prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
""" This file provides is an example of the application of geomstats on the space of SDP matrices. The goal here is to classify a set of 86 brain connectomes represented by their SPD regularized Laplacian (with parameter GAMMA) into two classes: control vs people suffering from schizophrenia. """ import geomstats.spd_matrices_space as spd_space import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.cluster.hierarchy as hc import seaborn as sb from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.metrics import f1_score, precision_score, recall_score from sklearn.model_selection import KFold from sklearn.svm import SVC import time N_NODES = 28 RAND_SEED = 2018 SPACE = spd_space.SPDMatricesSpace(n=N_NODES) CORR_THRESH = 0.1 GAMMA = 1.0 N_GRAPHS = 86 SIGMAS = list(np.arange(0.5, 20, 0.5)) DISTANCES = ['log_euclidean', 'frobenius', 'riemannian'] TRAIN_SIZE = 0.85 def import_data(): graphs = pd.read_csv('data/train_fnc.csv') map_functional = pd.read_csv('add_info/comp_ind_fmri.csv', index_col=None) map_functional = map_functional['fMRI_comp_ind'].to_dict() map_functional_r = {v: k for k, v in map_functional.items()} mapping = pd.read_csv('add_info/' + 'rs_fmri_fnc_mapping.csv') graph_labels = pd.read_csv('data/train_labels.csv') all_graphs = [None] * N_GRAPHS all_targets = np.zeros(N_GRAPHS) def create_connectome(graph_id, mapping): u = np.zeros((N_NODES, N_NODES)) nb_edges = mapping.shape[0] for edge in range(nb_edges): e0, e1 = (mapping.iloc[edge]['mapA'], mapping.iloc[edge]['mapB']) region0, region1 = map_functional_r[e0], map_functional_r[e1] u[region0, region1] = graphs.iloc[graph_id][edge] u = np.multiply(u, (u > CORR_THRESH)) return np.abs(u + u.T) for graph_id in range(N_GRAPHS): all_graphs[graph_id] = create_connectome(graph_id, mapping) all_targets[graph_id] = int(graph_labels.loc[graphs.index[graph_id], 'Class']) all_targets = np.array(all_targets) np.random.seed(RAND_SEED) index_train = list(range(N_GRAPHS)) np.random.shuffle(index_train) stop = int(TRAIN_SIZE * N_GRAPHS) labels = all_targets[index_train] return (graphs.iloc[:, index_train], [all_graphs[t] for t in index_train], labels, stop, index_train) def laplacian(a): d = np.diag(np.array(a.sum(1)).flatten()) return d-a def frobenius(hat_l1, hat_l2): return np.linalg.norm(spd_space.group_log(hat_l1).squeeze(0) - spd_space.group_log(hat_l2).squeeze(0), 'fro') def riemannian(inv_l1, hat_l2): return np.linalg.norm(inv_l1.dot(spd_space.group_log(hat_l2).squeeze(0).dot(inv_l1)), 'fro') def log_euclidean(hat_l1, hat_l2): return np.linalg.norm(spd_space.group_log(hat_l1).squeeze(0) - spd_space.group_log(hat_l2).squeeze(0), 'fro') def fit_kernel_cv(log_euclidean_distance, labels, sigma=None, verbose=False): kf = KFold(n_splits=10) perf = {} conf = {} nb_train = len(labels) if sigma is not None: distance = np.exp(- np.square(log_euclidean_distance)/(sigma**2)) else: distance = log_euclidean_distance k = 0 for train_index, test_index in kf.split(range(nb_train)): train_index = np.array(train_index) test_index = np.array(test_index) x = np.array(distance)[train_index, :][:, train_index] x_test = np.array(distance[test_index, :])[:, train_index] clf = SVC(kernel='precomputed') clf.fit(x, labels[train_index]) y_train = clf.predict(x) if verbose: print("Training accuracy:", accuracy_score(labels[train_index], y_train)) y_test = clf.predict(x_test) perf[k] = {'acc': accuracy_score(labels[test_index], y_test), 'prec': precision_score(labels[test_index], y_test), 'f1': f1_score(labels[test_index], y_test), 'recall': recall_score(labels[test_index], y_test)} conf[k] = confusion_matrix(labels[test_index], y_test) k += 1 return perf, conf def compute_similarities(all_graphs, type_dist): distance = np.zeros((N_GRAPHS, N_GRAPHS)) for c, g in enumerate(all_graphs): hat_l1 = laplacian(g) + GAMMA * np.eye(N_NODES) lambda2, u = np.linalg.eigh(hat_l1) inv_l1 = u.dot(np.diag(1.0/
np.sqrt(lambda2)
numpy.sqrt
""" defines: - PLOADv - PLOAD1v - PLOAD2v - PLOAD4v """ from __future__ import print_function from collections import defaultdict from itertools import count import numpy as np from pyNastran.bdf.bdf_interface.assign_type import ( integer, integer_or_blank, double, double_or_blank, string_or_blank, integer_string_or_blank, string, fields, components_or_blank) from pyNastran.bdf.field_writer_8 import ( print_float_8, print_card_8, set_blank_if_default, set_string8_blank_if_default) from pyNastran.bdf.field_writer_16 import ( print_float_16, set_string16_blank_if_default) from pyNastran.bdf.field_writer_double import print_scientific_double from pyNastran.bdf.cards.base_card import _format_comment from pyNastran.bdf.cards.base_card import expand_thru from pyNastran.dev.bdf_vectorized2.cards.loads.loads import BaseLoad class PLOADv(BaseLoad): """ Static Pressure Load Defines a uniform static pressure load on a triangular or quadrilateral surface comprised of surface elements and/or the faces of solid elements. +-------+-----+------+----+----+----+----+ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | +=======+=====+======+====+====+====+====+ | PLOAD | SID | P | G1 | G2 | G3 | G4 | +-------+-----+------+----+----+----+----+ | PLOAD | 1 | -4.0 | 16 | 32 | 11 | | +-------+-----+------+----+----+----+----+ """ card_name = 'PLOAD' def __init__(self, model): BaseLoad.__init__(self, model) self.pressure = np.array([], dtype='float64') self.nids =
np.array([], dtype='int32')
numpy.array
"""Standard library imports""" import numpy as np # 1.19.4 import pandas as pd # 1.2.0 import scipy as sp # import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.optimize import fsolve """Local modules""" from pyloads.blade_data import BladeFeatures from pyloads.aerodynamic_profiles import AeroProfiles from pyloads.operation_dtu10mw import Operation class Rotor(Operation): """Create a Rotor object (by Default is the DTU 10 MW) by defining the blade geometry (cord, twist and thickness), as well as the aerodynamic profiles (i.e as output from XFOIL interactive program for design). - Calculate the Normal and Tangential loads for given operational conditions. - Calculate the Power and Thrust coefficient. - Calculate and plot the Rotor Power Curve. Parameters ---------- radio : array , default=None twist : array , default=None cord : array , default=None t_c : array , default=None profiles : array , default='Default'""" # class attributes number_of_blades = 3 radio = 89.17 # [m] rho = 1.225 # [km/m3] operation = pd.DataFrame( {'u': [4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., ], 'pitch': [2.751, 1.966, 0.896, 0., 0., 0., 0., 0., 4.502, 7.266, 9.292, 10.958, 12.499, 13.896, 15.2, 16.432, 17.618, 18.758, 19.86, 20.927, 21.963, 22.975], 'RPM': [6., 6., 6., 6., 6.426, 7.229, 8.032, 8.836, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, ] }) # blade_data = pd.read_csv('bladedat.txt', sep='\t', names=['r', 'twist', 'c', 't/c']) # class constructor def __init__(self, radio='DTU_10MW', twist='DTU_10MW', cord='DTU_10MW', t_c='DTU_10MW', profiles='DTU_10MW'): super().__init__() bld = BladeFeatures() # Take the parameters from BladeFeatures corresponding to DTU 10MW if radio == 'DTU_10MW': self.radio = bld.radio if twist == 'DTU_10MW': self.twist = bld.twist if cord == 'DTU_10MW': self.cord = bld.cord if t_c == 'DTU_10MW': self.t_c = bld.t_c """Load the aerodynamics profiles.""" # TODO: # This should be in a child class from Rotor called DTU-10MW if profiles == 'DTU_10MW': aero_prof = AeroProfiles() ffa_241 = aero_prof.ffa_241 ffa_301 = aero_prof.ffa_301 ffa_360 = aero_prof.ffa_360 ffa_480 = aero_prof.ffa_480 ffa_600 = aero_prof.ffa_600 cylinder = aero_prof.cylinder self.ffa_dict = dict(zip(np.arange(6), [ffa_241, ffa_301, ffa_360, ffa_480, ffa_600, cylinder])) # TODO: # check that the len of the features is the same # check that the data has valid ranges.. @staticmethod def integrate(y, r): """Useful function for numerical integration. parameters ---------- y : array function to be integrated r : array integrate over r radial positions. """ M = 0 # dummy assignment before loop for k in range(len(y) - 1): A_k = (y[k + 1] - y[k]) / (r[k + 1] - r[k]) B_k = (y[k] * r[k + 1] - y[k + 1] * r[k]) / (r[k + 1] - r[k]) M += 1 / 3 * A_k * ((r[k + 1]) ** 3 - (r[k]) ** 3) + 0.5 * B_k * ((r[k + 1]) ** 2 - (r[k]) ** 2) return M @staticmethod def thruster(pN, r): """Compute the total Thrust (T * num_blades) for the Rotor. parameter --------- pN : array normal loads vector (i.e as returned by norma_tangential_loads method. r : array vector with radial position [m]""" # [r] m T = 0 B = Rotor.number_of_blades for i in range(len(pN) - 1): T += (pN[i + 1] + pN[i]) * 0.5 * (r[i + 1] - r[i]) # print(f'thrust {T} for item num {i}') return T * B def lift_drag_coeff(self, alpha, t_c): # TODO: # raise exceptions for thick and alpha # read how to write docstring in Python PEP-8 """Interpolation for drag and lift coefficients. Returns: (Cl, Cd) --------------parameters: t_c: float (ie. 24.1) alpha: int or float (rad) """ t = t_c cdthick, clthick = np.zeros(6), np.zeros(6) for k in range(6): f1cl = interp1d(self.ffa_dict[k].iloc[:, 0], self.ffa_dict[k].iloc[:, 1]) f1cd = interp1d(self.ffa_dict[k].iloc[:, 0], self.ffa_dict[k].iloc[:, 2]) clthick[k] = f1cl(alpha * 180 / np.pi) # must convert into degrees cdthick[k] = f1cd(alpha * 180 / np.pi) thick_prof =
np.array([24.1, 30.1, 36., 48., 60., 100.])
numpy.array
from __future__ import print_function from .base import Problem from keras.models import Sequential from keras.layers import Dense, LSTM, SimpleRNN from keras.optimizers import Adam from keras import backend as K from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import numpy as np import os import pandas as pd from datetime import datetime from pygrn import RGRN class Prediction(Problem): def __init__(self, log_file, seed=0, learn=True, batch_size=1, epochs=1, data_dir='./', lamarckian=False, unsupervised=True, stateful=True, model='RGRN', ntrain=6*24*60, ntest=24*60, shift=1, lag=60): rawvals = pd.read_csv(os.path.join(data_dir, 'kliens_raw.csv')) self.df = rawvals if shift != 0: self.df = rawvals - rawvals.shift(-1) self.df['target'] = rawvals['close'] - rawvals['close'].shift(-shift-lag) self.df.dropna(inplace=True) train = self.df.tail(ntrain+ntest).head(ntrain) test = self.df.tail(ntest) self.scaler = MinMaxScaler(feature_range=(0, 1)) self.scaler = self.scaler.fit(train) train = self.scaler.transform(train) test = self.scaler.transform(test) self.x_train = train[:, 0:-1] self.x_train = self.x_train.reshape(self.x_train.shape[0], 1, self.x_train.shape[1]) self.y_train = train[:, -1] self.x_test = test[:, 0:-1] self.x_test = self.x_test.reshape(self.x_test.shape[0], 1, self.x_test.shape[1]) self.y_test = test[:, -1] self.batch_size = batch_size self.epochs = epochs self.learn = learn self.generation = 0 self.ntrain = ntrain self.ntest = ntest self.shift = shift self.lag = lag self.seed = seed self.lamarckian = lamarckian self.unsupervised = unsupervised self.stateful = stateful self.model_type = eval(model) if self.unsupervised: i = np.random.randint(self.x_train.shape[2]) self.y_train = 0.5*self.x_train[:,0,i] + 0.5*np.random.rand(len(self.y_train)) self.nin = self.x_train.shape[2] self.nout = 10 self.cacheable = False self.logfile = log_file def generation_function(self, grneat, generation): self.generation = generation if self.unsupervised: i = np.random.randint(self.x_train.shape[2]) self.y_train = 0.5*self.x_train[:,0,i] + 0.5*np.random.rand(len(self.y_train)) def eval(self, grn): seed = np.random.randint(1e5) model = Sequential() batch_input_shape=(self.batch_size, self.x_train.shape[1], self.x_train.shape[2]) start_time = datetime.now() if self.model_type == LSTM or self.model_type == SimpleRNN: np.random.seed(int(np.round(grn.identifiers[0]*100))) layer = self.model_type(self.nout, stateful=self.stateful, batch_input_shape=batch_input_shape) model.add(layer) else: np.random.seed(self.seed) layer = self.model_type(str(grn), stateful=self.stateful, batch_input_shape=batch_input_shape) model.add(layer) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') error = [] if self.learn: for i in range(self.epochs): history = model.fit(self.x_train, self.y_train, batch_size=self.batch_size, epochs=1, verbose=0, shuffle=False) model.reset_states() with open(self.logfile, 'a') as f: for l in range(len(history.history['loss'])): train_fit = history.history['loss'][l] error += [train_fit] f.write('L,%e,%d,%s,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%e\n' % ( (datetime.now()-start_time).total_seconds(), self.seed, self.model_type.__name__, self.epochs, self.lamarckian, self.unsupervised, self.stateful, self.ntrain, self.ntest, self.shift, self.lag, self.generation, i, train_fit)) # lamarckian evolution if self.lamarckian: layer.set_learned_genes(grn) start_error = error[0] end_error = error[-1] fit = start_error - end_error total_error = np.sum(np.abs(error)) if not self.unsupervised: # predict and return unscaled difference ntest = len(self.y_test) yhat = model.predict(self.x_test, batch_size=self.batch_size, verbose=0) final = np.concatenate(( np.reshape(self.x_test, (self.x_test.shape[0], self.x_test.shape[2])), np.reshape(yhat, (ntest,1))), axis=1) inverted = self.scaler.inverse_transform(final) yhatp = inverted[:, -1] target = self.df['target'].tail(ntest) fit = np.sqrt(mean_squared_error(yhatp, target)) total_error = np.sum(
np.abs(yhatp - target)
numpy.abs
# from __future__ import division #------------------------------------- # # Started at 06/08/2018 (YuE) # # This script based on the previous script # threeApproachesComparison_v6.py # ## Upgraded version of python (python3.4): script was rewritten to take into # account some differences in the descriptions and using of some functions # (version cma_v3 and more earlier scripts are written under python2). # # 07/24/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # # But nevertheless, the dependences of the transmitted energy on the impact # parameter are close to the inverse quadratic (as it should be!) at all velocities. # # 07/27/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # The investigation of that is in progress. # # Some features were improved, some figures were corrected. # #------------------------------------- #======================================================== # # This code compairs two approaches: "classical" (from [1]) and # "magnus" (from [2]). # # For "classical" approach the magnetized interaction between ion # and electron is considered for ion velocities V_i > rmsTrnsvVe. # # References: # # [1] <NAME>, <NAME>, <NAME>, <NAME>. # "Physics guide of BETACOOL code. Version 1.1". C-A/AP/#262, November # 2006, Brookhaven National Laboratory, Upton, NY 11973. # [2] <NAME>, <NAME>. "New Algorithm for Dynamical Friction # of Ions in a Magnetized Electron Beam". AIP Conf. Proc. 1812, 05006 (2017). # #======================================================== ######################################################### # # Main issues of the calculations: # # 1) Friction force (FF) is calculated in the (P)article (R)est (F)rame, # i.e. in the frame moving together with both (cooled and cooling) # beams at a velocity V0; # 2) Friction force is calculated for each value of ion velocity # in the interval from .1*rmsTrnsvVe till 10*rmsTrnsvVe; # 3) Initially assumped that all electrons have a logitudinal # velocity rmsLongVe and transversal velocity rmsTrnsvVe; # 4) For each ion velocity the minimal and maximal values of the # impact parameter are defined. Radius of the shielding of the # electric field of the ion equals to the value of the maximal # impact parameter; # 5) For each impact parameter in the interval from minimal till # maximal values the transfered momenta deltap_x,y,z are # calculated; # 6) Founded transfered momenta allow to calculate the transfered # energy delta_E =deltap^2/(2*m_e) and to integrate it over # impact parameter; then (expressions (3.4), (3.5) from [1]): # FF =-2*pi*n_e*integral_rhoMin^rhoMax delta_E*rho*drho; # 7) For taking into account the velocity distribution of the # electrons it is necessary to repeat these calculations for # each value of the electron's velocity and then integrate result # over distribution of the velocities. # # 10/26/2018: # # 8) Item 6 is wrong and correct expression for transfered # energy delta_E will be used; # 9) Method (my own) Least Squares Method - LSM is used to fit the # dependence of transferred momenta on impact parameter; # # # 11/08/2018: # # 10) Two functions ('fitting' and 'errFitAB' are defined to realize # my LSM to find the parameters of the fitting end error of this # fitting; # # 11) Analys of different dependeces between values; graphical # presentation of these dependences; # ######################################################### import os, sys import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm from matplotlib import ticker from matplotlib import markers import matplotlib as mpl from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D import scipy.integrate as integrate from scipy.integrate import quad, nquad, dblquad from scipy.constants import pi from scipy import optimize from statistics import mean from array import array # # All physical constants have its dimension in units in the system CI. # This code uses units in the system CGS! # from scipy.constants import speed_of_light as clight from scipy.constants import epsilon_0 as eps0 from scipy.constants import mu_0 as mu0 from scipy.constants import elementary_charge as qe from scipy.constants import electron_mass as me from scipy.constants import proton_mass as mp from scipy.constants import Boltzmann as kB pi=3.14159265358 # # Physical constants: # m_e=9.10938356e-28 # electron mass, g m_elec=m_e # to keep variable from previous script m_p=1.672621898e-24 # electron mass, g M_ion = m_p # to keep variable from previous script q_e=4.803204673e-10 # electron charge, CGSE unit: sqrt(g*cm^3/sec^2) q_elec=q_e # to keep variable from previous script Z_ion = q_e # to keep variable from previous script cLight=2.99792458e10 # speed of light, cm/sec eVtoErg=1.6021766208e-12 # 1 eV = 1.6...e-12 erg CtoPart=2.99792458e9 # 1 C = 1 A*sec = 2.9...e9 particles m_e_eV = m_e*cLight**2/eVtoErg # # Electron beam parameters: # Ekin=3.0e4 # kinetic energy, eV curBeam=0.5 # current density, A/cm^2 dBeam=3.0 # beam diameter, cm angSpread=3.0 # angular spread, mrad trnsvT=0.5 # transversal temperature, eV longT=2.0e-4 # longitudinal temperature, eV (was 2.0e-4) nField=1 # number ov values of the magnetic field fieldB=np.zeros(nField) # magnetic field fieldB[0]=3.e3 # Gs omega_p=1.0e9 # plasma frequency, 1/sec n_e=omega_p**2*m_e/(4.*pi*q_e**2) # plasma density, 3.1421e+08 cm-3 n_e1=8.e7 # plasma density, cm-3 omega_p1=np.sqrt(4.*pi*n_e1*q_e**2/m_e) # plasma frequency, 5.0459e+08 1/s # # Cooling system parameter: # coolLength=150.0 # typical length of the coolong section, cm # # HESR: # Ekin=90.8e4 # HESR kinetic energy, eV curBeam=0.5 # HESR current beam, A dBeam=2.0 # HESR beam diameter, cm angSpread=0.0 # HESR angular spread, mrad trnsvT=0.2 # HESR transversal temperature, eV longT=1.0e-2 # HESR longitudinal temperature, eV (was 2.0e-4) fieldB[0]=1.e3 # HESR, Gs coolLength=270.0 # HESR typical length of the coolong section, cm # # EIC: # angSpread=0.0 # EIC angular spread, mrad fieldB[0]=5.e4 # EIC, Gs coolLength=300.0 # EIC typical length of the coolong section, cm # # Calculated parameters of the electron beam: # V0 = cLight*np.sqrt(Ekin/m_e_eV*(Ekin/m_e_eV+2.))/(Ekin/m_e_eV+1.) print ('V0 =%e' % V0) tetaV0=0. # angle between V0 and magnetic field, rad B_mag=fieldB[0]*np.cos(tetaV0) # magnetic field acting on an electron, Gs rmsTrnsvVe=np.sqrt(2.*trnsvT*eVtoErg/m_e) # RMS transversal velocity, cm/s rmsLongVe=np.sqrt(2.*longT*eVtoErg/m_e) # RMS longitudinal velocity, cm/s # HESR: dens=curBeam*(CtoPart/q_e)/(pi*(.5*dBeam)**2*V0) # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('HESR: dens = %e,omega_p = %e' % (dens,omega_p)) # EIC: rmsLongVe = 1.0e+7 # cm/s longT = .5*m_e*rmsLongVe**2/eVtoErg rmsTrnsvVe = 4.2e+7 # cm/s trnsvT = .5*m_e*rmsTrnsvVe**2/eVtoErg print ('EIC: rmsLongVe = %e, longT = %e, rmsTrnsvVe = %e, trnsvT = %e' % \ (rmsLongVe,longT,rmsTrnsvVe,trnsvT)) dens=2.e9 # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('EIC: dens = %e,omega_p = %e' % (dens,omega_p)) cyclFreq=q_e*B_mag/(m_e*cLight) # cyclotron frequency, 1/s rmsRoLarm=rmsTrnsvVe*cyclFreq**(-1) # RMS Larmor radius, cm dens=omega_p**2*m_e/(4.*pi*q_e**2) # density, 1/cm^3 likeDebyeR=(3./dens)**(1./3.) # "Debye" sphere with 3 electrons, cm eTempTran=trnsvT # to keep variable from previous script eTempLong=longT # to keep variable from previous script coolPassTime=coolLength/V0 # time pass through cooling section, cm thetaVi=0. # polar angle ion and cooled electron beams, rad phiVi=0. # azimuth angle ion and cooled electron beams, rad powV0=round(np.log10(V0)) mantV0=V0/(10**powV0) pow_n_e=round(np.log10(n_e)) mant_n_e=n_e/(10**pow_n_e) # # Formfactor ffForm for friction force: # # ffForm = 2*pi*dens*q_e**4/(m_e*V0**2)= # = 0.5*omega_p**2*q_e**2/V0**2 # # Dimension of ffForm is force: g*cm/sec**2=erg/cm # # 1 MeV/m = 1.e6*eVtoErg/100. g*cm/sec**2 = 1.e4*eVtoErg erg/cm MeV_mToErg_cm=1.e4*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/MeV_mToErg_cm # MeV/m eV_mToErg_m=100.*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/eV_mToErg_m # =-6.8226e-12 eV/m eV_mInErg_cm=100.*eVtoErg ffForm=-.5*omega_p**2*q_e**2/V0**2/eVtoErg # =-6.8226e-10 eV/cm ffForm=100.*ffForm # =-6.8226e-08 eV/m ergToEV = 1./1.60218e-12 # # Relative velocities of electrons: # relVeTrnsv=rmsTrnsvVe/V0 relVeLong=rmsLongVe/V0 print ('V0=%e cm/s, rmsTrnsvVe=%e cm/s (rel = %e), rmsLongVe=%e cm/s (rel = %e)' % \ (V0,rmsTrnsvVe,relVeTrnsv,rmsLongVe,relVeLong)) # Indices: (Ix, Ipx, Iy, Ipy, Iz, Ipz) = range(6) stepsNumberOnGyro = 25 # number of the steps on each Larmour period ''' # # Opening the input file: # inputFile='areaOfImpactParameter_tAC-v6_fig110.data' print ('Open input file "%s"...' % inputFile) inpfileFlag=0 try: inpfile = open(inputFile,'r') inpfileFlag=1 except: print ('Problem to open input file "%s"' % inputFile) if inpfileFlag == 1: print ('No problem to open input file "%s"' % inputFile) lines=0 # Number of current line from input file dataNumber=0 # Number of current value of any types of Data xAboundary=np.zeros(100) xBboundary=np.zeros(100) while True: lineData=inpfile.readline() # print ('line=%d: %s' % (lines,lineData)) if not lineData: break lines += 1 if lines > 4: words=lineData.split() nWords=len(words) # print ('Data from %d: words=%s, number of entries = %d' % (lines,words,nWords)) xAboundary[dataNumber]=float(words[0]) xBboundary[dataNumber]=float(words[1]) dataNumber += 1 inpfile.close() print ('Close input file "%s"' % inputFile) ''' #==================================================================== # #------------------ Begin of defined functions ----------------------- # # Larmor frequency electron: # def omega_Larmor(mass,B_mag): return (q_elec)*B_mag/(mass*clight*1.e+2) # rad/sec # # Derived quantities: # omega_L = omega_Larmor(m_elec,B_mag) # rad/sec T_larm = 2*pi/omega_L # sec timeStep = T_larm/stepsNumberOnGyro # time step, sec print ('omega_Larmor= %e rad/sec, T_larm = %e sec, timeStep = %e sec' % \ (omega_L,T_larm,timeStep)) nLarmorAvrgng=10 # number of averaged Larmor rotations # # Data to integrate transferred momemta over the track: # timeStep_c=nLarmorAvrgng*stepsNumberOnGyro*timeStep # sec print ('timeStep_c = %e s' % timeStep_c) eVrmsTran = np.sqrt(2.*eTempTran*eVtoErg/m_elec) # cm/sec eVrmsLong = np.sqrt(2.*eTempLong*eVtoErg/m_elec) # cm/sec kinEnergy = m_elec*(eVrmsTran**2+eVrmsLong**2)/2. # kinetic energy; erg print ('eVrmsTran = %e cm/sec, eVrmsLong = %e cm/sec, kinEnergy = %e eV' % \ (eVrmsTran,eVrmsLong,ergToEV*kinEnergy)) ro_larmRMS = eVrmsTran/omega_L # cm print ('ro_larmRMS =%e mkm' % (1.e4*ro_larmRMS)) # # Electrons are magnetized for impact parameter >> rhoCrit: # rhoCrit=math.pow(q_elec**2/(m_elec*omega_L**2),1./3) # cm print ('rhoCrit (mkm) = ' , 1.e+4*rhoCrit) # # Convertion from 6-vector of relectron's "coordinates" to 6-vector # of guiding-center coordinates: # z_e=(x_e,px_e,y_e,py_e,z_e,pz_e) --> zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e); # def toGuidingCenter(z_e): mOmega=m_elec*omega_L # g/sec zgc_e=z_e.copy() # 6-vector zgc_e[Ix] = np.arctan2(z_e[Ipx]+mOmega*z_e[Iy],z_e[Ipy]) # radians zgc_e[Ipx]= (((z_e[Ipx]+mOmega*z_e[Iy])**2+z_e[Ipy]**2)/(2.*mOmega)) # g*cm**2/sec zgc_e[Iy] =-z_e[Ipx]/mOmega # cm zgc_e[Ipy]= z_e[Ipy]+mOmega*z_e[Ix] # g/sec return zgc_e # # Convertion from 6-vector of guiding-center coordinates to 6-vector # of electron's "coordinates": # zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e) --> z_e=(x_e,px_e,y_e,py_e,z_e,pz_e); # def fromGuidingCenter(zgc_e): mOmega=m_elec*omega_L # g/sec rho_larm=np.sqrt(2.*zgc_e[Ipx]/mOmega) # cm z_e = zgc_e.copy() # 6-vector z_e[Ix] = zgc_e[Ipy]/mOmega-rho_larm*np.cos(zgc_e[Ix]) # cm z_e[Ipx]=-mOmega*zgc_e[Iy] # g*cm/sec z_e[Iy] = zgc_e[Iy]+rho_larm*np.sin(zgc_e[Ix]) # cm z_e[Ipy]= mOmega*rho_larm*np.cos(zgc_e[Ix]) # g*cm/sec return z_e # # Matrix to dragg electron through the solenoid with field 'B_mag' # during time interval 'deltaT': # def solenoid_eMatrix(B_mag,deltaT): slndMtrx=np.identity(6) omega_L=omega_Larmor(m_elec,B_mag) # rad/sec mOmega= m_elec*omega_L # g/sec phi=omega_L*deltaT # phase, rad cosPhi=math.cos(phi) # dimensionless sinPhi=math.sin(phi) # dimensionless cosPhi_1=2.*math.sin(phi/2.)**2 # dimensionless slndMtrx[Iy, Iy ]= cosPhi # dimensionless slndMtrx[Ipy,Ipy]= cosPhi # dimensionless slndMtrx[Iy, Ipy]= sinPhi/mOmega # sec/g slndMtrx[Ipy,Iy ]=-mOmega*sinPhi # g/sec slndMtrx[Iz, Ipz]= deltaT/m_elec # sec/g slndMtrx[Ix, Ipx]= sinPhi/mOmega # sec/g slndMtrx[Ix, Iy ]= sinPhi # dimensionless slndMtrx[Ix, Ipy]= cosPhi_1/mOmega # sec/g slndMtrx[Iy, Ipx]=-cosPhi_1/mOmega # sec/g slndMtrx[Ipy,Ipx]=-sinPhi # dimensionless return slndMtrx # # Matrix to dragg particle through the drift during time interval 'deltaT': # def drift_Matrix(M_prtcl,deltaT): driftMtrx = np.identity(6) for i in (Ix,Iy,Iz): driftMtrx[i,i+1]=deltaT/M_prtcl # sec/g return driftMtrx # # Matrix to dragg electron in the "guiding center" system during time interval 'deltaT': # def guidingCenter_Matrix(deltaT): gcMtrx = np.identity(6) gcMtrx[Iz,Ipz]=deltaT/m_elec # sec/g return gcMtrx # # Description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron: # def guidingCenterCollision(vectrElec_gc,vectrIon,deltaT): dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3/2) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec b_gc=np.sqrt((vectrIon[0]-x_gc)**2+ \ (vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-dpFactor_gc*deltaT*(vectrIon[0]-x_gc)/b_gc**3 dpIon[1]=-dpFactor_gc*deltaT*(vectrIon[2]-vectrElec_gc[2])/b_gc**3 dpIon[2]=-dpFactor_gc*deltaT*(vectrIon[4]-vectrElec_gc[4])/b_gc**3 dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,b_gc # # "Magnus expansion" description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron and electron y_gc coordinate # as well calculated parameters C1,C2,C3,b,D1,D2,q for testing: # def MagnusExpansionCollision(vectrElec_gc,vectrIon,deltaT): # print ('Ion: x=%e, y=%e, z=%e' % (vectrIon[0],vectrIon[2],vectrIon[4])) # print ('Electron: x=%e, y=%e, z=%e' % # (vectrElec_gc[0],vectrElec_gc[4],vectrElec_gc[4])) dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3./2.) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec # C1=np.sqrt((vectrIon[0]-x_gc)**2+ \ # (vectrIon[2]-vectrElec_gc[2])**2+ \ # (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm^2 C1=(vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm # cm^2 C2=2.*((vectrIon[0]-x_gc)*vectrIon[1]/M_ion+ \ (vectrIon[2]-vectrElec_gc[2])*vectrIon[3]/M_ion+ \ (vectrIon[4]-vectrElec_gc[4])* \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)) # cm^2/sec C3=(vectrIon[1]/M_ion)**2+(vectrIon[3]/M_ion)**2+ \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)**2 # cm^2/sec^2 b=np.sqrt(C1+C2*deltaT+C3*deltaT**2) # cm D1=(2.*C3*deltaT+C2)/b-C2/np.sqrt(C1) # cm/sec D2=(C2*deltaT+2.*C1)/b-2.*np.sqrt(C1) # cm q=4.*C1*C3-C2**2 # cm^4/sec^2 # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-2.*dpFactor_gc/q*((vectrIon[0]-x_gc)*D1-vectrIon[1]/M_ion*D2) dpIon[1]=-2.*dpFactor_gc/q*((vectrIon[2]-vectrElec_gc[2])*D1- \ vectrIon[3]/M_ion*D2) dpIon[2]=-2.*dpFactor_gc/q*((vectrIon[4]-vectrElec_gc[4])*D1- \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)*D2) dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] dy_gc=dpIon[0]/mOmegaLarm # cm # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,dy_gc,C1,C2,C3,b,D1,D2,q # # Minimized functional (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # Funcional = {log10(funcY) - [fitB*log10(argX) + fitA]}^2 # def fitting(nPar1,nPar2,argX,funcY): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) for i in range(nVion): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) sumFuncY = np.zeros(nPar2) sumArgXfuncY= np.zeros(nPar2) fitA = np.zeros(nPar2) fitB = np.zeros(nPar2) for i in range(nPar2): for n in range(nPar1): sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 sumFuncY[i] += log10funcY[n,i] sumArgXfuncY[i] += log10argX[n,i]*log10funcY[n,i] delta = sumArgX[i]**2-nPar1*sumArgX2[i] fitA[i] = (sumArgX[i]*sumArgXfuncY[i]-sumArgX2[i]*sumFuncY[i])/delta fitB[i] = (sumArgX[i]*sumFuncY[i]-nPar1*sumArgXfuncY[i])/delta # print ('fitA(%d) = %e, fitB(%d) = %e' % (i,fitA[i],i,fitB[i])) argXfit = np.zeros((nPar1,nPar2)) funcYfit = np.zeros((nPar1,nPar2)) funcHi2 = np.zeros(nPar2) for i in range(nPar2): factorA = math.pow(10.,fitA[i]) for n in range(nPar1): argXfit[n,i] = math.pow(10.,log10argX[n,i]) funcYfit[n,i] = factorA*math.pow(argXfit[n,i],fitB[i]) funcHi2[i] += (np.log10(abs(funcY[n,i])) - np.log10(abs(funcYfit[n,i])))**2 return fitA,fitB,funcHi2,argXfit,funcYfit # # +-Errors for fitied parameters fitA and fitB: # def errFitAB(nPar1,nPar2,argX,funcY,fitA,fitB,funcHi2,errVar,errType): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) posErrFit = np.zeros(nPar2) negErrFit = np.zeros(nPar2) # return posErrFit,negErrFit stepA = 5.e-4*mean(funcHi2) stepB = 1.e-4*mean(funcHi2) # print ('errFitAB: mean(funcHi2) = %e, stepA = %e, stepB = %e' % (mean(funcHi2),stepA,stepB)) for i in range(nPar2): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); positive error) for %d' % (errVar,i)) break # print ('i=%d: fitParamtr = %e, funcHi2 = %e' % (i,fitParamtr[i], funcHi2[i])) curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] + k*stepA curFuncHi2 = 0. factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] + k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): posErrFit[i] = abs(curFitA - fitA[i]) else: posErrFit[i] = abs(curFitB - fitB[i]) func1sigma2 = funcHi2[i]/(nPar2-3) if (int(errVar) == 1): fitSigma = np.sqrt(sumArgX2[i]/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) else: fitSigma = np.sqrt(nPar2/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) if (int(errType) == 2): posErrFit[i] = fitSigma # if (int(errVar) == 1): # print ('i=%d: fitA = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); negative error) for %d' % (errVar,i)) break curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] - k*stepA factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] - k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): negErrFit[i] = abs(curFitA - fitA[i]) else: negErrFit[i] = abs(curFitB - fitB[i]) if (int(errType) == 2): negErrFit[i] = posErrFit[i] # if (errVar == 1): # print ('i=%d: fitA = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],negErrFit[i],funcHi2[i],k,curFuncHi2)) return posErrFit,negErrFit def fittedGKintegration(xMin,xMax,fitA,fitB): # # "Gauss-Kronrod" method of integration (GK) # # # Points (psi_i) and weigths (w_i) to integrate for interval from -1 to 1; # These data are from <NAME>. "Handbook of Mathematical Science". # 5th Edition, CRC Press, Inc, 1978. # # To integrate for interval from 0 to 1 it is necessary to change points # psi_i with points ksi_i=(1+psi_i)/2; # # For method with order N for function F(x): # int_(-1)^1 = sum_1^N [w_i* F(psi_i)]; # # In case of integration over interval from a to b: # int_(a)^b = (b-a)/2 * sum_1^N [w_i* F(x_i)], where # x_i = (b-a)*psi_i/2+(a+b)/2. # #---------------------------------------------------- # # Data for GK: # #---------------------------------------------------- nPoints_GK = 16 psi_16=np.array([-0.9894009, -0.9445750, -0.8656312, -0.7554044, -0.6178762, \ -0.4580168, -0.2816036, -0.0950125, 0.0950125, 0.2816036, \ 0.4580168, 0.6178762, 0.7554044, 0.8656312, 0.9445750, \ 0.9894009]) w_16 =np.array([ 0.0271525, 0.0622535, 0.0951585, 0.1246290, 0.1495960, \ 0.1691565, 0.1826034, 0.1894506, 0.1894506, 0.1826034, \ 0.1691565, 0.1495960, 0.1246290, 0.0951585, 0.0622535, \ 0.0271525]) y = np.zeros(nPoints_GK) yIntegrated = 0. for n in range(nPoints_GK): xCrrnt = psi_16[n]*(xMax-xMin)/2 + (xMax+xMin)/2. factorA = math.pow(10.,fitA) y[n] = factorA*math.pow(xCrrnt,fitB) yIntegrated += (xMax-xMin)*w_16[n]*y[n]*xCrrnt return y,yIntegrated #------------------ End of defined functions ----------------------- # #==================================================================== sphereNe=3. R_e=math.pow(sphereNe/n_e,1./3) # cm print ('R_e (cm)=%e' % R_e) ro_Larm = eVrmsTran/omega_L # cm print ('ro_Larm (cm)=%e' % ro_Larm) impctPrmtrMin=2.*ro_Larm # rhoDependenceFlag = 1 # skip calculation of rho dependence if = 0! #============ Important flags =========================== # # Taking into account the transfer of momenta for both particles # (for "classical" only): dpTransferFlag = 1 # no taking into account if = 0! # saveFilesFlag = 0 # no saving if = 0! # plotFigureFlag = 1 # plot if = 1! # #======================================================== nVion=50 Vion=np.zeros(nVion) VionLong=np.zeros(nVion) VionTrnsv=np.zeros(nVion) VionRel=np.zeros(nVion) vIonMin=4.e-3*eVrmsTran vIonMax=10.*eVrmsTran vIonMinRel=vIonMin/V0 vIonMaxRel=vIonMax/V0 print ('VionMin=%e (vIonMinRel=%e), vIonMax=%e (vIonMaxRel=%e)' % \ (vIonMin,vIonMinRel,vIonMax,vIonMaxRel)) vIonLogStep=math.log10(vIonMax/vIonMin)/(nVion-1) R_debye=np.zeros(nVion) R_pass=np.zeros(nVion) R_pass_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. impctPrmtrMax=np.zeros(nVion) impctPrmtrMax_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. for i in range(nVion): crrntLogVionRel=math.log10(vIonMinRel)+i*vIonLogStep VionRel[i]=math.pow(10.,crrntLogVionRel) Vion[i]=VionRel[i]*V0 VionLong[i]=Vion[i]*np.cos(thetaVi) VionTrnsv[i]=Vion[i]*np.sin(thetaVi) R_debye[i]=np.sqrt(Vion[i]**2+eVrmsTran**2+eVrmsLong**2)/omega_p R_pass[i]=np.sqrt(Vion[i]**2+eVrmsLong**2)*coolPassTime R_pass_1[i]=np.sqrt(Vion[i]**2+0.*eVrmsLong**2)*coolPassTime help=max(R_debye[i],R_e) impctPrmtrMax[i]=min(help,R_pass[i]) impctPrmtrMax_1[i]=min(help,R_pass_1[i]) #----------------------------------------------------------------- # Checking of corection of the maximal impact parameter on depence # of preset number of minimal Larmor turns # larmorTurnsMin=[10,20,30,40] impctPrmtrMaxCrrctd=np.zeros((nVion,4)) impctPrmtrMaxCrrctdRel=np.zeros((nVion,4)) for n in range (4): for i in range(nVion): impctPrmtrMaxCrrctd[i,n]=impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurnsMin[n]*eVrmsLong/omega_L/impctPrmtrMax[i])**2) impctPrmtrMaxCrrctdRel[i,n]=impctPrmtrMaxCrrctd[i,n]/impctPrmtrMax[i] # # First plotting: # if (plotFigureFlag == 0): fig10 = plt.figure(10) plt.semilogx(impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,0],'-r', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,1],'-b', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,2],'-g', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,3],'-m',linewidth=2) plt.grid(True) hold=True plt.xlabel('Maximal Impact parameter $R_{max}$, cm',color='m',fontsize=16) plt.ylabel('$R_{max}^{Crrctd}/R_{Max}$',color='m',fontsize=16) # plt.xlim([.9*min(impctPrmtrMax),1.1*max(impctPrmtrMax)]) plt.xlim([1.e-2,1.1*max(impctPrmtrMax)]) plt.ylim([.986,1.001]) titleHeader='$R_{max}^{Crrctd}=R_{Max} \cdot [1-(\pi\cdot N_{Larm} \cdot' titleHeader += '\Delta_{e||}/(\omega_{Larm} \cdot R_{max})]^{1/2}$' plt.title(titleHeader,color='m',fontsize=16) plt.legend([('$N_{Larm}=$%2d' % larmorTurnsMin[0]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[1]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[2]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[3])],loc='lower center',fontsize=14) if (saveFilesFlag == 1): fig10.savefig('picturesCMA/correctedRmax_fig10cma.png') print ('File "picturesCMA/correctedRmax_fig10cma.png" is written') xLimit=[.9*VionRel[0],1.1*VionRel[nVion-1]] # # Typs of collisions: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'Types of Collisions: $V_{e0}=%4.2f\cdot10^{%2d}$ cm/s, $B=%6.1f$ Gs' plt.title(titleHeader % (mantV0,powV0,fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,.0018,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-4,1.75e-3,'$R_{min}=2\cdot<rho_\perp>$',color='k',fontsize=16) plt.text(7.e-4,5.e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.85e-5,3.3e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(1.e-4,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(1.e-4,10.e-4,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.25e-5,.275,'Collisions are Screened',color='r',fontsize=20) plt.text(1.6e-5,1.e-3,'$ \cong 20\cdot R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') # # Picture for HESR: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'HESR Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(4.4e-4,8.4e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.e-4,8.4e-4,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.7e-6,3.4e-3,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(2.8e-4,.1,'$R_{max}$',color='k',fontsize=16) plt.text(1.e-4,1.8e-2,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(6.8e-5,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(2.3e-5,1.95e-3,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.e-5,.275,'Screened Collisions',color='r',fontsize=20) plt.text(3.58e-6,2.05e-3,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('HESRimpctPrmtr_fig3151cma.png') print ('File "HESRimpctPrmtr_fig3151cma.png" is written') # # Picture for EIC: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'EIC Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[5.e-5,.3] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(9.e-4,4.e-5,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.7e-4,3.e-5,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(6.3e-6,1.1e-4,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(1.e-4,2.1e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.57e-5,5.e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(2.3e-5,1.e-3,'Magnetized Collisions',color='r',fontsize=20) # plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(1.1e-5,5.7e-5,'Weak or Adiabatic or Fast Collisions',color='r',fontsize=16) plt.text(2.e-5,.15,'Screened Collisions',color='r',fontsize=20) plt.text(2.5e-3,1.7e-4,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('EICimpctPrmtr_fig3151cma.png') print ('File "EICimpctPrmtr_fig3151cma.png" is written') # plt.show() # sys.exit() # # Magnetized collisions: # if (plotFigureFlag == 0): fig209=plt.figure (209) plt.loglog(VionRel,R_debye,'-r',VionRel,R_pass,'-b', \ VionRel,R_pass_1,'--b',linewidth=2) plt.grid(True) hold=True plt.plot([VionRel[0],VionRel[nVion-1]],[R_e,R_e],color='m',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$R_{Debye}$, $R_{Pass}$, $R_e$, cm',color='m',fontsize=16) # titleHeader='Magnetized Collision: $R_{Debye}$, $R_{Pass}$, $R_e$: $V_{e0}=%5.3f\cdot10^{%2d}$cm/s' # plt.title(titleHeader % (mantV0,powV0),color='m',fontsize=16) plt.title('Magnetized Collisions: $R_{Debye}$, $R_{Pass}$, $R_e$',color='m',fontsize=16) plt.xlim(xLimit) yLimit=[1.e-3,10.] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.5e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,0.001175,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-5,2.45e-3,'$R_e$',color='k',fontsize=16) plt.text(3.e-5,5.e-2,'$R_{Debye}$',color='k',fontsize=16) plt.text(3.e-5,1.8e-2,'$R_{Pass}$',color='k',fontsize=16) plt.text(4.5e-5,4.8e-3,'$R_{Pass}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.text(8.3e-5,4.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) if (saveFilesFlag == 1): fig209.savefig('picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png') print ('File "picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png" is written') # # Coulomb logarithm evaluation: # clmbLog = np.zeros(nVion) for i in range(nVion): clmbLog[i] = math.log(impctPrmtrMax[i]/impctPrmtrMin) # clmbLog[i] = math.log(impctPrmtrMax_1[i]/impctPrmtrMin) if (plotFigureFlag == 0): fig3155=plt.figure (3155) plt.semilogx(VionRel,clmbLog,'-xr',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Coulomb Logarithm $L_c$',color='m',fontsize=14) plt.title('Coulomb Logarithm: $L_c$ = $ln(R_{max}/R_{min})$',color='m',fontsize=16) yLimit=[min(clmbLog)-.1,max(clmbLog)+.1] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.4e-5,5.,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3155.savefig('picturesCMA_v7/coulombLogrthm_fig3155cma.png') print ('File "picturesCMA_v7/coulombLogrthm_fig3155cma.png" is written') # # matrix for electron with .5*timeStep_c: # matr_elec_c=guidingCenter_Matrix(.5*timeStep_c) # # matrix for ion with mass M_ion and .5*timeStep_c: # matr_ion_c=drift_Matrix(M_ion,.5*timeStep_c) larmorTurns = 10 nImpctPrmtr = 50 rhoMin = impctPrmtrMin rhoMax = np.zeros(nVion) log10rhoMin = math.log10(rhoMin) crrntImpctPrmtr = np.zeros(nImpctPrmtr) halfLintr = np.zeros((nImpctPrmtr,nVion)) pointAlongTrack = np.zeros((nImpctPrmtr,nVion)) totalPoints = 0 for i in range(nVion): rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! # print ('rhoMax(%d) = %e' % (i,rhoMax[i])) log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # print (' rhoCrrnt(%d) = %e' % (n,rhoCrrnt)) halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm timeHalfPath = halfLintr[n,i]/eVrmsLong # 0.5 time of interaction; sec numbLarmor = int(2.*timeHalfPath/T_larm) pointAlongTrack[n,i] = int(2.*timeHalfPath/timeStep_c) totalPoints += pointAlongTrack[n,i] # print (' %d: rhoCrrnt = %e, numbLarmor = %d, pointAlongTrack = %d' % \ # (n,rhoCrrnt,numbLarmor,pointAlongTrack[n,i])) # print ('totalPoints = %d' % totalPoints) totalPoints = int(totalPoints) nnTotalPoints=np.arange(0,2*totalPoints-1,1) arrayA=np.zeros(2*totalPoints) arrayB=np.zeros(2*totalPoints) bCrrnt_c = np.zeros(2*totalPoints) # # Variables for different testing: # b_gc = np.zeros(totalPoints) action_gc = np.zeros(totalPoints) C1test = np.zeros(totalPoints) C2test = np.zeros(totalPoints) C3test = np.zeros(totalPoints) b_ME = np.zeros(totalPoints) D1test = np.zeros(totalPoints) D2test = np.zeros(totalPoints) qTest = np.zeros(totalPoints) action_ME = np.zeros(totalPoints) actn_gc_ME_rel = np.zeros(totalPoints) indxTest = 0 rhoInit = np.zeros((nImpctPrmtr,nVion)) # # "Classical" approach: # deltaPx_c = np.zeros((nImpctPrmtr,nVion)) deltaPy_c = np.zeros((nImpctPrmtr,nVion)) deltaPz_c = np.zeros((nImpctPrmtr,nVion)) ionVx_c = np.zeros((nImpctPrmtr,nVion)) ionVy_c = np.zeros((nImpctPrmtr,nVion)) ionVz_c = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_c = np.zeros((nImpctPrmtr,nVion)) # # "Magnus Expand" approach: # deltaPx_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_m = np.zeros((nImpctPrmtr,nVion)) ionVx_m = np.zeros((nImpctPrmtr,nVion)) ionVy_m = np.zeros((nImpctPrmtr,nVion)) ionVz_m = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m = np.zeros((nImpctPrmtr,nVion)) # # Comparison of approaches (ratio deltaEnrgIon_c/deltaEnrgIon_m): # deltaPx_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_c_m = np.zeros((nImpctPrmtr,nVion)) dEion_c_m = np.zeros((nImpctPrmtr,nVion)) # # Factor to calculate transferred energy to ion # (the friction force is defined by this transfered energy): # deFactor = 0.5/M_ion # 1/g frctnForce_cSM = np.zeros(nVion) # integration, using Simpson method frctnForce_mSM = np.zeros(nVion) # integration, using Simpson method numberWrongSign_c=0 numberWrongSign_m=0 posSignDeltaEnrgIon_c=0 negSignDeltaEnrgIon_c=0 posSignDeltaEnrgIon_m=0 negSignDeltaEnrgIon_m=0 timeRun = np.zeros(nVion) totalTimeRun = 0. indx = 0 # ----------------- Main simulation --------------- # for i in range(nVion): # Taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) # Without taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) timeStart=os.times() for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # rhoInit[i*nImpctPrmtr+n] = rhoCrrnt rhoInit[n,i] = rhoCrrnt halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm z_ionCrrnt_c = np.zeros(6) # Zeroing out of vector for ion ("GC"-approach) z_elecCrrnt_c = np.zeros(6) # Zeroing out of vector for electron ("GC"-approach) z_ionCrrnt_m =
np.zeros(6)
numpy.zeros
import numpy as np import xarray as xr import gcpy # Must have: # 1. extract_grid (returns an xarray Dataset) # 2. grid_area (returns a 6xNxN array) # 3. gen_grid (returns an xarray Dataset) def extract_grid(ds,src_var='Xdim'): # Extract grid from xarray dataset but return a cubed-sphere grid n_cs = ds[src_var].shape[-1] return gen_grid(n_cs) def face_area(lon_b, lat_b, r_sphere = 6.375e6): """Calculate area of cubed-sphere grid cells on one face Inputs must be in degrees. Edge arrays must be shaped [N+1 x N+1] """ # Convert inputs to radians lon_b_rad = lon_b * np.pi / 180.0 lat_b_rad = lat_b * np.pi / 180.0 r_sq = r_sphere * r_sphere n_cs = lon_b.shape[1] - 1 # Allocate output array cs_area = np.zeros((n_cs,n_cs)) # Ordering valid_combo = np.array([[1,2,4],[2,3,1],[3,2,4],[4,1,3]]) - 1 for i_lon in range(n_cs): for i_lat in range(n_cs): lon_corner = np.zeros(4) lat_corner = np.zeros(4) xyz_corner = np.zeros((4,3)) for i_vert in range(4): x_lon = i_lon + (i_vert > 1) x_lat = i_lat + (i_vert == 0 or i_vert == 3) lon_corner[i_vert] = lon_b_rad[x_lon,x_lat] lat_corner[i_vert] = lat_b_rad[x_lon,x_lat] for i_vert in range(4): xyz_corner[i_vert,:] = ll2xyz(lon_corner[i_vert],lat_corner[i_vert]) tot_ang = 0.0 for i_corner in range(4): curr_combo = valid_combo[i_corner,:] xyz_mini = np.zeros((3,3)) for i_mini in range(3): xyz_mini[i_mini,:] = xyz_corner[curr_combo[i_mini],:] curr_ang = sphere_angle(xyz_mini[0,:],xyz_mini[1,:],xyz_mini[2,:]) tot_ang += curr_ang cs_area[i_lon,i_lat] = r_sq * (tot_ang - (2.0*np.pi)) return cs_area def ll2xyz(lon_pt,lat_pt): """Converts a lon/lat pair (in radians) to cartesian co-ordinates Vector should point to the surface of the unit sphere""" xPt = np.cos(lat_pt) * np.cos(lon_pt) yPt = np.cos(lat_pt) *
np.sin(lon_pt)
numpy.sin
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Tests for linear_model extensions.""" import numpy as np import pytest import unittest import warnings from econml.sklearn_extensions.ensemble import SubsampledHonestForest class TestSubsampledHonestForest(unittest.TestCase): """Test SubsampledHonestForest.""" def test_y1d(self): np.random.seed(123) n = 5000 d = 5 x_grid =
np.linspace(-1, 1, 10)
numpy.linspace
import numpy as np def py_SurfStatInd2Coord(ind, surf): """Converts a vertex index to x,y,z coordinates Parameters ---------- ind : 2D numpy array of shape (1,c) indices of vertex, 1-based surf : a dictionary with key 'coord' OR 'lat', 'vox', 'origin' surf['coord'] : 2D numpy array of shape (3,v), the coordinates. or surf['lat'] : 3D numpy array of 1's and 0's (1=in, 0=out). surf['vox'] : 2D numpy array of shape (1,3), voxel sizes in mm, [1,1,1] by default. surf['origin'] : 2D numpy array of shape (1,3), position of the first voxel in mm, [0,0,0] by default. Returns ------- coord : 2D numpy array of shape (3,c) array of coordinates """ ind = ind.astype(int) if 'coord' in surf.keys(): coord = surf['coord'][:,ind-1].squeeze() if 'lat' in surf.keys(): if not 'vox' in surf: surf['vox'] = np.ones((1,3)) if not 'origin' in surf.keys(): surf['origin'] = np.zeros((1,3)) vid = np.cumsum(surf['lat'].T.flatten()) * surf['lat'].T.flatten() # implement matlab-ismember loc = [] for i in range(0, ind.shape[1]): loc.append(np.where(vid == ind[0,i])[0].tolist()) loc_flat = [item for sublist in loc for item in sublist] dim = np.shape(surf['lat']) i, j, k = np.unravel_index(loc_flat, dim, order='F') coord = np.zeros((3, ind.shape[1])) coord[0,:] = surf['origin'][0,0] + np.multiply(i, surf['vox'][0,0]) coord[1,:] = surf['origin'][0,1] +
np.multiply(j, surf['vox'][0,1])
numpy.multiply
import numpy as np import pandas as pd from typing import Set, List, Optional from collections.abc import Collection from dae.pedigrees.family import FamiliesData from dae.pheno.common import MeasureType from dae.pheno.pheno_db import Measure, PhenotypeData class PersonFilter(): def __init__(self, criteria: str, values: Collection): self.criteria: str = criteria self.values: str = values def _apply_to_df(self, df: pd.DataFrame) -> pd.DataFrame: raise NotImplementedError() def apply( self, families: FamiliesData, roles: Optional[List[str]] = None ) -> Set[str]: ped_df = families.ped_df.copy() if roles is not None: ped_df = ped_df.loc[ped_df["role"].astype(str).isin(roles)] ped_df[self.criteria] = ped_df[self.criteria].astype(str) ped_df = self._apply_to_df(ped_df) return set(ped_df["person_id"]) class PersonFilterSet(PersonFilter): def __init__(self, criteria: str, values: Collection): super(PersonFilterSet, self).__init__(criteria, values) assert type(values) in (list, set, tuple) def _apply_to_df(self, df: pd.DataFrame) -> pd.DataFrame: return df[df[self.criteria].isin(self.values)] class PersonFilterRange(PersonFilter): def __init__(self, criteria: str, values: Collection): super(PersonFilterRange, self).__init__(criteria, values) assert isinstance(values, list) or \ isinstance(values, tuple) or \ isinstance(values, set), \ f"{values} ({type(values)})" if len(values) == 2: assert isinstance(values, list) or isinstance(values, tuple) self.values_min, self.values_max = values else: assert len(values) == 1 self.values_min = self.values_max = list(values)[0] def _apply_to_df(self, df: pd.DataFrame) -> pd.DataFrame: if self.values_min is not None and self.values_max is not None: return df[ np.logical_and( df[self.criteria] >= self.values_min, df[self.criteria] <= self.values_max, ) ] elif self.values_min is not None: return df[df[self.criteria] >= self.values_min] elif self.values_max is not None: return df[df[self.criteria] <= self.values_max] else: return df[-
np.isnan(df[self.criteria])
numpy.isnan
import pandas as pd import numpy as np from .groundtruthcomparison import GroundTruthComparison from .comparisontools import make_collision_events class CollisionGTComparison(GroundTruthComparison): """ This class is an extension of GroundTruthComparison by focusing to benchmark spike in collision collision_lag: float Collision lag in ms. """ def __init__(self, gt_sorting, tested_sorting, collision_lag=2.0, nbins=11, **kwargs): # Force compute labels kwargs['compute_labels'] = True GroundTruthComparison.__init__(self, gt_sorting, tested_sorting, **kwargs) self.collision_lag = collision_lag self.nbins = nbins self.detect_gt_collision() self.compute_all_pair_collision_bins() def detect_gt_collision(self): delta = int(self.collision_lag / 1000 * self.sampling_frequency) self.collision_events = make_collision_events(self.sorting1, delta) def get_label_for_collision(self, gt_unit_id1, gt_unit_id2): gt_index1 = self.sorting1.id_to_index(gt_unit_id1) gt_index2 = self.sorting1.id_to_index(gt_unit_id2) if gt_index1 > gt_index2: gt_unit_id1, gt_unit_id2 = gt_unit_id2, gt_unit_id1 reversed = True else: reversed = False # events mask = (self.collision_events['unit_id1'] == gt_unit_id1) & (self.collision_events['unit_id2'] == gt_unit_id2) event = self.collision_events[mask] score_label1 = self._labels_st1[gt_unit_id1][event['index1']] score_label2 = self._labels_st1[gt_unit_id2][event['index2']] delta = event['delta_frame'] if reversed: score_label1, score_label2 = score_label2, score_label1 delta = -delta return score_label1, score_label2, delta def get_label_count_per_collision_bins(self, gt_unit_id1, gt_unit_id2, bins): score_label1, score_label2, delta = self.get_label_for_collision(gt_unit_id1, gt_unit_id2) tp_count1 = np.zeros(bins.size - 1) fn_count1 = np.zeros(bins.size - 1) tp_count2 = np.zeros(bins.size - 1) fn_count2 = np.zeros(bins.size - 1) for i in range(tp_count1.size): l0, l1 = bins[i], bins[i + 1] mask = (delta >= l0) & (delta < l1) tp_count1[i] = np.sum(score_label1[mask] == 'TP') fn_count1[i] = np.sum(score_label1[mask] == 'FN') tp_count2[i] = np.sum(score_label2[mask] == 'TP') fn_count2[i] = np.sum(score_label2[mask] == 'FN') # inverse for unit_id2 tp_count2 = tp_count2[::-1] fn_count2 = fn_count2[::-1] return tp_count1, fn_count1, tp_count2, fn_count2 def compute_all_pair_collision_bins(self): d = int(self.collision_lag / 1000 * self.sampling_frequency) bins = np.linspace(-d, d, self.nbins+1) self.bins = bins unit_ids = self.sorting1.unit_ids n = len(unit_ids) all_tp_count1 = [] all_fn_count1 = [] all_tp_count2 = [] all_fn_count2 = [] self.all_tp = np.zeros((n, n, self.nbins), dtype='int64') self.all_fn = np.zeros((n, n, self.nbins), dtype='int64') for i in range(n): for j in range(i+1, n): u1 = unit_ids[i] u2 = unit_ids[j] tp_count1, fn_count1, tp_count2, fn_count2 = self.get_label_count_per_collision_bins(u1, u2, bins) self.all_tp[i, j, :] = tp_count1 self.all_tp[j, i, :] = tp_count2 self.all_fn[i, j, :] = fn_count1 self.all_fn[j, i, :] = fn_count2 def compute_collision_by_similarity(self, similarity_matrix, unit_ids=None, good_only=False): if unit_ids is None: unit_ids = self.sorting1.unit_ids n = len(unit_ids) recall_scores = [] similarities = [] pair_names = [] for r in range(n): for c in range(r + 1, n): u1 = unit_ids[r] u2 = unit_ids[c] ind1 = self.sorting1.id_to_index(u1) ind2 = self.sorting1.id_to_index(u2) tp1 = self.all_tp[ind1, ind2, :] fn1 = self.all_fn[ind1, ind2, :] recall1 = tp1 / (tp1 + fn1) recall_scores.append(recall1) similarities.append(similarity_matrix[r, c]) pair_names.append(f'{u1} {u2}') tp2 = self.all_tp[ind2, ind1, :] fn2 = self.all_fn[ind2, ind1, :] recall2 = tp2 / (tp2 + fn2) recall_scores.append(recall2) similarities.append(similarity_matrix[r, c]) pair_names.append(f'{u2} {u1}') recall_scores = np.array(recall_scores) similarities = np.array(similarities) pair_names = np.array(pair_names) order =
np.argsort(similarities)
numpy.argsort
# Lint as: python3 # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for lingvo Jax transformer layers.""" import itertools from absl import logging from absl.testing import absltest from absl.testing import parameterized import jax from jax import numpy as jnp from jax import test_util from lingvo.core import batch_major_attention from lingvo.jax import base_layer from lingvo.jax import py_utils from lingvo.jax import test_utils from lingvo.jax.layers import attentions from lingvo.jax.layers import transformers import numpy as np import tensorflow.compat.v2 as tf class TransformersTest(test_util.JaxTestCase): def setUp(self): super().setUp() np.random.seed(123456) tf.random.set_seed(123) @parameterized.parameters(*list(itertools.product([True, False], repeat=3))) def test_transformer_layer(self, mask_self_attention, packed_input, cross_attention): p = transformers.TransformerLayer.Params().Set( name='jax_transformer_layer', input_dims=32, hidden_dims=128, num_heads=8, mask_self_attention=mask_self_attention, packed_input=packed_input, cross_attention=cross_attention) seq_len = np.random.randint(10, 32) batch_size = 10 transformer_layer = p.Instantiate() prng_key = jax.random.PRNGKey(seed=123) initial_vars = transformer_layer.InstantiateVariables(prng_key) npy_inputs = np.random.normal( 1.0, 0.5, [batch_size, seq_len, p.input_dims]).astype('float32') inputs = jnp.asarray(npy_inputs) npy_paddings = np.random.randint(0, 1, [batch_size, seq_len]).astype('float32') paddings = jnp.asarray(npy_paddings) causal_mask = None segment_mask = None tf_segment_mask = None attention_mask = attentions.ConvertPaddingsToMask(paddings) if mask_self_attention: causal_mask = attentions.CausalMask(inputs) attention_mask = jnp.minimum(attention_mask, causal_mask) if packed_input: segment_ids = np.random.random_integers(0, 2, [batch_size, seq_len]) segment_mask = attentions.SegmentMask(segment_ids, dtype=np.float32) attention_mask = jnp.minimum(attention_mask, segment_mask) if mask_self_attention: tf_segment_mask = batch_major_attention.CausalSegmentMask( segment_ids, tf.float32) else: tf_segment_mask = batch_major_attention.SegmentMask( segment_ids, segment_ids) cross_inputs = None cross_attention_mask = None tf_cross_inputs = None tf_cross_paddings = None tf_cross_segment_mask = None if cross_attention: cross_seq_len = np.random.randint(10, 128) npy_cross_inputs = np.random.normal( 1.0, 0.5, [batch_size, cross_seq_len, p.input_dims]).astype('float32') cross_inputs = jnp.asarray(npy_cross_inputs) tf_cross_inputs = tf.constant(npy_cross_inputs, dtype=tf.float32) npy_cross_paddings = np.random.randint( 0, 1, [batch_size, cross_seq_len]).astype('float32') cross_paddings = jnp.asarray(npy_cross_paddings) cross_attention_mask = attentions.ConvertPaddingsToMask(cross_paddings) tf_cross_paddings = tf.constant(npy_cross_paddings, dtype=tf.float32) if packed_input: source_segment_ids = np.random.random_integers( 0, 2, [batch_size, cross_seq_len]) cross_segment_mask = attentions.SegmentMask( segment_ids, source_segment_ids, dtype=np.float32) cross_attention_mask = jnp.minimum(cross_attention_mask, cross_segment_mask) tf_cross_segment_mask = batch_major_attention.SegmentMask( segment_ids, source_segment_ids) with base_layer.JaxContext.NewContext( prng_key=prng_key, global_step=jnp.array(0, dtype=jnp.uint32)): outputs, _ = transformer_layer.FProp( initial_vars, inputs, paddings, attention_mask=attention_mask, cross_inputs=cross_inputs, cross_attention_mask=cross_attention_mask) logging.info('initial_vars in transformer layer = %s', initial_vars) # Test whether tf Transformer layer returns same output # Modify initial_vars to use TF compatible params tf_initial_vars = test_utils.ReplaceJaxAttentionVarsToTf( initial_vars, cross_attention) tf_initial_vars = test_utils.ToTfNmap(tf_initial_vars) logging.info('tf_initial_vars in transformer layer = %s', initial_vars) tf_p = batch_major_attention.TransformerLayer.Params().Set( name='tf_transformer_layer', input_dim=p.input_dims, num_heads=p.num_heads, mask_self_atten=mask_self_attention, packed_input=packed_input, has_aux_atten=cross_attention) tf_p.tr_fflayer_tpl.hidden_dim = p.hidden_dims tf_p.tr_fflayer_tpl.fflayer_tpl.batch_norm = False tf_p.tr_fflayer_tpl.fflayer_tpl.has_bias = True tf_transformer_layer = tf_p.Instantiate() tf_output, _ = tf_transformer_layer.FProp( tf_initial_vars, tf.constant(npy_inputs, dtype=tf.float32), paddings=test_utils.ToTfNmap(npy_paddings), segment_mask=tf_segment_mask, aux_vec=tf_cross_inputs, aux_paddings=tf_cross_paddings, aux_segment_mask=test_utils.ToTfNmap(tf_cross_segment_mask)) np_outputs = test_utils.ToNp(outputs) tf_np_outputs = test_utils.ToNp(tf_output) self.assertAllClose(tf_np_outputs, np_outputs, atol=1e-5) @parameterized.parameters((True, True), (False, True), (True, False), (False, False)) def test_transformer_layer_extendstep(self, packed_input, cross_attention): p = transformers.TransformerLayer.Params().Set( name='jax_transformer_layer', input_dims=8, hidden_dims=32, num_heads=4, mask_self_attention=True, packed_input=packed_input, cross_attention=cross_attention) seq_len = 5 batch_size = 4 transformer_layer = p.Instantiate() prng_key = jax.random.PRNGKey(seed=123) initial_vars = transformer_layer.InstantiateVariables(prng_key) initial_states = transformer_layer.InitStates(initial_vars, batch_size, seq_len) npy_inputs = np.random.normal( 1.0, 0.5, [batch_size, seq_len, p.input_dims]).astype('float32') inputs = jnp.asarray(npy_inputs) npy_paddings = np.random.randint(0, 1, [batch_size, seq_len]).astype('float32') paddings = jnp.asarray(npy_paddings) attention_mask = attentions.ConvertPaddingsToMask(paddings) segment_mask = None causal_mask = attentions.CausalMask(inputs) attention_mask = jnp.minimum(causal_mask, attention_mask) if packed_input: segment_ids = np.random.random_integers(0, 2, [batch_size, seq_len]) segment_mask = attentions.SegmentMask(segment_ids, dtype=np.float32) attention_mask = jnp.minimum(attention_mask, segment_mask) cross_inputs = None cross_paddings = None cross_attention_mask = None if cross_attention: cross_seq_len = np.random.randint(10, 32) npy_cross_inputs = np.random.normal( 1.0, 0.5, [batch_size, cross_seq_len, p.input_dims]).astype('float32') cross_inputs = jnp.asarray(npy_cross_inputs) npy_cross_paddings = np.random.randint( 0, 1, [batch_size, cross_seq_len]).astype('float32') cross_paddings = jnp.asarray(npy_cross_paddings) cross_attention_mask = attentions.ConvertPaddingsToMask(cross_paddings) if packed_input: source_segment_ids = np.random.random_integers( 0, 2, [batch_size, cross_seq_len]) cross_segment_mask = attentions.SegmentMask( segment_ids, source_segment_ids, dtype=np.float32) cross_attention_mask = jnp.minimum(cross_attention_mask, cross_segment_mask) with base_layer.JaxContext.NewContext( prng_key=prng_key, global_step=jnp.array(0, dtype=jnp.uint32)): fprop_outputs, _ = transformer_layer.FProp( initial_vars, inputs, paddings, attention_mask=attention_mask, cross_inputs=cross_inputs, cross_attention_mask=cross_attention_mask) decoder_outputs = jnp.zeros(shape=[seq_len, batch_size, p.input_dims]) atten_states = initial_states for t in range(seq_len): attention_mask_t = attention_mask[:, :, t, :] cross_attention_mask_t = cross_attention_mask if cross_attention: cross_attention_mask_t = cross_attention_mask[:, :, t, :] cross_attention_mask_t = np.expand_dims( cross_attention_mask_t, axis=2) atten_states, encoded = transformer_layer.ExtendStep( initial_vars, atten_states, inputs=inputs[:, t, :], time_step=t, attention_mask=attention_mask_t, cross_inputs=cross_inputs, cross_attention_mask=cross_attention_mask_t) decoder_outputs = decoder_outputs.at[t].set(encoded) decoder_out_transposed = jnp.transpose(decoder_outputs, [1, 0, 2]) logging.info('initial_vars in transformer layer = %s', initial_vars) np_fprop_outputs = test_utils.ToNp(fprop_outputs) np_decoder_outputs = test_utils.ToNp(decoder_out_transposed) self.assertAllClose(np_fprop_outputs, np_decoder_outputs, atol=1e-5) @parameterized.parameters((True, True, True), (True, False, True), (True, True, False), (False, True, True), (True, False, False), (False, True, False), (False, False, True), (False, False, False)) def test_stacked_transformer_layer(self, mask_self_attention, packed_input, cross_attention): p = transformers.StackedTransformerLayers.Params().Set( name='jax_stacked_transformer_layer', model_dims=16, hidden_dims=64, num_heads=8, mask_self_attention=mask_self_attention, num_layers=4, packed_input=packed_input, cross_attention=cross_attention) seq_len = np.random.randint(10, 32) batch_size = 10 stacked_transformer_layer = p.Instantiate() prng_key = jax.random.PRNGKey(seed=123) initial_vars = stacked_transformer_layer.InstantiateVariables(prng_key) npy_inputs = np.random.normal( 1.0, 0.5, [batch_size, seq_len, p.model_dims]).astype('float32') inputs = jnp.asarray(npy_inputs) npy_paddings = np.random.randint(0, 1, [batch_size, seq_len]).astype('float32') paddings = jnp.asarray(npy_paddings) segment_mask = None tf_segment_mask = None if packed_input: segment_ids = np.random.random_integers(0, 2, [batch_size, seq_len]) segment_mask = attentions.SegmentMask(segment_ids, dtype=np.float32) if mask_self_attention: tf_segment_mask = batch_major_attention.CausalSegmentMask( segment_ids, tf.float32) else: tf_segment_mask = batch_major_attention.SegmentMask( segment_ids, segment_ids) cross_inputs = None cross_paddings = None cross_segment_mask = None tf_cross_inputs = None tf_cross_paddings = None tf_cross_segment_mask = None if cross_attention: cross_seq_len = np.random.randint(10, 64) npy_cross_inputs = np.random.normal( 1.0, 0.5, [batch_size, cross_seq_len, p.model_dims]).astype('float32') cross_inputs = jnp.asarray(npy_cross_inputs) tf_cross_inputs = tf.constant(npy_cross_inputs, dtype=tf.float32) npy_cross_paddings = np.random.randint( 0, 1, [batch_size, cross_seq_len]).astype('float32') cross_paddings = jnp.asarray(npy_cross_paddings) tf_cross_paddings = tf.constant(npy_cross_paddings, dtype=tf.float32) if packed_input: source_segment_ids = np.random.random_integers( 0, 2, [batch_size, cross_seq_len]) cross_segment_mask = attentions.SegmentMask( segment_ids, source_segment_ids, dtype=np.float32) tf_cross_segment_mask = batch_major_attention.SegmentMask( segment_ids, source_segment_ids) with base_layer.JaxContext.NewContext( prng_key=prng_key, global_step=jnp.array(0, dtype=jnp.uint32)): outputs = stacked_transformer_layer.FProp( initial_vars, inputs, paddings, segment_mask=segment_mask, cross_inputs=cross_inputs, cross_paddings=cross_paddings, cross_segment_mask=cross_segment_mask) logging.info('initial_vars in transformer layer = %s', initial_vars) # Test whether tf Transformer layer returns same output # Modify initial_vars to use TF compatible params tf_initial_vars = py_utils.NestedMap() tf_initial_vars.x_layers = [] for jax_initial_vars in initial_vars.x_layers: tf_layer_vars = test_utils.ReplaceJaxAttentionVarsToTf( jax_initial_vars, cross_attention) tf_initial_vars.x_layers.append(tf_layer_vars) tf_initial_vars = test_utils.ToTfNmap(tf_initial_vars) logging.info('tf_initial_vars in transformer layer = %s', initial_vars) tf_p = batch_major_attention.StackedTransformerLayers.Params().Set( name='tf_transformer_layer', mdl_dim=p.model_dims, hidden_dim=p.hidden_dims, num_atten_heads=p.num_heads, mask_self_atten=mask_self_attention, num_layers=p.num_layers, packed_input=packed_input, has_aux_atten=cross_attention) tf_p.transformer_layer_params_tpl.tr_fflayer_tpl.fflayer_tpl.batch_norm = ( False) tf_p.transformer_layer_params_tpl.tr_fflayer_tpl.fflayer_tpl.has_bias = True tf_stacked_transformer_layer = tf_p.Instantiate() tf_output, _ = tf_stacked_transformer_layer.FProp( tf_initial_vars, test_utils.ToTfNmap(npy_inputs), paddings=test_utils.ToTfNmap(npy_paddings), segment_mask=test_utils.ToTfNmap(tf_segment_mask), aux_vec=test_utils.ToTfNmap(tf_cross_inputs), aux_paddings=test_utils.ToTfNmap(tf_cross_paddings), aux_segment_mask=test_utils.ToTfNmap(tf_cross_segment_mask)) np_outputs = test_utils.ToNp(outputs) tf_np_outputs = test_utils.ToNp(tf_output) self.assertAllClose(tf_np_outputs, np_outputs, atol=1e-5) @parameterized.parameters(*list(itertools.product([True, False], repeat=3))) def test_repeated_stacked_xformer_layer(self, mask_self_attention, packed_input, cross_attention): model_dims = 16 p1 = transformers.StackedTransformerLayers.Params().Set( name='jax_stacked_transformer_layer', model_dims=model_dims, hidden_dims=64, num_heads=8, mask_self_attention=mask_self_attention, num_layers=4, packed_input=packed_input, cross_attention=cross_attention) p2 = transformers.StackedTransformerLayersRepeated.Params().Set( name='jax_stacked_transformer_layer_repeated', model_dims=model_dims, hidden_dims=64, num_heads=8, mask_self_attention=mask_self_attention, num_layers=4, packed_input=packed_input, cross_attention=cross_attention) seq_len =
np.random.randint(10, 32)
numpy.random.randint
from __future__ import print_function # Maintain a live constrained delaunay triangulation of the grid. # designed as a mixin from collections import defaultdict, Iterable import logging log = logging.getLogger('stompy.live_dt') import pdb import numpy as np from numpy.linalg import norm,solve from matplotlib import collections import matplotlib.pyplot as plt from .. import utils from ..utils import array_append from ..spatial import field,robust_predicates from . import orthomaker,trigrid,exact_delaunay def ray_intersection(p0,vec,pA,pB): d1a = np.array([pA[0]-p0[0],pA[1]-p0[1]]) # alpha * vec + beta * ab = d1a # | vec[0] ab[0] | | alpha | = | d1a[0] | # | vec[1] ab[1] | | beta | = | d1a[1] | A = np.array( [[vec[0], pB[0] - pA[0]], [vec[1], pB[1] - pA[1]]] ) alpha_beta = solve(A,d1a) return p0 + alpha_beta[0]*np.asarray(vec) class MissingConstraint(Exception): pass def distance_left_of_line(pnt, qp1, qp2): # return the signed distance for where pnt is located left of # of the line qp1->qp2 # we don't necessarily get the real distance, but at least something # with the right sign, and monotonicity vec = qp2 - qp1 left_vec = np.array( [-vec[1],vec[0]] ) return (pnt[0] - qp1[0])*left_vec[0] + (pnt[1]-qp1[1])*left_vec[1] class LiveDtGridNull(orthomaker.OrthoMaker): """ absolute minimum, do-nothing stand-in for LiveDtGrid implementations. probably not useful, and definitely not complete """ has_dt = 0 pending_conflicts = [] def hold(self): pass def release(self): pass def delaunay_neighbors(self,n): return [] LiveDtGrid=LiveDtGridNull # will be set to the "best" implementation below class LiveDtGridBase(orthomaker.OrthoMaker): """ A mixin which adds a live-updated constrained Delaunay triangulation to shadow the grid, aiding in various geometric queries. Similar in spirit to ShadowCDT, but this is an older code designed explicitly for use with paver, and originally only using CGAL for the triangulation. This is the abstract base class, which can either use a CGAL implementation or a pure-python implementation in subclasses below. This mixin maintains the mapping between nodes in self, and the vertices in the shadow Delaunay triangulation. self.vh[n] maps a trigrid node n to the "handle" for a Delaunay vertex. self.vh_info[vh] provides the reverse mapping, from a Delaunay vertex handle to a node """ has_dt = 1 # if true, skips graph API handling freeze=0 # if true, stores up modified nodes and edges, and # updates all at once upon release holding = 0 # queue of conflicting edges that have been un-constrained to allow for # an add_edge() to proceed pending_conflicts = [] edges_to_release = None # triangles in the "medial axis" with a radius r < density/scale_ratio_for_cutoff # will be removed. # the meaning of this has changed slightly - 1/9/2013 # now it is roughly the number of cells across a channel to make room for. # so at 1.0 it will retain channels which are one cell wide (actually there's a # bit of slop - room for 1.3 cells or so). # at 2.0, you should get 2-3 cells across. scale_ratio_for_cutoff = 1.0 # even though in some cases the vertex handle type is more like int32, # leave this as object so that None can be used as a special value. vh_dtype='object' # used in allocating def __init__(self,*args,**kwargs): super(LiveDtGridBase,self).__init__(*args,**kwargs) self.populate_dt() check_i = 0 def check(self): return print(" --checkplot %05i--"%self.check_i) plt.figure(10) plt.clf() self.plot_dt() if self.default_clip is not None: self.plot_nodes() plt.axis(self.default_clip) plt.title("--checkplot %05i--"%self.check_i) plt.savefig('tmp/dtframe%05i.png'%self.check_i) self.check_i += 1 plt.close(10) def refresh_metadata(self): """ Should be called when all internal state is changed outside the mechanisms of add_X, delete_X, move_X, etc. """ super(LiveDtGridBase,self).refresh_metadata() self.populate_dt() def populate_dt(self): """ Initialize a triangulation with all current edges and nodes. """ # print("populate_dt: top") self.dt_allocate() self.vh = np.zeros( (self.Npoints(),), self.vh_dtype) self.vh[:]=None # 0 isn't actually a good mark for unused. # sometimes CGAL creates vertices automatically, which are detected by # having info == None self.vh_info = defaultdict(lambda:None) # print("populate_dt: adding points") for n in range(self.Npoints()): if n % 50000==0: log.info("populate_dt: %d/%d"%(n,self.Npoints())) # skip over deleted points: if np.isfinite(self.points[n,0]): self.dt_insert(n) # print("populate_dt: add constraints") for e in range(self.Nedges()): if e % 50000==0: log.info("populate_dt: %d/%d"%(e,self.Nedges())) a,b = self.edges[e,:2] if a>=0 and b>=0: # make sure we don't insert deleted edges self.safe_insert_constraint(a,b) # print("populate_dt: end") def safe_insert_constraint(self,a,b): """ adds a constraint to the DT, but does a few simple checks first if it's not safe, raise an Exception """ if a < 0 or b < 0 or a==b: raise Exception("invalid node indices: %d %d"%(a,b)) if all(self.points[a] == self.points[b]): raise Exception("invalid constraint: points[%d]=%s and points[%d]=%s are identical"%(a,self.points[a], b,self.points[b])) if self.verbose > 2: print(" Inserting constraint (populate_dt): %d %d %s %s"%(a,b,self.vh[a],self.vh[b])) print(" node A=%s node B=%s"%(self.points[a],self.points[b])) print(" A.point=%s B.point=%s"%(self.vh[a].point(), self.vh[b].point())) self.dt_insert_constraint(a,b) # double check to make sure that it's actually in there... found_it=0 for edge in self.dt_incident_constraints(self.vh[a]): v1,v2 = edge.vertices() if v1==self.vh[b] or v2==self.vh[b]: found_it = 1 break if not found_it: # we have a conflict - search from a to b msg="Just tried to insert a constraint %d-%d (%s - %s), but it's not there!"%(a,b, self.points[a], self.points[b]) raise MissingConstraint(msg) ## Hold/release def hold(self): if self.holding == 0: self.holding_nodes = {} self.holding += 1 def release(self): if self.holding == 0: raise Exception("Tried to release, but holding is already 0") self.holding -= 1 if self.holding == 0: # First, make sure that we have enough room for new nodes: while len(self.vh) < self.Npoints(): # This used to extend with 0, but None is a better option self.vh = array_append(self.vh,None) held_nodes = list(self.holding_nodes.keys()) # Remove all of the nodes that were alive when we started # the hold: for n in held_nodes: # first, it was != 0. # then it was "is not 0" # but with exact_delaunay, 0 is a valid vertex handle. if self.vh[n] is not None: # used to != 0 self.dt_remove_constraints(self.vh[n]) self.dt_remove(n) # that's correct, pass trigrid node index # Add back the ones that are currently valid for n in held_nodes: if np.isfinite(self.points[n,0]): self.dt_insert(n) # Add back edges for each one held_edges = {} for n in held_nodes: for e in self.pnt2edges(n): held_edges[e] = 1 self.edges_to_release = list(held_edges.keys()) while len(self.edges_to_release) > 0: e = self.edges_to_release.pop() # call dt_add_edge to get all of the conflicting-edge-detecting # functionality. self.dt_add_edge(e) self.edges_to_release = None self.holding_nodes=0 return self.holding def dt_update(self,n): if self.verbose > 2: print(" dt_update TOP: %d"%n) self.check() # have to remove any old constraints first: n_removed = 0 to_remove = [] # probably unnecessary, but queue the deletions to avoid any possibility # of confusing the iterator for edge in self.dt_incident_constraints(self.vh[n]): n_removed += 1 v1,v2 = edge.vertices() vi1 = self.vh_info[v1] vi2 = self.vh_info[v2] to_remove.append( (edge, vi1, vi2) ) if self.verbose > 2: # weird stuff is happening in here, so print out some extra # info print(" dt_update: found old constraint %s-%s"%(vi1,vi2)) if n_removed != len(self.pnt2edges(n)): print(" WARNING: was going to remove them, but n_removed=%d, but pnt2edges shows"%n_removed) # How many of this point's edges are in the queue to be added? count_unreleased = 0 if self.edges_to_release: for e in self.pnt2edges(n): if e in self.edges_to_release: count_unreleased += 1 if n_removed + count_unreleased != len(self.pnt2edges(n)): print(self.edges[self.pnt2edges(n),:2]) print("Even after counting edges that are queued for release, still fails.") raise Exception("Something terrible happened trying to update a node") for edge,a,b in to_remove: self.dt_remove_constrained_edge(edge) self.dt_remove(n) self.dt_insert(n) # add back any of the constraints that we removed. # This used to add all constraints involving n, but if we are in the middle # of a release, pnt2edges() will not necessarily give the same edges as # constraints all_pairs = [] for edge,a,b in to_remove: all_pairs.append( (a,b) ) self.safe_insert_constraint(a,b) n_removed -= 1 if n_removed != 0: print(" WARNING: in updating node %d, removed-added=%d"%(n,n_removed)) print(" Inserted edges were ",all_pairs) raise Exception("why does this happen?") if self.verbose > 2: print(" dt_update END: %d"%n) self.check() def dt_add_edge(self,e): """ Add the edge, indexed by integer e and assumed to exist in the grid, to the Delaunay triangulation. This method is a bit sneaky, and in dire situations tries to adjust the geometry to allow an otherwise invalid edge to be inserted. Not a good design, but this is old code. """ a,b = self.edges[e,:2] #-#-# Try to anticipate unsafe connections for i in range(3): # try a few times to adjust the conflicting nodes constr_edges = self.check_line_is_clear(a,b) if len(constr_edges)>0: print("--=-=-=-=-=-= Inserting this edge %d-%d will cause an intersection -=-=-=-=-=-=-=--"%(a,b)) for v1,v2 in constr_edges: # use %s formats as values could be None print(" intersects constrained edge: %s - %s"%(self.vh_info[v1],self.vh_info[v2])) if self.verbose > 1: if i==0: self.plot(plot_title="About to prepare_conflicting_edges") plt.plot(self.points[[a,b],0], self.points[[a,b],1],'m') # Debugging: # raise Exception,"Stopping before trying to fix conflicting edges" self.prepare_conflicting_edges(e,constr_edges) else: break #-#-# self.safe_insert_constraint(a,b) if a>b: a,b=b,a if self.verbose > 2: print(" dt_add_edge: adding constraint %d->%d"%(a,b)) self.check() def prepare_conflicting_edges(self,e,constr_edges): """ If an edge to be inserted is not valid, try to adjust one or more nodes in a small way to make it clear. This approach is clearly stepping outside the bounds of good program flow. """ # First figure out which side is "open" # We should only be called when the data in self.edges has already # been taken care of, so it should be safe to just consult our cell ids. a,b = self.edges[e,:2] # arrange for a -> b to have the open side to its right if self.edges[e,3] >= 0 and self.edges[e,4] >= 0: print("prepare_conflicting_edges: both sides are closed!") return if self.edges[e,3] == -1 and self.edges[e,4] != -1: a,b = b,a elif self.edges[e,4] == -1: pass elif self.edges[e,3] == -2 and self.edges[e,4] != -2: a,b = b,a # otherwise it's already in the correct orientation print("prepare_conflicting_edges: proceeding for edge %d-%d"%(a,b)) AB = self.points[b] - self.points[a] open_dir = np.array( [AB[1],-AB[0]] ) mag = np.sqrt(AB[0]**2+AB[1]**2) AB /= mag open_dir /= mag to_move = [] # node index for nodes that need to be moved. for cgal_edge in constr_edges: vh_c,vh_d = cgal_edge c = self.vh_info[vh_c] d = self.vh_info[vh_d] if c is None: print("No node data for conflicting vertex %s"%vh_c) continue if d is None: print("No node data for conflicting vertex %s"%vh_d) continue # 2. which one is on the closed side? c_beta = np.dot( self.points[c] - self.points[a], open_dir) d_beta = np.dot( self.points[d] - self.points[a], open_dir) if c_beta < 0 and d_beta >= 0: to_move.append(c) elif d_beta < 0 and c_beta >= 0: to_move.append(d) else: print("Neither node in conflicting edge appears to be on the closed side") to_move = np.unique(to_move) eps = mag / 50.0 for n in to_move: beta = np.dot( self.points[n] - self.points[a], open_dir) if beta >= 0: raise Exception("Only nodes with beta<0 should be in this list!") new_point = self.points[n] - (beta-eps)*open_dir print("prepare_conflicting_edges: Moving node %d to %s"%(n,new_point)) self.move_node(n,new_point) def dt_remove_edge(self,e,nodes=None): """ Remove the given edge from the triangulation. In cases where the edge e has already been updated with different nodes, pass in nodes as [a,b] to remove the edge as it was. """ if nodes is not None: a,b = nodes else: a,b = self.edges[e,:2] #-# DBG if a>b: a,b=b,a if self.verbose > 2: print(" remove constraint %d->%d"%(a,b)) self.check() #-# /DBG # have to figure out the face,index for this edge found_edge = 0 for edge in self.dt_incident_constraints(self.vh[a]): v1,v2 = edge.vertices() if self.vh[b] == v1 or self.vh[b] == v2: self.dt_remove_constrained_edge(edge) return raise MissingConstraint("Tried to remove edge %i, but it wasn't in the constrained DT"%e) #-#-# API for adding/moving/deleting #-# NODES def add_node(self,P): n = super(LiveDtGridBase,self).add_node(P) if self.freeze: pass elif self.holding: self.holding_nodes[n] = 'add_node' else: self.vh = array_append(self.vh,None) self.dt_insert(n) # tricky - a new node may interrupt some existing # constraint, but when the node is removed the # constraint is not remembered - so check for that # explicitly - interrupted_edge = [] for edge in self.dt_incident_constraints(self.vh[n]): a,b = edge.vertices() if self.vh_info[a] != n: interrupted_edge.append(self.vh_info[a]) else: interrupted_edge.append(self.vh_info[b]) if len(interrupted_edge): self.push_op(self.uninterrupt_constraint,interrupted_edge) return n def uninterrupt_constraint(self,ab): print("Uninterrupting a constraint. Yes!") self.safe_insert_constraint(ab[0],ab[1]) def unmodify_edge(self, e, old_data): """ a bit unsure of this... I don't know exactly where this gets done the first time """ a,b = self.edges[e,:2] n = super(LiveDtGridBase,self).unmodify_edge(e,old_data) if a!=old_data[0] or b!=old_data[1]: print("unmodifying live_dt edge") self.safe_insert_constraint(old_data[0],old_data[1]) def unadd_node(self,old_length): if self.freeze: pass elif self.holding: for i in range(old_length,len(self.points)): self.holding_nodes[i] = 'unadd' else: for i in range(old_length,len(self.points)): self.dt_remove(i) self.vh = self.vh[:old_length] super(LiveDtGridBase,self).unadd_node(old_length) if not (self.freeze or self.holding): print("HEY - this would be a good time to refresh the neighboring constraints") def delete_node(self,i,*args,**kwargs): # there is a keyword argument, remove_edges # does that need to be interpreted here? if self.freeze: pass elif self.holding: self.holding_nodes[i] = 'delete_node' super(LiveDtGridBase,self).delete_node(i,*args,**kwargs) if not self.freeze and not self.holding: self.dt_remove( i ) def undelete_node(self,i,p): super(LiveDtGridBase,self).undelete_node(i,p) if self.freeze: pass elif self.holding: self.holding_nodes[i] = 'undelete' else: self.dt_insert(i) def unmove_node(self,i,orig_val): super(LiveDtGridBase,self).unmove_node(i,orig_val) if self.freeze: pass elif self.holding: self.holding_nodes[i] = 'unmove' else: self.dt_update(i) def move_node(self,i,new_pnt,avoid_conflicts=True): """ avoid_conflicts: if the new location would cause a self-intersection, don't move it so far... if the location is modified, return the actual location, otherwise return None """ if not self.freeze and not self.holding: # pre-emptively remove constraints and the vertex # so that there aren't conflicts between the current # edges and the probe point. # See if the location will be okay - to_remove = [] nbrs = [] # neighbor nodes, based only on constrained edges for edge in self.dt_incident_constraints(self.vh[i]): v1,v2 = edge.vertices() vi1 = self.vh_info[v1] vi2 = self.vh_info[v2] to_remove.append( (edge, vi1, vi2) ) if vi1 == i: nbrs.append(vi2) else: nbrs.append(vi1) if len(to_remove) != len(self.pnt2edges(i)): # why is this a warning here, but for unmove_node we bail out? # I'm not really sure how this happens in the first place... # this was a warning, but investigating... # HERE: And now test_sine_sine is failing here. pdb.set_trace() raise Exception("WARNING: move_node len(DT constraints) != len(pnt2edges(i))") for edge,a,b in to_remove: self.dt_remove_constrained_edge(edge) self.dt_remove(i) # With the old edges and vertex out of the way, make sure the new location # is safe, and adjust necessary new_pnt = self.adjust_move_node(i,new_pnt,nbrs) super(LiveDtGridBase,self).move_node(i,new_pnt) if self.freeze: pass elif self.holding: self.holding_nodes[i] = 'move' else: # put the node back in, and add back any edges that we removed. # NB: safer to add only the constraints that were there before, since it # could be that the DT is not perfectly in sync with self.edges[] self.dt_insert(i) for edge,a,b in to_remove: self.safe_insert_constraint(a,b) return new_pnt def adjust_move_node(self,i,new_pnt,nbrs): """ Check if it's okay to move the node i to the given point, and if needed, return a different new_pnt location that won't make an intersection i: node index new_pnt: the requested new location of the node nbrs: list of neighbor node indices for checking edges """ # HERE -- not compatible with pure python code. # find existing constrained edges # for each constrained edge: # will the updated edge still be valid? # if not, update new_pnt to be halfway between the old and the new, # and loop again. for shorten in range(15): # maximum number of shortenings allowed all_good = True # Create a probe vertex so we can call check_line_is_clear() # sort of winging it here for a measure of close things are. if abs(self.points[i] - new_pnt).sum() / (1.0+abs(new_pnt).max()) < 1e-8: log.warning("adjust_move_node: danger of roundoff issues") all_good = False break all_good=self.check_line_is_clear_batch(p1=new_pnt,n2=nbrs) if all_good: break else: new_pnt = 0.5*(self.points[i]+new_pnt) log.debug('adjust_move_node: adjusting') if all_good: return new_pnt else: return self.points[i] ## EDGES def add_edge(self,nodeA,nodeB,*args,**kwargs): e = super(LiveDtGridBase,self).add_edge(nodeA,nodeB,*args,**kwargs) if self.freeze: pass elif self.holding: self.holding_nodes[ self.edges[e,0] ] ='add_edge' self.holding_nodes[ self.edges[e,1] ] ='add_edge' else: self.dt_add_edge(e) return e def unadd_edge(self,old_length): if self.freeze: pass elif self.holding: for e in range(old_length,len(self.edges)): self.holding_nodes[ self.edges[e,0] ] ='unadd_edge' self.holding_nodes[ self.edges[e,1] ] ='unadd_edge' else: for e in range(old_length,len(self.edges)): self.dt_remove_edge(e) super(LiveDtGridBase,self).unadd_edge(old_length) def delete_edge(self,e,*args,**kwargs): if self.freeze: pass elif self.holding: self.holding_nodes[ self.edges[e,0] ] = 'delete_edge' self.holding_nodes[ self.edges[e,1] ] = 'delete_edge' else: self.dt_remove_edge(e) super(LiveDtGridBase,self).delete_edge(e,*args,**kwargs) def undelete_edge(self,e,*args,**kwargs): super(LiveDtGridBase,self).undelete_edge(e,*args,**kwargs) if self.freeze: pass elif self.holding: self.holding_nodes[ self.edges[e,0] ] = 'undelete_edge' self.holding_nodes[ self.edges[e,1] ] = 'undelete_edge' else: self.dt_add_edge(e) def merge_edges(self,e1,e2): if self.verbose > 1: print(" live_dt: merge edges %d %d"%(e1,e2)) # the tricky thing here is that we don't know which of # these edges will be removed by merge_edges - one # of them will get deleted, and then deleted by our # delete handler. # the other one will get modified, so by the time we get # control again after trigrid, we won't know what to update # so - save the nodes... saved_nodes = self.edges[ [e1,e2],:2] remaining = super(LiveDtGridBase,self).merge_edges(e1,e2) if self.freeze: pass elif self.holding: for n in saved_nodes.ravel(): self.holding_nodes[n] = 'merge_edges' else: if remaining == e1: ab = saved_nodes[0] else: ab = saved_nodes[1] # the one that is *not* remaining has already been deleted # just update the other one. try: self.dt_remove_edge(remaining,nodes=ab) except MissingConstraint: print(" on merge_edges, may have an intervener") raise self.dt_add_edge(remaining) return remaining def unmerge_edges(self,e1,e2,*args,**kwargs): check_dt_after = False if self.freeze: pass elif self.holding: pass else: # this can be problematic if the middle node is exactly on # the line between them, because re-inserting that node # will pre-emptively segment the constrained edge. try: self.dt_remove_edge(e1) except MissingConstraint: print(" got a missing constraint on merge edges - will verify that it's okay") check_dt_after = True #print " after pre-emptive remove_edge" super(LiveDtGridBase,self).unmerge_edges(e1,e2,*args,**kwargs) #print " after call to super()" if self.freeze: pass elif self.holding: n1,n2 = self.edges[e1,:2] n3,n4 = self.edges[e2,:2] for n in [n1,n2,n3,n4]: self.holding_nodes[ n ] = 'unmerge_edges' else: if check_dt_after: AB = self.edges[e1,:2] BC = self.edges[e2,:2] B = np.intersect1d(AB,BC)[0] A = np.setdiff1d(AB,B)[0] C = np.setdiff1d(BC,B)[0] print("while unmerging edges, a constraint was pre-emptively created, but will verify that now %d-%d-%d."%(A,B,C)) for edge in self.dt_incident_constraints(self.vh[B]): v1,v2 = edge.vertices() if self.vh_info[v1] == A or self.vh_info[v2] == A: A = None elif self.vh_info[v1] == B or self.vh_info[v2] == B: B = None else: print("while unmerging edge, the middle point has another constrained DT neighbor - surprising...") if A is not None or B is not None: raise MissingConstraint("Failed to verify that implicit constraint was there") else: #print " adding reverted edge e1 and e2" self.dt_add_edge(e1) # even though trigrid.merge_edges() calls delete_edge() # on e2, it doesn't register an undelete_edge() b/c # rollback=0. self.dt_add_edge(e2) # def unsplit_edge(...): # not supported by trigrid def split_edge(self,nodeA,nodeB,nodeC): """ per trigrid updates, nodeB may be a node index or a tuple (coords, **add_node_opts) """ if self.freeze: pass elif self.holding: self.holding_nodes[nodeA] = 'split_edge' if not isinstance(nodeB,Iterable): self.holding_nodes[nodeB] = 'split_edge' self.holding_nodes[nodeC] = 'split_edge' else: if self.verbose > 2: print(" split_edge: %d %d %d"%(nodeA,nodeB,nodeC)) e1 = self.find_edge([nodeA,nodeC]) try: self.dt_remove_edge(e1) except MissingConstraint: if isinstance(nodeB,Iterable): print(" got a missing constraint on split edge, and node has not been created!") raise else: print(" got a missing constraint on split edge, but maybe the edge has already been split") self.dt_remove_edge(e1,[nodeA,nodeB]) self.dt_remove_edge(e1,[nodeB,nodeC]) print(" Excellent. The middle node had become part of the constraint") e2 = super(LiveDtGridBase,self).split_edge(nodeA,nodeB,nodeC) if self.freeze: pass elif self.holding: pass else: self.dt_add_edge(e1) self.dt_add_edge(e2) return e2 def delete_node_and_merge(self,n): if self.freeze: return super(LiveDtGridBase,self).delete_node_and_merge(n) if self.holding: self.holding_nodes[n] = 'delete_node_and_merge' else: # remove any constraints going to n - self.dt_remove_constraints(self.vh[n]) self.dt_remove(n) # note that this is going to call merge_edges, before it # calls delete_node() - and merge_edges will try to add the new # constraint, which will fail if the middle node is collinear with # the outside nodes. so freeze LiveDT updates, then here we clean up self.freeze = 1 new_edge = super(LiveDtGridBase,self).delete_node_and_merge(n) if self.verbose > 2: print(" Got new_edge=%s from trigrid.delete_node_and_merge"%new_edge) self.freeze=0 if self.holding: for n in self.edges[new_edge,:2]: self.holding_nodes[n] = 'delete_node_and_merge' else: # while frozen we missed a merge_edges and a delete node. # we just want to do them in the opposite order of what trigrid does. self.dt_add_edge(new_edge) return new_edge def renumber(self): mappings = super(LiveDtGridBase,self).renumber() self.vh = self.vh[ mappings['valid_nodes'] ] for i in range(len(self.vh)): self.vh_info[self.vh[i]] = i return mappings def dt_interior_cells(self): """ Only valid for a triangulation where all nodes lie on the boundary. there will be some cells which fall inside the domain, others outside the domain. returns cells which are properly inside the domain as triples of nodes """ log.info("Finding interior cells from full Delaunay Triangulation") interior_cells = [] for a,b,c in self.dt_cell_node_iter(): # going to be slow... # How to test whether this face is internal: # Arbitrarily choose a vertex: a # # Find an iter for which the face abc lies to the left of the boundary internal = 0 for elt in self.all_iters_for_node(a): d = self.points[elt.nxt.data] - self.points[a] theta_afwd = np.arctan2(d[1],d[0]) d = self.points[b] - self.points[a] theta_ab = np.arctan2(d[1],d[0]) d = self.points[elt.prv.data] - self.points[a] theta_aprv = np.arctan2(d[1],d[0]) dtheta_b = (theta_ab - theta_afwd) % (2*np.pi) dtheta_elt = (theta_aprv - theta_afwd) % (2*np.pi) # if b==elt.nxt.data, then dtheta_b==0.0 - all good if dtheta_b >= 0 and dtheta_b < dtheta_elt: internal = 1 break if internal: interior_cells.append( [a,b,c] ) cells = np.array(interior_cells) return cells ## DT-based "smoothing" # First, make sure the boundary is sufficiently sampled def subdivide(self,min_edge_length=1.0,edge_ids=None): """ Like medial_axis::subdivide_iterate - Add nodes along the boundary as needed to ensure that the boundary is well represented in channels [ from medial_axis ] Find edges that need to be sampled with smaller steps and divide them into two edges. returns the number of new edges / nodes method: calculate voronoi radii iterate over edges in boundary for each edge, find the voronoi point that they have in common. So this edge should be part of a triangle, and we are getting the center of that triangle. the voronoi radius with the distance between the voronoi point and the edge. If the edge is too long and needs to be subdivided, it will be long (and the voronoi radius large) compared to the distance between the edge and the vor. center. """ if edge_ids is None: print("Considering all edges for subdividing") edge_ids = list(range(self.Nedges())) else: print("Considering only %d supplied edges for subdividing"%len(edge_ids)) to_subdivide = [] # Also keep a list of constrained edges of DT cells for which another edge # has been selected for subdivision. neighbors_of_subdivide = {} print("Choosing edges to subdivide") for ni,i in enumerate(edge_ids): # range(self.Nedges()): if ni%500==0: log.debug('.') if self.edges[i,0] == -37: continue # edge has been deleted # this only works when one side is unpaved and the other boundary - if self.edges[i,3] != trigrid.UNMESHED or self.edges[i,4] != trigrid.BOUNDARY: print("Skipping edge %d because it has weird cell ids"%i) continue a,b = self.edges[i,:2] # consult the DT to find who the third node is: a_nbrs = self.delaunay_neighbors(a) b_nbrs = self.delaunay_neighbors(b) abc = np.array([self.points[a],self.points[b],[0,0]]) c = None for nbr in a_nbrs: if nbr in b_nbrs: # does it lie to the left of the edge? abc[2,:] = self.points[nbr] if trigrid.is_ccw(abc): c = nbr break if c is None: print("While looking at edge %d, %s - %s"%(i,self.points[a],self.points[b])) raise Exception("Failed to find the third node that makes up an interior triangle") pntV = trigrid.circumcenter(abc[0],abc[1],abc[2]) # compute the point-line distance between # this edge and the v center, then compare to # the distance from the endpoint to that # vcenter pntA = self.points[a] pntB = self.points[b] v_radius = np.sqrt( ((pntA-pntV)**2).sum() ) # This calculates unsigned distance - with Triangle, that's fine because # it takes care of the Steiner points, but with CGAL we do it ourselves. # line_clearance = np.sqrt( (( 0.5*(pntA+pntB) - pntV)**2).sum() ) ab = (pntB - pntA) ab = ab / np.sqrt( np.sum(ab**2) ) pos_clearance_dir = np.array( [-ab[1],ab[0]] ) av = pntV - pntA line_clearance = av[0]*pos_clearance_dir[0] + av[1]*pos_clearance_dir[1] # Why do I get some bizarrely short edges? ab = np.sqrt( np.sum( (pntA - pntB)**2 ) ) if v_radius > 1.2*line_clearance and v_radius > min_edge_length and ab>min_edge_length: to_subdivide.append(i) # Also make note of the other edges of this same DT triangle for maybe_nbr in [ [a,c], [b,c] ]: # could be an internal DT edge, or a real edge try: nbr_edge = self.find_edge(maybe_nbr) neighbors_of_subdivide[nbr_edge] = 1 except trigrid.NoSuchEdgeError: pass print() print("Will subdivide %d edges"%(len(to_subdivide))) for ni,i in enumerate(to_subdivide): if ni%500==0: log.debug('.') if i in neighbors_of_subdivide: del neighbors_of_subdivide[i] a,b = self.edges[i,:2] elts = self.all_iters_for_node(a) if len(elts) != 1: raise Exception("How is there not exactly one iter for this node!?") scale = 0.5*np.sqrt( np.sum( (self.points[a]-self.points[b])**2 ) ) # print "Subdividing edge %d with scale %f"%(i,scale) new_elt = self.resample_boundary(elts[0],'forward', local_scale=scale, new_node_stat=self.node_data[a,0]) # keep track of any edges that change: e1,e2 = self.pnt2edges(new_elt.data) neighbors_of_subdivide[e1] = 1 neighbors_of_subdivide[e2] = 1 print("done") subdivided = np.array( list(neighbors_of_subdivide.keys()) ) return subdivided def subdivide_iterate(self,min_edge_length=1.0): modified_edges = None while 1: # It wasn't enough to just test for no modified edges - rather than # trying to be clever about checking exactly edges that may have # been affected by a split, have nested iterations, and stop only # when globally there are no modified edges new_modified_edges = self.subdivide(min_edge_length=min_edge_length, edge_ids = modified_edges) print("Subdivide made %d new nodes"%(len(new_modified_edges)/2) ) if len(new_modified_edges) == 0: if modified_edges is None: # this means we considered all edges, and still found nobody # to split break else: # this means we were only considering likely offenders - # step back and consider everyone print("Will reconsider all edges...") modified_edges = None else: modified_edges = new_modified_edges def smoothed_poly(self,density,min_edge_length=1.0): """ Returns a polygon for the boundary that has all 'small' concave features removed. Modifies the boundary points, but only by adding new samples evenly between originals. """ # Make sure that all edges are sufficiently sampled: self.subdivide_iterate(min_edge_length=min_edge_length) # The process (same as in smoother.py): # For all _interior_ DT cells # calculate circum-radius # mark for deletion any cell with radius < scale/2, # with scale calculated at circumcenter # For all non-deleted cells, create an array of all edges # The notes in smoother say that if an edge appears exactly once # then it should be kept. # Edges that appear twice are internal to the domain. # If/when degenerate edges take part in this, they will have to be # handled specially, since they *should* have two adjacent, valid, cells. # What is faster? # (a) iterate over known boundary edges, grabbing cells to the left, # and checking against a hash to see that the cell hasn't been included # already # (b) iterate over DT faces, checking to see if it's an internal face or not # by checking ab,bc,ca against the edge hash? # probably (b), since we already have this hash built. # Actually, (b) isn't sufficient - there are triangles that are internal, but # have no boundary edges. # And (a) isn't good either - it would skip over any triangles that are entirely # internal _or_ entirely external (i.e. share no edges with the boundary). # Is there a way to do this by tracing edges? Start at some vertex on a clist. # check the next edge forward - is the radius of the DT face to its left big enough? # If so, we move forward. # If not, detour? # That's not quite enough, though. Really need to be checking every triangle incident # to the vertex, not just the ones incident to the edges. # So for simplicity, why not use the traversal of the edges to enumerate internal cells, # then proceed as before. cells = self.dt_interior_cells() print("Marking for deletion DT faces that are too small") points = self.points[cells] vcenters = trigrid.circumcenter(points[:,0], points[:,1], points[:,2]) # Threshold on the radius, squared - # r2_min = (density(vcenters)/2.0 * self.scale_ratio_for_cutoff)**2 # r^2 for each internal DT face r2 = np.sum( (vcenters - points[:,0,:])**2,axis=1) valid = r2 >= r2_min # From here on out it follows smoother.py very closely... print("Compiling valid edges") # expands cells into edges good_cells = cells[valid] all_edges = good_cells[:,np.array([[0,1],[1,2],[2,0]])] # cells is Nfaces x 3 # all_edges is then Nfaces x 3 x 2 # combine the first two dimensions, so we have a regular edges array all_edges = all_edges.reshape( (-1,2) ) print("building hash of edges") edge_hash = {} for i in range(len(all_edges)): k = all_edges[i,:] if k[0] > k[1]: k=k[::-1] k = tuple(k) if k not in edge_hash: edge_hash[k] = 0 edge_hash[k] += 1 print("Selecting boundary edges") # good edges are then edges that appear in exactly one face good_edges = [] for k in edge_hash: if edge_hash[k] == 1: good_edges.append(k) good_edges = np.array(good_edges) print("Finding polygons from edges") tgrid = trigrid.TriGrid(points=self.points, edges =good_edges) tgrid.verbose = 2 polygons = tgrid.edges_to_polygons(None) # none=> use all edges self.smooth_all_polygons = polygons # for debugging.. print("done with smoothing") return polygons[0] def apollonius_scale(self,r,min_edge_length=1.0,process_islands=True): """ Return an apollonius based field giving the scale subject to the local feature size of geo and the telescoping rate r """ self.subdivide_iterate(min_edge_length=min_edge_length) dt_cells = self.dt_interior_cells() points = self.points[dt_cells] vcenters = trigrid.circumcenter(points[:,0], points[:,1], points[:,2]) radii = np.sqrt( np.sum( (vcenters - points[:,0,:])**2,axis=1) ) diam = 2*radii if process_islands: print("Hang on. Adding scale points for islands") island_centers = [] island_scales = [] for int_ring in self.poly.interiors: p = int_ring.convex_hull points = np.array(p.exterior.coords) center = points.mean(axis=0) # brute force - find the maximal distance between # any two points. probably a smart way to do this, # but no worries... max_dsqr = 0 for i in range(len(points)): pa = points[i] for j in range(i,len(points)): d = ((pa - points[j])**2).sum() max_dsqr = max(d,max_dsqr) feature_scale = np.sqrt( max_dsqr ) print("Ring has scale of ",feature_scale) island_centers.append( center ) # this very roughly says that we want at least 4 edges # for representing this thing. # island_scales.append( feature_scale / 2.0) # actually it's not too hard to have a skinny island # 2 units long that gets reduced to a degenerate pair # of edges, so go conservative here: island_scales.append( feature_scale / 3.0 ) island_centers = np.array(island_centers) island_scales = np.array(island_scales) if len(island_centers) > 0: vcenters = np.concatenate( (vcenters,island_centers) ) diam = np.concatenate( (diam,island_scales) ) print("Done with islands") scale = field.ApolloniusField(vcenters,diam) return scale try: # If CGAL gives import errors, it may be because gmp is outdated # This got past conda because the build of mpfr isn't specific # about the version of gmp, just says it depends on gmp. # One fix in anaconda land is: # conda update gmp to install 6.1.2 from CGAL.CGAL_Triangulation_2 import Constrained_Delaunay_triangulation_2 from CGAL.CGAL_Kernel import Point_2 class LiveDtCGAL(LiveDtGridBase): class Edge(object): def __init__(self,**kwargs): self.__dict__.update(kwargs) def vertices(self): return self.f.vertex( (self.v+1)%3 ),self.f.vertex( (self.v+2)%3 ) def dt_allocate(self): """ allocate both the triangulation and the vertex handle """ self.DT = Constrained_Delaunay_triangulation_2() def dt_insert(self,n): """ Given a point that is correctly in self.points, and vh that is large enough, do the work of inserting the node and updating the vertex handle. """ pnt = Point_2( self.points[n,0], self.points[n,1] ) self.vh[n] = self.DT.insert(pnt) self.vh_info[self.vh[n]] = n if self.verbose > 2: print(" dt_insert node %d"%n) self.check() def dt_insert_constraint(self,a,b): self.DT.insert_constraint( self.vh[a], self.vh[b] ) def dt_remove_constraints(self,vh): self.DT.remove_incident_constraints(vh) def dt_remove(self,n): self.DT.remove( self.vh[n] ) del self.vh_info[self.vh[n]] self.vh[n] = 0 if self.verbose > 2: print(" dt_remove node %d"%n) self.check() def dt_remove_constrained_edge(self,edge): self.DT.remove_constrained_edge(edge.f,edge.v) def dt_incident_constraints(self,vh): constraints = [] self.DT.incident_constraints(vh,constraints) # maybe I should keep a reference to the Edge object, too? # that gets through some early crashes. return [self.Edge(f=e.first,v=e.second,keepalive=[e]) for e in constraints] def dt_cell_node_iter(self): """ generator for going over finite cells, returning nodes as triples """ face_it = self.DT.finite_faces() for f in face_it: yield [self.vh_info[f.vertex(i)] for i in [0,1,2]] def delaunay_face(self, pnt): """ Returns node indices making up the face of the DT in which pnt lies. Not explicitly tested, but this should return None for infinite nodes. """ f = self.DT.locate( Point_2(pnt[0],pnt[1]) ) n = [self.vh_info[f.vertex(i)] for i in [0,1,2]] return n def delaunay_neighbors(self, n): """ returns an array of node ids that the DT connects the given node to. Includes existing edges """ nbrs = [] # how do we stop on a circulator? first_v = None # somehow it fails HERE, with self.vh[n] being an int, rather # than a vertex handle. for v in self.DT.incident_vertices(self.vh[n]): if first_v is None: first_v = v elif first_v == v: break if self.DT.is_infinite(v): continue # print "Looking for vertex at ",v.point() # This is going to need something faster, or maybe the store info # bits of cgal. nbr_i = self.vh_info[v] # np.where( self.vh == v )[0] if nbr_i is None: print(" While looking for vertex at ",v.point()) raise Exception("expected vertex handle->node, but instead got %s"%nbr_i) nbrs.append( nbr_i ) return np.array(nbrs) def plot_dt(self,clip=None): edges = [] colors = [] gray = (0.7,0.7,0.7,1.0) magenta = (1.0,0.0,1.0,1.0) e_iter = self.DT.finite_edges() for e in e_iter: face,vertex = e v1 = face.vertex( (vertex + 1)%3 ) v2 = face.vertex( (vertex + 2)%3 ) edges.append( [ [v1.point().x(),v1.point().y()], [v2.point().x(),v2.point().y()] ] ) if self.DT.is_constrained(e): colors.append(magenta) else: colors.append(gray) segments = np.array(edges) colors = np.array(colors) if clip is None: clip = self.default_clip if clip is not None: points_visible = (segments[...,0] >= clip[0]) & (segments[...,0]<=clip[1]) \ & (segments[...,1] >= clip[2]) & (segments[...,1]<=clip[3]) # so now clip is a bool array of length Nedges clip = np.any( points_visible, axis=1) segments = segments[clip,...] colors = colors[clip,...] coll = collections.LineCollection(segments,colors=colors) ax = plt.gca() ax.add_collection(coll) def dt_clearance(self,n): """POORLY TESTED Returns the diameter of the smallest circumcircle (?) of a face incident to the node n. Currently this doesn't work terribly well because sliver triangles will create arbitrarily small clearances at obtuse angles. """ diams = [] f_circ = self.DT.incident_faces( self.vh[n] ) first_f = next(f_circ) f = first_f for f in f_circ: if f == first_f: break diams.append( self.face_diameter(f) ) return min(diams) # Not 100% sure of these def face_nodes(self,face): return np.array( [self.vh_info[face.vertex(j)] for j in range(3)] ) def face_center(self,face): points = self.points[self.face_nodes(face)] return trigrid.circumcenter(points[0],points[1],points[2]) def face_diameter(self,face): points = self.points[self.face_nodes(face)] ccenter = trigrid.circumcenter(points[0],points[1],points[2]) return 2*norm(points[0] - ccenter) #-# Detecting self-intersections def face_in_direction(self,vh,vec): """ Starting at the vertex handle vh, look in the direction of vec to choose a face adjacent to vh. Used for the CGAL implementation of line_walk_edges and shoot_ray() """ # vh: vertex handle # vec: search direction as array theta = np.arctan2(vec[1],vec[0]) # choose a starting face best_f = None f_circ = self.DT.incident_faces(vh) first_f = next(f_circ) f = first_f while 1: # get the vertices of this face: vlist=[f.vertex(i) for i in range(3)] # rotate to make v1 first: vh_index = vlist.index(vh) vlist = vlist[vh_index:] + vlist[:vh_index] # then check the relative angles of the other two - they are in CCW order pnts = np.array( [ [v.point().x(),v.point().y()] for v in vlist] ) delta01 = pnts[1] - pnts[0] delta02 = pnts[2] - pnts[0] theta01 = np.arctan2( delta01[1], delta01[0] ) theta02 = np.arctan2( delta02[1], delta02[0] ) # d01 = (theta - theta01)%(2*np.pi) d02 = (theta02 - theta)%(2*np.pi) #print "starting point:",pnts[0] #print "Theta01=%f Theta=%f Theta02=%f"%(theta01,theta,theta02) if (d01 < np.pi) and (d02 < np.pi): best_f = f break f = next(f_circ) if f == first_f: # raise Exception("Went all the way around...") # this can happen when starting from a vertex and aiming # outside the convex hull return None return best_f def next_face(self,f,p1,vec): """ find the next face from f, along the line through v in the direction vec, return the face and the edge that was crossed, where the edge is a face,i tuple Used for the CGAL implementation of line_walk_edges() and shoot_ray() """ # First get the vertices that make up this face: # look over the edges: vlist=[f.vertex(i) for i in range(3)] pnts = np.array( [ [v.point().x(),v.point().y()] for v in vlist] ) # check which side of the line each vertex is on: left_vec = np.array( [-vec[1],vec[0]] ) left_distance = [ (pnts[i,0] - p1[0])*left_vec[0] + (pnts[i,1]-p1[1])*left_vec[1] for i in range(3)] # And we want the edge that goes from a negative to positive left_distance. # should end with i being the index of the start of the edge that we want for i in range(3): # This doesn't quite follow the same definitions as in CGAL - # because we want to ensure that we get a consecutive list of edges # The easy case - the query line exits through an edge that straddles # the query line, that's the < # the == part comes in where the query line exits through a vertex. # in that case, we choose the edge to the left (arbitrary). if left_distance[i] <= 0 and left_distance[(i+1)%3] > 0: break # so now the new edge is between vertex i,(i+1)%3, so in CGAL parlance # that's edge = (f,(i-1)%3) new_face = f.neighbor( (i-1)%3 ) return edge,new_face # N.B.: the svn (and original git) versions of live_dt included # a new set of check_line_is_clear_new, line_walk_edges_new, and # various helpers, which made more extensive use of CGAL primitives # ## def line_walk_edges(self,n1=None,n2=None,v1=None,v2=None, include_tangent=False, include_coincident=True): """ for a line starting at node n1 or vertex handle v1 and ending at node n2 or vertex handle v2, return all the edges that intersect. Used in the CGAL implementation of check_line_is_clear """ # this is a bit dicey in terms of numerical robustness - # face_in_direction is liable to give bad results when multiple faces are # indistinguishable (like a colinear set of points with many degenerate faces # basically on top of each other). # How can this be made more robust? # When the query line exactly goes through one or more vertex stuff starts # going nuts. # So is it possible to handle this more intelligently? # there are 3 possibilities for intersecting edges: # (1) intersect only at an end point, i.e. endpoint lies on query line # (2) intersect in interior of edge - one end point on one side, other endpoint # on the other side of the query line # (3) edge is coincident with query line # so for a first cut - make sure that we aren't just directly connected: if (n2 is not None) and (n1 is not None) and (n2 in self.delaunay_neighbors(n1)): return [] if v1 is None: v1 = self.vh[n1] if v2 is None: v2 = self.vh[n2] # Get the points from the vertices, not self.points, because in some cases # (adjust_move_node) we may be probing p1 = np.array([ v1.point().x(), v1.point().y()] ) p2 = np.array([ v2.point().x(), v2.point().y()] ) # print "Walking the line: ",p1,p2 vec = p2 - p1 unit_vec = vec / norm(vec) pnt = p1 # NB: this can be None - though not sure whether the context can # ensure that it never would be. f1 = self.face_in_direction(v1,vec) f2 = self.face_in_direction(v2,-vec) # do the search: f_trav = f1 edges = [] while 1: # print "line_walk_edges: traversing face:" # print [f_trav.vertex(i).point() for i in [0,1,2]] # Stop condition: we're in a face containing the final vertex # check the vertices directly, rather than the face still_close = 0 for i in range(3): if f_trav.vertex(i) == v2: return edges if not still_close: # Check to see if this vertex is beyond the vertex of interest vertex_i_pnt = np.array( [f_trav.vertex(i).point().x(),f_trav.vertex(i).point().y()] ) if norm(vec) > np.dot( vertex_i_pnt - p1, unit_vec): still_close = 1 if not still_close: # We didn't find any vertices of this face that were as close to where we started # as the destination was, so we must have passed it. print("BAILING: n1=%s n2=%s v1=%s v2=%s"%(n1,n2,v1,v2)) raise Exception("Yikes - line_walk_edges exposed its numerical issues. We traversed too far.") return edges edge,new_face = self.next_face(f_trav,pnt,vec) edges.append(edge) f_trav = new_face return edges def shoot_ray(self,n1,vec,max_dist=None): """ Shoot a ray from self.points[n] in the given direction vec returns (e_index,pnt), the first edge that it encounters and the location of the intersection max_dist: stop checking beyond this distance -- currently doesn't make it faster but will return None,None if the point that it finds is too far away """ v1 = self.vh[n1] vec = vec /
norm(vec)
numpy.linalg.norm
