prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ Created on Thu Mar 1 13:37:29 2018 Class for implementing the scores for the composition UI and also the display image with all the scores@author: <NAME> """ import cv2 import numpy as np import itertools from scipy.spatial import distance as dist from skimage.measure import compare_ssim as ssim from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import pandas as pd from SaliencyMap import Saliency class AutoScoreML (): def __init__(self, extractedFeatures ): self.df = pd.DataFrame(np.array(extractedFeatures)) def autoScoreML(self): filepath_01 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoringApril30.csv' filepath_02 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoringApril30_B.csv' # ============================================================================= # filepath_03 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_c.csv' # filepath_04 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_d.csv' # filepath_05 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring20apr2018_e.csv' # filepath_06 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_a.csv' # filepath_07 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_b.csv' # filepath_08 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring21apr2018_c.csv' # filepath_09 = 'D:\\google drive\A PhD Project at Godlsmiths\ArtistSupervisionMaya\csv_file\scoring22apr2018_a.csv' # # ============================================================================= df_01 = pd.read_csv(filepath_01) df_02 = pd.read_csv(filepath_02) # ============================================================================= # df_03 = pd.read_csv(filepath_03) # df_04 = pd.read_csv(filepath_04) # df_05 = pd.read_csv(filepath_05) # df_06 = pd.read_csv(filepath_06) # df_07 = pd.read_csv(filepath_07) # df_08 = pd.read_csv(filepath_08) # df_09 = pd.read_csv(filepath_09) # ============================================================================= frames= [df_01, df_02 #,df_03, df_04, df_05, df_06, df_07, df_08, df_09 ] df = pd.concat(frames) df.reset_index(drop = True, inplace = True) # drop the Null Value df.dropna(inplace=True) # select the features to use: df.drop(['file', 'CompositionUserChoice'], axis=1, inplace=True) X_train = df.drop('judge', axis = 1) #y = df['judge'] X_test = self.df from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) # construct the ANN # import the Keras Library and the required packages import keras from keras.models import Sequential from keras.layers import Dense from keras.models import model_from_json import os # load json and create model json_file = open("D:\\google drive\\A PhD Project at Godlsmiths\\ArtistSupervisionProject\\code\\classifier.json", 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("D:\\google drive\\A PhD Project at Godlsmiths\\ArtistSupervisionProject\\code\\classifier.h5") print("Loaded model from disk") # evaluate loaded model on test data loaded_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # ============================================================================= # score = loaded_model.evaluate(X_test, y_test, verbose=0) # print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100)) # ============================================================================= # predict the test set results # ============================================================================= y_pred = loaded_model.predict(X_test) for y in y_pred: res = np.argmax(y) return res class CompositionAnalysis (): def __init__ (self, image = None, imagepath = None, mask = None): if imagepath: self.image = cv2.imread(imagepath) self.imagepath = imagepath else: self.image = image self.totalPixels = self.image.size self.gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY) # ============================================================================= # # def _borderCut(self, borderCutted): # # # borderCutted[0:2, :] = 0 # borderCutted[-2:self.image.shape[0], :] = 0 # borderCutted[:, 0:2] = 0 # borderCutted[:, -2:self.image.shape[1]] = 0 # # return borderCutted # ============================================================================= def synthesisScores (self): # return the display image for the UI rows, cols, depth = self.image.shape scoreSynthesisImg = np.zeros(self.image.shape, dtype="uint8") # make solid color for the background scoreSynthesisImg[:] = (218,218,218) cv2.line(scoreSynthesisImg, ( int(self.image.shape[1] * 0.6), 20), ( int(self.image.shape[1] * 0.6),self.image.shape[0]), (50,50,140), 1) cv2.line(scoreSynthesisImg, ( int(self.image.shape[1] * 0.75), 20), ( int(self.image.shape[1] * 0.75),self.image.shape[0]), (60,140,90), 1) # collect the balance scores: VisualBalanceScore = ( self.scoreVisualBalance + self.scoreHullBalance ) / 2 # corner balance and line lineandcornerBalance = (self.cornersBalance + self.verticalandHorizBalanceMean ) / 2 # collect the rythm scores: #asymmetry = (self.scoreFourier + self.verticalandHorizBalanceMean + self.ssimAsymmetry) / 3 asymmetry = (self.ssimAsymmetry +self.diagonalAsymmetry) / 2 scoreFourier = self.scoreFourier # collect the gold proportion scores: goldScore = self.scoreProportionAreaVsGoldenRatio #score composition scoreCompMax = max(self.diagonalasymmetryBalance, self.ScoreFourTriangleAdapted,self.ScoreBigTriangle) ruleOfThird = self.ScoreRuleOfThird # diagonal balance commposition #diagonalasymmetryBalance = self.diagonalasymmetryBalance # spiral spiralScore = self.scoreSpiralGoldenRatio # fractal fractalScoreFromTarget = self.fractalScoreFromTarget cv2.putText(scoreSynthesisImg, "Balance", (20, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[20:24, 10:int(VisualBalanceScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Rule of Third", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[35:39, 10:int(ruleOfThird*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Composition Max", (20, 45), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[50:54, 10:int(scoreCompMax*cols*0.9)] = (120,60,120) #cv2.putText(scoreSynthesisImg, "Diagonal Comp", (20, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) #scoreSynthesisImg[65:70, 10:int(diagonalasymmetryBalance*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Spiral ", (20, 75), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[80:84, 10:int(spiralScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Asymmetry ", (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[95:99, 10:int(asymmetry*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Fourier ", (20, 105), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[110:114, 10:int(scoreFourier*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "CornerLinesBalance ", (20, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[125:129, 10:int(lineandcornerBalance*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Proportion ", (20, 135), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[140:144, 10:int(goldScore*cols*0.9)] = (120,60,120) cv2.putText(scoreSynthesisImg, "Fractal ", (20, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) scoreSynthesisImg[155:159, 10:int(fractalScoreFromTarget*cols*0.9)] = (120,60,120) #cv2.putText(scoreSynthesisImg, "Balance, asymmetry, Proportion, corner, spiral ", (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) #cv2.putText(scoreSynthesisImg, "Possible Comp: {} ".format(selectedComp), (10, 110), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (50, 50, 50), 1) return scoreSynthesisImg def fourierOnEdgesDisplay (self): ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 10000, edged = False, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) cropped_img_lf = ImgImpRegionA[0:int(ImgImpRegionA.shape[0]), 0: int(ImgImpRegionA.shape[1] / 2) ] cropped_img_rt = ImgImpRegionA[0:int(ImgImpRegionA.shape[0]), int(ImgImpRegionA.shape[1] / 2): ImgImpRegionA.shape[1] ] #imgDftGray = self._returnDFT(ImgImpRegionA) imgDftGraylf = self._returnDFT(cropped_img_lf) imgDftGrayRt = self._returnDFT(cropped_img_rt) # number of pixels in left and number of pixels in right numberOfWhite_lf = (imgDftGraylf>0).sum() numberOfWhite_Rt = (imgDftGrayRt > 0).sum() # create the stiched picture stichedDft = self.image.copy() stichedDft = np.concatenate((imgDftGraylf,imgDftGrayRt ), axis = 1) score = (abs(numberOfWhite_lf - numberOfWhite_Rt)) / (numberOfWhite_lf + numberOfWhite_Rt) # to penalise the change in rithm scoreFourier = np.exp(-score * self.image.shape[0]/2) #cv2.putText(stichedDft, "diff: {:.3f}".format(score), (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0), 1) self.scoreFourier = scoreFourier return stichedDft, scoreFourier def _returnDFT (self, imageForDft): ImgImpRegionA = imageForDft ImgImpRegionA = cv2.cvtColor(ImgImpRegionA, cv2.COLOR_BGR2GRAY) #dft = cv2.dft(np.float32(self.gray),flags = cv2.DFT_COMPLEX_OUTPUT) dft = cv2.dft(np.float32(ImgImpRegionA),flags = cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1])) cv2.normalize( magnitude_spectrum, magnitude_spectrum, alpha = 0 , beta = 1 , norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) imgDftGray = np.array(magnitude_spectrum * 255, dtype = np.uint8) meanThres = np.mean(imgDftGray) _, imgDftGray = cv2.threshold(imgDftGray,meanThres, 255, cv2.THRESH_BINARY) imgDftGray = cv2.cvtColor(imgDftGray, cv2.COLOR_GRAY2BGR) return imgDftGray def HOGcompute (self): gray = self.gray.copy() # h x w in pixels cell_size = (8, 8) # h x w in cells block_size = (2, 2) # number of orientation bins nbins = 9 # Using OpenCV's HOG Descriptor # winSize is the size of the image cropped to a multiple of the cell size hog = cv2.HOGDescriptor(_winSize=(gray.shape[1] // cell_size[1] * cell_size[1], gray.shape[0] // cell_size[0] * cell_size[0]), _blockSize=(block_size[1] * cell_size[1], block_size[0] * cell_size[0]), _blockStride=(cell_size[1], cell_size[0]), _cellSize=(cell_size[1], cell_size[0]), _nbins=nbins) # Create numpy array shape which we use to create hog_feats n_cells = (gray.shape[0] // cell_size[0], gray.shape[1] // cell_size[1]) # We index blocks by rows first. # hog_feats now contains the gradient amplitudes for each direction, # for each cell of its group for each group. Indexing is by rows then columns. hog_feats = hog.compute(gray).reshape(n_cells[1] - block_size[1] + 1, n_cells[0] - block_size[0] + 1, block_size[0], block_size[1], nbins).transpose((1, 0, 2, 3, 4)) # Create our gradients array with nbin dimensions to store gradient orientations gradients = np.zeros((n_cells[0], n_cells[1], nbins)) # Create array of dimensions cell_count = np.full((n_cells[0], n_cells[1], 1), 0, dtype=int) # Block Normalization for off_y in range(block_size[0]): for off_x in range(block_size[1]): gradients[off_y:n_cells[0] - block_size[0] + off_y + 1, off_x:n_cells[1] - block_size[1] + off_x + 1] += \ hog_feats[:, :, off_y, off_x, :] cell_count[off_y:n_cells[0] - block_size[0] + off_y + 1, off_x:n_cells[1] - block_size[1] + off_x + 1] += 1 # Average gradients gradients /= cell_count # ============================================================================= # # Plot HOGs using Matplotlib # # angle is 360 / nbins * direction # print (gradients.shape) # # color_bins = 5 # plt.pcolor(gradients[:, :, color_bins]) # plt.gca().invert_yaxis() # plt.gca().set_aspect('equal', adjustable='box') # plt.colorbar() # plt.show() # cv2.destroyAllWindows() # ============================================================================= return def goldenProportionOnCnts(self, numberOfCnts = 25, method = cv2.RETR_CCOMP, minArea = 2): edgedForProp = self._edgeDetection( scalarFactor = 1, meanShift = 0, edgesdilateOpen = True, kernel = 3) goldenPropImg = self.image.copy() # create the contours from the segmented image ing2, contours, hierarchy = cv2.findContours(edgedForProp, method, cv2.CHAIN_APPROX_SIMPLE) innerCnts = [] for cnt, h in zip (contours, hierarchy[0]): if h[2] == -1 : innerCnts.append(cnt) sortedContours = sorted(innerCnts, key = cv2.contourArea, reverse = True) selectedContours = [cnt for cnt in sortedContours if cv2.contourArea(cnt) > minArea] for cnt in selectedContours[0: numberOfCnts]: cv2.drawContours(goldenPropImg, [cnt], -1, (255, 0, 255), 1) # get all the ratio to check ratioAreas = [] for index, cnt in enumerate(selectedContours[0: numberOfCnts]): if index < len(selectedContours[0: numberOfCnts]) -1: areaGoldenToCheck_previous = cv2.contourArea(selectedContours[index]) areaGoldenToCheck_next = cv2.contourArea(selectedContours[index + 1]) ratioArea = areaGoldenToCheck_previous / areaGoldenToCheck_next ratioAreas.append(ratioArea) meanAreaRatio = (np.mean(ratioAreas)) diffFromGoldenRatio = abs(1.618 - meanAreaRatio) scoreProportionAreaVsGoldenRatio = np.exp(-diffFromGoldenRatio) cv2.putText(goldenPropImg, "GoldPr: {:.3f}".format(scoreProportionAreaVsGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.scoreProportionAreaVsGoldenRatio = scoreProportionAreaVsGoldenRatio return goldenPropImg, scoreProportionAreaVsGoldenRatio def cornerDetectionVisualBalance (self, maxCorners = 40 , minDistance = 6, midlineOnCornersCnt = True): # based on the idea that there is a balance in balanced distribution of corner # the mid axis is the mid of the extremes corners detected corners = cv2.goodFeaturesToTrack(self.gray, maxCorners, 0.01, minDistance ) cornerimg = self.image.copy() cornersOntheLeft = 0 cornersOntheRight = 0 cornersOnTop = 0 cornersOnBottom = 0 # find the limit x and y of the detected corners listX = [corner[0][0] for corner in corners] listY = [corner[0][1] for corner in corners] minX = min(listX) maxX = max (listX) minY = min(listY) maxY = max (listY) for corner in corners: x, y = corner[0] x = int(x) y = int(y) if midlineOnCornersCnt: # find the middle x and middle y midx = minX + int((maxX - minX)/2) midy = minY + int((maxY - minY)/2) pass else: midx = int(self.image.shape[1] / 2) midy = int(self.image.shape[0] / 2) cv2.rectangle(cornerimg,(x-2,y-2),(x+2,y+2),(0,255,0), 1) if x < midx: cornersOntheLeft += 1 if x > midx: cornersOntheRight += 1 if y < midy: cornersOnTop += 1 if y > midy: cornersOnBottom += 1 scoreHorizzontalCorners = np.exp(-(abs(cornersOntheLeft - cornersOntheRight )/(maxCorners/3.14))) scoreVerticalCorners = np.exp(-(abs(cornersOnTop - cornersOnBottom )/(maxCorners/3.14))) cv2.putText(cornerimg, "Corn H: {:.3f} V: {:.3f}".format(scoreHorizzontalCorners, scoreVerticalCorners), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.cornersBalance = (scoreHorizzontalCorners + scoreVerticalCorners) / 2 return cornerimg, scoreHorizzontalCorners, scoreVerticalCorners def goldenSpiralAdaptedDetection (self, displayall = False , displayKeypoints = True, maxKeypoints = 100, edged = True): goldenImgDisplay = self.image.copy() # segmentation with orb and edges ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = maxKeypoints, edged = edged, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL) # find the center zig zag orb silhoutte