = cat_key.split(str(agn_type)+'_')[-1] full_cat = load_catalogue(agn_catalogue_name(agn_type, xray_cat)) full_flux = np.sum(full_cat["base_weight"]) saturate_ratio = 0.26 # Loop on gamma for (gamma_index, gamma_res) in (iter(gamma_dict.items())): sens = [] sens_err_low = [] sens_err_upp = [] disc_pot = [] disc_ts_threshold = [] n_src = [] fracs = [] sens_livetime = [] disc_pots_livetime = [] sens_livetime_100GeV10PeV = [] disc_pots_livetime_100GeV10PeV = [] ratio_sens = [] ratio_disc = [] ratio_sens_100GeV10PeV = [] ratio_disc_100GeV10PeV = [] int_xray_flux_erg = [] int_xray_flux = [] guess = [] sens_n = [] disc_pot_n = [] e_min_gev = [] e_max_gev = [] base_dir = base_name(cat_key, gamma_index) # Loop on number of sources of the AGN sample for (nr_srcs, rh_dict_srcs) in sorted(gamma_res.items()): print("In if loop on nr_srcs and rh_dict") print(nr_srcs) print(rh_dict_srcs) print("nr_srcs in loop: ", nr_srcs) # loop on emin and emax for (e_min, rh_dict) in sorted(rh_dict_srcs.items()): cat = load_catalogue(rh_dict["catalogue"]) print("e_min in loop: ", e_min) print(" ") print(" ") int_xray = np.sum(cat["base_weight"] / 1e13*624.151) int_xray_flux.append(int_xray) # GeV cm-2 s-1 int_xray_flux_erg.append(np.sum(cat["base_weight"]) / 1e13) # erg # cm-2 s-1 fracs.append(np.sum(cat["base_weight"])/full_flux) try: rh = ResultsHandler(rh_dict) print("Sens", rh.sensitivity) print("Sens_err", rh.sensitivity_err, rh.sensitivity_err[0], rh.sensitivity_err[1]) print("Disc", rh.disc_potential) print("Disc_TS_threshold", rh.disc_ts_threshold) # print("Guess", rh_dict["scale"]) print("Sens (n)", rh.sensitivity * rh.flux_to_ns) print("DP (n)", rh.disc_potential * rh.flux_to_ns) # # guess.append(k_to_flux(rh_dict["scale"])* 2./3.) # guess.append(k_to_flux(rh_dict["scale"])/3.) print(rh_dict["inj_dict"], rh_dict["inj_dict"]["injection_energy_pdf"]["e_min_gev"]) e_min_gev.append(rh_dict["inj_dict"]["injection_energy_pdf"]["e_min_gev"]) e_max_gev.append(rh_dict["inj_dict"]["injection_energy_pdf"]["e_max_gev"]) # sensitivity/dp normalized per flux normalization GeV-1 cm-2 s-1 sens.append(rh.sensitivity) sens_err_low.append(rh.sensitivity_err[0]) sens_err_upp.append(rh.sensitivity_err[1]) disc_pot.append(rh.disc_potential) disc_ts_threshold.append(rh.disc_ts_threshold) sens_n.append(rh.sensitivity * rh.flux_to_ns) disc_pot_n.append(rh.disc_potential * rh.flux_to_ns) key = "Energy Flux (GeV cm^{-2} s^{-1})" # old version: "Total Fluence (GeV cm^{-2} s^{-1})" astro_sens, astro_disc = rh.astro_values( rh_dict["inj_dict"]["injection_energy_pdf"]) sens_livetime.append(astro_sens[key]) # fluence=integrated over energy disc_pots_livetime.append(astro_disc[key]) # Nu energy flux integrated between 100GeV and 10PeV, # indipendently from the e_min_gev, e_max_gev of the injection rh_dict["inj_dict"]["injection_energy_pdf"]["e_min_gev"] = 100 rh_dict["inj_dict"]["injection_energy_pdf"]["e_max_gev"] = 1e7 astro_sens_100GeV10PeV, astro_disc_100GeV10PeV = rh.astro_values( rh_dict["inj_dict"]["injection_energy_pdf"]) sens_livetime_100GeV10PeV.append(astro_sens_100GeV10PeV[key]) # fluence=integrated over energy disc_pots_livetime_100GeV10PeV.append(astro_disc_100GeV10PeV[key]) # normalized over tot xray flux ratio_sens.append(astro_sens[key] / int_xray) # fluence ratio_disc.append(astro_disc[key] / int_xray) ratio_sens_100GeV10PeV.append(astro_sens_100GeV10PeV[key] / int_xray) # fluence ratio_disc_100GeV10PeV.append(astro_disc_100GeV10PeV[key] / int_xray) n_src.append(nr_srcs) except OSError: pass # # Save arrays to file np.savetxt(plot_output_dir(base_dir) + "data.out", (np.array(n_src), np.array(int_xray_flux_erg), np.array(e_min_gev), np.array(e_max_gev), np.array(sens), np.array(sens_err_low), np.array(sens_err_upp), np.array(disc_pot), np.array(disc_ts_threshold), np.array(sens_livetime), np.array(disc_pots_livetime), np.array(ratio_sens), np.array(ratio_disc), np.array(ratio_sens)/saturate_ratio, np.array(ratio_disc)/saturate_ratio, np.array(sens_livetime_100GeV10PeV), np.array(disc_pots_livetime_100GeV10PeV), np.array(ratio_sens_100GeV10PeV), np.array(ratio_disc_100GeV10PeV), np.array(ratio_sens_100GeV10PeV)/saturate_ratio, np.array(ratio_disc_100GeV10PeV)/saturate_ratio, np.array(sens_n),
np.array(disc_pot_n)
numpy.array
# -*- coding: utf-8 -*- ''' perceptron algorithm to minimize misclassification error SVM (support vector machine) maxmize the margin (margin is defined as the distance between the separating hyperplane, and the training samples that are closest to this hyperplane) ''' from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt import numpy as np def scikit_basic(): iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .3, random_state = 0) sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) ppn = Perceptron(n_iter = 40, eta0 = .1, random_state = 0) ppn.fit(X_train_std, y_train) y_pred = ppn.predict(X_test_std) # print ('Misclassified samples: %d' % (y_test != y_pred).sum()) # print ('Accuracy: %.2f' % accuracy_score(y_test, y_pred)) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) plot_decision_regions(X = X_combined_std, y = y_combined, classifier = ppn, test_idx = range(105, 150)) plt.xlabel('petal length [standardized]') plt.ylabel('petal width [standardized]') plt.legend(loc = 'upper left') plt.show() def plot_decision_regions(X, y, classifier, test_idx = None, resolution = .02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() -1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() -1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha = .4, cmap = cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot all samples X_test, y_test = X[test_idx, :], y[test_idx] for idx, cl in enumerate(np.unique(y)): plt.scatter(x = X[y == cl, 0], y = X[y == cl, 1], alpha = .8, c = cmap(idx), marker = markers[idx], label = cl) # highlight test samples if test_idx: X_test, y_test = X[test_idx, :], y[test_idx] plt.scatter(X_test[:, 0], X_test[:, 1], c = '', alpha = 1.0, linewidth = 1, marker = 'o', s = 55, label = 'test set') def sigmoid(z): return 1.0/(1.0 + np.exp(-z)) class iris_data: def __init__(self): iris = datasets.load_iris() self.X = iris.data[:, [2, 3]] self.y = iris.target self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size = .3, random_state = 0) def norm_data(self): return self.X_train, self.y_train, self.X_test, self.y_test def std_data(self): sc = StandardScaler() sc.fit(self.X_train) self.X_train_std = sc.transform(self.X_train) self.X_test_std = sc.transform(self.X_test) return self.X_train_std, self.y_train, self.X_test_std, self.y_test def combined_data(self): self.std_data() X_combined_std = np.vstack((self.X_train_std, self.X_test_std)) y_combined = np.hstack((self.y_train, self.y_test)) return X_combined_std, y_combined def logistic_base(): iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .3, random_state = 0) sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) ''' logistic plot ''' # z = np.arange( -7, 7, .1) # phi_z = sigmoid(z) # plt.plot(z, phi_z) # plt.axvline(0.0, color = 'k') # plt.axhspan(0.0, 1.0, facecolor = '1.0', alpha = 1.0, ls = 'dotted') # plt.axhline(y = .5, ls = 'dotted', color = 'k') # plt.yticks([0.0, .5, 1.0]) # plt.ylim(-.1, 1.1) # plt.xlabel('z') # plt.ylabel('$\phi (z)$') # plt.show() ''' fit iris with logistic''' # lr = LogisticRegression(C = 1000.0, random_state = 0) # lr.fit(X_train_std, y_train) # plot_decision_regions(X_combined_std, y_combined, classifier = lr, test_idx = range(105, 150)) # plt.xlabel('petal length [standardized]') # plt.ylabel('petal width [standardized]') # plt.legend(loc = 'upper left') # plt.show() # print (lr.predict_proba(X_test_std[0, :])) '''add L2 regularization''' weights, params = [], [] for c in np.arange(-5, 5): lr = LogisticRegression(C = 10 ** c, random_state = 0) lr.fit(X_train_std, y_train) weights.append(lr.coef_[1]) print (lr.coef_[1]) params.append(10 ** c) weights = np.array(weights) plt.plot(params, weights[:, 0], label = 'petal length') plt.plot(params, weights[:, 1], linestyle = '--', label = 'petal width') plt.ylabel('weight coefficient') plt.xlabel('C') plt.legend(loc = 'upper left') plt.xscale('log') plt.show() def SVM_related(): '''solve linear problem''' svm = SVC(kernel = 'linear', C = 1.0, random_state = 0) ir = iris_data() X_train_std, y_train, X_test_std, y_test = ir.std_data() X_combined_std, y_combined = ir.combined_data() svm.fit(X_train_std, y_train) # plot_decision_regions(X_combined_std, y_combined, classifier = svm, test_idx = range(105, 150)) # plt.xlabel('petal length [standardized]') # plt.ylabel('petal width [standardized]') # plt.legend(loc = 'upper left') # plt.show() '''solve non-linear problem''' np.random.seed(0) X_xor = np.random.randn(200, 2) y_xor = np.logical_xor(X_xor[:, 0] > 0, X_xor[:, 1] > 0) y_xor = np.where(y_xor, 1, -1) # plt.scatter(X_xor[y_xor == 1, 0], X_xor[y_xor == 1, 1], c = 'b', marker = 'x', label = '1') # plt.scatter(X_xor[y_xor == -1, 0], X_xor[y_xor == -1, 1], c = 'r', marker = 's', label = '-1') # plt.ylim(-3.0) # plt.legend() # plt.show() # svm = SVC(kernel = 'rbf', random_state = 0, gamma = .10, C = 10.0) # svm.fit(X_xor, y_xor) # plot_decision_regions(X_xor, y_xor, classifier = svm) # plt.legend(loc = 'upper left') # plt.show() # for better understanding on the gamma parameter # svm = SVC(kernel = 'rbf', random_state = 0, gamma = .2, C = 1.0) # svm.fit(X_train_std, y_train) # plot_decision_regions(X_combined_std, y_combined, classifier = svm, test_idx = range(105, 150)) # plt.xlabel('petal length [standarized]') # plt.ylabel('petal width [standarized]') # plt.legend(loc = 'upper left') # plt.show() def decision_tree_related(): ir = iris_data() X_train, y_train, X_test, y_test = ir.norm_data() X_combined =
np.vstack((X_train, X_test))
numpy.vstack
import numpy as np import pickle as pkl import networkx as nx import scipy.sparse as sp from scipy.sparse.linalg.eigen.arpack import eigsh import sys from sklearn.neighbors import kneighbors_graph from sklearn import svm import time import tensorflow as tf def del_all_flags(FLAGS): flags_dict = FLAGS._flags() keys_list = [keys for keys in flags_dict] for keys in keys_list: FLAGS.__delattr__(keys) def parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def noise_power_from_snrdb(snrdb): return 1/10.0 ** (snrdb/10.0) def add_noise2feat(x,snrdb): noise_power=sp.linalg.norm(x)*noise_power_from_snrdb(snrdb) noise = noise_power* np.random.normal(0, 1, (np.shape(x)[1])) return x+noise def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def load_data(dataset_str,neighbor_list): """ Loads input data from gcn/data directory ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object; ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object; ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object; ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object; ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict object; ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object. All objects above must be saved using python pickle module. :param dataset_str: Dataset name :return: All data input files loaded (as well the training/test data). """ names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding='latin1')) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) if (dataset_str=='test') | (dataset_str=='breast_cancer') | (dataset_str=='ionosphere') \ | (dataset_str == 'synthetic'): with open("data/ind.{}.test.index".format(dataset_str), 'rb') as f: if sys.version_info > (3, 0): test_idx_reorder=(pkl.load(f, encoding='latin1')) else: test_idx_reorder =(pkl.load(f)) if dataset_str=='test': adj = nx.adjacency_matrix(graph) else: adj =[] features = sp.vstack((allx)).tolil() labels = np.vstack((ally)) test_idx_range = np.sort(test_idx_reorder) else: test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str)) test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range - min(test_idx_range), :] = ty ty = ty_extended features = sp.vstack((allx, tx)).tolil() labels = np.vstack((ally, ty)) adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) features[test_idx_reorder, :] = features[test_idx_range, :] nbr_neighbors=neighbor_list adj_list=np.append([adj],create_network_nearest_neighbor(features,nbr_neighbors)) labels[test_idx_reorder, :] = labels[test_idx_range, :] val_size= 100 idx_test = test_idx_range.tolist() idx_train = range(len(y)) idx_val = range(len(y), len(y)+val_size) train_mask = sample_mask(idx_train, labels.shape[0]) val_mask = sample_mask(idx_val, labels.shape[0]) test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test =
np.zeros(labels.shape)
numpy.zeros
# usage: mpython lig2protDist.py t1_v178a import mdtraj as md import itertools import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import sys key=sys.argv[1] print('loading in {} trajectory...'.format(key)) t=md.load(key+'.dcd',top=key+'.psf',stride=100) print('assigning residue groups...') top = t.topology gbiAtoms = top.select("resname GBI1") group0 = [top.atom(gbiAtoms[0]).residue.index] ### mdtraj starts reading residue 0 as the first one (Phe 88) # so to get mdtraj values, take (protein resid)-88 group1 = list(range(11,38)) # 99-126 group2 = list(range(46,73)) # 134-161 group3 = list(range(80,104)) # 168-192 group4 = list(range(110,133)) # 198-221 print('calculating contacts from s1 helix...') pairs1 = list(itertools.product(group0, group1)) dists1, inds1 = md.compute_contacts(t,pairs1) # inds1 is same as pairs1 here print('calculating contacts from s2 helix...') pairs2 = list(itertools.product(group0, group2)) dists2, inds2 = md.compute_contacts(t,pairs2) print('calculating contacts from s3 helix...') pairs3 = list(itertools.product(group0, group3)) dists3, inds3 = md.compute_contacts(t,pairs3) print('calculating contacts from s4 helix...') pairs4 = list(itertools.product(group0, group4)) dists4, inds4 = md.compute_contacts(t,pairs4) ### take relative to reference coordinates print('doing the same with reference coordinates...') u=md.load('t1_begin.pdb') group0a = [u.topology.atom(u.topology.select("resname GBI1")[0]).residue.index] # assign pairs pairs1a = list(itertools.product(group0a, group1)) pairs2a = list(itertools.product(group0a, group2)) pairs3a = list(itertools.product(group0a, group3)) pairs4a = list(itertools.product(group0a, group4)) # compute distances dists1a, inds1a = md.compute_contacts(u,pairs1a) dists2a, inds2a = md.compute_contacts(u,pairs2a) dists3a, inds3a = md.compute_contacts(u,pairs3a) dists4a, inds4a = md.compute_contacts(u,pairs4a) # take relative difference rel1 = dists1-dists1a rel2 = dists2-dists2a rel3 = dists3-dists3a rel4 = dists4-dists4a print('plotting original distances...') plt.clf() fig = plt.figure(figsize=(12,24)) plt.subplot(4,1,1) plt.imshow(dists1.T,cmap='jet_r',aspect='auto',interpolation='none', vmin=0.0, vmax=2.30) plt.ylabel('residue in S1') ax = plt.gca(); ax.set_yticks(
np.arange(0, 27, 1)
numpy.arange
import copy import numpy as np import random from sklearn.utils import shuffle from ml_utils import ActivationFunctions, LossFunctions import time from serializer import Serializer class NamesToNationalityClassifier: def __init__(self, possible_labels, alpha=0.0001, hidden_dimensions=500, l2_lambda = 0.02, momentum=0.9, num_epoche=30): self.serializer = Serializer(possible_labels) self.alpha = alpha self.input_dimensions = self.serializer.input_dimensions self.hidden_dimensions = hidden_dimensions self.output_dimensions = self.serializer.target_dimensions self.training_to_validation_ratio = 0.7 # This means 70% of the dataset will be used for training, and 30% is for validation # Weight Initialization # We are using the Xavier initialization # Reference: https://medium.com/usf-msds/deep-learning-best-practices-1-weight-initialization-14e5c0295b94 self.weight_init_type = 'X1' self.W0 = np.random.randn(self.hidden_dimensions, self.hidden_dimensions) *
np.sqrt(1 / self.hidden_dimensions)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Calculation of RDMs from unbalanced datasets, i.e. datasets with different channels or numbers of measurements per dissimilarity @author: heiko """ from collections.abc import Iterable from copy import deepcopy import warnings import numpy as np from rsatoolbox.rdm.rdms import RDMs from rsatoolbox.rdm.rdms import concat from rsatoolbox.util.matrix import row_col_indicator_rdm def calc_rdm_unbalanced(dataset, method='euclidean', descriptor=None, noise=None, cv_descriptor=None, prior_lambda=1, prior_weight=0.1, weighting='number', enforce_same=False): """ calculate a RDM from an input dataset for unbalanced datasets. Args: dataset (rsatoolbox.data.dataset.DatasetBase): The dataset the RDM is computed from method (String): a description of the dissimilarity measure (e.g. 'Euclidean') descriptor (String): obs_descriptor used to define the rows/columns of the RDM noise (numpy.ndarray): dataset.n_channel x dataset.n_channel precision matrix used to calculate the RDM used only for Mahalanobis and Crossnobis estimators defaults to an identity matrix, i.e. euclidean distance Returns: rsatoolbox.rdm.rdms.RDMs: RDMs object with the one RDM """ if descriptor is None: dataset = deepcopy(dataset) dataset.obs_descriptors['index'] = np.arange(dataset.n_obs) descriptor = 'index' if isinstance(dataset, Iterable): rdms = [] for i_dat, dat in enumerate(dataset): if noise is None: rdms.append(calc_rdm_unbalanced( dat, method=method, descriptor=descriptor, cv_descriptor=cv_descriptor, prior_lambda=prior_lambda, prior_weight=prior_weight, weighting=weighting, enforce_same=enforce_same)) elif isinstance(noise, np.ndarray) and noise.ndim == 2: rdms.append(calc_rdm_unbalanced( dat, method=method, descriptor=descriptor, noise=noise, cv_descriptor=cv_descriptor, prior_lambda=prior_lambda, prior_weight=prior_weight, weighting=weighting, enforce_same=enforce_same)) elif isinstance(noise, Iterable): rdms.append(calc_rdm_unbalanced( dat, method=method, descriptor=descriptor, noise=noise[i_dat], cv_descriptor=cv_descriptor, prior_lambda=prior_lambda, prior_weight=prior_weight, weighting=weighting, enforce_same=enforce_same)) rdm = concat(rdms) else: rdm = [] weights = [] self_sim = [] if method == 'crossnobis' or method == 'poisson_cv': if cv_descriptor is None: if 'index' not in dataset.obs_descriptors.keys(): dataset.obs_descriptors['index'] = np.arange(dataset.n_obs) cv_descriptor = 'index' warnings.warn('cv_descriptor not set, using index for now.' + 'This will only remove self-similarities.' + 'Effectively this assumes independent trials') unique_cond = set(dataset.obs_descriptors[descriptor]) for i, i_des in enumerate(unique_cond): v, _ = calc_one_similarity( dataset, descriptor, i_des, i_des, method=method, noise=noise, weighting=weighting, prior_lambda=prior_lambda, prior_weight=prior_weight, cv_descriptor=cv_descriptor) self_sim.append(v) for j, j_des in enumerate(unique_cond): if j > i: v, w = calc_one_similarity( dataset, descriptor, i_des, j_des, method=method, noise=noise, weighting=weighting, prior_lambda=prior_lambda, prior_weight=prior_weight, cv_descriptor=cv_descriptor) rdm.append(v) weights.append(w) row_idx, col_idx = row_col_indicator_rdm(len(unique_cond)) self_sim = np.array(self_sim) rdm = np.array(rdm) rdm = row_idx @ self_sim + col_idx @ self_sim - 2 * rdm rdm = RDMs( dissimilarities=np.array([rdm]), dissimilarity_measure=method, rdm_descriptors=deepcopy(dataset.descriptors)) rdm.pattern_descriptors[descriptor] = list(unique_cond) rdm.rdm_descriptors['weights'] = [weights] return rdm def _check_noise(noise, n_channel): """ checks that a noise pattern is a matrix with correct dimension n_channel x n_channel Args: noise: noise input to be checked Returns: noise(np.ndarray): n_channel x n_channel noise precision matrix """ if noise is None: pass elif isinstance(noise, np.ndarray) and noise.ndim == 2: assert np.all(noise.shape == (n_channel, n_channel)) elif isinstance(noise, Iterable): for i, _ in enumerate(noise): noise[i] = _check_noise(noise[i], n_channel) elif isinstance(noise, dict): for key in noise.keys(): noise[key] = _check_noise(noise[key], n_channel) else: raise ValueError('noise(s) must have shape n_channel x n_channel') return noise def calc_one_similarity_small( dataset, descriptor, i_des, j_des, method='euclidean', noise=None, weighting='number', prior_lambda=1, prior_weight=0.1): """ finds all pairs of vectors to be compared and calculates one similarity Args: dataset (rsatoolbox.data.DatasetBase): dataset to extract from descriptor (String): key for the descriptor defining the conditions i_des : descriptor value the value of the first condition j_des : descriptor value the value of the second condition noise : numpy.ndarray (n_channels x n_channels), optional the covariance or precision matrix over channels necessary for calculation of mahalanobis distances Returns: (np.ndarray, np.ndarray) : (value, weight) value are the dissimilarities weight is the weight for the samples """ data_i = dataset.subset_obs(descriptor, i_des) data_j = dataset.subset_obs(descriptor, j_des) values = [] weights = [] for vec_i in data_i.measurements: for vec_j in data_j.measurements: finite = np.isfinite(vec_i) & np.isfinite(vec_j) if noise is not None: noise_small = noise[finite][:, finite] else: noise_small = None if np.any(finite): if weighting == 'number': weight = np.sum(finite) elif weighting == 'equal': weight = 1 sim = similarity( vec_i[finite], vec_j[finite], method, prior_lambda=prior_lambda, prior_weight=prior_weight, noise=noise_small) \ / np.sum(finite) values.append(sim) weights.append(weight) weights = np.array(weights) values = np.array(values) if np.sum(weights) > 0: weight = np.sum(weights) value = np.sum(weights * values) / weight else: value = np.nan weight = 0 return value, weight def calc_one_similarity(dataset, descriptor, i_des, j_des, method='euclidean', noise=None, weighting='number', prior_lambda=1, prior_weight=0.1, cv_descriptor=None): """ finds all pairs of vectors to be compared and calculates one distance Args: dataset (rsatoolbox.data.DatasetBase): dataset to extract from descriptor (String): key for the descriptor defining the conditions i_des : descriptor value the value of the first condition j_des : descriptor value the value of the second condition noise : numpy.ndarray (n_channels x n_channels), optional the covariance or precision matrix over channels necessary for calculation of mahalanobis distances Returns: (np.ndarray, np.ndarray) : (value, weight) value is the dissimilarity weight is the weight of the samples """ data_i = dataset.subset_obs(descriptor, i_des) data_j = dataset.subset_obs(descriptor, j_des) values = [] weights = [] for i in range(data_i.n_obs): for j in range(data_j.n_obs): if cv_descriptor is None: accepted = True else: if (data_i.obs_descriptors[cv_descriptor][i] == data_j.obs_descriptors[cv_descriptor][j]): accepted = False else: accepted = True if accepted: vec_i = data_i.measurements[i] vec_j = data_j.measurements[j] finite = np.isfinite(vec_i) & np.isfinite(vec_j) if np.any(finite): if weighting == 'number': weight = np.sum(finite) elif weighting == 'equal': weight = 1 sim = similarity( vec_i[finite], vec_j[finite], method, noise=noise, prior_lambda=prior_lambda, prior_weight=prior_weight) \ / np.sum(finite) values.append(sim) weights.append(weight) weights = np.array(weights) values = np.array(values) if np.sum(weights) > 0: weight = np.sum(weights) value = np.sum(weights * values) / weight else: value = np.nan weight = 0 return value, weight def calc_one_dissimilarity_cv(dataset, descriptor, i_des, j_des, method='euclidean', noise=None, weighting='number', prior_lambda=1, prior_weight=0.1, cv_descriptor=None, enforce_same=False): """ finds all pairs of vectors to be compared and calculates one distance Args: dataset (rsatoolbox.data.DatasetBase): dataset to extract from descriptor (String): key for the descriptor defining the conditions i_des : descriptor value the value of the first condition j_des : descriptor value the value of the second condition noise : numpy.ndarray (n_channels x n_channels), optional the covariance or precision matrix over channels necessary for calculation of mahalanobis distances Returns: (np.ndarray, np.ndarray) : (value, weight) value is the dissimilarity weight is the weight of the samples """ data_i = dataset.subset_obs(descriptor, i_des) data_j = dataset.subset_obs(descriptor, j_des) values = [] weights = [] for i in range(data_i.n_obs): for j in range(data_j.n_obs): for k in range(i + 1, data_i.n_obs): for l in range(j + 1, data_j.n_obs): if cv_descriptor is None: accepted = True else: if (data_i.obs_descriptors[cv_descriptor][i] == data_i.obs_descriptors[cv_descriptor][k]): accepted = False elif (data_j.obs_descriptors[cv_descriptor][j] == data_j.obs_descriptors[cv_descriptor][l]): accepted = False elif (data_i.obs_descriptors[cv_descriptor][i] == data_j.obs_descriptors[cv_descriptor][l]): accepted = False elif (data_j.obs_descriptors[cv_descriptor][j] == data_i.obs_descriptors[cv_descriptor][k]): accepted = False else: accepted = True if enforce_same: if (data_i.obs_descriptors[cv_descriptor][i] != data_j.obs_descriptors[cv_descriptor][j]): accepted = False if (data_i.obs_descriptors[cv_descriptor][k] != data_j.obs_descriptors[cv_descriptor][l]): accepted = False if accepted: vec_i = data_i.measurements[i] vec_j = data_j.measurements[j] vec_k = data_i.measurements[k] vec_l = data_j.measurements[l] finite = np.isfinite(vec_i) & np.isfinite(vec_j) \ & np.isfinite(vec_k) & np.isfinite(vec_l) if np.any(finite): if weighting == 'number': weight = np.sum(finite) elif weighting == 'equal': weight = 1 dissim = dissimilarity_cv( vec_i[finite], vec_j[finite], vec_k[finite], vec_l[finite], method, noise=noise, prior_lambda=prior_lambda, prior_weight=prior_weight) \ / np.sum(finite) values.append(dissim) weights.append(weight) weights =
np.array(weights)
numpy.array
import cv2 as cv import numpy as np import os import math def softmax(x): return np.exp(x) / np.sum(np.exp(x), axis=0) def load_img(dir): ## 载入图片 img_name = os.listdir(dir) img_num = len(img_name) imgs = [] for i in range(img_num): img = cv.imread(dir+'/'+img_name[i], 1) img = cv.normalize(img, None, 0, 1, cv.NORM_MINMAX, cv.CV_32F) imgs.append(img) return imgs def cal_saturation(src): ## 计算饱和度 return np.std(src, axis=2) def cal_contrast(src): ## 计算对比度 gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) ker = np.float32([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) lap = abs(cv.filter2D(gray, -1, kernel=ker)) return lap def cal_wellexposedness(src, sigma=0.2): ## 计算曝光度 w = np.exp(-0.5 * (src - 0.5)**2 / sigma**2) w =
np.prod(w, axis=2)
numpy.prod
from __future__ import division import itertools import numpy as np import sys from collections import namedtuple from numba import unittest_support as unittest from numba import njit, typeof, types, typing, typeof, ir, utils, bytecode from .support import TestCase, tag from numba.array_analysis import EquivSet, ArrayAnalysis from numba.compiler import Pipeline, Flags, _PipelineManager from numba.targets import cpu, registry from numba.numpy_support import version as numpy_version from numba.ir_utils import remove_dead # for parallel tests, marking that Windows with Python 2.7 is not supported _windows_py27 = (sys.platform.startswith('win32') and sys.version_info[:2] == (2, 7)) _32bit = sys.maxsize <= 2 ** 32 _reason = 'parfors not supported' skip_unsupported = unittest.skipIf(_32bit or _windows_py27, _reason) class TestEquivSet(TestCase): """ Test array_analysis.EquivSet. """ @tag('important') def test_insert_equiv(self): s1 = EquivSet() s1.insert_equiv('a', 'b') self.assertTrue(s1.is_equiv('a', 'b')) self.assertTrue(s1.is_equiv('b', 'a')) s1.insert_equiv('c', 'd') self.assertTrue(s1.is_equiv('c', 'd')) self.assertFalse(s1.is_equiv('c', 'a')) s1.insert_equiv('a', 'c') self.assertTrue(s1.is_equiv('a', 'b', 'c', 'd')) self.assertFalse(s1.is_equiv('a', 'e')) @tag('important') def test_intersect(self): s1 = EquivSet() s2 = EquivSet() r = s1.intersect(s2) self.assertTrue(r.is_empty()) s1.insert_equiv('a', 'b') r = s1.intersect(s2) self.assertTrue(r.is_empty()) s2.insert_equiv('b', 'c') r = s1.intersect(s2) self.assertTrue(r.is_empty()) s2.insert_equiv('d', 'a') r = s1.intersect(s2) self.assertTrue(r.is_empty()) s1.insert_equiv('a', 'e') s2.insert_equiv('c', 'd') r = s1.intersect(s2) self.assertTrue(r.is_equiv('a', 'b')) self.assertFalse(r.is_equiv('a', 'e')) self.assertFalse(r.is_equiv('c', 'd')) class ArrayAnalysisTester(Pipeline): @classmethod def mk_pipeline(cls, args, return_type=None, flags=None, locals={}, library=None, typing_context=None, target_context=None): if not flags: flags = Flags() flags.nrt = True if typing_context is None: typing_context = registry.cpu_target.typing_context if target_context is None: target_context = registry.cpu_target.target_context return cls(typing_context, target_context, library, args, return_type, flags, locals) def compile_to_ir(self, func, test_idempotence=None): """ Populate and run compiler pipeline """ self.func_id = bytecode.FunctionIdentity.from_function(func) try: bc = self.extract_bytecode(self.func_id) except BaseException as e: raise e self.bc = bc self.lifted = () self.lifted_from = None pm = _PipelineManager() pm.create_pipeline("nopython") if self.func_ir is None: pm.add_stage(self.stage_analyze_bytecode, "analyzing bytecode") pm.add_stage(self.stage_process_ir, "processing IR") if not self.flags.no_rewrites: if self.status.can_fallback: pm.add_stage( self.stage_preserve_ir, "preserve IR for fallback") pm.add_stage(self.stage_generic_rewrites, "nopython rewrites") pm.add_stage( self.stage_inline_pass, "inline calls to locally defined closures") pm.add_stage(self.stage_nopython_frontend, "nopython frontend") pm.add_stage(self.stage_annotate_type, "annotate type") if not self.flags.no_rewrites: pm.add_stage(self.stage_nopython_rewrites, "nopython rewrites") func_ir_copies = [] def stage_array_analysis(): self.array_analysis = ArrayAnalysis(self.typingctx, self.func_ir, self.type_annotation.typemap, self.type_annotation.calltypes) self.array_analysis.run(self.func_ir.blocks) func_ir_copies.append(self.func_ir.copy()) if test_idempotence and len(func_ir_copies) > 1: test_idempotence(func_ir_copies) pm.add_stage(stage_array_analysis, "analyze array equivalences") if test_idempotence: # Do another pass of array analysis to test idempontence pm.add_stage(stage_array_analysis, "analyze array equivalences") pm.finalize() res = pm.run(self.status) return self.array_analysis class TestArrayAnalysis(TestCase): def compare_ir(self, ir_list): outputs = [] for func_ir in ir_list: remove_dead(func_ir.blocks, func_ir.arg_names, func_ir) output = utils.StringIO() func_ir.dump(file=output) outputs.append(output.getvalue()) self.assertTrue(len(set(outputs)) == 1) # assert all outputs are equal def _compile_and_test(self, fn, arg_tys, asserts=[], equivs=[], idempotent=True): """ Compile the given function and get its IR. """ test_pipeline = ArrayAnalysisTester.mk_pipeline(arg_tys) test_idempotence = self.compare_ir if idempotent else lambda x:() analysis = test_pipeline.compile_to_ir(fn, test_idempotence) if equivs: for func in equivs: # only test the equiv_set of the first block func(analysis.equiv_sets[0]) if asserts == None: self.assertTrue(self._has_no_assertcall(analysis.func_ir)) else: for func in asserts: func(analysis.func_ir, analysis.typemap) def _has_assertcall(self, func_ir, typemap, args): msg = "Sizes of {} do not match".format(', '.join(args)) for label, block in func_ir.blocks.items(): for expr in block.find_exprs(op='call'): fn = func_ir.get_definition(expr.func.name) if isinstance(fn, ir.Global) and fn.name == 'assert_equiv': typ = typemap[expr.args[0].name] if typ.value.startswith(msg): return True return False def _has_shapecall(self, func_ir, x): for label, block in func_ir.blocks.items(): for expr in block.find_exprs(op='getattr'): if expr.attr == 'shape': y = func_ir.get_definition(expr.value, lhs_only=True) z = func_ir.get_definition(x, lhs_only=True) y = y.name if isinstance(y, ir.Var) else y z = z.name if isinstance(z, ir.Var) else z if y == z: return True return False def _has_no_assertcall(self, func_ir): for label, block in func_ir.blocks.items(): for expr in block.find_exprs(op='call'): fn = func_ir.get_definition(expr.func.name) if isinstance(fn, ir.Global) and fn.name == 'assert_equiv': return False return True def with_assert(self, *args): return lambda func_ir, typemap: self.assertTrue( self._has_assertcall(func_ir, typemap, args)) def without_assert(self, *args): return lambda func_ir, typemap: self.assertFalse( self._has_assertcall(func_ir, typemap, args)) def with_equiv(self, *args): def check(equiv_set): n = len(args) for i in range(n - 1): if not equiv_set.is_equiv(args[i], args[n - 1]): return False return True return lambda equiv_set: self.assertTrue(check(equiv_set)) def without_equiv(self, *args): def check(equiv_set): n = len(args) for i in range(n - 1): if equiv_set.is_equiv(args[i], args[n - 1]): return False return True return lambda equiv_set: self.assertTrue(check(equiv_set)) def with_shapecall(self, x): return lambda func_ir, s: self.assertTrue(self._has_shapecall(func_ir, x)) def without_shapecall(self, x): return lambda func_ir, s: self.assertFalse(self._has_shapecall(func_ir, x)) def test_base_cases(self): def test_0(): a = np.zeros(0) b = np.zeros(1) m = 0 n = 1 c = np.zeros((m, n)) return self._compile_and_test(test_0, (), equivs=[self.with_equiv('a', (0,)), self.with_equiv('b', (1,)), self.with_equiv('c', (0, 1))]) def test_1(n): a = np.zeros(n) b = np.zeros(n) return a + b self._compile_and_test(test_1, (types.intp,), asserts=None) def test_2(m, n): a = np.zeros(n) b = np.zeros(m) return a + b self._compile_and_test(test_2, (types.intp, types.intp), asserts=[self.with_assert('a', 'b')]) def test_3(n): a = np.zeros(n) return a + n self._compile_and_test(test_3, (types.intp,), asserts=None) def test_4(n): a = np.zeros(n) b = a + 1 c = a + 2 return a + c self._compile_and_test(test_4, (types.intp,), asserts=None) def test_5(n): a = np.zeros((n, n)) m = n b = np.zeros((m, n)) return a + b self._compile_and_test(test_5, (types.intp,), asserts=None) def test_6(m, n): a = np.zeros(n) b = np.zeros(m) d = a + b e = a - b return d + e self._compile_and_test(test_6, (types.intp, types.intp), asserts=[self.with_assert('a', 'b'), self.without_assert('d', 'e')]) def test_7(m, n): a = np.zeros(n) b = np.zeros(m) if m == 10: d = a + b else: d = a - b return d + a self._compile_and_test(test_7, (types.intp, types.intp), asserts=[self.with_assert('a', 'b'), self.without_assert('d', 'a')]) def test_8(m, n): a = np.zeros(n) b = np.zeros(m) if m == 10: d = b + a else: d = a + a return b + d self._compile_and_test(test_8, (types.intp, types.intp), asserts=[self.with_assert('b', 'a'), self.with_assert('b', 'd')]) def test_9(m): A = np.ones(m) s = 0 while m < 2: m += 1 B = np.ones(m) s += np.sum(A + B) return s self._compile_and_test(test_9, (types.intp,), asserts=[self.with_assert('A', 'B')]) def test_10(m, n): p = m - 1 q = n + 1 r = q + 1 A = np.zeros(p) B = np.zeros(q) C = np.zeros(r) D = np.zeros(m) s = np.sum(A + B) t = np.sum(C + D) return s + t self._compile_and_test(test_10, (types.intp,types.intp,), asserts=[self.with_assert('A', 'B'), self.without_assert('C', 'D')]) T = namedtuple("T", ['a','b']) def test_namedtuple(n): r = T(n, n) return r[0] self._compile_and_test(test_namedtuple, (types.intp,), equivs=[self.with_equiv('r', ('n', 'n'))],) def test_shape(A): (m, n) = A.shape B = np.ones((m, n)) return A + B self._compile_and_test(test_shape, (types.Array(types.intp, 2, 'C'),), asserts=None) def test_cond(l, m, n): A = np.ones(l) B = np.ones(m) C = np.ones(n) if l == m: r = np.sum(A + B) else: r = 0 if m != n: s = 0 else: s = np.sum(B + C) t = 0 if l == m: if m == n: t = np.sum(A + B + C) return r + s + t self._compile_and_test(test_cond, (types.intp, types.intp, types.intp), asserts=None) def test_assert_1(m, n): assert(m == n) A = np.ones(m) B = np.ones(n) return np.sum(A + B) self._compile_and_test(test_assert_1, (types.intp, types.intp), asserts=None) def test_assert_2(A, B): assert(A.shape == B.shape) return np.sum(A + B) self._compile_and_test(test_assert_2, (types.Array(types.intp, 1, 'C'), types.Array(types.intp, 1, 'C'),), asserts=None) self._compile_and_test(test_assert_2, (types.Array(types.intp, 2, 'C'), types.Array(types.intp, 2, 'C'),), asserts=None) # expected failure with self.assertRaises(AssertionError) as raises: self._compile_and_test(test_assert_2, (types.Array(types.intp, 1, 'C'), types.Array(types.intp, 2, 'C'),), asserts=None) msg = "Dimension mismatch" self.assertIn(msg, str(raises.exception)) def test_stencilcall(self): from numba import stencil @stencil def kernel_1(a): return 0.25 * (a[0,1] + a[1,0] + a[0,-1] + a[-1,0]) def test_1(n): a = np.ones((n,n)) b = kernel_1(a) return a + b self._compile_and_test(test_1, (types.intp,), equivs=[self.with_equiv('a', 'b')], asserts=[self.without_assert('a', 'b')]) def test_2(n): a = np.ones((n,n)) b = np.ones((n+1,n+1)) kernel_1(a, out=b) return a self._compile_and_test(test_2, (types.intp,), equivs=[self.without_equiv('a', 'b')]) @stencil(standard_indexing=('c',)) def kernel_2(a, b, c): return a[0,1,0] + b[0,-1,0] + c[0] def test_3(n): a = np.arange(64).reshape(4,8,2) b = np.arange(64).reshape(n,8,2) u = np.zeros(1) v = kernel_2(a, b, u) return v # standard indexed arrays are not considered in size equivalence self._compile_and_test(test_3, (types.intp,), equivs=[self.with_equiv('a', 'b', 'v'), self.without_equiv('a', 'u')], asserts=[self.with_assert('a', 'b')]) def test_slice(self): def test_1(m, n): A = np.zeros(m) B = np.zeros(n) s = np.sum(A + B) C = A[1:m-1] D = B[1:n-1] t = np.sum(C + D) return s + t self._compile_and_test(test_1, (types.intp,types.intp,), asserts=[self.with_assert('A', 'B'), self.without_assert('C', 'D')], idempotent=False) def test_2(m): A = np.zeros(m) B = A[0:m-3] C = A[1:m-2] D = A[2:m-1] E = B + C return D + E self._compile_and_test(test_2, (types.intp,), asserts=[self.without_assert('B', 'C'), self.without_assert('D', 'E')], idempotent=False) def test_3(m): A = np.zeros((m,m)) B = A[0:m-2,0:m-2] C = A[1:m-1,1:m-1] E = B + C return E self._compile_and_test(test_3, (types.intp,), asserts=[self.without_assert('B', 'C')], idempotent=False) def test_4(m): A = np.zeros((m,m)) B = A[0:m-2,:] C = A[1:m-1,:] E = B + C return E self._compile_and_test(test_4, (types.intp,), asserts=[self.without_assert('B', 'C')], idempotent=False) def test_5(m,n): A = np.zeros(m) B = np.zeros(m) B[0:m-2] = A[1:m-1] C = np.zeros(n) D = A[1:m-1] C[0:n-2] = D # B and C are not necessarily of the same size because we can't # derive m == n from (m-2) % m == (n-2) % n return B + C self._compile_and_test(test_5, (types.intp,types.intp), asserts=[self.without_assert('B', 'A'), self.with_assert('C', 'D'), self.with_assert('B', 'C')], idempotent=False) def test_6(m): A = np.zeros((m,m)) B = A[0:m-2,:-1] C = A[1:m-1,:-1] E = B + C return E self._compile_and_test(test_6, (types.intp,), asserts=[self.without_assert('B', 'C')], idempotent=False) def test_7(m): A = np.zeros((m,m)) B = A[0:m-2,-3:-1] C = A[1:m-1,-4:-2] E = B + C return E self._compile_and_test(test_7, (types.intp,), asserts=[self.without_assert('B', 'C')], idempotent=False) def test_8(m): A = np.zeros((m,m)) B = A[:m-2,0:] C = A[1:-1,:] E = B + C return E self._compile_and_test(test_8, (types.intp,), asserts=[self.without_assert('B', 'C')], idempotent=False) def test_numpy_calls(self): def test_zeros(n): a = np.zeros(n) b = np.zeros((n, n)) c = np.zeros(shape=(n, n)) self._compile_and_test(test_zeros, (types.intp,), equivs=[self.with_equiv('a', 'n'), self.with_equiv('b', ('n', 'n')), self.with_equiv('b', 'c')]) def test_0d_array(n): a = np.array(1) b = np.ones(2) return a + b self._compile_and_test(test_0d_array, (types.intp,), equivs=[self.without_equiv('a', 'b')], asserts=[self.without_shapecall('a')]) def test_ones(n): a = np.ones(n) b = np.ones((n, n)) c = np.ones(shape=(n, n)) self._compile_and_test(test_ones, (types.intp,), equivs=[self.with_equiv('a', 'n'), self.with_equiv('b', ('n', 'n')), self.with_equiv('b', 'c')]) def test_empty(n): a = np.empty(n) b = np.empty((n, n)) c = np.empty(shape=(n, n)) self._compile_and_test(test_empty, (types.intp,), equivs=[self.with_equiv('a', 'n'), self.with_equiv('b', ('n', 'n')), self.with_equiv('b', 'c')]) def test_eye(n): a = np.eye(n) b = np.eye(N=n) c = np.eye(N=n, M=n) d = np.eye(N=n, M=n + 1) self._compile_and_test(test_eye, (types.intp,), equivs=[self.with_equiv('a', ('n', 'n')), self.with_equiv('b', ('n', 'n')), self.with_equiv('b', 'c'), self.without_equiv('b', 'd')]) def test_identity(n): a = np.identity(n) self._compile_and_test(test_identity, (types.intp,), equivs=[self.with_equiv('a', ('n', 'n'))]) def test_diag(n): a = np.identity(n) b = np.diag(a) c = np.diag(b) d = np.diag(a, k=1) self._compile_and_test(test_diag, (types.intp,), equivs=[self.with_equiv('b', ('n',)), self.with_equiv('c', ('n', 'n'))], asserts=[self.with_shapecall('d'), self.without_shapecall('c')]) def test_array_like(a): b = np.empty_like(a) c = np.zeros_like(a) d = np.ones_like(a) e = np.full_like(a, 1) f = np.asfortranarray(a) self._compile_and_test(test_array_like, (types.Array(types.intp, 2, 'C'),), equivs=[ self.with_equiv('a', 'b', 'd', 'e', 'f')], asserts=[self.with_shapecall('a'), self.without_shapecall('b')]) def test_reshape(n): a = np.ones(n * n) b = a.reshape((n, n)) return a.sum() + b.sum() self._compile_and_test(test_reshape, (types.intp,), equivs=[self.with_equiv('b', ('n', 'n'))], asserts=[self.without_shapecall('b')]) def test_transpose(m, n): a = np.ones((m, n)) b = a.T c = a.transpose() # Numba njit cannot compile explicit transpose call! # c = np.transpose(b) self._compile_and_test(test_transpose, (types.intp, types.intp), equivs=[self.with_equiv('a', ('m', 'n')), self.with_equiv('b', ('n', 'm')), self.with_equiv('c', ('n', 'm'))]) def test_transpose_3d(m, n, k): a = np.ones((m, n, k)) b = a.T c = a.transpose() d = a.transpose(2,0,1) dt = a.transpose((2,0,1)) e = a.transpose(0,2,1) et = a.transpose((0,2,1)) # Numba njit cannot compile explicit transpose call! # c = np.transpose(b) self._compile_and_test(test_transpose_3d, (types.intp, types.intp, types.intp), equivs=[self.with_equiv('a', ('m', 'n', 'k')), self.with_equiv('b', ('k', 'n', 'm')), self.with_equiv('c', ('k', 'n', 'm')), self.with_equiv('d', ('k', 'm', 'n')), self.with_equiv('dt', ('k', 'm', 'n')), self.with_equiv('e', ('m', 'k', 'n')), self.with_equiv('et', ('m', 'k', 'n'))]) def test_random(n): a0 = np.random.rand(n) a1 = np.random.rand(n, n) b0 = np.random.randn(n) b1 = np.random.randn(n, n) c0 = np.random.ranf(n) c1 = np.random.ranf((n, n)) c2 = np.random.ranf(size=(n, n)) d0 = np.random.random_sample(n) d1 = np.random.random_sample((n, n)) d2 = np.random.random_sample(size=(n, n)) e0 = np.random.sample(n) e1 = np.random.sample((n, n)) e2 = np.random.sample(size=(n, n)) f0 = np.random.random(n) f1 = np.random.random((n, n)) f2 = np.random.random(size=(n, n)) g0 = np.random.standard_normal(n) g1 = np.random.standard_normal((n, n)) g2 = np.random.standard_normal(size=(n, n)) h0 = np.random.chisquare(10, n) h1 = np.random.chisquare(10, (n, n)) h2 = np.random.chisquare(10, size=(n, n)) i0 = np.random.weibull(10, n) i1 = np.random.weibull(10, (n, n)) i2 = np.random.weibull(10, size=(n, n)) j0 = np.random.power(10, n) j1 = np.random.power(10, (n, n)) j2 = np.random.power(10, size=(n, n)) k0 = np.random.geometric(0.1, n) k1 = np.random.geometric(0.1, (n, n)) k2 = np.random.geometric(0.1, size=(n, n)) l0 = np.random.exponential(10, n) l1 = np.random.exponential(10, (n, n)) l2 = np.random.exponential(10, size=(n, n)) m0 = np.random.poisson(10, n) m1 = np.random.poisson(10, (n, n)) m2 = np.random.poisson(10, size=(n, n)) n0 =