''' Functions to generate the set of endpoints for the time series benchmark on the HiRID database''' import glob import logging import math import os import os.path import pickle import random import sys import lightgbm as lgbm import numpy as np import pandas as pd import skfda.preprocessing.smoothing.kernel_smoothers as skks import skfda.representation.grid as skgrid import sklearn.linear_model as sklm import sklearn.metrics as skmetrics import sklearn.preprocessing as skpproc def load_pickle(fpath): ''' Given a file path pointing to a pickle file, yields the object pickled in this file''' with open(fpath,'rb') as fp: return pickle.load(fp) SUPPOX_TO_FIO2={ 0: 21, 1: 26, 2: 34, 3: 39, 4: 45, 5: 49, 6: 54, 7: 57, 8: 58, 9: 63, 10: 66, 11: 67, 12: 69, 13: 70, 14: 73, 15: 75 } def mix_real_est_pao2(pao2_col, pao2_meas_cnt, pao2_est_arr, bandwidth=None): ''' Mix real PaO2 measurement and PaO2 estimates using a Gaussian kernel''' final_pao2_arr=np.copy(pao2_est_arr) sq_scale=57**2 # 1 hour has mass 1/3 approximately for idx in range(final_pao2_arr.size): meas_ref=pao2_meas_cnt[idx] real_val=None real_val_dist=None # Search forward and backward with priority giving to backward if equi-distant for sidx in range(48): if not idx-sidx<0 and pao2_meas_cnt[idx-sidx]<meas_ref: real_val=pao2_col[idx-sidx+1] real_val_dist=5*sidx break elif not idx+sidx>=final_pao2_arr.size and pao2_meas_cnt[idx+sidx]>meas_ref: real_val=pao2_col[idx+sidx] real_val_dist=5*sidx break if real_val is not None: alpha_mj=math.exp(-real_val_dist**2/sq_scale) alpha_ej=1-alpha_mj final_pao2_arr[idx]=alpha_mj*real_val+alpha_ej*pao2_est_arr[idx] return final_pao2_arr def perf_regression_model(X_list, y_list, aux_list, configs=None): ''' Initial test of a regression model to estimate the current Pao2 based on 6 features of the past. Also pass FiO2 to calculate resulting mistakes in the P/F ratio''' logging.info("Testing regression model for PaO2...") # Partition the data into 3 sets and run SGD regressor X_train=X_list[:int(0.6*len(X_list))] X_train=np.vstack(X_train) y_train=np.concatenate(y_list[:int(0.6*len(y_list))]) X_val=X_list[int(0.6*len(X_list)):int(0.8*len(X_list))] X_val=np.vstack(X_val) y_val=np.concatenate(y_list[int(0.6*len(y_list)):int(0.8*len(y_list))]) X_test=X_list[int(0.8*len(X_list)):] X_test=np.vstack(X_test) y_test=np.concatenate(y_list[int(0.8*len(y_list)):]) fio2_test=np.concatenate(aux_list[int(0.8*len(aux_list)):]) if configs["sur_model_type"]=="linear": scaler=skpproc.StandardScaler() X_train_std=scaler.fit_transform(X_train) X_val_std=scaler.transform(X_val) X_test_std=scaler.transform(X_test) if configs["sur_model_type"]=="linear": alpha_cands=[0.0001,0.001,0.01,0.1,1.0] elif configs["sur_model_type"]=="lgbm": alpha_cands=[32] best_alpha=None best_score=np.inf # Search for the best model on the validation set for alpha in alpha_cands: logging.info("Testing alpha: {}".format(alpha)) if configs["sur_model_type"]=="linear": lmodel_cand=sklm.SGDRegressor(alpha=alpha, random_state=2021) elif configs["sur_model_type"]=="lgbm": lmodel_cand=lgbm.LGBMRegressor(num_leaves=alpha, learning_rate=0.05, n_estimators=1000, random_state=2021) if configs["sur_model_type"]=="linear": lmodel_cand.fit(X_train_std,y_train) elif configs["sur_model_type"]=="lgbm": lmodel_cand.fit(X_train_std,y_train, eval_set=(X_val_std,y_val), early_stopping_rounds=20, eval_metric="mae") pred_y_val=lmodel_cand.predict(X_val_std) mae_val=np.median(np.absolute(y_val-pred_y_val)) if mae_val<best_score: best_score=mae_val best_alpha=alpha lmodel=sklm.SGDRegressor(alpha=best_alpha,random_state=2021) lmodel.fit(X_train_std,y_train) pred_y_test=lmodel.predict(X_test_std) pred_pf_ratio_test=pred_y_test/fio2_test true_pf_ratio_test=y_test/fio2_test mae_test=skmetrics.mean_absolute_error(y_test, pred_y_test) logging.info("Mean absolute error in test set: {:.3f}".format(mae_test)) def percentile_smooth(signal_col, percentile, win_scope_mins): ''' Window percentile smoother, where percentile is in the interval [0,100]''' out_arr=np.zeros_like(signal_col) mins_per_window=5 search_range=int(win_scope_mins/mins_per_window/2) for jdx in range(out_arr.size): search_arr=signal_col[max(0,jdx-search_range):min(out_arr.size,jdx+search_range)] out_arr[jdx]=np.percentile(search_arr,percentile) return out_arr def subsample_blocked(val_arr, meas_arr=None, ss_ratio=None, block_length=None, normal_value=None): ''' Subsample blocked with ratio and block length''' val_arr_out=np.copy(val_arr) meas_arr_out=np.copy(meas_arr) meas_idxs=[] n_meas=0 for idx in range(meas_arr.size): if meas_arr[idx]>n_meas: meas_idxs.append(idx) n_meas+=1 if len(meas_idxs)==0: return (val_arr_out, meas_arr_out) meas_select=int((1-ss_ratio)*len(meas_idxs)) begin_select=meas_select//block_length feas_begins=[meas_idxs[idx] for idx in np.arange(0,len(meas_idxs),block_length)] sel_meas_begins=sorted(random.sample(feas_begins, begin_select)) sel_meas_delete=[] for begin in sel_meas_begins: for add_idx in range(block_length): sel_meas_delete.append(begin+add_idx) # Rewrite the measuremnent array with deleted indices for midx,meas_idx in enumerate(meas_idxs): prev_cnt=0 if meas_idx==0 else meas_arr_out[meas_idx-1] revised_cnt=prev_cnt if meas_idx in sel_meas_delete else prev_cnt+1 if midx<len(meas_idxs)-1: for rewrite_idx in range(meas_idx,meas_idxs[midx+1]): meas_arr_out[rewrite_idx]=revised_cnt else: for rewrite_idx in range(meas_idx,len(meas_arr_out)): meas_arr_out[rewrite_idx]=revised_cnt # Rewrite the value array with deleted indices, with assuming forward filling for midx,meas_idx in enumerate(meas_idxs): prev_val=normal_value if meas_idx==0 else val_arr_out[meas_idx-1] cur_val=val_arr_out[meas_idx] revised_value=prev_val if meas_idx in sel_meas_delete else cur_val if midx<len(meas_idxs)-1: for rewrite_idx in range(meas_idx,meas_idxs[midx+1]): val_arr_out[rewrite_idx]=revised_value else: for rewrite_idx in range(meas_idx,len(meas_arr_out)): val_arr_out[rewrite_idx]=revised_value return (val_arr_out, meas_arr_out) def subsample_individual(val_arr, meas_arr=None, ss_ratio=None, normal_value=None): ''' Subsample individual measurements completely randomly with random choice''' val_arr_out=np.copy(val_arr) meas_arr_out=np.copy(meas_arr) meas_idxs=[] n_meas=0 for idx in range(meas_arr.size): if meas_arr[idx]>n_meas: meas_idxs.append(idx) n_meas+=1 if len(meas_idxs)==0: return (val_arr_out, meas_arr_out) meas_select=int((1-ss_ratio)*len(meas_idxs)) sel_meas_delete=sorted(random.sample(meas_idxs, meas_select)) # Rewrite the measuremnent array with deleted indices for midx,meas_idx in enumerate(meas_idxs): prev_cnt=0 if meas_idx==0 else meas_arr_out[meas_idx-1] revised_cnt=prev_cnt if meas_idx in sel_meas_delete else prev_cnt+1 if midx<len(meas_idxs)-1: for rewrite_idx in range(meas_idx,meas_idxs[midx+1]): meas_arr_out[rewrite_idx]=revised_cnt else: for rewrite_idx in range(meas_idx,len(meas_arr_out)): meas_arr_out[rewrite_idx]=revised_cnt # Rewrite the value array with deleted indices, with assuming forward filling for midx,meas_idx in enumerate(meas_idxs): prev_val=normal_value if meas_idx==0 else val_arr_out[meas_idx-1] cur_val=val_arr_out[meas_idx] revised_value=prev_val if meas_idx in sel_meas_delete else cur_val if midx<len(meas_idxs)-1: for rewrite_idx in range(meas_idx,meas_idxs[midx+1]): val_arr_out[rewrite_idx]=revised_value else: for rewrite_idx in range(meas_idx,len(meas_arr_out)): val_arr_out[rewrite_idx]=revised_value return (val_arr_out, meas_arr_out) def merge_short_vent_gaps(vent_status_arr, short_gap_hours): ''' Merge short gaps in the ventilation status array''' in_gap=False gap_length=0 before_gap_status=np.nan for idx in range(len(vent_status_arr)): cur_state=vent_status_arr[idx] if in_gap and (cur_state==0.0 or np.isnan(cur_state)): gap_length+=5 elif not in_gap and (cur_state==0.0 or np.isnan(cur_state)): if idx>0: before_gap_status=vent_status_arr[idx-1] in_gap=True in_gap_idx=idx gap_length=5 elif in_gap and cur_state==1.0: in_gap=False after_gap_status=cur_state if gap_length/60.<=short_gap_hours: vent_status_arr[in_gap_idx:idx]=1.0 return vent_status_arr def kernel_smooth_arr(input_arr, bandwidth=None): ''' Kernel smooth an input array with a Nadaraya-Watson kernel smoother''' output_arr=np.copy(input_arr) fin_arr=output_arr[np.isfinite(output_arr)] time_axis=5*np.arange(len(output_arr)) fin_time=time_axis[np.isfinite(output_arr)] # Return the unsmoothed array if fewer than 2 observations if fin_arr.size<2: return output_arr smoother=skks.NadarayaWatsonSmoother(smoothing_parameter=bandwidth) fgrid=skgrid.FDataGrid([fin_arr], fin_time) fd_smoothed=smoother.fit_transform(fgrid) output_smoothed=fd_smoothed.data_matrix.flatten() output_arr[np.isfinite(output_arr)]=output_smoothed return output_arr def delete_short_vent_events(vent_status_arr, short_event_hours): ''' Delete short events in the ventilation status array''' in_event=False event_length=0 for idx in range(len(vent_status_arr)): cur_state=vent_status_arr[idx] if in_event and cur_state==1.0: event_length+=5 if not in_event and cur_state==1.0: in_event=True event_length=5 event_start_idx=idx if in_event and (cur_state==0.0 or np.isnan(cur_state)): in_event=False if event_length/60.<short_event_hours: vent_status_arr[event_start_idx:idx]=0.0 return vent_status_arr def ellis(x_orig): ''' ELLIS model converting SpO2 in 100 % units into a PaO2 ABGA estimate''' x_orig[np.isnan(x_orig)]=98 # Normal value assumption x=x_orig/100 x[x==1]=0.999 exp_base = (11700/((1/x)-1)) exp_sqrbracket = np.sqrt(pow(50,3)+(exp_base**2)) exp_first = np.cbrt(exp_base + exp_sqrbracket) exp_second = np.cbrt(exp_base - exp_sqrbracket) exp_full = exp_first + exp_second return exp_full def correct_left_edge_vent(vent_status_arr, etco2_meas_cnt, etco2_col): ''' Corrects the left edge of the ventilation status array, to pin-point the exact conditions''' on_left_edge=False in_event=False # Correct left ventilation edges of the ventilation zone for idx in range(len(vent_status_arr)): if vent_status_arr[idx]==1.0 and not in_event: in_event=True on_left_edge=True if on_left_edge and in_event: if vent_status_arr[idx]==0.0: in_event=False on_left_edge=False elif (idx==0 and etco2_meas_cnt[idx]>0 or etco2_meas_cnt[idx]-etco2_meas_cnt[idx-1]>=1) and etco2_col[idx]>0.5: on_left_edge=False else: vent_status_arr[idx]=0.0 return vent_status_arr def delete_small_continuous_blocks(event_arr,block_threshold=None): ''' Given an event array, deletes small contiguous blocks that are sandwiched between two other blocks, one of which is longer, they both have the same label. For the moment we delete blocks smaller than 30 minutes. Note this requires only a linear pass over the array''' block_list=[] active_block=None # Build a block list for jdx in range(event_arr.size): new_block=event_arr[jdx] # Start a new block at the beginning if active_block is None: active_block=new_block left_block_idx=jdx # Change to a new block elif not active_block==new_block: block_list.append((active_block,left_block_idx,jdx-1)) left_block_idx=jdx active_block=new_block # Same last block unconditionally if jdx==event_arr.size-1: block_list.append((new_block,left_block_idx,jdx)) # Merge blocks while True: all_clean=True for bidx, block in enumerate(block_list): block_label,lidx,ridx=block block_len=ridx-lidx+1 # Candidate for merging if block_len<=block_threshold: if len(block_list)==1: all_clean=True break # Only right block elif bidx==0: next_block=block_list[bidx+1] nb_label,nb_lidx,nb_ridx=next_block nb_len=nb_ridx-nb_lidx+1 # Merge blocks if nb_len>block_len and nb_len>block_threshold: block_list[bidx]=(nb_label,lidx,nb_ridx) block_list.remove(next_block) all_clean=False break # Only left block elif bidx==len(block_list)-1: prev_block=block_list[bidx-1] pb_label,pb_lidx,pb_ridx=prev_block pb_len=pb_ridx-pb_lidx+1 if pb_len>block_len and pb_len>block_threshold: block_list[bidx]=(pb_label,pb_lidx,ridx) block_list.remove(prev_block) all_clean=False break # Interior block else: prev_block=block_list[bidx-1] next_block=block_list[bidx+1] pb_label,pb_lidx,pb_ridx=prev_block nb_label,nb_lidx,nb_ridx=next_block pb_len=pb_ridx-pb_lidx+1 nb_len=nb_ridx-nb_lidx+1 if pb_label==nb_label and (pb_len>block_threshold or nb_len>block_threshold): block_list[bidx]=(pb_label,pb_lidx,nb_ridx) block_list.remove(prev_block) block_list.remove(next_block) all_clean=False break # Traversed block list with no actions required if all_clean: break # Now back-translate the block list to the list out_arr=np.copy(event_arr) for blabel,lidx,ridx in block_list: out_arr[lidx:ridx+1]=blabel # Additionally build an array where the two arrays are different diff_arr=(out_arr!=event_arr).astype(np.bool) return (out_arr,diff_arr) def collect_regression_data(spo2_col, spo2_meas_cnt, pao2_col, pao2_meas_cnt, fio2_est_arr, sao2_col, sao2_meas_cnt, ph_col, ph_meas_cnt ): ''' Collect regression data at time-stamps where we have a real PaO2 measurement, return partial training X,y pairs for this patient''' X_arr_collect=[] y_arr_collect=[] aux_collect=[] cur_pao2_cnt=0 cur_spo2_cnt=0 cur_sao2_cnt=0 cur_ph_cnt=0 pao2_real_meas=[] spo2_real_meas=[] sao2_real_meas=[] ph_real_meas=[] for jdx in range(spo2_col.size): if spo2_meas_cnt[jdx]>cur_spo2_cnt: spo2_real_meas.append(jdx) cur_spo2_cnt=spo2_meas_cnt[jdx] if sao2_meas_cnt[jdx]>cur_sao2_cnt: sao2_real_meas.append(jdx) cur_sao2_cnt=sao2_meas_cnt[jdx] if ph_meas_cnt[jdx]>cur_ph_cnt: ph_real_meas.append(jdx) cur_ph_cnt=ph_meas_cnt[jdx] if pao2_meas_cnt[jdx]>cur_pao2_cnt: pao2_real_meas.append(jdx) cur_pao2_cnt=pao2_meas_cnt[jdx] # Only start fitting the model from the 2nd measurement onwards if len(pao2_real_meas)>=2 and len(spo2_real_meas)>=2 and len(sao2_real_meas)>=2 and len(ph_real_meas)>=2: # Dimensions of features # 0: Last real SpO2 measurement # 1: Last real PaO2 measurement # 2: Last real SaO2 measurement # 3: Last real pH measurement # 4: Time to last real SpO2 measurement # 5: Time to last real PaO2 measurement # 6: Closest SpO2 to last real PaO2 measurement x_vect=np.array([spo2_col[jdx-1], pao2_col[jdx-1], sao2_col[jdx-1], ph_col[jdx-1], jdx-spo2_real_meas[-2], jdx-pao2_real_meas[-2],spo2_col[pao2_real_meas[-2]]]) y_val=pao2_col[jdx] aux_val=fio2_est_arr[jdx] if np.isnan(x_vect).sum()==0 and np.isfinite(y_val) and np.isfinite(aux_val): X_arr_collect.append(x_vect) y_arr_collect.append(y_val) aux_collect.append(aux_val) if len(X_arr_collect)>0: X_arr=np.vstack(X_arr_collect) y_arr=np.array(y_arr_collect) aux_arr=np.array(aux_collect) assert(np.isnan(X_arr).sum()==0 and np.isnan(y_arr).sum()==0) return (X_arr,y_arr,aux_arr) else: return (None,None,None) def delete_low_density_hr_gap(vent_status_arr, hr_status_arr, configs=None): ''' Deletes gaps in ventilation which are caused by likely sensor dis-connections''' in_event=False in_gap=False gap_idx=-1 for idx in range(len(vent_status_arr)): # Beginning of new event, not from inside gap if not in_event and not in_gap and vent_status_arr[idx]==1.0: in_event=True # Beginning of potential gap that needs to be closed elif in_event and vent_status_arr[idx]==0.0: in_gap=True gap_idx=idx in_event=False # The gap is over, re-assign the status of ventilation to merge the gap, enter new event if in_gap and vent_status_arr[idx]==1.0: hr_sub_arr=hr_status_arr[gap_idx:idx] # Close the gap if the density of HR is too low in between if np.sum(hr_sub_arr)/hr_sub_arr.size<=configs["vent_hr_density_threshold"]: vent_status_arr[gap_idx:idx]=1.0 in_gap=False in_event=True return vent_status_arr def suppox_to_fio2(suppox_val): ''' Conversion of supplemental oxygen to FiO2 estimated value''' if suppox_val>15: return 75 else: return SUPPOX_TO_FIO2[suppox_val] def conservative_state(state1,state2): ''' Given two states, return the lower one ''' if state1==state2: return state1 for skey in ["event_0","event_1","event_2"]: if state1==skey or state2==skey: return skey return "event_3" def endpoint_gen_benchmark(configs): var_map=configs["VAR_IDS"] raw_var_map=configs["RAW_VAR_IDS"] sz_window=configs["length_fw_window"] abga_window=configs["length_ABGA_window"] missing_unm=0 # Threshold statistics stat_counts_ready_and_failure=0 stat_counts_ready_and_success=0 stat_counts_nready_and_failure=0 stat_counts_nready_and_success=0 stat_counts_ready_nextube=0 stat_counts_nready_nextube=0 imputed_f=configs["imputed_path"] merged_f=os.path.join(configs["merged_h5"]) out_folder=os.path.join(configs["endpoint_path"]) if not os.path.exists(out_folder): os.mkdir(out_folder) batch_id=configs["batch_idx"] logging.info("Generating endpoints for batch {}".format(batch_id)) batch_fpath=os.path.join(imputed_f,"batch_{}.parquet".format(batch_id)) if not os.path.exists(batch_fpath): logging.info("WARNING: Input file does not exist, exiting...") sys.exit(1) df_batch=pd.read_parquet(os.path.join(imputed_f,"batch_{}.parquet".format(batch_id))) logging.info("Loaded imputed data done...") cand_raw_batch=glob.glob(os.path.join(merged_f,"part-{}.parquet".format(batch_id))) assert(len(cand_raw_batch)==1) pids=list(df_batch.patientid.unique()) logging.info("Number of patients in batch: {}".format(len(df_batch.patientid.unique()))) first_write=True out_fp=os.path.join(out_folder,"batch_{}.parquet".format(batch_id)) event_count={"FIO2_AVAILABLE": 0, "SUPPOX_NO_MEAS_12_HOURS_LIMIT": 0, "SUPPOX_MAIN_VAR": 0, "SUPPOX_HIGH_FLOW": 0, "SUPPOX_NO_FILL_STOP": 0} readiness_ext_count=0 not_ready_ext_count=0 readiness_and_extubated_cnt=0 extubated_cnt=0 df_static=pd.read_parquet(configs["general_data_table_path"]) X_reg_collect=[] y_reg_collect=[] aux_reg_collect=[] out_dfs=[] for pidx,pid in enumerate(pids): df_pid=df_batch[df_batch["patientid"]==pid] if df_pid.shape[0]==0: logging.info("WARNING: No input data for PID: {}".format(pid)) continue df_merged_pid=pd.read_parquet(cand_raw_batch[0],filters=[("patientid","=",pid)]) df_merged_pid.sort_values(by="datetime", inplace=True) suppox_val={} suppox_ts={} # Main route of SuppOx df_suppox_red_async=df_merged_pid[[var_map["SuppOx"], "datetime"]] df_suppox_red_async = df_suppox_red_async.dropna(how="all",thresh=2) suppox_async_red_ts=np.array(df_suppox_red_async["datetime"]) suppox_val["SUPPOX"]=np.array(df_suppox_red_async[var_map["SuppOx"]]) # Strategy is to create an imputed SuppOx column based on the spec using # forward filling heuristics # Relevant meta-variables fio2_col=np.array(df_pid[var_map["FiO2"]]) pao2_col=np.array(df_pid[var_map["PaO2"]]) etco2_col=np.array(df_pid[var_map["etCO2"]]) paco2_col=np.array(df_pid[var_map["PaCO2"]]) gcs_a_col=np.array(df_pid[var_map["GCS_Antwort"]]) gcs_m_col=np.array(df_pid[var_map["GCS_Motorik"]]) gcs_aug_col=np.array(df_pid[var_map["GCS_Augen"]]) weight_col=np.array(df_pid[var_map["Weight"][0]]) noreph_col=np.array(df_pid[var_map["Norephenephrine"][0]]) epineph_col=np.array(df_pid[var_map["Epinephrine"][0]]) vaso_col=np.array(df_pid[var_map["Vasopressin"][0]]) milri_col=np.array(df_pid[var_map["Milrinone"][0]]) dobut_col=np.array(df_pid[var_map["Dobutamine"][0]]) levosi_col=np.array(df_pid[var_map["Levosimendan"][0]]) theo_col=np.array(df_pid[var_map["Theophyllin"][0]]) lactate_col=np.array(df_pid[var_map["Lactate"][0]]) peep_col=np.array(df_pid[var_map["PEEP"]]) # Heartrate hr_col=np.array(df_pid[var_map["HR"]]) hr_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["HR"])]) # Temperature temp_col=np.array(df_pid[var_map["Temp"]]) temp_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["Temp"])]) rrate_col=np.array(df_pid[var_map["RRate"]]) tv_col=np.array(df_pid[var_map["TV"]]) map_col=np.array(df_pid[var_map["MAP"][0]]) airway_col=np.array(df_pid[var_map["Airway"]]) # Ventilator mode group columns vent_mode_col=np.array(df_pid[var_map["vent_mode"]]) spo2_col=np.array(df_pid[var_map["SpO2"]]) if configs["presmooth_spo2"]: spo2_col=percentile_smooth(spo2_col,configs["spo2_smooth_percentile"],configs["spo2_smooth_window_size_mins"]) sao2_col=np.array(df_pid[var_map["SaO2"]]) ph_col=np.array(df_pid[var_map["pH"]]) fio2_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["FiO2"])]) pao2_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["PaO2"])]) etco2_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["etCO2"])]) peep_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["PEEP"])]) hr_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["HR"])]) spo2_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["SpO2"])]) sao2_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["SaO2"])]) ph_meas_cnt=np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["pH"])]) abs_dtime_arr=np.array(df_pid["datetime"]) event_status_arr=np.zeros(shape=(fio2_col.size),dtype="<S10") # Status arrays pao2_avail_arr=np.zeros(shape=(fio2_col.size)) fio2_avail_arr=np.zeros(shape=(fio2_col.size)) fio2_suppox_arr=np.zeros(shape=(fio2_col.size)) fio2_ambient_arr=np.zeros(shape=(fio2_col.size)) pao2_sao2_model_arr=np.zeros(shape=(fio2_col.size)) pao2_full_model_arr=np.zeros(shape=(fio2_col.size)) ratio_arr=np.zeros(shape=(fio2_col.size)) sur_ratio_arr=np.zeros(shape=(fio2_col.size)) pao2_est_arr=np.zeros(shape=(fio2_col.size)) fio2_est_arr=np.zeros(shape=(fio2_col.size)) vent_status_arr=np.zeros(shape=(fio2_col.size)) readiness_ext_arr=np.zeros(shape=(fio2_col.size)) readiness_ext_arr[:]=np.nan # Votes arrays vent_votes_arr=np.zeros(shape=(fio2_col.size)) vent_votes_etco2_arr=np.zeros(shape=(fio2_col.size)) vent_votes_ventgroup_arr=np.zeros(shape=(fio2_col.size)) vent_votes_tv_arr=np.zeros(shape=(fio2_col.size)) vent_votes_airway_arr=np.zeros(shape=(fio2_col.size)) peep_status_arr=np.zeros(shape=(fio2_col.size)) peep_threshold_arr=np.zeros(shape=(fio2_col.size)) hr_status_arr=np.zeros(shape=(fio2_col.size)) etco2_status_arr=np.zeros(shape=(fio2_col.size)) event_status_arr.fill("UNKNOWN") # Array pointers tracking the current active value of each type suppox_async_red_ptr=-1 # ======================== VENTILATION ================================================================================================ # Label each point in the 30 minute window with ventilation in_vent_event=False for jdx in range(0,len(ratio_arr)): win_etco2=etco2_col[max(0,jdx-configs["etco2_vent_search_bw"]):min(len(ratio_arr),jdx+configs["etco2_vent_search_fw"])] win_etco2_meas=etco2_meas_cnt[max(0,jdx-configs["etco2_vent_search_bw"]):min(len(ratio_arr),jdx+configs["etco2_vent_search_fw"])] win_peep=peep_col[max(0,jdx-configs["peep_search_bw"]):min(len(ratio_arr),jdx+configs["peep_search_fw"])] win_peep_meas=peep_meas_cnt[max(0,jdx-configs["peep_search_bw"]):min(len(ratio_arr),jdx+configs["peep_search_fw"])] win_hr_meas=hr_meas_cnt[max(0,jdx-configs["hr_vent_search_bw"]):min(len(ratio_arr),jdx+configs["hr_vent_search_fw"])] etco2_meas_win=win_etco2_meas[-1]-win_etco2_meas[0]>0 peep_meas_win=win_peep_meas[-1]-win_peep_meas[0]>0 hr_meas_win=win_hr_meas[-1]-win_hr_meas[0]>0 current_vent_group=vent_mode_col[jdx] current_tv=tv_col[jdx] current_airway=airway_col[jdx] vote_score=0 # EtCO2 requirement (still needed) if etco2_meas_win and (win_etco2>0.5).any(): vote_score+=2 vent_votes_etco2_arr[jdx]=2 # Ventilation group requirement (still needed) if current_vent_group in [2.0,3.0,4.0,5.0,6.0,7.0,8.0,10.0]: vote_score+=1 vent_votes_ventgroup_arr[jdx]+=1 elif current_vent_group in [1.0]: vote_score-=1 vent_votes_ventgroup_arr[jdx]-=1 elif current_vent_group in [11.0,12.0,13.0,15.0,17.0]: vote_score-=2 vent_votes_ventgroup_arr[jdx]-=2 # TV presence requirement (still needed) if current_tv>0: vote_score+=1 vent_votes_tv_arr[jdx]=1 # Airway requirement (still needed) if current_airway in [1,2]: vote_score+=2 vent_votes_airway_arr[jdx]=2 # No airway (still needed) if current_airway in [3,4,5,6]: vote_score-=1 vent_votes_airway_arr[jdx]=-1 vent_votes_arr[jdx]=vote_score if vote_score>=configs["vent_vote_threshold"]: in_vent_event=True vent_status_arr[jdx]=1 else: in_vent_event=False if peep_meas_win: peep_status_arr[jdx]=1 if (win_peep>=configs["peep_threshold"]).any(): peep_threshold_arr[jdx]=1 if etco2_meas_win: etco2_status_arr[jdx]=1 if hr_meas_win: hr_status_arr[jdx]=1 if configs["detect_hr_gaps"]: vent_status_arr=delete_low_density_hr_gap(vent_status_arr, hr_status_arr, configs=configs) if configs["merge_short_vent_gaps"]: vent_status_arr=merge_short_vent_gaps(vent_status_arr, configs["short_gap_hours"]) if configs["delete_short_vent_events"]: vent_status_arr=delete_short_vent_events(vent_status_arr, configs["short_event_hours"]) #vent_status_arr=correct_left_edge_vent(vent_status_arr, etco2_meas_cnt, etco2_col) #vent_status_arr=correct_right_edge_vent(vent_status_arr, etco2_meas_cnt, etco2_col) # Ventilation period array vent_period_arr=np.copy(vent_status_arr) # Delete short ventilation periods if no HR gap before in_event=False event_length=0 for idx in range(len(vent_period_arr)): cur_state=vent_period_arr[idx] if in_event and cur_state==1.0: event_length+=5 if not in_event and cur_state==1.0: in_event=True event_length=5 event_start_idx=idx if in_event and (np.isnan(cur_state) or cur_state==0.0): in_event=False # Short event at beginning of stay shall never be deleted... if event_start_idx==0: delete_event=False else: search_hr_idx=event_start_idx-1 while search_hr_idx>=0: if hr_status_arr[search_hr_idx]==1.0: hr_gap_length=5*(event_start_idx-search_hr_idx) delete_event=True break search_hr_idx-=1 # Found no HR before event, do not delete event... if search_hr_idx==-1: delete_event=False # Delete event in principle, then check if short enough... if delete_event: event_length+=hr_gap_length if event_length/60.<=configs["short_event_hours_vent_period"]: vent_period_arr[event_start_idx:idx]=0.0 # ============================== OXYGENATION ENDPOINTS ================================================================== # Label each point in the 30 minute window (except ventilation) for jdx in range(0,len(ratio_arr)): # Advance to the last SuppOx infos before grid point cur_time=abs_dtime_arr[jdx] while True: suppox_async_red_ptr=suppox_async_red_ptr+1 if suppox_async_red_ptr>=len(suppox_async_red_ts) or suppox_async_red_ts[suppox_async_red_ptr]>cur_time: suppox_async_red_ptr=suppox_async_red_ptr-1 break # Estimate the current FiO2 value bw_fio2=fio2_col[max(0,jdx-configs["sz_fio2_window"]):jdx+1] bw_fio2_meas=fio2_meas_cnt[max(0,jdx-configs["sz_fio2_window"]):jdx+1] bw_etco2_meas=etco2_meas_cnt[max(0,jdx-configs["sz_etco2_window"]):jdx+1] fio2_meas=bw_fio2_meas[-1]-bw_fio2_meas[0]>0 etco2_meas=bw_etco2_meas[-1]-bw_etco2_meas[0]>0 mode_group_est=vent_mode_col[jdx] # FiO2 is measured since beginning of stay and EtCO2 was measured, we use FiO2 (indefinite forward filling) # if ventilation is active or the current estimate of ventilation mode group is NIV. if fio2_meas and (vent_status_arr[jdx]==1.0 or mode_group_est==4.0): event_count["FIO2_AVAILABLE"]+=1 fio2_val=bw_fio2[-1]/100 fio2_avail_arr[jdx]=1 # Use supplemental oxygen or ambient air oxygen else: # No real measurements up to now, or the last real measurement # was more than 8 hours away. if suppox_async_red_ptr==-1 or (cur_time-suppox_async_red_ts[suppox_async_red_ptr])>np.timedelta64(configs["suppox_max_ffill"],'h'): event_count["SUPPOX_NO_MEAS_12_HOURS_LIMIT"]+=1 fio2_val=configs["ambient_fio2"] fio2_ambient_arr[jdx]=1 # Find the most recent source variable of SuppOx else: suppox=suppox_val["SUPPOX"][suppox_async_red_ptr] # SuppOx information from main source if np.isfinite(suppox): event_count["SUPPOX_MAIN_VAR"]+=1 fio2_val=suppox_to_fio2(int(suppox))/100 fio2_suppox_arr[jdx]=1 else: assert(False, "Impossible condition") bw_pao2_meas=pao2_meas_cnt[max(0,jdx-configs["sz_pao2_window"]):jdx+1] bw_pao2=pao2_col[max(0,jdx-configs["sz_pao2_window"]):jdx+1] pao2_meas=bw_pao2_meas[-1]-bw_pao2_meas[0]>=1 # PaO2 was just measured, just use the value if pao2_meas: pao2_estimate=bw_pao2[-1] pao2_avail_arr[jdx]=1 # Have to forecast PaO2 from a previous SpO2 else: bw_spo2=spo2_col[max(0,jdx-abga_window):jdx+1] bw_spo2_meas=spo2_meas_cnt[max(0,jdx-abga_window):jdx+1] spo2_meas=bw_spo2_meas[-1]-bw_spo2_meas[0]>=1 # Standard case, take the last SpO2 measurement if spo2_meas: spo2_val=bw_spo2[-1] pao2_estimate=ellis(np.array([spo2_val]))[0] # Extreme edge case, there was SpO2 measurement in the last 24 hours else: spo2_val=98 pao2_estimate=ellis(np.array([spo2_val]))[0] # Compute the individual components of the Horowitz index pao2_est_arr[jdx]=pao2_estimate fio2_est_arr[jdx]=fio2_val pao2_est_arr_orig=np.copy(pao2_est_arr) # Smooth individual components of the P/F ratio estimate if configs["kernel_smooth_estimate_pao2"]: pao2_est_arr=kernel_smooth_arr(pao2_est_arr, bandwidth=configs["smoothing_bandwidth"]) if configs["kernel_smooth_estimate_fio2"]: fio2_est_arr=kernel_smooth_arr(fio2_est_arr, bandwidth=configs["smoothing_bandwidth"]) # Test2 data-set for surrogate model pao2_sur_est=np.copy(pao2_est_arr) assert(np.sum(np.isnan(pao2_sur_est))==0) # Convex combination of the estimate if configs["mix_real_estimated_pao2"]: pao2_est_arr=mix_real_est_pao2(pao2_col, pao2_meas_cnt, pao2_est_arr, bandwidth=configs["smoothing_bandwidth"]) # Compute Horowitz indices (Kernel pipeline / Surrogate model pipeline) for jdx in range(len(ratio_arr)): ratio_arr[jdx]=pao2_est_arr[jdx]/fio2_est_arr[jdx] # Post-smooth Horowitz index if configs["post_smooth_pf_ratio"]: ratio_arr=kernel_smooth_arr(ratio_arr, bandwidth=configs["post_smoothing_bandwidth"]) if configs["pao2_version"]=="ellis_basic": pf_event_est_arr=np.copy(ratio_arr) elif configs["pao2_version"]=="original": assert(False) # Now label based on the array of estimated Horowitz indices for idx in range(0,len(event_status_arr)-configs["offset_back_windows"]): est_idx=pf_event_est_arr[idx:min(len(ratio_arr),idx+sz_window)] est_vent=vent_status_arr[idx:min(len(ratio_arr),idx+sz_window)] est_peep_dense=peep_status_arr[idx:min(len(ratio_arr),idx+sz_window)] est_peep_threshold=peep_threshold_arr[idx:min(len(ratio_arr),idx+sz_window)] if np.sum((est_idx<=100) & ((est_vent==0.0) | (est_vent==1.0) & (est_peep_dense==0.0) | (est_vent==1.0) & (est_peep_dense==1.0) & (est_peep_threshold==1.0)) )>=2/3*len(est_idx): event_status_arr[idx]="event_3" elif np.sum((est_idx<=200) & ((est_vent==0.0) | (est_vent==1.0) & (est_peep_dense==0.0) | (est_vent==1.0) & (est_peep_dense==1.0) & (est_peep_threshold==1.0)) )>=2/3*len(est_idx): event_status_arr[idx]="event_2" elif
np.sum((est_idx<=300) & ((est_vent==0.0) | (est_vent==1.0) & (est_peep_dense==0.0) | (est_vent==1.0) & (est_peep_dense==1.0) & (est_peep_threshold==1.0)) )>=2/3*len(est_idx)
numpy.sum
"""Non-negative matrix and tensor factorization core functions """ # Author: <NAME> # License: MIT # Jan 4, '20 import math import numpy as np #from sklearn.utils.extmath import randomized_svd from tqdm import tqdm from scipy.stats import hypergeom from scipy.optimize import nnls from .nmtf_utils import * def NMFProjGrad(V, Vmis, W, Hinit, NMFAlgo, lambdax, tol, MaxIterations, NMFPriors): """Projected gradient Code and notations adapted from Matlab code, Chih-Jen Lin Input: V: Input matrix Vmis: Define missing values (0 = missing cell, 1 = real cell) W: Left factoring vectors (fixed) Hinit: Right factoring vectors (initial values) NMFAlgo: =1,3: Divergence; =2,4: Least squares; lambdax: Sparseness parameter =-1: no penalty < 0: Target percent zeroed rows in H > 0: Current penalty tol: Tolerance MaxIterations: max number of iterations to achieve norm(projected gradient) < tol NMFPriors: Elements in H that should be updated (others remain 0) Output: H: Estimated right factoring vectors tol: Current level of the tolerance lambdax: Current level of the penalty Reference --------- <NAME> (2007) Projected Gradient Methods for Non-negative Matrix Factorization Neural Comput. 2007 Oct;19(10):2756-79. """ H = Hinit try: n_NMFPriors, nc = NMFPriors.shape except: n_NMFPriors = 0 n_Vmis = Vmis.shape[0] n, p = np.shape(V) n, nc = np.shape(W) alpha = 1 if (NMFAlgo == 2) or (NMFAlgo == 4): beta = .1 if n_Vmis > 0: WtV = W.T @ (V * Vmis) else: WtV = W.T @ V WtW = W.T @ W else: beta = .1 if n_Vmis > 0: WtWH = W.T @ Vmis else: WtWH = W.T @ np.ones((n, p)) if (lambdax < 0) & (lambdax != -1): H0 = H restart = True while restart: for iIter in range(1, MaxIterations + 1): addPenalty = 0 if lambdax != -1: addPenalty = 1 if (NMFAlgo == 2) or (NMFAlgo == 4): if n_Vmis > 0: WtWH = W.T @ ((W @ H) * Vmis) else: WtWH = WtW @ H else: if n_Vmis > 0: WtV = W.T @ ((V * Vmis) / (W @ H)) else: WtV = W.T @ (V / (W @ H)) if lambdax > 0: grad = WtWH - WtV + lambdax else: grad = WtWH - WtV projgrad = np.linalg.norm(grad[(grad < 0) | (H > 0)]) if projgrad >= tol: # search step size for inner_iter in range(1, 21): Hn = H - alpha * grad Hn[np.where(Hn < 0)] = 0 if n_NMFPriors > 0: Hn = Hn * NMFPriors d = Hn - H gradd = np.sum(grad * d) if (NMFAlgo == 2) or (NMFAlgo == 4): if n_Vmis > 0: dQd = np.sum((W.T @ ((W @ d) * Vmis)) * d) else: dQd = np.sum((WtW @ d) * d) else: if n_Vmis > 0: dQd = np.sum((W.T @ ((W @ d) * (Vmis / (W @ H)))) * d) else: dQd = np.sum((W.T @ ((W @ d) / (W @ H))) * d) suff_decr = (0.99 * gradd + 0.5 * dQd < 0) if inner_iter == 1: decr_alpha = not suff_decr Hp = H if decr_alpha: if suff_decr: H = Hn break else: alpha = alpha * beta else: if (suff_decr == False) | (np.where(Hp != Hn)[0].size == 0): H = Hp break else: alpha = alpha / beta Hp = Hn # End for (inner_iter if (lambdax < 0) & addPenalty: # Initialize penalty lambdax = percentile_exc(H[np.where(H > 0)], -lambdax * 100) H = H0 alpha = 1 else: # projgrad < tol if (iIter == 1) & (projgrad > 0): tol /= 10 else: restart = False break # End if projgrad if iIter == MaxIterations: restart = False # End For iIter H = H.T return [H, tol, lambdax] def NMFProjGradKernel(Kernel, V, Vmis, W, Hinit, NMFAlgo, tol, MaxIterations, NMFPriors): """Projected gradient, kernel version Code and notations adapted from Matlab code, <NAME> Input: Kernel: Kernel used V: Input matrix Vmis: Define missing values (0 = missing cell, 1 = real cell) W: Left factoring vectors (fixed) Hinit: Right factoring vectors (initial values) NMFAlgo: =1,3: Divergence; =2,4: Least squares; tol: Tolerance MaxIterations: max number of iterations to achieve norm(projected gradient) < tol NMFPriors: Elements in H that should be updated (others remain 0) Output: H: Estimated right factoring vectors tol: Current level of the tolerance Reference --------- <NAME> (2007) Projected Gradient Methods for Non-negative Matrix Factorization Neural Comput. 2007 Oct;19(10):2756-79. """ H = Hinit.T try: n_NMFPriors, nc = NMFPriors.shape except: n_NMFPriors = 0 n_Vmis = Vmis.shape[0] n, p = np.shape(V) p, nc = np.shape(W) alpha = 1 VW = V @ W if (NMFAlgo == 2) or (NMFAlgo == 4): beta = .1 if n_Vmis > 0: WtV = VW.T @ (V * Vmis) else: WtV = W.T @ Kernel WtW = W.T @ Kernel @ W else: beta = .1 MaxIterations = round(MaxIterations/10) if n_Vmis > 0: WtWH = VW.T @ Vmis else: WtWH = VW.T @ np.ones((n, p)) restart = True while restart: for iIter in range(1, MaxIterations + 1): if (NMFAlgo == 2) or (NMFAlgo == 4): if n_Vmis > 0: WtWH = VW.T @ ((VW @ H) * Vmis) else: WtWH = WtW @ H else: if n_Vmis > 0: WtV = VW.T @ ((V * Vmis) / (VW @ H)) else: WtV = VW.T @ (V / (VW @ H)) grad = WtWH - WtV projgrad = np.linalg.norm(grad[(grad < 0) | (H > 0)]) if projgrad >= tol: # search step size for inner_iter in range(1, 21): Hn = H - alpha * grad Hn[np.where(Hn < 0)] = 0 if n_NMFPriors > 0: Hn = Hn * NMFPriors d = Hn - H gradd = np.sum(grad * d) if (NMFAlgo == 2) or (NMFAlgo == 4): if n_Vmis > 0: dQd = np.sum((VW.T @ ((VW @ d) * Vmis)) * d) else: dQd = np.sum((WtW @ d) * d) else: if n_Vmis > 0: dQd = np.sum((VW.T @ ((VW @ d) * (Vmis / (VW @ H)))) * d) else: dQd = np.sum((VW.T @ ((VW @ d) / (VW @ H))) * d) suff_decr = (0.99 * gradd + 0.5 * dQd < 0) if inner_iter == 1: decr_alpha = not suff_decr Hp = H if decr_alpha: if suff_decr: H = Hn break else: alpha = alpha * beta else: if (suff_decr == False) | (np.where(Hp != Hn)[0].size == 0): H = Hp break else: alpha = alpha / beta Hp = Hn # End for (inner_iter else: # projgrad < tol if iIter == 1: tol /= 10 else: restart = False break # End if projgrad if iIter == MaxIterations: restart = False # End For iIter H = H.T return [H, tol] def NMFApplyKernel(M, NMFKernel, Mt, Mw): """Calculate kernel (used with convex NMF) Input: M: Input matrix NMFKernel: Type of kernel =-1: linear = 2: quadratic = 3: radiant Mt: Left factoring matrix Mw: Right factoring matrix Output: Kernel """ n, p = M.shape try: p, nc = Mw.shape except: nc = 0 if NMFKernel == 1: Kernel = M.T @ M elif NMFKernel == 2: Kernel = (np.identity(p) + M.T @ M) ** 2 elif NMFKernel == 3: Kernel = np.identity(p) # Estimate Sigma2 Sigma2 = 0 for k1 in range(1, nc): for k2 in range(0, k1): Sigma2 = max(Sigma2, np.linalg.norm(Mt[:, k1] - Mt[:, k2]) ** 2) Sigma2 /= nc for j1 in range(1, p): for j2 in range(0, j1): Kernel[j1, j2] = math.exp(-np.linalg.norm(M[:, j1] - M[:, j2]) ** 2 / Sigma2) Kernel[j2, j1] = Kernel[j1, j2] return Kernel def NMFReweigh(M, Mt, NMFPriors, AddMessage): """Overload skewed variables (used with deconvolution only) Input: M: Input matrix Mt: Left hand matrix NMFPriors: priors on right hand matrix Output: NMFPriors: updated priors Note: This code is still experimental """ ErrMessage = "" n, p = M.shape n_NMFPriors, nc = NMFPriors.shape NMFPriors[NMFPriors > 0] = 1 ID = np.where(np.sum(NMFPriors, axis=1) > 1) n_ID = ID[0].shape[0] if n_ID == p: ErrMessage = 'Error! All priors are ambiguous.\nYou may uncheck the option in tab irMF+.' return [NMFPriors, AddMessage, ErrMessage] NMFPriors[ID, :] = 0 Mweight = np.zeros((p, nc)) for k in range(0, nc): ID = np.where(NMFPriors[:, k] > 0) pk = ID[0].shape[0] if pk == 0: ErrMessage = 'Error! Null column in NMF priors (' + str(k+1) + ', pre outlier filtering)' return [NMFPriors, AddMessage, ErrMessage] Mc = np.zeros((n, p)) # Exclude variables with outliers NInterQuart = 1.5 for j in range(0, pk): Quart75 = percentile_exc(M[:, ID[0][j]], 75) Quart25 = percentile_exc(M[:, ID[0][j]], 25) InterQuart = Quart75 - Quart25 MaxBound = Quart75 + NInterQuart * InterQuart MinBound = Quart25 - NInterQuart * InterQuart if np.where((M[:, ID[0][j]] < MinBound) | (M[:, ID[0][j]] > MaxBound))[0].shape[0] == 1: NMFPriors[ID[0][j], k] = 0 ID = np.where(NMFPriors[:, k] > 0) pk = ID[0].shape[0] if pk == 0: ErrMessage = 'Error! Null column in NMF priors (' + str(k+1) + ', post outlier filtering)' return [NMFPriors, AddMessage, ErrMessage] # Characterize clusters by skewness direction Mtc = Mt[:, k] - np.mean(Mt[:, k]) std = math.sqrt(np.mean(Mtc ** 2)) skewness = np.mean((Mtc / std) ** 3) * math.sqrt(n * (n - 1)) / (n - 2) # Scale columns and initialized weights for j in range(0, pk): M[:, ID[0][j]] /= np.sum(M[:, ID[0][j]]) Mc[:, ID[0][j]] = M[:, ID[0][j]] - np.mean(M[:, ID[0][j]]) std = math.sqrt(np.mean(Mc[:, ID[0][j]] ** 2)) Mweight[ID[0][j], k] = np.mean((Mc[:, ID[0][j]] / std) ** 3) * math.sqrt(n * (n - 1)) / (n - 2) if skewness < 0: # Negative skewness => Component identifiable through small proportions Mweight[Mweight[:, k] > 0, k] = 0 Mweight = -Mweight IDneg = np.where(Mweight[:, k] > 0) Nneg = IDneg[0].shape[0] if Nneg == 0: ErrMessage = 'Error! No marker variable found in component ' + str(k+1) return [NMFPriors, AddMessage, ErrMessage] AddMessage.insert(len(AddMessage), 'Component ' + str(k+1) + ': compositions are negatively skewed (' + str( Nneg) + ' active variables)') else: # Positive skewness => Component identifiable through large proportions Mweight[Mweight[:, k] < 0, k] = 0 IDpos = np.where(Mweight[:, k] > 0) Npos = IDpos[0].shape[0] if Npos == 0: ErrMessage = 'Error! No marker variable found in component ' + str(k+1) return [NMFPriors, AddMessage, ErrMessage] AddMessage.insert(len(AddMessage), 'Component ' + str(k+1) + ': compositions are positively skewed (' + str( Npos) + ' active variables)') # Logistic transform of non-zero weights ID2 = np.where(Mweight[:, k] > 0) n_ID2 = ID2[0].shape[0] if n_ID2 > 1: mu = np.mean(Mweight[ID2[0], k]) std = np.std(Mweight[ID2[0], k]) Mweight[ID2[0], k] = (Mweight[ID2[0], k] - mu) / std Mweight[ID2[0], k] = np.ones(n_ID2) - np.ones(n_ID2) / (np.ones(n_ID2) + np.exp( 2 * (Mweight[ID2[0], k] - percentile_exc(Mweight[ID2[0], k], 90)))) else: Mweight[ID2[0], k] = 1 # ReWeigh columns M[:, ID[0]] = M[:, ID[0]] * Mweight[ID[0], k].T # Update NMF priors (cancel columns with 0 weight & replace non zero values by 1) NMFPriors[ID[0], k] = NMFPriors[ID[0], k] * Mweight[ID[0], k] ID = np.where(NMFPriors[:, k] > 0) if ID[0].shape[0] > 0: NMFPriors[ID[0], k] = 1 # Scale parts M[:, ID[0]] /= np.linalg.norm(M[:, ID[0]]) else: ErrMessage = 'Error! Null column in NMF priors (' + str(k+1) + ', post cancelling 0-weight columns)' return [NMFPriors, AddMessage, ErrMessage] return [NMFPriors, AddMessage, ErrMessage] def NMFSolve(M, Mmis, Mt0, Mw0, nc, tolerance, precision, LogIter, Status0, MaxIterations, NMFAlgo, NMFFixUserLHE, NMFFixUserRHE, NMFMaxInterm, NMFMaxIterProj, NMFSparseLevel, NMFFindParts, NMFFindCentroids, NMFKernel, NMFReweighColumns, NMFPriors, flagNonconvex, AddMessage, myStatusBox): """ Estimate left and right hand matrices Input: M: Input matrix Mmis: Define missing values (0 = missing cell, 1 = real cell) Mt0: Initial left hand matrix Mw0: Initial right hand matrix nc: NMF rank tolerance: Convergence threshold precision: Replace 0-value in multiplication rules LogIter: Log results through iterations Status0: Initial displayed status to be updated during iterations MaxIterations: Max iterations NMFAlgo: =1,3: Divergence; =2,4: Least squares; NMFFixUserLHE: = 1 => fixed left hand matrix columns NMFFixUserRHE: = 1 => fixed right hand matrix columns NMFMaxInterm: Max iterations for warmup multiplication rules NMFMaxIterProj: Max iterations for projected gradient NMFSparseLevel: Requested sparsity in terms of relative number of rows with 0 values in right hand matrix NMFFindParts: Enforce convexity on left hand matrix NMFFindCentroids: Enforce convexity on right hand matrix NMFKernel: Type of kernel used; 1: linear; 2: quadratic; 3: radial NMFReweighColumns: Reweigh columns in 2nd step of parts-based NMF NMFPriors: Priors on right hand matrix flagNonconvex: Non-convexity flag on left hand matrix Output: Mt: Left hand matrix Mw: Right hand matrix diff: objective cost Mh: Convexity matrix NMFPriors: Updated priors on right hand matrix flagNonconvex: Updated non-convexity flag on left hand matrix Reference --------- <NAME> et al (2010) Convex and Semi-Nonnegative Matrix Factorizations IEEE Transactions on Pattern Analysis and Machine Intelligence Vol: 32 Issue: 1 """ ErrMessage = '' cancel_pressed = 0 n, p = M.shape n_Mmis = Mmis.shape[0] try: n_NMFPriors, nc = NMFPriors.shape except: n_NMFPriors = 0 nc = int(nc) nxp = int(n * p) Mh = np.array([]) Mt = np.copy(Mt0) Mw = np.copy(Mw0) diff = 1.e+99 # Add weights if n_NMFPriors > 0: if NMFReweighColumns > 0: # A local copy of M will be updated M = np.copy(M) NMFPriors, AddMessage, ErrMessage = NMFReweigh(M, Mt, NMFPriors, AddMessage) if ErrMessage != "": return [Mt, Mw, diff, Mh, NMFPriors, flagNonconvex, AddMessage, ErrMessage, cancel_pressed] else: NMFPriors[NMFPriors > 0] = 1 if (NMFFindParts > 0) & (NMFFixUserLHE > 0): NMFFindParts = 0 if (NMFFindCentroids > 0) & (NMFFixUserRHE > 0): NMFFindCentroids = 0 NMFKernel = 1 if (NMFFindCentroids > 0) & (NMFKernel > 1): if n_Mmis > 0: NMFKernel = 1 AddMessage.insert(len(AddMessage), 'Warning: Non linear kernel canceled due to missing values.') if (NMFAlgo == 1) or (NMFAlgo == 3) : NMFKernel = 1 AddMessage.insert(len(AddMessage), 'Warning: Non linear kernel canceled due to divergence minimization.') if n_NMFPriors > 0: MwUser = NMFPriors for k in range(0, nc): if (NMFAlgo == 2) | (NMFAlgo == 4): Mw[:, k] = MwUser[:, k] / np.linalg.norm(MwUser[:, k]) else: Mw[:, k] = MwUser[:, k] / np.sum(MwUser[:, k]) MultOrPgrad = 1 # Start with Lee-Seung mult rules MaxIterations += NMFMaxInterm # NMFMaxInterm Li-Seung iterations initialize projected gradient StepIter = math.ceil(MaxIterations / 10) pbar_step = 100 * StepIter / MaxIterations iIter = 0 cont = 1 # Initialize penalty # lambda = -1: no penalty # lambda = -abs(NMFSparselevel) : initialisation by NMFSparselevel (in negative value) if NMFSparseLevel > 0: lambdaw = -NMFSparseLevel lambdat = -1 elif NMFSparseLevel < 0: lambdat = NMFSparseLevel lambdaw = -1 else: lambdaw = -1 lambdat = -1 PercentZeros = 0 iterSparse = 0 NMFConvex = 0 NLKernelApplied = 0 myStatusBox.init_bar(delay=1) # Start loop while (cont == 1) & (iIter < MaxIterations): # Update RHE if NMFFixUserRHE == 0: if MultOrPgrad == 1: if (NMFAlgo == 2) or (NMFAlgo == 4): if n_Mmis > 0: Mw = \ Mw * ((Mt.T @ (M * Mmis)) / ( Mt.T @ ((Mt @ Mw.T) * Mmis) + precision)).T else: Mw = \ Mw * ((Mt.T @ M) / ( (Mt.T @ Mt) @ Mw.T + precision)).T else: if n_Mmis > 0: Mw = Mw * (((M * Mmis) / ((Mt @ Mw.T) * Mmis + precision)).T @ Mt) else: Mw = Mw * ((M / (Mt @ Mw.T + precision)).T @ Mt) if n_NMFPriors > 0: Mw = Mw * NMFPriors else: # Projected gradient if (NMFConvex > 0) & (NMFFindParts > 0): Mw, tolMw = NMFProjGradKernel(Kernel, M, Mmis, Mh, Mw, NMFAlgo, tolMw, NMFMaxIterProj, NMFPriors.T) elif (NMFConvex > 0) & (NMFFindCentroids > 0): Mh, tolMh, dummy = NMFProjGrad(In, np.array([]), Mt, Mh.T, NMFAlgo, -1, tolMh, NMFMaxIterProj, np.array([])) else: Mw, tolMw, lambdaw = NMFProjGrad(M, Mmis, Mt, Mw.T, NMFAlgo, lambdaw, tolMw, \ NMFMaxIterProj, NMFPriors.T) if (NMFConvex > 0) & (NMFFindParts > 0): for k in range(0, nc): ScaleMw = np.linalg.norm(Mw[:, k]) Mw[:, k] = Mw[:, k] / ScaleMw Mt[:, k] = Mt[:, k] * ScaleMw # Update LHE if NMFFixUserLHE == 0: if MultOrPgrad == 1: if (NMFAlgo == 2) | (NMFAlgo == 4): if n_Mmis > 0: Mt = \ Mt * ((M * Mmis) @ Mw / ( ((Mt @ Mw.T) * Mmis) @ Mw + precision)) else: Mt = \ Mt * (M @ Mw / (Mt @ (Mw.T @ Mw) + precision)) else: if n_Mmis > 0: Mt = Mt * (((M * Mmis).T / (Mw @ Mt.T + precision)).T @ Mw) else: Mt = Mt * ((M.T / (Mw @ Mt.T + precision)).T @ Mw) else: # Projected gradient if (NMFConvex > 0) & (NMFFindParts > 0): Mh, tolMh, dummy = NMFProjGrad(Ip, np.array([]), Mw, Mh.T, NMFAlgo, -1, tolMh, NMFMaxIterProj, np.array([])) elif (NMFConvex > 0) & (NMFFindCentroids > 0): Mt, tolMt = NMFProjGradKernel(Kernel, M.T, Mmis.T, Mh, Mt, NMFAlgo, tolMt, NMFMaxIterProj, np.array([])) else: Mt, tolMt, lambdat = NMFProjGrad(M.T, Mmis.T, Mw, Mt.T, NMFAlgo, lambdat, tolMt, NMFMaxIterProj, np.array([])) # Scaling if ((NMFConvex == 0) | (NMFFindCentroids > 0)) & (NMFFixUserLHE == 0) & (NMFFixUserRHE == 0): for k in range(0, nc): if (NMFAlgo == 2) | (NMFAlgo == 4): ScaleMt = np.linalg.norm(Mt[:, k]) else: ScaleMt = np.sum(Mt[:, k]) if ScaleMt > 0: Mt[:, k] = Mt[:, k] / ScaleMt if MultOrPgrad == 2: Mw[:, k] = Mw[:, k] * ScaleMt # Switch to projected gradient if iIter == NMFMaxInterm: MultOrPgrad = 2 StepIter = 1 pbar_step = 100 / MaxIterations gradMt = Mt @ (Mw.T @ Mw) - M @ Mw gradMw = ((Mt.T @ Mt) @ Mw.T - Mt.T @ M).T initgrad = np.linalg.norm(np.concatenate((gradMt, gradMw), axis=0)) tolMt = 1e-3 * initgrad tolMw = tolMt if iIter % StepIter == 0: if (NMFConvex > 0) & (NMFFindParts > 0): MhtKernel = Mh.T @ Kernel diff = (TraceKernel + np.trace(-2 * Mw @ MhtKernel + Mw @ (MhtKernel @ Mh) @ Mw.T)) / nxp elif (NMFConvex > 0) & (NMFFindCentroids > 0): MhtKernel = Mh.T @ Kernel diff = (TraceKernel + np.trace(-2 * Mt @ MhtKernel + Mt @ (MhtKernel @ Mh) @ Mt.T)) / nxp else: if (NMFAlgo == 2) | (NMFAlgo == 4): if n_Mmis > 0: Mdiff = (Mt @ Mw.T - M) * Mmis else: Mdiff = Mt @ Mw.T - M else: MF0 = Mt @ Mw.T Mdiff = M * np.log(M / MF0 + precision) + MF0 - M diff = (np.linalg.norm(Mdiff)) ** 2 / nxp Status = Status0 + 'Iteration: %s' % int(iIter) if NMFSparseLevel != 0: if NMFSparseLevel > 0: lambdax = lambdaw else: lambdax = lambdat Status = Status + '; Achieved sparsity: ' + str(round(PercentZeros, 2)) + '; Penalty: ' + str( round(lambdax, 2)) if LogIter == 1: myStatusBox.myPrint(Status) elif (NMFConvex > 0) & (NMFFindParts > 0): Status = Status + ' - Find parts' elif (NMFConvex > 0) & (NMFFindCentroids > 0) & (NLKernelApplied == 0): Status = Status + ' - Find centroids' elif NLKernelApplied == 1: Status = Status + ' - Apply non linear kernel' myStatusBox.update_status(delay=1, status=Status) myStatusBox.update_bar(delay=1, step=pbar_step) if myStatusBox.cancel_pressed: cancel_pressed = 1 return [Mt, Mw, diff, Mh, NMFPriors, flagNonconvex, AddMessage, ErrMessage, cancel_pressed] if LogIter == 1: if (NMFAlgo == 2) | (NMFAlgo == 4): myStatusBox.myPrint(Status0 + " Iter: " + str(iIter) + " MSR: " + str(diff)) else: myStatusBox.myPrint(Status0 + " Iter: " + str(iIter) + " DIV: " + str(diff)) if iIter > NMFMaxInterm: if (diff0 - diff) / diff0 < tolerance: cont = 0 diff0 = diff iIter += 1 if (cont == 0) | (iIter == MaxIterations): if ((NMFFindParts > 0) | (NMFFindCentroids > 0)) & (NMFConvex == 0): # Initialize convexity NMFConvex = 1 diff0 = 1.e+99 iIter = NMFMaxInterm + 1 myStatusBox.init_bar(delay=1) cont = 1 if NMFFindParts > 0: Ip = np.identity(p) if (NMFAlgo == 2) or (NMFAlgo == 4): if n_Mmis > 0: Kernel = NMFApplyKernel(Mmis * M, 1, np.array([]), np.array([])) else: Kernel = NMFApplyKernel(M, 1, np.array([]), np.array([])) else: if n_Mmis > 0: Kernel = NMFApplyKernel(Mmis * (M / (Mt @ Mw.T)), 1, np.array([]), np.array([])) else: Kernel = NMFApplyKernel(M / (Mt @ Mw.T), 1, np.array([]), np.array([])) TraceKernel = np.trace(Kernel) try: Mh = Mw @ np.linalg.inv(Mw.T @ Mw) except: Mh = Mw @ np.linalg.pinv(Mw.T @ Mw) Mh[np.where(Mh < 0)] = 0 for k in range(0, nc): ScaleMw = np.linalg.norm(Mw[:, k]) Mw[:, k] = Mw[:, k] / ScaleMw Mh[:, k] = Mh[:, k] * ScaleMw gradMh = Mh @ (Mw.T @ Mw) - Mw gradMw = ((Mh.T @ Mh) @ Mw.T - Mh.T).T initgrad = np.linalg.norm(np.concatenate((gradMh, gradMw), axis=0)) tolMh = 1.e-3 * initgrad tolMw = tolMt elif NMFFindCentroids > 0: In = np.identity(n) if (NMFAlgo == 2) or (NMFAlgo == 4): if n_Mmis > 0: Kernel = NMFApplyKernel(Mmis.T * M.T, 1, np.array([]), np.array([])) else: Kernel = NMFApplyKernel(M.T, 1, np.array([]), np.array([])) else: if n_Mmis > 0: Kernel = NMFApplyKernel(Mmis.T * (M.T / (Mt @ Mw.T).T), 1, np.array([]), np.array([])) else: Kernel = NMFApplyKernel(M.T / (Mt @ Mw.T).T, 1, np.array([]), np.array([])) TraceKernel = np.trace(Kernel) try: Mh = Mt @ np.linalg.inv(Mt.T @ Mt) except: Mh = Mt @ np.linalg.pinv(Mt.T @ Mt) Mh[np.where(Mh < 0)] = 0 for k in range(0, nc): ScaleMt = np.linalg.norm(Mt[:, k]) Mt[:, k] = Mt[:, k] / ScaleMt Mh[:, k] = Mh[:, k] * ScaleMt gradMt = Mt @ (Mh.T @ Mh) - Mh gradMh = ((Mt.T @ Mt) @ Mh.T - Mt.T).T initgrad = np.linalg.norm(np.concatenate((gradMt, gradMh), axis=0)) tolMh = 1.e-3 * initgrad tolMt = tolMh elif (NMFConvex > 0) & (NMFKernel > 1) & (NLKernelApplied == 0): NLKernelApplied = 1 diff0 = 1.e+99 iIter = NMFMaxInterm + 1 myStatusBox.init_bar(delay=1) cont = 1 # Calculate centroids for k in range(0, nc): Mh[:, k] = Mh[:, k] / np.sum(Mh[:, k]) Mw = (Mh.T @ M).T if (NMFAlgo == 2) or (NMFAlgo == 4): if n_Mmis > 0: Kernel = NMFApplyKernel(Mmis.T * M.T, NMFKernel, Mw, Mt) else: Kernel = NMFApplyKernel(M.T, NMFKernel, Mw, Mt) else: if n_Mmis > 0: Kernel = NMFApplyKernel(Mmis.T * (M.T / (Mt @ Mw.T).T), NMFKernel, Mw, Mt) else: Kernel = NMFApplyKernel(M.T / (Mt @ Mw.T).T, NMFKernel, Mw, Mt) TraceKernel = np.trace(Kernel) try: Mh = Mt @ np.linalg.inv(Mt.T @ Mt) except: Mh = Mt @ np.linalg.pinv(Mt.T @ Mt) Mh[np.where(Mh < 0)] = 0 for k in range(0, nc): ScaleMt = np.linalg.norm(Mt[:, k]) Mt[:, k] = Mt[:, k] / ScaleMt Mh[:, k] = Mh[:, k] * ScaleMt gradMt = Mt @ (Mh.T @ Mh) - Mh gradMh = ((Mt.T @ Mt) @ Mh.T - Mt.T).T initgrad = np.linalg.norm(np.concatenate((gradMt, gradMh), axis=0)) tolMh = 1.e-3 * initgrad tolMt = tolMh if NMFSparseLevel > 0: SparseTest = np.zeros((p, 1)) for k in range(0, nc): SparseTest[np.where(Mw[:, k] > 0)] = 1 PercentZeros0 = PercentZeros n_SparseTest = np.where(SparseTest == 0)[0].size PercentZeros = max(n_SparseTest / p, .01) if PercentZeros == PercentZeros0: iterSparse += 1 else: iterSparse = 0 if (PercentZeros < 0.99 * NMFSparseLevel) & (iterSparse < 50): lambdaw *= min(1.01 * NMFSparseLevel / PercentZeros, 1.10) iIter = NMFMaxInterm + 1 cont = 1 elif NMFSparseLevel < 0: SparseTest = np.zeros((n, 1)) for k in range(0, nc): SparseTest[np.where(Mt[:, k] > 0)] = 1 PercentZeros0 = PercentZeros n_SparseTest = np.where(SparseTest == 0)[0].size PercentZeros = max(n_SparseTest / n, .01) if PercentZeros == PercentZeros0: iterSparse += 1 else: iterSparse = 0 if (PercentZeros < 0.99 * abs(NMFSparseLevel)) & (iterSparse < 50): lambdat *= min(1.01 * abs(NMFSparseLevel) / PercentZeros, 1.10) iIter = NMFMaxInterm + 1 cont = 1 if NMFFindParts > 0: # Make Mt convex Mt = M @ Mh Mt, Mw, Mh, flagNonconvex, AddMessage, ErrMessage, cancel_pressed = NMFGetConvexScores(Mt, Mw, Mh, flagNonconvex, AddMessage) elif NMFFindCentroids > 0: # Calculate row centroids for k in range(0, nc): ScaleMh = np.sum(Mh[:, k]) Mh[:, k] = Mh[:, k] / ScaleMh Mt[:, k] = Mt[:, k] * ScaleMh Mw = (Mh.T @ M).T if (NMFKernel > 1) & (NLKernelApplied == 1): diff /= TraceKernel / nxp return [Mt, Mw, diff, Mh, NMFPriors, flagNonconvex, AddMessage, ErrMessage, cancel_pressed] def NTFStack(M, Mmis, NBlocks): """Unfold tensor M for future use with NMF """ n, p = M.shape Mmis = Mmis.astype(np.int) n_Mmis = Mmis.shape[0] NBlocks = int(NBlocks) Mstacked = np.zeros((int(n * p / NBlocks), NBlocks)) if n_Mmis > 0: Mmis_stacked = np.zeros((int(n * p / NBlocks), NBlocks)) else: Mmis_stacked = np.array([]) for iBlock in range(0, NBlocks): for j in range(0, int(p / NBlocks)): i1 = j * n i2 = i1 + n Mstacked[i1:i2, iBlock] = M[:, int(iBlock * p / NBlocks + j)] if n_Mmis > 0: Mmis_stacked[i1:i2, iBlock] = Mmis[:, int(iBlock * p / NBlocks + j)] return [Mstacked, Mmis_stacked] def NTFSolve(M, Mmis, Mt0, Mw0, Mb0, nc, tolerance, LogIter, Status0, MaxIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox): """Interface to: - NTFSolve_simple - NTFSolve_conv """ try: n_NMFPriors, nc = NMFPriors.shape except: n_NMFPriors = 0 if n_NMFPriors > 0: NMFPriors[NMFPriors > 0] = 1 if NTFNConv > 0: return NTFSolve_conv(M, Mmis, Mt0, Mw0, Mb0, nc, tolerance, LogIter, Status0, MaxIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox) else: return NTFSolve_simple(M, Mmis, Mt0, Mw0, Mb0, nc, tolerance, LogIter, Status0, MaxIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NMFPriors, myStatusBox) def NTFSolve_simple(M, Mmis, Mt0, Mw0, Mb0, nc, tolerance, LogIter, Status0, MaxIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NMFPriors, myStatusBox): """ Estimate NTF matrices (HALS) Input: M: Input matrix Mmis: Define missing values (0 = missing cell, 1 = real cell) Mt0: Initial left hand matrix Mw0: Initial right hand matrix Mb0: Initial block hand matrix nc: NTF rank tolerance: Convergence threshold LogIter: Log results through iterations Status0: Initial displayed status to be updated during iterations MaxIterations: Max iterations NMFFixUserLHE: = 1 => fixed left hand matrix columns NMFFixUserRHE: = 1 => fixed right hand matrix columns NMFFixUserBHE: = 1 => fixed block hand matrix columns NMFSparseLevel : sparsity level (as defined by Hoyer); +/- = make RHE/LHe sparse NTFUnimodal: Apply Unimodal constraint on factoring vectors NTFSmooth: Apply Smooth constraint on factoring vectors NTFLeftComponents: Apply Unimodal/Smooth constraint on left hand matrix NTFRightComponents: Apply Unimodal/Smooth constraint on right hand matrix NTFBlockComponents: Apply Unimodal/Smooth constraint on block hand matrix NBlocks: Number of NTF blocks NMFPriors: Elements in Mw that should be updated (others remain 0) Output: Mt: Left hand matrix Mw: Right hand matrix Mb: Block hand matrix diff: objective cost Reference --------- <NAME>, <NAME>, Fast local algorithms for large scale nonnegative matrix and tensor factorizations, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92 (3) (2009) 708–721. """ cancel_pressed = 0 n, p0 = M.shape n_Mmis = Mmis.shape[0] nc = int(nc) NBlocks = int(NBlocks) p = int(p0 / NBlocks) nxp = int(n * p) nxp0 = int(n * p0) Mt = np.copy(Mt0) Mw = np.copy(Mw0) Mb = np.copy(Mb0) # StepIter = math.ceil(MaxIterations/10) StepIter = 1 pbar_step = 100 * StepIter / MaxIterations IDBlockp = np.arange(0, (NBlocks - 1) * p + 1, p) A = np.zeros(n) B = np.zeros(p) C = np.zeros(NBlocks) # Compute Residual tensor Mfit = np.zeros((n, p0)) for k in range(0, nc): if NBlocks > 1: for iBlock in range(0, NBlocks): Mfit[:, IDBlockp[iBlock]:IDBlockp[iBlock] + p] += Mb[iBlock, k] * np.reshape(Mt[:, k], (n, 1)) @ np.reshape( Mw[:, k], (1, p)) else: Mfit[:, IDBlockp[0]:IDBlockp[0] + p] += np.reshape(Mt[:, k], (n, 1)) @ np.reshape(Mw[:, k], (1, p)) denomt = np.zeros(n) denomw = np.zeros(p) denomBlock = np.zeros((NBlocks, nc)) Mt2 = np.zeros(n) Mw2 = np.zeros(p) MtMw = np.zeros(nxp) denomCutoff = .1 if n_Mmis > 0: Mres = (M - Mfit) * Mmis else: Mres = M - Mfit myStatusBox.init_bar(delay=1) # Loop cont = 1 iIter = 0 diff0 = 1.e+99 Mpart = np.zeros((n, p0)) # alpha = NMFSparseLevel alpha = NMFSparseLevel * .8 PercentZeros = 0 iterSparse = 0 while (cont > 0) & (iIter < MaxIterations): for k in range(0, nc): NBlocks, Mpart, IDBlockp, p, Mb, k, Mt, n, Mw, n_Mmis, Mmis, Mres, \ NMFFixUserLHE, denomt, Mw2, denomCutoff, alpha ,\ NTFUnimodal, NTFLeftComponents, NTFSmooth, A, NMFFixUserRHE, \ denomw, Mt2, NTFRightComponents, B, NMFFixUserBHE, MtMw, nxp, \ denomBlock, NTFBlockComponents, C, Mfit, NMFPriors = \ NTFUpdate(NBlocks, Mpart, IDBlockp, p, Mb, k, Mt, n, Mw, n_Mmis, Mmis, Mres, \ NMFFixUserLHE, denomt, Mw2, denomCutoff, alpha ,\ NTFUnimodal, NTFLeftComponents, NTFSmooth, A, NMFFixUserRHE, \ denomw, Mt2, NTFRightComponents, B, NMFFixUserBHE, MtMw, nxp, \ denomBlock, NTFBlockComponents, C, Mfit, NMFPriors) if iIter % StepIter == 0: # Check convergence diff = np.linalg.norm(Mres) ** 2 / nxp0 if (diff0 - diff) / diff0 < tolerance: cont = 0 else: if diff > diff0: myStatusBox.myPrint(Status0 + " Iter: " + str(iIter) + " MSR does not improve") diff0 = diff Status = Status0 + 'Iteration: %s' % int(iIter) if NMFSparseLevel != 0: Status = Status + '; Achieved sparsity: ' + str(round(PercentZeros, 2)) + '; alpha: ' + str( round(alpha, 2)) if LogIter == 1: myStatusBox.myPrint(Status) myStatusBox.update_status(delay=1, status=Status) myStatusBox.update_bar(delay=1, step=pbar_step) if myStatusBox.cancel_pressed: cancel_pressed = 1 return [np.array([]), Mt, Mw, Mb, Mres, cancel_pressed] if LogIter == 1: myStatusBox.myPrint(Status0 + " Iter: " + str(iIter) + " MSR: " + str(diff)) iIter += 1 if (cont == 0) | (iIter == MaxIterations): # if NMFSparseLevel > 0: # SparseTest = np.zeros((p, 1)) # for k in range(0, nc): # SparseTest[np.where(Mw[:, k] > 0)] = 1 # PercentZeros0 = PercentZeros # n_SparseTest = np.where(SparseTest == 0)[0].size # PercentZeros = max(n_SparseTest / p, .01) # if PercentZeros == PercentZeros0: # iterSparse += 1 # else: # iterSparse = 0 # if (PercentZeros < 0.99 * NMFSparseLevel) & (iterSparse < 50): # alpha *= min(1.01 * NMFSparseLevel / PercentZeros, 1.01) # if alpha < .99: # iIter = 1 # cont = 1 # elif NMFSparseLevel < 0: # SparseTest = np.zeros((n, 1)) # for k in range(0, nc): # SparseTest[np.where(Mt[:, k] > 0)] = 1 # PercentZeros0 = PercentZeros # n_SparseTest = np.where(SparseTest == 0)[0].size # PercentZeros = max(n_SparseTest / n, .01) # if PercentZeros == PercentZeros0: # iterSparse += 1 # else: # iterSparse = 0 # if (PercentZeros < 0.99 * abs(NMFSparseLevel)) & (iterSparse < 50): # alpha *= min(1.01 * abs(NMFSparseLevel) / PercentZeros, 1.01) # if abs(alpha) < .99: # iIter = 1 # cont = 1 if NMFSparseLevel > 0: SparseTest = np.zeros((nc, 1)) PercentZeros0 = PercentZeros for k in range(0, nc): SparseTest[k] = np.where(Mw[:, k] == 0)[0].size PercentZeros = np.mean(SparseTest) / p if PercentZeros < PercentZeros0: iterSparse += 1 else: iterSparse = 0 if (PercentZeros < 0.99 * NMFSparseLevel) & (iterSparse < 50): alpha *= min(1.05 * NMFSparseLevel / PercentZeros, 1.1) if alpha < 1: iIter = 1 cont = 1 elif NMFSparseLevel < 0: SparseTest = np.zeros((nc, 1)) PercentZeros0 = PercentZeros for k in range(0, nc): SparseTest[k] = np.where(Mw[:, k] == 0)[0].size PercentZeros = np.mean(SparseTest) / n if PercentZeros < PercentZeros0: iterSparse += 1 else: iterSparse = 0 if (PercentZeros < 0.99 * abs(NMFSparseLevel)) & (iterSparse < 50): alpha *= min(1.05 * abs(NMFSparseLevel) / PercentZeros, 1.1) if abs(alpha) < 1: iIter = 1 cont = 1 if (n_Mmis > 0) & (NMFFixUserBHE == 0): Mb *= denomBlock return [np.array([]), Mt, Mw, Mb, diff, cancel_pressed] def NTFSolve_conv(M, Mmis, Mt0, Mw0, Mb0, nc, tolerance, LogIter, Status0, MaxIterations, NMFFixUserLHE, NMFFixUserRHE, NMFFixUserBHE, NMFSparseLevel, NTFUnimodal, NTFSmooth, NTFLeftComponents, NTFRightComponents, NTFBlockComponents, NBlocks, NTFNConv, NMFPriors, myStatusBox): """Estimate NTF matrices (HALS) Input: M: Input matrix Mmis: Define missing values (0 = missing cell, 1 = real cell) Mt0: Initial left hand matrix Mw0: Initial right hand matrix Mb0: Initial block hand matrix nc: NTF rank tolerance: Convergence threshold LogIter: Log results through iterations Status0: Initial displayed status to be updated during iterations MaxIterations: Max iterations NMFFixUserLHE: = 1 => fixed left hand matrix columns NMFFixUserRHE: = 1 => fixed right hand matrix columns NMFFixUserBHE: = 1 => fixed block hand matrix columns NMFSparseLevel : sparsity level (as defined by Hoyer); +/- = make RHE/LHe sparse NTFUnimodal: Apply Unimodal constraint on factoring vectors NTFSmooth: Apply Smooth constraint on factoring vectors NTFLeftComponents: Apply Unimodal/Smooth constraint on left hand matrix NTFRightComponents: Apply Unimodal/Smooth constraint on right hand matrix NTFBlockComponents: Apply Unimodal/Smooth constraint on block hand matrix NBlocks: Number of NTF blocks NTFNConv: Half-Size of the convolution window on 3rd-dimension of the tensor NMFPriors: Elements in Mw that should be updated (others remain 0) Output: Mt : if NTFNConv > 0 only otherwise empty. Contains sub-components for each phase in convolution window Mt_simple: Left hand matrix (sum of columns Mt_conv for each k) Mw_simple: Right hand matrix Mb_simple: Block hand matrix diff: objective cost Note: This code extends HALS to allow for shifting on the 3rd dimension of the tensor. Suffix '_simple' is added to the non-convolutional components. Convolutional components are named the usual way. """ cancel_pressed = 0 n, p0 = M.shape n_Mmis = Mmis.shape[0] nc = int(nc) NBlocks = int(NBlocks) NTFNConv = int(NTFNConv) p = int(p0 / NBlocks) nxp = int(n * p) nxp0 = int(n * p0) Mt_simple = np.copy(Mt0) Mw_simple = np.copy(Mw0) Mb_simple = np.copy(Mb0) # StepIter = math.ceil(MaxIterations/10) StepIter = 1 pbar_step = 100 * StepIter / MaxIterations IDBlockp = np.arange(0, (NBlocks - 1) * p + 1, p) A = np.zeros(n) B = np.zeros(p) C = np.zeros(NBlocks) MtMw = np.zeros(nxp) NTFNConv2 = 2*NTFNConv + 1 #Initialize Mt, Mw, Mb Mt = np.repeat(Mt_simple, NTFNConv2, axis=1) / NTFNConv2 Mw = np.repeat(Mw_simple, NTFNConv2, axis=1) Mb = np.repeat(Mb_simple, NTFNConv2, axis=1) for k3 in range(0, nc): n_shift = -NTFNConv - 1 for k2 in range(0, NTFNConv2): n_shift += 1 k = k3*NTFNConv2+k2 Mb[:,k] = shift(Mb_simple[:, k3], n_shift) # Initialize Residual tensor Mfit = np.zeros((n, p0)) for k3 in range(0, nc): for k2 in range(0, NTFNConv2): k = k3*NTFNConv2+k2 for iBlock in range(0, NBlocks): Mfit[:, IDBlockp[iBlock]:IDBlockp[iBlock] + p] += Mb[iBlock,k] * \ np.reshape(Mt[:, k], (n, 1)) @ np.reshape(Mw[:, k], (1, p)) denomt = np.zeros(n) denomw = np.zeros(p) denomBlock = np.zeros((NBlocks, nc)) Mt2 = np.zeros(n) Mw2 = np.zeros(p) denomCutoff = .1 if n_Mmis > 0: Mres = (M - Mfit) * Mmis else: Mres = M - Mfit myStatusBox.init_bar(delay=1) # Loop cont = 1 iIter = 0 diff0 = 1.e+99 Mpart = np.zeros((n, p0)) alpha = NMFSparseLevel alpha_blocks = 0 PercentZeros = 0 iterSparse = 0 while (cont > 0) & (iIter < MaxIterations): for k3 in range(0, nc): for k2 in range(0, NTFNConv2): k = k3*NTFNConv2+k2 NBlocks, Mpart, IDBlockp, p, Mb, k, Mt, n, Mw, n_Mmis, Mmis, Mres, \ NMFFixUserLHE, denomt, Mw2, denomCutoff, alpha ,\ NTFUnimodal, NTFLeftComponents, NTFSmooth, A, NMFFixUserRHE, \ denomw, Mt2, NTFRightComponents, B, NMFFixUserBHE, MtMw, nxp, \ denomBlock, NTFBlockComponents, C, Mfit, NMFPriors = \ NTFUpdate(NBlocks, Mpart, IDBlockp, p, Mb, k, Mt, n, Mw, n_Mmis, Mmis, Mres, \ NMFFixUserLHE, denomt, Mw2, denomCutoff, alpha, \ NTFUnimodal, NTFLeftComponents, NTFSmooth, A, NMFFixUserRHE, \ denomw, Mt2, NTFRightComponents, B, NMFFixUserBHE, MtMw, nxp, \ denomBlock, NTFBlockComponents, C, Mfit, NMFPriors) #Update Mt_simple, Mw_simple & Mb_simple k = k3*NTFNConv2+NTFNConv Mt_simple[:, k3] = Mt[:, k] Mw_simple[:, k3] = Mw[:, k] Mb_simple[:, k3] = Mb[:, k] # Update Mw & Mb Mw[:,:] = np.repeat(Mw_simple, NTFNConv2, axis=1) n_shift = -NTFNConv - 1 for k2 in range(0, NTFNConv2): n_shift += 1 k = k3*NTFNConv2+k2 Mb[:,k] = shift(Mb_simple[:, k3], n_shift) if iIter % StepIter == 0: # Check convergence diff = np.linalg.norm(Mres) ** 2 / nxp0 if (diff0 - diff) / diff0 < tolerance: cont = 0 else: diff0 = diff Status = Status0 + 'Iteration: %s' % int(iIter) if NMFSparseLevel != 0: Status = Status + '; Achieved sparsity: ' + str(round(PercentZeros, 2)) + '; alpha: ' + str( round(alpha, 2)) if LogIter == 1: myStatusBox.myPrint(Status) myStatusBox.update_status(delay=1, status=Status) myStatusBox.update_bar(delay=1, step=pbar_step) if myStatusBox.cancel_pressed: cancel_pressed = 1 return [Mt, Mt_simple, Mw_simple, Mb_simple, cancel_pressed] if LogIter == 1: myStatusBox.myPrint(Status0 + " Iter: " + str(iIter) + " MSR: " + str(diff)) iIter += 1 if (cont == 0) | (iIter == MaxIterations): if NMFSparseLevel > 0: SparseTest = np.zeros((p, 1)) for k in range(0, nc): SparseTest[
np.where(Mw[:, k] > 0)
numpy.where
import time import wandb import os import numpy as np from itertools import chain import torch from onpolicy.utils.util import update_linear_schedule from onpolicy.runner.shared.base_runner import Runner def _t2n(x): return x.detach().cpu().numpy() class HNSRunner(Runner): def __init__(self, config): super(HNSRunner, self).__init__(config) def run(self): self.warmup() start = time.time() episodes = int(self.num_env_steps) // self.episode_length // self.n_rollout_threads for episode in range(episodes): if self.use_linear_lr_decay: self.trainer.policy.lr_decay(episode, episodes) env_infos = {} env_infos['max_box_move_prep'] = [] env_infos['max_box_move'] = [] env_infos['num_box_lock_prep'] = [] env_infos['num_box_lock'] = [] env_infos['max_ramp_move_prep'] = [] env_infos['max_ramp_move'] = [] env_infos['num_ramp_lock_prep'] = [] env_infos['num_ramp_lock'] = [] env_infos['food_eaten_prep'] = [] env_infos['food_eaten'] = [] env_infos['lock_rate'] = [] env_infos['activated_sites'] = [] discard_episode = 0 success = 0 trials = 0 for step in range(self.episode_length): # Sample actions values, actions, action_log_probs, rnn_states, rnn_states_critic = self.collect(step) # Obser reward and next obs obs, share_obs, rewards, dones, infos, _ = self.envs.step(actions) for done, info in zip(dones, infos): if done: if "discard_episode" in info.keys() and info['discard_episode']: discard_episode += 1 else: trials += 1 if "success" in info.keys() and info['success']: success += 1 for k in env_infos.keys(): if k in info.keys(): env_infos[k].append(info[k]) data = obs, share_obs, rewards, dones, infos, \ values, actions, action_log_probs, \ rnn_states, rnn_states_critic # insert data into buffer self.insert(data) # compute return and update network self.compute() train_infos = self.train() # post process total_num_steps = (episode + 1) * self.episode_length * self.n_rollout_threads # save model if (episode % self.save_interval == 0 or episode == episodes - 1): self.save() # log information if episode % self.log_interval == 0: end = time.time() print("\n Env {} Algo {} Exp {} updates {}/{} episodes, total num timesteps {}/{}, FPS {}.\n" .format(self.env_name, self.algorithm_name, self.experiment_name, episode, episodes, total_num_steps, self.num_env_steps, int(total_num_steps / (end - start)))) if self.env_name == "HideAndSeek" : for hider_id in range(self.all_args.num_hiders): agent_k = 'hider%i/average_step_rewards' % hider_id train_infos[agent_k] =
np.mean(self.buffer.rewards[:, :, hider_id])
numpy.mean
""" =========================== @Author : <NAME> @Version: 1.0 12/07/2020 Vessel diameter estimation =========================== """ import cv2 import numpy as np import matplotlib.pyplot as plt import math import vessel_select # Find perpendicular direction def perpendicluar(x, y, vx, vy, d): mag = math.sqrt(vx * vx + vy * vy) if (vy != 0): vx = vx / mag vy = vy / mag temp = vx vx = -1 * vy vy = temp Cx = (x + vx * d) Cy = (y + vy * d) Dx = (x - vx * d) Dy = (y - vy * d) else: Cx = (x) Cy = (y + d) Dx = (x) Dy = (y - d) return (Cx,Cy,Dx,Dy) # Bilinear interpolation to find values at non-integral positions def interpolate(img, x, y): y1 = int(y) y2 = int(y)+1 x1 = int(x) x2 = int(x)+1 if(x==x1 and y==y1): return np.array([img[x1, y1]])[0] if(x==x1 and y!=y1): val = ((y2-y)/(y2-y1))*(img[x1, y1])+((y-y1)/(y2-y1))*(img[x1, y2]) return
np.array([val])
numpy.array
import os.path as osp import numpy as np import math import torch import json import copy import transforms3d import scipy.sparse import cv2 from pycocotools.coco import COCO from core.config import cfg from graph_utils import build_coarse_graphs from noise_utils import synthesize_pose from smpl import SMPL from coord_utils import world2cam, cam2pixel, process_bbox, rigid_align, get_bbox from aug_utils import affine_transform, j2d_processing, augm_params, j3d_processing, flip_2d_joint from Human36M.noise_stats import error_distribution from funcs_utils import save_obj, stop from vis import vis_3d_pose, vis_2d_pose class Human36M(torch.utils.data.Dataset): def __init__(self, mode, args): dataset_name = 'Human36M' self.debug = args.debug self.data_split = mode self.img_dir = osp.join(cfg.data_dir, dataset_name, 'images') self.annot_path = osp.join(cfg.data_dir, dataset_name, 'annotations') self.subject_genders = {1: 'female', 5: 'female', 6: 'male', 7: 'female', 8: 'male', 9: 'male', 11: 'male'} self.protocol = 2 self.action_name = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'Photo', 'Waiting', 'Walking', 'WalkDog', 'WalkTogether'] self.fitting_thr = 25 # milimeter # SMPL joint set self.mesh_model = SMPL() self.smpl_root_joint_idx = self.mesh_model.root_joint_idx self.smpl_face_kps_vertex = self.mesh_model.face_kps_vertex self.smpl_vertex_num = 6890 self.smpl_joint_num = 24 self.smpl_flip_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23)) self.smpl_skeleton = ( (0, 1), (1, 4), (4, 7), (7, 10), (0, 2), (2, 5), (5, 8), (8, 11), (0, 3), (3, 6), (6, 9), (9, 14), (14, 17), (17, 19), (19, 21), (21, 23), (9, 13), (13, 16), (16, 18), (18, 20), (20, 22), (9, 12), (12, 15)) self.joint_regressor_smpl = self.mesh_model.layer['neutral'].th_J_regressor # H36M joint set self.human36_joint_num = 17 self.human36_joints_name = ( 'Pelvis', 'R_Hip', 'R_Knee', 'R_Ankle', 'L_Hip', 'L_Knee', 'L_Ankle', 'Torso', 'Neck', 'Nose', 'Head', 'L_Shoulder', 'L_Elbow', 'L_Wrist', 'R_Shoulder', 'R_Elbow', 'R_Wrist') self.human36_flip_pairs = ((1, 4), (2, 5), (3, 6), (14, 11), (15, 12), (16, 13)) self.human36_skeleton = ( (0, 7), (7, 8), (8, 9), (9, 10), (8, 11), (11, 12), (12, 13), (8, 14), (14, 15), (15, 16), (0, 1), (1, 2), (2, 3), (0, 4), (4, 5), (5, 6)) self.human36_root_joint_idx = self.human36_joints_name.index('Pelvis') self.human36_error_distribution = self.get_stat() self.human36_eval_joint = (1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16) self.joint_regressor_human36 = self.mesh_model.joint_regressor_h36m # COCO joint set self.coco_joint_num = 19 # 17 + 2, manually added pelvis and neck self.coco_joints_name = ( 'Nose', 'L_Eye', 'R_Eye', 'L_Ear', 'R_Ear', 'L_Shoulder', 'R_Shoulder', 'L_Elbow', 'R_Elbow', 'L_Wrist', 'R_Wrist', 'L_Hip', 'R_Hip', 'L_Knee', 'R_Knee', 'L_Ankle', 'R_Ankle', 'Pelvis', 'Neck') self.coco_flip_pairs = ((1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14), (15, 16)) self.coco_skeleton = ( (1, 2), (0, 1), (0, 2), (2, 4), (1, 3), (6, 8), (8, 10), (5, 7), (7, 9), (12, 14), (14, 16), (11, 13), (13, 15), #(5, 6), #(11, 12), (17, 11), (17, 12), (17, 18), (18, 5), (18, 6), (18, 0)) self.joint_regressor_coco = self.mesh_model.joint_regressor_coco self.input_joint_name = cfg.DATASET.input_joint_set # 'coco' self.joint_num, self.skeleton, self.flip_pairs = self.get_joint_setting(self.input_joint_name) self.datalist, skip_idx, skip_img_path = self.load_data() if self.data_split == 'test': det_2d_data_path = osp.join(cfg.data_dir, dataset_name, 'absnet_output_on_testset.json') self.datalist_pose2d_det = self.load_pose2d_det(det_2d_data_path, skip_img_path) print("Check lengths of annotation and detection output: ", len(self.datalist), len(self.datalist_pose2d_det)) self.graph_Adj, self.graph_L, self.graph_perm, self.graph_perm_reverse = \ build_coarse_graphs(self.mesh_model.face, self.joint_num, self.skeleton, self.flip_pairs, levels=9) def load_pose2d_det(self, data_path, skip_list): pose_list = [] with open(data_path) as f: data = json.load(f) for img_path, pose2d in data.items(): pose2d = np.array(pose2d, dtype=np.float32) if img_path in skip_list: continue pose_list.append({'img_name': img_path, 'pose2d': pose2d}) pose_list = sorted(pose_list, key=lambda x: x['img_name']) return pose_list def get_joint_setting(self, joint_category='human36'): joint_num = eval(f'self.{joint_category}_joint_num') skeleton = eval(f'self.{joint_category}_skeleton') flip_pairs = eval(f'self.{joint_category}_flip_pairs') return joint_num, skeleton, flip_pairs def get_subsampling_ratio(self): if self.data_split == 'train': return 5 # 50 elif self.data_split == 'test': return 50 # else: assert 0, print('Unknown subset') def get_subject(self): if self.data_split == 'train': if self.protocol == 1: subject = [1, 5, 6, 7, 8, 9] elif self.protocol == 2: subject = [1, 5, 6, 7, 8] elif self.data_split == 'test': if self.protocol == 1: subject = [11] elif self.protocol == 2: subject = [9, 11] else: assert 0, print("Unknown subset") if self.debug: subject = subject[0:1] return subject def get_stat(self): ordered_stats = [] for joint in self.human36_joints_name: item = list(filter(lambda stat: stat['Joint'] == joint, error_distribution))[0] ordered_stats.append(item) return ordered_stats def generate_syn_error(self): noise = np.zeros((self.human36_joint_num, 2), dtype=np.float32) weight = np.zeros(self.human36_joint_num, dtype=np.float32) for i, ed in enumerate(self.human36_error_distribution): noise[i, 0] = np.random.normal(loc=ed['mean'][0], scale=ed['std'][0]) noise[i, 1] = np.random.normal(loc=ed['mean'][1], scale=ed['std'][1]) weight[i] = ed['weight'] prob = np.random.uniform(low=0.0, high=1.0, size=self.human36_joint_num) weight = (weight > prob) noise = noise * weight[:, None] return noise def load_data(self): print('Load annotations of Human36M Protocol ' + str(self.protocol)) subject_list = self.get_subject() sampling_ratio = self.get_subsampling_ratio() # aggregate annotations from each subject db = COCO() cameras = {} joints = {} smpl_params = {} for subject in subject_list: # data load with open(osp.join(self.annot_path, 'Human36M_subject' + str(subject) + '_data.json'), 'r') as f: annot = json.load(f) if len(db.dataset) == 0: for k, v in annot.items(): db.dataset[k] = v else: for k, v in annot.items(): db.dataset[k] += v # camera load with open(osp.join(self.annot_path, 'Human36M_subject' + str(subject) + '_camera.json'), 'r') as f: cameras[str(subject)] = json.load(f) # joint coordinate load with open(osp.join(self.annot_path, 'Human36M_subject' + str(subject) + '_joint_3d.json'), 'r') as f: joints[str(subject)] = json.load(f) # smpl parameter load with open(osp.join(self.annot_path, 'Human36M_subject' + str(subject) + '_smpl_param.json'), 'r') as f: smpl_params[str(subject)] = json.load(f) db.createIndex() skip_idx = [] datalist = [] skip_img_idx = [] for aid in db.anns.keys(): ann = db.anns[aid] image_id = ann['image_id'] img = db.loadImgs(image_id)[0] img_path = osp.join(self.img_dir, img['file_name']) img_name = img_path.split('/')[-1] # check subject and frame_idx frame_idx = img['frame_idx']; if frame_idx % sampling_ratio != 0: continue # check smpl parameter exist subject = img['subject']; action_idx = img['action_idx']; subaction_idx = img['subaction_idx']; frame_idx = img['frame_idx']; try: smpl_param = smpl_params[str(subject)][str(action_idx)][str(subaction_idx)][str(frame_idx)] except KeyError: skip_idx.append(image_id) skip_img_idx.append(img_path.split('/')[-1]) continue smpl_param['gender'] = 'neutral' # self.subject_genders[subject] # set corresponding gender # camera parameter cam_idx = img['cam_idx'] cam_param = cameras[str(subject)][str(cam_idx)] R, t, f, c = np.array(cam_param['R'], dtype=np.float32), np.array(cam_param['t'], dtype=np.float32), np.array( cam_param['f'], dtype=np.float32), np.array(cam_param['c'], dtype=np.float32) cam_param = {'R': R, 't': t, 'focal': f, 'princpt': c} # project world coordinate to cam, image coordinate space joint_world = np.array(joints[str(subject)][str(action_idx)][str(subaction_idx)][str(frame_idx)], dtype=np.float32) joint_cam = world2cam(joint_world, R, t) joint_img = cam2pixel(joint_cam, f, c) joint_vis = np.ones((self.human36_joint_num, 1)) bbox = process_bbox(np.array(ann['bbox'])) if bbox is None: continue datalist.append({ 'img_path': img_path, 'img_name': img_name, 'img_id': image_id, 'bbox': bbox, 'img_hw': (img['height'], img['width']), 'joint_img': joint_img, # [x_img, y_img, z_cam] 'joint_cam': joint_cam, # [X, Y, Z] in camera coordinate 'joint_vis': joint_vis, 'smpl_param': smpl_param, 'cam_param': cam_param}) datalist = sorted(datalist, key=lambda x: x['img_name']) return datalist, skip_idx, skip_img_idx def get_smpl_coord(self, smpl_param, cam_param): pose, shape, trans, gender = smpl_param['pose'], smpl_param['shape'], smpl_param['trans'], smpl_param['gender'] # smpl parameters (pose: 72 dimension, shape: 10 dimension) smpl_pose = torch.FloatTensor(pose).view(-1, 3) smpl_shape = torch.FloatTensor(shape).view(1, -1) # translation vector from smpl coordinate to h36m world coordinate trans = np.array(trans, dtype=np.float32).reshape(3) # camera rotation and translation R, t = np.array(cam_param['R'],dtype=np.float32).reshape(3, 3), np.array(cam_param['t'],dtype=np.float32).reshape(3) # change to mean shape if beta is too far from it smpl_shape[(smpl_shape.abs() > 3).any(dim=1)] = 0. # transform world coordinate to camera coordinate root_pose = smpl_pose[self.smpl_root_joint_idx, :].numpy() angle = np.linalg.norm(root_pose) root_pose = transforms3d.axangles.axangle2mat(root_pose / angle, angle) root_pose = np.dot(R, root_pose) axis, angle = transforms3d.axangles.mat2axangle(root_pose) root_pose = axis * angle smpl_pose[self.smpl_root_joint_idx] = torch.from_numpy(root_pose) smpl_pose = smpl_pose.view(1, -1) # get mesh and joint coordinates smpl_mesh_coord, smpl_joint_coord = self.mesh_model.layer[gender](smpl_pose, smpl_shape) # incorporate face keypoints smpl_mesh_coord = smpl_mesh_coord.numpy().astype(np.float32).reshape(-1, 3); smpl_joint_coord = smpl_joint_coord.numpy().astype(np.float32).reshape(-1, 3) # smpl_face_kps_coord = smpl_mesh_coord[self.face_kps_vertex, :].reshape(-1, 3) # smpl_joint_coord = np.concatenate((smpl_joint_coord, smpl_face_kps_coord)) # compenstate rotation (translation from origin to root joint was not cancled) smpl_trans = np.array(trans, dtype=np.float32).reshape( 3) # translation vector from smpl coordinate to h36m world coordinate smpl_trans = np.dot(R, smpl_trans[:, None]).reshape(1, 3) + t.reshape(1, 3) / 1000 root_joint_coord = smpl_joint_coord[self.smpl_root_joint_idx].reshape(1, 3) smpl_trans = smpl_trans - root_joint_coord + np.dot(R, root_joint_coord.transpose(1, 0)).transpose(1, 0) # translation smpl_mesh_coord += smpl_trans; smpl_joint_coord += smpl_trans # meter -> milimeter smpl_mesh_coord *= 1000; smpl_joint_coord *= 1000; return smpl_mesh_coord, smpl_joint_coord def get_fitting_error(self, h36m_joint, smpl_mesh): h36m_joint = h36m_joint - h36m_joint[self.human36_root_joint_idx,None,:] # root-relative h36m_from_smpl = np.dot(self.joint_regressor_human36, smpl_mesh) # translation alignment h36m_from_smpl = h36m_from_smpl - np.mean(h36m_from_smpl,0)[None,:] + np.mean(h36m_joint,0)[None,:] error = np.sqrt(np.sum((h36m_joint - h36m_from_smpl)**2,1)).mean() return error def get_coco_from_mesh(self, mesh_coord_cam, cam_param): # regress coco joints joint_coord_cam = np.dot(self.joint_regressor_coco, mesh_coord_cam) joint_coord_cam = self.add_pelvis_and_neck(joint_coord_cam) # projection f, c = cam_param['focal'], cam_param['princpt'] joint_coord_img = cam2pixel(joint_coord_cam, f, c) joint_coord_img[:, 2] = 1 return joint_coord_cam, joint_coord_img def add_pelvis_and_neck(self, joint_coord): lhip_idx = self.coco_joints_name.index('L_Hip') rhip_idx = self.coco_joints_name.index('R_Hip') pelvis = (joint_coord[lhip_idx, :] + joint_coord[rhip_idx, :]) * 0.5 pelvis = pelvis.reshape((1, -1)) lshoulder_idx = self.coco_joints_name.index('L_Shoulder') rshoulder_idx = self.coco_joints_name.index('R_Shoulder') neck = (joint_coord[lshoulder_idx, :] + joint_coord[rshoulder_idx, :]) * 0.5 neck = neck.reshape((1,-1)) joint_coord =
np.concatenate((joint_coord, pelvis, neck))
numpy.concatenate
import numpy as np import matplotlib.pyplot as plt from utilities_plotting import adapt_figure_size_from_axes,set_figure_params,hide_spines, cm2inches,set_frame_properties def cost_per_episode_scenario(cost_array,safety_failures,shapes, count_safe_only = True, safe_avg = False, norm = 1): """ compute average cost per episode and scenario from cost_array """ n_scen, n_ep, n_steps = shapes #safety_failures = np.zeros((n_scen,n_ep)) print(safety_failures) res_sum = np.zeros((n_scen,n_ep)) - 1e5 #initialize with -10000 for i in range(n_scen): for j in range(n_ep): if not safety_failures[i,j]: res_sum[i,j] = np.sum(cost_array[i,j])/norm if np.isnan(res_sum[i,j]): print("Something went wrong:") print(cost_array[i,j]) if safe_avg: res_avg_mean = np.empty((n_ep,)) res_avg_std = np.empty((n_ep,)) failure_mask = np.array(safety_failures,dtype = bool) for j in range(n_ep): safe_indices = np.where(np.invert(failure_mask[:,j])) if len(safe_indices) == 0: warnings.warn("No successful rollout in episode {}".format(j)) res_avg_mean[j] = np.mean(res_sum[safe_indices,j]) res_avg_std[j] = np.std(res_sum[safe_indices,j]) return res_avg_mean,res_avg_std return res_sum def _get_failure_ratio(failures,per_episode = False): """ Return the failure ratio of all rollouts Returns the ratio of failed rollout among all rollouts and all episodes Parameters ---------- failures: np.ndarray[boolean] List of shape (n_ep,n_scenarios) with entries failure_list[i,j] = True if rollout i in scenario j failed per_episode: boolean, optional Set to True for failure ratio per episode Returns ------- failure_ratio: float The ratio of failed rollouts and total rollouts """ n_ep, n_scen = np.shape(failures) zero_one_failures = np.array(failures,dtype=np.float32) if per_episode: return np.mean(zero_one_failures,axis = 1) return np.mean(zero_one_failures) plot_trainset = False set_figure_params() h_fig_rl_episodes_cm = 3.6 h_fig_bar_cm = 3.6 w_figure_cm = 8.63477 w_full_figure_cm = 17.77747 x_lim_samples = [-1,1] y_lim_samples = [-1.5,1.5] rgb_frame = tuple((80/256,80/256,80/256)) h_fig_samples = 4.5 num_fig_samples = 3 h_fig_colorbar = h_fig_samples w_fig_colorbar = 1.5 w_fig_samples = (w_full_figure_cm - w_fig_colorbar) / num_fig_samples results_path = "/home/kollert/git_repos/safe-exploration/experiments/results_journal" #"thesis_results_dynamic_exploration" # sub_folder_path = "results_rl"#"res_dynamic_exploration"# colorbar_label = "Iterations" #"Time step" n_ep = 8 n_steps = 50 n_scen = 6 savedir_safempc = lambda n_safe,n_perf,r,beta_safety: "safempc_CartPole_nsafe={}_nperf={}_r={}_beta_safety={}".format(n_safe,n_perf,r,beta_safety) """ """ a_safe_1_perf_10 = np.load("{}/{}/{}/results_episode.npy".format(results_path,sub_folder_path,savedir_safempc("1","15","1","2_0"))).item() a_safe_2_perf_10 = np.load("{}/{}/{}/results_episode.npy".format(results_path,sub_folder_path,savedir_safempc("2","15","1","2_0"))).item() a_safe_3_perf_10 = np.load("{}/{}/{}/results_episode.npy".format(results_path,sub_folder_path,savedir_safempc("3","15","1","2_0"))).item() a_safe_4_perf_10 = np.load("{}/{}/{}/results_episode.npy".format(results_path,sub_folder_path,savedir_safempc("4","15","1","2_0"))).item() #a_safe_5_perf_10 = np.load("{}/{}/{}/results_episode.npy".format(results_path,sub_folder_path,savedir_safempc("5","10","1","2_0"))).item() safe_perf_10_list = [a_safe_1_perf_10, a_safe_2_perf_10,a_safe_3_perf_10,a_safe_4_perf_10] #safe_perf_10_list = [a_safe_1_perf_10,a_safe_2_perf_10,a_safe_3_perf_10,a_safe_4_perf_10]#,a_safe_5_perf_10] #for k,v in a_safe_1_perf_0.items(): # print(k) #print(np.array(a_safe_1_perf_10["cc_all"])[0,0]) #print(np.array(a_safe_1_perf_10["safety_failure_all"])) #print(np.array(a_safe_1_perf_10["X_all"])[1,4]) #print(np.array(a_safe_1_perf_10["X_all"])[0,2][:,2]) # Compute average cost per episode for each n_safe with n_perf=0 and n_perf=10 (two plots) n_settings_safe = 4 #_, n_ep,_ = np.array(a_safe_1_perf_0["cc_all"]).shape normalizer = 100 print(a_safe_3_perf_10["safety_failure_all"]) """ """ avg_cost_10_perf = np.zeros((n_settings_safe,n_ep)) std_cost_10_perf= np.zeros((n_settings_safe,n_ep)) for i in range(len(safe_perf_10_list)): print(safe_perf_10_list[i]["safety_failure_all"]) avg_cost_10_perf[i],std_cost_10_perf[i] = cost_per_episode_scenario(np.array(safe_perf_10_list[i]["cc_all"]),np.array(safe_perf_10_list[i]["safety_failure_all"]),(n_scen,n_ep,n_steps),safe_avg = True, norm = normalizer) n_it = n_ep Ts = np.arange(4)+1 set_figure_params() fig = plt.figure() ax = fig.add_subplot(111) #ax_T_1 = plt.subplot2grid((1, 7), (0, 0), colspan=2) #ax_T_4 = plt.subplot2grid((1, 7), (0, 2), colspan=2) #ax_T_5 = plt.subplot2grid((1, 7), (0, 4), colspan=2) #ax_cb = plt.subplot2grid((1, 7), (0, 6)) y_lim = [100,450] ax.set_xlabel('Episode') ax.set_ylabel('Episode cost ($C_{ep}$)') #ax.set_yscale('log') ax.plot(
np.arange(1,n_it+1)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-04-17 15:58 # @Author : erwin import numpy as np from common.util_function import * np.set_printoptions(precision=3) arr = np.linspace(0, 100, 10).reshape((2, 5)) print_line("原始数据") print_br(arr) print_line("单个array操作") print_br(np.add(arr, 2)) print_br(
np.subtract(arr, 2)
numpy.subtract
import networkx as nx import numpy as np import pandas as pd import config as cfg # NetworkX Graph Utility Functions def adjacency_matrix_to_graph(adjacency, labels, label_name, prune=False): G = nx.DiGraph() G = nx.from_numpy_array(adjacency, create_using=G) node_idx =
np.arange(adjacency.shape[0])
numpy.arange
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numpy as np import pytest from cirq import linalg from cirq import testing from cirq.linalg import combinators X = np.array([[0, 1], [1, 0]]) Y = np.array([[0, -1j], [1j, 0]]) Z = np.array([[1, 0], [0, -1]]) H = np.array([[1, 1], [1, -1]]) * np.sqrt(0.5) SQRT_X = np.array([[1, 1j], [1j, 1]]) c = np.exp(1j * np.pi / 4) SQRT_SQRT_X = np.array([[1 + c, 1 - c], [1 - c, 1 + c]]) / 2 SWAP = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) CNOT = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) CZ = np.diag([1, 1, 1, -1]) @pytest.mark.parametrize('matrix', [ X, linalg.kron(X, X), linalg.kron(X, Y), linalg.kron(X, np.eye(2)) ]) def test_map_eigenvalues_identity(matrix): identity_mapped = linalg.map_eigenvalues(matrix, lambda e: e) assert np.allclose(matrix, identity_mapped) @pytest.mark.parametrize('matrix,exponent,desired', [ [X, 2, np.eye(2)], [X, 3, X], [Z, 2, np.eye(2)], [H, 2, np.eye(2)], [Z, 0.5, np.diag([1, 1j])], [X, 0.5, np.array([[1j, 1], [1, 1j]]) * (1 - 1j) / 2], ]) def test_map_eigenvalues_raise(matrix, exponent, desired): exp_mapped = linalg.map_eigenvalues(matrix, lambda e: complex(e)**exponent) assert np.allclose(desired, exp_mapped) @pytest.mark.parametrize('f1,f2', [ (H, X), (H * 1j, X), (H, SQRT_X), (H, SQRT_SQRT_X), (H, H), (SQRT_SQRT_X, H), (X, np.eye(2)), (1j * X, np.eye(2)), (X, 1j * np.eye(2)), (-X, 1j * np.eye(2)), (X, X), ] + [ (testing.random_unitary(2), testing.random_unitary(2)) for _ in range(10) ]) def test_kron_factor(f1, f2): p = linalg.kron(f1, f2) g, g1, g2 = linalg.kron_factor_4x4_to_2x2s(p) assert abs(np.linalg.det(g1) - 1) < 0.00001 assert abs(np.linalg.det(g2) - 1) < 0.00001 assert np.allclose(g * linalg.kron(g1, g2), p) @pytest.mark.parametrize('f1,f2', [ (testing.random_special_unitary(2), testing.random_special_unitary(2)) for _ in range(10) ]) def test_kron_factor_special_unitaries(f1, f2): p = linalg.kron(f1, f2) g, g1, g2 = linalg.kron_factor_4x4_to_2x2s(p) assert np.allclose(linalg.kron(g1, g2), p) assert abs(g - 1) < 0.000001 assert linalg.is_special_unitary(g1) assert linalg.is_special_unitary(g2) def test_kron_factor_fail(): with pytest.raises(ValueError): _ = linalg.kron_factor_4x4_to_2x2s( linalg.kron_with_controls(linalg.CONTROL_TAG, X)) with pytest.raises(ValueError): _ = linalg.kron_factor_4x4_to_2x2s(np.diag([1, 1, 1, 1j])) def recompose_so4(a: np.ndarray, b: np.ndarray) -> np.ndarray: assert a.shape == (2, 2) assert b.shape == (2, 2) assert linalg.is_special_unitary(a) assert linalg.is_special_unitary(b) magic = np.array([[1, 0, 0, 1j], [0, 1j, 1, 0], [0, 1j, -1, 0], [1, 0, 0, -1j]]) * np.sqrt(0.5) result = np.real(combinators.dot(np.conj(magic.T), linalg.kron(a, b), magic)) assert linalg.is_orthogonal(result) return result @pytest.mark.parametrize('m', [ testing.random_special_orthogonal(4) for _ in range(10) ]) def test_so4_to_magic_su2s(m): a, b = linalg.so4_to_magic_su2s(m) m2 = recompose_so4(a, b) assert
np.allclose(m, m2)
numpy.allclose
import numpy as np def norm(im): im = im.astype(np.float32) min_v =
np.min(im)
numpy.min
import numpy as np import paddle from .abc_interpreter import Interpreter from ..data_processor.readers import preprocess_inputs, preprocess_save_path from ..data_processor.visualizer import explanation_to_vis, show_vis_explanation, save_image class GradCAMInterpreter(Interpreter): """ Gradient CAM Interpreter. More details regarding the GradCAM method can be found in the original paper: https://arxiv.org/abs/1610.02391 """ def __init__(self, paddle_model, use_cuda=True, device='gpu:0', model_input_shape=[3, 224, 224]) -> None: """ Args: paddle_model (callable): A model with ``forward`` and possibly ``backward`` functions. device (str): The device used for running `paddle_model`, options: ``cpu``, ``gpu:0``, ``gpu:1`` etc. use_cuda (bool): Would be deprecated soon. Use ``device`` directly. model_input_shape (list, optional): The input shape of the model. Default: [3, 224, 224] """ Interpreter.__init__(self, paddle_model, device, use_cuda) self.model_input_shape = model_input_shape self.paddle_prepared = False # init for usages during the interpretation. self._target_layer_name = None self._feature_maps = {} def interpret(self, inputs, target_layer_name, label=None, visual=True, save_path=None): """ Main function of the interpreter. Args: inputs (str or list of strs or numpy.ndarray): The input image filepath or a list of filepaths or numpy array of read images. target_layer_name (str): The target layer to calculate gradients. labels (list or tuple or numpy.ndarray, optional): The target labels to analyze. The number of labels should be equal to the number of images. If None, the most likely label for each image will be used. Default: None visual (bool, optional): Whether or not to visualize the processed image. Default: True save_path (str or list of strs or None, optional): The filepath(s) to save the processed image(s). If None, the image will not be saved. Default: None Returns: [numpy.ndarray]: interpretations/heatmap for images """ imgs, data = preprocess_inputs(inputs, self.model_input_shape) bsz = len(data) # batch size save_path = preprocess_save_path(save_path, bsz) assert target_layer_name in [n for n, v in self.paddle_model.named_sublayers()], \ f"target_layer_name {target_layer_name} does not exist in the given model, " \ f"please check all valid layer names by [n for n, v in paddle_model.named_sublayers()]" if self._target_layer_name != target_layer_name: self._target_layer_name = target_layer_name self.paddle_prepared = False if not self.paddle_prepared: self._paddle_prepare() feature_map, gradients, preds = self.predict_fn(data, label) if label is None: label = preds label =
np.array(label)
numpy.array
from __future__ import print_function from __future__ import absolute_import import numpy as nm import sys from six.moves import range sys.path.append('.') from sfepy.base.base import output, assert_ from sfepy.base.ioutils import ensure_path from sfepy.linalg import cycle from sfepy.discrete.fem.mesh import Mesh from sfepy.mesh.mesh_tools import elems_q2t def get_tensor_product_conn(shape): """ Generate vertex connectivity for cells of a tensor-product mesh of the given shape. Parameters ---------- shape : array of 2 or 3 ints Shape (counts of nodes in x, y, z) of the mesh. Returns ------- conn : array The vertex connectivity array. desc : str The cell kind. """ shape = nm.asarray(shape) dim = len(shape) assert_(1 <= dim <= 3) n_nod = nm.prod(shape) n_el = nm.prod(shape - 1) grid = nm.arange(n_nod, dtype=nm.int32) grid.shape = shape if dim == 1: conn = nm.zeros((n_el, 2), dtype=nm.int32) conn[:, 0] = grid[:-1] conn[:, 1] = grid[1:] desc = '1_2' elif dim == 2: conn = nm.zeros((n_el, 4), dtype=nm.int32) conn[:, 0] = grid[:-1, :-1].flat conn[:, 1] = grid[1:, :-1].flat conn[:, 2] = grid[1:, 1:].flat conn[:, 3] = grid[:-1, 1:].flat desc = '2_4' else: conn = nm.zeros((n_el, 8), dtype=nm.int32) conn[:, 0] = grid[:-1, :-1, :-1].flat conn[:, 1] = grid[1:, :-1, :-1].flat conn[:, 2] = grid[1:, 1:, :-1].flat conn[:, 3] = grid[:-1, 1:, :-1].flat conn[:, 4] = grid[:-1, :-1, 1:].flat conn[:, 5] = grid[1:, :-1, 1:].flat conn[:, 6] = grid[1:, 1:, 1:].flat conn[:, 7] = grid[:-1, 1:, 1:].flat desc = '3_8' return conn, desc def gen_block_mesh(dims, shape, centre, mat_id=0, name='block', coors=None, verbose=True): """ Generate a 2D or 3D block mesh. The dimension is determined by the lenght of the shape argument. Parameters ---------- dims : array of 2 or 3 floats Dimensions of the block. shape : array of 2 or 3 ints Shape (counts of nodes in x, y, z) of the block mesh. centre : array of 2 or 3 floats Centre of the block. mat_id : int, optional The material id of all elements. name : string Mesh name. verbose : bool If True, show progress of the mesh generation. Returns ------- mesh : Mesh instance """ dims = nm.asarray(dims, dtype=nm.float64) shape = nm.asarray(shape, dtype=nm.int32) centre = nm.asarray(centre, dtype=nm.float64) dim = shape.shape[0] centre = centre[:dim] dims = dims[:dim] n_nod = nm.prod(shape) output('generating %d vertices...' % n_nod, verbose=verbose) x0 = centre - 0.5 * dims dd = dims / (shape - 1) ngrid = nm.mgrid[[slice(ii) for ii in shape]] ngrid.shape = (dim, n_nod) coors = x0 + ngrid.T * dd output('...done', verbose=verbose) n_el = nm.prod(shape - 1) output('generating %d cells...' % n_el, verbose=verbose) mat_ids = nm.empty((n_el,), dtype=nm.int32) mat_ids.fill(mat_id) conn, desc = get_tensor_product_conn(shape) output('...done', verbose=verbose) mesh = Mesh.from_data(name, coors, None, [conn], [mat_ids], [desc]) return mesh def gen_cylinder_mesh(dims, shape, centre, axis='x', force_hollow=False, is_open=False, open_angle=0.0, non_uniform=False, name='cylinder', verbose=True): """ Generate a cylindrical mesh along an axis. Its cross-section can be ellipsoidal. Parameters ---------- dims : array of 5 floats Dimensions of the cylinder: inner surface semi-axes a1, b1, outer surface semi-axes a2, b2, length. shape : array of 3 ints Shape (counts of nodes in radial, circumferential and longitudinal directions) of the cylinder mesh. centre : array of 3 floats Centre of the cylinder. axis: one of 'x', 'y', 'z' The axis of the cylinder. force_hollow : boolean Force hollow mesh even if inner radii a1 = b1 = 0. is_open : boolean Generate an open cylinder segment. open_angle : float Opening angle in radians. non_uniform : boolean If True, space the mesh nodes in radial direction so that the element volumes are (approximately) the same, making thus the elements towards the outer surface thinner. name : string Mesh name. verbose : bool If True, show progress of the mesh generation. Returns ------- mesh : Mesh instance """ dims = nm.asarray(dims, dtype=nm.float64) shape = nm.asarray(shape, dtype=nm.int32) centre =
nm.asarray(centre, dtype=nm.float64)
numpy.asarray
#!/usr/bin/env python # # THE KITTI VISION BENCHMARK SUITE: ROAD BENCHMARK # # Copyright (C) 2013 # Honda Research Institute Europe GmbH # Carl-Legien-Str. 30 # 63073 Offenbach/Main # Germany # # UNPUBLISHED PROPRIETARY MATERIAL. # ALL RIGHTS RESERVED. # # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # import numpy as np # import pylab import matplotlib.cm as cm import os # import cv2 def make_overlay(image, gt_prob): mycm = cm.get_cmap('bwr') overimage = mycm(gt_prob, bytes=True) output = 0.4*overimage[:,:,0:3] + 0.6*image return output def overlayImageWithConfidence(in_image, conf, vis_channel = 1, threshold = 0.5): ''' :param in_image: :param conf: :param vis_channel: :param threshold: ''' if in_image.dtype == 'uint8': visImage = in_image.copy().astype('f4')/255 else: visImage = in_image.copy() channelPart = visImage[:, :, vis_channel] * (conf > threshold) - conf channelPart[channelPart < 0] = 0 visImage[:, :, vis_channel] = 0.5*visImage[:, :, vis_channel] + 255*conf return visImage def evalExp(gtBin, cur_prob, thres, validMap = None, validArea=None): ''' Does the basic pixel based evaluation! :param gtBin: :param cur_prob: :param thres: :param validMap: ''' assert len(cur_prob.shape) == 2, 'Wrong size of input prob map' assert len(gtBin.shape) == 2, 'Wrong size of input prob map' thresInf = np.concatenate(([-np.Inf], thres, [np.Inf])) #Merge validMap with validArea if validMap is not None: if validArea is not None: validMap = (validMap == True) & (validArea == True) elif validArea is not None: validMap=validArea # histogram of false negatives if validMap is not None: fnArray = cur_prob[(gtBin == True) & (validMap == True)] else: fnArray = cur_prob[(gtBin == True)] fnHist = np.histogram(fnArray,bins=thresInf)[0] fnCum =
np.cumsum(fnHist)
numpy.cumsum
import numpy as np import scipy.sparse as sparse from typing import * import html import logging def normalize_attr_strings(a: np.ndarray) -> np.ndarray: """ Take an np.ndarray of all kinds of string-like elements, and return an array of ascii (np.string_) objects """ if np.issubdtype(a.dtype, np.object_): # if np.all([type(x) is str for x in a]) or np.all([type(x) is np.str_ for x in a]) or np.all([type(x) is np.unicode_ for x in a]): if np.all([(type(x) is str or type(x) is np.str_ or type(x) is np.unicode_) for x in a]): return np.array([x.encode('ascii', 'xmlcharrefreplace') for x in a]) elif np.all([type(x) is np.string_ for x in a]) or np.all([type(x) is np.bytes_ for x in a]): return a.astype("string_") else: logging.debug(f"Attribute contains mixed object types ({np.unique([str(type(x)) for x in a])}); casting all to string") return np.array([str(x) for x in a], dtype="string_") elif np.issubdtype(a.dtype, np.string_) or
np.issubdtype(a.dtype, np.object_)
numpy.issubdtype
# pylint: disable=no-member,E1130,E1137 import cortex from datetime import datetime from linescanning import ( planning, plotting, dataset, pycortex, transform, utils ) import matplotlib.pyplot as plt import nibabel as nb import numpy as np import os import pandas as pd import random import warnings warnings.filterwarnings('ignore') opj = os.path.join def set_threshold(name=None, borders=None, set_default=None): """set_threshold This function is utilized in call_pycortex2 to fetch the thresholds for multiple properties including pRF-parameters (eccentricity, r2, and polar angle), and structural (surface) properties such as cortical thickness and sulcal depth. To make verbosity nicer, you can specify a 'name' to print to the terminal what kind of property is being processed. Then, you can specify a range where the user input should fall in (default is None to not force a specific range). You can also set a default value if you do not wish to set a certain threshold (usually this is the minimum/maximum of your array depending on what kind of thresholding you're about to do, e.g., 'greater/smaller than <value>'). Parameters ---------- name: str, optional For verbosity reasons, a string of the property's name that needs thresholding borders: tuple, optional Specific range the user input needs to fall in. Default is None to not enforce a range set_default: int, float, optional Minimum/maximum of array (depending on the kind of thresholding to be applied) if you do not wish to enforce a threshold Returns ---------- float thresholds given `borders` Example ---------- >>> ecc_val = set_threshold(name="eccentricity", range=(0,15), set_default=min(ecc_array)) """ if not name: name = "property" # set threshold for 'name' while True: try: val = float(input(f" {name} [def = {int(set_default)}]: \t") or set_default) except ValueError: print(" Please enter a number") continue else: pass if borders and len(borders) == 2: if borders[0] <= float(val) <= borders[1]: return float(val) else: print(f" WARNING: specified range is ({borders[0]},{borders[1]}), your value is {val}. Try again..") continue else: return float(val) def target_vertex(subject, deriv=None, prf_dir=None, cx_dir=None, fs_dir=None, task="2R_model-gauss_stage-iter", webshow=True, out=None, roi="V1_exvivo.thresh", use_prf=True, vert=None): """target_vertex Full procedure to extract a target vertex given a set of criteria (as per :func:`linescanning.optimal.set_threshold`) from structural (:class:`linescanning.optimal.SurfaceCalc`) and functional (:class:`linescanning.optimal.pRFCalc`) by combining everything in :class:`linescanning.optimal.CalcBestVert`. The workflow looks as follows: * Set thresholds for pRF/structural properties * Combine functional/structural properties into :class:`linescanning.optimal.CalcBestVert` * Pick out vertex/normal/surface coordinate * Verify coordinate using `FreeView` * Store pRF/vertex information in `<subject>_desc-prf_params_best_vertices.csv` & `line_pycortex.csv` Parameters ---------- subject: str Subject ID as used in `SUBJECTS_DIR` deriv: str, optional Path to derivatives folder of the project. Generally should be the path specified with `DIR_DATA_DERIV` in the bash environment. This option overwrite the individual specification of `prf_dir`, `cx_dir`, and `fs_dir`, and will look up defaults. cx_dir: str, optional Path to `pycortex`-directory (should be `filestore`, as specified in the pycortex config file) fs_dir: str, optional `FreeSurfer` directory (default = SUBJECTS_DIR) prf_dir: str, optional `prf` directory in derivatives folder task: str, optional This tag is used to fetch the `prf_params` file created with `spinoza_fitprfs`. Because we write out both the `gridfit` and the `iterative fit`, we have a slightly more complex tag by default. Can be any set of pRF-parameters that you want, as long as it has the same dimensions as the surfaces created with `FreeSurfer`/`Pycortex` webshow: bool Start `FreeView` for visual verification. During debugging this is rather cumbersome, so you can turn it off by specifying `webshow=False` roi: str, optional ROI-name to extract the vertex from as per ROIs created with `FreeSurfer`. Default is V1_exvivo.thresh use_prf: bool In case you want to base the selection of the target_vertex on both structural and functional properties, set `use_prf=True`. If you only want to include anatomical information such as curvature, set `use_prf=False`. This is relevant for non-visual experiments verts: list, optional List of manually selected vertices rather than selecting the vertices based on structural/functional properties Returns --------- str Creates vertex-information files `<subject>_desc-prf_params_best_vertices.csv` & `line_pycortex.csv` as well as figures showing the timecourses/pRF-location of selected vertices. Doesn't class :class:`linescanning.CalcBestVertex` Example ---------- >>> # use Gaussian iterative parameters to find target vertex for sub-001 in V1_exvivo.thresh by using the default derivatives folders >>> optimal.target_vertex("sub-001", task="2R_model-gauss_stage-iter", use_prf=True, out="line_pycortex.csv", roi="V1_exvivo.thresh", webshow=True) """ if deriv: # This is mainly for displaying purposes dirs = {'prf': opj(deriv, 'prf'), 'fs': opj(deriv, 'freesurfer'), 'ctx': opj(deriv, 'pycortex')} prf_dir, fs_dir, cx_dir = dirs['prf'], dirs['fs'], dirs['ctx'] else: # This is mainly for displaying purposes dirs = {'prf': prf_dir, 'fs': fs_dir, 'ctx': cx_dir} for element in list(dirs.keys()): if element != "prf": if dirs[element] == None: raise ValueError(f"Need the {element}-directory") else: if use_prf: if dirs[element] == None: raise ValueError(f"Need the {element}-directory") print("Using following directories:") [print(f" {i}:\t{dirs[i]}") for i in dirs] if not out: out = opj(cx_dir, subject, 'line_pycortex.csv') #---------------------------------------------------------------------------------------------------------------- # Read in surface and pRF-data if os.path.isfile(out): print(f"Loading in {out}") return utils.VertexInfo(out, subject=subject, hemi="both") else: if use_prf == True: print(f"Selecting pRF-parameters from: {task}") prf_params = utils.get_file_from_substring(f"task-{task}_desc-prf_params.npy", prf_dir) if "gauss" in prf_params: model = "gauss" elif "norm" in prf_params: model = "norm" else: prf_params = None model = "none" print(f"prf file = {prf_params}") print(f"roi = {roi}") # This thing mainly does everything. See the linescanning/optimal.py file for more information print("Combining surface and pRF-estimates in one object") GetBestVertex = CalcBestVertex(subject=subject, fs_dir=fs_dir, prffile=prf_params, fs_label=roi) #---------------------------------------------------------------------------------------------------------------- # Set the cutoff criteria based on which you'd like to select a vertex check = False while check == False: if not isinstance(vert, np.ndarray): print("Set thresholds (leave empty and press [ENTER] to not use a particular property):") # get user input with set_threshold > included the possibility to have only pRF or structure only! if hasattr(GetBestVertex, 'prf'): size_val = set_threshold(name="pRF size (beta)", borders=(0,5), set_default=round(min(GetBestVertex.prf.size))) r2_val = set_threshold(name="r2 (variance)", borders=(0,1), set_default=round(min(GetBestVertex.prf.r2))) ecc_val = set_threshold(name="eccentricity", borders=(0,15), set_default=round(min(GetBestVertex.prf.ecc))) pol_val_lh = set_threshold(name="polar angle lh", borders=(0,np.pi), set_default=round(np.pi)) pol_val_rh = set_threshold(name="polar angle rh", borders=(-np.pi,0), set_default=round(-np.pi)) pol_val = [pol_val_lh,pol_val_rh] else: size_val = 0 ecc_val = 0 r2_val = 0 pol_val = 0 if hasattr(GetBestVertex, 'surface'): thick_val = set_threshold(name="thickness (mm)", borders=(0,5), set_default=max(GetBestVertex.surface.thickness.data)) depth_val = set_threshold(name="sulcal depth", set_default=round(min(GetBestVertex.surface.depth.data))) else: thick_val = 0 depth_val = 0 # print out to confirm print("Using these parameters to find vertex with minimal curvature:") print(f" pRF size: {round(size_val,2)}") print(f" eccentricity: {round(ecc_val,4)}") print(f" r2: {round(r2_val,4)}") print(f" polar angle: {pol_val}") print(f" thickness: {thick_val}") print(f" depth: {round(depth_val,4)}") # Create mask using selected criteria GetBestVertex.apply_thresholds(ecc_thresh=ecc_val, size_thresh=size_val, r2_thresh=r2_val, polar_thresh=pol_val, depth_thresh=depth_val, thick_thresh=thick_val) # # Look for minimal curvature within that mask # GetBestVertex.mask_curv_with_prf() # Pick out best vertex GetBestVertex.best_vertex() # check = True else: for i,r in enumerate(['lh', 'rh']): setattr(GetBestVertex, f"{r}_best_vertex", vert[i]) setattr(GetBestVertex, f"{r}_best_vertex_coord", getattr(GetBestVertex.surface, f'{r}_surf_data')[0][vert[i]]) setattr(GetBestVertex, f"{r}_best_vert_mask", (getattr(GetBestVertex.surface, f'{r}_surf_data')[1] == [vert[i]]).sum(0)) # Calculate normal using the standard method. Other options are "cross" and "Newell" GetBestVertex.fetch_normal() # Print some stuff to show what's going on print("Found following vertex in left hemisphere:") print(" coord = {coord}".format(coord=GetBestVertex.lh_best_vertex_coord)) print(" normal = {norm}".format(norm=GetBestVertex.surface.lh_surf_normals[GetBestVertex.lh_best_vertex])) print(" vertex = {vert}".format(vert=GetBestVertex.lh_best_vertex)) if use_prf == True: os.system(f"call_prfinfo -s {subject} -v {GetBestVertex.lh_best_vertex}") print("Found following vertex in right hemisphere:") print(" coord = {coord}".format(coord=GetBestVertex.rh_best_vertex_coord)) print(" normal = {norm}".format(norm=GetBestVertex.surface.lh_surf_normals[GetBestVertex.rh_best_vertex])) print(" vertex = {vert}".format(vert=GetBestVertex.rh_best_vertex)) if use_prf == True: os.system(f"call_prfinfo -s {subject} -v {GetBestVertex.rh_best_vertex} -h rh") # # Smooth vertex maps # print("Smooth vertex maps for visual verification") # GetBestVertex.vertex_to_map() # GetBestVertex.smooth_vertexmap() # visually check if parameters should be adjusted # print(f" Webshow is set to {webshow}") port = random.randint(1024, 65536) # place = get_base_dir()[1] if isinstance(vert,np.ndarray): webshow = False if webshow: orig = opj(fs_dir, subject, 'mri', 'orig.mgz') tkr = transform.ctx2tkr(subject, coord=[GetBestVertex.lh_best_vertex_coord,GetBestVertex.rh_best_vertex_coord]) tkr_coords = {'lh': tkr[0], 'rh': tkr[1]} os.system("freeview -v {orig} -f {lh_fid}:edgecolor=green {rh_fid}:edgecolor=green --ras {x} {y} {z} tkreg 2>/dev/null".format(orig=orig, lh_fid=opj(fs_dir, subject, 'surf', "lh.fiducial"), rh_fid=opj(fs_dir, subject, 'surf', "rh.fiducial"), x=round(tkr_coords['lh'][0],2), y=round(tkr_coords['lh'][1],2), z=round(tkr_coords['lh'][2],2))) else: print("Verification with FreeView disabled") #---------------------------------------------------------------------------------------------------------------- # Write out files if all is OK happy = input("Happy with the position? (y/n): ") if happy.lower() == 'y' or happy == 'yes': print(" Alrighty, continuing with these parameters") if not isinstance(vert, np.ndarray): textList = ["# Created on {date}\n".format(date=datetime.now().strftime("%d/%m/%Y %H:%M:%S")), f"size: {size_val}\n", f"ecc: {ecc_val}\n", f"r2: {r2_val}\n", f"polar: {pol_val}\n", f"thickness: {thick_val}\n", f"depth: {depth_val}\n", ] else: textList = ["# Created on {date}\n".format(date=datetime.now().strftime("%d/%m/%Y %H:%M:%S")), "Manually selected following vertices:\n", f"lh: {vert[0]}\n", f"rh: {vert[1]}\n"] outF = open(opj(cx_dir, subject, "cutoffs.o{ext}".format(ext=os.getpid())), "w") outF.writelines(textList) outF.close() check = True GetBestVertex.write_line_pycortex(save_as=out) print(" writing {file}".format(file=out)) #---------------------------------------------------------------------------------------------------------------- # Get pRF-parameters from best vertices if prf_params and os.path.exists(prf_params): prf_data = np.load(prf_params) prf_bestvertex = opj(cx_dir, subject, f'{subject}_model-{model}_desc-best_vertices.csv') prf_right = prf_data[GetBestVertex.surface.lh_surf_data[0].shape[0]:][GetBestVertex.rh_best_vertex] prf_left = prf_data[0:GetBestVertex.surface.lh_surf_data[0].shape[0]][GetBestVertex.lh_best_vertex] # print(prf_right) # print(prf_left) best_vertex = pd.DataFrame({"hemi": ["L", "R"], "x": [prf_left[0], prf_right[0]], "y": [prf_left[1], prf_right[1]], "size": [prf_left[2], prf_right[2]], "beta": [prf_left[3], prf_right[3]], "baseline": [prf_left[4], prf_right[4]], "r2": [prf_left[5], prf_right[5]], "ecc": [GetBestVertex.prf.ecc[GetBestVertex.lh_best_vertex], GetBestVertex.prf.ecc[GetBestVertex.surface.lh_surf_data[0].shape[0]:][GetBestVertex.rh_best_vertex]], "polar": [GetBestVertex.prf.polar[GetBestVertex.lh_best_vertex], GetBestVertex.prf.polar[GetBestVertex.surface.lh_surf_data[0].shape[0]:][GetBestVertex.rh_best_vertex]], "index": [GetBestVertex.lh_best_vertex, GetBestVertex.rh_best_vertex], "position": [GetBestVertex.lh_best_vertex_coord, GetBestVertex.rh_best_vertex_coord], "normal": [GetBestVertex.lh_normal, GetBestVertex.rh_normal]}) best_vertex.to_csv(prf_bestvertex) print(" writing {file}".format(file=prf_bestvertex)) # load pRF-experiment details for hemi in ["lh", "rh"]: if hemi == "lh": hemi_tag = "hemi-L" elif hemi == "rh": hemi_tag = "hemi-R" # fetch subject's pRF-stuff subject_info = utils.CollectSubject(subject, cx_dir=opj(cx_dir, subject), prf_dir=prf_dir, settings='recent', hemi=hemi, verbose=False) # initiate figure fig = plt.figure(constrained_layout=True, figsize=(20,5)) gs00 = fig.add_gridspec(1,2, width_ratios=[10,20]) # add pRF-plot ax1 = fig.add_subplot(gs00[0]) plotting.LazyPRF(subject_info.prf_array, subject_info.settings['vf_extent'], ax=ax1) # create timecourse plot ax2 = fig.add_subplot(gs00[1]) bold = np.load(utils.get_file_from_substring(f"avg_bold_{hemi_tag}.npy", os.path.dirname(prf_params))) vert = getattr(GetBestVertex, f"{hemi}_best_vertex") plotting.LazyPlot(bold[:,vert], x_label="volumes", y_label="amplitude (z-score)", font_size=14, line_width=2, color="#53107B", add_hline='default', axs=ax2) fig.savefig(opj(cx_dir, subject, f'{subject}_{hemi_tag}_desc-prf_info.pdf')) print("Done") return GetBestVertex class SurfaceCalc(object): """SurfaceCalc This object does all the surface initialization given a subject and a freesurfer directory. For instance, it reads in the curvature, thickness, and sulcal depth maps from freesurfer, smooths the curvature map, reads by default the V1_exvivo_thresh label in, and creates a boolean mask of this label. So with this one class you will have everything you need from the surface calculations. Parameters ---------- subject: str subject ID as used in `SUBJECTS_DIR` fs_dir: str, optional `FreeSurfer` directory (default = SUBJECTS_DIR) fs_label: str, optional ROI-name to extract the vertex from as per ROIs created with `FreeSurfer`. Default is V1_exvivo.thresh Example ---------- >>> surf_calcs = SurfaceCalc(subj="sub-001") Notes ---------- Embedded in :class:`linescanning.optimal.CalcBestVertex`, so if you can also just call that class and you won't have to run the command in "usage" """ def __init__(self, subject=None, fs_dir=None, fs_label="V1_exvivo.thresh"): """Initialize object""" # print(" Perform surface operations") self.subject = subject self.ctx_path = opj(cortex.database.default_filestore, self.subject) if fs_dir == None: self.fs_dir = os.environ['SUBJECTS_DIR'] else: self.fs_dir = fs_dir if not os.path.exists(self.ctx_path): # import subject from freesurfer (will have the same names) cortex.freesurfer.import_subj(fs_subject=self.subject, cx_subject=self.subject, freesurfer_subject_dir=self.fs_dir, whitematter_surf='smoothwm') self.curvature = cortex.db.get_surfinfo(self.subject, type="curvature") self.thickness = cortex.db.get_surfinfo(self.subject, type="thickness") self.depth = cortex.db.get_surfinfo(self.subject, type="sulcaldepth") self.lh_surf_data, self.rh_surf_data = cortex.db.get_surf(self.subject, 'fiducial') self.lh_surf,self.rh_surf = cortex.polyutils.Surface(self.lh_surf_data[0], self.lh_surf_data[1]), cortex.polyutils.Surface(self.rh_surf_data[0], self.rh_surf_data[1]) # Normal vector for each vertex (average of normals for neighboring faces) self.lh_surf_normals = self.lh_surf.vertex_normals self.rh_surf_normals = self.rh_surf.vertex_normals self.smooth_surfs(kernel=3,nr_iter=3) # try: setattr(self, 'roi_label', fs_label.replace('.', '_')) if not fs_label.endswith('.gii'): make_mask = True tmp = self.read_fs_label(subject=self.subject, fs_dir=self.fs_dir, fs_label=fs_label, hemi="both") else: make_mask = False tmp = {} for ii in ['lh', 'rh']: gifti = dataset.ParseGiftiFile(opj(fs_dir, subject, 'label', f"{ii}.{fs_label}"), set_tr=1) if gifti.data.ndim > 1: tmp[ii] = np.squeeze(gifti.data, axis=0) else: tmp[ii] = gifti.data.copy() setattr(self, f'lh_{self.roi_label}', tmp['lh']) setattr(self, f'rh_{self.roi_label}', tmp['rh']) # this way we can also use read_fs_label for more custom purposes if make_mask: pp = self.label_to_mask(subject=self.subject, lh_arr=getattr(self, f'lh_{self.roi_label}'), rh_arr=getattr(self, f'rh_{self.roi_label}'), hemi="both") self.lh_roi_mask = pp['lh_mask'] self.rh_roi_mask = pp['rh_mask'] self.whole_roi = pp['whole_roi'] self.whole_roi_v = pp['whole_roi_v'] else: self.lh_roi_mask = getattr(self, f'lh_{self.roi_label}') self.rh_roi_mask = getattr(self, f'rh_{self.roi_label}') self.whole_roi = np.concatenate((self.lh_roi_mask, self.rh_roi_mask)) self.whole_roi_v = cortex.Vertex(self.whole_roi, subject=subject, vmin=-0.5, vmax=1) def smooth_surfs(self, kernel=10, nr_iter=1): """smooth_surfs smooth surfaces with a given kernel size. The kernel size does not refer to mm, but to a factor. Therefore it has to be an integer value Parameters ----------- kernel: int size of kernel to use for smoothing nr_iter: int number of iterations Returns ---------- sets the attributes `self.?h_surf_sm` """ if not isinstance(kernel,int): print(f" Rounding smoothing factor '{kernel}' to '{int(kernel)}'") kernel = int(kernel) setattr(self, 'lh_surf_sm', self.lh_surf.smooth(self.curvature.data[:self.lh_surf_data[0].shape[0]], factor=kernel, iterations=nr_iter)) setattr(self, 'rh_surf_sm', self.rh_surf.smooth(self.curvature.data[self.lh_surf_data[0].shape[0]:], factor=kernel, iterations=nr_iter)) @staticmethod def read_fs_label(subject, fs_dir=None, fs_label=None, hemi="both"): """read_fs_label read a freesurfer label file (name must match with file in freesurfer directory) Parameters ----------- subject: str subject ID as used in `SUBJECTS_DIR` fs_dir: str, optional `FreeSurfer` directory (default = SUBJECTS_DIR) fs_label: str, optional ROI-name to extract the vertex from as per ROIs created with `FreeSurfer`. Default is V1_exvivo.thresh hemi: str, optional For which hemisphere to perform the process, `lh`=left hemisphere, `rh`=right hemisphere, `both`=both hemispheres (default = `both`) Returns ---------- dict Dictionary collecting outputs under the following keys * lh: output from `nibabel.freesurfer.io.read_label` * rh: output from `nibabel.freesurfer.io.read_label` """ # # dots are annoying in attributes, to replace them with underscores; won't fail if there aren't any present # setattr(self, 'roi_label', fs_label.replace('.', '_')) # print("reading {}".format(opj(self.fs_dir, self.subject, 'label', f'{fs_label}.label'))) if hemi == "both": return {'lh': nb.freesurfer.io.read_label(opj(fs_dir, subject, 'label', f'lh.{fs_label}.label'), read_scalars=False), 'rh': nb.freesurfer.io.read_label(opj(fs_dir, subject, 'label', f'rh.{fs_label}.label'), read_scalars=False)} # [setattr(self, f'{i}_{self.roi_label}', nb.freesurfer.io.read_label(opj(self.fs_dir, self.subject, 'label', f'{i}.{fs_label}.label'), read_scalars=False)) for i in ['lh','rh']] else: if hemi.lower() != "lh" and hemi.lower() != "rh": raise ValueError(f"Hemisphere should be one of 'both', 'lh', or 'rh'; not {hemi}") else: label_file = opj(fs_dir, subject, 'label', f'{hemi}.{fs_label}.label') # setattr(self, f'{hemi}_{self.roi_label}', nb.freesurfer.io.read_label(label_file, read_scalars=False)) return {hemi: nb.freesurfer.io.read_label(label_file, read_scalars=False)} def label_to_mask(self, subject=None, lh_arr=None, rh_arr=None, hemi="both"): """label_to_mask Convert freesurfer label or set of vertices to boolean vector Parameters ----------- subject: str subject ID as used in `SUBJECTS_DIR` lh_arr: numpy.ndarray, optional array containing the mask in the left hemisphere (can be read from :class:`linescanning.optimal.SurfaceCalc` itself) rh_arr: numpy.ndarray, optional array containing the mask in the right hemisphere (can be read from :class:`linescanning.optimal.SurfaceCalc` itself) hemi: str, optional For which hemisphere to perform the process, `lh`=left hemisphere, `rh`=right hemisphere, `both`=both hemispheres (default = `both`) Returns ---------- dict Dictionary collecting outputs under the following keys * lh_mask: boolean numpy.ndarray in the left hemisphere * rh_mask: boolean numpy.ndarray in the left hemisphere * whole_roi: mask of both hemispheres combined * whole_roi_v: cortex.Vertex object of `whole_roi` """ if hemi == "both": lh_mask = np.zeros(self.lh_surf_data[0].shape[0], dtype=bool) lh_mask[lh_arr] = True rh_mask = np.zeros(self.rh_surf_data[0].shape[0], dtype=bool) rh_mask[rh_arr] = True elif hemi == "lh": lh_mask = np.zeros(getattr(self, f"lh_surf_data")[0].shape[0], dtype=bool) lh_mask[lh_arr] = True rh_mask = np.zeros(getattr(self, f"rh_surf_data")[0].shape[0], dtype=bool) elif hemi == "rh": lh_mask = np.zeros(getattr(self, f"lh_surf_data")[0].shape[0], dtype=bool) rh_mask = np.zeros(getattr(self, f"rh_surf_data")[0].shape[0], dtype=bool) rh_mask[rh_arr] = True else: raise ValueError(f"Invalid option '{hemi}' for hemi. Must be one of 'both', 'lh', or 'rh'") whole_roi = np.concatenate((lh_mask, rh_mask)) whole_roi_v = cortex.Vertex(whole_roi, subject=subject, vmin=-0.5, vmax=1) return {'lh_mask': lh_mask, 'rh_mask': rh_mask, 'whole_roi': whole_roi, 'whole_roi_v': whole_roi_v} class pRFCalc(object): """pRFCalc This short class deals with the population receptive field modeling output from spinoza_fitprfs and/or call_prfpy. Ideally, the output of these scripts is a numpy array containing the 6 pRF-parameters for each voxel. If you have one of those files, specify it in the `prffile` argument. If, for some reason, you do not have this file, but separate files for each pRF variable (e.g., a file for R2, a file for eccentricitry, and a file for polar angle), make sure they are all in 1 directory and specify that directory in the `prf_dir` parameter. The only function of this class is to collect path names and the data arrays containing information about the pRF parameters. It will actually be used in :class:`linescanning.optimal.CalcBestVertex`. Parameters ---------- subject: str subject ID as used in `SUBJECTS_DIR` prf_dir: str, optional Path to pRF-output directory possible containing maps for *variance explained* (desc-R2.npy), *eccentricity* (desc-eccentricity_map.npy), and *polar angle* (desc-polarangle_map.npy) as created with `call_fitprfs` and `spinoza_fitprfs` prffile: str, optional Path to a desc-prf_params.npy file containing a 6xn dataframe representing the 6 variables from the pRF-analysis times the amount of TRs (time points). You can either specify this file directly or specify the pRF-directory containing separate files for R2, eccentricity, and polar angle if you do not happen to have the prf parameter file Returns ---------- :class: Several attributes will be set upon calling the class. These attributes will be necessary to complete :class:`linescanning.optimal.CalcBestVertex` Example ---------- >>> prf = pRFCalc(subject="sub-001", prffile="sub-001_desc-prf_params.npy") """ # Get stuff from SurfaceCalc def __init__(self, subject=None, prffile=None, prf_dir=None, ses_nr=1, task="2R"): self.subject = subject self.session = ses_nr self.task_id = task self.fname = f"{self.subject}_ses-{self.session}_task-{self.task_id}" if prf_dir == None: self.prf_dir = os.environ['PRF'] else: self.prf_dir = prf_dir if not prffile or not os.path.exists(prffile): if self.prf_dir != None: try: # print(" Load in pRF-estimates") self.r2_file = utils.get_file_from_substring("R2", opj(self.prf_dir, self.subject)) self.ecc_file = utils.get_file_from_substring("eccentricity", opj(self.prf_dir, self.subject)) self.polar_file = utils.get_file_from_substring("polar", opj(self.prf_dir, self.subject)) except: # print(" Set pRF-estimates to none") self.r2 = None self.ecc = None self.polar = None else: raise NameError("Could not find pRF-parameter file and also not loose r2, ecc, polar angle files..") else: if os.path.exists(prffile): # print(" Extracting pRF-parameters from file") self.prffile = prffile self.prf_params =
np.load(self.prffile)
numpy.load
# Copyright 2019-2020 QuantumBlack Visual Analytics Limited # # The methods found in this file are derived from a repository under Apache 2.0: # DAGs with NO TEARS. # @inproceedings{zheng2018dags, # author = {<NAME> and <NAME> and <NAME> <NAME>.}, # booktitle = {Advances in Neural Information Processing Systems}, # title = {{DAGs with NO TEARS: Continuous Optimization for Structure Learning}}, # year = {2018}, # codebase = {https://github.com/xunzheng/notears} # } # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. """ Tools to learn a ``StructureModel`` which describes the conditional dependencies between variables in a dataset. """ import logging import warnings from copy import deepcopy from typing import List, Tuple import numpy as np import pandas as pd import scipy.linalg as slin import scipy.optimize as sopt from causalnex.structure.structuremodel import StructureModel __all__ = ["from_numpy", "from_pandas", "from_numpy_lasso", "from_pandas_lasso"] def from_numpy( X: np.ndarray, max_iter: int = 100, h_tol: float = 1e-8, w_threshold: float = 0.0, tabu_edges: List[Tuple[int, int]] = None, tabu_parent_nodes: List[int] = None, tabu_child_nodes: List[int] = None, ) -> StructureModel: """ Learn the `StructureModel`, the graph structure describing conditional dependencies between variables in data presented as a numpy array. The optimisation is to minimise a score function :math:`F(W)` over the graph's weighted adjacency matrix, :math:`W`, subject to the a constraint function :math:`h(W)`, where :math:`h(W) == 0` characterises an acyclic graph. :math:`h(W) > 0` is a continuous, differentiable function that encapsulated how acyclic the graph is (less == more acyclic). Full details of this approach to structure learning are provided in the publication: Based on DAGs with NO TEARS. @inproceedings{zheng2018dags, author = {<NAME> <NAME> <NAME> <NAME>.}, booktitle = {Advances in Neural Information Processing Systems}, title = {{DAGs with NO TEARS: Continuous Optimization for Structure Learning}}, year = {2018}, codebase = {https://github.com/xunzheng/notears} } Args: X: 2d input data, axis=0 is data rows, axis=1 is data columns. Data must be row oriented. max_iter: max number of dual ascent steps during optimisation. h_tol: exit if h(W) < h_tol (as opposed to strict definition of 0). w_threshold: fixed threshold for absolute edge weights. tabu_edges: list of edges(from, to) not to be included in the graph. tabu_parent_nodes: list of nodes banned from being a parent of any other nodes. tabu_child_nodes: list of nodes banned from being a child of any other nodes. Returns: StructureModel: a graph of conditional dependencies between data variables. Raises: ValueError: If X does not contain data. """ # n examples, d properties _, d = X.shape _assert_all_finite(X) bnds = [ (0, 0) if i == j else (0, 0) if tabu_edges is not None and (i, j) in tabu_edges else (0, 0) if tabu_parent_nodes is not None and i in tabu_parent_nodes else (0, 0) if tabu_child_nodes is not None and j in tabu_child_nodes else (None, None) for i in range(d) for j in range(d) ] return _learn_structure(X, bnds, max_iter, h_tol, w_threshold) def from_numpy_lasso( X: np.ndarray, beta: float, max_iter: int = 100, h_tol: float = 1e-8, w_threshold: float = 0.0, tabu_edges: List[Tuple[int, int]] = None, tabu_parent_nodes: List[int] = None, tabu_child_nodes: List[int] = None, ) -> StructureModel: """ Learn the `StructureModel`, the graph structure with lasso regularisation describing conditional dependencies between variables in data presented as a numpy array. Based on DAGs with NO TEARS. @inproceedings{zheng2018dags, author = {<NAME> <NAME> <NAME> <NAME>.}, booktitle = {Advances in Neural Information Processing Systems}, title = {{DAGs with NO TEARS: Continuous Optimization for Structure Learning}}, year = {2018}, codebase = {https://github.com/xunzheng/notears} } Args: X: 2d input data, axis=0 is data rows, axis=1 is data columns. Data must be row oriented. beta: Constant that multiplies the lasso term. max_iter: max number of dual ascent steps during optimisation. h_tol: exit if h(W) < h_tol (as opposed to strict definition of 0). w_threshold: fixed threshold for absolute edge weights. tabu_edges: list of edges(from, to) not to be included in the graph. tabu_parent_nodes: list of nodes banned from being a parent of any other nodes. tabu_child_nodes: list of nodes banned from being a child of any other nodes. Returns: StructureModel: a graph of conditional dependencies between data variables. Raises: ValueError: If X does not contain data. """ # n examples, d properties _, d = X.shape _assert_all_finite(X) bnds = [ (0, 0) if i == j else (0, 0) if tabu_edges is not None and (i, j) in tabu_edges else (0, 0) if tabu_parent_nodes is not None and i in tabu_parent_nodes else (0, 0) if tabu_child_nodes is not None and j in tabu_child_nodes else (0, None) for i in range(d) for j in range(d) ] * 2 return _learn_structure_lasso(X, beta, bnds, max_iter, h_tol, w_threshold) def from_pandas( X: pd.DataFrame, max_iter: int = 100, h_tol: float = 1e-8, w_threshold: float = 0.0, tabu_edges: List[Tuple[str, str]] = None, tabu_parent_nodes: List[str] = None, tabu_child_nodes: List[str] = None, ) -> StructureModel: """ Learn the `StructureModel`, the graph structure describing conditional dependencies between variables in data presented as a pandas dataframe. The optimisation is to minimise a score function :math:`F(W)` over the graph's weighted adjacency matrix, :math:`W`, subject to the a constraint function :math:`h(W)`, where :math:`h(W) == 0` characterises an acyclic graph. :math:`h(W) > 0` is a continuous, differentiable function that encapsulated how acyclic the graph is (less == more acyclic). Full details of this approach to structure learning are provided in the publication: Based on DAGs with NO TEARS. @inproceedings{zheng2018dags, author = {<NAME> <NAME> <NAME> <NAME>.}, booktitle = {Advances in Neural Information Processing Systems}, title = {{DAGs with NO TEARS: Continuous Optimization for Structure Learning}}, year = {2018}, codebase = {https://github.com/xunzheng/notears} } Args: X: input data. max_iter: max number of dual ascent steps during optimisation. h_tol: exit if h(W) < h_tol (as opposed to strict definition of 0). w_threshold: fixed threshold for absolute edge weights. tabu_edges: list of edges(from, to) not to be included in the graph. tabu_parent_nodes: list of nodes banned from being a parent of any other nodes. tabu_child_nodes: list of nodes banned from being a child of any other nodes. Returns: StructureModel: graph of conditional dependencies between data variables. Raises: ValueError: If X does not contain data. """ data = deepcopy(X) non_numeric_cols = data.select_dtypes(exclude="number").columns if len(non_numeric_cols) > 0: raise ValueError( "All columns must have numeric data. " "Consider mapping the following columns to int {non_numeric_cols}".format( non_numeric_cols=non_numeric_cols ) ) col_idx = {c: i for i, c in enumerate(data.columns)} idx_col = {i: c for c, i in col_idx.items()} if tabu_edges: tabu_edges = [(col_idx[u], col_idx[v]) for u, v in tabu_edges] if tabu_parent_nodes: tabu_parent_nodes = [col_idx[n] for n in tabu_parent_nodes] if tabu_child_nodes: tabu_child_nodes = [col_idx[n] for n in tabu_child_nodes] g = from_numpy( data.values, max_iter, h_tol, w_threshold, tabu_edges, tabu_parent_nodes, tabu_child_nodes, ) sm = StructureModel() sm.add_nodes_from(data.columns) sm.add_weighted_edges_from( [(idx_col[u], idx_col[v], w) for u, v, w in g.edges.data("weight")], origin="learned", ) return sm def from_pandas_lasso( X: pd.DataFrame, beta: float, max_iter: int = 100, h_tol: float = 1e-8, w_threshold: float = 0.0, tabu_edges: List[Tuple[str, str]] = None, tabu_parent_nodes: List[str] = None, tabu_child_nodes: List[str] = None, ) -> StructureModel: """ Learn the `StructureModel`, the graph structure with lasso regularisation describing conditional dependencies between variables in data presented as a pandas dataframe. Based on DAGs with NO TEARS. @inproceedings{zheng2018dags, author = {<NAME> <NAME> <NAME> <NAME>.}, booktitle = {Advances in Neural Information Processing Systems}, title = {{DAGs with NO TEARS: Continuous Optimization for Structure Learning}}, year = {2018}, codebase = {https://github.com/xunzheng/notears} } Args: X: input data. beta: Constant that multiplies the lasso term. max_iter: max number of dual ascent steps during optimisation. h_tol: exit if h(W) < h_tol (as opposed to strict definition of 0). w_threshold: fixed threshold for absolute edge weights. tabu_edges: list of edges(from, to) not to be included in the graph. tabu_parent_nodes: list of nodes banned from being a parent of any other nodes. tabu_child_nodes: list of nodes banned from being a child of any other nodes. Returns: StructureModel: graph of conditional dependencies between data variables. Raises: ValueError: If X does not contain data. """ data = deepcopy(X) non_numeric_cols = data.select_dtypes(exclude="number").columns if not non_numeric_cols.empty: raise ValueError( "All columns must have numeric data. " "Consider mapping the following columns to int {non_numeric_cols}".format( non_numeric_cols=non_numeric_cols ) ) col_idx = {c: i for i, c in enumerate(data.columns)} idx_col = {i: c for c, i in col_idx.items()} if tabu_edges: tabu_edges = [(col_idx[u], col_idx[v]) for u, v in tabu_edges] if tabu_parent_nodes: tabu_parent_nodes = [col_idx[n] for n in tabu_parent_nodes] if tabu_child_nodes: tabu_child_nodes = [col_idx[n] for n in tabu_child_nodes] g = from_numpy_lasso( data.values, beta, max_iter, h_tol, w_threshold, tabu_edges, tabu_parent_nodes, tabu_child_nodes, ) sm = StructureModel() sm.add_nodes_from(data.columns) sm.add_weighted_edges_from( [(idx_col[u], idx_col[v], w) for u, v, w in g.edges.data("weight")], origin="learned", ) return sm def _learn_structure( X: np.ndarray, bnds, max_iter: int = 100, h_tol: float = 1e-8, w_threshold: float = 0.0, ) -> StructureModel: """ Based on initial implementation at https://github.com/xunzheng/notears """ def _h(w: np.ndarray) -> float: """ Constraint function of the NOTEARS algorithm. Args: w: current adjacency matrix. Returns: float: DAGness of the adjacency matrix (0 == DAG, >0 == cyclic). """ W = w.reshape([d, d]) return np.trace(slin.expm(W * W)) - d def _func(w: np.ndarray) -> float: """ Objective function that the NOTEARS algorithm tries to minimise. Args: w: current adjacency matrix. Returns: float: objective. """ W = w.reshape([d, d]) loss = 0.5 / n * np.square(np.linalg.norm(X.dot(np.eye(d, d) - W), "fro")) h = _h(W) return loss + 0.5 * rho * h * h + alpha * h def _grad(w: np.ndarray) -> np.ndarray: """ Gradient function used to compute next step in NOTEARS algorithm. Args: w: the current adjacency matrix. Returns: np.ndarray: gradient vector. """ W = w.reshape([d, d]) loss_grad = -1.0 / n * X.T.dot(X).dot(np.eye(d, d) - W) E = slin.expm(W * W) obj_grad = loss_grad + (rho * (np.trace(E) - d) + alpha) * E.T * W * 2 return obj_grad.flatten() if X.size == 0: raise ValueError("Input data X is empty, cannot learn any structure") logging.info("Learning structure using 'NOTEARS' optimisation.") # n examples, d properties n, d = X.shape # initialise matrix to zeros w_est, w_new = np.zeros(d * d), np.zeros(d * d) # initialise weights and constraints rho, alpha, h, h_new = 1.0, 0.0, np.inf, np.inf # start optimisation for n_iter in range(max_iter): while (rho < 1e20) and (h_new > 0.25 * h or h_new == np.inf): sol = sopt.minimize(_func, w_est, method="L-BFGS-B", jac=_grad, bounds=bnds) w_new = sol.x h_new = _h(w_new) if h_new > 0.25 * h: rho *= 10 w_est, h = w_new, h_new alpha += rho * h if h <= h_tol: break if h > h_tol and n_iter == max_iter - 1: warnings.warn("Failed to converge. Consider increasing max_iter.") w_est[np.abs(w_est) <= w_threshold] = 0 return StructureModel(w_est.reshape([d, d])) def _learn_structure_lasso( X: np.ndarray, beta: float, bnds, max_iter: int = 100, h_tol: float = 1e-8, w_threshold: float = 0.0, ) -> StructureModel: """ Based on initial implementation at https://github.com/xunzheng/notears """ def _h(w_vec: np.ndarray) -> float: """ Constraint function of the NOTEARS algorithm with lasso regularisation. Args: w_vec: weight vector (wpos and wneg). Returns: float: DAGness of the adjacency matrix (0 == DAG, >0 == cyclic). """ W = w_vec.reshape([d, d]) return np.trace(slin.expm(W * W)) - d def _func(w_vec: np.ndarray) -> float: """ Objective function that the NOTEARS algorithm with lasso regularisation tries to minimise. Args: w_vec: weight vector (wpos and wneg). Returns: float: objective. """ w_pos = w_vec[: d ** 2] w_neg = w_vec[d ** 2 :] wmat_pos = w_pos.reshape([d, d]) wmat_neg = w_neg.reshape([d, d]) wmat = wmat_pos - wmat_neg loss = 0.5 / n * np.square(np.linalg.norm(X.dot(
np.eye(d, d)