copyZigZag, ratioGoldenRectangleZigZagOrb , sorted_contoursZigZag, zigzagPerimeterScore= self._zigzagCntsArea() #draw the bounding box c = max(sorted_contoursZigZag, key=cv2.contourArea) x,y,w,h = cv2.boundingRect(c) if x==0 or x+w == self.image.shape[1] or y==0 or y+w == self.image.shape[0]: cv2.rectangle(goldenImgDisplay, (0,0), (self.image.shape[1], self.image.shape[0]), (0,255,0), 1) else: cv2.rectangle(goldenImgDisplay,(x,y),(x+w,y+h),(0,255,0),1) # create the guidelines im, im2,im3, im4 = self._drawGoldenSpiral(drawRectangle=False, drawEllipses = True, x = w, y = h) transX = x transY = y T = np.float32([[1,0,transX], [0,1, transY]]) imTranslated = cv2.warpAffine(im, T, (self.image.shape[1], self.image.shape[0])) T2 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, -self.image.shape[0] + transY + h]]) imTranslated2 = cv2.warpAffine(im2, T2, (self.image.shape[1], self.image.shape[0])) T3 = np.float32([[1,0, transX], [0,1, -self.image.shape[0] + transY + h]]) imTranslated3 = cv2.warpAffine(im3, T3, (self.image.shape[1], self.image.shape[0])) T4 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, transY ]]) imTranslated4 = cv2.warpAffine(im4, T4, (self.image.shape[1], self.image.shape[0])) # bitwise the guidlines for one display img goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2) if displayall: goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4) if displayKeypoints: goldenImgDisplay = cv2.drawKeypoints(goldenImgDisplay, keypoints,goldenImgDisplay, flags = cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS) # dilate the spirals kernel = np.ones((5,5),np.uint8) imTranslated = cv2.dilate(imTranslated,kernel,iterations = 3) imTranslated2 = cv2.dilate(imTranslated2,kernel,iterations = 3) imTranslated3 = cv2.dilate(imTranslated3,kernel,iterations = 3) imTranslated4 = cv2.dilate(imTranslated4,kernel,iterations = 3) # loop to collect the intersection intersection = cv2.bitwise_and(ImgImpRegion,imTranslated) intersection2 = cv2.bitwise_and(ImgImpRegion,imTranslated2) intersection3 = cv2.bitwise_and(ImgImpRegion,imTranslated3) intersection4 = cv2.bitwise_and(ImgImpRegion,imTranslated4) # sum of imgImpRegion sumOfAllPixelInImgImpRegion = (ImgImpRegion>0).sum() # sum of all intersections sum1 = (intersection>0).sum() sum2 = (intersection2>0).sum() sum3 = (intersection3>0).sum() sum4 = (intersection4>0).sum() maxSumIntersection = max(sum1, sum2, sum3, sum4) # calculate the ratio of the max vs whole scoreSpiralGoldenRatio = maxSumIntersection / sumOfAllPixelInImgImpRegion cv2.putText(goldenImgDisplay, "Gold: {:.3f}".format(scoreSpiralGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.scoreSpiralGoldenRatio = scoreSpiralGoldenRatio # ============================================================================= # cv2.imshow('ImgImpRegion', ImgImpRegion) # cv2.imshow('imTranslated', imTranslated) # cv2.imshow('inter', intersection) # cv2.waitKey() # cv2.destroyAllWindows() # ============================================================================= return goldenImgDisplay, scoreSpiralGoldenRatio def goldenSpiralFixDetection (self, displayall = False , displayKeypoints = True, maxKeypoints = 100, edged = True, numberOfCnts = 40, scaleFactor = 0.5, bonus = 10): #goldenImgDisplay = self.image.copy() # segmentation with orb and edges ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = maxKeypoints, edged = edged, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL) # implement the segmentation including the edges edgedImg = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False, kernel = 5) edgedImg = cv2.cvtColor(edgedImg, cv2.COLOR_GRAY2BGR) # give a weight to the edges detection smaller than the orb #edgedImg[np.where((edgedImg ==[255,255,255]).all(axis=2))] = [255,255,255] # implement with inner shape segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 5) segmentationOnInnerCnts[np.where((segmentationOnInnerCnts ==[255,255,255]).all(axis=2))] = [40,40,40] # merge the masks ImgImpRegion = cv2.bitwise_or(ImgImpRegion,edgedImg) ImgImpRegion = cv2.bitwise_or(ImgImpRegion,segmentationOnInnerCnts) goldenImgDisplay = ImgImpRegion.copy() # ============================================================================= # # find the center zig zag orb silhoutte # copyZigZag, ratioGoldenRectangleZigZagOrb , sorted_contoursZigZag, zigzagPerimeterScore= self._zigzagCntsArea() # # #draw the bounding box # c = max(sorted_contoursZigZag, key=cv2.contourArea) # x,y,w,h = cv2.boundingRect(c) # ============================================================================= # set this way to make the boundig box the size of the frame.. for adaptive unmask above and adjust x=0 y=0 w = self.image.shape[1] h = self.image.shape[0] if x==0 or x+w == self.image.shape[1] or y==0 or y+h == self.image.shape[0]: cv2.rectangle(goldenImgDisplay, (0,0), (self.image.shape[1], self.image.shape[0]), (0,255,0), 1) else: cv2.rectangle(goldenImgDisplay,(x,y),(x+w,y+h),(0,255,0),1) # create the guidelines im, im2,im3, im4 = self._drawGoldenSpiral(drawRectangle=False, drawEllipses = True, x = w, y = h) transX = x transY = y T = np.float32([[1,0,transX], [0,1, transY]]) imTranslated = cv2.warpAffine(im, T, (self.image.shape[1], self.image.shape[0])) T2 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, -self.image.shape[0] + transY + h]]) imTranslated2 = cv2.warpAffine(im2, T2, (self.image.shape[1], self.image.shape[0])) T3 = np.float32([[1,0, transX], [0,1, -self.image.shape[0] + transY + h]]) imTranslated3 = cv2.warpAffine(im3, T3, (self.image.shape[1], self.image.shape[0])) T4 = np.float32([[1,0, -self.image.shape[1] + transX + w], [0,1, transY ]]) imTranslated4 = cv2.warpAffine(im4, T4, (self.image.shape[1], self.image.shape[0])) # dilate the spirals kernel = np.ones((5,5),np.uint8) AimTranslated = cv2.dilate(imTranslated,kernel,iterations = 3) AimTranslated2 = cv2.dilate(imTranslated2,kernel,iterations = 3) AimTranslated3 = cv2.dilate(imTranslated3,kernel,iterations = 3) AimTranslated4 = cv2.dilate(imTranslated4,kernel,iterations = 3) # loop to collect the intersection intersection = cv2.bitwise_and(ImgImpRegion,AimTranslated) intersection2 = cv2.bitwise_and(ImgImpRegion,AimTranslated2) intersection3 = cv2.bitwise_and(ImgImpRegion,AimTranslated3) intersection4 = cv2.bitwise_and(ImgImpRegion,AimTranslated4) # sum of imgImpRegion sumOfAllPixelInSilhoutte = (ImgImpRegion > 0).sum() sumofAlledgedandorb = (ImgImpRegion==255).sum() sumofAllInnerCnts = (ImgImpRegion==40).sum() sumOfAllPixelInImgImpRegion = sumofAlledgedandorb + (scaleFactor* sumofAllInnerCnts) # sum of all intersections sum1_orb = (intersection==255).sum() sum2_orb = (intersection2==255).sum() sum3_orb = (intersection3==255).sum() sum4_orb = (intersection4==255).sum() # for the inner shape sum1_inn = (intersection==40).sum() sum2_inn = (intersection2==40).sum() sum3_inn = (intersection3==40).sum() sum4_inn = (intersection4==40).sum() # weight sum1 = sum1_orb * bonus + (scaleFactor * sum1_inn) sum2 = sum2_orb * bonus + (scaleFactor * sum2_inn) sum3 = sum3_orb * bonus + (scaleFactor * sum3_inn) sum4 = sum4_orb * bonus + (scaleFactor * sum4_inn) maxSumIntersection = max(sum1, sum2, sum3, sum4) # calculate the ratio of the max vs whole and weighted with the overall area of te silhoutte compare to the size of the frame scoreSpiralGoldenRatio = maxSumIntersection / sumOfAllPixelInImgImpRegion * (sumOfAllPixelInSilhoutte / self.gray.size) cv2.putText(goldenImgDisplay, "Gold: {:.3f}".format(scoreSpiralGoldenRatio), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.scoreSpiralGoldenRatio = scoreSpiralGoldenRatio # bitwise the guidlines for one display img if displayall == False: if sum1 == max(sum1, sum2, sum3, sum4): goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated) if sum2 == max(sum1, sum2, sum3, sum4): goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2) if sum3 == max(sum1, sum2, sum3, sum4): goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3) if sum4 == max(sum1, sum2, sum3, sum4): goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4) if displayall: goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated2) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated3) goldenImgDisplay = cv2.bitwise_or(goldenImgDisplay, imTranslated4) if displayKeypoints: goldenImgDisplay = cv2.drawKeypoints(goldenImgDisplay, keypoints,goldenImgDisplay, flags = cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS) return goldenImgDisplay, scoreSpiralGoldenRatio def displayandScoreExtremePoints(self, numberOfCnts = 20): blur = cv2.GaussianBlur(self.gray, (5, 5), 0) mean = np.mean(blur) # threshold the image, then perform a series of erosions + # dilations to remove any small regions of noise thresh = cv2.threshold(blur, mean, 255, cv2.THRESH_BINARY)[1] thresh = cv2.erode(thresh, None, iterations=2) thresh = cv2.dilate(thresh, None, iterations=2) # cut the border for more precision thresh[0:2, :] = 0 thresh[-2:self.image.shape[0], :] = 0 thresh[:, 0:2] = 0 thresh[:, -2:self.image.shape[1]] = 0 # find contours in thresholded image, then grab the largest # one cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[1] sorted_contours = sorted(cnts, key=cv2.contourArea, reverse = True) # ============================================================================= # c = max(cnts, key=cv2.contourArea) # # # determine the most extreme points along the contour # extLeft = tuple(c[c[:, :, 0].argmin()][0]) # extRight = tuple(c[c[:, :, 0].argmax()][0]) # extTop = tuple(c[c[:, :, 1].argmin()][0]) # extBot = tuple(c[c[:, :, 1].argmax()][0]) # ============================================================================= extLeftList=[] extRightList = [] extTopList = [] extBotList =[] for c in sorted_contours[0:numberOfCnts]: # determine the most extreme points along the contour extLeft = tuple(c[c[:, :, 0].argmin()][0]) extRight = tuple(c[c[:, :, 0].argmax()][0]) extTop = tuple(c[c[:, :, 1].argmin()][0]) extBot = tuple(c[c[:, :, 1].argmax()][0]) extLeftList.append(extLeft) extRightList.append(extRight) extTopList.append(extTop) extBotList.append(extBot) # sort the list of tuple by x extLeftListSorted = sorted(extLeftList, key=lambda x: x[0]) extRightListSorted = sorted(extRightList, key=lambda x: x[0], reverse = True) extTopListSorted = sorted(extTopList, key=lambda x: x[1]) extBotListSorted = sorted(extBotList, key=lambda x: x[1], reverse = True) extLeft = extLeftListSorted[0] extRight = extRightListSorted[0] extTop = extTopListSorted[0] extBot = extBotListSorted[0] # draw the outline of the object, then draw each of the # extreme points, where the left-most is red, right-most # is green, top-most is blue, and bottom-most is teal image = self.image.copy() for c in sorted_contours[0:numberOfCnts]: cv2.drawContours(image, [c], -1, (0, 255, 255), 2) cv2.circle(image, extLeft, 5, (0, 0, 255), -1) cv2.circle(image, extRight, 5, (0, 255, 0), -1) cv2.circle(image, extTop, 5, (255, 0, 0), -1) cv2.circle(image, extBot, 5, (255, 255, 0), -1) #calculate Manhattan distance from half side point leftHalfSidePoint = (0, int(self.image.shape[0]/2)) rightHalfSidePoint =(self.image.shape[1], int(self.image.shape[0]/2)) topHalfSidePoint = (int(self.image.shape[1] /2), 0) bottomHalfSidePoint = (int(self.image.shape[1] /2), self.image.shape[0]) cv2.circle(image, leftHalfSidePoint, 3, (0, 0, 255), -1) cv2.circle(image, rightHalfSidePoint, 3, (0, 0, 255), -1) cv2.circle(image, topHalfSidePoint, 3, (0, 0, 255), -1) cv2.circle(image, bottomHalfSidePoint, 3, (0, 0, 255), -1) #halfHight = int(self.image.shape[0]/2) dist01 = dist.euclidean(extLeft, leftHalfSidePoint) dist02 = dist.euclidean(extRight, rightHalfSidePoint) #meanDistA = int((dist01 + dist02)/2 ) #scoreA = meanDistA / halfHight #halfwidth = int(self.image.shape[1]/2) dist03 = dist.euclidean(extTop, topHalfSidePoint) dist04 = dist.euclidean(extBot, bottomHalfSidePoint) #meanDistB = int((dist03 + dist04)/2 ) #scoreB = meanDistB / halfwidth #meanScore = (scoreA + scoreB)/2 #scoreMeanDistanceOppositeToHalfSide = np.exp(-meanScore*1.9) # used with mean on negative if extLeft[1] < (self.image.shape[0] / 2): DistExtLeft = - dist01 else: DistExtLeft = dist01 if extRight[1] < (self.image.shape[0] / 2): DistExtRight = - dist02 else: DistExtRight = dist02 if extTop[0] < (self.image.shape[1] / 2): DistExtTop = - dist03 else: DistExtTop = dist03 if extBot[0] < (self.image.shape[1] / 2): DistExtBot = - dist04 else: DistExtBot = dist04 # make the script indipendent from the size of the image if self.image.shape[1]> self.image.shape[0]: ratio = self.image.shape[1] else: ratio = self.image.shape[0] DistExtLeftToHalf = DistExtLeft / ratio DistExtRightToHalf = DistExtRight / ratio DistExtTopToHalf = DistExtTop / ratio DistExtBotToHalf = DistExtBot / ratio # ============================================================================= # if self.image.shape[1]> self.image.shape[0]: # ratio = self.image.shape[1] / self.image.shape[0] # else: # ratio = self.image.shape[0] / self.image.shape[1] # # meanNeg = (DistExtLeft + DistExtRight + DistExtTop + DistExtBot) / 4 # scoreMeanDistanceOppositeToHalfSideadapted = np.exp(-meanNeg / (ratio * 10)) # ============================================================================= #cv2.putText(image, "Epts: {:.3f}".format(scoreMeanDistanceOppositeToHalfSideadapted), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) # ============================================================================= # # self.scoreMeanDistanceOppositeToHalfSide = scoreMeanDistanceOppositeToHalfSideadapted # ============================================================================= # distances from borders: DistLeftBorder = abs(extLeft[0] - 0) DistRightBorder = abs(extRight[0] - self.image.shape[1]) DistTopBorder = abs(extTop[1] - 0) DistBotBorder = abs(extBot[1] - self.image.shape[0]) # make it indipendent from the size of the image by normalised by the lenght of the related side frame DistLeftBorder = DistLeftBorder / (self.image.shape[1]) DistRightBorder = DistRightBorder / (self.image.shape[1]) DistTopBorder = DistTopBorder / (self.image.shape[0]) DistBotBorder = DistBotBorder / (self.image.shape[0]) return image, DistExtLeftToHalf,DistExtRightToHalf,DistExtTopToHalf, DistExtBotToHalf, DistLeftBorder, DistRightBorder, DistTopBorder, DistBotBorder def vertAndHorizLinesBalance (self): edges = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False) lines = cv2.HoughLinesP(edges, 1, np.pi/180, 15, 100, 1) copyImg = self.image.copy() verticalLines = 0 horizontalLines = 0 verticalLinesLeft = 0 verticalLinesRight = 0 horizontalLinesLeft = 0 horizontalLinesRight = 0 allX = [] for line in lines: x1, y1, x2, y2 = line[0] allX.append(x1) allX.append(x2) # only horizzontal counts along the middle detection relevance midX = int((max(allX) - min(allX))/2) + min(allX) for line in lines: x1, y1, x2, y2 = line[0] angle = np.arctan2(y2 - y1, x2-x1) *180 / np.pi # horizzontal lines if angle == 0: cv2.line(copyImg, (x1, y1), (x2, y2), (0,0,255), 1) horizontalLines += 1 if x1 < midX and x2 < midX: horizontalLinesLeft += 1 if x1 > midX and x2 > midX: horizontalLinesRight += 1 # vertical lines if angle == 90 or angle == -90 : cv2.line(copyImg, (x1, y1), (x2, y2), (0,255,0), 1) verticalLines += 1 if x1 < midX and x2 < midX: verticalLinesLeft += 1 if x1 > midX and x2 > midX: verticalLinesRight += 1 diffVerticals = abs(verticalLinesLeft - verticalLinesRight) diffHorizontal = abs(horizontalLinesLeft -horizontalLinesRight ) if verticalLines == 0 or horizontalLines == 0: verticalLinesBalanceScore = 0 horizontalLinesBalanceScore = 0 cv2.putText(copyImg, "Lines V: {:.3f} H: {:.3f}".format(verticalLinesBalanceScore,horizontalLinesBalanceScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.verticalandHorizBalanceMean = (verticalLinesBalanceScore + horizontalLinesBalanceScore) / 2 return copyImg, verticalLinesBalanceScore, horizontalLinesBalanceScore else: verticalLinesBalanceScore = (1 - (diffVerticals/verticalLines)) horizontalLinesBalanceScore = (1 - (diffHorizontal / horizontalLines)) cv2.putText(copyImg, "Lines V: {:.3f} H: {:.3f}".format(verticalLinesBalanceScore,horizontalLinesBalanceScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) self.verticalandHorizBalanceMean = (verticalLinesBalanceScore + horizontalLinesBalanceScore) / 2 return copyImg, verticalLinesBalanceScore, horizontalLinesBalanceScore def numOfTangentandBalance (self): edges = self._edgeDetection(scalarFactor = 1, meanShift = 0, edgesdilateOpen = False) # first template template = np.zeros((16,16), np.uint8) template[7:9,0:16] = 255 template[0:16, 7:9] = 255 # w and h to also use later to draw the rectagles w, h = template.shape[::-1] # rotated template M = cv2.getRotationMatrix2D((w/2,h/2),15,1) template15 = cv2.warpAffine(template,M,(w,h)) template30 = cv2.warpAffine(template15,M,(w,h)) template45 = cv2.warpAffine(template30,M,(w,h)) template60 = cv2.warpAffine(template45,M,(w,h)) template75 = cv2.warpAffine(template60,M,(w,h)) # run the matchtemplate result = cv2.matchTemplate(edges, template, cv2.TM_CCOEFF) result15 = cv2.matchTemplate(edges, template15, cv2.TM_CCOEFF) result30 = cv2.matchTemplate(edges, template30, cv2.TM_CCOEFF) result45 = cv2.matchTemplate(edges, template45, cv2.TM_CCOEFF) result60 = cv2.matchTemplate(edges, template60, cv2.TM_CCOEFF) result75 = cv2.matchTemplate(edges, template75, cv2.TM_CCOEFF) #find the points of match min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) threshold = max_val * 0.96 loc = np.where(result >= threshold) loc90 = np.where(result15 >= threshold) loc180 = np.where(result30 >= threshold) loc270 = np.where(result45 >= threshold) loc180a = np.where(result60 >= threshold) loc270a = np.where(result75 >= threshold) #convert edges for display edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) points = [] for pt in zip (*loc[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc90[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc180[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc270[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc180a[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) for pt in zip (*loc270a[::-1]): cv2.rectangle(edges, pt, (pt[0] + w, pt[1] + h), (255,0,255), 1) points.append(pt) score = np.exp(- len(points) ) # ============================================================================= # leftCount = 0 # rightCount = 0 # for p in points: # if p[0] < self.image.shape[0]: # leftCount += 1 # else: # rightCount += 1 # ============================================================================= cv2.putText(edges, "Cross: {:.3f}".format(score), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) #self.crossDetectionbalance = score return edges , score def numberEdgesConvexCnt (self, minArea = True, numberOfCnts = 8, areascalefactor = 1000 ): HullimgCopy = self.image.copy() gray = cv2.cvtColor(HullimgCopy,cv2.COLOR_BGR2GRAY) meanThresh = np.mean(gray) ret,thresh = cv2.threshold(gray, meanThresh, 255, cv2.THRESH_BINARY) ing2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # cut the border for more precision thresh[0:2, :] = 0 thresh[-2:self.image.shape[0], :] = 0 thresh[:, 0:2] = 0 thresh[:, -2:self.image.shape[1]] = 0 # sort contours by area if minArea == False: sorted_contours = sorted(contours, key=cv2.contourArea, reverse = True) # sorted and selected list of areas in contours if minArea is True if minArea: selected_contours = [] minArea = self.gray.size / areascalefactor for cnt in contours: area = cv2.contourArea(cnt) if area > minArea: selected_contours.append(cnt) sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True) # select only the bigger contours contoursSelection = sorted_contours[0:numberOfCnts] # mask creation blankHull = np.zeros((self.image.shape[0], self.image.shape[1], 3), np.uint8) listofHullsPoints = [] for cnt in contoursSelection: hull = cv2.convexHull(cnt) cv2.drawContours(HullimgCopy, [hull], -1, (0,255,0),1) cv2.drawContours(blankHull, [hull], -1, (255,255,255),-1) for coord in hull: listofHullsPoints.append(coord[0]) # sort the points on the hull by the x coordinates listofHullsPointsSorted = sorted(listofHullsPoints, key=lambda x: x[0]) #extRightListSorted = sorted(extRightList, key=lambda x: x[0], reverse = True) firstPointLeft = (listofHullsPointsSorted[0][0], listofHullsPointsSorted[0][1]) secondtPointLeft = (listofHullsPointsSorted[1][0], listofHullsPointsSorted[1][1]) thirdPointLeft = (listofHullsPointsSorted[2][0], listofHullsPointsSorted[2][1]) firstPointRight = (listofHullsPointsSorted[-1][0], listofHullsPointsSorted[-1][1]) secondtPointRight = (listofHullsPointsSorted[-2][0], listofHullsPointsSorted[-2][1]) thirdPointRight = (listofHullsPointsSorted[-3][0], listofHullsPointsSorted[-3][1]) # draw the point on the image for visualisaton purpose cv2.circle(HullimgCopy, firstPointLeft, 5, (0, 0, 255), -1) cv2.circle(HullimgCopy, secondtPointLeft, 5, (0, 255, 0), -1) cv2.circle(HullimgCopy, thirdPointLeft, 5, (0, 255, 0), -1) cv2.circle(HullimgCopy, firstPointRight, 5, (0, 0, 255), -1) cv2.circle(HullimgCopy, secondtPointRight, 5, (0, 255, 0), -1) cv2.circle(HullimgCopy, thirdPointRight, 5, (0, 255, 0), -1) # we only need the y coordinate since the column will tell the one is come first second and third (we focus on the slope here) # and normalised to the height to make it indipendent from the size of the image firstPointLeftY = firstPointLeft[1] / self.image.shape[0] secondtPointLeftY = secondtPointLeft[1] / self.image.shape[0] thirdPointLeftY = thirdPointLeft[1] / self.image.shape[0] firstPointRightY = firstPointRight[1] / self.image.shape[0] secondtPointRightY = secondtPointRight[1] / self.image.shape[0] thirdPointRightY = thirdPointRight[1] / self.image.shape[0] #left mask and right mask x = self.gray.shape[1] blankHullLeft = blankHull.copy() blankHullRight = blankHull.copy() blankHullLeft[ : , 0: int(x/2)] = 0 blankHullRight[ : , int(x/2): x ] = 0 totalWhiteinHull = (blankHull > 0).sum() totalWhiteinLeft = (blankHullLeft > 0).sum() totalWhiteInRight = (blankHullRight > 0).sum() #calculate the score for negative space balance alpha = 3.14 scoreHullBalance = np.exp(-(abs(totalWhiteinLeft - totalWhiteInRight ) / totalWhiteinHull) * 1.618 * alpha ) self.scoreHullBalance = scoreHullBalance cv2.putText(HullimgCopy, "NegBal: {:.3f}".format(scoreHullBalance), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) return HullimgCopy, scoreHullBalance , firstPointLeftY,secondtPointLeftY,thirdPointLeftY,firstPointRightY,secondtPointRightY,thirdPointRightY def rectangularComposition (self, segmentation = 'ORB'): # calculate the area of the template triangle based on the golden ratio h, w, s = self.image.shape upLeftX = int((w - (w*0.618)) / 2) upLeftY = int((h - (h*0.618)) / 2) baseRightX = upLeftX + int(w* 0.618) baseRightY = upLeftY + int(h * 0.618) # draw the rect mask blankForMasking = np.zeros(self.image.shape, dtype = "uint8") rectangularMask = cv2.rectangle(blankForMasking,(upLeftX,upLeftY),(baseRightX,baseRightY), (255, 255, 255), 2) # segmentation using if segmentation == 'ORB' : ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, ImgImpRegion = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'both': ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR) # create the both mask ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB) # dilate the mask to capture more relevant pixels kernel = np.ones((5,5),np.uint8) rectangularMask = cv2.dilate(rectangularMask,kernel,iterations = 3) # count the total number of segmentation pixel bigger than 0 maskedImage = cv2.bitwise_and(ImgImpRegion, rectangularMask) sumOfrelevantPixels = (maskedImage > 0).sum() totalRelevantPixels = (ImgImpRegion > 0).sum() # ratio of the number counted in and out of the triangle rectCompScore = sumOfrelevantPixels/totalRelevantPixels # draw the image for display cv2.putText(ImgImpRegion, "RectComp: {:.3f}".format(rectCompScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) rectangularMask = cv2.rectangle(ImgImpRegion,(upLeftX,upLeftY),(baseRightX,baseRightY), (255, 255, 255), 2) self.rectCompScore = rectCompScore return ImgImpRegion, rectCompScore def circleComposition (self, segmentation = 'ORB'): # calculate the area of the template triangle based on the golden ratio h, w, s = self.image.shape # draw the ellipse mask blankForMasking = np.zeros(self.image.shape, dtype = "uint8") ellipseMask = cv2.ellipse(blankForMasking, (int(w/2),int(h/2)), (int(w*0.618/2), int(h*0.618/2)),0,0,360,(255, 255, 255), 2) # segmentation using if segmentation == 'ORB' : ImgImpRegion, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, ImgImpRegion = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegion = cv2.cvtColor(ImgImpRegion, cv2.COLOR_GRAY2BGR) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, ImgImpRegion = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'both': ImgImpRegionA, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = True, edgesdilateOpen = True, method = cv2.RETR_EXTERNAL) contours, ImgImpRegionB = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) ImgImpRegionB = cv2.cvtColor(ImgImpRegionB, cv2.COLOR_GRAY2BGR) # create the both mask ImgImpRegion = cv2.bitwise_or(ImgImpRegionA,ImgImpRegionB) # dilate the mask to capture more relevant pixels kernel = np.ones((5,5),np.uint8) ellipseMask = cv2.dilate(ellipseMask,kernel,iterations = 2) # count the total number of segmentation pixel bigger than 0 maskedImage = cv2.bitwise_and(ImgImpRegion, ellipseMask) sumOfrelevantPixels = (maskedImage > 0).sum() totalRelevantPixels = (ImgImpRegion > 0).sum() # ratio of the number counted in and out of the triangle circleCompScore = sumOfrelevantPixels/totalRelevantPixels # draw the image for display cv2.putText(ImgImpRegion, "circleComp: {:.3f}".format(circleCompScore), (20, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1) cv2.ellipse(ImgImpRegion, (int(w/2),int(h/2)), (int(w*0.618/2), int(h*0.618/2)),0,0,360,(255, 255, 255), 2) self.circleCompScore = circleCompScore return ImgImpRegion, circleCompScore def fourTriangleCompositionAdapted(self, segmentation = 'inner', minArea = True, numberOfCnts = 100, areascalefactor = 2000, distanceMethod = 'segment'): FourTriangleImg = self.image.copy() # draw the lines of the diagonal topLeft = (0,0) lowerRight = (self.image.shape[1], self.image.shape[0]) lowerLeft = (0, self.image.shape[0]) topright = (self.image.shape[1],0) #blankFourTriangle = np.array(blankFourTriangle) cv2.line(FourTriangleImg, topright , lowerLeft, (255,255,255), 1) # topright - lowerleft cv2.line(FourTriangleImg, topLeft , lowerRight, (255,0,255), 1) # topleft - lowerright # draw the two perpendicular lines leftIntersectionX, leftIntersectionY = self._find_perpendicular_through_point_to_line(lowerLeft[0], lowerLeft[1],topright[0],topright[1], topLeft[0], topLeft[1] ) cv2.line(FourTriangleImg, topLeft , (int(leftIntersectionX), int(leftIntersectionY) ), (255,255,255), 1) rightIntersectionX, righttIntersectionY = self._find_perpendicular_through_point_to_line(lowerLeft[0], lowerLeft[1],topright[0],topright[1], lowerRight[0], lowerRight[1] ) cv2.line(FourTriangleImg, lowerRight , (int(rightIntersectionX), int(righttIntersectionY) ), (255,255,255), 1) # second leftIntersectionXB, leftIntersectionYB = self._find_perpendicular_through_point_to_line(topLeft[0], topLeft[1],lowerRight[0],lowerRight[1], lowerLeft[0], lowerLeft[1] ) cv2.line(FourTriangleImg, lowerLeft , (int(leftIntersectionXB), int(leftIntersectionYB) ), (255,0,255), 1) rightIntersectionXB, righttIntersectionYB = self._find_perpendicular_through_point_to_line(topLeft[0], topLeft[1],lowerRight[0],lowerRight[1], topright[0], topright[1] ) cv2.line(FourTriangleImg, topright , (int(rightIntersectionXB), int(righttIntersectionYB) ), (255,0,255), 1) # calculate the segmentation if segmentation == 'ORB' : blank, contours, keypoints = self._orbSegmentation ( maxKeypoints = 1000, edged = False, edgesdilateOpen = False, method = cv2.RETR_EXTERNAL) if segmentation == 'saliency': contours, SaliencyMask = self._saliencySegmentation(method = cv2.RETR_EXTERNAL ) # create the segmentations of the images using threshold if segmentation == 'thresh': contours, threshImg = self._thresholdSegmentation(method = cv2.RETR_LIST ) if segmentation == 'inner': segmentationOnInnerCnts, contours = self._innerCntsSegmentation(numberOfCnts = numberOfCnts, method = cv2.RETR_CCOMP, minArea = 2) # sort contours sorted_contours = sorted(contours, key = cv2.contourArea, reverse = True) # sorted and selected list of areas in contours if minArea is True if minArea: selected_contours = [] minArea = self.gray.size / areascalefactor for cnt in sorted_contours[0:numberOfCnts]: area = cv2.contourArea(cnt) if area > minArea: selected_contours.append(cnt) sorted_contours = sorted(selected_contours, key = cv2.contourArea, reverse = True) # select only the bigger contours contoursSelection = sorted_contours[0:numberOfCnts] # find the center of each contours and draw cnts, not using approx contours imageDisplay, listOfCenterPoints = self._findCentreOfMass(image = FourTriangleImg, contours = contoursSelection, approxCnt = False) # calculate the distance from the center points and the rule of third point(as in the paper) # min distance of each center to the 4 points distances_option_1 = [] distances_option_2 = [] if distanceMethod == 'segment': for point in listOfCenterPoints: centerPoint = np.asarray(point) topLeftA = np.asarray((topLeft[0], topLeft[1])) lowerRightA = np.asarray((lowerRight[0], lowerRight[1])) lowerLeftA = np.asarray((lowerLeft[0], lowerLeft[1])) toprightA = np.asarray((topright[0], topright[1])) leftIntersectionPointA =
np.asarray((leftIntersectionX, leftIntersectionY))
numpy.asarray