np.random.rayleigh(10, n)
numpy.random.rayleigh
""" Retrain the YOLO model for your own dataset. """ from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import numpy as np import keras.backend as K from keras.layers import Input, Lambda from keras.models import Model from keras.optimizers import Adam from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from yolo3.model import preprocess_true_boxes, yolo_body, yolo_loss from yolo3.utils import get_random_data class YoloModel(): def __init__(self): self.JPGPaths = 'D://VOCdevkit/VOC2020/JPEGImages/train.jpg' self.TXTPaths = 'D://VOCdevkit/VOC2020/ImageSets/Main/train.txt' self.XMLPaths = 'D://VOCdevkit/VOC2020/Annotations/%s.xml' self.classes = ["大巴车", "公交车", "绿色渣土车", "红色渣土车", "灰色渣土车", "蓝色渣土车", "危险品罐车", "环卫车", "厢式货车", "水泥搅拌车", "工程车"] self.annotation_path = '2020_train.txt' self.log_dir = 'logs/000/' self.classes_path = 'dabache,gongjiaoche,greenzhatuche,redzhatuche,grayzhatuche,bluezhatuche,weixianpinche,huanweiche,xiangshihuoche,shuinijiaobanche,gongchengche' self.anchors_path = "10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326" self.weights_path = 'logs/000/ep115-loss10.940-val_loss11.115.h5' # 放置最新的 h5 文件 self.get_annotation() # 转换 文件路径 self.anchors = self.get_anchors() self.num_anchors = len(self.anchors) self.class_names = self.get_classes() self.num_classes = len(self.class_names) self.input_shape = (416, 416) self.val_split = 0.1 # 测试集训练集比例 self.batch_size = 2 # note that more GPU memory is required after unfreezing the body def _main(self): model = self.create_model(freeze_body=2, weights_path=self.weights_path) # make sure you know what you freeze logging = TensorBoard(log_dir=self.log_dir) checkpoint = ModelCheckpoint(self.log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', monitor='val_loss', save_weights_only=True, save_best_only=True, period=1) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) with open(self.annotation_path) as f: lines = f.readlines() np.random.seed(10101) np.random.shuffle(lines) np.random.seed(None) num_val = int(len(lines)*self.val_split) num_train = len(lines) - num_val if True: for i in range(len(model.layers)): model.layers[i].trainable = True model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change print('Unfreeze all of the layers.') print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, self.batch_size)) model.fit_generator(self.data_generator_wrapper(lines[:num_train], self.batch_size, self.input_shape, self.anchors, self.num_classes), steps_per_epoch=max(1, num_train//self.batch_size), validation_data=self.data_generator_wrapper(lines[num_train:], self.batch_size, self.input_shape, self.anchors, self.num_classes), validation_steps=max(1, num_val//self.batch_size), epochs=200, initial_epoch=100, callbacks=[logging, checkpoint, reduce_lr, early_stopping]) model.save_weights(self.log_dir + 'trained_weights_final.h5') # Further training if needed. def get_classes(self): '''loads the classes''' class_names = self.classes_path class_names =[str(x) for x in class_names.split(',')] return class_names def get_anchors(self): '''loads the anchors from a file''' anchors = self.anchors_path # anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def create_model(self, load_pretrained=True, freeze_body=2, weights_path='model_data/yolo_weights.h5'): '''create the training model''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = self.input_shape # multiple of 32, hw y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \ self.num_anchors//3, self.num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, self.num_anchors//3, self.num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format(self.num_anchors, self.num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Freeze darknet53 body or freeze all but 3 output layers. num = (185, len(model_body.layers)-3)[freeze_body-1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': self.anchors, 'num_classes': self.num_classes, 'ignore_thresh': 0.5})( [*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model def data_generator(self, annotation_lines, batch_size, input_shape, anchors, num_classes): '''data generator for fit_generator''' n = len(annotation_lines) i = 0 while True: image_data = [] box_data = [] for b in range(batch_size): if i==0: np.random.shuffle(annotation_lines) image, box = get_random_data(annotation_lines[i], input_shape, random=True) image_data.append(image) box_data.append(box) i = (i+1) % n image_data = np.array(image_data) box_data = np.array(box_data) y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) yield [image_data, *y_true],
np.zeros(batch_size)
numpy.zeros
#!/usr/bin/env python import pytest import os import shutil import json import numpy as np import cv2 import sys import pandas as pd from plotnine import ggplot from plantcv import plantcv as pcv import plantcv.learn import plantcv.parallel import plantcv.utils # Import matplotlib and use a null Template to block plotting to screen # This will let us test debug = "plot" import matplotlib import dask from dask.distributed import Client PARALLEL_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "parallel_data") TEST_TMPDIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", ".cache") TEST_IMG_DIR = "images" TEST_IMG_DIR2 = "images_w_date" TEST_SNAPSHOT_DIR = "snapshots" TEST_PIPELINE = os.path.join(PARALLEL_TEST_DATA, "plantcv-script.py") META_FIELDS = {"imgtype": 0, "camera": 1, "frame": 2, "zoom": 3, "lifter": 4, "gain": 5, "exposure": 6, "id": 7} VALID_META = { # Camera settings "camera": { "label": "camera identifier", "datatype": "<class 'str'>", "value": "none" }, "imgtype": { "label": "image type", "datatype": "<class 'str'>", "value": "none" }, "zoom": { "label": "camera zoom setting", "datatype": "<class 'str'>", "value": "none" }, "exposure": { "label": "camera exposure setting", "datatype": "<class 'str'>", "value": "none" }, "gain": { "label": "camera gain setting", "datatype": "<class 'str'>", "value": "none" }, "frame": { "label": "image series frame identifier", "datatype": "<class 'str'>", "value": "none" }, "lifter": { "label": "imaging platform height setting", "datatype": "<class 'str'>", "value": "none" }, # Date-Time "timestamp": { "label": "datetime of image", "datatype": "<class 'datetime.datetime'>", "value": None }, # Sample attributes "id": { "label": "image identifier", "datatype": "<class 'str'>", "value": "none" }, "plantbarcode": { "label": "plant barcode identifier", "datatype": "<class 'str'>", "value": "none" }, "treatment": { "label": "treatment identifier", "datatype": "<class 'str'>", "value": "none" }, "cartag": { "label": "plant carrier identifier", "datatype": "<class 'str'>", "value": "none" }, # Experiment attributes "measurementlabel": { "label": "experiment identifier", "datatype": "<class 'str'>", "value": "none" }, # Other "other": { "label": "other identifier", "datatype": "<class 'str'>", "value": "none" } } METADATA_COPROCESS = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } METADATA_VIS_ONLY = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } METADATA_NIR_ONLY = { 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } # Set the temp directory for dask dask.config.set(temporary_directory=TEST_TMPDIR) # ########################## # Tests setup function # ########################## def setup_function(): if not os.path.exists(TEST_TMPDIR): os.mkdir(TEST_TMPDIR) # ############################## # Tests for the parallel subpackage # ############################## def test_plantcv_parallel_workflowconfig_save_config_file(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_save_config_file") os.mkdir(cache_dir) # Define output path/filename template_file = os.path.join(cache_dir, "config.json") # Create config instance config = plantcv.parallel.WorkflowConfig() # Save template file config.save_config(config_file=template_file) assert os.path.exists(template_file) def test_plantcv_parallel_workflowconfig_import_config_file(): # Define input path/filename config_file = os.path.join(PARALLEL_TEST_DATA, "workflow_config_template.json") # Create config instance config = plantcv.parallel.WorkflowConfig() # import config file config.import_config(config_file=config_file) assert config.cluster == "LocalCluster" def test_plantcv_parallel_workflowconfig_validate_config(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_validate_config") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir # Validate config assert config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_startdate(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_startdate") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.start_date = "2020-05-10" # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_enddate(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_enddate") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.end_date = "2020-05-10" config.timestampformat = "%Y%m%d" # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_metadata_terms(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_metadata_terms") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Set an incorrect metadata term config.filename_metadata.append("invalid") # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_filename_metadata(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_filename_metadata") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Do not set required filename_metadata # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_cluster(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_cluster") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Set invalid cluster type config.cluster = "MyCluster" # Validate config assert not config.validate_config() def test_plantcv_parallel_metadata_parser_snapshots(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshots", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_metadata_parser_snapshots_coimg(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshots_coimg", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "FAKE" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_metadata_parser_images(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014" config.end_date = "2014" config.timestampformat = '%Y' # no date in filename so check date range and date_format are ignored config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none'} } assert meta == expected config.include_all_subdirs = False meta = plantcv.parallel.metadata_parser(config=config) assert meta == expected def test_plantcv_parallel_metadata_parser_regex(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.delimiter = r'(VIS)_(SV)_(\d+)_(z1)_(h1)_(g0)_(e82)_(\d+)' meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none'} } assert meta == expected def test_plantcv_parallel_metadata_parser_images_outside_daterange(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR2) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_outside_daterange", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "timestamp"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "NIR"} config.start_date = "1970-01-01 00_00_00" config.end_date = "1970-01-01 00_00_00" config.timestampformat = "%Y-%m-%d %H_%M_%S" config.imgformat = "jpg" config.delimiter = r"(NIR)_(SV)_(\d)_(z1)_(h1)_(g0)_(e65)_(\d{4}-\d{2}-\d{2} \d{2}_\d{2}_\d{2})" meta = plantcv.parallel.metadata_parser(config=config) assert meta == {} def test_plantcv_parallel_metadata_parser_no_default_dates(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_no_default_dates", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS", "camera": "SV", "id": "117770"} config.start_date = None config.end_date = None config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_check_date_range_wrongdateformat(): start_date = 10 end_date = 10 img_time = '2010-10-10' with pytest.raises(SystemExit, match=r'does not match format'): date_format = '%Y%m%d' _ = plantcv.parallel.check_date_range( start_date, end_date, img_time, date_format) def test_plantcv_parallel_metadata_parser_snapshot_outside_daterange(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshot_outside_daterange", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "1970-01-01 00:00:00.0" config.end_date = "1970-01-01 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == {} def test_plantcv_parallel_metadata_parser_fail_images(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_fail_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"cartag": "VIS"} config.start_date = "1970-01-01 00:00:00.0" config.end_date = "1970-01-01 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_NIR_ONLY def test_plantcv_parallel_metadata_parser_images_with_frame(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_with_frame", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_metadata_parser_images_no_frame(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_no_frame", "output.json") config.filename_metadata = ["imgtype", "camera", "X", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': 'none', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': 'none', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_metadata_parser_images_no_camera(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_no_frame", "output.json") config.filename_metadata = ["imgtype", "X", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'none', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'none', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_job_builder_single_image(): # Create cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_job_builder_single_image") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(cache_dir, "output.json") config.tmp_dir = cache_dir config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.other_args = ["--other", "on"] config.writeimg = True jobs = plantcv.parallel.job_builder(meta=METADATA_VIS_ONLY, config=config) image_name = list(METADATA_VIS_ONLY.keys())[0] result_file = os.path.join(cache_dir, image_name + '.txt') expected = ['python', TEST_PIPELINE, '--image', METADATA_VIS_ONLY[image_name]['path'], '--outdir', cache_dir, '--result', result_file, '--writeimg', '--other', 'on'] if len(expected) != len(jobs[0]): assert False else: assert all([i == j] for i, j in zip(jobs[0], expected)) def test_plantcv_parallel_job_builder_coprocess(): # Create cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_job_builder_coprocess") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(cache_dir, "output.json") config.tmp_dir = cache_dir config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.other_args = ["--other", "on"] config.writeimg = True config.coprocess = "NIR" jobs = plantcv.parallel.job_builder(meta=METADATA_COPROCESS, config=config) img_names = list(METADATA_COPROCESS.keys()) vis_name = img_names[0] vis_path = METADATA_COPROCESS[vis_name]['path'] result_file = os.path.join(cache_dir, vis_name + '.txt') nir_name = img_names[1] coresult_file = os.path.join(cache_dir, nir_name + '.txt') expected = ['python', TEST_PIPELINE, '--image', vis_path, '--outdir', cache_dir, '--result', result_file, '--coresult', coresult_file, '--writeimg', '--other', 'on'] if len(expected) != len(jobs[0]): assert False else: assert all([i == j] for i, j in zip(jobs[0], expected)) def test_plantcv_parallel_multiprocess_create_dask_cluster_local(): client = plantcv.parallel.create_dask_cluster(cluster="LocalCluster", cluster_config={}) status = client.status client.shutdown() assert status == "running" def test_plantcv_parallel_multiprocess_create_dask_cluster(): client = plantcv.parallel.create_dask_cluster(cluster="HTCondorCluster", cluster_config={"cores": 1, "memory": "1GB", "disk": "1GB"}) status = client.status client.shutdown() assert status == "running" def test_plantcv_parallel_multiprocess_create_dask_cluster_invalid_cluster(): with pytest.raises(ValueError): _ = plantcv.parallel.create_dask_cluster(cluster="Skynet", cluster_config={}) def test_plantcv_parallel_convert_datetime_to_unixtime(): unix_time = plantcv.parallel.convert_datetime_to_unixtime(timestamp_str="1970-01-01", date_format="%Y-%m-%d") assert unix_time == 0 def test_plantcv_parallel_convert_datetime_to_unixtime_bad_strptime(): with pytest.raises(SystemExit): _ = plantcv.parallel.convert_datetime_to_unixtime(timestamp_str="1970-01-01", date_format="%Y-%m") def test_plantcv_parallel_multiprocess(): image_name = list(METADATA_VIS_ONLY.keys())[0] image_path = os.path.join(METADATA_VIS_ONLY[image_name]['path'], image_name) result_file = os.path.join(TEST_TMPDIR, image_name + '.txt') jobs = [['python', TEST_PIPELINE, '--image', image_path, '--outdir', TEST_TMPDIR, '--result', result_file, '--writeimg', '--other', 'on']] # Create a dask LocalCluster client client = Client(n_workers=1) plantcv.parallel.multiprocess(jobs, client=client) assert os.path.exists(result_file) def test_plantcv_parallel_process_results(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results") os.mkdir(cache_dir) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'appended_results.json')) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'appended_results.json')) # Assert that the output JSON file matches the expected output JSON file result_file = open(os.path.join(cache_dir, "appended_results.json"), "r") results = json.load(result_file) result_file.close() expected_file = open(os.path.join(PARALLEL_TEST_DATA, "appended_results.json")) expected = json.load(expected_file) expected_file.close() assert results == expected def test_plantcv_parallel_process_results_new_output(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results_new_output") os.mkdir(cache_dir) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'new_result.json')) # Assert output matches expected values result_file = open(os.path.join(cache_dir, "new_result.json"), "r") results = json.load(result_file) result_file.close() expected_file = open(os.path.join(PARALLEL_TEST_DATA, "new_result.json")) expected = json.load(expected_file) expected_file.close() assert results == expected def test_plantcv_parallel_process_results_valid_json(): # Test when the file is a valid json file but doesn't contain expected keys with pytest.raises(RuntimeError): plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(PARALLEL_TEST_DATA, "valid.json")) def test_plantcv_parallel_process_results_invalid_json(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results_invalid_json") os.mkdir(cache_dir) # Move the test data to the tmp directory shutil.copytree(os.path.join(PARALLEL_TEST_DATA, "bad_results"), os.path.join(cache_dir, "bad_results")) with pytest.raises(RuntimeError): plantcv.parallel.process_results(job_dir=os.path.join(cache_dir, "bad_results"), json_file=os.path.join(cache_dir, "bad_results", "invalid.txt")) # #################################################################################################################### # ########################################### PLANTCV MAIN PACKAGE ################################################### matplotlib.use('Template') TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") HYPERSPECTRAL_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "hyperspectral_data") HYPERSPECTRAL_DATA = "darkReference" HYPERSPECTRAL_WHITE = "darkReference_whiteReference" HYPERSPECTRAL_DARK = "darkReference_darkReference" HYPERSPECTRAL_HDR = "darkReference.hdr" HYPERSPECTRAL_MASK = "darkReference_mask.png" HYPERSPECTRAL_DATA_NO_DEFAULT = "darkReference2" HYPERSPECTRAL_HDR_NO_DEFAULT = "darkReference2.hdr" HYPERSPECTRAL_DATA_APPROX_PSEUDO = "darkReference3" HYPERSPECTRAL_HDR_APPROX_PSEUDO = "darkReference3.hdr" HYPERSPECTRAL_HDR_SMALL_RANGE = {'description': '{[HEADWALL Hyperspec III]}', 'samples': '800', 'lines': '1', 'bands': '978', 'header offset': '0', 'file type': 'ENVI Standard', 'interleave': 'bil', 'sensor type': 'Unknown', 'byte order': '0', 'default bands': '159,253,520', 'wavelength units': 'nm', 'wavelength': ['379.027', '379.663', '380.3', '380.936', '381.573', '382.209']} FLUOR_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "photosynthesis_data") FLUOR_IMG = "PSII_PSD_supopt_temp_btx623_22_rep1.DAT" TEST_COLOR_DIM = (2056, 2454, 3) TEST_GRAY_DIM = (2056, 2454) TEST_BINARY_DIM = TEST_GRAY_DIM TEST_INPUT_COLOR = "input_color_img.jpg" TEST_INPUT_GRAY = "input_gray_img.jpg" TEST_INPUT_GRAY_SMALL = "input_gray_img_small.jpg" TEST_INPUT_BINARY = "input_binary_img.png" # Image from http://www.libpng.org/pub/png/png-OwlAlpha.html # This image may be used, edited and reproduced freely. TEST_INPUT_RGBA = "input_rgba.png" TEST_INPUT_BAYER = "bayer_img.png" TEST_INPUT_ROI_CONTOUR = "input_roi_contour.npz" TEST_INPUT_ROI_HIERARCHY = "input_roi_hierarchy.npz" TEST_INPUT_CONTOURS = "input_contours.npz" TEST_INPUT_OBJECT_CONTOURS = "input_object_contours.npz" TEST_INPUT_OBJECT_HIERARCHY = "input_object_hierarchy.npz" TEST_VIS = "VIS_SV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR = "NIR_SV_0_z300_h1_g0_e15000_v500_93059.png" TEST_VIS_TV = "VIS_TV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR_TV = "NIR_TV_0_z300_h1_g0_e15000_v500_93059.png" TEST_INPUT_MASK = "input_mask_binary.png" TEST_INPUT_MASK_OOB = "mask_outbounds.png" TEST_INPUT_MASK_RESIZE = "input_mask_resize.png" TEST_INPUT_NIR_MASK = "input_nir.png" TEST_INPUT_FDARK = "FLUO_TV_dark.png" TEST_INPUT_FDARK_LARGE = "FLUO_TV_DARK_large" TEST_INPUT_FMIN = "FLUO_TV_min.png" TEST_INPUT_FMAX = "FLUO_TV_max.png" TEST_INPUT_FMASK = "FLUO_TV_MASK.png" TEST_INPUT_GREENMAG = "input_green-magenta.jpg" TEST_INPUT_MULTI = "multi_ori_image.jpg" TEST_INPUT_MULTI_MASK = "multi_ori_mask.jpg" TEST_INPUT_MULTI_OBJECT = "roi_objects.npz" TEST_INPUT_MULTI_CONTOUR = "multi_contours.npz" TEST_INPUT_ClUSTER_CONTOUR = "clusters_i.npz" TEST_INPUT_MULTI_HIERARCHY = "multi_hierarchy.npz" TEST_INPUT_VISUALIZE_CONTOUR = "roi_objects_visualize.npz" TEST_INPUT_VISUALIZE_HIERARCHY = "roi_obj_hierarchy_visualize.npz" TEST_INPUT_VISUALIZE_CLUSTERS = "clusters_i_visualize.npz" TEST_INPUT_VISUALIZE_BACKGROUND = "visualize_background_img.png" TEST_INPUT_GENOTXT = "cluster_names.txt" TEST_INPUT_GENOTXT_TOO_MANY = "cluster_names_too_many.txt" TEST_INPUT_CROPPED = 'cropped_img.jpg' TEST_INPUT_CROPPED_MASK = 'cropped-mask.png' TEST_INPUT_MARKER = 'seed-image.jpg' TEST_INPUT_SKELETON = 'input_skeleton.png' TEST_INPUT_SKELETON_PRUNED = 'input_pruned_skeleton.png' TEST_FOREGROUND = "TEST_FOREGROUND.jpg" TEST_BACKGROUND = "TEST_BACKGROUND.jpg" TEST_PDFS = "naive_bayes_pdfs.txt" TEST_PDFS_BAD = "naive_bayes_pdfs_bad.txt" TEST_VIS_SMALL = "setaria_small_vis.png" TEST_MASK_SMALL = "setaria_small_mask.png" TEST_VIS_COMP_CONTOUR = "setaria_composed_contours.npz" TEST_ACUTE_RESULT = np.asarray([[[119, 285]], [[151, 280]], [[168, 267]], [[168, 262]], [[171, 261]], [[224, 269]], [[246, 271]], [[260, 277]], [[141, 248]], [[183, 194]], [[188, 237]], [[173, 240]], [[186, 260]], [[147, 244]], [[163, 246]], [[173, 268]], [[170, 272]], [[151, 320]], [[195, 289]], [[228, 272]], [[210, 272]], [[209, 247]], [[210, 232]]]) TEST_VIS_SMALL_PLANT = "setaria_small_plant_vis.png" TEST_MASK_SMALL_PLANT = "setaria_small_plant_mask.png" TEST_VIS_COMP_CONTOUR_SMALL_PLANT = "setaria_small_plant_composed_contours.npz" TEST_SAMPLED_RGB_POINTS = "sampled_rgb_points.txt" TEST_TARGET_IMG = "target_img.png" TEST_TARGET_IMG_WITH_HEXAGON = "target_img_w_hexagon.png" TEST_TARGET_IMG_TRIANGLE = "target_img copy.png" TEST_SOURCE1_IMG = "source1_img.png" TEST_SOURCE2_IMG = "source2_img.png" TEST_TARGET_MASK = "mask_img.png" TEST_TARGET_IMG_COLOR_CARD = "color_card_target.png" TEST_SOURCE2_MASK = "mask2_img.png" TEST_TARGET_MATRIX = "target_matrix.npz" TEST_SOURCE1_MATRIX = "source1_matrix.npz" TEST_SOURCE2_MATRIX = "source2_matrix.npz" TEST_MATRIX_B1 = "matrix_b1.npz" TEST_MATRIX_B2 = "matrix_b2.npz" TEST_TRANSFORM1 = "transformation_matrix1.npz" TEST_MATRIX_M1 = "matrix_m1.npz" TEST_MATRIX_M2 = "matrix_m2.npz" TEST_S1_CORRECTED = "source_corrected.png" TEST_SKELETON_OBJECTS = "skeleton_objects.npz" TEST_SKELETON_HIERARCHIES = "skeleton_hierarchies.npz" TEST_THERMAL_ARRAY = "thermal_img.npz" TEST_THERMAL_IMG_MASK = "thermal_img_mask.png" TEST_INPUT_THERMAL_CSV = "FLIR2600.csv" PIXEL_VALUES = "pixel_inspector_rgb_values.txt" # ########################## # Tests for the main package # ########################## @pytest.mark.parametrize("debug", ["print", "plot"]) def test_plantcv_debug(debug, tmpdir): from plantcv.plantcv._debug import _debug # Create a test tmp directory img_outdir = tmpdir.mkdir("sub") pcv.params.debug = debug img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) _debug(visual=img, filename=os.path.join(img_outdir, TEST_INPUT_COLOR)) assert True @pytest.mark.parametrize("datatype,value", [[list, []], [int, 2], [float, 2.2], [bool, True], [str, "2"], [dict, {}], [tuple, ()], [None, None]]) def test_plantcv_outputs_add_observation(datatype, value): # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='type', scale='none', datatype=datatype, value=value, label=[]) assert outputs.observations["default"]["test"]["value"] == value def test_plantcv_outputs_add_observation_invalid_type(): # Create output instance outputs = pcv.Outputs() with pytest.raises(RuntimeError): outputs.add_observation(sample='default', variable='test', trait='test variable', method='type', scale='none', datatype=list, value=np.array([2]), label=[]) def test_plantcv_outputs_save_results_json_newfile(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.json") # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='test', scale='none', datatype=str, value="test", label="none") outputs.save_results(filename=outfile, outformat="json") with open(outfile, "r") as fp: results = json.load(fp) assert results["observations"]["default"]["test"]["value"] == "test" def test_plantcv_outputs_save_results_json_existing_file(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "data_results.txt") shutil.copyfile(os.path.join(TEST_DATA, "data_results.txt"), outfile) # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='test', scale='none', datatype=str, value="test", label="none") outputs.save_results(filename=outfile, outformat="json") with open(outfile, "r") as fp: results = json.load(fp) assert results["observations"]["default"]["test"]["value"] == "test" def test_plantcv_outputs_save_results_csv(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.csv") testfile = os.path.join(TEST_DATA, "data_results.csv") # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='string', trait='string variable', method='string', scale='none', datatype=str, value="string", label="none") outputs.add_observation(sample='default', variable='boolean', trait='boolean variable', method='boolean', scale='none', datatype=bool, value=True, label="none") outputs.add_observation(sample='default', variable='list', trait='list variable', method='list', scale='none', datatype=list, value=[1, 2, 3], label=[1, 2, 3]) outputs.add_observation(sample='default', variable='tuple', trait='tuple variable', method='tuple', scale='none', datatype=tuple, value=(1, 2), label=(1, 2)) outputs.add_observation(sample='default', variable='tuple_list', trait='list of tuples variable', method='tuple_list', scale='none', datatype=list, value=[(1, 2), (3, 4)], label=[1, 2]) outputs.save_results(filename=outfile, outformat="csv") with open(outfile, "r") as fp: results = fp.read() with open(testfile, "r") as fp: test_results = fp.read() assert results == test_results def test_plantcv_transform_warp_smaller(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) bimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY),-1) bimg_small = cv2.resize(bimg, (200,300)) #not sure why INTER_NEAREST doesn't preserve values bimg_small[bimg_small>0]=255 mrow, mcol = bimg_small.shape vrow, vcol, vdepth = img.shape pcv.params.debug = None mask_warped = pcv.transform.warp(bimg_small, img[:,:,2], pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) pcv.params.debug = 'plot' mask_warped_plot = pcv.transform.warp(bimg_small, img[:,:,2], pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) assert np.count_nonzero(mask_warped)==93142 assert np.count_nonzero(mask_warped_plot)==93142 def test_plantcv_transform_warp_larger(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) gimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY),-1) gimg_large = cv2.resize(gimg, (5000,7000)) mrow, mcol = gimg_large.shape vrow, vcol, vdepth = img.shape pcv.params.debug='print' mask_warped_print = pcv.transform.warp(gimg_large, img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) assert np.sum(mask_warped_print)==83103814 def test_plantcv_transform_warp_rgbimgerror(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) gimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY),-1) gimg_large = cv2.resize(gimg, (5000,7000)) mrow, mcol = gimg_large.shape vrow, vcol, vdepth = img.shape with pytest.raises(RuntimeError): _ = pcv.transform.warp(img, img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) def test_plantcv_transform_warp_4ptserror(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) mrow, mcol, _ = img.shape vrow, vcol, vdepth = img.shape with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,0], img, pts = [(0,0),(mcol-1,0),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(0,vrow-1)]) with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,1], img, pts = [(0,0),(mcol-1,0),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,2], img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1),(0,vrow-1)]) def test_plantcv_acute(): # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask) _ = pcv.acute(obj=obj_contour, win=0, thresh=15, mask=mask) _ = pcv.acute(obj=np.array(([[213, 190]], [[83, 61]], [[149, 246]])), win=84, thresh=192, mask=mask) _ = pcv.acute(obj=np.array(([[3, 29]], [[31, 102]], [[161, 63]])), win=148, thresh=56, mask=mask) _ = pcv.acute(obj=np.array(([[103, 154]], [[27, 227]], [[152, 83]])), win=35, thresh=0, mask=mask) # Test with debug = None pcv.params.debug = None _ = pcv.acute(obj=np.array(([[103, 154]], [[27, 227]], [[152, 83]])), win=35, thresh=0, mask=mask) _ = pcv.acute(obj=obj_contour, win=0, thresh=15, mask=mask) homology_pts = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask) assert all([i == j] for i, j in zip(np.shape(homology_pts), (29, 1, 2))) def test_plantcv_acute_vertex(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_acute_vertex") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img, label="prefix") _ = pcv.acute_vertex(obj=[], win=5, thresh=15, sep=5, img=img) _ = pcv.acute_vertex(obj=[], win=.01, thresh=.01, sep=1, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) # Test with debug = None pcv.params.debug = None acute = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) assert all([i == j] for i, j in zip(np.shape(acute), np.shape(TEST_ACUTE_RESULT))) pcv.outputs.clear() def test_plantcv_acute_vertex_bad_obj(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) obj_contour = np.array([]) pcv.params.debug = None result = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) assert all([i == j] for i, j in zip(result, [0, ("NA", "NA")])) pcv.outputs.clear() def test_plantcv_analyze_bound_horizontal(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_horizontal") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_above_bound_only = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=300, label="prefix") pcv.outputs.clear() _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=100) _ = pcv.analyze_bound_horizontal(img=img_above_bound_only, obj=object_contours, mask=mask, line_position=1756) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) # Test with debug = None pcv.params.debug = None _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) assert len(pcv.outputs.observations["default"]) == 7 def test_plantcv_analyze_bound_horizontal_grayscale_image(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with a grayscale reference image and debug="plot" pcv.params.debug = "plot" boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) assert len(np.shape(boundary_img1)) == 3 def test_plantcv_analyze_bound_horizontal_neg_y(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_horizontal") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug=None, line position that will trigger -y pcv.params.debug = "plot" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=-1000) _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=0) _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=2056) assert pcv.outputs.observations['default']['height_above_reference']['value'] == 713 def test_plantcv_analyze_bound_vertical(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) # Test with debug = None pcv.params.debug = None _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 94 def test_plantcv_analyze_bound_vertical_grayscale_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with a grayscale reference image and debug="plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 94 pcv.outputs.clear() def test_plantcv_analyze_bound_vertical_neg_x(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug="plot", line position that will trigger -x pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=2454) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 441 def test_plantcv_analyze_bound_vertical_small_x(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug='plot', line position that will trigger -x, and two channel object pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1) assert pcv.outputs.observations['default']['width_right_reference']['value'] == 441 def test_plantcv_analyze_color(): # Clear previous outputs pcv.outputs.clear() # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="all") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None, label="prefix") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='lab') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='hsv') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) # Test with debug = "print" # pcv.params.debug = "print" _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="all") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None, label="prefix") # Test with debug = "plot" # pcv.params.debug = "plot" # _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='lab') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='hsv') # _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) # Test with debug = None # pcv.params.debug = None _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='rgb') assert pcv.outputs.observations['default']['hue_median']['value'] == 84.0 def test_plantcv_analyze_color_incorrect_image(): img_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.analyze_color(rgb_img=img_binary, mask=mask, hist_plot_type=None) # # def test_plantcv_analyze_color_bad_hist_type(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pcv.params.debug = "plot" with pytest.raises(RuntimeError): _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='bgr') def test_plantcv_analyze_color_incorrect_hist_plot_type(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="bgr") def test_plantcv_analyze_nir(): # Clear previous outputs pcv.outputs.clear() # Test with debug=None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_nir_intensity(gray_img=img, mask=mask, bins=256, histplot=True) result = len(pcv.outputs.observations['default']['nir_frequencies']['value']) assert result == 256 def test_plantcv_analyze_nir_16bit(): # Clear previous outputs pcv.outputs.clear() # Test with debug=None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_nir_intensity(gray_img=np.uint16(img), mask=mask, bins=256, histplot=True) result = len(pcv.outputs.observations['default']['nir_frequencies']['value']) assert result == 256 def test_plantcv_analyze_object(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) pcv.outputs.clear() assert len(obj_images) != 0 def test_plantcv_analyze_object_grayscale_input(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 1 def test_plantcv_analyze_object_zero_slope(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[10:11, 10:40, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[10, 10]], [[11, 10]], [[12, 10]], [[13, 10]], [[14, 10]], [[15, 10]], [[16, 10]], [[17, 10]], [[18, 10]], [[19, 10]], [[20, 10]], [[21, 10]], [[22, 10]], [[23, 10]], [[24, 10]], [[25, 10]], [[26, 10]], [[27, 10]], [[28, 10]], [[29, 10]], [[30, 10]], [[31, 10]], [[32, 10]], [[33, 10]], [[34, 10]], [[35, 10]], [[36, 10]], [[37, 10]], [[38, 10]], [[39, 10]], [[38, 10]], [[37, 10]], [[36, 10]], [[35, 10]], [[34, 10]], [[33, 10]], [[32, 10]], [[31, 10]], [[30, 10]], [[29, 10]], [[28, 10]], [[27, 10]], [[26, 10]], [[25, 10]], [[24, 10]], [[23, 10]], [[22, 10]], [[21, 10]], [[20, 10]], [[19, 10]], [[18, 10]], [[17, 10]], [[16, 10]], [[15, 10]], [[14, 10]], [[13, 10]], [[12, 10]], [[11, 10]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_longest_axis_2d(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[0:5, 45:49, 0] = 255 img[0:5, 0:5, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[45, 1]], [[45, 2]], [[45, 3]], [[45, 4]], [[46, 4]], [[47, 4]], [[48, 4]], [[48, 3]], [[48, 2]], [[48, 1]], [[47, 1]], [[46, 1]], [[1, 1]], [[1, 2]], [[1, 3]], [[1, 4]], [[2, 4]], [[3, 4]], [[4, 4]], [[4, 3]], [[4, 2]], [[4, 1]], [[3, 1]], [[2, 1]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_longest_axis_2e(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[10:15, 10:40, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[10, 10]], [[10, 11]], [[10, 12]], [[10, 13]], [[10, 14]], [[11, 14]], [[12, 14]], [[13, 14]], [[14, 14]], [[15, 14]], [[16, 14]], [[17, 14]], [[18, 14]], [[19, 14]], [[20, 14]], [[21, 14]], [[22, 14]], [[23, 14]], [[24, 14]], [[25, 14]], [[26, 14]], [[27, 14]], [[28, 14]], [[29, 14]], [[30, 14]], [[31, 14]], [[32, 14]], [[33, 14]], [[34, 14]], [[35, 14]], [[36, 14]], [[37, 14]], [[38, 14]], [[39, 14]], [[39, 13]], [[39, 12]], [[39, 11]], [[39, 10]], [[38, 10]], [[37, 10]], [[36, 10]], [[35, 10]], [[34, 10]], [[33, 10]], [[32, 10]], [[31, 10]], [[30, 10]], [[29, 10]], [[28, 10]], [[27, 10]], [[26, 10]], [[25, 10]], [[24, 10]], [[23, 10]], [[22, 10]], [[21, 10]], [[20, 10]], [[19, 10]], [[18, 10]], [[17, 10]], [[16, 10]], [[15, 10]], [[14, 10]], [[13, 10]], [[12, 10]], [[11, 10]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_small_contour(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_contour = [np.array([[[0, 0]], [[0, 50]], [[50, 50]], [[50, 0]]], dtype=np.int32)] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert obj_images is None def test_plantcv_analyze_thermal_values(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_thermal_values") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data # img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_THERMAL_IMG_MASK), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_THERMAL_ARRAY), encoding="latin1") img = contours_npz['arr_0'] pcv.params.debug = None thermal_hist = pcv.analyze_thermal_values(thermal_array=img, mask=mask, histplot=True) assert thermal_hist is not None and pcv.outputs.observations['default']['median_temp']['value'] == 33.20922 def test_plantcv_apply_mask_white(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_white") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img, mask=mask, mask_color="white") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="white") # Test with debug = None pcv.params.debug = None masked_img = pcv.apply_mask(img=img, mask=mask, mask_color="white") assert all([i == j] for i, j in zip(np.shape(masked_img), TEST_COLOR_DIM)) def test_plantcv_apply_mask_black(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_black") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img, mask=mask, mask_color="black") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="black") # Test with debug = None pcv.params.debug = None masked_img = pcv.apply_mask(img=img, mask=mask, mask_color="black") assert all([i == j] for i, j in zip(np.shape(masked_img), TEST_COLOR_DIM)) def test_plantcv_apply_mask_hyperspectral(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_hyperspectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) hyper_array = pcv.hyperspectral.read_data(filename=spectral_filename) img = np.ones((2056, 2454)) img_stacked = cv2.merge((img, img, img, img)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img_stacked, mask=img, mask_color="black") # Test with debug = "plot" pcv.params.debug = "plot" masked_array = pcv.apply_mask(img=hyper_array.array_data, mask=img, mask_color="black") assert np.mean(masked_array) == 13.97111260224949 def test_plantcv_apply_mask_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="wite") def test_plantcv_auto_crop(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_crop") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=(20, 10), padding_y=(20, 10), color='black') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.auto_crop(img=img1, obj=roi_contours[1], color='image') _ = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=2000, padding_y=2000, color='image') # Test with debug = None pcv.params.debug = None cropped = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=20, padding_y=20, color='black') x, y, z = np.shape(img1) x1, y1, z1 = np.shape(cropped) assert x > x1 def test_plantcv_auto_crop_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_crop_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x=20, padding_y=20, color='white') x, y = np.shape(gray_img) x1, y1 = np.shape(cropped) assert x > x1 def test_plantcv_auto_crop_bad_color_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] with pytest.raises(RuntimeError): _ = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x=20, padding_y=20, color='wite') def test_plantcv_auto_crop_bad_padding_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] with pytest.raises(RuntimeError): _ = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x="one", padding_y=20, color='white') def test_plantcv_canny_edge_detect(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_canny_edge_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.canny_edge_detect(img=rgb_img, mask=mask, mask_color='white') _ = pcv.canny_edge_detect(img=img, mask=mask, mask_color='black') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.canny_edge_detect(img=img, thickness=2) _ = pcv.canny_edge_detect(img=img) # Test with debug = None pcv.params.debug = None edge_img = pcv.canny_edge_detect(img=img) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(edge_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(edge_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_canny_edge_detect_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_canny_edge_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.canny_edge_detect(img=img, mask=mask, mask_color="gray") def test_plantcv_closing(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_closing") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) bin_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug=None pcv.params.debug = None _ = pcv.closing(gray_img) # Test with debug='plot' pcv.params.debug = 'plot' _ = pcv.closing(bin_img, np.ones((4, 4), np.uint8)) # Test with debug='print' pcv.params.debug = 'print' filtered_img = pcv.closing(bin_img) assert np.sum(filtered_img) == 16261860 def test_plantcv_closing_bad_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) with pytest.raises(RuntimeError): _ = pcv.closing(rgb_img) def test_plantcv_cluster_contours(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") hierarchy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierarchy['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, show_grid=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = None pcv.params.debug = None clusters_i, contours, hierarchy = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) lenori = len(objs) lenclust = len(clusters_i) assert lenori > lenclust def test_plantcv_cluster_contours_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), 0) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierachy['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = None pcv.params.debug = None clusters_i, contours, hierachy = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) lenori = len(objs) lenclust = len(clusters_i) assert lenori > lenclust def test_plantcv_cluster_contours_splitimg(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_splitimg") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_CONTOUR), encoding="latin1") clusters = np.load(os.path.join(TEST_DATA, TEST_INPUT_ClUSTER_CONTOUR), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") cluster_names = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT) cluster_names_too_many = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT_TOO_MANY) roi_contours = [contours[arr_n] for arr_n in contours] cluster_contours = [clusters[arr_n] for arr_n in clusters] obj_hierarchy = hierachy['arr_0'] # Test with debug = None pcv.params.debug = None _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=cache_dir, file=None, filenames=None) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=[[0]], contours=[], hierarchy=np.array([[[1, -1, -1, -1]]])) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=cache_dir, file='multi', filenames=None) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=cluster_names) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=cluster_names_too_many) output_path, imgs, masks = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=None) assert len(output_path) != 0 def test_plantcv_cluster_contours_splitimg_grayscale(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_splitimg_grayscale") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), 0) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_CONTOUR), encoding="latin1") clusters = np.load(os.path.join(TEST_DATA, TEST_INPUT_ClUSTER_CONTOUR), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") cluster_names = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT) cluster_names_too_many = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT_TOO_MANY) roi_contours = [contours[arr_n] for arr_n in contours] cluster_contours = [clusters[arr_n] for arr_n in clusters] obj_hierarchy = hierachy['arr_0'] pcv.params.debug = None output_path, imgs, masks = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=None) assert len(output_path) != 0 def test_plantcv_color_palette(): # Return a color palette colors = pcv.color_palette(num=10, saved=False) assert np.shape(colors) == (10, 3) def test_plantcv_color_palette_random(): # Return a color palette in random order pcv.params.color_sequence = "random" colors = pcv.color_palette(num=10, saved=False) assert np.shape(colors) == (10, 3) def test_plantcv_color_palette_saved(): # Return a color palette that was saved pcv.params.saved_color_scale = [[0, 0, 0], [255, 255, 255]] colors = pcv.color_palette(num=2, saved=True) assert colors == [[0, 0, 0], [255, 255, 255]] def test_plantcv_crop(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img, _, _ = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), 'gray') # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop(img=img, x=10, y=10, h=50, w=50) # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.crop(img=img, x=10, y=10, h=50, w=50) assert np.shape(cropped) == (50, 50) def test_plantcv_crop_hyperspectral(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_hyperspectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = np.ones((2056, 2454)) img_stacked = cv2.merge((img, img, img, img)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop(img=img_stacked, x=10, y=10, h=50, w=50) # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.crop(img=img_stacked, x=10, y=10, h=50, w=50) assert np.shape(cropped) == (50, 50, 4) def test_plantcv_crop_position_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), 'gray') mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_three_channel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_resize = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_RESIZE), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") _ = pcv.crop_position_mask(nir, mask_resize, x=40, y=3, v_pos="top", h_pos="right") _ = pcv.crop_position_mask(nir, mask_three_channel, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "print" with bottom _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="bottom", h_pos="left") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "plot" with bottom _ = pcv.crop_position_mask(nir, mask, x=45, y=2, v_pos="bottom", h_pos="left") # Test with debug = None pcv.params.debug = None newmask = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") assert np.sum(newmask) == 707115 def test_plantcv_crop_position_mask_color(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='native') mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_resize = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_RESIZE)) mask_non_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "print" with bottom _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="bottom", h_pos="left") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "plot" with bottom _ = pcv.crop_position_mask(nir, mask, x=45, y=2, v_pos="bottom", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="bottom", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="top", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="bottom", h_pos="right") _ = pcv.crop_position_mask(nir, mask_resize, x=45, y=2, v_pos="top", h_pos="left") # Test with debug = None pcv.params.debug = None newmask = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") assert np.sum(newmask) == 707115 def test_plantcv_crop_position_mask_bad_input_x(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=-1, y=-1, v_pos="top", h_pos="right") def test_plantcv_crop_position_mask_bad_input_vpos(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="below", h_pos="right") def test_plantcv_crop_position_mask_bad_input_hpos(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="starboard") def test_plantcv_dilate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_dilate") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.dilate(gray_img=img, ksize=5, i=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.dilate(gray_img=img, ksize=5, i=1) # Test with debug = None pcv.params.debug = None dilate_img = pcv.dilate(gray_img=img, ksize=5, i=1) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(dilate_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(dilate_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_dilate_small_k(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(ValueError): _ = pcv.dilate(img, 1, 1) def test_plantcv_erode(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_erode") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.erode(gray_img=img, ksize=5, i=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.erode(gray_img=img, ksize=5, i=1) # Test with debug = None pcv.params.debug = None erode_img = pcv.erode(gray_img=img, ksize=5, i=1) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(erode_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(erode_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_erode_small_k(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(ValueError): _ = pcv.erode(img, 1, 1) def test_plantcv_distance_transform(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_distance_transform") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Test with debug = None pcv.params.debug = None distance_transform_img = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(distance_transform_img), np.shape(mask))) def test_plantcv_fatal_error(): # Verify that the fatal_error function raises a RuntimeError with pytest.raises(RuntimeError): pcv.fatal_error("Test error") def test_plantcv_fill(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.fill(bin_img=img, size=63632) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.fill(bin_img=img, size=63632) # Test with debug = None pcv.params.debug = None fill_img = pcv.fill(bin_img=img, size=63632) # Assert that the output image has the dimensions of the input image # assert all([i == j] for i, j in zip(np.shape(fill_img), TEST_BINARY_DIM)) assert np.sum(fill_img) == 0 def test_plantcv_fill_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.fill(bin_img=img, size=1) def test_plantcv_fill_holes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_holes") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.fill_holes(bin_img=img) pcv.params.debug = "plot" _ = pcv.fill_holes(bin_img=img) # Test with debug = None pcv.params.debug = None fill_img = pcv.fill_holes(bin_img=img) assert np.sum(fill_img) > np.sum(img) def test_plantcv_fill_holes_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_holes_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.fill_holes(bin_img=img) def test_plantcv_find_objects(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_find_objects") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.find_objects(img=img, mask=mask) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.find_objects(img=img, mask=mask) # Test with debug = None pcv.params.debug = None contours, hierarchy = pcv.find_objects(img=img, mask=mask) # Assert the correct number of contours are found assert len(contours) == 2 def test_plantcv_find_objects_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_find_objects_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "plot" pcv.params.debug = "plot" contours, hierarchy = pcv.find_objects(img=img, mask=mask) # Assert the correct number of contours are found assert len(contours) == 2 def test_plantcv_flip(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_flip") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.flip(img=img, direction="horizontal") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.flip(img=img, direction="vertical") _ = pcv.flip(img=img_binary, direction="vertical") # Test with debug = None pcv.params.debug = None flipped_img = pcv.flip(img=img, direction="horizontal") assert all([i == j] for i, j in zip(np.shape(flipped_img), TEST_COLOR_DIM)) def test_plantcv_flip_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.flip(img=img, direction="vert") def test_plantcv_gaussian_blur(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_gaussian_blur") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) _ = pcv.gaussian_blur(img=img_color, ksize=(51, 51), sigma_x=0, sigma_y=None) # Test with debug = None pcv.params.debug = None gaussian_img = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) imgavg = np.average(img) gavg = np.average(gaussian_img) assert gavg != imgavg def test_plantcv_get_kernel_cross(): kernel = pcv.get_kernel(size=(3, 3), shape="cross") assert (kernel == np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])).all() def test_plantcv_get_kernel_rectangle(): kernel = pcv.get_kernel(size=(3, 3), shape="rectangle") assert (kernel == np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])).all() def test_plantcv_get_kernel_ellipse(): kernel = pcv.get_kernel(size=(3, 3), shape="ellipse") assert (kernel == np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])).all() def test_plantcv_get_kernel_bad_input_size(): with pytest.raises(ValueError): _ = pcv.get_kernel(size=(1, 1), shape="ellipse") def test_plantcv_get_kernel_bad_input_shape(): with pytest.raises(RuntimeError): _ = pcv.get_kernel(size=(3, 1), shape="square") def test_plantcv_get_nir_sv(): nirpath = pcv.get_nir(TEST_DATA, TEST_VIS) nirpath1 = os.path.join(TEST_DATA, TEST_NIR) assert nirpath == nirpath1 def test_plantcv_get_nir_tv(): nirpath = pcv.get_nir(TEST_DATA, TEST_VIS_TV) nirpath1 = os.path.join(TEST_DATA, TEST_NIR_TV) assert nirpath == nirpath1 def test_plantcv_hist_equalization(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hist_equalization") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.hist_equalization(gray_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.hist_equalization(gray_img=img) # Test with debug = None pcv.params.debug = None hist = pcv.hist_equalization(gray_img=img) histavg = np.average(hist) imgavg = np.average(img) assert histavg != imgavg def test_plantcv_hist_equalization_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hist_equalization_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), 1) # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.hist_equalization(gray_img=img) def test_plantcv_image_add(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_image_add") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.image_add(gray_img1=img1, gray_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.image_add(gray_img1=img1, gray_img2=img2) # Test with debug = None pcv.params.debug = None added_img = pcv.image_add(gray_img1=img1, gray_img2=img2) assert all([i == j] for i, j in zip(np.shape(added_img), TEST_BINARY_DIM)) def test_plantcv_image_subtract(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_image_sub") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # read in images img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = 'print' _ = pcv.image_subtract(img1, img2) # Test with debug = "plot" pcv.params.debug = 'plot' _ = pcv.image_subtract(img1, img2) # Test with debug = None pcv.params.debug = None new_img = pcv.image_subtract(img1, img2) assert np.array_equal(new_img, np.zeros(np.shape(new_img), np.uint8)) def test_plantcv_image_subtract_fail(): # read in images img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY)) # test with pytest.raises(RuntimeError): _ = pcv.image_subtract(img1, img2) def test_plantcv_invert(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_invert") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.invert(gray_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.invert(gray_img=img) # Test with debug = None pcv.params.debug = None inverted_img = pcv.invert(gray_img=img) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(
np.shape(inverted_img)
numpy.shape
# -*- coding: utf-8 -*- """ This module contains the Hyperheuristic class. Created on Thu Jan 9 15:36:43 2020 @author: <NAME> (jcrvz.github.io), e-mail: <EMAIL> """ import numpy as np import scipy.stats as st from customhys.metaheuristic import Metaheuristic from customhys import tools as jt from datetime import datetime import json from os.path import exists as _check_path from os import makedirs as _create_path class Hyperheuristic: """ This is the Hyperheuristic class, each object corresponds to a hyper-heuristic process implemented with a heuristic collection from Operators to build metaheuristics using the Metaheuristic module. """ def __init__(self, heuristic_space='default.txt', problem=None, parameters=None, file_label='', weights_array=None): """ Create a hyper-heuristic process using a operator collection as heuristic space. :param str heuristic_space: Optional. The heuristic space or search space collection. It could be a string indicating the file name, assuming it is located in the folder ``./collections/``, or a list with tuples (check the default collection ``./collections/default.txt'``) just like ``operators.build_operators`` generates. The default is 'default.txt'. :param dict problem: This is a dictionary containing the 'function' that maps a 1-by-D array of real values to a real value, 'is_constrained' flag that indicates the solution is inside the search space, and the 'boundaries' (a tuple with two lists of size D). These two lists correspond to the lower and upper limits of domain, such as: ``boundaries = (lower_boundaries, upper_boundaries)`` **Note:** Dimensions (D) of search domain are read from these boundaries. The problem can be obtained from the ``benchmark_func`` module. :param dict parameters: Parameters to implement the hyper-heuristic procedure, the following fields must be provided: 'cardinality', 'num_iterations', 'num_agents', 'num_replicas', 'num_steps', 'stagnation_percentage', 'max_temperature', and 'cooling_rate'. The default is showing next: parameters = {cardinality=3, # Max. numb. of SOs in MHs, lvl:1 num_iterations=100, # Iterations a MH performs, lvl:1 num_agents=30, # Agents in population, lvl:1 num_replicas=50, # Replicas per each MH, lvl:2 num_steps=100, # Trials per HH step, lvl:2 stagnation_percentage=0.3, # Stagnation percentage, lvl:2 max_temperature=200, # Initial temperature (SA), lvl:2 cooling_rate=0.05} # Cooling rate (SA), lvl:2 **Note:** Level (lvl) flag corresponds to the heuristic level of the parameter. lvl:1 concerns to mid-level heuristics like metaheuristics, and lvl:2 to high-level heuristics like hyper-heuristics. :param str file_label: Optional. Tag or label for saving files. The default is ''. :param numpy.array weights_array: Optional. Weights of the search operators, if there is a-priori information about them. The default is None. """ # Read the heuristic space if isinstance(heuristic_space, list): self.heuristic_space = heuristic_space elif isinstance(heuristic_space, str): with open('collections/' + heuristic_space, 'r') as operators_file: self.heuristic_space = [eval(line.rstrip('\n')) for line in operators_file] else: raise HyperheuristicError('Invalid heuristic_space') # Assign default values if parameters is None: parameters = dict(cardinality=3, # Max. numb. of SOs in MHs, lvl:1 num_iterations=100, # Iterations a MH performs, lvl:1 num_agents=30, # Agents in population, lvl:1 num_replicas=50, # Replicas per each MH, lvl:2 num_steps=100, # Trials per HH step, lvl:2 stagnation_percentage=0.3, # Stagnation percentage, lvl:2 max_temperature=200, # Initial temperature (SA), lvl:2 cooling_rate=0.05) # Cooling rate (SA), lvl:2 # Read the problem if problem: self.problem = problem else: raise HyperheuristicError('Problem must be provided') # Read the heuristic space size self.num_operators = len(self.heuristic_space) # Read the weights (if it is entered) self.weights_array = weights_array # Initialise other parameters self.parameters = parameters self.file_label = file_label def run(self): """ Run the hyper-heuristic based on Simulated Annealing (SA) to find the best metaheuristic. Each meatheuristic is run 'num_replicas' times to obtain statistics and then its performance. Once the process ends, it returns: - solution: The sequence of search operators that compose the metaheuristic. - performance: The metric value defined in ``get_performance``. - encoded_solution: The sequence of indices that correspond to the search operators. - historicals: A dictionary of information from each step. Its keys are: 'step', 'encoded_solution', 'solution', 'performances', and 'details'. The latter, 'details', is also a dictionary which contains information about each replica carried out with the metaheuristic. Its fields are 'historical' (each iteration that the metaheuristic has performed), 'fitness', 'positions', and 'statistics'. :returns: solution (list), performance (float), encoded_solution (list) """ # Read the cardinality (which is the maximum allowed one) max_cardinality = self.parameters['cardinality'] def obtain_neighbour_solution(sol=None): """ This method selects a neighbour candidate solution for a given candidate solution ``sol``. To do so, it adds, deletes, or perturbate a randomly chosen operator index from the current sequence. If this sequence is None, the method returns a new 1-cardinality sequence at random. :param list sol: Optional. Sequence of heuristic indices (or encoded solution). The default is None, which means that there is no current sequence, so an initial one is required. :return: list. """ if sol is None: # Create a new 1-MH from scratch by using a weights array (if so) encoded_neighbour = np.random.choice(self.num_operators, 1, replace=False, p=self.weights_array) elif isinstance(sol, np.ndarray): current_cardinality = len(sol) # First read the available actions. Those could be 'Add', 'Del', an 'Per' if current_cardinality >= max_cardinality: available_options = ['Del', 'Per'] elif current_cardinality <= 1: available_options = ['Add', 'Per'] else: available_options = ['Add', 'Del', 'Per'] # Decide (randomly) which action to do action = np.random.choice(available_options) # Perform the corresponding action if action == 'Add': # Select an operator excluding the ones in the current solution new_operator = np.random.choice(np.setdiff1d(np.arange(self.num_operators), sol)) # Select where to add such an operator, since ``operator_location`` value represents: # 0 - left side of the first operator # 1 - right side of the first operator or left side of the second one, # ..., and so forth. # # | operator 1 | operator 2 | operator 3 | ... | operator N | # 0 <--------> 1 <--------> 2 <--------> 3 <-- ... --> N-1 <---------> N operator_location = np.random.randint(current_cardinality + 1) # Add the selected operator encoded_neighbour = np.array((*sol[:operator_location], new_operator, *sol[operator_location:])) elif action == 'Del': # Delete an operator randomly selected encoded_neighbour = np.delete(sol, np.random.randint(current_cardinality)) else: # Copy the current solution encoded_neighbour = np.copy(sol) # Perturbate an operator randomly selected excluding the existing ones encoded_neighbour[np.random.randint(current_cardinality)] = np.random.choice( np.setdiff1d(np.arange(self.num_operators), sol)) else: raise HyperheuristicError('Invalid type of current solution!') # Decode the neighbour solution neighbour = [self.heuristic_space[index] for