numpy.eye
""" DISCRIMINATOR FOR BINARY CROSS ENTROPY (LABELED IMAGES) """ # Libraries # Standard library import json import random import time import numpy as np import matplotlib.pyplot as plt from typing import Dict, List, Tuple def load(filename): """Load a neural network from the file ``filename``. Returns an instance of Network. """ f = open(filename, "r") data = json.load(f) f.close() # cost = getattr(sys.modules[__name__], data["cost"]) net = DiscriminatorBCE(data["sizes"]) net.weights = [np.array(w) for w in data["weights"]] net.biases = [np.array(b) for b in data["biases"]] return net class DiscriminatorBCE: def __init__(self, sizes: List[int]) -> None: """The list ``sizes`` contains the number of neuronfs in the respective layers of the network. For example, iff the list was [2, 3, 1] then it would be a three-layer netwfork, with the first layer containing 2 neurons, the second layffer 3 neurons, and the third layer 1 neuron.""" self.num_layers = len(sizes) self.sizes = sizes self._ret: Dict[str, any] = {"loss": [], "label real": [], "label fake": [], "label fake time": [], "label real time": []} self.biases = [np.random.randn(y, ) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a) + b) return a def predict(self, x): # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z = np.dot(w, activation) + b zs.append(z) activation = sigmoid(z) activations.append(activation) return activation def evaluate(self, test_data): """Return the number of test inputs for which the neural network outputs the correct result. Note that the neural network's output is assumed to be the index of whichever neuron in the final layer has the highest activation.""" test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data] return sum(int(x == y) for (x, y) in test_results) def save(self, filename): """Save the neural network to the file ``filename``.""" data = {"sizes": self.sizes, "weights": [w.tolist() for w in self.weights], "biases": [b.tolist() for b in self.biases] # , # "cost": str(self..__name__) } f = open(filename, "w") json.dump(data, f) f.close() def MSE_derivative(self, prediction, y): """Return the vector of partial derivatives \partial{C_x,a} for the output activations.""" return 2 * (y - prediction) def MSE(self, prediction, y): return (y - prediction)**2 def BCE_derivative(self, prediction, target): return -target / prediction + (1 - target) / (1 - prediction) def BCE(self, predictions: np.ndarray, targets: np.ndarray) -> float: return targets * np.log10(predictions) + (1 - targets) * np.log10(1 - predictions).mean() def minimax_derivative(self, real_prediction, fake_prediction): real_prediction = np.array(real_prediction) fake_prediction = np.array(fake_prediction) return 1 / (real_prediction * np.log10(10)) + 1 / ((fake_prediction - 1) * np.log10(10)) @property def ret(self): return self._ret def backprop(self, x, y) -> Tuple: """Return a tuple ``(nabla_b, nabla_w)`` representing the gradient for the cost function C_x. ``nabla_b`` and ``nabla_w`` are layer-by-layer lists of numpy arrays, similar to ``self.biases`` and ``self.weights``.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] nabla_w_prev = nabla_w # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z = np.dot(w, activation) + b zs.append(z) activation = sigmoid(z) activations.append(activation) self.data_for_loss = (activation, y) # backward pass delta = self.BCE_derivative(activations[-1], y) * sigmoid_prime(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].reshape(1, activations[-2].shape[0])) for l in range(2, self.num_layers): z = zs[-l] delta = np.dot(self.weights[-l + 1].transpose(), delta) * sigmoid_prime(z) nabla_b[-l] = delta nabla_w[-l] = np.dot(delta.reshape(delta.shape[0], 1), activations[-l - 1].reshape(1, activations[-l - 1].shape[0])) return (nabla_b, nabla_w) def train_mini_batch(self, mini_batch, learning_rate): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The ``mini_batch`` is a list of tuples ``(x, y)``""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [
np.zeros(w.shape)
numpy.zeros
# Copyright 2016 Princeton University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Event segmentation using a Hidden Markov Model Given an ROI timeseries, this class uses an annealed fitting procedure to segment the timeseries into events with stable activity patterns. After learning the signature activity pattern of each event, the model can then be applied to other datasets to identify a corresponding sequence of events. Full details are available in the bioRxiv preprint: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> Discovering event structure in continuous narrative perception and memory Neuron, Volume 95, Issue 3, 709 - 721.e5 http://www.cell.com/neuron/abstract/S0896-6273(17)30593-7 """ # Authors: <NAME> and <NAME> (Princeton University) import numpy as np from scipy import stats import logging import copy from sklearn.base import BaseEstimator from sklearn.utils.validation import check_is_fitted, check_array from sklearn.exceptions import NotFittedError from . import _utils as utils # type: ignore logger = logging.getLogger(__name__) __all__ = [ "EventSegment", ] class EventSegment(BaseEstimator): """Class for event segmentation of continuous fMRI data Parameters ---------- n_events: int Number of segments to learn step_var: Callable[[int], float] : default 4 * (0.98 ** (step - 1)) The Gaussian variance to use during fitting, as a function of the number of steps. Should decrease slowly over time. n_iter: int : default 500 Maximum number of steps to run during fitting Attributes ---------- p_start, p_end: length n_events+1 ndarray initial and final prior distributions over events P: n_events+1 by n_events+1 ndarray HMM transition matrix ll_ : ndarray with length = number of training datasets Log-likelihood for training datasets over the course of training segments_: list of (time by event) ndarrays Learned (soft) segmentation for training datasets event_var_ : float Gaussian variance at the end of learning event_pat_ : voxel by event ndarray Learned mean patterns for each event """ def _default_var_schedule(step): return 4 * (0.98 ** (step - 1)) def __init__(self, n_events=2, step_var=_default_var_schedule, n_iter=500): self.n_events = n_events self.step_var = step_var self.n_iter = n_iter def fit(self, X, y=None): """Learn a segmentation on training data Fits event patterns and a segmentation to training data. After running this function, the learned event patterns can be used to segment other datasets using find_events Parameters ---------- X: time by voxel ndarray, or a list of such ndarrays fMRI data to be segmented. If a list is given, then all datasets are segmented simultaneously with the same event patterns y: not used (added to comply with BaseEstimator definition) Returns ------- self: the EventSegment object """ X = copy.deepcopy(X) if type(X) is not list: X = check_array(X) X = [X] n_train = len(X) for i in range(n_train): X[i] = X[i].T self.classes_ = np.arange(self.n_events) n_dim = X[0].shape[0] for i in range(n_train): assert (X[i].shape[0] == n_dim) # Double-check that data is z-scored in time for i in range(n_train): X[i] = stats.zscore(X[i], axis=1, ddof=1) # Initialize variables for fitting log_gamma = [] for i in range(n_train): log_gamma.append(np.zeros((X[i].shape[1], self.n_events))) step = 1 best_ll = float("-inf") self.ll_ = np.empty((0, n_train)) while step <= self.n_iter: iteration_var = self.step_var(step) # Based on the current segmentation, compute the mean pattern # for each event seg_prob = [np.exp(lg) / np.sum(np.exp(lg), axis=0) for lg in log_gamma] mean_pat = np.empty((n_train, n_dim, self.n_events)) for i in range(n_train): mean_pat[i, :, :] = X[i].dot(seg_prob[i]) mean_pat = np.mean(mean_pat, axis=0) # Based on the current mean patterns, compute the event # segmentation self.ll_ = np.append(self.ll_, np.empty((1, n_train)), axis=0) for i in range(n_train): logprob = self._logprob_obs(X[i], mean_pat, iteration_var) log_gamma[i], self.ll_[-1, i] = self._forward_backward(logprob) # If log-likelihood has started decreasing, undo last step and stop if np.mean(self.ll_[-1, :]) < best_ll: self.ll_ = self.ll_[:-1, :] break self.segments_ = [np.exp(lg) for lg in log_gamma] self.event_var_ = iteration_var self.event_pat_ = mean_pat best_ll = np.mean(self.ll_[-1, :]) logger.debug("Fitting step %d, LL=%f", step, best_ll) step += 1 return self def _logprob_obs(self, data, mean_pat, var): """Log probability of observing each timepoint under each event model Computes the log probability of each observed timepoint being generated by the Gaussian distribution for each event pattern Parameters ---------- data: voxel by time ndarray fMRI data on which to compute log probabilities mean_pat: voxel by event ndarray Centers of the Gaussians for each event var: float or 1D array of length equal to the number of events Variance of the event Gaussians. If scalar, all events are assumed to have the same variance Returns ------- logprob : time by event ndarray Log probability of each timepoint under each event Gaussian """ n_vox = data.shape[0] t = data.shape[1] # z-score both data and mean patterns in space, so that Gaussians # are measuring Pearson correlations and are insensitive to overall # activity changes data_z = stats.zscore(data, axis=0, ddof=1) mean_pat_z = stats.zscore(mean_pat, axis=0, ddof=1) logprob = np.empty((t, self.n_events)) if type(var) is not np.ndarray: var = var * np.ones(self.n_events) for k in range(self.n_events): logprob[:, k] = -0.5 * n_vox * np.log( 2 * np.pi * var[k]) - 0.5 * np.sum( (data_z.T - mean_pat_z[:, k]).T ** 2, axis=0) / var[k] logprob /= n_vox return logprob def _forward_backward(self, logprob): """Runs forward-backward algorithm on observation log probs Given the log probability of each timepoint being generated by each event, run the HMM forward-backward algorithm to find the probability that each timepoint belongs to each event (based on the transition priors in p_start, p_end, and P) See https://en.wikipedia.org/wiki/Forward-backward_algorithm for mathematical details Parameters ---------- logprob : time by event ndarray Log probability of each timepoint under each event Gaussian Returns ------- log_gamma : time by event ndarray Log probability of each timepoint belonging to each event ll : float Log-likelihood of fit """ logprob = copy.copy(logprob) t = logprob.shape[0] logprob = np.hstack((logprob, float("-inf") * np.ones((t, 1)))) # Initialize variables log_scale = np.zeros(t) log_alpha = np.zeros((t, self.n_events + 1)) log_beta = np.zeros((t, self.n_events + 1)) # Set up transition matrix, with final sink state # For transition matrix of this form, the transition probability has # no impact on the final solution, since all valid paths must take # the same number of transitions p_start = np.zeros((1, self.n_events + 1)) p_start[0, 0] = 1 p_trans = (self.n_events-1)/t P = np.vstack((np.hstack(( (1 - p_trans) * np.diag(np.ones(self.n_events)) + p_trans * np.diag(np.ones(self.n_events - 1), 1), np.append(np.zeros((self.n_events - 1, 1)), [[p_trans]], axis=0))), np.append(np.zeros((1, self.n_events)), [[1]], axis=1))) p_end = np.zeros((1, self.n_events + 1)) p_end[0, -2] = 1 # Forward pass for i in range(t): if i == 0: log_alpha[0, :] = self._log(p_start) + logprob[0, :] else: log_alpha[i, :] = self._log(np.exp(log_alpha[i - 1, :]) .dot(P)) + logprob[i, :] log_scale[i] = np.logaddexp.reduce(log_alpha[i, :]) log_alpha[i] -= log_scale[i] # Backward pass log_beta[-1, :] = self._log(p_end) - log_scale[-1] for i in reversed(range(t - 1)): obs_weighted = log_beta[i + 1, :] + logprob[i + 1, :] offset = np.max(obs_weighted) log_beta[i, :] = offset + self._log( np.exp(obs_weighted - offset).dot(P.T)) - log_scale[i] # Combine and normalize log_gamma = log_alpha + log_beta log_gamma -= np.logaddexp.reduce(log_gamma, axis=1, keepdims=True) ll = np.sum(log_scale[:(t - 1)]) + np.logaddexp.reduce( log_alpha[-1, :] + log_scale[-1] + self._log(p_end), axis=1) log_gamma = log_gamma[:, :-1] return log_gamma, ll def _log(self, x): """Modified version of np.log that manually sets values <=0 to -inf Parameters ---------- x: ndarray of floats Input to the log function Returns ------- log_ma: ndarray of floats log of x, with x<=0 values replaced with -inf """ xshape = x.shape _x = x.flatten() y = utils.masked_log(_x) return y.reshape(xshape) def set_event_patterns(self, event_pat): """Set HMM event patterns manually Rather than fitting the event patterns automatically using fit(), this function allows them to be set explicitly. They can then be used to find corresponding events in a new dataset, using find_events(). Parameters ---------- event_pat: voxel by event ndarray """ if event_pat.shape[1] != self.n_events: raise ValueError(("Number of columns of event_pat must match " "number of events")) self.event_pat_ = event_pat.copy() def find_events(self, testing_data, var=None, scramble=False): """Applies learned event segmentation to new testing dataset After fitting an event segmentation using fit() or setting event patterns directly using set_event_patterns(), this function finds the same sequence of event patterns in a new testing dataset. Parameters ---------- testing_data: timepoint by voxel ndarray fMRI data to segment based on previously-learned event patterns var: float or 1D ndarray of length equal to the number of events default: uses variance that maximized training log-likelihood Variance of the event Gaussians. If scalar, all events are assumed to have the same variance. If fit() has not previously been run, this must be specifed (cannot be None). scramble: bool : default False If true, the order of the learned events are shuffled before fitting, to give a null distribution Returns ------- segments : time by event ndarray The resulting soft segmentation. segments[t,e] = probability that timepoint t is in event e test_ll : float Log-likelihood of model fit """ if var is None: if not hasattr(self, 'event_var_'): raise NotFittedError(("The event patterns must first be set " "by fit() or set_event_patterns()")) else: var = self.event_var_ if scramble: mean_pat = self.event_pat_[:, np.random.permutation(self.n_events)] else: mean_pat = self.event_pat_ logprob = self._logprob_obs(testing_data.T, mean_pat, var) lg, test_ll = self._forward_backward(logprob) segments = np.exp(lg) return segments, test_ll def predict(self, X): """Applies learned event segmentation to new testing dataset Alternative function for segmenting a new dataset after using fit() to learn a sequence of events, to comply with the sklearn Classifier interface Parameters ---------- X: timepoint by voxel ndarray fMRI data to segment based on previously-learned event patterns Returns ------- Event label for each timepoint """ check_is_fitted(self, ["event_pat_", "event_var_"]) X = check_array(X) segments, test_ll = self.find_events(X) return np.argmax(segments, axis=1) def calc_weighted_event_var(self, D, weights, event_pat): """Computes normalized weighted variance around event pattern Utility function for computing variance in a training set of weighted event examples. For each event, the sum of squared differences for all timepoints from the event pattern is computed, and then the weights specify how much each of these differences contributes to the variance (normalized by the number of voxels). Parameters ---------- D : timepoint by voxel ndarray fMRI data for which to compute event variances weights : timepoint by event ndarray specifies relative weights of timepoints for each event event_pat : voxel by event ndarray mean event patterns to compute variance around Returns ------- ev_var : ndarray of variances for each event """ Dz = stats.zscore(D, axis=1, ddof=1) ev_var = np.empty(event_pat.shape[1]) for e in range(event_pat.shape[1]): # Only compute variances for weights > 0.1% of max weight nz = weights[:, e] > np.max(weights[:, e])/1000 sumsq = np.dot(weights[nz, e], np.sum(np.square(Dz[nz, :] - event_pat[:, e]), axis=1)) ev_var[e] = sumsq/(
np.sum(weights[nz, e])
numpy.sum
from __future__ import absolute_import import unittest from sklearn.datasets import load_iris as load_data from sklearn.datasets import load_breast_cancer from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.cluster import KMeans import numpy as np import matplotlib.pyplot as plt from scikitplot.metrics import plot_confusion_matrix from scikitplot.metrics import plot_roc_curve from scikitplot.metrics import plot_roc from scikitplot.metrics import plot_ks_statistic from scikitplot.metrics import plot_precision_recall_curve from scikitplot.metrics import plot_precision_recall from scikitplot.metrics import plot_silhouette from scikitplot.metrics import plot_calibration_curve from scikitplot.metrics import plot_cumulative_gain from scikitplot.metrics import plot_lift_curve def convert_labels_into_string(y_true): return ["A" if x == 0 else x for x in y_true] class TestPlotConfusionMatrix(unittest.TestCase): def setUp(self): np.random.seed(0) self.X, self.y = load_data(return_X_y=True) p = np.random.permutation(len(self.X)) self.X, self.y = self.X[p], self.y[p] def tearDown(self): plt.close("all") def test_string_classes(self): np.random.seed(0) clf = LogisticRegression() clf.fit(self.X, convert_labels_into_string(self.y)) preds = clf.predict(self.X) plot_confusion_matrix(convert_labels_into_string(self.y), preds) def test_normalize(self): np.random.seed(0) clf = LogisticRegression() clf.fit(self.X, self.y) preds = clf.predict(self.X) plot_confusion_matrix(self.y, preds, normalize=True) plot_confusion_matrix(self.y, preds, normalize=False) def test_labels(self): np.random.seed(0) clf = LogisticRegression() clf.fit(self.X, self.y) preds = clf.predict(self.X) plot_confusion_matrix(self.y, preds, labels=[0, 1, 2]) def test_hide_counts(self): np.random.seed(0) clf = LogisticRegression() clf.fit(self.X, self.y) preds = clf.predict(self.X) plot_confusion_matrix(self.y, preds, hide_counts=True) def test_true_pred_labels(self): np.random.seed(0) clf = LogisticRegression() clf.fit(self.X, self.y) preds = clf.predict(self.X) true_labels = [0, 1] pred_labels = [0, 2] plot_confusion_matrix(self.y, preds, true_labels=true_labels, pred_labels=pred_labels) def test_cmap(self): np.random.seed(0) clf = LogisticRegression() clf.fit(self.X, self.y) preds = clf.predict(self.X) plot_confusion_matrix(self.y, preds, cmap='nipy_spectral') plot_confusion_matrix(self.y, preds, cmap=plt.cm.nipy_spectral) def test_ax(self): np.random.seed(0) clf = LogisticRegression() clf.fit(self.X, self.y) preds = clf.predict(self.X) fig, ax = plt.subplots(1, 1) out_ax = plot_confusion_matrix(self.y, preds) assert ax is not out_ax out_ax = plot_confusion_matrix(self.y, preds, ax=ax) assert ax is out_ax def test_array_like(self): plot_confusion_matrix([0, 'a'], ['a', 0]) plot_confusion_matrix([0, 1], [1, 0]) plot_confusion_matrix(['b', 'a'], ['a', 'b']) class TestPlotROCCurve(unittest.TestCase): def setUp(self):
np.random.seed(0)
numpy.random.seed
# -*- coding: utf-8 -*- """ Created on Thu Apr 29 14:18:59 2021 @author: <NAME> - Hatlab """ from plottr.apps.autoplot import main from plottr.data.datadict_storage import all_datadicts_from_hdf5 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable datapath = r'C:/Users/Hatlab-RRK/Downloads/2021-07-12_0001_Amp_0__Phase_0.0_rad_.ddh5' name = '2021-07-12_0001_Amp_0__Phase_0.0_rad_.ddh5' def histogram(fig, ax, start_pt, stop_pt, sI, sQ, Ioffset = 0, Qoffset = 0, scale = 1, num_bins = 100, boxcar = True, I_weights = None, Q_weights = None): I_bground = Ioffset Q_bground = Qoffset if boxcar: weights = np.zeros(np.shape(sI)[1]) weights[start_pt:stop_pt] = 1 I_weights = weights.copy() Q_weights = weights.copy() # print(I_bground, Q_bground) I_pts = [] Q_pts = [] for I_row, Q_row in zip(sI, sQ): I_pts.append(np.average(I_row-I_bground, weights = I_weights)) Q_pts.append(np.average(Q_row-Q_bground, weights = Q_weights)) # plt.imshow(np.histogram2d(np.array(I_pts), np.array(Q_pts))[0]) divider = make_axes_locatable(ax) ax.set_aspect(1) bins = np.linspace(-1,1, num_bins)*scale (h, xedges, yedges, im) = ax.hist2d(I_pts, Q_pts, bins = [bins, bins]) cax = divider.append_axes('right', size='5%', pad=0.05) fig.colorbar(im, cax = cax, orientation = 'vertical') ax.hexbin(I_pts, Q_pts, extent = np.array([-1,1,-1,1])*scale) ax.set_xticks(np.array([-100,-75,-50,-25,0,25,50,75,100])*scale/100) ax.set_yticks(np.array([-100,-75,-50,-25,0,25,50,75,100])*scale/100) ax.grid() def generate_weight_function(IorQ1_avg, IorQ2_avg, start, stop): wf = np.zeros(np.size(IorQ1_avg)) #or Q_c_avg, they should be the same wf[start:stop] = np.sqrt((IorQ1_avg-IorQ2_avg)**2)[start:stop] return wf #autoplot, easiest way to see data if you dont need access to values # main(datapath, 'data') #extracting individual arrays dd = all_datadicts_from_hdf5(datapath)['data'] time_unit = dd['time']['unit'] time_vals = dd['time']['values'] rec_unit = dd['record_num']['unit'] rec_num = dd['record_num']['values'] I_plus = dd['I_plus']['values'] I_minus = dd['I_minus']['values'] Q_plus = dd['Q_plus']['values'] Q_minus = dd['Q_minus']['values'] #plotting averages I_plus_avg = np.average(np.reshape(I_plus, (3840, 205)), axis = 0) I_minus_avg = np.average(
np.reshape(I_minus, (3840, 205))
numpy.reshape
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import ctypes import numpy as np from onnx.backend.test.case.node import _extract_value_info import onnx from onnx import TensorProto, helper, mapping, numpy_helper import pycuda.driver as cuda import tensorrt as trt import tensorflow as tf sys.path.append("..") from python import * os.chdir("../python/") I_GPU = 0 os.environ["CUDA_VISIBLE_DEVICES"] = str(I_GPU) tf.set_random_seed(1234) np.random.seed(0) ITERATIONS = 10 CONFIG = tf.ConfigProto() CONFIG.gpu_options.allow_growth = True INPUT_MODEL_FILE = "model/test_op_plugin.onnx" OUTPUT_MODEL_FILE = "model/test_op_trt.onnx" TRT_LOGGER = trt.Logger(trt.Logger.WARNING) # TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) BATCH_SIZE = 1 # Simple helper data class that's a little nicer to use than a 2-tuple. class HostDeviceMem(object): def __init__(self, host_mem, device_mem): self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__() # Allocates all buffers required for an engine, i.e. host/device inputs/outputs. def allocate_buffers(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: # size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size size = trt.volume(engine.get_binding_shape(binding)) dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream # This function is generalized for multiple inputs/outputs. # inputs and outputs are expected to be lists of HostDeviceMem objects. def do_inference(context, bindings, inputs, outputs, stream, batch_size=1): # Transfer input data to the GPU. [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # Run inference. context.execute_async( batch_size=batch_size, bindings=bindings, stream_handle=stream.handle ) # Transfer predictions back from the GPU. [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # Synchronize the stream stream.synchronize() # Return only the host outputs. return [out.host for out in outputs] def convert_to_list(x): if not isinstance(x, list): x = [x] return x def run_tf_graph(sess, input_data, input_node, output_node): """Generic function to execute tensorflow""" input_data = convert_to_list(input_data) input_node = convert_to_list(input_node) output_node = convert_to_list(output_node) tensor = [sess.graph.get_tensor_by_name(output_name) for output_name in output_node] input_dict = {e: input_data[i] for i, e in enumerate(input_node)} # if len(input_node) == 1 and input_node[0] == "": # output_data = sess.run(tensor) # else: output_data = sess.run(tensor, input_dict) return output_data def verify_tf_with_trt_result(in_data, in_name, out_name, op_name): def name_without_num(name): return name.split(":")[0] if ":" in name else name out_name = convert_to_list(out_name) out_node = [name_without_num(name) for name in out_name] in_data = convert_to_list(in_data) in_name = convert_to_list(in_name) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) tf_result = run_tf_graph(sess, in_data, in_name, out_name) frozen_graph = tf.graph_util.convert_variables_to_constants( sess, sess.graph_def, out_node ) with open("model/test_op_{}.pb".format(op_name), "wb") as ofile: ofile.write(frozen_graph.SerializeToString()) os.system( "python3 -m tf2onnx.convert --input model/test_op_{}.pb --inputs {} --outputs {} --output {} --opset 11".format( op_name, str(",").join(in_name), str(",").join(out_name), INPUT_MODEL_FILE ) ) ops_name = [op_name] trt_plugin_name = onnx2plugin( INPUT_MODEL_FILE, OUTPUT_MODEL_FILE, node_names=ops_name ) for plugin_name in trt_plugin_name: ctypes.cdll.LoadLibrary("./trt_plugin/lib/{}.so".format(plugin_name)) cuda.Device(0).make_context() with trt.Builder(TRT_LOGGER) as builder, builder.create_network( 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) ) as network, trt.OnnxParser(network, TRT_LOGGER) as parser: builder.max_batch_size = batch_size builder_config = builder.create_builder_config() builder_config.max_workspace_size = 1 << 30 with open(OUTPUT_MODEL_FILE, "rb") as model: # parse onnx model parser.parse(model.read()) for i in range(parser.num_errors): print(parser.get_error(i)) engine = builder.build_engine(network, builder_config) if engine is None: print("[ERROR] engine is None") exit(-1) inputs, outputs, bindings, stream = allocate_buffers(engine) with engine.create_execution_context() as context: for i in range(len(inputs)): input_data = in_data[i].ravel() np.copyto(inputs[i].host, input_data) trt_result = do_inference( context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream, batch_size=batch_size, ) cuda.Context.pop() ret = True if len(trt_result) == 1: ret = compare_tf_trt_result(tf_result, trt_result) else: for i in range(len(trt_result)): ret &= compare_tf_trt_result(tf_result[i], trt_result[i]) assert ret, "result check False" return ret def compare_tf_trt_result(tf_result, trt_result): print(tf_result) print("================") print(trt_result) tf_reshape = np.array(tf_result).reshape(-1) trt_reshape = np.array(trt_result).reshape(-1) if ( isinstance(tf_result, list) and isinstance(trt_result, list) and len(tf_result) > 0 and len(trt_result) > 0 and np.isnan(tf_result[0]).any() and np.isnan(trt_result[0]).any() ): return True elif ( isinstance(tf_result, list) and isinstance(trt_result, list) and len(tf_result) > 0 and len(trt_result) > 0 and np.isinf(tf_result[0]).any() and np.isinf(trt_result[0]).any() ): return True print( "trt cross_check output ", str(np.allclose(tf_reshape.flatten(), trt_reshape.flatten(), atol=1e-5)), flush=True, ) return bool(np.allclose(tf_reshape.flatten(), trt_reshape.flatten(), atol=1e-5)) def get_onnxruntime_output(model, inputs): import onnxruntime.backend rep = onnxruntime.backend.prepare(model, "CPU") if isinstance(inputs, list) and len(inputs) == 1: inp = inputs[0] else: inp = inputs output = rep.run(inp) # Unpack output if there's only a single value. if len(output) == 1: output = output[0] return output def verify_with_ort_with_trt( model, inputs, op_name, opset=None, dtype="float32", opt_level=1, np_result=None, use_vm=False, ): if opset is not None: model.opset_import[0].version = opset onnx.save(model, INPUT_MODEL_FILE) if np_result is None: ort_result = get_onnxruntime_output(model, inputs) else: ort_result = np_result in_data = convert_to_list(inputs) ops_name = [op_name] trt_plugin_name = onnx2plugin( INPUT_MODEL_FILE, OUTPUT_MODEL_FILE, node_names=ops_name ) for plugin_name in trt_plugin_name: ctypes.cdll.LoadLibrary("./trt_plugin/lib/{}.so".format(plugin_name)) cuda.Device(0).make_context() with trt.Builder(TRT_LOGGER) as builder, builder.create_network( 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) ) as network, trt.OnnxParser(network, TRT_LOGGER) as parser: builder.max_batch_size = BATCH_SIZE builder_config = builder.create_builder_config() builder_config.max_workspace_size = 1 << 30 with open(OUTPUT_MODEL_FILE, "rb") as model: # parse onnx model parser.parse(model.read()) for i in range(parser.num_errors): print(parser.get_error(i)) engine = builder.build_engine(network, builder_config) if engine is None: print("[ERROR] engine is None") exit(-1) inputs, outputs, bindings, stream = allocate_buffers(engine) with engine.create_execution_context() as context: for i in range(len(inputs)): input_data = in_data[i].ravel() np.copyto(inputs[i].host, input_data) trt_result = do_inference( context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream, batch_size=BATCH_SIZE, ) cuda.Context.pop() ret = True if len(trt_result) == 1: ret = compare_tf_trt_result(ort_result, trt_result) else: for i in range(len(trt_result)): ret &= compare_tf_trt_result(ort_result[i], trt_result[i]) assert ret, "result check False" return ret def make_constant_node(name, data_type, dims, vals): return helper.make_node( "Constant", inputs=[], outputs=[name], value=helper.make_tensor(name=name, data_type=data_type, dims=dims, vals=vals), ) def make_onnx_model(node, inputs, outputs, name, **kwargs): present_inputs = [x for x in node.input if (x != "")] present_outputs = [x for x in node.output if (x != "")] input_type_protos = [None] * len(inputs) if "input_type_protos" in kwargs: input_type_protos = kwargs[str("input_type_protos")] del kwargs[str("input_type_protos")] output_type_protos = [None] * len(outputs) if "output_type_protos" in kwargs: output_type_protos = kwargs[str("output_type_protos")] del kwargs[str("output_type_protos")] inputs_vi = [ _extract_value_info(arr, arr_name, input_type) for arr, arr_name, input_type in zip(inputs, present_inputs, input_type_protos) ] outputs_vi = [ _extract_value_info(arr, arr_name, output_type) for arr, arr_name, output_type in zip( outputs, present_outputs, output_type_protos ) ] graph = helper.make_graph( nodes=[node], name=name, inputs=inputs_vi, outputs=outputs_vi ) kwargs[str("producer_name")] = "TRTPluginAutoGen-test" model = onnx.helper.make_model(graph, **kwargs) return model def op_expect(node, inputs, outputs, op_type, op_name, np_result=None): model = make_onnx_model( node, inputs=inputs, outputs=outputs, name="test_{}".format(op_type) ) verify_with_ort_with_trt(model, inputs, op_name, np_result=np_result) # ==================================================================================== # ---UnitTest # ==================================================================================== def test_abs(): op_name = "abs_0" op_type = "Abs" x = np.random.randn(3, 4, 5).astype(np.float32) y = abs(x) node = helper.make_node(op_type, inputs=["x"], outputs=["y"], name=op_name) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_acos(): op_name = "acos_0" op_type = "Acos" node = onnx.helper.make_node("Acos", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-0.5, 0, 0.5]).astype(np.float32) y = np.arccos(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "acos_1" op_type = "Acos" node = onnx.helper.make_node("Acos", inputs=["x"], outputs=["y"], name=op_name) x = np.random.rand(3, 4, 5).astype(np.float32) y = np.arccos(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_and(): op_name = "and_0" op_type = "And" node = onnx.helper.make_node( "And", inputs=["x", "y"], outputs=["and"], name=op_name ) # 2d x = (np.random.randn(3, 4) > 0).astype(bool) y = (np.random.randn(3, 4) > 0).astype(bool) z = np.logical_and(x, y) op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name = "and_1" op_type = "And" node = onnx.helper.make_node( "And", inputs=["x", "y"], outputs=["and"], name=op_name ) x = (np.random.randn(3, 4, 5) > 0).astype(bool) y = (np.random.randn(3, 4, 5) > 0).astype(bool) z = np.logical_and(x, y) op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name = "and_2" op_type = "And" node = onnx.helper.make_node( "And", inputs=["x", "y"], outputs=["and"], name=op_name ) x = (np.random.randn(3, 4, 5, 6) > 0).astype(bool) y = (np.random.randn(3, 4, 5, 6) > 0).astype(bool) z = np.logical_and(x, y) op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) def test_add(): op_name = "add_0" op_type = "Add" node = onnx.helper.make_node( "Add", inputs=["x", "y"], outputs=["sum"], name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.randn(3, 4, 5).astype(np.float32) op_expect(node, inputs=[x, y], outputs=[x + y], op_type=op_type, op_name=op_name) op_name = "add_1" op_type = "Add" node = onnx.helper.make_node( "Add", inputs=["x", "y"], outputs=["sum"], name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.randn(5).astype(np.float32) op_expect(node, inputs=[x, y], outputs=[x + y], op_type=op_type, op_name=op_name) def test_argmax(): op_type = "ArgMax" op_name = "argmax_0" data = np.array([[2, 1, 3, 10], [3, 4, 5, 6]], dtype=np.float32) keepdims = 1 axis = -1 node = onnx.helper.make_node( "ArgMax", inputs=["data"], outputs=["result"], keepdims=keepdims, axis=axis, name=op_name, ) # result: [[1], [1]] from onnx.backend.test.case.node.argmax import argmax_use_numpy result = argmax_use_numpy(data, keepdims=keepdims, axis=axis) op_expect(node, inputs=[data], outputs=[result], op_type=op_type, op_name=op_name) op_name = "argmax_1" node = onnx.helper.make_node( "ArgMax", inputs=["data"], outputs=["result"], keepdims=keepdims, axis=axis, name=op_name, ) data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32) # result's shape: [1, 3, 4] result = argmax_use_numpy(data, keepdims=keepdims, axis=axis) op_expect(node, inputs=[data], outputs=[result], op_type=op_type, op_name=op_name) def test_argmin(): op_type = "ArgMin" op_name = "argmin_0" data = np.array([[2, 1], [3, 10]], dtype=np.float32) keepdims = 1 axis = 1 node = onnx.helper.make_node( "ArgMin", inputs=["data"], outputs=["result"], keepdims=keepdims, axis=axis, name=op_name, ) # result: [[1], [1]] from onnx.backend.test.case.node.argmin import argmin_use_numpy result = argmin_use_numpy(data, keepdims=keepdims, axis=axis) op_expect(node, inputs=[data], outputs=[result], op_type=op_type, op_name=op_name) def test_asin(): op_name = "asin_0" op_type = "Asin" node = onnx.helper.make_node("Asin", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-0.5, 0, 0.5]).astype(np.float32) y = np.arcsin(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "asin_1" op_type = "Asin" node = onnx.helper.make_node("Asin", inputs=["x"], outputs=["y"], name=op_name) x = np.random.rand(3, 4, 5).astype(np.float32) y = np.arcsin(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_asinh(): op_name = "asinh_0" op_type = "Asinh" node = onnx.helper.make_node("Asinh", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-1, 0, 1]).astype(np.float32) y = np.arcsinh(x) # expected output [-0.88137358, 0., 0.88137358] op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "asinh_1" op_type = "Asinh" node = onnx.helper.make_node("Asinh", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.arcsinh(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_atan(): op_type = "Atan" op_name = "atan_0" node = onnx.helper.make_node("Atan", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-1, 0, 1]).astype(np.float32) y = np.arctan(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_type = "Atan" op_name = "atan_1" node = onnx.helper.make_node("Atan", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.arctan(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_atanh(): op_name = "atanh_0" op_type = "Atanh" node = onnx.helper.make_node("Atanh", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-0.5, 0, 0.5]).astype(np.float32) y = np.arctanh(x) # expected output [-0.54930615, 0., 0.54930615] op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "atanh_1" op_type = "Atanh" node = onnx.helper.make_node("Atanh", inputs=["x"], outputs=["y"], name=op_name) x = np.random.uniform(0.0, 1.0, (3, 4, 5)).astype(np.float32) y = np.arctanh(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_averagepool(): op_name = "averagepool_1d_default" op_type = "AveragePool" """ input_shape: [1, 3, 32] output_shape: [1, 3, 31] """ node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[2], name=op_name ) x = np.random.randn(1, 3, 32).astype(np.float32) x_shape = np.shape(x) kernel_shape = [2] strides = [1] from onnx.backend.test.case.node.pool_op_common import get_output_shape, pool out_shape = get_output_shape("VALID", x_shape[2:], kernel_shape, strides) padded = x y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0], "AVG") op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "averagepool_2d_ceil" op_type = "AveragePool" node = onnx.helper.make_node( "AveragePool", inputs=["x"], outputs=["y"], kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True, name=op_name, ) x = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ] ).astype(np.float32) y = np.array([[[[6, 7.5], [12, 13.5]]]]).astype(np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_batchnormalization(): op_name = "batchnormalization_0" op_type = "BatchNormalization" # input size: (2, 3, 4, 5) x = np.random.randn(2, 3, 4, 5).astype(np.float32) s = np.random.randn(3).astype(np.float32) bias = np.random.randn(3).astype(np.float32) mean = np.random.randn(3).astype(np.float32) var = np.random.rand(3).astype(np.float32) from onnx.backend.test.case.node.batchnorm import _batchnorm_test_mode y = _batchnorm_test_mode(x, s, bias, mean, var).astype(np.float32) node = onnx.helper.make_node( "BatchNormalization", inputs=["x", "s", "bias", "mean", "var"], outputs=["y"], name=op_name, ) # output size: (2, 3, 4, 5) op_expect( node, inputs=[x, s, bias, mean, var], outputs=[y], op_type=op_type, op_name=op_name, ) def test_ceil(): op_name = "ceil_0" op_type = "Ceil" node = onnx.helper.make_node("Ceil", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-1.5, 1.2]).astype(np.float32) y = np.ceil(x) # expected output [-1., 2.] op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "ceil_1" op_type = "Ceil" node = onnx.helper.make_node("Ceil", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.ceil(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_celu(): op_name = "celu_0" op_type = "Celu" alpha = 2.0 node = onnx.helper.make_node( "Celu", inputs=["X"], outputs=["Y"], alpha=alpha, name=op_name ) input_data = np.array( [ [ [[0.8439683], [0.5665144], [0.05836735]], [[0.02916367], [0.12964272], [0.5060197]], [[0.79538304], [0.9411346], [0.9546573]], ], [ [[0.17730942], [0.46192095], [0.26480448]], [[0.6746842], [0.01665257], [0.62473077]], [[0.9240844], [0.9722341], [0.11965699]], ], [ [[0.41356155], [0.9129373], [0.59330076]], [[0.81929934], [0.7862604], [0.11799799]], [[0.69248444], [0.54119414], [0.07513223]], ], ], dtype=np.float32, ) # Calculate expected output data positive_input = np.maximum(0, input_data) negative_input = np.minimum(0, alpha * (np.exp(input_data / alpha) - 1)) expected_output = positive_input + negative_input op_expect( node, inputs=[input_data], outputs=[expected_output], op_type=op_type, op_name=op_name, ) def test_clip(): op_name = "Clip_0" op_type = "Clip" node = onnx.helper.make_node( "Clip", inputs=["x", "min", "max"], outputs=["y"], name=op_name ) x = np.array([-2, 0, 2]).astype(np.float32) min_val = np.array([-1.0]).astype(np.float32) # .float32(-1.0) max_val = np.array([1.0]).astype(np.float32) # .float32(1.0) y = np.clip(x, min_val, max_val) # expected output [-1., 0., 1.] op_expect( node, inputs=[x, min_val, max_val], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "Clip_1" op_type = "Clip" node = onnx.helper.make_node( "Clip", inputs=["x", "min", "max"], outputs=["y"], name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, min_val, max_val) op_expect( node, inputs=[x, min_val, max_val], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "Clip_2" op_type = "Clip" node = onnx.helper.make_node( "Clip", inputs=["x", "min", "max"], outputs=["y"], name=op_name ) min_val = np.array([-5.0]).astype(np.float32) # .float32(-1.0) max_val = np.array([5.0]).astype(np.float32) # .float32(1.0) op_name = "Clip_3" op_type = "Clip" node = onnx.helper.make_node( "Clip", inputs=["x", "min", "max"], outputs=["y"], name=op_name ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.array([-1, 0, 1]).astype(np.float32) op_expect( node, inputs=[x, min_val, max_val], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "Clip_4" op_type = "Clip" node = onnx.helper.make_node( "Clip", inputs=["x", "min", "max"], outputs=["y"], name=op_name ) x = np.array([-6, 0, 6]).astype(np.float32) y = np.array([-5, 0, 5]).astype(np.float32) op_expect( node, inputs=[x, min_val, max_val], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "Clip_5" op_type = "Clip" node = onnx.helper.make_node( "Clip", inputs=["x", "min", "max"], outputs=["y"], name=op_name ) x = np.array([-1, 0, 6]).astype(np.float32) y = np.array([-1, 0, 5]).astype(np.float32) op_expect( node, inputs=[x, min_val, max_val], outputs=[y], op_type=op_type, op_name=op_name, ) def test_concat(): test_cases = { "1d": ([1, 2], [3, 4]), "2d": ([[1, 2], [3, 4]], [[5, 6], [7, 8]]), "3d": ( [[[1, 2], [3, 4]], [[5, 6], [7, 8]]], [[[9, 10], [11, 12]], [[13, 14], [15, 16]]], ), } # type: Dict[Text, Sequence[Any]] for test_case, values_ in test_cases.items(): values = [np.asarray(v, dtype=np.float32) for v in values_] for i in range(len(values[0].shape)): op_name = "concat_{}_{}".format(test_case, i) op_type = "Concat" in_args = ["value" + str(k) for k in range(len(values))] node = onnx.helper.make_node( "Concat", inputs=[s for s in in_args], outputs=["output"], axis=i, name=op_name, ) output = np.concatenate(values, i) op_expect( node, inputs=[v for v in values], outputs=[output], op_type=op_type, op_name=op_name, ) for i in range(-len(values[0].shape), 0): op_name = "concat_{}_1_{}".format(test_case, abs(i)) op_type = "Concat" in_args = ["value" + str(k) for k in range(len(values))] node = onnx.helper.make_node( "Concat", inputs=[s for s in in_args], outputs=["output"], axis=i, name=op_name, ) output = np.concatenate(values, i) op_expect( node, inputs=[v for v in values], outputs=[output], op_type=op_type, op_name=op_name, ) def test_conv(): # ------Conv op_name, op_type = "test_basic_conv_with_padding", "Conv" x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], # (1, 1, 5, 5) input tensor [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], ] ] ] ).astype(np.float32) #NOCC:invalid-name(其他:onnx example) W = np.array( [ [ [ [1.0, 1.0, 1.0], # (1, 1, 3, 3) tensor for convolution weights [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) # Convolution with padding node_with_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], # Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1 pads=[1, 1, 1, 1], name=op_name, ) y_with_padding = np.array( [ [ [ [12.0, 21.0, 27.0, 33.0, 24.0], # (1, 1, 5, 5) output tensor [33.0, 54.0, 63.0, 72.0, 51.0], [63.0, 99.0, 108.0, 117.0, 81.0], [93.0, 144.0, 153.0, 162.0, 111.0], [72.0, 111.0, 117.0, 123.0, 84.0], ] ] ] ).astype(np.float32) op_expect( node_with_padding, inputs=[x, W], outputs=[y_with_padding], op_type=op_type, op_name=op_name, ) op_name, op_type = "test_basic_conv_without_padding", "Conv" # Convolution without padding node_without_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], # Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1 pads=[0, 0, 0, 0], name=op_name, ) y_without_padding = np.array( [ [ [ [54.0, 63.0, 72.0], # (1, 1, 3, 3) output tensor [99.0, 108.0, 117.0], [144.0, 153.0, 162.0], ] ] ] ).astype(np.float32) op_expect( node_without_padding, inputs=[x, W], outputs=[y_without_padding], op_type=op_type, op_name=op_name, ) # conv_with_autopad_same op_name, op_type = "test_conv_with_autopad_same", "Conv" x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], # (1, 1, 5, 5) input tensor [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], ] ] ] ).astype(np.float32) #NOCC:invalid-name(其他:onnx example) W = np.array( [ [ [ [1.0, 1.0, 1.0], # (1, 1, 3, 3) tensor for convolution weights [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) # Convolution with auto_pad='SAME_LOWER' and strides=2 node = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], auto_pad="SAME_LOWER", kernel_shape=[3, 3], strides=[2, 2], name=op_name, ) y = np.array( [[[[12.0, 27.0, 24.0], [63.0, 108.0, 81.0], [72.0, 117.0, 84.0]]]] ).astype(np.float32) op_expect(node, inputs=[x, W], outputs=[y], op_type=op_type, op_name=op_name) # conv_with_strides op_name, op_type = "test_conv_with_strides_padding", "Conv" x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], # (1, 1, 7, 5) input tensor [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], [25.0, 26.0, 27.0, 28.0, 29.0], [30.0, 31.0, 32.0, 33.0, 34.0], ] ] ] ).astype(np.float32) #NOCC:invalid-name(其他:onnx example) W = np.array( [ [ [ [1.0, 1.0, 1.0], # (1, 1, 3, 3) tensor for convolution weights [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) # Convolution with strides=2 and padding node_with_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[ 2, 2, ], # Default values for other attributes: dilations=[1, 1], groups=1 name=op_name, ) y_with_padding = np.array( [ [ [ [12.0, 27.0, 24.0], # (1, 1, 4, 3) output tensor [63.0, 108.0, 81.0], [123.0, 198.0, 141.0], [112.0, 177.0, 124.0], ] ] ] ).astype(np.float32) op_expect( node_with_padding, inputs=[x, W], outputs=[y_with_padding], op_type=op_type, op_name=op_name, ) op_name = "test_conv_with_strides_no_padding" # Convolution with strides=2 and no padding node_without_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[ 2, 2, ], # Default values for other attributes: dilations=[1, 1], groups=1 name=op_name, ) y_without_padding = np.array( [[[[54.0, 72.0], [144.0, 162.0], [234.0, 252.0]]]] # (1, 1, 3, 2) output tensor ).astype(np.float32) op_expect( node_without_padding, inputs=[x, W], outputs=[y_without_padding], op_type=op_type, op_name=op_name, ) op_name = "test_conv_with_strides_and_asymmetric_padding" # Convolution with strides=2 and padding only along one dimension (the H dimension in NxCxHxW tensor) node_with_asymmetric_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], pads=[1, 0, 1, 0], strides=[ 2, 2, ], # Default values for other attributes: dilations=[1, 1], groups=1 name=op_name, ) y_with_asymmetric_padding = np.array( [ [ [ [21.0, 33.0], # (1, 1, 4, 2) output tensor [99.0, 117.0], [189.0, 207.0], [171.0, 183.0], ] ] ] ).astype(np.float32) op_expect( node_with_asymmetric_padding, inputs=[x, W], outputs=[y_with_asymmetric_padding], op_type=op_type, op_name=op_name, ) def test_convtranspose(): op_name, op_type = "test_convtranspose", "ConvTranspose" x = np.array( [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] # (1, 1, 3, 3) ).astype(np.float32) #NOCC:invalid-name(其他:onnx example) W = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], # (1, 2, 3, 3) [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"], name=op_name) y = np.array( [ [ [ [0.0, 1.0, 3.0, 3.0, 2.0], # (1, 2, 5, 5) [3.0, 8.0, 15.0, 12.0, 7.0], [9.0, 21.0, 36.0, 27.0, 15.0], [9.0, 20.0, 33.0, 24.0, 13.0], [6.0, 13.0, 21.0, 15.0, 8.0], ], [ [0.0, 1.0, 3.0, 3.0, 2.0], [3.0, 8.0, 15.0, 12.0, 7.0], [9.0, 21.0, 36.0, 27.0, 15.0], [9.0, 20.0, 33.0, 24.0, 13.0], [6.0, 13.0, 21.0, 15.0, 8.0], ], ] ] ).astype(np.float32) op_expect(node, inputs=[x, W], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_convtranspose_1d", "ConvTranspose" x = np.array([[[0.0, 1.0, 2.0]]]).astype(np.float32) # (1, 1, 3) #NOCC:invalid-name(其他:onnx example) W = np.array([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]).astype(np.float32) # (1, 2, 3) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"], name=op_name) y = np.array( [[[0.0, 1.0, 3.0, 3.0, 2.0], [0.0, 1.0, 3.0, 3.0, 2.0]]] # (1, 2, 5) ).astype(np.float32) op_expect(node, inputs=[x, W], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_convtranspose_3d", "ConvTranspose" x = np.array( [ [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], # (1, 1, 3, 4, 5) [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], ], [ [20.0, 21.0, 22.0, 23.0, 24.0], [25.0, 26.0, 27.0, 28.0, 29.0], [30.0, 31.0, 32.0, 33.0, 34.0], [35.0, 36.0, 37.0, 38.0, 39.0], ], [ [40.0, 41.0, 42.0, 43.0, 44.0], [45.0, 46.0, 47.0, 48.0, 49.0], [50.0, 51.0, 52.0, 53.0, 54.0], [55.0, 56.0, 57.0, 58.0, 59.0], ], ] ] ] ).astype(np.float32) #NOCC:invalid-name(其他:onnx example) W = np.array( [ [ [ [ [1.0, 1.0, 1.0], # (1, 2, 3, 3, 3) [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ], [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ], ] ] ).astype(np.float32) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"], name=op_name) y = np.array( [ [ [ [ [0.0, 1.0, 3.0, 6.0, 9.0, 7.0, 4.0], # (1, 2, 5, 6, 7) [5.0, 12.0, 21.0, 27.0, 33.0, 24.0, 13.0], [15.0, 33.0, 54.0, 63.0, 72.0, 51.0, 27.0], [30.0, 63.0, 99.0, 108.0, 117.0, 81.0, 42.0], [25.0, 52.0, 81.0, 87.0, 93.0, 64.0, 33.0], [15.0, 31.0, 48.0, 51.0, 54.0, 37.0, 19.0], ], [ [20.0, 42.0, 66.0, 72.0, 78.0, 54.0, 28.0], [50.0, 104.0, 162.0, 174.0, 186.0, 128.0, 66.0], [90.0, 186.0, 288.0, 306.0, 324.0, 222.0, 114.0], [120.0, 246.0, 378.0, 396.0, 414.0, 282.0, 144.0], [90.0, 184.0, 282.0, 294.0, 306.0, 208.0, 106.0], [50.0, 102.0, 156.0, 162.0, 168.0, 114.0, 58.0], ], [ [60.0, 123.0, 189.0, 198.0, 207.0, 141.0, 72.0], [135.0, 276.0, 423.0, 441.0, 459.0, 312.0, 159.0], [225.0, 459.0, 702.0, 729.0, 756.0, 513.0, 261.0], [270.0, 549.0, 837.0, 864.0, 891.0, 603.0, 306.0], [195.0, 396.0, 603.0, 621.0, 639.0, 432.0, 219.0], [105.0, 213.0, 324.0, 333.0, 342.0, 231.0, 117.0], ], [ [60.0, 122.0, 186.0, 192.0, 198.0, 134.0, 68.0], [130.0, 264.0, 402.0, 414.0, 426.0, 288.0, 146.0], [210.0, 426.0, 648.0, 666.0, 684.0, 462.0, 234.0], [240.0, 486.0, 738.0, 756.0, 774.0, 522.0, 264.0], [170.0, 344.0, 522.0, 534.0, 546.0, 368.0, 186.0], [90.0, 182.0, 276.0, 282.0, 288.0, 194.0, 98.0], ], [ [40.0, 81.0, 123.0, 126.0, 129.0, 87.0, 44.0], [85.0, 172.0, 261.0, 267.0, 273.0, 184.0, 93.0], [135.0, 273.0, 414.0, 423.0, 432.0, 291.0, 147.0], [150.0, 303.0, 459.0, 468.0, 477.0, 321.0, 162.0], [105.0, 212.0, 321.0, 327.0, 333.0, 224.0, 113.0], [55.0, 111.0, 168.0, 171.0, 174.0, 117.0, 59.0], ], ], [ [ [0.0, 1.0, 3.0, 6.0, 9.0, 7.0, 4.0], [5.0, 12.0, 21.0, 27.0, 33.0, 24.0, 13.0], [15.0, 33.0, 54.0, 63.0, 72.0, 51.0, 27.0], [30.0, 63.0, 99.0, 108.0, 117.0, 81.0, 42.0], [25.0, 52.0, 81.0, 87.0, 93.0, 64.0, 33.0], [15.0, 31.0, 48.0, 51.0, 54.0, 37.0, 19.0], ], [ [20.0, 42.0, 66.0, 72.0, 78.0, 54.0, 28.0], [50.0, 104.0, 162.0, 174.0, 186.0, 128.0, 66.0], [90.0, 186.0, 288.0, 306.0, 324.0, 222.0, 114.0], [120.0, 246.0, 378.0, 396.0, 414.0, 282.0, 144.0], [90.0, 184.0, 282.0, 294.0, 306.0, 208.0, 106.0], [50.0, 102.0, 156.0, 162.0, 168.0, 114.0, 58.0], ], [ [60.0, 123.0, 189.0, 198.0, 207.0, 141.0, 72.0], [135.0, 276.0, 423.0, 441.0, 459.0, 312.0, 159.0], [225.0, 459.0, 702.0, 729.0, 756.0, 513.0, 261.0], [270.0, 549.0, 837.0, 864.0, 891.0, 603.0, 306.0], [195.0, 396.0, 603.0, 621.0, 639.0, 432.0, 219.0], [105.0, 213.0, 324.0, 333.0, 342.0, 231.0, 117.0], ], [ [60.0, 122.0, 186.0, 192.0, 198.0, 134.0, 68.0], [130.0, 264.0, 402.0, 414.0, 426.0, 288.0, 146.0], [210.0, 426.0, 648.0, 666.0, 684.0, 462.0, 234.0], [240.0, 486.0, 738.0, 756.0, 774.0, 522.0, 264.0], [170.0, 344.0, 522.0, 534.0, 546.0, 368.0, 186.0], [90.0, 182.0, 276.0, 282.0, 288.0, 194.0, 98.0], ], [ [40.0, 81.0, 123.0, 126.0, 129.0, 87.0, 44.0], [85.0, 172.0, 261.0, 267.0, 273.0, 184.0, 93.0], [135.0, 273.0, 414.0, 423.0, 432.0, 291.0, 147.0], [150.0, 303.0, 459.0, 468.0, 477.0, 321.0, 162.0], [105.0, 212.0, 321.0, 327.0, 333.0, 224.0, 113.0], [55.0, 111.0, 168.0, 171.0, 174.0, 117.0, 59.0], ], ], ] ] ).astype(np.float32) op_expect(node, inputs=[x, W], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_convtranspose_pads", "ConvTranspose" x = np.array( [[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] # (1, 1, 3, 3) ).astype(np.float32) #NOCC:invalid-name(其他:onnx example) W = np.array( [ [ [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], # (1, 2, 3, 3) [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ] ] ).astype(np.float32) node = onnx.helper.make_node( "ConvTranspose", ["X", "W"], ["Y"], strides=[3, 2], pads=[1, 2, 1, 2], name=op_name, ) y = np.array( [ [ [ [1.0, 1.0, 3.0], # (1, 2, 7, 3) [1.0, 1.0, 3.0], [7.0, 4.0, 9.0], [7.0, 4.0, 9.0], [7.0, 4.0, 9.0], [13.0, 7.0, 15.0], [13.0, 7.0, 15.0], ], [ [1.0, 1.0, 3.0], [1.0, 1.0, 3.0], [7.0, 4.0, 9.0], [7.0, 4.0, 9.0], [7.0, 4.0, 9.0], [13.0, 7.0, 15.0], [13.0, 7.0, 15.0], ], ] ] ).astype(np.float32) op_expect(node, inputs=[x, W], outputs=[y], op_type=op_type, op_name=op_name) def test_cos(): op_name, op_type = "test_cos_example", "Cos" node = onnx.helper.make_node("Cos", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-1, 0, 1]).astype(np.float32) y = np.cos(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_cos", "Cos" node = onnx.helper.make_node("Cos", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.cos(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_cosh(): op_name, op_type = "test_cosh_example", "Cosh" node = onnx.helper.make_node("Cosh", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-1, 0, 1]).astype(np.float32) y = np.cosh(x) # expected output [1.54308069, 1., 1.54308069] op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_cosh", "Cosh" node = onnx.helper.make_node("Cosh", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.cosh(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_depthtospace(): op_name, op_type = "test_depthtospace_crd_mode_example", "DepthToSpace" node = onnx.helper.make_node( "DepthToSpace", inputs=["x"], outputs=["y"], blocksize=2, mode="CRD", name=op_name, ) # (1, 8, 2, 3) input tensor x = np.array( [ [ [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]], [[9.0, 10.0, 11.0], [12.0, 13.0, 14.0]], [[18.0, 19.0, 20.0], [21.0, 22.0, 23.0]], [[27.0, 28.0, 29.0], [30.0, 31.0, 32.0]], [[36.0, 37.0, 38.0], [39.0, 40.0, 41.0]], [[45.0, 46.0, 47.0], [48.0, 49.0, 50.0]], [[54.0, 55.0, 56.0], [57.0, 58.0, 59.0]], [[63.0, 64.0, 65.0], [66.0, 67.0, 68.0]], ] ] ).astype(np.float32) # (1, 2, 4, 6) output tensor y = np.array( [ [ [ [0.0, 9.0, 1.0, 10.0, 2.0, 11.0], [18.0, 27.0, 19.0, 28.0, 20.0, 29.0], [3.0, 12.0, 4.0, 13.0, 5.0, 14.0], [21.0, 30.0, 22.0, 31.0, 23.0, 32.0], ], [ [36.0, 45.0, 37.0, 46.0, 38.0, 47.0], [54.0, 63.0, 55.0, 64.0, 56.0, 65.0], [39.0, 48.0, 40.0, 49.0, 41.0, 50.0], [57.0, 66.0, 58.0, 67.0, 59.0, 68.0], ], ] ] ).astype(np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_depthtospace_example" node = onnx.helper.make_node( "DepthToSpace", inputs=["x"], outputs=["y"], blocksize=2, mode="DCR", name=op_name, ) # (1, 8, 2, 3) input tensor x = np.array( [ [ [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]], [[9.0, 10.0, 11.0], [12.0, 13.0, 14.0]], [[18.0, 19.0, 20.0], [21.0, 22.0, 23.0]], [[27.0, 28.0, 29.0], [30.0, 31.0, 32.0]], [[36.0, 37.0, 38.0], [39.0, 40.0, 41.0]], [[45.0, 46.0, 47.0], [48.0, 49.0, 50.0]], [[54.0, 55.0, 56.0], [57.0, 58.0, 59.0]], [[63.0, 64.0, 65.0], [66.0, 67.0, 68.0]], ] ] ).astype(np.float32) # (1, 2, 4, 6) output tensor y = np.array( [ [ [ [0.0, 18.0, 1.0, 19.0, 2.0, 20.0], [36.0, 54.0, 37.0, 55.0, 38.0, 56.0], [3.0, 21.0, 4.0, 22.0, 5.0, 23.0], [39.0, 57.0, 40.0, 58.0, 41.0, 59.0], ], [ [9.0, 27.0, 10.0, 28.0, 11.0, 29.0], [45.0, 63.0, 46.0, 64.0, 47.0, 65.0], [12.0, 30.0, 13.0, 31.0, 14.0, 32.0], [48.0, 66.0, 49.0, 67.0, 50.0, 68.0], ], ] ] ).astype(np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_div(): op_name, op_type = "test_div_example", "Div" node = onnx.helper.make_node("Div", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.array([3, 4]).astype(np.float32) y = np.array([1, 2]).astype(np.float32) z = x / y # expected output [3., 2.] op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name, op_type = "test_div", "Div" node = onnx.helper.make_node("Div", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.rand(3, 4, 5).astype(np.float32) + 1.0 z = x / y op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name, op_type = "test_div_bcast", "Div" node = onnx.helper.make_node("Div", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.rand(5).astype(np.float32) + 1.0 z = x / y op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) def test_einsum(): op_name, op_type = "test_einsum_batch_diagonal", "Einsum" eqn = "...ii ->...i" node = onnx.helper.make_node( "Einsum", inputs=["x"], outputs=["y"], equation=eqn, name=op_name ) #NOCC:invalid-name(其他:onnx example) X = np.random.randn(3, 5, 5).astype(np.float32) from onnx.backend.test.case.node.einsum import einsum_reference_implementation #NOCC:invalid-name(其他:onnx example) Z = einsum_reference_implementation(eqn, (X,)) op_expect(node, inputs=[X], outputs=[Z], op_type=op_type, op_name=op_name) def test_elu(): op_name, op_type = "test_elu_example", "Elu" node = onnx.helper.make_node( "Elu", inputs=["x"], outputs=["y"], alpha=2.0, name=op_name ) x = np.array([-1, 0, 1]).astype(np.float32) # expected output [-1.2642411, 0., 1.] y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0 op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_elu", "Elu" node = onnx.helper.make_node( "Elu", inputs=["x"], outputs=["y"], alpha=2.0, name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0 op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_elu_default", "Elu" default_alpha = 1.0 node = onnx.helper.make_node("Elu", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * default_alpha op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_erf(): op_name, op_type = "test_erf", "Erf" node = onnx.helper.make_node("Erf", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(1, 3, 32, 32).astype(np.float32) import math y = np.vectorize(math.erf)(x).astype(np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_exp(): op_name, op_type = "test_exp_example", "Exp" node = onnx.helper.make_node("Exp", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-1, 0, 1]).astype(np.float32) y = np.exp(x) # expected output [0.36787945, 1., 2.71828175] op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_exp", "Exp" node = onnx.helper.make_node("Exp", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.exp(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_eyelike(): op_name, op_type = "test_eyelike_populate_off_main_diagonal", "EyeLike" shape = (4, 5) off_diagonal_offset = 1 node = onnx.helper.make_node( "EyeLike", inputs=["x"], outputs=["y"], k=off_diagonal_offset, dtype=onnx.TensorProto.FLOAT, name=op_name, ) x = np.random.randint(0, 100, size=shape, dtype=np.int32) y = np.eye(shape[0], shape[1], k=off_diagonal_offset, dtype=np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_eyelike_with_dtype" shape = (3, 4) node = onnx.helper.make_node( "EyeLike", inputs=["x"], outputs=["y"], dtype=onnx.TensorProto.FLOAT, name=op_name, ) x = np.random.randint(0, 100, size=shape, dtype=np.int32) y = np.eye(shape[0], shape[1], dtype=np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_eyelike_without_dtype" shape = (4, 4) node = onnx.helper.make_node("EyeLike", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randint(0, 100, size=shape, dtype=np.int32) y = np.eye(shape[0], shape[1], dtype=np.int32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_floor(): op_name, op_type = "test_floor_example", "Floor" node = onnx.helper.make_node("Floor", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-1.5, 1.2, 2]).astype(np.float32) y = np.floor(x) # expected output [-2., 1., 2.] op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name, op_type = "test_floor", "Floor" node = onnx.helper.make_node("Floor", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.floor(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def verify_rnn( seq_length, batch_size, input_size, hidden_size, rnn_type="LSTM", use_bias=False, activations=None, alphas=None, betas=None, use_initial_state=False, use_peep=False, linear_before_reset=False, op_name=None, ): if rnn_type == "LSTM": multiplier = 4 elif rnn_type == "GRU": multiplier = 3 else: raise NotImplementedError("%s RNNs not yet supported." % rnn_type) x_np = np.random.uniform(size=(seq_length, batch_size, input_size)).astype( "float32" ) w_np = np.random.uniform(size=(1, multiplier * hidden_size, input_size)).astype( "float32" ) r_np = np.random.uniform(size=(1, multiplier * hidden_size, hidden_size)).astype( "float32" ) input_names = ["X", "W", "R"] input_tensors = [ helper.make_tensor_value_info("X", TensorProto.FLOAT, list(x_np.shape)), helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_np.shape)), helper.make_tensor_value_info("R", TensorProto.FLOAT, list(r_np.shape)), ] input_values = [x_np, w_np, r_np] if use_bias: b_np = np.random.uniform(size=(1, multiplier * 2 * hidden_size)).astype( "float32" ) input_names.append("B") input_tensors.append( helper.make_tensor_value_info( "B", TensorProto.FLOAT, [1, multiplier * 2 * hidden_size] ) ) input_values.append(b_np) if use_initial_state: assert use_bias is True, "Initial states must have bias specified." sequence_np = np.repeat(seq_length, batch_size).astype("int32") input_names.append("sequence_lens") input_tensors.append( helper.make_tensor_value_info( "sequence_lens", TensorProto.INT32, [batch_size] ) ) input_values.append(sequence_np) initial_h_np = np.random.uniform(size=(1, batch_size, hidden_size)).astype( "float32" ) input_names.append("initial_h") input_tensors.append( helper.make_tensor_value_info( "initial_h", TensorProto.FLOAT, [1, batch_size, hidden_size] ) ) input_values.append(initial_h_np) if rnn_type == "LSTM": initial_c_np = np.random.uniform(size=(1, batch_size, hidden_size)).astype( "float32" ) input_names.append("initial_c") input_tensors.append( helper.make_tensor_value_info( "initial_c", TensorProto.FLOAT, [1, batch_size, hidden_size] ) ) input_values.append(initial_c_np) if use_peep and rnn_type == "LSTM": assert ( use_initial_state is True ), "Peepholes require initial state to be specified." p_np = np.random.uniform(size=(1, 3 * hidden_size)).astype("float32") input_names.append("P") input_tensors.append( helper.make_tensor_value_info("P", TensorProto.FLOAT, [1, 3 * hidden_size]) ) input_values.append(p_np) #NOCC:invalid-name(其他:onnx example) Y_shape = [seq_length, 1, batch_size, hidden_size] #NOCC:invalid-name(其他:onnx example) Y_h_shape = [1, batch_size, hidden_size] outputs = ["Y", "Y_h"] graph_outputs = [ helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(Y_shape)), helper.make_tensor_value_info("Y_h", TensorProto.FLOAT, list(Y_h_shape)), ] output_shapes = [Y_shape, Y_h_shape] if rnn_type == "LSTM": #NOCC:invalid-name(其他:onnx example) Y_c_shape = [1, batch_size, hidden_size] outputs.append("Y_c") graph_outputs.append( helper.make_tensor_value_info("Y_c", TensorProto.FLOAT, list(Y_c_shape)) ) output_shapes.append(Y_c_shape) rnn_node = helper.make_node( rnn_type, inputs=input_names, outputs=outputs, hidden_size=hidden_size, name=op_name, ) if activations is not None: activations_attr = helper.make_attribute("activations", activations) rnn_node.attribute.append(activations_attr) if alphas is not None: alphas_attr = helper.make_attribute("activation_alpha", alphas) rnn_node.attribute.append(alphas_attr) if betas is not None: betas_attr = helper.make_attribute("activation_beta", betas) rnn_node.attribute.append(betas_attr) if linear_before_reset and rnn_type == "GRU": lbr_attr = helper.make_attribute("linear_before_reset", 1) rnn_node.attribute.append(lbr_attr) graph = helper.make_graph( [rnn_node], "rnn_test", inputs=input_tensors, outputs=graph_outputs ) model = helper.make_model(graph, producer_name="rnn_test") verify_with_ort_with_trt(model, input_values, op_name) def test_gather(): op_name, op_type = "test_gather_0", "Gather" node = onnx.helper.make_node( "Gather", inputs=["data", "indices"], outputs=["y"], axis=0, name=op_name ) data = np.random.randn(5, 4, 3, 2).astype(np.float32) indices = np.array([0, 1, 3]) y = np.take(data, indices, axis=0) op_expect( node, inputs=[data, indices.astype(np.int64)], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "test_gather_1" node = onnx.helper.make_node( "Gather", inputs=["data", "indices"], outputs=["y"], axis=1, name=op_name ) data = np.random.randn(5, 4, 3, 2).astype(np.float32) indices = np.array([0, 1, 3]) y = np.take(data, indices, axis=1) op_expect( node, inputs=[data, indices.astype(np.int64)], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "test_gather_2d_indices" node = onnx.helper.make_node( "Gather", inputs=["data", "indices"], outputs=["y"], axis=1, name=op_name ) data = np.random.randn(3, 3).astype(np.float32) indices = np.array([[0, 2]]) y = np.take(data, indices, axis=1) op_expect( node, inputs=[data, indices.astype(np.int64)], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "test_gather_negative_indices" node = onnx.helper.make_node( "Gather", inputs=["data", "indices"], outputs=["y"], axis=0, name=op_name ) data = np.arange(10).astype(np.float32) indices = np.array([0, -9, -10]) y = np.take(data, indices, axis=0) # print(y) # [0. 1. 0.] op_expect( node, inputs=[data, indices.astype(np.int64)], outputs=[y], op_type=op_type, op_name=op_name, ) def test_gatherelement(): op_name, op_type = "test_gather_elements_0", "GatherElements" axis = 1 node = onnx.helper.make_node( "GatherElements", inputs=["data", "indices"], outputs=["y"], axis=axis, name=op_name, ) data = np.array([[1, 2], [3, 4]], dtype=np.float32) indices = np.array([[0, 0], [1, 0]], dtype=np.int32) from onnx.backend.test.case.node.gatherelements import gather_elements y = gather_elements(data, indices, axis) # print(y) produces # [[1, 1], # [4, 3]] op_expect( node, inputs=[data, indices.astype(np.int64)], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "test_gather_elements_1" axis = 0 node = onnx.helper.make_node( "GatherElements", inputs=["data", "indices"], outputs=["y"], axis=axis, name=op_name, ) data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) indices = np.array([[1, 2, 0], [2, 0, 0]], dtype=np.int32) y = gather_elements(data, indices, axis) # print(y) produces # [[4, 8, 3], # [7, 2, 3]] op_expect( node, inputs=[data, indices.astype(np.int64)], outputs=[y], op_type=op_type, op_name=op_name, ) op_name = "test_gather_elements_negative_indices" axis = 0 node = onnx.helper.make_node( "GatherElements", inputs=["data", "indices"], outputs=["y"], axis=axis, name=op_name, ) data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) indices = np.array([[-1, -2, 0], [-2, 0, 0]], dtype=np.int32) y = gather_elements(data, indices, axis) # print(y) produces # [[7, 5, 3], # [4, 2, 3]] op_expect( node, inputs=[data, indices.astype(np.int64)], outputs=[y], op_type=op_type, op_name=op_name, ) def test_gathernd(): op_name, op_type = "test_gathernd_example_float32", "GatherND" node = onnx.helper.make_node( "GatherND", inputs=["data", "indices"], outputs=["output"], name=op_name ) data = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=np.float32) indices = np.array([[[0, 1]], [[1, 0]]], dtype=np.int64) from onnx.backend.test.case.node.gathernd import gather_nd_impl output = gather_nd_impl(data, indices, 0) expected_output = np.array([[[2, 3]], [[4, 5]]], dtype=np.float32) assert np.array_equal(output, expected_output) op_expect( node, inputs=[data, indices], outputs=[output], op_type=op_type, op_name=op_name ) op_name = "test_gathernd_example_int32" node = onnx.helper.make_node( "GatherND", inputs=["data", "indices"], outputs=["output"], name=op_name ) data = np.array([[0, 1], [2, 3]], dtype=np.int32) indices = np.array([[0, 0], [1, 1]], dtype=np.int64) output = gather_nd_impl(data, indices, 0) expected_output = np.array([0, 3], dtype=np.int32) assert np.array_equal(output, expected_output) op_expect( node, inputs=[data, indices], outputs=[output], op_type=op_type, op_name=op_name ) op_name = "test_gathernd_example_int32_batch_dim1" node = onnx.helper.make_node( "GatherND", inputs=["data", "indices"], outputs=["output"], batch_dims=1, name=op_name, ) data = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=np.int32) indices = np.array([[1], [0]], dtype=np.int64) output = gather_nd_impl(data, indices, 1) expected_output = np.array([[2, 3], [4, 5]], dtype=np.int32) assert np.array_equal(output, expected_output) op_expect( node, inputs=[data, indices], outputs=[output], op_type=op_type, op_name=op_name ) def test_gemm(): op_name, op_type = "test_gemm_all_attributes", "Gemm" node = onnx.helper.make_node( "Gemm", inputs=["a", "b", "c"], outputs=["y"], alpha=0.25, beta=0.35, transA=1, transB=1, name=op_name, ) a = np.random.ranf([4, 3]).astype(np.float32) b = np.random.ranf([5, 4]).astype(np.float32) c = np.random.ranf([1, 5]).astype(np.float32) from onnx.backend.test.case.node.gemm import gemm_reference_implementation y = gemm_reference_implementation( a, b, c, transA=1, transB=1, alpha=0.25, beta=0.35 ) op_expect(node, inputs=[a, b, c], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_gemm_alpha" node = onnx.helper.make_node( "Gemm", inputs=["a", "b", "c"], outputs=["y"], alpha=0.5, name=op_name ) a = np.random.ranf([3, 5]).astype(np.float32) b = np.random.ranf([5, 4]).astype(np.float32) c = np.zeros([1, 4]).astype(np.float32) y = gemm_reference_implementation(a, b, c, alpha=0.5) op_expect(node, inputs=[a, b, c], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_gemm_beta" node = onnx.helper.make_node( "Gemm", inputs=["a", "b", "c"], outputs=["y"], beta=0.5, name=op_name ) a = np.random.ranf([2, 7]).astype(np.float32) b = np.random.ranf([7, 4]).astype(np.float32) c = np.random.ranf([1, 4]).astype(np.float32) y = gemm_reference_implementation(a, b, c, beta=0.5) op_expect(node, inputs=[a, b, c], outputs=[y], op_type=op_type, op_name=op_name) def test_globalaveragepool(): op_name, op_type = "test_globalaveragepool", "GlobalAveragePool" node = onnx.helper.make_node( "GlobalAveragePool", inputs=["x"], outputs=["y"], name=op_name ) x = np.random.randn(1, 3, 5, 5).astype(np.float32) y = np.mean(x, axis=tuple(range(2, np.ndim(x))), keepdims=True) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_globalaveragepool_precomputed" node = onnx.helper.make_node( "GlobalAveragePool", inputs=["x"], outputs=["y"], name=op_name ) x = np.array( [ [ [ [1, 2, 3], [4, 5, 6], [7, 8, 9], ] ] ] ).astype(np.float32) y = np.array([[[[5]]]]).astype(np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_globalmaxpool(): op_name = "test_globalmaxpool" op_type = "GlobalMaxPool" node = onnx.helper.make_node( "GlobalMaxPool", inputs=["x"], outputs=["y"], name=op_name ) x = np.random.randn(1, 3, 5, 5).astype(np.float32) y = np.max(x, axis=tuple(range(2, np.ndim(x))), keepdims=True) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_globalmaxpool_precomputed" node = onnx.helper.make_node( "GlobalMaxPool", inputs=["x"], outputs=["y"], name=op_name ) x = np.array( [ [ [ [1, 2, 3], [4, 5, 6], [7, 8, 9], ] ] ] ).astype(np.float32) y = np.array([[[[9]]]]).astype(np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_hardsigmoid(): op_name, op_type = "test_hardsigmoid_example", "HardSigmoid" node = onnx.helper.make_node( "HardSigmoid", inputs=["x"], outputs=["y"], alpha=0.5, beta=0.6, name=op_name ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.clip(x * 0.5 + 0.6, 0, 1) # expected output [0.1, 0.6, 1.] op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_hardsigmoid" node = onnx.helper.make_node( "HardSigmoid", inputs=["x"], outputs=["y"], alpha=0.5, beta=0.6, name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x * 0.5 + 0.6, 0, 1) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_hardsigmoid_default" default_alpha = 0.2 default_beta = 0.5 node = onnx.helper.make_node( "HardSigmoid", inputs=["x"], outputs=["y"], name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x * default_alpha + default_beta, 0, 1) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_hardswish(): op_name, op_type = "test_hardswish", "HardSwish" node = onnx.helper.make_node("HardSwish", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) from onnx.backend.test.case.node.hardswish import hardswish y = hardswish(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_hardmax(): op_name, op_type = "test_hardmax_example", "Hardmax" node = onnx.helper.make_node("Hardmax", inputs=["x"], outputs=["y"], name=op_name) x = np.array([[3, 0, 1, 2], [2, 5, 1, 0], [0, 1, 3, 2], [0, 1, 2, 3]]).astype( np.float32 ) # expect result: # [[1. 0. 0. 0.] # [0. 1. 0. 0.] # [0. 0. 1. 0.] # [0. 0. 0. 1.]] from onnx.backend.test.case.node.hardmax import hardmax y = hardmax(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_identity(): op_name, op_type = "test_identity", "Identity" node = onnx.helper.make_node("Identity", inputs=["x"], outputs=["y"], name=op_name) data = np.array( [ [ [ [1, 2], [3, 4], ] ] ], dtype=np.float32, ) op_expect(node, inputs=[data], outputs=[data], op_type=op_type, op_name=op_name) def test_instancenormalization(): op_name, op_type = "test_instancenorm_example", "InstanceNormalization" def _instancenorm_test_mode(x, s, bias, epsilon=1e-5): # type: ignore dims_x = len(x.shape) axis = tuple(range(2, dims_x)) mean = np.mean(x, axis=axis, keepdims=True) var = np.var(x, axis=axis, keepdims=True) dim_ones = (1,) * (dims_x - 2) s = s.reshape(-1, *dim_ones) bias = bias.reshape(-1, *dim_ones) return s * (x - mean) / np.sqrt(var + epsilon) + bias # input size: (1, 2, 1, 3) x = np.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(np.float32) s = np.array([1.0, 1.5]).astype(np.float32) bias = np.array([0, 1]).astype(np.float32) y = _instancenorm_test_mode(x, s, bias).astype(np.float32) node = onnx.helper.make_node( "InstanceNormalization", inputs=["x", "s", "bias"], outputs=["y"], name=op_name ) # output size: (1, 2, 1, 3) op_expect(node, inputs=[x, s, bias], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_instancenorm_epsilon" # input size: (2, 3, 4, 5) x = np.random.randn(2, 3, 4, 5).astype(np.float32) s = np.random.randn(3).astype(np.float32) bias = np.random.randn(3).astype(np.float32) epsilon = 1e-2 y = _instancenorm_test_mode(x, s, bias, epsilon).astype(np.float32) node = onnx.helper.make_node( "InstanceNormalization", inputs=["x", "s", "bias"], outputs=["y"], epsilon=epsilon, name=op_name, ) # output size: (2, 3, 4, 5) op_expect(node, inputs=[x, s, bias], outputs=[y], op_type=op_type, op_name=op_name) def test_leakyrelu(): op_name, op_type = "test_leakyrelu_example", "LeakyRelu" node = onnx.helper.make_node( "LeakyRelu", inputs=["x"], outputs=["y"], alpha=0.1, name=op_name ) x = np.array([-1, 0, 1]).astype(np.float32) # expected output [-0.1, 0., 1.] y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.1 op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_leakyrelu" node = onnx.helper.make_node( "LeakyRelu", inputs=["x"], outputs=["y"], alpha=0.1, name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.1 op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_leakyrelu_default" default_alpha = 0.01 node = onnx.helper.make_node("LeakyRelu", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * default_alpha op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_log(): op_name = "test_log_example" op_type = "Log" node = onnx.helper.make_node("Log", inputs=["x"], outputs=["y"], name=op_name) x = np.array([1, 10]).astype(np.float32) y = np.log(x) # expected output [0., 2.30258512] op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_log" node = onnx.helper.make_node("Log", inputs=["x"], outputs=["y"], name=op_name) x = np.exp(np.random.randn(3, 4, 5).astype(np.float32)) y = np.log(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_logsoftmax(): op_name, op_type = "test_logsoftmax_example_1", "LogSoftmax" node = onnx.helper.make_node( "LogSoftmax", inputs=["x"], outputs=["y"], name=op_name ) x = np.array([[-1, 0, 1]]).astype(np.float32) # expected output # [[-2.4076061 -1.407606 -0.407606 ]] from onnx.backend.test.case.node.logsoftmax import logsoftmax y = logsoftmax(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) x = np.array([[0, 1, 2, 3], [10000, 10001, 10002, 10003]]).astype(np.float32) axis_order = [0, 1, -1] for axis in axis_order: op_name = "test_logsoftmax_axis_{}".format(str(axis + 1)) node = onnx.helper.make_node( "LogSoftmax", inputs=["x"], outputs=["y"], axis=axis, name=op_name ) y = logsoftmax(x, axis=axis) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_matmul(): op_name, op_type = "test_matmul_2d", "MatMul" node = onnx.helper.make_node( "MatMul", inputs=["a", "b"], outputs=["c"], name=op_name ) # 2d a = np.random.randn(3, 4).astype(np.float32) b = np.random.randn(4, 3).astype(np.float32) c = np.matmul(a, b) op_expect(node, inputs=[a, b], outputs=[c], op_type=op_type, op_name=op_name) def test_max(): op_name = "test_max_example" op_type = "Max" data_0 = np.array([3, 2, 1]).astype(np.float32) data_1 = np.array([1, 4, 4]).astype(np.float32) data_2 = np.array([2, 5, 3]).astype(np.float32) result = np.array([3, 5, 4]).astype(np.float32) node = onnx.helper.make_node( "Max", inputs=["data_0", "data_1", "data_2"], outputs=["result"], name=op_name ) op_expect( node, inputs=[data_0, data_1, data_2], outputs=[result], op_type=op_type, op_name=op_name, ) op_name = "test_max_two_inputs" result = np.maximum(data_0, data_1) node = onnx.helper.make_node( "Max", inputs=["data_0", "data_1"], outputs=["result"], name=op_name ) op_expect( node, inputs=[data_0, data_1], outputs=[result], op_type=op_type, op_name=op_name, ) def _test_maxpool_2d_ceil(): op_name, op_type = "test_maxpool_2d_ceil", "MaxPool" node = onnx.helper.make_node( "MaxPool", inputs=["x"], outputs=["y"], kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True, name=op_name, ) x = np.array( [ [ [ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ] ] ] ).astype(np.float32) y = np.array([[[[11, 12], [15, 16]]]]).astype(np.float32) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def _test_maxpool_1d_default(): op_name, op_type = "test_maxpool_1d_default", "MaxPool" node = onnx.helper.make_node( "MaxPool", inputs=["x"], outputs=["y"], kernel_shape=[2], name=op_name ) x = np.random.randn(1, 3, 32).astype(np.float32) x_shape = np.shape(x) kernel_shape = [2] strides = [1] from onnx.backend.test.case.node.pool_op_common import get_output_shape, pool out_shape = get_output_shape("VALID", x_shape[2:], kernel_shape, strides) padded = x y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0], "MAX") op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_maxpool(): _test_maxpool_2d_ceil() _test_maxpool_1d_default() def test_mean(): op_name, op_type = "test_mean_example", "Mean" data_0 = np.array([3, 0, 2]).astype(np.float32) data_1 = np.array([1, 3, 4]).astype(np.float32) data_2 = np.array([2, 6, 6]).astype(np.float32) result = np.array([2, 3, 4]).astype(np.float32) node = onnx.helper.make_node( "Mean", inputs=["data_0", "data_1", "data_2"], outputs=["result"], name=op_name ) op_expect( node, inputs=[data_0, data_1, data_2], outputs=[result], op_type=op_type, op_name=op_name, ) op_name = "test_mean_two_inputs" result = np.divide(np.add(data_0, data_1), 2.0) node = onnx.helper.make_node( "Mean", inputs=["data_0", "data_1"], outputs=["result"], name=op_name ) op_expect( node, inputs=[data_0, data_1], outputs=[result], op_type=op_type, op_name=op_name, ) def test_min(): op_name, op_type = "test_min_example", "Min" data_0 = np.array([3, 2, 1]).astype(np.float32) data_1 = np.array([1, 4, 4]).astype(np.float32) data_2 = np.array([2, 5, 0]).astype(np.float32) result = np.array([1, 2, 0]).astype(np.float32) node = onnx.helper.make_node( "Min", inputs=["data_0", "data_1", "data_2"], outputs=["result"], name=op_name ) op_expect( node, inputs=[data_0, data_1, data_2], outputs=[result], op_type=op_type, op_name=op_name, ) op_name = "test_min_two_inputs" result = np.minimum(data_0, data_1) node = onnx.helper.make_node( "Min", inputs=["data_0", "data_1"], outputs=["result"], name=op_name ) op_expect( node, inputs=[data_0, data_1], outputs=[result], op_type=op_type, op_name=op_name, ) def test_mul(): op_name, op_type = "test_mul_example", "Mul" node = onnx.helper.make_node("Mul", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.float32) z = x * y # expected output [4., 10., 18.] op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name = "test_mul" node = onnx.helper.make_node("Mul", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.randn(3, 4, 5).astype(np.float32) z = x * y op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name = "test_mul_bcast" node = onnx.helper.make_node("Mul", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.randn(5).astype(np.float32) z = x * y op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) def test_neg(): op_name, op_type = "test_neg_example", "Neg" node = onnx.helper.make_node("Neg", inputs=["x"], outputs=["y"], name=op_name) x = np.array([-4, 2]).astype(np.float32) y = np.negative(x) # expected output [4., -2.], op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_neg" node = onnx.helper.make_node("Neg", inputs=["x"], outputs=["y"], name=op_name) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.negative(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_negativeloglikelihoodloss(): op_name, op_type = "test_nllloss_NC", "NegativeLogLikelihoodLoss" reduction = "none" node = onnx.helper.make_node( "NegativeLogLikelihoodLoss", inputs=["input", "target"], outputs=["loss"], reduction=reduction, name=op_name, ) #NOCC:invalid-name(其他:onnx example) N, C = 3, 5 np.random.seed(0) input = np.random.rand(N, C).astype(np.float32) target = np.random.randint(0, high=C, size=(N,)).astype(np.int64) from onnx.backend.test.case.node.negativeloglikelihoodloss import ( compute_negative_log_likelihood_loss, ) negative_log_likelihood_loss = compute_negative_log_likelihood_loss( input, target, weight=None, reduction=reduction ) op_expect( node, inputs=[input, target], outputs=[negative_log_likelihood_loss], op_type=op_type, op_name=op_name, ) def test_prelu(): op_name, op_type = "test_prelu_example", "PRelu" node = onnx.helper.make_node( "PRelu", inputs=["x", "slope"], outputs=["y"], name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) slope = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * slope op_expect(node, inputs=[x, slope], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_prelu_broadcast" node = onnx.helper.make_node( "PRelu", inputs=["x", "slope"], outputs=["y"], name=op_name ) x = np.random.randn(3, 4, 5).astype(np.float32) slope = np.random.randn(5).astype(np.float32) y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * slope op_expect(node, inputs=[x, slope], outputs=[y], op_type=op_type, op_name=op_name) def test_pow(): op_name, op_type = "test_pow_example", "Pow" node = onnx.helper.make_node("Pow", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.float32) z = pow(x, y) # expected output [1., 32., 729.] op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name = "test_pow" node = onnx.helper.make_node("Pow", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.arange(60).reshape(3, 4, 5).astype(np.float32) y = np.random.randn(3, 4, 5).astype(np.float32) z = pow(x, y) op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name = "test_pow_bcast_scalar" node = onnx.helper.make_node("Pow", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.array([1, 2, 3]).astype(np.float32) y = np.array([2]).astype(np.float32) z = pow(x, y) # expected output [1., 4., 9.] op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) op_name = "test_pow_bcast_array" node = onnx.helper.make_node("Pow", inputs=["x", "y"], outputs=["z"], name=op_name) x = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) y = np.array([[1, 2, 3]]).astype(np.float32) # expected output [[1, 4, 27], [4, 25, 216]] z = pow(x, y) op_expect(node, inputs=[x, y], outputs=[z], op_type=op_type, op_name=op_name) def test_reciprocal(): op_name, op_type = "test_reciprocal_example", "Reciprocal" node = onnx.helper.make_node( "Reciprocal", inputs=["x"], outputs=["y"], name=op_name ) x = np.array([-4, 2]).astype(np.float32) y = np.reciprocal(x) # expected output [-0.25, 0.5], op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) op_name = "test_reciprocal" node = onnx.helper.make_node( "Reciprocal", inputs=["x"], outputs=["y"], name=op_name ) x = np.random.rand(3, 4, 5).astype(np.float32) + 0.5 y = np.reciprocal(x) op_expect(node, inputs=[x], outputs=[y], op_type=op_type, op_name=op_name) def test_reducel1(): op_name, op_type = "test_reduce_l1_default_axes_keepdims_example", "ReduceL1" shape = [3, 2, 2] axes = None keepdims = 1 node = onnx.helper.make_node( "ReduceL1", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape) # print(data) # [[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]] reduced = np.sum(a=np.abs(data), axis=axes, keepdims=keepdims == 1) # print(reduced) # [[[78.]]] op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.sum(a=np.abs(data), axis=axes, keepdims=keepdims == 1) op_name = "test_reduce_l1_default_axes_keepdims_random" node = onnx.helper.make_node( "ReduceL1", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) def test_reducel2(): op_name, op_type = "test_reduce_l2_default_axes_keepdims_example", "ReduceL2" shape = [3, 2, 2] axes = None keepdims = 1 node = onnx.helper.make_node( "ReduceL2", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape) # print(data) # [[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]] reduced = np.sqrt(np.sum(a=np.square(data), axis=axes, keepdims=keepdims == 1)) # print(reduced) # [[[25.49509757]]] op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) op_name = "test_reduce_l2_default_axes_keepdims_random" np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.sqrt(np.sum(a=np.square(data), axis=axes, keepdims=keepdims == 1)) node = onnx.helper.make_node( "ReduceL2", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) def test_reducelogsum(): op_name, op_type = "test_reduce_log_sum_default", "ReduceLogSum" node = onnx.helper.make_node( "ReduceLogSum", inputs=["data"], outputs=["reduced"], name=op_name ) data = np.random.ranf([3, 4, 5]).astype(np.float32) reduced = np.log(np.sum(data, keepdims=True)) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) op_name = "test_reduce_log_sum_negative_axes" node = onnx.helper.make_node( "ReduceLogSum", inputs=["data"], outputs=["reduced"], axes=[-2], name=op_name ) data = np.random.ranf([3, 4, 5]).astype(np.float32) reduced = np.log(np.sum(data, axis=(-2), keepdims=True)) # print(reduced) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) op_name = "test_reduce_log_sum_desc_axes" node = onnx.helper.make_node( "ReduceLogSum", inputs=["data"], outputs=["reduced"], axes=[2, 1], keepdims=0, name=op_name, ) data = np.random.ranf([3, 4, 5]).astype(np.float32) reduced = np.log(np.sum(data, axis=(2, 1), keepdims=False)) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) op_name = "test_reduce_log_sum_asc_axes" node = onnx.helper.make_node( "ReduceLogSum", inputs=["data"], outputs=["reduced"], axes=[0, 1], keepdims=0, name=op_name, ) data = np.random.ranf([3, 4, 5]).astype(np.float32) reduced = np.log(np.sum(data, axis=(0, 1), keepdims=False)) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) def test_reducelogsumexp(): op_name, op_type = ( "test_reduce_log_sum_exp_default_axes_keepdims_example", "ReduceLogSumExp", ) shape = [3, 2, 2] axes = None keepdims = 1 node = onnx.helper.make_node( "ReduceLogSumExp", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) data = np.array( [[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32 ) reduced = np.log(np.sum(np.exp(data), axis=axes, keepdims=keepdims == 1)) # print(reduced) # [[[60.00671387]]] op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) op_name = "test_reduce_log_sum_exp_default_axes_keepdims_random" node = onnx.helper.make_node( "ReduceLogSumExp", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.log(np.sum(np.exp(data), axis=axes, keepdims=keepdims == 1)) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) def test_reducemax(): op_name, op_type = "test_reduce_max_default_axes_keepdim_example", "ReduceMax" shape = [3, 2, 2] axes = None keepdims = 1 node = onnx.helper.make_node( "ReduceMax", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) data = np.array( [[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32 ) reduced = np.maximum.reduce(data, axis=axes, keepdims=keepdims == 1) # print(reduced) # [[[60.]]] op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) op_name = "test_reduce_max_default_axes_keepdims_random" node = onnx.helper.make_node( "ReduceMax", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.maximum.reduce(data, axis=axes, keepdims=keepdims == 1) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) def test_reducemean(): op_name, op_type = "test_reduce_mean_default_axes_keepdims_example", "ReduceMean" shape = [3, 2, 2] axes = None keepdims = 1 node = onnx.helper.make_node( "ReduceMean", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) data = np.array( [[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32 ) reduced = np.mean(data, axis=axes, keepdims=keepdims == 1) # print(reduced) # [[[18.25]]] op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) op_name = "test_reduce_mean_default_axes_keepdims_random" node = onnx.helper.make_node( "ReduceMean", inputs=["data"], outputs=["reduced"], keepdims=keepdims, name=op_name, ) np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.mean(data, axis=axes, keepdims=keepdims == 1) op_expect(node, inputs=[data], outputs=[reduced], op_type=op_type, op_name=op_name) def test_reducesum(): batch_size = 32 op_name = "reduce_sum_1" with tf.Graph().as_default(): input_ph = tf.placeholder( dtype=tf.float32, shape=[batch_size, 256], name="input" ) # [batchsize, 10] input_data = np.random.rand(batch_size, 256).astype(np.float32) x = tf.math.reduce_sum(input_ph, axis=1, name=op_name) _ = tf.identity(x, name="output") verify_tf_with_trt_result( [input_data], ["input:0"], ["output:0"], op_name=op_name ) def test_maxunpool(): def verify_maxunpool( data, indices, kernel_shape, strides, output_shape=None, pads=None, op_name=None ): input_names = ["xT", "xI"] input_info = [ helper.make_tensor_value_info("xT", TensorProto.FLOAT, list(data.shape)), helper.make_tensor_value_info("xI", TensorProto.INT64, list(indices.shape)), ] input_values = [data, indices] # input_values = [data ] if output_shape is not None: input_names.append("output_shape") input_info.append( helper.make_tensor_value_info( "output_shape", TensorProto.INT64, list(output_shape.shape) ) ) input_values.append(output_shape) else: # Compute expected output shape output_shape = np.asarray(([1, 1] + list(strides))) * np.asarray( list(data.shape) ) output_shape += np.asarray(([0, 0] + list(kernel_shape))) - np.asarray( ([0, 0] + list(strides)) ) if pads is not None: output_shape -= np.asarray( [0, 0] + list(np.sum(np.reshape(list(pads), [-1, 2]), axis=-1)) ) output_shape = [int(i) for i in output_shape] node = helper.make_node( "MaxUnpool", inputs=input_names, outputs=["y"], kernel_shape=kernel_shape, name=op_name, ) if pads is not None: pad_attr = helper.make_attribute("pads", pads) node.attribute.append(pad_attr) if strides is not None: strides_attr = helper.make_attribute("strides", strides) node.attribute.append(strides_attr) graph = helper.make_graph( [node], "maxunpool_test", inputs=input_info, outputs=[ helper.make_tensor_value_info("y", TensorProto.FLOAT, output_shape) ], ) model = helper.make_model(graph, producer_name="size_test") verify_with_ort_with_trt(model, input_values, op_name=op_name, opset=11) #NOCC:invalid-name(其他:onnx example) xT = np.array([[[[5, 6], [7, 8]]]], dtype=np.float32) #NOCC:invalid-name(其他:onnx example) xI = np.array([[[[0, 7], [13, 15]]]], dtype=np.int64) verify_maxunpool(xT, xI, [2, 2], strides=[2, 2], op_name="max_unpool_1") def _test_forward_one_hot( indices_shape, depth, on_value, off_value, axis, out_dtype, op_name ): inp_array1 = np.random.randint(0, 5, size=indices_shape) with tf.Graph().as_default(): in1 = tf.placeholder( shape=inp_array1.shape, dtype=inp_array1.dtype, name="input" ) out = tf.one_hot( in1, depth, on_value, off_value, axis, dtype=out_dtype, name=op_name ) out = tf.identity(out, "output") verify_tf_with_trt_result([inp_array1], ["input:0"], ["output:0"], op_name) # compare_tf_with_tvm(inp_array1, in1.name, out.name) def test_forward_one_hot(): _test_forward_one_hot((3,), 3, 1.0, 0.0, -1, "float32", "onehot_2") def test_where(): op_name, op_type = "test_where", "Where" node = onnx.helper.make_node( "Where", inputs=["condition", "x", "y"], outputs=["z"], name=op_name ) condition = np.array([[1, 0], [1, 1]], dtype=bool) x = np.array([[1, 2], [3, 4]], dtype=np.float32) y = np.array([[9, 8], [7, 6]], dtype=np.float32) z = np.where(condition, x, y) # expected output [[1, 8], [3, 4]] op_expect( node, inputs=[condition, x, y], outputs=[z], op_type=op_type, op_name=op_name ) def _test_slice_iteration_v1(indata, outdata, starts, ends, axes=None): op_name = "slice_0" if axes: y = helper.make_node( "Slice", ["in"], ["out"], axes=axes, starts=starts, ends=ends, name=op_name ) else: y = helper.make_node( "Slice", ["in"], ["out"], starts=starts, ends=ends, name=op_name ) graph = helper.make_graph( [y], "slice_test", inputs=[ helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape)) ], outputs=[ helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape)) ], ) model = helper.make_model(graph, producer_name="slice_test") # verify_with_ort_with_trt(model, [indata], [outdata.shape], op_name=op_name, opset=1) verify_with_ort_with_trt(model, [indata], op_name=op_name, opset=1) def test_slice(): x = np.random.randn(20, 10, 5).astype(np.float32) _test_slice_iteration_v1(x, x[0:3, 0:10], starts=(0, 0), ends=(3, 10), axes=(0, 1)) def verify_pad_v11(indata, pads, mode="constant", value=0.0): op_name = "pad_001" indata = np.array(indata).astype(np.float32) # numpy expect result len_dim = len(pads) // 2 np_pads = [(pads[i], pads[i + len_dim]) for i in range(len_dim)] pads = np.array(pads) # onnx graph if mode in ["edge", "reflect"]: inputs = [indata] outdata = np.pad(indata, pad_width=np_pads, mode=mode) node = helper.make_node( "Pad", inputs=["input", "pads"], outputs=["output"], mode=mode, name=op_name ) graph = helper.make_graph( [node], "pad_test", inputs=[ helper.make_tensor_value_info( "input", TensorProto.FLOAT, list(indata.shape) ), helper.make_tensor_value_info("pads", TensorProto.INT64, (len(pads),)), ], initializer=[ helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads) ], outputs=[ helper.make_tensor_value_info( "output", TensorProto.FLOAT, list(outdata.shape) ) ], ) else: inputs = [indata] outdata = np.pad( indata, pad_width=np_pads, mode="constant", constant_values=value ) node = helper.make_node( "Pad", inputs=["input", "pads", "constant_value"], outputs=["output"], mode="constant", name=op_name, ) graph = helper.make_graph( [node], "pad_test", inputs=[ helper.make_tensor_value_info( "input", TensorProto.FLOAT, list(indata.shape) ), helper.make_tensor_value_info("pads", TensorProto.INT64, (len(pads),)), helper.make_tensor_value_info( "constant_value", TensorProto.FLOAT, (1,) ), ], initializer=[ helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads), helper.make_tensor("constant_value", TensorProto.FLOAT, (1,), [value]), ], outputs=[ helper.make_tensor_value_info( "output", TensorProto.FLOAT, list(outdata.shape) ) ], ) model = helper.make_model(graph, producer_name="pad_test") verify_with_ort_with_trt(model, inputs, op_name, opset=11) def test_pad(): verify_pad_v11( np.random.randn(2, 2).astype(np.float32), [0, 1, 0, 0], "constant", 0.0 ) def test_batch_norm(): def verify_batch_norm(in_shape): op_name = "batchNorm_{}".format(sum(in_shape)) batchnorm = onnx.helper.make_node( "BatchNormalization", inputs=["x", "scale", "B", "mean", "var"], outputs=["Y"], name=op_name, ) graph = helper.make_graph( [batchnorm], "batchnorm_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info( "scale", TensorProto.FLOAT, [in_shape[1]] ), helper.make_tensor_value_info("B", TensorProto.FLOAT, [in_shape[1]]), helper.make_tensor_value_info("mean", TensorProto.FLOAT, [in_shape[1]]), helper.make_tensor_value_info("var", TensorProto.FLOAT, [in_shape[1]]), ], outputs=[ helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(in_shape)) ], ) model = helper.make_model(graph, producer_name="batchnorm_test") # X, scale, b, mean, var inshapes = [in_shape, in_shape[1], in_shape[1], in_shape[1], in_shape[1]] inputs = [ np.random.uniform(size=ishape).astype("float32") for ishape in inshapes ] verify_with_ort_with_trt(model, inputs, op_name=op_name) # verify_batch_norm([1, 3, 224, 224]) verify_batch_norm([1, 3, 24, 24]) # verify_batch_norm([16, 3, 24, 24]) # verify_batch_norm([16, 16, 24, 24]) # verify_batch_norm([16, 16, 10, 10]) def verify_softmax(inshape, axis, op_name): indata = np.random.uniform(size=inshape).astype(np.float32) outshape = inshape y = helper.make_node("Softmax", ["in"], ["out"], name=op_name) if axis is not None: axis_attr = helper.make_attribute("axis", axis) y.attribute.append(axis_attr) graph = helper.make_graph( [y], "Softmax_test", inputs=[ helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape)) ], outputs=[ helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outshape)) ], ) model = helper.make_model(graph, producer_name="Softmax_test") verify_with_ort_with_trt(model, [indata], op_name=op_name) def test_softmax(): verify_softmax((1, 10), None, op_name="softmax_0") # verify_softmax((1, 10), 1, op_name='softmax_1') def verify_mod(x_shape, y_shape, fmod, out_shape, dtype="float32", op_name=""): x_np = np.random.uniform(-100.0, 100.0, x_shape).astype(dtype) y_np = np.random.uniform(-100.0, 100.0, y_shape).astype(dtype) y_np = np.where(y_np == 0, 1, y_np) # remove 0's to avoid division by zero error mod_node = helper.make_node( "Mod", inputs=["x", "y"], outputs=["z"], fmod=fmod, name=op_name ) onnx_dtype = TensorProto.FLOAT if dtype == "float32" else TensorProto.INT32 graph = helper.make_graph( [mod_node], "mod_test", inputs=[ helper.make_tensor_value_info("x", onnx_dtype, list(x_shape)), helper.make_tensor_value_info("y", onnx_dtype, list(y_shape)), ], outputs=[helper.make_tensor_value_info("z", onnx_dtype, list(out_shape))], ) model = helper.make_model(graph, producer_name="mod_test") # verify_with_ort_with_trt(model, [x_np, y_np], [out_shape], op_name=op_name) verify_with_ort_with_trt(model, [x_np, y_np], op_name=op_name) def test_mod(): # Mod verify_mod( x_shape=[1, 32, 32], y_shape=[1, 1, 32], fmod=0, out_shape=(1, 32, 32), dtype="int32", op_name="tvm_mod", ) def verify_mean(input_dim, op_name): dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) mean_node = helper.make_node( "Mean", ["a_np1", "a_np2", "a_np3"], ["out"], name=op_name ) graph = helper.make_graph( [mean_node], "Mean_test", inputs=[ helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np2", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np3", TensorProto.FLOAT, list(input_dim)), ], outputs=[ helper.make_tensor_value_info("out", TensorProto.FLOAT, list(input_dim)) ], ) model = helper.make_model(graph, producer_name="Mean_test") verify_with_ort_with_trt(model, [a_np1, a_np2, a_np3], op_name=op_name) def test_forward_mean(): verify_mean((1, 3, 20, 20), op_name="mean_111") verify_mean((20, 20), op_name="mean_222") def verify_instance_norm(shape, axis=1, op_name="default"): x = np.random.randn(*shape).astype(np.float32) gamma = np.random.randn(shape[1]).astype(np.float32) beta = np.random.randn(shape[1]).astype(np.float32) epsilon = 1e-5 node = onnx.helper.make_node( "InstanceNormalization", inputs=["x", "gamma", "beta"], outputs=["y"], epsilon=epsilon, name=op_name, ) graph = helper.make_graph( [node], "instance_norm_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(shape)), helper.make_tensor_value_info("gamma", TensorProto.FLOAT, (shape[1],)), helper.make_tensor_value_info("beta", TensorProto.FLOAT, (shape[1],)), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(shape))], ) model = helper.make_model(graph, producer_name="instance_norm_test") verify_with_ort_with_trt(model, [x, gamma, beta], op_name=op_name) def test_instance_norm(): verify_instance_norm((2, 3, 4, 5), op_name="instance_norm") # verify_instance_norm((32, 64, 80, 64)) # verify_instance_norm((8, 6, 5)) # verify_instance_norm((8, 7, 6, 5, 4)) def verify_lrn(shape, nsize, dtype, alpha=None, beta=None, bias=None, op_name=None): in_array = np.random.uniform(size=shape).astype(dtype) if alpha is None and beta is None and bias is None: alpha = 0.0001 beta = 0.75 bias = 1.0 node = onnx.helper.make_node( "LRN", inputs=["in"], outputs=["out"], size=nsize, name=op_name ) else: node = onnx.helper.make_node( "LRN", inputs=["in"], outputs=["out"], alpha=alpha, beta=beta, bias=bias, size=nsize, name=op_name, ) graph = helper.make_graph( [node], "lrn_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(shape))], ) model = helper.make_model(graph, producer_name="lrn_test") verify_with_ort_with_trt(model, [in_array], op_name=op_name) def test_lrn(): verify_lrn((5, 5, 5, 5), 3, "float32", op_name="test_lrn_1") verify_lrn( (5, 5, 5, 5), 3, "float32", alpha=0.0002, beta=0.5, bias=2.0, op_name="test_lrn_2", ) def test_lstm(): # # Different activation testing. # # Default value hardsigmoid. verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=False, activations=["HardSigmoid", "Tanh", "Tanh"], rnn_type="LSTM", op_name="test_lstm_without_bias", ) # # Multiple parameterized activations. # verify_rnn( # seq_length=2, # batch_size=1, # input_size=16, # hidden_size=32, # use_bias=False, # activations=["HardSigmoid", "LeakyRelu", "Tanh"], # alphas=[2.0, 0.5], # betas=[0.3], # rnn_type="LSTM", # ) # # All parameterized with new Affine activation. # verify_rnn( # seq_length=2, # batch_size=1, # input_size=16, # hidden_size=32, # use_bias=False, # activations=["HardSigmoid", "LeakyRelu", "Affine"], # alphas=[2.0, 0.5, 0.8], # betas=[0.3, 0.1], # rnn_type="LSTM", # ) # # Testing with initial state and peepholes # verify_rnn( # seq_length=2, # batch_size=1, # input_size=16, # hidden_size=32, # use_bias=True, # use_initial_state=True, # rnn_type="LSTM", # ) # verify_rnn( # seq_length=2, # batch_size=1, # input_size=16, # hidden_size=32, # use_bias=True, # use_initial_state=True, # use_peep=True, # rnn_type="LSTM", # ) def test_binary_ops(): in_shape = (1, 2, 3, 3) dtype = "float32" out_shape = in_shape def verify_binary_ops(op, x, y, out_type="float32", op_name=None): z = helper.make_node(op, ["in1", "in2"], ["out"], name=op_name) graph = helper.make_graph( [z], "_test", inputs=[ helper.make_tensor_value_info("in1", TensorProto.FLOAT, x.shape), helper.make_tensor_value_info("in2", TensorProto.FLOAT, y.shape), ], outputs=[ helper.make_tensor_value_info( "out", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(out_type)], list(out_shape), ) ], ) model = helper.make_model(graph, producer_name="_test") verify_with_ort_with_trt(model, [x, y], op_name=op_name) x = np.random.uniform(size=in_shape).astype(dtype) y = np.random.uniform(size=in_shape).astype(dtype) z = np.random.uniform(size=(3,)).astype(dtype) verify_binary_ops("Sub", x, y, op_name="sub_1") verify_binary_ops("Sub", x, z, op_name="sub_2") def test_gru(): # No bias. verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=False, rnn_type="GRU", op_name="test_gru_without_bias", ) def verify_reduce_func(func, data, axis, keepdims, op_name=None): inshape = data.shape outshape = np.sum(data, axis=axis, keepdims=keepdims == 1).shape if axis: node = onnx.helper.make_node( func, inputs=["x"], outputs=["y"], axes=axis, keepdims=keepdims, name=op_name, ) else: node = onnx.helper.make_node( func, inputs=["x"], outputs=["y"], keepdims=keepdims, name=op_name ) graph = helper.make_graph( [node], "reduce_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))], ) model = helper.make_model(graph, producer_name="reduce_test") verify_with_ort_with_trt(model, [data], opset=11, op_name=op_name) def test_all_reduce_funcs(): funcs = [ # "ReduceMax", # "ReduceMean", # "ReduceMin", # "ReduceProd", # "ReduceSum", "ReduceSumSquare", "ReduceLogSum", "ReduceLogSumExp", "ReduceL1", "ReduceL2", ] for func in funcs: for keepdims in [True, False]: verify_reduce_func( func, np.random.randn(3, 2, 2).astype(np.float32), axis=None, keepdims=keepdims, op_name=func + str(int(keepdims)) + "1", ) verify_reduce_func( func, np.random.randn(3, 2, 3).astype(np.float32), axis=None, keepdims=keepdims, op_name=func + str(int(keepdims)) + "2", ) verify_reduce_func( func, np.random.randn(3, 3, 3).astype(np.float32), axis=(1,), keepdims=keepdims, op_name=func + str(int(keepdims)) + "3", ) verify_reduce_func( func, np.random.randn(3, 3, 3, 1).astype(np.float32), axis=(1, 2), keepdims=keepdims, op_name=func + str(int(keepdims)) + "4", ) verify_reduce_func( func, np.random.randn(3, 3, 3, 1).astype(np.float32), axis=(1,), keepdims=keepdims, op_name=func + str(int(keepdims)) + "5", ) verify_reduce_func( func, np.random.randn(1, 3, 4, 1).astype(np.float32), axis=(1,), keepdims=keepdims, op_name=func + str(int(keepdims)) + "6", ) def test_roi_align(): def verify_roi_align( input_dims, num_roi, output_height, output_width, sampling_ratio=0, spatial_scale=1.0, mode="avg", op_name=None, ): output_dims = [num_roi, input_dims[1], output_height, output_width] node = helper.make_node( "RoiAlign", inputs=["X", "rois", "batch_indicies"], outputs=["Y"], mode=mode, output_height=output_height, output_width=output_width, sampling_ratio=sampling_ratio, spatial_scale=spatial_scale, name=op_name, ) graph = helper.make_graph( [node], "roialign_test", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, list(input_dims)), helper.make_tensor_value_info("rois", TensorProto.FLOAT, [num_roi, 4]), helper.make_tensor_value_info( "batch_indicies", TensorProto.INT64, [ num_roi, ], ), ], outputs=[ helper.make_tensor_value_info("Y", TensorProto.FLOAT, output_dims) ], ) model = helper.make_model(graph, producer_name="roialign_test") np_data = np.random.uniform(size=input_dims).astype("float32") np_rois = np.random.uniform(size=[num_roi, 4]).astype("float32") * input_dims[2] np_batch_indicies = np.random.randint(low=0, high=input_dims[0], size=num_roi) verify_with_ort_with_trt( model, [np_data, np_rois, np_batch_indicies], op_name=op_name ) verify_roi_align( (1, 4, 16, 16), 32, 7, 7, sampling_ratio=0, spatial_scale=1.0, op_name="roi1" ) verify_roi_align( (4, 4, 16, 32), 32, 7, 7, sampling_ratio=0, spatial_scale=1.0, op_name="roi2" ) verify_roi_align( (1, 8, 16, 16), 32, 7, 7, sampling_ratio=0, spatial_scale=1.0, op_name="roi3" ) verify_roi_align( (1, 4, 8, 8), 32, 7, 7, sampling_ratio=0, spatial_scale=1.0, op_name="roi4" ) verify_roi_align( (1, 4, 16, 16), 16, 5, 7, sampling_ratio=0, spatial_scale=1.0, op_name="roi5" ) verify_roi_align( (1, 4, 16, 12), 8, 7, 3, sampling_ratio=0, spatial_scale=1.0, op_name="roi6" ) verify_roi_align( (1, 4, 16, 16), 32, 7, 7, sampling_ratio=0, spatial_scale=0.5, op_name="roi7" ) verify_roi_align( (3, 4, 12, 16), 32, 7, 7, sampling_ratio=0, spatial_scale=1.5, op_name="roi8" ) verify_roi_align( (5, 4, 16, 14), 32, 7, 7, sampling_ratio=1, spatial_scale=1.0, op_name="roi9" ) verify_roi_align( (1, 4, 16, 16), 32, 7, 7, sampling_ratio=2, spatial_scale=1.0, op_name="roi10" ) # ONNX implementation of roi_align with max mode is incorrect, so we don't compare outputs here. def verify_split( indata, outdatas, split, axis=0, pass_split=True, opset=11, op_name=None ): indata = np.array(indata).astype(np.float32) outdatas = [np.array(o).astype(np.float32) for o in outdatas] inputs = [ helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape)) ] input_names = ["input"] initializer = [] if split: split_index = range(len(split)) else: split_index = range(len(outdatas)) if pass_split: if opset >= 13: input_names.append("split") np_split = np.array(split).astype(np.int64) inputs.append( helper.make_tensor_value_info( "split", TensorProto.INT64, list(np_split.shape) ) ) indata = [indata, np_split] initializer.append( helper.make_tensor( "split", TensorProto.INT64, list(np_split.shape), np_split ) ) node = helper.make_node( "Split", inputs=input_names, outputs=["output_{}".format(i) for i in range(len(split_index))], axis=axis, name=op_name, ) if pass_split and opset < 13: split_attr = helper.make_attribute("split", split) node.attribute.append(split_attr) graph = helper.make_graph( [node], "split_test", inputs=inputs, initializer=initializer, outputs=[ helper.make_tensor_value_info( "output_{}".format(i), TensorProto.FLOAT, list(outdatas[i].shape) ) for i in range(len(split_index)) ], ) model = helper.make_model(graph, producer_name="split_test") verify_with_ort_with_trt(model, indata, opset=opset, op_name=op_name) def test_split(): # 1D verify_split( [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], [2, 2, 2], 0, op_name="split_1", ) verify_split( [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], [2, 2, 2], 0, False, op_name="split_2", ) # 2D verify_split( [[1.0, 2.0, 3.0, 4.0], [7.0, 8.0, 9.0, 10.0]], [[[1.0, 2.0], [7.0, 8.0]], [[3.0, 4.0], [9.0, 10.0]]], [2, 2], 1, op_name="split_4", ) # Split evenly (unstack) verify_split([1, 2, 3], [[1], [2], [3]], False, 0, False, op_name="split_5") # Split a single value to a single value verify_split([1], [[1]], [1], pass_split=True, op_name="split_6") def verify_xor(x_shape, y_shape, op_name=None): x_np = np.random.choice(a=[False, True], size=x_shape).astype("bool") y_np = np.random.choice(a=[False, True], size=y_shape).astype("bool") np_out = np.logical_xor(x_np, y_np) out_shape = np_out.shape xor_node = helper.make_node("Xor", inputs=["x", "y"], outputs=["z"], name=op_name) onnx_dtype = TensorProto.BOOL graph = helper.make_graph( [xor_node], "xor_test", inputs=[ helper.make_tensor_value_info("x", onnx_dtype, list(x_shape)), helper.make_tensor_value_info("y", onnx_dtype, list(y_shape)), ], outputs=[helper.make_tensor_value_info("z", onnx_dtype, list(out_shape))], ) model = helper.make_model(graph, producer_name="xor_test") verify_with_ort_with_trt(model, [x_np, y_np], op_name=op_name) def test_xor(): # XOR verify_xor(x_shape=[1, 32, 32], y_shape=[1, 32, 32], op_name="test_xor_1") # Xor broadcast verify_xor(x_shape=[1, 32, 32], y_shape=[1, 1, 32], op_name="test_xor_2") def verify_if(cond_array, op_name): # Given a bool scalar input cond. # return constant tensor x if cond is True, otherwise return constant tensor y. then_out = onnx.helper.make_tensor_value_info( "then_out", onnx.TensorProto.FLOAT, [5] ) else_out = onnx.helper.make_tensor_value_info( "else_out", onnx.TensorProto.FLOAT, [5] ) x = np.array([1, 2, 3, 4, 5]).astype(np.float32) y = np.array([5, 4, 3, 2, 1]).astype(np.float32) then_const_node = onnx.helper.make_node( "Constant", inputs=[], outputs=["then_out"], value=numpy_helper.from_array(x) ) else_const_node = onnx.helper.make_node( "Constant", inputs=[], outputs=["else_out"], value=numpy_helper.from_array(y) ) then_body = onnx.helper.make_graph([then_const_node], "then_body", [], [then_out]) else_body = onnx.helper.make_graph([else_const_node], "else_body", [], [else_out]) if_node = onnx.helper.make_node( "If", inputs=["cond"], outputs=["res"], then_branch=then_body, else_branch=else_body, name=op_name, ) if_graph = onnx.helper.make_graph( [if_node], "if_outer", inputs=[ onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []), ], outputs=[ onnx.helper.make_tensor_value_info("res", onnx.TensorProto.FLOAT, [5]), ], ) if_model = onnx.helper.make_model(if_graph) if cond_array: cond = np.array([1]).astype("bool") else: cond = np.array(1).astype("bool") verify_with_ort_with_trt(if_model, [cond], op_name=op_name) def test_if(): # Confirm that if works with cond as an array or scalar. verify_if(cond_array=False, op_name="if_test_1") verify_if(cond_array=True, op_name="if_test_2") def test_softmax_cross_entropyloss(): op_name = "test_SoftmaxCrossEntropyLoss" reduction = "mean" ignore_index = np.int64(-1) node = onnx.helper.make_node( "SoftmaxCrossEntropyLoss", inputs=["x", "y", "w"], outputs=["z"], reduction=reduction, ignore_index=ignore_index, name=op_name, ) #NOCC:invalid-name(其他:onnx example) N, C, dim1 = 3, 5, 6
np.random.seed(0)
numpy.random.seed
import os import sys import glob import numpy as np import matplotlib.pyplot as plt import tkinter as tk from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure from . import stabilization class SelectPoles: def __init__(self, Model): """ Plot the measured Frequency Response Functions and computed poles. Picking the poles is done with pressing the SHIFT key + left mouse button. To unselect last pole: SHIFT + right mouse button. To unselect closest pole: SHIFT + middle mouse button. For more information check the HELP menu tab in the chart window. param model: object of pyEMA.Model """ self.Model = Model self.shift_is_held = False self.chart_type = 0 # 0 - stability chart, 1 - cluster diagram self.show_legend = 0 self.frf_plot_type = 'abs' self.Model.nat_freq = [] self.Model.nat_xi = [] self.Model.pole_ind = [] self.root = tk.Tk() self.root.title('Stability Chart') self.fig = Figure(figsize=(20, 8)) # Create axes self.ax2 = self.fig.add_subplot(111) self.ax1 = self.ax2.twinx() self.ax1.grid(True) # Tkinter menu menubar = tk.Menu(self.root) filemenu = tk.Menu(menubar, tearoff=0) filemenu.add_command(label='Save figure', command=self.save_this_figure) menubar.add_cascade(label='File', menu=filemenu) chartmenu = tk.Menu(menubar, tearoff=0) chartmenu.add_command(label='Stability chart', command=lambda: self.toggle_chart_type(0)) chartmenu.add_command(label='Cluster diagram', command=lambda: self.toggle_chart_type(1)) menubar.add_cascade(label="Chart type", menu=chartmenu) mifmenu = tk.Menu(menubar, tearoff=0) mifmenu.add_command(label='Plot mean abs', command=lambda: self.toggle_mif_frf('abs')) mifmenu.add_command(label='Plot all FRFs', command=lambda: self.toggle_mif_frf('all')) menubar.add_cascade(label="FRF plot type", menu=mifmenu) legendmenu = tk.Menu(menubar, tearoff=0) legendmenu.add_command(label='Show legend', command=lambda: self.toggle_legend(1)) legendmenu.add_command(label='Hide legend', command=lambda: self.toggle_legend(0)) menubar.add_cascade(label="Legend", menu=legendmenu) helpmenu = tk.Menu(menubar, tearoff=0) helpmenu.add_command(label='Help', command=self.show_help) menubar.add_cascade(label='Help', menu=helpmenu) self.root.config(menu=menubar) # Program execution self.plot_frf(initial=True) self.get_stability() self.plot_stability() # Integrate matplotib figure canvas = FigureCanvasTkAgg(self.fig, self.root) canvas.get_tk_widget().pack(side='top', fill='both', expand=1) NavigationToolbar2Tk(canvas, self.root) # Connecting functions to event manager self.fig.canvas.mpl_connect('key_press_event', lambda x: self.on_key_press(x)) self.fig.canvas.mpl_connect('key_release_event', lambda x: self.on_key_release(x)) self.fig.canvas.mpl_connect('button_press_event', lambda x: self.on_click(x)) self.root.protocol("WM_DELETE_WINDOW", lambda: self.on_closing()) tk.Button(self.root, text="Quit", command=self.__quit).pack() self.root.mainloop() def plot_frf(self, initial=False): """Reconstruct and plot the Frequency Response Function. This is done on the fly. :param initial: if True, the frf is not computed, only the measured FRFs are shown. """ self.ax2.clear() if self.frf_plot_type == 'abs': self.ax2.semilogy(self.Model.freq, np.average( np.abs(self.Model.frf), axis=0), alpha=0.7, color='k') elif self.frf_plot_type == 'all': self.ax2.semilogy(self.Model.freq, np.abs(self.Model.frf.T), alpha=0.3, color='k') if not initial and len(self.Model.nat_freq) > 0: self.H, self.A = self.Model.get_constants(whose_poles='own', FRF_ind='all', least_squares_type='new') if self.frf_plot_type == 'abs': self.ax2.semilogy(self.Model.freq, np.average( np.abs(self.H), axis=0), color='r', lw=2) elif self.frf_plot_type == 'all': self.ax2.semilogy(self.Model.freq, np.abs(self.H.T), color='r', lw=1) else: x_position = (self.Model.lower + self.Model.upper) / 2 y_position = np.max(np.abs(self.Model.frf)) message = [ 'Select a pole: SHIFT + LEFT mouse button', 'Deselect a pole: SHIFT + RIGHT mouse button' ] self.ax2.text(x_position, y_position, '\n'.join(message), fontsize=12, verticalalignment='top', horizontalalignment='center', bbox=dict(facecolor='lightgreen', edgecolor='lightgreen')) self.ax1.set_xlim([self.Model.lower, self.Model.upper]) self.fig.canvas.draw() def get_stability(self, fn_temp=0.001, xi_temp=0.05): """Get the stability matrix. :param fn_temp: Natural frequency stability crieterion. :param xi_temp: Damping stability criterion. """ Nmax = self.Model.pol_order_high self.fn_temp, self.xi_temp, self.test_fn, self.test_xi = stabilization._stabilization( self.Model.all_poles, Nmax, err_fn=fn_temp, err_xi=xi_temp) def plot_stability(self, update_ticks=False): if not update_ticks: self.ax1.clear() self.ax1.grid(True) # stable eigenfrequencues, unstable damping ratios a = np.argwhere((self.test_fn > 0) & ((self.test_xi == 0) | (self.xi_temp <= 0))) # stable eigenfrequencies, stable damping ratios b = np.argwhere((self.test_fn > 0) & ((self.test_xi > 0) & (self.xi_temp > 0))) # unstable eigenfrequencues, unstable damping ratios c = np.argwhere((self.test_fn == 0) & ((self.test_xi == 0) | (self.xi_temp <= 0))) # unstable eigenfrequencues, stable damping ratios d = np.argwhere((self.test_fn == 0) & ((self.test_xi > 0) & (self.xi_temp > 0))) p1 = self.ax1.plot(self.fn_temp[a[:, 0], a[:, 1]], 1+a[:, 1], 'bx', markersize=4, label="stable frequency, unstable damping") p2 = self.ax1.plot(self.fn_temp[b[:, 0], b[:, 1]], 1+b[:, 1], 'gx', markersize=7, label="stable frequency, stable damping") p3 = self.ax1.plot(self.fn_temp[c[:, 0], c[:, 1]], 1+c[:, 1], 'r.', markersize=4, label="unstable frequency, unstable damping") p4 = self.ax1.plot(self.fn_temp[d[:, 0], d[:, 1]], 1+d[:, 1], 'r*', markersize=4, label="unstable frequency, stable damping") self.line, = self.ax1.plot(self.Model.nat_freq, np.repeat( self.Model.pol_order_high, len(self.Model.nat_freq)), 'kv', markersize=8) self.selected, = self.ax1.plot([self.Model.pole_freq[p[0]][p[1]] for p in self.Model.pole_ind], [p[0] for p in self.Model.pole_ind], 'ko') if self.show_legend: self.pole_legend = self.ax1.legend(loc='upper center', ncol=2, frameon=True) self.ax1.set_title('Stability chart') self.ax1.set_ylabel('Polynomial order') plt.tight_layout() else: self.line.set_xdata(np.asarray(self.Model.nat_freq)) # update data self.line.set_ydata(np.repeat(self.Model.pol_order_high*1.04, len(self.Model.nat_freq))) self.selected.set_xdata([self.Model.pole_freq[p[0]][p[1]] for p in self.Model.pole_ind]) # update data self.selected.set_ydata([p[0] for p in self.Model.pole_ind]) plt.tight_layout() self.ax1.set_ylim([0, self.Model.pol_order_high+5]) self.fig.canvas.draw() def plot_cluster(self, update_ticks=False): """Plot clusters - damping with respect to frequency. :param update_ticks: if True, only ticks are updated, not the whole plot. """ b1 = np.argwhere(((self.test_fn > 0) & ((self.test_xi > 0) & (self.xi_temp > 0))) & ((self.fn_temp > self.Model.lower) & (self.fn_temp < self.Model.upper))) if not update_ticks: self.ax1.clear() self.ax1.grid(True) # stable eigenfrequencues, unstable damping ratios a = np.argwhere((self.test_fn > 0) & ((self.test_xi == 0) | (self.xi_temp <= 0))) # stable eigenfrequencies, stable damping ratios b = np.argwhere((self.test_fn > 0) & ((self.test_xi > 0) & (self.xi_temp > 0))) # unstable eigenfrequencues, unstable damping ratios c = np.argwhere((self.test_fn == 0) & ((self.test_xi == 0) | (self.xi_temp <= 0))) # unstable eigenfrequencues, stable damping ratios d = np.argwhere((self.test_fn == 0) & ((self.test_xi > 0) & (self.xi_temp > 0))) p1 = self.ax1.plot(self.fn_temp[a[:, 0], a[:, 1]], self.xi_temp[a[:, 0], a[:, 1]], 'bx', markersize=4, label="stable frequency, unstable damping") p2 = self.ax1.plot(self.fn_temp[b[:, 0], b[:, 1]], self.xi_temp[b[:, 0], b[:, 1]], 'gx', markersize=7, label="stable frequency, stable damping") p3 = self.ax1.plot(self.fn_temp[c[:, 0], c[:, 1]], self.xi_temp[c[:, 0], c[:, 1]], 'r.', markersize=4, label="unstable frequency, unstable damping") p4 = self.ax1.plot(self.fn_temp[d[:, 0], d[:, 1]], self.xi_temp[d[:, 0], d[:, 1]], 'r*', markersize=4, label="unstable frequency, stable damping") self.line, = self.ax1.plot(self.Model.nat_freq, np.repeat( 1.05*np.max(self.xi_temp[b1[:, 0], b1[:, 1]]), len(self.Model.nat_freq)), 'kv', markersize=8) self.selected, = self.ax1.plot([self.Model.pole_freq[p[0]][p[1]] for p in self.Model.pole_ind], [self.Model.pole_xi[p[0]][p[1]] for p in self.Model.pole_ind], 'ko') if self.show_legend: self.pole_legend = self.ax1.legend(loc='upper center', ncol=2, frameon=True) self.ax1.set_title('Cluster diagram') self.ax1.set_ylabel('Damping ratio') plt.tight_layout() else: self.line.set_xdata(np.asarray(self.Model.nat_freq)) # update data self.line.set_ydata(np.repeat(1.05*np.max(self.xi_temp[b1[:, 0], b1[:, 1]]), len(self.Model.nat_freq))) self.selected.set_xdata([self.Model.pole_freq[p[0]][p[1]] for p in self.Model.pole_ind]) # update data self.selected.set_ydata([self.Model.pole_xi[p[0]][p[1]] for p in self.Model.pole_ind]) to_lim = self.xi_temp[b1[:, 0], b1[:, 1]] up_lim = min(np.max(to_lim),
np.mean(to_lim)
numpy.mean
#================================================================ # # File name : RL-Bitcoin-trading-bot_1.py # Author : PyLessons # Created date: 2020-12-02 # Website : https://pylessons.com/ # GitHub : https://github.com/pythonlessons/RL-Bitcoin-trading-bot # Description : Introduction to trading Crypto with Reinforcement Learning # #================================================================ import pandas as pd import numpy as np import random from collections import deque class CustomEnv: # A custom Bitcoin trading environment def __init__(self, df, initial_balance=1000, lookback_window_size=50): # Define action space and state size and other custom parameters self.df = df.dropna().reset_index() self.df_total_steps = len(self.df)-1 self.initial_balance = initial_balance self.lookback_window_size = lookback_window_size # Action space from 0 to 3, 0 is hold, 1 is buy, 2 is sell self.action_space = np.array([0, 1, 2]) # Orders history contains the balance, net_worth, crypto_bought, crypto_sold, crypto_held values for the last lookback_window_size steps self.orders_history = deque(maxlen=self.lookback_window_size) # Market history contains the OHCL values for the last lookback_window_size prices self.market_history = deque(maxlen=self.lookback_window_size) # State size contains Market+Orders history for the last lookback_window_size steps self.state_size = (self.lookback_window_size, 10) # Reset the state of the environment to an initial state def reset(self, env_steps_size = 0): self.balance = self.initial_balance self.net_worth = self.initial_balance self.prev_net_worth = self.initial_balance self.crypto_held = 0 self.crypto_sold = 0 self.crypto_bought = 0 if env_steps_size > 0: # used for training dataset self.start_step = random.randint(self.lookback_window_size, self.df_total_steps - env_steps_size) self.end_step = self.start_step + env_steps_size else: # used for testing dataset self.start_step = self.lookback_window_size self.end_step = self.df_total_steps self.current_step = self.start_step for i in reversed(range(self.lookback_window_size)): current_step = self.current_step - i self.orders_history.append([self.balance, self.net_worth, self.crypto_bought, self.crypto_sold, self.crypto_held]) self.market_history.append([self.df.loc[current_step, 'Open'], self.df.loc[current_step, 'High'], self.df.loc[current_step, 'Low'], self.df.loc[current_step, 'Close'], self.df.loc[current_step, 'Volume'] ]) state = np.concatenate((self.market_history, self.orders_history), axis=1) return state # Get the data points for the given current_step def _next_observation(self): self.market_history.append([self.df.loc[self.current_step, 'Open'], self.df.loc[self.current_step, 'High'], self.df.loc[self.current_step, 'Low'], self.df.loc[self.current_step, 'Close'], self.df.loc[self.current_step, 'Volume'] ]) obs =