from __future__ import division, print_function import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.mplot3d import Axes3D import streakline #import streakline2 import myutils import ffwd from streams import load_stream, vcirc_potential, store_progparams, wrap_angles, progenitor_prior #import streams import astropy import astropy.units as u from astropy.constants import G from astropy.table import Table import astropy.coordinates as coord import gala.coordinates as gc import scipy.linalg as la import scipy.interpolate import scipy.optimize import zscale import itertools import copy import pickle # observers # defaults taken as in astropy v2.0 icrs mw_observer = {'z_sun': 27.*u.pc, 'galcen_distance': 8.3*u.kpc, 'roll': 0*u.deg, 'galcen_coord': coord.SkyCoord(ra=266.4051*u.deg, dec=-28.936175*u.deg, frame='icrs')} vsun = {'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} vsun0 = {'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} gc_observer = {'z_sun': 27.*u.pc, 'galcen_distance': 0.1*u.kpc, 'roll': 0*u.deg, 'galcen_coord': coord.SkyCoord(ra=266.4051*u.deg, dec=-28.936175*u.deg, frame='icrs')} vgc = {'vcirc': 0*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} vgc0 = {'vcirc': 0*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} MASK = -9999 pparams_fid = [np.log10(0.5e10)*u.Msun, 0.7*u.kpc, np.log10(6.8e10)*u.Msun, 3*u.kpc, 0.28*u.kpc, 430*u.km/u.s, 30*u.kpc, 1.57*u.rad, 1*u.Unit(1), 1*u.Unit(1), 1*u.Unit(1), 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0*u.deg, 0*u.deg, 0*u.kpc, 0*u.km/u.s, 0*u.mas/u.yr, 0*u.mas/u.yr] #pparams_fid = [0.5e-5*u.Msun, 0.7*u.kpc, 6.8e-5*u.Msun, 3*u.kpc, 0.28*u.kpc, 430*u.km/u.s, 30*u.kpc, 1.57*u.rad, 1*u.Unit(1), 1*u.Unit(1), 1*u.Unit(1), 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0*u.deg, 0*u.deg, 0*u.kpc, 0*u.km/u.s, 0*u.mas/u.yr, 0*u.mas/u.yr] class Stream(): def __init__(self, x0=[]*u.kpc, v0=[]*u.km/u.s, progenitor={'coords': 'galactocentric', 'observer': {}, 'pm_polar': False}, potential='nfw', pparams=[], minit=2e4*u.Msun, mfinal=2e4*u.Msun, rcl=20*u.pc, dr=0.5, dv=2*u.km/u.s, dt=1*u.Myr, age=6*u.Gyr, nstars=600, integrator='lf'): """Initialize """ setup = {} if progenitor['coords']=='galactocentric': setup['x0'] = x0 setup['v0'] = v0 elif (progenitor['coords']=='equatorial') & (len(progenitor['observer'])!=0): if progenitor['pm_polar']: a = v0[1].value phi = v0[2].value v0[1] = a*np.sin(phi)*u.mas/u.yr v0[2] = a*np.cos(phi)*u.mas/u.yr # convert positions xeq = coord.SkyCoord(x0[0], x0[1], x0[2], **progenitor['observer']) xgal = xeq.transform_to(coord.Galactocentric) setup['x0'] = [xgal.x.to(u.kpc), xgal.y.to(u.kpc), xgal.z.to(u.kpc)]*u.kpc # convert velocities setup['v0'] = gc.vhel_to_gal(xeq.icrs, rv=v0[0], pm=v0[1:], **vsun) #setup['v0'] = [v.to(u.km/u.s) for v in vgal]*u.km/u.s else: raise ValueError('Observer position needed!') setup['dr'] = dr setup['dv'] = dv setup['minit'] = minit setup['mfinal'] = mfinal setup['rcl'] = rcl setup['dt'] = dt setup['age'] = age setup['nstars'] = nstars setup['integrator'] = integrator setup['potential'] = potential setup['pparams'] = pparams self.setup = setup self.setup_aux = {} self.fill_intid() self.fill_potid() self.st_params = self.format_input() def fill_intid(self): """Assign integrator ID for a given integrator choice Assumes setup dictionary has an 'integrator' key""" if self.setup['integrator']=='lf': self.setup_aux['iaux'] = 0 elif self.setup['integrator']=='rk': self.setup_aux['iaux'] = 1 def fill_potid(self): """Assign potential ID for a given potential choice Assumes d has a 'potential' key""" if self.setup['potential']=='nfw': self.setup_aux['paux'] = 3 elif self.setup['potential']=='log': self.setup_aux['paux'] = 2 elif self.setup['potential']=='point': self.setup_aux['paux'] = 0 elif self.setup['potential']=='gal': self.setup_aux['paux'] = 4 elif self.setup['potential']=='lmc': self.setup_aux['paux'] = 6 elif self.setup['potential']=='dipole': self.setup_aux['paux'] = 8 elif self.setup['potential']=='quad': self.setup_aux['paux'] = 9 elif self.setup['potential']=='octu': self.setup_aux['paux'] = 10 def format_input(self): """Format input parameters for streakline.stream""" p = [None]*12 # progenitor position p[0] = self.setup['x0'].si.value p[1] = self.setup['v0'].si.value # potential parameters p[2] = [x.si.value for x in self.setup['pparams']] # stream smoothing offsets p[3] = [self.setup['dr'], self.setup['dv'].si.value] # potential and integrator choice p[4] = self.setup_aux['paux'] p[5] = self.setup_aux['iaux'] # number of steps and stream stars p[6] = int(self.setup['age']/self.setup['dt']) p[7] = int(p[6]/self.setup['nstars']) # cluster properties p[8] = self.setup['minit'].si.value p[9] = self.setup['mfinal'].si.value p[10] = self.setup['rcl'].si.value # time step p[11] = self.setup['dt'].si.value return p def generate(self): """Create streakline model for a stream of set parameters""" #xm1, xm2, xm3, xp1, xp2, xp3, vm1, vm2, vm3, vp1, vp2, vp3 = streakline.stream(*p) stream = streakline.stream(*self.st_params) self.leading = {} self.leading['x'] = stream[:3]*u.m self.leading['v'] = stream[6:9]*u.m/u.s self.trailing = {} self.trailing['x'] = stream[3:6]*u.m self.trailing['v'] = stream[9:12]*u.m/u.s def observe(self, mode='cartesian', wangle=0*u.deg, units=[], errors=[], nstars=-1, sequential=False, present=[], logerr=False, observer={'z_sun': 0.*u.pc, 'galcen_distance': 8.3*u.kpc, 'roll': 0*u.deg, 'galcen_ra': 300*u.deg, 'galcen_dec': 20*u.deg}, vobs={'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s}, footprint='none', rotmatrix=None): """Observe the stream stream.obs holds all observations stream.err holds all errors""" x = np.concatenate((self.leading['x'].to(u.kpc).value, self.trailing['x'].to(u.kpc).value), axis=1) * u.kpc v = np.concatenate((self.leading['v'].to(u.km/u.s).value, self.trailing['v'].to(u.km/u.s).value), axis=1) * u.km/u.s if mode=='cartesian': # returns coordinates in following order # x(x, y, z), v(vx, vy, vz) if len(units)<2: units.append(self.trailing['x'].unit) units.append(self.trailing['v'].unit) if len(errors)<2: errors.append(0.2*u.kpc) errors.append(2*u.km/u.s) # positions x = x.to(units[0]) ex = np.ones(np.shape(x))*errors[0] ex = ex.to(units[0]) # velocities v = v.to(units[1]) ev = np.ones(np.shape(v))*errors[1] ev = ev.to(units[1]) self.obs = np.concatenate([x,v]).value self.err = np.concatenate([ex,ev]).value elif mode=='equatorial': # assumes coordinates in the following order: # ra, dec, distance, vrad, mualpha, mudelta if len(units)!=6: units = [u.deg, u.deg, u.kpc, u.km/u.s, u.mas/u.yr, u.mas/u.yr] if len(errors)!=6: errors = [0.2*u.deg, 0.2*u.deg, 0.5*u.kpc, 1*u.km/u.s, 0.2*u.mas/u.yr, 0.2*u.mas/u.yr] # define reference frame xgal = coord.Galactocentric(x, **observer) #frame = coord.Galactocentric(**observer) # convert xeq = xgal.transform_to(coord.ICRS) veq = gc.vgal_to_hel(xeq, v, **vobs) # store coordinates ra, dec, dist = [xeq.ra.to(units[0]).wrap_at(wangle), xeq.dec.to(units[1]), xeq.distance.to(units[2])] vr, mua, mud = [veq[2].to(units[3]), veq[0].to(units[4]), veq[1].to(units[5])] obs = np.hstack([ra, dec, dist, vr, mua, mud]).value obs = np.reshape(obs,(6,-1)) if footprint=='sdss': infoot = dec > -2.5*u.deg obs = obs[:,infoot] if np.allclose(rotmatrix, np.eye(3))!=1: xi, eta = myutils.rotate_angles(obs[0], obs[1], rotmatrix) obs[0] = xi obs[1] = eta self.obs = obs # store errors err = np.ones(np.shape(self.obs)) if logerr: for i in range(6): err[i] *= np.exp(errors[i].to(units[i]).value) else: for i in range(6): err[i] *= errors[i].to(units[i]).value self.err = err self.obsunit = units self.obserror = errors # randomly select nstars from the stream if nstars>-1: if sequential: select = np.linspace(0, np.shape(self.obs)[1], nstars, endpoint=False, dtype=int) else: select = np.random.randint(low=0, high=np.shape(self.obs)[1], size=nstars) self.obs = self.obs[:,select] self.err = self.err[:,select] # include only designated dimensions if len(present)>0: self.obs = self.obs[present] self.err = self.err[present] self.obsunit = [ self.obsunit[x] for x in present ] self.obserror = [ self.obserror[x] for x in present ] def prog_orbit(self): """Generate progenitor orbital history""" orbit = streakline.orbit(self.st_params[0], self.st_params[1], self.st_params[2], self.st_params[4], self.st_params[5], self.st_params[6], self.st_params[11], -1) self.orbit = {} self.orbit['x'] = orbit[:3]*u.m self.orbit['v'] = orbit[3:]*u.m/u.s def project(self, name, N=1000, nbatch=-1): """Project the stream from observed to native coordinates""" poly = np.loadtxt("../data/{0:s}_all.txt".format(name)) self.streak = np.poly1d(poly) self.streak_x = np.linspace(np.min(self.obs[0])-2, np.max(self.obs[0])+2, N) self.streak_y = np.polyval(self.streak, self.streak_x) self.streak_b = np.zeros(N) self.streak_l = np.zeros(N) pdot = np.polyder(poly) for i in range(N): length = scipy.integrate.quad(self._delta_path, self.streak_x[0], self.streak_x[i], args=(pdot,)) self.streak_l[i] = length[0] XB = np.transpose(
np.vstack([self.streak_x, self.streak_y])
numpy.vstack
""" Functions for evaluating model performance. """ # Import the necessary libraries import os import numpy as np import torch from numpy import dot from numpy.linalg import norm from PIL import Image from skimage.metrics import peak_signal_noise_ratio from skimage.metrics import structural_similarity as compare_ssim # Import the necessary source codes from Preprocessing.distort_images import distort_image from Preprocessing.utils import ycbcr2rgb # Initialise the default device DEVICE = torch.device("cuda:3" if torch.cuda.is_available() else "cpu") def metric_values(upsampled_images, metrics): metric_results = [] for i in range(len(upsampled_images)): sub_metric_results = {} for metric in metrics: sub_metric_results[f"{metric.__name__}"] = [] for crop in upsampled_images[i][2]: sub_metric_results[f"{metric.__name__}"].append(metric(upsampled_images[i][0], crop)) metric_results.append(sub_metric_results) return metric_results def cos(v1, v2): v1_1d = v1.ravel() v2_1d = v2.ravel() d = dot(v1_1d, v2_1d) n = norm(v1_1d) * norm(v2_1d) return d / n def evaluate_model(path, model, pixel_mean, pixel_std, SR_FACTOR=3, sigma=1): """ Computes average Peak Signal to Noise Ratio (PSNR) and mean structural similarity index (SSIM) over a set of target images and their super resolved versions. Args: path (string): relative path to directory containing images for evaluation model (PyTorch model): the model to be evaluated pixel_mean (float): mean luminance value to be used for standardization pixel_std (float): std. dev. of luminance value to be used for standardization SR_FACTOR (int): super resolution factor sigma (int): the std. dev. to use for the gaussian blur """ # Store all the training images based on their extension # Add support for images as BMP, JPG, PNG files img_names = [im for im in os.listdir(path) if im[-4:] in {'.bmp' '.jpg', '.png'}] # To store the error values blurred_img_psnrs = [] out_img_psnrs = [] blurred_img_ssims = [] out_img_ssims = [] # Iterate through the images for test_im in img_names: # Generate the distorted image blurred_test_im = distort_image(path=path + test_im, factor=SR_FACTOR, sigma=sigma) imageFile = Image.open(path + test_im) # Convert the image from the RGB to the YCbCr color coding with float data-type to give an enhanced color # contrast im = np.array(imageFile.convert('YCbCr')) # Normalize the images into the standard size of 256 pixels model_input = blurred_test_im[:, :, 0] / 255.0 # As the Mean and Standard Deviation have been pre-computed # Standardize the images by subtracting Mean and Dividing Standard Deviation model_input -= pixel_mean model_input /= pixel_std # Build a Tensor out of the images and set it to the default device im_out_Y = model(torch.tensor(model_input, dtype=torch.float).unsqueeze(0).unsqueeze(0).to(DEVICE)) im_out_Y = im_out_Y.detach().squeeze().squeeze().cpu().numpy().astype(np.float64) im_out_viz = np.zeros((im_out_Y.shape[0], im_out_Y.shape[1], 3)) # Unstandardize the images by Multiplying Standard Deviation and Adding Mean im_out_Y = (im_out_Y * pixel_std) + pixel_mean # Un-normalize the images im_out_Y *= 255.0 im_out_viz[:, :, 0] = im_out_Y im_out_viz[:, :, 1] = im[:, :, 1] im_out_viz[:, :, 2] = im[:, :, 2] im_out_viz[:, :, 0] = np.around(im_out_viz[:, :, 0]) # Compute the Peak Signal to Noise Ratio # Refer to the documentation of the function in the source file blur_psnr = peak_signal_noise_ratio(ycbcr2rgb(im), ycbcr2rgb(blurred_test_im)) sr_psnr = peak_signal_noise_ratio(ycbcr2rgb(im), ycbcr2rgb(im_out_viz)) # Store the results blurred_img_psnrs.append(blur_psnr) out_img_psnrs.append(sr_psnr) # Compute the Structural Similarity Index # Refer to the documentation of the function in the source file blur_ssim = compare_ssim(ycbcr2rgb(im), ycbcr2rgb(blurred_test_im), multichannel=True) sr_ssim = compare_ssim(ycbcr2rgb(im), ycbcr2rgb(im_out_viz), multichannel=True) # Store the results blurred_img_ssims.append(blur_ssim) out_img_ssims.append(sr_ssim) # Compute the mean of the results obtained mean_blur_psnr = np.mean(np.array(blurred_img_psnrs)) mean_sr_psnr = np.mean(
np.array(out_img_psnrs)
numpy.array
''' More factorization code, courtesy of <NAME>. ''' import numpy as np import dataclasses def moments(muhat_row,Sighat_row,muhat_col,Sighat_col,**kwargs): row_m2 = Sighat_row + np.einsum('ij,ik->ijk',muhat_row,muhat_row) col_m2 = Sighat_col + np.einsum('ij,ik->ijk',muhat_col,muhat_col) mn= muhat_row @ muhat_col.T e2 = np.einsum('ajk,bjk -> ab',row_m2,col_m2) vr = e2-mn**2 return row_m2,col_m2,mn,vr def prior_KL(muhat,Sighat,mu,Sig): df = muhat - mu[None,:] m2 = Sighat + np.einsum('ij,ik->ijk',df,df) mahaltr = np.sum(np.linalg.inv(Sig)[None,:,:]*m2) nobs = np.prod(muhat.shape) sigdet_prior = muhat.shape[0]*
np.linalg.slogdet(Sig)
numpy.linalg.slogdet
from __future__ import print_function, absolute_import, division import sys import zmq import numpy as np if sys.version_info > (3,): buffer = memoryview def recvMatrix(socket): """ Receive a numpy array over zmq :param socket: (zmq socket) :return: (Numpy matrix) """ metadata = socket.recv_json() msg = socket.recv(copy=True, track=False) A = np.frombuffer(buffer(msg), dtype=metadata['dtype']) return A.reshape(metadata['shape']) def sendMatrix(socket, mat): """ Send a numpy mat with metadata over zmq :param socket: :param mat: (numpy matrix) """ metadata = dict( dtype=str(mat.dtype), shape=mat.shape, ) # SNDMORE flag specifies this is a multi-part message socket.send_json(metadata, flags=zmq.SNDMORE) return socket.send(mat, flags=0, copy=True, track=False) def getActions(delta_pos, n_actions): """ Get list of possible actions :param delta_pos: (float) :param n_actions: (int) :return: (numpy matrix) """ possible_deltas = [i * delta_pos for i in range(-1, 2)] actions = [] for dx in possible_deltas: for dy in possible_deltas: for dz in possible_deltas: if dx == 0 and dy == 0 and dz == 0: continue # Allow only move in one direction if abs(dx) + abs(dy) + abs(dz) > delta_pos: continue actions.append([dx, dy, dz]) assert len(actions) == n_actions, "Wrong number of actions: {}".format(len(actions)) return