index in encoded_neighbour] # Return the neighbour sequence and its decoded equivalent return encoded_neighbour, neighbour def obtain_temperature(step_val, function='boltzmann'): """ Return the updated temperature according to a defined scheme ``function``. :param int step_val: Step (or iteration) value of the current state of the hyper-heuristic search. :param str function: Optional. Mechanism for updating the temperature. It can be 'exponential', 'fast', or 'boltzmann'. The default is 'boltzmann'. :return: float """ if function == 'exponential': return self.parameters['max_temperature'] * np.power(1 - self.parameters['cooling_rate'], step_val) elif function == 'fast': return self.parameters['max_temperature'] / step_val else: # boltzmann return self.parameters['max_temperature'] / np.log(step_val + 1) # Acceptance function def check_acceptance(delta, temp, function='exponential'): """ Return a flag indicating if the current performance value can be accepted according to the ``function``. :param float delta: Energy change for determining the acceptance probability. :param float temp: Temperature value for determining the acceptance probability. :param str function: Optional. Function for determining the acceptance probability. It can be 'exponential' or 'boltzmann'. The default is 'boltzmann'. :return: bool """ if function == 'exponential': return (delta_energy <= 0) or (np.random.rand() < np.exp(-delta / temp)) else: # boltzmann return (delta_energy <= 0) or (np.random.rand() < 1. / (1. + np.exp(delta / temp))) # Create the initial solution current_encoded_solution, current_solution = obtain_neighbour_solution() # Evaluate this solution current_performance, current_details = self.evaluate_metaheuristic(current_solution) # Initialise the best solution and its performance best_encoded_solution = np.copy(current_encoded_solution) best_performance = current_performance # Initialise historical register # historicals = dict(encoded_solution=best_encoded_solution, performance=best_performance, # details=current_details) # Save this historical register, step = 0 _save_step(0, dict(encoded_solution=best_encoded_solution, performance=best_performance, details=current_details), self.file_label) # Print the first status update, step = 0 print('{} :: Step: {}, Perf: {}, e-Sol: {}'.format(self.file_label, 0, best_performance, best_encoded_solution)) # Step, stagnation counter and its maximum value step = 0 stag_counter = 0 max_stag = round(self.parameters['stagnation_percentage'] * self.parameters['num_steps']) # Perform the annealing simulation as hyper-heuristic process while (step <= self.parameters['num_steps']) and (stag_counter <= max_stag): step += 1 # Generate a neighbour solution (just indices-codes) candidate_encoded_solution, candidate_solution = obtain_neighbour_solution(current_encoded_solution) # Evaluate this candidate solution candidate_performance, candidate_details = self.evaluate_metaheuristic(candidate_solution) # Determine the energy (performance) change delta_energy = candidate_performance - current_performance # Update temperature temperature = obtain_temperature(step) # Accept the current solution via Metropolis criterion if check_acceptance(delta_energy, temperature): # Update the current solution and its performance current_encoded_solution = np.copy(candidate_encoded_solution) current_solution = np.copy(candidate_solution) current_performance = candidate_performance # if delta_energy > 0: # print('{} :: Step: {}, Perf: {}, e-Sol: {} [Accepted]'.format( # self.file_label, step, current_performance, current_encoded_solution)) # If the candidate solution is better or equal than the current best solution if candidate_performance < best_performance: # Update the best solution and its performance best_encoded_solution = np.copy(candidate_encoded_solution) best_solution = np.copy(candidate_solution) best_performance = candidate_performance # Reset the stagnation counter stag_counter = 0 # Save this information _save_step(step, { 'encoded_solution': best_encoded_solution, 'performance': best_performance, 'details': candidate_details }, self.file_label) # Print update print('{} :: Step: {}, Perf: {}, e-Sol: {}'.format( self.file_label, step, best_performance, best_encoded_solution)) else: # Update the stagnation counter stag_counter += 1 # Return the best solution found and its details return best_solution, best_performance, best_encoded_solution def evaluate_metaheuristic(self, search_operators): """ Evaluate the current sequence of ``search_operators`` as a metaheuristic. This process is repeated ``parameters['num_replicas']`` times and, then, the performance is determined. In the end, the method returns the performance value and the details for all the runs. These details are ``historical_data``, ``fitness_data``, ``position_data``, and ``fitness_stats``. :param list search_operators: Sequence of search operators. These must be in the tuple form (decoded version). Check the ``metaheuristic`` module for further information. :return: float, dict """ # Initialise the historical registers historical_data = list() fitness_data = list() position_data = list() # Run the metaheuristic several times for rep in range(1, self.parameters['num_replicas'] + 1): # Call the metaheuristic mh = Metaheuristic(self.problem, search_operators, self.parameters['num_agents'], self.parameters['num_iterations']) # Run this metaheuristic mh.run() # Store the historical values from this run historical_data.append(mh.historical) # Read and store the solution obtained _temporal_position, _temporal_fitness = mh.get_solution() fitness_data.append(_temporal_fitness) position_data.append(_temporal_position) # print('-- MH: {}, fitness={}'.format(rep, _temporal_fitness)) # Determine a performance metric once finish the repetitions fitness_stats = self.get_statistics(fitness_data) # Return the performance value and the corresponding details return self.get_performance(fitness_stats), dict( historical=historical_data, fitness=fitness_data, positions=position_data, statistics=fitness_stats) def brute_force(self): """ This method performs a brute force procedure solving the problem via all the available search operators without integrating a high-level search method. So, each search operator is used as a 1-cardinality metaheuristic. Results are directly saved as json files :return: None. """ # Apply all the search operators in the collection as 1-cardinality MHs for operator_id in range(self.num_operators): # Read the corresponding operator operator = [self.heuristic_space[operator_id]] # Evaluate it within the metaheuristic structure operator_performance, operator_details = self.evaluate_metaheuristic(operator) # Save information _save_step(operator_id, { 'encoded_solution': operator_id, 'performance': operator_performance, 'statistics': operator_details['statistics'] }, self.file_label) # Print update print('{} :: Operator {} of {}, Perf: {}'.format( self.file_label, operator_id + 1, self.num_operators, operator_performance)) def basic_metaheuristics(self): """ This method performs a brute force procedure solving the problem via all the predefined metaheuristics in './collections/basicmetaheuristics.txt'. Many of them are 1-cardinality MHs but other are 2-cardinality ones. This process does not require a high-level search method. Results are directly saved as json files. :return: None. """ # Apply all the search operators in the collection as 1-size MHs for operator_id in range(self.num_operators): operator = self.heuristic_space[operator_id] # Read the corresponding operator if isinstance(operator, tuple): operator = [operator] # Evaluate it within the metaheuristic structure operator_performance, operator_details = self.evaluate_metaheuristic(operator) # Save information _save_step(operator_id, { 'encoded_solution': operator_id, 'performance': operator_performance, 'statistics': operator_details['statistics'] }, self.file_label) # Print update print('{} :: BasicMH {} of {}, Perf: {}'.format( self.file_label, operator_id + 1, self.num_operators, operator_performance)) @staticmethod def get_performance(statistics): """ Return the performance from fitness values obtained from running a metaheuristic several times. This method uses the Median and Interquartile Range values for such a purpose: performance = Med{fitness values} + IQR{fitness values} **Note:** If an alternative formula is needed, check the commented options. :param statistics: :type statistics: :return: :rtype: """ # TODO: Verify if using conditional for choosing between options is not cost computing # return statistics['Med'] # Option 1 # return statistics['Avg'] + statistics['Std'] # Option 2 return statistics['Med'] + statistics['IQR'] # Option 3 # return statistics['Avg'] + statistics['Std'] + statistics['Med'] + statistics['IQR'] # Option 4 @staticmethod def get_statistics(raw_data): """ Return statistics from all the fitness values found after running a metaheuristic several times. The oncoming statistics are ``nob`` (number of observations), ``Min`` (minimum), ``Max`` (maximum), ``Avg`` (average), ``Std`` (standard deviation), ``Skw`` (skewness), ``Kur`` (kurtosis), ``IQR`` (interquartile range), ``Med`` (median), and ``MAD`` (Median absolute deviation). :param list raw_data: List of the fitness values. :return: dict """ # Get descriptive statistics dst = st.describe(raw_data) # Store statistics return dict(nob=dst.nobs, Min=dst.minmax[0], Max=dst.minmax[1], Avg=dst.mean, Std=np.std(raw_data), Skw=dst.skewness, Kur=dst.kurtosis, IQR=st.iqr(raw_data), Med=
np.median(raw_data)
numpy.median
"""Console script for zalando_classification.""" import sys import click import numpy as np import tensorflow as tf import tensorflow.keras.backend as K import tensorflow_probability as tfp import pandas as pd from gpdre import GaussianProcessDensityRatioEstimator from gpdre.benchmarks import SugiyamaKrauledatMuellerDensityRatioMarginals from gpdre.datasets import make_classification_dataset from gpdre.base import MLPDensityRatioEstimator, LogisticRegressionDensityRatioEstimator from gpdre.external.rulsif import RuLSIFDensityRatioEstimator from gpdre.external.kliep import KLIEPDensityRatioEstimator from gpdre.external.kmm import KMMDensityRatioEstimator from gpdre.initializers import KMeans from gpflow.models import SVGP from gpflow.kernels import Matern52 from sklearn.linear_model import LogisticRegression from pathlib import Path K.set_floatx("float64") # shortcuts tfd = tfp.distributions # sensible defaults SUMMARY_DIR = "logs/" SEED = 8888 dataset_seed = 8888 num_features = 2 num_samples = 1000 num_train = 500 num_test = 500 num_inducing_points = 300 optimizer = "adam" epochs = 2000 batch_size = 100 buffer_size = 1000 jitter = 1e-6 num_seeds = 10 # properties of the distribution props = { "mean": tfd.Distribution.mean, "mode": tfd.Distribution.mode, "median": lambda d: d.distribution.quantile(0.5), # "sample": tfd.Distribution.sample, # single sample } def class_posterior(x1, x2): return 0.5 * (1 + tf.tanh(x1 - tf.nn.relu(-x2))) def metric(X_train, y_train, X_test, y_test, sample_weight=None, random_state=None): model = LogisticRegression(C=1.0, random_state=random_state) model.fit(X_train, y_train, sample_weight=sample_weight) return model.score(X_test, y_test) @click.command() @click.argument("name") @click.option("--summary-dir", default=SUMMARY_DIR, type=click.Path(file_okay=False, dir_okay=True), help="Summary directory.") @click.option("-s", "--seed", default=SEED, type=int, help="Random seed") def main(name, summary_dir, seed): summary_path = Path(summary_dir).joinpath("sugiyama") summary_path.mkdir(parents=True, exist_ok=True) r = SugiyamaKrauledatMuellerDensityRatioMarginals() rows = [] for seed in range(num_seeds): # (X_train, y_train), (X_test, y_test) = r.train_test_split(X, y, seed=seed) (X_train, y_train), (X_test, y_test) = r.make_covariate_shift_dataset( num_test, num_train, class_posterior_fn=class_posterior, threshold=0.5, seed=seed) X, s = make_classification_dataset(X_test, X_train) # Uniform acc = metric(X_train, y_train, X_test, y_test, random_state=seed) rows.append(dict(weight="uniform", acc=acc, seed=seed, dataset_seed=seed)) # Exact acc = metric(X_train, y_train, X_test, y_test, sample_weight=r.ratio(X_train).numpy(), random_state=seed) rows.append(dict(weight="exact", acc=acc, seed=seed, dataset_seed=seed)) # RuLSIF r_rulsif = RuLSIFDensityRatioEstimator(alpha=1e-6) r_rulsif.fit(X_test, X_train) sample_weight = np.maximum(1e-6, r_rulsif.ratio(X_train)) acc = metric(X_train, y_train, X_test, y_test, sample_weight=sample_weight, random_state=seed) rows.append(dict(weight="rulsif", acc=acc, seed=seed, dataset_seed=seed)) # KLIEP # sigmas = [0.1, 0.25, 0.5, 0.75, 1.0] sigmas = list(np.maximum(0.25 *
np.arange(5)
numpy.arange
# Tutorial "Regresion Basica: Predecir eficiencia de gasolina" # https://www.tensorflow.org/tutorials/keras/regression?hl=es-419 import os import sys os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import numpy as np # noqa: E402 # from scipy import stats # noqa: E402 import matplotlib.pyplot as plt # noqa: E402 import pandas as pd # noqa: E402 # import tensorflow as tf # noqa: E402 from keras import layers, backend # noqa: E402 from keras.utils.vis_utils import plot_model # noqa: E402 from tensorflow import keras # noqa: E402 from keras_visualizer import visualizer # noqa: E402 output_dir = "" def c_mae(p_true, p_pred): """ https://stackoverflow.com/questions/69240680/how-to-get-mean-absolute-errors-mae-for-deep-learning-model :param p_true: original target values :param p_pred: predicted values :return: MAE """ return np.mean(np.abs(p_pred - p_true)) # -1 is correct, using None gives different result ''' def c_mse(p_true, p_pred): """ https://stackoverflow.com/questions/69240680/how-to-get-mean-absolute-errors-mae-for-deep-learning-model :param p_true: original target values :param p_pred: predicted values :return: MSE """ return np.mean(np.square(p_pred - p_true)) def c_determination(p_true, p_pred): """ Original posted in: https://jmlb.github.io/ml/2017/03/20/CoeffDetermination_CustomMetric4Keras/ :param p_true: original target values :param p_pred: predicted values :return: R^2 coefficient """ ss_res = np.sum(np.square(p_true - p_pred)) ss_tot = np.sum(np.square(p_true - np.mean(p_pred))) return 1 - ss_res / (ss_tot + backend.epsilon()) def preprocess_data(p_x, p_stats): """ Make data standard/normal. More info: https://dataakkadian.medium.com/standardization-vs-normalization-da7a3a308c64 https://www.kdnuggets.com/2020/04/data-transformation-standardization-normalization.html :param p_x: input data :param p_stats: input data statistics :return: standardized and normalized data """ p_standardized = (p_x - p_stats["mean"]) / p_stats["std"] # mean = 0, std = 1 p_normalized = (p_x - p_stats["min"]) / (p_stats["max"] - p_stats["min"]) # range 0-1 return p_standardized, p_normalized def build_rnn(p_input, p_output): """ Build Keras Recurrent Neural Network model :param p_input: input size :param p_output: output size :return: model """ n_inter = np.abs(p_input - p_output) / 2 p_model = keras.Sequential([ layers.GRU(int(p_output + np.ceil(n_inter)), activation='linear', input_shape=(2, p_input)), layers.Dense(p_output, activation='relu') ]) p_model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'mse']) print_model(p_model) return p_model def build_ffnn(p_input, p_output): """ Build Keras Feed-Forward Neural Network model :param p_input: input size :param p_output: output size :return: model """ n_inter = int(np.abs(p_input - p_output) / 2) p_model = keras.Sequential([ layers.Dense(p_output + np.ceil(n_inter), activation='linear', input_shape=[p_input]), layers.Dense(p_output, activation='relu') ]) # optimizer = tf.keras.optimizers.RMSprop(0.001) optimizer = keras.optimizers.Adam(learning_rate=0.001) p_model.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse']) print_model(p_model) return p_model def print_model(p_model): """ Print Keras model to node graph :param p_model: Keras model :return: """ try: plot_model(p_model, to_file=output_dir + "/model_scheme.png", show_shapes=True, show_layer_names=True) visualizer(p_model, filename=output_dir + "/model_graph", format='png') except Exception as ex: print(ex) class PrintDot(keras.callbacks.Callback): """ Display training progress by printing a single dot for each completed epoch """ @staticmethod def on_epoch_end(epoch, _logs): print('') if epoch % 100 == 0 else 0 print('.', end='') def plot_history(p_history, p_k): """ Plot epoch history (MAE and MSE) :param p_history: input registers :param p_k: climatic zone :return: """ hist = pd.DataFrame(p_history.history) hist['epoch'] = p_history.epoch fig, (ax1, ax2) = plt.subplots(1, 2) plt.setp(ax1, xlabel="Epoch", ylabel="Mean Abs Error [PCI]") plt.setp(ax2, xlabel="Epoch", ylabel="Mean Square Error [$PCI^2$]") ax1.plot(hist['epoch'], hist['mae'], label='Train Error') ax1.plot(hist['epoch'], hist['val_mae'], label='Val Error') ax1.legend() ax1.set_xlim([min(hist['epoch']), max(hist['epoch'])]) ax1.set_ylim([min(hist['val_mae']), max(hist['val_mae'])]) ax2.plot(hist['epoch'], hist['mse'], label='Train Error') ax2.plot(hist['epoch'], hist['val_mse'], label='Val Error') ax2.legend() ax2.set_xlim([min(hist['epoch']), max(hist['epoch'])]) ax2.set_ylim([min(hist['val_mse']), max(hist['val_mse'])]) plt.tight_layout() plt.savefig(output_dir + "/model_history_" + p_k + ".png") plt.clf() def plot_data(p_1, p_2, p_3, p_4, p_5, p_6, p_k): """ :param p_1: :param p_2: :param p_3: :param p_4: :param p_5: :param p_6: :param p_k: :return: """ fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2) plt.setp(ax1, xlabel="Train (PCI)", ylabel="Count") plt.setp(ax2, xlabel="Test (PCI)", ylabel="Count") plt.setp(ax3, xlabel="Train standard (PCI)", ylabel="Count") plt.setp(ax4, xlabel="Test standard (PCI)", ylabel="Count") plt.setp(ax5, xlabel="Train normal (PCI)", ylabel="Count") plt.setp(ax6, xlabel="Test normal (PCI)", ylabel="Count") n, bins, _ = ax1.hist(p_1["PCI"], bins=25, rwidth=0.8) # density = stats.gaussian_kde(p_4["PCI"]) # ax4.plot(bins, density(bins) * max(n) / max(density(bins)), "r-") n, bins, _ = ax2.hist(p_2["PCI"], bins=25, rwidth=0.8) n, bins, _ = ax3.hist(p_3["PCI"], bins=25, rwidth=0.8) n, bins, _ = ax4.hist(p_4["PCI"], bins=25, rwidth=0.8) n, bins, _ = ax5.hist(p_5["PCI"], bins=25, rwidth=0.8) n, bins, _ = ax6.hist(p_6["PCI"], bins=25, rwidth=0.8) plt.tight_layout() plt.savefig(output_dir + "/model_train_" + p_k + ".png") plt.clf() def plot_evaluation(p_test_predictions, p_test_labels, p_k): """ Plot error evaluation :param p_test_predictions: input predicted data :param p_test_labels: input actual data :param p_k: climatic zone :return: """ fig, (ax1, ax2) = plt.subplots(1, 2) plt.setp(ax1, xlabel="True Values [PCI_F]", ylabel="Predictions [PCI_F]") plt.setp(ax2, xlabel="Prediction Error [PCI_F]", ylabel="Count") # print(np.shape(test_labels["PCI_F"]), np.shape(test_predictions)) ax1.scatter(p_test_labels["PCI_F"], p_test_predictions, c="r", marker="2") ax1.plot([0, 100], [0, 100]) ax1.set_xlim([0, 100]) ax1.set_ylim([0, 100]) # https://stackoverflow.com/questions/27872723/is-there-a-clean-way-to-generate-a-line-histogram-chart-in-python error = p_test_predictions - p_test_labels["PCI_F"] n, bins, _ = ax2.hist(error, bins=25, rwidth=0.8, color="blue") # density = stats.gaussian_kde(error) # plt.plot(bins, density(bins) * max(n) / max(density(bins)), "r-") plt.tight_layout() plt.savefig(output_dir + "/model_evaluation_" + p_k + ".png") plt.clf() def model_parameters(model, p_columns, p_k): """ Generate a summary of weights or NN parameters :param model: input model :param p_columns: input columns :param p_k: climatic zone :return: """ with open(output_dir + "/weight_" + p_k + ".txt", "w", encoding="utf-8") as txt_file: for i, row in enumerate(model.layers[0].get_weights()[0]): value = p_columns[i] + ", " + np.array2string(row[0]) txt_file.write("".join(value) + "\n") # a_file = open(output_dir + "/summary_" + k + ".txt", "w", # encoding="utf-8") # for row in model.summary(): # np.savetxt(a_file, row) # a_file.close() def main(p_output, p_table, p_columns, p_targets, keras_model="ffnn", n_tests=1): """ Main function :param p_output: output directory :param p_table: input table :param p_columns: input columns :param p_targets: input targets :param keras_model: keras model :return: """ global output_dir output_dir = p_output p_columns.extend(p_targets) dataset_raw = pd.read_csv(p_table, sep=";", encoding="unicode_escape", low_memory=False) # Filter desired columns dataset_raw = dataset_raw[p_columns + ["CLIMATIC ZONE"]] # Delete unknown data dataset = dataset_raw.dropna() print("- Original size:", np.shape(dataset_raw)[0], "rows\n- After drop NA:", np.shape(dataset)[0], "rows") climatic_zones = [ "ALL", "LLUVIOSA - CÁLIDA", "LLUVIOSA - MEDIA", "LLUVIOSA - TEMPLADA", "LLUVIOSA - FUERA DE RANGO", "POCO LLUVIOSA - CÁLIDA", "POCO LLUVIOSA - MEDIA", "POCO LLUVIOSA - TEMPLADA", "POCO LLUVIOSA - FUERA DE RANGO", ] train_perc = 0.7 array_results = [] for zone in climatic_zones: n_mae = 0 n_mse = 0 n_det = 0 dataset_cz = dataset if zone != "ALL": dataset_cz = dataset[dataset["CLIMATIC ZONE"] == zone] print("Number of rows:", np.shape(dataset_cz)[0], "rows") dataset_cz.pop("CLIMATIC ZONE") # dataset_cz.pop("AADT_CUM") # dataset_cz.pop("AADTT_CUM") # dataset_cz.pop("KESAL_CUM") if np.shape(dataset_cz)[0] > 1: # Convert data to float dataset_cz = dataset_cz.applymap(str).replace([","], ["."], regex=True).applymap(float) # Divide dataset in train and test groups train_dataset = dataset_cz.sample(frac=train_perc) test_dataset = dataset_cz.drop(train_dataset.index) # General statistics train_stats = train_dataset.describe() [train_stats.pop(x) for x in p_targets] train_stats = train_stats.transpose() # Objective value train_labels = pd.concat([train_dataset.pop(x) for x in p_targets], axis=1) test_labels = pd.concat([test_dataset.pop(x) for x in p_targets], axis=1) # Normalising data # normed_train_data = preprocess_data(train_dataset, train_stats)[0].fillna(0) # Standardization # normed_test_data = preprocess_data(test_dataset, train_stats)[0].fillna(0) normed_train_data = preprocess_data(train_dataset, train_stats)[1].fillna(0) # Normalization normed_test_data = preprocess_data(test_dataset, train_stats)[1].fillna(0) plot_data(train_dataset, test_dataset, preprocess_data(train_dataset, train_stats)[0].fillna(0), preprocess_data(test_dataset, train_stats)[0].fillna(0), preprocess_data(train_dataset, train_stats)[1].fillna(0), preprocess_data(test_dataset, train_stats)[1].fillna(0), zone) for n in range(0, n_tests): print("[[%s (%d/%d)]]" % (zone, n + 1, n_tests)) # Keras model if keras_model == "rnn": model = build_rnn(len(normed_train_data.keys()), len(p_targets)) else: model = build_ffnn(len(normed_train_data.keys()), len(p_targets)) # model_parameters(model, p_columns, k) # The patience parameter is the amount of epochs to check for improvement early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=100) # Number of rows accessed in each epoch batch_size = np.shape(normed_train_data)[0] if
np.shape(normed_train_data)