np.concatenate((self.market_history, self.orders_history), axis=1)
numpy.concatenate
# Python 2-to-3 compatibility code from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple try: import qutip as qu except ImportError: qu = None import numpy as np import scipy.constants as cnst import scipy.sparse as scisp import scipy.sparse.linalg as scisp_lin from pyschro.grid import Grid from pyschro.basis import BasisSet, MNumerovBasis QEvol = namedtuple('QEvol', ['params', 't', 'E', 'density']) class QSolution(object): def __init__(self, bounds, size, V, m, basis=MNumerovBasis, basis_pars={}, n_states=None): self.grid = Grid(bounds, size) # Check that the basis type matches if not issubclass(basis, BasisSet): raise ValueError("Invalid basis set!") self.basis = basis(self.grid, V, m, **basis_pars) if n_states is None or n_states >= len(self.grid.grid_lin): if hasattr(self.basis.H, 'toarray'): H = self.basis.H.toarray() else: H = self.basis.H try: assert(np.isclose(H-H.conjugate().T, 0).all()) except AssertionError: raise RuntimeError("Hamiltonian is not Hermitian, " "something has gone terribly wrong!") self.evals, self.evecs = np.linalg.eigh(H) else: H = self.basis.H try: HHcheck = (H-H.conjugate().T) if hasattr(HHcheck, 'todense'): HHcheck = HHcheck.todense() assert(
np.isclose(HHcheck, 0)
numpy.isclose
import numpy as np class LazyFrames: def __init__(self, frames): """This object ensures that common frames between the observations are only stored once.""" self._frames = frames self._out = None def _force(self): if self._out is None: self._out =
np.array(self._frames)
numpy.array
from __future__ import print_function, division import sys import os from os.path import expanduser home = expanduser("~") path_to_cosmodc2 = os.path.join(home, 'cosmology/cosmodc2') if 'mira-home' in home: sys.path.insert(0, '/gpfs/mira-home/ekovacs/.local/lib/python2.7/site-packages') sys.path.insert(0, path_to_cosmodc2) sys.path.insert(0, os.path.join(home, 'cosmology/halotools/build/lib.linux-x86_64-2.7')) #sys.path.insert(0, '/homes/dkorytov/.local/lib/python2.7/site-packages/halotools-0.7.dev4939-py2.7-linux-x86_64.egg') import os import numpy as np import scipy as sp import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.colors as clr import pdb import dtk import h5py import time import sys import datetime import subprocess from astropy.table import Table from scipy.spatial import cKDTree from pecZ import pecZ from astropy.cosmology import WMAP7 as cosmo from scipy.integrate import cumtrapz from scipy.interpolate import interp1d from cosmodc2.black_hole_modeling import monte_carlo_bh_acc_rate, bh_mass_from_bulge_mass, monte_carlo_black_hole_mass from cosmodc2.size_modeling import mc_size_vs_luminosity_late_type, mc_size_vs_luminosity_early_type from cosmodc2.sdss_colors import assign_restframe_sdss_gri from cosmodc2.mock_diagnostics import mean_des_red_sequence_gr_color_vs_redshift, mean_des_red_sequence_ri_color_vs_redshift, mean_des_red_sequence_iz_color_vs_redshift from ellipticity_model import monte_carlo_ellipticity_bulge_disk from halotools.utils import fuzzy_digitize import galmatcher def construct_gal_prop(fname, verbose=False, mask = None, mag_r_cut = False): t1 = time.time() gal_prop = {} hfile = h5py.File(fname,'r') hgp = hfile['galaxyProperties'] m_star = np.log10(hgp['totalMassStellar'].value) mag_g = hgp['SDSS_filters/magnitude:SDSS_g:rest:dustAtlas'].value mag_r = hgp['SDSS_filters/magnitude:SDSS_r:rest:dustAtlas'].value mag_i = hgp['SDSS_filters/magnitude:SDSS_i:rest:dustAtlas'].value if mask is None: mask = np.ones(mag_r.size,dtype=bool) if mag_r_cut: mask = (mag_r < -10) & mask gal_prop['m_star'] = m_star[mask] gal_prop['Mag_r'] = mag_r[mask] gal_prop['clr_gr'] = mag_g[mask]-mag_r[mask] gal_prop['clr_ri'] = mag_r[mask]-mag_i[mask] if verbose: print('done loading gal prop. {}'.format(time.time()-t1)) return gal_prop,mask def cat_dics(dics, keys = None): new_dic = {} if keys is None: keys = dics[0].keys() for key in keys: new_dic[key] = [] for dic in dics: new_dic[key].append(dic[key]) new_dic[key] = np.concatenate(new_dic[key]) return new_dic def select_dic(dic, slct): new_dic = {} for key in dic.keys(): new_dic[key]=dic[key][slct] return new_dic def clean_up_gal_prop(gal_prop): """For each galaxy, if any property is not finite, set all other properties to some value (4) that will not be selected by the kdtree query. """ print("Cleaning up gal prop: ",end="") slct_nfnt = ~np.isfinite(gal_prop['m_star']) for key in gal_prop.keys(): slct_nfnt = slct_nfnt | ~np.isfinite(gal_prop[key]) print("bad vals: ", np.sum(slct_nfnt)) for key in gal_prop.keys(): gal_prop[key][slct_nfnt] = -4 return gal_prop def construct_gal_prop_redshift_dust_raw(fname, index, step1, step2, step1_a, step2_a, target_a, mask1, mask2, dust_factor=1.0, match_obs_color_red_seq = False, cut_small_galaxies_mass = None, snapshot = False): """Constructs gal_prop using the interpolation scheme from the galacticus snapshots and index matching galaxies in step2 to galaxies in step1. """ h_in_gp1 = h5py.File(fname.replace("${step}", str(step1)), 'r')['galaxyProperties'] h_in_gp2 = h5py.File(fname.replace("${step}", str(step2)), 'r')['galaxyProperties'] ##======DEBUG======== # stepz = dtk.StepZ(sim_name="AlphaQ") # step1_ab = stepz.get_a(step1) # step2_ab = stepz.get_a(step2) # print("\t\t step1/2: {} - {}".format(step1, step2)) # print("\t\t step1/2_a: {:.4f} -> {:.4f}".format(step1_a, step2_a)) # print("\t\t step1/2_ab: {:.4f} -> {:.4f}".format(step1_ab, step2_ab)) # print("\t\t step1/2_z: {:.4f} -> {:.4f}".format(1.0/step1_a-1.0, 1.0/step2_a-1.0)) # print("\t\t step1/2_z2:{:.4f} -> {:.4f}".format(stepz.get_z(step1), stepz.get_z(step2))) # print("\t\t target a: {:.4f}".format(target_a)) # print("\t\t target z: {:.3f}".format(1.0/target_a -1.0)) # step1_a = stepz.get_a(step1) # step2_a = stepz.get_a(step2) ##=========DEBUG======== lum_g_d = get_column_interpolation_dust_raw( 'SDSS_filters/diskLuminositiesStellar:SDSS_g:rest:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_r_d = get_column_interpolation_dust_raw( 'SDSS_filters/diskLuminositiesStellar:SDSS_r:rest:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_i_d = get_column_interpolation_dust_raw( 'SDSS_filters/diskLuminositiesStellar:SDSS_i:rest:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_g_b = get_column_interpolation_dust_raw( 'SDSS_filters/spheroidLuminositiesStellar:SDSS_g:rest:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_r_b = get_column_interpolation_dust_raw( 'SDSS_filters/spheroidLuminositiesStellar:SDSS_r:rest:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_i_b = get_column_interpolation_dust_raw( 'SDSS_filters/spheroidLuminositiesStellar:SDSS_i:rest:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_g = lum_g_d + lum_g_b lum_i = lum_i_d + lum_i_b lum_r = lum_r_d + lum_r_b ##=======DEBUG====== # print("=============") # print("lum_r non-finite: ", np.sum(~np.isfinite(lum_r)), np.sum(lum_r<0), lum_r.size) # print("lum_r_d non-finite: ", np.sum(~np.isfinite(lum_r_d)), np.sum(lum_r_d<0), lum_r_d.size) # print("lum_r_b non-finite: ", np.sum(~np.isfinite(lum_r_b)), np.sum(lum_r_b<0), lum_r_b.size) # slct_neg = lum_r<0 # print(lum_r[slct_neg]) # print(lum_r_d[slct_neg]) # print(lum_r_b[slct_neg]) # print("=============") ##=======DEBUG====== m_star = get_column_interpolation_dust_raw( 'totalMassStellar', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) node_index = get_column_interpolation_dust_raw('infallIndex', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) mag_g = -2.5*np.log10(lum_g) mag_r = -2.5*np.log10(lum_r) mag_i = -2.5*np.log10(lum_i) size = m_star.size gal_prop = {} gal_prop['m_star'] = np.log10(m_star) gal_prop['Mag_r'] = mag_r gal_prop['clr_gr'] = mag_g - mag_r gal_prop['clr_ri'] = mag_r - mag_i gal_prop['dust_factor'] = np.ones(size, dtype='f4')*dust_factor gal_prop['index'] = np.arange(size, dtype='i8') gal_prop['node_index'] = node_index if match_obs_color_red_seq: lum_g_obs_d = get_column_interpolation_dust_raw( 'SDSS_filters/diskLuminositiesStellar:SDSS_g:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_r_obs_d = get_column_interpolation_dust_raw( 'SDSS_filters/diskLuminositiesStellar:SDSS_r:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_i_obs_d = get_column_interpolation_dust_raw( 'SDSS_filters/diskLuminositiesStellar:SDSS_i:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_z_obs_d = get_column_interpolation_dust_raw( 'SDSS_filters/diskLuminositiesStellar:SDSS_z:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_g_obs_s = get_column_interpolation_dust_raw( 'SDSS_filters/spheroidLuminositiesStellar:SDSS_g:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_r_obs_s = get_column_interpolation_dust_raw( 'SDSS_filters/spheroidLuminositiesStellar:SDSS_r:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_i_obs_s = get_column_interpolation_dust_raw( 'SDSS_filters/spheroidLuminositiesStellar:SDSS_i:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_z_obs_s = get_column_interpolation_dust_raw( 'SDSS_filters/spheroidLuminositiesStellar:SDSS_z:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_g_obs = lum_g_obs_d + lum_g_obs_s lum_r_obs = lum_r_obs_d + lum_r_obs_s lum_i_obs = lum_i_obs_d + lum_i_obs_s lum_z_obs = lum_z_obs_d + lum_z_obs_s # Luminosity distance factors cancle when we compute galaxy color, # so I'm not including them the magnitude calculation mag_g_obs = -2.5*np.log10(lum_g_obs) mag_r_obs = -2.5*np.log10(lum_r_obs) mag_i_obs = -2.5*np.log10(lum_i_obs) mag_z_obs = -2.5*np.log10(lum_z_obs) gal_prop['clr_gr_obs'] = mag_g_obs - mag_r_obs gal_prop['clr_ri_obs'] = mag_r_obs - mag_i_obs gal_prop['clr_iz_obs'] = mag_i_obs - mag_z_obs # Record LSST g-r color lum_g_obs_d_lsst = get_column_interpolation_dust_raw( 'LSST_filters/diskLuminositiesStellar:LSST_g:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) lum_r_obs_d_lsst = get_column_interpolation_dust_raw( 'LSST_filters/diskLuminositiesStellar:LSST_r:observed:dustAtlas', h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factor, snapshot=snapshot) gal_prop['clr_gr_obs_lsst'] = -2.5*np.log10(lum_g_obs_d_lsst) + 2.5*np.log10( lum_r_obs_d_lsst) if not (cut_small_galaxies_mass is None): print("cutting out small galaxies in gltcs") slct_gal = gal_prop['m_star']>cut_small_galaxies_mass gal_prop = dic_select(gal_prop, slct_gal) # print("nan test") # print(np.sum(np.isnan(gal_prop['m_star']))) # print("not finite test") # print(np.sum(~np.isfinite(gal_prop['m_star']))) # print(gal_prop['m_star'][np.isnan(gal_prop['m_star'])]) return gal_prop def construct_lc_data(fname, match_obs_color_red_seq = False, verbose = False, recolor=False, internal_step=None, cut_small_galaxies_mass = None, red_sequence_transition_mass_start=13.0, red_sequence_transition_mass_end=13.5, snapshot = False): t1 = time.time() lc_data = {} if snapshot: # Snapshot baseDC2 format hfile_snap = h5py.File(fname,'r') hfile = hfile_snap['galaxyProperties'] snapshot_redshift = hfile_snap['metaData/redshift'].value elif internal_step is None: # flat-file baseDC2 format hfile = h5py.File(fname,'r') else: # healpix basedDC2 format hfile = h5py.File(fname,'r')[str(internal_step)] non_empty_step = "obs_sm" in hfile print("Reading {} (size={})".format(os.path.basename(fname), len(hfile))) if non_empty_step: lc_data['m_star'] = np.log10(hfile['obs_sm'].value) lc_data['Mag_r'] = hfile['restframe_extincted_sdss_abs_magr'].value lc_data['clr_gr'] = hfile['restframe_extincted_sdss_gr'].value lc_data['clr_ri'] = hfile['restframe_extincted_sdss_ri'].value if not snapshot: lc_data['redshift'] = hfile['redshift'].value else: lc_data['redshift'] = np.ones(lc_data['m_star'].size)*snapshot_redshift lc_data['sfr_percentile'] = hfile['sfr_percentile'].value else: lc_data['m_star'] = np.zeros(0, dtype=np.float) lc_data['Mag_r'] = np.zeros(0, dtype=np.float) lc_data['clr_gr'] = np.zeros(0, dtype=np.float) lc_data['clr_ri'] = np.zeros(0, dtype=np.float) if not snapshot: lc_data['redshift'] = np.zeros(0, dtype=np.float) else: lc_data['redshift'] = np.ones(lc_data['m_star'].size)*snapshot_redshift lc_data['sfr_percentile'] = np.zeros(0, dtype=np.float) if recolor: upid_mock = hfile['upid'].value mstar_mock = hfile['obs_sm'].value sfr_percentile_mock = hfile['sfr_percentile'].value host_halo_mvir_mock = hfile['host_halo_mvir'].value redshift_mock = lc_data['redshift'] a,b,c = assign_restframe_sdss_gri(upid_mock, mstar_mock, sfr_percentile_mock, host_halo_mvir_mock, redshift_mock) # plt.figure() # h,xbins,ybins = np.histogram2d(lc_data['Mag_r'], a, bins=250) # plt.pcolor(xbins,ybins, h.T, cmap='PuBu', norm =clr.LogNorm()) # plt.grid() # plt.figure() # h,xbins,ybins = np.histogram2d(lc_data['clr_gr'], b, bins=250) # plt.pcolor(xbins,ybins, h.T, cmap='PuBu', norm =clr.LogNorm()) # plt.grid() # plt.figure() # h,xbins,ybins = np.histogram2d(lc_data['clr_ri'], c, bins=250) # plt.pcolor(xbins,ybins, h.T, cmap='PuBu', norm =clr.LogNorm()) # plt.grid() # plt.show() lc_data['Mag_r'] = a lc_data['clr_gr'] = b lc_data['clr_ri'] = c #lc_data['Mag_r'], lc_data['clr_gr'], lc_data['clr_ri'] = [a,b,c] if match_obs_color_red_seq and non_empty_step: # print("match obs color red seq") host_halo_mvir_mock = hfile['host_halo_mvir'].value is_on_red_seq_gr = hfile['is_on_red_sequence_gr'].value is_on_red_seq_ri = hfile['is_on_red_sequence_ri'].value mass_rs = soft_transition(np.log10(host_halo_mvir_mock), red_sequence_transition_mass_start, red_sequence_transition_mass_end) lc_data['is_cluster_red_sequence'] = mass_rs & is_on_red_seq_gr & is_on_red_seq_ri #lc_data['is_cluster_red_sequence'] = is_on_red_seq_gr & is_on_red_seq_ri lc_data['clr_gr_obs'] = mean_des_red_sequence_gr_color_vs_redshift(lc_data['redshift']) lc_data['clr_ri_obs'] = mean_des_red_sequence_ri_color_vs_redshift(lc_data['redshift']) lc_data['clr_iz_obs'] = mean_des_red_sequence_iz_color_vs_redshift(lc_data['redshift']) elif match_obs_color_red_seq: lc_data['is_cluster_red_sequence'] = np.zeros(0,dtype=bool) lc_data['clr_gr_obs'] = np.zeros(0,dtype=bool) lc_data['clr_ri_obs'] = np.zeros(0,dtype=bool) lc_data['clr_iz_obs'] = np.zeros(0,dtype=bool) if not (cut_small_galaxies_mass is None): print("cutting out small galaxies!") # Cutting out low mass galaxies so it runs fasters slct_gals = lc_data['m_star']>cut_small_galaxies_mass lc_data = dic_select(lc_data, slct_gals) #TODO remove once bug is fixed lc_data['Mag_r'][~np.isfinite(lc_data['Mag_r'])] = -14.0 if verbose: print('done loading lc data. {}'.format(time.time()-t1)) return lc_data def construct_lc_data_healpix(fname, match_obs_color_red_seq = False, verbose = False, recolor=False, internal_step=None, cut_small_galaxies_mass = None, healpix_pixels=None, red_sequence_transition_mass_start=13.0, red_sequence_transition_mass_end=13.5, snapshot=False): print("Constructing light cone data.") print("Input lightcone file pattern: ", fname) print("Healpix files: ",healpix_pixels) if healpix_pixels is None: print("No healpix used") lc_data = construct_lc_data(fname, match_obs_color_red_seq = match_obs_color_red_seq, verbose = verbose, recolor=recolor, internal_step = internal_step, cut_small_galaxies_mass = cut_small_galaxies_mass, red_sequence_transition_mass_start = red_sequence_transition_mass_start, red_sequence_transition_mass_end = red_sequence_transition_mass_end, snapshot=snapshot) else: lc_data_hps = [] for healpix_pixel in healpix_pixels: fname_healpix = fname.replace('${healpix}', str(healpix_pixel)) lc_data_hp = construct_lc_data(fname_healpix, match_obs_color_red_seq = match_obs_color_red_seq, recolor=recolor, internal_step = internal_step, cut_small_galaxies_mass = cut_small_galaxies_mass, red_sequence_transition_mass_start = red_sequence_transition_mass_start, red_sequence_transition_mass_end = red_sequence_transition_mass_end, verbose=False, snapshot=snapshot) lc_data_hp['healpix_pixel'] = np.ones(lc_data_hp['m_star'].size, dtype='i4')*healpix_pixel lc_data_hps.append(lc_data_hp) lc_data = cat_dics(lc_data_hps) for key in lc_data.keys(): num = np.sum(~np.isfinite(lc_data[key])) assert num == 0 return lc_data def dic_select(dic, slct): new_dic = {} for key in dic.keys(): new_dic[key] = dic[key][slct] return new_dic def select_by_index(data,index): new_data = {} for key in data.keys(): new_data[key] = data[key][index] return new_data def squash_magnitudes(mag_dic, lim, a): # I'm using a tanh function for the soft threshold. No magnitude will excessed # 'lim'. Mags below lim-a aren't affect. # plt.figure() # plt.hist2d(mag_dic[:,0],mag_dic[:,1],bins=250,cmap='Blues',norm=clr.LogNorm()) # plt.axvline(x=lim+a,c='k',ls=':') # plt.axvline(x=lim,c='k',ls='--') # xlims = plt.xlim() # plt.title("before magnitude squash") # plt.xlabel('Mag_r') # plt.ylabel('g-r rest') if(a == 0.0): slct = mag_dic[:,0]<lim mag_dic[slct,0]= lim else: slct = mag_dic[:,0]<lim+a mag_dic[slct,0]=a*np.tanh((mag_dic[slct,0]-lim-a)/a) + lim + a # plt.figure() # plt.hist2d(mag_dic[:,0],mag_dic[:,1],bins=250,cmap='Blues',norm=clr.LogNorm()) # plt.axvline(x=lim+a,c='k',ls=':') # plt.axvline(x=lim,c='k',ls='--') # plt.xlim(xlims) # plt.title("after magntiude squash") # plt.xlabel('Mag_r') # plt.ylabel('g-r rest') # plt.show() return mag_dic def resample_index(lc_data, gal_prop, ignore_mstar = False, nnk = 10, verbose = False, select_match='ran', ignore_bright_luminosity=False, ignore_bright_luminosity_threshold=None, ignore_bright_luminosity_softness=0.0, ): if verbose: t1 = time.time() print("Starting kdtree resampling") print("\nNum LC Galaxies: {:.2e} Num Gltcs Galaxies: {:.2e}".format(lc_data['m_star'].size, gal_prop['m_star'].size)) m_star = lc_data['m_star'] mag_r = lc_data['Mag_r'] clr_gr = lc_data['clr_gr'] clr_ri = lc_data['clr_ri'] if ignore_mstar: print("\tIgnoring Mstar!") lc_mat = np.stack((mag_r,clr_gr,clr_ri),axis=1) gal_mat = np.stack((gal_prop['Mag_r'], gal_prop['clr_gr'], gal_prop['clr_ri']),axis=1) else: lc_mat = np.stack((mag_r,clr_gr,clr_ri,m_star),axis=1) gal_mat = np.stack((gal_prop['Mag_r'], gal_prop['clr_gr'], gal_prop['clr_ri'], gal_prop['m_star']),axis=1) if ignore_bright_luminosity: lc_mat = squash_magnitudes(lc_mat, ignore_bright_luminosity_threshold, ignore_bright_luminosity_softness) gal_mat = squash_magnitudes(gal_mat, ignore_bright_luminosity_threshold, ignore_bright_luminosity_softness) # slct_lc_mat = lc_mat[:,0]<ignore_bright_luminosity_threshold # lc_mat[slct_lc_mat,0] = ignore_bright_luminosity_threshold # slct_gal_mat = gal_mat[:,0]< ignore_bright_luminosity_threshold # gal_mat[slct_gal_mat,0] = ignore_bright_luminosity_threshold if verbose: t2 = time.time() print('\tdone formating data. {}'.format(t2-t1)) print("data size: {:.2e}".format(m_star.size)) # if the search size is large enough, it's saves total time to construct a # faster to search tree. Otherwise build a quick tree. if m_star.size > 3e7: if verbose: print("long balanced tree") ckdtree = cKDTree(gal_mat, balanced_tree = True, compact_nodes = True) elif m_star.size > 3e6: if verbose: print("long tree") ckdtree = cKDTree(gal_mat, balanced_tree = False, compact_nodes = True) else: if verbose: print("quick tree") ckdtree = cKDTree(gal_mat, balanced_tree = False, compact_nodes = False) if verbose: t3 = time.time() print('\tdone making tree. {}'.format(t3-t2)) dist_raw, index_raw = ckdtree.query(lc_mat, nnk, n_jobs=10) if verbose: t4= time.time() print('\tdone querying. {}'.format(t4-t3)) print("\tusing {}/{} match".format(select_match, nnk)) if nnk > 1: if 'best' in select_match: rand = np.zeros(index_raw.shape[0]).astype(int) elif 'worst' in select_match: rand = np.array([nnk-1]*index_raw.shape[0]) #indices run from 0 to nnk-1 else: rand = np.random.randint(nnk,size=index_raw.shape[0]) aa = np.arange(index_raw.shape[0]) #dist = dist[aa,rand] index = index_raw[aa,rand] else: index = index_raw ##======DEBUG=========== # print("lc_data size:") # for k in lc_data: # print(k,np.sum(~np.isfinite(lc_data[k])),'/',lc_data[k].size) # print("\n\ngal_prop size:") # for k in gal_prop: # print(k,np.sum(~np.isfinite(gal_prop[k])),'/',gal_prop[k].size) # print("index min/max: ", np.min(index), np.max(index)) # print("ckdtree size: ",gal_mat[:,0].size, gal_mat[0,:].size) # plt.figure() # h,xbins = np.histogram(index, bins=1000) # plt.plot(dtk.bins_avg(xbins), h) # plt.grid() # plt.xlabel('index num') # plt.ylabel('count') ##======DEBUG=========== return index def resample_index_cluster_red_squence(lc_data, gal_prop, ignore_mstar = False, nnk = 10, verbose = False, select_match='ran', ignore_bright_luminosity=False, ignore_bright_luminosity_threshold=False, ignore_bright_luminosity_softness=0.0, rs_scatter_dict = {}): if verbose: t1 = time.time() print("Starting kdtree resampling with obs colors") lc_data_list = [] gal_prop_list = [] # We modify the lightcone/baseDC2/query data with rs scatter, if listed lc_data_list += (lc_data['Mag_r'], lc_data['clr_gr'], lc_data['clr_ri'], modify_array_with_rs_scatter(lc_data, "query", "gr", rs_scatter_dict), #clr_gr_obs modify_array_with_rs_scatter(lc_data, "query", "ri", rs_scatter_dict), #clr_ri_obs modify_array_with_rs_scatter(lc_data, "query", "iz", rs_scatter_dict), #clr_iz_obs ) # We modify the galaxy properties/galactics/tree data with rs scatter, if listed gal_prop_list += (gal_prop['Mag_r'], gal_prop['clr_gr'], gal_prop['clr_ri'], modify_array_with_rs_scatter(gal_prop, "tree", "gr", rs_scatter_dict), #clr_gr_obs modify_array_with_rs_scatter(gal_prop, "tree", "ri", rs_scatter_dict), #clr_ri_obs modify_array_with_rs_scatter(gal_prop, "tree", "iz", rs_scatter_dict), #clr_iz_obs ) if ignore_mstar: pass else: lc_data_list.append(lc_data['m_star']) gal_prop_list.append(gal_prop['m_star']) lc_mat = np.transpose(lc_data_list) gal_mat = np.transpose(gal_prop_list) if ignore_bright_luminosity: if(ignore_bright_luminosity_softness == 0.0): slct_lc_mat = lc_mat[:,0]<ignore_bright_luminosity_threshold lc_mat[slct_lc_mat,0] = ignore_bright_luminosity_threshold slct_gal_mat = gal_mat[:,0]< ignore_bright_luminosity_threshold gal_mat[slct_gal_mat,0] = ignore_bright_luminosity_threshold else: lim = ignore_bright_luminosity_threshold a = ignore_bright_luminosity_softness slct_lc_mat = lc_mat[:,0]<lim+a lc_mat[slct_lc_mat,0]=a*np.tanh((lc_mat[slct_lc_mat,0]-lim-a)/a) + lim +a slct_gal_mat = gal_mat[:,0]<lim+a gal_mat[slct_gal_mat,0]=a*np.tanh((gal_mat[slct_gal_mat,0]-lim-a)/a) + lim +a if verbose: t2 = time.time() print("\tdone formatting data. {}".format(t2-t1)) if lc_data['m_star'].size > 3e6: if verbose: print("long tree") ckdtree = cKDTree(gal_mat, balanced_tree = False, compact_nodes = True) else: if verbose: print("quick tree") ckdtree = cKDTree(gal_mat, balanced_tree = False, compact_nodes = False) if verbose: t3 = time.time() print("\tdone making kdtree. {}".format(t3-t2)) dist, index = ckdtree.query(lc_mat, nnk, n_jobs=10) if verbose: t4 = time.time() print("\tdone querying. {}".format(t4-t3)) print("\tusing {}/{} match".format(select_match, nnk)) if nnk > 1: if 'best' in select_match: rand = np.zeros(dist.shape[0]).astype(int) elif 'worst' in select_match: rand = np.array([nnk-1]*dist.shape[0]) #indices run from 0 to nnk-1 else: rand = np.random.randint(nnk,size=dist.shape[0]) aa = np.arange(dist.shape[0]) #dist = dist[aa,rand] index = index[aa,rand] # return orignal_index[slct_valid][index] return index def get_keys(hgroup): keys = [] def _collect_keys(name, obj): if isinstance(obj, h5py.Dataset): keys.append(name) hgroup.visititems(_collect_keys) return keys def soft_transition(vals, trans_start, trans_end): if(vals.size ==0): return np.ones(vals.size,dytpe='bool') slct_between = (vals>trans_start) & (vals<trans_end) if(trans_start == trans_end or np.sum(slct_between) == 0): return vals>trans_start elif(trans_start > trans_end): raise ValueError('Trans_start value is greater than trans_end') else: # print(trans_start, trans_end) # print(vals.size) # print(np.sum(slct_between)) # print(vals[slct_between]) bins = fuzzy_digitize(vals[slct_between],[trans_start,trans_end], min_counts=0) result = np.ones(vals.size, dtype='bool') result[vals<=trans_start] = False result[slct_between] = bins==1 return result def get_rs_scatter_dict_from_param(param): """This function takes in a dtk.Param object and returns a dictionary containing the scatter""" print("seaching param file for red squence scatter information") rs_scatter_dict = {} colors = ['gr', 'ri', 'iz'] scatter_locations = ['query', 'tree'] for scatter_loc in scatter_locations: for color in colors: key = "red_sequence_scatter_{}_{}".format(scatter_loc, color) if key in param: val = param.get_float(key) print("found {} = {:f} in param file".format(key, val)) rs_scatter_dict[key] = val return rs_scatter_dict def modify_data_with_rs_scatter(data_dict, data_type, rs_scatter_dict): data_dict = data_dict.copydeep() assert data_type == "query" or data_type == "tree", "Data type must be either \"query\" or \"tree\". Given data_type is {}".format(data_type) colors = ['gr', 'ri', 'iz'] for color in colors: rs_scatter_key = 'rs_scatter_{}_{}'.format(data_type, color) if rs_scatter_key in rs_scatter_dict: data = query_dict["clr_{}_obs".format(color)] scatter = np.random.normal(scale=rs_scatter_dict[key], size =data.size) query_dict["clr_{}_obs".format(color)] = data + scatter return data_dict def modify_array_with_rs_scatter(data_dict, data_type, color, rs_scatter_dict): assert data_type == "query" or data_type == "tree", "Data type must be either \"query\" or \"tree\". Given data_type is {}".format(data_type) data = data_dict['clr_{}_obs'.format(color)] rs_scatter_key = "red_sequence_scatter_{}_{}".format(data_type, color) if rs_scatter_key in rs_scatter_dict: print("modifying {} data: color {} ".format(data_type, color)) scatter = np.random.normal(scale=rs_scatter_dict[rs_scatter_key], size =data.size) return data+scatter else: return data copy_avoids = ('x','y','z','vx','vy','vz', 'peculiarVelocity','galaxyID','redshift', 'redshiftHubble','placementType','isCentral','hostIndex', 'blackHoleAccretionRate','blackHoleMass', 'step','infallHaloMass','infallHaloTag') #TODO re-allow nitrogen contamination copy_avoids_ptrn = ('hostHalo','magnitude','ageStatistics','Radius','Axis','Ellipticity','positionAngle','total', 'ContinuumLuminosity', 'contam_nitrogenII6584', 'Sersic', 'morphology', 'contam_nitrogen') no_slope_var = ('x','y','z','vx','vy','vz', 'peculiarVelocity','galaxyID','redshift','redshiftHubble','inclination','positionAngle') no_slope_ptrn =('morphology','hostHalo','infall') def to_copy(key, short, supershort): if short: if "SED" in key or "other" in key or "Lines" in key: print("\tnot copied: short var cut") return False if supershort: if "SDSS" not in key and "total" not in key and ":rest" not in key and "MassStellar" not in key and "infallIndex" != key and "inclination" not in key: print("\tnot copied: supershort var cut") return False if any([ ca == key for ca in copy_avoids]) or any([ cap in key for cap in copy_avoids_ptrn ]): print("\tnot copied: by explicit listing") return False return True # Keys that have their luminosity adjusted luminosity_factors_keys = ['Luminosities', 'Luminosity'] _cached_column = {} def get_column_interpolation_dust_raw(key, h_in_gp1, h_in_gp2, index, mask1, mask2, step1_a, step2_a, target_a, dust_factors, kdtree_index=None, luminosity_factors = None, cache = False, snapshot = False): """This function returns the interpolated quantity between two timesteps, from step1 to step2. Some galaxies are masked out: Any galaxy that doesn't pass the mask in step1 (mask1), any galaxy that doesn't a decendent in step2, or any galaxy that whose descendent doesn't pass the step2 mask (mask2). """ print("\tLoading key: {}".format(key)) # if luminosity_factors is None: # print("\t\tluminosity factors is none") #print("dust_factors: ", dust_factors) t1 = time.time() step_del_a = step2_a - step1_a target_del_a = target_a - step1_a ##=========DEBUG========== # print("step del_a {:.3f} - {:.3f} = {:.3f}".format(step2_a, step1_a, step_del_a)) # print("target_del_a {:.3f} - {:.3f} = {:.3f}".format(target_a, step1_a, target_del_a)) ##=========DEBUG========== # The masking all galaxies that fail galmatcher's requirements at # step1, galaxies that don't have a descndent, or if the # descendent galaxy at step2 doesn't pass galmatcher requirements. # If index is set None, we aren't doing interpolation at all. We # are just using if not snapshot: mask_tot = mask1 & (index != -1) & mask2[index] if (key in no_slope_var) or any(ptrn in key for ptrn in no_slope_ptrn): #print('\t\tno interpolation') data = h_in_gp1[key].value[mask_tot] if kdtree_index is None: val_out = data else: val_out = data[kdtree_index] elif ":dustAtlas" in key: #print('\t\tinterpolation with dust') key_no_dust = key.replace(":dustAtlas","") val1_no_dust = h_in_gp1[key_no_dust].value[mask_tot] val1_dust = h_in_gp1[key].value[mask_tot] if index is not None: val2_no_dust = h_in_gp2[key].value[index][mask_tot] else: val2_no_dust = val1_no_dust # val1_no_dust_lg = np.log(val1_no_dust) # val1_dust_lg = np.log(val1_dust) # val2_no_dust_lg = np.log(val2_no_dust) dust_effect = val1_dust/val1_no_dust dust_effect[val1_no_dust == 0] = 1 slope = (val2_no_dust - val1_no_dust)/step_del_a slope[step_del_a ==0] =0 # slope_mag = (val2_no_dust_lg - val1_no_dust_lg)/step_del_a # slope_mag[step_del_a == 0] = 0 ##=======DEBUG======= # def print_vals(label, data): # print("\t\t{} below/zero/size: {}/{}/{}".format(label, np.sum(data<0), np.sum(data==0), data.size)) # print_vals("val1_no_dust", val1_no_dust) # print_vals("val2_no_dust", val2_no_dust) # print_vals("val1_dust", val1_dust) ##=======DEBUG======= if kdtree_index is None: tot_dust_effect = dust_effect**dust_factors slct = dust_effect > 1.0 tot_dust_effect[slct] = dust_effect[slct] val_out = (val1_no_dust + slope*target_del_a)*tot_dust_effect #val_out = np.exp((val1_no_dust_lg + slope_mag*target_del_a)*tot_dust_effect) else: tot_dust_effect = (dust_effect[kdtree_index]**dust_factors) slct = dust_effect[kdtree_index] > 1.0 tot_dust_effect[slct] = dust_effect[kdtree_index][slct] val_out = (val1_no_dust[kdtree_index] + slope[kdtree_index]*target_del_a)*tot_dust_effect #val_out = np.exp((val1_no_dust_lg[kdtree_index] + slope_mag[kdtree_index]*target_del_a)*tot_dust_effect) else: #print('\t\tinerpolation without dust') val1_data = h_in_gp1[key].value[mask_tot] val2_data = h_in_gp2[key].value[index][mask_tot] # val1_data_lg = np.log(val1_data) # val2_data_lg = np.log(val2_data) slope = (val2_data - val1_data)/step_del_a slope[step_del_a==0]=0 # slope_mag = (val1_data_lg-val2_data_lg)/step_del_a # slope_mag[step_del_a==0]=0 if kdtree_index is None: val_out = val1_data + slope*target_del_a #val_out = np.log(val1_data_lg + slope_mag*target_del_a) else: val_out = val1_data[kdtree_index] + slope[kdtree_index]*target_del_a #val_out = np.log(val1_data_lg[kdtree_index] + slope_mag[kdtree_index]*target_del_a) #print('\t\t',val_out.dtype) # If running on snapshot, we don't need to interpolate else: mask_tot = mask1 val1_data = h_in_gp1[key].value[mask_tot] # reorder the data if it's a post-matchup index if kdtree_index is None: val_out = val1_data else: val_out = val1_data[kdtree_index] if not(luminosity_factors is None): if(any(l in key for l in luminosity_factors_keys)): #print("\t\tluminosity adjusted") val_out = val_out*luminosity_factors elif('Luminosities' in key or 'Luminosity' in key): #print("\t\tluminosity adjusted 2") val_out = val_out*luminosity_factors else: pass #print("\t\tluminosity untouched") if np.sum(~np.isfinite(val_out))!=0: print(key, "has a non-fininte value") print("{:.2e} {:.2e}".format(np.sum(~np.isfinite(val_out)), val_out.size)) if ":dustAtlas" in key: print(np.sum(~np.isfinite(val1_no_dust))) print(np.sum(~np.isfinite(dust_effect))) slct = ~np.isfinite(dust_effect) print(val1_no_dust[slct]) print(val1_dust[slct]) print(np.sum(~np.isfinite(slope_mag))) print(np.sum(~np.isfinite(target_del_a))) if "emissionLines" in key: print("overwriting non-finite values with 0") val_out[~np.isfinite(val_out)]=0.0 else: raise #print("\t\toutput size: {:.2e}".format(val_out.size)) print("\t\t mask size:{:.1e}/{:.1e} data size:{:.1e} read + format time: {}".format(np.sum(mask_tot), mask_tot.size, val_out.size, time.time()-t1)) ##=======DEBUG====== # print("\t\t non-finite: {}/{}/{}".format(np.sum(~np.isfinite(val_out)), np.sum(val_out<0), val_out.size)) # print("\t\t below/zero/size: {}/{}/{}".format(np.sum(val_out<0), np.sum(val_out==0), val_out.size)) ##=======DEBUG====== return val_out def copy_columns_interpolation_dust_raw(input_fname, output_fname, kdtree_index, step1, step2, step1_a, step2_a, mask1, mask2, index_2to1, lc_a, verbose = False, short = False, supershort = False, step = -1, dust_factors = 1.0, luminosity_factors = None, library_index = None, node_index = None, snapshot = False): print("===================================") print("copy columns interpolation dust raw") # lc_a = 1.0/(1.0+lc_redshift) # input_a = 1.0/(1.0 + input_redshift) del_a = lc_a-step1_a dtk.ensure_dir(output_fname) h_out = h5py.File(output_fname,'w') h_out_gp = h_out.create_group('galaxyProperties') h_out_gp['matchUp/dustFactor'] = dust_factors if luminosity_factors is not None: h_out_gp['matchUp/luminosityFactor'] = luminosity_factors if library_index is not None: h_out_gp['matchUp/libraryIndex'] = library_index if node_index is not None: h_out_gp['matchUp/GalacticusNodeIndex'] = node_index h_in_gp1 = h5py.File(input_fname.replace("${step}",str(step1)),'r')['galaxyProperties'] h_in_gp2 = h5py.File(input_fname.replace("${step}",str(step2)),'r')['galaxyProperties'] keys = get_keys(h_in_gp1) max_float = np.finfo(np.float32).max #The max float size for i in range(0,len(keys)): t1 = time.time() key = keys[i] if verbose: print('{}/{} [{}] {}'.format(i,len(keys),step, key)) if not to_copy(key, short, supershort): continue new_data = get_column_interpolation_dust_raw( key, h_in_gp1, h_in_gp2, index_2to1, mask1, mask2, step1_a, step2_a, lc_a, dust_factors, kdtree_index = kdtree_index, luminosity_factors = luminosity_factors, snapshot=snapshot) slct_finite = np.isfinite(new_data) #If the data is a double, record it as a float to save on disk space if(new_data.dtype == np.float64 and np.sum(new_data[slct_finite]>max_float) == 0): h_out_gp[key]= new_data.astype(np.float32) else: h_out_gp[key] = new_data print("\t\tDone writing. read+format+write: {}".format(time.time()-t1)) return def copy_columns_interpolation_dust_raw_healpix(input_fname, output_fname, kdtree_index, step1, step2, step1_a, step2_a, mask1, mask2, index_2to1, lc_a, healpix_pixels, lc_healpix, verbose = False, short = False, supershort = False, step = -1, dust_factors = 1.0, luminosity_factors = None, library_index = None, node_index = None, snapshot= False): print("===================================") print("copy columns interpolation dust raw") # lc_a = 1.0/(1.0+lc_redshift) # input_a = 1.0/(1.0 + input_redshift) del_a = lc_a-step1_a #print("del_a: ", del_a) h_out_gps = {} h_out_gps_slct = {} for healpix_pixel in healpix_pixels: hp_fname = output_fname.replace("${healpix}", str(healpix_pixel)) dtk.ensure_dir(hp_fname) h_out = h5py.File(hp_fname,'w') h_out_gps[healpix_pixel] = h_out.create_group('galaxyProperties') slct = lc_healpix == healpix_pixel h_out_gps[healpix_pixel]['matchUp/dustFactor'] = dust_factors[slct] h_out_gps[healpix_pixel]['matchUp/luminosityFactor'] = luminosity_factors[slct] h_out_gps[healpix_pixel]['matchUp/libraryIndex'] = library_index[slct] h_out_gps[healpix_pixel]['matchUp/GalacticusNodeIndex'] = node_index[slct] h_out_gps_slct[healpix_pixel] = slct h_in_gp1 = h5py.File(input_fname.replace("${step}",str(step1)),'r')['galaxyProperties'] h_in_gp2 = h5py.File(input_fname.replace("${step}",str(step2)),'r')['galaxyProperties'] keys = get_keys(h_in_gp1) max_float = np.finfo(np.float32).max #The max float size for i in range(0,len(keys)): t1 = time.time() key = keys[i] if verbose: print('{}/{} [{}] {}'.format(i,len(keys),step, key)) if not to_copy(key, short, supershort): continue new_data = get_column_interpolation_dust_raw( key, h_in_gp1, h_in_gp2, index_2to1, mask1, mask2, step1_a, step2_a, lc_a, dust_factors, kdtree_index = kdtree_index, luminosity_factors = luminosity_factors, snapshot = snapshot) slct_finite = np.isfinite(new_data) #If the data is a double, record it as a float to save on disk space if(new_data.dtype == np.float64 and np.sum(new_data[slct_finite]>max_float) == 0): new_data= new_data.astype(np.float32) if 'LineLuminosity' in key: key = key.replace(':rest', '') for healpix_pixel in healpix_pixels: h_out_gps[healpix_pixel][key] = new_data[h_out_gps_slct[healpix_pixel]] print("\t\tDone writing. read+format+write: {}".format(time.time()-t1)) return def overwrite_columns(input_fname, output_fname, ignore_mstar = False, verbose=False, cut_small_galaxies_mass = None, internal_step=None, fake_lensing=False, healpix=False, step = None, healpix_shear_file = None, no_shear_steps=None, snapshot = False, snapshot_redshift = None): t1 = time.time() if verbose: print("\nOverwriting columns for file {}".format(os.path.basename(output_fname))) #sdss = Table.read(input_fname,path='data') if snapshot: assert snapshot_redshift is not None, "Snapshot redshift must be specified in snapshot mode" h_out = h5py.File(output_fname, 'a') h_out_gp = h_out['galaxyProperties'] if snapshot: h_in = h5py.File(input_fname,'r')['galaxyProperties'] elif internal_step is None: h_in = h5py.File(input_fname,'r') else: h_in = h5py.File(input_fname,'r')[str(internal_step)] # if the input file has no galaxies, it doesn't have any columns step_has_data = "obs_sm" in h_in if step_has_data: sm = h_in['obs_sm'].value else: sm = np.zeros(0, dtype=float) if cut_small_galaxies_mass is None: mask = np.ones(sm.size, dtype=bool) else: mask = np.log10(sm) > cut_small_galaxies_mass #redshift = np.ones(sdss['x'].quantity.size)*0.1 t2 = time.time() if verbose: print("\t done reading in data", t2-t1) #xyz,v(xyz) if step_has_data: x = h_in['x'].value[mask] y = h_in['y'].value[mask] z = h_in['z'].value[mask] vx = h_in['vx'].value[mask] vy = h_in['vy'].value[mask] vz = h_in['vz'].value[mask] if snapshot: redshift = np.ones(x.size)*snapshot_redshift else: redshift =h_in['redshift'].value[mask] size = h_in['x'].size if not snapshot: h_out_gp['lightcone_rotation'] = h_in['lightcone_rotation'].value[mask] h_out_gp['lightcone_replication'] = h_in['lightcone_replication'].value[mask] else: x = np.zeros(0, dtype=float) y = np.zeros(0, dtype=float) z = np.zeros(0, dtype=float) vx = np.zeros(0, dtype=float) vy = np.zeros(0, dtype=float) vz = np.zeros(0, dtype=float) size = 0 redshift =np.zeros(0, dtype=float) if not snapshot: h_out_gp['lightcone_rotation'] = np.zeros(0, dtype=int) h_out_gp['lightcone_replication'] = np.zeros(0, dtype=int) print('step: ', step) assert step is not None, "Step is not specified" if not snapshot: h_out_gp['step']=np.ones(size,dtype='i4')*step h_out_gp['x']=x h_out_gp['y']=y h_out_gp['z']=z h_out_gp['vx']=vx h_out_gp['vy']=vy h_out_gp['vz']=vz keys = get_keys(h_out_gp) for key in keys: if "spheroid" in key: spheroid_key = key disk_key = key.replace('spheroid','disk') total_key = key.replace('spheroid','total') h_out_gp[total_key] = np.array(h_out_gp[disk_key].value + h_out_gp[spheroid_key].value, dtype='f4') if ignore_mstar: if step_has_data: print("Ignoring M* in stellar mass assignment!") # m*_delta = M*_new/M*_old mstar_delta = h_in['obs_sm'].value[mask]/h_out_gp['totalMassStellar'].value h_out_gp['totalMassStellar'][:] = h_out_gp['totalMassStellar'].value*mstar_delta h_out_gp['diskMassStellar'][:] = h_out_gp['diskMassStellar'].value*mstar_delta h_out_gp['spheroidMassStellar'][:] = h_out_gp['spheroidMassStellar'].value*mstar_delta else: # No need to modify data on disk if the data sets are empty pass t3 = time.time() #peculiar velocity if not snapshot: _,z_obs,v_pec,_,_,_,_ = pecZ(x,y,z,vx,vy,vz,redshift) h_out_gp['peculiarVelocity'] = np.array(v_pec, dtype='f4') #obs mag #Calculate the oringal redshift stepz = dtk.StepZ(200,0,500) # Precompute redshfit to luminosity distance relationship zs = np.linspace(0,3.5,1000) z_to_dl = interp1d(zs,cosmo.luminosity_distance(zs)) dl = z_to_dl(redshift) adjust_mag = -2.5*np.log10(1.0+redshift)+5*np.log10(dl)+25.0 t4 = time.time() keys = get_keys(h_out_gp) for key in keys: # Calculating new observer frame magnitudes if("totalLuminositiesStellar" in key and ":observed" in key and ("SDSS" in key or "LSST" in key)): new_key = key.replace("totalLuminositiesStellar",'magnitude',1) #print("making: "+new_key+" from "+key) h_out_gp[new_key]=np.array(adjust_mag -2.5*np.log10(h_out_gp[key].value), dtype='f4') # Calculating new rest frame magnitudes if("totalLuminositiesStellar" in key and ":rest" in key and ("SDSS" in key or "LSST" in key)): new_key = key.replace("totalLuminositiesStellar","magnitude",1) #print("making: "+new_key+" from "+key) h_out_gp[new_key]=np.array(-2.5*np.log10(h_out_gp[key].value), dtype='f4') t5 = time.time() if verbose: print("\t done rewriting mags",t5-t4) #redshift if snapshot: h_out_gp['redshift'] = redshift else: h_out_gp['redshift'] = z_obs h_out_gp['redshiftHubble'] = redshift if not snapshot: if step_has_data: h_out_gp['ra_true'] = h_in['ra'].value[mask] h_out_gp['dec_true'] = h_in['dec'].value[mask] else: h_out_gp['ra_true'] = np.zeros(0, dtype=np.float) h_out_gp['dec_true'] = np.zeros(0, dtype=np.float) # Skip shears for this step if it's in the list if no_shear_steps is not None: fake_lensing_step = (step in no_shear_steps) if (step in no_shear_steps): print("==== no shear step ====", step) pritn("\t step {} is list as in no_shear_steps".format(step), no_shear_steps) if fake_lensing or fake_lensing_step: print("\tfake shears") if step_has_data: size = h_in['x'].size else: size = 0 if not snapshot: if step_has_data: h_out_gp['ra'] = h_in['ra'].value[mask] h_out_gp['dec'] = h_in['dec'].value[mask] else: h_out_gp['ra'] = np.zeros(0,dtype=float) h_out_gp['dec'] =np.zeros(0,dtype=float) h_out_gp['shear1'] = np.zeros(size, dtype='f4') h_out_gp['shear2'] = np.zeros(size, dtype='f4') h_out_gp['magnification'] = np.ones(size, dtype='f4') h_out_gp['convergence'] = np.zeros(size, dtype='f4') elif healpix: print("\thealpix shears") h_shear = h5py.File(healpix_shear_file, 'r')[str(step)] if step_has_data: shear_id = h_shear['galaxy_id'].value print("\t\tassigning shears ") base_id = h_in['galaxy_id'].value[mask] srt = np.argsort(shear_id) shear_indx = dtk.search_sorted(shear_id, base_id, sorter=srt) assert np.sum(shear_indx==-1) == 0, "a baseDC2 galaxy wasn't found in shear catalog?" h_out_gp['ra'] = h_shear['ra_lensed'].value[shear_indx] h_out_gp['dec'] = h_shear['dec_lensed'].value[shear_indx] s1 = h_shear['shear_1'].value[shear_indx] s2 = h_shear['shear_2'].value[shear_indx] k = h_shear['conv'].value[shear_indx] u = 1.0/((1.0-k)**2 - s1**2 -s2**2) h_out_gp['shear1'] = s1 h_out_gp['shear2'] = s2 h_out_gp['magnification'] = u h_out_gp['convergence'] = k # h_out_gp['ra'] = h_shear['ra_lensed'].value[mask] # h_out_gp['dec'] = h_shear['dec_lensed'].value[mask] # s1 = h_shear['shear_1'].value[mask] # s2 = h_shear['shear_2'].value[mask] # k = h_shear['conv'].value[mask] else: print("\t\tno data in this step, setting it all to zeros") h_out_gp['shear1'] = np.zeros(0, dtype=np.float) h_out_gp['shear2'] = np.zeros(0, dtype=np.float) h_out_gp['magnification'] = np.zeros(0, dtype=np.float) h_out_gp['convergence'] = np.zeros(0, dtype=np.float) else: print('\tprotoDC2 shear style') #No protection against empty step. This is only a feature of CosmoDC2 h_out_gp['ra'] = h_in['ra_lensed'].value[mask] h_out_gp['dec'] = h_in['dec_lensed'].value[mask] h_out_gp['shear1'] = h_in['shear1'].value[mask] h_out_gp['shear2'] = h_in['shear2'].value[mask] h_out_gp['magnification'] = h_in['magnification'].value[mask] h_out_gp['convergence'] = h_in['convergence'].value[mask] if healpix: if step_has_data: h_out_gp['galaxyID'] = h_in['galaxy_id'].value[mask] else: h_out_gp['galaxyID'] = np.zeros(0, dtype=np.int64) if step_has_data: central = h_in['upid'].value[mask] == -1 h_out_gp['isCentral'] = central if snapshot: pass h_out_gp['hostHaloTag'] = h_in['target_halo_id'].value[mask] else: h_out_gp['hostHaloTag'] = h_in['target_halo_fof_halo_id'].value[mask] h_out_gp['uniqueHaloID'] = h_in['target_halo_id'].value[mask] h_out_gp['hostHaloMass'] = h_in['target_halo_mass'].value[mask] unq, indx, cnt = np.unique(h_out_gp['infallIndex'].value, return_inverse=True, return_counts = True) h_out_gp['matchUp/NumberSelected'] = cnt[indx] central_2 = (h_in['host_centric_x'].value[mask] ==0) & (h_in['host_centric_y'].value[mask] ==0) & (h_in['host_centric_z'].value[mask] == 0) assert np.sum(central_2 != central) == 0, "double centrals? centrals by upid {}, centrals by halo centric position {}".format(np.sum(central), np.sum(central_2)) else: h_out_gp['isCentral'] = np.zeros(0, dtype=bool) h_out_gp['hostHaloTag'] = np.zeros(0, dtype=np.int64) h_out_gp['uniqueHaloID'] = np.zeros(0, dtype=np.int64) h_out_gp['hostHaloMass'] = np.zeros(0, dtype=np.float) h_out_gp['matchUp/NumberSelected'] = np.zeros(0,dtype=np.int) tf = time.time() if verbose: print("\tDone overwrite columns", tf-t1) def swap(slct, x1, x2): xa = x1[slct] x1[slct] = x2[slct] x2[slct]=xa def rotate_host_halo(rot, x,y,z): """" From the documentation: // 0 = no rotation // 1 = swap(x, y) rotation applied // 2 = swap(y, z) rotation applied // 3 = swap(x, y) then swap(y, z) rotations applied // 4 = swap(z, x) rotation applied // 5 = swap(x, y) then swap(z, x) rotations applied // There are also two other possibilities: // 6 = swap(y, z) then swap(z, x) rotations applied // 7 = swap(x, y), then swap(y, z), then swap(z, x) rotations applied // which are equivalent to rotations 3 and 2 above, respectively """ slct1 = rot == 1 swap(slct1, x, y) slct2 = (rot == 2) | (rot == 7) swap(slct2, y, z) slct3 = (rot == 3) | (rot == 6) swap(slct3, x, y ) swap(slct3, y, z) slct4 = rot == 4 swap(slct4, z, x) slct5 = rot == 5 swap(slct5, x, y) swap(slct5, z, x) return def overwrite_host_halo(output_fname, sod_loc, halo_shape_loc, halo_shape_red_step_loc, verbose=False, snapshot = False): hgroup = h5py.File(output_fname,'r+')['galaxyProperties'] halo_tag = hgroup['hostHaloTag'].value size = halo_tag.size if not snapshot: halo_rot = hgroup['lightcone_rotation'].value # fof_tag = dtk.read_gio(fof_loc,'fof_halo_tag') # fof_mass = dtk.read_gio(fof_loc,'fof_mass') # fof_srt = np.argsort(fof_tag) sod_mass = -1*np.ones(halo_tag.size) if os.path.isfile(sod_loc): sod_cat_tag = dtk.gio_read(sod_loc,'fof_halo_tag') sod_cat_mass = dtk.gio_read(sod_loc,'sod_halo_mass') sod_cat_srt = np.argsort(sod_cat_tag) indx = dtk.search_sorted(sod_cat_mass,halo_tag,sorter=sod_cat_srt) slct = indx != -1 sod_mass[slct] = sod_cat_mass[indx[slct]] hgroup['hostHaloSODMass']=sod_mass print("Filling host halo information: Num of galaxies: ", halo_tag.size) eg_cat_eg1 = np.zeros(size,dtype='f4') eg_cat_eg2 = np.zeros(size,dtype='f4') eg_cat_eg3 = np.zeros(size,dtype='f4') eg_cat_eg1_x =np.zeros(size,dtype='f4') eg_cat_eg1_y =np.zeros(size,dtype='f4') eg_cat_eg1_z =np.zeros(size,dtype='f4') eg_cat_eg2_x =np.zeros(size,dtype='f4') eg_cat_eg2_y =np.zeros(size,dtype='f4') eg_cat_eg2_z =np.zeros(size,dtype='f4') eg_cat_eg3_x = np.zeros(size,dtype='f4') eg_cat_eg3_y =np.zeros(size,dtype='f4') eg_cat_eg3_z =np.zeros(size,dtype='f4') has_halo_shape_files = os.path.isfile(halo_shape_loc) and os.path.isfile(halo_shape_red_step_loc) if has_halo_shape_files: eg_cat_htag = dtk.gio_read(halo_shape_loc,'halo_id') srt = np.argsort(eg_cat_htag) indx = dtk.search_sorted(eg_cat_htag,halo_tag,sorter=srt) slct_indx = indx != -1 indx_slct = indx[slct_indx] print("num selected: ",np.sum(slct_indx)) eg_cat_eg1[slct_indx] = dtk.gio_read(halo_shape_loc,'eval1')[indx_slct] eg_cat_eg2[slct_indx] = dtk.gio_read(halo_shape_loc,'eval2')[indx_slct] eg_cat_eg3[slct_indx] = dtk.gio_read(halo_shape_loc,'eval3')[indx_slct] eg_cat_eg1_x[slct_indx] = dtk.gio_read(halo_shape_loc,'evec1x')[indx_slct] eg_cat_eg1_y[slct_indx] = dtk.gio_read(halo_shape_loc,'evec1y')[indx_slct] eg_cat_eg1_z[slct_indx] = dtk.gio_read(halo_shape_loc,'evec1z')[indx_slct] eg_cat_eg2_x[slct_indx] = dtk.gio_read(halo_shape_loc,'evec2x')[indx_slct] eg_cat_eg2_y[slct_indx] = dtk.gio_read(halo_shape_loc,'evec2y')[indx_slct] eg_cat_eg2_z[slct_indx] = dtk.gio_read(halo_shape_loc,'evec2z')[indx_slct] eg_cat_eg3_x[slct_indx] = dtk.gio_read(halo_shape_loc,'evec3x')[indx_slct] eg_cat_eg3_y[slct_indx] = dtk.gio_read(halo_shape_loc,'evec3y')[indx_slct] eg_cat_eg3_z[slct_indx] = dtk.gio_read(halo_shape_loc,'evec3z')[indx_slct] if not snapshot: rotate_host_halo(halo_rot, eg_cat_eg1_x, eg_cat_eg1_y, eg_cat_eg1_z) rotate_host_halo(halo_rot, eg_cat_eg2_x, eg_cat_eg2_y, eg_cat_eg2_z) rotate_host_halo(halo_rot, eg_cat_eg3_x, eg_cat_eg3_y, eg_cat_eg3_z) hgroup['hostHaloEigenValue1'] = eg_cat_eg1 hgroup['hostHaloEigenValue2'] = eg_cat_eg2 hgroup['hostHaloEigenValue3'] = eg_cat_eg3 hgroup['hostHaloEigenVector1X'] = eg_cat_eg1_x hgroup['hostHaloEigenVector1Y'] = eg_cat_eg1_y hgroup['hostHaloEigenVector1Z'] = eg_cat_eg1_z hgroup['hostHaloEigenVector2X'] = eg_cat_eg2_x hgroup['hostHaloEigenVector2Y'] = eg_cat_eg2_y hgroup['hostHaloEigenVector2Z'] = eg_cat_eg2_z hgroup['hostHaloEigenVector3X'] = eg_cat_eg3_x hgroup['hostHaloEigenVector3Y'] = eg_cat_eg3_y hgroup['hostHaloEigenVector3Z'] = eg_cat_eg3_z if has_halo_shape_files: eg_cat_htag = dtk.gio_read(halo_shape_red_step_loc,'halo_id')[indx_slct] eg_cat_eg1[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'eval1')[indx_slct] eg_cat_eg2[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'eval2')[indx_slct] eg_cat_eg3[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'eval3')[indx_slct] eg_cat_eg1_x[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec1x')[indx_slct] eg_cat_eg1_y[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec1y')[indx_slct] eg_cat_eg1_z[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec1z')[indx_slct] eg_cat_eg2_x[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec2x')[indx_slct] eg_cat_eg2_y[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec2y')[indx_slct] eg_cat_eg2_z[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec2z')[indx_slct] eg_cat_eg3_x[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec3x')[indx_slct] eg_cat_eg3_y[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec3y')[indx_slct] eg_cat_eg3_z[slct_indx] = dtk.gio_read(halo_shape_red_step_loc,'evec3z')[indx_slct] if not snapshot: rotate_host_halo(halo_rot, eg_cat_eg1_x, eg_cat_eg1_y, eg_cat_eg1_z) rotate_host_halo(halo_rot, eg_cat_eg2_x, eg_cat_eg2_y, eg_cat_eg2_z) rotate_host_halo(halo_rot, eg_cat_eg3_x, eg_cat_eg3_y, eg_cat_eg3_z) hgroup['hostHaloEigenValueReduced1'] = eg_cat_eg1 hgroup['hostHaloEigenValueReduced2'] = eg_cat_eg2 hgroup['hostHaloEigenValueReduced3'] = eg_cat_eg3 hgroup['hostHaloEigenVectorReduced1X'] = eg_cat_eg1_x hgroup['hostHaloEigenVectorReduced1Y'] = eg_cat_eg1_y hgroup['hostHaloEigenVectorReduced1Z'] = eg_cat_eg1_z hgroup['hostHaloEigenVectorReduced2X'] = eg_cat_eg2_x hgroup['hostHaloEigenVectorReduced2Y'] = eg_cat_eg2_y hgroup['hostHaloEigenVectorReduced2Z'] = eg_cat_eg2_z hgroup['hostHaloEigenVectorReduced3X'] = eg_cat_eg3_x hgroup['hostHaloEigenVectorReduced3Y'] = eg_cat_eg3_y hgroup['hostHaloEigenVectorReduced3Z'] = eg_cat_eg3_z return def add_native_umachine(output_fname, umachine_native, cut_small_galaxies_mass = None, internal_step=None, snapshot=False): t1 = time.time() if snapshot: h_in = h5py.File(umachine_native, 'r')['galaxyProperties'] elif internal_step is None: h_in = h5py.File(umachine_native,'r') else: h_in = h5py.File(umachine_native,'r')[str(internal_step)] hgroup = h5py.File(output_fname, 'r+')['galaxyProperties'] if cut_small_galaxies_mass is None: for key in h_in.keys(): hgroup['baseDC2/'+key] = h_in[key].value else: sm = h_in['obs_sm'].value # in linear units slct = sm > 10**cut_small_galaxies_mass #convert cut_small.. from log to linear for key in h_in.keys(): hgroup['baseDC2/'+key] = h_in[key].value[slct] print("done addign baseDC2 quantities. time: {:.2f}".format(time.time()-t1)) return def add_blackhole_quantities(output_fname, redshift, percentile_sfr): hgroup = h5py.File(output_fname,'r+')['galaxyProperties'] print(hgroup.keys()) bhm = monte_carlo_black_hole_mass(hgroup['spheroidMassStellar'].value) eddington_ratio, bh_acc_rate = monte_carlo_bh_acc_rate(redshift, bhm, percentile_sfr) hgroup['blackHoleMass'] = bhm hgroup['blackHoleAccretionRate'] = bh_acc_rate*1e9 hgroup['blackHoleEddingtonRatio'] = eddington_ratio def add_size_quantities(output_fname): hgroup = h5py.File(output_fname,'r+')['galaxyProperties'] mag_r = hgroup['SDSS_filters/magnitude:SDSS_r:rest'].value redshift = hgroup['redshift'].value if len(redshift) > 0: arcsec_per_kpc = interp1d(redshift,cosmo.arcsec_per_kpc_proper(redshift).value) f = arcsec_per_kpc(redshift) else: f = np.zeros(0, dtype=np.float) size_disk = mc_size_vs_luminosity_late_type(mag_r, redshift) size_sphere = mc_size_vs_luminosity_early_type(mag_r, redshift) hgroup['morphology/spheroidHalfLightRadius'] = size_sphere hgroup['morphology/spheroidHalfLightRadiusArcsec'] = size_sphere*f hgroup['morphology/diskHalfLightRadius'] = size_disk hgroup['morphology/diskHalfLightRadiusArcsec'] = size_disk*f def erase_ellipticity_quantities(output_fname): print(output_fname) def erase_if_has(hfile, output_fname): if 'galaxyProperties/'+output_fname in hfile: del hfile['galaxyProperties/'+output_fname] hfile = h5py.File(output_fname,'r+') erase_if_has(hfile, 'morphology/spheroidAxisRatio') erase_if_has(hfile, 'morphology/spheroidAxisRatio') erase_if_has(hfile, 'morphology/spheroidMajorAxisArcsec') erase_if_has(hfile, 'morphology/spheroidMinorAxisArcsec') erase_if_has(hfile, 'morphology/spheroidEllipticity') erase_if_has(hfile, 'morphology/spheroidEllipticity1') erase_if_has(hfile, 'morphology/spheroidEllipticity2') erase_if_has(hfile, 'morphology/diskAxisRatio') erase_if_has(hfile, 'morphology/diskMajorAxisArcsec') erase_if_has(hfile, 'morphology/diskMinorAxisArcsec') erase_if_has(hfile, 'morphology/diskEllipticity') erase_if_has(hfile, 'morphology/diskEllipticity1') erase_if_has(hfile, 'morphology/diskEllipticity2') erase_if_has(hfile, 'morphology/totalEllipticity') erase_if_has(hfile, 'morphology/totalAxisRatio') erase_if_has(hfile, 'morphology/totalEllipticity1') erase_if_has(hfile, 'morphology/totalEllipticity2') erase_if_has(hfile, 'morphology/positionAngle') def add_ellipticity_quantities(output_fname, verbose = False): if verbose: print("\tadding ellipticity") def gal_zoo_dist(x): val = np.zeros_like(x) a = 2 slct = x<0.2 val[slct] = 0 slct = (0.1<=x) & (x<0.7) val[slct] = np.tanh((x[slct]-.3)*np.pi*a) - np.tanh((-0.2)*np.pi*a) slct = (0.7<=x) & (x<1.0) val[slct] = np.tanh(-(x[slct]-.95)*np.pi*6.) - np.tanh((-0.2)*np.pi*a) -(np.tanh(-(0.7-0.95)*np.pi*6)-np.tanh(0.4*np.pi*a)) slct = 1.0<=x val[slct] = 0 return val hgroup = h5py.File(output_fname, 'r+')['galaxyProperties'] if 'inclination' in hgroup['morphology']: inclination = hgroup['morphology/inclination'].value else: inclination = None mag_r = hgroup['SDSS_filters/magnitude:SDSS_r:rest:dustAtlas'].value size = np.size(mag_r) pos_angle = np.random.uniform(size=size)*np.pi print("pos_angle: ", pos_angle.size) if False: # Old code for ellipticity spheroid_axis_ratio = dtk.clipped_gaussian(0.8, 0.2, size, max_val = 1.0, min_val=0.0) dist,lim = dtk.make_distribution(-inclination) resamp = dtk.resample_distribution(dist,gal_zoo_dist,lim,[0.0,1.0]) disk_axis_ratio = resamp(-inclination) else: # Returns ellip = 1-q^2 / 1+q^2 # spheroid_ellip_cosmo = monte_carlo_ellipticity_bulge(mag_r) # disk_ellip_cosmo = monte_carlo_ellipticity_disk(mag_r, inclination) # We need to convert to q = sqrt((1-e)/(1+e)) spheroid_ellip_cosmos, disk_ellip_cosmos = monte_carlo_ellipticity_bulge_disk(mag_r) spheroid_axis_ratio = np.sqrt((1-spheroid_ellip_cosmos**2)/(1+spheroid_ellip_cosmos**2)) disk_axis_ratio = np.sqrt((1-disk_ellip_cosmos**2)/(1+disk_ellip_cosmos**2)) # Calculate ellipticity from the axis ratios ellip_disk = (1.0 - disk_axis_ratio)/(1.0 + disk_axis_ratio) ellip_spheroid = (1.0 - spheroid_axis_ratio)/(1.0 + spheroid_axis_ratio) hgroup['morphology/spheroidAxisRatio'] = np.array(spheroid_axis_ratio, dtype='f4') hgroup['morphology/spheroidMajorAxisArcsec'] = np.array(hgroup['morphology/spheroidHalfLightRadiusArcsec'].value, dtype='f4') hgroup['morphology/spheroidMinorAxisArcsec'] = np.array(hgroup['morphology/spheroidHalfLightRadiusArcsec'].value*spheroid_axis_ratio, dtype='f4') hgroup['morphology/spheroidEllipticity'] = np.array(ellip_spheroid, dtype='f4') hgroup['morphology/spheroidEllipticity1'] =np.array( np.cos(2.0*pos_angle)*ellip_spheroid, dtype='f4') hgroup['morphology/spheroidEllipticity2'] =np.array( np.sin(2.0*pos_angle)*ellip_spheroid, dtype='f4') hgroup['morphology/diskAxisRatio'] = np.array(disk_axis_ratio, dtype='f4') hgroup['morphology/diskMajorAxisArcsec'] = np.array(hgroup['morphology/diskHalfLightRadiusArcsec'].value, dtype='f4') hgroup['morphology/diskMinorAxisArcsec'] = np.array(hgroup['morphology/diskHalfLightRadiusArcsec'].value*disk_axis_ratio, dtype='f4') hgroup['morphology/diskEllipticity'] = np.array(ellip_disk, dtype='f4') hgroup['morphology/diskEllipticity1'] =np.array( np.cos(2.0*pos_angle)*ellip_disk, dtype='f4') hgroup['morphology/diskEllipticity2'] =np.array( np.sin(2.0*pos_angle)*ellip_disk, dtype='f4') lum_disk = hgroup['SDSS_filters/diskLuminositiesStellar:SDSS_r:rest'].value lum_sphere = hgroup['SDSS_filters/spheroidLuminositiesStellar:SDSS_r:rest'].value lum_tot = lum_disk + lum_sphere tot_ellip = (lum_disk*ellip_disk + lum_sphere*ellip_spheroid)/(lum_tot) hgroup['morphology/totalEllipticity'] = np.array(tot_ellip, dtype='f4') hgroup['morphology/totalAxisRatio'] = np.array((1.0 - tot_ellip)/(1.0 + tot_ellip), dtype='f4') hgroup['morphology/totalEllipticity1'] = np.array(np.cos(2.0*pos_angle)*tot_ellip, dtype='f4') hgroup['morphology/totalEllipticity2'] = np.array(np.sin(2.0*pos_angle)*tot_ellip, dtype='f4') hgroup['morphology/positionAngle'] = np.array(pos_angle*180.0/np.pi, dtype='f4') # print("position angle writen: ", np.array(pos_angle*180.0/np.pi, dtype='f4')) # print("position angle writen: ", np.array(pos_angle*180.0/np.pi, dtype='f4').size) srsc_indx_disk = 1.0*np.ones(lum_disk.size,dtype='f4') srsc_indx_sphere = 4.0*np.ones(lum_disk.size,dtype='f4') srsc_indx_tot = (srsc_indx_disk*lum_disk + srsc_indx_sphere*lum_sphere)/(lum_tot) hgroup['morphology/diskSersicIndex'] = srsc_indx_disk hgroup['morphology/spheroidSersicIndex'] = srsc_indx_sphere hgroup['morphology/totalSersicIndex'] = srsc_indx_tot return def combine_step_lc_into_one(step_fname_list, out_fname, healpix=False): print("combining into one file") print(out_fname) print(step_fname_list) hfile_out = h5py.File(out_fname,'w') hfile_gp_out = hfile_out.create_group('galaxyProperties') hfile_steps = [] hfile_steps_gp = [] for fname in step_fname_list: hfile = h5py.File(fname,'r') gp = hfile['galaxyProperties'] hfile_steps.append(hfile) hfile_steps_gp.append(gp) keys = get_keys(hfile_steps_gp[-1]) for i,key in enumerate(keys): t1 = time.time() print("{}/{} {}".format(i,len(keys),key)) if key == 'inclination': print('skipping in final output') data_list = [] #units = None for h_gp in hfile_steps_gp: if key in h_gp: data_list.append(h_gp[key].value) data = np.concatenate(data_list) hfile_gp_out[key]=data #hfile_gp_out[key].attrs['units']=units print("\t time: {:.2f}".format(time.time()-t1)) if not healpix: hfile_gp_out['galaxyID'] = np.arange(hfile_gp_out['redshift'].size,dtype='i8') return def add_metadata(gal_ref_fname, out_fname, version_major, version_minor, version_minor_minor, healpix_ref=None, param_file=None, snapshot=False): """ Takes the metadata group and copies it over the final output product. Also for each data column, copies the units attribute. """ add_units(out_fname) hfile_gf = h5py.File(gal_ref_fname,'r') hfile_out = h5py.File(out_fname,'a') if 'metaData' in hfile_out: del hfile_out['/metaData'] hfile_out.copy(hfile_gf['metaData/GalacticusParameters'],'/metaData/GalacticusParameters/') hfile_out['/metaData/versionMajor'] = version_major hfile_out['/metaData/versionMinor'] = version_minor hfile_out['/metaData/versionMinorMinor'] = version_minor_minor hfile_out['/metaData/version'] = "{}.{}.{}".format(version_major, version_minor, version_minor_minor) hfile_out['/metaData/catalogCreationDate']=datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M UTC") if healpix_ref is not None: hfile_hp = h5py.File(healpix_ref,'r')['metaData'] hfile_out['metaData/H_0'] = hfile_hp['H_0'].value hfile_out['metaData/Omega_b'] = hfile_hp['Omega_b'].value hfile_out['metaData/Omega_matter'] = hfile_hp['Omega_matter'].value if not snapshot: hfile_out['metaData/skyArea'] = hfile_hp['skyArea'].value hfile_out['metaData/cosmoDC2_Model/synthetic_halo_minimum_mass'] = hfile_hp['synthetic_halo_minimum_mass'].value hfile_out['metaData/cosmoDC2_Model/commit_hash'] = hfile_hp['commit_hash'].value hfile_out['metaData/cosmoDC2_Model/seed'] = hfile_hp['seed'].value else: if not snapshot: hfile_out['metaData/skyArea'] = 25 try: #cmd = 'git rev-parse HEAD' cmd = 'cd {0} && git rev-parse HEAD'.format(path_to_cosmodc2) commit_hash = subprocess.check_output(cmd, shell=True).strip() except subprocess.CalledProcessError as cpe: with open('git_commit_hash.txt') as gcf: commit_hash = gcf.read().rstrip() print("commit hash: ", commit_hash) hfile_out['/metaData/cosmodDC2_Matchup/commit_hash']= commit_hash if param_file is not None: with open(param_file, 'r') as pfile: data = pfile.read() hfile_out['/metaData/cosmodDC2_Matchup/config_file'] = data def add_units(out_fname): hfile = h5py.File(out_fname,'a')['galaxyProperties'] ################################# ###Add units to all fields ################################# mag_list = ['magnitude']; mag_unit = 'AB magnitude' arcsec_list= ['Arcsec']; arcsec_unit = 'arcsecond' rad_list = []; rad_unit ='radians' deg_list = ['ra','dec','ra_true', 'dec_true', 'morphology/positionAngle','inclination']; deg_unit = 'degrees' phys_kpc_list = ['Radius']; phys_kpc_unit = 'physical kpc' phys_mpc_list = []; phys_mpc_unit = 'physical Mpc' reduced_dist_list =['Reduced','EigenVector', 'Eddington'];reduced_dist_unit = 'unitless' eigen_val_list = ['EigenValue'];eigen_val_unit = 'comoving Mpc/h' comv_mpc_list = ['x','y','z']; comv_mpc_unit = 'comoving Mpc/h' vel_list = ['vx','vy','vz','Velocity']; vel_unit = 'km/s' timeSFR_list =['TimeWeightedIntegratedSFR']; timeSFR_unit = 'Gyr*Msun' sfr_list =['SFR','blackHoleAccretionRate','StarFormationRate']; sfr_unit = 'Msun/Gyr' mass_list =['MassStellar','IntegratedSFR']; mass_unit = 'Msun' halo_mass_list = ['HaloMass']; halo_mass_unit = 'Msun/h' abundance_list =['Abundance'];abundance_unit = 'Msun' luminosity_list =['Luminosities','Luminosity']; luminosity_unit = 'AB luminosity (4.4659e13 W/Hz)' unitless_list = ['redshift','shear','magnification','convergence','Ellipticity','Sersic','AxisRatio','dustFactor']; unitless_unit ='unitless' id_list = ['Index','Tag','placementType','galaxyID','lightcone_replication','lightcone_rotation', 'uniqueHaloID','isCentral']; id_unit = 'id/index' angular_list = ['angularMomentum'];angular_unit = 'Msun*km/s*Mpc' bool_list =['nodeIsIsolated'];bool_unit = 'boolean' spinSpin_list =['spinSpin'];spinSpin_unit ='lambda' step_list = ['step'];step_unit = 'simluation step' umachine_list = ['UMachineNative', 'baseDC2', 'matchUp'];umachine_unit = 'Unspecified' count_list =['NumberSelected'];count_unit = 'count' print("assigning units") keys = get_keys(hfile) print( keys) for key in keys: print(key) print('\t',hfile[key].dtype) #add magnitude units if(any(l in key for l in mag_list)): hfile[key].attrs['units']=mag_unit print("\t mag") # umachine list elif(any(l in key for l in umachine_list)): hfile[key].attrs['units']=umachine_unit #add arcsec units elif(any(l in key for l in arcsec_list)): hfile[key].attrs['units']=arcsec_unit print( "\t ",arcsec_unit) #add rad units elif(any(l in key for l in rad_list)): hfile[key].attrs['units']=rad_unit print( "\t ",rad_unit) #add degree units elif(any(l == key for l in deg_list)): hfile[key].attrs['units']=deg_unit print( '\t',deg_unit) #add kpc units elif(any(l in key for l in phys_kpc_list)): hfile[key].attrs['units']=phys_kpc_unit print( "\t ",phys_kpc_unit) #add mpc units elif(any(l in key for l in phys_mpc_list)): hfile[key].attrs['units']=phys_mpc_unit print ("\t ",phys_mpc_unit) #reduced distances units elif(any(l in key for l in reduced_dist_list)): hfile[key].attrs['units']=reduced_dist_unit print ("\t ",reduced_dist_unit) #eigen val units elif(any(l in key for l in eigen_val_list)): hfile[key].attrs['units']=eigen_val_unit print ("\t ",reduced_dist_unit) #add comoving mpc units elif(any(l == key for l in comv_mpc_list)): hfile[key].attrs['units']=comv_mpc_unit print ("\t ",comv_mpc_unit) #add velocity units elif(any(l in key for l in vel_list)): hfile[key].attrs['units']=vel_unit print ("\t ",vel_unit) #add timesfr elif(any(l in key for l in timeSFR_list)): hfile[key].attrs['units']=timeSFR_unit print ("\t ",timeSFR_unit) #add sfr elif(any(l in key for l in sfr_list)): hfile[key].attrs['units']=sfr_unit print ("\t ",sfr_unit) #add mass elif(any(l in key for l in mass_list)): hfile[key].attrs['units']=mass_unit print ("\t ",mass_unit) #add halo mass elif(any(l in key for l in halo_mass_list)): hfile[key].attrs['units'] = halo_mass_unit print ("\t ",halo_mass_unit) #add abundance elif(any(l in key for l in abundance_list)): hfile[key].attrs['units']=abundance_unit print ("\t ",abundance_unit) #add luminosity units elif(any(l in key for l in luminosity_list)): hfile[key].attrs['units']=luminosity_unit print ("\t ",luminosity_unit) #add unit less elif(any(l in key for l in unitless_list)): hfile[key].attrs['units']=unitless_unit print ("\t ",unitless_unit) #add mass units elif(any(l in key for l in id_list)): hfile[key].attrs['units']=id_unit print ("\t ",id_unit) #angular momentum elif(any(l in key for l in angular_list)): hfile[key].attrs['units']=angular_unit print ("\t ",angular_unit) #boolean elif(any(l in key for l in bool_list)): hfile[key].attrs['units']=bool_unit print ("\t", bool_unit) #spinSpin elif(any(l in key for l in spinSpin_list)): hfile[key].attrs['units']=spinSpin_unit # step elif(any(l in key for l in step_list)): hfile[key].attrs['units']=step_unit #counts elif(any(l in key for l in count_list)): hfile[key].attrs['units']=count_unit #Everything should have a unit! else: print("column", key, "was not assigned a unit :(") print("===================") #raise; def plot_differences(lc_data, gal_prop, index, fig_id='', plotdir='./plots', ext='.png'): keys = ['Mag_r','clr_gr','clr_ri','m_star'] dist = {} dist_all = None for key in keys: d = lc_data[key]-gal_prop[key][index] dist[key] = d if(dist_all is None): dist_all = d*d else: dist_all += d*d dist_all = np.sqrt(dist_all) # get fig name fig_id = 'Diffs_{}'.format(fig_id) if fig_id != '' else 'Diffs_' fignum = len(plt.get_fignums()) plt.figure() for key in keys: slct_fnt = np.isfinite(dist[key]) bins = np.linspace(np.min(dist[key][slct_fnt]), np.max(dist[key][slct_fnt]), 100) h,xbins = np.histogram(dist[key][slct_fnt],bins=bins) plt.plot(dtk.bins_avg(xbins),h,label=key) plt.yscale('log') plt.grid() plt.legend(loc='best') plt.xlabel('original value - matched value') plt.ylabel('count') figname = os.path.join(plotdir, '{}_N_vs_match_{}{}'.format(fig_id, fignum + 1, ext)) plt.savefig(figname, bbox_inches='tight') plt.close() fig = plt.figure() slct_fnt =
np.isfinite(dist_all)
numpy.isfinite
#Utility Functions import copy from collections import defaultdict import glob import os import random from stl import mesh #Math Functions import alphashape from descartes import PolygonPatch import math import numpy as np import scipy.linalg as ling from scipy.spatial import Delaunay from scipy.special import jn #Drawing Functios import matplotlib.pyplot import matplotlib.pyplot as plt from mpl_toolkits import mplot3d from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection from matplotlib.colors import LightSource from matplotlib import cm #Other Modules from faser_math import fsr from faser_utils.disp.disp import disp, progressBar # Create an instance of a LightSource and use it to illuminate the surface. def alpha_shape_3D(pos, alpha): """ Compute the alpha shape (concave hull) of a set of 3D points. Parameters: pos - np.array of shape (n, 3) points. alpha - alpha value. return outer surface vertex indices, edge indices, and triangle indices """ #Function found here https://stackoverflow.com/questions/26303878/alpha-shapes-in-3d tetra = Delaunay(pos) # Find radius of the circumsphere. # By definition, radius of the sphere fitting inside the tetrahedral needs # to be smaller than alpha value # http://mathworld.wolfram.com/Circumsphere.html tetrapos = np.take(pos, tetra.vertices, axis=0) normsq = np.sum(tetrapos**2, axis=2)[:,:,None] ones = np.ones((tetrapos.shape[0], tetrapos.shape[1], 1)) a = np.linalg.det(np.concatenate((tetrapos, ones), axis=2)) Dx = np.linalg.det(np.concatenate((normsq, tetrapos[:,:,[1, 2]], ones), axis=2)) Dy = -np.linalg.det(np.concatenate((normsq, tetrapos[:,:,[0, 2]], ones), axis=2)) Dz = np.linalg.det(np.concatenate((normsq, tetrapos[:,:,[0, 1]], ones), axis=2)) c = np.linalg.det(np.concatenate((normsq, tetrapos), axis=2)) r = np.sqrt(Dx**2+Dy**2+Dz**2-4*a*c)/(2*np.abs(a)) # Find tetrahedrals tetras = tetra.vertices[r<alpha,:] # triangles TriComb = np.array([(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]) Triangles = tetras[:,TriComb].reshape(-1, 3) Triangles = np.sort(Triangles, axis=1) # Remove triangles that occurs twice, because they are within shapes TrianglesDict = defaultdict(int) for tri in Triangles:TrianglesDict[tuple(tri)] += 1 Triangles=np.array([tri for tri in TrianglesDict if TrianglesDict[tri] ==1]) #edges EdgeComb=
np.array([(0, 1), (0, 2), (1, 2)])
numpy.array
import unittest import numpy as np import scipy.stats as stats from collections import defaultdict import testGeneral import randomArbitrary class TestGeneralRandomInteger(testGeneral.TestRNG): def testRandIntegerCoversAllTheValues(self): 'Sampling integer values should eventually cover all possible values' nPoints = 10 SAMPLES = 100 * nPoints TIMES = 10 for t in xrange(TIMES): #@UnusedVariable xValues = [] while len(xValues) < 2: xValues = np.random.randint(-100, 100, nPoints).tolist() xValues.sort() xValues = np.unique(xValues) pValues = np.arange(len(xValues)) + 1 rng = randomArbitrary.RandomArbitraryInteger(xValues, pValues) rValues = rng.random(SAMPLES) count = defaultdict(int) for v in rValues: count[v] += 1 for i in range(nPoints): if i in xValues: self.assertTrue(count[i] > 0) else: self.assertEqual(count[i], 0) def testRandIntegerExcludedValues(self): nPoints = 10 TIMES = 100 * nPoints xValues = range(nPoints) for i in range(nPoints): pValues = np.arange(nPoints) + 1 pValues[i] = 0.0 rng = randomArbitrary.RandomArbitraryInteger(x=xValues, p=pValues) r = rng.random(TIMES) f = filter(lambda v: v==i, r) self.assertTrue(len(f)==0) @staticmethod def _chi2testSampleAgainsProbability(observed, expectedProbabilities): '''chi2 test to test whether a sample is consistent with expected prob. This function works only with integer samples in the range [0, n), where n is a natural number @param observed: the observed sample @param expectedProbabilities: list of expected probabilities. Value at index `i` corresponds to the probability of integer `i`. @return: (chi2, pval) ''' expectedProbabilities = np.array(expectedProbabilities) countO = defaultdict(int) for o in observed: countO[o] += 1 keys = range(len(expectedProbabilities)) countObserved = np.array([countO[k] for k in keys], dtype=float) countObserved = countObserved / countObserved.sum() chi2 =
np.sum((countObserved - expectedProbabilities) ** 2 / expectedProbabilities)
numpy.sum
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import import matplotlib, warnings import numpy as np import CoolProp from CoolProp.CoolProp import PropsSI from CoolProp.Plots.Common import BasePlot, PropertyDict, SIunits def SimpleCycle(Ref,Te,Tc,DTsh,DTsc,eta_a,Ts_Ph='Ph',**kwargs): """ This function plots a simple four-component cycle, on the current axis, or that given by the optional parameter *axis* Required parameters: * Ref : A string for the refrigerant * Te : Evap Temperature in K * Tc : Condensing Temperature in K * DTsh : Evaporator outlet superheat in K * DTsc : Condenser outlet subcooling in K * eta_a : Adiabatic efficiency of compressor (no units) in range [0,1] Optional parameters: * Ts_Ph : 'Ts' for a Temperature-Entropy plot, 'Ph' for a Pressure-Enthalpy * axis : An axis to use instead of the active axis * skipPlot : If True, won't actually plot anything, just print COP """ warnings.warn("This function has been deprecated. Please consider converting it to an object inheriting from \"BaseCycle\".",DeprecationWarning) for i in kwargs: warnings.warn("This function has been deprecated, your input \"{0}: {1}\" will be ignored".format(i,kwargs[i]),DeprecationWarning) from CoolProp.Plots import SimpleCompressionCycle cycle = SimpleCompressionCycle(fluid_ref=Ref, graph_type=Ts_Ph) cycle.simple_solve_dt(Te, Tc, DTsh, DTsc, eta_a, SI=True) print(cycle.COP_cooling(),cycle.COP_heating()) def TwoStage(Ref,Q,Te,Tc,DTsh,DTsc,eta_oi,f_p,Tsat_ic,DTsh_ic,Ts_Ph='Ph',prints=False,skipPlot=False,axis=None,**kwargs): """ This function plots a two-stage cycle, on the current axis, or that given by the optional parameter *axis* Required parameters: * Ref : Refrigerant [string] * Q : Cooling capacity [W] * Te : Evap Temperature [K] * Tc : Condensing Temperature [K] * DTsh : Evaporator outlet superheat [K] * DTsc : Condenser outlet subcooling [K] * eta_oi : Adiabatic efficiency of compressor (no units) in range [0,1] * f_p : fraction of compressor power lost as ambient heat transfer in range [0,1] * Tsat_ic : Saturation temperature corresponding to intermediate pressure [K] * DTsh_ic : Superheating at outlet of intermediate stage [K] Optional parameters: * Ts_Ph : 'Ts' for a Temperature-Entropy plot, 'Ph' for a Pressure-Enthalpy * prints : True to print out some values * axis : An axis to use instead of the active axis * skipPlot : If True, won't actually plot anything, just print COP """ warnings.warn("This function has been deprecated. PLease consider converting it to an object inheriting from \"BaseCycle\".",DeprecationWarning) T=np.zeros((8)) h=np.zeros_like(T) p=np.zeros_like(T) s=np.zeros_like(T) rho=np.zeros_like(T) T[0]=np.NAN s[0]=np.NAN T[1]=Te+DTsh pe=PropsSI('P','T',Te,'Q',1.0,Ref) pc=PropsSI('P','T',Tc,'Q',1.0,Ref) pic=PropsSI('P','T',Tsat_ic,'Q',1.0,Ref) Tbubble_c=PropsSI('T','P',pc,'Q',0,Ref) Tbubble_e=PropsSI('T','P',pe,'Q',0,Ref) h[1]=PropsSI('H','T',T[1],'P',pe,Ref) s[1]=PropsSI('S','T',T[1],'P',pe,Ref) rho[1]=PropsSI('D','T',T[1],'P',pe,Ref) T[5]=Tbubble_c-DTsc h[5]=PropsSI('H','T',T[5],'P',pc,Ref) s[5]=PropsSI('S','T',T[5],'P',pc,Ref) rho[5]=PropsSI('D','T',T[5],'P',pc,Ref) mdot=Q/(h[1]-h[5]) rho1=PropsSI('D','T',T[1],'P',pe,Ref) h2s=PropsSI('H','S',s[1],'P',pic,Ref) Wdot1=mdot*(h2s-h[1])/eta_oi h[2]=h[1]+(1-f_p)*Wdot1/mdot T[2]=PropsSI('T','H',h[2],'P',pic,Ref) s[2]=PropsSI('S','T',T[2],'P',pic,Ref) rho[2]=PropsSI('D','T',T[2],'P',pic,Ref) T[3]=288 p[3]=pic h[3]=PropsSI('H','T',T[3],'P',pic,Ref) s[3]=PropsSI('S','T',T[3],'P',pic,Ref) rho[3]=PropsSI('D','T',T[3],'P',pic,Ref) rho3=PropsSI('D','T',T[3],'P',pic,Ref) h4s=PropsSI('H','T',s[3],'P',pc,Ref) Wdot2=mdot*(h4s-h[3])/eta_oi h[4]=h[3]+(1-f_p)*Wdot2/mdot T[4]=PropsSI('T','H',h[4],'P',pc,Ref) s[4]=PropsSI('S','T',T[4],'P',pc,Ref) rho[4]=PropsSI('D','T',T[4],'P',pc,Ref) sbubble_e=PropsSI('S','T',Tbubble_e,'Q',0,Ref) sbubble_c=PropsSI('S','T',Tbubble_c,'Q',0,Ref) sdew_e=PropsSI('S','T',Te,'Q',1,Ref) sdew_c=PropsSI('S','T',Tc,'Q',1,Ref) hsatL=PropsSI('H','T',Tbubble_e,'Q',0,Ref) hsatV=PropsSI('H','T',Te,'Q',1,Ref) ssatL=PropsSI('S','T',Tbubble_e,'Q',0,Ref) ssatV=PropsSI('S','T',Te,'Q',1,Ref) vsatL=1/PropsSI('D','T',Tbubble_e,'Q',0,Ref) vsatV=1/PropsSI('D','T',Te,'Q',1,Ref) x=(h[5]-hsatL)/(hsatV-hsatL) s[6]=x*ssatV+(1-x)*ssatL T[6]=x*Te+(1-x)*Tbubble_e rho[6]=1.0/(x*vsatV+(1-x)*vsatL) h[6]=h[5] h[7]=h[1] s[7]=s[1] T[7]=T[1] p=[np.nan,pe,pic,pic,pc,pc,pe,pe] COP=Q/(Wdot1+Wdot2) RE=h[1]-h[6] if prints==True: print('x5:',x) print('COP:', COP) print('COPH', (Q+Wdot1+Wdot2)/(Wdot1+Wdot2)) print(T[2]-273.15,T[4]-273.15,p[2]/p[1],p[4]/p[3]) print(mdot,mdot*(h[4]-h[5]),pic) print('Vdot1',mdot/rho1,'Vdisp',mdot/rho1/(3500/60.)*1e6/0.7) print('Vdot2',mdot/rho3,'Vdisp',mdot/rho3/(3500/60.)*1e6/0.7) print(mdot*(h[4]-h[5]),Tc-273.15) for i in range(1,len(T)-1): print('%d & %g & %g & %g & %g & %g \\\\' %(i,T[i]-273.15,p[i],h[i],s[i],rho[i])) else: print(Tsat_ic,COP) if skipPlot==False: if axis==None: ax=matplotlib.pyplot.gca() else: ax=axis if Ts_Ph in ['ph','Ph']: ax.plot(h,p) elif Ts_Ph in ['Ts','ts']: s_copy=s.copy() T_copy=T.copy() for i in range(1,len(s)-1): ax.plot(s[i],T[i],'bo',mfc='b',mec='b') dT=[0,-5,5,-20,5,5,5] ds=[0,0.05,0,0,0,0,0] ax.text(s[i]+ds[i],T[i]+dT[i],str(i)) s=list(s) T=list(T) s.insert(7,sdew_e) T.insert(7,Te) s.insert(5,sbubble_c) T.insert(5,Tbubble_c) s.insert(5,sdew_c) T.insert(5,Tc) ax.plot(s,T) s=s_copy T=T_copy else: raise TypeError('Type of Ts_Ph invalid') return COP def EconomizedCycle(Ref,Qin,Te,Tc,DTsh,DTsc,eta_oi,f_p,Ti,Ts_Ph='Ts',skipPlot=False,axis=None,**kwargs): """ This function plots an economized cycle, on the current axis, or that given by the optional parameter *axis* Required parameters: * Ref : Refrigerant [string] * Qin : Cooling capacity [W] * Te : Evap Temperature [K] * Tc : Condensing Temperature [K] * DTsh : Evaporator outlet superheat [K] * DTsc : Condenser outlet subcooling [K] * eta_oi : Adiabatic efficiency of compressor (no units) in range [0,1] * f_p : fraction of compressor power lost as ambient heat transfer in range [0,1] * Ti : Saturation temperature corresponding to intermediate pressure [K] Optional parameters: * Ts_Ph : 'Ts' for a Temperature-Entropy plot, 'Ph' for a Pressure-Enthalpy * axis : An axis to use instead of the active axis * skipPlot : If True, won't actually plot anything, just print COP """ warnings.warn("This function has been deprecated. Please consider converting it to an object inheriting from \"BaseCycle\".",DeprecationWarning) from scipy.optimize import newton m=1 T=np.zeros((11)) h=np.zeros_like(T) p=np.zeros_like(T) s=
np.zeros_like(T)
numpy.zeros_like
import tensorflow as tf import numpy as np from skimage import transform, io, color import os test_pb_path = './final_output_stage3.pb' raw_root = '/home/robot/Project/CPM_backup/data/test_pic/00008.bmp' root = './' def resize_to_imgsz(hm, img): """ Create Tensor for joint position prediction :param hm: Assuming input of shape (sz, w, h, c) :param img: Assuming input of shape (sz, w, h, c) :return: """ # assert len(hm.shape) == 4 and len(img.shape) == 4 ret_map = np.zeros((hm.shape[0], img.shape[1], img.shape[2], hm.shape[-1]), np.float32) for n in range(hm.shape[0]): for c in range(hm.shape[-1]): ret_map[n,:,:,c] = transform.resize(hm[n,:,:,c], img.shape[1: 3]) return ret_map with tf.Graph().as_default(): output_graph_def = tf.GraphDef() with open(test_pb_path, "rb") as f: output_graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(output_graph_def, name="") with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) input_x = sess.graph.get_tensor_by_name("input/img_in:0") out_put = sess.graph.get_tensor_by_name("CPM/final_output_stage3:0") t_img = io.imread(raw_root) """ #input_list.append(cv2.resize(t_img, (in_size_w, in_size_h))) _input = np.array(t_img) _input =_input.reshape((1, 560, 2448, 3)) """ t_img = transform.resize(t_img, (280, 1224)) t_img = color.rgb2gray(t_img) _input = np.array(t_img) _input = _input.reshape((1, 280, 1224, 1)) print('input_shape:', _input.shape) # pred_map = sess.run(out_put, feed_dict={input_x: _input / 255.0})[:, -1] pred_map = sess.run(out_put, feed_dict={input_x: _input}) print('output_shape:', pred_map.shape) print('output_dtype:', pred_map.dtype) print('output_nbytes:', pred_map.nbytes) print (pred_map[0, 0, 0, 0]) print (pred_map[0, 0, 0, 1]) print (pred_map[0, 14, 109, 0]) print (pred_map[0, 14, 109, 1]) print (np.where(pred_map==np.max(pred_map))) print (np.max(pred_map[0, :, :, :])) r_pred_map = resize_to_imgsz(np.expand_dims(pred_map[0], 0),
np.expand_dims(_input[0], 0)
numpy.expand_dims
import numpy as np def test_posterior_fixture(test_posterior): assert isinstance(test_posterior, dict) assert isinstance(test_posterior["basis"], np.ndarray) assert isinstance(test_posterior["dates"], np.ndarray) assert isinstance(test_posterior["lineages"], np.ndarray) assert isinstance(test_posterior["cases"], np.ndarray) # def test_clock_reset_fixture(test_clock_reset_model): # pass def test_aggregate_log_R(clock_reset_model): cluster = np.array([0, 0, 1, 1]) aggregated_lambda = clock_reset_model.aggregate_log_R(cluster) assert aggregated_lambda.shape == (100, 2, 205, 1) cluster = np.array([0, 0, 0, 0]) aggregated_lambda = clock_reset_model.aggregate_log_R(cluster) assert aggregated_lambda.shape == (100, 1, 205, 1) cluster = np.array([0, 0, 1, 2]) aggregated_lambda = clock_reset_model.aggregate_log_R(cluster) assert aggregated_lambda.shape == (100, 3, 205, 1) def test_aggregate_lambda_lineage(clock_reset_model): cluster = np.array([0, 0, 1, 1]) aggregated_lambda = clock_reset_model.aggregate_lambda_lineage(cluster) assert aggregated_lambda.shape == (100, 2, 205, 59) cluster = np.array([0, 0, 0, 0]) aggregated_lambda = clock_reset_model.aggregate_lambda_lineage(cluster) assert aggregated_lambda.shape == (100, 1, 205, 59) cluster = np.array([0, 0, 1, 2]) aggregated_lambda = clock_reset_model.aggregate_lambda_lineage(cluster) assert aggregated_lambda.shape == (100, 3, 205, 59) def test_aggregate_lambda(clock_reset_model): cluster = np.array([0, 0, 1, 1]) aggregated_lambda = clock_reset_model.aggregate_lambda(cluster) assert aggregated_lambda.shape == (100, 2, 205, 1) cluster = np.array([0, 0, 0, 0]) aggregated_lambda = clock_reset_model.aggregate_lambda(cluster) assert aggregated_lambda.shape == (100, 1, 205, 1) cluster = np.array([0, 0, 1, 2]) aggregated_lambda = clock_reset_model.aggregate_lambda(cluster) assert aggregated_lambda.shape == (100, 3, 205, 1) def test_aggregate_probabilities(clock_reset_model): cluster = np.array([0, 0, 1, 1]) aggregated_lambda = clock_reset_model.aggregate_probabilities(cluster) assert aggregated_lambda.shape == (100, 2, 205, 59) cluster = np.array([0, 0, 0, 0]) aggregated_lambda = clock_reset_model.aggregate_probabilities(cluster) assert aggregated_lambda.shape == (100, 1, 205, 59) cluster = np.array([0, 0, 1, 2]) aggregated_lambda = clock_reset_model.aggregate_probabilities(cluster) assert aggregated_lambda.shape == (100, 3, 205, 59) def test_get_lambda_interface( lineage_model, independent_clock_reset_model, clock_reset_model ): for model in [lineage_model, independent_clock_reset_model, clock_reset_model]: assert model.get_lambda().ndim == 4 assert model.get_lambda().shape == (100, 4, 205, 1) # latla assert model.get_lambda(1).ndim == 4 assert model.get_lambda(1).shape == (100, 1, 205, 1) assert model.get_lambda([1, 2]).shape == (100, 2, 205, 1) assert model.get_lambda(np.array([1, 2])).shape == (100, 2, 205, 1) # time assert model.get_lambda(None, np.arange(10)).ndim == 4 assert model.get_lambda(None, np.arange(10)).shape == (100, 4, 10, 1) assert model.get_lambda(None, 1).ndim == 4 assert model.get_lambda(None, 1).shape == (100, 4, 1, 1) assert model.get_lambda(None, [1, 2]).ndim == 4 assert model.get_lambda(None, [1, 2]).shape == (100, 4, 2, 1) # both at the same time assert model.get_lambda(np.arange(2), np.arange(10)).ndim == 4 assert model.get_lambda(np.arange(2), np.arange(10)).shape == (100, 2, 10, 1) assert model.get_lambda(1, np.arange(10)).ndim == 4 assert model.get_lambda(1, np.arange(10)).shape == (100, 1, 10, 1) def test_growthrate_interface(clock_reset_model): model = clock_reset_model assert model.get_growth_rate().ndim == 4 assert model.get_growth_rate().shape == (100, 4, 205, 1) # latla assert model.get_growth_rate(1).ndim == 4 assert model.get_growth_rate(1).shape == (100, 1, 205, 1) assert model.get_growth_rate([1, 2]).shape == (100, 2, 205, 1) assert model.get_growth_rate(np.array([1, 2])).shape == (100, 2, 205, 1) # time assert model.get_growth_rate(None, np.arange(10)).ndim == 4 assert model.get_growth_rate(None, np.arange(10)).shape == (100, 4, 10, 1) assert model.get_growth_rate(None, 1).ndim == 4 assert model.get_growth_rate(None, 1).shape == (100, 4, 1, 1) assert model.get_growth_rate(None, [1, 2]).ndim == 4 assert model.get_growth_rate(None, [1, 2]).shape == (100, 4, 2, 1) # both at the same time assert model.get_growth_rate(np.arange(2), np.arange(10)).ndim == 4 assert model.get_growth_rate(np.arange(2), np.arange(10)).shape == (100, 2, 10, 1) assert model.get_growth_rate(1, np.arange(10)).ndim == 4 assert model.get_growth_rate(1, np.arange(10)).shape == (100, 1, 10, 1) def test_get_logits_interface( lineage_model, independent_clock_reset_model, clock_reset_model ): for model in [lineage_model, independent_clock_reset_model, clock_reset_model]: assert model.get_logits().ndim == 4 assert model.get_logits().shape == (100, 4, 205, 59) assert model.get_logits(1).ndim == 4 assert model.get_logits(1).shape == (100, 1, 205, 59) assert model.get_logits([1, 2]).shape == (100, 2, 205, 59) assert model.get_logits(np.array([1, 2])).shape == (100, 2, 205, 59) assert model.get_logits(None, np.arange(10)).ndim == 4 assert model.get_logits(None, np.arange(10)).shape == (100, 4, 10, 59) assert model.get_logits(None, 1).ndim == 4 assert model.get_logits(None, 1).shape == (100, 4, 1, 59) assert model.get_logits(None, [1, 2]).ndim == 4 assert model.get_logits(None, [1, 2]).shape == (100, 4, 2, 59) assert model.get_logits(None, None, np.arange(10)).ndim == 4 assert model.get_logits(None, None, np.arange(10)).shape == (100, 4, 205, 10) assert model.get_logits(None, None, 1).ndim == 4 assert model.get_logits(None, None, 1).shape == (100, 4, 205, 1) assert model.get_logits(None, None, [1, 2]).ndim == 4 assert model.get_logits(None, None, [1, 2]).shape == (100, 4, 205, 2) assert model.get_logits(None, None, np.array([1, 2])).shape == (100, 4, 205, 2) assert model.get_logits(np.arange(2), np.arange(10)).ndim == 4 assert model.get_logits(np.arange(2), np.arange(10)).shape == (100, 2, 10, 59) assert model.get_logits(1,
np.arange(10)
numpy.arange
# scipy, simpleaudio, numpy # Working only on Windows! from ledcd import CubeDrawer as cd from scipy.fft import rfft, rfftfreq from scipy.io import wavfile import numpy as np import time import simpleaudio as sa from offset_sphere import OffsetSphere def smooth_fourie(arr): return 1 drawer = cd.get_obj() drawer.translate(7.5, 7.5, 7.5) drawer.set_fps_cap(0) sp = OffsetSphere(drawer, 3) file_path = "ENTER HERE PATH TO THE WAV FILE" if file_path == "ENTER HERE PATH TO THE WAV FILE": print("Please provide some wav file") exit(0) rate, data = wavfile.read(file_path) # If single channeled copy it and make 2 equal channels if len(data.shape) != 2: (shape_size,) = data.shape data = np.concatenate([data, data], axis=None).reshape((shape_size, 2)) start_frame = 0 frame_size = rate // 15 smooth_window = 30 norm_vec = np.exp( np.arange(-1, stop=0, step=1 / ((frame_size + 3 - smooth_window * 2) / 2)) * 2 ) wave_obj = sa.WaveObject.from_wave_file(file_path) play_obj = wave_obj.play() start_time = time.time() while True: start_frame = int((time.time() - start_time) * rate) yfl = np.abs(rfft(data[start_frame : start_frame + frame_size, 0])) yfr = np.abs(rfft(data[start_frame : start_frame + frame_size, 1])) cumsum_vecl = np.cumsum(np.insert(yfl, 0, 0)) cumsum_vecr = np.cumsum(
np.insert(yfr, 0, 0)
numpy.insert
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Support functions for the sindy toolkit. Called by 'runToolkit.py', 'runToolkitExtended.py' and by 'plotSelectedIterations.py'. For the full procedure, see "README.md". For method details, please see "A toolkit for data-driven discovery of governing equations in high-noise regimes" (2022) by <NAME> and <NAME>. Copyright (c) 2021 <NAME>. <EMAIL> MIT License """ import sys import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression from numpy.linalg import lstsq # since this accepts complex inputs and targets. from scipy.integrate import solve_ivp """ --------------------------------------------------------------------------------------------- ------------------------ Function Defs ------------------------------------------------------ --------------------------------------------------------------------------------------------- """ #%% Functions for various model systems, that return initial conditions for derivatives. # These are used to simulate the system via odeint(): def lorenz_fn(z, t, p=({'p0': 10, 'p1': 28, 'p2': np.round(-8/3, 2), 'numExtraVars': 0},)): """ xDot = -p0*x + p0*y yDot = p1*x - y - x*z zDot = p2*z + x*y Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ p['p0'] * (z[1] - z[0]), z[0] * (p['p1'] - z[2]) - z[1], z[0] * z[1] + p['p2'] * z[2] ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # End of lorenz attractor fn # ------------------------------------------------------------------- def dampedHarmonicOscillatorLinear_fn(z, t, p=({'p0': 0.1, 'p1': 2, 'numExtraVars': 0})): """ xDot = -p0*x + p1*y yDot = -p1*x - p0*y Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ -p['p0']*z[0] + p['p1']*z[1], -p['p1']*z[0] - p['p0']*z[1] ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of dampedHarmonicOscillatorLinear_fn # ------------------------------------------------------------------- def dampedHarmonicOscillatorCubic_fn(z, t, p=({'p0': 0.1, 'p1': 2, 'numExtraVars': 0})): """ xDot = -p0*x^3 + p1*y^3 yDot = -p1*x^3 - p0*y^3 Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ -p['p0']*pow(z[0], 3) + p['p1']*pow(z[1], 3), -p['p1']*pow(z[0], 3) - p['p0']*pow(z[1], 3) ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of dampedHarmonicOscillatorCubic_fn #---------------------------------------------------------------------- def threeDimLinear_fn(z, t, p=({'p0': 0.1, 'p1': 2, 'p2': 0.3, 'numExtraVars': 0})): """ xDot = -p0*x - p1*y yDot = p1*x - p0*y zDot = -p2*z Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). NOTE: >= 4th order library terms cause failure in Brunton """ derivList = [ -p['p0']*z[0] - p['p1']*z[1], p['p1']*z[0] - p['p0']*z[1], -p['p2']*z[2] ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of threeDimLinear_fn # ------------------------------------------------------------------- def hopfNormalForm2D_fn(z, t, p=({'p0': 0, 'p1': -1, 'p2': 1, 'numExtraVars': 0})): """ Mean field model with zDot == 0: xDot = p0*x + p1*y - p2*x*(x^2 + y^2) yDot = -p1*x + p0*y - p2*y*(x^2 + y^2) where p0 = mu, p1 = omega, p2 = A, p3 = lambda in Brunton paper. Note that in the 3D model, zDot = -p2 * (z - x^2 - y^2). In this 2D version we assume lambda is big, so zDot -> 0 rapidly and thus z = x^2 + y^2. TO-DO: we need param values for this model. mu is in [-0.2, 0.6]. omega, A, and lambda values are unknown. Initial values estimate: x,y = {1, 0.75} or {0,0} (see fig 3 in Brunton paper) Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ p['p0'] * z[0] - p['p1'] * z[1] + p['p2'] * z[0] * (pow(z[0], 2) + pow(z[1], 2)), p['p1'] * z[0] + p['p0'] * z[1] + p['p2'] * z[1] * (pow(z[0], 2) + pow(z[1], 2)) ] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of hopfNormalForm2D_fn # ------------------------------------------------------------------- def hopfNormalForm3D_fn(z, t, p=({'p0': 0, 'p1': -1, 'p2': 1, 'p3': 0.5, 'numExtraVars': 0})): """ Mean field model with zDot == 0: xDot = p0*x + p1*y - p2*x*z yDot = -p1*x +p0*y - p2*y*z zDot = -p3 * (z - x^2 - y^2). where p0 = mu, p1 = omega, p2 = A, p3 = lambda in Brunton paper. In this 3D version of the model, we assume lambda is not too big, so zDot is not == 0. TO-DO: We need param values for this model. mu is in [-0.2, 0.6]. omega, A, and lambda values are unknown. See tables 10, 11 in Brunton paper S.I. Question: is mu being used in two ways, as a coefficient and as a "bifurcation parameter" (see eg table 13)? Initial values estimate: x,y = {1, 0.75} or {0,0} (see fig 3 in Brunton paper) Inputs: z: np.vector of floats (initial conditions) t: np.vector of floats (timesteps) p: dict (system parameters) Output: derivList: np.vector of floats (initial conditions of derivatives). """ derivList = [ p['p0'] * z[0] - p['p1'] * z[1] + p['p2'] * z[0] * z[2], # (pow(z[0], 2) + pow(z[1], 2)), p['p1'] * z[0] + p['p0'] * z[1] + p['p2'] * z[1] * z[2], # (pow(z[0], 2) + pow(z[1], 2)), -p['p3'] * (z[2] - pow(z[0],2) - pow(z[1], 2))] for i in range(p['numExtraVars']): derivList.append(0) return derivList # end of hopfNormalForm3D_fn # ------------------------------------------------------------------ def generateModelStrAndTrueArrays_fn(modelSystem, p): """ Build a string describing the model. Parameters ---------- modelSystem : str p : dict Returns ------- modelStr : str. trueLib : tuple of lists of str trueLibCoeffs : tuple of lists of floats """ if modelSystem == 'lorenz': modelStr = \ "x' = -" + str(p['p0']) + ' x + ' + str(p['p0']) + ' y' + '\n' + \ "y' = " + str(p['p1']) + ' x - y - x*z' + '\n' + \ "z' = " + str(p['p2']) + ' z' + ' + x*y' trueLib = (['x','y'], ['x','y','x*z'], ['z', 'x*y']) trueLibCoeffs = ([-p['p0'], p['p0']], [p['p1'], -1, -1], [p['p2'], 1]) if modelSystem == 'harmOscLinear': modelStr = \ "x' = -" + str(p['p0']) + ' x + ' + str(p['p1']) + ' y' + '\n' + \ "y' = -" + str(p['p1']) + " x -" + str(p['p0']) + ' y' trueLib = (['x', 'y'], ['x', 'y']) trueLibCoeffs = ([-p['p0'], p['p1']], [-p['p1'], -p['p0']]) if modelSystem == 'harmOscCubic': modelStr = \ "x' = -" + str(p['p0']) + ' x^3 + ' + str(p['p1']) + ' y^3' + '\n' + \ "y' = -" + str(p['p1']) + " x^3 -" + str(p['p0']) + ' y^3' trueLib = (['x^3', 'y^3'], ['x^3', 'y^3']) trueLibCoeffs = ([-p['p0'], p['p1']], [-p['p1'], -p['p0']]) if modelSystem == 'threeDimLinear': modelStr = \ "x' = -" + str(p['p0']) + ' x - ' + str(p['p1']) + ' y' + '\n' + \ "y' = " + str(p['p1']) + " x -" + str(p['p0']) + ' y' + '\n' + \ "z' = -" + str(p['p2']) + " z" trueLib = (['x', 'y'], ['x', 'y'], ['z']) trueLibCoeffs = ([-p['p0'], -p['p1']], [p['p1'], -p['p0']], [-p['p2']]) if modelSystem == 'hopfNormal2D': modelStr = \ "x' = " + str(p['p0']) + ' x + ' + str(p['p1']) + ' y ' + "+ " + str(p['p2']) + \ '(x^3 + x*y^2)' + '\n' + \ "y' = " + str(p['p1']) + ' x + ' + str(p['p0']) + ' y ' + "+ " + str(p['p2']) + \ '(y*x^2 + y^3)' trueLib = (['x', 'y', 'x^3', 'x*y^2'], ['x', 'y', 'y^3', 'x^2*y']) trueLibCoeffs = ([p['p0'], p['p1'], p['p2'], p['p2']], [p['p1'], p['p0'], p['p2'], p['p2']]) if modelSystem == 'hopfNormal3D': modelStr = \ "x' = " + str(p['p0']) + ' x - ' + str(p['p1']) + ' y ' + "+ " + str(p['p2']) + \ ' x*z' + '\n' + \ "y' = " + str(p['p1']) + ' x + ' + str(p['p0']) + ' y ' + "+ " + str(p['p2']) + \ ' y*z' + '\n' + \ "z' = -" + str(p['p3']) + ' * (z - x^2 - y^2)' trueLib = (['x', 'y', 'x*z'], ['x', 'y', 'y*z'], ['z', 'x^2', 'y^2']) trueLibCoeffs = ([p['p0'], p['p1'], p['p2']], [p['p1'], p['p0'], p['p2']], [-p['p3'], p['p3'], p['p3']]) return modelStr, trueLib, trueLibCoeffs # End of generateModelStrAndTrueArrays_fn # --------------------------------------------------- def generateTrueFunctionalAndCoeffArrays_fn(trueLib, trueLibCoeffs, functionList): """ Given lists of functional names as str, and the function list, construct a true 'functionsToUseArray' Parameters ---------- trueLib : list-like of lists of str. len of list-like = numVars, len of each list = num true library functionals for that variable trueLibCoeffs : list-like of lists of floats. Matches 'trueLib' above. functionList : list of str. The functional names Returns ------- trueLibraryArray : np.array of bools, numVars x numFunctionals """ trueLibraryArray = np.zeros((len(trueLib), len(functionList)), dtype=bool) trueCoeffArray = np.zeros((len(trueLib), len(functionList))) for v in range(len(trueLib)): # v is the variable index theseFnalNames = np.array(trueLib[v]) theseCoeffs = np.array(trueLibCoeffs[v]) for f in range(len(functionList)): ind = np.where(theseFnalNames == functionList[f])[0] if len(ind) > 0: # ie functionList[f] is a true functional trueLibraryArray[v, f] = True trueCoeffArray[v, f] = theseCoeffs[ind] return trueLibraryArray, trueCoeffArray # End of generateTrueFunctionalAndCoeffArrays_fn # ---------------------------------------------------------- def generateFunctionStr_fn(v, varInds, variableNames): """ Given a list, generate a string. Used by generatePolynomialLibrary_fn. Parameters ---------- v : list of ints varInds : list of ints variableNames : list of str Returns ------- fnStr : str """ fnStr = '' for i in varInds: if i in v: if len(fnStr) > 0: # case: we need a multiplication sign: fnStr += '*' fnStr += variableNames[i] if np.sum(np.array(v) == i) > 1: # case: we need an exponent: fnStr += '^' + str(np.sum(np.array(v) == i)) return fnStr # End of generateFunctionStr_fn #------------------------------------------------------------------------ def generatePolynomialLibrary_fn(variableNames, degree): """ Generate a library of polynomials up to a certain degree. Return two things: a list of functional names and a list of recipes for use in ode evolutions. NOTE: If there is one variable, and its name is more that one character, this function will fail because 'varInds' will equal the number of characters in the variable name. Parameters ---------- variableNames : list-like of str degree : int Returns ------- functionList : list of str recipes : list of lists, length = numFunctionals """ varInds = np.arange(len(variableNames)) recipes = [] functionList = [] recipes.append(-1) # the constant function functionList.append('1') # Treat degree = 1: combos = [] # initialize for i in varInds: combos.append(i) recipes.append(i) functionList.append(variableNames[i]) deg = 2 # initialize while deg <= degree: combos = [(i, j) for i in varInds for j in combos] # vector of {int, list} entries, # entry has total len = deg. There are duplicates at >= degree 3, eg (0,(0,1)) and # (1,(0,0)). So for each entry we must (a) make into a single list; and (b) check that it # is new before appending it to 'recipes' and 'functionList'. # (a) combine int and list: keepCombos = [] # to keep the non-duplicates for k in range(len(combos)): c = combos[k] this = [] for i in c: if isinstance(i, (int, np.integer)): this.append(i) else: for j in i: this.append(j) this = list(np.sort(np.array(this))) # 'this' is now a single sorted list of ints. # (b) If 'this' is new, append to recipes: addFlag = True for i in recipes: if not isinstance(i, (int, np.integer)): if len(this) == len(i) and np.sum(np.array(this) == np.array(i)) == len(i): addFlag = False break if addFlag: recipes.append(this) keepCombos.append(this) functionList.append(generateFunctionStr_fn(this, varInds, variableNames)) # Update combos with non-duplicate list: combos = keepCombos deg += 1 return functionList, recipes # End of generatePolynomialLibrary_fn #-------------------------------------------------------------- def calculateLibraryFunctionalValues_fn(x, recipes): """ For each functional, calculate its values at the timepoints. Parameters ---------- x : np.array of floats, numTimepoints x numVars recipes : list of lists. The i'th list gives the indices of variables to be multiplied together to generate the i'th functional. Returns ------- fnVals : np.array of floats, numTimepoints x numFunctionals. """ fnVals = np.zeros((x.shape[0], len(recipes))) for i in range(fnVals.shape[1]): r = recipes[i] temp = np.ones(x.shape[0]) if isinstance(r, (int, np.integer)): # constant or degree 1 monomial if r != -1: # ie not the constant functional temp = x[:, r] else: # >= degree 2 for j in r: temp = temp * x[:, j] fnVals[:, i] = temp return fnVals # End of calculateLibraryFunctionalValues_fn #------------------------------------------------------------ #%% Make a hamming window: def makeHammingWindow_fn(hammingWindowLength, plateauRatio=0): """" Generate a hamming window, perhaps with a flat plateau in the middle (ie a smoothed step function). Inputs: hammingWindowLength: int usePlateauHammingFilterFlag: Boolean plateauRatio: float 0 to 1 Outputs: hamm: vector with sum = 1 """ if plateauRatio > 0: # add a plateau in the middle: plateauRatio = min(1, plateauRatio) ends = int(np.ceil(hammingWindowLength*(1 - plateauRatio))) if ends%2 == 1: ends = ends + 1 # make even rise = int(ends/2) ends = np.hamming(ends) # ends is now a hamming vector hamm = np.ones((1, hammingWindowLength)) hamm = hamm.flatten() hamm[0:rise] = ends[0:rise] hamm[-rise:] = ends[-rise:] else: # normal hamming filter hamm = np.hamming(hammingWindowLength) # Normalize: hamm = hamm / np.sum(hamm) return hamm # End of makeHammingWindow_fn #--------------------------------------------------------- def calculateSlopeAndStd_fn(x, dt, w): ''' given a time-series, do two things: 1. calculate the deriv at each point by simple rise/run (Euler formula) 2. calculate the std of a window (size2*h) at each point, using the slope from (1) to first tilt the data to roughly slope = 1. Inputs: z: np.vector dt: float w: int. Window length Outputs: slopeX: np.vector stdX: np.vector meanX: np.vector ''' h = int(np.round(w/2)) # Half the window length slopeX = np.zeros(x.shape) stdX = np.zeros(x.shape) meanX = np.zeros(x.shape) # For efficiency, we take the mean of the first window, then update it at each new point: for i in range(len(x)): if i == h + 1: # First point's window b = np.mean(x[i:i + h]) a = np.mean(x[i-h:i]) if i > h + 1 and i < len(x) - h: # all ensuing points' windows b = b + (x[i + h] - x[i])/h a = a + (x[i] - x[i-h])/h if i > h and i < len(x) - h: # all points' windows (ie happens for both above cases) slopeX[i] = (b-a)/h tilted = x[i-h:i+h] - slopeX[i]*np.array(range(-h, h)) stdX[i] =
np.std(tilted)
numpy.std
# import required libraries import numpy as np import cv2 print('OpenCV version: '+cv2.__version__) import matplotlib.pyplot as plt import pandas as pd import datetime import os from collections import Counter # Set source folder SRC_FOLDER = "C:/Users/raksh/OneDrive - The Pennsylvania State University/PhD Research/Paper-4/SysID Experiment/OL Test 3/" # open and read file containing start and end timestamps of the videos df_vidTimes = pd.read_excel(SRC_FOLDER + "Video_Timestamps_1.xlsx") df_vidTimes.drop(df_vidTimes.columns[0],axis=1,inplace=True) ################ ALL FUNCTIONS DEFINITIONS ################ def perspCorrection(img,pt1,pt2,pt3,pt4,scale_width,scale_height): # Create a copy of the image img_copy = np.copy(img) # Convert to RGB so as to display via matplotlib # Using Matplotlib we can easily find the coordinates of the 4 points that is essential for finding then transformation matrix #img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) # to calculate the transformation matrix input_pts = np.float32([pt1,pt2,pt3,pt4]) output_pts = np.float32([[0,0],[scale_width-1,0],[0,scale_height-1],[scale_width-1,scale_height-1]]) # Compute the perspective transform M M = cv2.getPerspectiveTransform(input_pts,output_pts) # Apply the perspective transformation to the image imgPersp = cv2.warpPerspective(img,M,(scale_width, scale_height)) #,flags=cv2.INTER_LINEAR) cv2.INTER_CUBIC is also an option imgGrayPersp = cv2.cvtColor(imgPersp, cv2.COLOR_BGR2GRAY) # visulaize corners using cv2 circles for x in range (0,4): cv2.circle(img_copy,(round(input_pts[x][0]),round(input_pts[x][1])),5,(0,0,255),cv2.FILLED) return [img_copy,imgPersp,imgGrayPersp] def extractTopBottom(img,tStart,tEnd,bStart,bEnd): img_top = img[tStart[1]:tEnd[1],tStart[0]:tEnd[0]] img_bottom = img[bStart[1]:bEnd[1],bStart[0]:bEnd[0]] return [img_top,img_bottom] def gaussianBlur(img,fsize): # gaussian blur gblur = cv2.GaussianBlur(img,(fsize,fsize),0) return gblur def medianBlur(img,fsize=3): # median blur - effective at removing salt and pepper noise mblur = cv2.medianBlur(img,fsize) return mblur def bilateralFilter(img): # Bilateral filter preserves edges while removing noise bfblur = cv2.bilateralFilter(img,9,75,75) return bfblur def gAdaptiveThresholding(img): # median filtering adaptive_gaussian = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,11,2) return adaptive_gaussian def morphOps(img,kernel1,kernel2,k1_num_passes=2): # Closing = Dilation + Erosion # dilation mask_dil = cv2.dilate(img,kernel1,iterations = k1_num_passes) # erosion mask_erode = cv2.erode(mask_dil,kernel2,iterations = 1) return mask_erode def computeW_Rev(img,img_debug): avg_num_pixels = 159 scaling_factor = 1.0 mm_per_pixel = ((1/32)*25.4)/(scaling_factor*avg_num_pixels) edge_length_threshold = 55 min_L_edge_threshold = False min_R_edge_threshold = False # Predefine arrays for data storage approx_edges = 10 num_edges = np.zeros(img.shape[0]) #,dtype=np.uint16) edge_start = np.zeros([img.shape[0],approx_edges])#,dtype=np.uint16) edge_end = np.zeros([img.shape[0],approx_edges])#,dtype=np.uint16) edge_count = 0 k=0 sse = False tse = False # start scanning from (0,0) until black pixel is found # go across columns first for i in range(img.shape[0]): found_edge = False temp_edge_count = 0 k=0 for j in range(img.shape[1]): if(img[i,j]<=50): # Black pixel found - edge if(found_edge==False): found_edge = True temp_edge_count += 1 num_edges[i] = temp_edge_count edge_start[i][k] = j k += 1 else: if(found_edge): edge_end[i][k-1] = j-1 found_edge = False x = Counter(num_edges) y = {z:count for z, count in x.items() if count >= edge_length_threshold and z > 1} #print(y) if(len(y)!=0): edge_condition = sorted(y,key=y.get)[0] else: print('num_edges > 1 and length(num_edges) >= threshold not satisfied . . . Lowering threshold to identify matches') w = {z:count for z, count in x.items() if count < edge_length_threshold and z > 1} if(len(w)!=0): print('Found num_edges > 1 and length(num_edges) < threshold!') edge_condition = sorted(w,key=w.get)[0] else: print('Unable to find edge condition . . . check image') edge_condition = -1 if img_debug: print('edge condition: ' + str(edge_condition)) if edge_condition == 2: #max(num_edges)==2: # max num_edges = 2 L1_edge_start = edge_start[:,0][np.argwhere(num_edges==2)][np.logical_and(edge_start[:,0][np.argwhere(num_edges==2)]>60,edge_start[:,0][np.argwhere(num_edges==2)]<300)] L1_edge_end = edge_end[:,0][np.argwhere(num_edges==2)][np.logical_and(edge_end[:,0][np.argwhere(num_edges==2)]>60,edge_end[:,0][np.argwhere(num_edges==2)]<300)] if(np.max(L1_edge_start)-np.min(L1_edge_start)>13): L1_edge_start = L1_edge_start[L1_edge_start >= (np.max(L1_edge_start)-10)] if(np.max(L1_edge_end)-np.min(L1_edge_end)>15): L1_edge_end = L1_edge_end[L1_edge_end >= (np.max(L1_edge_end)-10)] trueLedge_start = L1_edge_start trueLedge_end = L1_edge_end R1_edge_start = edge_start[:,1][np.argwhere(num_edges==2)][edge_start[:,1][np.argwhere(num_edges==2)]>350] R1_edge_end = edge_end[:,1][np.argwhere(num_edges==2)][edge_end[:,1][np.argwhere(num_edges==2)]>350] if(np.max(R1_edge_start)-np.min(R1_edge_start)>13): R1_edge_start = R1_edge_start[R1_edge_start <= (np.min(R1_edge_start)+10)] if(np.max(R1_edge_end)-np.min(R1_edge_end)>13): R1_edge_end = R1_edge_end[R1_edge_end <= (np.min(R1_edge_end)+10)] trueRedge_start = R1_edge_start trueRedge_end = R1_edge_end if(len(trueLedge_start)>len(trueLedge_end)): trueLedge_start = np.array([trueLedge_start[i] for i in range(len(trueLedge_end))]) if(len(trueLedge_start)<len(trueLedge_end)): trueLedge_end = np.array([trueLedge_end[i] for i in range(len(trueLedge_start))]) if(len(trueRedge_start)>len(trueRedge_end)): trueRedge_start = np.array([trueRedge_start[i] for i in range(len(trueRedge_end))]) if(len(trueRedge_start)<len(trueRedge_end)): trueRedge_end = np.array([trueRedge_end[i] for i in range(len(trueRedge_start))]) line1_start = (round(np.mean((trueLedge_start+trueLedge_end)/2)),0) line1_end = (round(np.mean((trueLedge_start+trueLedge_end)/2)),img.shape[0]) line2_start = (round(np.mean((trueRedge_start+trueRedge_end)/2)),0) line2_end = (round(np.mean((trueRedge_start+trueRedge_end)/2)),img.shape[0]) edge_count = 2 case_cond = 1 elif edge_condition == 3: #max(num_edges)==3: # max num_edges = 3 # logic for finding true left edge L2_edge_start = edge_start[:,1][np.argwhere(num_edges==3)][edge_start[:,1][np.argwhere(num_edges==3)]<250] if(len(L2_edge_start)>=edge_length_threshold): trueLedge_start = L2_edge_start trueLedge_end = edge_end[:,1][np.argwhere(num_edges==3)][edge_end[:,1][np.argwhere(num_edges==3)]<250] else: if(len(edge_start[:,0][np.argwhere(num_edges==3)][np.logical_and(edge_start[:,0][np.argwhere(num_edges==3)]<250,edge_start[:,0][np.argwhere(num_edges==3)]>60)])!=0): L1_edge_start = edge_start[:,0][np.argwhere(num_edges==3)][np.logical_and(edge_start[:,0][np.argwhere(num_edges==3)]<250,edge_start[:,0][np.argwhere(num_edges==3)]>60)] if(len(L2_edge_start)!=0): L1_edge_start = np.hstack((L1_edge_start,L2_edge_start)) if(np.max(L1_edge_start)-np.min(L1_edge_start)>13): L1_edge_start = L1_edge_start[L1_edge_start >= (np.max(L1_edge_start)-10)] else: L1_edge_start = edge_start[:,0][np.argwhere(num_edges==2)][edge_start[:,0][np.argwhere(num_edges==2)]<250] if(len(L1_edge_start)>=edge_length_threshold): trueLedge_start = L1_edge_start if(len(edge_start[:,0][np.argwhere(num_edges==3)][np.logical_and(edge_start[:,0][np.argwhere(num_edges==3)]<250,edge_start[:,0][np.argwhere(num_edges==3)]>60)])!=0): trueLedge_end = edge_end[:,0][np.argwhere(num_edges==3)][np.logical_and(edge_end[:,0][np.argwhere(num_edges==3)]<250,edge_end[:,0][np.argwhere(num_edges==3)]>60)] if(len(L2_edge_start)!=0): trueLedge_end = np.hstack((trueLedge_end,edge_end[:,1][np.argwhere(num_edges==3)][edge_end[:,1][np.argwhere(num_edges==3)]<250])) if(np.max(trueLedge_end)-np.min(trueLedge_end)>13): trueLedge_end = trueLedge_end[trueLedge_end >= (np.max(trueLedge_end)-10)] else: trueLedge_end = edge_end[:,0][np.argwhere(num_edges==2)][edge_end[:,0][np.argwhere(num_edges==2)]<250] elif(len(L1_edge_start)!=0 and len(L1_edge_start)<edge_length_threshold): trueLedge_start = L1_edge_start trueLedge_end = edge_end[:,0][np.argwhere(num_edges==3)][edge_end[:,0][np.argwhere(num_edges==3)]<250] trueLedge_end = np.hstack((trueLedge_end,edge_end[:,0][np.argwhere(num_edges==2)][edge_end[:,0][np.argwhere(num_edges==2)]<250])) min_L_edge_threshold = True else: print('max(num_edges)=3 invalid true left edge condition encountered . . . check code') # logic for finding true right edge R2_edge_start = edge_start[:,1][np.argwhere(num_edges==3)][edge_start[:,1][np.argwhere(num_edges==3)]>350] if(len(R2_edge_start)>=edge_length_threshold): trueRedge_start = R2_edge_start trueRedge_end = edge_end[:,1][np.argwhere(num_edges==3)][edge_end[:,1][np.argwhere(num_edges==3)]>350] else: R1_edge_start = edge_start[:,1][np.argwhere(num_edges==2)][edge_start[:,1][np.argwhere(num_edges==2)]>350] if(len(R1_edge_start)==0): # three definite edges trueRedge_start = edge_start[:,2][np.argwhere(num_edges==3)][edge_start[:,2][np.argwhere(num_edges==3)]>350] trueRedge_end = edge_end[:,2][np.argwhere(num_edges==3)][edge_end[:,2][np.argwhere(num_edges==3)]>350] elif(len(R1_edge_start)>=edge_length_threshold): trueRedge_start = R1_edge_start trueRedge_end = edge_end[:,1][np.argwhere(num_edges==2)][edge_end[:,1][np.argwhere(num_edges==2)]>350] elif(len(R1_edge_start)!=0 and len(R1_edge_start)<edge_length_threshold): # there are some elements but edge length is minimal trueRedge_start = R1_edge_start trueRedge_end = edge_end[:,1][np.argwhere(num_edges==2)][edge_end[:,1][np.argwhere(num_edges==2)]>350] min_R_edge_threshold = True else: print('max(num_edges)=3 invalid true right edge condition encountered . . . check code') if(np.max(trueRedge_start)-np.min(trueRedge_start)>13): trueRedge_start = trueRedge_start[trueRedge_start <= (np.min(trueRedge_start)+10)] if(np.max(trueRedge_end)-np.min(trueRedge_end)>13): trueRedge_end = trueRedge_end[trueRedge_end <= (np.min(trueRedge_end)+10)] if(len(trueLedge_start)>len(trueLedge_end)): trueLedge_start = np.array([trueLedge_start[i] for i in range(len(trueLedge_end))]) if(len(trueLedge_start)<len(trueLedge_end)): trueLedge_end = np.array([trueLedge_end[i] for i in range(len(trueLedge_start))]) if(len(trueRedge_start)>len(trueRedge_end)): trueRedge_start = np.array([trueRedge_start[i] for i in range(len(trueRedge_end))]) if(len(trueRedge_start)<len(trueRedge_end)): trueRedge_end = np.array([trueRedge_end[i] for i in range(len(trueRedge_start))]) if(len(trueLedge_start)<edge_length_threshold): min_L_edge_threshold = True if(len(trueRedge_start)<edge_length_threshold): min_R_edge_threshold = True if(min_L_edge_threshold or min_R_edge_threshold): line1_start = (round(np.mean((trueLedge_start + trueLedge_end)/2)),0) line1_end = (round(np.mean((trueLedge_start + trueLedge_end)/2)),img.shape[0]) line2_start = (round(np.mean((trueRedge_start + trueRedge_end)/2)),0) line2_end = (round(np.mean((trueRedge_start + trueRedge_end)/2)),img.shape[0]) edge_count = 3 case_cond = 2 elif(np.logical_and(len(trueLedge_start)>=edge_length_threshold,len(trueRedge_start)>=edge_length_threshold)): line1_start = (round(np.mean((trueLedge_start + trueLedge_end)/2)),0) line1_end = (round(np.mean((trueLedge_start + trueLedge_end)/2)),img.shape[0]) line2_start = (round(np.mean((trueRedge_start + trueRedge_end)/2)),0) line2_end = (round(np.mean((trueRedge_start + trueRedge_end)/2)),img.shape[0]) edge_count = 3 case_cond = 3 else: print('max(num_edges)=3 with no matching condition reached . . . check code') elif edge_condition == 4: #max(num_edges)==4: # max num_edges = 4 # logic for finding true left edge L3_edge_start = edge_start[:,2][np.argwhere(num_edges==4)][edge_start[:,2][np.argwhere(num_edges==4)]<250] if(len(L3_edge_start)>=edge_length_threshold): trueLedge_start = L3_edge_start trueLedge_end = edge_end[:,2][np.argwhere(num_edges==4)][edge_end[:,2][np.argwhere(num_edges==4)]<250] else: L2_edge_start = edge_start[:,1][np.argwhere(num_edges==4)][np.logical_and(edge_start[:,1][np.argwhere(num_edges==4)]<250,edge_start[:,1][np.argwhere(num_edges==4)]>60)] L2_edge_start = np.hstack((L2_edge_start,edge_start[:,1][np.argwhere(num_edges==3)][edge_start[:,1][np.argwhere(num_edges==3)]<250])) if(len(L2_edge_start)>=edge_length_threshold): trueLedge_start = L2_edge_start trueLedge_end = edge_end[:,1][np.argwhere(num_edges==4)][np.logical_and(edge_end[:,1][np.argwhere(num_edges==4)]<250,edge_end[:,1][np.argwhere(num_edges==4)]>60)] trueLedge_end = np.hstack((trueLedge_end,edge_end[:,1][np.argwhere(num_edges==3)][edge_end[:,1][np.argwhere(num_edges==3)]<250])) else: L1_edge_start = edge_start[:,0][np.argwhere(num_edges==2)][edge_start[:,0][np.argwhere(num_edges==2)]<250] L1_edge_start = np.hstack((L1_edge_start,edge_start[:,0][np.argwhere(num_edges==3)][edge_start[:,0][np.argwhere(num_edges==3)]<250])) L1_edge_start = np.hstack((L1_edge_start,edge_start[:,0][np.argwhere(num_edges==4)][edge_start[:,0][np.argwhere(num_edges==4)]<250])) if(len(L1_edge_start)>= edge_length_threshold): trueLedge_start = L1_edge_start trueLedge_end = edge_end[:,0][np.argwhere(num_edges==2)][edge_end[:,0][np.argwhere(num_edges==2)]<250] trueLedge_end = np.hstack((trueLedge_end,edge_end[:,0][np.argwhere(num_edges==3)][edge_end[:,0][np.argwhere(num_edges==3)]<250])) trueLedge_end = np.hstack((trueLedge_end,edge_end[:,0][np.argwhere(num_edges==4)][edge_end[:,0][np.argwhere(num_edges==4)]<250])) else: print('max(num_edges)=4 invalid true left edge condition encountered . . . check code') # logic for finding true right edge R3_edge_start = edge_start[:,1][np.argwhere(num_edges==4)][edge_start[:,1][np.argwhere(num_edges==4)]>350] if(len(R3_edge_start)>=edge_length_threshold): trueRedge_start = R3_edge_start trueRedge_end = edge_end[:,1][np.argwhere(num_edges==4)][edge_end[:,1][np.argwhere(num_edges==4)]>350] else: R2_edge_start = edge_start[:,2][np.argwhere(num_edges==4)][edge_start[:,2][np.argwhere(num_edges==4)]>350] R2_edge_start = np.hstack((R2_edge_start,edge_start[:,1][np.argwhere(num_edges==3)][edge_start[:,1][np.argwhere(num_edges==3)]>350])) if(len(R2_edge_start)>=edge_length_threshold): trueRedge_start = R2_edge_start trueRedge_end = edge_end[:,2][np.argwhere(num_edges==4)][edge_end[:,2][np.argwhere(num_edges==4)]>350] trueRedge_end = np.hstack((trueRedge_end,edge_end[:,1][np.argwhere(num_edges==3)][edge_end[:,1][np.argwhere(num_edges==3)]>350])) else: R1_edge_start = edge_start[:,1][np.argwhere(num_edges==2)][edge_start[:,1][np.argwhere(num_edges==2)]>350] R1_edge_start = np.hstack((R1_edge_start,edge_start[:,2][np.argwhere(num_edges==3)][edge_start[:,2][np.argwhere(num_edges==3)]>350])) R1_edge_start = np.hstack((R1_edge_start,edge_start[:,3][np.argwhere(num_edges==4)][edge_start[:,3][np.argwhere(num_edges==4)]>350])) if(len(R1_edge_start)>= edge_length_threshold): trueRedge_start = R1_edge_start trueRedge_end = edge_end[:,1][np.argwhere(num_edges==2)][edge_end[:,1][np.argwhere(num_edges==2)]>350] trueRedge_end = np.hstack((trueRedge_end,edge_end[:,2][np.argwhere(num_edges==3)][edge_end[:,2][np.argwhere(num_edges==3)]>350])) trueRedge_end = np.hstack((trueRedge_end,edge_end[:,3][np.argwhere(num_edges==4)][edge_end[:,3][np.argwhere(num_edges==4)]>350])) else: print('max(num_edges)=4 invalid true right edge condition encountered . . . check code') if(len(trueLedge_start)>len(trueLedge_end)): trueLedge_start = np.array([trueLedge_start[i] for i in range(len(trueLedge_end))]) if(len(trueLedge_start)<len(trueLedge_end)): trueLedge_end = np.array([trueLedge_end[i] for i in range(len(trueLedge_start))]) if(len(trueRedge_start)>len(trueRedge_end)): trueRedge_start = np.array([trueRedge_start[i] for i in range(len(trueRedge_end))]) if(len(trueRedge_start)<len(trueRedge_end)): trueRedge_end = np.array([trueRedge_end[i] for i in range(len(trueRedge_start))]) if(np.logical_and(len(trueLedge_start)>=edge_length_threshold,len(trueRedge_start)>=edge_length_threshold)): line1_start = (round(np.mean((trueLedge_start + trueLedge_end)/2)),0) line1_end = (round(np.mean((trueLedge_start + trueLedge_end)/2)),img.shape[0]) line2_start = (round(np.mean((trueRedge_start + trueRedge_end)/2)),0) line2_end = (round(np.mean((trueRedge_start + trueRedge_end)/2)),img.shape[0]) edge_count = 4 case_cond = 4 else: print('max(num_edges)=4 with no matching condition reached . . . check code') elif edge_condition > 4: # greater than 4 max edges case is typically - stringing or rother artifact causing psuedo edges # Identify true left edge L4_edge_start = edge_start[:,3][np.argwhere(num_edges==5)][edge_start[:,3][np.argwhere(num_edges==5)]<250] if(len(L4_edge_start)>=edge_length_threshold): trueLedge_start = L4_edge_start trueLedge_end = edge_end[:,3][np.argwhere(num_edges==5)][edge_end[:,3][np.argwhere(num_edges==5)]<250] else: L3_edge_start = edge_start[:,2][np.argwhere(num_edges==5)][edge_start[:,2][np.argwhere(num_edges==5)]<250] L3_edge_start = np.hstack((L3_edge_start,edge_start[:,2][np.argwhere(num_edges==4)][edge_start[:,2][np.argwhere(num_edges==4)]<250])) L3_edge_start = np.hstack((L3_edge_start,edge_start[:,1][np.argwhere(num_edges==3)][np.logical_and(edge_start[:,1][np.argwhere(num_edges==3)]<250,edge_start[:,1][np.argwhere(num_edges==3)]>60)])) if(len(L3_edge_start)>=edge_length_threshold): trueLedge_start = L3_edge_start trueLedge_end = edge_end[:,2][np.argwhere(num_edges==5)][edge_end[:,2][np.argwhere(num_edges==5)]<250] trueLedge_end = np.hstack((trueLedge_end,edge_end[:,2][np.argwhere(num_edges==4)][edge_end[:,2][np.argwhere(num_edges==4)]<250])) trueLedge_end = np.hstack((trueLedge_end,edge_end[:,1][np.argwhere(num_edges==3)][edge_end[:,1][np.argwhere(num_edges==3)]<250])) elif(len(L3_edge_start)!= 0 and len(L3_edge_start)<edge_length_threshold): trueLedge_start = L3_edge_start trueLedge_end = edge_end[:,2][np.argwhere(num_edges==5)][edge_end[:,2][np.argwhere(num_edges==5)]<250] trueLedge_end = np.hstack((trueLedge_end,edge_end[:,2][np.argwhere(num_edges==4)][edge_end[:,2][np.argwhere(num_edges==4)]<250])) trueLedge_end = np.hstack((trueLedge_end,edge_end[:,1][np.argwhere(num_edges==3)][edge_end[:,1][np.argwhere(num_edges==3)]<250])) min_L_edge_threshold = True else: # L2_edge_start = edge_start[:,1][np.argwhere(num_edges==3)][edge_start[:,1][np.argwhere(num_edges==3)]<250] # L2_edge_start = np.hstack((L2_edge_start,edge_start[:,0][np.argwhere(num_edges==3)][edge_start[:,0][np.argwhere(num_edges==3)]<250])) # if(len(L2_edge_start)>=edge_length_threshold): # trueLedge_start = L2_edge_start # trueLedge_end = edge_end[:,1][np.argwhere(num_edges==3)][edge_end[:,1][np.argwhere(num_edges==3)]<250] # trueLedge_end = np.hstack((trueLedge_end,edge_end[:,0][np.argwhere(num_edges==3)][edge_end[:,0][np.argwhere(num_edges==3)]<250])) # else: print('max(num_edges)>4 invalid true left edge condition encountered . . . check code') # Identify true right edge sse_Redge_start = edge_start[:,3][np.argwhere(num_edges==5)][edge_start[:,3][np.argwhere(num_edges==5)]>350] sse_Redge_start = np.hstack((sse_Redge_start,edge_start[:,2][np.argwhere(num_edges==4)][edge_start[:,2][np.argwhere(num_edges==4)]>350])) if(len(sse_Redge_start)>=edge_length_threshold): trueRedge_start = sse_Redge_start trueRedge_end = edge_end[:,3][
np.argwhere(num_edges==5)
numpy.argwhere
# <NAME> 2014-2020 # mlxtend Machine Learning Library Extensions # # Bootstrap functions # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause import numpy as np from .bootstrap_outofbag import BootstrapOutOfBag from sklearn.base import clone from itertools import product def _check_arrays(X, y=None): if isinstance(X, list): raise ValueError('X must be a numpy array') if not len(X.shape) == 2: raise ValueError('X must be a 2D array. Try X[:, numpy.newaxis]') try: if y is None: return except(AttributeError): if not len(y.shape) == 1: raise ValueError('y must be a 1D array.') if not len(y) == X.shape[0]: raise ValueError('X and y must contain the' 'same number of samples') def no_information_rate(targets, predictions, loss_fn): combinations = np.array(list(product(targets, predictions))) return loss_fn(combinations[:, 0], combinations[:, 1]) def accuracy(targets, predictions): return np.mean(np.array(targets) == np.array(predictions)) def mse(targets, predictions): return np.mean((
np.array(targets)
numpy.array
import numpy as np import pytest from numpy.testing import ( assert_array_almost_equal, assert_array_equal, assert_almost_equal ) from mne.utils import assert_object_equal from mne_connectivity import vector_auto_regression, select_order warning_str = dict( sm_depr='ignore:Using or importing*.:DeprecationWarning', # noqa ) def bivariate_var_data(): """A bivariate dataset for VAR estimation.""" rng = np.random.RandomState(12345) e = rng.standard_normal((252, 2)) y = np.zeros_like(e) y[:2] = e[:2] for i in range(2, 252): y[i] = 0.2 * y[i - 1] + 0.1 * y[i - 2] + e[i] return y def create_noisy_data( add_noise, sigma=1e-4, m=100, random_state=12345, ): """Create noisy test data. Generate a 2x2 linear system, and perturb observations of the state variables with Gaussian noise. Parameters ---------- add_noise : bool Whether to add noise or not. sigma : float noise standard deviation. m : int The number of samples. return_A : bool Whether to return the A matrix random_state : None | int | instance of ~numpy.random.RandomState If ``random_state`` is an :class:`int`, it will be used as a seed for :class:`~numpy.random.RandomState`. If ``None``, the seed will be obtained from the operating system (see :class:`~numpy.random.RandomState` for details). Default is ``None``. Returns ------- sample_data : ndarray, shape (n_channels, n_samples) Observed sample data. Possibly with noise. sample_eigs : np.ndarray The true eigenvalues of the system. sample_A : np.ndarray (Optional) if ``return_A`` is True, then returns the true linear system matrix. """ rng = np.random.RandomState(random_state) mu = 0.0 noise = rng.normal(mu, sigma, m) # gaussian noise A = np.array([[1.0, 1.0], [-1.0, 2.0]]) A /= np.sqrt(3) # compute true eigenvalues true_eigvals =