np.array(actions)
numpy.array
import pandas as pd import numpy as np import cv2, utils import random import copy import threading import itertools import numpy.random as npr pos_max_overlaps = 0.7 neg_min_overlaps = 0.3 batchsize = 256 fraction = 0.5 RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Give the positive RPN examples weight of p * 1 / {num positives} # and give negatives a weight of (1 - p) # Set to -1.0 to use uniform example weighting RPN_POSITIVE_WEIGHT = -1.0 img_channel_mean = [103.939, 116.779, 123.68] img_scaling_factor = 1.0 def _generate_all_bbox(feat_h, feat_w, feat_stride = 16, num_anchors = 9): # Create lattice (base points to shift anchors) shift_x = np.arange(0, feat_w) * feat_stride shift_y = np.arange(0, feat_h) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),shift_x.ravel(), shift_y.ravel())).transpose() # Create all bbox A = num_anchors K = len(shifts) # number of base points = feat_h * feat_w anchors = utils.anchor() bbox = anchors.reshape(1, A, 4) + shifts.reshape(K, 1, 4) bbox = bbox.reshape(K * A, 4) return bbox def get_img_by_name(df,ind,size=(640,300)): file_name = df['File_Path'][ind] #print(file_name) img = cv2.imread(file_name) img_size = np.shape(img) img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) img = cv2.resize(img,size) name_str = file_name.split('/') name_str = name_str[-1] #print(name_str) #print(file_name) bb_boxes = df[df['Frame'] == name_str].reset_index() img_size_post = np.shape(img) #TODO,(add data augment support) bb_boxes['xmin'] = np.round(bb_boxes['xmin']/img_size[1]*img_size_post[1]) bb_boxes['xmax'] = np.round(bb_boxes['xmax']/img_size[1]*img_size_post[1]) bb_boxes['ymin'] = np.round(bb_boxes['ymin']/img_size[0]*img_size_post[0]) bb_boxes['ymax'] = np.round(bb_boxes['ymax']/img_size[0]*img_size_post[0]) bb_boxes['Area'] = (bb_boxes['xmax']- bb_boxes['xmin'])*(bb_boxes['ymax']- bb_boxes['ymin']) #bb_boxes = bb_boxes[bb_boxes['Area']>400] return name_str,img,bb_boxes def batch_generate(data, batch_size = 1): while 1: for i_batch in range(batch_size): i_line = np.random.randint(len(data)) name_str, img, bb_boxes = get_img_by_name(data, i_line, size = (960, 640)) #print(name_str) #TODO #create anchor based groundtruth here(target bbox(1,40,60,9) & target regression(1,40,60,36)) gta = np.zeros((len(bb_boxes), 4)) #print(gta.shape) #bbox groundtruth before bbox_encode for i in range(len(bb_boxes)): gta[i, 0] = int(bb_boxes.iloc[i]['xmin']) gta[i, 1] = int(bb_boxes.iloc[i]['ymin']) gta[i, 2] = int(bb_boxes.iloc[i]['xmax']) gta[i, 3] = int(bb_boxes.iloc[i]['ymax']) #print(gta) x_img = img.astype(np.float32) x_img[:, :, 0] -= img_channel_mean[0] x_img[:, :, 1] -= img_channel_mean[1] x_img[:, :, 2] -= img_channel_mean[2] x_img /= img_scaling_factor x_img = np.expand_dims(x_img, axis=0) #label generate( regression target & postive/negative samples) y_rpn_cls,y_rpn_regr = label_generate(img, gta) #y_rpn_cls,y_rpn_regr = utils.calc_rpn(bb_boxes, gta) #print(y_rpn_cls) #print(y_rpn_regr.shape) yield x_img, [np.copy(y_rpn_cls), np.copy(y_rpn_regr)], gta #TODO #fast version(inprogress) def label_generate(img, gta): #inti base matrix (output_width, output_height) = (60, 40) num_anchors = 9 #40,60,9 #40,60,9,4 y_rpn_overlap = np.zeros((output_height, output_width, num_anchors)) y_is_box_valid = np.zeros((output_height, output_width, num_anchors)) y_rpn_regr = np.zeros((output_height * output_width * num_anchors , 4)) #anchor box generate(generate anchors in each shifts box) anchor_box = _generate_all_bbox(output_width, output_height) total_anchors = anchor_box.shape[0] #print('the shape of anchor_box', np.asarray(anchor_box).shape) #print('the total number os anchors',total_anchors) #Only inside anchors are valid _allowed_border = 0 im_info = img.shape[:2] inds_inside = np.where( (anchor_box[:, 0] >= -_allowed_border) & (anchor_box[:, 1] >= -_allowed_border) & (anchor_box[:, 2] < im_info[1] + _allowed_border) & # width (anchor_box[:, 3] < im_info[0] + _allowed_border) # height )[0] #print('inside anchor index',inds_inside) #print('number of valid anchors',len(inds_inside)) valid_anchors = anchor_box[inds_inside, :] #print('valid_anchors display',valid_anchors) #print('shape of valid_anchors',np.asarray(valid_anchors).shape) y_rpn_regr[inds_inside] = anchor_box[inds_inside, :] #print('rpn overlap display', y_rpn_regr) #print('shape of rpn overlap',np.asarray(y_rpn_regr).shape) #print('rpn overlap[inds_inside] display', y_rpn_regr[inds_inside]) #print('shape of inds_inside rpn overlaps',np.asarray(y_rpn_regr[inds_inside]).shape) #calculate iou(overlaps) #print('y_rpn_overlap') overlaps = utils.bbox_overlaps(np.ascontiguousarray(y_rpn_regr, dtype=np.float),np.ascontiguousarray(gta, dtype=np.float)) argmax_overlaps = overlaps.argmax(axis=1) max_overlaps = np.zeros((output_height * output_width * num_anchors)) max_overlaps[inds_inside] = overlaps[np.arange(len(inds_inside)), argmax_overlaps[inds_inside]] gt_argmax_overlaps = overlaps.argmax(axis=0) gt_max_overlaps = overlaps[gt_argmax_overlaps,np.arange(overlaps.shape[1])] gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0] #print('overlaps display',overlaps) #print('shape of overlaps', np.asarray(overlaps).shape) #print('argmax_overlaps', argmax_overlaps) #print('shape of argmax_overlaps',argmax_overlaps.shape) #print('max overlaps display', max_overlaps) #print('total number of max overlaps', len(max_overlaps)) #print('shape of max overlaps', max_overlaps.shape) #print('gt_max_overlaps display', gt_max_overlaps) #print('total number of gt_max_overlaps', len(gt_max_overlaps)) #print('gt_argmax_overlaps', gt_argmax_overlaps) #print('number of gt_argmax_overlaps', len(gt_argmax_overlaps)) #y_rpn_overlap, y_is_box_valid y_rpn_overlap = y_rpn_overlap.reshape(output_height * output_width * num_anchors) y_is_box_valid = y_is_box_valid.reshape(output_height * output_width * num_anchors) #negative #print('shape of y_rpn_overlap', y_rpn_overlap.shape) #print('shape of y_is_box_valid',y_is_box_valid.shape) y_rpn_overlap[max_overlaps < neg_min_overlaps] = 0 y_is_box_valid[inds_inside] = 1 #y_is_box_valid[max_overlaps < neg_min_overlaps] = 1#not good way to set all box as valid, because we also have outside box here #neutral #np.logical_and y_rpn_overlap[np.logical_and(neg_min_overlaps < max_overlaps, max_overlaps < pos_max_overlaps)] = 0 y_is_box_valid[np.logical_and(neg_min_overlaps < max_overlaps, max_overlaps < pos_max_overlaps)] = 0 #y_rpn_overlap[neg_min_overlaps < max_overlaps and max_overlaps < pos_max_overlaps] = 0 #y_is_box_valid[neg_min_overlaps < max_overlaps and max_overlaps < pos_max_overlaps] = 0 #positive y_rpn_overlap[gt_argmax_overlaps] = 1 y_is_box_valid[gt_argmax_overlaps] = 1 y_rpn_overlap[max_overlaps >= pos_max_overlaps] = 1 y_is_box_valid[max_overlaps >= pos_max_overlaps] = 1 # subsample positive labels if we have too many num_fg = int(fraction * batchsize) #print('balanced fg',num_fg) disable_inds = [] fg_inds = np.where(
np.logical_and(y_rpn_overlap == 1, y_is_box_valid == 1)
numpy.logical_and
import numpy as np from astropy.io import fits from astropy.table import Table, vstack from astropy.wcs import WCS import os import argparse import logging, traceback import time import pandas as pd from copy import copy, deepcopy from config import solid_angle_dpi_fname, rt_dir from sqlite_funcs import get_conn, make_timeIDs from wcs_funcs import world2val from event2dpi_funcs import det2dpis, mask_detxy from models import Bkg_Model_wFlatA, CompoundModel,\ im_dist, Point_Source_Model_Binned_Rates, Source_Model_InOutFoV from flux_models import Plaw_Flux, Cutoff_Plaw_Flux from gti_funcs import add_bti2gti, bti2gti, gti2bti, union_gtis from ray_trace_funcs import RayTraces from coord_conv_funcs import convert_radec2imxy, convert_imxy2radec, imxy2theta_phi, theta_phi2imxy from LLH import LLH_webins from minimizers import NLLH_ScipyMinimize_Wjacob, NLLH_ScipyMinimize from do_llh_inFoV4realtime2 import do_scan_around_peak, find_peaks2scan, parse_bkg_csv def cli(): parser = argparse.ArgumentParser() parser.add_argument('--evfname', type=str,\ help="Event data file", default='filter_evdata.fits') parser.add_argument('--dmask', type=str,\ help="Detmask fname", default='detmask.fits') parser.add_argument('--job_id', type=int,\ help="ID to tell it what seeds to do",\ default=-1) parser.add_argument('--Njobs', type=int,\ help="Total number of jobs submitted",\ default=64) parser.add_argument('--Ntrials', type=int,\ help="Number of trials to run",\ default=8) parser.add_argument('--Afact', type=float,\ help="A factor to use",\ default=1.0) parser.add_argument('--theta', type=float,\ help="Theta to sim at",\ default=0.0) parser.add_argument('--phi', type=float,\ help="phi to sim at",\ default=0.0) parser.add_argument('--trig_time', type=float,\ help="trigger time to center sims at",\ default=0.0) parser.add_argument('--dbfname', type=str,\ help="Name to save the database to",\ default=None) parser.add_argument('--pcfname', type=str,\ help="partial coding file name",\ default='pc_2.img') parser.add_argument('--bkg_fname', type=str,\ help="Name of the file with the bkg fits",\ default='bkg_estimation.csv') parser.add_argument('--log_fname', type=str,\ help="Name for the log file",\ default='sim_and_min') args = parser.parse_args() return args def mk_sim_evdata(sim_mod, sim_params, dur, tstart): # first make sim DPIs # then make an event for each count # so each event will have the DETX, DETY and # it can just be given the energy of middle of the ebin # then can assign times with just a uniform distribution # from tstart to tstop # then sort the events and return the Table col_names = ['TIME', 'DET_ID', 'EVENT_FLAGS', 'PHA', 'DETX', 'DETY',\ 'PI', 'ENERGY'] # only need to assign, TIME, DETX, and DETY # make all flags 0, and the rest don't matter tab = Table(names=['DETX', 'DETY', 'ENERGY'], dtype=(np.int, np.int, np.float)) ebins0 = sim_mod.ebins0 ebins1 = sim_mod.ebins1 rate_dpis = sim_mod.get_rate_dpis(sim_params) sim_dpis = np.random.poisson(lam=(rate_dpis*dur)) for ebin, sim_dpi in enumerate(sim_dpis): simdpi = np.zeros_like(sim_mod.bl_dmask, dtype=np.int) simdpi[sim_mod.bl_dmask] = sim_dpi detys, detxs = np.where(simdpi>0) emid = (ebins1[ebin]+ebins0[ebin])/2. for jj in range(len(detys)): dety = detys[jj] detx = detxs[jj] for ii in range(simdpi[dety,detx]): row = (detx, dety, emid) tab.add_row(row) tab['TIME'] = dur*np.random.random(size=len(tab)) + tstart tab['DET_ID'] = np.zeros(len(tab), dtype=np.int) tab['PHA'] = np.ones(len(tab), dtype=np.int) tab['EVENT_FLAGS'] = np.zeros(len(tab), dtype=np.int) tab['PI'] = np.rint(tab['ENERGY']*10).astype(np.int) tab.sort(keys='TIME') return tab def analysis_for_imxy_square(imx0, imx1, imy0, imy1, bkg_bf_params_list,\ bkg_mod, sig_mod, ev_data,\ ebins0, ebins1, tbins0, tbins1,\ timeIDs, TS2keep=4.5,\ max_frac2keep=0.75, minTS2scan=6.0): bl_dmask = bkg_mod.bl_dmask # dimxy = 0.0025 dimxy = np.round(imx1 - imx0, decimals=4) imstep = 0.003 imxstep = 0.004 # imx_ax = np.arange(imx0, imx1+dimxy/2., dimxy) # imy_ax = np.arange(imy0, imy1+dimxy/2., dimxy) # imxg,imyg = np.meshgrid(imx_ax, imy_ax) # imx_ax = np.arange(imx0, imx1, imxstep) # imy_ax = np.arange(imy0, imy1, imstep) imx_ax = np.arange(0, dimxy, imxstep) imy_ax = np.arange(0, dimxy, imstep) imxg,imyg = np.meshgrid(imx_ax, imy_ax) bl = np.isclose((imyg*1e4).astype(np.int)%int(imstep*2*1e4),0) imxg[bl] += imxstep/2. imxs = np.ravel(imxg) + imx0 imys = np.ravel(imyg) + imy0 Npnts = len(imxs) print(Npnts) logging.info("%d imxy points to do" %(Npnts)) thetas, phis = imxy2theta_phi(imxs, imys) gamma_ax = np.linspace(-0.4, 1.6, 8+1) gamma_ax = np.linspace(-0.4, 1.6, 4+1)[1:-1] # gamma_ax = np.array([0.4, 0.9]) # gamma_ax = np.linspace(-0.4, 1.6, 3+1) Epeak_ax = np.logspace(np.log10(45.0), 3, 10+1) Epeak_ax = np.logspace(np.log10(45.0), 3, 5+1)[1:-1] Epeak_ax = np.logspace(np.log10(45.0), 3, 4+1)[1:-1] # Epeak_ax = np.logspace(np.log10(45.0), 3, 5+1)[3:] logging.info("Epeak_ax: ") logging.info(Epeak_ax) logging.info("gammas_ax: ") logging.info(gamma_ax) # Epeak_ax = np.logspace(np.log10(25.0), 3, 3+1) gammas, Epeaks = np.meshgrid(gamma_ax, Epeak_ax) gammas = gammas.ravel() Epeaks = Epeaks.ravel() Nspec_pnts = len(Epeaks) ntbins = len(tbins0) # rt_obj = RayTraces(rt_dir) # fp_obj = FootPrints(fp_dir) # sig_mod = Source_Model_InOutFoV(flux_mod, [ebins0,ebins1], bl_dmask,\ # rt_obj, use_deriv=True) # sig_mod.set_theta_phi(np.mean(thetas), np.mean(phis)) comp_mod = CompoundModel([bkg_mod, sig_mod]) sig_miner = NLLH_ScipyMinimize_Wjacob('') tmin = np.min(tbins0) tmax = np.max(tbins1) if (tmax - tmin) > 40.0: logging.debug("tmax - tmin > 40.0s, using twinds for tbl") gti_dict = {'START':tbins0,'STOP':tbins1} gti_twinds = Table(data=gti_dict) gtis = union_gtis([gti_twinds]) tbl = mk_gti_bl(ev_data['TIME'], gtis, time_pad=0.1) logging.debug("np.sum(tbl): %d"%(np.sum(tbl))) else: tbl = (ev_data['TIME']>=(tmin-1.0))&(ev_data['TIME']<(tmax+1.0)) logging.debug("np.sum(tbl): %d"%(np.sum(tbl))) sig_llh_obj = LLH_webins(ev_data[tbl], ebins0, ebins1, bl_dmask, has_err=True) sig_llh_obj.set_model(comp_mod) flux_params = {'A':1.0, 'gamma':0.5, 'Epeak':1e2} bkg_name = bkg_mod.name pars_ = {} pars_['Signal_theta'] = np.mean(thetas) pars_['Signal_phi'] = np.mean(phis) for pname,val in bkg_bf_params_list[0].items(): # pars_['Background_'+pname] = val pars_[bkg_name+'_'+pname] = val for pname,val in flux_params.items(): pars_['Signal_'+pname] = val sig_miner.set_llh(sig_llh_obj) fixed_pnames = list(pars_.keys()) fixed_vals = list(pars_.values()) trans = [None for i in range(len(fixed_pnames))] sig_miner.set_trans(fixed_pnames, trans) sig_miner.set_fixed_params(fixed_pnames, values=fixed_vals) sig_miner.set_fixed_params(['Signal_A'], fixed=False) res_dfs_ = [] for ii in range(Npnts): print(imxs[ii], imys[ii]) print(thetas[ii], phis[ii]) sig_miner.set_fixed_params(['Signal_theta', 'Signal_phi'],\ values=[thetas[ii],phis[ii]]) res_dfs = [] for j in range(Nspec_pnts): flux_params['gamma'] = gammas[j] flux_params['Epeak'] = Epeaks[j] sig_mod.set_flux_params(flux_params) res_dict = {} res_dict['Epeak'] = Epeaks[j] res_dict['gamma'] = gammas[j] nllhs = np.zeros(ntbins) As = np.zeros(ntbins) for i in range(ntbins): parss_ = {} for pname,val in bkg_bf_params_list[i].items(): # pars_['Background_'+pname] = val parss_[bkg_name+'_'+pname] = val sig_miner.set_fixed_params(list(parss_.keys()), values=list(parss_.values())) t0 = tbins0[i] t1 = tbins1[i] dt = t1 - t0 sig_llh_obj.set_time(tbins0[i], tbins1[i]) try: pars, nllh, res = sig_miner.minimize() As[i] = pars[0][0] nllhs[i] = nllh[0] except Exception as E: logging.error(E) logging.error(traceback.format_exc()) logging.error("Failed to minimize seed: ") logging.error((imxs[ii],imys[ii])) logging.error((timeIDs[i])) nllhs[i] = np.nan # print "res: " # print res res_dict['nllh'] = nllhs res_dict['A'] = As res_dict['time'] = np.array(tbins0) res_dict['dur'] = np.array(tbins1)-np.array(tbins0) res_dict['timeID'] = np.array(timeIDs) res_dict['theta'] = thetas[ii] res_dict['phi'] = phis[ii] res_dict['imx'] = imxs[ii] res_dict['imy'] = imys[ii] res_dfs.append(pd.DataFrame(res_dict)) # logging.info("Done with spec %d of %d" %(j+1,Nspec_pnts)) res_df = pd.concat(res_dfs, ignore_index=True) bkg_nllhs = np.zeros(len(res_df)) bkg_bf_param_dict = {} for i in range(ntbins): t0 = tbins0[i] t1 = tbins1[i] dt = t1 - t0 sig_llh_obj.set_time(tbins0[i], tbins1[i]) for pname,val in bkg_bf_params_list[i].items(): pars_[bkg_name+'_'+pname] = val bkg_bf_param_dict[timeIDs[i]] = bkg_bf_params_list[i] pars_['Signal_theta'] = thetas[ii] pars_['Signal_phi'] = phis[ii] pars_['Signal_A'] = 1e-10 bkg_nllh = -sig_llh_obj.get_logprob(pars_) bl = np.isclose(res_df['time']-t0,t0-t0)&np.isclose(res_df['dur'],dt) bkg_nllhs[bl] = bkg_nllh # pars_['Signal_A'] = 1e-10 # bkg_nllh = -sig_llh_obj.get_logprob(pars_) res_df['bkg_nllh'] = bkg_nllhs res_df['TS'] = np.sqrt(2.