numpy.shape
import numpy as np import gym from gym import spaces from gym.utils import seeding import rvo2 class NavRVO2Env_all(gym.Env): """ What's new for the new environment: Added 8 pedestrians initialized to be at 8 corners ([-0.7,-0.7], [0.7,-0.7], [0.7,0.7], [-0.7,0.7]) of a rectangle centering at the origin. 1 pedestrians at each corner. They walk almostly diagonally towards the other side (specific direction is upon randomness). After they exit the rectangle, they will be initialized at the corners again. robot state: 'px', 'py', 'vx', 'vy', 'gx', 'gy' 0 1 2 3 4 5 pedestrian state: 'px1', 'py1', 'vx1', 'vy1' 6 7 8 9 """ def __init__(self, task={}): super(NavRVO2Env_all, self).__init__() self._num_ped = 8 self._self_dim = 6 self._ped_dim = 4 self._num_agent = self._num_ped + 1 # ped_num + robot_num self._state_dim = self._self_dim + self._num_ped * self._ped_dim # robot_state_dim + ped_num * ped_state_dim self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(self._state_dim,), dtype=np.float32) self.action_space = spaces.Box(low=-0.1, high=0.1, shape=(2,), dtype=np.float32) self._done = False self._task = task self._goal = task.get('goal', np.array([0., 0.], dtype=np.float32)) self._default_robot_state = np.array([0., 0., 0., 0., self._goal[0], self._goal[1]], dtype=np.float32) self._state = self._default_robot_state.copy() self.seed() self._ped_radius = 0.15 self._ped_speed = task.get('ped_speed', np.zeros(self._num_ped, dtype=np.float32)) self._ped_direc = task.get('ped_direc', np.zeros(self._num_ped, dtype=np.float32)) self._entering_corner = np.float32(0.7) self._default_ped_states = self._entering_corner * np.array([[-1,-1], [1,-1], [1,1], [-1,1]]) self._default_ped_states = np.vstack((self._default_ped_states, self._default_ped_states)) # 8 ped self._ped_states = self._default_ped_states.copy() self._ped_list = [] self._simulator = self.init_simulator() for i in range(self._num_ped): # Extrating values from simulator and init self._state ai = self._ped_list[i] ai_vel = self._simulator.getAgentVelocity(ai) ai_pos = self._simulator.getAgentPosition(ai) self._state = np.append(self._state, np.append([ai_pos[0], ai_pos[1]], [ai_vel[0], ai_vel[1]])) def init_simulator(self): # Initializing RVO2 simulator && add agents to self._ped_list self._ped_list = [] timeStep = 1. neighborDist = self._ped_radius # safe-radius to observe states maxNeighbors = 8 timeHorizon = 2.0 timeHorizonObst = timeHorizon radius = 0.05 # size of the agent maxSpeed = 0.2 sim = rvo2.PyRVOSimulator(timeStep, neighborDist, maxNeighbors, timeHorizon, timeHorizonObst, radius, maxSpeed) for i in range(self._num_ped): ai = sim.addAgent((self._default_ped_states[i,0], self._default_ped_states[i,1])) self._ped_list.append(ai) vx = self._ped_speed[i] * np.cos(self._ped_direc[i]) vy = self._ped_speed[i] * np.sin(self._ped_direc[i]) sim.setAgentPrefVelocity(ai, (vx, vy)) return sim def check_and_clip_ped_states(self): # update simlator when an agent gets out of boundary ai_list = [] for i in range(self._num_ped): if any(abs(self._ped_states[i,:]) >= self._entering_corner + 0.001): self._ped_states[[i, i], [0, 1]] = self._default_ped_states[i,:] self._ped_direc[i] = np.arctan2(-self._ped_states[i,1], -self._ped_states[i,0]) + np.random.uniform(-np.pi/4, np.pi/4, size=(1,1)) ai_list.append(i) if ai_list: self.update_simulator(ai_list) return ai_list def print_rvo2_states(self): print("Printing agent-states from rvo-2") for i in range(self._num_ped): ai = self._ped_list[i] print("Agent", ai,": pos=", self._simulator.getAgentPosition(ai), ", vel=", self._simulator.getAgentVelocity(ai)) def print_ped_states(self): print("Printing agent-states from self._ped_states") for i in range(self._num_ped): print("Agent", i,": pos=", self._ped_states[i]) def print_robot_state(self): print("Robot: pos=", self._state[0:2]) def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def sample_tasks(self, num_tasks): # tasks includes goals and various goal_pos and ped_direcs goal_range = [-1., -0.8, 0.8, 1.] rand_temp = self.np_random.uniform(goal_range[0]-goal_range[1], goal_range[3]-goal_range[2], size=(num_tasks,)) rand_temp = rand_temp + goal_range[2] * np.sign(rand_temp) # there's a chance that 0 is sampled, but that's okay free_axis = np.random.randint(2, size=num_tasks) goals = np.zeros((num_tasks, 2), dtype=np.float32) goals[range(num_tasks),free_axis] = rand_temp goals[range(num_tasks),1-free_axis] = self.np_random.uniform(-1., 1., size=(num_tasks,)) ped_speeds = self.np_random.uniform(0.03, 0.15, size=(num_tasks, self._num_ped)) ped_direc = np.arctan2(-self._ped_states[:,1], -self._ped_states[:,0]) ram_direcs = self.np_random.uniform(-np.pi/4, np.pi/4, size=(num_tasks, self._num_ped)) # 8 pedestrians ped_direcs = ram_direcs + ped_direc tasks = [{'goal': goal, 'ped_speed': ped_speed, 'ped_direc': ped_direc} for goal, ped_speed, ped_direc in zip(goals, ped_speeds, ped_direcs)] return tasks def reset_task(self, task): self._task = task self._goal = task['goal'] self._ped_speed = task['ped_speed'] self._ped_direc = task['ped_direc'] self.update_simulator(self._ped_list) def update_simulator(self, ai_list=[]): if ai_list: #only update agents in ai_list for ai in ai_list: self._simulator.setAgentPosition(ai, (self._ped_states[ai,0], self._ped_states[ai,1])) vx = self._ped_speed[ai] * np.cos(self._ped_direc[ai]) vy = self._ped_speed[ai] * np.sin(self._ped_direc[ai]) self._simulator.setAgentVelocity(ai, (vx, vy)) self._simulator.setAgentPrefVelocity(ai, (vx, vy)) else: # update all agents from _ped_states for ai in self._ped_list: self._simulator.setAgentPosition(ai, (self._ped_states[ai,0], self._ped_states[ai,1])) vx = self._ped_speed[ai] * np.cos(self._ped_direc[ai]) vy = self._ped_speed[ai] * np.sin(self._ped_direc[ai]) self._simulator.setAgentVelocity(ai, (vx, vy)) self._simulator.setAgentPrefVelocity(ai, (vx, vy)) # print("ped i velocity = ", self._simulator.getAgentVelocity(ai) def assert_sim_and_states(self): for i in self._ped_list: if self._ped_states[i, 0] != self._simulator.getAgentPosition(i)[0]: print("Error: X for agent ", i, ": state = ", self._ped_states[i, 0], ", sim = ", self._simulator.getAgentPosition(i)[0]) return False if self._ped_states[i, 1] != self._simulator.getAgentPosition(i)[1]: print("Error: Y for agent ", i, ": state = ", self._ped_states[i, 1], ", sim = ", self._simulator.getAgentPosition(i)[1]) return False return True def update_ped_states(self): # Update ped_states from simulator for i in self._ped_list: self._ped_states[i, 0] = self._simulator.getAgentPosition(i)[0] self._ped_states[i, 1] = self._simulator.getAgentPosition(i)[1] def reset(self, env=True): self._done = False self._state = self._default_robot_state.copy() # self._ped_histories = [] self._ped_states = self._default_ped_states.copy() try: ped_direc = task.get('ped_direc', np.zeros(self._num_ped, dtype=np.float32)) except: ped_direc = np.zeros(self._num_ped, dtype=np.float32) for i in range(self._num_ped): vx = self._ped_speed[i] * np.cos(ped_direc[i]) vy = self._ped_speed[i] * np.sin(ped_direc[i]) self._state = np.append(self._state, np.append(self._default_ped_states[i], [vx, vy])) self._simulator = self.init_simulator() return self._state def step(self, action): action = np.clip(action, -0.1, 0.1) try: assert self.action_space.contains(action) except AssertionError as error: print("AssertionError: action is {}".format(action)) self._state[0:2] = self._state[0:2] + action self._state[2:4] = action self._state[4:6] = self._goal dx = self._state[0] - self._goal[0] dy = self._state[1] - self._goal[1] # Update agents' state self._simulator.doStep() self.update_ped_states() self.check_and_clip_ped_states() # ensure all agents are within the bounary: reset to default pos if necessary mid_point = self._goal/2. real_ped_state = self._ped_states + mid_point # update self._state for i in range(self._num_ped): ai_velocity = self._simulator.getAgentVelocity(self._ped_list[i]) self._state[self._self_dim+i*self._ped_dim: self._self_dim+i*self._ped_dim+4] = np.append(real_ped_state[i,:], [ai_velocity[0], ai_velocity[1]]) # Calculate rewards dist_reward = -np.sqrt(dx ** 2 + dy ** 2) weight_ped = 0.2 weight_colli = 1.5 col_reward = 0. for i in range(self._num_ped): dist_ped_i = np.sqrt((real_ped_state[i,0] - self._state[0]) ** 2 + (real_ped_state[i,1] - self._state[1]) ** 2) if (dist_ped_i < self._ped_radius): # safe distance to pealize the robot col_reward = col_reward + (dist_ped_i - self._ped_radius) * weight_ped if (dist_ped_i < 0.05): # collision with an agent col_reward = col_reward + (-1) * weight_colli all_reward = np.array([dist_reward+col_reward, dist_reward, col_reward]) if self._done: done = True self._done = False elif ((np.abs(dx) < 0.1) and (
np.abs(dy)
numpy.abs
import matplotlib.pyplot as plt import numpy as np import os import PIL import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import pathlib from Constantes import class_names, batch_size, img_height, img_width #-------------------------------------------------------------------------------------------------------------------------------------------- '''Descarga la carpeta de imagenes https://uniprivado.s3.amazonaws.com/imagenes_modelo.zip: imagenes_modelo fuego no_fuego ''' data_dir = pathlib.Path("D:\Sistema\Descargas\imagenes_modelo") #-------------------------------------------------------------------------------------------------------------------------------------------- '''Se procesan las imagenes, seteandole las medidas y separando un 20% para validacion y un 70% para aprendizaje"''' train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print("Clasificación del modelo: ",class_names) #-------------------------------------------------------------------------------------------------------------------------------------------- '''Visualiza datos aleatorios''' import matplotlib.pyplot as plt plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") AUTOTUNE = tf.data.experimental.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) normalization_layer = layers.experimental.preprocessing.Rescaling(1./255) normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) image_batch, labels_batch = next(iter(normalized_ds)) first_image = image_batch[0] # Notice the pixels values are now in `[0,1]`. print(
np.min(first_image)
numpy.min
import random import numpy as np from discretizations.DiscretizationScheme import DiscretizationScheme from problems.Problem import Problem class Flp(Problem): def __init__(self, instanceName, instancePath, populationSize, discretizationScheme, repairType): super().__init__(instanceName, instancePath) self.populationSize = populationSize self.discretizationScheme = discretizationScheme self.repairType = repairType self.costs = np.array([[]], dtype=np.int32) self.customerBudgets = np.array([], dtype=np.int32) self.facilities = 0 self.customers = 0 self.openFacilities = 0 self.repairsQuantity = 0 self.globalOptimum = self.getGlobalOptimum() self.population = np.random.uniform(low=-1.0, high=1.0, size=(self.populationSize, self.costs.shape[0])) self.binMatrix = np.random.randint(low=0, high=2, size=(self.populationSize, self.costs.shape[0])) self.fitness = np.zeros(self.populationSize) self.solutionsRanking = np.zeros(self.populationSize) self.weightConstraints = np.array([], dtype=np.float64) def getGlobalOptimum(self): instances = { 'FLPr_100_40_01': [0, 2245], 'FLPr_100_40_02': [1, 2259], 'FLPr_100_40_03': [2, 2019], 'FLPr_100_40_04': [3, 1533], 'FLPr_100_40_05': [4, 2386], 'FLPr_100_40_06': [5, 1960], 'FLPr_100_40_07': [6, 2179], 'FLPr_100_40_08': [7, 2139], 'FLPr_100_40_09': [8, 1895], 'FLPr_100_40_10': [9, 2209], 'FLPr_100_100_01': [10, 2235], 'FLPr_100_100_02': [11, 2240], 'FLPr_100_100_03': [12, 1923], 'FLPr_100_100_04': [13, 2133], 'FLPr_100_100_05': [14, 2099], 'FLPr_100_100_06': [15, 2237], 'FLPr_100_100_07': [16, 1888], 'FLPr_100_100_08': [17, 1825], 'FLPr_100_100_09': [18, 1767], 'FLPr_100_100_10': [19, 2368] } for instanceName in instances: if instanceName in self.instanceName: return instances[instanceName][1] return None def readInstance(self): file = open(self.instancePath, 'r') # Leer dimensiones line = file.readline().split() self.facilities = int(line[0]) # m self.customers = int(line[1]) # n self.openFacilities = int(line[2]) # p # Leer costos self.costs = np.zeros((self.facilities, self.customers), dtype=np.int32) for j in range(0, self.facilities): line = file.readline().split() self.costs[j] = np.array(line, dtype=np.int32) # print('self.costs:', self.costs) # print('self.costs.shape:', self.costs.shape) # print('self.costs.shape[0]:', self.costs.shape[0]) # Leer restricciones (?) line = file.readline().split() self.customerBudgets = np.array(line, dtype=np.int32) # print('self.customerBudgets:', self.customerBudgets) # print('self.customerBudgets.shape:', self.customerBudgets.shape) file.close() self.refreshComputedAttributes() def refreshComputedAttributes(self): self.population = np.random.uniform(low=-1.0, high=1.0, size=(self.populationSize, self.costs.shape[0])) self.binMatrix = np.random.randint(low=0, high=2, size=(self.populationSize, self.costs.shape[0])) self.fitness = np.zeros(self.populationSize) self.solutionsRanking = np.zeros(self.populationSize) self.weightConstraints = 1 / np.sum(self.customerBudgets) # <<< def process(self, *args, **kwargs): # print('----------START process----------') # Binarización de 2 pasos self.binMatrix = DiscretizationScheme( self.population, self.binMatrix, self.solutionsRanking, self.discretizationScheme['transferFunction'], self.discretizationScheme['binarizationOperator'] ).binarize() # print('self.binMatrix:', self.binMatrix) for solution in range(self.binMatrix.shape[0]): openFacilities = np.sum(self.binMatrix[solution]) # print(f'[antes] solution: {solution} - open facilities: {openFacilities}') # print('[antes] self.binMatrix[solution]:', self.binMatrix[solution]) if openFacilities > self.openFacilities: # si hay mas de p tiendas abiertas potentialCloseFacilities = np.where(self.binMatrix[solution] == 1)[0] randIndexes = random.sample(set(potentialCloseFacilities), k=(openFacilities - self.openFacilities)) self.binMatrix[solution][randIndexes] = 0 elif openFacilities < self.openFacilities: # si hay menos de p tiendas abiertas potentialOpenNewFacilities = np.where(self.binMatrix[solution] == 0)[0] randIndexes = random.sample(set(potentialOpenNewFacilities), k=(self.openFacilities - openFacilities)) self.binMatrix[solution][randIndexes] = 1 # openFacilities = np.sum(self.binMatrix[solution]) # print(f'[despues] solution: {solution} - open facilities: {openFacilities}') # print('[despues] self.binMatrix[solution]:', self.binMatrix[solution]) facilitiesSelectedCosts =
np.zeros((self.openFacilities, self.customers), dtype=np.int32)
numpy.zeros
# -*- coding: utf-8 -*- """ TODO: depricate this file eventually when geral model and dataset structure is fully setup """ # utils.py # provides utilities for learning a neural network model from __future__ import absolute_import, division, print_function import time import numpy as np from six.moves import cPickle as pickle # NOQA import utool as ut import six from wbia_cnn import net_strs print, rrr, profile = ut.inject2(__name__) # VERBOSE_CNN = ut.get_argflag(('--verbose-cnn', '--verbcnn')) or ut.VERBOSE VERBOSE_CNN = ut.get_module_verbosity_flags('cnn')[0] or ut.VERBOSE RANDOM_SEED = None # RANDOM_SEED = 42 def checkfreq(freqlike_, count): # checks frequency of param, also handles the case where it is specified # as a bool. does not trigger on 0 if ut.is_int(freqlike_): return (count % freqlike_) == (freqlike_ - 1) else: return freqlike_ is True def get_gpu_memory(): """ References: https://groups.google.com/forum/#!topic/theano-users/2EdclcmZazU https://gist.github.com/matpalm/9c0c7c6a6f3681a0d39d CommandLine: python -m wbia_cnn.utils --test-get_gpu_memory Example: >>> # ENABLE_DOCTEST >>> from wbia_cnn.utils import * # NOQA >>> result = get_gpu_memory() >>> print(result) """ import theano return theano.sandbox.cuda.cuda_ndarray.cuda_ndarray.mem_info() def _update(kwargs, key, value): # if key not in kwargs.keys(): if key not in kwargs: kwargs[key] = value def testdata_imglist(shape=(32, 32, 3)): """ Returns 4 colored 32x32 test images, one is structured increasing numbers, an images with lines of a cartoon face, and two complex images of people. CommandLine: python -m wbia_cnn.utils --test-testdata_imglist --show Example: >>> # ENABLE_DOCTEST >>> from wbia_cnn.utils import * # NOQA >>> (img_list, width, height, channels) = testdata_imglist() >>> ut.quit_if_noshow() >>> import plottool as pt >>> pt.imshow(img_list[0], pnum=(2, 2, 1)) >>> pt.imshow(img_list[1], pnum=(2, 2, 2)) >>> pt.imshow(img_list[2], pnum=(2, 2, 3)) >>> pt.imshow(img_list[3], pnum=(2, 2, 4)) >>> ut.show_if_requested() """ import vtool as vt x = 32 height, width, channels = shape img0 = np.arange(x ** 2 * 3, dtype=np.uint8).reshape(x, x, 3) img1 = vt.imread(ut.grab_test_imgpath('jeff.png')) img2 = vt.imread(ut.grab_test_imgpath('carl.jpg')) img3 = vt.imread(ut.grab_test_imgpath('lena.png')) img_list = [ vt.padded_resize(img, (width, height)) for img in [img0, img1, img2, img3] ] return img_list, width, height, channels def convert_cv2_images_to_theano_images(img_list): r""" Converts b01c to bc01 Converts a list of cv2-style images into a single numpy array of nonflat theano-style images. h=height, w=width, b=batchid, c=channel Args: img_list (list of ndarrays): a list of numpy arrays with shape [h, w, c] Returns: data: in the shape [b, (c x h x w)] CommandLine: python -m wbia_cnn.utils --test-convert_cv2_images_to_theano_images Example: >>> # ENABLE_DOCTEST >>> from wbia_cnn.utils import * # NOQA >>> import vtool as vt >>> # build test data >>> # execute function >>> img_list, width, height, channels = testdata_imglist() >>> data = convert_cv2_images_to_theano_images(img_list) >>> data[0].reshape(3, 32, 32)[:, 0:2, 0:2] >>> subset = (data[0].reshape(3, 32, 32)[:, 0:2, 0:2]) >>> #result = str(np.transpose(subset, (1, 2, 0))) >>> result = str(subset).replace('\n', '') >>> print(result) [[[ 0 3] [ 96 99]] [[ 1 4] [ 97 100]] [[ 2 5] [ 98 101]]] """ # [img.shape for img in img_list] # format to [b, c, h, w] if len(img_list.shape) == 3: # ensure 4 dimensions img_list = img_list.reshape(img_list.shape + (1,)) shape_list = [img.shape for img in img_list] assert ut.allsame(shape_list) theano_style_imgs = [
np.transpose(img, (2, 0, 1))
numpy.transpose