np.linalg.eigvals(A)
numpy.linalg.eigvals
import string import numpy as np from scipy.constants import codata from scipy.fftpack import fft, ifft eV = codata.value("electron volt") me = codata.value("electron mass") * 1e15 # convert to pico grams hbar = codata.value("Planck constant over 2 pi") * 1e27 # convert to pico-compatible values class TransmissionCalculator(): """ Calculates the probability of an electron tunneling through an potential barrier. Parameters ---------- E : float Energy of the electron in meV dx : float Distance between two neighboring sample points in pm barrier : Array Potenital barrier to be tunneled through with values in meV """ def __init__( self, step_callback = None, step_exit = None, value_callback = None, _me = None, x0 = None, _hbar = None, package_wdh = None, disable_electron_potential_validation = None ): """ Dependency-Injection constructor for injecting functionality and/or configuration via external components. This enables full testability of this module without having to modify or rely on production-components. This constructor is not relevant for production purposes. Use the default (empty) constructor instead. """ global me global hbar self.step_callback = step_callback self.step_exit = step_exit self.value_callback = value_callback self.mock_package_width = package_wdh self.disable_electron_potential_validation = disable_electron_potential_validation self.mock_x0 = x0 if (_me): me = _me if (_hbar): hbar = _hbar def validate_input(self, E, barrier, dx): """ This function tests the input parameters for validity. It tests both the data types aswell the vaulue range and shows an error message for all upcoming issues. The error message is alwats of the form: Validation Error: $message Details: $details """ error_msg_tmpl = string.Template("Validation Error: $message Details: $details") if (not hasattr(barrier, "__iter__") or np.array(barrier).ndim != 1): message = "The potential must be an array of one dimension" details = f"Dimension: {np.array(barrier).ndim}. Instance: {barrier.__class__.__name__}" raise ValueError(error_msg_tmpl.substitute(message = message, details = details)) max_V = max(barrier) min_V = min(barrier) if (E < 0): message = "Electron energy must be greater than 0." details = f"Electron energy given: {E}." raise ValueError(error_msg_tmpl.substitute(message = message, details = details)) if (E > max_V and not self.disable_electron_potential_validation): message = "Electron energy cannot be bigger than max potential value." details = f"Electron energy given: {E}. Max Potential: {max_V}." raise ValueError(error_msg_tmpl.substitute(message = message, details = details)) if (max_V == 0 and min_V == 0 and not self.disable_electron_potential_validation): message = "Potential must contain values other than 0." details = f"Empty." raise ValueError(error_msg_tmpl.substitute(message = message, details = details)) if (dx <= 0): message = "dx must be greater than 0" details = f"dx: {dx}." raise ValueError(error_msg_tmpl.substitute(message = message, details = details)) def calculate_transmission(self, E, barrier, dx): """ Here the actual calculation happens. First it builds up the potential and the position grid. If needed it also fits sizes. Then it creates the wavenumber grind based on the length of the position grid. As soon as we built up all of that we can use the Split-Step-Method to simulate the transmission of our electron, representet by a gaussian wave. The algorith works like that: Transforming the wavepackage into pulse space with the Fouriertransformation. Multiplying the package with the diagonal elements of the pulse operator for half a time step: .. math:: \\exp(-i* \\delta t * hbar * (k_i)^2 / (4*m)) Reverse Fourier Transformation Multiplying with diganoal elements of pulse operator: .. math:: \\exp(-i*V_i * \\delta t / hbar) Fourier Transformation again Multiplying with the diagonal elements of the pulse operator for a full time step: .. math:: \\exp(-i* \\delta t * hbar * (k_i)^2 / (2*m)) Repeat that until you reach the last time step and finish it with a multiplication of the package with the diagonal elements of the pulse operator for half a time step instead. For every step it calculates the transmission propability by dividing the current square of the absolute value by the original one. It compares every vaule with the one before and as soon as the diffrence drops below a very low value the chain breaks. """ self.validate_input(E, barrier, dx) E = E * eV * 1e40 # 1e-3 * 1e12 * 1e31 barrier = barrier * eV * 1e40 # * 1e-3 * 1e12 * 1e31 # dx = dx * 1e-12 #input parameters self.E = E self.dx = dx self.barrier = barrier #build potential and helper objects self.N = barrier.size self.V = self.get_potential() self.trans_index = self.get_first_index_behind_barrier() #build position grid and fix sizes with respect to V if needed. This could be nessesary if N is odd self.x = self.get_position_grid() while self.x.size<self.V.size: self.x = np.append(self.x,[self.x[-1]+self.dx]) while self.x.size>self.V.size: self.V = np.append(self.V,[0]) #build wavenumbergrid depending on the now known length len(self.x) self.M = self.V.size self.k_min = -np.pi/self.dx self.dk = 2*np.pi/(self.x[-1]-self.x[0]) self.k = self.get_wavenumber_grid() max_k = self.get_wavenumber_grid()[-1] self.k0 = np.sqrt(2*me*self.E)/hbar max_E = max_k**2 * hbar**2 / (2 * me) if (self.k0 >= max_k and self.disable_electron_potential_validation != True): error_msg_tmpl = string.Template("Validation Error: $message Details: $details") message = "The energy provided results in too much intertia. The algorithm cannot provide results for such energies." details = f"Energy: {E}. Allowed energy range: (0, {max_E / eV} eV]." raise ValueError(error_msg_tmpl.substitute(message = message, details = details)) #choose parameters for the initial state (gaussian package) self.sigma = self.dx*self.N / 10 if self.mock_package_width is None else self.mock_package_width #initial width of the package self.x0 = self.x[self.trans_index-self.N-5*int(self.sigma/self.dx+1)] if self.mock_x0 is None else self.mock_x0 #initial width of the package #build initial state (gaussian package) self.psi0 = (2/(np.pi*self.sigma**2))**(1/4) * np.exp(1j*self.k0*(self.x-self.x0)) * np.exp(-((self.x-self.x0)/self.sigma)**2) before_barrier = 25 * self.N * self.dx in_barrier = self.barrier.size * self.dx after_barrier = 15 * self.sigma * self.dx self.v_max = (hbar / me) * np.sqrt(2*me*(self.E)) if (max(self.V) == self.E): self.E = self.E - self.E / 1000 self.v_min = (hbar / me) * np.sqrt(2*me*np.abs((max(self.V) - self.E))) t_in = in_barrier / self.v_min t_after = after_barrier/ self.v_max t_before = before_barrier / self.v_max self.t = t_after + t_before + t_in #build initial state (gaussian package) self.psi0 = (2/(np.pi*self.sigma**2))**(1/4) * np.exp(1j*self.k0*(self.x-self.x0)) * np.exp(-((self.x-self.x0)/self.sigma)**2) #chosse time between to two neigbourt time sample points (to be used in the split step algorithm) self.dt = self.t * 1e-11 #build operators for the accelorated algorithm self.V_op = np.exp(-(1j*self.V*self.dt/hbar)) self.T_op_first_final = np.exp(-(1j*self.dt*np.multiply(self.k,self.k)*hbar/(4*me))) self.T_op_step = np.exp(-(1j*self.dt*hbar*np.multiply(self.k,self.k)/(2*me))) if (self.value_callback != None): self.value_callback(self) #performing z steps and calculate the probability of presence behind the barrier self.psi_after_steps = self.perform_split_steps() #calculate density of presence self.density_after_steps = self.get_density_of_probability(self.psi_after_steps) #calculate transmission probability after 1500 steps return self.get_transmission(self.density_after_steps) def get_potential(self): zeros =
np.zeros(25*self.N)
numpy.zeros
#! /usr/bin/python3 print('this is cell-analyzer v0.1.0' + '\n') print('preparing image segmentation run...' + '\n') import os import glob import numpy as np import pandas as pd import skimage as sk import seaborn as sns import matplotlib.pyplot as plt import scipy.cluster.hierarchy as shc from datetime import datetime as dt from matplotlib.colors import ListedColormap, LogNorm from matplotlib import cm from skimage import exposure, feature, filters, measure, morphology, segmentation from scipy import ndimage as ndi from sklearn.cluster import AgglomerativeClustering from sklearn.preprocessing import StandardScaler from sklearn.manifold import TSNE import umap import warnings warnings.filterwarnings("ignore") def process_image(img, norm_window, min_hole_size, min_cell_size, extrema_blur, peak_sep, name='temp.TIF', save_path = '.'): img_dims = np.shape(img) print('image dimensions: ', img_dims) if len(img_dims) < 3: n_chan = 1 content = img v_min, v_max = np.percentile(content, (1,99)) content_scaled = exposure.rescale_intensity(content, in_range=(v_min, v_max)) else: # handle if first channel is blank if np.mean(img[:,:,0]) < 1: img = img[:,:,1:] img_dims = np.shape(img) # handle other blank channels n_chan = img_dims[2] base = img[:,:,0] # restack image, excluding blank channels for channel in range(1, n_chan): if np.sum(img[:,:,channel]) > (img_dims[0] * img_dims[1] * 0.2): base = np.stack((base, img[:,:,channel]), axis=2) img = base img_dims = np.shape(img) n_chan = img_dims[2] ### custom colormaps N = 256 blank = np.zeros(N) gray = np.linspace(0, 1, N) # blue blues = np.ones((N,4)) blues[:,0] = blank blues[:,1] = blank blues[:,2] = gray blue_cmap = ListedColormap(blues) # green greens = np.ones((N,4)) greens[:,0] = blank greens[:,1] = gray greens[:,2] = blank green_cmap = ListedColormap(greens) # red reds = np.ones((N,4)) reds[:,0] = gray reds[:,1] = blank reds[:,2] = blank red_cmap = ListedColormap(reds) # separate and scale channels for vis content = np.sum(img, axis=2) v_min, v_max = np.percentile(content, (1,99)) content_scaled = exposure.rescale_intensity(content, in_range=(v_min, v_max)) if n_chan >= 1: dapi = img[:,:,0] v_min, v_max = np.percentile(dapi, (1,99)) dapi_scaled = exposure.rescale_intensity(dapi, in_range=(v_min, v_max)) if n_chan >= 2: gfp = img[:,:,1] v_min, v_max = np.percentile(gfp, (1,99)) gfp_scaled = exposure.rescale_intensity(gfp, in_range=(v_min, v_max)) if n_chan >= 3: txred = img[:,:,2] v_min, v_max = np.percentile(txred, (1,99)) txred_scaled = exposure.rescale_intensity(txred, in_range=(v_min, v_max)) if n_chan == 4: cy5 = img[:,:,3] v_min, v_max = np.percentile(cy5, (1,99)) cy5_scaled = exposure.rescale_intensity(cy5, in_range=(v_min, v_max)) if n_chan > 4: print('handling of more than 4 image channels not supported') ### handle single high-res or stitched low-res images (large dimensions) if np.logical_and(np.shape(img)[0] < 2500, np.shape(img)[1] < 2500): # correct image and create content mask bg = filters.threshold_local(content, norm_window) norm = content / bg blur = filters.gaussian(norm, sigma=2) # blur = filters.gaussian(content, sigma=2) otsu = filters.threshold_otsu(blur) mask = blur > otsu mask_filled = morphology.remove_small_holes(mask, min_hole_size) selem = morphology.disk(3) mask_opened = morphology.binary_opening(mask_filled, selem) mask_filtered = morphology.remove_small_objects(mask_opened, min_cell_size) heavy_blur = filters.gaussian(content, extrema_blur) blur_masked = heavy_blur * mask_filtered else: blur = filters.gaussian(content, sigma=2) otsu = filters.threshold_otsu(blur) mask = blur > otsu mask_filtered = mask blur_masked = mask * blur # find local maxima coords = feature.peak_local_max(blur_masked, min_distance=peak_sep) coords_T = [] coords_T += coords_T + [[point[1], point[0]] for point in coords] coords_T = np.array(coords_T) markers = np.zeros(
np.shape(content)
numpy.shape
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2019-10-25 at 13:25 @author: cook """ import numpy as np import warnings from apero import core from apero.core import math as mp from apero import lang from apero.core import constants from apero.core.core import drs_log from apero.core.core import drs_file from apero.io import drs_table from apero.science import extract # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'polar.general.py' __INSTRUMENT__ = 'None' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # get param dict ParamDict = constants.ParamDict DrsFitsFile = drs_file.DrsFitsFile # Get Logging function WLOG = core.wlog # Get function string display_func = drs_log.display_func # Get the text types TextEntry = lang.drs_text.TextEntry TextDict = lang.drs_text.TextDict # alias pcheck pcheck = core.pcheck # ============================================================================= # Define class # ============================================================================= class PolarObj: def __init__(self, params, **kwargs): self.infile = kwargs.get('infile', None) self.fiber = kwargs.get('fiber', 'NOFIBER') self.exposure = kwargs.get('exposure', 'NAN') self.stoke = kwargs.get('stoke', 'NAN') self.sequence = kwargs.get('seqs', 'NAN') self.sequencetot = kwargs.get('seqtot', 'NAN') # infile related properties self.data = kwargs.get('data', None) self.filename = kwargs.get('filename', None) self.basename = kwargs.get('basename', None) self.header = kwargs.get('header', None) self.exptime = None self.mjd = None self.mjdend = None self.dprtype = None self.berv = None self.bjd = None self.bervmax = None # if infile is set, set data from infile if self.infile is not None: self._get_properites(params) # set name self.name = self.__gen_key__() def __gen_key__(self): return '{0}_{1}'.format(self.fiber, self.exposure) def _get_properites(self, params): self.data = self.infile.data self.filename = self.infile.filename self.basename = self.infile.basename self.header = self.infile.header # get keys from header self.exptime = self.infile.get_key('KW_EXPTIME', dtype=float) self.mjd = self.infile.get_key('KW_ACQTIME', dtype=float) self.mjdend = self.infile.get_key('KW_MJDEND', dtype=float) self.dprtype = self.infile.get_key('KW_DPRTYPE', dtype=str) # get berv properties bprops = extract.get_berv(params, self.infile, dprtype=self.dprtype) # store berv properties self.berv = bprops['USE_BERV'] self.bjd = bprops['USE_BJD'] self.bervmax = bprops['USE_BERV_MAX'] def __str__(self): return 'PolarObj[{0}]'.format(self.name) def __repr__(self): return 'PolarObj[{0}]'.format(self.name) # ============================================================================= # Define functions # ============================================================================= def validate_polar_files(params, infiles, **kwargs): # set function name func_name = display_func(params, 'validate_polar_files', __NAME__) # get parameters from params valid_fibers = pcheck(params, 'POLAR_VALID_FIBERS', 'valid_fibers', kwargs, func_name, mapf='list', dtype=str) valid_stokes = pcheck(params, 'POLAR_VALID_STOKES', 'valid_stokes', kwargs, func_name, mapf='list', dtype=str) # this is a constant and should not be changed min_files = 4 # ---------------------------------------------------------------------- # right now we can only do this with two fibers - break if more fibers are # defined if len(valid_fibers) != min_files // 2: eargs = ['({0})'.format(','.join(valid_fibers)), 'POLAR_VALID_FIBERS', func_name] WLOG(params, 'error', TextEntry('00-021-00001', args=eargs)) # ---------------------------------------------------------------------- # get the number of infiles num_files = len(infiles) # ---------------------------------------------------------------------- # storage dictionary pobjects = ParamDict() stokes, fibers, basenames = [], [] ,[] # loop around files for it in range(num_files): # print file iteration progress core.file_processing_update(params, it, num_files) # ge this iterations file infile = infiles[it] # extract polar values and validate file pout = valid_polar_file(params, infile) stoke, exp, seq, seqtot, fiber, valid = pout # skip any invalid files if not valid: continue # ------------------------------------------------------------------ # log file addition wargs = [infile.basename, fiber, stoke, exp, seq, seqtot] WLOG(params, '', TextEntry('40-021-00001', args=wargs)) # ------------------------------------------------------------------ # get polar object for each pobj = PolarObj(params, infile=infile, fiber=fiber, exposure=exp, stoke=stoke, seq=seq, seqtot=seqtot) # get name name = pobj.name # push into storage dictionary pobjects[name] = pobj # set source pobjects.set_source(name, func_name) # append lists (for checks) stokes.append(stoke) fibers.append(fiber) basenames.append(infile.basename) # ---------------------------------------------------------------------- # deal with having no files if len(pobjects) == 0: eargs = ['\n\t'.join(basenames)] WLOG(params, 'error', TextEntry('09-021-00001', args=eargs)) # deal with having less than minimum number of required files if len(pobjects) < 4: eargs = [4, '\n\t'.join(basenames)] WLOG(params, 'error', TextEntry('09-021-00002', args=eargs)) # ---------------------------------------------------------------------- # make sure we do not have multiple stokes parameters if len(np.unique(stokes)) != 1: eargs = [', '.join(np.unique(stokes))] WLOG(params, 'error', TextEntry('09-021-00003', args=eargs)) # ---------------------------------------------------------------------- # find number of A and B files num_a = np.sum(np.array(fibers) == valid_fibers[0]) num_b = np.sum(np.array(fibers) == valid_fibers[1]) # make sure we have 2 or 4 A fibers and 2 or 4 B fibers if len(fibers) == min_files * 2: # make sure number of A and B files is correct length if (num_a == min_files) and (num_b == min_files): kind = min_files else: eargs = [valid_fibers[0], valid_fibers[1], num_a, num_b, min_files] WLOG(params, 'error', TextEntry('09-021-00004', args=eargs)) kind = None elif len(fibers) == min_files: # make sure number of A and B files is correct length if (num_a == min_files // 2) and (num_b == min_files // 2): kind = min_files // 2 else: eargs = [valid_fibers[0], valid_fibers[1], num_a, num_b, min_files // 2] WLOG(params, 'error', TextEntry('09-021-00004', args=eargs)) kind = None else: eargs = [valid_fibers[0], valid_fibers[1], ' or '.join([str(min_files * 2), str(min_files)])] WLOG(params, 'error', TextEntry('09-021-00005', args=eargs)) kind = None # ---------------------------------------------------------------------- # set the output parameters props = ParamDict() props['NEXPOSURES'] = kind props['STOKES'] = np.unique(stokes)[0] props['MIN_FILES'] = min_files props['VALID_FIBERS'] = valid_fibers props['VALID_STOKES'] = valid_stokes # set sources keys = ['STOKES', 'NEXPOSURES', 'MIN_FILES', 'VALID_FIBERS', 'VALID_STOKES'] props.set_sources(keys, func_name) # ---------------------------------------------------------------------- # return polar object and properties return pobjects, props def calculate_polarimetry(params, pobjs, props, **kwargs): # set function name func_name = display_func(params, 'calculate_polarimetry', __NAME__) # get parameters from params/kwargs method = pcheck(params, 'POLAR_METHOD', 'method', kwargs, func_name) # if method is not a string then break here if not isinstance(method, str): eargs = [method] WLOG(params, 'error', TextEntry('09-021-00006', args=eargs)) # decide which method to use if method.lower() == 'difference': return polar_diff_method(params, pobjs, props) elif method.lower() == 'ratio': return polar_ratio_method(params, pobjs, props) else: eargs = [method] WLOG(params, 'error', TextEntry('09-021-00007', args=eargs)) return 0 def calculate_stokes_i(params, pobjs, pprops): """ Function to calculate the Stokes I polarization :param params: ParamDict, parameter dictionary of constants :param pobjs: dict, dictionary of polar object instance :param pprops: parameter dictionary, ParamDict containing data Must contain at least: NEXPOSURES: int, number of exposures in polar sequence :return pprops: parameter dictionary, the updated parameter dictionary Adds/updates the following: STOKESI: numpy array (2D), the Stokes I parameters, same shape as DATA STOKESIERR: numpy array (2D), the Stokes I error parameters, same shape as DATA """ # set the function func_name = display_func(params, 'calculate_stokes_i', __NAME__) # log start of polarimetry calculations WLOG(params, '', TextEntry('40-021-00003')) # get parameters from props nexp = pprops['NEXPOSURES'] # get the first file for reference pobj = pobjs['A_1'] # storage of stokes parameters stokes_i = np.zeros(pobj.infile.shape) stokes_i_err = np.zeros(pobj.infile.shape) # storage of flux and variance flux, var = [], [] # loop around exposures for it in range(1, int(nexp) + 1): # get a and b data for this exposure data_a = pobjs['A_{0}'.format(it)].data data_b = pobjs['B_{0}'.format(it)].data # Calculate sum of fluxes from fibers A and B flux_ab = data_a + data_b # Save A+B flux for each exposure flux.append(flux_ab) # Calculate the variances for fiber A+B, assuming Poisson noise # only. In fact the errors should be obtained from extraction, i.e. # from the error extension in the e2ds files. var_ab = data_a + data_b # Save varAB = sigA^2 + sigB^2, ignoring cross-correlated terms var.append(var_ab) # Sum fluxes and variances from different exposures for it in range(len(flux)): stokes_i += flux[it] stokes_i_err += var[it] # Calcualte errors -> sigma = sqrt(variance) with warnings.catch_warnings(record=True) as _: stokes_i_err =
np.sqrt(stokes_i_err)
numpy.sqrt
from logistic_regression import LogisticRegression from uWaveGestureHandler import * from sklearn.datasets import make_blobs from sklearn.model_selection import KFold import matplotlib.pyplot as plt import numpy as np directory = "../Datasets/uWaveGestureLibrary" n_samples = 4481 n_training = int((50/100) * n_samples) n_validation = int((20/100) * n_samples) # Generate synthetic dataset # X, y = make_blobs(n_samples=n_samples, random_state=None, centers=4, n_features=2) # print(X.shape, y.shape) # plt.scatter(X[:, 0], X[:, 1], c=y) # plt.xlabel('First feature') # plt.ylabel('Second feature') # plt.show() # Extract uWaveGesture dataset gesture_1 = extract_gesture(1, directory) gesture_2 = extract_gesture(2, directory) gesture_3 = extract_gesture(3, directory) gesture_4 = extract_gesture(4, directory) gesture_5 = extract_gesture(5, directory) gesture_6 = extract_gesture(6, directory) gesture_7 = extract_gesture(7, directory) gesture_8 = extract_gesture(8, directory) X, y = create_dataset([gesture_1, gesture_2, gesture_3, gesture_4, gesture_5, gesture_6, gesture_7, gesture_8], shuffle=True) print(X.shape, y.shape) # Build logistic regression model log_reg = LogisticRegression(regularization_factor=.001) # Training X_train = X[:n_training] y_train = y[:n_training] X_val = X[n_training:n_training + n_validation] y_val = y[n_training:n_training + n_validation] training_accuracy, training_cross_entropy, validation_accuracy, validation_cross_entropy = log_reg.train_early_stopping(X_train, y_train, X_val, y_val, n_early_stopping=100, epochs=2000) # Test & Visualization plt.plot(training_accuracy, 'b', label="Training accuracy") plt.plot(validation_accuracy, 'r', label="Test accuracy") plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.show() plt.plot(training_cross_entropy, 'b', label="Training cross entropy") plt.plot(validation_cross_entropy, 'r', label="Test cross entropy") plt.xlabel('Epoch') plt.ylabel('Cross entropy') plt.show() X_test = X[n_training+n_validation:] y_test = y[n_training+n_validation:] print(log_reg.regularized_cross_entropy(X_test, y_test), log_reg.accuracy(X_test, y_test)) confusion_map = log_reg.confusion_map(X_test, y_test) plt.imshow(confusion_map, cmap='Reds', interpolation='nearest') plt.show() training_accuracies = [] training_cross_entropies = [] test_accuracies = [] test_cross_entropies = [] kf = KFold(n_splits=4) for train_index, test_index in kf.split(X): log_reg = LogisticRegression(regularization_factor=.001) training_accuracy, training_cross_entropy = log_reg.train(X[train_index], y[train_index], epochs=1200) training_accuracies.append(log_reg.accuracy(X[train_index], y[train_index])) training_cross_entropies.append(log_reg.regularized_cross_entropy(X[train_index], y[train_index])) test_accuracies.append(log_reg.accuracy(X[test_index], y[test_index])) test_cross_entropies.append(log_reg.regularized_cross_entropy(X[test_index], y[test_index])) plt.plot(training_accuracies, 'b', label="Training accuracies") plt.axhline(y=
np.mean(training_accuracies)
numpy.mean
# ProDy: A Python Package for Protein Dynamics Analysis # # Copyright (C) 2010-2012 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> """Refine MSA application.""" __author__ = '<NAME>, <NAME>' __copyright__ = 'Copyright (C) 2010-2012 <NAME>' from ..apptools import DevelApp import prody import numpy as np __all__ = ['evol_rankorder'] APP = DevelApp('rankorder', 'identify highly coevolving pairs of residues') APP.setExample( """This application identifies that top ranking pairs of residues that \ coevolve based on their mutual information. By default coevolution is \ reported for pairs that are at least 3 residues apart in sequence. A z-score \ normalization can be applied to the mutinfo matrix to identify coevolving \ pairs. The following examples show how to use with default as well as \ additional options: $ evol rankorder piwi_refined_mutinfo.txt -z $ evol rankorder piwi_refined_mutinfo.txt --msa piwi_refined.slx \ --label AGO6_ARATH""", []) APP.addArgument('mutinfo', help='mutual information matrix') APP.addGroup('input', 'input options') APP.addArgument('-z', '--zscore', dest='zscore', action='store_true', help='apply zscore for identifying top ranked coevolving pairs', group='input' ) APP.addArgument('-d', '--delimiter', dest='delimiter', help='delimiter used in mutual information matrix file', type=str, metavar='STR', default=None, group='input' ) APP.addArgument('-p', '--pdb', dest='pdb', help='PDB file that contains same number of residues as the mutual ' 'information matrix, output residue numbers will be based on PDB file', default=None, type=str, metavar='STR', group='input' ) APP.addArgument('-m', '--msa', dest='msa', help='MSA file used for building the mutual info matrix, ' 'output residue numbers will be based on the most complete sequence ' 'in MSA if a PDB file or sequence label is not specified', default=None, type=str, metavar='STR', group='input' ) APP.addArgument('-l', '--label', dest='label', help='label in MSA file for output residue numbers', default=None, type=str, metavar='STR', group='input' ) APP.addGroup('output', 'output options') APP.addArgument('-n', '--num-pairs', dest='numpairs', help='number of top ranking residue pairs to list', default=100, type=int, metavar='INT', group='output' ) APP.addArgument('-q', '--seq-sep', dest='seqsep', help='report coevolution for residue pairs that are sequentially ' 'separated by input value', default=3, type=int, metavar='INT', group='output' ) APP.addArgument('-t', '--min-dist', dest='dist', help='report coevolution for residue pairs whose CA atoms are spatially ' 'separated by at least the input value, used when a PDB file is given ' 'and --use-dist is true', default=10.0, type=float, metavar='FLOAT', group='output' ) APP.addArgument('-u', '--use-dist', dest='usedist', action='store_true', help='use structural separation to report coevolving pairs', group='output' ) APP.addArgument('-o', '--outname', dest='outname', help='output filename, default is mutinfo_rankorder.txt', type=str, metavar='STR', group='output' ) def calcAllDist(coordset): from prody import calcDistance shape = coordset.shape distance = np.zeros((shape[1], shape[1])) for i in range(shape[1]): temp =
np.tile(coordset[0,i,:], (1, shape[1], 1))
numpy.tile
from utils import load_data import torch import argparse import numpy as np import torch.optim as optim import random import pickle import torch.nn as nn import sklearn from modularity import greedy_modularity_communities, partition, baseline_spectral, make_modularity_matrix from utils import make_normalized_adj, edge_dropout, negative_sample from models import GCNLink, GCNClusterNet, GCNDeep, GCNDeepSigmoid, GCN, GCNClusterGAT,GINClusterNet from loss_functions import loss_kcenter, loss_modularity import copy from kcenter import CenterObjective, make_all_dists, gonzalez_kcenter, greedy_kcenter, make_dists_igraph, rounding parser = argparse.ArgumentParser() parser.add_argument('--no-cuda', action='store_true', default=True, help='Disables CUDA training.') parser.add_argument('--seed', type=int, default=24, help='Random seed.') parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate.') parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).') parser.add_argument('--hidden', type=int, default=50, help='Number of hidden units.') parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate (1 - keep probability).') parser.add_argument('--embed_dim', type=int, default=50, help='Dimensionality of node embeddings') parser.add_argument('--K', type=int, default=5, help='How many partitions') parser.add_argument('--negsamplerate', type=int, default=1, help='How many negative examples to include per positive in link prediction training') parser.add_argument('--edge_dropout', type=float, default=0.2, help='Rate at which to remove edges in link prediction training') parser.add_argument('--objective', type=str, default='kcenter', help='What objective to optimize (currently partitioning or modularity') parser.add_argument('--dataset', type=str, default='synthetic_spa', help='which network to load') parser.add_argument('--clustertemp', type=float, default=20, help='how hard to make the softmax for the cluster assignments') parser.add_argument('--kcentertemp', type=float, default=100, help='how hard to make seed selection softmax assignment') parser.add_argument('--kcentermintemp', type=float, default=0, help='how hard to make the min over nodes in kcenter training objective') parser.add_argument('--use_igraph', action='store_true', default=True, help='use igraph to compute shortest paths in twostage kcenter') parser.add_argument('--train_iters', type=int, default=1000, help='number of training iterations') parser.add_argument('--num_cluster_iter', type=int, default=1, help='number of iterations for clustering') parser.add_argument('--singletrain', action='store_true', default=False, help='only train on a single instance') parser.add_argument('--pure_opt', action='store_true', default=False, help='do only optimization, no link prediction needed') parser.add_argument('--graph_embedding', type=str, default='GCN', help='embedding layer GCN,GAT or GIN') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if 'synthetic_spa' not in args.dataset: directory = args.dataset else: directory = 'synthetic_spa' # Load data reload_data = True pure_optimization = args.pure_opt train_pct = 0.4 if 'synthetic' in args.dataset: num_graphs = 60 numtest = 30 else: #pubmed dataset num_graphs = 20 numtest = 8 if reload_data: bin_adj_all = [] adj_all = [] #features = [] adj_train = [] bin_adj_train = [] features_train = [] features_all = [] dist_all = [] dist_train = [] for i in range(num_graphs): adj_i, features_i, labels_i, idx_train, idx_val, idx_test = load_data('data/{}/'.format(directory), '{}_{}'.format(args.dataset, i)) bin_adj_i = (adj_i.to_dense() > 0).float() bin_adj_all.append(bin_adj_i) adj_all.append(adj_i.coalesce()) features_all.append(features_i) adj_train_i, features_train_i, labels_train_i, idx_train, idx_val, idx_test = load_data('data/{}/'.format(directory), '{0}_{1}_train_{2:.2f}'.format(args.dataset, i, train_pct)) bin_adj_train_i = (adj_train_i.to_dense() > 0).float() bin_adj_train.append(bin_adj_train_i) adj_train.append(adj_train_i.coalesce()) features_train.append(features_train_i) vals = {} algs = ['ClusterNet', 'ClusterNet-ft', 'ClusterNet-ft-only', 'GCN-e2e', 'GCN-e2e-ft', 'GCN-e2e-ft-only'] if args.objective == 'modularity': ts_algos = ['agglomerative', 'recursive', 'spectral'] elif args.objective == 'kcenter': ts_algos = ['gonzalez', 'greedy'] for algo in ts_algos: algs.append('train-' + algo) algs.append('ts-' + algo) algs.append('ts-ft-' + algo) algs.append('ts-ft-only-' + algo) for algo in algs: vals[algo] = np.zeros(numtest) aucs_algs = ['ts', 'ts-ft', 'ts-ft-only'] aucs = {} for algo in aucs_algs: aucs[algo] = np.zeros(numtest) if args.objective == 'modularity': mods_test = [make_modularity_matrix(A) for A in bin_adj_all] mods_train = [make_modularity_matrix(A) for A in bin_adj_train] test_object = mods_test train_object = mods_train loss_fn = loss_modularity elif args.objective == 'kcenter': for i in range(num_graphs): try: dist_all.append(torch.load('{}_{}_test_dist.pt'.format(args.dataset, i))) dist_train.append(torch.load('{}_{}_{:.2f}_train_dist.pt'.format(args.dataset, i, train_pct))) diameter = dist_all[-1].max() except: dist_all_i = make_all_dists(bin_adj_all[i], 100) diameter = dist_all_i[dist_all_i < 100].max() dist_all_i[dist_all_i == 100] = diameter torch.save(dist_all_i, '{}_{}_test_dist.pt'.format(args.dataset, i)) dist_all.append(dist_all_i) dist_train_i = make_all_dists(bin_adj_train[i], 100) dist_train_i[dist_train_i == 100] = diameter torch.save(dist_train_i, '{}_{}_{:.2f}_train_dist.pt'.format(args.dataset, i, train_pct)) dist_train.append(dist_train_i) obj_train = [CenterObjective(d, diameter, args.kcentermintemp) for d in dist_train] obj_train_hardmax = [CenterObjective(d, diameter, args.kcentermintemp, hardmax=True) for d in dist_train] obj_test = [CenterObjective(d, diameter, args.kcentertemp, hardmax=True) for d in dist_all] obj_test_softmax = [CenterObjective(d, diameter, args.kcentermintemp) for d in dist_all] test_object = obj_test train_object = obj_train loss_fn = loss_kcenter if pure_optimization: train_object = test_object adj_train = adj_all bin_adj_train = bin_adj_all dist_train = dist_all for test_idx in range(1): if 'pubmed' in args.dataset: valid_instances = list(range(10, 12)) test_instances= list(range(12, 20)) if 'synthetic' in args.dataset: test_instances = list(range(20, 50)) valid_instances = list(range(50, 60)) if not args.singletrain: train_instances = [x for x in range(num_graphs) if x not in test_instances and x not in valid_instances] else: train_instances = [0] nfeat = features_all[0].shape[1] K = args.K # Model and optimizer model_ts = GCNLink(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout) if args.graph_embedding=='GAT': model_cluster = GCNClusterGAT(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout, K = args.K, cluster_temp = args.clustertemp) if args.graph_embedding == 'GCN': model_cluster = GCNClusterNet(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout, K = args.K, cluster_temp = args.clustertemp) if args.graph_embedding == 'GIN': model_cluster = GINClusterNet(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout, K = args.K, cluster_temp = args.clustertemp) #keep a couple of initializations here so that the random seeding lines up #with results reported in the paper -- removing these is essentially equivalent to #changing the seed _ = GCN(nfeat, args.hidden, args.embed_dim, args.dropout) _ = nn.Parameter(torch.rand(K, args.embed_dim)) # if args.objective == 'modularity': model_gcn = GCNDeep(nfeat=nfeat, nhid=args.hidden, nout=args.K, dropout=args.dropout, nlayers=2) elif args.objective == 'kcenter': model_gcn = GCNDeepSigmoid(nfeat=nfeat, nhid=args.hidden, nout=1, dropout=args.dropout, nlayers=2) optimizer = optim.Adam(model_cluster.parameters(), lr=args.lr, weight_decay=args.weight_decay) losses = [] losses_test = [] num_cluster_iter = args.num_cluster_iter def get_average_loss(model, adj, bin_adj, bin_adj_for_loss, objectives, instances, features, num_reps = 10, hardmax = False, update = False, algoname = None): if hardmax: model.eval() loss = 0 for _ in range(num_reps): for idx, i in enumerate(instances): mu, r, embeds, dist = model(features[i], adj[i], num_cluster_iter) if hardmax: r = torch.softmax(100*r, dim=1) this_loss = loss_fn(mu, r, embeds, dist, bin_adj_for_loss[i], objectives[i], args) loss += this_loss if update: vals[algoname][test_instances.index(i)] = this_loss.item() if hardmax: model.train() return loss/(len(instances)*num_reps) def get_kcenter_test_loss(model, adj, bin_adj, train_objectives, test_objectives, instances, features, num_reps = 10, hardmax = False, update = False, algoname = None): loss = 0 for idx, i in enumerate(instances): best_loss = 100 x_best = None for _ in range(num_reps): mu, r, embeds, dist = model(features[i], adj[i], num_cluster_iter) x = torch.softmax(dist*args.kcentertemp, 0).sum(dim=1) x = 2*(torch.sigmoid(4*x) - 0.5) if x.sum() > args.K: x = args.K*x/x.sum() train_loss = loss_fn(mu, r, embeds, dist, bin_adj[i], train_objectives[i], args) if train_loss.item() < best_loss: best_loss = train_loss.item() x_best = x testvals = []; trainvals = [] for _ in range(50): y = rounding(x_best) testvals.append(test_objectives[i](y).item()) trainvals.append(train_objectives[i](y).item()) loss += testvals[np.argmin(trainvals)] if update: vals[algoname][test_instances.index(i)] = testvals[np.argmin(trainvals)] return loss/(len(instances)) #Decision-focused training if True: for t in range(args.train_iters): i = np.random.choice(train_instances) mu, r, embeds, dist = model_cluster(features_train[i], adj_train[i], num_cluster_iter) if args.objective == 'modularity': loss = loss_fn(mu, r, embeds, dist, bin_adj_all[i], test_object[i], args) else: loss = loss_fn(mu, r, embeds, dist, bin_adj_all[i], obj_test_softmax[i], args) if args.objective != 'kcenter': loss = -loss optimizer.zero_grad() loss.backward() if t % 100 == 0 and t != 0: num_cluster_iter = 5 if t % 10 == 0: if args.objective == 'modularity': r = torch.softmax(100*r, dim=1) loss_train = get_average_loss(model_cluster, adj_train, bin_adj_train, bin_adj_all, test_object, train_instances, features_train, hardmax=True) loss_test = get_average_loss(model_cluster, adj_train, bin_adj_train, bin_adj_all, test_object, test_instances, features_train, hardmax=True) loss_valid = get_average_loss(model_cluster, adj_train, bin_adj_train, bin_adj_all, test_object, valid_instances, features_train, hardmax=True) losses_test.append(loss_test.item()) print(t, loss_train.item(), loss_test.item(), loss_valid.item()) losses.append(loss.item()) optimizer.step() if args.objective == 'kcenter': loss_round = get_kcenter_test_loss(model_cluster, adj_train, bin_adj_train, train_object, test_object, test_instances, features_train, update = True, algoname = 'ClusterNet') elif args.objective == 'modularity': loss_test = get_average_loss(model_cluster, adj_train, bin_adj_train, bin_adj_all, test_object, test_instances, features_train, hardmax=True, update = True, algoname = 'ClusterNet') print('after training', np.mean(vals['ClusterNet'][:numtest]), np.std(vals['ClusterNet'])) if args.singletrain: pickle.dump((vals, aucs), open('results_distributional_singletrain_{}_{}_{}.pickle'.format(args.dataset, args.objective, args.K), 'wb')) break def fine_tune(model, features, adj, bin_adj, objective, num_training_iters = 1000): optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) for t in range(num_training_iters): mu, r, embeds, dist = model(features, adj, num_cluster_iter) loss = loss_fn(mu, r, embeds, dist, bin_adj, objective, args) if args.objective != 'kcenter': loss = -loss optimizer.zero_grad() loss.backward() optimizer.step() num_cluster_iter = 1 loss_finetune = 0 loss_round = 0 for i in test_instances: model_i = copy.deepcopy(model_cluster) fine_tune(model_i, features_train[i], adj_train[i], bin_adj_train[i], train_object[i], num_training_iters = 50) loss_finetune += get_average_loss(model_i, adj_train, bin_adj_train, bin_adj_all, test_object, [i], features_train, hardmax=True, update = True, algoname = 'ClusterNet-ft').item() if args.objective == 'kcenter': loss_round += get_kcenter_test_loss(model_i, adj_train, bin_adj_train, train_object, test_object, [i], features_train, update = True, algoname = 'ClusterNet-ft') print('finetune', np.mean(vals['ClusterNet-ft']), np.std(vals['ClusterNet-ft'])) loss_finetune = 0 loss_round = 0 for i in test_instances: model_i = GCNClusterNet(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout, K = args.K, cluster_temp = args.clustertemp) fine_tune(model_i, features_train[i], adj_train[i], bin_adj_train[i], train_object[i], num_training_iters = 500) loss_finetune += get_average_loss(model_i, adj_train, bin_adj_train, bin_adj_all, test_object, [i], features_train, hardmax=True, update = True, algoname = 'ClusterNet-ft-only').item() if args.objective == 'kcenter': loss_round += get_kcenter_test_loss(model_i, adj_train, bin_adj_train, train_object, test_object, [i], features_train, update = True, algoname = 'ClusterNet-ft-only') print('finetune only', np.mean(vals['ClusterNet-ft-only']), np.std(vals['ClusterNet-ft-only'])) #Train a two-stage model for link prediction with cross-entropy loss and #negative sampling def train_twostage(model_ts, train_instances, test_instances, features, algoname): optimizer_ts = optim.Adam(model_ts.parameters(), lr=args.lr, weight_decay=args.weight_decay) edges = {} edges_eval = {} labels_eval = {} for i in train_instances + test_instances: edges[i] = adj_train[i].indices().t() edges_eval_i, labels_eval_i = negative_sample(adj_all[i].indices().t(), 1, bin_adj_all[i]) edges_eval[i] = edges_eval_i labels_eval[i] = labels_eval_i def get_evaluation(instances): test_ce = 0 test_auc = 0 for i in instances: preds_test_eval = model_ts(features[i], adj_train[i], edges_eval[i]) test_ce += torch.nn.BCEWithLogitsLoss()(preds_test_eval, labels_eval[i]) test_auc_i = sklearn.metrics.roc_auc_score(labels_eval[i].long().detach().numpy(), nn.Sigmoid()(preds_test_eval).detach().numpy()) aucs[algoname][test_instances.index(i)] = test_auc test_auc += test_auc_i return test_ce/len(instances), test_auc/len(instances) for t in range(150): i = np.random.choice(train_instances) adj_input = make_normalized_adj(edge_dropout(edges[i], args.edge_dropout), bin_adj_train[i].shape[0]) edges_eval_i, labels_i = negative_sample(edges[i], args.negsamplerate, bin_adj_train[i]) preds = model_ts(features[i], adj_input, edges_eval_i) loss = torch.nn.BCEWithLogitsLoss()(preds, labels_i) optimizer_ts.zero_grad() loss.backward() if t % 10 == 0: test_ce, test_auc = get_evaluation(test_instances) print(t, loss.item(), test_ce.item(), test_auc) optimizer_ts.step() def test_twostage(model_ts, test_instances_eval, algoname): for test_i in test_instances_eval: #predict probability that all unobserved edges exist n = adj_train[test_i].shape[0] indices = torch.tensor(np.arange(n)) to_pred = torch.zeros(n**2, 2) to_pred[:, 1] = indices.repeat(n) for i in range(n): to_pred[i*n:(i+1)*n, 0] = i to_pred = to_pred.long() preds = model_ts(features_train[test_i], adj_train[test_i], to_pred) preds = nn.Sigmoid()(preds).view(n, n) preds = bin_adj_train[test_i] + (1 - bin_adj_train[test_i])*preds if args.objective == 'modularity': r = greedy_modularity_communities(preds, K) loss = loss_fn(None, r, None, None, bin_adj_all[test_i], test_object[test_i], args).item() vals[algoname + '-agglomerative'][test_instances.index(test_i)] = loss r = partition(preds, K) loss = loss_fn(None, r, None, None, bin_adj_all[test_i], test_object[test_i], args).item() vals[algoname + '-recursive'][test_instances.index(test_i)] = loss degrees = preds.sum(dim=1) preds = torch.diag(1./degrees)@preds mod_pred = make_modularity_matrix(preds) r = baseline_spectral(mod_pred, K) loss = loss_fn(None, r, None, None, bin_adj_all[test_i], test_object[test_i], args).item() vals[algoname + '-spectral'][test_instances.index(test_i)] = loss elif args.objective == 'kcenter': print('making dists') if args.use_igraph: dist_ts = make_dists_igraph(preds) else: dist_ts = make_all_dists(preds, 100) diameter = dist_ts[dist_ts < 100].max() dist_ts[dist_ts == 100] = diameter print(test_i) dist_ts = dist_ts.float() diameter = dist_ts.max() x = gonzalez_kcenter(dist_ts, K) loss = obj_test[test_i](x) vals[algoname + '-gonzalez'][test_instances.index(test_i)] = loss.item() x = greedy_kcenter(dist_ts, diameter, K) loss = obj_test[test_i](x) vals[algoname + '-greedy'][test_instances.index(test_i)] = loss.item() if True: print('two stage') #do pretrained two stage train_twostage(model_ts, train_instances, test_instances, features_train, 'ts') test_twostage(model_ts, test_instances, 'ts') for algo in algs: if 'ts' in algo and 'ft' not in algo: print(algo, np.mean(vals[algo]), np.std(vals[algo])) # do finetuning loss_agglom_ft = 0; loss_recursive_ft = 0; loss_spectral_ft = 0 loss_greedy_ft = 0; loss_gonzalez_ft = 0 for i in test_instances: model_i = copy.deepcopy(model_ts) train_twostage(model_i, [i], [i], features_train, 'ts-ft') test_twostage(model_ts, [i], 'ts-ft') for algo in algs: if 'ts-ft' in algo and 'only' not in algo: print(algo, np.mean(vals[algo]), np.std(vals[algo])) #do only finetuning loss_agglom_ft_only = 0; loss_recursive_ft_only = 0; loss_spectral_ft_only = 0 loss_greedy_ft_only = 0; loss_gonzalez_ft_only = 0 for i in test_instances: model_i = GCNLink(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout) train_twostage(model_i, [i], [i], features_train, 'ts-ft-only') test_twostage(model_ts, [i], 'ts-ft-only') for algo in algs: if 'ts-ft-only' in algo: print(algo, np.mean(vals[algo]), np.std(vals[algo])) if True: def get_average_loss(model, adj, bin_adj, bin_adj_for_loss, objectives, instances, features, num_reps = 1, hardmax = False, update = False, algoname = None): loss = 0 for _ in range(num_reps): for i in instances: if args.objective == 'modularity': r = model(features[i], adj[i]) r = torch.softmax(r, dim = 1) if hardmax: r = torch.softmax(100*r, dim=1) this_loss = -loss_fn(None, r, None, None, bin_adj_for_loss[i], objectives[i], args) elif args.objective == 'kcenter': x = model(features[i], adj[i]) if x.sum() > K: x = K*x/x.sum() this_loss = objectives[i](x) loss += this_loss if update: vals[algoname][test_instances.index(i)] = this_loss.item() return loss/(len(instances)*num_reps) def get_kcenter_test_loss(model, adj, bin_adj, train_objectives, test_objectives, instances, features, num_reps = 10, hardmax = False, update = False, algoname = None): loss = 0 for i in instances: best_loss = 100 x_best = None for _ in range(num_reps): x = model(features[i], adj[i]) if x.sum() > args.K: x = args.K*x/x.sum() train_loss = train_objectives[i](x) if train_loss.item() < best_loss: best_loss = train_loss.item() x_best = x testvals = []; trainvals = [] for _ in range(50): y = rounding(x_best) testvals.append(test_objectives[i](y).item()) trainvals.append(train_objectives[i](y).item()) loss += testvals[np.argmin(trainvals)] if update: vals[algoname][test_instances.index(i)] = testvals[np.argmin(trainvals)] return loss/(len(instances)) print('just GCN') optimizer_gcn = optim.Adam(model_gcn.parameters(), lr = args.lr, weight_decay = args.weight_decay) def train_gcn_model(model, train_instances, num_iters = 1000, verbose=False): for t in range(num_iters): i = random.choice(train_instances) loss = get_average_loss(model_gcn, adj_train, bin_adj_train, bin_adj_train, train_object, [i], features_train) optimizer.zero_grad() loss.backward() losses.append(loss.item()) optimizer.step() if t % 100 == 0 and verbose: loss_train = get_average_loss(model_gcn, adj_all, bin_adj_all, bin_adj_all, test_object, train_instances, features_all) loss_test = get_average_loss(model_gcn, adj_train, bin_adj_train, bin_adj_all, test_object, test_instances, features_train, hardmax=True) losses_test.append(loss_test.item()) print(t, loss.item(), loss_train.item(), loss_test.item()) train_gcn_model(model_gcn, train_instances, num_iters = 1000, verbose = True) if args.objective == 'kcenter': loss_round = get_kcenter_test_loss(model_gcn, adj_train, bin_adj_train, train_object, test_object, test_instances, features_train , update = True, algoname = 'GCN-e2e') elif args.objective == 'modularity': loss_gcne2e = get_average_loss(model_gcn, adj_train, bin_adj_train, bin_adj_all, test_object, test_instances, features_train, hardmax=True, update = True, algoname = 'GCN-e2e').item() print('GCN-e2e', np.mean(vals['GCN-e2e']), np.std(vals['GCN-e2e'])) ################# #GCN FINETUNE ################# loss_finetune = 0 loss_round = 0 for i in test_instances: model_i = copy.deepcopy(model_gcn) train_gcn_model(model_i, [i], num_iters = 500) loss_finetune += get_average_loss(model_i, adj_train, bin_adj_train, bin_adj_all, test_object, [i], features_train, hardmax=True, update = True, algoname = 'GCN-e2e-ft').item() if args.objective == 'kcenter': loss_round += get_kcenter_test_loss(model_i, adj_train, bin_adj_train, train_object, test_object, [i], features_train, update = True, algoname = 'GCN-e2e-ft') print('GCN-e2e-ft', np.mean(vals['GCN-e2e-ft']),
np.std(vals['GCN-e2e-ft'])
numpy.std
""" Copyright (c) 2006-2011, NIPY Developers All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the NIPY Developers nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Nitime 0.6 code slightly adapted by <NAME>, Aug 2016 <EMAIL> CONTENT OF THIS FILE: Spectral transforms are used in order to estimate the frequency-domain representation of time-series. Several methods can be used and this module contains implementations of several algorithms for the calculation of spectral transforms. """ import numpy as np # import matplotlib.mlab as mlab import scipy.linalg as linalg import scipy.signal as sig import scipy.interpolate as interpolate import scipy.fftpack as fftpack import spectral as spectral import warnings import multitaper_utils as utils # Set global variables for the default NFFT to be used in spectral analysis and # the overlap: default_nfft = 64 default_n_overlap = int(np.ceil(default_nfft // 2)) def get_spectra(time_series, method=None): r""" Compute the spectra of an n-tuple of time series and all of the pairwise cross-spectra. Parameters ---------- time_series : float array The time-series, where time is the last dimension method : dict, optional contains: this_method:'welch' indicates that :func:`mlab.psd` will be used in order to calculate the psd/csd, in which case, additional optional inputs (and default values) are: NFFT=64 Fs=2pi detrend=mlab.detrend_none window=mlab.window_hanning n_overlap=0 this_method:'multi_taper_csd' indicates that :func:`multi_taper_psd` used in order to calculate psd/csd, in which case additional optional inputs (and default values) are: BW=0.01 Fs=2pi sides = 'onesided' Returns ------- f : float array The central frequencies for the frequency bands for which the spectra are estimated fxy : float array A semi-filled matrix with the cross-spectra of the signals. The csd of signal i and signal j is in f[j][i], but not in f[i][j] (which will be filled with zeros). For i=j fxy[i][j] is the psd of signal i. """ if method is None: method = {'this_method': 'multi_taper_csd'} # The default # If no choice of method was explicitly set, but other parameters were # passed, assume that the method is multitapering: this_method = method.get('this_method', 'multi_taper_csd') if this_method == 'welch': NFFT = method.get('NFFT', default_nfft) Fs = method.get('Fs', 2 * np.pi) detrend = method.get('detrend', 'constant') #mlab.detrend_none) window = method.get('window', 'hanning') #mlab.window_hanning) noverlap = method.get('noverlap', int(np.ceil(NFFT / 2))) scaling = method.get('scaling', 'spectrum') # The length of the spectrum depends on how many sides are taken, which # depends on whether or not this is a complex object: if np.iscomplexobj(time_series): fxy_len = NFFT else: fxy_len = NFFT // 2 + 1 # If there is only 1 channel in the time-series: if len(time_series.shape) == 1 or time_series.shape[0] == 1: temp, f = spectral._welch( # mlab.csd( time_series, time_series, fs=Fs, window=window, noverlap=noverlap, nfft=NFFT, detrend=detrend) # scale_by_freq=True) fxy = temp.squeeze() # the output of mlab.csd has a weird shape else: fxy = np.zeros((time_series.shape[0], time_series.shape[0], fxy_len), dtype=complex) # Make sure it's complex for i in range(time_series.shape[0]): for j in range(i, time_series.shape[0]): #Notice funny indexing, in order to conform to the #convconventions of the other methods: temp, f = spectral._welch(time_series[j], time_series[i], fs=Fs, window=window, noverlap=noverlap, nfft=NFFT, detrend=detrend) # scale_by_freq=True) fxy[i][j] = temp.squeeze() # the output of mlab.csd has a # weird shape if this_method == 'multi_taper_csd': mdict = method.copy() func = eval(mdict.pop('this_method')) freqs, fxy = func(time_series, **mdict) f = utils._circle_to_hz(freqs, mdict.get('Fs', 2 * np.pi)) else: raise ValueError("Unknown method provided") return f, fxy.squeeze() def get_spectra_bi(x, y, method=None): r""" Computes the spectra of two timeseries and the cross-spectrum between them Parameters ---------- x,y : float arrays Time-series data method : dict, optional See :func:`get_spectra` documentation for details Returns ------- f : float array The central frequencies for the frequency bands for which the spectra are estimated fxx : float array The psd of the first signal fyy : float array The psd of the second signal fxy : float array The cross-spectral density of the two signals """ f, fij = get_spectra(np.vstack((x, y)), method=method) fxx = fij[ 0, 0 ].real fyy = fij[ 1, 1 ].real fxy = fij[ 0, 1 ] return f, fxx, fyy, fxy # The following spectrum estimates are normalized to the convention # adopted by MATLAB (or at least spectrum.psd) # By definition, Sxx(f) = DTFT{Rxx(n)}, where Rxx(n) is the autocovariance # function of x(n). Therefore the integral from # [-Fs/2, Fs/2] of Sxx(f)*df is Rxx(0). # And from the definition of Rxx(n), # Rxx(0) = Expected-Value{x(n)x*(n)} = Expected-Value{ |x|^2 }, # which is estimated as (x*x.conj()).mean() # In other words, sum(Sxx) * Fs / NFFT ~ var(x) def dpss_windows(N, NW, Kmax, interp_from=None, interp_kind='linear'): """ Returns the Discrete Prolate Spheroidal Sequences of orders [0,Kmax-1] for a given frequency-spacing multiple NW and sequence length N. Parameters ---------- N : int sequence length NW : float, unitless standardized half bandwidth corresponding to 2NW = BW/f0 = BW*N*dt but with dt taken as 1 Kmax : int number of DPSS windows to return is Kmax (orders 0 through Kmax-1) interp_from : int (optional) The dpss can be calculated using interpolation from a set of dpss with the same NW and Kmax, but shorter N. This is the length of this shorter set of dpss windows. interp_kind : str (optional) This input variable is passed to scipy.interpolate.interp1d and specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic') or as an integer specifying the order of the spline interpolator to use. Returns ------- v, e : tuple, v is an array of DPSS windows shaped (Kmax, N) e are the eigenvalues Notes ----- Tridiagonal form of DPSS calculation from: <NAME>. Prolate spheroidal wave functions, Fourier analysis, and uncertainty V: The discrete case. Bell System Technical Journal, Volume 57 (1978), 1371430 """ Kmax = int(Kmax) W = float(NW) / N nidx = np.arange(N, dtype='d') # In this case, we create the dpss windows of the smaller size # (interp_from) and then interpolate to the larger size (N) if interp_from is not None: if interp_from > N: e_s = 'In dpss_windows, interp_from is: %s ' % interp_from e_s += 'and N is: %s. ' % N e_s += 'Please enter interp_from smaller than N.' raise ValueError(e_s) dpss = [ ] d, e = dpss_windows(interp_from, NW, Kmax) for this_d in d: x = np.arange(this_d.shape[ -1 ]) I = interpolate.interp1d(x, this_d, kind=interp_kind) d_temp = I(np.arange(0, this_d.shape[ -1 ] - 1, float(this_d.shape[ -1 ] - 1) / N)) # Rescale: d_temp = d_temp / np.sqrt(
np.sum(d_temp ** 2)
numpy.sum
from math import sqrt, log from numpy import asarray, dot, outer, identity, matmul, array, transpose from numpy.random import uniform from numpy.linalg import inv from data import x, d, N, K, theta, gamma, delta, R, L, A_inv # function that returns a reward = scalar product + noise def pull(i): return dot(x[i], theta) + uniform(-R, R) # print the "real" rewards associated to each arm #for i in range(K): # print (i, dot(x[i], theta)) # Initialization: Pull an arm and initialize variables i = 0 r = pull(i) s = r b = r *
asarray(x[i])
numpy.asarray
""" Copyright (C) 2020 ETH Zurich. All rights reserved. Author: <NAME>, ETH Zurich Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np SPEED_OF_SOUND = 1540 # meters per second class Transducer: def __init__(self, num_of_x_elements=1, num_of_y_elements=1, x_pitch=0, y_pitch=0, x_width=0, y_width=0, f_central_hz=0, bandwidth_hz=0, active_elements=None): self._num_of_x_elements = num_of_x_elements self._num_of_y_elements = num_of_y_elements self._num_of_elements = num_of_y_elements * num_of_x_elements self._x_pitch = x_pitch self._y_pitch = y_pitch self._x_width = x_width self._y_width = y_width self._f_central_hz = f_central_hz self._bandwidth_hz = bandwidth_hz self._speed_of_sound = SPEED_OF_SOUND # Calculate X, Y coordinates of transducer elements self._calc_elements_coords() # Check if active elements were specified # By default all the elements are active if active_elements is not None: self.set_active_elements(active_elements) else: self._active_elements = None return # Returns x,y coords for the elements of transducer def _calc_elements_coords(self): # Calc x coords x_coords = np.arange(0, self._num_of_x_elements)*(self._x_pitch) x_coords = x_coords.reshape(-1,) # Put zero to the center of array x_coords = x_coords - (x_coords[-1] - x_coords[0])/2 # Cals y coords y_coords = np.arange(0, self._num_of_y_elements)*(self._y_pitch) y_coords = y_coords.reshape(-1,) # Put zero to the center of array y_coords = y_coords - (y_coords[-1] - y_coords[0])/2 self._elements_coords = np.transpose(np.dstack(np.meshgrid(x_coords, y_coords)).reshape(-1, 2)) return # Set the active elements of the transducer by list of indices # Attention: elements numeration starts from 0 def set_active_elements(self, active_elements): self._active_elements =
np.array(active_elements, dtype=np.int)
numpy.array
# # Let's use this python script to: # - perform transit "Quick fit" # - Search for dips in a lightcurve which match that detected # - Search for secondaries # - Perform quick/dirty EB modelling # import numpy as np import pandas as pd import pickle import os import glob from copy import deepcopy from datetime import datetime from scipy import optimize import exoplanet as xo import scipy.interpolate as interp import scipy.optimize as optim import matplotlib.pyplot as plt import matplotlib from astropy.coordinates import SkyCoord from astropy import units as u import seaborn as sns import logging logging.getLogger('matplotlib.font_manager').disabled = True MonoData_tablepath = os.path.join('/'.join(os.path.dirname( __file__ ).split('/')[:-1]),'data','tables') if os.environ.get('MONOTOOLSPATH') is None: MonoData_savepath = os.path.join('/'.join(os.path.dirname( __file__ ).split('/')[:-1]),'data') else: MonoData_savepath = os.environ.get('MONOTOOLSPATH') if not os.path.isdir(MonoData_savepath): os.mkdir(MonoData_savepath) os.environ["CXXFLAGS"]="-fbracket-depth=512" if not "CXXFLAGS" in os.environ else "-fbracket-depth=512,"+os.environ["CXXFLAGS"] os.environ["CFLAGS"] = "-fbracket-depth=512" if not "CFLAGS" in os.environ else "-fbracket-depth=512,"+os.environ["CFLAGS"] #creating new hidden directory for theano compilations: theano_dir=MonoData_savepath+'/.theano_dir_'+str(np.random.randint(8)) theano_pars={'device':'cpu','floatX':'float64', 'base_compiledir':theano_dir,"gcc.cxxflags":"-fbracket-depth=1024"} '''if MonoData_savepath=="/Users/hosborn/python/MonoToolsData" or MonoData_savepath=="/Volumes/LUVOIR/MonoToolsData": theano_pars['cxx']='/usr/local/Cellar/gcc/9.3.0_1/bin/g++-9' if MonoData_savepath=="/Users/hosborn/python/MonoToolsData" or MonoData_savepath=="/Volumes/LUVOIR/MonoToolsData": theano_pars['cxx']='cxx=/Library/Developer/CommandLineTools/usr/bin/g++' ''' if os.environ.get('THEANO_FLAGS') is None: os.environ["THEANO_FLAGS"]='' for key in theano_pars: if key not in os.environ["THEANO_FLAGS"]: os.environ["THEANO_FLAGS"] = os.environ["THEANO_FLAGS"]+','+key+"="+theano_pars[key] import theano.tensor as tt import pymc3 as pm import theano theano.config.print_test_value = True theano.config.exception_verbosity='high' from . import tools from . import fit def transit(pars,x): log_per,b,t0,log_r_pl,u1,u2=pars # Compute a limb-darkened light curve using starry light_curve = ( xo.LimbDarkLightCurve([np.clip(u1,0,1),np.clip(u2,0,1)]).get_light_curve(orbit=xo.orbits.KeplerianOrbit(period=np.power(10,log_per), b=b, t0=t0), r=np.power(10,log_r_pl), t=x).eval() ) return light_curve.ravel() def least_sq(pars,x,y,yerr): model=transit(pars,x) chisq=-1*np.sum((y-model)**2*yerr**-2) return chisq def QuickMonoFit(lc,it0,dur,Rs=None,Ms=None,Teff=None,useL2=False,fit_poly=True,force_tdur=False, polyorder=2, ndurs=4.2, how='mono', init_period=None,fluxindex='flux_flat',mask=None, **kwargs): # Performs simple planet fit to monotransit dip given the detection data. #Initial depth estimate: dur=0.3 if dur/dur!=1.0 else dur #Fixing duration if it's broken/nan. winsize=np.clip(dur*ndurs,0.75,3.5) if mask is None and ((fluxindex=='flux_flat')|(fluxindex=='flux')): mask=lc['mask'] elif mask is None: mask=np.isfinite(lc[fluxindex]) timeindex='bin_time' if 'bin_' in fluxindex else 'time' fluxerrindex='bin_flux_err' if 'bin_' in fluxindex else 'flux_err' if how=='periodic': assert init_period is not None xinit=(lc[timeindex]-it0-init_period*0.5)%init_period-init_period*0.5 nearby=(abs(xinit)<winsize) else: xinit=lc[timeindex]-it0 nearby=abs(xinit)<winsize assert np.sum(nearby)>0 cad = np.nanmedian(np.diff(lc[timeindex])) if 'bin_' in fluxindex else float(int(max(set(list(lc['cadence'][nearby])), key=list(lc['cadence'][nearby]).count)[1:]))/1440 if fluxindex=='flux_flat' and 'flux_flat' not in lc: #Reflattening and masking transit: lc=tools.lcFlatten(lc, winsize=9*dur, stepsize=0.1*dur, transit_mask=abs(xinit)>dur*0.5) if how=='periodic': assert np.sum(nearby&mask)>0 #print(lc[timeindex][nearby]) x = xinit[nearby&mask]+it0 #re-aligning this fake "mono" with the t0 provided y = lc[fluxindex][nearby&mask][np.argsort(x)] y-=np.nanmedian(y) yerr=lc[fluxerrindex][nearby&mask][np.argsort(x)] x=np.sort(x).astype(np.float64) oot_flux=np.nanmedian(y[(abs(x-it0)>0.65*dur)]) int_flux=np.nanmedian(y[(abs(x-it0)<0.35*dur)]) #print(it0,dur,oot_flux,int_flux,abs(oot_flux-int_flux)/lc['flux_unit'],x,y,yerr) fit_poly=False init_poly=None else: #Mono case: x=lc[timeindex][nearby&mask].astype(np.float64) yerr=lc[fluxerrindex][nearby&mask] if not fit_poly or np.sum(abs(x-it0)<0.6)==0.0: y=lc[fluxindex][nearby&mask] y-=np.nanmedian(y) oot_flux=np.nanmedian(y[(abs(x-it0)>0.65*dur)]) int_flux=np.nanmedian(y[(abs(x-it0)<0.35*dur)]) fit_poly=False init_poly=None else: y=lc[fluxindex][nearby&mask] y-=np.nanmedian(y) #print(np.sum(abs(x-it0)<0.6),it0,np.min(x),np.max(x)) init_poly=np.polyfit(x[abs(x-it0)>0.7*dur]-it0,y[abs(x-it0)>0.7*dur],polyorder) oot_flux=np.nanmedian((y-np.polyval(init_poly,x-it0))[abs(x-it0)>0.65*dur]) int_flux=np.nanmedian((y-np.polyval(init_poly,x-it0))[abs(x-it0)<0.35*dur]) dep=abs(oot_flux-int_flux)*lc['flux_unit'] #print(dep,dur,it0,x,y,init_poly) with pm.Model() as model: # Parameters for the stellar properties if fit_poly: trend = pm.Normal("trend", mu=0, sd=10.0 ** -np.arange(polyorder+1)[::-1], shape=polyorder+1,testval=init_poly) flux_trend = pm.Deterministic("flux_trend", tt.dot(np.vander(x - it0, polyorder+1), trend)) #trend = pm.Uniform("trend", upper=np.tile(1,polyorder+1), shape=polyorder+1, # lower=np.tile(-1,polyorder+1), testval=init_poly) #trend = pm.Normal("trend", mu=np.zeros(polyorder+1), sd=5*(10.0 ** -np.arange(polyorder+1)[::-1]), # shape=polyorder+1, testval=np.zeros(polyorder+1)) #trend = pm.Uniform("trend", upper=np.tile(10,polyorder+1),lower=np.tile(-10,polyorder+1), # shape=polyorder+1, testval=np.zeros(polyorder+1)) else: mean = pm.Normal("mean", mu=0.0, sd=3*np.nanstd(y)) flux_trend = mean r_star = Rs if Rs is not None and not np.isnan(Rs) else 1.0 m_star = Ms if Ms is not None and not np.isnan(Ms) else 1.0 Ts = Teff if Teff is not None and not np.isnan(Teff) else 5500.0 u_star = tools.getLDs(Ts)[0] #xo.distributions.QuadLimbDark("u_star") if how=='periodic' and init_period is not None: log_per = pm.Normal("log_per", mu=np.log(init_period),sd=0.4) else: rhostar=m_star/r_star**3 init_per = abs(18226*rhostar*((2*np.sqrt((1+dep**0.5)**2-0.41**2))/dur)**-3) # Orbital parameters for the planets log_per = pm.Uniform("log_per", lower=np.log(dur*5),upper=np.log(3000), testval=np.clip(np.log(init_per),np.log(dur*6),np.log(3000)) ) tcen = pm.Bound(pm.Normal, lower=it0-0.7*dur, upper=it0+0.7*dur)("tcen", mu=it0,sd=0.25*dur,testval=it0) b = pm.Uniform("b",upper=1.0,lower=0.0,testval=0.2) log_ror = pm.Uniform("log_ror",lower=-6,upper=-0.5,testval=np.clip(0.5*np.log(dep),-6,-0.5)) ror = pm.Deterministic("ror", tt.exp(log_ror)) #ror, b = xo.distributions.get_joint_radius_impact(min_radius=0.0075, max_radius=0.25, # testval_r=np.sqrt(dep), testval_b=0.41) #logror = pm.Deterministic("logror",tt.log(ror)) #pm.Potential("ror_prior", -logror) #Prior towards larger logror r_pl = pm.Deterministic("r_pl", ror*r_star*109.1) period = pm.Deterministic("period", tt.exp(log_per)) # Orbit model orbit = xo.orbits.KeplerianOrbit(r_star=r_star,m_star=m_star, period=period,t0=tcen,b=b) vx, vy, vz = orbit.get_relative_velocity(tcen) vrel=pm.Deterministic("vrel",tt.sqrt(vx**2 + vy**2)/r_star) #tdur=pm.Deterministic("tdur",(2*tt.sqrt(1-b**2))/vrel) #correcting for grazing transits by multiplying b by 1-rp/rs tdur=pm.Deterministic("tdur",(2*tt.sqrt((1+ror)**2-b**2))/vrel) if force_tdur: #Adding a potential to force our transit towards the observed transit duration: pm.Potential("tdur_prior", -0.05*len(x)*abs(tt.log(tdur/dur))) # The 2nd light (not third light as companion light is not modelled) # This quantity is in delta-mag if useL2: deltamag_contam = pm.Uniform("deltamag_contam", lower=-20.0, upper=20.0) third_light = pm.Deterministic("third_light", tt.power(2.511,-1*deltamag_contam)) #Factor to multiply normalised lightcurve by else: third_light = 0.0 # Compute the model light curve using starry light_curves = ( xo.LimbDarkLightCurve(u_star).get_light_curve( orbit=orbit, r=r_pl/109.1, t=x, texp=cad))*(1+third_light)/lc['flux_unit'] transit_light_curve = pm.math.sum(light_curves, axis=-1) light_curve = pm.Deterministic("light_curve", transit_light_curve + flux_trend) pm.Normal("obs", mu=light_curve, sd=yerr, observed=y) #print(model.check_test_point()) if fit_poly: map_soln = xo.optimize(start=model.test_point,vars=[trend],verbose=False) map_soln = xo.optimize(start=map_soln,vars=[trend,log_ror,log_per,tcen],verbose=False) # Fit for the maximum a posteriori parameters else: map_soln = xo.optimize(start=model.test_point,vars=[mean],verbose=False) map_soln = xo.optimize(start=map_soln,vars=[mean,log_ror,log_per,tcen],verbose=True) ''' map_soln = xo.optimize(start=map_soln,vars=[b, log_ror, log_per, tcen],verbose=False) if useL2: map_soln = xo.optimize(start=map_soln,vars=[log_ror, b, deltamag_contam],verbose=False) map_soln = xo.optimize(start=map_soln,verbose=False) if fit_poly: map_soln = xo.optimize(start=map_soln,vars=[trend],verbose=False) map_soln = xo.optimize(start=map_soln,verbose=False) map_soln = xo.optimize(start=map_soln,verbose=False) ''' map_soln, func = xo.optimize(start=map_soln,verbose=False,return_info=True) ''' interpy=xo.LimbDarkLightCurve(map_soln['u_star']).get_light_curve( r=float(map_soln['r_pl']), orbit=xo.orbits.KeplerianOrbit( r_star=float(map_soln['r_star']), m_star=float(map_soln['m_star']), period=float(map_soln['period']), t0=float(map_soln['t0']), b=float(map_soln['b'])), t=interpt )/(1+map_soln['third_light']) ''' #print(func) interpt=np.linspace(map_soln['tcen']-winsize,map_soln['tcen']+winsize,600) if 'third_light' not in map_soln: map_soln['third_light']=np.array(0.0) transit_zoom = (xo.LimbDarkLightCurve(u_star).get_light_curve( orbit=xo.orbits.KeplerianOrbit(r_star=r_star,m_star=m_star, period=map_soln['period'],t0=map_soln['tcen'],b=map_soln['b']), r=map_soln['r_pl']/109.1, t=interpt, texp=cad )*(1+map_soln['third_light']) ).eval().ravel()/lc['flux_unit'] #Reconstructing best-fit model into a dict: best_fit={'log_lik_mono':-1*func['fun'],'model_success':str(func['success'])} for col in map_soln: if 'interval__' not in col: if map_soln[col].size==1: best_fit[col]=float(map_soln[col]) else: best_fit[col]=map_soln[col].astype(float) #print({bf:type(best_fit[bf]) for bf in best_fit}) #print(best_fit["vrel"],best_fit["b"],map_soln["tdur"],best_fit["tcen"]) if np.isnan(map_soln["tdur"]): best_fit['tdur']=dur #Adding depth: best_fit['transit_zoom']=transit_zoom best_fit['monofit_x']=x best_fit['monofit_ymodel']=map_soln['light_curve'] best_fit['monofit_y']=y best_fit['monofit_yerr']=yerr best_fit['depth']=np.max(transit_zoom)-np.min(transit_zoom) #err = std / sqrt(n_pts in transit) best_fit['depth_err']=np.nanstd(y[abs(x-best_fit['tcen'])<0.475*best_fit["tdur"]])/\ np.sqrt(np.sum(abs(x-best_fit['tcen'])<0.475*best_fit["tdur"])) best_fit['snr']=best_fit['depth']/(best_fit['depth_err']) ''' print("time stuff:", best_fit['tcen'],interpt[0],interpt[-1], "\nfit stuff:",best_fit['r_pl'],best_fit['b'], best_fit['logror'],best_fit['tdur'],(1+best_fit['third_light'])/lc['flux_unit'], "\ndepth stuff:",best_fit['depth'],best_fit['depth_err'],lc['flux_unit'],np.min(transit_zoom),np.min(map_soln['light_curve']))''' #Calculating std in typical bin with width of the transit duration, to compute SNR_red if how=='mono' or init_period is None: oot_mask=mask*(abs(lc[timeindex]-best_fit['tcen'])>0.5)*(abs(lc[timeindex]-best_fit['tcen'])<25) binlc=tools.bin_lc_segment(np.column_stack((lc[timeindex][oot_mask],lc[fluxindex.replace('_flat','')][oot_mask], lc[fluxerrindex][oot_mask])),best_fit['tdur']) best_fit['cdpp'] = np.nanmedian(abs(np.diff(binlc[:,1])))#np.nanstd(binlc[:,1]) best_fit['Ntrans']=1 else: phase=(abs(lc['time']-best_fit['tcen']+0.5*best_fit['tdur'])%init_period) if len(mask)==len(phase): oot_mask=mask*(phase>best_fit['tdur']) else: oot_mask=lc['mask']*(phase>best_fit['tdur']) binlc=tools.bin_lc_segment(np.column_stack((lc['time'][oot_mask],lc['flux'][oot_mask], lc['flux_err'][oot_mask])),best_fit['tdur']) #Counting in-transit cadences: durobs=0 for cad in np.unique(lc['cadence']): if len(mask)==len(phase): durobs+=np.sum(phase[mask&(lc['cadence']==cad)]<best_fit['tdur'])*float(int(cad[1:]))/1440 else: durobs+=np.sum(phase[lc['mask']&(lc['cadence']==cad)]<best_fit['tdur'])*float(int(cad[1:]))/1440 best_fit['Ntrans']=durobs/best_fit['tdur'] best_fit['cdpp'] = np.nanmedian(abs(np.diff(binlc[:,1])))#np.nanstd(binlc[:,1]) best_fit['snr_r']=best_fit['depth']/(best_fit['cdpp']/np.sqrt(best_fit['Ntrans'])) best_fit['interpmodel']=interp.interp1d(np.hstack((-10000,interpt-best_fit['tcen'],10000)), np.hstack((0.0,transit_zoom,0.0))) if how=='periodic': for col in ['period','vrel']: par = best_fit.pop(col) #removing things which may spoil the periodic detection info (e.g. derived period) best_fit[col+'_mono']=par assert 'period' not in best_fit best_fit['period']=init_period return best_fit def MonoTransitSearch(lc,ID,mission, Rs=None,Ms=None,Teff=None, mono_SNR_thresh=6.5,mono_BIC_thresh=-6,n_durs=5,poly_order=3, n_oversamp=20,binsize=15/1440.0,custom_mask=None, transit_zoom=3.5,use_flat=False,use_binned=True,use_poly=True, plot=False, plot_loc=None ,n_max_monos=8, use_stellar_dens=True, **kwargs): #Searches LC for monotransits - in this case without minimizing for duration, but only for Tdur ''' lc ID mono_SNR_thresh=6.5 - threshold in sigma mono_BIC_thresh=-10 - threshold in BIC to be used for a significant monotransit n_durs=5 poly_order=3 - polynomial order to use for a "no transit" fit n_oversamp=10 - oversampling factor wrt to durations from which to match to lightcurve binsize=1/96. - size of bins in days transit_zoom=3.5 - size (in transit durations) to cut around transit when minimizing transit model use_flat=True - flattens lightcurve before monotransit search use_binned=True use_poly=True - fits transits (and sin) with a polynomial (order = poly_order-1) to account for variability Rs=None Ms=None Teff=None plot=False plot_loc=None use_stellar_dens=True - use stellar density to produce transit templates to search. ''' #Computing a fine x-range to search: search_xrange=[] Rs=1.0 if (Rs is None or not use_stellar_dens or np.isnan(Rs)) else float(Rs) Ms=1.0 if (Ms is None or not use_stellar_dens or np.isnan(Ms)) else float(Ms) Teff=5800.0 if Teff is None else float(Teff) mincad=np.min([float(cad[1:])/1440 for cad in np.unique(lc['cadence'])]) interpmodels, tdurs = get_interpmodels(Rs,Ms,Teff,lc['time'],lc['flux_unit'], n_durs=n_durs,texp=mincad, mission=mission) #print("Checking input model matches. flux:",np.nanmedian(uselc[:,0]),"std",np.nanstd(uselc[:,1]),"transit model:", # interpmodels[0](10.0),"depth:",interpmodels[0](0.0)) search_xranges=[] mask = lc['mask'] if custom_mask is None else custom_mask #Removing gaps bigger than 2d (with no data) for n in range(n_durs): search_xranges_n=[] if np.max(np.diff(lc['time'][mask]))<tdurs[n]: lc_regions=[lc['time'][mask]] else: lc_regions = np.array_split(lc['time'][mask],1+np.where(np.diff(lc['time'][mask])>tdurs[n])[0]) for arr in lc_regions: search_xranges_n+=[np.arange(arr[0]+0.33*tdurs[n],arr[-1]-0.33*tdurs[n],tdurs[n]/n_oversamp)] search_xranges+=[np.hstack(search_xranges_n)] print(str(ID)+" - Searching "+str(np.sum([len(xr) for xr in search_xranges]))+" positions with "+str(n_durs)+" durations:",','.join(list(np.round(tdurs,3).astype(str)))) #Looping through search and computing chi-sq at each position: outparams=pd.DataFrame() def trans_model_neglnlik(params,x,y,sigma2,init_log_dep,interpmodel): #Returns chi-squared for transit model, plus linear background flux trend # pars = depth, duration, poly1, poly2 model=np.exp(params[0]-init_log_dep)*interpmodel(x) return 0.5 * np.sum((y - model)**2 / sigma2 + np.log(sigma2)) def sin_model_neglnlik(params,x,y,sigma2,tcen,dur): #Returns chi-squared for transit model, plus linear background flux trend # pars = depth, duration, poly1, poly2 newt=x/(2.6*dur)*2*np.pi amp=np.exp(-1*np.power(newt, 2.) / (2 * np.power(np.pi, 2.))) model=params[0]*(amp*np.sin(newt-np.pi*0.5)-0.1) return 0.5 * np.sum((y - model)**2 / sigma2 + np.log(sigma2)) def trans_model_poly_neglnlik(params,x,y,sigma2,init_log_dep,interpmodel): #Returns chi-squared for transit model, plus linear background flux trend # pars = depth, gradient model=x*params[1]+np.exp(params[0]-init_log_dep)*interpmodel(x) return 0.5 * np.sum((y - model)**2 / sigma2 + np.log(sigma2)) def sin_model_poly_neglnlik(params,x,y,sigma2,tcen,dur): #Returns chi-squared for transit model, plus linear background flux trend # pars = log_depth, poly1, poly2 newt=x/(2*dur)*2*np.pi amp=np.exp(-1*np.power(newt, 2.) / (2 * np.power(np.pi, 2.))) model=x*params[1]+np.exp(params[0])*(amp*np.sin(newt-np.pi*0.5)-0.1) return 0.5 * np.sum((y - model)**2 / sigma2 + np.log(sigma2)) #from progress.bar import IncrementalBar #bar = IncrementalBar('Searching for monotransit', max = np.sum([len(xr) for xr in search_xranges])) #For each duration we scan across the lightcurve and compare a transit model to others: for n,search_xrange in enumerate(search_xranges): tdur=tdurs[n%n_durs] #flattening and binning as a function of the duration we are searching in order to avoid if use_binned: #Having may points in a lightcurve makes flattening difficult (and fitting needlessly slow) # So let's bin to a fraction of the tdur - say 9 in-transit points. lc=tools.lcBin(lc,binsize=tdur/9, use_flat=False, extramask=custom_mask) if use_flat and not use_poly: lc=tools.lcFlatten(lc,winsize=tdur*13,stepsize=tdur*0.333,use_bin=True) uselc=np.column_stack((lc['bin_time'],lc['bin_flux_flat'],lc['bin_flux_err'])) else: uselc=np.column_stack((lc['bin_time'],lc['bin_flux'],lc['bin_flux_err'])) else: if use_flat and not use_poly: lc=tools.lcFlatten(lc,winsize=tdur*13,stepsize=tdur*0.333) uselc=np.column_stack((lc['time'][mask],lc['flux_flat'][mask],lc['flux_err'][mask])) else: uselc=np.column_stack((lc['time'][mask],lc['flux'][mask],lc['flux_err'][mask])) #Making depth vary from 0.1 to 1.0 init_dep_shifts=np.exp(np.random.normal(0.0,n_oversamp*0.01,len(search_xrange))) randns=np.random.randint(2,size=(len(search_xrange),2)) cad=np.nanmedian(np.diff(uselc[:,0])) p_transit = np.clip(3/(len(uselc[:,0])*cad),0.0,0.05) #What is the probability of transit given duration (used in the prior calculation) - duration methods=['SLSQP','Nelder-Mead','Powell'] logmodeldep=np.log(abs(interpmodels[n](0.0))) for n_mod,x2s in enumerate(search_xrange): #bar.next() #minimise single params - depth round_tr=abs(uselc[:,0]-x2s)<(transit_zoom*tdur) #Centering x array on epoch to search x=uselc[round_tr,0]-x2s in_tr=abs(x)<(0.45*tdur) if len(x[in_tr])>0 and not np.isnan(x[in_tr]).all() and len(x[~in_tr])>0 and not np.isnan(x[~in_tr]).all(): y=uselc[round_tr,1] oot_median=np.nanmedian(y[~in_tr]) y-=oot_median yerr=uselc[round_tr,2] sigma2=yerr**2 init_log_dep=np.log(np.clip(-1*(np.nanmedian(y[in_tr]))*init_dep_shifts[n_mod],0.00000001,1000)) init_noise=np.std(y) poly_fit=np.polyfit(x,y,poly_order) poly_neg_llik=0.5 * np.sum((y - np.polyval(poly_fit,x))**2 / sigma2 + np.log(sigma2)) if use_poly: init_grad=np.polyfit(x[~in_tr],y[~in_tr],1)[0] res_trans=optim.minimize(trans_model_poly_neglnlik,np.hstack((init_log_dep,init_grad)), args=(x,y,sigma2, logmodeldep,interpmodels[n%n_durs]), method = methods[randns[n_mod,0]]) res_sin=optim.minimize(sin_model_poly_neglnlik, np.hstack((init_log_dep,init_grad)), args=(x,y,sigma2,x2s,tdur), method = methods[randns[n_mod,1]]) else: res_trans=optim.minimize(trans_model_neglnlik,(init_log_dep), args=(x,y,sigma2, logmodeldep,interpmodels[n%n_durs]), method = methods[randns[n_mod,0]]) res_sin=optim.minimize(sin_model_neglnlik, (init_log_dep), args=(x,y,sigma2,x2s,tdur), method = methods[randns[n_mod,1]]) log_len=np.log(np.sum(round_tr)) #BIC = log(n_points)*n_params - 2*(log_likelihood + log_prior) #BIC = log(n_points)*n_params + 2*(neg_log_likelihood-log_prior). # Setting log prior of transit as sum of: # - 0.5*tdur/len(x) - the rough probability that, given some point in time, it's in the centre of a transit # - normal prior on log(duration) to be within 50% (0.5 in logspace) # 'BIC_trans':log_len*len(res_trans.x)+2*(res_trans.fun-np.log(p_transit)), # 'BIC_sin':log_len*len(res_sin.x)+2*(res_sin.fun-np.log(1-p_transit)), # 'BIC_poly':log_len*len(poly_fit)+2*(poly_neg_llik-np.log(1-p_transit)), n_params=np.array([len(res_trans.x),len(res_sin.x),len(poly_fit)]) outdic={'tcen':x2s, 'llk_trans':-1*res_trans.fun, 'llk_sin':-1*res_sin.fun, 'llk_poly':-1*poly_neg_llik, 'BIC_trans':log_len*n_params[0]+2*(res_trans.fun-np.log(p_transit)), 'BIC_sin':log_len*n_params[1]+2*(res_sin.fun-np.log(5*p_transit)), 'BIC_poly':log_len*n_params[2]+2*(poly_neg_llik-np.log(1-(6*p_transit))), 'init_dep':np.exp(init_log_dep), 'init_dur':tdur, 'trans_dep':np.exp(res_trans.x[0]), 'sin_dep':np.exp(res_sin.x[0]), 'n_mod':n, 'tran_success':int(res_trans.success),'sin_success':int(res_sin.success), 'all_success':int(res_trans.success&res_sin.success)} outdic['trans_snr']=outdic['trans_dep']/(init_noise/np.sqrt(outdic['init_dur']/cad)) outdic.update({'poly_'+str(n):poly_fit[n] for n in range(poly_order+1)}) if use_poly: outdic['trans_grad']=res_trans.x[1] #outdic.update({'trans_poly_'+str(n):res_trans.x[1+n] for n in range(poly_order)}) outdic['sin_grad']=res_sin.x[1] #outdic.update({'sin_poly_'+str(n):res_sin.x[1+n] for n in range(poly_order)}) outparams=outparams.append(pd.Series(outdic,name=len(outparams))) #print(n,len(outparams)) #bar.finish() outparams=outparams.sort_values('tcen') #Transit model has to be better than the sin model AND the DeltaBIC w.r.t to the polynomial must be <-10. # transit depth must be <0.0, # the sum of DeltaBICs has to be < threshold (e.g. -10) outparams['sin_llk_ratio']=outparams['llk_trans'].values-outparams['llk_sin'].values outparams['poly_llk_ratio']=outparams['llk_trans'].values-outparams['llk_poly'].values outparams['sin_DeltaBIC']=outparams['BIC_trans'].values-outparams['BIC_sin'].values outparams['poly_DeltaBIC']=outparams['BIC_trans'].values-outparams['BIC_poly'].values outparams['sum_DeltaBICs']=outparams['sin_DeltaBIC']+outparams['poly_DeltaBIC'] outparams['mean_DeltaBICs']=0.5*outparams['sum_DeltaBICs'] #if use_poly: #In the case of co-fitting for polynomials, BICs fail, but log likelihoods still work. #We will use 1.5 (4.5x) over sin and 3 (20x) over polynomial as our threshold: # signfct=np.where((outparams['sin_llk_ratio']>1.5)&(outparams['poly_llk_ratio']>3)&(outparams['trans_dep']>0.0))[0] #else: # signfct=np.where((outparams['sin_llk_ratio']>1.0)&(outparams['poly_DeltaBIC']<mono_BIC_thresh)&(outparams['trans_dep']>0.0))[0] signfct=(outparams['sin_llk_ratio']>1.5)&(outparams['poly_llk_ratio']>1.5)&(outparams['poly_DeltaBIC']<mono_BIC_thresh)&(outparams['trans_snr']>(mono_SNR_thresh-0.5)) n_sigs=np.sum(signfct) if n_sigs>0: best_ix=[] nix=0 detns={} while n_sigs>0 and nix<=n_max_monos: #Getting the best detection: signfct_df=outparams.loc[signfct] #Placing the best detection info into our dict: detn_row=signfct_df.iloc[np.argmin(signfct_df['poly_DeltaBIC'])] detns[str(nix).zfill(2)]={} detns[str(nix).zfill(2)]['llk_trans'] = detn_row['llk_trans'] detns[str(nix).zfill(2)]['llk_sin'] = detn_row['llk_sin'] detns[str(nix).zfill(2)]['llk_poly'] = detn_row['llk_poly'] detns[str(nix).zfill(2)]['BIC_trans'] = detn_row['BIC_trans'] detns[str(nix).zfill(2)]['BIC_sin'] = detn_row['BIC_sin'] detns[str(nix).zfill(2)]['BIC_poly'] = detn_row['BIC_poly'] detns[str(nix).zfill(2)]['sin_DeltaBIC']= detn_row['sin_DeltaBIC'] detns[str(nix).zfill(2)]['poly_DeltaBIC']=detn_row['poly_DeltaBIC'] detns[str(nix).zfill(2)]['tcen'] = detn_row['tcen'] detns[str(nix).zfill(2)]['period'] = np.nan detns[str(nix).zfill(2)]['period_err'] = np.nan detns[str(nix).zfill(2)]['DeltaBIC'] = detn_row['poly_DeltaBIC'] detns[str(nix).zfill(2)]['tdur'] = detn_row['init_dur'] detns[str(nix).zfill(2)]['depth'] = detn_row['trans_dep'] detns[str(nix).zfill(2)]['orbit_flag'] = 'mono' detns[str(nix).zfill(2)]['snr'] = detn_row['trans_snr'] #Calculating minimum period: detns[str(nix).zfill(2)]['P_min'] = calc_min_P(uselc[:,0],detn_row['tcen'],detn_row['init_dur']) #Removing the regions around this detection from our array #print(np.sum(abs(outparams['tcen']-detn_row['tcen'])<np.where(outparams['init_dur']<detn_row['init_dur'], # 0.66*detn_row['init_dur'], 0.66*outparams['init_dur']))) #print(np.sum(signfct[abs(outparams['tcen']-detn_row['tcen'])<np.where(outparams['init_dur']<detn_row['init_dur'], # 0.66*detn_row['init_dur'], 0.66*outparams['init_dur'])])) away_from_this_detn=abs(outparams['tcen']-detn_row['tcen'])>np.where(outparams['init_dur']<detn_row['init_dur'], 0.66*detn_row['init_dur'], 0.66*outparams['init_dur']) signfct=signfct&away_from_this_detn n_sigs=np.sum(signfct) #print(n_sigs,detns[str(nix).zfill(2)]['poly_DeltaBIC'],np.sum(signfct[abs(outparams['tcen']-detn_row['tcen'])<np.where(outparams['init_dur']<detn_row['init_dur'],0.66*detn_row['init_dur'], 0.66*outparams['init_dur'])])) nix+=1 #print(np.percentile(outparams['poly_DeltaBIC'],[5,16,50,84,95])) else: print("n_sigs == 0") detns={} if plot: fig_loc= PlotMonoSearch(lc,ID,outparams,detns,interpmodels,tdurs,custom_mask=custom_mask, use_flat=use_flat,use_binned=use_binned,use_poly=use_poly,plot_loc=plot_loc) return detns, outparams, fig_loc else: return detns, outparams, None def calc_min_P(time,tcen,tdur): abs_times=abs(time-tcen) abs_times=np.sort(abs_times) whr=np.where(np.diff(abs_times)>tdur*0.75)[0] if len(whr)>0: return abs_times[whr[0]] else: return np.max(abs_times) def PlotMonoSearch(lc, ID, monosearchparams, mono_dic, interpmodels, tdurs, use_flat=True,use_binned=True,use_poly=False,transit_zoom=2.5,plot_loc=None,custom_mask=None,**kwargs): if plot_loc is None: plot_loc = str(ID).zfill(11)+"_Monotransit_Search.pdf" elif plot_loc[-1]=='/': plot_loc = plot_loc+str(ID).zfill(11)+"_Monotransit_Search.pdf" if use_flat and not use_poly: lc=tools.lcFlatten(lc,winsize=np.median(tdurs)*7.5,stepsize=0.2*np.median(tdurs)) lc=tools.lcBin(lc, 30/1440, use_masked=True, use_flat=True, extramask = custom_mask) flux_key='flux_flat' else: flux_key='flux' lc=tools.lcBin(lc,30/1440,use_masked=True,use_flat=False) mask = lc['mask'] if custom_mask is None else custom_mask fig = plt.figure(figsize=(11.69,8.27)) import seaborn as sns sns.set_palette(sns.set_palette("RdBu",14)) axes=[] axes +=[fig.add_subplot(411)] axes[0].set_title(str(ID).zfill(7)+" - Monotransit Search") #rast=True if np.sum(lc['mask']>12000) else False axes[0].plot(lc['time'][mask],lc[flux_key][mask],'.k',alpha=0.28,markersize=0.75, rasterized=True) if use_flat: axes[0].plot(lc['bin_time'],lc['bin_flux_flat'],'.k',alpha=0.7,markersize=1.75, rasterized=True) else: axes[0].plot(lc['bin_time'],lc['bin_flux'],'.k',alpha=0.7,markersize=1.75, rasterized=True) axes[0].set_ylim(np.percentile(lc[flux_key][mask],(0.25,99.75))) axes[0].set_ylabel("flux") axes[0].set_xticks([]) axes[0].set_xticklabels([]) axes +=[fig.add_subplot(412)] axes[1].plot([monosearchparams['tcen'].values[0],monosearchparams['tcen'].values[-1]],[-10,-10],'--k',alpha=0.25) #plt.plot(monosearchparams_2['tcen'],monosearchparams_2['worstBIC'],'.',c='C5',alpha=0.4) for n,dur in enumerate(np.unique(monosearchparams['init_dur'])): if n==0: axes[1].plot(monosearchparams.loc[monosearchparams['init_dur']==dur,'tcen'], monosearchparams.loc[monosearchparams['init_dur']==dur,'poly_DeltaBIC'], c=sns.color_palette()[n],alpha=0.6,label='Transit - polynomial', rasterized=True) axes[1].plot(monosearchparams.loc[monosearchparams['init_dur']==dur,'tcen'], monosearchparams.loc[monosearchparams['init_dur']==dur,'sin_DeltaBIC'], c=sns.color_palette()[-1*(n+1)],alpha=0.6,label='Transit - wavelet', rasterized=True) else: axes[1].plot(monosearchparams.loc[monosearchparams['init_dur']==dur,'tcen'], monosearchparams.loc[monosearchparams['init_dur']==dur,'poly_DeltaBIC'], c=sns.color_palette()[n],alpha=0.6, rasterized=True) axes[1].plot(monosearchparams.loc[monosearchparams['init_dur']==dur,'tcen'], monosearchparams.loc[monosearchparams['init_dur']==dur,'sin_DeltaBIC'], c=sns.color_palette()[-1*(n+1)],alpha=0.6, rasterized=True) axes[1].legend(prop={'size': 5}) ix=(np.isfinite(monosearchparams['sum_DeltaBICs']))&(monosearchparams['sin_DeltaBIC']<1e8)&(monosearchparams['poly_DeltaBIC']<1e8) min_bic=np.nanmin(monosearchparams.loc[ix,'poly_DeltaBIC']) maxylim=np.nanmax([np.percentile(monosearchparams.loc[ix,'poly_DeltaBIC'],98), np.percentile(monosearchparams.loc[ix,'sin_DeltaBIC'],98)]) axes[1].set_ylim(maxylim,min_bic) axes[1].set_ylabel("Delta BIC") axes[1].set_xlabel("Time [BJD-"+str(lc['jd_base'])+"]") if len(mono_dic)>1: trans_model_mins=[] n_poly=int(np.sum([1 for n in range(10) if 'poly_'+str(n) in mono_dic[list(mono_dic.keys())[0]]])) for nm,monopl in enumerate(mono_dic): tdur=mono_dic[monopl]['tdur'] tcen=mono_dic[monopl]['tcen'] transit_zoom=2.25 axes[1].text(tcen,np.clip(np.min([mono_dic[monopl]['sin_DeltaBIC'],mono_dic[monopl]['poly_DeltaBIC']]), min_bic,1e6),monopl) axes +=[fig.add_subplot(4,len(mono_dic),nm+2*len(mono_dic)+1)] axes[-1].set_xticks([]) axes[-1].set_xticklabels([]) axes[-1].text(tcen+0.1,np.clip(np.min([mono_dic[monopl]['sin_DeltaBIC'],mono_dic[monopl]['poly_DeltaBIC']]), min_bic,1e6), monopl) for n,dur in enumerate(np.unique(monosearchparams['init_dur'])): index=(monosearchparams['init_dur']==dur)&(abs(monosearchparams['tcen']-tcen)<transit_zoom*tdur) axes[-1].plot(monosearchparams.loc[index,'tcen'], monosearchparams.loc[index,'BIC_trans']-monosearchparams.loc[index,'BIC_poly'], c=sns.color_palette()[n], alpha=0.6, rasterized=True) axes[-1].plot(monosearchparams.loc[index,'tcen'], monosearchparams.loc[index,'BIC_trans']-monosearchparams.loc[index,'BIC_sin'], c=sns.color_palette()[-1*n], alpha=0.6, rasterized=True) #plt.plot(monosearchparams['tcen'],monosearchparams['worstBIC'],',k') axes[-1].plot([tcen,tcen],[-150,130],'--k',linewidth=1.5,alpha=0.25) axes[-1].set_xlim(tcen-tdur*transit_zoom,tcen+tdur*transit_zoom) axes[-1].set_ylim(maxylim,min_bic) if nm==0: axes[-1].set_ylabel("Delta BIC") else: axes[-1].set_yticks([]) axes[-1].set_yticklabels([]) mono_dets=monosearchparams.loc[monosearchparams['tcen']==mono_dic[monopl]['tcen']].iloc[0] axes +=[fig.add_subplot(4,len(mono_dic),nm+3*len(mono_dic)+1)] nmod=np.arange(len(tdurs))[np.argmin(abs(tdurs-tdur))] round_tr=mask&(abs(lc['time']-tcen)<(transit_zoom*tdur)) x=(lc['time'][round_tr]-tcen) y=lc[flux_key][round_tr] y_offset=np.nanmedian(lc[flux_key][round_tr&(abs(lc['time']-tcen)>(0.7*tdur))]) if use_poly else 0 y-=y_offset #Plotting polynomial: axes[-1].plot(lc['time'][round_tr],np.polyval([mono_dets['poly_'+str(n)].values[0] for n in range(n_poly)],x),'--', c=sns.color_palette()[-4],linewidth=2.0,alpha=0.6, rasterized=True) #Plotting transit: modeldep=abs(interpmodels[nmod](0.0)) if use_flat and not use_poly: trans_model=(mono_dets['trans_dep']/modeldep)*interpmodels[nmod](x) else: trans_model=mono_dets['trans_grad']*x+(mono_dets['trans_dep']/modeldep)*interpmodels[nmod](x) #Plotting sin wavelet: newt=x/(2*tdur)*2*np.pi amp=np.exp(-1*np.power(newt*1.25, 2.) / (2 * np.power(np.pi, 2.))) if use_flat and not use_poly: sin_model=mono_dets['sin_dep']*(amp*np.sin(newt-np.pi*0.5)-0.1) else: sin_model=mono_dets['sin_grad']*x+mono_dets['sin_dep']*(amp*np.sin(newt-np.pi*0.5)-0.1) if nm==0: axes[-1].set_ylabel("Flux") else: axes[-1].set_yticks([]) axes[-1].set_yticklabels([]) axes[-1].plot(lc['time'][round_tr],y,'.k',markersize=1.5,alpha=0.3, rasterized=True) round_tr_bin=abs(lc['bin_time']-tcen)<(transit_zoom*tdur) axes[-1].plot(lc['bin_time'][round_tr_bin],lc['bin_flux'][round_tr_bin]-y_offset, '.k',alpha=0.7,markersize=2.5, rasterized=True) axes[-1].plot(lc['time'][round_tr],trans_model,'-', c=sns.color_palette()[0],linewidth=2.0,alpha=0.85, rasterized=True) axes[-1].plot(lc['time'][round_tr],sin_model,'-.', c=sns.color_palette()[-1],linewidth=2.0,alpha=0.6, rasterized=True) axes[-1].set_xlim(tcen-tdur*transit_zoom,tcen+tdur*transit_zoom) trans_model_mins+=[np.min(trans_model)] #print(trans_model_mins) trans_model_min=np.min(np.array(trans_model_mins)) for nm,monopl in enumerate(mono_dic): axes[2+2*nm+1].set_ylim(trans_model_min*1.2,np.percentile(lc['bin_flux'],97.5)) fig.subplots_adjust(wspace=0, hspace=0.15) #plt.tight_layout() fig.savefig(plot_loc, dpi=400) #plt.xlim(1414,1416) return plot_loc ''' #smearing this out by 0.3*tdur to avoid "micro peaks" in the array making multiple detections def gaussian(x , s): #Simple gaussian given position-adjusted x and sigma in order to convolve chisq spectrum return 1./np.sqrt( 2. * np.pi * s**2 ) * np.exp( -x**2 / ( 2. * s**2 ) ) chisqs_conv=np.convolve(chisqs, np.fromiter( (gaussian(x, n_oversamp*0.5) for x in range(-1*n_oversamp, n_oversamp, 1 ) ), np.float ), mode='same' ) #Finding all points below some threshold: rms_chisq=np.std(chisqs_conv[chisqs_conv>np.percentile(chisqs_conv,20)]) bool_in_trans=chisqs_conv<(-1*sigma_threshold*rms_chisq) print("N_trans_points",np.sum(bool_in_trans)) ix_in_trans=[] #Looping through each "region" where chisq is lower than threshold and finding minimum value: starts = search_xrange[:-1][np.diff(bool_in_trans.astype(int))>0] stops = search_xrange[1:][np.diff(bool_in_trans.astype(int))<0] for ns in range(len(starts)): ix_bool=(search_xrange>starts[ns])&(search_xrange<stops[ns]) ix_in_trans+=[search_xrange[ix_bool][np.argmin(chisqs[ix_bool])]] if len(ix_in_trans)==0: #No extra eclipse found return None elif len(ix_in_trans)==1: #Found single eclipse-like feature. return {'t0':search_xrange[ix_in_trans[0]],'chisq':chisqs[ix_in_trans[0]], 'dep':outparams[ix_in_trans[0],0],'dur':outparams[ix_in_trans[0],1]} elif len(ix_in_trans)>1: #Found multiple eclipse-like features? peak=ix_in_trans[np.argmax(chisqs[ix_in_trans])] return {'t0':search_xrange[peak],'chisq':chisqs[peak], 'dep':outparams[peak,0],'dur':outparams[peak,1]} ''' def PeriodicPlanetSearch(lc, ID, planets, use_binned=False, use_flat=True, binsize=15/1440.0, n_search_loops=5, rhostar=None, Ms=1.0, Rs=1.0, Teff=5800, multi_FAP_thresh=0.00125, multi_SNR_thresh=7.0, plot=False, plot_loc=None, mask_prev_planets=True, **kwargs): #Searches an LC (ideally masked for the monotransiting planet) for other *periodic* planets. from transitleastsquares import transitleastsquares print("Using TLS on ID="+str(ID)+" to search for multi-transiting planets") #Using bins if we have a tonne of points (eg >1 sector). If not, we can use unbinned data. use_binned=True if len(lc['flux'])>10000 else use_binned #Max period is half the total observed time NOT half the distance from t[0] to t[-1] p_max=0.66*np.sum(np.diff(lc['time'])[np.diff(lc['time'])<0.4]) #np.clip(0.75*(np.nanmax(lc[prefix+'time'])-np.nanmin(lc[prefix+'time'])),10,80) suffix='_flat' if use_flat else '' if use_flat: #Setting the window to fit over as 5*maximum duration rhostar=1.0 if rhostar==0.0 or rhostar is None else rhostar durmax = (p_max/(3125*rhostar))**(1/3) plmask_0 = np.tile(False,len(lc['time'])) if mask_prev_planets: #Masking each of those transit events we detected during the MonoTransit search for pl in planets: plmask_0+=abs(lc['time']-planets[pl]['tcen'])<0.6*planets[pl]['tdur'] lc=tools.lcFlatten(lc,winsize=11*durmax,transit_mask=~plmask_0) print("after flattening:",np.sum(lc['mask'])) if use_binned: lc=tools.lcBin(lc,binsize=binsize,use_flat=use_flat) #print("binned",lc.keys,np.sum(lc['mask'])) suffix='_flat' #else: # print(use_binned, 'bin_flux' in lc) prefix='bin_' if use_binned else '' if plot: sns.set_palette("viridis",10) fig = plt.figure(figsize=(11.69,8.27)) rast=True if np.sum(lc['mask']>12000) else False #plt.plot(lc['time'][lc['mask']],lc['flux_flat'][lc['mask']]*lc['flux_unit']+(1.0-np.nanmedian(lc['flux_flat'][lc['mask']])*lc['flux_unit']),',k') #if prefix=='bin_': # plt.plot(lc[prefix+'time'],lc[prefix+'flux'+suffix]*lc['flux_unit']+(1.0-np.nanmedian(lc[prefix+'flux'+suffix])*lc['flux_unit']),'.k') plt.subplot(312) plt.plot(lc['time'][lc['mask']], lc['flux_flat'][lc['mask']]*lc['flux_unit']+(1.0-np.nanmedian(lc['flux_flat'][lc['mask']])*lc['flux_unit']), '.k', markersize=0.5,rasterized=rast) lc=tools.lcBin(lc, binsize=1/48, use_flat=True) plt.plot(lc['bin_time'], lc['bin_flux_flat']*lc['flux_unit']+(1.0-np.nanmedian(lc['bin_flux_flat'])*lc['flux_unit']), '.k', markersize=4.0) #Looping through, masking planets, until none are found. #{'01':{'period':500,'period_err':100,'FAP':np.nan,'snr':np.nan,'tcen':tcen,'tdur':tdur,'rp_rs':np.nan}} if prefix+'mask' in lc: anommask=lc[prefix+'mask'][:] else: anommask=~np.isnan(lc[prefix+'flux'+suffix][:]) plmask=np.tile(False,len(anommask)) t_zero=np.nanmin(lc['time']) SNR_last_planet=100;init_n_pl=len(planets);n_pl=len(planets);results=[] while SNR_last_planet>multi_SNR_thresh and n_pl<(n_search_loops+init_n_pl): if len(planets)>1: planet_name=str(int(1+np.max([float(key) for key in planets]))).zfill(2) else: planet_name='00' #Making model. Making sure lc is at 1.0 and in relatie flux, not ppt/ppm: ''' if np.sum(plmask)>0: #Re-doing flattening with other transits now masked (these might be causing lc=tools.lcFlatten(lc,winsize=11*durmax,use_binned=use_binned,transit_mask=~plmask) ''' modx = lc[prefix+'time']-t_zero mody = lc[prefix+'flux'+suffix] * lc['flux_unit']+(1.0-np.nanmedian(lc[prefix+'flux'+suffix][anommask])*lc['flux_unit']) #print(n_pl,len(mody),len(anommask),np.sum(anommask),len(plmask),np.sum(plmask)) if np.sum(plmask)>0: mody[plmask] = mody[anommask][np.random.choice(np.sum(anommask),np.sum(plmask))][:] #anommask *= tools.CutAnomDiff(mody) #print(n_pl,"norm_mask:",np.sum(lc['mask']),"anoms:",np.sum(anommask),"pl mask",np.sum(plmask),"total len",len(anommask)) model = transitleastsquares(modx[anommask], mody[anommask]) results+=[model.power(period_min=1.1,period_max=p_max,duration_grid_step=1.0625,Rstar=Rs,Mstar=Ms, use_threads=1,show_progress_bar=False, n_transits_min=3)] #print(results[-1]) if 'FAP' in results[-1] and 'snr' in results[-1] and not np.isnan(results[-1]['snr']) and 'transit_times' in results[-1]: #Defining transit times as those times where the SNR in transit is consistent with expectation (>-3sigma) snr_per_trans_est=np.sqrt(np.sum(results[-1].snr_per_transit>0)) trans=np.array(results[-1]['transit_times'])[results[-1].snr_per_transit>snr_per_trans_est/2] else: trans=[] phase_nr_trans=(lc[prefix+'time'][~plmask&anommask]-results[-1]['T0']-0.5*results[-1]['period'])%results[-1]['period']-0.5*results[-1]['period'] if 'FAP' in results[-1] and 'snr' in results[-1] and np.sum(abs(phase_nr_trans)<0.5*np.clip(results[-1]['duration'],0.2,2))>3: plparams = QuickMonoFit(deepcopy(lc),results[-1]['T0'],np.clip(results[-1]['duration'],0.15,3), init_period=results[-1]['period'],how='periodic',ndurs=4.5,Teff=Teff,Rs=Rs,Ms=Ms, fluxindex=prefix+'flux'+suffix,mask=~plmask&anommask, **kwargs) SNR=np.max([plparams['snr'],results[-1].snr]) FAP=results[-1]['FAP'] else: SNR=0;FAP=0 if (FAP<multi_FAP_thresh) and SNR>multi_SNR_thresh and len(trans)>2: SNR_last_planet=SNR planets[planet_name]=plparams planets[planet_name]['tcen']+=t_zero planets[planet_name].update({'period':results[-1].period, 'period_err':results[-1].period_uncertainty, 'P_min':results[-1].period, 'snr_tls':results[-1].snr, 'FAP':results[-1].FAP, 'orbit_flag':'periodic', 'xmodel':results[-1].model_lightcurve_time+t_zero, 'ymodel':results[-1].model_lightcurve_model, 'N_trans':len(trans)}) if plot: plt.subplot(311) plt.plot([results[-1].period,results[-1].period],[0,1.4*results[-1].snr],'-', linewidth=4.5,alpha=0.4,c=sns.color_palette()[n_pl-init_n_pl],label=planet_name+'/det_'+str(n_pl)) plt.plot(results[-1].periods,results[-1].power,c=sns.color_palette()[n_pl-init_n_pl]) plt.subplot(312) plt.plot(results[-1]['model_lightcurve_time']+t_zero,results[-1]['model_lightcurve_model'],'.', alpha=0.75,c=sns.color_palette()[n_pl-init_n_pl],label=planet_name+'/det='+str(n_pl), rasterized=True) '''#Special cases for mono and duos: if len(trans)==2: planets[planet_name]['period_err']=np.nan planets[planet_name]['tcen_2']=trans[1] planets[planet_name]['orbit_flag']='duo' elif len(trans)==1: planets[planet_name]['period']=np.nan planets[planet_name]['period_err']=np.nan planets[planet_name]['orbit_flag']='mono' ''' #Removing planet from future data to be searched this_pl_masked=(((lc[prefix+'time']-planets[planet_name]['tcen']+0.7*planets[planet_name]['tdur'])%planets[planet_name]['period'])<(1.4*planets[planet_name]['tdur'])) plmask=plmask+this_pl_masked#Masking previously-detected transits #print(n_pl,results[-1].period,plparams['tdur'],np.sum(this_pl_masked),np.sum(plmask)) #print(n_pl,"pl_mask",np.sum(this_pl_masked)," total:",np.sum(plmask)) elif SNR>multi_SNR_thresh: # pseudo-fails - we have a high-SNR detection but it's a duo or a mono. #print(plparams['tcen'],plparams['tdur'],"fails with transits at ",trans,"with durations",plparams['tdur'],"transits. Reserching") this_pl_masked=np.min(abs((lc[prefix+'time'][np.newaxis,:]-t_zero)-np.array(trans)[:,np.newaxis]),axis=0)<(0.7*plparams['tdur']) #this_pl_masked=(((lc[prefix+'time']-plparams['tcen']+0.7*plparams['tdur'])%results[-1].period)<(1.4*plparams['tdur'])) #print(n_pl,results[-1].period,plparams['tdur'],np.sum(this_pl_masked)) plmask = plmask+this_pl_masked SNR_last_planet=SNR else: # Fails #print(n_pl,"detection at ",results[-1].period," with ",len(trans)," transits does not meet SNR ",SNR,"or FAP",results[-1].FAP) SNR_last_planet=0 n_pl+=1 if plot: multis=[pl for pl in planets if planets[pl]['orbit_flag']=='periodic'] if len(multis)==0: plt.subplot(311) plt.plot(results[0].periods,results[0].power) else: for n_m,mult in enumerate(multis): #print(planets[mult]['depth'], planets[mult]['interpmodel'](0.0), np.nanstd(lc[prefix+'flux'+suffix]), # np.min(lc[prefix+'flux'+suffix]),np.max(lc[prefix+'flux'+suffix])) phase=(lc['time']-planets[mult]['tcen']-0.5*planets[mult]['period'])%planets[mult]['period']-0.5*planets[mult]['period'] lc=tools.lcFlatten(lc,winsize=11*durmax,transit_mask=abs(phase)>0.6*planets[mult]['tdur']) plt.subplot(3, len(multis), len(multis)*2+1+n_m) #print("subplot ",3, len(multis), len(multis)*2+1+n_m) bin_phase=tools.bin_lc_segment(np.column_stack((np.sort(phase[abs(phase)<1.2]), lc['flux'][abs(phase)<1.2][np.argsort(phase[abs(phase)<1.2])], lc['flux_err'][abs(phase)<1.2][np.argsort(phase[abs(phase)<1.2])])),binsize=planets[mult]['tdur']*0.15) time_shift=0.4*np.nanstd(bin_phase[:,1])*(lc['time'][abs(phase)<1.2][np.argsort(phase[abs(phase)<1.2])] - \ planets[mult]['tcen'])/planets[mult]['period'] #plt.scatter(phase[abs(phase)<1.2],time_shift+lc['flux'][abs(phase)<1.2], plt.scatter(phase[abs(phase)<1.2],lc['flux'][abs(phase)<1.2], s=3,c='k',alpha=0.4) plt.scatter(bin_phase[:,0],bin_phase[:,1],s=8, c=sns.color_palette()[n_pl-init_n_pl]) plt.plot(np.sort(phase[abs(phase)<1.2]), planets[mult]['interpmodel'](phase[abs(phase)<1.2][np.argsort(phase[abs(phase)<1.2])]), c=sns.color_palette()[n_pl-init_n_pl],alpha=0.4) #plt.ylim(np.nanmin(bin_phase[:,1])-2*np.nanstd(bin_phase[:,1]), # np.nanmax(bin_phase[:,1])+2*np.nanstd(bin_phase[:,1])) plt.gca().set_title(planet_name+'/det='+str(n_pl)) if plot_loc is None: plot_loc = str(ID).zfill(11)+"_multi_search.pdf" elif plot_loc[-1]=='/': plot_loc = plot_loc+str(ID).zfill(11)+"_multi_search.pdf" plt.subplot(311) plt.legend(prop={'size': 5}) plt.subplot(312) plt.plot(results[-1]['model_lightcurve_time']+t_zero,results[-1]['model_lightcurve_model'], alpha=0.5,c=sns.color_palette()[n_pl-init_n_pl],label=planet_name+'/det_'+str(n_pl),linewidth=4) plt.legend(prop={'size': 5}) if 'jd_base' in lc: plt.xlabel("time [BJD-"+str(lc['jd_base'])+"]") else: plt.xlabel("time") plt.subplot(311) plt.suptitle(str(ID).zfill(11)+"- Multi-transit search") plt.tight_layout() plt.savefig(plot_loc, dpi=400) if plot: return planets, plot_loc else: return planets, None def GenModelLc(lc,all_pls,mission,Rstar=1.0,rhostar=1.0,Teff=5800,logg=4.43): #Generates model planet lightcurve from dictionary of all planets u = tools.getLDs(Teff,logg=logg,FeH=0.0,mission=mission).ravel() cad=np.nanmedian(np.diff(lc['time'])) light_curves=[] for pl in all_pls: if all_pls[pl]['orbit_flag']=='periodic': #generating periodic planet # The light curve calculation requires an orbit orbit = xo.orbits.KeplerianOrbit(r_star=Rstar, rho_star=rhostar, period=all_pls[pl]['period'], t0=all_pls[pl]['tcen'], b=0.4) # Compute a limb-darkened light curve using starry light_curves+=[xo.LimbDarkLightCurve(u).get_light_curve(orbit=orbit, r=np.sqrt(all_pls[pl]['depth']), t=lc['time'], texp=cad*0.98).eval()] elif all_pls[pl]['orbit_flag'] in ['mono','duo']: #generating two monos for duo per_guess=18226*rhostar*(2*np.sqrt(1-0.4**2)/all_pls[pl]['tdur'])**-3#from circular orbit and b=0.4 orbit = xo.orbits.KeplerianOrbit(r_star=Rstar, rho_star=rhostar, period=per_guess, t0=all_pls[pl]['tcen'], b=0.4) light_curve = xo.LimbDarkLightCurve(u).get_light_curve(orbit=orbit, r=np.sqrt(all_pls[pl]['depth']), t=lc['time'], texp=cad*0.98 ).eval() light_curve[abs(lc['time']-all_pls[pl]['tcen'])>per_guess*0.4]=0.0 if all_pls[pl]['orbit_flag'] == 'duo' and 'tcen_2' in all_pls[pl]: orbit2 = xo.orbits.KeplerianOrbit(r_star=Rstar, rho_star=rhostar, period=per_guess, t0=all_pls[pl]['tcen_2'], b=0.4) light_curve2 = xo.LimbDarkLightCurve(u).get_light_curve(orbit=orbit, r=np.sqrt(all_pls[pl]['depth']), t=lc['time'], texp=cad*0.98 ).eval() light_curve2[abs(lc['time']-all_pls[pl]['tcen_2'])>per_guess*0.4]=0.0 light_curve=light_curve+light_curve2 light_curves+=[light_curve] return np.column_stack(light_curves) def DoEBfit(lc,tc,dur): # Performs EB fit to primary/secondary. return None def dipmodel_step(params,x,npolys): return np.hstack((np.polyval( params[1:1+npolys[0]], x[x<params[0]]), np.polyval( params[-npolys[1]:], x[x>=params[0]]) )) def log_likelihood_step(params,x,y,yerr,npolys): model=dipmodel_step(params,x,npolys) sigma2 = yerr ** 2 return -0.5 * np.sum((y - model) ** 2 / sigma2 + np.log(sigma2)) def Step_neg_lnprob(params, x, y, yerr, priors, polyorder,npolys): #Getting log prior - we'll leave the polynomials to wander and us: lnprior=0 lnp=log_gaussian(params[0], priors[0], priors[1]) if lnp<-0.5 and lnp>-20: lnprior+=3*lnp elif lnp<-20: lnprior+=1e6*lnp #Getting log likelihood: llk=log_likelihood_step(params,x,y,yerr,npolys) return -1*(lnprior + llk) def Poly_neg_lnprob(params,x,y,yerr,priors,polyorder): return -1*Poly_lnprob(params, x, y, yerr, priors, polyorder=polyorder) def Poly_lnprob(params, x, y, yerr, priors, polyorder=2): # Trivial improper prior: uniform in the log. lnprior=0 for p in np.arange(polyorder+1): #Simple log gaussian prior here: lnp=log_gaussian(params[p], 0.0, priors[p],weight=1) if lnp<-0.5 and lnp>-20: lnprior+=3*lnp elif lnp<-20: lnprior+=1e6*lnp llk = log_likelihood_poly(params, x, y, yerr) return lnprior + llk def log_likelihood_poly(params, x, y, yerr): model=np.polyval(params,x) sigma2 = yerr ** 2 return -0.5 * np.sum((y - model) ** 2 / sigma2 + np.log(sigma2)) def Sinusoid_neg_lnprob(params, x, y, yerr, priors, polyorder): return -1*Sinusoid_lnprob(params, x, y, yerr, priors, polyorder=polyorder) def Sinusoid_lnprob(params, x, y, yerr, priors, polyorder=2): # Trivial improper prior: uniform in the log. lnprior=0 for p in np.arange(3): #Simple log gaussian prior here: lnp=log_gaussian(params[p], priors[p,0], priors[p,1],weight=1) if lnp<-0.5 and lnp>-20: lnprior+=3*lnp elif lnp<-20: lnprior+=1e6*lnp llk = log_likelihood_sinusoid(params, x, y, yerr) return lnprior + llk def log_likelihood_sinusoid(params, x, y, yerr): model=dipmodel_sinusoid(params,x) sigma2 = yerr ** 2 return -0.5 * np.sum((y - model) ** 2 / sigma2 + np.log(sigma2)) def dipmodel_sinusoid(params,x): #Sinusoidal model aligned with dip. # tcen, log(dur), log(dep), [n x polynomials] newt=(x-params[0])/(4.5*np.exp(params[1]))*2*np.pi-np.pi*0.5 return np.polyval(params[3:],x) + np.exp(params[2])*(np.sin(newt)) def Gaussian_neg_lnprob(params, x, y, yerr, priors, order=3): return -1*Gaussian_lnprob(params, x, y, yerr, priors, order=order) def Gaussian_lnprob(params, x, y, yerr, priors, order=3): # Trivial improper prior: uniform in the log. lnprior=0 for p in np.arange(3): #Simple log gaussian prior here: lnp=log_gaussian(params[p], priors[p,0], priors[p,1],weight=1) if lnp<-0.5 and lnp>-20: lnprior+=3*lnp elif lnp<-20: lnprior+=1e6*lnp llk = log_likelihood_gaussian_dip(params, x, y, yerr) return lnprior + llk def log_gaussian(x, mu, sig, weight=0.1): return -1*weight*np.power(x - mu, 2.) / (2 * np.power(sig, 2.)) def log_likelihood_gaussian_dip(params, x, y, yerr): model=dipmodel_gaussian(params,x) sigma2 = yerr ** 2 return -0.5 * np.sum((y - model) ** 2 / sigma2) def dipmodel_gaussian(params,x): dip=1.0+np.exp(params[0])*np.exp(-1*np.power(x - params[2], 2.) / (2 * np.power((0.075*np.exp(params[1])), 2.))) mod = np.polyval(params[3:],x)*dip return mod def centroid_neg_lnprob(params, t, x, y, xerr, yerr, priors, interpmodel, order=3): return -1*centroid_lnprob(params, t, x, y, xerr, yerr, priors, interpmodel, order=order) def centroid_lnprob(params, t, x, y, xerr, yerr, priors, interpmodel, order=3): # Trivial improper prior: uniform in the log. lnprior=0 for p in np.arange(2): #Simple log gaussian prior here: gauss=log_gaussian(params[p], priors[p,0], priors[p,1],weight=1) #gauss=0.0 if gauss>-0.5 else gauss lnprior+=gauss llk = log_likelihood_centroid(params, t, x, y, xerr,yerr, interpmodel, order) return lnprior + llk def log_likelihood_centroid(params, t, x, y, xerr, yerr, interpmodel, order): xmodel,ymodel=dipmodel_centroid(params,t,interpmodel,order) xsigma2 = xerr ** 2 xllk=-0.5 * np.sum((x - xmodel) ** 2 / xsigma2 + np.log(xsigma2)) ysigma2 = yerr ** 2 yllk=-0.5 * np.sum((y - ymodel) ** 2 / ysigma2 + np.log(ysigma2)) return xllk+yllk def dipmodel_centroid(params,t,interpmodel,order): #params=xdep, ydep, xpolyvals, ypolyvals xdip = params[0]*interpmodel(t) ydip = params[1]*interpmodel(t) xmod = np.polyval(params[2:2+(order+1)],t)+xdip ymod = np.polyval(params[2+(order+1):],t)+ydip return xmod,ymod def AsteroidCheck(lc,monoparams,ID,order=3,dur_region=3.5, plot=False,plot_loc=None, return_fit_lcs=False, remove_earthshine=True, **kwargs): # Checking lightcure for background flux boost during transit due to presence of bright asteroid # Performing two model fits # - one with a gaussian "dip" roughly corresponding to the transit combined with a polynomial trend for out-of-transit # - one with only a polynomial trend # These are then compared, and the BIC returned to judge model fit #Need the region around the model to be at least 1.5d, otherwise the polynomial will absorb it: dur_region=np.clip(dur_region,2/monoparams['tdur'],5/monoparams['tdur']) nearish_region=np.max([4.5,monoparams['tdur']*dur_region]) #For the background fit, we'll take a region 9d long nearishTrans=(abs(lc['time']-monoparams['tcen'])<nearish_region)&lc['mask'] cad=np.nanmedian(np.diff(lc['time'][nearishTrans])) if 'bg_flux' in lc and np.sum(np.isfinite(lc['bg_flux'][nearishTrans]))>0: # Fits two models - one with a 2D polynomial spline and the interpolated "dip" model from the fit, and one with only a spline #If there's a big gap, we'll remove the far side of that if np.max(np.diff(lc['time'][nearishTrans]))>0.4: jump_n=np.argmax(np.diff(lc['time'][nearishTrans])) jump_time=0.5*(lc['time'][nearishTrans][jump_n]+lc['time'][nearishTrans][jump_n+1]) if jump_time < monoparams['tcen']: nearishTrans=(lc['time']>jump_time)&((lc['time']-monoparams['tcen'])<nearish_region)&lc['mask'] elif jump_time > monoparams['tcen']: nearishTrans=((lc['time']-monoparams['tcen'])>(-1*nearish_region))&(lc['time']<jump_time)&lc['mask'] nearishTrans[nearishTrans]=np.isfinite(lc['bg_flux'][nearishTrans]) bg_lc=np.column_stack((lc['time'][nearishTrans], lc['bg_flux'][nearishTrans], np.tile(np.nanstd(lc['bg_flux'][nearishTrans]),np.sum(nearishTrans)) )) bg_lc[:,0]-=monoparams['tcen'] nearTrans=(abs(bg_lc[:,0])<monoparams['tdur']*dur_region) sigma2 = bg_lc[:,2]**2 outTransit=(abs(bg_lc[:,0])>monoparams['tdur']*0.75) inTransit=(abs(bg_lc[:,0])<monoparams['tdur']*0.35) bg_lc[:,1:]/=np.nanmedian(bg_lc[outTransit,1]) if remove_earthshine and lc['cadence'][np.argmin(abs(lc['time']-monoparams['tcen']))].lower()[0]=='t': #Removing Earthshine with a filter on frequencies of 1/0.5/0.33 days (for TESS lightcurves only): newt=np.arange(bg_lc[0,0],bg_lc[-1,0],cad) #Preparing the signal timeseries: init_poly=np.polyfit(bg_lc[outTransit,0],bg_lc[outTransit,1],order) #do polynomial fit to make time series flat news = (bg_lc[:,1]-np.polyval(init_poly,bg_lc[:,0]))[np.argmin(abs(bg_lc[:,0][:,np.newaxis]-newt[np.newaxis,:]),axis=0)] #Making sure the timeseries is uniform # Doing an FFT fit for the known frequencies associated with Earth rotation: n=news.size fr=np.fft.fftfreq(n,cad) # a nice helper function to get the frequencies fou=np.fft.fft(news) freqs=[1,2,3] #Frequencies to filter - all multiples of 1 #make up a narrow bandpass with a Gaussian df=0.066 gpl= np.sum([np.exp(- ((fr-f)/(2*df))**2) for f in freqs],axis=0) # pos. frequencies gmn= np.sum([np.exp(- ((fr+f)/(2*df))**2) for f in freqs],axis=0) # neg. frequencies g=gpl+gmn #ifft s2=np.fft.ifft(fou*g) #filtered spectrum = spectrum * bandpass fft_model = np.real(s2)[np.argmin(abs(newt[:,np.newaxis] - bg_lc[:,0][np.newaxis,:]),axis=0)] #fft_model += np.polyval(init_poly, bg_lc[nearTrans,0] #print(len(fft_model),len(bg_lc[:,0])) #Checking model is actually a good fit around transit by doing 1D poly + FFT model vs 2D poly: bg_fft_model = np.polyval(np.polyfit(bg_lc[nearTrans&outTransit,0], bg_lc[nearTrans&outTransit,1] - fft_model[nearTrans&outTransit],0), bg_lc[:,0]) + \ fft_model llk_bg_model = -0.5 * np.sum((bg_lc[nearTrans&outTransit,1] - bg_fft_model[nearTrans&outTransit]) ** 2 / \ sigma2[nearTrans&outTransit]) bg_model = np.polyval(np.polyfit(bg_lc[nearTrans&outTransit,0],bg_lc[nearTrans&outTransit,1],2), bg_lc[:,0]) llk_polyfit = -0.5 * np.sum((bg_lc[nearTrans&outTransit,1] - bg_model[nearTrans&outTransit]) ** 2 / \ sigma2[nearTrans&outTransit]) #print("polyfit llk:", llk_polyfit, "fft llk:", llk_bg_model) if llk_polyfit > llk_bg_model-1: print("Earthshine model not useful in this case - polynomial model is better by", llk_polyfit - llk_bg_model) fft_model=np.tile(0,len(bg_lc[:,0])) else: fft_model=np.tile(0,len(bg_lc[:,0])) outTransit*=nearTrans #print(bg_lc) log_height_guess=np.log(2*np.clip((np.nanmedian(bg_lc[inTransit,1])-np.nanmedian(bg_lc[nearTrans&outTransit,1])), 0.00001,1000) ) priors= np.column_stack(([log_height_guess,np.log(np.clip(1.4*monoparams['tdur'],6*cad,3.0)),0.0], [3.0,0.25,0.75*monoparams['tdur']])) best_nodip_res={'fun':1e30,'bic':1e9,'llk':-1e20} best_dip_res={'fun':1e30,'bic':1e9,'llk':-1e20} methods=['L-BFGS-B', 'Nelder-Mead', 'Powell'] n=0 while n<21: #Running the minimization 7 times with different initial params to make sure we get the best fit #non-dip is simple poly fit. Including 10% cut in points to add some randomness over n samples rand_choice=np.random.random(len(bg_lc))<0.9 nodip_res={'x':np.polyfit(bg_lc[nearTrans&rand_choice,0], bg_lc[nearTrans&rand_choice,1] - fft_model[nearTrans&rand_choice], order)} nodip_model = fft_model[nearTrans] + np.polyval(nodip_res['x'],bg_lc[nearTrans,0]) nodip_res['llk'] = log_likelihood_gaussian_dip(np.hstack((-30,-30,0,nodip_res['x'])), bg_lc[nearTrans,0], bg_lc[nearTrans,1], bg_lc[nearTrans,2]) #nodip_res['llk'] = -0.5 * np.sum((bg_lc[nearTrans,1] - nodip_model)**2 / sigma2[nearTrans]) nodip_res['prior']=0 #np.sum((y - model) ** 2 / sigma2 + np.log(sigma2)) #BIC = 2*(neg_log_likelihood-log_prior) + log(n_points)*n_params nodip_res['bic'] = np.log(np.sum(nearTrans))*len(nodip_res['x']) - 2 * nodip_res['llk'] #print('no dip:',nodip_res['bic']) if nodip_res['bic']<best_nodip_res['bic']: best_nodip_res=nodip_res #log10(height), log10(dur), tcen dip_args= np.hstack(([np.random.normal(log_height_guess,0.25)-(n%4)/2.0, np.log10(1.5*monoparams['tdur'])+abs(np.random.normal(0.0,0.5)), np.random.normal(0.0,0.5*monoparams['tdur'])], np.polyfit(bg_lc[outTransit&rand_choice,0], bg_lc[outTransit&rand_choice,1] - fft_model[outTransit&rand_choice], order))) dip_res=optim.minimize(Gaussian_neg_lnprob, dip_args, args=(bg_lc[nearTrans,0], bg_lc[nearTrans,1]-fft_model[nearTrans], bg_lc[nearTrans,2], priors, order),method=methods[n%3]) dip_res['llk']=log_likelihood_gaussian_dip(dip_res['x'], bg_lc[nearTrans,0], bg_lc[nearTrans,1]-fft_model[nearTrans], bg_lc[nearTrans,2]) dip_res['prior']=dip_res['fun']-dip_res['llk'] dip_res['bic']= np.log(np.sum(nearTrans))*len(dip_args) - 2 * dip_res['llk'] #print('dip:',dip_args,dip_res,dip_bic) if dip_res['bic']<best_dip_res['bic']: best_dip_res=dip_res #Increasing the polynomial order every odd number if we haven't yet found a good solution: if n>7 and n%2==1: order+=1 #Need to expand on priors to include new polynomial orders in this case: #print(n,"dip:",dip_res['fun'],dip_res['bic'],dip_args,"nodip:",nodip_res['fun'],nodip_res['bic'],"order:",order) if n>=7 and (best_dip_res['llk']>-1e20) and (best_nodip_res['llk']>-1e20): break n+=1 fit_dict={'asteroid_dip_'+col:best_dip_res[col] for col in best_dip_res} fit_dict.update({'asteroid_nodip_'+col:best_nodip_res[col] for col in best_nodip_res}) # Also doing correlation coefficient between bg flux and real flux during transit: # In the case that the BG causes the lc to dip, we should find a negative correlation coefficient & low p-value: from scipy.stats import pearsonr fluxkey='rawflux' if 'rawflux' in lc else 'flux' just_oot=lc['mask'] * \ (abs(lc['time']-monoparams['tcen'])>monoparams['tdur']*0.75) * \ (abs(lc['time']-monoparams['tcen'])<monoparams['tdur']*2) inTransit=lc['mask'] * (abs(lc['time']-monoparams['tcen'])<monoparams['tdur']*0.625) #Removing a just-out-of-transit polynomial fit to both sets of in-transit data, so we should only have the dip bg_poly=np.polyval(np.polyfit(lc['time'][just_oot], lc['bg_flux'][just_oot], 1), lc['time'][inTransit]) lc_poly=np.polyval(np.polyfit(lc['time'][just_oot], lc[fluxkey][just_oot], 1), lc['time'][inTransit]) R=pearsonr(lc['bg_flux'][inTransit] - bg_poly, lc[fluxkey][inTransit]-lc_poly) fit_dict['R_bg_flux_corr']=R[0] fit_dict['P_bg_flux_corr']=R[1] if (best_dip_res['llk']>-1e20) and (best_nodip_res['llk']>-1e20): fit_dict['asteroid_DeltaBIC']=best_dip_res['bic']-best_nodip_res['bic'] # [prefer dip] < 0 < [prefer no dip] fit_dict['asteroid_log_llk_ratio']=(best_dip_res['llk'])-(best_nodip_res['llk']) fit_dict['asteroid_ampl']=np.exp(best_dip_res['x'][0]) fit_dict['asteroid_dur']=np.exp(best_dip_res['x'][1]) best_model_resids = bg_lc[nearTrans&outTransit,1] - \ (fft_model[nearTrans&outTransit] + dipmodel_gaussian(best_dip_res['x'],bg_lc[nearTrans&outTransit,0])) fit_dict['asteroid_bg_stdw']=np.nanmedian(abs(np.diff(best_model_resids))) fit_dict['asteroid_bg_stdr']=np.nanstd(best_model_resids) fit_dict['asteroid_snrw'] = fit_dict['asteroid_ampl'] / \ ( fit_dict['asteroid_bg_stdw'] / np.sqrt(fit_dict['asteroid_dur']/cad) ) fit_dict['asteroid_snrr'] = fit_dict['asteroid_ampl'] / \ ( fit_dict['asteroid_bg_stdr'] / np.sqrt(fit_dict['asteroid_dur']/cad) ) #print(ID,"| Ran Asteroid fitting "+str(n)+" times, and DeltaBIC="+str(DeltaBIC), # "| params:",best_dip_res['x'],best_nodip_res['x']) #else: # print(lc['bg_flux'][nearTrans]-fft_model[nearTrans]) if plot: if plot_loc is not None and type(plot_loc)!=str: ax = plot_loc else: fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111) if plot_loc is None: plot_loc=str(ID)+"_asteroid_check.pdf" elif plot_loc[-1]=='/': plot_loc=plot_loc+str(ID)+"_asteroid_check.pdf" #print("Plotting asteroid",ID, np.sum(bg_lc[nearTrans,1]/bg_lc[nearTrans,1]==1.0), # len(bg_lc[nearTrans,1]),plot_loc,best_nodip_res) if plot: #### PLOTTING ### ax.scatter(bg_lc[nearTrans,0],bg_lc[nearTrans,1],s=2,alpha=0.75,rasterized=True,zorder=1) ax.plot(bg_lc[nearTrans,0],np.nanmedian(bg_lc[nearTrans,1])+fft_model[nearTrans],':k', alpha=0.2,linewidth=4,label='ft model of earthshine',zorder=2) ax.plot([-0.5*monoparams['tdur'],-0.5*monoparams['tdur']],[-2.0,2.0],':k',alpha=0.4,rasterized=True) ax.plot([0.0,0.0],[-2.0,2.0],'--k',linewidth=3,alpha=0.6,rasterized=True) ax.plot([0.5*monoparams['tdur'],0.5*monoparams['tdur']],[-2.0,2.0],':k',alpha=0.4,rasterized=True) ax.set_ylabel("Relative background flux") if (best_nodip_res['llk']>-1e20): ax.plot(bg_lc[nearTrans,0],fft_model[nearTrans]+ np.polyval(best_nodip_res['x'],bg_lc[nearTrans,0]),c='C3',linewidth=2, label='pure trend',alpha=0.6,rasterized=True,zorder=2) if (best_dip_res['llk']>-1e20): ax.plot(bg_lc[nearTrans,0], fft_model[nearTrans]+dipmodel_gaussian(best_dip_res.x,bg_lc[nearTrans,0]),c='C4',linewidth=2.5, label='trend+asteroid',alpha=0.8,rasterized=True,zorder=3) try: ax.set_ylim(np.nanmin(fft_model[nearTrans]+bg_lc[nearTrans,1]), np.nanmax(fft_model[nearTrans]+bg_lc[nearTrans,1])) except: b=0 #plt.ylim(np.percentile(bg_lc[inTransit,1],[0.2,99.8])) ax.legend(prop={'size': 5}) if (best_dip_res['llk']>-1e20) and (best_nodip_res['llk']>-1e20): ax.set_title(str(ID)+" Asteroid. - "+["pass","fail"][int(fit_dict['asteroid_DeltaBIC']<-10)]) else: ax.set_title(str(ID)+" Asteroid. No fit ???") if type(plot_loc)==str: fig.savefig(plot_loc, dpi=400) if return_fit_lcs: return fit_dict, ax, np.column_stack((bg_lc[:,0],bg_lc[:,1],bg_lc[:,2],fft_model, np.polyval(best_nodip_res['x'],bg_lc[:,0]), dipmodel_gaussian(best_dip_res.x,bg_lc[:,0]))) else: return fit_dict, ax elif (best_dip_res['llk']>-1e20) and (best_nodip_res['llk']>-1e20): if return_fit_lcs: return fit_dict, None, None else: return fit_dict, None else: if return_fit_lcs: return None, None, None else: return None, None else: if return_fit_lcs: return None, None, None else: return None, None def VariabilityCheck(lc, params, ID, modeltype='all',plot=False,plot_loc=None,ndurs=2.4, polyorder=1, return_fit_lcs=False, **kwargs): # Checking lightcure for variability flux boost during transit due to presence of bright asteroid # Performs two potential models: # - 1) 'sin': Variability sinusoid+polynomial model # - 2) 'step': Discontinuity Model (two polynomials and a gap between them) # the BIC returned to judge against the transit model fit #assuming QuickMonoFit has been run, we can replicate the exact x/y/yerr used there: x = params['monofit_x']-params['tcen'] round_trans=(abs(x)<ndurs*np.clip(params['tdur'],0.1,5.0)) x = x[round_trans] y = params['monofit_y'][round_trans] #mask = lc['mask'][np.isin(lc['time'],params['monofit_x'][abs(params['monofit_x']-params['tcen'])<ndurs*params['tdur']])] #assert len(mask)==len(x) #print(params['tdur'],np.sum(abs(x)>0.6*params['tdur'])) yerr = params['monofit_yerr'][round_trans] y_trans = params['monofit_ymodel'][round_trans] sigma2 = yerr ** 2 outTransit=abs(x)>0.6*params['tdur'] yspan=np.diff(np.percentile(y,[5,95]))[0] priors={} best_mod_res={} mods=[] if modeltype=='sin' or modeltype=='both' or modeltype=='all': priors['sin']= np.column_stack(([0.0,np.log(params['tdur']),np.log(yspan)], [0.5*params['tdur'],3.0,4.0])) best_mod_res['sin']={'fun':1e30,'bic':1e9,'sin_llk':-1e9} mods+=['sin'] if modeltype=='step' or modeltype=='both' or modeltype=='all': priors['step']= [0.0,0.5*params['tdur']] best_mod_res['step']={'fun':1e30,'bic':1e9,'sin_llk':-1e9,'npolys':[]} mods+=['step'] if modeltype=='poly' or modeltype=='both' or modeltype=='all': best_mod_res['poly']={'fun':1e30,'bic':1e9,'sin_llk':-1e9,'npolys':[]} mods+=['poly'] if modeltype!