*(bkg_nllhs - res_df['nllh'])) res_df['TS'][np.isnan(res_df['TS'])] = 0.0 res_dfs_.append(res_df) logging.info("Done with imxy %d of %d" %(ii+1,Npnts)) res_df = pd.concat(res_dfs_, ignore_index=True) if TS2keep is not None: TSbl = (res_df['TS']>=TS2keep) if np.sum(TSbl) > (len(res_df)/5.0): TSwrite_ = np.nanpercentile(res_df['TS'], max_frac2keep*100.0) TSbl = (res_df['TS']>=TSwrite_) elif np.sum(TSbl) < 1: TSbl = np.isclose(res_df['TS'],np.max(res_df['TS'])) else: TSbl = (res_df['TS']>=TS2keep) res_df = res_df[TSbl] # minTS2scan = 6.0 if np.max(res_df['TS']) >= minTS2scan: peaks_df = find_peaks2scan(res_df, minTS=minTS2scan) Npeaks2scan = len(peaks_df) else: Npeaks2scan = 0 logging.info("%d peaks to scan"%(Npeaks2scan)) print(list(bkg_bf_param_dict.keys())) if Npeaks2scan > 0: peak_res_dfs = [] for peak_ind, peak_row in peaks_df.iterrows(): bkg_bf_params = bkg_bf_param_dict[str(int(peak_row['timeID']))] logging.info("Starting to scan peak_row") logging.info(peak_row) df = do_scan_around_peak(peak_row, bkg_bf_params, bkg_name,\ sig_miner, sig_llh_obj, sig_mod) max_peak_row = df.loc[df['TS'].idxmax()] df2 = do_scan_around_peak(max_peak_row, bkg_bf_params, bkg_name,\ sig_miner, sig_llh_obj, sig_mod,\ imstep=1e-3, dimx=1e-3, dimy=1e-3,\ dgamma=0.1, dlog10Ep=0.1) peak_res_dfs.append(df) peak_res_dfs.append(df2) peak_res_df = pd.concat(peak_res_dfs, ignore_index=True) return res_df, peak_res_df else: return res_df, None def min_sim_llhs(ev_data, sim_evdata, sim_params, sim_tstart, sim_tstop,\ bkg_fname, solid_ang_dpi, bl_dmask, rt_dir, sig_mod,\ ebins0, ebins1, durs=[0.256, 0.512, 1.024]): trig_time = sim_tstart imx_sim, imy_sim = sim_params['imx'], sim_params['imy'] imx_cent = np.round(imx_sim + 2e-3*(np.random.random() - 0.5)*2, decimals=3) imy_cent = np.round(imy_sim + 2e-3*(np.random.random() - 0.5)*2, decimals=3) dimxy = 0.016 imx0 = imx_cent - dimxy/2. imx1 = imx_cent + dimxy/2. imy0 = imy_cent - dimxy/2. imy1 = imy_cent + dimxy/2. evdata_ = ev_data.copy() print((type(evdata_))) print((type(sim_evdata))) evdata = vstack([evdata_, sim_evdata]) evdata.sort('TIME') bkg_df = pd.read_csv(bkg_fname) bkg_params_list = [] bkg_df, bkg_name, PSnames, bkg_mod, ps_mods =\ parse_bkg_csv(bkg_fname, solid_ang_dpi,\ ebins0, ebins1, bl_dmask, rt_dir) bkg_mod.has_deriv = False bkg_mod_list = [bkg_mod] Nsrcs = len(ps_mods) if Nsrcs > 0: bkg_mod_list += ps_mods for ps_mod in ps_mods: ps_mod.has_deriv = False bkg_mod = CompoundModel(bkg_mod_list) tbins0_ = [] tbins1_ = [] for dur in durs: tstep = dur/4.0 tbins0 = np.arange(np.round(np.min(evdata['TIME'])),\ np.max(evdata['TIME']),tstep) tbins1 = tbins0 + dur bl = (tbins0<(sim_tstop-(tstep)))&(tbins1>(sim_tstart+(tstep))) tbins0 = tbins0[bl] tbins1 = tbins1[bl] ntbins = np.sum(bl) print((ntbins, " tbins to do for dur",dur)) for i in range(ntbins): res_dict = {} t0 = tbins0[i] t1 = tbins1[i] tmid = (t0 + t1)/2. tbins0_.append(t0) tbins1_.append(t1) bkg_row = bkg_df.iloc[np.argmin(np.abs(tmid - bkg_df['time']))] bkg_params = {pname:bkg_row[pname] for pname in\ bkg_mod.param_names} bkg_params_list.append(bkg_params) tbins0 = np.array(tbins0_) tbins1 =
np.array(tbins1_)
numpy.array
''' Layers for NN-models (forward+backward pass). Written by <NAME> (https://github.com/SLotAbr). BSD License ''' # from multiprocessing import Process import numpy as np import pickle from tools.functions import string_softmax from tools.optimizers import AdaM as AdaM class token_embedding: def __init__(self, vocabulary_size, d_model, context_size, optim_param): self.TE_table = np.random.randn(vocabulary_size, d_model) * 1e-3 self.vocabulary_size = vocabulary_size self.d_model = d_model self.context_size = context_size self.input_field = 0 self.optim = AdaM(optim_param) def __call__(self, index_list): # form X matrix from tokens indexes # We should use 2D array for further concatenation self.input_indexes = index_list context =[[self.TE_table[j] for j in index_list]] return np.concatenate(context, axis=1) def update_weights(self, dX, dTE_linear): # dTE_linear - the second part of TE derivative # TE derivative have 2 parts - so, we'll get it by external source dTE = np.zeros((self.vocabulary_size, self.d_model)) for i in range(self.context_size): dTE[self.input_indexes[i]]+= dX[i] dTE += dTE_linear self.TE_table = self.optim.weights_update(self.TE_table, dTE) def linear(self, x): ''' using token_embeddings as linear layer with bias=0 we'll use it for finding out output token probabilities :x.shape = [context_size; d_model] :output.shape = [context_size; vocabulary_size] ''' self.input_field = x return [email protected]_table.T def linear_backward(self, dl): # returns derivatives for input signal and TE_table return [email protected]_table, (self.input_field.T@dl).T def save_weights(self, path): with open(path, 'wb') as f: pickle.dump([self.TE_table, self.optim], f) def restore_weights(self, path): with open(path, 'rb') as f: self.TE_table, self.optim = pickle.load(f) class linear: def __init__(self, hidden_units, number_of_neurons, optim_param): # mean = 0, var = 1 self.W = np.random.randn(hidden_units, number_of_neurons) * 1e-3 self.b = np.zeros(number_of_neurons) self.input_field = 0 # Memory for backpropagation self.w_optim = AdaM(optim_param) self.b_optim = AdaM(optim_param) def __call__(self, x): self.input_field = x return (x @ self.W + self.b) #np.dot(x, w) + b def backward(self, dl): dw = self.input_field.T @ dl db = dl.sum(axis=0) # Updating weights self.W = self.w_optim.weights_update(self.W, dw) self.b = self.b_optim.weights_update(self.b, db) # returns dl for previous layers return dl @ self.W.T def save_weights(self, path): with open(path, 'wb') as f: pickle.dump([self.W, self.b, self.w_optim, self.b_optim], f) def restore_weights(self, path): with open(path, 'rb') as f: self.W, self.b, self.w_optim, self.b_optim = pickle.load(f) class ReLU: def __call__(self, x): result = np.maximum(0, x) self.mask = result>0 return result def backward(self, dl): return dl * self.mask class LayerNormalization: def __init__(self, context_size): self.context_size = context_size def __call__(self, x, phase='train'): ''' I'll delete if-else construction and replace it more eficient version for evaluation phase later. There is the same construction in MH_attention_mechanism (__call__ field) ''' if phase == 'train': context_size = self.context_size else: context_size = x.shape[0] x_mean = (x.mean(axis=1).reshape(1,context_size)).T self.x_var = (x.var(axis=1).reshape(1,context_size)).T return (x-x_mean)/np.sqrt(self.x_var+1e-12) def backward(self, dl): l_mean = (dl.mean(axis=1).reshape(1,self.context_size)).T return (dl - l_mean)/np.sqrt(self.x_var+1e-12) class MH_attention_mechanism: def __init__(self, context_size, d_model, H): self.d_k = 1/np.sqrt(d_model/H) self.context_size = context_size self.H = H # matrix with 'True' values above the main diagonal # We'll use it for replacing elements in dot product of Q and K self.mask=(np.tril(np.ones((context_size, context_size)))==0) self.backward_mask=np.tril(np.ones((context_size, context_size))) def __call__(self, x, phase='train'): self.Q, self.K, self.V = np.split(x, 3, axis=1) self.Q = np.split(self.Q, self.H, axis=1) self.K = np.split(self.K, self.H, axis=1) self.V = np.split(self.V, self.H, axis=1) # When we generate text ('eval phase'), context_size always different if phase == 'train': context_size = self.context_size else: context_size = x.shape[0] # Replace it by pre-init fields for faster implementation? C = [0 for h in range(self.H)] self.S = [0 for h in range(self.H)] Z = [0 for h in range(self.H)] # https://docs.python.org/3/library/multiprocessing.html for h in range(self.H): # Attention formula C[h] = self.Q[h] @ self.K[h].T * self.d_k if phase == 'train': C[h][self.mask]=-1e12 else: # We've got different context_size during evaluation mask = (np.tril(np.ones((context_size, context_size)))==0) C[h][mask]=-1e12 self.S[h] = string_softmax(C[h], context_size) # print('softmax\'s state:\n', self.S[h]) Z[h] = self.S[h]@self.V[h] # print('Z\'s state:\n', Z[h]) return np.concatenate(Z, axis=1) def backward(self, dl): dZ = np.split(dl, self.H, axis=1) dQ = [0 for h in range(self.H)] dK = [0 for h in range(self.H)] dV = [0 for h in range(self.H)] for h in range(self.H): dV[h] = self.S[h].T @ dZ[h] dZ[h] = dZ[h]@self.V[h].T # We should multiplicate it later in chain-rule, # but there isn't a mistake to do this now dZ[h] = dZ[h] * self.backward_mask dZ[h] = dZ[h]@ (self.S[h]*(1-self.S[h])) dK[h] = (self.Q[h].T@dZ[h] * self.d_k).T dQ[h] = dZ[h]@self.K[h] * self.d_k dQ = np.concatenate(dQ, axis=1) dK = np.concatenate(dK, axis=1) dV = np.concatenate(dV, axis=1) return
np.concatenate([dQ, dK, dV], axis=1)
numpy.concatenate
# -*- coding: utf-8 -*- """ Created on Thu Aug 20 12:01:18 2015 @author: <NAME> Abstract dictionary learner. Includes gradient descent on MSE energy function as a default learning method. """ import numpy as np import pickle # the try/except block avoids an issue with the cluster try: import matplotlib.pyplot as plt from scipy import ndimage from scipy.stats import skew except ImportError: print('Plotting and modulation plot unavailable.') import StimSet class DictLearner(object): """Abstract base class for dictionary learner objects. Provides some default functions for loading data, plotting network properties, and learning.""" def __init__(self, data, learnrate, nunits, paramfile=None, theta=0, moving_avg_rate=0.001, stimshape=None, datatype="image", batch_size=100, pca=None, store_every=1): self.nunits = nunits self.batch_size = batch_size self.learnrate = learnrate self.paramfile = paramfile self.theta = theta self.moving_avg_rate = moving_avg_rate self.initialize_stats() self.store_every = store_every self._load_stims(data, datatype, stimshape, pca) self.Q = self.rand_dict() def initialize_stats(self): nunits = self.nunits self.corrmatrix_ave = np.zeros((nunits, nunits)) self.L0hist = np.array([]) self.L1hist = np.array([]) self.L2hist = np.array([]) self.L0acts = np.zeros(nunits) self.L1acts =
np.zeros(nunits)
numpy.zeros
import numpy as np import random from scipy import stats from utils import features, class_names from rcviz import viz # for split between two integer values HALF = 0.5 class DecisionTree(object): class Node(object): def __init__(self, label): """ The node in a decision tree. Args: label: The class label of a node. depth: The depth of a node in a decision tree. """ self.label = label self.left = None self.right = None self.idx = None self.thresh = None def set_l(self, node): """ Set NODE as current left child. Args: node: The left child. """ self.left = node def set_r(self, node): """ Set NODE as current right child. Args: node: The right child. """ self.right = node def set_idx(self, idx): """ Set feature to split. Args: idx: The column index of the feature to split. """ self.idx = idx def set_thr(self, thresh): """ Set split threshold. Args: thresh: The threshold to split the data. If feature <= threshold, then comes to the left subtree, else, the right subtree. """ self.thresh = thresh def __str__(self): if self.idx is not None and self.thresh is not None: return str(features[self.idx]) + " thr: " + str(self.thresh) else: return "leaf" def __init__(self, X, y, mode, criteria, seed=1, feature_rate=1): """ A decision tree. Args: X: The original features to train. y: The original labels. mode: Based on either 'ig' - information gain, or, 'gini' - gini index. criteria: dict, specify the stopping criteria. feature_rate: Helper argument for random forest to random select some features from the original features. """ if mode not in ["ig", "gini"]: raise ValueError("mode should be either 'ig' or 'gini', " "but found %s" % mode) self.tree = None self.n_features = X.shape[1] self.n_classes = len(set(y)) self.mode = mode self.max_depth = criteria.get("max_depth", None) self.node_purity = criteria.get("node_purity", None) self.min_gain = criteria.get("min_gain", None) self.seed = seed self.feature_rate = feature_rate def set_criteria(self, criteria): """ Change the criteria of current decision tree. """ self.max_depth = criteria.get("max_depth", None) self.node_purity = criteria.get("node_purity", None) self.min_gain = criteria.get("min_gain", None) def feature_selector(self): """ Return a list of index of features to be considered to split during training. """ idx = list(range(self.n_features)) if self.feature_rate == 1: return idx random.seed(self.seed) feature_idx = random.sample( idx, int(self.feature_rate * self.n_features)) return sorted(feature_idx) @staticmethod def entropy(y): _, counts = np.unique(y, return_counts=True) return stats.entropy(counts, base=2) @staticmethod def information_gain(X, y, thresh): en = DecisionTree.entropy(y) num_d = y.shape[0] left_indicies = X <= thresh # left partition left_sub = y[left_indicies] en_left = DecisionTree.entropy(left_sub) en_left = (left_sub.shape[0] / num_d) * en_left # right partition right_sub = y[~left_indicies] en_right = DecisionTree.entropy(right_sub) en_right = (right_sub.shape[0] / num_d) * en_right # information gain ig = en - en_left - en_right return ig @staticmethod def gini_impurity(y): total = y.shape[0] _, counts =
np.unique(y, return_counts=True)
numpy.unique