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Functions to calculate frequency spectra.""" from __future__ import (absolute_import, unicode_literals, division, print_function) from .base import mp_root, cross_gtis, create_gti_mask from .base import common_name, _empty, _assign_value_if_none from .rebin import const_rebin from .io import sort_files, get_file_type, load_lcurve, save_pds from .io import MP_FILE_EXTENSION import numpy as np import logging import warnings from multiprocessing import Pool import os def _wrap_fun_cpds(arglist): f1, f2, outname, kwargs = arglist try: return calc_cpds(f1, f2, outname=outname, **kwargs) except Exception as e: warnings.warn(str(e)) def _wrap_fun_pds(argdict): fname = argdict["fname"] argdict.pop("fname") try: return calc_pds(fname, **argdict) except Exception as e: warnings.warn(str(e)) def fft(lc, bintime): """A wrapper for the fft function. Just numpy for now. Parameters ---------- lc : array-like bintime : float Returns ------- freq : array-like ft : array-like the Fourier transform. """ nbin = len(lc) ft = np.fft.fft(lc) freqs = np.fft.fftfreq(nbin, bintime) return freqs.astype(np.double), ft def leahy_pds(lc, bintime): r"""Calculate the power density spectrum. Calculates the Power Density Spectrum a la Leahy+1983, ApJ 266, 160, given the lightcurve and its bin time. Assumes no gaps are present! Beware! Parameters ---------- lc : array-like the light curve bintime : array-like the bin time of the light curve Returns ------- freqs : array-like Frequencies corresponding to PDS pds : array-like The power density spectrum """ nph = sum(lc) # Checks must be done before. At this point, only good light curves have to # be provided assert (nph > 0), 'Invalid interval. Light curve is empty' freqs, ft = fft(lc, bintime) # I'm pretty sure there is a faster way to do this. pds = np.absolute(ft.conjugate() * ft) * 2. / nph good = freqs >= 0 freqs = freqs[good] pds = pds[good] return freqs, pds def welch_pds(time, lc, bintime, fftlen, gti=None, return_all=False): r"""Calculate the PDS, averaged over equal chunks of data. Calculates the Power Density Spectrum \'a la Leahy (1983), given the lightcurve and its bin time, over equal chunks of length fftlen, and returns the average of all PDSs, or the sum PDS and the number of chunks Parameters ---------- time : array-like Central times of light curve bins lc : array-like Light curve bintime : float Bin time of the light curve fftlen : float Length of each FFT gti : [[g0_0, g0_1], [g1_0, g1_1], ...] Good time intervals. Defaults to [[time[0] - bintime/2, time[-1] + bintime/2]] Returns ------- return_str : object, optional An Object containing all values below. f : array-like array of frequencies corresponding to PDS bins pds : array-like the values of the PDS epds : array-like the values of the PDS npds : int the number of summed PDSs (if normalize is False) ctrate : float the average count rate in the two lcs dynpds : array-like, optional dynepds : array-like, optional dynctrate : array-like, optional times : array-like, optional Other parameters ---------------- return_all : bool if True, return everything, including the dynamical PDS """ gti = _assign_value_if_none( gti, [[time[0] - bintime / 2, time[-1] + bintime / 2]]) start_bins, stop_bins = \ decide_spectrum_lc_intervals(gti, fftlen, time) results = _empty() if return_all: results.dynpds = [] results.edynpds = [] results.dynctrate = [] results.times = [] pds = 0 npds = len(start_bins) mask = np.zeros(len(lc), dtype=np.bool) for start_bin, stop_bin in zip(start_bins, stop_bins): l = lc[start_bin:stop_bin] t0 = time[start_bin] try: assert np.sum(l) != 0, \ 'Interval starting at time %.7f is bad. Check GTIs' % t0 f, p = leahy_pds(l, bintime) except Exception as e: warnings.warn(str(e)) npds -= 1 continue if return_all: results.dynpds.append(p) results.edynpds.append(p) results.dynctrate.append(np.mean(l) / bintime) results.times.append(time[start_bin]) pds += p mask[start_bin:stop_bin] = True pds /= npds epds = pds / np.sqrt(npds) ctrate = np.mean(lc[mask]) / bintime results.f = f results.pds = pds results.epds = epds results.npds = npds results.ctrate = ctrate return results def leahy_cpds(lc1, lc2, bintime): """Calculate the cross power density spectrum. Calculates the Cross Power Density Spectrum, normalized similarly to the PDS in Leahy+1983, ApJ 266, 160., given the lightcurve and its bin time. Assumes no gaps are present! Beware! Parameters ---------- lc1 : array-like The first light curve lc2 : array-like The light curve bintime : array-like The bin time of the light curve Returns ------- freqs : array-like Frequencies corresponding to PDS cpds : array-like The cross power density spectrum cpdse : array-like The error on the cross power density spectrum pds1 : array-like The power density spectrum of the first light curve pds2 : array-like The power density spectrum of the second light curve """ assert len(lc1) == len(lc2), 'Light curves MUST have the same length!' nph1 = sum(lc1) nph2 = sum(lc2) # Checks must be done before. At this point, only good light curves have to # be provided assert (nph1 > 0 and nph2 > 0), ('Invalid interval. At least one light ' 'curve is empty') freqs, ft1 = fft(lc1, bintime) freqs, ft2 = fft(lc2, bintime) pds1 = np.absolute(ft1.conjugate() * ft1) * 2. / nph1 pds2 = np.absolute(ft2.conjugate() * ft2) * 2. / nph2 pds1e = np.copy(pds1) pds2e = np.copy(pds2) # The "effective" count rate is the geometrical mean of the count rates # of the two light curves nph = np.sqrt(nph1 * nph2) # I'm pretty sure there is a faster way to do this. if nph != 0: cpds = ft1.conjugate() * ft2 * 2. / nph else: cpds = np.zeros(len(freqs)) # Justification in timing paper! (Bachetti et al. arXiv:1409.3248) # This only works for cospectrum. For the cross spectrum, I *think* # it's irrelevant cpdse = np.sqrt(pds1e * pds2e) / np.sqrt(2.) good = freqs >= 0 freqs = freqs[good] cpds = cpds[good] cpdse = cpdse[good] return freqs, cpds, cpdse, pds1, pds2 def welch_cpds(time, lc1, lc2, bintime, fftlen, gti=None, return_all=False): """Calculate the CPDS, averaged over equal chunks of data. Calculates the Cross Power Density Spectrum normalized like PDS, given the lightcurve and its bin time, over equal chunks of length fftlen, and returns the average of all PDSs, or the sum PDS and the number of chunks Parameters ---------- time : array-like Central times of light curve bins lc1 : array-like Light curve 1 lc2 : array-like Light curve 2 bintime : float Bin time of the light curve fftlen : float Length of each FFT gti : [[g0_0, g0_1], [g1_0, g1_1], ...] Good time intervals. Defaults to [[time[0] - bintime/2, time[-1] + bintime/2]] Returns ------- return_str : object An Object containing all return values below f : array-like array of frequencies corresponding to PDS bins cpds : array-like the values of the PDS ecpds : array-like the values of the PDS ncpds : int the number of summed PDSs (if normalize is False) ctrate : float the average count rate in the two lcs dyncpds : array-like, optional dynecpds : array-like, optional dynctrate : array-like, optional times : array-like, optional Other parameters ---------------- return_all : bool if True, return everything, including the dynamical PDS """ gti = _assign_value_if_none( gti, [[time[0] - bintime / 2, time[-1] + bintime / 2]]) start_bins, stop_bins = \ decide_spectrum_lc_intervals(gti, fftlen, time) cpds = 0 ecpds = 0 npds = len(start_bins) mask = np.zeros(len(lc1), dtype=np.bool) results = _empty() if return_all: results.dyncpds = [] results.edyncpds = [] results.dynctrate = [] results.times = [] cpds = 0 ecpds = 0 npds = len(start_bins) for start_bin, stop_bin in zip(start_bins, stop_bins): l1 = lc1[start_bin:stop_bin] l2 = lc2[start_bin:stop_bin] t0 = time[start_bin] try: assert np.sum(l1) != 0 and np.sum(l2) != 0, \ 'Interval starting at time %.7f is bad. Check GTIs' % t0 f, p, pe, p1, p2 = leahy_cpds(l1, l2, bintime) except Exception as e: warnings.warn(str(e)) npds -= 1 continue cpds += p ecpds += pe ** 2 if return_all: results.dyncpds.append(p) results.edyncpds.append(pe) results.dynctrate.append( np.sqrt(np.mean(l1)*np.mean(l2)) / bintime) results.times.append(time[start_bin]) mask[start_bin:stop_bin] = True cpds /= npds ecpds = np.sqrt(ecpds) / npds ctrate = np.sqrt(np.mean(lc1[mask])*np.mean(lc2[mask])) / bintime results.f = f results.cpds = cpds results.ecpds = ecpds results.ncpds = npds results.ctrate = ctrate return results def rms_normalize_pds(pds, pds_err, source_ctrate, back_ctrate=None): """Normalize a Leahy PDS with RMS normalization ([1]_, [2]_). Parameters ---------- pds : array-like The Leahy-normalized PDS pds_err : array-like The uncertainties on the PDS values source_ctrate : float The source count rate back_ctrate: float, optional The background count rate Returns ------- pds : array-like the RMS-normalized PDS pds_err : array-like the uncertainties on the PDS values References ---------- .. [1] Belloni & Hasinger 1990, A&A, 230, 103 .. [2] Miyamoto+1991, ApJ, 383, 784 """ back_ctrate = _assign_value_if_none(back_ctrate, 0) factor = (source_ctrate + back_ctrate) / source_ctrate ** 2 return pds * factor, pds_err * factor def decide_spectrum_intervals(gtis, fftlen): """Decide the start times of PDSs. Start each FFT/PDS/cospectrum from the start of a GTI, and stop before the next gap. Only use for events! This will give problems with binned light curves. Parameters ---------- gtis : [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] fftlen : float Length of the chunks Returns ------- spectrum_start_times : array-like List of starting times to use in the spectral calculations. """ spectrum_start_times = np.array([], dtype=np.longdouble) for g in gtis: if g[1] - g[0] < fftlen: logging.info("GTI at %g--%g is Too short. Skipping." % (g[0], g[1])) continue newtimes = np.arange(g[0], g[1] - fftlen, np.longdouble(fftlen), dtype=np.longdouble) spectrum_start_times = \ np.append(spectrum_start_times, newtimes) assert len(spectrum_start_times) > 0, \ "No GTIs are equal to or longer than fftlen. " + \ "Choose shorter fftlen (MPfspec -f <fftlen> <options> <filename>)" return spectrum_start_times def decide_spectrum_lc_intervals(gtis, fftlen, time): """Similar to decide_spectrum_intervals, but dedicated to light curves. In this case, it is necessary to specify the time array containing the times of the light curve bins. Returns start and stop bins of the intervals to use for the PDS Parameters ---------- gtis : [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] fftlen : float Length of the chunks time : array-like Times of light curve bins """ bintime = time[1] - time[0] nbin = np.long(fftlen / bintime) if time[-1] < np.min(gtis) or time[0] > np.max(gtis): raise ValueError("Invalid time interval for the given GTIs") spectrum_start_bins = np.array([], dtype=np.long) for g in gtis: if g[1] - g[0] < fftlen: logging.info("GTI at %g--%g is Too short. Skipping." % (g[0], g[1])) continue startbin = np.argmin(np.abs(time - g[0])) stopbin = np.argmin(np.abs(time - g[1])) if time[stopbin] - time[startbin] + bintime < fftlen: logging.info("T. int. at %g--%g is Too short. Skipping." % (time[startbin], time[stopbin])) continue if stopbin == nbin - 1: # Corner case newbins = [startbin] else: newbins = np.arange(startbin, stopbin - nbin + 1, nbin, dtype=np.long) spectrum_start_bins = \ np.append(spectrum_start_bins, newbins) if len(spectrum_start_bins) == 0: raise ValueError( "No GTIs or data intervals are equal to or longer than fftlen. " + \ "Choose shorter fftlen (MPfspec -f <fftlen> <options> <filename>)") return spectrum_start_bins, spectrum_start_bins + nbin def calc_pds(lcfile, fftlen, save_dyn=False, bintime=1, pdsrebin=1, normalization='Leahy', back_ctrate=0., noclobber=False, outname=None): """Calculate the PDS from an input light curve file. Parameters ---------- lcfile : str The light curve file fftlen : float The length of the chunks over which FFTs will be calculated, in seconds Other Parameters ---------------- save_dyn : bool If True, save the dynamical power spectrum bintime : float The bin time. If different from that of the light curve, a rebinning is performed pdsrebin : int Rebin the PDS of this factor. normalization : str 'Leahy' or 'rms' back_ctrate : float The non-source count rate noclobber : bool If True, do not overwrite existing files outname : str If speficied, output file name. If not specified or None, the new file will have the same root as the input light curve and the '_pds' suffix """ root = mp_root(lcfile) outname = root + '_pds' + MP_FILE_EXTENSION if noclobber and os.path.exists(outname): print('File exists, and noclobber option used. Skipping') return logging.info("Loading file %s..." % lcfile) lcdata = load_lcurve(lcfile) time = lcdata['time'] mjdref = lcdata['MJDref'] try: lc = lcdata['lccorr'] except: lc = lcdata['lc'] dt = lcdata['dt'] gti = lcdata['GTI'] instr = lcdata['Instr'] tctrate = lcdata['total_ctrate'] if bintime <= dt: bintime = dt else: lcrebin = np.rint(bintime / dt) bintime = lcrebin * dt logging.info("Rebinning lc by a factor %d" % lcrebin) time, lc, dum = \ const_rebin(time, lc, lcrebin, normalize=False) results = welch_pds(time, lc, bintime, fftlen, gti, return_all=True) freq = results.f pds = results.pds epds = results.epds npds = results.npds ctrate = results.ctrate freq, pds, epds = const_rebin(freq[1:], pds[1:], pdsrebin, epds[1:]) if normalization == 'rms': logging.info('Applying %s normalization' % normalization) pds, epds = \ rms_normalize_pds(pds, epds, source_ctrate=ctrate, back_ctrate=back_ctrate) for ic, pd in enumerate(results.dynpds): ep = results.edynpds[ic].copy() ct = results.dynctrate[ic].copy() pd, ep = rms_normalize_pds(pd, ep, source_ctrate=ct, back_ctrate=back_ctrate) results.edynpds[ic][:] = ep results.dynpds[ic][:] = pd outdata = {'time': time[0], 'pds': pds, 'epds': epds, 'npds': npds, 'fftlen': fftlen, 'Instr': instr, 'freq': freq, 'rebin': pdsrebin, 'norm': normalization, 'ctrate': ctrate, 'total_ctrate': tctrate, 'back_ctrate': back_ctrate, 'MJDref': mjdref} if 'Emin' in lcdata.keys(): outdata['Emin'] = lcdata['Emin'] outdata['Emax'] = lcdata['Emax'] if 'PImin' in lcdata.keys(): outdata['PImin'] = lcdata['PImin'] outdata['PImax'] = lcdata['PImax'] logging.debug(repr(results.dynpds)) if save_dyn: outdata["dynpds"] = np.array(results.dynpds)[:, 1:] outdata["edynpds"] = np.array(results.edynpds)[:, 1:] outdata["dynctrate"] =
np.array(results.dynctrate)
numpy.array
from reader import process_feature, read_data import random import numpy as np import tensorflow as tf from model import RNNModel from sklearn import model_selection from sklearn.metrics import roc_curve, auc, f1_score, average_precision_score import os import logging import argparse import matplotlib.pyplot as plt from tqdm import tqdm from operator import attrgetter import math def get_feature_label(data, length_limit = math.inf): data = list(filter(lambda d: d.seq is not None, data)) for i in range(len(data)): if not hasattr(data[i], 'features'): data[i].get_feature() length = np.array(list(map(lambda x : x.length, data)), dtype = np.int32) # print(length) max_length = min(np.max(length), length_limit) feature_dim = data[0].feature_dim batch_size = len(data) x = np.zeros([batch_size, max_length, feature_dim]) y = np.zeros([batch_size, 1]) for i in range(len(data)): length[i] = min(length[i], length_limit) s = np.random.randint(data[i].length - length[i] + 1) x[i, : length[i], :] = data[i].features[s : s + length[i], :] y[i, 0] = data[i].label return x, y, length def val(model, data, batch_size = 64): model.init_streaming() for i in range(0, len(data), batch_size): model.val(*get_feature_label(data[i:i+batch_size], length_limit = 1000)) return model.get_summaries() # class SimpleLengthModel: # threshold_length = 1000 # @classmethod # def data_filter(cls, data): # return data.length <= cls.threshold_length def batch_data_provider(data, batch_size): data_label = [] for l in (0, 1): data_label.append(list(filter(lambda d : d.label == l, data))) samples_label = [int(batch_size / 2), int(batch_size / 2) ] while True: yield random.sample(data_label[0], samples_label[0]) + random.sample(data_label[1], samples_label[1]) def train(train_data, val_data, steps = 6000, val_per_steps = 300, checkpoint_per_steps=100, batch_size = 64, learning_rate = 0.01, **kwargs): global args # train_data = list(filter(SimpleLengthModel.data_filter, train_data)) # val_data = list(filter(SimpleLengthModel.data_filter, val_data)) model = RNNModel(feature_dims=train_data[0].feature_dim, model_dir=args.output_dir, **kwargs) if args.checkpoint is not None: model.restore(args.checkpoint) data_provider = batch_data_provider(train_data, batch_size=batch_size) for t in range(0, steps): x, y, length = get_feature_label(next(data_provider), length_limit=1000) result = model.train(x, y, length, learning_rate) logging.info("step = {}: {}".format(model.global_step, result)) if model.global_step % val_per_steps == 0: result = val(model, val_data) model.init_streaming() logging.info("validation for step = {}: {}".format(model.global_step, result)) if model.global_step % checkpoint_per_steps == 0: model.save_checkpoint() logging.info("save checkpoint at {}".format(model.global_step)) if model.global_step % 2000 == 0: learning_rate *= 0.2 logging.info("current learning rate = {}".format(learning_rate)) def test(data, batch_size=64, filename='roc.png', **kwargs): global args assert args.checkpoint is not None model = RNNModel(feature_dims=data[0].feature_dim, model_dir=args.output_dir, **kwargs) model.restore(args.checkpoint) data = list(filter(lambda d: d.seq is not None, data)) for i in tqdm(range(0, len(data), batch_size)): x, y, length = get_feature_label(data[i:i+batch_size], length_limit=10000) predictions = model.predict(x, length) for l,p in zip(data[i:i+batch_size], predictions): l.prediction = p # if SimpleLengthModel.data_filter(data[i]): # x, y, length = get_feature_label(data[i:i+batch_size], length_limit=1000) # predictions = model.predict(x, length) # for l,p in zip(data[i:i+batch_size], predictions): # l.prediction = p # else: # for l in data[i:i+batch_size]: # l.prediction = 1 + l.length / 100000.0 predictions = list(map(attrgetter('prediction'), data)) labels = list(map(attrgetter('label'), data)) plot_roc(predictions, labels, filename=filename) def baseline(data, filename): labels = list(map(attrgetter('label'), data)) predictions = list(map(attrgetter('length'), data)) plot_roc(predictions, labels, filename=filename) def plot_roc(predictions, labels, plot_samples = 50, filename='roc.png'): global args predictions =
np.array(predictions)
numpy.array
import numpy as np f1_alpha=1000 #set alpha of f1 f3_epsilon=1e-6 #set epsilon of f3 f45_q=10**8 def f1(x): #ellipsoid function dim=x.shape[0] #dimension number result=0 for i in range(dim): result+=f1_alpha**(i/(dim-1))*x[i]**2 return result def g1(x): dim=x.shape[0] result=np.zeros(dim) for i in range(dim): result[i]=2*(f1_alpha**(i/(dim-1)))*x[i] return result def h1(x): dim=x.shape[0] result=np.zeros((dim,dim)) for i in range(dim): result[i,i]=2*(f1_alpha**(i/(dim-1))) return result f2 = lambda x: (1-x[0])**2+100*(x[1]-x[0]**2)**2; #Rosenbrok function g2 = lambda x: np.array([-400*x[0]*(x[1]-x[0]**2)-2*(1-x[0]), 200*(x[1]-x[0]**2)]) h2 = lambda x: np.array([[2+1200*x[0]**2-400*x[1], -400*x[0]], [-400*x[0], 200]]) f3 = lambda x: np.log(f3_epsilon+f1(x)) #log ellipsoid function def g3(x): dim=x.shape[0] result=
np.zeros(dim)
numpy.zeros
import sys sys.path.append('../nvm') import numpy as np import pickle from activator import tanh_activator from coder import Coder from op_net import arith_ops class CHL_Net: def __init__(self, Ns, feedback=False, split_learn=False, biases=True): self.sizes = [N for N in Ns] self.feedback = feedback self.split_learn = split_learn self.biases = biases self.W, self.B = [],[] self.G = [] for i in range(len(Ns)-1): size, prior_size = Ns[i+1], Ns[i] self.W.append(2 * np.random.random((size, prior_size)) - 1) self.B.append(2 * np.random.random((size, 1)) - 1) self.G.append(np.random.normal(0.0, 1.0, ((size, prior_size)))) self.activity = [
np.zeros((size,1))
numpy.zeros
import numpy as np import pytest from cgn.regop import IdentityOperator from cgn import LinearConstraint, Parameter, Problem def test_problem(): # Initialize parameters n1 = 20 n2 = 50 x = Parameter(start=np.zeros(n1), name="x") y = Parameter(start=np.zeros(n2), name="y") x.beta = 0.384 y.beta = 32.2 x.lb = np.zeros(n1) x.mean = np.random.randn(n1) y.mean = np.random.randn(n2) x.regop = IdentityOperator(dim=n1) y.regop = IdentityOperator(dim=n2) # Initialize constraints a = np.ones((1, n1 + n2)) b = np.ones((1,)) eqcon = LinearConstraint(parameters=[x, y], a=a, b=b, ctype="eq") c = np.eye(n2) d = np.ones(n2) incon = LinearConstraint(parameters=[y], a=c, b=d, ctype="ineq") scale = 0.1 # Initialize misfit function and Jacobian def fun(x1, x2): return np.square(np.concatenate((x1, x2), axis=0)) def jac(x1, x2): return 2 * np.diagflat(np.concatenate((x1, x2), axis=0)) problem = Problem(parameters=[x, y], fun=fun, jac=jac, constraints=[eqcon, incon], scale=scale) # Check that the correct problem was initialized assert isinstance(problem.q, IdentityOperator) assert problem.nparams == 2 assert problem.n == n1 + n2 def test_constraints_must_depend_on_problem_parameters(): n1 = 20 n2 = 50 n3 = 1 x = Parameter(start=np.zeros(n1), name="x") y = Parameter(start=np.zeros(n2), name="y") z = Parameter(start=np.zeros(n3), name="z") a1 =
np.random.randn(n1 + n2 + n3, n1 + n2 + n3)
numpy.random.randn
import unittest import numpy from pyscf import lib einsum = lib.einsum lib.numpy_helper.EINSUM_MAX_SIZE, bak = 0, lib.numpy_helper.EINSUM_MAX_SIZE def tearDownModule(): lib.numpy_helper.EINSUM_MAX_SIZE = bak class KnownValues(unittest.TestCase): def test_d_d(self): a = numpy.random.random((7,1,3,4)) b = numpy.random.random((2,4,5,7)) c0 = numpy.einsum('abcd,fdea->cebf', a, b) c1 = einsum('abcd,fdea->cebf', a, b) self.assertTrue(c0.dtype == c1.dtype) self.assertTrue(abs(c0-c1).max() < 1e-14) def test_c_c(self): a = numpy.random.random((7,1,3,4)).astype(numpy.float32) b = numpy.random.random((2,4,5,7)).astype(numpy.float32) c0 = numpy.einsum('abcd,fdea->cebf', a, b) c1 = einsum('abcd,fdea->cebf', a, b) self.assertTrue(c0.dtype == c1.dtype) self.assertTrue(abs(c0-c1).max() < 1e-5) def test_c_d(self): a = numpy.random.random((7,1,3,4)).astype(numpy.float32) + 0j b = numpy.random.random((2,4,5,7)).astype(numpy.float32) c0 = numpy.einsum('abcd,fdea->cebf', a, b) c1 = einsum('abcd,fdea->cebf', a, b) self.assertTrue(c0.dtype == c1.dtype) self.assertTrue(abs(c0-c1).max() < 1e-5) def test_d_z(self): a = numpy.random.random((7,1,3,4)) b = numpy.random.random((2,4,5,7)) + 0j c0 = numpy.einsum('abcd,fdea->cebf', a, b) c1 = einsum('abcd,fdea->cebf', a, b) self.assertTrue(c0.dtype == c1.dtype) self.assertTrue(abs(c0-c1).max() < 1e-14) def test_z_z(self): a = numpy.random.random((7,1,3,4)) + 0j b = numpy.random.random((2,4,5,7)) + 0j c0 = numpy.einsum('abcd,fdea->cebf', a, b) c1 = einsum('abcd,fdea->cebf', a, b) self.assertTrue(c0.dtype == c1.dtype) self.assertTrue(abs(c0-c1).max() < 1e-14) def test_d_dslice(self): a = numpy.random.random((7,1,3,4)) b = numpy.random.random((2,4,5,7)) c0 = numpy.einsum('abcd,fdea->cebf', a, b[:,:,1:3,:]) c1 = einsum('abcd,fdea->cebf', a, b[:,:,1:3,:]) self.assertTrue(c0.dtype == c1.dtype) self.assertTrue(abs(c0-c1).max() < 1e-14) def test_d_dslice1(self): a = numpy.random.random((7,1,3,4)) b = numpy.random.random((2,4,5,7)) c0 = numpy.einsum('abcd,fdea->cebf', a[:4].copy(), b[:,:,:,2:6]) c1 = einsum('abcd,fdea->cebf', a[:4].copy(), b[:,:,:,2:6]) self.assertTrue(c0.dtype == c1.dtype) self.assertTrue(abs(c0-c1).max() < 1e-14) def test_dslice_d(self): a = numpy.random.random((7,1,3,4)) b =
numpy.random.random((2,4,5,7))
numpy.random.random