='none' and len(x)>polyorder+1 and len(y)>polyorder+1: methods=['L-BFGS-B','Nelder-Mead','Powell'] n=0 while n<21: #print(np.sum(outTransit)) #Running the minimization 7 times with different initial params to make sure we get the best fit if np.sum(outTransit)>20: rand_choice=np.random.random(len(x))<0.95 else: rand_choice=np.tile(True,len(x)) #non-dip is simple poly fit. Including 10% cut in points to add some randomness over n samples #log10(height), log10(dur), tcen if modeltype=='sin' or modeltype=='both' or modeltype=='all': mod_args= np.hstack(([np.random.normal(0.0,0.5*params['tdur']), np.log(params['tdur'])+np.random.normal(0.0,0.5)], np.log(params['depth'])+np.random.normal(0.0,0.5), np.polyfit(x[outTransit&rand_choice], y[outTransit&rand_choice],polyorder) )) mod_res_sin=optim.minimize(Sinusoid_neg_lnprob, mod_args, args=(x[np.argsort(x)],y[np.argsort(x)],yerr[np.argsort(x)],priors['sin'],polyorder), method=methods[n%3]) mod_res_sin['llk']=log_likelihood_sinusoid(mod_res_sin['x'], x[np.argsort(x)], y[np.argsort(x)],yerr[np.argsort(x)]) mod_res_sin['bic']=np.log(len(x))*len(mod_res_sin['x']) - 2 * mod_res_sin['llk'] #print('dip:',dip_args,dip_res,dip_bic) if mod_res_sin['bic']<best_mod_res['sin']['bic']: best_mod_res['sin']=mod_res_sin if modeltype=='step' or modeltype=='both' or modeltype=='all': points_either_side=False #Making sure we start off with a position that has points both before and afer the step: step_guess=np.random.normal(0.0,0.5*params['tdur']) if np.sum(x<step_guess)==0: step_guess=x[4] elif np.sum(x>step_guess)==0: step_guess=x[-5] #Making one side randomly have polyorder 1, and the other 3->6 side=np.random.random()<0.5 npolys=[np.clip(polyorder+1-int(side)*20,1,6),np.clip(polyorder+1-int(side)*20,1,6)] mod_args= np.hstack((step_guess, np.polyfit(x[(x<step_guess)&rand_choice], y[(x<step_guess)&rand_choice],npolys[0]), np.polyfit(x[(x>=step_guess)&rand_choice], y[(x>=step_guess)&rand_choice],npolys[1]) )) #print(x[np.argsort(x)], y[np.argsort(x)], yerr[np.argsort(x)], # mod_args, dipmodel_step(mod_args,x[np.argsort(x)],npolys)) mod_res_step=optim.minimize(Step_neg_lnprob, mod_args, args=(x[np.argsort(x)],y[np.argsort(x)],yerr[np.argsort(x)],priors['step'], np.clip(polyorder+1,1,5),npolys), method=methods[n%3]) mod_res_step['llk']=log_likelihood_step(mod_res_step['x'],x[np.argsort(x)],y[np.argsort(x)], yerr[np.argsort(x)],npolys) mod_res_step['bic']=np.log(len(x))*len(mod_res_step['x']) - 2 * mod_res_step['llk'] #(2*mod_res_step.fun + np.log(len(x))*len(mod_res_step.x)) #print('dip:',dip_args,dip_res,dip_bic) if mod_res_step['bic']<best_mod_res['step']['bic']: best_mod_res['step']=mod_res_step best_mod_res['step']['npolys']=npolys if modeltype=='poly' or modeltype=='all': priors['poly'] = 10.0 ** -np.arange(polyorder+1)[::-1] mod_res_poly=optim.minimize(Poly_neg_lnprob, np.polyfit(x,y,polyorder), args=(x,y,yerr,priors['poly'],polyorder), method=methods[n%3]) mod_res_poly['llk']=log_likelihood_poly(mod_res_poly['x'],x,y,yerr) mod_res_poly['bic']=np.log(len(x))*len(mod_res_poly['x']) - 2 * mod_res_poly['llk'] #=(2*mod_res_poly.fun + np.log(len(x))*len(mod_res_poly.x)) #print('dip:',dip_args,dip_res,dip_bic) if mod_res_poly['bic']<best_mod_res['poly']['bic']: best_mod_res['poly']=mod_res_poly best_mod_res['poly']['npolys']=npolys #Increasing the polynomial order every odd number if we haven't yet found a good solution: if n>7 and n%2==1: polyorder+=1 #Need to expand on priors to include new polynomial orders in this case: #print(n,"dip:",dip_res['fun'],dip_res['bic'],dip_args,"nodip:",nodip_res['fun'],nodip_res['bic'],"order:",order) # if n>=7 and np.all([best_mod_res[mod]['fun']<1e9 for mod in mods]): break n+=1 best_mod_res['trans']={} best_mod_res['trans']['llk']= -0.5 * np.sum((y - y_trans)**2 / sigma2 + np.log(sigma2)) best_mod_res['trans']['bic']= np.log(len(x))*6 - 2 * best_mod_res['trans']['llk'] if 'sin' in best_mod_res and best_mod_res['sin']['bic']<1e9: best_mod_res['sin']['llk_ratio']=log_likelihood_sinusoid(best_mod_res['sin']['x'], x, y, yerr) - best_mod_res['trans']['llk'] best_mod_res['sin']['DeltaBIC']=(8-len(best_mod_res['sin']['x'])) - (best_mod_res['trans']['llk'] - best_mod_res['sin']['llk']) elif 'sin' in best_mod_res: best_mod_res['sin']['DeltaBIC']=np.nan;best_mod_res['sin']['llk_ratio']=np.nan if 'step' in best_mod_res and best_mod_res['step']['bic']<1e9: best_mod_res['step']['llk_ratio']=log_likelihood_step(best_mod_res['step']['x'], x, y, yerr,best_mod_res['step']['npolys']) - best_mod_res['trans']['llk'] best_mod_res['step']['DeltaBIC']=(8-len(best_mod_res['step']['x'])) - (best_mod_res['trans']['llk'] - best_mod_res['step']['llk']) elif 'step' in best_mod_res: best_mod_res['step']['DeltaBIC']=np.nan;best_mod_res['step']['llk_ratio']=np.nan if 'poly' in best_mod_res and best_mod_res['poly']['bic']<1e9: best_mod_res['poly']['llk_ratio']=log_likelihood_poly(best_mod_res['poly']['x'], x, y, yerr) - best_mod_res['trans']['llk'] best_mod_res['poly']['DeltaBIC']=(8-len(best_mod_res['poly']['x'])) - (best_mod_res['trans']['llk'] - best_mod_res['poly']['llk']) elif 'poly' in best_mod_res: best_mod_res['poly']['DeltaBIC']=np.nan;best_mod_res['poly']['llk_ratio']=np.nan else: best_mod_res={} #print("Variability models:",best_mod_res) #print("sin:", best_mod_res['sin_llk'], "trans:", best_mod_res['trans_llk'], "llk_ratio:", best_mod_res['llk_ratio']) #print("plot:",plot,kwargs) if plot: #### PLOTTING ### if plot_loc is not None and type(plot_loc)!=str: ax = plot_loc else: fig = plt.figure(figsize=(8,4)) ax = fig.add_subplot(111) if plot_loc is None: plot_loc=str(ID)+"_variability_check.pdf" elif plot_loc[-1]=='/': plot_loc=plot_loc+str(ID)+"_variability_check.pdf" markers, caps, bars = ax.errorbar(x,y,yerr=yerr, fmt='.k',ecolor='#AAAAAA',markersize=3.5,alpha=0.6,rasterized=True) [bar.set_alpha(0.2) for bar in bars] [cap.set_alpha(0.2) for cap in caps] ax.plot([-0.5*params['tdur'],-0.5*params['tdur']],[-2.0,2.0],':k',alpha=0.6,zorder=2,rasterized=True) ax.plot([0.0,0.0],[-2.0,2.0],'--k',linewidth=3,alpha=0.8,zorder=2,rasterized=True) ax.plot([0.5*params['tdur'],0.5*params['tdur']],[-2.0,2.0],':k',alpha=0.6,zorder=2,rasterized=True) if lc['flux_unit']==0.001: ax.set_ylabel("Relative flux [ppm]") elif lc['flux_unit']==1: ax.set_ylabel("Relative flux [ppm]") if 'sin' in best_mod_res and best_mod_res['sin']['fun']<1e30: ax.plot(x[np.argsort(x)],dipmodel_sinusoid(best_mod_res['sin']['x'],x[np.argsort(x)]),c='C3',alpha=0.5, label='sinusoid',linewidth=2.25,zorder=10,rasterized=True) if 'step' in best_mod_res and best_mod_res['step']['fun']<1e30: ax.plot(x[np.argsort(x)],dipmodel_step(best_mod_res['step']['x'],x[np.argsort(x)],best_mod_res['step']['npolys']), c='C4',alpha=0.5,label='step model',linewidth=2.25,zorder=10,rasterized=True) if 'poly' in best_mod_res and best_mod_res['poly']['fun']<1e30: ax.plot(x, np.polyval(best_mod_res['poly']['x'],x), c='C2',alpha=0.5,label='polynomial model',linewidth=2.25,zorder=2,rasterized=True) ax.plot(x, y_trans, '-', c='C1', alpha=0.75, label='transit model', linewidth=2.25, zorder=3, rasterized=True) try: ax.set_ylim(np.nanmin(y),np.nanmax(y)) except: b=0 #plt.ylim(np.percentile(bg_lc[inTransit,1],[0.2,99.8])) ax.legend(prop={'size': 5}) if len(best_mod_res.keys())>0 and np.all([best_mod_res[mod]['fun']<1e30 for mod in mods]): ax.set_title(str(ID)+" ' - "+["pass","fail"][int(np.any([best_mod_res[mod]['llk_ratio']>0 for mod in mods]))]) else: ax.set_title(str(ID)+" Variability. Bad fits ???") if plot_loc is not None and type(plot_loc)==str: fig.savefig(plot_loc, dpi=400) print("Saved varble plot to",plot_loc) if return_fit_lcs: return best_mod_res, plot_loc, np.column_stack((x[np.argsort(x)],y,y_trans, dipmodel_sinusoid(best_mod_res['sin']['x'],x[np.argsort(x)]), dipmodel_step(best_mod_res['step']['x'],x[np.argsort(x)],best_mod_res['step']['npolys']), np.polyval(best_mod_res['poly']['x'],x))) else: return best_mod_res, plot_loc else: if return_fit_lcs: return best_mod_res, ax, np.column_stack((x[np.argsort(x)],y,y_trans, dipmodel_sinusoid(best_mod_res['sin']['x'],x[np.argsort(x)]), dipmodel_step(best_mod_res['step']['x'],x[np.argsort(x)],best_mod_res['step']['npolys']), np.polyval(best_mod_res['poly']['x'],x))) else: return best_mod_res, ax elif np.all([best_mod_res[mod]['fun']<1e30 for mod in mods]): return best_mod_res, None, None else: return None, None, None def CheckInstrumentalNoise(lc,monodic,jd_base=None, **kwargs): '''# Using the processed "number of TCEs per cadence" array, we try to use this as a proxy for Instrumental noise in TESS # Here we simply use the detected SNR over the instrumental noise SNR as a proxy INPUTS: - lc - monotransit dic - jd_base (assumed to be that of TESS)''' import io import gzip f=gzip.open(MonoData_tablepath+'/tces_per_cadence.txt.gz','rb') tces_per_cadence=np.loadtxt(io.BytesIO(f.read())) if 'jd_base' in lc and jd_base is None: jd_base=lc['jd_base'] elif jd_base is None: jd_base=2457000 tces_per_cadence[:,0]-=(jd_base-2457000) #print(jd_base,tces_per_cadence[0,0],tces_per_cadence[-1,0], np.nanmin(lc['time']),np.nanmax(lc['time'])) tces_per_cadence=tces_per_cadence[(tces_per_cadence[:,0]>np.nanmin(lc['time']))*(tces_per_cadence[:,0]<np.nanmax(lc['time']))] inst_snr=1+np.average(tces_per_cadence[abs(tces_per_cadence[:,0]-monodic['tcen'])<monodic['tdur'],1]) return monodic['snr']/np.clip(inst_snr,1.0,1000) def GapCull(t0,t,dat,std_thresh=10,boolean=None,time_jump_thresh=0.4): #Removes data before/after gaps and jumps in t & y #If there's a big gap or a big jump, we'll remove the far side of that if boolean is None: boolean=np.tile(True,len(t)) if np.max(np.diff(t[boolean]))>time_jump_thresh: jump_n=np.argmax(np.diff(t[boolean])) jump_time=0.5*(t[boolean][jump_n]+t[boolean][jump_n+1]) #print("TIME JUMP IN CENTROID AT",jump_time) if jump_time < t0: boolean*=(t>jump_time) elif jump_time > t0: boolean*=(t<jump_time) #data must be iterable list for arr in dat: noise=np.nanmedian(abs(np.diff(arr[boolean]))) #5-sigma x centroid jump - need to cut if np.sum(boolean)>0 and np.nanmax(abs(np.diff(arr[boolean])))>std_thresh*noise: jump_n=np.argmax(np.diff(arr[boolean])) jump_time=0.5*(t[boolean][jump_n]+t[boolean][jump_n+1]) #print("X JUMP IN CENTROID AT",jump_time) if jump_time < t0: boolean*=(t>jump_time) elif jump_time > t0: boolean*=(t<jump_time) return boolean def CentroidCheck(lc,monoparams,interpmodel,ID,order=2,dur_region=3.5, plot=True,plot_loc=None, return_fit_lcs=False, **kwargs): # Checking lightcure for centroid shift during transit. # Performing two model fits # - one with a "dip" correlated to the transit combined with a polynomial trend # - one with only a polynomial trend # These are then compared, and the BIC returned to judge if 'cent_1' in lc: if monoparams['orbit_flag']=='mono': roundTransit=(abs(lc['time']-monoparams['tcen'])<monoparams['tdur']*dur_region)&lc['mask'] t=lc['time'][roundTransit]-monoparams['tcen'] roundTransit=GapCull(monoparams['tcen'],lc['time'],[lc['cent_1'],lc['cent_2']],boolean=roundTransit) t = lc['time'][roundTransit*np.isfinite(lc['cent_1'])*np.isfinite(lc['cent_2'])]-monoparams['tcen'] x = lc['cent_1'][roundTransit*np.isfinite(lc['cent_1'])*np.isfinite(lc['cent_2'])] y = lc['cent_2'][roundTransit*np.isfinite(lc['cent_1'])*np.isfinite(lc['cent_2'])] outTransit=(abs(t)>monoparams['tdur']*0.65) inTransit=(abs(t)<monoparams['tdur']*0.35) elif monoparams['orbit_flag']=='periodic': #Checking for centroid in periodic array. #This needs more care as we have to sum each transit without adding noise/trends from each phase=(lc['time']-monoparams['tcen']-0.5*monoparams['period'])%monoparams['period']-0.5*monoparams['period'] dur_region=np.min([0.25*monoparams['period'],dur_region*monoparams['tdur']]) roundTransit=(abs(phase)<monoparams['tdur']*dur_region)&lc['mask'] #roundtransit now becomes "islands" around each transit in time space: jumps=np.hstack((0,np.where(np.diff(lc['time'][roundTransit])>monoparams['period']*0.25)[0]+1,len(lc['time'][roundTransit]) )).astype(int) ts=[] cent1s=[] cent2s=[] for nj in range(len(jumps)-1): #Iteratively cutting jumps for each transit cent1_loc=lc['cent_1'][roundTransit][jumps[nj]:jumps[nj+1]] cent2_loc=lc['cent_2'][roundTransit][jumps[nj]:jumps[nj+1]] t_loc=phase[roundTransit][jumps[nj]:jumps[nj+1]] newbool=GapCull(0.0,t_loc,[cent1_loc,cent2_loc])&np.isfinite(cent1_loc)&np.isfinite(cent2_loc) #Using non-removed regions to fit 2D polynomial and subtract from cent curves if np.sum(newbool)>0: ts+=[t_loc[newbool]] cent1s+=[cent1_loc[newbool] - \ np.polyval(np.polyfit(t_loc[newbool],cent1_loc[newbool],order),t_loc[newbool])] cent2s+=[cent2_loc[newbool] - \ np.polyval(np.polyfit(t_loc[newbool],cent2_loc[newbool],order),t_loc[newbool])] t=np.hstack(ts) x=np.hstack(cent1s) y=np.hstack(cent2s) y=y[np.argsort(t)] x=x[np.argsort(t)] t=np.sort(t) outTransit=(abs(t)>monoparams['tdur']*0.65) inTransit=(abs(t)<monoparams['tdur']*0.35) #At the point all arrays should be flat, so we can make order==1 order=0 if len(x)>order+1 and len(y)>order+1: xerr=np.std(x) x-=np.median(x) if len(x[inTransit])>0 and len(x[outTransit])>0: #Calculating candidate shift. Setting as ratio to depth xdep_guess=(np.median(x[inTransit])-np.median(x[outTransit]))/monoparams['depth'] init_poly_x=np.polyfit(t[outTransit],x[outTransit],order) else: xdep_guess=0.0 if len(x[inTransit])>0: init_poly_x=np.polyfit(t,x,np.clip(order-1,0,10)) else: init_poly_x=np.zeros(np.clip(order,1,11)) y-=np.median(y) yerr=np.std(y) if len(y[inTransit])>0 and len(y[outTransit])>0: #Calculating candidate shift. Setting as ratio to depth ydep_guess=(np.median(y[inTransit])-np.median(y[outTransit]))/monoparams['depth'] init_poly_y=np.polyfit(t[outTransit],y[outTransit],order) else: ydep_guess=0.0 if len(y[inTransit])>0: init_poly_y=np.polyfit(t,x,np.clip(order-1,0,10)) else: init_poly_y=np.zeros(np.clip(order,1,11)) else: return None, None, None #Prior on centroid shifts such that values within 4sigma of 0.0 are enhanced. n_sig = [4*xerr/np.sqrt(np.sum(inTransit)),4*yerr/np.sqrt(np.sum(inTransit))] #priors= np.column_stack(([0,0],[n_sig[0]/monoparams['depth'],n_sig[1]/monoparams['depth']])) priors = np.column_stack(([0,0],[xdep_guess,ydep_guess])) poly_priors = 10.0 ** -np.arange(order+1)[::-1] best_nodip_res={'fun':1e30,'bic':1e6} best_dip_res={'fun':1e30,'bic':1e6} methods=['L-BFGS-B','Nelder-Mead','Powell'] for n in range(7): #Doing simple polynomial fits for non-dips. Excluding 10% of data each time to add some randomness rand_choice=np.random.choice(len(x),int(len(x)//1.06),replace=False) xfit=optim.minimize(Poly_neg_lnprob, np.polyfit(t[rand_choice],x[rand_choice],order), args=(t,x,xerr,poly_priors, order),method=methods[n%3]) yfit=optim.minimize(Poly_neg_lnprob, np.polyfit(t[rand_choice],y[rand_choice],order), args=(t,y,yerr,poly_priors, order),method=methods[n%3]) nodip_res={'fun':yfit.fun+xfit.fun} nodip_res['x']=[xfit.x,yfit.x] #nodip_res['bic']=2*nodip_res['fun'] + np.log(2*np.sum(roundTransit))*(len(xfit)+len(yfit)) nodip_res['llk']=log_likelihood_poly(xfit.x, t,y,yerr)+log_likelihood_poly(yfit.x, t,y,yerr) nodip_res['bic']=np.log(len(x)+len(y))*(len(xfit.x)+len(xfit.x)) - 2 * nodip_res['llk'] if nodip_res['bic']<best_nodip_res['bic']: best_nodip_res=nodip_res dip_args= np.hstack((np.random.normal(xdep_guess,abs(0.25*xdep_guess)), np.random.normal(ydep_guess,abs(0.25*ydep_guess)), init_poly_x,init_poly_y )) dip_res=optim.minimize(centroid_neg_lnprob, dip_args, args=(t,x,y,xerr,yerr, priors, interpmodel, order),method=methods[n%3]) dip_res['llk']=log_likelihood_centroid(dip_res['x'], t, x, y, xerr, yerr, interpmodel, order) #-1*dip_res['fun'] dip_res['bic']=np.log(len(x)+len(y))*len(dip_res['x']) - 2 * dip_res['llk'] #2*dip_res.fun + np.log(2*np.sum(roundTransit))*len(dip_res['x']) if dip_res['bic']<best_dip_res['bic']: best_dip_res=dip_res #Computing difference in Bayesian Information Criterium - DeltaBIC - between "dip" and "no dip models" centinfo={} centinfo['centroid_DeltaBIC'] = best_dip_res['bic'] - best_nodip_res['bic'] # dip is better < 0 < no dip is better centinfo['centroid_llk_ratio'] = best_dip_res['fun'] - best_nodip_res['fun'] #print(best_dip_res) if 'x' in best_dip_res: centinfo['x_centroid'] = best_dip_res['x'][0]*monoparams['depth'] centinfo['y_centroid'] = best_dip_res['x'][1]*monoparams['depth'] centinfo['x_centroid_SNR'] = np.sqrt(np.sum(inTransit))*abs(centinfo['x_centroid']) / \ np.nanmedian(1.06*abs(np.diff(x[outTransit]))) centinfo['y_centroid_SNR'] = np.sqrt(np.sum(inTransit))*abs(centinfo['y_centroid']) / \ np.nanmedian(1.06*abs(np.diff(y[outTransit]))) #print("init_guesses:",xdep_guess,ydep_guess,"best_fits:",best_dip_res['x'][0],best_dip_res['x'][1]) #print("with centroid:",best_dip_res,"| without:",best_nodip_res) if 'x' in best_dip_res and return_fit_lcs: arrs=np.column_stack((t,x,np.polyval(best_nodip_res['x'][0],t), dipmodel_centroid(best_dip_res.x,t,interpmodel,order)[0], y,np.polyval(best_nodip_res['x'][1],t), dipmodel_centroid(best_dip_res.x,t,interpmodel,order)[1])) else: arrs=None if plot: if plot_loc is not None and type(plot_loc)!=str: ax = plot_loc else: fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(133) if plot_loc is None: plot_loc = str(ID)+"_centroid_shift.pdf" elif plot_loc[-1]=='/': plot_loc=plot_loc+str(ID)+"_centroid_shift.pdf" ''' #### PLOTTING ### if monoparams['orbit_flag']=='periodic': ax.plot(phase,lc['cent_1']-np.nanmedian(lc['cent_1'][roundTransit]),',k',rasterized=True) ax.plot(phase,lc['cent_2']-np.nanmedian(lc['cent_2'][roundTransit]),',k',rasterized=True) elif monoparams['orbit_flag']=='mono': ax.plot(lc['time']-monoparams['tcen'],lc['cent_1']-np.nanmedian(lc['cent_1'][roundTransit]),',k',rasterized=True) ax.plot(lc['time']-monoparams['tcen'],lc['cent_2']-np.nanmedian(lc['cent_2'][roundTransit]),',k',rasterized=True) ''' ax.scatter(t,y,s=1.5,rasterized=True) ax.scatter(t,x,s=1.5,rasterized=True) ax.plot([-0.5*monoparams['tdur'],-0.5*monoparams['tdur']],[-2.0,2.0],':k',alpha=0.6,rasterized=True) ax.plot([0.0,0.0],[-2.0,2.0],'--k',linewidth=3,alpha=0.8,rasterized=True) ax.plot([0.5*monoparams['tdur'],0.5*monoparams['tdur']],[-2.0,2.0],':k',alpha=0.6,rasterized=True) ax.set_ylabel("Relative centroid [px]") try: if best_dip_res['fun']<1e29 and best_nodip_res['fun']<1e29 and len(best_nodip_res['x'])==2: ax.plot(t,np.polyval(best_nodip_res['x'][0],t),'--',c='C3',linewidth=2.25,alpha=0.6, label='pure trend - x',rasterized=True) ax.plot(t,np.polyval(best_nodip_res['x'][1],t),'--',c='C4',linewidth=2.25,alpha=0.6, label='pure trend - y',rasterized=True) ax.plot(t,dipmodel_centroid(best_dip_res.x,t,interpmodel,order)[0],c='C3', linewidth=2.25,alpha=0.6,label='trend+centroid - x',rasterized=True) ax.plot(t,dipmodel_centroid(best_dip_res.x,t,interpmodel,order)[1],c='C4', linewidth=2.25,alpha=0.6,label='trend+centroid - y',rasterized=True) ax.legend(prop={'size': 5}) ax.set_title(str(ID)+" Centroid - "+["pass","fail"][int(centinfo['centroid_llk_ratio']<-6)]) else: ax.set_title(str(ID)+" Centroid - No fit ???") except: ax.set_title(str(ID)+" Centroid - No fit ???") xlim=np.percentile(x,[0.2,99.8]) ylim=np.percentile(y,[0.2,99.8]) ax.set_ylim(np.min([xlim[0],ylim[0]]),np.max([xlim[1],ylim[1]])) ax.set_xlim(np.min(t),np.max(t)) if plot_loc is not None and type(plot_loc)==str: fig.savefig(plot_loc, dpi=400) return centinfo, plot_loc, arrs else: return centinfo, ax, arrs elif not plot: return centinfo, None,arrs else: return None, None def CheckPeriodConfusedPlanets(lc,all_dets,mono_mono=True,multi_multi=True,mono_multi=True): #Merges dic of mono detections with a dic of periodic planet detections #Performs 3 steps: # - Checks monos against themselves # - Checks periodic planets (and duos detected in the periodic search) against themselves # - Checks periodic planets (and duos detected in the periodic search) against monotransits # In each case, the signal with the highest SNR is kept (and assumed to be the correct one) # The other signal is removed from the list, but kept in the detn dictionary # #INPUTS: # - lc dict # - detection dict #RETURNS: # - detection dict # - list of monos # - list of multis/duos mono_detns=[pl for pl in all_dets if (all_dets[pl]['orbit_flag']=='mono')&(all_dets[pl]['flag'] not in ['asteroid','EB','instrumental','lowSNR','variability'])] #print([all_dets[pl]['flag'] for pl in mono_detns]) if len(mono_detns)>1 and mono_mono: #removing monos which are effectively the same. Does this through tcen/tdur matching. for monopl in mono_detns: if all_dets[monopl]['orbit_flag'][:2]!='FP': other_dets = np.array([[other,all_dets[other]['tcen'],all_dets[other]['tdur']] for other in mono_detns if other !=monopl]) trans_prox = np.min(abs(all_dets[monopl]['tcen']-other_dets[:,1].astype(float))) #Proximity to a transit prox_stats = abs(trans_prox/(0.5*(all_dets[monopl]['tdur']+other_dets[:,2].astype(float)))) print("Mono-mono compare", monopl, all_dets[monopl]['tcen'], other_dets[:,1], prox_stats) if np.min(prox_stats)<0.5: other=other_dets[np.argmin(prox_stats),0] if all_dets[other]['snr']>all_dets[monopl]['snr']: all_dets[monopl]['orbit_flag']='FP - confusion with '+other else: all_dets[other]['orbit_flag']='FP - confusion with '+monopl mono_detns=[pl for pl in all_dets if (all_dets[pl]['orbit_flag']=='mono')&(all_dets[pl]['flag'] not in ['asteroid','EB','instrumental','lowSNR','variability'])] perdc_detns=[pl for pl in all_dets if (all_dets[pl]['orbit_flag'] in ['periodic','duo'])&(all_dets[pl]['orbit_flag']!='variability')] if len(perdc_detns)>1 and multi_multi: #removing periodics which are effectively the same. Does this through cadence correlation. for perpl in perdc_detns: new_trans_arr=((lc['time'][lc['mask']]-all_dets[perpl]['tcen']+0.5*all_dets[perpl]['tdur'])%all_dets[perpl]['period'])<all_dets[perpl]['tdur'] for perpl2 in perdc_detns: if perpl!=perpl2 and all_dets[perpl]['orbit_flag'][:2]!='FP' and all_dets[perpl2]['orbit_flag'][:2]!='FP': new_trans_arr2=((lc['time'][lc['mask']]-all_dets[perpl2]['tcen']+0.5*all_dets[perpl2]['tdur'])%all_dets[perpl2]['period'])<all_dets[perpl2]['tdur'] sum_overlap=np.sum(new_trans_arr&new_trans_arr2) prox_arr=np.hypot(sum_overlap/np.sum(new_trans_arr),sum_overlap/np.sum(new_trans_arr2)) #print("Multi-multi compare",perpl,all_dets[perpl]['period'],perpl2,all_dets[perpl2]['period'],prox_arr) if prox_arr>0.6: #These overlap - taking the highest SNR signal if all_dets[perpl]['snr']>all_dets[perpl2]['snr']: all_dets[perpl2]['orbit_flag']='FP - confusion with '+perpl2 else: all_dets[perpl]['orbit_flag']='FP - confusion with '+perpl perdc_detns=[pl for pl in all_dets if (all_dets[pl]['orbit_flag'] in ['periodic','duo'])&(all_dets[pl]['orbit_flag']!='variability')] trans_arr=[] #print(mono_detns,perdc_detns,len(mono_detns)>0 and len(perdc_detns)>0) if len(mono_detns)>0 and len(perdc_detns)>0 and mono_multi: confused_mono=[] #Looping over periodic signals and checking if the array of transit times (and durations) matches for perpl in perdc_detns: new_trans_arr=((lc['time'][lc['mask']]-all_dets[perpl]['tcen']+0.5*all_dets[perpl]['tdur'])%all_dets[perpl]['period'])<all_dets[perpl]['tdur'] #trans_arr=np.hstack((np.arange(all_dets[perpl]['tcen'],np.nanmin(lc['time'])-all_dets[perpl]['tdur'],-1*all_dets[perpl]['period'])[::-1],np.arange(all_dets[perpl]['tcen']+all_dets[perpl]['period'],np.nanmax(lc['time'])+all_dets[perpl]['tdur'],all_dets[perpl]['period']))) #print(perpl,trans_arr) for monopl in mono_detns: if all_dets[monopl]['orbit_flag'][:2]!='FP' and all_dets[perpl]['orbit_flag'][:2]!='FP': roundtr=abs(lc['time'][lc['mask']]-all_dets[monopl]['tcen'])<(2.5*all_dets[monopl]['tdur']) new_trans_arr2=abs(lc['time'][lc['mask']][roundtr]-all_dets[monopl]['tcen'])<(0.5*all_dets[monopl]['tdur']) sum_overlap=np.sum(new_trans_arr[roundtr]&new_trans_arr2) prox_stat=sum_overlap/np.hypot(np.sum(new_trans_arr[roundtr]),np.sum(new_trans_arr2)) #adding depth comparison - if depths are a factor of >3different we start reducing prox_stat by the log ratio prox_stat/=np.clip(abs(np.log(all_dets[perpl]['depth']/all_dets[monopl]['depth'])),1.0,20) ''' nearest_trans=trans_arr[np.argmin(abs(all_dets[monopl]['tcen']-trans_arr))] #Proximity to a transit trans_perdic=abs(lc['time'][lc['mask']]-nearest_trans)<(0.5*all_dets[perpl]['tdur']) trans_mono=abs(lc['time'][lc['mask']]-all_dets[monopl]['tcen'])<(0.5*all_dets[monopl]['tdur']) prox_stat=np.hypot(np.sum(trans_perdic&trans_mono)/np.sum(trans_perdic), np.sum(trans_perdic&trans_mono)/np.sum(trans_mono)) ''' #print("Multi-mono compare",perpl,all_dets[perpl]['tdur'],"|",monopl,all_dets[monopl]['tcen'],all_dets[monopl]['tdur'],prox_stat) if prox_stat>0.33: #These overlap - taking the highest SNR signal #print("correlation - ",all_dets[perpl]['snr'],all_dets[monopl]['snr']) if all_dets[perpl]['snr']>=all_dets[monopl]['snr']: all_dets[monopl]['orbit_flag']= 'FP - confusion with '+perpl elif all_dets[perpl]['snr']<all_dets[monopl]['snr']: all_dets[perpl]['orbit_flag']= 'FP - confusion with '+monopl mono_detns=[pl for pl in all_dets if (all_dets[pl]['orbit_flag']=='mono')&(all_dets[pl]['flag'] not in ['asteroid','EB','instrumental','lowSNR','variability','step'])] perdc_detns=[pl for pl in all_dets if (all_dets[pl]['orbit_flag'] in ['periodic','duo'])&(all_dets[pl]['orbit_flag']!='variability')] return all_dets, mono_detns, perdc_detns def CheckMonoPairs(lc_time, all_pls,prox_thresh=3.5, **kwargs): #Loop through each pair of monos without a good period, and check: # - if they correspond in terms of depth/duration # - and whether they could be periodic given other data all_monos=[pl for pl in all_pls if (all_pls[pl]['orbit_flag']=='mono')&(all_pls[pl]['flag'] not in ['asteroid','EB','instrumental','lowSNR','variability','FP - confusion'])] all_others=[pl for pl in all_pls if (all_pls[pl]['orbit_flag'] in ['periodic', 'duo'])&(all_pls[pl]['flag'] not in ['asteroid','EB','instrumental','lowSNR','variability','FP - confusion'])] if len(all_monos)>1: prox_arr=np.tile(1e9,(len(all_monos),len(all_monos))) ordered_monos=np.array(all_monos)[np.argsort(np.array([all_pls[mon]['snr'] for mon in all_monos]))[::-1]] #print(ordered_monos,np.array([all_pls[mon]['snr'] for mon in ordered_monos])) found=[] for n1,m1 in enumerate(ordered_monos): proxs=[] for n2,m2 in enumerate(ordered_monos[n1+1:]): if m1 not in found and m2 not in found: # 1) How close are these monos in terms of depth & duration? (0.5 ~ 10% different here) proxs+=[(np.log(all_pls[m1]['depth'])-np.log(all_pls[m2]['depth']))**2/0.25**2+\ (np.log(all_pls[m1]['tdur'])-np.log(all_pls[m2]['tdur']))**2/0.2**2] # 2) Can these monos even possibly produce a "duo" given the other phase coverage? period = abs(all_pls[m1]['tcen']-all_pls[m2]['tcen']) average_dur=np.average([all_pls[m1]['tdur'],all_pls[m2]['tdur']]) phase=(lc_time-all_pls[m1]['tcen']-period*0.5)%period-period*0.5 Npts_in_tr=np.sum(abs(phase)<0.3*average_dur) Npts_from_known_transits=np.sum(abs(lc_time-all_pls[m1]['tcen'])<0.3*average_dur)+np.sum(abs(lc_time-all_pls[m2]['tcen'])<0.3*average_dur) # Let's multiply the prox_arr from duration/depth with the square of the number of points in transit # Here, if there's ~10% of a transit in the right phase, we get prox_arr==1.0 # Here, if there's ~25% of a transit in the right phase, we get prox_arr==6.0 proxs[-1]+=(20*(Npts_in_tr/Npts_from_known_transits-1))**2 proxs[-1]/=(all_pls[m2]['snr']/all_pls[m1]['snr'])**0.5 #Including SNR factor - higher SNR is favoured #print(m1,m2,all_pls[m1]['depth'],all_pls[m2]['depth'],all_pls[m1]['tdur'],all_pls[m2]['tdur'],Npts_in_tr,Npts_from_known_transits,(all_pls[m2]['snr']/all_pls[m1]['snr'])**0.5,proxs[-1]) #print("Mono pair searching",m1,proxs) #Taking the best-fitting lower-SNR detection which matches: proxs=np.array(proxs) if np.any(proxs<prox_thresh): n2=np.argmin(proxs) m2=ordered_monos[n1+1:][n2] newm1=deepcopy(all_pls[m1]) #MATCH with threshold of 2 for key in all_pls[m1]: if key in all_pls[m2]: if key=='period': #print("tcens = ",all_pls[m1]['tcen'],all_pls[m2]['tcen']) newm1['period']=abs(all_pls[m1]['tcen']-all_pls[m2]['tcen']) elif key in ['snr','snr_r']: newm1[key]=np.hypot(all_pls[m1][key],all_pls[m2][key]) elif type(all_pls[m2][key])==float and key!='tcen': #Average of two: #print(key,all_pls[m1][key],all_pls[m2][key],0.5*(all_pls[m1][key]+all_pls[m2][key])) newm1[key]=0.5*(all_pls[m1][key]+all_pls[m2][key]) newm1['tcen_2']=all_pls[m2]['tcen'] newm1['orbit_flag']='duo' check_pers = newm1['period']/np.arange(1,np.ceil(newm1['period']/10),1.0) check_pers_ix=np.tile(False,len(check_pers)) Npts_from_known_transits=np.sum(abs(lc_time-newm1['tcen'])<0.35*newm1['tdur']) + \ np.sum(abs(lc_time-newm1['tcen_2'])<0.35*newm1['tdur']) #print("check pers duos",check_pers,Npts_from_known_transits) for nper,per in enumerate(check_pers): phase=(lc_time-newm1['tcen']-per*0.5)%per-per*0.5 Npts_in_tr=np.sum(abs(phase)<0.35*newm1['tdur']) check_pers_ix[nper]=Npts_in_tr<1.075*Npts_from_known_transits #Less than 15% of another eclipse is covered newm1['period_aliases']=check_pers[check_pers_ix] if len(newm1['period_aliases'])>1: newm1['P_min'] = newm1['period_aliases'] if type(newm1['period_aliases'])==float else np.min(newm1['period_aliases']) elif len(newm1['period_aliases'])==1: newm1['P_min'] = newm1['period_aliases'][0] else: newm1['P_min'] = 999 #print("period aliases:",newm1['period_aliases'],"P_min:",newm1['P_min']) all_pls[m1]=newm1 all_pls[m2]['orbit_flag']='FP - Confusion with '+m1 all_pls[m2]['flag']='FP - confusion' found+=[m1,m2] return all_pls def EB_modelPriors(params,priors): lnprior=0.0 for p in range(len(params)): if priors[p,1]=='Gaussian': lnprior+=log_gaussian(params[p],float(priors[p,2]),float(priors[p,3])) elif priors[p,1]=='Uniform': #Outside uniform priors, give extremely harsh restrictions that get worse with distance: if params[p]<(float(priors[p,2])-float(priors[p,3])): lnprior-=1e3*((float(priors[p,2])-params[p])/float(priors[p,3]))**2 elif params[p]>(float(priors[p,2])+float(priors[p,3])): lnprior-=1e3*((params[p]-float(priors[p,2]))/float(priors[p,3]))**2 else: lnprior-=0.0 return lnprior def EBmodel_lnprob(params, x, y, yerr, priors, Ms, tsec=False): # Trivial improper prior: uniform in the log. lnprior=EB_modelPriors(params,priors) llk = log_likelihood_EBmodel(params, x, y, yerr, Ms,tsec=tsec) if np.isnan(llk): llk=-1e25 #print("llk:",llk,"prior:",lnprior,"minimise:",-1*(lnprior + llk)) return lnprior + llk ''' def log_likelihood_EBmodel(params, x, y, yerr): model=EBmodel(params,x) sigma2 = yerr ** 2 return -0.5 * np.sum((y - model) ** 2 / sigma2 + np.log(sigma2)) ''' def log_likelihood_EBmodel(params, x, y, yerr, Ms,tsec=False): model=EBmodel(params,x, Ms,tsec=tsec) ''' if abs(np.median(model))>1e100: r_1,log_r2_r1,log_sbratio,b,log_light_3,t_zero,log_period,log_sma,log_q,f_c,f_s,ldc_1 = params sma=np.exp(log_sma) r_1=np.clip(r_1/sma,1e-7,0.5) r_2=np.clip(r_1*np.exp(log_r2_r1)/sma,1e-7,0.5) print("r1",np.clip(r_1/sma,1e-7,1-1e-7),"|r2",np.clip(r_1*np.exp(log_r2_r1)/sma,1e-7,1-1e-7), "|sb",np.exp(log_sbratio),"|b",b,"|incl",np.arccos(abs(b)/sma)*(180/np.pi),"|light_3:",np.exp(log_light_3), "|t_zero",t_zero,"|period",np.exp(log_period),"|a",np.exp(log_sma), "|q",np.exp(np.clip(log_q,-20,1.0)),"|f_c",f_c,"|f_s",f_s, "|ldc_1",ldc_1) ''' inv_sigma2 = 1.0/(yerr**2 + model**2) return -0.5*(np.sum((y-model)**2*inv_sigma2 - np.log(inv_sigma2))) def EBmodel_neg_lnprob(params, x, y, yerr, priors, Ms,tsec=False): return -1*EBmodel_lnprob(params, x, y, yerr, priors, Ms,tsec=tsec) def EBmodel(params, t, Ms, tsec=False): if not tsec: #given omega directly as parameter: r_1,log_r2_r1,log_sbratio,b,log_light_3,t_zero,log_period,log_q,ecc,omega,ldc_1 = params incl=np.arccos(abs(b)/sma) else: #deriving omega from secondary position: r_1,log_r2_r1,log_sbratio,b,log_light_3,t_zero,log_period,log_q,ecc,t_sec,ldc_1 = params incl=np.arccos(abs(b)/sma) omega = np.arccos(np.pi*(((t_sec-t_zero)%period)/np.exp(log_period)-0.5)/(ecc*(1+np.sin(incl)**-1))) #Modified these parameters to be: # R_1 (in Rsun) # R_2/R_1, # log of sb ratio # b - impact parameter # log light 3 # t_zero # log_period # sma # q - mass ratio # f_c - ecos omega # f_s - esin omega # ldc_1 - limb darkening #Using Kepler's laws to derive SMA sma=((6.67e-11*(1+np.exp(log_q))*Ms*1.96e30*(np.exp(log_period)*86400)**2)/(4*np.pi**2))**(1/3)/(6.955e8) r_1=np.clip(r_1/sma,1e-7,0.75) r_2=np.clip(r_1*np.exp(log_r2_r1),1e-7,0.75) ymodel=ellc.lc(t,r_1,r_2, np.exp(log_sbratio),incl*(180/np.pi), light_3=np.exp(log_light_3), t_zero=t_zero,period=np.exp(log_period),a=sma, f_c=np.sqrt(np.clip(ecc,0.0,1.0-0.5*(r_1+r_2)))*np.cos(omega), f_s=np.sqrt(np.clip(ecc,0.0,1.0-0.5*(r_1+r_2)))*np.sin(omega), q=np.exp(log_q),ldc_1=np.clip(ldc_1,0.0,1.0),ld_1="lin",verbose=0) return ymodel def pri_sec_const(time,t_pri,dur_pri,t_sec=None,dur_sec=None): #Uses observed times, plus positions of primary and secondary eclipses # to estimate minimum period and minimum eccentricity of eclipsing binary # Requites: # - time # - t_pri - time of primary # - dur_pri - duration of primary (in days) # - t_sec - time of secondary # - dur_sec - duration of secondary (in days) dist_from_pri=np.sort(abs(time-t_pri)) if t_sec is not None: dist_from_sec=np.sort(abs(time-t_sec)) if np.max(np.diff(dist_from_pri))>(0.6*dur_pri): #Gaps in lightcurve - finding closest gap from primary if t_sec is not None: min_per=np.min([dist_from_pri[np.diff(dist_from_pri)>(0.5*dur_pri)][0], dist_from_sec[np.diff(dist_from_sec)>(0.5*dur_pri)][0]]) max_per=np.max([dist_from_pri[-1]+dur_pri,dist_from_sec[-1]+dur_sec]) durstep=np.min([dur_pri,dur_sec])*0.25 cut_time=time[(abs(time-t_pri)<0.5*dur_pri)&(abs(time-t_sec)<0.5*dur_sec)] else: min_per=dist_from_pri[np.diff(dist_from_pri)>(0.5*dur_pri)][0] max_per=dist_from_pri[-1]+dur_pri durstep=dur_pri*0.25 cut_time=time[abs(time-t_pri)<0.5*dur_pri] else: #No gaps - can return simply the furthest timestamp from primary or secondary and compute min_ecc if t_sec is not None: min_per=np.max(np.hstack([dist_from_pri,dist_from_sec])) min_ecc=1/(2*np.pi)*(abs(t_pri-t_sec)/min_per - 0.5) else: min_per=np.max(dist_from_pri) min_ecc=0.0 return min_per,min_ecc #Boolean array that will show if period is OK, given pri/sec and gaps, or if it fails: per_bool=[] psteps=np.arange(min_per-durstep,max_per+durstep,durstep) for pstep in psteps: phase=(cut_time-t_pri)%pstep pbool=(np.min(phase)>(dur_pri*0.4))&(np.max(phase)<(pstep-dur_pri*0.4)) if pbool and t_sec is not None: phase_sec=(t_sec-t_pri)%pstep if np.min(abs(phase-phase_sec))<(dur_sec*0.4): pbool=False per_bool+=[pbool] #The minimum period is therefore the first per for which a period is ok: min_per = psteps[np.array(per_bool)][0] if t_sec is not None: pri_to_sec=(t_pri-t_sec)%min_per min_ecc=1/(2*np.pi)*(((t_pri-t_sec)%min_per)/min_per - 0.5) else: print("No good period here?") def exoplanet_EB_model(lc, objects, Teffs, Rs, Ms, nrep=9,try_sec=False,use_ellc=False): with pm.Model() as model: return None def xoEB(lc,planets): EBs=[pl for pl in planets if planets['pl']['flag']=='EB'] if len(EBs)==1: eb=EBs[0] else: eb=EBs[np.argmax([planets[eb]['logror'] for eb in EBs])] with pm.Model() as model: # Systemic parameters mean_lc = pm.Normal("mean_lc", mu=0.0, sd=5.0) u1 = xo.QuadLimbDark("u1") u2 = xo.QuadLimbDark("u2") # Parameters describing the primary M1 = pm.Lognormal("M1", mu=Ms[0], sigma=abs(Ms[1]+Ms[2])) R1 = pm.Lognormal("R1", mu=Rs[0], sigma=abs(Rs[1]+Rs[2])) # Secondary ratios k = pm.Lognormal("k", mu=0.0, sigma=10.0, testval=np.exp(planets['pl']['logror'])) # radius ratio q = pm.Lognormal("q", mu=0.0, sigma=10.0) # mass ratio s = pm.Lognormal("s", mu=np.log(0.5), sigma=10.0) # surface brightness ratio # Prior on flux ratio pm.Beta("flux_prior",a=0.5, b=0.5, observed=k ** 2 * s) pm.Normal( "flux_prior", mu=lit_flux_ratio[0], sigma=lit_flux_ratio[1], observed=k ** 2 * s, ) # Parameters describing the orbit b = xo.ImpactParameter("b", ror=k, testval=1.5) if planets[eb]['orbit_flag']=='mono': period = pm.Pareto("period", m=planets[eb]['minP'], alpha=1.0) newmask=lc['mask']&(abs(lc['time']-planets[eb]['tcen'])<planets[eb]['tdur']*2.5) else: period = pm.Lognormal("period", mu=np.log(planets[eb]['period']), sigma=0.1) newmask=lc['mask']&(abs((lc['time']-planets[eb]['tcen']-0.5*planets[eb]['period'])%planets[eb]['period'] - \ 0.5*planets[eb]['period'])<planets[eb]['tdur']*2.5) #period = pm.Lognormal("period", mu=np.log(lit_period), sigma=1.0) t0 = pm.Normal("t0", mu=planets[eb]['tcen'], sigma=1.0) # Parameters describing the eccentricity: ecs = [e * cos(w), e * sin(w)] ecs = xo.UnitDisk("ecs", testval=np.array([1e-5, 0.0])) ecc = pm.Deterministic("ecc", tt.sqrt(tt.sum(ecs ** 2))) omega = pm.Deterministic("omega", tt.arctan2(ecs[1], ecs[0])) # Build the orbit R2 = pm.Deterministic("R2", k * R1) M2 = pm.Deterministic("M2", q * M1) orbit = xo.orbits.KeplerianOrbit( period=period, t0=t0, ecc=ecc, omega=omega, b=b, r_star=R1, m_star=M1, m_planet=M2, ) # Track some other orbital elements pm.Deterministic("incl", orbit.incl) pm.Deterministic("a", orbit.a) # Noise model for the light curve sigma_lc = pm.InverseGamma( "sigma_lc", testval=1.0, **xo.estimate_inverse_gamma_parameters(0.1, 2.0) ) S_tot_lc = pm.InverseGamma( "S_tot_lc", testval=2.5, **xo.estimate_inverse_gamma_parameters(1.0, 5.0) ) ell_lc = pm.InverseGamma( "ell_lc", testval=2.0, **xo.estimate_inverse_gamma_parameters(1.0, 5.0) ) kernel_lc = xo.gp.terms.SHOTerm( S_tot=S_tot_lc, w0=2 * np.pi / ell_lc, Q=1.0 / 3 ) # Set up the light curve model model_lc = xo.SecondaryEclipseLightCurve(u1, u2, s) def get_model_lc(t): return ( mean_lc + 1e3 * model_lc.get_light_curve(orbit=orbit, r=R2, t=t, texp=texp)[:, 0] ) # Condition the light curve model on the data gp_lc = xo.gp.GP( kernel_lc, lc['time'][newmask], lc['flux_err'][newmask] ** 2 + sigma_lc ** 2, mean=get_model_lc ) gp_lc.marginal("obs_lc", observed=lc['flux'][newmask]) # Optimize the logp map_soln = model.test_point # Then the LC parameters map_soln = xo.optimize(map_soln, [mean_lc, R1, k, s, b]) map_soln = xo.optimize(map_soln, [mean_lc, R1, k, s, b, u1, u2]) map_soln = xo.optimize(map_soln, [mean_lc, sigma_lc, S_tot_lc, ell_lc, q]) map_soln = xo.optimize(map_soln, [t0, period]) # Then all the parameters together map_soln = xo.optimize(map_soln) model.gp_lc = gp_lc model.get_model_lc = get_model_lc model.x = lc['time'][newmask] model.y = lc['flux'][newmask] return model, map_soln def minimize_EBmodel(lc, objects, Teffs, Rs, Ms, nrep=9,try_sec=False,use_ellc=False): #Running a quick EB model: multis=[key for key in objects if objects[key]['orbit_flag'] in ['periodic','duo']] if len(objects)>1: SNRs=np.array([objects[key]['snr'] for key in objects]) planet=objects[list(objects.keys())[np.argmax(SNRs)]] #secmodel is None bestfit,interp=QuickMonoFit(lc,planet['tcen'],planet['tdur'],Rs=Rs[0],Ms=Ms[0],useL2=True) ''' #check periodic secondary at different phase - e.g. sec if len(multis)==2: per_objs = np.array([[objects[key]['period'],objects[key]['tcen']] for key in multis]) if (abs(per_objs[0,0]-per_objs[1,0])/0.02)<1: epch_diff=(abs(per_objs[0,1]-per_objs[1,1])%per_objs[0,0])/per_objs[0,0] if epch_diff>0.08 and epch_diff<0.92: #Secondary found with same period at different epoch - secmodel=objects[list(objects.keys())[np.argsort(SNRs)==1]] secmodel['min_p']=per_objs[0,0]*0.95 elif len(multis)==1 and len(objects)==2: bestfit,interp=QuickMonoFit(lc,planet['tcen'],planet['tdur'],Rs=Rs[0],Ms=Ms[0],useL2=True) #secmodel=SearchForSecondary(lc, interpmodel, bestfit) #Secondary position can constrain our eccentricity & omega position considerations #If primary-to-secondary distance e_min = abs(np.pi*0.5*(((secmodel['tcen']-bestfit['tcen'])%secmodel['min_p'])/secmodel['min_p']-0.5)) ''' if not use_ellc: return bestfit,None else: import ellc # Getting minimum period: per_arr=np.sort(abs(lc['time']-bestfit['tcen'])) per_arr_jumps=np.where(np.diff(per_arr)>(0.75*bestfit['tdur']))[0] if planet['orbit_flag'] in ['periodic', 'duo']: min_per= planet['period']*0.95 init_per=planet['period'] else: min_per= np.max(per_arr) if len(per_arr_jumps)==0 else per_arr[np.min(per_arr_jumps)] init_per=bestfit['period'] #Calculating minimum SMA in Rsun given minimum period (scaled by 0.5 for eccentricity), Mass (scaled by 2 for q) & Radius best_res={'fun':np.inf}; all_models=[] init_params_0=np.array([Rs[0],bestfit['logror'],-1.0,0.25,np.log(bestfit['third_light']),bestfit['tcen'], np.log(init_per),-2,0.0,0.0,0.5]) #priors are Name, [Gaussian OR Uniform], [mu, 2*sd] OR [lower bound, width] init_uniform_priors=np.vstack([['R1','Gaussian',Rs[0],(abs(Rs[1])+abs(Rs[2]))], ['log_R2_R1','Uniform',-1.5,1.5], ['log_sbratio','Uniform',-2,3.25], ['b','Uniform',1.5,1.5], ['log_light_3','Uniform',-3.5,3.5], ['t_zero','Gaussian',bestfit['tcen'], 0.33*bestfit['tdur']], ['log_period','Uniform',np.log(min_per)+3.5,3.5], ['log_q','Uniform',-2,2], ['ecc','Uniform',0.5,0.5], ['omega','Uniform',0.0,np.pi], ['ldc_1','Uniform',0.5,0.5]]) if planet['orbit_flag'] in ['periodic', 'duo']: init_uniform_priors[6]=['log_period','Uniform',np.log(min_per)+0.1,0.1] if secmodel is not None: init_uniform_priors[9]=['t_sec','Gaussian',secmodel['tcen'],0.33*secmodel['tdur']] use_t_sec=True else: use_t_sec=False if try_sec: init_uniform_priors[0,2]=Rs[0]*0.5#Making radius R_2 init_uniform_priors[0,3]=Rs[0]*0.5 init_params_0[0]=Rs[0]*np.exp(bestfit['logror'])#Inverting log_ror, log_sbratio and log_q init_uniform_priors[1,2]=float(init_uniform_priors[1,2])*-1; init_params_0[1]*=-1 init_uniform_priors[2,2]=float(init_uniform_priors[2,2])*-1; init_params_0[2]*=-1 init_uniform_priors[7,2]=float(init_uniform_priors[7,2])*-1; init_params_0[7]*=-1 newmask=lc['mask']&(abs(lc['time']-bestfit['tcen'])<5) newmask[(abs(lc['time']-bestfit['tcen'])<5)]*=CutAnomDiff(lc['flux_flat'][abs(lc['time']-bestfit['tcen'])<5]) methods=['L-BFGS-B','Nelder-Mead','Powell'] #Doing N initial minimizatio using random parameters near initialised ones: for n in range(nrep): #Initialising priors and parameters for EB model: #radius_1 = R1/sma,radius_2 = R2/sma,log_sbratio = 0.25, #incl=90pm20,light_3=,t_zero,period,a,q,f_c,f_s,ldc_1 #Taking initial parameters as uniform between priors: init_params=init_params_0+\ np.random.normal(np.tile(0.0,len(init_params_0)),0.15*init_uniform_priors[:,3].astype(float)) #print("depth:",1.0-np.min(EBmodel(init_params,lc['time'],Ms[0])),"@",lc['time'][np.argmin(EBmodel(init_params,lc['time'],Ms[0]))]) #print("init_q:",np.exp(init_params[7])) res=optimize.minimize(EBmodel_neg_lnprob,init_params,args=(lc['time'][newmask], 1.0+lc['flux_flat'][newmask]-np.nanmedian(lc['flux_flat'][newmask]), lc['flux_err'][newmask], init_uniform_priors,Ms[0],use_t_sec), method=methods[nrep%3]) all_models+=[EBmodel(res['x'],lc['time'],Ms[0])] #print("OUT:",res['fun'],res['x']) if res['fun']<best_res['fun']: best_res=res ''' #Doing N more initial minimizations using random parameters near the best-fit ones: for n in range(nrep): init_params=np.random.normal(best_res['x'],0.15*init_uniform_priors[:,3].astype(float)) res=optimize.minimize(EBmodel_neg_lnprob,init_params, args=(lc['time'][newmask],lc['flux_flat'][newmask]-np.nanmedian(lc['flux_flat'][newmask]), 1.0+lc['flux_err'][newmask],init_uniform_priors,Ms[0]),method=methos[nrep%3]) if res['fun']<best_res['fun']: best_res=res ''' #Organising parameters to become best-fit: if use_t_sec: #deriving omega used from t_sec, t_pri and e: r_1,r2_r1,log_sbratio,b,log_light_3,t_zero,log_period,log_q,ecc,t_sec,ldc_1 = best_res.x omega=np.arccos(np.pi*(((t_sec-t_zero)%period)/np.exp(period)-0.5)/(ecc*(1+np.sqrt(1-(b/sma)**2)**-1))) else: #deriving t_sec in model from t_pri, omega and e: r_1,r2_r1,log_sbratio,b,log_light_3,t_zero,log_period,log_q,ecc,omega,ldc_1 = best_res.x t_sec = t_zero + np.exp(log_period)*((ecc*(1+np.sqrt(1-(b/sma)**2)**-1))*np.cos(omega)/np.pi + 0.5) sma=((6.67e-11*(1+np.exp(log_q))*Ms[0]*1.96e30*(np.exp(log_period)*86400)**2)/(4*np.pi**2))**(1/3), newres={"final_EBmodel":EBmodel(best_res['x'],lc['time'],Ms[0]), "final_pars":best_res.x,"final_lnprior":EB_modelPriors(best_res.x,init_uniform_priors), "final_lnprob":log_likelihood_EBmodel(best_res.x, lc['time'][lc['mask']], lc['flux_flat'][lc['mask']]-np.nanmedian(lc['flux_flat'][lc['mask']]), lc['flux_err'][lc['mask']],Ms[0]), "R_1":r_1,"R_2":r_1*r2_r1,"R2_R1":np.exp(r2_r1), "sbratio":np.exp(log_sbratio),"light_3":np.exp(log_light_3),"ldc_1":ldc_1, "sma":sma,"sma_R1":sma/(r_1*6.955e8), "ecc":ecc,"omega":omega,"t_sec":t_sec, "b":b,"incl":np.arccos(b/sma)*(180/np.pi),"tcen":t_zero,"period":np.exp(log_period), "M_1":Ms[0],"M_2":np.exp(log_q)*Ms[0],"q":np.exp(log_q), "T_1":Teffs[0],"T_2":Teffs[0]*np.exp(log_sbratio)**(1/4), "init_EBmodel":EBmodel(init_params_0,lc['time'],Ms[0]),'init_pars':init_params_0} newres['uniform_priors']=init_uniform_priors;newres['init_lnprior']=EB_modelPriors(init_params_0,init_uniform_priors) newres['init_prob']=log_likelihood_EBmodel(init_params_0, lc['time'][lc['mask']], lc['flux_flat'][lc['mask']]-np.nanmedian(lc['flux_flat'][lc['mask']]), lc['flux_err'][lc['mask']],Ms[0]) return newres,all_models def CutAnomDiff(flux,thresh=4.2): #Uses differences between points to establish anomalies. #Only removes single points with differences to both neighbouring points greater than threshold above median difference (ie ~rms) #Fast: 0.05s for 1 million-point array. #Must be nan-cut first diffarr=np.vstack((np.diff(flux[1:]),np.diff(flux[:-1]))) diffarr/=np.median(abs(diffarr[0,:])) #Adding a test for the first and last points if they are >3*thresh from median RMS wrt next two points. anoms=np.hstack((abs(flux[0]-np.median(flux[1:3]))<(np.median(abs(diffarr[0,:]))*thresh*5), ((diffarr[0,:]*diffarr[1,:])>0)+(abs(diffarr[0,:])<thresh)+(abs(diffarr[1,:])<thresh), abs(flux[-1]-np.median(flux[-3:-1]))<(np.median(abs(diffarr[0,:]))*thresh*5))) return anoms def get_interpmodels(Rs,Ms,Teff,lc_time,lc_flux_unit,mission='tess',n_durs=3,gap_thresh=2.0,texp=None): #Uses radius, mass and lightcurve duration to create fake transit models to use in monotransit search if texp is None: texp=np.nanmedian(np.diff(lc_time)) u_star = tools.getLDs(Teff,logg=np.log10(Ms/Rs**2)+4.431,FeH=0.0)[0] #Computing monotransit minimum P from which to estimate durations: cadence=np.nanmedian(np.diff(lc_time)) jumps=np.hstack((0,np.where(np.diff(lc_time)>gap_thresh)[0],len(lc_time)-1)) #Using the maximum uninterupted patch of lightcurve as the period guess: P_guess=np.clip(np.max(lc_time[jumps[1:]]-lc_time[jumps[:-1]]),5.0,250) #print(jumps,jumps[np.argmax(np.diff(jumps))],jumps[1+np.argmax(np.diff(jumps))],P_guess) # Orbit models - for every n_dur over 4, we add longer durations to check: per_steps=np.logspace(np.log10(0.4)-0.03*np.clip(n_durs-9,0.0,7.0),np.log10(2.5+0.33*np.clip(n_durs-4,0.0,2.0)),n_durs) b_steps=np.linspace(0.88,0,n_durs) orbits = xo.orbits.KeplerianOrbit(r_star=Rs,m_star=Ms,period=P_guess*per_steps,t0=np.tile(0.0,n_durs),b=b_steps) vx, vy, vz = orbits.get_relative_velocity(0.0) tdurs=((2*1.1*np.clip(Rs,0.1,10)*np.sqrt(1-b_steps**2))/tt.sqrt(vx**2 + vy**2)).eval().ravel() # Compute the model light curve using starry interpt=np.linspace(-0.6*np.max(tdurs),0.6*np.max(tdurs),600).astype(np.float64) ys=xo.LimbDarkLightCurve(u_star).get_light_curve(orbit=orbits, r=np.tile(0.1*np.clip(Rs,0.1,10),n_durs), t=interpt, texp=texp ).eval()/lc_flux_unit interpmodels=[] for row in range(n_durs): interpmodels+=[interp.interp1d(interpt.astype(float).ravel(),ys[:,row].astype(float).ravel(), bounds_error=False,fill_value=(0.0,0.0),kind = 'cubic')] return interpmodels,tdurs def VetCand(pl_dic,pl,ID,lc,mission,Rs=1.0,Ms=1.0,Teff=5800, mono_SNR_thresh=6.5,mono_SNR_r_thresh=5,variable_llk_thresh=5, plot=False,file_loc=None,vet_do_fit=True,return_fit_lcs=False,do_cent=True,**kwargs): #Best-fit model params for the mono transit: if pl_dic['orbit_flag']=='mono' and vet_do_fit: #Making sure our lightcurve mask isn't artificially excluding in-transit points: in_trans=abs(lc['time']-pl_dic['tcen'])<(0.6*pl_dic['tdur']) lc['mask'][in_trans]=np.isfinite(lc['flux'][in_trans])&
np.isfinite(lc['flux_err'][in_trans])
numpy.isfinite
''' Copyright (c) 2021 <NAME> Classify climate databases ''' import pickle import h5py import numpy as np from sklearn.preprocessing import MinMaxScaler from pyjets.averages import get_avg_mag, get_avg_lat, get_avg_lon from pyjets.classifiers import fulldataset_selected, classify_composite from pyjets.plots_misc import plot_onemonth from pyjets.read_nc import find_file from pyjets.standard_method import standard from setup_pyjets import * def pnj_classify(classify_model, classify_period, plot_path_d): ''' ua and other data ''' file = find_file('ua', file_path_h5, classify_level, classify_model, classify_period) h5file = h5py.File(file_path_h5 + file, 'r') nc_lat_data = h5file['nc_lat_data'][:] nc_lon_data = h5file['nc_lon_data'][:] ua2classify = h5file['x_data_sel'][:] grid_type = h5file['grid_type'][()] if not isinstance(grid_type, str): grid_type = h5file['grid_type'][()].decode("utf-8") h5file.close() '''zg data''' file = find_file('zg', file_path_h5, classify_level, classify_model, classify_period) h5file = h5py.File(file_path_h5 + file, 'r') zg_data = h5file['x_data_sel'][:] h5file.close() nmonths = ua2classify.shape[0] month2classify = np.arange(0, nmonths) # month2classify = np.arange(0, 6) # solo para pruebas seedsx = [] seedsy = [] for idx, month in enumerate(month2classify): img = ua2classify[idx, :, :] + abs(np.min(ua2classify[idx, :, :])) seed_x, seed_y = np.where(img == np.max(img)) seedsx.append(seed_x[0].item()) seedsy.append(seed_y[0].item()) '''Feature 1 for classification''' x1 =
np.zeros_like(ua2classify)
numpy.zeros_like
""" Utility functions for the validation scripts. """ from htof.parse import DataParser, HipparcosOriginalData, HipparcosRereductionDVDBook, HipparcosRereductionJavaTool from htof.fit import AstrometricFitter from htof.sky_path import parallactic_motion, earth_ephemeris from astropy import time from astropy.coordinates import Angle from astropy.table import Table from glob import glob import os import warnings import numpy as np def refit_hip_fromdata(data: DataParser, fit_degree, cntr_RA=Angle(0, unit='degree'), cntr_Dec=Angle(0, unit='degree'), use_parallax=False): data.calculate_inverse_covariance_matrices() # generate parallax motion jyear_epoch = time.Time(data.julian_day_epoch(), format='jd', scale='tcb').jyear # note that ra_motion and dec_motion are in degrees here. # generate sky path year_epochs = jyear_epoch - time.Time(1991.25, format='decimalyear', scale='tcb').jyear ra_motion, dec_motion = parallactic_motion(jyear_epoch, cntr_RA.degree, cntr_Dec.degree, 'degree', time.Time(1991.25, format='decimalyear', scale='tcb').jyear, ephemeris=earth_ephemeris) # Hipparcos was in a geostationary orbit. ra_resid = Angle(data.residuals.values * np.sin(data.scan_angle.values), unit='mas') dec_resid = Angle(data.residuals.values * np.cos(data.scan_angle.values), unit='mas') # instantiate fitter fitter = AstrometricFitter(data.inverse_covariance_matrix, year_epochs, use_parallax=use_parallax, fit_degree=fit_degree, parallactic_pertubations={'ra_plx': Angle(ra_motion, 'degree').mas, 'dec_plx': Angle(dec_motion, 'degree').mas}) fit_coeffs, errors, chisq = fitter.fit_line(ra_resid.mas, dec_resid.mas, return_all=True) parallax_factors = ra_motion * np.sin(data.scan_angle.values) + dec_motion * np.cos(data.scan_angle.values) # technically this could be data.parallax_factors.values, but then we have to deal with # getting the RA and Dec components of that. if not use_parallax: fit_coeffs = np.hstack([[0], fit_coeffs]) errors =
np.hstack([[0], errors])
numpy.hstack
""" author: <NAME> """ import numpy as np import time import copy from numba import njit from numba.typed import List from gglasso.solver.ggl_helper import phiplus, prox_od_1norm, prox_2norm, prox_rank_norm from gglasso.helper.ext_admm_helper import check_G def ext_ADMM_MGL(S, lambda1, lambda2, reg , Omega_0, G,\ X0 = None, X1 = None, tol = 1e-5 , rtol = 1e-4, stopping_criterion = 'boyd',\ rho= 1., max_iter = 1000, verbose = False, measure = False, latent = False, mu1 = None): """ This is an ADMM algorithm for solving the Group Graphical Lasso problem where not all instances have the same number of dimensions, i.e. some variables are present in some instances and not in others. A group sparsity penalty is applied to all pairs of variables present in multiple instances. IMPORTANT: As the arrays are non-conforming in dimensions here, we operate on dictionaries with keys 1,..,K (as int) and each value is a array of shape :math:`(p_k,p_k)`. If ``latent=False``, this function solves .. math:: \min_{\Omega,\Theta,\Lambda} \sum_{k=1}^K - \log \det(\Omega^{(k)}) + \mathrm{Tr}(S^{(k)}\Omega^{(k)}) + \sum_{k=1}^K \lambda_1 ||\Theta^{(k)}||_{1,od} + \sum_{l} \lambda_2 \\beta_l ||\Lambda_{[l]}||_2 s.t. \quad \Omega^{(k)} = \Theta^{(k)} \quad k=1,\dots,K \quad \quad \Lambda^{(k)} = \Theta^{(k)} \quad k=1,\dots,K where l indexes the groups of overlapping variables and :math:`\Lambda_{[l]}` is the array of all respective components. To account for differing group sizes we multiply with :math:`\\beta_l`, the square root of the group size. If ``latent=True``, this function solves .. math:: \min_{\Omega,\Theta,\Lambda,L} \sum_{k=1}^K - \log \det(\Omega^{(k)}) + \mathrm{Tr}(S^{(k)}\Omega^{(k)}) + \sum_{k=1}^K \lambda_1 ||\Theta^{(k)}||_{1,od} + \sum_{l} \lambda_2 \\beta_l ||\Lambda_{[l]}||_2 +\sum_{k=1}^{K} \mu_{1,k} \|L^{(k)}\|_{\star} s.t. \quad \Omega^{(k)} = \Theta^{(k)} - L^{(k)} \quad k=1,\dots,K \quad \quad \Lambda^{(k)} = \Theta^{(k)} \quad k=1,\dots,K Note: * Typically, ``sol['Omega']`` is positive definite and ``sol['Theta']`` is sparse. * We use scaled ADMM, i.e. X0 and X1 are the scaled (with 1/rho) dual variables for the equality constraints. Parameters ---------- S : dict empirical covariance matrices. S should have keys 1,..,K (as integers) and S[k] contains the :math:`(p_k,p_k)`-array of the empirical cov. matrix of the k-th instance. Each S[k] needs to be symmetric and positive semidefinite. lambda1 : float, positive sparsity regularization parameter. lambda2 : float, positive group sparsity regularization parameter. reg : str so far only Group Graphical Lasso is available, hence choose 'GGL'. Omega_0 : dict starting point for the Omega variable. Should be of same form as S. If no better starting point is available, choose Omega_0[k] = np.eye(p_k) for k=1,...,K G : array bookkeeping arrays which contains information where the respective entries for each group can be found. X0 : dict, optional starting point for the X0 variable. If not specified, it is set to zeros. X1 : dict, optional starting point for the X1 variable. If not specified, it is set to zeros. rho : float, positive, optional step size paramater for the augmented Lagrangian in ADMM. The default is 1. Tune this parameter for optimal performance. max_iter : int, optional maximum number of iterations. The default is 1000. tol : float, positive, optional tolerance for the primal residual. See "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers", Boyd et al. for details. The default is 1e-7. rtol : float, positive, optional tolerance for the dual residual. The default is 1e-4. stopping_criterion : str, optional * 'boyd': Stopping criterion after Boyd et al. * 'kkt': KKT residual is chosen as stopping criterion. This is computationally expensive to compute. The default is 'boyd'. verbose : boolean, optional verbosity of the solver. The default is False. measure : boolean, optional turn on/off measurements of runtime per iteration. The default is False. latent : boolean, optional Solve the GGL problem with or without latent variables (see above for the exact formulations). The default is False. mu1 : float, positive, optional low-rank regularization parameter, possibly different for each instance k=1,..,K. Only needs to be specified if latent=True. Returns ------- sol : dict contains the solution, i.e. Omega, Theta, X0, X1 (and L if latent=True) after termination. All elements are dictionaries with keys 1,..,K and (p_k,p_k)-arrays as values. info : dict status and measurement information from the solver. """ K = len(S.keys()) p = np.zeros(K, dtype= int) for k in np.arange(K): p[k] = S[k].shape[0] if type(lambda1) == np.float64 or type(lambda1) == float: lambda1 = lambda1*np.ones(K) if latent: if type(mu1) == np.float64 or type(mu1) == float: mu1 = mu1*np.ones(K) assert mu1 is not None assert np.all(mu1 > 0) assert min(lambda1.min(), lambda2) > 0 assert reg in ['GGL'] check_G(G, p) assert rho > 0, "ADMM penalization parameter must be positive." # initialize Omega_t = Omega_0.copy() Theta_t = Omega_0.copy() L_t = dict() for k in np.arange(K): L_t[k] = np.zeros((p[k],p[k])) # helper and dual variables Lambda_t = Omega_0.copy() Z_t = dict() if X0 is None: X0_t = dict() for k in np.arange(K): X0_t[k] = np.zeros((p[k],p[k])) else: X0_t = X0.copy() if X1 is None: X1_t = dict() for k in np.arange(K): X1_t[k] = np.zeros((p[k],p[k])) else: X1_t = X1.copy() runtime = np.zeros(max_iter) residual = np.zeros(max_iter) status = '' if verbose: print("------------ADMM Algorithm for Multiple Graphical Lasso----------------") if stopping_criterion == 'boyd': hdr_fmt = "%4s\t%10s\t%10s\t%10s\t%10s" out_fmt = "%4d\t%10.4g\t%10.4g\t%10.4g\t%10.4g" print(hdr_fmt % ("iter", "r_t", "s_t", "eps_pri", "eps_dual")) elif stopping_criterion == 'kkt': hdr_fmt = "%4s\t%10s" out_fmt = "%4d\t%10.4g" print(hdr_fmt % ("iter", "kkt residual")) ################################################################## ### MAIN LOOP STARTS ################################################################## for iter_t in np.arange(max_iter): if measure: start = time.time() # Omega Update Omega_t_1 = Omega_t.copy() for k in np.arange(K): W_t = Theta_t[k] - L_t[k] - X0_t[k] - (1/rho) * S[k] eigD, eigQ = np.linalg.eigh(W_t) Omega_t[k] = phiplus(beta = 1/rho, D = eigD, Q = eigQ) # Theta Update for k in np.arange(K): V_t = (Omega_t[k] + L_t[k] + X0_t[k] + Lambda_t[k] - X1_t[k]) * 0.5 Theta_t[k] = prox_od_1norm(V_t, lambda1[k]/(2*rho)) #L Update if latent: for k in np.arange(K): C_t = Theta_t[k] - X0_t[k] - Omega_t[k] C_t = (C_t.T + C_t)/2 eigD, eigQ = np.linalg.eigh(C_t) L_t[k] = prox_rank_norm(C_t, mu1[k]/rho, D = eigD, Q = eigQ) # Lambda Update Lambda_t_1 = Lambda_t.copy() for k in np.arange(K): Z_t[k] = Theta_t[k] + X1_t[k] Lambda_t = prox_2norm_G(Z_t, G, lambda2/rho) # X Update for k in np.arange(K): X0_t[k] += Omega_t[k] - Theta_t[k] + L_t[k] X1_t[k] += Theta_t[k] - Lambda_t[k] if measure: end = time.time() runtime[iter_t] = end-start # Stopping condition if stopping_criterion == 'boyd': r_t,s_t,e_pri,e_dual = ADMM_stopping_criterion(Omega_t, Omega_t_1, Theta_t, L_t, Lambda_t, Lambda_t_1, X0_t, X1_t,\ S, rho, p, tol, rtol, latent) residual[iter_t] = max(r_t,s_t) if verbose: print(out_fmt % (iter_t,r_t,s_t,e_pri,e_dual)) if (r_t <= e_pri) and (s_t <= e_dual): status = 'optimal' break elif stopping_criterion == 'kkt': eta_A = kkt_stopping_criterion(Omega_t, Theta_t, L_t, Lambda_t, dict((k, rho*v) for k,v in X0_t.items()), dict((k, rho*v) for k,v in X1_t.items()),\ S , G, lambda1, lambda2, reg, latent, mu1) residual[iter_t] = eta_A if verbose: print(out_fmt % (iter_t,eta_A)) if eta_A <= tol: status = 'optimal' break ################################################################## ### MAIN LOOP FINISHED ################################################################## # retrieve status (partially optimal or max iter) if status != 'optimal': if stopping_criterion == 'boyd': if (r_t <= e_pri): status = 'primal optimal' elif (s_t <= e_dual): status = 'dual optimal' else: status = 'max iterations reached' else: status = 'max iterations reached' print(f"ADMM terminated after {iter_t+1} iterations with status: {status}.") for k in np.arange(K): assert abs(Omega_t[k].T - Omega_t[k]).max() <= 1e-5, "Solution is not symmetric" assert abs(Theta_t[k].T - Theta_t[k]).max() <= 1e-5, "Solution is not symmetric" assert abs(L_t[k].T - L_t[k]).max() <= 1e-5, "Solution is not symmetric" D = np.linalg.eigvalsh(Theta_t[k]-L_t[k]) if D.min() <= 1e-5: print("WARNING: Theta (Theta-L resp.) may be not positive definite -- increase accuracy!") if latent: D = np.linalg.eigvalsh(L_t[k]) if D.min() <= -1e-5: print("WARNING: L may be not positive semidefinite -- increase accuracy!") sol = {'Omega': Omega_t, 'Theta': Theta_t, 'L': L_t, 'X0': X0_t, 'X1': X1_t} if measure: info = {'status': status , 'runtime': runtime[:iter_t+1], 'residual': residual[:iter_t+1]} else: info = {'status': status} return sol, info def ADMM_stopping_criterion(Omega, Omega_t_1, Theta, L, Lambda, Lambda_t_1, X0, X1, S, rho, p, eps_abs, eps_rel, latent=False): # X0, X1 are inputed as scaled dual vars., this is accounted for by factor rho in e_dual K = len(S.keys()) if not latent: for k in np.arange(K): assert np.all(L[k]==0) dim = ((p ** 2 + p) / 2).sum() # number of elements of off-diagonal matrix D1 = np.sqrt(sum([np.linalg.norm(Omega[k])**2 + np.linalg.norm(Lambda[k])**2 for k in np.arange(K)] )) D2 = np.sqrt(sum([np.linalg.norm(Theta[k] - L[k])**2 + np.linalg.norm(Theta[k])**2 for k in np.arange(K)] )) D3 = np.sqrt(sum([np.linalg.norm(X0[k])**2 + np.linalg.norm(X1[k])**2 for k in np.arange(K)] )) e_pri = dim * eps_abs + eps_rel * np.maximum(D1, D2) e_dual = dim * eps_abs + eps_rel * rho * D3 r = np.sqrt(sum([
np.linalg.norm(Omega[k] - Theta[k] + L[k])
numpy.linalg.norm
def as_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import as_dict import numpy as np arsenic_input = power_plant_inputs.Share_Arsenic pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = arsenic_input * np.mean(as_dict['Bottom_Ash']['solid']) bottom_ash_liquid = arsenic_input * np.mean(as_dict['Bottom_Ash']['liquid']) bottom_ash_gas = arsenic_input * np.mean(as_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(as_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(as_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(as_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(as_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(as_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(as_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(as_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(as_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(as_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(as_dict[pm_control]['solid']) pm_liquid = dsi_gas * np.mean(as_dict[pm_control]['liquid']) pm_gas = dsi_gas * np.mean(as_dict[pm_control]['gas']) #Partitioning in SO2 Control Systems so2_solid = pm_gas * np.mean(as_dict[so2_control]['solid']) so2_liquid = pm_gas * np.mean(as_dict[so2_control]['liquid']) so2_gas = pm_gas * np.mean(as_dict[so2_control]['gas']) #Calucalate total partitioning as_solid = bottom_ash_solid + scr_solid + aci_solid + pm_solid + dsi_solid + so2_solid as_liquid = bottom_ash_liquid + scr_liquid + aci_liquid + pm_liquid + dsi_liquid + so2_liquid as_gas = so2_gas return as_solid, as_liquid, as_gas def cl_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import cl_dict import numpy as np chlorine_input = power_plant_inputs.Share_Chloride pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = chlorine_input * np.mean(cl_dict['Bottom_Ash']['solid']) bottom_ash_liquid = chlorine_input * np.mean(cl_dict['Bottom_Ash']['liquid']) bottom_ash_gas = chlorine_input * np.mean(cl_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(cl_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(cl_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(cl_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(cl_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(cl_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(cl_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(cl_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(cl_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(cl_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(cl_dict[pm_control]['solid']) pm_liquid = dsi_gas * np.mean(cl_dict[pm_control]['liquid']) pm_gas = dsi_gas * np.mean(cl_dict[pm_control]['gas']) #Partitioning in SO2 Control Systems so2_solid = pm_gas * np.mean(cl_dict[so2_control]['solid']) so2_liquid = pm_gas * np.mean(cl_dict[so2_control]['liquid']) so2_gas = pm_gas * np.mean(cl_dict[so2_control]['gas']) #Calucalate total partitioning cl_solid = bottom_ash_solid + scr_solid + aci_solid + dsi_solid + pm_solid + so2_solid cl_liquid = bottom_ash_liquid + scr_liquid + aci_liquid + dsi_liquid + pm_liquid + so2_liquid cl_gas = so2_gas return cl_solid, cl_liquid, cl_gas def se_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import se_dict import numpy as np selenium_input = power_plant_inputs.Share_Selenium pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = selenium_input * np.mean(se_dict['Bottom_Ash']['solid']) bottom_ash_liquid = selenium_input * np.mean(se_dict['Bottom_Ash']['liquid']) bottom_ash_gas = selenium_input * np.mean(se_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(se_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(se_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(se_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(se_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(se_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(se_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(se_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(se_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(se_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(se_dict[pm_control]['solid']) pm_liquid = dsi_gas * np.mean(se_dict[pm_control]['liquid']) pm_gas = dsi_gas * np.mean(se_dict[pm_control]['gas']) #Partitioning in SO2 Control Systems so2_solid = pm_gas * np.mean(se_dict[so2_control]['solid']) so2_liquid = pm_gas * np.mean(se_dict[so2_control]['liquid']) so2_gas = pm_gas * np.mean(se_dict[so2_control]['gas']) #Calucalate total partitioning se_solid = bottom_ash_solid + scr_solid + aci_solid + dsi_solid + pm_solid + so2_solid se_liquid = bottom_ash_liquid + scr_liquid + aci_liquid + dsi_liquid + pm_liquid + so2_liquid se_gas = so2_gas return se_solid, se_liquid, se_gas def hg_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import hg_dict import numpy as np mercury_input = power_plant_inputs.Share_Mercury pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = mercury_input * np.mean(hg_dict['Bottom_Ash']['solid']) bottom_ash_liquid = mercury_input * np.mean(hg_dict['Bottom_Ash']['liquid']) bottom_ash_gas = mercury_input * np.mean(hg_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(hg_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(hg_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(hg_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(hg_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(hg_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(hg_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(hg_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(hg_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(hg_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(hg_dict[pm_control]['solid']) pm_liquid = dsi_gas * np.mean(hg_dict[pm_control]['liquid']) pm_gas = dsi_gas * np.mean(hg_dict[pm_control]['gas']) #Partitioning in SO2 Control Systems so2_solid = pm_gas * np.mean(hg_dict[so2_control]['solid']) so2_liquid = pm_gas * np.mean(hg_dict[so2_control]['liquid']) so2_gas = pm_gas * np.mean(hg_dict[so2_control]['gas']) #Calucalate total partitioning hg_solid = bottom_ash_solid + scr_solid + aci_solid + dsi_solid + pm_solid + so2_solid hg_liquid = bottom_ash_liquid + scr_liquid + aci_liquid + dsi_liquid + pm_liquid + so2_liquid hg_gas = so2_gas return hg_solid, hg_liquid, hg_gas def br_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import br_dict import numpy as np bromine_input = power_plant_inputs.Share_Bromide pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = bromine_input * np.mean(br_dict['Bottom_Ash']['solid']) bottom_ash_liquid = bromine_input * np.mean(br_dict['Bottom_Ash']['liquid']) bottom_ash_gas = bromine_input * np.mean(br_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(br_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(br_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(br_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(br_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(br_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(br_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(br_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(br_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(br_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(br_dict[pm_control]['solid']) pm_liquid = dsi_gas * np.mean(br_dict[pm_control]['liquid']) pm_gas = dsi_gas * np.mean(br_dict[pm_control]['gas']) #Partitioning in SO2 Control Systems so2_solid = pm_gas * np.mean(br_dict[so2_control]['solid']) so2_liquid = pm_gas * np.mean(br_dict[so2_control]['liquid']) so2_gas = pm_gas * np.mean(br_dict[so2_control]['gas']) #Calucalate total partitioning br_solid = bottom_ash_solid + scr_solid + aci_solid + dsi_solid + pm_solid + so2_solid br_liquid = bottom_ash_liquid + scr_liquid + aci_liquid + +dsi_liquid + pm_liquid + so2_liquid br_gas = so2_gas return br_solid, br_liquid, br_gas def b_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import b_dict import numpy as np boron_input = power_plant_inputs.Share_Boron pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = boron_input * np.mean(b_dict['Bottom_Ash']['solid']) bottom_ash_liquid = boron_input * np.mean(b_dict['Bottom_Ash']['liquid']) bottom_ash_gas = boron_input * np.mean(b_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(b_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(b_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(b_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(b_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(b_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(b_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(b_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(b_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(b_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(b_dict[pm_control]['solid']) pm_liquid = dsi_gas * np.mean(b_dict[pm_control]['liquid']) pm_gas = dsi_gas * np.mean(b_dict[pm_control]['gas']) #Partitioning in SO2 Control Systems so2_solid = pm_gas * np.mean(b_dict[so2_control]['solid']) so2_liquid = pm_gas * np.mean(b_dict[so2_control]['liquid']) so2_gas = pm_gas * np.mean(b_dict[so2_control]['gas']) #Calucalate total partitioning b_solid = bottom_ash_solid + scr_solid + aci_solid + dsi_solid + pm_solid + so2_solid b_liquid = bottom_ash_liquid + scr_liquid + aci_liquid + dsi_liquid + pm_liquid + so2_liquid b_gas = so2_gas return b_solid, b_liquid, b_gas def pb_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import pb_dict import numpy as np lead_input = power_plant_inputs.Share_Lead pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = lead_input * np.mean(pb_dict['Bottom_Ash']['solid']) bottom_ash_liquid = lead_input * np.mean(pb_dict['Bottom_Ash']['liquid']) bottom_ash_gas = lead_input * np.mean(pb_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(pb_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(pb_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(pb_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(pb_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(pb_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(pb_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(pb_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(pb_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(pb_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(pb_dict[pm_control]['solid']) pm_liquid = dsi_gas * np.mean(pb_dict[pm_control]['liquid']) pm_gas = dsi_gas *
np.mean(pb_dict[pm_control]['gas'])
numpy.mean
#!/usr/bin/python import sys import warnings from time import time from pathlib import Path import ftplib import pandas as pd import numpy as np import matplotlib.dates as mdates from netCDF4 import Dataset from . import util global module_path module_path = Path('fake_directory_name') i = 0 while not module_path.exists(): module_path = Path(sys.path[i]) / 'bgcArgo/ref' i += 1 def read_index(mission='B'): ''' Function to read and extract information from Argo global index, then save it to a dataframe for faster access ''' if mission == 'B': filename = module_path / 'argo_bio-profile_index.txt.gz' elif mission == 'C': filename = module_path / 'ar_index_global_prof.txt.gz' elif mission == 'S': filename = module_path / 'argo_synthetic-profile_index.txt.gz' df = pd.read_csv(filename, compression='gzip', header=8) df['dac'] = np.array([f.split('/')[0] for f in df.file]) df['wmo'] = np.array([int(f.split('/')[1]) for f in df.file]) df['cycle'] = np.array([int(f.split('/')[-1].split('.')[-2].split('_')[-1].replace('D','')) for f in df.file]) return df def update_index(ftype=None): ''' Function to access FTP server to download Argo metadata and profile global index files ''' ftp = ftplib.FTP('ftp.ifremer.fr') ftp.login() ftp.cwd('/ifremer/argo/') meta = 'ar_index_global_meta.txt.gz' index = 'ar_index_global_prof.txt.gz' bgc = 'argo_bio-profile_index.txt.gz' synth = 'argo_synthetic-profile_index.txt.gz' local_meta = module_path / meta lf = open(local_meta, 'wb') if ftype is None or ftype == 'meta': ftp.retrbinary('RETR ' + meta, lf.write) local_index = module_path / index lf = open(local_index, 'wb') if ftype is None or ftype =='profile': ftp.retrbinary('RETR ' + index, lf.write) local_bgc = module_path / bgc lf = open(local_bgc, 'wb') if ftype is None or ftype =='bgc': ftp.retrbinary('RETR ' + bgc, lf.write) local_synth = module_path / synth lf = open(local_synth, 'wb') if ftype is None or ftype =='synthetic': ftp.retrbinary('RETR ' + synth, lf.write) return ftp def check_index(mode=None): ''' Function to check age of Argo metadata and profile global index files, warn if they have not been updated in more than 1 week. Runs on import. ''' if mode is None: meta = 'ar_index_global_meta.txt.gz' index = 'ar_index_global_prof.txt.gz' bgc = 'argo_bio-profile_index.txt.gz' synth = 'argo_synthetic-profile_index.txt.gz' local_meta = module_path / meta local_index = module_path / index local_bgc = module_path / bgc local_synth = module_path / synth meta_mtime = local_meta.stat().st_mtime index_mtime = local_index.stat().st_mtime bgc_mtime = local_bgc.stat().st_mtime synth_mtime = local_index.stat().st_mtime # get time since last update curr_time = time() meta_delta = curr_time - meta_mtime index_delta = curr_time - index_mtime bgc_delta = curr_time - bgc_mtime synth_delta = curr_time - synth_mtime if meta_delta / 60 / 60 / 24 > 7: d = meta_delta / 60 / 60 / 24 warnings.warn('Argo global metadata index is more than 7 days old - has not been updated in {:d} days - consider running update_index()'.format(int(d)), Warning) if index_delta / 60 / 60 / 24 > 7: d = index_delta / 60 / 60 / 24 warnings.warn('Argo global profile index is more than 7 days old - has not been updated in {:d} days - consider running update_index()'.format(int(d)), Warning) if bgc_delta / 60 / 60 / 24 > 7: d = bgc_delta / 60 / 60 / 24 warnings.warn('Argo global BGC index is more than 7 days old - has not been updated in {:d} days - consider running update_index()'.format(int(d)), Warning) if synth_delta / 60 / 60 / 24 > 7: d = synth_delta / 60 / 60 / 24 warnings.warn('Argo global synthetic profile index is more than 7 days old - has not been updated in {:d} days - consider running update_index()'.format(int(d)), Warning) elif mode == 'install': meta = 'ar_index_global_meta.txt.gz' index = 'ar_index_global_prof.txt.gz' bgc = 'argo_bio-profile_index.txt.gz' synth = 'argo_synthetic-profile_index.txt.gz' local_meta = module_path / meta local_index = module_path / index local_bgc = module_path / bgc local_synth = module_path / synth if not ((local_meta.exists() and local_index.exists()) and (local_bgc.exists() and local_synth.exists())): sys.stdout.write('At least one index file does not exist - downloading now - this may take some time depending on your internet connection\n') update_index() else: meta_mtime = local_meta.stat().st_mtime index_mtime = local_index.stat().st_mtime bgc_mtime = local_bgc.stat().st_mtime synth_mtime = local_synth.stat().st_mtime # get time since last update curr_time = time() meta_delta = curr_time - meta_mtime index_delta = curr_time - index_mtime if meta_delta / 60 / 60 / 24 > 7: d = meta_delta / 60 / 60 / 24 sys.stdout.write('Argo global metadata index is more than 7 days old - has not been updated in {:d} days - downloading now - this may take some time depending on your internet connection\n'.format(int(d))) update_index(ftype='meta') if index_delta / 60 / 60 / 24 > 7: d = index_delta / 60 / 60 / 24 sys.stdout.write('Argo global profile index is more than 7 days old - has not been updated in {:d} days - downloading now - this may take some time depending on your internet connection\n'.format(int(d))) update_index(ftype='profile') if bgc_delta / 60 / 60 / 24 > 7: d = bgc_delta / 60 / 60 / 24 sys.stdout.write('Argo global BGC index is more than 7 days old - has not been updated in {:d} days - downloading now - this may take some time depending on your internet connection\n'.format(int(d))) update_index(ftype='bgc') if synth_delta / 60 / 60 / 24 > 7: d = synth_delta / 60 / 60 / 24 sys.stdout.write('Argo global synthetic profile index is more than 7 days old - has not been updates in {:d} days - downloading now - this may take some time depending on your internet connection\n'.format(int(d))) update_index(ftype='synthetic') def get_woa18(varname, local_path='./', ftype='netcdf', overwrite=False): ''' Function to download WOA data for a given variable INPUT: varname: woa18 variable to download data for - one of: T: temperature S: salinity O2: dissolved oxygen O2sat: oxygen percent saturation NO3: nitrate Si: silicate PO4: phosphate local_path: path to save files to (inside variable folder, ex. if local_path = '../data/woa', and varname = 'T', files will be saved in ../data/woa/temperature/*.nc. Defaults to current directory ftype: file format to download, defaults to netcdf (.nc): ascii: .dat csv: .csv netcdf: .nc overwrite: boolean flag, if False, does not re-download existing files, if true, will download no matter what, defaults to False OUTPUT: ftp: the ftplib server object AUTHOR: <NAME> Fisheries and Oceans Canada <EMAIL> LAST UPDATE: 29-04-2020 CHANGE LOG: ''' local_path = Path(local_path) url = 'ftp.nodc.noaa.gov' param, dtype, ftpdir = util.decode_woa_var(varname) ftp = ftplib.FTP(url, 'anonymous', '<EMAIL>') ftp.cwd('pub/woa/WOA18/DATA/{}/{}/{}/1.00/'.format(ftpdir, ftype, dtype)) local_path = local_path / ftpdir if not local_path.is_dir(): local_path.mkdir() for fn in ftp.nlst(): local_file = local_path / fn if not local_file.exists() | overwrite: print(local_file) # open the local file lf = open(local_file, 'wb') # retrieve the file on FTP server, ftp.retrbinary('RETR ' + fn, lf.write) return ftp def get_ncep(varname, local_path='./', overwrite=False): ''' Function to download NCEP reanalysis gaussian gridded surface air pressure data INPUT: varname: 'pres' (pressure) or 'rhum' (relative humidity) or 'land' (to get land mask) local_path: path to save files to, defaults to current directory overwrite: boolean flag, if False, does not re-download existing files, if true, will download no matter what, defaults to False OUTPUT: ftp: the ftplib server object AUTHOR: <NAME> Fisheries and Oceans Canada <EMAIL> LAST UPDATE: 29-04-2020 CHANGE LOG: ''' local_path = Path(local_path) url = 'ftp.cdc.noaa.gov' ftp = ftplib.FTP(url, 'anonymous', '<EMAIL>') if varname == 'pres': ftp.cwd('Datasets/ncep.reanalysis2/gaussian_grid/') local_path = local_path / varname if not local_path.is_dir(): local_path.mkdir() for yr in range(2010, 2021): fn = 'pres.sfc.gauss.{}.nc'.format(yr) local_file = local_path / fn if not local_file.exists() | overwrite: print(local_file) # open the local file lf = open(local_file, 'wb') # retrieve the file on FTP server, ftp.retrbinary('RETR ' + fn, lf.write) elif varname == 'rhum': ftp.cwd('Datasets/ncep.reanalysis/surface/') local_path = local_path / varname if not local_path.is_dir(): local_path.mkdir() for yr in range(2010, 2021): fn = 'rhum.sig995.{}.nc'.format(yr) local_file = local_path / fn if not local_file.exists() | overwrite: print(local_file) # open the local file lf = open(local_file, 'wb') # retrieve the file on FTP server, ftp.retrbinary('RETR ' + fn, lf.write) elif varname == 'land': local_path = local_path / varname if not local_path.is_dir(): local_path.mkdir() ftp.cwd('Datasets/ncep.reanalysis2/gaussian_grid/') fn = 'land.sfc.gauss.nc' local_file = local_path / fn if not local_file.exists() | overwrite: lf = open(local_file, 'wb') ftp.retrbinary('RETR ' + fn, lf.write) ftp.cwd('../../ncep.reanalysis/surface/') fn = 'land.nc' local_file = local_path / fn if not local_file.exists() | overwrite: lf = open(local_file, 'wb') ftp.retrbinary('RETR ' + fn, lf.write) else: raise ValueError('Invalid varname input') return ftp def get_argo(*args, local_path='./', url='ftp.ifremer.fr', overwrite=False, ftype=None, mission=None, mode='RD'): ''' Function to download all data from a single float, or individual profiles INPUT: Inputs may vary depending on desired performance. Multiple arguments may be provided to download all files from a certain float or argo defined geographical area. A single path to a file may be provided to download that file. A list of files may be provided as well. overwrite: boolean flag, if False, does not re-download existing files, if true, will download no matter what, defaults to False OUTPUT: AUTHOR: <NAME> Fisheries and Oceans Canada <EMAIL> LAST UPDATE: 29-04-2020 CHANGE LOG: ''' if len(args) == 1: local_path = Path(local_path) ftp = ftplib.FTP(url) ftp.login() for a in args[0]: # if its a file if a[-2:] == 'nc': # if its a profile file if 'profiles' in a: ftp_wmo_path = ''.join(a.split('/')[:-2]) wmo = ftp_wmo_path.split('/')[-1] dac = ftp_wmo_path.split('/')[-2] ftp.cwd(ftp_wmo_path) # if not - so Sprof, Mprof, BRtraj or meta else: ftp_wmo_path = ''.join(a.split('/')[:-1]) wmo = ftp_wmo_path.split('/')[-1] dac = ftp_wmo_path.split('/')[-2] ftp.cwd(ftp_wmo_path) # if its a float else: ftp_wmo_path = a wmo = ftp_wmo_path.split('/')[-1] dac = ftp_wmo_path.split('/')[-2] ftp.cwd(ftp_wmo_path) files = ftp.nlst('*.nc') # define local location to save file dac_path = local_path / dac wmo_path = local_path / dac / wmo # make the directory if it doesn't exist if not dac_path.is_dir(): dac_path.mkdir() if not wmo_path.is_dir(): wmo_path.mkdir() # download the files for fn in files: # define the local file to have the same name as on the FTP server wmo_file = wmo_path / fn # only download the file if it doesn't already exist locally if not wmo_file.exists() | overwrite: print(wmo_file) # open the local file lf = open(wmo_file, 'wb') # retrieve the file on FTP server, ftp.retrbinary('RETR ' + fn, lf.write) # repeat as above if 'profiles' in ftp.nlst() and ftype != 'summary': ftp.cwd('profiles') if mission is None or mission == 'CB': if mode == 'RD': files = ftp.nlst('*.nc') elif mode == 'R': files = ftp.nlst('*.nc') ix = np.array(['D' in fn for fn in files]) files = list(
np.array(files)
numpy.array
# -*- coding: utf-8 -*- # This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2016 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) from numbers import Number import numpy as np from pymor.core.interfaces import BasicInterface, abstractmethod, abstractclassmethod, abstractproperty from pymor.vectorarrays.interfaces import VectorArrayInterface, _INDEXTYPES class VectorInterface(BasicInterface): """Interface for vectors. This Interface is intended to be used in conjunction with |ListVectorArray|. All pyMOR algorithms operate on |VectorArrays| instead of single vectors! All methods of the interface have a direct counterpart in the |VectorArray| interface. """ @abstractclassmethod def make_zeros(cls, subtype=None): pass @classmethod def from_data(cls, data, subtype): raise NotImplementedError @abstractproperty def dim(self): pass @property def subtype(self): return None @abstractmethod def copy(self, deep=False): pass @abstractmethod def scal(self, alpha): pass @abstractmethod def axpy(self, alpha, x): pass @abstractmethod def dot(self, other): pass @abstractmethod def l1_norm(self): pass @abstractmethod def l2_norm(self): pass @abstractmethod def l2_norm2(self): pass def sup_norm(self): if self.dim == 0: return 0. else: _, max_val = self.amax() return max_val @abstractmethod def components(self, component_indices): pass @abstractmethod def amax(self): pass def __add__(self, other): result = self.copy() result.axpy(1, other) return result def __iadd__(self, other): self.axpy(1, other) return self __radd__ = __add__ def __sub__(self, other): result = self.copy() result.axpy(-1, other) return result def __isub__(self, other): self.axpy(-1, other) return self def __mul__(self, other): result = self.copy() result.scal(other) return result def __imul__(self, other): self.scal(other) return self def __neg__(self): result = self.copy() result.scal(-1) return result class CopyOnWriteVector(VectorInterface): @abstractclassmethod def from_instance(cls, instance): pass @abstractmethod def _copy_data(self): pass @abstractmethod def _scal(self, alpha): pass @abstractmethod def _axpy(self, alpha, x): pass def copy(self, deep=False): c = self.from_instance(self) if deep: c._copy_data() else: try: self._refcount[0] += 1 except AttributeError: self._refcount = [2] c._refcount = self._refcount return c def scal(self, alpha): self._copy_data_if_needed() self._scal(alpha) def axpy(self, alpha, x): self._copy_data_if_needed() self._axpy(alpha, x) def __del__(self): try: self._refcount[0] -= 1 except AttributeError: pass def _copy_data_if_needed(self): try: if self._refcount[0] > 1: self._refcount[0] -= 1 self._copy_data() self._refcount = [1] except AttributeError: self._refcount = [1] class NumpyVector(CopyOnWriteVector): """Vector stored in a NumPy 1D-array.""" def __init__(self, instance, dtype=None, copy=False, order=None, subok=False): if isinstance(instance, np.ndarray) and not copy: self._array = instance else: self._array = np.array(instance, dtype=dtype, copy=copy, order=order, subok=subok, ndmin=1) assert self._array.ndim == 1 @classmethod def from_instance(cls, instance): return cls(instance._array) @classmethod def make_zeros(cls, subtype=None): assert isinstance(subtype, Number) return NumpyVector(np.zeros(subtype)) @classmethod def from_data(cls, data, subtype): assert isinstance(data, np.ndarray) and data.ndim == 1 assert len(data) == subtype return cls(data) @property def data(self): return self._array @property def dim(self): return len(self._array) @property def subtype(self): return len(self._array) def _copy_data(self): self._array = self._array.copy() def _scal(self, alpha): self._array *= alpha def _axpy(self, alpha, x): assert self.dim == x.dim if alpha == 0: return if alpha == 1: self._array += x._array elif alpha == -1: self._array -= x._array else: self._array += x._array * alpha def dot(self, other): assert self.dim == other.dim return np.sum(self._array * other._array) def l1_norm(self): return np.sum(np.abs(self._array)) def l2_norm(self): return np.linalg.norm(self._array) def l2_norm2(self): return np.sum((self._array * self._array.conj()).real) def components(self, component_indices): return self._array[component_indices] def amax(self): A = np.abs(self._array) max_ind = np.argmax(A) max_val = A[max_ind] return max_ind, max_val class ListVectorArray(VectorArrayInterface): """|VectorArray| implementation via a Python list of vectors. The :attr:`subtypes <pymor.vectorarrays.interfaces.VectorArrayInterface.subtype>` a |ListVectorArray| can have are tuples `(vector_type, vector_subtype)` where `vector_type` is a subclass of :class:`VectorInterface` and `vector_subtype` is a valid subtype for `vector_type`. Parameters ---------- vectors List of :class:`vectors <VectorInterface>` contained in the array. subtype If `vectors` is empty, the array's :attr:`~pymor.vectorarrays.interfaces.VectorArrayInterface.subtype` must be provided, as the subtype cannot be derived from `vectors` in this case. copy If `True`, make copies of the vectors in `vectors`. """ _NONE = () def __init__(self, vectors, subtype=_NONE, copy=True): vectors = list(vectors) if subtype is self._NONE: assert len(vectors) > 0 subtype = (type(vectors[0]), vectors[0].subtype) if not copy: self._list = vectors else: self._list = [v.copy() for v in vectors] self.vector_type, self.vector_subtype = vector_type, vector_subtype = subtype assert all(v.subtype == vector_subtype for v in self._list) @classmethod def make_array(cls, subtype=None, count=0, reserve=0): assert count >= 0 assert reserve >= 0 vector_type, vector_subtype = subtype return cls([vector_type.make_zeros(vector_subtype) for _ in range(count)], subtype=subtype, copy=False) @classmethod def from_data(cls, data, subtype): vector_type, vector_subtype = subtype return cls([vector_type.from_data(v, vector_subtype) for v in data], subtype=subtype) def __len__(self): return len(self._list) @property def data(self): if not hasattr(self.space.type, 'data'): raise TypeError('{} does not have a data attribute'.format(self.space.type)) if len(self._list) > 0: return np.array([v.data for v in self._list]) else: return np.empty((0, self.dim)) @property def dim(self): if len(self._list) > 0: return self._list[0].dim else: return self.vector_type.make_zeros(self.vector_subtype).dim @property def subtype(self): return (self.vector_type, self.vector_subtype) def copy(self, ind=None, deep=False): assert self.check_ind(ind) if ind is None: vecs = [v.copy(deep=deep) for v in self._list] elif isinstance(ind, Number): vecs = [self._list[ind].copy(deep=deep)] else: vecs = [self._list[i].copy(deep=deep) for i in ind] return type(self)(vecs, subtype=self.subtype, copy=False) def append(self, other, o_ind=None, remove_from_other=False): assert other.check_ind(o_ind) assert other.space == self.space assert other is not self or not remove_from_other other_list = other._list if not remove_from_other: if o_ind is None: self._list.extend([v.copy() for v in other_list]) elif isinstance(o_ind, Number): self._list.append(other_list[o_ind].copy()) else: self._list.extend([other_list[i].copy() for i in o_ind]) else: if o_ind is None: self._list.extend(other_list) other._list = [] elif isinstance(o_ind, Number): self._list.append(other_list.pop(o_ind)) else: self._list.extend([other_list[i] for i in o_ind]) remaining = sorted(set(range(len(other_list))) - set(o_ind)) other._list = [other_list[i] for i in remaining] def remove(self, ind=None): assert self.check_ind(ind) if ind is None: self._list = [] elif isinstance(ind, Number): del self._list[ind] else: thelist = self._list remaining = sorted(set(range(len(self))) - set(ind)) self._list = [thelist[i] for i in remaining] def scal(self, alpha, ind=None): assert self.check_ind_unique(ind) assert isinstance(alpha, Number) \ or isinstance(alpha, np.ndarray) and alpha.shape == (self.len_ind(ind),) if ind is None: if isinstance(alpha, np.ndarray): for a, v in zip(alpha, self._list): v.scal(a) else: for v in self._list: v.scal(alpha) elif isinstance(ind, Number): if isinstance(alpha, np.ndarray): alpha = alpha[0] self._list[ind].scal(alpha) else: l = self._list if isinstance(alpha, np.ndarray): for a, i in zip(alpha, ind): l[i].scal(a) else: for i in ind: l[i].scal(alpha) def axpy(self, alpha, x, ind=None, x_ind=None): assert self.check_ind_unique(ind) assert x.check_ind(x_ind) assert self.space == x.space assert self.len_ind(ind) == x.len_ind(x_ind) or x.len_ind(x_ind) == 1 assert isinstance(alpha, _INDEXTYPES) \ or isinstance(alpha, np.ndarray) and alpha.shape == (self.len_ind(ind),) if self is x: if ind is None or x_ind is None: self.axpy(alpha, x.copy(), ind, x_ind) return ind_set = {ind} if isinstance(ind, _INDEXTYPES) else set(ind) x_ind_set = {x_ind} if isinstance(x_ind, _INDEXTYPES) else set(x_ind) if ind_set.intersection(x_ind_set): self.axpy(alpha, x.copy(x_ind), ind) return if ind is None: Y = iter(self._list) len_Y = len(self._list) elif isinstance(ind, _INDEXTYPES): Y = iter([self._list[ind]]) len_Y = 1 else: Y = (self._list[i] for i in ind) len_Y = len(ind) if x_ind is None: X = iter(x._list) len_X = len(x._list) elif isinstance(x_ind, _INDEXTYPES): X = iter([x._list[x_ind]]) len_X = 1 else: X = (x._list[i] for i in x_ind) len_X = len(x_ind) if
np.all(alpha == 0)
numpy.all
import numpy as np import pandas as pd import sys import torch import torch.nn import torch.autograd as autograd import torch.utils.data from torch.autograd import Variable import torch.nn.functional as F import matplotlib as mpl mpl.use('agg') import matplotlib.pyplot as plt from tqdm import tqdm_notebook, tqdm import torch import torch.nn as nn from icecream import ic import warnings warnings.filterwarnings('ignore') dtype = torch.FloatTensor long_dtype = torch.LongTensor torch.set_default_tensor_type('torch.FloatTensor') import torch.nn.functional as F from icecream import ic import sys from filenames import cdataset as data_directories from tqdm import tqdm NUMCHAN=8 perturb_y_data = False TOP = 9 def gen_dens(y, bins=int(5.0/0.5*10)): dens, bins = np.histogram(y[:, 0].ravel(), bins=bins, density=True, range=[4, TOP]) dens[dens == 0.] = np.min(dens[dens > 0.]) plt.clf() inv_dens = 1.0/dens inv_dens /= np.average(inv_dens) bins = bins return inv_dens, bins def load_data_normalized(debug=False, downsample=10, dataset='resonant'): base = './data/summary_features/' labels = [] mass_ratios = [] time_series = [] # features = [] if dataset == 'resonant': from filenames import cdataset as data_directories elif dataset == 'random': from filenames import cdataset_rand as data_directories elif dataset == 'combined': from filenames import cdataset_rand, cdataset data_directories = cdataset + cdataset_rand else: raise NotImplementedError from icecream import ic total_num = [] for dataset in tqdm(data_directories): dataset_base = base + dataset + '/get_extended_tseriesNorbits10000.0Nout1000trio/' # features_base = base + dataset + '/resparamsv5Norbits10000.0Nout1000window10/' try: time_series_tmp = np.load(dataset_base + 'trainingdata.npy', allow_pickle=True)[:, ::downsample] assert time_series_tmp.shape[1] == 100 labels_tmp = pd.read_csv(dataset_base + 'labels.csv') mass_ratios_tmp = pd.read_csv(dataset_base + 'massratios.csv') # features_tmp = pd.read_csv(features_base + 'trainingdata.csv') except (FileNotFoundError, IndexError): print('Skipping', dataset) continue time_series.append(time_series_tmp) labels.append(labels_tmp) mass_ratios.append(mass_ratios_tmp) # features.append(features_tmp) total_num.append(len(labels_tmp)) ic(total_num[-1]) if dataset[:4] == 'only': labels[-1]['instability_time'] = 1e9 labels[-1]['shadow_instability_time'] = 1e9 if debug: break time_series = np.concatenate(time_series) mass_ratios = pd.concat(mass_ratios) labels = pd.concat(labels) ic(len(labels)) last_dataset = (np.arange(len(labels)) >= np.cumsum(total_num)[-2]) ic(last_dataset.sum()) mass_array = np.transpose(np.tile(np.array(mass_ratios[['m1', 'm2', 'm3']]), (1000//downsample, 1, 1)), [1, 0, 2]) old_axis_labels = ['time', 'e+_near', 'e-_near', 'max_strength_mmr_near', 'e+_far', 'e-_far', 'max_strength_mmr_far', 'megno', 'a1', 'e1', 'i1', 'Omega1', 'pomega1', 'theta1', 'a2', 'e2', 'i2', 'Omega2', 'pomega2', 'theta2', 'a3', 'e3', 'i3', 'Omega3', 'pomega3', 'theta3'] old_X = np.concatenate((time_series, mass_array), axis=2) old_axis_labels.extend(['m1', 'm2', 'm3']) y = np.array(np.log10(labels[['instability_time', 'shadow_instability_time']])).astype(np.float32) ic('Removing rows with time as NaN') tmp_good_rows = ~np.any(~
np.isfinite(old_X)
numpy.isfinite
from __future__ import division __all__ = ['get_resource_path', 'discrete_inverse_logit', '_sig_stars', '_robust_estimator', '_chunk_boot_ols_coefs', '_chunk_perm_ols', '_ols', '_perm_find', 'isPSD', 'nearestPSD'] __author__ = ['<NAME>'] __license__ = "MIT" from os.path import dirname, join, sep import numpy as np import pandas as pd from patsy import dmatrices from scipy.special import expit from scipy.stats import chi2 from itertools import product from rpy2.robjects.packages import importr from rpy2.robjects import pandas2ri base = importr('base') def get_resource_path(): """ Get path sample data directory. """ return join(dirname(__file__), 'resources') + sep def discrete_inverse_logit(arr): """ Apply a discretized inverse logit transform to an array of values. Useful for converting normally distributed values to binomial classes""" probabilities = expit(arr) out = np.random.binomial(1, probabilities) return out def _sig_stars(val): """Adds sig stars to coef table prettier output.""" star = '' if 0 <= val < .001: star = '***' elif .001 <= val < 0.01: star = '**' elif .01 <= val < .05: star = '*' elif .05 <= val < .1: star = '.' return star def _robust_estimator(vals, X, robust_estimator='hc0', n_lags=1, cluster=None): """ Computes robust sandwich estimators for standard errors used in OLS computation. Types include: 'hc0': Huber (1980) sandwich estimator to return robust standard error estimates. 'hc3': MacKinnon and White (1985) HC3 sandwich estimator. Provides more robustness in smaller samples than HC0 Long & Ervin (2000) 'hac': Newey-West (1987) estimator for robustness to heteroscedasticity as well as serial auto-correlation at given lags. Args: vals (np.ndarray): 1d array of residuals X (np.ndarray): design matrix used in OLS robust_estimator (str): estimator type, 'hc0' (default), 'hc3', 'hac', or 'cluster' n_lags (int): number of lags, only used with 'hac' estimator, default is 1 cluster (np.ndarry): array of cluster ids Returns: stderr (np.ndarray): 1d array of standard errors with length == X.shape[1] """ assert robust_estimator in [ 'hc0', 'hc3', 'hac', 'cluster'], "robust_estimator must be one of hc0, hc3, hac, or cluster" # Make a sandwich! # First we need bread bread = np.linalg.pinv(np.dot(X.T, X)) # Then we need meat if robust_estimator == 'hc0': V = np.diag(vals**2) meat = np.dot(np.dot(X.T, V), X) if robust_estimator == 'cluster': # Good ref: http://projects.iq.harvard.edu/files/gov2001/files/sesection_5.pdf if cluster is None: raise ValueError( "data column identifying clusters must be provided") else: u = vals[:, np.newaxis] * X u = pd.DataFrame(u) # Use pandas groupby to get cluster-specific residuals u['Group'] = cluster u_clust = u.groupby('Group').sum() num_grps = u['Group'].nunique() meat = (num_grps / (num_grps - 1)) * \ (X.shape[0] / (X.shape[0] - X.shape[1])) * \ u_clust.T.dot(u_clust) elif robust_estimator == 'hc3': V = np.diag(vals**2) / (1 - np.diag(np.dot(X, np.dot(bread, X.T))))**2 meat = np.dot(np.dot(X.T, V), X) elif robust_estimator == 'hac': weights = 1 - np.arange(n_lags + 1.) / (n_lags + 1.) # First compute lag 0 V = np.diag(vals**2) meat = weights[0] * np.dot(np.dot(X.T, V), X) # Now loop over additional lags for l in range(1, n_lags + 1): V = np.diag(vals[l:] * vals[:-l]) meat_1 = np.dot(np.dot(X[l:].T, V), X[:-l]) meat_2 = np.dot(np.dot(X[:-l].T, V), X[l:]) meat += weights[l] * (meat_1 + meat_2) # Then we make a sandwich vcv = np.dot(np.dot(bread, meat), bread) return np.sqrt(np.diag(vcv)) def _ols(x, y, robust, n_lags, cluster, all_stats=True): """ Compute OLS on data given formula. Useful for single computation and within permutation schemes. """ # Expects as input pandas series and dataframe Y, X = y.values.squeeze(), x.values # The good stuff b = np.dot(np.linalg.pinv(X), Y) if all_stats: res = Y - np.dot(X, b) if robust: se = _robust_estimator( res, X, robust_estimator=robust, n_lags=n_lags, cluster=cluster) else: sigma = np.std(res, axis=0, ddof=X.shape[1]) se = np.sqrt(np.diag(np.linalg.pinv(np.dot(X.T, X)))) * sigma t = b / se return b, se, t, res else: return b def _chunk_perm_ols(x, y, robust, n_lags, cluster, seed): """ Permuted OLS chunk. """ # Shuffle y labels y = y.sample(frac=1, replace=False, random_state=seed) b, s, t, res = _ols(x, y, robust, n_lags, cluster, all_stats=True) return list(t) def _chunk_boot_ols_coefs(dat, formula, seed): """ OLS computation of coefficients to be used in a parallelization context. """ # Random sample with replacement from all data dat = dat.sample(frac=1, replace=True, random_state=seed) y, x = dmatrices(formula, dat, 1, return_type='dataframe') b = _ols(x, y, robust=None, n_lags=1, cluster=None, all_stats=False) return list(b) def _perm_find(arr, x): """ Find permutation cutoff in array. """ return np.sum(np.abs(arr) >= np.abs(x)) / float(len(arr)) def isPSD(mat, tol=1e-8): """ Check if matrix is positive-semi-definite by virtue of all its eigenvalues being >= 0. The cholesky decomposition does not work for edge cases because np.linalg.cholesky fails on matrices with exactly 0 valued eigenvalues, whereas in Matlab this is not true, so that method appropriate. Ref: https://goo.gl/qKWWzJ """ # We dont assume matrix is Hermitian, i.e. real-valued and symmetric # Could swap this out with np.linalg.eigvalsh(), which is faster but less general e = np.linalg.eigvals(mat) return np.all(e > -tol) def nearestPSD(A, nit=100): """ Higham (2000) algorithm to find the nearest positive semi-definite matrix that minimizes the Frobenius distance/norm. Sstatsmodels using something very similar in corr_nearest(), but with spectral SGD to search for a local minima. Reference: https://goo.gl/Eut7UU Args: nit (int): number of iterations to run algorithm; more iterations improves accuracy but increases computation time. """ n = A.shape[0] W = np.identity(n) def _getAplus(A): eigval, eigvec = np.linalg.eig(A) Q = np.matrix(eigvec) xdiag = np.matrix(np.diag(np.maximum(eigval, 0))) return Q * xdiag * Q.T def _getPs(A, W=None): W05 = np.matrix(W**.5) return W05.I * _getAplus(W05 * A * W05) * W05.I def _getPu(A, W=None): Aret = np.array(A.copy()) Aret[W > 0] = np.array(W)[W > 0] return np.matrix(Aret) # W is the matrix used for the norm (assumed to be Identity matrix here) # the algorithm should work for any diagonal W deltaS = 0 Yk = A.copy() for k in range(nit): Rk = Yk - deltaS Xk = _getPs(Rk, W=W) deltaS = Xk - Rk Yk = _getPu(Xk, W=W) # Double check returned matrix is PSD if isPSD(Yk): return Yk else: nearestPSD(Yk) def upper(mat): '''Return upper triangle of matrix''' idx = np.triu_indices_from(mat, k=1) return mat[idx] def _return_t(model): '''Return t or z stat from R model summary.''' summary = base.summary(model) unsum = base.unclass(summary) return pandas2ri.ri2py(unsum.rx2('coefficients'))[:, -1] def _get_params(model): '''Get number of params in a model.''' return model.coefs.shape[0] def _lrt(tup): '''Likelihood ratio test between 2 models.''' d = np.abs(2 * (tup[0].logLike - tup[1].logLike)) return chi2.sf(d,
np.abs(tup[0].coefs.shape[0] - tup[1].coefs.shape[0])
numpy.abs
# coding=utf-8 # Copyright 2019 The Meta-Dataset Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `sampling` module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from absl.testing import parameterized import gin from meta_dataset.data import sampling from meta_dataset.data.dataset_spec import DatasetSpecification from meta_dataset.data.learning_spec import Split from meta_dataset.utils.argparse import argparse import numpy as np argparse.parser.parse_args() # DatasetSpecification to use in tests DATASET_SPEC = DatasetSpecification( name=None, classes_per_split={ Split.TRAIN: 15, Split.VALID: 5, Split.TEST: 10 }, images_per_class=dict(enumerate([10, 20, 30] * 10)), class_names=None, path=None, file_pattern='{}.tfrecords') def assert_contains_subset(a, b): set_a = set(a) set_b = set(b) assert(len(set_a) == len(set_a.intersection(set_b))) # Define defaults and set Gin configuration for EpisodeDescriptionSampler MIN_WAYS = 5 MAX_WAYS_UPPER_BOUND = 50 MAX_NUM_QUERY = 10 MAX_SUPPORT_SET_SIZE = 500 MAX_SUPPORT_SIZE_CONTRIB_PER_CLASS = 100 MIN_LOG_WEIGHT = np.log(0.5) MAX_LOG_WEIGHT = np.log(2) gin.bind_parameter('EpisodeDescriptionSampler.min_ways', MIN_WAYS) gin.bind_parameter('EpisodeDescriptionSampler.max_ways_upper_bound', MAX_WAYS_UPPER_BOUND) gin.bind_parameter('EpisodeDescriptionSampler.max_num_query', MAX_NUM_QUERY) gin.bind_parameter('EpisodeDescriptionSampler.max_support_set_size', MAX_SUPPORT_SET_SIZE) gin.bind_parameter( 'EpisodeDescriptionSampler.max_support_size_contrib_per_class', MAX_SUPPORT_SIZE_CONTRIB_PER_CLASS) gin.bind_parameter('EpisodeDescriptionSampler.min_log_weight', MIN_LOG_WEIGHT) gin.bind_parameter('EpisodeDescriptionSampler.max_log_weight', MAX_LOG_WEIGHT) # Following is set in a different scope. gin.bind_parameter('none/EpisodeDescriptionSampler.min_ways', None) gin.bind_parameter('none/EpisodeDescriptionSampler.max_ways_upper_bound', None) gin.bind_parameter('none/EpisodeDescriptionSampler.max_num_query', None) gin.bind_parameter('none/EpisodeDescriptionSampler.max_support_set_size', None) gin.bind_parameter( 'none/EpisodeDescriptionSampler.max_support_size_contrib_per_class', None) gin.bind_parameter('none/EpisodeDescriptionSampler.min_log_weight', None) gin.bind_parameter('none/EpisodeDescriptionSampler.max_log_weight', None) class SampleNumWaysUniformlyTest(unittest.TestCase): """Tests for the `sample_num_ways_uniformly` function.""" def test_min_ways_respected(self): for _ in range(10): num_ways = sampling.sample_num_ways_uniformly( 10, min_ways=MIN_WAYS, max_ways=MAX_WAYS_UPPER_BOUND) self.assertGreaterEqual(num_ways, MIN_WAYS) def test_num_classes_respected(self): num_classes = 10 for _ in range(10): num_ways = sampling.sample_num_ways_uniformly( num_classes, min_ways=MIN_WAYS, max_ways=MAX_WAYS_UPPER_BOUND) self.assertLessEqual(num_ways, num_classes) def test_max_ways_upper_bound_respected(self): num_classes = 2 * MAX_WAYS_UPPER_BOUND for _ in range(10): num_ways = sampling.sample_num_ways_uniformly( num_classes, min_ways=MIN_WAYS, max_ways=MAX_WAYS_UPPER_BOUND) self.assertLessEqual(num_ways, MAX_WAYS_UPPER_BOUND) class SampleClassIDsUniformlyTest(unittest.TestCase): """Tests for the `sample_class_ids_uniformly` function.""" def test_num_ways_respected(self): num_classes = MAX_WAYS_UPPER_BOUND num_ways = MIN_WAYS for _ in range(10): class_ids = sampling.sample_class_ids_uniformly(num_ways, num_classes) self.assertEqual(len(set(class_ids)), num_ways) self.assertEqual(len(class_ids), num_ways) def test_num_classes_respected(self): num_classes = MAX_WAYS_UPPER_BOUND num_ways = MIN_WAYS for _ in range(10): class_ids = sampling.sample_class_ids_uniformly(num_ways, num_classes) assert_contains_subset(class_ids, list(range(num_classes))) def test_unique_class_ids(self): num_classes = MAX_WAYS_UPPER_BOUND num_ways = MIN_WAYS for _ in range(10): class_ids = sampling.sample_class_ids_uniformly(num_ways, num_classes) self.assertCountEqual(class_ids, set(class_ids)) class ComputeNumQueryTest(unittest.TestCase): """Tests for the `compute_num_query` function.""" def test_max_num_query_respected(self): images_per_class = np.array([30, 45, 35, 50]) num_query = sampling.compute_num_query( images_per_class, max_num_query=MAX_NUM_QUERY) self.assertEqual(num_query, MAX_NUM_QUERY) def test_at_most_half(self): images_per_class = np.array([10, 9, 20, 21]) num_query = sampling.compute_num_query( images_per_class, max_num_query=MAX_NUM_QUERY) self.assertEqual(num_query, 4) def test_raises_error_on_one_image_per_class(self): images_per_class = np.array([1, 3, 8, 8]) with self.assertRaises(ValueError): sampling.compute_num_query(images_per_class, max_num_query=MAX_NUM_QUERY) class SampleSupportSetSizeTest(unittest.TestCase): """Tests for the `sample_support_set_size` function.""" def test_max_support_set_size_respected(self): num_remaining_per_class = np.array([MAX_SUPPORT_SET_SIZE] * 10) for _ in range(10): support_set_size = sampling.sample_support_set_size( num_remaining_per_class, max_support_size_contrib_per_class=MAX_SUPPORT_SIZE_CONTRIB_PER_CLASS, max_support_set_size=MAX_SUPPORT_SET_SIZE) self.assertLessEqual(support_set_size, MAX_SUPPORT_SET_SIZE) def test_raises_error_max_support_too_small(self): num_remaining_per_class = np.array([5] * 10) with self.assertRaises(ValueError): sampling.sample_support_set_size( num_remaining_per_class, max_support_size_contrib_per_class=MAX_SUPPORT_SIZE_CONTRIB_PER_CLASS, max_support_set_size=len(num_remaining_per_class) - 1) class SampleNumSupportPerClassTest(unittest.TestCase): """Tests for the `sample_num_support_per_class` function.""" def test_support_set_size_respected(self): num_images_per_class =
np.array([50, 40, 30, 20])
numpy.array
# KNN으로 기술적분석 지표들과 변동성을 Feature로 향후 20일 동안 # 목표 수익률을 달성할 가능성이 있는지를 추정한다. # # 2018.08.20, 아마추어퀀트 (조성현) # -------------------------------------------------------- import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import pandas as pd from MyUtil import YahooData, TaFeatureSet stocks = {'005380':'현대차', '000660':'SK하이닉스', '015760':'한국전력', '034220':'LG디스플레이', '005490':'POSCO', '035420':'NAVER', '017670':'SK텔레콤', '012330':'현대모비스', '055550':'신한지주', '000270':'기아차', '105560':'KB금융', '051910':'LG화학'} # Yahoo site로부터 위에 정의된 주가 데이터를 수집하여 ./stockData 폴더에 저장해 둔다. def getData(stockList=stocks, start='2007-01-01'): YahooData.getStockDataList(stockList, start=start) # 데이터 세트를 생성하고, ./dataset/3-6.TaDataset.csv 에 저장해 둔다. # 시간이 오래 걸린다. def createDataSet(stockList=stocks, u=0.5, d=-0.5, nFuture=20, binary=True): n = 1 for code in stockList.keys(): # 저장된 파일을 읽어온다 data = pd.read_csv('stockData/' + code + '.csv', index_col=0, parse_dates=True) # 과거 20일의 종가 패턴과 변동성이 어느 수준일 때 매수하면 손실인지 아닌지를 class로 부여하여 # 목표 수익률 달성 여부를 학습한다. 목표 수익률을 달성한다는 것은 향후 주가가 상승하는 것을 의미함. # Binary classification을 위해 class = 0, 1로 구분하였음. # u = 0.5 : 수익률 표준편차의 0.5 배 이상이면 수익 (class = 1) # d = -0.5 : 수익률 표준편차의 -0.5배 이하이면 손실 (class = 0) # 중간이면 주가 횡보 (classs = 0) if n == 1: ft = TaFeatureSet.getTaFeatureSet(data, u, d, nFuture, binary) else: ft = ft.append(TaFeatureSet.getTaFeatureSet(data, u, d, nFuture, binary)) print("%d) %s (%s)를 처리하였습니다." % (n, stockList[code], code)) n += 1 ft.to_csv('dataset/3-6.TaDataset.csv') # 데이터 세트를 읽어온다 ds = pd.read_csv('dataset/3-6.TaDataset.csv') ds = ds.drop(ds.columns[0], 1) # data set을 행을 기준으로 랜덤하게 섞는다 (shuffling) ds = ds.sample(frac=1).reset_index(drop=True) # 학습용 데이터와 시험용 데이터로 나눈다. (8 : 2) trainRate = 0.8 trainLen = int(len(ds) * trainRate) trainX = np.array(ds.iloc[0:trainLen, 0:6]) trainY = np.array(ds.iloc[0:trainLen, -1]) trainY = trainY.reshape(trainLen, 1) testX = np.array(ds.iloc[trainLen:, 0:6]) testY = np.array(ds.iloc[trainLen:, -1]) testY = testY.reshape(len(testY), 1) # 그래프 모델을 생성한다 tf.reset_default_graph() x = tf.placeholder(tf.float32, shape=[None, 6], name="X") y = tf.placeholder(tf.float32, shape=[None, 1], name="Y") tx = tf.placeholder(tf.float32, shape=[None, 6], name="X") parK = tf.placeholder(tf.int32, shape=[], name="K") # test point와 모든 x와의 거리를 측정한다 (Euclidean distance) distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(x, tx)), 1)) # test point와 모든 x와의 거리중 거리가 짧은 K개의 class (trainY)를 찾는다. # 이 classes에서 다수결로 test point의 class를 판정한다. # ex : tf.gather(trainY, indices) = [1, 1, 0, 1, 0, 1, 1] --> class = 1로 판정한다. # class 들의 평균 = 5/7 = 0.714 --> 0.5 보다 크므로 class = 1로 판정함. values, indices = tf.nn.top_k(tf.negative(distance), k=parK, sorted=False) classMean = tf.reduce_mean(tf.cast(tf.gather(trainY, indices), tf.float32)) # 그래프를 실행한다. sess = tf.Session() accuracy = [] # K = [1,2,3..]에 따른 정확도를 기록할 list yHatK = [] # 최적 K일 때 testX의 class를 추정한 list optK = 0 # 최적 K optAccuracy = 0.0 # 최적 K일 때의 정확도 minK = 50 maxK = 100 # K = minK ~ maxK 까지 변화시키면서 정확도를 측정한다 for k in range(minK, maxK+1): yHat = [] for dx in testX: # testX를 하나씩 읽어가면서 k-개의 가까운 거리를 찾는다 dx = dx.reshape(1, 6) yHat.append(sess.run(classMean, feed_dict = {x: trainX, tx: dx, parK: k})) # test data의 class를 추정한다. yHat = np.array(yHat) yHat = yHat.reshape(len(yHat), 1) testYhat = np.where(yHat > 0.5, 1, 0) # test data의 실제 class와 추정 class를 비교하여 정확도를 측정한다. accK = 100 * (testY == testYhat).sum() / len(testY) # 정확도가 가장 높은 최적 K, yHatK, optAccuracy를 기록해 둔다 if accK > optAccuracy: yHatK = yHat.copy() optK = k optAccuracy = accK # K에 따라 달라지는 정확도를 추적하기위해 history를 기록해 둔다 accuracy.append(accK) print("k = %d done" % k) sess.close() # 결과를 확인한다 fig = plt.figure(figsize=(10, 4)) p1 = fig.add_subplot(1,2,1) p2 = fig.add_subplot(1,2,2) xK =
np.arange(minK, maxK+1)
numpy.arange
import time import numpy as np from rex_gym.model.kinematics import Kinematics class GaitPlanner: def __init__(self, mode): self._frame = np.zeros([4, 3]) self._phi = 0. self._phi_stance = 0. self._last_time = 0. self._alpha = 0. self._s = False if mode == "walk": self._offset = np.array([0., 0.5, 0.5, 0.]) self.step_offset = 0.5 else: self._offset = np.array([0.3, 0.3, 0., 0.]) self.step_offset = 0.5 @staticmethod def solve_bin_factor(n, k): return np.math.factorial(n) / (np.math.factorial(k) * np.math.factorial(n - k)) def bezier_curve(self, t, k, point): n = 9 return point * self.solve_bin_factor(n, k) * np.power(t, k) * np.power(1 - t, n - k) @staticmethod def calculate_stance(phi_st, v, angle): c = np.cos(np.deg2rad(angle)) s = np.sin(np.deg2rad(angle)) A = 0.001 half_l = 0.05 p_stance = half_l * (1 - 2 * phi_st) stance_x = c * p_stance * np.abs(v) stance_y = -s * p_stance * np.abs(v) stance_z = -A * np.cos(np.pi / (2 * half_l) * p_stance) return stance_x, stance_y, stance_z def calculate_bezier_swing(self, phi_sw, v, angle): c = np.cos(np.deg2rad(angle)) s = np.sin(np.deg2rad(angle)) X = np.abs(v) * c * np.array([-0.05, -0.06, -0.07, -0.07, 0., 0., 0.07, 0.07, 0.06, 0.05]) Y = np.abs(v) * s * (-X) Z = np.abs(v) * np.array([0., 0., 0.05, 0.05, 0.05, 0.06, 0.06, 0.06, 0., 0.]) swing_x = 0. swing_y = 0. swing_z = 0. for i in range(10): swing_x = swing_x + self.bezier_curve(phi_sw, i, X[i]) swing_y = swing_y + self.bezier_curve(phi_sw, i, Y[i]) swing_z = swing_z + self.bezier_curve(phi_sw, i, Z[i]) return swing_x, swing_y, swing_z def step_trajectory(self, phi, v, angle, w_rot, center_to_foot): if phi >= 1: phi = phi - 1. r = np.sqrt(center_to_foot[0] ** 2 + center_to_foot[1] ** 2) foot_angle = np.arctan2(center_to_foot[1], center_to_foot[0]) if w_rot >= 0.: circle_trajectory = 90. - np.rad2deg(foot_angle - self._alpha) else: circle_trajectory = 270. - np.rad2deg(foot_angle - self._alpha) if phi <= self.step_offset: # stance phase phi_stance = phi / self.step_offset stepX_long, stepY_long, stepZ_long = self.calculate_stance(phi_stance, v, angle) stepX_rot, stepY_rot, stepZ_rot = self.calculate_stance(phi_stance, w_rot, circle_trajectory) else: # swing phase phiSwing = (phi - self.step_offset) / (1 - self.step_offset) stepX_long, stepY_long, stepZ_long = self.calculate_bezier_swing(phiSwing, v, angle) stepX_rot, stepY_rot, stepZ_rot = self.calculate_bezier_swing(phiSwing, w_rot, circle_trajectory) if center_to_foot[1] > 0: if stepX_rot < 0: self._alpha = -np.arctan2(np.sqrt(stepX_rot ** 2 + stepY_rot ** 2), r) else: self._alpha = np.arctan2(np.sqrt(stepX_rot ** 2 + stepY_rot ** 2), r) else: if stepX_rot < 0: self._alpha = np.arctan2(np.sqrt(stepX_rot ** 2 + stepY_rot ** 2), r) else: self._alpha = -np.arctan2(np.sqrt(stepX_rot ** 2 + stepY_rot ** 2), r) coord = np.empty(3) coord[0] = stepX_long + stepX_rot coord[1] = stepY_long + stepY_rot coord[2] = stepZ_long + stepZ_rot return coord def loop(self, v, angle, w_rot, t, frames=None): if frames is None: k_obj = Kinematics() x_dist = k_obj.x_dist y_dist = k_obj.y_dist height = k_obj.height frames = np.asmatrix([[x_dist / 2, -y_dist / 2, -height], [x_dist / 2, y_dist / 2, -height], [-x_dist / 2, -y_dist / 2, -height], [-x_dist / 2, y_dist / 2, -height]]) if t <= 0.01: t = 0.01 if self._phi >= 0.99: self._last_time = time.time() self._phi = (time.time() - self._last_time) / t step_coord = self.step_trajectory(self._phi + self._offset[0], v, angle, w_rot, np.squeeze(np.asarray(frames[0, :]))) # FR self._frame[0, 0] = frames[0, 0] + step_coord[0] self._frame[0, 1] = frames[0, 1] + step_coord[1] self._frame[0, 2] = frames[0, 2] + step_coord[2] step_coord = self.step_trajectory(self._phi + self._offset[1], v, angle, w_rot, np.squeeze(np.asarray(frames[1, :]))) # FL self._frame[1, 0] = frames[1, 0] + step_coord[0] self._frame[1, 1] = frames[1, 1] + step_coord[1] self._frame[1, 2] = frames[1, 2] + step_coord[2] step_coord = self.step_trajectory(self._phi + self._offset[2], v, angle, w_rot, np.squeeze(
np.asarray(frames[2, :])
numpy.asarray
# coding: utf-8 import numpy as np import matplotlib.pyplot as plt import seaborn as sns if __name__ == "__main__": # # Problem 1 - Gaussian Process Modelling # ## Data I/O X_train = np.genfromtxt('hw3-data/gaussian_process/X_train.csv', delimiter=',') X_test = np.genfromtxt('hw3-data/gaussian_process/X_test.csv', delimiter=',') y_train = np.genfromtxt('hw3-data/gaussian_process/y_train.csv', delimiter=',') y_test = np.genfromtxt('hw3-data/gaussian_process/y_test.csv', delimiter=',') # ## Helper Functions def calculateRMSE(y_pred, y_test): n = y_pred.shape[0] return np.linalg.norm(y_pred - y_test)/(n**0.5) # ## Gaussian Process Regression class GaussianProcessRegression(): def __init__(self): pass def standardize(self, y): mean = np.mean(y) std = np.std(y) y = (y - mean)/std self.mean = mean self.std = std return y def calcKernel(self): X = self.X (n, d) = X.shape K = np.zeros((n, n)) for i in range(n): for j in range(i, n): xi, xj = X[i, :].flatten(), X[j, :].flatten() k = self.calcRadialDistance(xi, xj) K[i, j] = k K[j, i] = k self.K = K def transformOutput(self, y): y = y*self.std + self.mean return y def calcRadialDistance(self, x1, x2): return np.exp(-1*(np.linalg.norm(x1-x2)**2)/self.b) def train(self, X, y): self.X = X self.y = self.standardize(y) def setb(self, b): self.b = b self.calcKernel() def predict(self, X_t, sig): X = self.X y = self.y (n, d) = X.shape (m, d) = X_t.shape Kn = np.zeros((m, n)) for i in range(m): for j in range(n): Kn[i, j] = self.calcRadialDistance(X_t[i, :].flatten(), X[j, :].flatten()) Kn = Kn.reshape((m, n)) K = self.K mu = Kn.dot(np.linalg.inv((sig)*np.identity(n) + K)).dot(y) #cov = (sig**2) + 1 - Kn.dot(np.linalg.inv((sig**2)*np.identity(n) + K)).dot(Kn.T) return self.transformOutput(mu) GPR = GaussianProcessRegression() GPR.train(X_train, y_train) # ## RMSE vs. (b, $\sigma^2$) b_tests = [5, 7, 9, 11, 13, 15] sig_tests = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] results = np.zeros((len(b_tests), len(sig_tests))) for i in range(len(b_tests)): GPR.setb(b_tests[i]) for j in range(len(sig_tests)): y_pred = GPR.predict(X_test, sig_tests[j]) results[i, j] = calculateRMSE(y_pred, y_test) plt.figure(figsize=(20, 10)) sns.set_style('whitegrid') sns.heatmap(results, annot=True, annot_kws={"size": 15}, fmt='.3f', xticklabels=sig_tests, yticklabels=b_tests) plt.xlabel('sig_squared', fontsize=20) plt.ylabel('b', fontsize=20) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.title('RMSE', fontsize=20) plt.savefig('1b.png') #plt.show() # ## Prediction using only a single dimension - (car weight) (n, d) = X_train.shape X_test_f4 = X_train[:, 3].reshape(n, 1) for i in range(d-1): X_test_f4 = np.column_stack((X_test_f4, X_train[:, 3].reshape((n, 1)))) GPR.setb(5) y_test_f4 = GPR.predict(X_test_f4, 2) plt.figure(figsize=(20, 10)) plt.scatter(X_train[:, 3], y_test_f4, label="Predictions") plt.scatter(X_train[:, 3], y_train, label="Training Data") plt.xlabel("car_weight", fontsize=20) plt.ylabel("Mileage", fontsize=20) plt.legend(fontsize=20) plt.xticks(fontsize=15) plt.yticks(fontsize=15) #plt.show() GPR_x4 = GaussianProcessRegression() GPR_x4.train(X_train[:, 3].reshape(X_train.shape[0], 1), y_train) GPR_x4.setb(5) y_train_f4 = GPR_x4.predict(X_train[:, 3].reshape(X_train.shape[0], 1), 2) plt.figure(figsize=(20, 10)) plt.scatter(X_train[:, 3], y_train_f4, label="Predictions") plt.scatter(X_train[:, 3], y_train, label="Training Data") plt.xlabel("car_weight", fontsize=20) plt.ylabel("Mileage", fontsize=20) plt.legend(fontsize=20) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.savefig('1d_new.png') #plt.show() # # Problem 2 - Boosting # ## Data I/O X_train = np.genfromtxt('hw3-data/boosting/X_train.csv', delimiter=',') X_test = np.genfromtxt('hw3-data/boosting/X_test.csv', delimiter=',') y_train = np.genfromtxt('hw3-data/boosting/y_train.csv', delimiter=',') y_test = np.genfromtxt('hw3-data/boosting/y_test.csv', delimiter=',') X_train_w_ones = np.column_stack((X_train, np.ones(X_train.shape[0]))) X_test_w_ones = np.column_stack((X_test, np.ones(X_test.shape[0]))) # ## Helper Functions def calculateAccuracy(predictions, ground_truth): n = predictions.shape[0] assert n == ground_truth.shape[0] return y_pred[y_pred==ground_truth].shape[0]/n def calculateErrorRate(predictions, ground_truth): n = predictions.shape[0] assert n == ground_truth.shape[0] return np.sum(y_pred!=ground_truth)/n # ## Least Square Classifier class LeastSquareClassifier(): def __init__(self): self.weights = None def train(self, X, y): (n, d) = X.shape XTX = X.T.dot(X) w = np.linalg.inv(XTX).dot(X.T).dot(y) assert w.shape[0] == d self.weights = w def test(self, X): w = self.weights (n, d) = X.shape y_int = X.dot(w) return y_int/np.abs(y_int) LSClassifier = LeastSquareClassifier() LSClassifier.train(X_train_w_ones, y_train) y_pred = LSClassifier.test(X_test_w_ones) print("Basic Least Square Classifier Accuracy: {}".format(calculateAccuracy(y_pred, y_test))) # ## Boosted Least Square Classifier class BoostedLeastSquareClassifier(): def __init__(self, classifier): self.classifier = classifier self.classifiers = [] self.alphas = None self.eps = None self.training_errors = None self.testing_errors = None self.weights = None self.sample_tracker = [] def train(self, X, y, num_of_classifiers): np.random.seed(0) self.training_errors = [] eps = np.zeros(num_of_classifiers) self.alphas =
np.zeros(num_of_classifiers)
numpy.zeros
import numpy as np import scipy.stats as stat import matplotlib.pyplot as plt import seaborn as sns import pandas as pd parcellation = ['shen', 'gordon'] nets = [9, 13] labels_dict_shen = {'n0': ['All, 268', 'Whole-brain'], 'n1': ['MF, 29', 'Medial frontal'], 'n2': ['FP, 34', 'Frontoparietal'], 'n3': ['DMN, 20', 'Default mode'], 'n4': ['SC, 90', 'Subcortical-cerebellum'], 'n5': ['M, 50', 'Motor'], 'n6': ['VI, 18', 'Visual I'], 'n7': ['VII, 9', 'Visual II'], 'n8': ['VA, 18', 'Visual association']} nodes_shen = [268, 29, 34, 20, 90, 50, 18, 9, 18] labels_dict_gordon = {'n0': ['All, 333', 'Whole-brain'], 'n1': ['DMN, 41', 'Default mode'], 'n2': ['SMh, 38', 'Somato-sensory hand'], 'n3': ['SMm, 8', 'Somato-sensory mouth'], 'n4': ['V, 39', 'Visual'], 'n5': ['FP, 24', 'Frontoparietal'], 'n6': ['Au, 24', 'Auditory'], 'n7': ['CP, 5', 'Cingulo Parietal'], 'n8': ['RT, 8', 'Retrosplenial Temporal'], 'n9': ['CO, 40', 'Cingulo Opercular'], 'n10': ['VAN, 23', 'Ventral Attention'], 'n11': ['S, 4', 'Salience'], 'n12': ['DAN, 32', 'Dorsal Attention'], } nodes_gordon = [333, 41, 38, 8, 39, 24, 24, 5, 8, 40, 23, 4, 32] ACE_h2_shen = np.load('./../multivariate_mean_shen.npz')['list'] ACE_h2_gordon = np.load('./../multivariate_mean_gordon.npz')['list'] for j in range(len(parcellation)): accuracies_ind = \ np.load('./../outputs/accuracies_ind_id_' + parcellation[j] + '.npz')[ 'dict'] accuracies_twin = \
np.load('./../outputs/accuracies_twin_id_' + parcellation[j] + '.npz')
numpy.load
from __future__ import division from __future__ import print_function from builtins import str from past.utils import old_div import numpy as np from pandas import DataFrame, crosstab def STDO(obs, mod, axis=None): """ Standard deviation of Observations """ return np.ma.std(obs, axis=axis) def STDP(obs, mod, axis=None): """ Standard deviation of Predictions """ return np.ma.std(mod, axis=axis) def MNB(obs, mod, axis=None): """ Mean Normalized Bias (%)""" return np.ma.masked_invalid(old_div((mod - obs), obs)).mean(axis=axis) * 100. def MNE(obs, mod, axis=None): """ Mean Normalized Gross Error (%)""" return np.ma.masked_invalid(old_div(np.ma.abs(mod - obs), obs)).mean(axis=axis) * 100. def MdnNB(obs, mod, axis=None): """ Median Normalized Bias (%)""" return np.ma.median(np.ma.masked_invalid(old_div((mod - obs), obs)), axis=axis) * 100. def MdnNE(obs, mod, axis=None): """ Median Normalized Gross Error (%)""" return np.ma.median(np.ma.masked_invalid(old_div(np.ma.abs(mod - obs), obs)), axis=axis) * 100. def NMdnE(obs, mod, axis=None): """ Normalized Median Gross Error (%)""" return np.ma.masked_invalid(old_div(np.ma.abs(mod - obs).mean(axis=axis), obs.mean(axis=axis))) * 100. def NO(obs, mod, axis=None): """ N Observations (#)""" return (
np.ma.getmaskarray(obs)
numpy.ma.getmaskarray
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore import Parameter from mindspore.common import dtype as mstype from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU', save_graphs=False) class ScatterNdUpdate1(nn.Cell): def __init__(self): super(ScatterNdUpdate1, self).__init__() self.scatter_nd_update = P.ScatterNdUpdate() self.x = Parameter(Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mstype.float32), name="x") def construct(self, indices, update): return self.scatter_nd_update(self.x, indices, update) class ScatterNdUpdate2(nn.Cell): def __init__(self): super(ScatterNdUpdate2, self).__init__() self.scatter_nd_update = P.ScatterNdUpdate() self.x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mstype.float32), name="x") def construct(self, indices, update): return self.scatter_nd_update(self.x, indices, update) class ScatterNdUpdate3(nn.Cell): def __init__(self): super(ScatterNdUpdate3, self).__init__() self.scatter_nd_update = P.ScatterNdUpdate() self.x = Parameter(Tensor(
np.zeros((4, 4, 4))
numpy.zeros
#! /usr/bin/env python import time import itertools import numpy as np import baldor as br import criutils as cu import raveutils as ru import openravepy as orpy class EnvironmentManager(object): COLORS = { "RED": [0.8, 0., 0., 1.], "BLUE": [0., 0., 0.8, 1.], "GREEN": [0., 0.8, 0., 1.], } def __init__(self, env, num_cubes=6, seed=111): # Working entities self.env = env self.bins = self._add_bins() # keys: bin_type, values: bin_name self.cubes = self._add_cubes(seed) # keys: cube_name, values: cube_type print("Environment manager successfully initialized") def _add_cubes(self, seed): table = self.env.GetKinBody("cubes_table") aabb = table.ComputeAABB() xdim, _, zdim = 2 * aabb.extents() Tabove_table = table.GetTransform() Tabove_table[:3, 3] += [0, 0, zdim + br._EPS] zcube = Tabove_table[2, 3] + 1e-5 # Small delta to avoid colliding with the table xx = np.linspace(0.35, 0.7, num=3) yy = np.linspace(-0.3, 0.3, num=5) - Tabove_table[1,3] num_cubes = 14
np.random.seed(seed)
numpy.random.seed
import numpy as np from torchvision import datasets, transforms import warnings warnings.filterwarnings("ignore") def mnist_iid(dataset, num_users): """ Sample I.I.D. client data from MNIST dataset :param dataset: :param num_users: :return: dict of image index """ num_items = int(len(dataset) / num_users) dict_users, all_idxs = {}, [i for i in range(len(dataset))] for i in range(num_users): dict_users[i] = set(np.random.choice(all_idxs, num_items, replace=False)) all_idxs = list(set(all_idxs) - dict_users[i]) return dict_users def mnist_noniid(dataset, num_users): """ Sample non-I.I.D client data from MNIST dataset :param dataset: :param num_users: :return: """ # 60,000 training imgs --> 200 imgs/shard X 300 shards num_shards, num_imgs = 200, 300 idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) labels = dataset.train_labels.numpy() # sort labels idxs_labels = np.vstack((idxs, labels)) idxs_labels = idxs_labels[:, idxs_labels[1, :].argsort()] idxs = idxs_labels[0, :] # divide and assign 2 shards/client for i in range(num_users): rand_set = set(np.random.choice(idx_shard, 2, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate((dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) return dict_users def mnist_noniid_unequal(dataset, num_users): """ Sample non-I.I.D client data from MNIST dataset s.t clients have unequal amount of data :param dataset: :param num_users: :returns a dict of clients with each clients assigned certain number of training imgs """ # 60,000 training imgs --> 50 imgs/shard X 1200 shards num_shards, num_imgs = 1200, 50 idx_shard = [i for i in range(num_shards)] dict_users = {i:
np.array([])
numpy.array
# MIT License # # Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2019 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module implements the HopSkipJump attack `HopSkipJump`. This is a black-box attack that only requires class predictions. It is an advanced version of the Boundary attack. | Paper link: https://arxiv.org/abs/1904.02144 """ from __future__ import absolute_import, division, print_function, unicode_literals import logging from typing import Optional, Tuple, Union, TYPE_CHECKING import numpy as np from tqdm.auto import tqdm from art.config import ART_NUMPY_DTYPE from art.attacks.attack import EvasionAttack from art.estimators.estimator import BaseEstimator from art.estimators.classification import ClassifierMixin from art.utils import compute_success, to_categorical, check_and_transform_label_format if TYPE_CHECKING: from art.utils import CLASSIFIER_TYPE logger = logging.getLogger(__name__) class HopSkipJump(EvasionAttack): """ Implementation of the HopSkipJump attack from Jianbo et al. (2019). This is a powerful black-box attack that only requires final class prediction, and is an advanced version of the boundary attack. | Paper link: https://arxiv.org/abs/1904.02144 """ attack_params = EvasionAttack.attack_params + [ "targeted", "norm", "max_iter", "max_eval", "init_eval", "init_size", "curr_iter", "batch_size", "verbose", ] _estimator_requirements = (BaseEstimator, ClassifierMixin) def __init__( self, classifier: "CLASSIFIER_TYPE", batch_size: int = 64, targeted: bool = False, norm: Union[int, float, str] = 2, max_iter: int = 50, max_eval: int = 10000, init_eval: int = 100, init_size: int = 100, verbose: bool = True, ) -> None: """ Create a HopSkipJump attack instance. :param classifier: A trained classifier. :param batch_size: The size of the batch used by the estimator during inference. :param targeted: Should the attack target one specific class. :param norm: Order of the norm. Possible values: "inf", np.inf or 2. :param max_iter: Maximum number of iterations. :param max_eval: Maximum number of evaluations for estimating gradient. :param init_eval: Initial number of evaluations for estimating gradient. :param init_size: Maximum number of trials for initial generation of adversarial examples. :param verbose: Show progress bars. """ super().__init__(estimator=classifier) self._targeted = targeted self.norm = norm self.max_iter = max_iter self.max_eval = max_eval self.init_eval = init_eval self.init_size = init_size self.curr_iter = 0 self.batch_size = batch_size self.verbose = verbose self._check_params() self.curr_iter = 0 # Set binary search threshold if norm == 2: self.theta = 0.01 / np.sqrt(np.prod(self.estimator.input_shape)) else: self.theta = 0.01 / np.prod(self.estimator.input_shape) def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> np.ndarray: """ Generate adversarial samples and return them in an array. :param x: An array with the original inputs to be attacked. :param y: Target values (class labels) one-hot-encoded of shape `(nb_samples, nb_classes)` or indices of shape (nb_samples,). :param mask: An array with a mask broadcastable to input `x` defining where to apply adversarial perturbations. Shape needs to be broadcastable to the shape of x and can also be of the same shape as `x`. Any features for which the mask is zero will not be adversarially perturbed. :type mask: `np.ndarray` :param x_adv_init: Initial array to act as initial adversarial examples. Same shape as `x`. :type x_adv_init: `np.ndarray` :param resume: Allow users to continue their previous attack. :type resume: `bool` :return: An array holding the adversarial examples. """ mask = kwargs.get("mask") y = check_and_transform_label_format(y, self.estimator.nb_classes) if y is not None and self.estimator.nb_classes == 2 and y.shape[1] == 1: # pragma: no cover raise ValueError( "This attack has not yet been tested for binary classification with a single output classifier." ) # Check whether users need a stateful attack resume = kwargs.get("resume") if resume is not None and resume: start = self.curr_iter else: start = 0 # Check the mask if mask is not None: if len(mask.shape) == len(x.shape): mask = mask.astype(ART_NUMPY_DTYPE) else: mask = np.array([mask.astype(ART_NUMPY_DTYPE)] * x.shape[0]) else: mask = np.array([None] * x.shape[0]) # Get clip_min and clip_max from the classifier or infer them from data if self.estimator.clip_values is not None: clip_min, clip_max = self.estimator.clip_values else: clip_min, clip_max = np.min(x), np.max(x) # Prediction from the original images preds = np.argmax(self.estimator.predict(x, batch_size=self.batch_size), axis=1) # Prediction from the initial adversarial examples if not None x_adv_init = kwargs.get("x_adv_init") if x_adv_init is not None: # Add mask param to the x_adv_init for i in range(x.shape[0]): if mask[i] is not None: x_adv_init[i] = x_adv_init[i] * mask[i] + x[i] * (1 - mask[i]) # Do prediction on the init init_preds = np.argmax(self.estimator.predict(x_adv_init, batch_size=self.batch_size), axis=1) else: init_preds = [None] * len(x) x_adv_init = [None] * len(x) # Assert that, if attack is targeted, y is provided if self.targeted and y is None: # pragma: no cover raise ValueError("Target labels `y` need to be provided for a targeted attack.") # Some initial setups x_adv = x.astype(ART_NUMPY_DTYPE) if y is not None: y = np.argmax(y, axis=1) # Generate the adversarial samples for ind, val in enumerate(tqdm(x_adv, desc="HopSkipJump", disable=not self.verbose)): self.curr_iter = start if self.targeted: x_adv[ind] = self._perturb( x=val, y=y[ind], y_p=preds[ind], init_pred=init_preds[ind], adv_init=x_adv_init[ind], mask=mask[ind], clip_min=clip_min, clip_max=clip_max, ) else: x_adv[ind] = self._perturb( x=val, y=-1, y_p=preds[ind], init_pred=init_preds[ind], adv_init=x_adv_init[ind], mask=mask[ind], clip_min=clip_min, clip_max=clip_max, ) if y is not None: y = to_categorical(y, self.estimator.nb_classes) logger.info( "Success rate of HopSkipJump attack: %.2f%%", 100 * compute_success(self.estimator, x, y, x_adv, self.targeted, batch_size=self.batch_size), ) return x_adv def _perturb( self, x: np.ndarray, y: int, y_p: int, init_pred: int, adv_init: np.ndarray, mask: Optional[np.ndarray], clip_min: float, clip_max: float, ) -> np.ndarray: """ Internal attack function for one example. :param x: An array with one original input to be attacked. :param y: If `self.targeted` is true, then `y` represents the target label. :param y_p: The predicted label of x. :param init_pred: The predicted label of the initial image. :param adv_init: Initial array to act as an initial adversarial example. :param mask: An array with a mask to be applied to the adversarial perturbations. Shape needs to be broadcastable to the shape of x. Any features for which the mask is zero will not be adversarially perturbed. :param clip_min: Minimum value of an example. :param clip_max: Maximum value of an example. :return: An adversarial example. """ # First, create an initial adversarial sample initial_sample = self._init_sample(x, y, y_p, init_pred, adv_init, mask, clip_min, clip_max) # If an initial adversarial example is not found, then return the original image if initial_sample is None: return x # If an initial adversarial example found, then go with HopSkipJump attack x_adv = self._attack(initial_sample[0], x, initial_sample[1], mask, clip_min, clip_max) return x_adv def _init_sample( self, x: np.ndarray, y: int, y_p: int, init_pred: int, adv_init: np.ndarray, mask: Optional[np.ndarray], clip_min: float, clip_max: float, ) -> Optional[Union[np.ndarray, Tuple[np.ndarray, int]]]: """ Find initial adversarial example for the attack. :param x: An array with 1 original input to be attacked. :param y: If `self.targeted` is true, then `y` represents the target label. :param y_p: The predicted label of x. :param init_pred: The predicted label of the initial image. :param adv_init: Initial array to act as an initial adversarial example. :param mask: An array with a mask to be applied to the adversarial perturbations. Shape needs to be broadcastable to the shape of x. Any features for which the mask is zero will not be adversarially perturbed. :param clip_min: Minimum value of an example. :param clip_max: Maximum value of an example. :return: An adversarial example. """ nprd = np.random.RandomState() initial_sample = None if self.targeted: # Attack satisfied if y == y_p: return None # Attack unsatisfied yet and the initial image satisfied if adv_init is not None and init_pred == y: return adv_init.astype(ART_NUMPY_DTYPE), init_pred # Attack unsatisfied yet and the initial image unsatisfied for _ in range(self.init_size): random_img = nprd.uniform(clip_min, clip_max, size=x.shape).astype(x.dtype) if mask is not None: random_img = random_img * mask + x * (1 - mask) random_class = np.argmax( self.estimator.predict(np.array([random_img]), batch_size=self.batch_size), axis=1, )[0] if random_class == y: # Binary search to reduce the l2 distance to the original image random_img = self._binary_search( current_sample=random_img, original_sample=x, target=y, norm=2, clip_min=clip_min, clip_max=clip_max, threshold=0.001, ) initial_sample = random_img, random_class logger.info("Found initial adversarial image for targeted attack.") break else: logger.warning("Failed to draw a random image that is adversarial, attack failed.") else: # The initial image satisfied if adv_init is not None and init_pred != y_p: return adv_init.astype(ART_NUMPY_DTYPE), y_p # The initial image unsatisfied for _ in range(self.init_size): random_img = nprd.uniform(clip_min, clip_max, size=x.shape).astype(x.dtype) if mask is not None: random_img = random_img * mask + x * (1 - mask) random_class = np.argmax( self.estimator.predict(np.array([random_img]), batch_size=self.batch_size), axis=1, )[0] if random_class != y_p: # Binary search to reduce the l2 distance to the original image random_img = self._binary_search( current_sample=random_img, original_sample=x, target=y_p, norm=2, clip_min=clip_min, clip_max=clip_max, threshold=0.001, ) initial_sample = random_img, y_p logger.info("Found initial adversarial image for untargeted attack.") break else: logger.warning("Failed to draw a random image that is adversarial, attack failed.") return initial_sample def _attack( self, initial_sample: np.ndarray, original_sample: np.ndarray, target: int, mask: Optional[np.ndarray], clip_min: float, clip_max: float, ) -> np.ndarray: """ Main function for the boundary attack. :param initial_sample: An initial adversarial example. :param original_sample: The original input. :param target: The target label. :param mask: An array with a mask to be applied to the adversarial perturbations. Shape needs to be broadcastable to the shape of x. Any features for which the mask is zero will not be adversarially perturbed. :param clip_min: Minimum value of an example. :param clip_max: Maximum value of an example. :return: an adversarial example. """ # Set current perturbed image to the initial image current_sample = initial_sample # Main loop to wander around the boundary for _ in range(self.max_iter): # First compute delta delta = self._compute_delta( current_sample=current_sample, original_sample=original_sample, clip_min=clip_min, clip_max=clip_max, ) # Then run binary search current_sample = self._binary_search( current_sample=current_sample, original_sample=original_sample, norm=self.norm, target=target, clip_min=clip_min, clip_max=clip_max, ) # Next compute the number of evaluations and compute the update num_eval = min(int(self.init_eval * np.sqrt(self.curr_iter + 1)), self.max_eval) update = self._compute_update( current_sample=current_sample, num_eval=num_eval, delta=delta, target=target, mask=mask, clip_min=clip_min, clip_max=clip_max, ) # Finally run step size search by first computing epsilon if self.norm == 2: dist = np.linalg.norm(original_sample - current_sample) else: dist = np.max(abs(original_sample - current_sample)) epsilon = 2.0 * dist / np.sqrt(self.curr_iter + 1) success = False while not success: epsilon /= 2.0 potential_sample = current_sample + epsilon * update success = self._adversarial_satisfactory( samples=potential_sample[None], target=target, clip_min=clip_min, clip_max=clip_max, ) # Update current sample current_sample = np.clip(potential_sample, clip_min, clip_max) # Update current iteration self.curr_iter += 1 # If attack failed. return original sample if np.isnan(current_sample).any(): # pragma: no cover logger.debug("NaN detected in sample, returning original sample.") return original_sample return current_sample def _binary_search( self, current_sample: np.ndarray, original_sample: np.ndarray, target: int, norm: Union[int, float, str], clip_min: float, clip_max: float, threshold: Optional[float] = None, ) -> np.ndarray: """ Binary search to approach the boundary. :param current_sample: Current adversarial example. :param original_sample: The original input. :param target: The target label. :param norm: Order of the norm. Possible values: "inf", np.inf or 2. :param clip_min: Minimum value of an example. :param clip_max: Maximum value of an example. :param threshold: The upper threshold in binary search. :return: an adversarial example. """ # First set upper and lower bounds as well as the threshold for the binary search if norm == 2: (upper_bound, lower_bound) = (1, 0) if threshold is None: threshold = self.theta else: (upper_bound, lower_bound) = ( np.max(abs(original_sample - current_sample)), 0, ) if threshold is None: threshold = np.minimum(upper_bound * self.theta, self.theta) # Then start the binary search while (upper_bound - lower_bound) > threshold: # Interpolation point alpha = (upper_bound + lower_bound) / 2.0 interpolated_sample = self._interpolate( current_sample=current_sample, original_sample=original_sample, alpha=alpha, norm=norm, ) # Update upper_bound and lower_bound satisfied = self._adversarial_satisfactory( samples=interpolated_sample[None], target=target, clip_min=clip_min, clip_max=clip_max, )[0] lower_bound =
np.where(satisfied == 0, alpha, lower_bound)
numpy.where
# -*- coding: utf-8 -*- # # Authors: Swolf <<EMAIL>> # Date: 2021/1/23 # License: MIT License """ Riemannian Procrustes Analysis. Modified from https://github.com/plcrodrigues/RPA """ from typing import Union, List, Tuple, Dict, Optional, Callable from functools import partial import numpy as np from numpy import ndarray from sklearn.base import BaseEstimator, TransformerMixin, ClassifierMixin from sklearn.utils.extmath import softmax from joblib import Parallel, delayed from scipy.linalg import eigvalsh, inv, eigh import autograd.numpy as anp try: from pymanopt.manifolds import Rotations except: from pymanopt.manifolds import SpecialOrthogonalGroup as Rotations from pymanopt import Problem try: from pymanopt.solvers import SteepestDescent except: from pymanopt.optimizers import SteepestDescent from ..utils.covariance import (nearestPD, covariances, sqrtm, invsqrtm, logm, expm, powm) from .riemann import mean_riemann, distance_riemann def get_recenter(X: ndarray, cov_method: str = 'cov', mean_method: str = 'riemann', n_jobs: Optional[int] = None): X = np.reshape(X, (-1, *X.shape[-2:])) X = X - np.mean(X, axis=-1, keepdims=True) C = covariances(X, estimator=cov_method, n_jobs=n_jobs) if mean_method == 'riemann': M = mean_riemann(C, n_jobs=n_jobs) elif mean_method == 'euclid': M =
np.mean(C, axis=0)
numpy.mean
from numpy import genfromtxt, histogram, savetxt, column_stack from matplotlib import pyplot as plt file = "./charts_data/timing_prio.dat" out_file = "hist_data.dat" data = genfromtxt(file, delimiter='\t', dtype=None, autostrip=True, skip_header=1) hist_data, bin_edges = histogram(data[:, 1], bins=20, range=(0.0, 1000.0)) out_data = [] out_data.append(bin_edges[0:-1]) for i in range(0, 4): hist_data, bin_edges = histogram(data[:, i], bins=20, range=(0.0, 1000.0)) out_data.append(hist_data) with open(out_file, "w") as f: savetxt(f,
column_stack(out_data)
numpy.column_stack
import numpy as np import torch from gym import spaces class ReplayBuffer(object): """ Replay Buffer for multi-agent RL with parallel rollouts, global state, local observations, and shared rewards """ def __init__(self, max_steps, num_agents, state_space, observation_space, action_space): """ Inputs: max_steps (int): Maximum number of timepoints to store in buffer num_agents (int): Number of agents in environment """ self.max_steps = max_steps self.num_agents = num_agents self.state_vect_buff = np.zeros((max_steps, state_space.shape[0]), dtype=np.float32) self.next_state_vect_buff = np.zeros((max_steps, state_space.shape[0]), dtype=np.float32) self.rew_buff = np.zeros(max_steps, dtype=np.float32) self.done_buff =
np.zeros(max_steps, dtype=np.uint8)
numpy.zeros
# Implemented by <NAME> import six import os import numpy as np from copy import deepcopy from itertools import chain import unittest import healpy as hp import warnings # disable new order warnings in tests warnings.filterwarnings("ignore") nside_precomputed = 4 lmax_precomputed = 8 galm = np.array( [ -0.60749536999999998 + 0j, 0.83559932999999997 + 0j, -1.0174608599999999 + 0j, 1.0993299999999999 + 0j, -1.0415247299999999 + 0j, 0.98637741999999995 + 0j, -1.2327712799999999 + 0j, -0.65081703999999996 + 0j, -1.1239971900000001 + 0j, 0.96501168000000004 - 2.3554313900000001j, -0.40474513000000001 - 0.65564383000000004j, 0.15638859999999999 - 0.23621884000000001j, 0.28043983 - 0.39658116999999998j, -0.26163387999999999 - 0.077809699999999996j, 0.20287720000000001 - 0.06082216j, 0.052013629999999998 + 0.073047849999999998j, 0.68909047999999995 + 0.65423257999999995j, 0.48747127000000001 + 0.30760153000000001j, -0.35432469999999999 - 1.0799235300000001j, 0.43819587999999998 - 0.22769086999999999j, -0.57252002000000002 - 0.13502544j, 0.63900029000000003 - 0.59585710000000003j, -1.16030893 - 0.25760955000000002j, 0.37504869000000002 + 0.058102309999999997j, -0.98924601000000001 - 0.46924109000000003j, 0.71031016000000002 - 0.90896836000000003j, -0.43448922000000001 - 0.12677451000000001j, -0.77544904000000003 - 0.25176252999999998j, -0.01721661 - 0.94948701000000002j, 0.85474141000000003 - 0.051103330000000002j, -0.60520565999999998 + 0.87760647999999997j, -0.77864944000000003 - 0.79208626999999998j, -1.08657508 - 0.59487055j, 0.21367211 - 1.5110769900000001j, -0.16784056999999999 + 0.80020639000000005j, -1.1339041000000001 - 0.32197503999999999j, 0.19618954 + 1.08100252j, 0.43866369 - 0.47475267999999998j, 0.11857266 - 0.049022839999999998j, -0.40366523999999998 + 0.85542658000000005j, 0.56154870999999995 - 0.77527478999999999j, 0.48146275999999999 + 0.16245443000000001j, -0.68355484 - 0.22983015000000001j, -0.061040659999999997 - 0.13420304999999999j, 0.27255975999999998 - 0.75328077999999998j, ] ) calm = np.array( [ 1.0718601933803977 + 0j, -1.5182685950801673 + 0j, -0.39119975933464429 + 0j, -0.6620552667513403 + 0j, 0.42674481653281382 + 0j, 1.3799470126677567 + 0j, -1.4604721504544589 + 0j, -1.1136471151307403 + 0j, -1.647392955477013 + 0j, 0.71919252212426499 - 0.39773236587790972j, 1.1884542365155342 - 0.02640806030381616j, -0.040937417189905477 + 0.41096619318378996j, 0.19575829981467366 - 0.9285256561788201j, -0.81538492817093389 - 0.35929021939020905j, 0.46870617235542178 - 0.16617809319149193j, 0.23640105395174835 + 0.20199283448907013j, -0.4326244206185022 - 0.59306323217984414j, 0.70410703555897491 + 1.1105121855564981j, -0.25795284664102419 - 1.2596368643912992j, -0.32298608901330822 + 0.28961247423501457j, 0.86075337105780647 + 0.11654277740017273j, 0.61549312276703594 - 0.10703912813862339j, 0.18586512296424443 - 0.19025963131317278j, -1.0133508690870945 + 0.37723661046981605j, 0.81779407406185822 + 0.079623471577802724j, -0.36878503033040533 - 0.2898255702618146j, -0.13864500443953851 + 0.99443154731355876j, -0.18473645501235322 - 0.27320195658100321j, -0.59576170002379292 + 0.82900875927708351j, -0.42589567337148737 - 0.4359073358803493j, -1.0071527860797036 + 0.94936616398900131j, 0.52681818118587864 - 0.14360294581437408j, 0.92619570387111039 + 0.051664002362596051j, 0.75431992804310644 - 0.25779974392362176j, -0.89919787406938079 + 0.4989749264182417j, 0.50889483979981087 + 0.80485052548180069j, 1.0832061738848424 - 0.70024088919678606j, -0.81326057995656997 + 1.0871815291974078j, 0.66115253781072936 - 1.1579428341478799j, -0.25669790905903495 + 0.031910894413264487j, -0.055840352620168392 - 0.27126620265309953j, 0.77754873311978667 + 0.1677199540737199j, -0.2428367232543345 + 0.058222152917874435j, -0.35655343174399751 + 0.28585938716743436j, 0.44494756551095588 + 0.17931771534010477j, ] ) maps = { 1: np.array( [ 1.1743580943750218 + 1.0162508812596662j, -1.7545991014514022 + 3.9632546003544267j, 3.4755301242047865 + 3.6205268666848651j, 3.463772051893852 - 0.16092758895196169j, 1.6137200258556599 + 0.73266613851658846j, -0.78408695644456827 - 0.017688408927465843j, -3.2331912918298711 + 1.0423682626399753j, -2.4967573102249689 + 5.4249205744223872j, 1.9618186881421982 + 4.9309708160236383j, 3.0923993499620077 - 0.4894899405424642j, 3.8802145016214444 - 1.7023962410322717j, 1.6609384663419748 - 1.907262230594307j, 0.48237984905359593 - 1.7832620041462326j, -0.91903915540372738 - 1.4797023464820716j, -3.3079615434500242 - 0.87195141293021572j, -3.2711896733834713 + 0.12177676469629328j, -1.4919533733781134 - 1.6435471612444656j, -2.6523233433871019 + 4.2474564187420576j, 0.91780925153179838 + 4.9570523962893001j, 0.42584487195441895 - 1.8426545772598648j, 0.23225332448920533 - 3.4181823103655073j, 1.4984860851219615 - 0.98863554278420129j, -0.35246834799111726 - 3.3771616282380563j, -1.5062845496910013 - 3.4935340751923691j, 0.13099914430749093 - 2.0149335831137503j, -0.99476127813711768 - 1.9875208527665134j, -1.1508757672399341 - 1.1170925992609697j, -2.2800860488149857 + 2.5337276570280665j, -2.0227144551955485 + 4.4062547882406582j, 0.85159759341389984 - 0.25969432494507549j, 0.10617879436802691 - 1.4704556654073533j, -0.74056700667340003 + 3.9958069996884769j, 1.8376229758120008 + 4.8939057972543516j, 0.56097592637522953 + 1.1962336897882726j, -1.3522314207704584 - 2.3788885700721187j, -0.3910200060975908 - 2.0276298492296441j, 1.1696744495267888 + 2.4194144879695001j, 0.61111633566009804 + 1.9810226991014681j, -1.2570081724109712 - 2.4256572995991448j, -2.0379607424382673 - 2.3401230961329462j, -0.11895117415507916 - 0.20168228572033531j, -1.1721585258230467 - 0.40434726332170645j, -0.87007913988881902 + 1.0470079216653014j, 1.0632956396927513 + 0.86183414835909822j, -0.38580133850999232 + 4.9648768523408924j, -1.1378511659644674 + 3.5600642062343684j, 0.059277285920489975 + 2.2071682852740224j, 0.32981878804494424 + 2.0708756974471436j, 1.5954797850952303 + 3.9506597955061187j, 1.113967802900363 + 3.8105501539801976j, -0.34187488675854677 + 3.0267213287624557j, 0.18662232048160876 - 1.2571845658067642j, 2.7139610044225382 + 0.69222466212540557j, 1.4373026138501541 + 3.902110493851922j, 2.3082293966444007 + 2.2987716217551775j, 1.3462006391244148 - 0.10182718246119304j, -1.0329879104957191 - 1.0590332100623074j, -3.0810859363267094 + 3.1945037345098988j, 0.77362743359084163 + 0.84013578687826662j, 1.0464890345883808 - 0.72771732260634059j, -0.51744859070890492 - 0.81451970371406568j, -2.9428700854575434 + 2.762899585992368j, -0.40115243174986093 + 3.8372871200581486j, 0.96128270685925343 + 0.93840717545663799j, 0.41639434446527768 + 2.5331280325752732j, -0.519386987039123 + 4.2723375559049348j, 0.52495944959322849 + 0.8116227621810026j, 2.5244086242304857 - 1.89004339281529j, 2.0195410343451292 + 0.21295550110166039j, -1.8684314756711684 + 2.3019863570099734j, 4.0113534030248825 + 2.4322957453578007j, 2.5067778456719454 + 1.3635087014727825j, 1.8581737323759087 - 1.1755871365622586j, -3.278606394868425 - 0.74168306105753778j, -1.6581650987018286 + 3.4206773381711715j, -0.20328962742120149 - 2.6517323129301227j, 0.11939427685928439 - 3.914762222637826j, -1.1719762486786653 - 3.6258016903482262j, -1.9695972814337694 + 4.7844819781500254j, 0.70410051090004111 - 0.63082142973243238j, 0.58203862242748194 + 0.17092305557744025j, -1.0446335319978968 + 2.2194447533251744j, 0.15655310887242035 + 0.86561734274560376j, 0.31563746550827387 - 2.9298241668860747j, 2.7860378031530235 - 1.0136028592766184j, -4.3782229028819648 - 0.33971568537612828j, -3.0909568032763324 + 2.5513031796814909j, 4.6737413708938655 + 2.7302786045020038j, 0.13272621959023939 - 4.1711765732663011j, -2.2749762169482466 + 0.25421841905327258j, -0.50489760751634882 - 0.91377903881434097j, -2.287069616277897 - 1.0631181589973533j, 0.7972895323203042 - 3.4207848305117969j, -0.23326908605637886 + 1.089382332171946j, 0.0098601007056405704 + 1.4586475390991032j, 1.0365833871785477 - 2.4620420564717742j, 0.36572720828156252 + 1.6541853704371952j, -0.51430469009147317 - 0.049252228418473765j, -0.62145289699741391 - 3.375619986564951j, 0.35466808756859192 - 1.3690595024956109j, -0.25322914773962185 + 0.32316646758647627j, -7.4892488525844554 + 1.1525104561324868j, -0.12392585470999483 + 2.4297661937947765j, 4.2905861596881323 + 0.67018882572843463j, 2.3390789232929543 - 2.3191321695784399j, -0.44619718489570181 - 3.8333096552555777j, 0.51352876521471524 - 1.6804333968219132j, -1.7025201697344337 - 0.1008347592396226j, -1.477972480809314 + 4.2322266421353856j, 1.399058406997034 + 0.63203496833525186j, -0.039998736140595348 + 3.1534667411092578j, 0.001699954715300489 - 1.6894128318777268j, 1.8608282629517956 + 0.54462233467286736j, 0.022347730866276339 + 0.94097808664808924j, -0.97565390581191991 - 2.0043597662134327j, -0.85205216583024623 - 2.2679689843892588j, 0.53947735206622338 + 0.92108210028888182j, -2.5670596443819931 + 0.38871863049383093j, -2.934869851153608 + 1.2511147622702086j, 2.0825683383127727 + 0.45929928305134715j, 0.37898448820629005 - 2.6841486733486013j, 1.0120152854590612 - 1.6425972444002646j, 0.7776935701538118 - 1.952106003854329j, -1.2780368759454575 + 4.6651596443819408j, -0.039206971051687134 + 5.265018964377389j, -0.54489461163081254 + 2.8671152905341284j, -1.636083304638287 + 1.8615197052158607j, 1.4325345827348386 - 0.58443769148648628j, 1.8893019352323406 + 0.93513602825308595j, -2.139093319814994 + 0.49456047669865844j, 0.033273312452318238 - 0.67524051231226145j, 0.0018165800924796471 + 0.24539790830842012j, -1.830677860003034 - 0.88907276825821402j, 0.23881421516801424 - 0.71660110558242596j, 1.4607757935805321 - 0.20332350008812516j, 0.31479988117869262 - 1.4797543881405799j, -1.4700646395419654 - 2.3412000314939014j, 1.3630043099840954 + 1.0459288308034624j, 1.0366509002025306 + 1.4017065365354837j, 0.5324643362883491 - 0.19564285336892207j, 0.86203010112261591 + 3.8589883704164376j, -1.4871335108899939 + 3.2965305219683243j, -3.506476212648844 + 3.1925528967103802j, 0.15264175448604056 + 0.431490908418659j, 4.2777064175487407 - 1.2512757866202306j, -1.1870189698038707 + 0.75501344481612265j, -1.839602146399741 + 1.4963403982128953j, 2.3099273465758903 + 1.2697775493766699j, -4.3475497187867314 - 0.32036886085994221j, -3.3064040751562334 - 2.9625087732893531j, 3.6141886575697248 - 0.0099341031074851038j, 0.0048861040277541345 - 0.6295182389123023j, 1.5000073794953357 - 0.88609288760098115j, 2.2323719937100908 + 5.4902541505729845j, -0.2585807286071018 + 2.5584952206368938j, 1.7769833707262548 - 0.3408851516775957j, 0.37978034270511074 + 2.9026249163611726j, -4.6921406543266571 + 4.3678134780358526j, -2.4462636775404958 + 1.4523419567722944j, 5.2941943690732423 - 2.6008774047519228j, 3.4595406699843201 - 0.99129783569826058j, -3.4841770617209473 + 1.2717869796731138j, 0.13850539692866526 + 0.94282786052434553j, -2.1789230651774014 + 1.6415064719591206j, -8.811149558407779 - 0.86858984219214674j, -0.98048863671795994 + 0.035234022992954195j, 2.3501190627193562 + 2.7317457688466678j, -1.5421024919985193 - 1.7186736892960668j, 2.139635096504529 - 1.8367715460959313j, 0.41669207038592981 + 3.3753865855933527j, 0.42812877807536154 + 0.88267208286037602j, -1.6620756081654045 + 5.368686741364268j, -5.4496694415397027 + 3.4393514966821126j, 3.2274980963579551 - 2.6154731433818244j, 1.2325162367548854 + 0.25900311819665534j, -4.9927575224429273 - 0.77655205094166613j, -3.9137002256716968 - 0.87208435187132305j, -5.8396208197376538 - 0.033400550471304857j, 0.88165596824067283 + 3.3402495465420188j, -0.77813555128307499 - 0.49824566884112964j, -1.2569589183195746 - 3.992299237539171j, -0.55073556348169195 - 0.99367233232065755j, -3.1361715966867241 + 3.8990411125610152j, -1.2479889140797951 - 0.86728888508048596j, -3.438346192247995 + 0.75427470765301274j, -5.8362598289444767 - 3.7106623335656881j, -1.6220739622888261 - 0.85412380326550341j, -2.3618246988425389 + 0.10262957279861007j, -2.0128151752491599 - 5.2483459258638678j, -0.28798741542347162 + 0.082139772535972211j, -4.4336542047160892 - 0.12984758528642848j, -3.0452434904226706 - 0.34940617145697844j, ] ), 2: np.array( [ -1.1165046042602529 + 0.74756586618731813j, 2.9563864696268687 + 1.016510598068517j, -1.7273931284275377 + 1.684970250530498j, 2.1374510755011236 + 1.3953489111135389j, 1.264058043394483 + 1.0656402139582337j, 0.59206130659344847 + 2.8140992156732278j, 0.062093775185857902 + 2.0904994744842891j, 2.9429778836437221 + 1.7128991560692999j, -2.6110141508418021 + 1.1140285432863466j, 2.326165567157239 + 3.2728054144888676j, 2.6626908823784907 + 0.52728366204875832j, 3.5908021600075641 + 0.96903781804179978j, 0.90571149765085535 + 0.24081124592692693j, 0.72871814828353709 + 1.332418563783788j, 0.60164374752130945 + 0.15445148430884423j, -2.5529506354313782 - 2.3304064585375239j, -1.8879418959660019 + 2.682343033625215j, 2.1668168490952775 + 1.4157064593061692j, -3.1636708644108649 + 0.64742953025658889j, -1.4210029334653473 + 2.6334896788286049j, 3.6902066347461573 + 0.13892873924238483j, 2.9575090399303945 - 2.6325502244852719j, 0.17878513667675777 - 1.1585078531329858j, 2.1237001808101663 - 1.323323837586023j, -0.16120044138369383 - 1.2121424743269673j, 0.8624452370473753 - 1.0686957121793859j, -0.51467053641764826 - 1.1945130365136154j, -0.18418165278174148 - 0.59116856193750777j, -2.6169185838042068 - 2.4146314558175046j, -2.7622714373457917 - 2.3797351683439834j, 0.073910048482292545 + 0.16496145279596552j, 0.80910813851825103 + 0.56242050573198998j, -1.9584133243280075 + 1.0892351163388432j, -2.1814162287477559 + 0.61054532617299695j, -1.5169577705416253 - 1.0235623545618981j, 1.9895718538585976 - 1.8211523939205545j, 2.4118671091811361 - 1.9453281674321252j, -1.3835825480021706 - 2.94255319882138j, -3.3831677322689044 - 2.4580709837790149j, -1.0643850899431524 - 2.7522668625312905j, -1.9640650365404291 - 0.35711187195874783j, 2.0439239983559903 - 0.31240155157933036j, -0.22521863704724376 - 3.4584160218021305j, -0.51534527570261424 + 1.0301056642659554j, -0.81562474322987222 + 3.7503264056978267j, -0.060726807609905009 + 1.8031960877879551j, 0.86667213746967398 - 2.9028917378472125j, -0.15387539712023934 + 0.13908261984620263j, 0.45953137238099684 + 2.2626118142274105j, 0.62744200989512788 + 1.9272207054022881j, -2.3255110017526608 - 0.53695630414710283j, -1.5190658716876777 - 0.9208472578106438j, 2.137223495429847 + 0.68320323689351148j, 3.1584401529074442 + 1.7321545691722557j, -1.1125695286320998 - 3.2076280088399511j, -3.7060965836044932 - 1.9780143459066473j, -0.0012842332451774574 + 3.2452953615132838j, 2.2855371052053712 - 1.1752563745986131j, -1.7649471509112493 - 0.88061905568140997j, 0.75495292840738937 + 3.6278072525475187j, -0.49646600004863894 + 5.9486839669421894j, 2.9426274856719101 + 1.0146400853383064j, -1.5434946162364205 - 1.1288427968038663j, 0.1004948003661843 + 2.7446408233087585j, 1.6891184209589296 + 3.1297213004998374j, -0.05236089581184955 + 1.9379909861717084j, -2.5137867334898658 + 1.4249473105986246j, 1.649739972413804 - 0.1284157001992281j, 3.8737660306719093 + 4.4058712012072778j, 5.5734334582390925 - 0.01859570677500616j, 0.034418186067761702 - 3.7863468040480583j, -3.6185785482837716 + 0.87492996512854082j, -3.523709866409459 + 3.8351231556344709j, 1.9035220821258987 + 3.5762696257910473j, -1.3355317211315365 - 0.12437729138156417j, 0.27233720824024044 + 0.62568960888382408j, -0.087131156071871274 - 0.010324624464344678j, 1.4827889367880731 + 2.2703868481775364j, -0.27368753287508718 - 0.23035237674465425j, -2.3786689738351767 + 1.4567486754553038j, 1.4386131990647175 + 2.4034598349374283j, 0.066680160631143237 + 2.7232295144266274j, -1.666407419777012 + 2.9083944127863561j, 1.3023780882542342 + 0.52194039596842601j, 3.3146056296510493 + 0.66745607226026649j, 4.2456604060579677 + 3.8969561221755749j, 4.1998262021248625 - 4.0793461167911262j, -0.76421358406766027 - 1.2315027885578802j, -1.5357398471693586 + 3.7748327293868642j, 0.095984948174640872 + 2.2104973139657291j, -1.4588631998320354 + 1.134201407450617j, 1.6387745345036606 - 3.8466513697644413j, -0.73057877816794492 - 4.655134203127945j, 1.6085189126683648 - 0.21988000108022218j, -3.1142178896816564 + 0.091923489293964877j, 0.62820278401392149 + 0.1889975872022136j, -0.16120633228908154 + 1.9707163592075072j, -1.235116936758984 + 2.1482450245585314j, -0.021985008426573249 + 1.1038279261596868j, 3.6413478144793245 - 1.5615567405467394j, 1.836327464800555 + 2.8541227399557041j, 0.93919940461177709 + 0.14620058990910742j, 0.95456236801488359 - 3.2026192357315972j, -1.7481075885435755 + 1.6730186360367643j, -0.84626775726936276 + 1.6575377579793631j, -0.26164286832258099 + 0.76088427278556803j, -1.2966015229936554 + 0.97676041471092478j, 1.6124370820759013 - 0.58585228456899752j, -0.21994376085816314 - 6.2532282013448075j, 0.8353593803854652 - 3.6420691105508212j, -0.03824087822866562 - 0.054729642257138833j, -1.3319497354973748 - 2.0327095379389153j, 0.75662881948485083 + 0.30541845281794644j, -0.76757214187579981 + 2.2787455111432591j, -0.455100077730823 - 0.55830706795474327j, 1.3313718654711193 - 1.5460827721627417j, 2.9912065916181261 + 0.77182516673656876j, -0.52278090407902422 + 2.7877639036769803j, -2.3528997632544266 - 1.2308866273244197j, 0.27817666198979296 + 0.059213451422733376j, 0.45875812556331846 - 1.2692467729246268j, -0.45874375601474504 - 2.3686526493885238j, 0.479232709947924 - 0.3060902759460391j, 1.4895902195529662 - 0.41735115244048793j, -0.85025677044974457 - 2.3693856367193904j, 2.0718452260590321 - 0.54927604975188671j, -1.176356516666446 - 1.9392922793319025j, -0.79423474673281291 - 2.1390403821586896j, 0.25372445079390721 + 3.1629513441654384j, 0.54044572189189222 + 0.18770434833000893j, -0.32776474396893496 - 2.9986158756129355j, 1.8555964580559503 + 0.64523330354515551j, 2.6163923211891467 + 2.0073816231373094j, -0.96827837897054836 - 0.20669532105285635j, -1.6161700297890988 + 0.058760459668895204j, 1.0388341083117685 + 1.0343083372958142j, 0.8171690777526357 - 1.0241901711901955j, 1.161178491272123 - 3.3193021589202116j, -0.65705952284124769 - 2.909740964518341j, 1.0464027137937968 - 0.28516514967891382j, 0.31407614249026861 + 2.0789914726795806j, 0.89249898217038592 + 0.74504430864132187j, 0.46653627607511738 - 1.2535459455441251j, -2.8759949933021893 - 3.4253168189020871j, -0.55004579155281808 + 1.4416964251162601j, 1.3842770119914176 + 3.7499085234789105j, 0.73300538480603206 - 2.3651197461061306j, 1.2610841999098341 - 0.04478569409858002j, 2.2663256193995895 + 2.6893001805232006j, 3.2282105473513854 - 3.089294872359758j, 1.0246687806608903 - 2.1329916398440454j, -0.79719171443068326 + 1.1114942772440388j, 2.3820851781718693 - 1.9138147704390083j, 1.478151603469551 + 0.15364879065364989j, -1.5233345516736922 - 1.3099212472909443j, 1.5072515797375459 - 0.57475142166442117j, 2.1228188430644579 + 2.0096979974944369j, 0.16349467160657194 - 0.13019412026157573j, -2.8501863703427208 - 4.0570052570082602j, -1.0157135917807159 - 2.6825682466889411j, 2.3253206740804364 + 4.1263405715172157j, 1.5487387410680176 + 2.2318083306172714j, 3.3480777012584348 - 0.30034799964836079j, 2.7011245606581289 + 4.7335734563336729j, 0.57254668180230106 - 1.6139253460404996j, 3.903853955673366 - 6.6991967093618143j, 0.64492682991521111 - 0.31017629667123225j, -2.1607929176337426 - 0.16857297635682733j, 4.8098868433499913 + 0.41785061609925878j, 1.1564314939094591 + 4.3710892388226963j, 1.8224691599081939 - 0.63910766786442408j, 2.6435565518448572 + 2.9094520705913056j, -3.7780259549880189 - 2.1074067076770948j, 1.5393672791948894 - 5.2619312349734786j, 4.5356550511622213 + 4.2698512297085127j, 2.3969803974124391 + 1.9571123112588573j, 3.6061144615068086 + 4.3736176949628423j, -0.39324476338149617 - 1.9082883633012435j, 3.026448300108715 - 1.7428825416966158j, -1.9045802882682787 + 0.4426906193634812j, 5.0241978704119958 + 1.9445871037916549j, 2.6831636546598459 + 3.0839149450548007j, -1.4019967581265769 + 5.0027949271902887j, -0.0031667657498008206 - 5.3402188332400726j, 2.9517714615379806 + 4.0246422636276797j, 1.4785600380549067 + 0.51660087996842741j, 2.7856553478477579 - 0.88532969501753778j, 0.2673738444085586 + 2.2859423305476705j, 2.7550882281445315 + 0.58476661154179221j, -3.2828096156515181 + 0.45102580026710948j, -1.8220345108884464 - 0.00054247733982548674j, 3.2007680062608741 + 2.4615774393552337j, ] ), 3: np.array( [ -0.66999593287202142 + 0.46243708757420809j, 0.82115988275196528 - 1.6643038327885704j, 0.67399713542071471 - 2.3955600817810208j, 2.215439913637927 + 0.72446638537859487j, 0.93108120226407332 + 0.064033670430578393j, -0.92739574739897401 + 2.2493044552029375j, 4.0678984753394341 + 3.2507085430096483j, -1.3168389222564625 - 0.80923697224245794j, 2.4067925151982705 + 0.92813675598570766j, -2.0493109031701429 - 0.49108376461287684j, 1.6349441369388815 + 4.1340925667887625j, 2.5312429669372829 + 0.44393295017157475j, 2.2198800992090253 - 0.20688768772829413j, -0.053776255855561117 + 2.1684193251401833j, -0.74507569207418511 + 2.0534600226420934j, 1.0590676473818048 + 3.4665027379637494j, 2.5831500212178433 + 0.10767106535418591j, -0.81172453742230211 + 1.5135115252098388j, 0.51675313192529826 + 1.7364523664094207j, 0.017777040747489425 + 0.33054862825595765j, -0.031923375391498365 - 0.03647474837162834j, 0.75627328628012946 + 2.5870613579433228j, 4.0854570875479279 + 2.1694354582233544j, 3.5281541314540927 + 0.20192676958354183j, 1.2898229939329962 - 2.8439309558484345j, -1.4676716747053 + 1.2550839973056764j, 1.4660283077695149 + 1.250015105410669j, -0.24960947184476789 - 1.274656996015006j, -2.105841001070178 - 2.0766118645037839j, -2.4893754811904127 - 0.40574540171916373j, 1.1819182474823142 + 1.2543311034554072j, 0.66112124774937775 + 0.73421234301293936j, -1.5435321344721677 + 0.2405604201908027j, -2.5174124636556181 + 1.1618925572216374j, 0.69011465007947015 - 0.52483143713649749j, 1.5464610264677234 - 2.6451243970838227j, -0.097592832333731394 - 2.1470448648923481j, -1.7790027249170768 + 1.4929022997757122j, 2.1060693685955689 + 0.72313993979877744j, 3.1638994698726481 - 2.1269139943415407j, 2.2107279234732862 - 5.0404555730899059j, -2.5209363703464924 - 3.302312046473193j, 0.12059012761921761 + 1.3587818158227796j, 1.8826126043065536 - 1.5865310833153738j, -0.57070268838796012 - 1.585154256627491j, -4.7784601734110614 - 3.8493106222543396j, -1.4421251579517258 + 0.98946495072189533j, 3.1612898053286718 - 0.44422399561859394j, -0.27830641044372373 - 0.94412748500393695j, -2.6942690780226708 + 0.22023121586779437j, -1.2938276668529529 - 0.06583465169229219j, -0.18392187376248736 - 3.6374010616991139j, 1.3907294398416794 - 3.5152092057270137j, -4.2456806268120735 - 2.3371824677843467j, -4.5174367628342278 + 3.0159027596758059j, 1.4569480295154498 - 0.40481687203522998j, 0.24452064515296237 - 5.5529329980953808j, -2.1273220239180053 - 0.73593942867713091j, 1.595151423023013 - 1.1401776866728879j, 0.15780690321442792 + 2.2661324101587246j, -0.74933288055404634 + 1.3749431486856962j, -3.0816809779382717 + 0.23742643682485964j, 2.8994367119049036 + 0.7396921744800089j, 1.4994335029613002 - 1.2798108792722671j, -0.16539584890629019 + 0.48010791918853934j, -0.89194363806978616 + 0.7170467910739301j, -2.1293682627235322 - 2.5845385071231268j, -0.63427315935121464 - 2.1595594356167398j, 0.99308347169563682 - 1.8514493405763055j, -5.4450584092937877 + 0.97902894760670878j, -1.0604698602513214 + 3.2312043227524949j, 2.3124452902496664 - 1.3950895449462946j, 1.3201823408003734 - 1.6028209931750983j, -0.87616516312961035 - 2.1465631953543003j, -0.34056443490530253 - 0.35013249591511048j, -1.2364508408450898 + 0.13781313196431211j, 0.038609534515580135 + 6.8698762949471899j, 0.12380533905802339 + 2.7921341862952316j, 0.54660167417157157 + 2.7346629269827281j, 1.6952037866074647 - 0.33387389764274045j, 0.94628165540958409 + 1.2037205024287594j, 0.68176721298456666 + 1.3320274860427599j, -1.497001928100073 + 0.16859140871709216j, -2.9208164653643847 - 2.013262526262011j, 2.23493624166204 + 0.38888195090814426j, 0.083266882937527834 + 0.042519190431531406j, -0.81622472526299195 + 1.602983850729655j, 1.9107865697855551 + 1.8860940491210119j, -0.5161686146069725 + 0.1067286365498733j, -0.56830015109909349 + 1.5080358150275226j, -1.9977061163459469 - 1.2634518707513132j, -2.7762791817204802 + 2.8410553962536476j, 1.5348104323655993 + 3.8209466359027746j, 1.0447821110316866 + 2.8953941140696262j, -0.16156969418429323 + 2.1568137355441648j, 1.1423882118876016 + 0.80959057152946856j, 1.2184203681166248 + 1.6431143641185439j, -1.3333936354073923 + 1.3051448172275528j, -2.2003497621202652 + 0.034485634672569598j, 0.48305931966908489 - 1.0059947680083925j, 2.4240719735430218 + 1.520434513132964j, 0.14152780483805999 + 0.38291838819136248j, 2.6247680254133194 - 0.34273750279620985j, 0.5170632044924367 + 1.5591723010537319j, -1.964084322524609 + 2.2043273581641452j, -1.1123693520916111 + 2.9076285022885537j, -1.0205304639064758 + 1.726462948906172j, -3.0513199493069254 - 1.3262259566094576j, -1.1782640915309317 - 0.13290415044827952j, 2.2282976599379309 - 0.72321887567511034j, -0.60179533239909233 + 3.307433985055094j, 0.16788252783154045 + 1.0362178538533637j, 2.6706953553371453 + 0.77074105928608427j, -1.8533672105796244 + 0.35596405935487074j, -2.6147380869392443 + 1.6093046768585832j, 0.37759170296150524 - 1.5083149569782319j, 1.8716643004532001 - 0.35801239552465747j, -1.1450981234973723 + 3.042261086804297j, 0.44452106639608746 - 0.69350503725695845j, 1.4879090143200902 - 0.64776217405327741j, -2.8205775502795389 + 2.641687352135917j, -0.93692044263706187 + 3.0048923877610507j, -0.426546964943878 + 0.013344667316707221j, -1.4443525828613666 - 1.7131214807111499j, -0.14354399201917334 - 4.0206831461274337j, 0.83443104253838163 + 0.29432217858366894j, -0.93252862665525393 + 2.9364673343460126j, 3.4431983705905731 - 0.3251990454994399j, 0.43806792303059483 - 0.70784096193188306j, -4.4119004072708137 + 0.24052114921567447j, -0.98891595175430935 - 0.46079086925838275j, 1.7417334974194558 - 2.9208658301095776j, -1.5454462711687187 + 2.5296917145427482j, -3.3282492610480996 + 4.156447539050224j, 0.40902409375307852 - 0.76847358054292236j, -0.56330685439900319 + 0.69661436668049836j, -1.8762485869816681 + 0.64778551016479047j, -2.4393425483279865 + 0.85171074321319784j, -0.209819964163376 + 0.099157970328755729j, 1.2392961839922023 - 0.64639270138790006j, -1.1641752459378989 - 1.4971678104463564j, -0.56703471832581931 - 2.1716088946899359j, -0.16437097090423169 + 3.1220884585750146j, 1.3539163377460306 + 1.1869107505913261j, 2.9491476787185125 - 1.2808347797003192j, -3.2908684053012207 - 0.88608324309025921j, -4.1007674458331485 - 1.4527729940313197j, 0.44035311401335531 - 3.1365712871936395j, -1.0141686129277752 - 0.63568191152634734j, -3.4102891864012639 + 4.2247127971259122j, -1.1836594760112424 + 3.781939963215049j, 0.51422023588565446 + 0.57579154063617177j, -2.0246664119505891 - 2.237040145119146j, -2.2053210495403732 - 1.3846005574579319j, -1.1160865960532751 - 2.5475738207830227j, 0.50275220925239728 - 1.2519481985598606j, -1.2100185502945444 - 0.16812837098982908j, -0.59983421887255994 + 1.6027230741262604j, -0.52478938635633754 + 2.458183305060198j, 1.5028757257080834 - 0.72420113128118369j, -0.31146843994891138 - 0.27135667939274499j, -5.1133106827158112 - 1.8113241566448617j, -1.5548284863229618 - 4.0468311536026844j, -0.73513228831134692 - 0.50030377688003924j, -4.1474633033600306 + 0.067247755883021731j, 0.21758777097351378 + 1.278485302383952j, 1.2889426032473679 + 3.3676304645801252j, -1.6413393543174832 - 0.091092522462874137j, -0.40598559211980501 - 3.5363616320930467j, -4.4770433756596688 - 1.0937535548777739j, -1.2734316477554803 - 5.4194063797821297j, 0.97449379705901817 + 0.49671560815912308j, -2.4145658013036444 + 1.063978254382109j, 0.99809956584583803 - 2.5020372804114697j, -0.12266974796697871 + 1.5896940246064126j, -2.8686854657724843 - 3.1801933594238334j, -0.082981417033829663 + 1.7518152509849325j, -5.3524188522498743 - 2.1053297170691661j, 2.5900259839505644 - 0.061488539624564797j, -3.4408514291718109 - 0.25659858369140398j, 1.1709160532948188 - 1.3230248129652447j, -2.9408323582582936 - 4.5277551603690283j, -0.28478178944932209 + 2.5139667584019603j, 0.28384136446055264 - 6.2274346660954141j, 1.0139856934187432 + 3.7690735174469179j, -0.0078974510283624788 + 1.2194467618092526j, -2.7712491346368346 - 2.8279715184334919j, -2.992529715098045 + 0.56058068732562871j, 0.84316411435805716 - 0.86466988408221113j, -5.5804660954223984 - 2.9335962670233511j, -2.5482718063619298 + 3.9524532393702518j, 1.0516464424971148 + 1.578274341181523j, ] ), } glms = { 1: np.array( [ 0.0, 0.84319998566330767 + 0j, -1.0248100911568008 + 0j, 1.110961761523819 + 0j, -1.0626942039579403 + 0j, 0.99145170493860635 + 0j, -1.2628244164642952 + 0j, -0.63157305188622881 + 0j, -1.1573098411259166 + 0j, 0.98774392762746244 - 2.3324463135047853j, -0.42041547702109927 - 0.6638941892709691j, 0.17949892445575544 - 0.18716973000962853j, 0.26430768591955539 - 0.40505260468553134j, -0.24063674747596783 - 0.01667629102507856j, 0.20243814807193189 - 0.061501040558063963j, 0.074181600901263869 + 0.13110650173965177j, 0.70925473188372479 + 0.65335194343646219j, 0.4879926917946677 + 0.31352391256853401j, -0.35809352192298388 - 1.0728322735956963j, 0.4533725297757551 - 0.22559691758977207j, -0.60038286724379097 - 0.11246033971793468j, 0.66825095356633812 - 0.60076635444258042j, -1.1946567473464309 - 0.22635664737160516j, 0.40228588081801298 + 0.068430477904664722j, -0.9882729303598855 - 0.46953404636080764j, 0.71188035470148237 - 0.92234375063488339j, -0.42665812492162319 - 0.12577894001454354j, -0.76472165401579706 - 0.26752959905101342j, -0.0060656639141563051 - 0.93138763769826982j, 0.89415079943278952 - 0.066507100471720232j, -0.61447982075563323 + 0.87348984596560353j, -0.78070473872335344 - 0.78753205263021409j, -1.1191256017366982 - 0.60047283637051052j, 0.2133088567364409 - 1.464647765466137j, -0.23425203712922088 + 0.80569933612650535j, -1.1366303557443924 - 0.32263741303024324j, 0.2041593807964231 + 1.0927143488558069j, 0.43611791501355668 - 0.46222719965613662j, 0.13160849960684828 - 0.025453022150853984j, -0.39955107839159809 + 0.85522030725234566j, 0.55636294499207284 - 0.77063085552936683j, 0.50643037413406744 + 0.15921955235797908j, -0.67794895826681578 - 0.2302258170581491j, -0.057766506371200475 - 0.13606392096680481j, 0.2681214210068823 - 0.75888465889983925j, ] ), 2: np.array( [ 0.0, 0.0, -1.0146369650118083 + 0j, 1.11121557988063 + 0j, -1.0268187317357511 + 0j, 0.98244234543551479 + 0j, -1.2007880041682084 + 0j, -0.69447547017176625 + 0j, -1.0726374658022424 + 0j, 0.0, -0.40253474561900393 - 0.65784721719896422j, 0.15199112969379647 - 0.24330956005348325j, 0.28523253658954206 - 0.3981266584575725j, -0.26845152711149062 - 0.083593980089662734j, 0.19959571779331189 - 0.057385723112071435j, 0.048274474287257146 + 0.05571849108314867j, 0.66612416673860797 + 0.66489298075894143j, 0.47445092525264315 + 0.33233327925496392j, -0.33978651546110278 - 1.0700406529115529j, 0.42170150945972673 - 0.20638423667056441j, -0.5630841470957999 - 0.12922848005411802j, 0.61971326220555945 - 0.56144750223866158j, -1.1423916258591016 - 0.25581299034320437j, 0.34730218633923393 + 0.10618832232762943j, -0.99822733104115735 - 0.4682367163596412j, 0.70620977727778933 - 0.90938188008554444j, -0.44219516027124856 - 0.13493822626962626j, -0.78951918570902713 - 0.23576709704052287j, -0.014428235772776353 - 0.97751697894267986j, 0.81909761987552843 - 0.032145061525208574j, -0.59959900791799092 + 0.87660510575181094j, -0.77968569605966409 - 0.81916479783758211j, -1.0543271356804378 - 0.59294085416609699j, 0.21451468853321071 - 1.575924063487286j, -0.097584235980056111 + 0.79606153258991741j, -1.1425268084073952 - 0.33343881952558124j, 0.20815667516194364 + 1.0864812143836942j, 0.42124636529500581 - 0.49483794628510092j, 0.12538155362131775 - 0.054095442648732069j, -0.40820405930119319 + 0.85936840188813757j, 0.57774999828224061 - 0.79228000632060525j, 0.45984172555887304 + 0.1760761108040782j, -0.69197600035251772 - 0.22762901382604028j, -0.068152714393202821 - 0.13031971412287957j, 0.28004810987754036 - 0.74648931403104868j, ] ), 3: np.array( [ 0.0, 0.0, 0.0, 1.1040780794436231 + 0j, -1.0554780343915136 + 0j, 1.003760955073254 + 0j, -1.2565856441338645 + 0j, -0.62932602562674234 + 0j, -1.160067204424214 + 0j, 0.0, 0.0, 0.15865387620507715 - 0.23612586328728333j, 0.27391824074536975 - 0.40229821680653666j, -0.24904217061890843 - 0.066454748333335312j, 0.19465514972961681 - 0.071603817219522803j, 0.07585111789946225 + 0.10671255623789123j, 0.67521859645108184 + 0.63791014584128802j, 0.0, -0.34816350138864738 - 1.084783542403446j, 0.43615290425078285 - 0.22284828128529358j, -0.57324320239356563 - 0.14126286640853886j, 0.65304426498325374 - 0.6000904287578529j, -1.165079833528107 - 0.26540336287320754j, 0.38879888788337164 + 0.049892403597867507j, -0.95196155755809375 - 0.46240128463150965j, 0.66010872131183373 - 0.89379242001828385j, -0.38155334031368932 - 0.11319555736108271j, -0.83737598920187895 - 0.23689666124954797j, 0.036024621196599382 - 0.93058744213774647j, 0.79480395548872762 - 0.042441974598074916j, -0.61480456309191522 + 0.88772972943182071j, -0.77889262539414239 - 0.76334259507894808j, -1.1118023694151189 - 0.59375535579172312j, 0.21015147536095025 - 1.4894366921848528j, -0.20540486553192566 + 0.80716874886526713j, -1.1317123907310076 - 0.32257306660406088j, 0.18948788955123907 + 1.0757829951402618j, 0.45816121337749072 - 0.46825028118838685j, 0.094048425004741185 - 0.062988484577269799j, -0.40021838153849576 + 0.85629510171370782j, 0.54773135746681112 - 0.76849935301866623j, 0.49872929242448694 + 0.14779843610587595j, -0.67415810187311553 - 0.22910004410769433j, -0.05652956808223264 - 0.13895923733616072j, 0.26192691834998399 - 0.75985770223080795j, ] ), } clms = { 1: np.array( [ 0.0, -1.5258173689739127 + 0j, -0.38321729790014736 + 0j, -0.67468807400536313 + 0j, 0.42460653551185651 + 0j, 1.3828469966900694 + 0j, -1.4606906476867365 + 0j, -1.1024802895292889 + 0j, -1.6258480748456989 + 0j, 0.72184388572247027 - 0.40980679076163978j, 1.155123366597125 - 0.00025652164718847903j, -0.046798126366738545 + 0.38718565377077507j, 0.14209457945669973 - 0.89695521394655509j, -0.81580217823771384 - 0.40181448848956358j, 0.41047881458968138 - 0.1152355464248823j, 0.25214366009371275 + 0.13596558218505578j, -0.48642804026342107 - 0.51921699092205253j, 0.70318282623713557 + 1.1149229917786518j, -0.2620711198443052 - 1.2608592875108899j, -0.32886228833465481 + 0.28343506891478615j, 0.87116700915729073 + 0.12201153895105338j, 0.61061947387230175 - 0.13255341818790078j, 0.20682058643208909 - 0.18157727548793343j, -1.012535222212142 + 0.35770276797463263j, 0.82344404513932368 + 0.081123452026155174j, -0.36925633394180285 - 0.28239296801331859j, -0.13701971130554524 + 1.0015322075605051j, -0.17636539799409506 - 0.23987373576395629j, -0.61110525471621113 + 0.8387900954265588j, -0.38131027712597904 - 0.36432117739386211j, -1.0079042770692939 + 0.9484888310663222j, 0.53963333913487466 - 0.15889892563621916j, 0.90252874051924248 + 0.047882748600954872j, 0.77742302026156063 - 0.28243856974519727j, -0.9721760087917013 + 0.49058350689687308j, 0.50365618535953161 + 0.8080725210109363j, 1.0815686965383575 - 0.70497162383482825j, -0.83122125861324603 + 1.0900112211266584j, 0.63134176691035382 - 1.1506771025986287j, -0.25413053864796836 + 0.029385890444217244j, -0.056623996602004172 - 0.26225905883112283j, 0.79047827545371763 + 0.14640251150139555j, -0.24482352824373257 + 0.055856847996116454j, -0.34090568518036446 + 0.31363733143816142j, 0.4367718299537125 + 0.17676151335880672j, ] ), 2: np.array( [ 0.0, 0.0, -0.38326814027750383 + 0j, -0.65418849087307329 + 0j, 0.4365892671577063 + 0j, 1.3803202920785584 + 0j, -1.4916247379419461 + 0j, -1.1324277132571721 + 0j, -1.718185868626174 + 0j, 0.0, 1.1956968215533583 - 0.030205892584907437j, -0.046100534504420865 + 0.41807122036767436j, 0.20782483037951727 - 0.94246433056743517j, -0.83529709861832213 - 0.33903347515975163j, 0.48223350794745773 - 0.1926218400020257j, 0.21761499886653402 + 0.23961747977479567j, -0.41751923193484447 - 0.6353671827291465j, 0.69260449292859827 + 1.130305228894001j, -0.27954119293120033 - 1.2766279639264633j, -0.33817969510878398 + 0.30951969744288232j, 0.83742868793014358 + 0.091212369129396176j, 0.58571691217352817 - 0.070712873379824182j, 0.14679306846624376 - 0.21513933832793367j, -1.0638029100403115 + 0.41792437931719256j, 0.8237611915825912 + 0.077755997607020733j, -0.37108969890984272 - 0.30238750878485998j, -0.14723325508395391 + 0.9932281688841047j, -0.19383569442563495 - 0.29295381202435722j, -0.60670529686130736 + 0.83380243303561374j, -0.45917079393130283 - 0.47912168797908361j, -0.99345730695253176 + 0.94820175796661454j, 0.52649034820916507 - 0.12783909225900825j, 0.95924022156146393 + 0.055538327979596458j, 0.75064860942575096 - 0.21370815773918539j, -0.84586566942124497 + 0.51342826175108991j, 0.50395723769037315 + 0.813189467153421j, 1.1022997429292671 - 0.71579859067105911j, -0.81673852639172906 + 1.1007947378391343j, 0.68458074409331271 - 1.1856051362879017j, -0.25008109729217404 + 0.039905637802000099j, -0.062189175604629054 - 0.28221196312220687j, 0.78892563532515847 + 0.20103962113750989j, -0.2427808848517484 + 0.05747362398942496j, -0.36648874880005772 + 0.26046556342439908j, 0.46087686583398435 + 0.18234525262036616j, ] ), 3: np.array( [ 0.0, 0.0, 0.0, -0.65872355978145192 + 0j, 0.43111157992422688 + 0j, 1.3933719902449626 + 0j, -1.4337104872664086 + 0j, -1.0953871385562564 + 0j, -1.592919216965424 + 0j, 0.0, 0.0, -0.037750501706858508 + 0.4056437707216613j, 0.19266431434449349 - 0.92413738054154204j, -0.80624682077443821 - 0.3750231326847116j, 0.44820402588981811 - 0.14801697141861184j, 0.25229035881318124 + 0.17607723506064732j, -0.47384685147145073 - 0.54847200740427982j, 0.0, -0.26403005654710615 - 1.2664841194732137j, -0.31764611275074489 + 0.29566346120804393j, 0.85876964582432236 + 0.11833464087123241j, 0.62548078652733941 - 0.10502140662441077j, 0.18551399493477491 - 0.18721874018509277j, -0.9828066043226521 + 0.38082405462307395j, 0.80637975865752387 + 0.038495909743214873j, -0.37901190842236099 - 0.24290178119622488j, -0.15681111690711577 + 0.93523746819782994j, -0.19823080090222214 - 0.21435654151321781j, -0.61995793538329469 + 0.75489242177728544j, -0.4291786442205881 - 0.3647575706316637j, -1.036373422481776 + 0.9498490485674238j, 0.52091939787694486 - 0.16079466106792323j, 0.90447971944064343 + 0.049384983566628349j, 0.76161216915691299 - 0.28843184314201131j, -0.921447188295894 + 0.49222438394413293j, 0.50972830882201325 + 0.80496870972031798j, 1.0799130050305059 - 0.69042579996889542j, -0.80230481303668388 + 1.0710316308031511j, 0.65228711481346291 - 1.1285250709486818j, -0.25636616152524505 + 0.027205860798986677j, -0.052885291187932219 - 0.26226354597662616j, 0.76408397668509698 + 0.13719891764968475j, -0.24129807401981906 + 0.059572855113709577j, -0.35702076334353117 + 0.30851416270921495j, 0.42377772250897539 + 0.17587202874134827j, ] ), } class TestSpinFunc(unittest.TestCase): def setUp(self): self.nside = 64 self.lmax = self.nside seed = 12345 np.random.seed(seed) self.mapr = hp.synfast( np.ones(self.lmax + 1), self.nside, pixwin=False, fwhm=0.0, sigma=None ) self.mapi = hp.synfast( np.ones(self.lmax + 1), self.nside, pixwin=False, fwhm=0.0, sigma=None ) self.almg = hp.synalm(np.ones(self.lmax + 1), self.lmax) self.almc = hp.synalm(np.ones(self.lmax + 1), self.lmax) def test_der1(self): """ compare output of alm2map_der1 with the equivalent spin-1 transform using alm2map_spin """ m, dt_der1, dp_der1 = hp.alm2map_der1(self.almg, self.nside) alm_spin = hp.almxfl( self.almg, np.array( [np.sqrt(l * (l + 1.0)) for l in six.moves.xrange(0, self.lmax + 1)] ), inplace=False, ) dt_spin, dp_spin = hp.alm2map_spin( [alm_spin, alm_spin * 0.0], self.nside, 1, self.lmax ) np.testing.assert_array_almost_equal(dt_der1, dt_spin, decimal=8) np.testing.assert_array_almost_equal(dp_der1, dp_spin, decimal=8) def test_spin0(self): m1 = hp.alm2map(self.almg, self.nside, self.lmax) m2_r, m2_i = hp.alm2map_spin( [self.almg, 0.0 * self.almg], self.nside, 0, self.lmax ) np.testing.assert_array_almost_equal(m1, m2_r, decimal=8)
np.testing.assert_array_almost_equal(m1 * 0.0, m2_i, decimal=8)
numpy.testing.assert_array_almost_equal
import copy import numpy as np import pandas as pd import seaborn as sns class GreedyBanditAgent(object): def __init__(self, epsilon=0.1, learning_rate=0.5, action_space=10, q0=0): self.action_space = action_space self.epsilon = epsilon self.learning_rate = learning_rate self.action_values = np.array([q0] * self.action_space).astype('float') self.naction_values = np.array([1] * self.action_space).astype('float') self.rewards = [] def choose(self): if np.random.rand() > self.epsilon: arr = np.argwhere( self.action_values == np.max(self.action_values)).flatten() action =
np.random.choice(arr)
numpy.random.choice
""" A FEED-FORWARD DEEP NEURAL NETWORK """ import pickle import time import matplotlib.pyplot as plt import matplotlib.animation as animation import numpy as np import numpy.linalg as la import seaborn as sns np.set_printoptions(formatter={'float': '{: 0.1f}'.format}) # Batch Normalization def batch_norm_ff(modes, v, gamma_bn, beta_bn, i, bnorm): if bnorm: eps = 1.0e-1 momenti = 0.9 global running_mean, running_variance gamma = gamma_bn + 0 beta = beta_bn + 0 v_in = v + 0 m_dim, n_dim = np.shape(v_in) if modes == 'train': means = np.mean(v_in, axis=0) variances = np.var(v_in, axis=0) va = v_in - means vx = np.sqrt((variances) + eps) + eps v_norm = (v_in - means) / (np.sqrt(variances + eps) + eps) v_out_bn = (gamma * v_norm) + beta # estimate running averages for test and validation running_mean[i] = (momenti * running_mean[i]) + (1 - momenti) * means running_variance[i] = (momenti * running_variance[i]) + (1 - momenti) * variances cache = [v_norm, v_in, means, variances, m_dim, gamma, beta] return [v_out_bn, cache] if modes == 'test' or modes == 'validate': v_norm = (v_in - running_mean[i]) / (np.sqrt(running_variance[i]) + eps) v_out_bn = (gamma_bn * v_norm) + beta_bn return v_out_bn if not bnorm and modes == 'test': return v return [v, 0] def batch_norm_bp(delta, store, bnorm): if bnorm: v_norm, v_in, means, variance, m_dim, gamma, beta = store eps = 1.0e-8 delta_in = delta + 0 dgamma = np.sum((delta_in * v_norm), axis=0) dbeta = np.sum(delta_in, axis=0) inv_std = 1. / (np.sqrt(variance) + eps) dv_norm = delta_in * gamma dvar = -0.5 * (inv_std ** 3) * np.sum(dv_norm *(v_in - means), axis = 0) dmean = -1 * inv_std * np.sum(dv_norm, axis=0) + dvar * -2.0 * np.mean((v_in - means), axis=0) ddelta = (inv_std * dv_norm) + (2.0 / m_dim * (v_in - means) * dvar) + (dmean / m_dim) # dx1 = gamma * t / m_dim # dx2 = (m_dim * delta_in) - np.sum(delta_in, axis=0) # dx3 = np.square(t) * (v_in - means) # dx4 = np.sum(delta_in * (v_in - means), axis=0) # # ddelta = dx1 * (dx2 - (dx3 * dx4)) return ddelta, dgamma, dbeta return [delta, 0, 0] def bn_term_update(g, b, dg, db, momentsg, momentsb): eps = 1.0e-8 dwg = alpha * dg dwb = alpha * db beta = 0.9 momentsg = (beta * momentsg) + ((1 - beta) * np.square(dg)) momentsb = (beta * momentsb) + ((1 - beta) * np.square(db)) rms_momentg= np.sqrt(momentsg) + eps rms_momentb = np.sqrt(momentsb) + eps g += dwg / rms_momentg b += dwb / rms_momentb return g, b # Weighted sum of input nodes and weights def weight_sum(x_data, weights): v = x_data.dot(weights) return v # Activation functions def activation(v, mode): y_io = 0 if mode == 'reLU': y_io = v + 0 np.putmask(y_io, y_io < 0, [0]) # y = y * (y > 0)np.maximum(y, 0, y) if mode == 'leaky_reLU': y_io = v + 0 np.putmask(y_io, y_io < 0, y_io * 0.01) if mode == 'sigmoid': y_io = 1 / (1 + np.exp(-v)) if mode == 'softmax': ex = np.exp(v) sum_exp = ex.sum(axis=1)[:, np.newaxis] # out2 = (ex.T / sum_exp).T # out3 = (np.exp(v).T / np.sum(np.exp(v), axis=1)).T # ex / sum_exp[:, np.newaxis] # or [:,None] # y = np.exp(v) / (np.sum(np.exp(v), axis=1)[:, np.newaxis])) y_io = ex / sum_exp return y_io # Delta GRADIENT Rule def delta_grad(y_in, e, mode): d_in = 0 if mode == 'sigmoid': d_in = (y_in * (1 - y_in)) if mode == 'reLU': d_in = y_in + 0 # d = 1 * (d > 0) np.putmask(d_in, d_in > 0, [1]) np.putmask(d_in, d_in < 0, [0]) if mode == 'leaky_reLU': d_in = y_in + 0 np.putmask(d_in, d_in > 0, [1]) np.putmask(d_in, d_in < 0, [0.01]) return d_in * e # Backward Error calculation for Hidden layers def error_h(delta, w): e_h = delta.dot(w.T) return e_h def regularization(weights, opt=1): if opt != 0: lda = 0.001 return lda * weights # regularization improves learning accuracy else: return 0 # Weight Update Optimization Techniques against Vanishing Gradients - # Advanced Gradient Descents for stability and better performance def weight_update(x_data, weights_in, it, delta, momentums, moments, mode="SGD"): beta = 0.9 g = x_data.T.dot(delta) dw = alpha * (g + regularization(weights_in)) dW = dw if mode == 'Momentum': momentums = dw + (momentums * beta) dW = momentums if mode == 'NAG': # Nesterov Accelerated Gradient momentums_old = momentums momentums = (momentums * beta) + dw dW = (momentums_old * beta) + ((1 + beta) * momentums) if mode == 'AdaGrad': eps = 1.0e-8 dw = alpha * g moments += np.square(g) rms_moment = np.sqrt(moments) + eps dW = dw / rms_moment if mode == 'AdaDelta': eps = 1.0e-8 moments = (beta * moments) + ((1 - beta) * np.square(g)) rms_moment = np.sqrt(moments) + eps momentums = (beta * momentums) + ((1 - beta) * np.square(dw)) rms_momentum = np.sqrt(momentums) + eps dW = rms_momentum * g / rms_moment if mode == 'RMSProp': eps = 1.0e-8 dw = alpha * g beta = 0.9 moments = (beta * moments) + ((1 - beta) * np.square(g)) rms_moment = np.sqrt(moments) + eps dW = dw / rms_moment if mode == 'Adam': eps = 1.0e-8 beta_1 = 0.9 beta_2 = 0.99 ts = it + 1 momentums = (beta_1 * momentums) + (1 - beta_1) * g moments = (beta_2 * moments) + (1 - beta_2) * np.square(g) momentums_norm = momentums / (1 - np.power(beta_1, ts)) moments_norm = moments / (1 - np.power(beta_2, ts)) rms_moment = np.sqrt(moments_norm) + eps dW = (alpha * momentums_norm) / rms_moment if mode == 'AdaMax': eps = 1.0e-8 beta_1 = 0.9 beta_2 = 0.99 ts = it + 1 momentums = (beta_1 * momentums) + (1 - beta_1) * g m_norm = (beta_2 * moments) + eps moments = np.maximum(m_norm, np.abs(g)) momentums_norm = momentums / (1 - np.power(beta_1, ts)) dW = (alpha / (moments + eps)) * momentums_norm if mode == 'NAdam': eps = 1.0e-8 beta_1 = 0.9 beta_2 = 0.99 ts = it + 1 momentums = (beta_1 * momentums) + (1 - beta_1) * g moments = (beta_2 * moments) + (1 - beta_2) * np.square(g) momentums_norm = momentums / (1 - np.power(beta_1, ts)) moments_norm = moments / (1 - np.power(beta_2, ts)) rms_moment = np.sqrt(moments_norm) + eps nestrov_param = ((beta_1 * momentums_norm) + (1 - beta_1) * g) / (1 - np.power(beta_1, ts)) dW = (alpha * nestrov_param) / rms_moment if mode == 'NAdaMax': eps = 1.0e-8 beta_1 = 0.9 beta_2 = 0.99 ts = it + 1 momentums = (beta_1 * momentums) + (1 - beta_1) * g m_norm = (beta_2 * moments) + eps moments = np.maximum(m_norm, np.abs(g)) momentums_norm = momentums / (1 - np.power(beta_1, ts)) nestrov_param = ((beta_1 * momentums_norm) + (1 - beta_1) * g) / (1 - np.power(beta_1, ts)) dW = (alpha * nestrov_param) / (moments + eps) if mode == 'AdaDeltaMax': a = 0 # do nothing return weights_in + dW # Drop-out : To prevent Over-fitting # TODO: Dropout causes an unstable learning model in nature def drop_out(y_in, drops, drop_ratio=0.2): # drop-ratio or drop-percent: drops out this percentage from the hidden nodes, # by setting its output to zero v_in = 1 if drops: # drop_ratio = 1 - drop_ratio # size = y_in.shape # v_in = np.random.binomial(1, drop_ratio, size=y_in.shape) / drop_ratio p = drop_ratio / (1 - drop_ratio) p = np.sqrt(p) # elements = np.size(y) my, ny = np.shape(y_in) v_in = np.zeros([my, ny]) num_of_elem_nodrop = np.round(ny * (1 - drop_ratio)) elem_index = np.random.choice(ny, int(num_of_elem_nodrop), replace=False) for i in range(my): # elem_index = np.random.choice(ny, int(num_of_elem_nodrop), replace=False) np.put(v_in[i, :], elem_index, [p], mode='raise') return v_in # Back propagation, cross-entropy driven learning algorithm def back_prop_ce_multi_class(modus, x, d=None, weights=None, ls=None, it=0, bn_terms=None): set_activation_modes() global bnorm if ls is None: ls = layer_space h = ls - 1 # n = len(x) # output u = x y = np.zeros(ls, dtype=object) # or np.array or np.asarray([None] * ls) cache = np.zeros(ls, object) drop_cache = np.zeros(h, object) loss = 0 # TEST MODE if modus == 'test': global bn_term gamma_bn, beta_bn = bn_term global running_weight print('...TEST MODE...\n') for i in range(ls): # v = weight_sum(u, weights[i]) # y = sigmoid(v) if i == h: v = weight_sum(u, running_weight[i]) y = activation(v, acto_mode) else: v = weight_sum(u, running_weight[i]) v = batch_norm_ff('test', v, gamma_bn[i], beta_bn[i], i, bnorm) y = activation(v, acth_mode) u = y return y gamma_bn, beta_bn = bn_terms # TRAIN MODE for i in range(ls): # v = weight_sum(u, weights[i]) # y = sigmoid(v) if i == h: v = weight_sum(u, weights[i]) y[i] = activation(v, acto_mode) else: v = weight_sum(u, weights[i]) v, cache[i] = batch_norm_ff('train', v, gamma_bn[i], beta_bn[i], i, bnorm) y[i] = activation(v, acth_mode) # drop_cache[i] = drop_out(y[i], drop, 0.2) y[i] *= drop_out(y[i], drop, 0.2) # drop_cache[i] u = y[i] e = d - y[h] # output error # drop_cache = drop_cache[::-1] ex, ey = np.shape(e) # loss = np.square(e) # avg_loss = np.sum(loss, axis=1) / ey # total_avg_loss = np.sum(avg_loss, axis=0) / ex # QUICK CALCULATION OF AVERAGE TRAINING ACCURACY AND LOSS ya = y[h] + 0 dmax = np.argmax(d, axis=1) loss = np.asarray([np.square(d[i, dmax[i]] - ya[i, dmax[i]]) for i in range(ex)]) total_avg_loss = np.sum(loss, axis=0) / ex accuracy = np.asarray([ya[i, dmax[i]] / d[i, dmax[i]] * 100 for i in range(ex)]) total_avg_accuracy = np.sum(accuracy, axis=0) / ex # VALIDATION MODE if modus == 'validate': return [y[h], total_avg_loss, total_avg_accuracy] # TRAIN MODE: BACK-PROPAGATION deltas_r = np.zeros(ls, object) errors_r =
np.zeros(ls, object)
numpy.zeros
# -*- coding: utf-8 -*- import unittest import platform import pandas as pd import numpy as np import pyarrow.parquet as pq import hpat from hpat.tests.test_utils import ( count_array_REPs, count_parfor_REPs, count_array_OneDs, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba import types from numba.config import IS_32BITS from numba.errors import TypingError _cov_corr_series = [(pd.Series(x), pd.Series(y)) for x, y in [ ( [np.nan, -2., 3., 9.1], [np.nan, -2., 3., 5.0], ), # TODO(quasilyte): more intricate data for complex-typed series. # Some arguments make assert_almost_equal fail. # Functions that yield mismaching results: # _column_corr_impl and _column_cov_impl. ( [complex(-2., 1.0), complex(3.0, 1.0)], [complex(-3., 1.0), complex(2.0, 1.0)], ), ( [complex(-2.0, 1.0), complex(3.0, 1.0)], [1.0, -2.0], ), ( [1.0, -4.5], [complex(-4.5, 1.0), complex(3.0, 1.0)], ), ]] min_float64 = np.finfo('float64').min max_float64 = np.finfo('float64').max test_global_input_data_float64 = [ [1., np.nan, -1., 0., min_float64, max_float64], [np.nan, np.inf, np.NINF, np.NZERO] ] min_int64 = np.iinfo('int64').min max_int64 = np.iinfo('int64').max max_uint64 = np.iinfo('uint64').max test_global_input_data_integer64 = [ [1, -1, 0], [min_int64, max_int64], [max_uint64] ] test_global_input_data_numeric = test_global_input_data_integer64 + test_global_input_data_float64 test_global_input_data_unicode_kind4 = [ 'ascii', '12345', '1234567890', '¡Y tú quién te crees?', '🐍⚡', '大处着眼,小处着手。', ] test_global_input_data_unicode_kind1 = [ 'ascii', '12345', '1234567890', ] def _make_func_from_text(func_text, func_name='test_impl'): loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars[func_name] return test_impl def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) GLOBAL_VAL = 2 class TestSeries(unittest.TestCase): def test_create1(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3]}) return (df.A == 1).sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_unicode(self): def test_impl(): S = pd.Series([ ['abc', 'defg', 'ijk'], ['lmn', 'opq', 'rstuvwxyz'] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_integer(self): def test_impl(): S = pd.Series([ [123, 456, -789], [-112233, 445566, 778899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_float(self): def test_impl(): S = pd.Series([ [1.23, -4.56, 7.89], [11.2233, 44.5566, -778.899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) def test_create2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_create_series1(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index1(self): # create and box an indexed Series def test_impl(): A = pd.Series([1, 2, 3], ['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index2(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index3(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name='A') return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index4(self): def test_impl(name): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name=name) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func('A'), test_impl('A')) def test_create_str(self): def test_impl(): df = pd.DataFrame({'A': ['a', 'b', 'c']}) return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_pass_df1(self): def test_impl(df): return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_df_str(self): def test_impl(df): return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_series1(self): # TODO: check to make sure it is series type def test_impl(A): return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series2(self): # test creating dataframe from passed series def test_impl(A): df = pd.DataFrame({'A': A}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_str(self): def test_impl(A): return (A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_index1(self): def test_impl(A): return A hpat_func = hpat.jit(test_impl) S = pd.Series([3, 5, 6], ['a', 'b', 'c'], name='A') pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_size(self): def test_impl(S): return S.size hpat_func = hpat.jit(test_impl) n = 11 for S, expected in [ (pd.Series(), 0), (pd.Series([]), 0), (pd.Series(np.arange(n)), n), (pd.Series([np.nan, 1, 2]), 3), (pd.Series(['1', '2', '3']), 3), ]: with self.subTest(S=S, expected=expected): self.assertEqual(hpat_func(S), expected) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_attr2(self): def test_impl(A): return A.copy().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr3(self): def test_impl(A): return A.min() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_series_attr4(self): def test_impl(A): return A.cumsum().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_argsort1(self): def test_impl(A): return A.argsort() hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.random.ranf(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_attr6(self): def test_impl(A): return A.take([2, 3]).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr7(self): def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_getattr_ndim(self): '''Verifies getting Series attribute ndim is supported''' def test_impl(S): return S.ndim hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_getattr_T(self): '''Verifies getting Series attribute T is supported''' def test_impl(S): return S.T hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_str1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_copy_int1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series([1, 2, 3]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_deep(self): def test_impl(A, deep): return A.copy(deep=deep) hpat_func = hpat.jit(test_impl) for S in [ pd.Series([1, 2]), pd.Series([1, 2], index=["a", "b"]), ]: with self.subTest(S=S): for deep in (True, False): with self.subTest(deep=deep): actual = hpat_func(S, deep) expected = test_impl(S, deep) pd.testing.assert_series_equal(actual, expected) self.assertEqual(actual.values is S.values, expected.values is S.values) self.assertEqual(actual.values is S.values, not deep) # Shallow copy of index is not supported yet if deep: self.assertEqual(actual.index is S.index, expected.index is S.index) self.assertEqual(actual.index is S.index, not deep) def test_series_astype_int_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts integer series to series of strings ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument converts integer series to series of strings ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument handles string series not changing it ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['d', 'e', 'f']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[1, 2, 3]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: requires str(datetime64) support in Numba') def test_series_astype_dt_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts datetime series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series([pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03') ]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('AssertionError: Series are different' '[left]: [0.000000, 1.000000, 2.000000, 3.000000, ...' '[right]: [0.0, 1.0, 2.0, 3.0, ...' 'TODO: needs alignment to NumPy on Numba side') def test_series_astype_float_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts float series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int32_to_int64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series with dtype=int32 to series with dtype=int64 ''' def test_impl(A): return A.astype(np.int64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n), dtype=np.int32) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts integer series to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_float_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support string literal as dtype arg') def test_series_astype_literal_dtype1(self): '''Verifies Series.astype implementation with a string literal dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype('int32') hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to int') def test_series_astype_str_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of integers ''' import numba def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series([str(x) for x in np.arange(n) - n // 2]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to float') def test_series_astype_str_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) S = pd.Series(['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['a', 'b', 'c']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[2, 3, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_np_call_on_series1(self): def test_impl(A): return np.min(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values(self): def test_impl(A): return A.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values1(self): def test_impl(A): return (A == 2).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_shape1(self): def test_impl(A): return A.shape hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_static_setitem_series1(self): def test_impl(A): A[0] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_setitem_series1(self): def test_impl(A, i): A[i] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A.copy(), 0), test_impl(df.A.copy(), 0)) def test_setitem_series2(self): def test_impl(A, i): A[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1, 0) test_impl(A2, 0) pd.testing.assert_series_equal(A1, A2) @unittest.skip("enable after remove dead in hiframes is removed") def test_setitem_series3(self): def test_impl(A, i): S = pd.Series(A) S[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n) A1 = A.copy() A2 = A hpat_func(A1, 0) test_impl(A2, 0) np.testing.assert_array_equal(A1, A2) def test_setitem_series_bool1(self): def test_impl(A): A[A > 3] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1) test_impl(A2) pd.testing.assert_series_equal(A1, A2) def test_setitem_series_bool2(self): def test_impl(A, B): A[A > 3] = B[A > 3] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) A1 = df.A.copy() A2 = df.A hpat_func(A1, df.B) test_impl(A2, df.B) pd.testing.assert_series_equal(A1, A2) def test_static_getitem_series1(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) self.assertEqual(hpat_func(A), test_impl(A)) def test_getitem_series1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_getitem_series_str1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_iat1(self): def test_impl(A): return A.iat[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iat2(self): def test_impl(A): A.iat[3] = 1 return A hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_iloc1(self): def test_impl(A): return A.iloc[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iloc2(self): def test_impl(A): return A.iloc[3:8] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal( hpat_func(S), test_impl(S).reset_index(drop=True)) def test_series_op1(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op2(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: df = pd.DataFrame({'A': np.arange(1, n, dtype=np.int64)}) else: df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op3(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op4(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op5(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', 'Series values are different (20.0 %)' '[left]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000]' '[right]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, -808182895, 1410065408]') def test_series_op5_integer_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: operand_series = pd.Series(np.arange(1, n, dtype=np.int64)) else: operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op5_float_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op6(self): def test_impl(A): return -A hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_op7(self): comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) def test_series_op8(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'ne', 'eq') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', "Attribute dtype are different: int64, int32") def test_series_op8_integer_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op8_float_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_inplace_binop_array(self): def test_impl(A, B): A += B return A hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 1) def test_series_fusion2(self): # make sure getting data var avoids incorrect single def assumption def test_impl(A, B): S = B + 2 if A[0] == 0: S = A + 1 return S + B hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 3) def test_series_len(self): def test_impl(A, i): return len(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_box(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_box2(self): def test_impl(): A = pd.Series(['1', '2', '3']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_list_str_unbox1(self): def test_impl(A): return A.iloc[0] hpat_func = hpat.jit(test_impl) S = pd.Series([['aa', 'b'], ['ccc'], []]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) # call twice to test potential refcount errors np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_np_typ_call_replace(self): # calltype replacement is tricky for np.typ() calls since variable # type can't provide calltype def test_impl(i): return np.int32(i) hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(1), test_impl(1)) def test_series_ufunc1(self): def test_impl(A, i): return np.isinf(A).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A, 1), test_impl(df.A, 1)) def test_list_convert(self): def test_impl(): df = pd.DataFrame({'one': np.array([-1, np.nan, 2.5]), 'two': ['foo', 'bar', 'baz'], 'three': [True, False, True]}) return df.one.values, df.two.values, df.three.values hpat_func = hpat.jit(test_impl) one, two, three = hpat_func() self.assertTrue(isinstance(one, np.ndarray)) self.assertTrue(isinstance(two, np.ndarray)) self.assertTrue(isinstance(three, np.ndarray)) @unittest.skip("needs empty_like typing fix in npydecl.py") def test_series_empty_like(self): def test_impl(A): return np.empty_like(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertTrue(isinstance(hpat_func(df.A), np.ndarray)) def test_series_fillna1(self): def test_impl(A): return A.fillna(5.0) hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) # test inplace fillna for named numeric series (obtained from DataFrame) def test_series_fillna_inplace1(self): def test_impl(A): A.fillna(5.0, inplace=True) return A hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str1(self): def test_impl(A): return A.fillna("dd") hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'b', None, 'ccc']}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str_inplace1(self): def test_impl(A): A.fillna("dd", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) # TODO: handle string array reflection # hpat_func(S1) # test_impl(S2) # np.testing.assert_array_equal(S1, S2) def test_series_fillna_str_inplace_empty1(self): def test_impl(A): A.fillna("", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_str(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=['a', 'b', 'c', 'd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_int(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=[2, 3, 4, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis1(self): '''Verifies Series.dropna() implementation handles 'index' as axis argument''' def test_impl(S): return S.dropna(axis='index') hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis2(self): '''Verifies Series.dropna() implementation handles 0 as axis argument''' def test_impl(S): return S.dropna(axis=0) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis3(self): '''Verifies Series.dropna() implementation handles correct non-literal axis argument''' def test_impl(S, axis): return S.dropna(axis=axis) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() axis_values = [0, 'index'] for value in axis_values: pd.testing.assert_series_equal(hpat_func(S1, value), test_impl(S2, value)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index1(self): '''Verifies Series.dropna() implementation for float series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) for data in test_global_input_data_float64: S1 = pd.Series(data) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index2(self): '''Verifies Series.dropna() implementation for float series with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index2(self): '''Verifies Series.dropna() implementation for series of strings with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index3(self): def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], index=[1, 2, 5, 7, 10]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_float_inplace_no_index1(self): '''Verifies Series.dropna() implementation for float series with default index and inplace argument True''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_float_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original float series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_str_inplace_no_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index and inplace argument True ''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_str_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original string series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) def test_series_dropna_str_parallel1(self): '''Verifies Series.dropna() distributed work for series of strings with default index''' def test_impl(A): B = A.dropna() return (B == 'gg').sum() hpat_func = hpat.jit(distributed=['A'])(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc', 'dd', 'gg']) start, end = get_start_end(len(S1)) # TODO: gatherv self.assertEqual(hpat_func(S1[start:end]), test_impl(S1)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertTrue(count_array_OneDs() > 0) @unittest.skip('AssertionError: Series are different\n' 'Series length are different\n' '[left]: 3, Int64Index([0, 1, 2], dtype=\'int64\')\n' '[right]: 2, Int64Index([1, 2], dtype=\'int64\')') def test_series_dropna_dt_no_index1(self): '''Verifies Series.dropna() implementation for datetime series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([pd.NaT, pd.Timestamp('1970-12-01'), pd.Timestamp('2012-07-25')]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) def test_series_dropna_bool_no_index1(self): '''Verifies Series.dropna() implementation for bool series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([True, False, False, True]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_int_no_index1(self): '''Verifies Series.dropna() implementation for integer series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) n = 11 S1 = pd.Series(np.arange(n, dtype=np.int64)) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('numba.errors.TypingError - fix needed\n' 'Failed in hpat mode pipeline' '(step: convert to distributed)\n' 'Invalid use of Function(<built-in function len>)' 'with argument(s) of type(s): (none)\n') def test_series_rename1(self): def test_impl(A): return A.rename('B') hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A)) def test_series_sum_default(self): def test_impl(S): return S.sum() hpat_func = hpat.jit(test_impl) S = pd.Series([1., 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_sum_nan(self): def test_impl(S): return S.sum() hpat_func = hpat.jit(test_impl) # column with NA S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) # all NA case should produce 0 S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Old style Series.sum() does not support parameters") def test_series_sum_skipna_false(self): def test_impl(S): return S.sum(skipna=False) hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(np.isnan(hpat_func(S)), np.isnan(test_impl(S))) @unittest.skipIf(not hpat.config.config_pipeline_hpat_default, "Series.sum() operator + is not implemented yet for Numba") def test_series_sum2(self): def test_impl(S): return (S + S).sum() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_prod(self): def test_impl(S, skipna): return S.prod(skipna=skipna) hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for data in data_samples: S = pd.Series(data) for skipna_var in [True, False]: actual = hpat_func(S, skipna=skipna_var) expected = test_impl(S, skipna=skipna_var) if np.isnan(actual) or np.isnan(expected): # con not compare Nan != Nan directly self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) def test_series_prod_skipna_default(self): def test_impl(S): return S.prod() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2, 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_count1(self): def test_impl(S): return S.count() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) S = pd.Series(['aa', 'bb', np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_mean(self): def test_impl(S): return S.mean() hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for data in data_samples: with self.subTest(data=data): S = pd.Series(data) actual = hpat_func(S) expected = test_impl(S) if np.isnan(actual) or np.isnan(expected): self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.mean() any parameters unsupported") def test_series_mean_skipna(self): def test_impl(S, skipna): return S.mean(skipna=skipna) hpat_func = hpat.jit(test_impl) data_samples = [ [6, 6, 2, 1, 3, 3, 2, 1, 2], [1.1, 0.3, 2.1, 1, 3, 0.3, 2.1, 1.1, 2.2], [6, 6.1, 2.2, 1, 3, 3, 2.2, 1, 2], [6, 6, np.nan, 2, np.nan, 1, 3, 3, np.inf, 2, 1, 2, np.inf], [1.1, 0.3, np.nan, 1.0, np.inf, 0.3, 2.1, np.nan, 2.2, np.inf], [1.1, 0.3, np.nan, 1, np.inf, 0, 1.1, np.nan, 2.2, np.inf, 2, 2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.inf], ] for skipna in [True, False]: for data in data_samples: S = pd.Series(data) actual = hpat_func(S, skipna) expected = test_impl(S, skipna) if np.isnan(actual) or np.isnan(expected): self.assertEqual(np.isnan(actual), np.isnan(expected)) else: self.assertEqual(actual, expected) def test_series_var1(self): def test_impl(S): return S.var() hpat_func = hpat.jit(test_impl) S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_min(self): def test_impl(S): return S.min() hpat_func = hpat.jit(test_impl) # TODO type_min/type_max for input_data in [[np.nan, 2., np.nan, 3., np.inf, 1, -1000], [8, 31, 1123, -1024], [2., 3., 1, -1000, np.inf]]: S = pd.Series(input_data) result_ref = test_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.min() any parameters unsupported") def test_series_min_param(self): def test_impl(S, param_skipna): return S.min(skipna=param_skipna) hpat_func = hpat.jit(test_impl) for input_data, param_skipna in [([np.nan, 2., np.nan, 3., 1, -1000, np.inf], True), ([2., 3., 1, np.inf, -1000], False)]: S = pd.Series(input_data) result_ref = test_impl(S, param_skipna) result = hpat_func(S, param_skipna) self.assertEqual(result, result_ref) def test_series_max(self): def test_impl(S): return S.max() hpat_func = hpat.jit(test_impl) # TODO type_min/type_max for input_data in [[np.nan, 2., np.nan, 3., np.inf, 1, -1000], [8, 31, 1123, -1024], [2., 3., 1, -1000, np.inf]]: S = pd.Series(input_data) result_ref = test_impl(S) result = hpat_func(S) self.assertEqual(result, result_ref) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Series.max() any parameters unsupported") def test_series_max_param(self): def test_impl(S, param_skipna): return S.max(skipna=param_skipna) hpat_func = hpat.jit(test_impl) for input_data, param_skipna in [([np.nan, 2., np.nan, 3., 1, -1000, np.inf], True), ([2., 3., 1, np.inf, -1000], False)]: S = pd.Series(input_data) result_ref = test_impl(S, param_skipna) result = hpat_func(S, param_skipna) self.assertEqual(result, result_ref) def test_series_value_counts(self): def test_impl(S): return S.value_counts() hpat_func = hpat.jit(test_impl) S = pd.Series(['AA', 'BB', 'C', 'AA', 'C', 'AA']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_dist_input1(self): '''Verify distribution of a Series without index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n)) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_series_dist_input2(self): '''Verify distribution of a Series with integer index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n), 1 + np.arange(n)) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @unittest.skip("Passed if run single") def test_series_dist_input3(self): '''Verify distribution of a Series with string index''' def test_impl(S): return S.max() hpat_func = hpat.jit(distributed={'S'})(test_impl) n = 111 S = pd.Series(np.arange(n), ['abc{}'.format(id) for id in range(n)]) start, end = get_start_end(n) self.assertEqual(hpat_func(S[start:end]), test_impl(S)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_series_tuple_input1(self): def test_impl(s_tup): return s_tup[0].max() hpat_func = hpat.jit(test_impl) n = 111 S = pd.Series(np.arange(n)) S2 = pd.Series(np.arange(n) + 1.0) s_tup = (S, 1, S2) self.assertEqual(hpat_func(s_tup), test_impl(s_tup)) @unittest.skip("pending handling of build_tuple in dist pass") def test_series_tuple_input_dist1(self): def test_impl(s_tup): return s_tup[0].max() hpat_func = hpat.jit(locals={'s_tup:input': 'distributed'})(test_impl) n = 111 S = pd.Series(np.arange(n)) S2 = pd.Series(np.arange(n) + 1.0) start, end = get_start_end(n) s_tup = (S, 1, S2) h_s_tup = (S[start:end], 1, S2[start:end]) self.assertEqual(hpat_func(h_s_tup), test_impl(s_tup)) def test_series_rolling1(self): def test_impl(S): return S.rolling(3).sum() hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_concat1(self): def test_impl(S1, S2): return pd.concat([S1, S2]).values hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2., 3., 4., 5.]) S2 = pd.Series([6., 7.]) np.testing.assert_array_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_map1(self): def test_impl(S): return S.map(lambda a: 2 * a) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_map_global1(self): def test_impl(S): return S.map(lambda a: a + GLOBAL_VAL) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_map_tup1(self): def test_impl(S): return S.map(lambda a: (a, 2 * a)) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_map_tup_map1(self): def test_impl(S): A = S.map(lambda a: (a, 2 * a)) return A.map(lambda a: a[1]) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_combine(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2., 3., 4., 5.]) S2 = pd.Series([6.0, 21., 3.6, 5.]) pd.testing.assert_series_equal(hpat_func(S1, S2), test_impl(S1, S2)) def test_series_combine_float3264(self): def test_impl(S1, S2): return S1.combine(S2, lambda a, b: 2 * a + b) hpat_func = hpat.jit(test_impl) S1 = pd.Series([np.float64(1), np.float64(2), np.float64(3),
np.float64(4)
numpy.float64
####################################################################################################################################################### #######################################################################Imports######################################################################### ####################################################################################################################################################### #from itertools import product # forms cartesian products from tqdm import tqdm_notebook as tqdm #import pickle import numpy as np from numpy import linspace import pandas as pd import scipy as sp from functools import reduce from more_itertools import random_product import operator import math from joblib import Parallel, delayed from collections.abc import Iterable #from scipy.integrate import quad import matplotlib.pyplot as plt #from sklearn.model_selection import cross_val_score, train_test_split, StratifiedKFold, KFold from sklearn.metrics import accuracy_score, log_loss, roc_auc_score, f1_score, mean_absolute_error, r2_score from similaritymeasures import frechet_dist, area_between_two_curves, dtw import time import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from IPython.display import display, Math, Latex, clear_output import os import shutil import pickle import traceback #udf import from utilities.LambdaNet import * from utilities.metrics import * #from utilities.utility_functions import * from scipy.optimize import minimize from scipy import optimize import sympy as sym from sympy import Symbol, sympify, lambdify, abc, SympifyError # Function Generation 0 1 import from sympy.sets.sets import Union from sympy import Number import math from numba import jit, njit import itertools from interruptingcow import timeout import time from sklearn.linear_model import Lasso from sklearn.preprocessing import PolynomialFeatures ####################################################################################################################################################### #############################################################Setting relevant parameters from current config########################################### ####################################################################################################################################################### def initialize_utility_functions_config_from_curent_notebook(config): try: globals().update(config['data']) except KeyError: print(KeyError) try: globals().update(config['lambda_net']) except KeyError: print(KeyError) try: globals().update(config['i_net']) except KeyError: print(KeyError) try: globals().update(config['evaluation']) except KeyError: print(KeyError) try: globals().update(config['computation']) except KeyError: print(KeyError) random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) if int(tf.__version__[0]) >= 2: tf.random.set_seed(RANDOM_SEED) else: tf.set_random_seed(RANDOM_SEED) global list_of_monomial_identifiers from utilities.utility_functions import flatten, rec_gen, gen_monomial_identifier_list list_of_monomial_identifiers_extended = [] if laurent: variable_sets = [list(flatten([[_d for _d in range(d+1)], [-_d for _d in range(1, neg_d+1)]])) for _ in range(n)] list_of_monomial_identifiers_extended = rec_gen(variable_sets) if len(list_of_monomial_identifiers_extended) < 500: print(list_of_monomial_identifiers_extended) list_of_monomial_identifiers = [] for monomial_identifier in tqdm(list_of_monomial_identifiers_extended): if np.sum(monomial_identifier) <= d: if monomial_vars == None or len(list(filter(lambda x: x != 0, monomial_identifier))) <= monomial_vars: list_of_monomial_identifiers.append(monomial_identifier) else: variable_list = ['x'+ str(i) for i in range(n)] list_of_monomial_identifiers = gen_monomial_identifier_list(variable_list, d, n) ####################################################################################################################################################### #############################################################General Utility Functions################################################################# ####################################################################################################################################################### def round_expr(expr, num_digits): return expr.xreplace({n : round(n, num_digits) for n in expr.atoms(Number)}) def nCr(n,r): f = math.factorial return f(n) // f(r) // f(n-r) def rec_gen(x): if len(x) == 1: return [[item] for item in x[0]] appended = [] for s_el in x[0]: for next_s in rec_gen(x[1:]): appended.append([s_el] + next_s) return appended def gen_monomial_identifier_list(variable_list, degree, number_of_variables): def get_polynomial(vars, power): if "c" in vars: raise Exception("\"c\" cannot be a variable") vars.append("c") # add dummy variable # compute all combinations of variables terms = [] for x in itertools.combinations_with_replacement(vars, power): terms.append(x) # get rid of "c" terms terms = list(map(list, terms)) for i in range(len(terms)): while "c" in terms[i]: terms[i].remove("c") return terms terms = get_polynomial(variable_list, degree) monomial_identifier_list = [] for term in terms: monomial = [0 for i in range(number_of_variables)] for value in term: index = int(value[1:]) monomial[index] = monomial[index] + 1 monomial_identifier_list.append(monomial) return monomial_identifier_list def pairwise(iterable): "s -> (s0, s1), (s2, s3), (s4, s5), ..." a = iter(iterable) return zip(a, a) def chunks(lst, chunksize): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), chunksize): yield lst[i:i + chunksize] def prod(iterable): return reduce(operator.mul, iterable, 1) def return_float_tensor_representation(some_representation, dtype=tf.float32): if tf.is_tensor(some_representation): some_representation = tf.dtypes.cast(some_representation, dtype) else: some_representation = tf.convert_to_tensor(some_representation) some_representation = tf.dtypes.cast(some_representation, dtype) if not tf.is_tensor(some_representation): raise SystemExit('Given variable is no instance of ' + str(dtype) + ':' + str(some_representation)) return some_representation def return_numpy_representation(some_representation): if isinstance(some_representation, pd.DataFrame): some_representation = some_representation.values some_representation = np.float32(some_representation) if isinstance(some_representation, list): some_representation = np.array(some_representation, dtype=np.float32) if isinstance(some_representation, np.ndarray): #print(some_representation) #print(type(some_representation)) #print(some_representation.dtype) #print(some_representation[0]) #print(some_representation[0].dtype) some_representation = np.float32(some_representation) else: raise SystemExit('Given variable is no instance of ' + str(np.ndarray) + ':' + str(some_representation)) return some_representation def mergeDict(dict1, dict2): #Merge dictionaries and keep values of common keys in list newDict = {**dict1, **dict2} for key, value in newDict.items(): if key in dict1 and key in dict2: if isinstance(dict1[key], list) and isinstance(value, list): newDict[key] = dict1[key] newDict[key].extend(value) elif isinstance(dict1[key], list) and not isinstance(value, list): newDict[key] = dict1[key] newDict[key].extend([value]) elif not isinstance(dict1[key], list) and isinstance(value, list): newDict[key] = [dict1[key]] newDict[key].extend(value) else: newDict[key] = [dict1[key], value] return newDict def return_callbacks_from_string(callback_string_list): callbacks = [] if len(callback_string_list) > 0 else None #if 'plot_losses_callback' in callback_string_list: #callbacks.append(PlotLossesCallback()) if 'reduce_lr_loss' in callback_string_list: reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=min(50, epochs//10), verbose=0, min_delta=0, mode='min') #epsilon callbacks.append(reduce_lr_loss) if 'early_stopping' in callback_string_list: try: patience = early_stopping_patience if early_stopping_patience is not None else min(50, epochs//10) except: patience = min(50, epochs//10) earlyStopping = EarlyStopping(monitor='val_loss', patience=patience, min_delta=0, verbose=0, mode='min', restore_best_weights=True) callbacks.append(earlyStopping) #if not multi_epoch_analysis and samples_list == None: #callbacks.append(TQDMNotebookCallback()) return callbacks def arreq_in_list(myarr, list_arrays): return next((True for elem in list_arrays if np.array_equal(elem, myarr)), False) def flatten(l): for el in l: if isinstance(el, Iterable) and not isinstance(el, (str, bytes)): yield from flatten(el) else: yield el def shape_flat_network_parameters(flat_network_parameters, target_network_parameters): #from utilities.utility_functions import flatten_list #def recursive_len(item): # if type(item) == list: # return sum(recursive_len(subitem) for subitem in item) # else: # return 1 shaped_network_parameters =[] start = 0 for parameters in target_network_parameters: target_shape = parameters.shape size = np.prod(target_shape)#recursive_len(el)#len(list(flatten_list(el))) shaped_parameters = np.reshape(flat_network_parameters[start:start+size], target_shape) shaped_network_parameters.append(shaped_parameters) start += size return shaped_network_parameters def shaped_network_parameters_to_array(shaped_network_parameters): network_parameter_list = [] for layer_weights, biases in pairwise(shaped_network_parameters): #clf.get_weights() for neuron in layer_weights: for weight in neuron: network_parameter_list.append(weight) for bias in biases: network_parameter_list.append(bias) return np.array(network_parameter_list) #################################################################################################################################################################################### Normalization #################################################################################### ################################################################################################################################################################################################################ def get_order_sum(arrays): arrays = np.array(arrays) values = [np.sum(arrays[0])] order = [0] for i in range(1, len(arrays)): value = np.sum(arrays[i]) pos = 0 while pos<len(values) and value>=values[pos]: if value == values[pos]: print("!!!!!!!!!!!!!!!!KOLLISION!!!!!!!!!!!!!!!!!!") print(value) print(arrays[i]) print(arrays[order[pos]]) pos += 1 values.insert(pos, value) order.insert(pos, i) return order ## source for sort_array: https://www.geeksforgeeks.org/permute-the-elements-of-an-array-following-given-order/ def sort_array(arr, order): length = len(order) #ordered_arr = np.zeros(length) ordered_arr = [None] * length for i in range(length): ordered_arr[i] = arr[order[i]] arr=ordered_arr return arr def normal_neural_net(model_arr): for i in range(len(lambda_network_layers)): index = 2*(i) dense_arr =
np.transpose(model_arr[index])
numpy.transpose
import tensorflow as tf import numpy as np import sys def get_angles(pos, i, d_model): angle_rates = 1 / np.power(10000, (2 * (i//2)) /
np.float32(d_model)
numpy.float32
import numpy as np import torch from torch import nn from .base import SeparablePoolNd from ..utils import NdSpec def _gaussian_kernel1d(sigma, order, radius): """ Computes a 1-D Gaussian convolution kernel. This function is copied from scipy to avoid dependency issues when importing from scipy """ if order < 0: raise ValueError('order must be non-negative') exponent_range = np.arange(order + 1) sigma2 = sigma * sigma x = np.arange(-radius, radius+1) phi_x =
np.exp(-0.5 / sigma2 * x ** 2)
numpy.exp
import pytest import numpy as np from obp.policy.linear import LinEpsilonGreedy from obp.policy.linear import LinUCB from obp.policy.linear import LinTS def test_linear_base_exception(): # invalid dim with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=-3) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=0) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim="3") # invalid n_actions with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=-3, dim=2) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=1, dim=2) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions="2", dim=2) # invalid len_list with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, len_list=-3) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, len_list=0) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, len_list="3") # invalid batch_size with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, batch_size=-2) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, batch_size=0) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, batch_size="10") # invalid relationship between n_actions and len_list with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=5, len_list=10, dim=2) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, len_list=3, dim=2) # invalid alpha and lambda with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, alpha_=0.0, lambda_=-3.0) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, alpha_=-0.0) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, lambda_=-1.0) def test_lin_epsilon_normal_epsilon(): policy1 = LinEpsilonGreedy(n_actions=2, dim=2) assert 0 <= policy1.epsilon <= 1 policy2 = LinEpsilonGreedy(n_actions=2, dim=2, epsilon=0.3) assert policy2.epsilon == 0.3 def test_lin_epsilon_abnormal_epsilon(): with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, epsilon=1.2) with pytest.raises(ValueError): LinEpsilonGreedy(n_actions=2, dim=2, epsilon=-0.2) def test_lin_epsilon_select_action_exploitation(): trial_num = 50 policy = LinEpsilonGreedy(n_actions=2, dim=2, epsilon=0.0) context = np.array([1.0, 1.0]).reshape(1, -1) policy.update_params(action=0, reward=1.0, context=context) policy.update_params(action=0, reward=1.0, context=context) policy.update_params(action=1, reward=1.0, context=context) policy.update_params(action=1, reward=0.0, context=context) for _ in range(trial_num): assert policy.select_action(context=context)[0] == 0 def test_lin_epsilon_select_action_exploration(): trial_num = 50 policy = LinEpsilonGreedy(n_actions=2, dim=2, epsilon=1.0) context = np.array([1.0, 1.0]).reshape(1, -1) policy.update_params(action=0, reward=1.0, context=context) policy.update_params(action=0, reward=1.0, context=context) policy.update_params(action=1, reward=1.0, context=context) policy.update_params(action=1, reward=0.0, context=context) selected_action = [policy.select_action(context=context) for _ in range(trial_num)] assert 0 < sum(selected_action)[0] < trial_num def test_lin_epsilon_update_params(): # check the consistency with Sherman–Morrison formula policy = LinEpsilonGreedy(n_actions=2, dim=2, epsilon=1.0) action = 0 reward = 1.0 context = np.array([1, 0]).reshape(1, -1) A_inv_temp = np.array([[1 / 2, 0], [0, 1]]) b_temp = np.array([1, 1]) policy.A_inv_temp[action] = np.copy(A_inv_temp) policy.b_temp[:, action] = np.copy(b_temp) policy.update_params(action=action, reward=reward, context=context) next_A_inv = A_inv_temp - np.array([[1 / 4, 0], [0, 0]]) / (1 + 1 / 2) next_b = b_temp + reward * context assert np.allclose(policy.A_inv[action], next_A_inv) assert np.allclose(policy.b[:, action], next_b) def test_lin_ucb_initialize(): # note that the meaning of epsilon is different from that of LinEpsilonGreedy with pytest.raises(ValueError): LinUCB(n_actions=2, dim=2, epsilon=-0.2) n_actions = 3 dim = 2 policy = LinUCB(n_actions=n_actions, dim=dim, epsilon=2.0) assert policy.theta_hat.shape == (dim, n_actions) assert policy.A_inv.shape == (n_actions, dim, dim) assert policy.b.shape == (dim, n_actions) assert policy.A_inv_temp.shape == (n_actions, dim, dim) assert policy.b_temp.shape == (dim, n_actions) def test_lin_ucb_select_action(): dim = 3 len_list = 2 policy = LinUCB(n_actions=4, dim=dim, len_list=2, epsilon=0.0) context = np.ones(dim).reshape(1, -1) action = policy.select_action(context=context) assert len(action) == len_list def test_lin_ucb_update_params(): # check the consistency with Sherman–Morrison formula policy = LinUCB(n_actions=2, dim=2, epsilon=1.0) action = 0 reward = 1.0 context = np.array([1, 0]).reshape(1, -1) A_inv_temp = np.array([[1 / 2, 0], [0, 1]]) b_temp = np.array([1, 1]) policy.A_inv_temp[action] = np.copy(A_inv_temp) policy.b_temp[:, action] = np.copy(b_temp) policy.update_params(action=action, reward=reward, context=context) next_A_inv = A_inv_temp - np.array([[1 / 4, 0], [0, 0]]) / (1 + 1 / 2) next_b = b_temp + reward * context assert np.allclose(policy.A_inv[action], next_A_inv) assert np.allclose(policy.b[:, action], next_b) def test_lin_ts_initialize(): n_actions = 3 dim = 2 policy = LinTS(n_actions=n_actions, dim=dim) assert policy.A_inv.shape == (n_actions, dim, dim) assert policy.b.shape == (dim, n_actions) assert policy.A_inv_temp.shape == (n_actions, dim, dim) assert policy.b_temp.shape == (dim, n_actions) def test_lin_ts_select_action(): dim = 3 len_list = 2 policy = LinTS(n_actions=4, dim=dim, len_list=2) context = np.ones(dim).reshape(1, -1) action = policy.select_action(context=context) assert len(action) == len_list def test_lin_ts_update_params(): # check the consistency with Sherman–Morrison formula policy = LinTS(n_actions=2, dim=2) action = 0 reward = 1.0 context = np.array([1, 0]).reshape(1, -1) A_inv_temp = np.array([[1 / 2, 0], [0, 1]]) b_temp =
np.array([1, 1])
numpy.array
import site # so that ai4water directory is in path import unittest import os import sys ai4_dir = os.path.dirname(os.path.dirname(os.path.abspath(sys.argv[0]))) site.addsitedir(ai4_dir) import numpy as np import pandas as pd from ai4water.preprocessing.transformations import Transformation from ai4water.tf_attributes import tf from ai4water.datasets import busan_beach if 230 <= int(''.join(tf.__version__.split('.')[0:2]).ljust(3, '0')) < 250: from ai4water.functional import Model print(f"Switching to functional API due to tensorflow version {tf.__version__}") else: from ai4water import Model df = pd.DataFrame(np.concatenate([np.arange(1, 10).reshape(-1, 1), np.arange(1001, 1010).reshape(-1, 1)], axis=1), columns=['data1', 'data2']) def build_and_run(x_transformation, y_transformation, data, inputs, outputs): model = Model(model="RandomForestRegressor", input_features=inputs, output_features=outputs, x_transformation=x_transformation, y_transformation=y_transformation, verbosity=0) model.fit(data=data) x, y = model.training_data(key='junk') #pred, pred = model.inverse_transform(y, y, key='junk') pred, index = model.dh_.deindexify(y, key='junk') pred = pd.DataFrame(pred.reshape(len(pred), model.num_outs), columns=outputs, index=index).sort_index() return pred def run_method1(method, cols=None, data=None, **kwargs): normalized_df1, scaler = Transformation(method=method, features=cols, **kwargs)(data, 'fit_transform', return_key=True) denormalized_df1 = Transformation(features=cols, )(normalized_df1, 'inverse', scaler=scaler['scaler']) return normalized_df1, denormalized_df1 def run_method2(method, data=None, index=None, **kwargs): if index: data.index = pd.date_range("20110101", periods=len(data), freq="D") scaler = Transformation(method=method, **kwargs) normalized_df, scaler_dict = scaler.fit_transform(data, return_key=True) denormalized_df = scaler.inverse_transform(data=normalized_df, key=scaler_dict['key']) return data, normalized_df, denormalized_df def run_method3(method, data=None, index=None, **kwargs): if index: data.index = pd.date_range("20110101", periods=len(data), freq="D") scaler = Transformation(method=method, **kwargs) normalized_df3, scaler_dict = scaler(data, return_key=True) denormalized_df3 = scaler(what='inverse', data=normalized_df3, key=scaler_dict['key']) return data, normalized_df3, denormalized_df3 def run_method4(method,data=None, **kwargs): scaler = Transformation(**kwargs) normalized_df4, scaler_dict = getattr(scaler, "fit_transform_with_" + method)( data=data, return_key=True) denormalized_df4 = getattr(scaler, "inverse_transform_with_" + method)(data=normalized_df4, key=scaler_dict['key']) return normalized_df4, denormalized_df4 def run_log_methods(method="log", index=None, insert_nans=True, insert_zeros=False, assert_equality=True, insert_ones=False): a = np.random.random((10, 4)) a[0, 0] = np.nan a[0, 1] = 1. if insert_nans or insert_zeros: a[2:4, 1] = np.nan a[3:5, 2:3] = np.nan if insert_zeros: a[5:8, 3] = 0.0 if insert_ones: a[6, 1] = 1.0 a[9, 2:3] = 1.0 cols = ['data1', 'data2', 'data3', 'data4'] if index is not None: index = pd.date_range("20110101", periods=len(a), freq="D") df3 = pd.DataFrame(a, columns=cols, index=index) _, _ = run_method1(method=method, data=df3.copy()) _, _, dfo2 = run_method2(method=method, data=df3.copy()) _, _, dfo3 = run_method3(method=method, data=df3.copy()) _, dfo4 = run_method4(method=method, data=df3.copy()) if assert_equality: #assert np.allclose(df3, dfo1, equal_nan=True) assert np.allclose(df3, dfo2, equal_nan=True) assert np.allclose(df3, dfo3, equal_nan=True) assert np.allclose(df3, dfo4, equal_nan=True) return class test_Scalers(unittest.TestCase): def run_method(self, method, cols=None, index=None, assert_equality=False, **kwargs): cols = ['data1', 'data2'] if cols is None else cols normalized_df1, denormalized_df1 = run_method1(method, cols, data=df.copy()) orig_data2, normalized_df2, denormalized_df2 = run_method2(method, index=index, features=cols, data=df.copy(), **kwargs ) orig_data3, normalized_df3, denormalized_df3 = run_method3(method, index=index, data=df.copy(), **kwargs) normalized_df4, denormalized_df4 = run_method4(method, data=df.copy(), **kwargs) if assert_equality: assert np.allclose(orig_data2, denormalized_df2) #assert np.allclose(orig_data3, normalized_df3) # todo if len(cols) < 2: self.check_features(denormalized_df1) else: for i,j,k,l in zip(normalized_df1[cols].values, normalized_df2[cols].values, normalized_df3[cols].values, normalized_df4[cols].values): for x in [0, 1]: self.assertEqual(int(i[x]), int(j[x])) self.assertEqual(int(j[x]), int(k[x])) self.assertEqual(int(k[x]), int(l[x])) for a,i,j,k,l in zip(df.values, denormalized_df1[cols].values, denormalized_df2[cols].values, denormalized_df3[cols].values, denormalized_df4[cols].values): for x in [0, 1]: self.assertEqual(int(round(a[x])), int(round(j[x]))) self.assertEqual(int(round(i[x])), int(round(j[x]))) self.assertEqual(int(round(j[x])), int(round(k[x]))) self.assertEqual(int(round(k[x])), int(round(l[x]))) def check_features(self, denorm): for idx, v in enumerate(denorm['data2']): self.assertEqual(v, 1001 + idx) def test_get_scaler_from_dict_error(self): normalized_df1, _ = Transformation()(df, 'fit_transform', return_key=True) self.assertRaises(ValueError, Transformation(), what='inverse', data=normalized_df1) return def test_log_scaler_with_feat(self): self.run_method("log", cols=["data1"]) return def test_robust_scaler_with_feat(self): self.run_method("robust", cols=["data1"], assert_equality=True) return def test_minmax_scaler_with_feat(self): self.run_method("minmax", cols=["data1"], assert_equality=True) return def test_minmax_scaler_with_feat_and_index(self): self.run_method("minmax", cols=["data1"], index=True, assert_equality=True) def test_maxabs_scaler_with_feat(self): self.run_method("maxabs", cols=["data1"], assert_equality=True) def test_zscore_scaler_with_feat(self): self.run_method("minmax", cols=["data1"], assert_equality=True) def test_power_scaler_with_feat(self): self.run_method("maxabs", cols=["data1"], assert_equality=True) def test_quantile_scaler_with_feat(self): self.run_method("quantile", cols=["data1"], assert_equality=True, n_quantiles=5) def test_log_scaler(self): self.run_method("log", assert_equality=True) def test_log10_scaler(self): self.run_method("log10", assert_equality=True) return def test_log2_scaler(self): self.run_method("log2", assert_equality=True) return def test_robust_scaler(self): self.run_method("robust", assert_equality=True) return def test_minmax_scaler(self): self.run_method("minmax", assert_equality=True) return def test_maxabs_scaler(self): self.run_method("maxabs", assert_equality=True) def test_zscore_scaler(self): self.run_method("minmax", assert_equality=True) def test_power_scaler(self): self.run_method("maxabs", assert_equality=True) def test_quantile_scaler(self): self.run_method("quantile", assert_equality=True, n_quantiles=5) return def test_log_with_nans(self): run_log_methods(index=None) return def test_log_with_index(self): run_log_methods("log", True) return def test_log10_with_nans(self): run_log_methods(method='log10', index=None) return def test_log10_with_index(self): run_log_methods("log10", True) return def test_log2_with_nans(self): run_log_methods(method='log2', index=None) return def test_log2_with_index(self): run_log_methods("log2", True) return def test_tan_with_nans(self): run_log_methods("tan", index=None, assert_equality=False) return def test_tan_with_index(self): run_log_methods("tan", True, assert_equality=False) return def test_cumsum_with_index(self): run_log_methods("cumsum", True, insert_nans=False, assert_equality=False) return def test_cumsum_with_nan(self): run_log_methods("cumsum", True, insert_nans=True, assert_equality=False) return def test_zero_log(self): run_log_methods("log", True, insert_nans=True, insert_zeros=True) return def test_zero_one_log(self): run_log_methods("log", True, insert_nans=True, insert_zeros=True, insert_ones=True) return def test_zero_log10(self): run_log_methods("log10", True, insert_nans=True, insert_zeros=True) return def test_zero_one_log10(self): run_log_methods("log10", True, insert_nans=True, insert_zeros=True, insert_ones=True) return def test_zero_log2(self): run_log_methods("log2", True, insert_nans=True, insert_zeros=True) return def test_zero_one_log2(self): run_log_methods("log2", True, insert_nans=True, insert_zeros=True, insert_ones=True) return def test_multiple_transformations(self): """Test when we want to apply multiple transformations on one or more features""" inputs = ['in1', 'inp1'] outputs = ['out1'] data = pd.DataFrame(np.random.random((100, 3)), columns=inputs+outputs) x_transformation = "minmax" y_transformation = ["log", "minmax"] pred = build_and_run(x_transformation, y_transformation, data, inputs, outputs) for i in pred.index: assert np.allclose(data['out1'].loc[i], pred['out1'].loc[i]) return def test_multiple_same_transformations(self): """Test when we want to apply multiple transformations on one or more features""" inputs = ['in1', 'inp1'] outputs = ['out1'] data = pd.DataFrame(np.random.random((100, 3)), columns=inputs+outputs) x_transformation = "robust" y_transformation = ["robust", "robust"] pred = build_and_run(x_transformation, y_transformation, data, inputs,outputs) for i in pred.index: assert np.allclose(data['out1'].loc[i], pred['out1'].loc[i]) return def test_multiple_same_transformations_mutile_outputs(self): """Test when we want to apply multiple transformations on one or more features""" inputs = ['in1', 'inp1'] outputs = ['out1', 'out2'] data = pd.DataFrame(
np.random.random((100, 4))
numpy.random.random
# Copyright 2016 <NAME> (INAC / CEA Grenoble). # # This file is subject to the 2-clause BSD license as found at # http://kwant-project.org/license. """Replace symmetries of Kwant builders with momentum parameters to the system.""" import sys import collections import cmath import numpy as np import tinyarray as ta import kwant from kwant.builder import herm_conj if sys.version_info >= (3, 0): def _hashable(obj): return isinstance(obj, collections.Hashable) else: def _hashable(obj): return (isinstance(obj, collections.Hashable) and not isinstance(obj, np.ndarray)) def _memoize(f): """Decorator to memoize a function that works even with unhashable args. This decorator will even work with functions whose args are not hashable. The cache key is made up by the hashable arguments and the ids of the non-hashable args. It is up to the user to make sure that non-hashable args do not change during the lifetime of the decorator. This decorator will keep reevaluating functions that return None. """ def lookup(*args): key = tuple(arg if _hashable(arg) else id(arg) for arg in args) result = cache.get(key) if result is None: cache[key] = result = f(*args) return result cache = {} return lookup def wraparound(builder, keep=None): """Replace translational symmetries by momentum parameters. A new Builder instance is returned. By default, each symmetry is replaced by one scalar momentum parameter that is appended to the already existing arguments of the system. Optionally, one symmetry may be kept by using the `keep` argument. """ @_memoize def bind_site(val): assert callable(val) return lambda a, *args: val(a, *args[:mnp]) @_memoize def bind_hopping_as_site(elem, val): def f(a, *args): phase = cmath.exp(1j * ta.dot(elem, args[mnp:])) v = val(a, sym.act(elem, a), *args[:mnp]) if callable(val) else val pv = phase * v return pv + herm_conj(pv) return f @_memoize def bind_hopping(elem, val): def f(a, b, *args): phase = cmath.exp(1j * ta.dot(elem, args[mnp:])) v = val(a, sym.act(elem, b), *args[:mnp]) if callable(val) else val return phase * v return f @_memoize def bind_sum(*vals): return lambda *args: sum((val(*args) if callable(val) else val) for val in vals) if keep is None: ret = kwant.Builder() sym = builder.symmetry else: periods = list(builder.symmetry.periods) ret = kwant.Builder(kwant.TranslationalSymmetry(periods.pop(keep))) sym = kwant.TranslationalSymmetry(*periods) sites = {} hops = collections.defaultdict(list) mnp = -len(sym.periods) # Used by the bound functions above. # Store lists of values, so that multiple values can be assigned to the # same site or hopping. for site, val in builder.site_value_pairs(): sites[site] = [bind_site(val) if callable(val) else val] for hop, val in builder.hopping_value_pairs(): a, b = hop b_dom = sym.which(b) b_wa = sym.act(-b_dom, b) if a == b_wa: # The hopping gets wrapped-around into an onsite Hamiltonian. # Since site `a` already exists in the system, we can simply append. sites[a].append(bind_hopping_as_site(b_dom, val)) else: # The hopping remains a hopping. if b != b_wa or callable(val): # The hopping got wrapped-around or is a function. val = bind_hopping(b_dom, val) # Make sure that there is only one entry for each hopping # (pointing in one direction). if (b_wa, a) in hops: assert (a, b_wa) not in hops if callable(val): assert not isinstance(val, kwant.builder.HermConjOfFunc) val = kwant.builder.HermConjOfFunc(val) else: val = kwant.builder.herm_conj(val) hops[b_wa, a].append(val) else: hops[a, b_wa].append(val) # Copy stuff into result builder, converting lists of more than one element # into summing functions. for site, vals in sites.items(): ret[site] = vals[0] if len(vals) == 1 else bind_sum(*vals) for hop, vals in hops.items(): ret[hop] = vals[0] if len(vals) == 1 else bind_sum(*vals) return ret def plot_bands_2d(syst, args=(), momenta=(31, 31)): """Plot the bands of a system with two wrapped-around symmetries.""" from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot if not isinstance(syst, kwant.system.FiniteSystem): raise TypeError("Need a system without symmetries.") fig = pyplot.figure() ax = fig.gca(projection='3d') kxs = np.linspace(-np.pi, np.pi, momenta[0]) kys = np.linspace(-np.pi, np.pi, momenta[1]) energies = [[np.sort(np.linalg.eigvalsh(syst.hamiltonian_submatrix( args + (kx, ky), sparse=False)).real) for ky in kys] for kx in kxs] energies = np.array(energies) mesh_x, mesh_y = np.meshgrid(kxs, kys) for i in range(energies.shape[-1]): ax.plot_wireframe(mesh_x, mesh_y, energies[:, :, i], rstride=1, cstride=1) pyplot.show() def _simple_syst(lat, E=0, t=1+1j): """Create a builder for a simple infinite system.""" sym = kwant.TranslationalSymmetry(lat.vec((1, 0)), lat.vec((0, 1))) # Build system with 2d periodic BCs. This system cannot be finalized in # Kwant <= 1.2. syst = kwant.Builder(sym) syst[lat.shape(lambda p: True, (0, 0))] = E syst[lat.neighbors(1)] = t return syst def test_consistence_with_bands(kx=1.9, nkys=31): kys =
np.linspace(-np.pi, np.pi, nkys)
numpy.linspace
#!/usr/bin/env python # coding: utf-8 import sys import time import argparse parser = argparse.ArgumentParser() parser.add_argument("-n","--name", help="if we want re-train") parser.add_argument("-T","--done", help="if we want load dictionary and data",type=int) parser.add_argument("-e","--epoch", help="the number of epoch to train by default is 60",type=int) parser.add_argument("-b","--batch", help="the batch size by default is 64",type=int) parser.add_argument("-m","--model", help="the model name we want to re-train") args=parser.parse_args() def usage(): print(""" This script it's for training model. you need to run this script with at least one parameter the model_name you want to save the wight with. exp: $python train.py model_v1 if you wont re train you should second parameter which is T that mean don't extract data agine just readit from the X_data.npy file exp: $python train.py model_v2 T you can change the strucher of model as you want just open the file and go to the model section line you can change the hiper parameter by passing as argument to the script exp: """) import numpy as np import tensorflow.keras as keras import pickle import os def extract_array(path,label_map): action_names=os.listdir(path) data=[] label=[] for action in action_names: print(action) for folder in os.listdir(os.path.join(path,action)): sequnce=[] for frame in sorted(os.listdir(os.path.join(path,action,folder)),key=lambda x: int(x[:x.find('.')])): arr=np.load(os.path.join(path,action,folder,frame)) sequnce.append(arr) data.append(sequnce) label.append(label_map[action]) return data,label def get_run_logdir(model_name): root_logdir = os.path.join(os.curdir, "my_logs") run_id = time.strftime("run_%Y_%m_%d") return os.path.join(root_logdir, run_id,model_name) print("Reading The action....") if args.done==1: print("read label...") with open("label_map.pkl",'rb') as f: label_map=pickle.load(f) print("load data...") X_data=np.load("X_data.npy") y_data=np.load("label.npy") else: action_names=os.listdir('npy_data') label_map=dict(zip(action_names,range(len(action_names)))) with open('label_map.pkl', 'wb') as f: pickle.dump(label_map, f, pickle.HIGHEST_PROTOCOL) print("start extract array .....") X_data,y_data=extract_array('npy_data',label_map) X_data=np.array(X_data) print("savaing data so you can use it later") np.save("X_data.npy",X_data)
np.save("label.npy",y_data)
numpy.save
from rllab.algos.base import RLAlgorithm from rllab.misc.overrides import overrides from rllab.misc import special from rllab.misc import ext from rllab.sampler import parallel_sampler from rllab.plotter import plotter from functools import partial import rllab.misc.logger as logger import theano.tensor as TT import pickle as pickle import numpy as np import pyprind import lasagne import math def parse_update_method(update_method, **kwargs): if update_method == 'adam': return partial(lasagne.updates.adam, **ext.compact(kwargs)) elif update_method == 'sgd': return partial(lasagne.updates.sgd, **ext.compact(kwargs)) else: raise NotImplementedError class SimpleReplayPool(object): def __init__( self, max_pool_size, observation_dim, action_dim): self._observation_dim = observation_dim self._action_dim = action_dim self._max_pool_size = max_pool_size self._observations = np.zeros( (max_pool_size, observation_dim), ) self._actions = np.zeros( (max_pool_size, action_dim), ) self._rewards = np.zeros(max_pool_size) self._terminals = np.zeros(max_pool_size, dtype='uint8') self._bottom = 0 self._top = 0 self._size = 0 def add_sample(self, observation, action, reward, terminal): self._observations[self._top] = observation self._actions[self._top] = action self._rewards[self._top] = reward self._terminals[self._top] = terminal self._top = (self._top + 1) % self._max_pool_size if self._size >= self._max_pool_size: self._bottom = (self._bottom + 1) % self._max_pool_size else: self._size += 1 def random_batch(self, batch_size): assert self._size > batch_size indices = np.zeros(batch_size, dtype='uint64') transition_indices =
np.zeros(batch_size, dtype='uint64')
numpy.zeros
""" """ import numpy as np from astropy.table import Table from ..prim_galprop_model import PrimGalpropModel __all__ = ('test_galprop_name1',) class BaryonicMass(PrimGalpropModel): def __init__(self, **kwargs): galprop_name = 'baryonic_mass' PrimGalpropModel.__init__(self, galprop_name, **kwargs) def mean_baryonic_mass(self, **kwargs): try: table = kwargs['table'] halo_mass = table[self.prim_haloprop_key] except KeyError: halo_mass = kwargs['prim_haloprop'] result = halo_mass/100. if 'table' in kwargs: table['baryonic_mass'][:] = result else: return result def test_galprop_name1(): model = BaryonicMass() assert hasattr(model, 'mc_baryonic_mass') def test_galprop_name2(): model = BaryonicMass() assert 'mc_baryonic_mass' in model._mock_generation_calling_sequence def test_galprop_name3(): model = BaryonicMass() assert 'baryonic_mass' in model._galprop_dtypes_to_allocate.names def test_mean_galprop_behavior1(): model = BaryonicMass() halo_mass = np.logspace(10, 15, 100) baryonic_mass = model.mean_baryonic_mass(prim_haloprop=halo_mass) def test_mean_galprop_behavior2(): model = BaryonicMass() halo_mass = np.logspace(10, 15, 100) baryonic_mass1 = model.mean_baryonic_mass(prim_haloprop=halo_mass) t = Table({model.prim_haloprop_key: halo_mass}) t['baryonic_mass'] = 0. model.mean_baryonic_mass(table=t) assert np.all(t['baryonic_mass'] == baryonic_mass1) def test_mc_galprop_determinism1(): model = BaryonicMass(redshift=0) npts = int(1e2) halo_mass = np.zeros(npts) + 1e10 mc_baryonic_mass1 = model.mc_baryonic_mass( prim_haloprop=halo_mass, seed=43) mc_baryonic_mass2 = model.mc_baryonic_mass( prim_haloprop=halo_mass, seed=43) assert np.allclose(mc_baryonic_mass1, mc_baryonic_mass2) mc_baryonic_mass3 = model.mc_baryonic_mass( prim_haloprop=halo_mass, seed=44) assert not np.allclose(mc_baryonic_mass1, mc_baryonic_mass3) def test_mc_galprop_determinism2(): model = BaryonicMass(redshift=0) npts = int(1e2) halo_mass = np.zeros(npts) + 1e10 mc_baryonic_mass1 = model.mc_baryonic_mass( prim_haloprop=halo_mass, seed=43) mc_baryonic_mass2 = model.mc_baryonic_mass( prim_haloprop=halo_mass, seed=44) assert not np.allclose(mc_baryonic_mass1, mc_baryonic_mass2) def test_mc_galprop_consistency1(): model = BaryonicMass(redshift=0) npts = int(1e3) halo_mass =
np.zeros(npts)
numpy.zeros
# from __future__ import division #------------------------------------- # # Started at 06/08/2018 (YuE) # # This script based on the previous script # threeApproachesComparison_v6.py # ## Upgraded version of python (python3.4): script was rewritten to take into # account some differences in the descriptions and using of some functions # (version cma_v3 and more earlier scripts are written under python2). # # 07/24/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # # But nevertheless, the dependences of the transmitted energy on the impact # parameter are close to the inverse quadratic (as it should be!) at all velocities. # # 07/27/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # The investigation of that is in progress. # # Some features were improved, some figures were corrected. # #------------------------------------- #======================================================== # # This code compairs two approaches: "classical" (from [1]) and # "magnus" (from [2]). # # For "classical" approach the magnetized interaction between ion # and electron is considered for ion velocities V_i > rmsTrnsvVe. # # References: # # [1] <NAME>, <NAME>, <NAME>, <NAME>. # "Physics guide of BETACOOL code. Version 1.1". C-A/AP/#262, November # 2006, Brookhaven National Laboratory, Upton, NY 11973. # [2] <NAME>, <NAME>. "New Algorithm for Dynamical Friction # of Ions in a Magnetized Electron Beam". AIP Conf. Proc. 1812, 05006 (2017). # #======================================================== ######################################################### # # Main issues of the calculations: # # 1) Friction force (FF) is calculated in the (P)article (R)est (F)rame, # i.e. in the frame moving together with both (cooled and cooling) # beams at a velocity V0; # 2) Friction force is calculated for each value of ion velocity # in the interval from .1*rmsTrnsvVe till 10*rmsTrnsvVe; # 3) Initially assumped that all electrons have a logitudinal # velocity rmsLongVe and transversal velocity rmsTrnsvVe; # 4) For each ion velocity the minimal and maximal values of the # impact parameter are defined. Radius of the shielding of the # electric field of the ion equals to the value of the maximal # impact parameter; # 5) For each impact parameter in the interval from minimal till # maximal values the transfered momenta deltap_x,y,z are # calculated; # 6) Founded transfered momenta allow to calculate the transfered # energy delta_E =deltap^2/(2*m_e) and to integrate it over # impact parameter; then (expressions (3.4), (3.5) from [1]): # FF =-2*pi*n_e*integral_rhoMin^rhoMax delta_E*rho*drho; # 7) For taking into account the velocity distribution of the # electrons it is necessary to repeat these calculations for # each value of the electron's velocity and then integrate result # over distribution of the velocities. # # 10/26/2018: # # 8) Item 6 is wrong and correct expression for transfered # energy delta_E will be used; # 9) Method (my own) Least Squares Method - LSM is used to fit the # dependence of transferred momenta on impact parameter; # # # 11/08/2018: # # 10) Two functions ('fitting' and 'errFitAB' are defined to realize # my LSM to find the parameters of the fitting end error of this # fitting; # # 11) Analys of different dependeces between values; graphical # presentation of these dependences; # ######################################################### import os, sys import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm from matplotlib import ticker from matplotlib import markers import matplotlib as mpl from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D import scipy.integrate as integrate from scipy.integrate import quad, nquad, dblquad from scipy.constants import pi from scipy import optimize from statistics import mean from array import array # # All physical constants have its dimension in units in the system CI. # This code uses units in the system CGS! # from scipy.constants import speed_of_light as clight from scipy.constants import epsilon_0 as eps0 from scipy.constants import mu_0 as mu0 from scipy.constants import elementary_charge as qe from scipy.constants import electron_mass as me from scipy.constants import proton_mass as mp from scipy.constants import Boltzmann as kB pi=3.14159265358 # # Physical constants: # m_e=9.10938356e-28 # electron mass, g m_elec=m_e # to keep variable from previous script m_p=1.672621898e-24 # electron mass, g M_ion = m_p # to keep variable from previous script q_e=4.803204673e-10 # electron charge, CGSE unit: sqrt(g*cm^3/sec^2) q_elec=q_e # to keep variable from previous script Z_ion = q_e # to keep variable from previous script cLight=2.99792458e10 # speed of light, cm/sec eVtoErg=1.6021766208e-12 # 1 eV = 1.6...e-12 erg CtoPart=2.99792458e9 # 1 C = 1 A*sec = 2.9...e9 particles m_e_eV = m_e*cLight**2/eVtoErg # # Electron beam parameters: # Ekin=3.0e4 # kinetic energy, eV curBeam=0.5 # current density, A/cm^2 dBeam=3.0 # beam diameter, cm angSpread=3.0 # angular spread, mrad trnsvT=0.5 # transversal temperature, eV longT=2.0e-4 # longitudinal temperature, eV (was 2.0e-4) nField=1 # number ov values of the magnetic field fieldB=np.zeros(nField) # magnetic field fieldB[0]=3.e3 # Gs omega_p=1.0e9 # plasma frequency, 1/sec n_e=omega_p**2*m_e/(4.*pi*q_e**2) # plasma density, 3.1421e+08 cm-3 n_e1=8.e7 # plasma density, cm-3 omega_p1=np.sqrt(4.*pi*n_e1*q_e**2/m_e) # plasma frequency, 5.0459e+08 1/s # # Cooling system parameter: # coolLength=150.0 # typical length of the coolong section, cm # # HESR: # Ekin=90.8e4 # HESR kinetic energy, eV curBeam=0.5 # HESR current beam, A dBeam=2.0 # HESR beam diameter, cm angSpread=0.0 # HESR angular spread, mrad trnsvT=0.2 # HESR transversal temperature, eV longT=1.0e-2 # HESR longitudinal temperature, eV (was 2.0e-4) fieldB[0]=1.e3 # HESR, Gs coolLength=270.0 # HESR typical length of the coolong section, cm # # EIC: # angSpread=0.0 # EIC angular spread, mrad fieldB[0]=5.e4 # EIC, Gs coolLength=300.0 # EIC typical length of the coolong section, cm # # Calculated parameters of the electron beam: # V0 = cLight*np.sqrt(Ekin/m_e_eV*(Ekin/m_e_eV+2.))/(Ekin/m_e_eV+1.) print ('V0 =%e' % V0) tetaV0=0. # angle between V0 and magnetic field, rad B_mag=fieldB[0]*np.cos(tetaV0) # magnetic field acting on an electron, Gs rmsTrnsvVe=np.sqrt(2.*trnsvT*eVtoErg/m_e) # RMS transversal velocity, cm/s rmsLongVe=np.sqrt(2.*longT*eVtoErg/m_e) # RMS longitudinal velocity, cm/s # HESR: dens=curBeam*(CtoPart/q_e)/(pi*(.5*dBeam)**2*V0) # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('HESR: dens = %e,omega_p = %e' % (dens,omega_p)) # EIC: rmsLongVe = 1.0e+7 # cm/s longT = .5*m_e*rmsLongVe**2/eVtoErg rmsTrnsvVe = 4.2e+7 # cm/s trnsvT = .5*m_e*rmsTrnsvVe**2/eVtoErg print ('EIC: rmsLongVe = %e, longT = %e, rmsTrnsvVe = %e, trnsvT = %e' % \ (rmsLongVe,longT,rmsTrnsvVe,trnsvT)) dens=2.e9 # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('EIC: dens = %e,omega_p = %e' % (dens,omega_p)) cyclFreq=q_e*B_mag/(m_e*cLight) # cyclotron frequency, 1/s rmsRoLarm=rmsTrnsvVe*cyclFreq**(-1) # RMS Larmor radius, cm dens=omega_p**2*m_e/(4.*pi*q_e**2) # density, 1/cm^3 likeDebyeR=(3./dens)**(1./3.) # "Debye" sphere with 3 electrons, cm eTempTran=trnsvT # to keep variable from previous script eTempLong=longT # to keep variable from previous script coolPassTime=coolLength/V0 # time pass through cooling section, cm thetaVi=0. # polar angle ion and cooled electron beams, rad phiVi=0. # azimuth angle ion and cooled electron beams, rad powV0=round(np.log10(V0)) mantV0=V0/(10**powV0) pow_n_e=round(np.log10(n_e)) mant_n_e=n_e/(10**pow_n_e) # # Formfactor ffForm for friction force: # # ffForm = 2*pi*dens*q_e**4/(m_e*V0**2)= # = 0.5*omega_p**2*q_e**2/V0**2 # # Dimension of ffForm is force: g*cm/sec**2=erg/cm # # 1 MeV/m = 1.e6*eVtoErg/100. g*cm/sec**2 = 1.e4*eVtoErg erg/cm MeV_mToErg_cm=1.e4*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/MeV_mToErg_cm # MeV/m eV_mToErg_m=100.*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/eV_mToErg_m # =-6.8226e-12 eV/m eV_mInErg_cm=100.*eVtoErg ffForm=-.5*omega_p**2*q_e**2/V0**2/eVtoErg # =-6.8226e-10 eV/cm ffForm=100.*ffForm # =-6.8226e-08 eV/m ergToEV = 1./1.60218e-12 # # Relative velocities of electrons: # relVeTrnsv=rmsTrnsvVe/V0 relVeLong=rmsLongVe/V0 print ('V0=%e cm/s, rmsTrnsvVe=%e cm/s (rel = %e), rmsLongVe=%e cm/s (rel = %e)' % \ (V0,rmsTrnsvVe,relVeTrnsv,rmsLongVe,relVeLong)) # Indices: (Ix, Ipx, Iy, Ipy, Iz, Ipz) = range(6) stepsNumberOnGyro = 25 # number of the steps on each Larmour period ''' # # Opening the input file: # inputFile='areaOfImpactParameter_tAC-v6_fig110.data' print ('Open input file "%s"...' % inputFile) inpfileFlag=0 try: inpfile = open(inputFile,'r') inpfileFlag=1 except: print ('Problem to open input file "%s"' % inputFile) if inpfileFlag == 1: print ('No problem to open input file "%s"' % inputFile) lines=0 # Number of current line from input file dataNumber=0 # Number of current value of any types of Data xAboundary=np.zeros(100) xBboundary=np.zeros(100) while True: lineData=inpfile.readline() # print ('line=%d: %s' % (lines,lineData)) if not lineData: break lines += 1 if lines > 4: words=lineData.split() nWords=len(words) # print ('Data from %d: words=%s, number of entries = %d' % (lines,words,nWords)) xAboundary[dataNumber]=float(words[0]) xBboundary[dataNumber]=float(words[1]) dataNumber += 1 inpfile.close() print ('Close input file "%s"' % inputFile) ''' #==================================================================== # #------------------ Begin of defined functions ----------------------- # # Larmor frequency electron: # def omega_Larmor(mass,B_mag): return (q_elec)*B_mag/(mass*clight*1.e+2) # rad/sec # # Derived quantities: # omega_L = omega_Larmor(m_elec,B_mag) # rad/sec T_larm = 2*pi/omega_L # sec timeStep = T_larm/stepsNumberOnGyro # time step, sec print ('omega_Larmor= %e rad/sec, T_larm = %e sec, timeStep = %e sec' % \ (omega_L,T_larm,timeStep)) nLarmorAvrgng=10 # number of averaged Larmor rotations # # Data to integrate transferred momemta over the track: # timeStep_c=nLarmorAvrgng*stepsNumberOnGyro*timeStep # sec print ('timeStep_c = %e s' % timeStep_c) eVrmsTran = np.sqrt(2.*eTempTran*eVtoErg/m_elec) # cm/sec eVrmsLong = np.sqrt(2.*eTempLong*eVtoErg/m_elec) # cm/sec kinEnergy = m_elec*(eVrmsTran**2+eVrmsLong**2)/2. # kinetic energy; erg print ('eVrmsTran = %e cm/sec, eVrmsLong = %e cm/sec, kinEnergy = %e eV' % \ (eVrmsTran,eVrmsLong,ergToEV*kinEnergy)) ro_larmRMS = eVrmsTran/omega_L # cm print ('ro_larmRMS =%e mkm' % (1.e4*ro_larmRMS)) # # Electrons are magnetized for impact parameter >> rhoCrit: # rhoCrit=math.pow(q_elec**2/(m_elec*omega_L**2),1./3) # cm print ('rhoCrit (mkm) = ' , 1.e+4*rhoCrit) # # Convertion from 6-vector of relectron's "coordinates" to 6-vector # of guiding-center coordinates: # z_e=(x_e,px_e,y_e,py_e,z_e,pz_e) --> zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e); # def toGuidingCenter(z_e): mOmega=m_elec*omega_L # g/sec zgc_e=z_e.copy() # 6-vector zgc_e[Ix] = np.arctan2(z_e[Ipx]+mOmega*z_e[Iy],z_e[Ipy]) # radians zgc_e[Ipx]= (((z_e[Ipx]+mOmega*z_e[Iy])**2+z_e[Ipy]**2)/(2.*mOmega)) # g*cm**2/sec zgc_e[Iy] =-z_e[Ipx]/mOmega # cm zgc_e[Ipy]= z_e[Ipy]+mOmega*z_e[Ix] # g/sec return zgc_e # # Convertion from 6-vector of guiding-center coordinates to 6-vector # of electron's "coordinates": # zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e) --> z_e=(x_e,px_e,y_e,py_e,z_e,pz_e); # def fromGuidingCenter(zgc_e): mOmega=m_elec*omega_L # g/sec rho_larm=np.sqrt(2.*zgc_e[Ipx]/mOmega) # cm z_e = zgc_e.copy() # 6-vector z_e[Ix] = zgc_e[Ipy]/mOmega-rho_larm*np.cos(zgc_e[Ix]) # cm z_e[Ipx]=-mOmega*zgc_e[Iy] # g*cm/sec z_e[Iy] = zgc_e[Iy]+rho_larm*np.sin(zgc_e[Ix]) # cm z_e[Ipy]= mOmega*rho_larm*np.cos(zgc_e[Ix]) # g*cm/sec return z_e # # Matrix to dragg electron through the solenoid with field 'B_mag' # during time interval 'deltaT': # def solenoid_eMatrix(B_mag,deltaT): slndMtrx=np.identity(6) omega_L=omega_Larmor(m_elec,B_mag) # rad/sec mOmega= m_elec*omega_L # g/sec phi=omega_L*deltaT # phase, rad cosPhi=math.cos(phi) # dimensionless sinPhi=math.sin(phi) # dimensionless cosPhi_1=2.*math.sin(phi/2.)**2 # dimensionless slndMtrx[Iy, Iy ]= cosPhi # dimensionless slndMtrx[Ipy,Ipy]= cosPhi # dimensionless slndMtrx[Iy, Ipy]= sinPhi/mOmega # sec/g slndMtrx[Ipy,Iy ]=-mOmega*sinPhi # g/sec slndMtrx[Iz, Ipz]= deltaT/m_elec # sec/g slndMtrx[Ix, Ipx]= sinPhi/mOmega # sec/g slndMtrx[Ix, Iy ]= sinPhi # dimensionless slndMtrx[Ix, Ipy]= cosPhi_1/mOmega # sec/g slndMtrx[Iy, Ipx]=-cosPhi_1/mOmega # sec/g slndMtrx[Ipy,Ipx]=-sinPhi # dimensionless return slndMtrx # # Matrix to dragg particle through the drift during time interval 'deltaT': # def drift_Matrix(M_prtcl,deltaT): driftMtrx = np.identity(6) for i in (Ix,Iy,Iz): driftMtrx[i,i+1]=deltaT/M_prtcl # sec/g return driftMtrx # # Matrix to dragg electron in the "guiding center" system during time interval 'deltaT': # def guidingCenter_Matrix(deltaT): gcMtrx = np.identity(6) gcMtrx[Iz,Ipz]=deltaT/m_elec # sec/g return gcMtrx # # Description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron: # def guidingCenterCollision(vectrElec_gc,vectrIon,deltaT): dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3/2) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec b_gc=np.sqrt((vectrIon[0]-x_gc)**2+ \ (vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-dpFactor_gc*deltaT*(vectrIon[0]-x_gc)/b_gc**3 dpIon[1]=-dpFactor_gc*deltaT*(vectrIon[2]-vectrElec_gc[2])/b_gc**3 dpIon[2]=-dpFactor_gc*deltaT*(vectrIon[4]-vectrElec_gc[4])/b_gc**3 dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,b_gc # # "Magnus expansion" description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron and electron y_gc coordinate # as well calculated parameters C1,C2,C3,b,D1,D2,q for testing: # def MagnusExpansionCollision(vectrElec_gc,vectrIon,deltaT): # print ('Ion: x=%e, y=%e, z=%e' % (vectrIon[0],vectrIon[2],vectrIon[4])) # print ('Electron: x=%e, y=%e, z=%e' % # (vectrElec_gc[0],vectrElec_gc[4],vectrElec_gc[4])) dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3./2.) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec # C1=np.sqrt((vectrIon[0]-x_gc)**2+ \ # (vectrIon[2]-vectrElec_gc[2])**2+ \ # (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm^2 C1=(vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm # cm^2 C2=2.*((vectrIon[0]-x_gc)*vectrIon[1]/M_ion+ \ (vectrIon[2]-vectrElec_gc[2])*vectrIon[3]/M_ion+ \ (vectrIon[4]-vectrElec_gc[4])* \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)) # cm^2/sec C3=(vectrIon[1]/M_ion)**2+(vectrIon[3]/M_ion)**2+ \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)**2 # cm^2/sec^2 b=np.sqrt(C1+C2*deltaT+C3*deltaT**2) # cm D1=(2.*C3*deltaT+C2)/b-C2/np.sqrt(C1) # cm/sec D2=(C2*deltaT+2.*C1)/b-2.*np.sqrt(C1) # cm q=4.*C1*C3-C2**2 # cm^4/sec^2 # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-2.*dpFactor_gc/q*((vectrIon[0]-x_gc)*D1-vectrIon[1]/M_ion*D2) dpIon[1]=-2.*dpFactor_gc/q*((vectrIon[2]-vectrElec_gc[2])*D1- \ vectrIon[3]/M_ion*D2) dpIon[2]=-2.*dpFactor_gc/q*((vectrIon[4]-vectrElec_gc[4])*D1- \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)*D2) dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] dy_gc=dpIon[0]/mOmegaLarm # cm # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,dy_gc,C1,C2,C3,b,D1,D2,q # # Minimized functional (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # Funcional = {log10(funcY) - [fitB*log10(argX) + fitA]}^2 # def fitting(nPar1,nPar2,argX,funcY): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) for i in range(nVion): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) sumFuncY = np.zeros(nPar2) sumArgXfuncY= np.zeros(nPar2) fitA = np.zeros(nPar2) fitB = np.zeros(nPar2) for i in range(nPar2): for n in range(nPar1): sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 sumFuncY[i] += log10funcY[n,i] sumArgXfuncY[i] += log10argX[n,i]*log10funcY[n,i] delta = sumArgX[i]**2-nPar1*sumArgX2[i] fitA[i] = (sumArgX[i]*sumArgXfuncY[i]-sumArgX2[i]*sumFuncY[i])/delta fitB[i] = (sumArgX[i]*sumFuncY[i]-nPar1*sumArgXfuncY[i])/delta # print ('fitA(%d) = %e, fitB(%d) = %e' % (i,fitA[i],i,fitB[i])) argXfit = np.zeros((nPar1,nPar2)) funcYfit = np.zeros((nPar1,nPar2)) funcHi2 = np.zeros(nPar2) for i in range(nPar2): factorA = math.pow(10.,fitA[i]) for n in range(nPar1): argXfit[n,i] = math.pow(10.,log10argX[n,i]) funcYfit[n,i] = factorA*math.pow(argXfit[n,i],fitB[i]) funcHi2[i] += (np.log10(abs(funcY[n,i])) - np.log10(abs(funcYfit[n,i])))**2 return fitA,fitB,funcHi2,argXfit,funcYfit # # +-Errors for fitied parameters fitA and fitB: # def errFitAB(nPar1,nPar2,argX,funcY,fitA,fitB,funcHi2,errVar,errType): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) posErrFit = np.zeros(nPar2) negErrFit = np.zeros(nPar2) # return posErrFit,negErrFit stepA = 5.e-4*mean(funcHi2) stepB = 1.e-4*mean(funcHi2) # print ('errFitAB: mean(funcHi2) = %e, stepA = %e, stepB = %e' % (mean(funcHi2),stepA,stepB)) for i in range(nPar2): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); positive error) for %d' % (errVar,i)) break # print ('i=%d: fitParamtr = %e, funcHi2 = %e' % (i,fitParamtr[i], funcHi2[i])) curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] + k*stepA curFuncHi2 = 0. factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] + k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): posErrFit[i] = abs(curFitA - fitA[i]) else: posErrFit[i] = abs(curFitB - fitB[i]) func1sigma2 = funcHi2[i]/(nPar2-3) if (int(errVar) == 1): fitSigma = np.sqrt(sumArgX2[i]/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) else: fitSigma = np.sqrt(nPar2/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) if (int(errType) == 2): posErrFit[i] = fitSigma # if (int(errVar) == 1): # print ('i=%d: fitA = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); negative error) for %d' % (errVar,i)) break curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] - k*stepA factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] - k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): negErrFit[i] = abs(curFitA - fitA[i]) else: negErrFit[i] = abs(curFitB - fitB[i]) if (int(errType) == 2): negErrFit[i] = posErrFit[i] # if (errVar == 1): # print ('i=%d: fitA = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],negErrFit[i],funcHi2[i],k,curFuncHi2)) return posErrFit,negErrFit def fittedGKintegration(xMin,xMax,fitA,fitB): # # "Gauss-Kronrod" method of integration (GK) # # # Points (psi_i) and weigths (w_i) to integrate for interval from -1 to 1; # These data are from <NAME>. "Handbook of Mathematical Science". # 5th Edition, CRC Press, Inc, 1978. # # To integrate for interval from 0 to 1 it is necessary to change points # psi_i with points ksi_i=(1+psi_i)/2; # # For method with order N for function F(x): # int_(-1)^1 = sum_1^N [w_i* F(psi_i)]; # # In case of integration over interval from a to b: # int_(a)^b = (b-a)/2 * sum_1^N [w_i* F(x_i)], where # x_i = (b-a)*psi_i/2+(a+b)/2. # #---------------------------------------------------- # # Data for GK: # #---------------------------------------------------- nPoints_GK = 16 psi_16=np.array([-0.9894009, -0.9445750, -0.8656312, -0.7554044, -0.6178762, \ -0.4580168, -0.2816036, -0.0950125, 0.0950125, 0.2816036, \ 0.4580168, 0.6178762, 0.7554044, 0.8656312, 0.9445750, \ 0.9894009]) w_16 =np.array([ 0.0271525, 0.0622535, 0.0951585, 0.1246290, 0.1495960, \ 0.1691565, 0.1826034, 0.1894506, 0.1894506, 0.1826034, \ 0.1691565, 0.1495960, 0.1246290, 0.0951585, 0.0622535, \ 0.0271525]) y = np.zeros(nPoints_GK) yIntegrated = 0. for n in range(nPoints_GK): xCrrnt = psi_16[n]*(xMax-xMin)/2 + (xMax+xMin)/2. factorA = math.pow(10.,fitA) y[n] = factorA*math.pow(xCrrnt,fitB) yIntegrated += (xMax-xMin)*w_16[n]*y[n]*xCrrnt return y,yIntegrated #------------------ End of defined functions ----------------------- # #==================================================================== sphereNe=3. R_e=math.pow(sphereNe/n_e,1./3) # cm print ('R_e (cm)=%e' % R_e) ro_Larm = eVrmsTran/omega_L # cm print ('ro_Larm (cm)=%e' % ro_Larm) impctPrmtrMin=2.*ro_Larm # rhoDependenceFlag = 1 # skip calculation of rho dependence if = 0! #============ Important flags =========================== # # Taking into account the transfer of momenta for both particles # (for "classical" only): dpTransferFlag = 1 # no taking into account if = 0! # saveFilesFlag = 0 # no saving if = 0! # plotFigureFlag = 1 # plot if = 1! # #======================================================== nVion=50 Vion=np.zeros(nVion) VionLong=np.zeros(nVion) VionTrnsv=np.zeros(nVion) VionRel=np.zeros(nVion) vIonMin=4.e-3*eVrmsTran vIonMax=10.*eVrmsTran vIonMinRel=vIonMin/V0 vIonMaxRel=vIonMax/V0 print ('VionMin=%e (vIonMinRel=%e), vIonMax=%e (vIonMaxRel=%e)' % \ (vIonMin,vIonMinRel,vIonMax,vIonMaxRel)) vIonLogStep=math.log10(vIonMax/vIonMin)/(nVion-1) R_debye=np.zeros(nVion) R_pass=np.zeros(nVion) R_pass_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. impctPrmtrMax=np.zeros(nVion) impctPrmtrMax_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. for i in range(nVion): crrntLogVionRel=math.log10(vIonMinRel)+i*vIonLogStep VionRel[i]=math.pow(10.,crrntLogVionRel) Vion[i]=VionRel[i]*V0 VionLong[i]=Vion[i]*np.cos(thetaVi) VionTrnsv[i]=Vion[i]*np.sin(thetaVi) R_debye[i]=np.sqrt(Vion[i]**2+eVrmsTran**2+eVrmsLong**2)/omega_p R_pass[i]=np.sqrt(Vion[i]**2+eVrmsLong**2)*coolPassTime R_pass_1[i]=np.sqrt(Vion[i]**2+0.*eVrmsLong**2)*coolPassTime help=max(R_debye[i],R_e) impctPrmtrMax[i]=min(help,R_pass[i]) impctPrmtrMax_1[i]=min(help,R_pass_1[i]) #----------------------------------------------------------------- # Checking of corection of the maximal impact parameter on depence # of preset number of minimal Larmor turns # larmorTurnsMin=[10,20,30,40] impctPrmtrMaxCrrctd=np.zeros((nVion,4)) impctPrmtrMaxCrrctdRel=np.zeros((nVion,4)) for n in range (4): for i in range(nVion): impctPrmtrMaxCrrctd[i,n]=impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurnsMin[n]*eVrmsLong/omega_L/impctPrmtrMax[i])**2) impctPrmtrMaxCrrctdRel[i,n]=impctPrmtrMaxCrrctd[i,n]/impctPrmtrMax[i] # # First plotting: # if (plotFigureFlag == 0): fig10 = plt.figure(10) plt.semilogx(impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,0],'-r', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,1],'-b', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,2],'-g', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,3],'-m',linewidth=2) plt.grid(True) hold=True plt.xlabel('Maximal Impact parameter $R_{max}$, cm',color='m',fontsize=16) plt.ylabel('$R_{max}^{Crrctd}/R_{Max}$',color='m',fontsize=16) # plt.xlim([.9*min(impctPrmtrMax),1.1*max(impctPrmtrMax)]) plt.xlim([1.e-2,1.1*max(impctPrmtrMax)]) plt.ylim([.986,1.001]) titleHeader='$R_{max}^{Crrctd}=R_{Max} \cdot [1-(\pi\cdot N_{Larm} \cdot' titleHeader += '\Delta_{e||}/(\omega_{Larm} \cdot R_{max})]^{1/2}$' plt.title(titleHeader,color='m',fontsize=16) plt.legend([('$N_{Larm}=$%2d' % larmorTurnsMin[0]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[1]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[2]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[3])],loc='lower center',fontsize=14) if (saveFilesFlag == 1): fig10.savefig('picturesCMA/correctedRmax_fig10cma.png') print ('File "picturesCMA/correctedRmax_fig10cma.png" is written') xLimit=[.9*VionRel[0],1.1*VionRel[nVion-1]] # # Typs of collisions: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'Types of Collisions: $V_{e0}=%4.2f\cdot10^{%2d}$ cm/s, $B=%6.1f$ Gs' plt.title(titleHeader % (mantV0,powV0,fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,.0018,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-4,1.75e-3,'$R_{min}=2\cdot<rho_\perp>$',color='k',fontsize=16) plt.text(7.e-4,5.e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.85e-5,3.3e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(1.e-4,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(1.e-4,10.e-4,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.25e-5,.275,'Collisions are Screened',color='r',fontsize=20) plt.text(1.6e-5,1.e-3,'$ \cong 20\cdot R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') # # Picture for HESR: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'HESR Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(4.4e-4,8.4e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.e-4,8.4e-4,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.7e-6,3.4e-3,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(2.8e-4,.1,'$R_{max}$',color='k',fontsize=16) plt.text(1.e-4,1.8e-2,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(6.8e-5,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(2.3e-5,1.95e-3,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.e-5,.275,'Screened Collisions',color='r',fontsize=20) plt.text(3.58e-6,2.05e-3,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('HESRimpctPrmtr_fig3151cma.png') print ('File "HESRimpctPrmtr_fig3151cma.png" is written') # # Picture for EIC: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'EIC Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[5.e-5,.3] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(9.e-4,4.e-5,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.7e-4,3.e-5,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(6.3e-6,1.1e-4,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(1.e-4,2.1e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.57e-5,5.e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(2.3e-5,1.e-3,'Magnetized Collisions',color='r',fontsize=20) # plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(1.1e-5,5.7e-5,'Weak or Adiabatic or Fast Collisions',color='r',fontsize=16) plt.text(2.e-5,.15,'Screened Collisions',color='r',fontsize=20) plt.text(2.5e-3,1.7e-4,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('EICimpctPrmtr_fig3151cma.png') print ('File "EICimpctPrmtr_fig3151cma.png" is written') # plt.show() # sys.exit() # # Magnetized collisions: # if (plotFigureFlag == 0): fig209=plt.figure (209) plt.loglog(VionRel,R_debye,'-r',VionRel,R_pass,'-b', \ VionRel,R_pass_1,'--b',linewidth=2) plt.grid(True) hold=True plt.plot([VionRel[0],VionRel[nVion-1]],[R_e,R_e],color='m',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$R_{Debye}$, $R_{Pass}$, $R_e$, cm',color='m',fontsize=16) # titleHeader='Magnetized Collision: $R_{Debye}$, $R_{Pass}$, $R_e$: $V_{e0}=%5.3f\cdot10^{%2d}$cm/s' # plt.title(titleHeader % (mantV0,powV0),color='m',fontsize=16) plt.title('Magnetized Collisions: $R_{Debye}$, $R_{Pass}$, $R_e$',color='m',fontsize=16) plt.xlim(xLimit) yLimit=[1.e-3,10.] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.5e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,0.001175,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-5,2.45e-3,'$R_e$',color='k',fontsize=16) plt.text(3.e-5,5.e-2,'$R_{Debye}$',color='k',fontsize=16) plt.text(3.e-5,1.8e-2,'$R_{Pass}$',color='k',fontsize=16) plt.text(4.5e-5,4.8e-3,'$R_{Pass}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.text(8.3e-5,4.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) if (saveFilesFlag == 1): fig209.savefig('picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png') print ('File "picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png" is written') # # Coulomb logarithm evaluation: # clmbLog = np.zeros(nVion) for i in range(nVion): clmbLog[i] = math.log(impctPrmtrMax[i]/impctPrmtrMin) # clmbLog[i] = math.log(impctPrmtrMax_1[i]/impctPrmtrMin) if (plotFigureFlag == 0): fig3155=plt.figure (3155) plt.semilogx(VionRel,clmbLog,'-xr',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Coulomb Logarithm $L_c$',color='m',fontsize=14) plt.title('Coulomb Logarithm: $L_c$ = $ln(R_{max}/R_{min})$',color='m',fontsize=16) yLimit=[min(clmbLog)-.1,max(clmbLog)+.1] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.4e-5,5.,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3155.savefig('picturesCMA_v7/coulombLogrthm_fig3155cma.png') print ('File "picturesCMA_v7/coulombLogrthm_fig3155cma.png" is written') # # matrix for electron with .5*timeStep_c: # matr_elec_c=guidingCenter_Matrix(.5*timeStep_c) # # matrix for ion with mass M_ion and .5*timeStep_c: # matr_ion_c=drift_Matrix(M_ion,.5*timeStep_c) larmorTurns = 10 nImpctPrmtr = 50 rhoMin = impctPrmtrMin rhoMax = np.zeros(nVion) log10rhoMin = math.log10(rhoMin) crrntImpctPrmtr = np.zeros(nImpctPrmtr) halfLintr = np.zeros((nImpctPrmtr,nVion)) pointAlongTrack = np.zeros((nImpctPrmtr,nVion)) totalPoints = 0 for i in range(nVion): rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! # print ('rhoMax(%d) = %e' % (i,rhoMax[i])) log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # print (' rhoCrrnt(%d) = %e' % (n,rhoCrrnt)) halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm timeHalfPath = halfLintr[n,i]/eVrmsLong # 0.5 time of interaction; sec numbLarmor = int(2.*timeHalfPath/T_larm) pointAlongTrack[n,i] = int(2.*timeHalfPath/timeStep_c) totalPoints += pointAlongTrack[n,i] # print (' %d: rhoCrrnt = %e, numbLarmor = %d, pointAlongTrack = %d' % \ # (n,rhoCrrnt,numbLarmor,pointAlongTrack[n,i])) # print ('totalPoints = %d' % totalPoints) totalPoints = int(totalPoints) nnTotalPoints=np.arange(0,2*totalPoints-1,1) arrayA=np.zeros(2*totalPoints) arrayB=np.zeros(2*totalPoints) bCrrnt_c = np.zeros(2*totalPoints) # # Variables for different testing: # b_gc = np.zeros(totalPoints) action_gc = np.zeros(totalPoints) C1test = np.zeros(totalPoints) C2test = np.zeros(totalPoints) C3test = np.zeros(totalPoints) b_ME = np.zeros(totalPoints) D1test = np.zeros(totalPoints) D2test = np.zeros(totalPoints) qTest = np.zeros(totalPoints) action_ME = np.zeros(totalPoints) actn_gc_ME_rel = np.zeros(totalPoints) indxTest = 0 rhoInit = np.zeros((nImpctPrmtr,nVion)) # # "Classical" approach: # deltaPx_c = np.zeros((nImpctPrmtr,nVion)) deltaPy_c = np.zeros((nImpctPrmtr,nVion)) deltaPz_c = np.zeros((nImpctPrmtr,nVion)) ionVx_c = np.zeros((nImpctPrmtr,nVion)) ionVy_c = np.zeros((nImpctPrmtr,nVion)) ionVz_c = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_c = np.zeros((nImpctPrmtr,nVion)) # # "Magnus Expand" approach: # deltaPx_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_m = np.zeros((nImpctPrmtr,nVion)) ionVx_m = np.zeros((nImpctPrmtr,nVion)) ionVy_m = np.zeros((nImpctPrmtr,nVion)) ionVz_m = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m = np.zeros((nImpctPrmtr,nVion)) # # Comparison of approaches (ratio deltaEnrgIon_c/deltaEnrgIon_m): # deltaPx_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_c_m = np.zeros((nImpctPrmtr,nVion)) dEion_c_m = np.zeros((nImpctPrmtr,nVion)) # # Factor to calculate transferred energy to ion # (the friction force is defined by this transfered energy): # deFactor = 0.5/M_ion # 1/g frctnForce_cSM = np.zeros(nVion) # integration, using Simpson method frctnForce_mSM = np.zeros(nVion) # integration, using Simpson method numberWrongSign_c=0 numberWrongSign_m=0 posSignDeltaEnrgIon_c=0 negSignDeltaEnrgIon_c=0 posSignDeltaEnrgIon_m=0 negSignDeltaEnrgIon_m=0 timeRun = np.zeros(nVion) totalTimeRun = 0. indx = 0 # ----------------- Main simulation --------------- # for i in range(nVion): # Taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) # Without taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) timeStart=os.times() for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # rhoInit[i*nImpctPrmtr+n] = rhoCrrnt rhoInit[n,i] = rhoCrrnt halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm z_ionCrrnt_c = np.zeros(6) # Zeroing out of vector for ion ("GC"-approach) z_elecCrrnt_c = np.zeros(6) # Zeroing out of vector for electron ("GC"-approach) z_ionCrrnt_m = np.zeros(6) # Zeroing out of vector for ion ("ME"-approach) z_elecCrrnt_m = np.zeros(6) # Zeroing out of vector for electron ("ME"-approach) # Zeroing out of "guiding center" vector for electron (both approaches): z_elecCrrnt_gc_c = np.zeros(6) z_elecCrrnt_gc_m = np.zeros(6) # Current values of transfered momemta # (second index numerates "Guiding Center", (if 0) and # "Magnus Expantion" (if 1) approaches: dpCrrnt = np.zeros((3,2)) # Intermediate arrays: dpIon_c = np.zeros(3) dpIon_m = np.zeros(3) dpElec_c = np.zeros(3) dpElec_m = np.zeros(3) # Current initial vector for electron: z_elecCrrnt_c[Ix] = rhoCrrnt # x, cm z_elecCrrnt_c[Iz] = -halfLintr[n,i] # z, cm z_elecCrrnt_c[Ipy] = m_elec*eVrmsTran # py, g*cm/sec z_elecCrrnt_c[Ipz] = m_elec*eVrmsLong # pz, g*cm/sec z_elecCrrnt_m[Ix] = rhoCrrnt # x, cm z_elecCrrnt_m[Iz] = -halfLintr[n,i] # z, cm z_elecCrrnt_m[Ipy] = m_elec*eVrmsTran # py, g*cm/sec z_elecCrrnt_m[Ipz] = m_elec*eVrmsLong # pz, g*cm/sec # Current initial vector for ion velocity for both approaches: ionVx_c[n,i] = VionTrnsv[i]*np.cos(phiVi) ionVy_c[n,i] = VionTrnsv[i]*np.sin(phiVi) ionVz_c[n,i] = VionLong[i] ionVx_m[n,i] = VionTrnsv[i]*np.cos(phiVi) ionVy_m[n,i] = VionTrnsv[i]*np.sin(phiVi) ionVz_m[n,i] = VionLong[i] # transfer to system of guiding center: z_elecCrrnt_gc_c=toGuidingCenter(z_elecCrrnt_c) z_elecCrrnt_gc_m=toGuidingCenter(z_elecCrrnt_m) # # Main loop along the each track: # for k in range(int(pointAlongTrack[n,i])): # # Dragging both particles through first half of the step of the track: # z_elecCrrnt_gc_c = np.dot(matr_elec_c,z_elecCrrnt_gc_c) # electron z_elecCrrnt_gc_m = np.dot(matr_elec_c,z_elecCrrnt_gc_m) # electron z_ionCrrnt_c = np.dot(matr_ion_c,z_ionCrrnt_c) # ion z_ionCrrnt_m = np.dot(matr_ion_c,z_ionCrrnt_m) # ion # transfer from system of guiding center: z_elecCrrnt_c=fromGuidingCenter(z_elecCrrnt_gc_c) z_elecCrrnt_m=fromGuidingCenter(z_elecCrrnt_gc_m) # Current distance between ion and electron; cm: bCrrnt_c[indx]=np.sqrt((z_ionCrrnt_c[0]-z_elecCrrnt_c[0])**2+ \ (z_ionCrrnt_c[2]-z_elecCrrnt_c[2])**2+ \ (z_ionCrrnt_c[4]-z_elecCrrnt_c[4])**2) # Current values of parameters A,B: arrayA[indx] = math.log10(ro_Larm/bCrrnt_c[indx]) arrayB[indx] = math.log10((q_elec**2/bCrrnt_c[indx])/kinEnergy) indx += 1 # # Dragging both particles through interaction during this step of track # (for both approaches): # # "Guiding Center": dpIon_c,dpElec_c,action,b_gc_c = \ guidingCenterCollision(z_elecCrrnt_gc_c,z_ionCrrnt_c,timeStep_c) # "Magnus Expantion": dpIon_m,dpElec_m,actionME,dy_gc_m,C1,C2,C3,b,D1,D2,q = \ MagnusExpansionCollision(z_elecCrrnt_gc_m,z_ionCrrnt_m,timeStep_c) # Save data for testing: b_gc[indxTest] = b_gc_c # "Guiding Center" approach action_gc[indxTest] = action # -"- -"- -"- -"- -"- -"- C1test[indxTest] = C1 # "Magnus expansion" approach C2test[indxTest] = abs(C2) # -"- -"- -"- -"- -"- -"- C3test[indxTest] = C3 # -"- -"- -"- -"- -"- -"- b_ME[indxTest] = b # -"- -"- -"- -"- -"- -"- D1test[indxTest] = D1 # -"- -"- -"- -"- -"- -"- D2test[indxTest] = D2 # -"- -"- -"- -"- -"- -"- qTest[indxTest] = q #-"- -"- -"- -"- -"- -"- action_ME[indxTest] = actionME #-"- -"- -"- -"- -"- -"- indxTest += 1 indxTestMax = indxTest # # Taking into account transfer of momentum for both particles: # if (dpTransferFlag == 1): for ic in range(3): z_ionCrrnt_c[2*ic+1] += dpIon_c[ic] z_elecCrrnt_c[2*ic+1] += dpElec_c[ic] z_ionCrrnt_m[2*ic+1] += dpIon_m[ic] z_elecCrrnt_m[2*ic+1] += dpElec_m[ic] # transfer to system of guiding center: z_elecCrrnt_gc_c=toGuidingCenter(z_elecCrrnt_c) z_elecCrrnt_gc_m=toGuidingCenter(z_elecCrrnt_m) # Accumulation of the transfered momenta to ion along the track for both approaches: for ic in range(3): # if i == 0: # print ('dpIon_c[%2d] = %20.14e, dpIon_m[%2d] = %20.14e' % \ # (ic,dpIon_c[ic],ic,dpIon_m[ic])) dpCrrnt[ic,0] += dpIon_c[ic] # "Guiding Center", g*cm/sec dpCrrnt[ic,1] += dpIon_m[ic] # "Magnus Expansion", g*cm/sec # # Ion's elocity change along the track - both approaches: # ionVx_c[n,i] += dpCrrnt[0,0]/M_ion # cm/sec ionVy_c[n,i] += dpCrrnt[1,0]/M_ion # cm/sec ionVz_c[n,i] += dpCrrnt[2,0]/M_ion # cm/sec ionVx_m[n,i] += dpCrrnt[0,1]/M_ion # cm/sec ionVy_m[n,i] += dpCrrnt[1,1]/M_ion # cm/sec ionVz_m[n,i] += dpCrrnt[2,1]/M_ion # cm/sec # # Dragging both particles through second half of the step of the track: # z_elecCrrnt_gc_c = np.dot(matr_elec_c,z_elecCrrnt_gc_c) # electron z_ionCrrnt_c = np.dot(matr_ion_c,z_ionCrrnt_c) # ion z_elecCrrnt_gc_m = np.dot(matr_elec_c,z_elecCrrnt_gc_m) # electron z_ionCrrnt_m = np.dot(matr_ion_c,z_ionCrrnt_m) # ion # transfer from system of guiding center: z_elecCrrnt_c=fromGuidingCenter(z_elecCrrnt_gc_c) z_elecCrrnt_m=fromGuidingCenter(z_elecCrrnt_gc_m) # Current distance between ion and electron; cm: bCrrnt_c[indx]=np.sqrt((z_ionCrrnt_c[0]-z_elecCrrnt_c[0])**2+ \ (z_ionCrrnt_c[2]-z_elecCrrnt_c[2])**2+ \ (z_ionCrrnt_c[4]-z_elecCrrnt_c[4])**2) # Current values of parameters A,B: arrayA[indx] = math.log10(ro_Larm/bCrrnt_c[indx]) arrayB[indx] = math.log10((q_elec**2/bCrrnt_c[indx])/kinEnergy) indx += 1 # # Transferred momenta along the track - "Guiding Center" approach: # deltaPx_c[n,i] = dpCrrnt[0,0] # dpx, g*cm/sec # if deltaPx_c[n,i] <= 0.: # print ('deltaPx_c[%2d,%2d] = %e, dpCrrnt[%2d,%2d] = %e' % \ # (n,i,deltaPx_c[n,i],n,i,dpCrrnt[0,0])) deltaPy_c[n,i] = dpCrrnt[1,0] # dpy, g*cm/sec # if deltaPy_c[n,i] <= 0.: # print ('deltaPy_c[%2d,%2d] = %e' % (n,i,deltaPy_c[n,i])) deltaPz_c[n,i] = dpCrrnt[2,0] # dpz, g*cm/sec # if deltaPz_c[n,i] <= 0.: # print ('deltaPz_c[%2d,%2d] = %e' % (n,i,deltaPz_c[n,i])) # Incorrect value: # deltaEnrgIon_c[n,i] = (dpCrrnt[0,0]**2+dpCrrnt[1,0]**2+dpCrrnt[2,0]**2)* \ # deFactor/eVtoErg # eV # Correct value: crrntDeltaEnrg = (dpCrrnt[0,0]*ionVx_c[n,i]+ \ dpCrrnt[1,0]*ionVy_c[n,i]+ \ dpCrrnt[2,0]*ionVz_c[n,i])*deFactor/eVtoErg # eV absDeltaEnrgIon_c = abs(crrntDeltaEnrg) if (crrntDeltaEnrg != 0.): signDeltaEnrgIon_c = crrntDeltaEnrg/abs(crrntDeltaEnrg) deltaEnrgIon_c[n,i] = crrntDeltaEnrg if (deltaEnrgIon_c[n,i] > 0.): posSignDeltaEnrgIon_c += 1 else: negSignDeltaEnrgIon_c += 1 # # Transferred momenta along the track - "Magnus expansion" approach: # deltaPx_m[n,i] = dpCrrnt[0,1] # dpx, g*cm/sec # if deltaPx_m[n,i] <= 0.: # print ('deltaPx_m[%2d,%2d] = %e' % (n,i,deltaPx_m[n,i])) deltaPy_m[n,i] = dpCrrnt[1,1] # if deltaPy_m[n,i] <= 0.: # print ('deltaPy_m[%2d,%2d] = %e' % (n,i,deltaPy_m[n,i])) deltaPz_m[n,i] = dpCrrnt[2,1] # if deltaPz_m[n,i] <= 0.: # print ('deltaPz_m[%2d,%2d] = %e' % (n,i,deltaPz_m[n,i])) # Incorrect value: # deltaEnrgIon_m[n,i] = (dpCrrnt[0,1]**2+dpCrrnt[1,1]**2+dpCrrnt[2,1]**2)* \ # deFactor/eVtoErg # eV # Correct value absolute value): crrntDeltaEnrg = (dpCrrnt[0,1]*ionVx_m[n,i]+ \ dpCrrnt[1,1]*ionVy_m[n,i]+ \ dpCrrnt[2,1]*ionVz_m[n,i])*deFactor/eVtoErg # eV absDeltaEnrgIon_m = abs(crrntDeltaEnrg) if (crrntDeltaEnrg != 0.): signDeltaEnrgIon_m = crrntDeltaEnrg/abs(crrntDeltaEnrg) deltaEnrgIon_m[n,i] = crrntDeltaEnrg if (deltaEnrgIon_m[n,i] > 0.): posSignDeltaEnrgIon_m += 1 else: negSignDeltaEnrgIon_m += 1 # # Comparison of the approaches (%): # if (deltaPx_m[n,i] != 0.): deltaPx_c_m[n,i] = 100.*(deltaPx_c[n,i]/deltaPx_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPx_m[%d,%d] = ' % (n,i)) if (deltaPy_m[n,i] != 0.): deltaPy_c_m[n,i] = 100.*(deltaPy_c[n,i]/deltaPy_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPy_m[%d,%d] = ' % (n,i)) if (deltaPz_m[n,i] != 0.): deltaPz_c_m[n,i] = 100.*(deltaPz_c[n,i]/deltaPz_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPz_m[%d,%d] = ' % (n,i)) if (deltaEnrgIon_m[n,i] != 0.): dEion_c_m[n,i] = 100.*(deltaEnrgIon_c[n,i]/deltaEnrgIon_m[n,i]-1.) else: print ('Bad value (=0.) of deltaEnrgIon_m[%d,%d] = ' % (n,i)) # # Integration using Simpson method: # if (n > 0): frctnForce_cSM[i] += pi*n_e*100.*(deltaEnrgIon_c[n,i]+deltaEnrgIon_c[n-1,i])* \ .5*(rhoInit[n,i]+rhoInit[n-1,i])* \ (rhoInit[n,i]-rhoInit[n-1,i]) # eV/m frctnForce_mSM[i] += pi*n_e*100.*(deltaEnrgIon_m[n,i]+deltaEnrgIon_m[n-1,i])* \ .5*(rhoInit[n,i]+rhoInit[n-1,i])* \ (rhoInit[n,i]-rhoInit[n-1,i]) # eV/m timeEnd = os.times() timeRun[i] = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec totalTimeRun += timeRun[i] print ('timeRun(%2d) = %6.3f seconds' % (i,timeRun[i])) print ('Total time (icluding Simpson integration) = %6.3f seconds' % totalTimeRun) print ('deltaEnrgIon_c: nPos=%d, nNeg=%d; deltaEnrgIon_m: nPos=%d, nNeg=%d' % \ (posSignDeltaEnrgIon_c,negSignDeltaEnrgIon_c, \ posSignDeltaEnrgIon_m,negSignDeltaEnrgIon_m)) # # Output for checking: # # print \ # ('n Px_c Px_m Py_c Py_m Pz_c Pz_m Pz_c_m') # for i in range(10,11,1): # for n in range(nImpctPrmtr): # print ('%d: %e %e %e %e %e %e %e' % \ # (n,deltaPx_c[n,i],deltaPx_m[n,i],deltaPy_c[n,i], \ # deltaPy_m[n,i],deltaPz_c[n,i],deltaPz_m[n,i],deltaPz_c_m[n,i])) # print ('n dEion_c dEion_m') # for i in range(10,11,1): # for n in range(nImpctPrmtr): # print ('%d: %e %e ' % (n,deltaEnrgIon_c[n,i],deltaEnrgIon_m[n,i])) # print ('indxTestMax = %d' % indxTestMax) # # Plotting of the tests: # nn=np.arange(0,indxTestMax-1,1) # # C1: # if (plotFigureFlag == 0): fig2020=plt.figure (2020) plt.plot(nn,C1test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C1$, $cm^2$',color='m',fontsize=16) plt.title('$C1=[x_{gc}^2+y_{gc}^2+z_e^2+2J/(m_e \cdot \Omega_e)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2020.savefig('picturesCMA_v7/magnusExpansion_C1_fig2020cma.png') print ('File "picturesCMA_v7/magnusExpansion_C1_fig2020cma.png" is written') # # C2: # if (plotFigureFlag == 0): fig2030=plt.figure (2030) plt.plot(nn,1.e-5*C2test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C2$, $\cdot 10^5$ $cm^2/s$',color='m',fontsize=16) plt.title('$C2=2\cdot[V_{ix}\cdot(x_i-x_{gc})+V_{iy}\cdot(y_i-y_{gc})+(V_{iz}-V_{ez})\cdot(z_i-z_e)]$', \ color='m',fontsize=14) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2030.savefig('picturesCMA_v7/magnusExpansion_C2_fig2030cma.png') print ('File "picturesCMA_v7/magnusExpansion_C2_fig2030cma.png" is written') # # C3: # if (plotFigureFlag == 0): fig2040=plt.figure (2040) plt.plot(nn,1e-11*C3test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C3$, $\cdot 10^{11}$ $cm^2/s^2$',color='m',fontsize=16) plt.title('$C3=V_{ix}^2+V_{iy}^2+(V_{iz}-V_{ez})^2$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2040.savefig('picturesCMA_v7/magnusExpansion_C3_fig2040cma.png') print ('File "picturesCMA_v7/magnusExpansion_C3_fig2040cma.png" is written') # # D1: # if (plotFigureFlag == 0): fig2025=plt.figure (2025) plt.plot(nn,1.e-5*D1test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^{-5}\cdot D1$, $cm/s$',color='m',fontsize=16) plt.title('$D1=(2C_3\cdot \Delta t+C_2)/b_{ME}$ $-$ $C_2/C_1^{0.5}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2025.savefig('picturesCMA_v7/magnusExpansion_D1_fig2025cma.png') print ('File "picturesCMA_v7/magnusExpansion_D1_fig2025cma.png" is written') # # D2: # if (plotFigureFlag == 0): fig2035=plt.figure (2035) plt.plot(nn,1.e4*D2test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^4\cdot D2$, $cm$',color='m',fontsize=16) plt.title('$D2=(2C_1+C_2\cdot \Delta t)/b_{ME}$ $-$ $2C_1^{0.5}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2035.savefig('picturesCMA_v7/magnusExpansion_D2_fig2035cma.png') print ('File "picturesCMA_v7/magnusExpansion_D2_fig2035cma.png" is written') # # Distance b_ME between particles for "ME" approach: # if (plotFigureFlag == 0): fig2050=plt.figure (2050) plt.plot(nn,b_ME[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{ME}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{ME}$ between Particles for "ME" Approach', color='m',fontsize=16) plt.text(3500,.4,'$b_{ME}=[C1+C2\cdot \Delta t +C3 \cdot \Delta t^2]^{0.5}$', \ color='m',fontsize=16) plt.text(33000,.36,('$(\Delta t=%8.2e$ $s)$' % timeStep_c),color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2050.savefig('picturesCMA_v7/particleDistance_me_fig2050cma.png') print ('File "picturesCMA_v7/particleDistance_me_fig2050cma.png" is written') # # Distance b_gc between particles for "GC" approach: # if (plotFigureFlag == 0): fig2055=plt.figure (2055) plt.plot(nn,b_gc[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{GC}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{GC}$ between Particles for "GC" Approach', color='m',fontsize=16) plt.text(0,.4,'$b_{GC}=[(x_i-x_{gc})^2+(y_i-y_{gc})^2+$',color='m',fontsize=16) plt.text(55500,.36,'$+(z_i-z_e)^2+2J/(m_e \cdot \Omega_e)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2055.savefig('picturesCMA/particleDistance_gc_fig2055cma.png') print ('File "picturesCMA/particleDistance_gc_fig2055cma.png" is written') # # Comparison of bCrrnt_c from "Guiding Center" with bTest from # "Magnus expansion" approaches: # bCrrnt_cTest = np.zeros(indxTestMax) bCrrnt_cTestRel = np.zeros(indxTestMax) b_gc_ME_rel = np.zeros(indxTestMax) for k in range(indxTestMax): bCrrnt_cTest[k] = .5*(bCrrnt_c[2*k]+bCrrnt_c[2*k+1]) # bCrrnt_cTestRel[k] = bCrrnt_cTest[k]/b_ME[k] b_gc_ME_rel[k] = b_gc[k]/b_ME[k] actn_gc_ME_rel[k] = 1.e7*(action_gc[k]/action_ME[k]-1.) if (plotFigureFlag == 0): fig2060=plt.figure (2060) # plt.semilogy(nn,bCrrnt_cTest[0:indxTestMax-1],'.r') plt.plot(nn,bCrrnt_cTest[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('Test $b_{crrntTest}$, $cm$',color='m',fontsize=16) plt.title('Test $b_{crrntTest} = .5 \cdot [b_{crrnt}(k)+b_{crrnt}(k+1)]$',color='m', \ fontsize=16) plt.xlim([-5000,indxTestMax+5000]) # plt.ylim([.9*min(bCrrnt_cTest),1.1*max(bCrrnt_cTest)]) plt.grid(True) # # Ratio b_gc/b_ME (absolute value): # if (plotFigureFlag == 0): fig2070=plt.figure (2070) # plt.semilogy(nn,b_gc_ME_rel[0:indxTestMax-1],'.r') plt.plot(nn,b_gc_ME_rel[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{GC}/b_{ME}$',color='m',fontsize=16) plt.title('Comparison of Distances $b_{GC}$ and $b_{ME}$ between Particles',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) # plt.ylim([.9*min(b_gc_ME_rel),1.1*max(b_gc_ME_rel)]) plt.grid(True) if (saveFilesFlag == 1): fig2070.savefig('picturesCMA_v7/particleDistanceComprsn_gc_me_fig2070cma.png') print ('File "picturesCMA_v7/particleDistanceComprsn_gc_me_fig2070cma.png" is written') # # Ratio b_gc/b_ME (relative value): # if (plotFigureFlag == 0): fig2080=plt.figure (2080) # plt.semilogy(nn,actn_gc_ME_rel[0:indxTestMax-1],'.r') plt.plot(nn,actn_gc_ME_rel[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^7\cdot (J_{GC}/J_{ME}$ $-$ $1)$',color='m',fontsize=16) plt.title('Comparison of Actions $J_{GC}$ and $J_{ME}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.ylim([.99*min(actn_gc_ME_rel),1.01*max(actn_gc_ME_rel)]) plt.grid(True) if (saveFilesFlag == 1): fig2080.savefig('picturesCMA_v7/actionComprsn_gc_me_fig2080cma.png') print ('File "picturesCMA_v7/actionComprsn_gc_me_fig2080cma.png" is written') # # Total length of interaction (1/2 of value): # nn=np.arange(0,nVion*nImpctPrmtr,1) halfLintrTest = np.zeros(nVion*nImpctPrmtr) for i in range(nVion): for n in range(nImpctPrmtr): halfLintrTest[nVion*i+n] = halfLintr[i,n] if (plotFigureFlag == 0): fig2090=plt.figure (2090) plt.semilogy(nn,halfLintrTest,'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$0.5 \cdot L_{Intrctn}$, $cm$',color='m',fontsize=16) plt.title('Total Length of Interaction: $L_{Intrctn}=2 \cdot [R_{max}^2-rho_{Init}^2)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-100,nVion*nImpctPrmtr+100]) plt.ylim([.9*min(halfLintrTest),1.1*max(halfLintrTest)]) plt.grid(True) if (saveFilesFlag == 1): fig2090.savefig('picturesCMA/totalLengthIntrsctn_fig2090cma.png') print ('File "picturesCMA/totalLengthIntrsctn_fig2090cma.png" is written') #=================================================== # # There is fitting for correct values of deltaEnrgIon_m # #=================================================== # # Fitting for figures with deltaEnrgIon_m (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # # Fittied function: # # |deltaEnrgIon| = 10^fitA * rho^fitB, # so that # # log10(|deltaEnrgIon|) = fitB*log10(rho) + fitA # # So, the dimension of expression (10^fitA * rho^fitB) is the same # as deltaEnrgIon, i.e. eV # timeStart = os.times() fitA_dEion = np.zeros(nVion) # dimensionless fitB_dEion = np.zeros(nVion) # dimensionless rhoInitFit_dEion = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m_fit = np.zeros((nImpctPrmtr,nVion)) funcHi2_dEion = np.zeros(nVion) fitA_dEion,fitB_dEion,funcHi2_dEion,rhoInitFit_dEion, deltaEnrgIon_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m) dPosA_dEion = np.zeros(nVion) dNegA_dEion = np.zeros(nVion) dPosA_dEion,dNegA_dEion = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m_fit,fitA_dEion,fitB_dEion,funcHi2_dEion,1,2) dPosB_dEion = np.zeros(nVion) dNegB_dEion = np.zeros(nVion) dPosB_dEion,dNegB_dEion = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m_fit,fitA_dEion,fitB_dEion,funcHi2_dEion,2,2) # print ('Fitting for deltaEion:') # for i in range(nVion): # print ('i=%2d: fitA_dEion = %e (+%e,-%e), fitB_dEion = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_dEion[i],dPosA_dEion[i],dNegA_dEion[i], \ # fitB_dEion[i],dPosB_dEion[i],dNegB_dEion[i],funcHi2_dEion[i])) # # Analytical Integration of the fitted dependence 10**A*rho**B. # # For this dependece on rho: # # Friction force = 10**A*n_e*integral_rhoMin^rhoMax (rho**B*rho)*dRho = # = 10**A*n_e/(B+2)*[rhoMax**(B+2)-rhoMax**(B+2)] (dimension=eV/cm): # frctnForce_AI = np.zeros(nVion) for i in range(nVion): factorA1 = math.pow(10.,fitA_dEion[i]) factorB1 = 2.+fitB_dEion[i] frctnForce_AI[i] = 2.*pi*n_e*100.*factorA1/factorB1* \ (math.pow(impctPrmtrMax[i],factorB1)- \ math.pow(impctPrmtrMin,factorB1)) # eV/m timeEnd = os.times() timeFitting = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec print ('Time of integration = %6.3f seconds' % timeFitting) # # Dependences of transferred energy to ion on ion velocity for # different initial impact parameters: # rhoSlctd = [.004,.02,.06,.1] nRhoSlctd = len(rhoSlctd) deltaEnrgIon_dpnd_Vi = np.zeros((nRhoSlctd,nVion)) npStart = np.zeros((nRhoSlctd,), dtype=int) for k in range(nRhoSlctd): slctdFlag = 0 for i in range(nVion): if (slctdFlag == 0): for n in range(nImpctPrmtr): if (rhoInit[n,i] >= rhoSlctd[k]): npStart[k] = i slctdFlag = 1 break for k in range(nRhoSlctd): for i in range(npStart[k],nVion,1): factorA = math.pow(10.,fitA_dEion[i]) deltaEnrgIon_dpnd_Vi[k,i] = factorA*math.pow(rhoSlctd[k],fitB_dEion[i]) # print ('deltaEnrgIon_dpnd_Vi[%d,%d] = %e' %(k,i,deltaEnrgIon_dpnd_Vi[k,i])) #=================================================== # # There is fitting of deltaPz_m (these values > 0 always) !!! # #=================================================== # # Fitting for figures with deltaPz_m (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # # Fittied function: # # deltaPz_m = 10^fitA_pz * rho^fitB_pz, # so that # # log10(deltaPz_m) = fitB_pz*log10(rho) + fitA_pz # # So, the dimension of expression (10^fitA_pz * rho^fitB_pz) is the same # as deltaPz_m, i.e. eV # fitA_pz = np.zeros(nVion) # dimensionless fitB_pz = np.zeros(nVion) # dimensionless rhoInitFit_pz = np.zeros((nImpctPrmtr,nVion)) deltaPz_m_fit = np.zeros((nImpctPrmtr,nVion)) fitA_pz,fitB_pz,funcHi2_pz,rhoInitFit_pz, deltaPz_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaPz_m) dPosA_pz = np.zeros(nVion) dNegA_pz = np.zeros(nVion) dPosA_pz,dNegA_pz = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPz_m_fit,fitA_pz,fitB_pz,funcHi2_pz,1,2) dPosB_pz = np.zeros(nVion) dNegB_pz = np.zeros(nVion) dPosB_pz,dNegB_pz = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPz_m_fit,fitA_pz,fitB_pz,funcHi2_pz,2,2) # print ('Fitting fordeltaPz_m:') # for i in range(nVion): # print ('i=%2d: fitA_pz = %e (+%e,-%e), fitB_pz = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_pz[i],dPosA_pz[i],dNegA_pz[i], \ # fitB_pz[i],dPosB_pz[i],dNegB_pz[i],funcHi2_pz[i])) # print ('<fitA_pz> = %e +- %e' % (mean(fitA_pz),mean(dNegA_pz))) # print ('<fitB_pz> = %e +- %e' % (mean(fitB_pz),mean(dNegB_pz))) #=================================================== # # There is fitting of deltaPx_m (these values > 0 always) !!! # #=================================================== # rhoInitFit_px = np.zeros((nImpctPrmtr,nVion)) deltaPx_m_fit = np.zeros((nImpctPrmtr,nVion)) funcHi2__px = np.zeros(nVion) fitA_px = np.zeros(nVion) # dimensionless fitB_px = np.zeros(nVion) # dimensionless fitA_px,fitB_px,funcHi2_px,rhoInitFit_px, deltaPx_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaPx_m) dPosA_px = np.zeros(nVion) dNegA_px = np.zeros(nVion) dPosA_px,dNegA_px = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPx_m_fit,fitA_px,fitB_px,funcHi2_px,1,2) dPosB_px = np.zeros(nVion) dNegB_px =
np.zeros(nVion)
numpy.zeros
"""Contains logic for finding targets in blobs.""" import os from pkg_resources import resource_filename import cv2 import numpy as np import os import PIL.Image import sklearn.cluster import scipy.misc import target_finder_model as tfm from .darknet import Yolo3Detector, PreClassifier from .preprocessing import extract_crops, resize_all, extract_contour from .types import Color, Shape, Target, BBox from .color_cube import ColorCube # Default Models w/default weights models = { 'yolo3': Yolo3Detector(), 'clf': PreClassifier() } def set_models(new_models): models.update(new_models) def find_targets(pil_image, **kwargs): """Wrapper for finding targets which accepts a PIL image""" image_ary = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) return find_targets_from_array(image_ary, **kwargs) def find_targets_from_array(image_ary, limit=20): raw_bboxes = _run_models(image_ary) targets = _bboxes_to_targets(raw_bboxes) # Sorting with highest confidence first. targets.sort(key=lambda t: t.confidence, reverse=True) _identify_properties(targets, image_ary) return targets[:limit] def _run_models(image): detector_model = models['yolo3'] clf_model = models['clf'] crops = extract_crops(image, tfm.CROP_SIZE, tfm.CROP_OVERLAP) clf_crops = resize_all(crops, tfm.PRECLF_SIZE) regions = clf_model.classify_all([box.image for box in clf_crops]) filtered_crops = [crops[i] for i, region in enumerate(regions) if region == 'shape_target'] detector_crops = resize_all(filtered_crops, tfm.DETECTOR_SIZE) try: offset_bboxes = detector_model.detect_all([box.image for box in detector_crops]) except IndexError: print('Error processing Darknet output...assuming no shapes detected.') offset_bboxes = [] ratio = tfm.DETECTOR_SIZE[0] / tfm.CROP_SIZE[0] normalized_bboxes = [] for crop, bboxes in zip(detector_crops, offset_bboxes): for name, conf, bbox in bboxes: bw = bbox[2] / ratio bh = bbox[3] / ratio bx = (bbox[0] / ratio) + crop.x1 by = (bbox[1] / ratio) + crop.y1 box = BBox(bx, by, bx + bw, by + bh) box.meta = {name: conf} box.confidence = conf normalized_bboxes.append(box) return normalized_bboxes def _bboxes_to_targets(bboxes): """Produce targets from bounding boxes""" targets = [] merged_bboxes = _merge_boxes(bboxes) for box in merged_bboxes: shape, alpha, conf = _get_shape_and_alpha(box) targets.append(Target(box.x1, box.y1, box.w, box.h, shape=shape, alphanumeric=alpha, confidence=conf)) return targets def _get_shape_and_alpha(box): best_shape, conf_shape = 'unk', 0 best_alpha, conf_alpha = 'unk', 0 for class_name, conf in box.meta.items(): if len(class_name) == 1 and conf > conf_alpha: best_alpha = class_name conf_alpha = conf elif len(class_name) != 1 and conf > conf_shape: best_shape = class_name conf_shape = conf # convert name to object if best_shape == 'unk': shape = Shape.NAS else: shape = Shape[best_shape.upper().replace('-', '_')] return shape, best_alpha, ((conf_shape + conf_alpha) / 2) def _merge_boxes(boxes): merged = [] for box in boxes: for merged_box in merged: if _intersect(box, merged_box): _enlarge(merged_box, box) merged_box.meta.update(box.meta) break else: merged.append(box) return merged def _intersect(box1, box2): # no intersection along x-axis if (box1.x1 > box2.x2 or box2.x1 > box1.x2): return False # no intersection along y-axis if (box1.y1 > box2.y2 or box2.y1 > box1.y2): return False return True def _enlarge(main_box, new_box): main_box.x1 = min(main_box.x1, new_box.x1) main_box.x2 = max(main_box.x2, new_box.x2) main_box.y1 = min(main_box.y1, new_box.y1) main_box.y2 = max(main_box.y2, new_box.y2) def _identify_properties(targets, full_image, padding=15): for target in targets: x = int(target.x) - padding y = int(target.y) - padding w = int(target.width) + padding * 2 h = int(target.height) + padding * 2 blob_image = full_image[y:y + h, x:x + w] img = PIL.Image.fromarray(cv2.cvtColor(blob_image, cv2.COLOR_BGR2RGB)) target.image = img try: target_color, alpha_color = _get_colors(blob_image) target.background_color = target_color target.alphanumeric_color = alpha_color except cv2.error: target.background_color = Color.NONE target.alphanumeric_color = Color.NONE def _get_colors(image): """Find the primary and seconday colors of the the blob""" contour = extract_contour(image) (color_a, count_a), (color_b, count_b) = _find_main_colors(image, contour) # this assumes the shape will have more pixels than alphanum if count_a > count_b: primary, secondary = color_a, color_b else: primary, secondary = color_b, color_a primary_color = _get_color_name(primary) secondary_color = _get_color_name(secondary) return primary_color, secondary_color def _find_main_colors(image, contour): """Find the two main colors of the blob""" mask_img =
np.array(image)
numpy.array
import random as rn import numpy as np import matplotlib.pyplot as plt import math np.seterr(divide='ignore', invalid='ignore') # MINIMIZATION # Initialize random population of parent chormosomes/solutions P def random_population(n_var, n_sol, lb, ub): # n_var = numver of variables # n_sol = number of random solutions # lb = lower bound # ub = upper bound pop = np.zeros((n_sol, n_var)) for i in range(n_sol): pop[i, :] = np.random.uniform(lb, ub) return pop # On each iteration, out of 2 randomly selected parents we create 2 offsprings # by taking fraction of genes from one parent and remaining fraction from other parent def crossover(pop, crossover_rate): offspring = np.zeros((crossover_rate, pop.shape[1])) for i in range(int(crossover_rate/2)): r1 = np.random.randint(0, pop.shape[0]) r2 = np.random.randint(0, pop.shape[0]) while r1 == r2: r1 = np.random.randint(0, pop.shape[0]) r2 = np.random.randint(0, pop.shape[0]) cutting_point = np.random.randint(1, pop.shape[1]) offspring[2*i, 0:cutting_point] = pop[r1, 0:cutting_point] offspring[2*i, cutting_point:] = pop[r2, cutting_point:] offspring[2*i+1, 0:cutting_point] = pop[r2, 0:cutting_point] offspring[2*i+1, cutting_point:] = pop[r1, cutting_point:] return offspring # arr(crossover_size x n_var) # On each iteration, out of 2 randomly selected parents we create 2 offsprings # by excahging some amount of genes/coordinates between parents def mutation(pop, mutation_rate): offspring = np.zeros((mutation_rate, pop.shape[1])) for i in range(int(mutation_rate/2)): r1 = np.random.randint(0, pop.shape[0]) r2 = np.random.randint(0, pop.shape[0]) while r1 == r2: r1 = np.random.randint(0, pop.shape[0]) r2 = np.random.randint(0, pop.shape[0]) # We select only one gene/coordinate per chromosomes/solution for mutation here. # For binary solutions, number of genes for mutation can be arbitrary cutting_point = np.random.randint(0, pop.shape[1]) offspring[2*i] = pop[r1] offspring[2*i, cutting_point] = pop[r2, cutting_point] offspring[2*i+1] = pop[r2] offspring[2*i+1, cutting_point] = pop[r1, cutting_point] return offspring # arr(mutation_size x n_var) # Create some amount of offsprings Q by adding fixed coordinate displacement to some # randomly selected parent's genes/coordinates def local_search(pop, n_sol, step_size): # number of offspring chromosomes generated from the local search offspring = np.zeros((n_sol, pop.shape[1])) for i in range(n_sol): r1 = np.random.randint(0, pop.shape[0]) chromosome = pop[r1, :] r2 = np.random.randint(0, pop.shape[1]) chromosome[r2] += np.random.uniform(-step_size, step_size) if chromosome[r2] < lb[r2]: chromosome[r2] = lb[r2] if chromosome[r2] > ub[r2]: chromosome[r2] = ub[r2] offspring[i, :] = chromosome return offspring # arr(loc_search_size x n_var) # Calculate fitness (obj function) values for each chormosome/solution # Kursawe function - https://en.wikipedia.org/wiki/Test_functions_for_optimization def evaluation(pop): # 2 values for each choromosome/solution fitness_values = np.zeros((pop.shape[0], 2)) for i, x in enumerate(pop): r = x[0] h = x[1] s = np.sqrt((r ** 2) + (h ** 2)) S = np.pi * r * s B = np.pi * (r ** 2) T = B + S fitness_values[i, 0] = S fitness_values[i, 1] = T return fitness_values # arr(pop_size x 2) # Estimate how tightly clumped fitness values are on Pareto front. def crowding_calculation(fitness_values): pop_size = len(fitness_values[:, 0]) # == n of objective functions fitness_value_number = len(fitness_values[0, :]) matrix_for_crowding = np.zeros( (pop_size, fitness_value_number)) # arr(pop_size x 2) normalized_fitness_values = ( fitness_values - fitness_values.min(0))/fitness_values.ptp(0) for i in range(fitness_value_number): crowding_results = np.zeros(pop_size) crowding_results[0] = 1 # extreme point has the max crowding distance # extreme point has the max crowding distance crowding_results[pop_size - 1] = 1 sorted_normalized_fitness_values = np.sort( normalized_fitness_values[:, i]) sorted_normalized_values_index = np.argsort( normalized_fitness_values[:, i]) # crowding distance calculation. Say for fitness1[i], crowding = fitness1[i+1] - fitness1[i-1] crowding_results[1:pop_size - 1] = (sorted_normalized_fitness_values[2:pop_size] - sorted_normalized_fitness_values[0:pop_size - 2]) re_sorting = np.argsort(sorted_normalized_values_index) matrix_for_crowding[:, i] = crowding_results[re_sorting] # on fitness1 - fitness2 plot, each point on pareto front has crowding distance number crowding_distance = np.sum(matrix_for_crowding, axis=1) return crowding_distance # arr(pop_size,) # Crowding distance is used to maintain diversity of solutions on Pareto front. # Remove some amount of solutions that are clumped together to much def remove_using_crowding(fitness_values, number_solutions_needed): pop_index = np.arange(fitness_values.shape[0]) crowding_distance = crowding_calculation(fitness_values) selected_pop_index = np.zeros(number_solutions_needed) selected_fitness_values = np.zeros((number_solutions_needed, len( fitness_values[0, :]))) # arr(num_sol_needed x 2) for i in range(number_solutions_needed): pop_size = pop_index.shape[0] solution_1 = rn.randint(0, pop_size - 1) solution_2 = rn.randint(0, pop_size - 1) if crowding_distance[solution_1] >= crowding_distance[solution_2]: # solution 1 is better than solution 2 selected_pop_index[i] = pop_index[solution_1] selected_fitness_values[i, :] = fitness_values[solution_1, :] pop_index = np.delete(pop_index, (solution_1), axis=0) fitness_values = np.delete(fitness_values, (solution_1), axis=0) crowding_distance = np.delete( crowding_distance, (solution_1), axis=0) else: # solution 2 is better than solution 1 selected_pop_index[i] = pop_index[solution_2] selected_fitness_values[i, :] = fitness_values[solution_2, :] pop_index = np.delete(pop_index, (solution_2), axis=0) fitness_values = np.delete(fitness_values, (solution_2), axis=0) crowding_distance = np.delete( crowding_distance, (solution_2), axis=0) selected_pop_index = np.asarray(selected_pop_index, dtype=int) return selected_pop_index # arr(n_sol_needed,) # find indices of solutions that dominate others def pareto_front_finding(fitness_values, pop_index): pop_size = fitness_values.shape[0] pareto_front = np.ones(pop_size, dtype=bool) # all True initially for i in range(pop_size): for j in range(pop_size): if all(fitness_values[j] <= fitness_values[i]) and any(fitness_values[j] < fitness_values[i]): # i is not in pareto front becouse j dominates i pareto_front[i] = 0 break return pop_index[pareto_front] # arr(len_pareto_front,) # repeat Pareto front selection to build a population within defined size limits def selection(pop, fitness_values, pop_size): pop_index_0 = np.arange(pop.shape[0]) # unselected pop ids pop_index = np.arange(pop.shape[0]) # all pop ids. len = len(pop_size) pareto_front_index = [] while len(pareto_front_index) < pop_size: # pop_size = initial_pop_size if len(pop_index_0) == 0: break new_pareto_front = pareto_front_finding( fitness_values[pop_index_0, :], pop_index_0) total_pareto_size = len(pareto_front_index) + len(new_pareto_front) # check the size of pareto_front, if larger than pop_size then remove some if total_pareto_size > pop_size: number_solutions_needed = pop_size - len(pareto_front_index) selected_solutions = remove_using_crowding( fitness_values[new_pareto_front], number_solutions_needed) new_pareto_front = new_pareto_front[selected_solutions] pareto_front_index = np.hstack((pareto_front_index, new_pareto_front)) remaining_index = set(pop_index) - set(pareto_front_index) pop_index_0 = np.array(list(remaining_index)) selected_pop = pop[pareto_front_index.astype(int)] return selected_pop # arr(pop_size x n_var) def constraint(pop): new_pop = np.copy(pop) delete_index = [] for i, x in enumerate(new_pop): r = x[0] h = x[1] V = (np. pi / 3) * (r ** 2) * h if V < 200: delete_index.append(i) new_pop = np.delete(new_pop, delete_index, 0) return new_pop def delete_duplicate(arr): unique_rows =
np.unique(arr, axis=0)
numpy.unique
import warnings import cv2 import numpy as np from DLBio.rectangles import TopLeftRectangle import config DO_DEBUG_RECTANGLES = False def dice_score(pred, ground_truth): assert pred.min() >= 0. and pred.max() <= 1. assert ground_truth.min() >= 0. and ground_truth.max() <= 1. intersection = (pred * ground_truth).sum() union = (pred + ground_truth).clip(max=1.).sum() union = max(1., union) return {'dice': intersection / union} def phase_min_pixel_values(pred, ground_truth, phase_min): out = {} pred_vals = phase_min[pred > 0].flatten() gt_vals = phase_min[ground_truth > 0].flatten() for perc in [50, 75, 95]: out[f'pred_pxl_{perc}'] = np.percentile(pred_vals, perc) out[f'gt_pxl_{perc}'] = np.percentile(gt_vals, perc) return out def count_hits(pred, ground_truth): assert pred.min() >= 0. and pred.max() <= 1. assert ground_truth.min() >= 0. and ground_truth.max() <= 1. # get rectangles around connected components rect_p = get_rectangle_array(pred) #ground_truth = get_rectangle_array(ground_truth) rect_gt = get_rectangle_array(ground_truth) if rect_gt is None: warnings.warn('No cells found for Ground truth') return None if rect_p is None: warnings.warn('No cells found for Prediction') return None # returns Matrix of shape num_pred x num_gt rect_ious = estimate_rect_iou(rect_p, rect_gt) out = greedy_match(rect_ious, rect_p, rect_gt) return out def greedy_match(rect_ious, pred, gt, match_thres=config.MATCH_THRES): num_predictions = rect_ious.shape[0] num_ground_truths = rect_ious.shape[1] unmatched_pred = list(range(num_predictions)) unnmatched_gt = list(range(num_ground_truths)) # try to find a match for each ground truth cell for i in range(num_ground_truths): if not unnmatched_gt: continue tmp = np.argmax(rect_ious[unmatched_pred, i]) index = unmatched_pred[tmp] if rect_ious[index, i] >= match_thres: unmatched_pred.remove(index) unnmatched_gt.remove(i) # predictions = true_positives + false_positives false_positives = len(unmatched_pred) true_positives = num_predictions - false_positives # ground_truth = true_positives + false_negatives false_negatives = num_ground_truths - true_positives # look which kind of cells are not detected (area-wise...) out = { 'tps': true_positives, 'fps': false_positives, 'fns': false_negatives, 'num_pred_cells': true_positives + false_positives, 'num_gt_cells': true_positives + false_negatives } out.update({ 'precision': true_positives / (true_positives + false_positives), 'recall': true_positives / (true_positives + false_negatives), }) out['precision'] = max(out['precision'], 1e-9) out['recall'] = max(out['recall'], 1e-9) f1_score = 2. * out['precision'] * out['recall'] if f1_score < 1e-9: f1_score = 0. f1_score = f1_score / (out['precision'] + out['recall']) out.update({ 'f1_score': f1_score }) # check areas for different types of detections w_pred = pred[:, cv2.CC_STAT_WIDTH] h_pred = pred[:, cv2.CC_STAT_HEIGHT] w_gt = gt[:, cv2.CC_STAT_WIDTH] h_gt = gt[:, cv2.CC_STAT_HEIGHT] area_all = np.concatenate([w_pred * h_pred, w_gt * h_gt], 0).mean() if len(unmatched_pred) > 0: area_fps = (w_pred[unmatched_pred] * h_pred[unmatched_pred]).mean() else: area_fps = -1. if len(unnmatched_gt) > 0: area_fns = (w_gt[unnmatched_gt] * h_gt[unnmatched_gt]).mean() else: area_fns = -1. out.update( { 'area_all': area_all, 'area_fps': area_fps, 'area_fns': area_fns } ) return out def estimate_rect_iou(pred, ground_truth): X0 = pred[:, cv2.CC_STAT_LEFT] X1 = ground_truth[:, cv2.CC_STAT_LEFT] # left = max(x0, x1) left = _compute_for_all_pairs(X0, X1, lambda x: np.max(x, -1)) Y0 = pred[:, cv2.CC_STAT_TOP] Y1 = ground_truth[:, cv2.CC_STAT_TOP] # top = max(y0, y1) top = _compute_for_all_pairs(Y0, Y1, lambda x: np.max(x, -1)) # right = min(x0 + w0, x1 + w1) W0 = pred[:, cv2.CC_STAT_WIDTH] W1 = ground_truth[:, cv2.CC_STAT_WIDTH] right = _compute_for_all_pairs(X0 + W0, X1 + W1, lambda x: np.min(x, -1)) # bottom = min(y0 + h0, y1 + h1) H0 = pred[:, cv2.CC_STAT_HEIGHT] H1 = ground_truth[:, cv2.CC_STAT_HEIGHT] bottom = _compute_for_all_pairs(Y0 + H0, Y1 + H1, lambda x: np.min(x, -1)) # a = max(right - left, 0) # b = max(bottom - top, 0) A = (right - left).clip(min=0) B = (bottom - top).clip(min=0) # area_intersection = a * b intersection = A * B # union = W0 * H0 + W1 * H1 - intersection union = _compute_for_all_pairs( W0 * H0, W1 * H1, lambda x: x[..., 0] + x[..., 1]) union = union - intersection # make sure to not divide by zero union[union == 0] = 1. rectangle_iou = intersection / union return rectangle_iou def _compute_for_all_pairs(P, Q, func): NP = P.shape[0] NQ = Q.shape[0] P = P.reshape(-1, 1) Q = Q.reshape(1, -1) P = np.repeat(P, NQ, 1) Q =
np.repeat(Q, NP, 0)
numpy.repeat
import pickle from hashlib import md5 from shutil import which from textwrap import dedent import geopandas import numpy as np import pandas as pd import pytest from shapely import wkt from shapely.geometry import Point import swn import swn.modflow from swn.file import gdf_to_shapefile from swn.spatial import force_2d, interp_2d_to_3d, wkt_to_geoseries if __name__ != "__main__": from .conftest import datadir, matplotlib, plt else: from conftest import datadir, matplotlib, plt try: import flopy except ImportError: pytest.skip("skipping tests that require flopy", allow_module_level=True) mfnwt_exe = which("mfnwt") mf2005_exe = which("mf2005") requires_mfnwt = pytest.mark.skipif(not mfnwt_exe, reason="requires mfnwt") requires_mf2005 = pytest.mark.skipif(not mf2005_exe, reason="requires mf2005") if mfnwt_exe is None: mfnwt_exe = "mfnwt" if mf2005_exe is None: mf2005_exe = "mf2005" # same valid network used in test_basic n3d_lines = wkt_to_geoseries([ "LINESTRING Z (60 100 14, 60 80 12)", "LINESTRING Z (40 130 15, 60 100 14)", "LINESTRING Z (70 130 15, 60 100 14)", ]) def get_basic_swn(has_z: bool = True, has_diversions: bool = False): if has_z: n = swn.SurfaceWaterNetwork.from_lines(n3d_lines) else: n = swn.SurfaceWaterNetwork.from_lines(force_2d(n3d_lines)) if has_diversions: diversions = geopandas.GeoDataFrame(geometry=[ Point(58, 97), Point(62, 97), Point(61, 89), Point(59, 89)]) n.set_diversions(diversions=diversions) return n def get_basic_modflow( outdir=".", with_top: bool = False, nper: int = 1, hk=1e-2, rech=1e-4): """Returns a basic Flopy MODFLOW model""" if with_top: top = np.array([ [16.0, 15.0], [15.0, 15.0], [14.0, 14.0], ]) else: top = 15.0 m = flopy.modflow.Modflow( version="mf2005", exe_name=mf2005_exe, model_ws=outdir) flopy.modflow.ModflowDis( m, nlay=1, nrow=3, ncol=2, nper=nper, delr=20.0, delc=20.0, top=top, botm=10.0, xul=30.0, yul=130.0) _ = flopy.modflow.ModflowBas(m, strt=top, stoper=5.0) _ = flopy.modflow.ModflowSip(m) _ = flopy.modflow.ModflowLpf(m, ipakcb=52, laytyp=0, hk=hk) _ = flopy.modflow.ModflowRch(m, ipakcb=52, rech=rech) _ = flopy.modflow.ModflowOc( m, stress_period_data={ (0, 0): ["print head", "save head", "save budget"]}) return m def read_head(hed_fname, reaches=None): """Reads MODFLOW Head file If reaches is not None, it is modified inplace to add a "head" column Returns numpy array """ with flopy.utils.HeadFile(hed_fname) as b: data = b.get_data() if reaches is not None: reaches["head"] = data[reaches["k"], reaches["i"], reaches["j"]] return data def read_budget(bud_fname, text, reaches=None, colname=None): """Reads MODFLOW cell-by-cell file If reaches is not None, it is modified inplace to add data in "colname" Returns numpy array """ with flopy.utils.CellBudgetFile(bud_fname) as b: res = b.get_data(text=text) if len(res) != 1: from warnings import warn warn(f"get_data(text={text!r}) returned more than one array") data = res[0] if reaches is not None: if isinstance(data, np.recarray) and "q" in data.dtype.names: reaches[colname] = data["q"] else: reaches[colname] = data[reaches["k"], reaches["i"], reaches["j"]] return data def read_sfl(sfl_fname, reaches=None): """Reads MODFLOW stream flow listing ASCII file If reaches is not None, it is modified inplace to add new columns Returns DataFrame of stream flow listing file """ sfl = flopy.utils.SfrFile(sfl_fname).get_dataframe() # this index modification is only valid for steady models if sfl.index.name is None: sfl.index += 1 sfl.index.name = "reachID" if "col16" in sfl.columns: sfl.rename(columns={"col16": "gradient"}, inplace=True) dont_copy = ["layer", "row", "column", "segment", "reach", "k", "i", "j"] if reaches is not None: if not (reaches.index == sfl.index).all(): raise IndexError("reaches.index is different") for cn in sfl.columns: if cn == "kstpkper": # split tuple into two columns reaches["kstp"] = sfl[cn].apply(lambda x: x[0]) reaches["kper"] = sfl[cn].apply(lambda x: x[1]) elif cn not in dont_copy: reaches[cn] = sfl[cn] return sfl def test_init_errors(): with pytest.raises(ValueError, match="expected 'logger' to be Logger"): swn.SwnModflow(object()) def test_from_swn_flopy_errors(): n = get_basic_swn() m = flopy.modflow.Modflow(version="mf2005", exe_name=mf2005_exe) _ = flopy.modflow.ModflowDis( m, nlay=1, nrow=3, ncol=2, nper=4, delr=20.0, delc=20.0) with pytest.raises( ValueError, match="swn must be a SurfaceWaterNetwork object"): swn.SwnModflow.from_swn_flopy(object(), m) _ = flopy.modflow.ModflowBas(m) m.modelgrid.set_coord_info(epsg=2193) # n.segments.crs = {"init": "epsg:27200"} # with pytest.raises( # ValueError, # match="CRS for segments and modelgrid are different"): # nm = swn.SwnModflow.from_swn_flopy(n, m) n.segments.crs = None with pytest.raises( ValueError, match="modelgrid extent does not cover segments extent"): swn.SwnModflow.from_swn_flopy(n, m) m.modelgrid.set_coord_info(xoff=30.0, yoff=70.0) with pytest.raises(ValueError, match="ibound_action must be one of"): swn.SwnModflow.from_swn_flopy(n, m, ibound_action="foo") @pytest.mark.parametrize("has_diversions", [False, True], ids=["nodiv", "div"]) def test_new_segment_data(has_diversions): n = get_basic_swn(has_diversions=has_diversions) m = get_basic_modflow() nm = swn.SwnModflow.from_swn_flopy(n, m) assert nm.segment_data is None assert nm.segment_data_ts is None nm.new_segment_data() assert nm.segment_data_ts == {} assert (nm.segment_data.icalc == 0).all() if has_diversions: pd.testing.assert_index_equal( nm.segment_data.index, pd.Int64Index([1, 2, 3, 4, 5, 6, 7], name="nseg")) assert list(nm.segment_data.segnum) == [1, 2, 0, -1, -1, -1, -1] assert list(nm.segment_data.divid) == [0, 0, 0, 0, 1, 2, 3] assert list(nm.segment_data.outseg) == [3, 3, 0, 0, 0, 0, 0] assert list(nm.segment_data.iupseg) == [0, 0, 0, 1, 2, 3, 3] else: pd.testing.assert_index_equal( nm.segment_data.index, pd.Int64Index([1, 2, 3], name="nseg")) assert list(nm.segment_data.segnum) == [1, 2, 0] assert "divid" not in nm.segment_data.columns assert list(nm.segment_data.outseg) == [3, 3, 0] assert list(nm.segment_data.iupseg) == [0, 0, 0] @requires_mf2005 def test_n3d_defaults(tmp_path): n = get_basic_swn() m = get_basic_modflow(tmp_path) nm = swn.SwnModflow.from_swn_flopy(n, m) nm.default_segment_data() nm.set_sfr_obj(ipakcb=52, istcb2=-53) assert m.sfr.ipakcb == 52 assert m.sfr.istcb2 == -53 # Data set 1c assert abs(m.sfr.nstrm) == 7 assert m.sfr.nss == 3 assert m.sfr.const == 86400.0 # Data set 2 # Base-0 assert list(m.sfr.reach_data.node) == [0, 1, 3, 1, 3, 3, 5] assert list(m.sfr.reach_data.k) == [0, 0, 0, 0, 0, 0, 0] assert list(m.sfr.reach_data.i) == [0, 0, 1, 0, 1, 1, 2] assert list(m.sfr.reach_data.j) == [0, 1, 1, 1, 1, 1, 1] # Base-1 assert list(m.sfr.reach_data.reachID) == [1, 2, 3, 4, 5, 6, 7] assert list(m.sfr.reach_data.iseg) == [1, 1, 1, 2, 2, 3, 3] assert list(m.sfr.reach_data.ireach) == [1, 2, 3, 1, 2, 1, 2] np.testing.assert_array_almost_equal( m.sfr.reach_data.rchlen, [18.027756, 6.009252, 12.018504, 21.081851, 10.540926, 10.0, 10.0]) np.testing.assert_array_almost_equal( m.sfr.reach_data.strtop, [14.75, 14.416667, 14.16666667, 14.66666667, 14.16666667, 13.5, 12.5]) np.testing.assert_array_almost_equal( m.sfr.reach_data.slope, [0.027735, 0.027735, 0.027735, 0.031622775, 0.031622775, 0.1, 0.1]) np.testing.assert_array_equal(m.sfr.reach_data.strthick, [1.0] * 7) np.testing.assert_array_equal(m.sfr.reach_data.strhc1, [1.0] * 7) # Data set 6 assert len(m.sfr.segment_data) == 1 sd = m.sfr.segment_data[0] np.testing.assert_array_equal(sd.nseg, [1, 2, 3]) np.testing.assert_array_equal(sd.icalc, [1, 1, 1]) np.testing.assert_array_equal(sd.outseg, [3, 3, 0]) np.testing.assert_array_equal(sd.iupseg, [0, 0, 0]) np.testing.assert_array_equal(sd.iprior, [0, 0, 0]) np.testing.assert_array_almost_equal(sd.flow, [0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(sd.runoff, [0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(sd.etsw, [0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(sd.pptsw, [0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(sd.roughch, [0.024, 0.024, 0.024]) np.testing.assert_array_almost_equal(sd.hcond1, [1.0, 1.0, 1.0]) np.testing.assert_array_almost_equal(sd.thickm1, [1.0, 1.0, 1.0]) np.testing.assert_array_almost_equal(sd.elevup, [14.75, 14.66666667, 13.5]) np.testing.assert_array_almost_equal(sd.width1, [10.0, 10.0, 10.0]) np.testing.assert_array_almost_equal(sd.hcond2, [1.0, 1.0, 1.0]) np.testing.assert_array_almost_equal(sd.thickm2, [1.0, 1.0, 1.0]) np.testing.assert_array_almost_equal( sd.elevdn, [14.16666667, 14.16666667, 12.5]) np.testing.assert_array_almost_equal(sd.width2, [10.0, 10.0, 10.0]) assert repr(nm) == dedent("""\ <SwnModflow: flopy mf2005 'modflowtest' 7 in reaches (reachID): [1, 2, ..., 6, 7] 3 in segment_data (nseg): [1, 2, 3] 3 from segments: [1, 2, 0] 1 stress period with perlen: [1.0] />""") if matplotlib: _ = nm.plot() plt.close() # Run model and read outputs m.model_ws = str(tmp_path) m.write_input() success, buff = m.run_model() assert success heads = read_head(tmp_path / "modflowtest.hds") sl = read_budget(tmp_path / "modflowtest.cbc", "STREAM LEAKAGE", nm.reaches, "sfrleakage") sf = read_budget(tmp_path / "modflowtest.sfr.bin", "STREAMFLOW OUT", nm.reaches, "sfr_Q") # Write some files nm.grid_cells.to_file(tmp_path / "grid_cells.shp") gdf_to_shapefile(nm.reaches, tmp_path / "reaches.shp") gdf_to_shapefile(nm.segments, tmp_path / "segments.shp") # Check results assert heads.shape == (1, 3, 2) np.testing.assert_array_almost_equal( heads, np.array([[ [14.604243, 14.409589], [14.172486, 13.251323], [13.861891, 12.751296]]], np.float32)) np.testing.assert_array_almost_equal( sl["q"], np.array([-0.00859839, 0.00420513, 0.00439326, 0.0, 0.0, -0.12359641, -0.12052996], np.float32)) np.testing.assert_array_almost_equal( sf["q"], np.array([0.00859839, 0.00439326, 0.0, 0.0, 0.0, 0.12359641, 0.24412636], np.float32)) def test_model_property(): nm = swn.SwnModflow() with pytest.raises( ValueError, match="model must be a flopy Modflow object"): nm.model = 0 m = flopy.modflow.Modflow() with pytest.raises(ValueError, match="DIS package required"): nm.model = m _ = flopy.modflow.ModflowDis( m, nlay=1, nrow=3, ncol=2, delr=20.0, delc=20.0, top=15.0, botm=10.0, xul=30.0, yul=130.0, start_datetime="2001-02-03") with pytest.raises(ValueError, match="BAS6 package required"): nm.model = m _ = flopy.modflow.ModflowBas(m, strt=15.0, stoper=5.0) assert not hasattr(nm, "time_index") assert not hasattr(nm, "grid_cells") # Success! nm.model = m pd.testing.assert_index_equal( nm.time_index, pd.DatetimeIndex(["2001-02-03"], dtype="datetime64[ns]")) assert nm.grid_cells.shape == (6, 2) # Swap model with same and with another # same object nm.model = m dis_args = { "nper": 1, "nlay": 1, "nrow": 3, "ncol": 2, "delr": 20.0, "delc": 20.0, "xul": 30.0, "yul": 130.0, "start_datetime": "2001-03-02"} m = flopy.modflow.Modflow() _ = flopy.modflow.ModflowDis(m, **dis_args) _ = flopy.modflow.ModflowBas(m) # this is allowed nm.model = m dis_args_replace = { "nper": 2, "nrow": 4, "ncol": 3, "delr": 30.0, "delc": 40.0, "xul": 20.0, "yul": 120.0} for vn, vr in dis_args_replace.items(): # print(f"{vn}: {vr}") dis_args_use = dis_args.copy() dis_args_use[vn] = vr m = flopy.modflow.Modflow() _ = flopy.modflow.ModflowDis(m, **dis_args_use) _ = flopy.modflow.ModflowBas(m) # this is not allowed with pytest.raises(AttributeError, match="properties are too differe"): nm.model = m def test_time_index(): n = get_basic_swn() m = get_basic_modflow(nper=12) m.dis.start_datetime = "1999-07-01" m.dis.perlen = [31, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31, 30] nm = swn.SwnModflow.from_swn_flopy(n, m) assert nm.time_index.freqstr == "MS" # "month start" or <MonthBegin> assert list(nm.time_index.day) == [1] * 12 assert list(nm.time_index.month) == list((np.arange(12) + 6) % 12 + 1) assert list(nm.time_index.year) == [1999] * 6 + [2000] * 6 def test_set_segment_data_from_scalar(): n = get_basic_swn(has_diversions=True) m = get_basic_modflow(nper=2) nm = swn.SwnModflow.from_swn_flopy(n, m) nm.set_segment_data_from_scalar("icalc", 0) assert list(nm.segment_data.icalc) == [0, 0, 0, 0, 0, 0, 0] nm.set_segment_data_from_scalar("icalc", 1, "segments") assert list(nm.segment_data.icalc) == [1, 1, 1, 0, 0, 0, 0] nm.set_segment_data_from_scalar("icalc", 2, "diversions") assert list(nm.segment_data.icalc) == [1, 1, 1, 2, 2, 2, 2] # check that segment_data_ts item is dropped by this method nm.segment_data_ts["flow"] = 1.2 assert nm.segment_data_ts["flow"] == 1.2 nm.set_segment_data_from_scalar("flow", 2.3) assert "flow" not in nm.segment_data_ts # check errors with pytest.raises(KeyError, match="could not find 'nope'"): nm.set_segment_data_from_scalar("nope", 1.0) with pytest.raises(ValueError, match="data is not scalar"): nm.set_segment_data_from_scalar("flow", [1.0]) with pytest.raises(ValueError, match="'which' should be one of"): nm.set_segment_data_from_scalar("flow", 1.0, "nope") def test_set_segment_data_from_segments(): n = get_basic_swn(has_diversions=True) n.segments["upstream_area"] = n.segments["upstream_length"] ** 2 * 100 n.estimate_width() m = get_basic_modflow(nper=2) nm = swn.SwnModflow.from_swn_flopy(n, m) nm.new_segment_data() assert list(nm.segment_data.icalc) == [0, 0, 0, 0, 0, 0, 0] assert list(nm.segment_data.width1) == [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # scalar -- most other tests are in test_set_segment_data_from_scalar nm.set_segment_data_from_segments("icalc", 1) assert list(nm.segment_data.icalc) == [1, 1, 1, 0, 0, 0, 0] # dict nm.set_segment_data_from_segments("flow", {0: 0.1, 2: 1.2, 1: 2.3}) assert list(nm.segment_data.flow) == [2.3, 1.2, 0.1, 0.0, 0.0, 0.0, 0.0] nm.set_segment_data_from_segments("flow", {}) assert list(nm.segment_data.flow) == [2.3, 1.2, 0.1, 0.0, 0.0, 0.0, 0.0] nm.set_segment_data_from_segments("flow", {0: 4.0}) assert list(nm.segment_data.flow) == [2.3, 1.2, 4.0, 0.0, 0.0, 0.0, 0.0] # errors with pytest.raises(KeyError, match="dict has a disjoint segnum set"): nm.set_segment_data_from_segments("flow", {"1": 0.1}) with pytest.raises(KeyError, match="dict has a disjoint segnum set"): nm.set_segment_data_from_segments("flow", {3: 0.1}) with pytest.raises(KeyError, match="dict has 1 key not found in segnum"): nm.set_segment_data_from_segments("flow", {3: 0.1, 2: 1.2}) # series nm.set_segment_data_from_segments("flow", pd.Series([1.1, 2.2, 3.3])) assert list(nm.segment_data.flow) == [2.2, 3.3, 1.1, 0.0, 0.0, 0.0, 0.0] nm.set_segment_data_from_segments("flow", pd.Series([], dtype=float)) assert list(nm.segment_data.flow) == [2.2, 3.3, 1.1, 0.0, 0.0, 0.0, 0.0] nm.set_segment_data_from_segments("flow", pd.Series([4.0], index=[1])) assert list(nm.segment_data.flow) == [4.0, 3.3, 1.1, 0.0, 0.0, 0.0, 0.0] nm.set_segment_data_from_segments("width1", n.segments.width) np.testing.assert_array_almost_equal( nm.segment_data.width1, [1.766139, 1.721995, 2.292183, 0.0, 0.0, 0.0, 0.0]) # frame assert "runoff" not in nm.segment_data_ts nm.set_segment_data_from_segments( "runoff", pd.DataFrame(index=nm.time_index)) assert "runoff" not in nm.segment_data_ts nm.set_segment_data_from_segments( "runoff", pd.DataFrame({0: [1.1, 2.2]}, index=nm.time_index)) assert list(nm.segment_data.runoff) == [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] pd.testing.assert_frame_equal( nm.segment_data_ts["runoff"], pd.DataFrame({3: [1.1, 2.2]}, index=nm.time_index)) nm.set_segment_data_from_segments( "runoff", pd.DataFrame(index=nm.time_index)) pd.testing.assert_frame_equal( nm.segment_data_ts["runoff"], pd.DataFrame({3: [1.1, 2.2]}, index=nm.time_index)) # check that segment_data_ts item is not dropped by this method nm.set_segment_data_from_segments("runoff", {0: 0.1}) assert "runoff" in nm.segment_data_ts # check errors with pytest.raises(TypeError, match="missing 1 required positional"): nm.set_segment_data_from_segments(1) with pytest.raises(ValueError, match="name must be str typ"): nm.set_segment_data_from_segments(1, 2) @pytest.mark.parametrize( "nper,inflow,expected", [(1, {3: 9.6, 4: 9.7}, {1: 19.3}), (1, {}, {}), (2, {3: 9.6, 4: 9.7}, {1: 19.3}), (2, {}, {}), ]) def test_set_segment_data_inflow(nper, inflow, expected): n = get_basic_swn() n.segments.at[1, "from_segnums"] = {3, 4} m = get_basic_modflow(nper=nper) nm = swn.SwnModflow.from_swn_flopy(n, m) assert "inflow_segnums" not in nm.segments.columns assert nm.segment_data is None nm.set_segment_data_inflow(inflow) if inflow: assert list(nm.segments.inflow_segnums) == [set(), {3, 4}, set()] assert list(nm.segment_data.inflow_segnums) == [{3, 4}, set(), set()] else: assert "inflow_segnums" not in nm.segments.columns assert "inflow_segnums" not in nm.segment_data.columns expected = pd.Series(expected, dtype=float) if hasattr(nm.segment_data_ts, "inflow"): pd.testing.assert_frame_equal( nm.segment_data["inflow"], pd.DataFrame(expected, index=nm.time_index)) else: expected_series = pd.Series( 0.0, index=nm.segment_data.index, name="inflow") expected_series.update(expected) pd.testing.assert_series_equal( nm.segment_data["inflow"], expected_series) if matplotlib: _ = nm.plot() plt.close() @pytest.mark.parametrize( "has_z", [False, True], ids=["n2d", "n3d"]) def test_default_segment_data(has_z): n = get_basic_swn(has_z=has_z) m = get_basic_modflow() nm = swn.SwnModflow.from_swn_flopy(n, m) assert nm.segment_data is None assert nm.segment_data_ts is None nm.default_segment_data() assert nm.segment_data is not None assert nm.segment_data_ts == {} sd = nm.segment_data assert sd.index.name == "nseg" np.testing.assert_array_equal(sd.index, [1, 2, 3]) np.testing.assert_array_equal(sd.icalc, [1, 1, 1]) np.testing.assert_array_equal(sd.outseg, [3, 3, 0]) np.testing.assert_array_equal(sd.iupseg, [0, 0, 0]) np.testing.assert_array_equal(sd.iprior, [0, 0, 0]) np.testing.assert_array_almost_equal(sd.flow, [0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(sd.runoff, [0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(sd.etsw, [0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(sd.pptsw, [0.0, 0.0, 0.0]) np.testing.assert_array_almost_equal(sd.roughch, [0.024, 0.024, 0.024]) np.testing.assert_array_almost_equal(sd.hcond1, [1.0, 1.0, 1.0]) np.testing.assert_array_almost_equal(sd.thickm1, [1.0, 1.0, 1.0]) if has_z: expected_elevup = [14.75, 14.66666667, 13.5] expected_elevdn = [14.16666667, 14.16666667, 12.5] else: expected_elevup = [15.0, 15.0, 15.0] expected_elevdn = [15.0, 15.0, 15.0] np.testing.assert_array_almost_equal(sd.elevup, expected_elevup) np.testing.assert_array_almost_equal(sd.width1, [10.0, 10.0, 10.0]) np.testing.assert_array_almost_equal(sd.hcond2, [1.0, 1.0, 1.0]) np.testing.assert_array_almost_equal(sd.thickm2, [1.0, 1.0, 1.0]) np.testing.assert_array_almost_equal(sd.elevdn, expected_elevdn) np.testing.assert_array_almost_equal(sd.width2, [10.0, 10.0, 10.0]) # auto determine width n.catchments = wkt_to_geoseries([ "POLYGON ((35 100, 75 100, 75 80, 35 80, 35 100))", "POLYGON ((35 135, 60 135, 60 100, 35 100, 35 135))", "POLYGON ((60 135, 75 135, 75 100, 60 100, 60 135))", ]) nm = swn.SwnModflow.from_swn_flopy(n, m) nm.default_segment_data() sd = nm.segment_data np.testing.assert_array_almost_equal( sd.width1, [1.4456947376374667, 1.439700753532406, 1.4615011177787172]) np.testing.assert_array_almost_equal( sd.width2, [1.4456947376374667, 1.439700753532406, 1.4615011177787172]) @requires_mf2005 def test_n3d_vars(tmp_path): # Repeat, but with min_slope enforced, and other options n = get_basic_swn() # manually add outside flow from extra segnums, referenced with inflow n.segments.at[1, "from_segnums"] = {3, 4} m = get_basic_modflow(tmp_path, hk=1.0, rech=0.01) nm = swn.SwnModflow.from_swn_flopy(n, m) nm.set_reach_slope(min_slope=0.03) nm.default_segment_data(hyd_cond1=2, thickness1=2.0) nm.set_segment_data_inflow({3: 9.6, 4: 9.7}) nm.set_segment_data_from_segments("flow", {1: 18.4}) nm.set_segment_data_from_segments("runoff", {1: 5}) nm.set_segment_data_from_segments("pptsw", {2: 1.8}) nm.set_segment_data_from_segments("etsw", {0: 0.01, 1: 0.02, 2: 0.03}) nm.set_sfr_obj(ipakcb=52, istcb2=-53) # Data set 2 np.testing.assert_array_almost_equal( m.sfr.reach_data.rchlen, [18.027756, 6.009252, 12.018504, 21.081851, 10.540926, 10.0, 10.0]) np.testing.assert_array_almost_equal( m.sfr.reach_data.strtop, [14.75, 14.416667, 14.166667, 14.666667, 14.166667, 13.5, 12.5]) np.testing.assert_array_almost_equal( m.sfr.reach_data.slope, [0.03, 0.03, 0.03, 0.031622775, 0.031622775, 0.1, 0.1]) np.testing.assert_array_equal(m.sfr.reach_data.strthick, [2.0] * 7) np.testing.assert_array_equal(m.sfr.reach_data.strhc1, [2.0] * 7) # Data set 6 assert len(m.sfr.segment_data) == 1 sd = m.sfr.segment_data[0]
np.testing.assert_array_equal(sd.nseg, [1, 2, 3])
numpy.testing.assert_array_equal
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
# coding=utf-8 # Copyright 2018 The DisentanglementLib Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example script how to get started with research using disentanglement_lib. To run the example, please change the working directory to the containing folder and run: >> python example.py In this example, we show how to use disentanglement_lib to: 1. Train a standard VAE (already implemented in disentanglement_lib). 2. Train a custom VAE model. 3. Extract the mean representations for both of these models. 4. Compute the Mutual Information Gap (already implemented) for both models. 5. Compute a custom disentanglement metric for both models. 6. Aggregate the results. 7. Print out the final Pandas data frame with the results. """ # We group all the imports at the top. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, argparse, yaml # from disentanglement_lib.evaluation import evaluate from disentanglement_lib.evaluation.metrics import utils from disentanglement_lib.methods.unsupervised import train from disentanglement_lib.methods.unsupervised import vae from disentanglement_lib.postprocessing import postprocess from disentanglement_lib.utils import aggregate_results from disentanglement_lib.evaluation.metrics import factor_vae import tensorflow.compat.v1 as tf import time import pdb import gin.tf import numpy as np import torch from torchvision import models, transforms import sys import random from disentanglement_lib.data.ground_truth import ground_truth_data from disentanglement_lib.data.ground_truth import util from six.moves import range import tensorflow.compat.v1 as tf from torchvision.models import resnet50 import torch.nn as nn from disentanglement_lib.evaluation.metrics import mig, beta_vae, factor_vae, sap_score, dci import h5py # issue https://github.com/google-research/disentanglement_lib/issues/18 for the reference # of customizing the 3dshapes dataset definition SHAPES3D_PATH = os.path.join( os.environ.get("DISENTANGLEMENT_LIB_DATA", "."), "3dshapes", "3dshapes.h5" ) class Shapes3D(ground_truth_data.GroundTruthData): """Shapes3D dataset. The data set was originally introduced in "Disentangling by Factorising". The ground-truth factors of variation are: 0 - floor color (10 different values) 1 - wall color (10 different values) 2 - object color (10 different values) 3 - object size (8 different values) 4 - object type (4 different values) 5 - azimuth (15 different values) """ def __init__(self): # with tf.gfile.GFile(SHAPES3D_PATH, "rb") as f: # # Data was saved originally using python2, so we need to set the encoding. # data = np.load(f, encoding="latin1") # images = data["images"] # labels = data["labels"] # n_samples = np.prod(images.shape[0:6]) with h5py.File(SHAPES3D_PATH, 'r') as dataset: images = dataset['images'][()] labels = dataset['labels'][()] n_samples = images.shape[0] self.images = ( images.reshape([n_samples, 64, 64, 3]).astype(np.float32) / 255.) features = labels.reshape([n_samples, 6]) self.factor_sizes = [10, 10, 10, 8, 4, 15] self.latent_factor_indices = list(range(6)) self.num_total_factors = features.shape[1] self.state_space = util.SplitDiscreteStateSpace(self.factor_sizes, self.latent_factor_indices) self.factor_bases = np.prod(self.factor_sizes) / np.cumprod( self.factor_sizes) @property def num_factors(self): return self.state_space.num_latent_factors @property def factors_num_values(self): return self.factor_sizes @property def observation_shape(self): return [64, 64, 3] def sample_factors(self, num, random_state): """Sample a batch of factors Y.""" return self.state_space.sample_latent_factors(num, random_state) def sample_observations_from_factors(self, factors, random_state): all_factors = self.state_space.sample_all_factors(factors, random_state) indices = np.array(np.dot(all_factors, self.factor_bases), dtype=np.int64) return self.images[indices] ### This part is for ICE-BeeM ###### from models.nets import ConvMLP, FullMLP, SimpleLinear, SimpleEncoder def feature_net(config): if config.model.architecture.lower() == 'convmlp': return ConvMLP(config) elif config.model.architecture.lower() == 'mlp': return FullMLP(config) elif config.model.architecture.lower() == 'unet': return RefineNetDilated(config) elif config.model.architecture == "simple": # follow the default encoder we use for other datasets return SimpleEncoder(config) # @gin.configurable( # "evaluation_new", blacklist=["model_dir", "output_dir", "overwrite"]) def evaluate_disentanglement(model_dir, output_dir, overwrite=False, evaluation_fn=gin.REQUIRED, random_seed=gin.REQUIRED, name="", image_size=64, gamma=0.1, batch_size=64, z_dim=50, tag="", config=None, dataset=None ): """Loads a representation TFHub module and computes disentanglement metrics. Args: model_dir: String with path to directory where the representation function is saved. output_dir: String with the path where the results should be saved. overwrite: Boolean indicating whether to overwrite output directory. evaluation_fn: Function used to evaluate the representation (see metrics/ for examples). random_seed: Integer with random seed used for training. name: Optional string with name of the metric (can be used to name metrics). """ # Delete the output directory if it already exists. if tf.gfile.IsDirectory(output_dir): if overwrite: tf.gfile.DeleteRecursively(output_dir) else: raise ValueError("Directory {} already exists and overwrite is False.".format(output_dir)) # Set up time to keep track of elapsed time in results. experiment_timer = time.time() model_all = feature_net(config) def model_representation(data): data = torch.from_numpy(data) if data.shape[1:] == (64, 64, 1): data = torch.permute(data, (0,3,1,2)) # data = data.repeat([1, 3, 1, 1]) elif data.shape[1:] == (64, 64, 3): data = torch.permute(data, (0,3,1,2)) if torch.cuda.is_available(): data = data.cuda() representation = model(data).squeeze() # import pdb; pdb.set_trace() return representation.detach().cpu().numpy() dataset_name = config.data.dataset if dataset_name.lower() == "dsprites": epoch_to_eval = [30] elif dataset_name.lower() == "smallnorb": epoch_to_eval = [20, 40, 60, 80, 100, 120, 140, 160] elif dataset_name.lower() == "cars3d": epoch_to_eval = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900] elif dataset_name.lower() == "3dshapes": epoch_to_eval = [100] for epoch in epoch_to_eval: print("----- epoch = {} | metric = {} | dataset = {} | trial = {} ------".format(epoch, config.metric, dataset_name, config.trial_name)) checkpoint_path = "run/checkpoints/{}/{}/{}/checkpoint_{}.pth".format(dataset_name, tag, config.trial_name, epoch) print("Load checkpoint from ", checkpoint_path) state_dict = torch.load(checkpoint_path) weights, optimizer = state_dict model_all.load_state_dict(weights) model = model_all.encode # the line comes from disentanglement_lib/evaluation/metrics/factor_vae_test.py # representation_function = lambda x: np.hstack((x,x/2,x)) if config.metric == "factor_vae": scores = factor_vae.compute_factor_vae(dataset, model_representation, np.random.RandomState(0), None, batch_size, 10000, 5000, 10000) elif config.metric == "beta_vae": scores = beta_vae.compute_beta_vae_sklearn(dataset, model_representation, np.random.RandomState(0), None, batch_size, 10000, 5000) elif config.metric == "mig": # may still buggy, raises UserWarning: Clustering metrics expects discrete val \ # ues but received multiclass values for label, and continuous values for target def _identity_discretizer(target, num_bins): del num_bins return target def _histogram_discretize(target, num_bins): """Discretization based on histograms.""" discretized = np.zeros_like(target) for i in range(target.shape[0]): discretized[i, :] = np.digitize(target[i, :], np.histogram( target[i, :], num_bins)[1][:-1]) return discretized # gin_bindings = [ # # "evaluation.evaluation_fn = @mig", # # "evaluation.random_seed = 0", # "mig.num_train=10000", # "discretizer.discretizer_fn = @histogram_discretizer", # "discretizer.num_bins = 20" # ] # if gin_config_files is None: # gin_config_files = [] # if gin_bindings is None: # gin_bindings = [] # gin.parse_config_files_and_bindings(gin_config_files, gin_bindings) gin.bind_parameter("discretizer.discretizer_fn", _histogram_discretize) gin.bind_parameter("discretizer.num_bins", 20) # gin.bind_parameter(gin_bindings) scores = mig.compute_mig(dataset, model_representation, np.random.RandomState(0), None, num_train=10000, batch_size=16) elif config.metric == "sap": scores = sap_score.compute_sap(dataset, model_representation, np.random.RandomState(0), None, num_train=10000, num_test=16, continuous_factors=True) elif config.metric == "dci": scores = dci.compute_dci(dataset, model_representation,
np.random.RandomState(0)
numpy.random.RandomState
from collections import OrderedDict import numpy as np import os from hazel.atmosphere import General_atmosphere from hazel.util import i0_allen from hazel.codes import sir_code from hazel.io import Generic_SIR_file import scipy.interpolate as interp from hazel.exceptions import NumericalErrorSIR from hazel.transforms import transformed_to_physical, jacobian_transformation try: from hazel.forward_nn import Forward except: pass __all__ = ['SIR_atmosphere'] # sir_parameters = OrderedDict.fromkeys('T B thetaB phiB v') class SIR_atmosphere(General_atmosphere): def __init__(self, working_mode, name='', root='', verbose=0): super().__init__('photosphere', name=name) self.ff = 1.0 self.macroturbulence = np.zeros(1) self.working_mode = working_mode self.graphnet_nlte = None self.root = root self.parameters['T'] = None self.parameters['vmic'] = None self.parameters['v'] = None self.parameters['Bx'] = None self.parameters['By'] = None self.parameters['Bz'] = None self.parameters['ff'] = None self.parameters['vmac'] = None self.nodes_location['T'] = None self.nodes_location['vmic'] = None self.nodes_location['v'] = None self.nodes_location['Bx'] = None self.nodes_location['By'] = None self.nodes_location['Bz'] = None self.nodes_location['ff'] = None self.nodes_location['vmac'] = None self.n_nodes['T'] = 0 self.n_nodes['vmic'] = 0 self.n_nodes['v'] = 0 self.n_nodes['Bx'] = 0 self.n_nodes['By'] = 0 self.n_nodes['Bz'] = 0 self.n_nodes['ff'] = 0 self.n_nodes['vmac'] = 0 self.nodes['T'] = 0 self.nodes['vmic'] = 0 self.nodes['v'] = 0 self.nodes['Bx'] = 0 self.nodes['By'] = 0 self.nodes['Bz'] = 0 self.nodes['ff'] = 0 self.nodes['vmac'] = 0 self.rf_analytical = OrderedDict() self.rf_analytical['T'] = None self.rf_analytical['vmic'] = None self.rf_analytical['v'] = None self.rf_analytical['Bx'] = None self.rf_analytical['By'] = None self.rf_analytical['Bz'] = None self.rf_analytical['ff'] = None self.rf_analytical['vmac'] = None self.ranges['T'] = None self.ranges['vmic'] = None self.ranges['v'] = None self.ranges['Bx'] = None self.ranges['By'] = None self.ranges['Bz'] = None self.ranges['ff'] = None self.ranges['vmac'] = None self.cycles['T'] = None self.cycles['vmic'] = None self.cycles['v'] = None self.cycles['Bx'] = None self.cycles['By'] = None self.cycles['Bz'] = None self.cycles['ff'] = None self.cycles['vmac'] = None self.epsilon['T'] = 0.01 self.epsilon['vmic'] = 0.01 self.epsilon['v'] = 0.01 self.epsilon['Bx'] = 0.01 self.epsilon['By'] = 0.01 self.epsilon['Bz'] = 0.01 self.epsilon['ff'] = 0.01 self.epsilon['vmac'] = 0.01 self.regularization['T'] = None self.regularization['vmic'] = None self.regularization['v'] = None self.regularization['Bx'] = None self.regularization['By'] = None self.regularization['Bz'] = None self.regularization['ff'] = None self.regularization['vmac'] = None self.verbose = verbose def list_lines(self): """ List the lines available in SIR for synthesis """ f = open('LINEAS', 'r') lines = f.readlines() f.close() print("Available lines:") for l in lines[:-1]: print(l[:-1]) def add_active_line(self, lines, spectrum, wvl_range, verbose): """ Add an active lines in this atmosphere Parameters ---------- lines : str Line to activate spectrum : Spectrum Spectrum object wvl_range : float Vector containing wavelength range over which to synthesize this line Returns ------- None """ self.lines = lines self.wvl_range_lambda = wvl_range ind_low = (np.abs(spectrum.wavelength_axis - wvl_range[0])).argmin() ind_top = (np.abs(spectrum.wavelength_axis - wvl_range[1])).argmin() self.spectrum = spectrum self.wvl_axis = spectrum.wavelength_axis[ind_low:ind_top+1] self.wvl_range = np.array([ind_low, ind_top+1]) # Check if Ca II 8542 is in the list of lines and instantiate the neural networks if (self.nlte): if 301 in self.lines: if self.graphnet_nlte is None: path = str(__file__).split('/') checkpoint = '/'.join(path[0:-1])+'/data/20211114-131045_best.prd.pth' if (verbose >= 1): self.logger.info(' * Reading NLTE Neural Network') self.graphnet_nlte = Forward(checkpoint=checkpoint, verbose=verbose) def interpolate_nodes(self, log_tau, reference, nodes): """ Generate a model atmosphere by interpolating the defined nodes. The interpolation order depends on the number of nodes. Parameters ---------- log_tau : float Vector of log optical depth at 500 nm reference : float Vector with the reference atmosphere to which the nodes are added nodes : float List with the position of the nodes Returns ------- real Vector with the interpolated atmosphere """ n_nodes = len(nodes) n_depth = len(log_tau) if (n_nodes == 0): return reference, 0 if (n_nodes == 1): return reference + nodes[0], n_depth//2 # if (n_nodes >= 2): # # pos = np.linspace(n_depth-1, 0, n_nodes+2, dtype=int)[1:-1] # pos = np.linspace(n_depth-1, 0, n_nodes, dtype=int) # f = interp.PchipInterpolator(log_tau[pos], nodes, extrapolate=True) # return reference + f(log_tau), pos if (n_nodes == 2): # pos = np.linspace(0, n_depth-1, n_nodes+2, dtype=int)[1:-1] pos = np.linspace(0, n_depth-1, n_nodes, dtype=int) f = interp.interp1d(log_tau[pos], nodes, 'linear', bounds_error=False, fill_value='extrapolate') return reference + f(log_tau), pos if (n_nodes == 3): # pos = np.linspace(0, n_depth-1, n_nodes+2, dtype=int)[1:-1] pos = np.linspace(0, n_depth-1, n_nodes, dtype=int) f = interp.interp1d(log_tau[pos], nodes, 'quadratic', bounds_error=False, fill_value='extrapolate') return reference + f(log_tau), pos if (n_nodes > 3): # pos = np.linspace(n_depth-1, 0, n_nodes+2, dtype=int)[1:-1] pos = np.linspace(n_depth-1, 0, n_nodes, dtype=int) f = interp.PchipInterpolator(log_tau[pos], nodes, extrapolate=True) return reference + f(log_tau), pos def interpolate_nodes_rf(self, log_tau, reference, nodes, lower, upper): """ Generate a model atmosphere by interpolating the defined nodes. The interpolation order depends on the number of nodes. Parameters ---------- log_tau : float Vector of log optical depth at 500 nm reference : float Vector with the reference atmosphere to which the nodes are added nodes : float List with the position of the nodes Returns ------- real Vector with the interpolated atmosphere """ n_nodes = len(nodes) n_depth = len(log_tau) if (n_nodes == 0): return np.zeros(n_depth) if (n_nodes == 1): rf = np.zeros((n_nodes, n_depth)) tmp0 = reference + nodes[0] # Add the Jacobian to each height jacobian = jacobian_transformation(tmp0, lower, upper) rf[0,:] = 1.0 * jacobian return rf if (n_nodes == 2): rf = np.zeros((n_nodes, n_depth)) pos = np.linspace(0, n_depth-1, n_nodes+2, dtype=int)[1:-1] f = interp.interp1d(log_tau[pos], nodes, 'linear', bounds_error=False, fill_value='extrapolate') tmp0 = reference + f(log_tau) jacobian = jacobian_transformation(tmp0, lower, upper) delta = 1e-3 for i in range(n_nodes): tmp_nodes = np.copy(nodes) tmp_nodes[i] += delta f = interp.interp1d(log_tau[pos], tmp_nodes, 'linear', bounds_error=False, fill_value='extrapolate') tmp1 = reference + f(log_tau) rf[i,:] = (tmp1 - tmp0) / delta * jacobian return rf if (n_nodes == 3): rf = np.zeros((n_nodes, n_depth)) pos = np.linspace(0, n_depth-1, n_nodes+2, dtype=int)[1:-1] f = interp.interp1d(log_tau[pos], nodes, 'quadratic', bounds_error=False, fill_value='extrapolate') tmp0 = reference + f(log_tau) jacobian = jacobian_transformation(tmp0, lower, upper) delta = 1e-3 for i in range(n_nodes): tmp_nodes = np.copy(nodes) tmp_nodes[i] += delta f = interp.interp1d(log_tau[pos], tmp_nodes, 'quadratic', bounds_error=False, fill_value='extrapolate') tmp1 = reference + f(log_tau) rf[i,:] = (tmp1 - tmp0) / delta * jacobian return rf if (n_nodes > 3): rf = np.zeros((n_nodes, n_depth)) pos = np.linspace(n_depth-1, 0, n_nodes+2, dtype=int)[1:-1] f = interp.PchipInterpolator(log_tau[pos], nodes, extrapolate=True) tmp0 = reference + f(log_tau) jacobian = jacobian_transformation(tmp0, lower, upper) delta = 1e-3 for i in range(n_nodes): tmp_nodes = np.copy(nodes) tmp_nodes[i] += delta f = interp.PchipInterpolator(log_tau[pos], tmp_nodes, extrapolate=True) tmp1 = reference + f(log_tau) rf[i,:] = (tmp1 - tmp0) / delta * jacobian return rf def load_reference_model(self, model_file, verbose): """ Load a reference model or a model for every pixel for synthesis/inversion Parameters ---------- model_file : str String with the name of the file. Extensions can currently be "1d" or "h5" verbose : bool Verbosity Returns ------- None """ extension = os.path.splitext(model_file)[1][1:] if (extension == '1d'): if (verbose >= 1): self.logger.info(' * Reading 1D model {0} as reference'.format(model_file)) self.model_type = '1d' self.model_filename = model_file if (extension == 'h5'): if (verbose >= 1): self.logger.info(' * Reading 3D model {0} as reference'.format(model_file)) self.model_type = '3d' self.model_handler = Generic_SIR_file(model_file) self.model_handler.open() out, ff, vmac = self.model_handler.read(pixel=0) self.model_handler.close() self.set_parameters(out, ff, vmac) self.t_old = np.zeros_like(self.parameters['T']) self.init_reference(check_borders=True) self.departure = np.ones((2, len(self.lines), len(self.log_tau))) def set_parameters(self, model, ff, vmac): """ Set the parameters of the current model to those passed as argument Parameters ---------- model_in : float Array with the model ff : float Value of the filling factor vmac : float Value of the macroturbulent velocity Returns ------- None """ self.log_tau = model[:,0] self.parameters['T'] = model[:,1] self.parameters['vmic'] = model[:,3] self.parameters['v'] = model[:,4] self.parameters['Bx'] = model[:,5] self.parameters['By'] = model[:,6] self.parameters['Bz'] = model[:,7] if (np.min(model[:,2]) > 0.0): self.Pe = model[:,2] else: self.Pe = -np.ones(len(self.log_tau)) self.Pe[-1] = 1.11634e-1 self.parameters['ff'] = ff self.parameters['vmac'] = vmac # Check that parameters are inside borders by clipping inside the interval with a border of 1e-8 if (self.working_mode == 'inversion'): for k, v in self.parameters.items(): self.parameters[k] = np.clip(v, self.ranges[k][0] + 1e-8, self.ranges[k][1] - 1e-8) def get_parameters(self): """ Get the curent parameters as a model Parameters ---------- None Returns ------- model: a 6xN photspheric model """ model = np.zeros((len(self.log_tau),8)) model[:,0] = self.log_tau model[:,1] = self.parameters['T'] model[:,2] = self.Pe model[:,3] = self.parameters['vmic'] model[:,4] = self.parameters['v'] model[:,5] = self.parameters['Bx'] model[:,6] = self.parameters['By'] model[:,7] = self.parameters['Bz'] return model def nodes_to_model(self): """ Transform from nodes to model Parameters ---------- None Returns ------- None """ for k, v in self.nodes.items(): if (self.n_nodes[k] > 0): self.parameters[k], self.nodes_location[k] = self.interpolate_nodes(self.log_tau, self.reference[k], self.nodes[k]) else: self.parameters[k] = self.reference[k] self.Pe = -np.ones(len(self.log_tau)) self.Pe[-1] = 1.11634e-1 def model_to_nodes(self): """ Transform from model to nodes Parameters ---------- None Returns ------- None """ pass # for k, v in self.parameters.items(): # if (k is not 'log_tau'): # self.interpolate_nodes(self.parameters['log_tau'], self.reference['T'], [1000]) # stop() # for k, v in self.parameters.items(): # if (k is not 'log_tau'): # def print_parameters_old(self, first=False, error=False): # breakpoint() # for k, v in self.nodes.items(): # if (self.n_nodes[k] > 0): # if (k != 'ff'): # lower = self.ranges[k][0] #- self.eps_borders # upper = self.ranges[k][1] #+ self.eps_borders # nodes = transformed_to_physical(v, lower, upper) # self.logger.info('{0} -> {1}'.format(k, nodes)) def print_parameters(self, first=False, error=False): for k, v in self.parameters.items(): if (self.n_nodes[k] > 0): if (k != 'ff'): pars = v[self.nodes_location[k]] self.logger.info('{0} -> {1}'.format(k, pars)) def synthesize(self, stokes_in, returnRF=False, nlte=False): """ Carry out the synthesis and returns the Stokes parameters and the response functions to all physical variables at all depths Parameters ---------- stokes_in : float An array of size [4 x nLambda] with the input Stokes parameter. It is irrelevant in this case because we assume that all SIR atmospheres have the Planck function as boundary. returnRF : bool, optional Return response functions Returns ------- stokes : float Stokes parameters, with the first index containing the wavelength displacement and the remaining containing I, Q, U and V. Size (5,nLambda) rf: float (optional) Response functions to T, Pe, vmic, B, v, theta, phi, all of size (4,nLambda,nDepth), plus the RF to macroturbulence of size (4,nLambda) It is not returned if returnRF=False """ if (self.working_mode == 'inversion'): self.nodes_to_model() self.to_physical() if (returnRF): stokes, cmass, rf, error = sir_code.synthRF(self.index, self.n_lambda, self.log_tau, self.parameters['T'], self.Pe, 1e5*self.parameters['vmic'], 1e5*self.parameters['v'], self.parameters['Bx'], self.parameters['By'], self.parameters['Bz'], self.parameters['vmac']) if (error == 1): raise NumericalErrorSIR() B = np.sqrt(self.parameters['Bx']**2 + self.parameters['By']**2 + self.parameters['Bz']**2) thetaB = np.arccos(self.parameters['Bz'] / B) thetaB[B == 0] = 0.0 phiB = np.arctan2(self.parameters['By'], self.parameters['Bx']) # rfn = np.zeros((150, 73)) # pars = copy.deepcopy(self.parameters) # for pos in range(73): # ind_sto = 0 # self.parameters = copy.deepcopy(pars) # delta = 5e-4*self.parameters['T'][pos] # self.parameters['T'][pos] += delta # stokes2, rf2, error = sir_code.synthRF(self.index, self.n_lambda, self.log_tau, self.parameters['T'], # self.Pe, 1e5*self.parameters['vmic'], 1e5*self.parameters['v'], self.parameters['Bx'], self.parameters['By'], # self.parameters['Bz'], self.parameters['vmac']) # error = 0 # rfn[:, pos] = (stokes2[ind_sto+1,:]-stokes[ind_sto+1,:])/delta # breakpoint() # import matplotlib.pyplot as pl # pl.plot(rfn[:, 40], '-o', label='numerical') self.rf_analytical['T'] = rf[0]+rf[1] #OK self.rf_analytical['vmic'] = 1e5*rf[6] #OK self.rf_analytical['v'] = 1e5*rf[3] #OK # Transform SIR RFs into response functions to Bx, By and Bz. # To this end, we have: # [RF_B ] [dBxdB dBydB dBzdB ][RF_Bx] # [RF_th] = [dBxdthB dBydthB dBzdthB][RF_By] # [RF_ph] [dBxdphB dBydphB dBzdphB][RF_Bz] # and then invert the Jacobian RFB = rf[2] RFt = rf[4] RFp = rf[5] self.rf_analytical['Bx'] = RFB * np.sin(thetaB) * np.cos(phiB) + \ RFt * np.cos(thetaB) * np.cos(phiB) / (B + 1e-6) - \ RFp * np.sin(phiB) / (B * np.sin(thetaB)) self.rf_analytical['By'] = RFB * np.sin(thetaB) * np.sin(phiB) + \ RFt * np.cos(thetaB) * np.sin(phiB) / (B + 1e-6) + \ RFp * np.cos(phiB) / (B * np.sin(thetaB)) self.rf_analytical['Bz'] = RFB * np.cos(thetaB) - RFt * np.sin(thetaB) / (B + 1e-6) self.rf_analytical['vmac'] = rf[7][:, :, None] # pl.plot(self.rf_analytical['T'][ind_sto,:,pos], label='analytical') # pl.legend() # pl.show() # import matplotlib.pyplot as pl # f, ax = pl.subplots(nrows=3, ncols=3, figsize=(10,10)) # ax = ax.flatten() # for i in range(9): # ax[i].plot(np.log(self.rf_analytical['T'][0,i*10,:]), color=f'C{i}') # ax[i].plot(np.log(rfn[i*10,:]), 'o', color=f'C{i}') # pl.show() i0 = i0_allen(np.mean(self.wvl_axis), self.spectrum.mu) for k, v in self.nodes.items(): if (k != 'vmac'): if (self.n_nodes[k] > 0): lower = self.ranges[k][0] upper = self.ranges[k][1] rf = self.interpolate_nodes_rf(self.log_tau, self.reference[k], self.nodes[k], lower, upper) # import matplotlib.pyplot as pl # f, ax = pl.subplots(nrows=3, ncols=3, figsize=(10,10)) # ax = ax.flatten() # for i in range(9): # ax[i].plot(rfn[i*10,:] / self.rf_analytical['T'][0,i*10,:], color=f'C{i}') # ax[i].set_ylim([0,2]) # pl.show() # print(k) # breakpoint() self.rf_analytical[k] = np.einsum('ijk,lk->ijl', self.rf_analytical[k], rf) * i0 return self.parameters['ff'] * stokes[1:,:] * i0, self.rf_analytical, error else: # stokes, error = sir_code.synth(self.index, self.n_lambda, self.log_tau, self.parameters['T'], # self.Pe, 1e5*self.parameters['vmic'], 1e5*self.parameters['v'], self.parameters['Bx'], self.parameters['By'], # self.parameters['Bz'], self.parameters['vmac']) # If we need to put the atmosphere in hydrostatic eq. if (self.working_mode == 'inversion'): self.Pe = sir_code.hydroeq(self.log_tau, self.parameters['T'], self.Pe, 1e5*self.parameters['vmic'], 1e5*self.parameters['v'], self.parameters['Bx'], self.parameters['By'], self.parameters['Bz']) # Check if the line is 8542 and we want NLTE. If that is the case, then evaluate the # neural network to return the departure coefficients if (nlte): if (self.nlte): dif = (self.parameters['T'] - self.t_old) if (
np.max(dif)
numpy.max