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Figure 1: Comparison of true and modelled local DFs. Created: September 2021 Author: <NAME> """ import numpy as np import sys import matplotlib.pyplot as plt from os.path import exists sys.path.append("../src") from ml import load_flow_ensemble, calc_DF_ensemble as calc_DF_model from qdf import create_qdf_ensemble, create_MW_potential from qdf import calc_DF_ensemble as calc_DF_true from constants import kpc from scipy.integrate import trapezoid as trapz def normalise_DF(f, x1, x2): """ Return normalisation of 2D PDF in x1-x2 space, defined by 1D arrays x12. """ N = np.size(x1) norm = trapz(np.array([trapz(f[:, i], x1) for i in range(N)]), x2) return norm # set up coordinate arrays N_px = 128 ones = np.ones((N_px, N_px)) zeros = np.zeros((N_px, N_px)) R0 = 8 * kpc z0 = 0. vR0 = 0. vphi0 = 220000. vz0 = 0. Rlim = 1.1 * kpc zlim = 2.5 * kpc vlim = 80000 R_arr = np.linspace(R0 - Rlim, R0 + Rlim, N_px) z_arr = np.linspace(-zlim, zlim, N_px) vR_arr = np.linspace(vR0 - vlim, vR0 + vlim, N_px) vphi_arr = np.linspace(vphi0 - vlim, vphi0 + vlim, N_px) vz_arr = np.linspace(vz0 - vlim, vz0 + vlim, N_px) dfile = "fig1_data.npz" if not exists(dfile): # load flow ensemble flows = load_flow_ensemble( flowdir='../flows/fiducial', inds=np.arange(20), n_dim=5, n_layers=8, n_hidden=64) # load qDFs fname = "../data/MAPs.txt" data = np.loadtxt(fname, skiprows=1) weights = data[:, 2] hr = data[:, 3] / 8 sr = data[:, 4] / 220 sz = sr / np.sqrt(3) hsr = np.ones_like(hr) hsz = np.ones_like(hr) mw = create_MW_potential() qdfs = create_qdf_ensemble(hr, sr, sz, hsr, hsz, pot=mw) # flow arguments u_q = kpc u_p = 100000 q_cen = np.array([8 * kpc, 0, 0.01 * kpc]) p_cen = np.array([0, 220000, 0]) # R-z: evaluate DF R_grid, z_grid = np.meshgrid(R_arr, z_arr, indexing='ij') q = np.stack((R_grid, zeros, z_grid), axis=-1) p = np.stack((vR0 * ones, vphi0 * ones, vz0 * ones), axis=-1) q = q.reshape((N_px**2, 3)) p = p.reshape((N_px**2, 3)) f_model = calc_DF_model(q, p, u_q, u_p, q_cen, p_cen, flows) f_model = f_model.reshape((N_px, N_px)) f_true = calc_DF_true(q, p, qdfs, weights) f_true = f_true.reshape((N_px, N_px)) f_true[np.abs(R_grid - R0) > 1 * kpc] = 0 # normalise norm_true = normalise_DF(f_true, R_arr, z_arr) norm_model = normalise_DF(f_model, R_arr, z_arr) f_true /= norm_true f_model /= norm_model # ref value f_ref = calc_DF_true(q_cen, p_cen, qdfs, weights) / norm_true f1_model = f_model / f_ref f1_true = f_true / f_ref # calculate residuals with np.errstate(divide='ignore', invalid='ignore'): res1 = np.divide((f1_model - f1_true), f1_true) # vR-vphi: evaluate DF vR_grid, vphi_grid = np.meshgrid(vR_arr, vphi_arr, indexing='ij') q = np.stack((R0 * ones, zeros, z0 * ones), axis=-1) p = np.stack((vR_grid, vphi_grid, vz0 * ones), axis=-1) q = q.reshape((N_px**2, 3)) p = p.reshape((N_px**2, 3)) f_model = calc_DF_model(q, p, u_q, u_p, q_cen, p_cen, flows) f_model = f_model.reshape((N_px, N_px)) f_true = calc_DF_true(q, p, qdfs, weights) f_true = f_true.reshape((N_px, N_px)) # normalise norm_true = normalise_DF(f_true, vR_arr, vphi_arr) norm_model = normalise_DF(f_model, vR_arr, vphi_arr) f_true /= norm_true f_model /= norm_model # ref value f_ref = calc_DF_true(q_cen, p_cen, qdfs, weights) / norm_true f2_model = f_model / f_ref f2_true = f_true / f_ref # calculate residuals with np.errstate(divide='ignore', invalid='ignore'): res2 = np.divide((f2_model - f2_true), f2_true) # z-vz: evaluate DF z_grid, vz_grid = np.meshgrid(z_arr, vz_arr, indexing='ij') q = np.stack((R0 * ones, zeros, z_grid), axis=-1) p = np.stack((vR0 * ones, vphi0 * ones, vz_grid), axis=-1) q = q.reshape((N_px**2, 3)) p = p.reshape((N_px**2, 3)) f_model = calc_DF_model(q, p, u_q, u_p, q_cen, p_cen, flows) f_model = f_model.reshape((N_px, N_px)) f_true = calc_DF_true(q, p, qdfs, weights) f_true = f_true.reshape((N_px, N_px)) # normalise norm_true = normalise_DF(f_true, z_arr, vz_arr) norm_model = normalise_DF(f_model, z_arr, vz_arr) f_true /= norm_true f_model /= norm_model # ref value f_ref = calc_DF_true(q_cen, p_cen, qdfs, weights) / norm_true f3_model = f_model / f_ref f3_true = f_true / f_ref # calculate residuals with np.errstate(divide='ignore', invalid='ignore'): res3 = np.divide((f3_model - f3_true), f3_true) np.savez(dfile, f1_true=f1_true, f1_model=f1_model, res1=res1, f2_true=f2_true, f2_model=f2_model, res2=res2, f3_true=f3_true, f3_model=f3_model, res3=res3) else: data =
np.load(dfile)
numpy.load
from tqdm import tqdm import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset import pickle import os import logging import numpy as np import copy import higher import random from poincare_utils import PoincareDistance class LabelDataset(Dataset): def __init__(self, N, nnegs=5): super(LabelDataset, self).__init__() self.items = N.shape[0] self.len = N.shape[0]*N.shape[0] self.N = N self.nnegs = nnegs def __len__(self): return self.len def __getitem__(self, idx): if idx >= self.len: raise StopIteration t = idx//self.items h = idx%self.items negs = np.arange(self.items)[self.N[t][h] == 1.0] negs = negs.repeat(self.nnegs) np.random.shuffle(negs) return torch.tensor([t, h, *negs[:self.nnegs]]) class Synthetic(Dataset): def __init__(self, drop_prob, size, change_prob): side = 4 n = side//2 self.means = [(x,y) for x in range(-n,n) for y in range(-n,n)] self.covs = [0.01 for x in range(-n,n) for y in range(-n,n)] self.N = np.zeros((21,21)) self.x = [] self.y = [] self.change_prob = change_prob self.size = size self.drop_prob = drop_prob self.per_label = dict(zip(list(range(21)),[0]*21)) self.d_matrix = np.zeros((self.size,21),dtype=float) for i in range(self.size): x, y, y_old = self.getitem(i) self.d_matrix[i,:] = y.numpy() for ele in y_old: self.per_label[ele] += 1 self.x.append(x) self.y.append(y) print(self.per_label) logging.info(f"{self.per_label}") # self.d_matrix = np.transpose(self.d_matrix) # self.d_matrix_norm = self.d_matrix / np.sum(self.d_matrix,axis=1).reshape(-1,1) # self.c_matrix = self.d_matrix_norm@(self.d_matrix/np.sum(self.d_matrix,axis=0).reshape(1,-1)).T # self.c_matrix_p = (self.d_matrix/np.sum(self.d_matrix,axis=0).reshape(1,-1))[email protected]_matrix_norm # self.delta_p = np.diagonal(self.c_matrix_p).reshape(1,-1) # self.delta = np.diagonal(self.c_matrix) # # print(self.c_matrix) # self.n_c = int(np.trace(self.c_matrix)) # self.power = np.multiply(self.delta,(1-self.delta),np.sum(np.multiply(self.d_matrix,self.delta_p,1-self.delta_p),axis=1).reshape(-1,1)) # print(self.n_c,self.power) def __len__(self): return self.size def __getitem__(self, i): return self.x[i], self.y[i] @staticmethod def sample(mean, cov): return np.random.multivariate_normal(mean, cov) def multihot(self, x): with torch.no_grad(): ret = torch.zeros(21) for l in x: ret += nn.functional.one_hot(torch.tensor(l), 21) return ret def getitem(self, idx): i = np.random.randint(len(self.means)) x = Synthetic.sample(self.means[i], self.covs[i]*np.eye(2)) y = [i, 20] if i==0: a = random.uniform(0,1) if a > 1-self.change_prob: y.append(1) if i in [0,1,4,5]: y.append(16) elif i in [2,3,6,7]: y.append(17) elif i in [8,9,12,13]: y.append(18) elif i in [10,11,14,15]: y.append(19) # Missing Labels here if
np.random.rand()
numpy.random.rand
#!/usr/bin/env python # coding: utf-8 # # # LMC 3D structure Final Version with Systematics # # np.random.choice([Roger,Hector, Alfred,Luis,Angel,Xavi]) # In[ ]: ####################### #### Load packages #### ####################### from scipy import stats import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import LogNorm # import warnings import sys import numpy as np import pandas as pd import time import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.mixture import GaussianMixture from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import ConstantKernel from scipy.optimize import curve_fit from scipy.stats import gaussian_kde from scipy.interpolate import Rbf from scipy.stats import multivariate_normal from scipy.linalg import pinv def rbf(X,y,k): idx = np.random.randint(np.size(X,axis = 0),size = k) centroids = X[idx,:] xcross = np.dot(X,X.T) xnorms = np.repeat(np.diag(np.dot(X,X.T)).reshape(1,-1),np.size(X,axis=0),axis=0) sigma = np.median(xnorms-2.*xcross+xnorms.T) n = X.shape[0] values = [] for x in X: for c in centroids: values.append(np.exp(-np.sum((x-c)**2.)/sigma)) phiX = np.reshape(values,(n,k)) psinv = pinv(np.dot(phiX.T,phiX)) w = np.dot(psinv,np.dot(phiX.T,y)) return w,centroids,sigma def rbf_predict(Xhat,w,centroids,sigma): n = Xhat.shape[0] k = centroids.shape[0] values = [] for x in Xhat: for c in centroids: values.append(np.exp(-np.sum((x-c)**2.)/sigma)) phi_Xhat = np.reshape(values,(n,k)) return np.dot(phi_Xhat,w) def proper2geo_fn(xyz,distCenterLMC,alphaCenterLMC,deltaCenterLMC, posAngleLMC,inclAngleLMC): # Transform samples of location coordinates in the proper frame of the LMC # to the rectangular heliocentric frame # # References: # <NAME> & Cioni (2001) # Weinberg and Nikolaev (2001) # # Parameters: # -xyz A tensor of shape=(N, 3) containing N samples in the # proper LMC frame # -N No of samples # -distCenterLMC Distance to the LMC centre (kpc) # -alphaCenterLMC RA of the LMC centre (rad) # -deltaCenterLMC Dec of the LMC centre (rad) # -posAngleLMC Position angle of the LON measured w.r.t. the North (rad) # -inclAngleLMC Inclination angle (rad) # # Return: A tensor of shape=(N, 3) containing N samples of rectangular # coordinates in the heliocentric frame # Affine transformation from local LMC frame to heliocentric frame s11 = np.sin(alphaCenterLMC) s12 = -np.cos(alphaCenterLMC) * np.sin(deltaCenterLMC) s13 = -np.cos(alphaCenterLMC) * np.cos(deltaCenterLMC) s21 = -np.cos(alphaCenterLMC) s22 = -np.sin(alphaCenterLMC) * np.sin(deltaCenterLMC) s23 = -np.sin(alphaCenterLMC) * np.cos(deltaCenterLMC) s31 = np.zeros([]) s32 = np.cos(deltaCenterLMC) s33 = -np.sin(deltaCenterLMC) matrix = np.stack((s11,s12,s13,s21,s22,s23,s31,s32,s33), axis=-1) # pyformat: disable output_shape = np.concatenate(( np.shape(np.zeros(4))[:-1], (3, 3)), axis=-1) OXYZ2 = np.reshape(matrix, output_shape.astype(int)) LMC_center = np.stack( [ distCenterLMC * np.cos(deltaCenterLMC) * np.cos(alphaCenterLMC), distCenterLMC * np.cos(deltaCenterLMC) * np.sin(alphaCenterLMC), distCenterLMC * np.sin(deltaCenterLMC) ], axis=0) #print("LMC_center",LMC_center) # Linear transformation from proper to local LMC frame s11 = np.cos(posAngleLMC) s12 = -np.sin(posAngleLMC) * np.cos(inclAngleLMC) s13 = -np.sin(posAngleLMC) * np.sin(inclAngleLMC) s21 = np.sin(posAngleLMC) s22 = np.cos(posAngleLMC) * np.cos(inclAngleLMC) s23 = np.cos(posAngleLMC) * np.sin(inclAngleLMC) s31 = np.zeros([]) s32 = -np.sin(inclAngleLMC) s33 = np.cos(inclAngleLMC) matrix2 = np.stack((s11,s12,s13,s21,s22,s23,s31,s32,s33), axis=-1) # pyformat: disable output_shape = np.concatenate(( np.shape(np.zeros(4))[:-1], (3, 3)), axis=-1) OXYZ5 = np.reshape(matrix2, output_shape.astype(int)) #mat1=xyz.dot(OXYZ5) mat1=OXYZ5.dot(xyz.T).T #print("mat1",mat1.shape) #print(OXYZ2.shape) #output0n=mat1.dot(OXYZ2) + np.array(LMC_center) output0n=OXYZ2.dot(mat1.T).T + np.array(LMC_center) #print("output0n",output0n) #mat1 = np.matmul(OXYZ5,xyz) + np.zeros(3) #mat2 = np.matmul(OXYZ2,mat1) + LMC_center return output0n def disk_fn(n, scaleHeight, scaleLength, psiAngle, ellFactor): # Generate samples of location coordinates of the LMC disk in a proper # reference frame and transform them to a proper LMC reference frame # References: # Mancini et al. (2004) # # Parameters: # -N No of samples # -scaleHeight Disk scale height (kpc) # -scaleLength Disk scale length (kpc) # -ellFactor Disk ellipticity factor. For a circular disk set = 1 # -psiAngle Disk minor axis position angle measured w.r.t. LON (rad) # For a circular disk set = 0 # # Return: A tensor of shape=(n, 3) containing N samples of the # star locations in a local LMC reference frame s11 = np.cos(psiAngle) s12 = -np.sin(psiAngle) s13 = np.zeros([]) s21 = np.sin(psiAngle) s22 = np.cos(psiAngle) s23 = np.zeros([]) s31 = np.zeros([]) s32 = np.zeros([]) s33 =
np.ones([])
numpy.ones
import os import tempfile import numpy as np import scipy.ndimage.measurements as meas from functools import reduce import warnings import sys sys.path.append(os.path.abspath(r'../lib')) import NumCppPy as NumCpp # noqa E402 #################################################################################### def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) #################################################################################### def test_seed(): np.random.seed(1) #################################################################################### def test_abs(): randValue = np.random.randint(-100, -1, [1, ]).astype(np.double).item() assert NumCpp.absScaler(randValue) == np.abs(randValue) components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.absScaler(value), 9) == np.round(np.abs(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.absArray(cArray), np.abs(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.absArray(cArray), 9), np.round(np.abs(data), 9)) #################################################################################### def test_add(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) #################################################################################### def test_alen(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.alen(cArray) == shape.rows #################################################################################### def test_all(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) #################################################################################### def test_allclose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) tolerance = 1e-5 data1 = np.random.randn(shape.rows, shape.cols) data2 = data1 + tolerance / 10 data3 = data1 + 1 cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) assert NumCpp.allclose(cArray1, cArray2, tolerance) and not NumCpp.allclose(cArray1, cArray3, tolerance) #################################################################################### def test_amax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) #################################################################################### def test_amin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) #################################################################################### def test_angle(): components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.angleScaler(value), 9) == np.round(np.angle(value), 9) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.angleArray(cArray), 9), np.round(np.angle(data), 9)) #################################################################################### def test_any(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) #################################################################################### def test_append(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.append(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) numRows = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + numRows, shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.append(data1, data2, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) NumCppols = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + NumCppols) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.append(data1, data2, axis=1)) #################################################################################### def test_arange(): start = np.random.randn(1).item() stop = np.random.randn(1).item() * 100 step = np.abs(np.random.randn(1).item()) if stop < start: step *= -1 data = np.arange(start, stop, step) assert np.array_equal(np.round(NumCpp.arange(start, stop, step).flatten(), 9), np.round(data, 9)) #################################################################################### def test_arccos(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9)) #################################################################################### def test_arccosh(): value = np.abs(np.random.rand(1).item()) + 1 assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) + 1 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9)) #################################################################################### def test_arcsin(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9)) #################################################################################### def test_arcsinh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9)) #################################################################################### def test_arctan(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9)) #################################################################################### def test_arctan2(): xy = np.random.rand(2) * 2 - 1 assert np.round(NumCpp.arctan2Scaler(xy[1], xy[0]), 9) == np.round(np.arctan2(xy[1], xy[0]), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayX = NumCpp.NdArray(shape) cArrayY = NumCpp.NdArray(shape) xy = np.random.rand(*shapeInput, 2) * 2 - 1 xData = xy[:, :, 0].reshape(shapeInput) yData = xy[:, :, 1].reshape(shapeInput) cArrayX.setArray(xData) cArrayY.setArray(yData) assert np.array_equal(np.round(NumCpp.arctan2Array(cArrayY, cArrayX), 9), np.round(np.arctan2(yData, xData), 9)) #################################################################################### def test_arctanh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9)) #################################################################################### def test_argmax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1)) #################################################################################### def test_argmin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1)) #################################################################################### def test_argsort(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) dataFlat = data.flatten() assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)], dataFlat[np.argsort(data, axis=None)]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) dataFlat = data.flatten() assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)], dataFlat[np.argsort(data, axis=None)]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pIdx = np.argsort(data, axis=0) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16) allPass = True for idx, row in enumerate(data.T): if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pIdx = np.argsort(data, axis=0) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16) allPass = True for idx, row in enumerate(data.T): if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pIdx = np.argsort(data, axis=1) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16) allPass = True for idx, row in enumerate(data): if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): # noqa allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pIdx = np.argsort(data, axis=1) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16) allPass = True for idx, row in enumerate(data): if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): allPass = False break assert allPass #################################################################################### def test_argwhere(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) randValue = np.random.randint(0, 100, [1, ]).item() data2 = data > randValue cArray.setArray(data2) assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag randValue = np.random.randint(0, 100, [1, ]).item() data2 = data > randValue cArray.setArray(data2) assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten()) #################################################################################### def test_around(): value = np.abs(np.random.rand(1).item()) * np.random.randint(1, 10, [1, ]).item() numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item() assert NumCpp.aroundScaler(value, numDecimalsRound) == np.round(value, numDecimalsRound) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * np.random.randint(1, 10, [1, ]).item() cArray.setArray(data) numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item() assert np.array_equal(NumCpp.aroundArray(cArray, numDecimalsRound), np.round(data, numDecimalsRound)) #################################################################################### def test_array_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, shapeInput) data2 = np.random.randint(1, 100, shapeInput) cArray1.setArray(data1) cArray2.setArray(data1) cArray3.setArray(data2) assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) cArray3 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data1) cArray3.setArray(data2) assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3) #################################################################################### def test_array_equiv(): shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput3 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item()) shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) data1 = np.random.randint(1, 100, shapeInput1) data3 = np.random.randint(1, 100, shapeInput3) cArray1.setArray(data1) cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()])) cArray3.setArray(data3) assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3) shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput3 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item()) shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) cArray3 = NumCpp.NdArrayComplexDouble(shape3) real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) imag3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data3 = real3 + 1j * imag3 cArray1.setArray(data1) cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()])) cArray3.setArray(data3) assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3) #################################################################################### def test_asarray(): values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVector2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVector2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayDeque2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayDeque2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointer2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointer2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) cArrayCast = NumCpp.astypeDoubleToUint32(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.uint32)) assert cArrayCast.dtype == np.uint32 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) cArrayCast = NumCpp.astypeDoubleToComplex(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.complex128)) assert cArrayCast.dtype == np.complex128 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) cArrayCast = NumCpp.astypeComplexToComplex(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.complex64)) assert cArrayCast.dtype == np.complex64 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) cArrayCast = NumCpp.astypeComplexToDouble(cArray).getNumpyArray() warnings.filterwarnings('ignore', category=np.ComplexWarning) assert np.array_equal(cArrayCast, data.astype(np.double)) warnings.filters.pop() # noqa assert cArrayCast.dtype == np.double #################################################################################### def test_average(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.round(NumCpp.average(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.average(data), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.round(NumCpp.average(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.average(data), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, axis=1), 9)) #################################################################################### def test_averageWeighted(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [shape.rows, shape.cols]) cArray.setArray(data) cWeights.setArray(weights) assert np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.NONE).item(), 9) == \ np.round(np.average(data, weights=weights), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [shape.rows, shape.cols]) cArray.setArray(data) cWeights.setArray(weights) assert np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.NONE).item(), 9) == \ np.round(np.average(data, weights=weights), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(1, shape.cols) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [1, shape.rows]) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(1, shape.cols) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [1, shape.rows]) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(1, shape.rows) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [1, shape.cols]) cWeights.setArray(weights) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(1, shape.rows) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [1, shape.cols]) cWeights.setArray(weights) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=1), 9)) #################################################################################### def test_binaryRepr(): value = np.random.randint(0, np.iinfo(np.uint64).max, [1, ], dtype=np.uint64).item() assert NumCpp.binaryRepr(np.uint64(value)) == np.binary_repr(value, np.iinfo(np.uint64).bits) #################################################################################### def test_bincount(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) assert np.array_equal(NumCpp.bincount(cArray, 0).flatten(), np.bincount(data.flatten(), minlength=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) minLength = int(np.max(data) + 10) assert np.array_equal(NumCpp.bincount(cArray, minLength).flatten(), np.bincount(data.flatten(), minlength=minLength)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) cWeights = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) weights = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(NumCpp.bincountWeighted(cArray, cWeights, 0).flatten(), np.bincount(data.flatten(), minlength=0, weights=weights.flatten())) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) cWeights = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) weights = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) cWeights.setArray(weights) minLength = int(np.max(data) + 10) assert np.array_equal(NumCpp.bincountWeighted(cArray, cWeights, minLength).flatten(), np.bincount(data.flatten(), minlength=minLength, weights=weights.flatten())) #################################################################################### def test_bitwise_and(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_and(cArray1, cArray2), np.bitwise_and(data1, data2)) #################################################################################### def test_bitwise_not(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt64(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray.setArray(data) assert np.array_equal(NumCpp.bitwise_not(cArray), np.bitwise_not(data)) #################################################################################### def test_bitwise_or(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_or(cArray1, cArray2), np.bitwise_or(data1, data2)) #################################################################################### def test_bitwise_xor(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_xor(cArray1, cArray2), np.bitwise_xor(data1, data2)) #################################################################################### def test_byteswap(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt64(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray.setArray(data) assert np.array_equal(NumCpp.byteswap(cArray).shape, shapeInput) #################################################################################### def test_cbrt(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cbrtArray(cArray), 9), np.round(np.cbrt(data), 9)) #################################################################################### def test_ceil(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.ceilArray(cArray), 9), np.round(np.ceil(data), 9)) #################################################################################### def test_center_of_mass(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.NONE).flatten(), 9), np.round(meas.center_of_mass(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) coms = list() for col in range(data.shape[1]): coms.append(np.round(meas.center_of_mass(data[:, col])[0], 9)) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(coms, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) coms = list() for row in range(data.shape[0]): coms.append(np.round(meas.center_of_mass(data[row, :])[0], 9)) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(coms, 9)) #################################################################################### def test_clip(): value = np.random.randint(0, 100, [1, ]).item() minValue = np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() assert NumCpp.clipScaler(value, minValue, maxValue) == np.clip(value, minValue, maxValue) value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() minValue = np.random.randint(0, 10, [1, ]).item() + 1j * np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() assert NumCpp.clipScaler(value, minValue, maxValue) == np.clip(value, minValue, maxValue) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) minValue = np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() assert np.array_equal(NumCpp.clipArray(cArray, minValue, maxValue), np.clip(data, minValue, maxValue)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) minValue = np.random.randint(0, 10, [1, ]).item() + 1j * np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() assert np.array_equal(NumCpp.clipArray(cArray, minValue, maxValue), np.clip(data, minValue, maxValue)) # noqa #################################################################################### def test_column_stack(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.column_stack(cArray1, cArray2, cArray3, cArray4), np.column_stack([data1, data2, data3, data4])) #################################################################################### def test_complex(): real = np.random.rand(1).astype(np.double).item() value = complex(real) assert np.round(NumCpp.complexScaler(real), 9) == np.round(value, 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.complexScaler(components[0], components[1]), 9) == np.round(value, 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) realArray = NumCpp.NdArray(shape) real = np.random.rand(shape.rows, shape.cols) realArray.setArray(real) assert np.array_equal(np.round(NumCpp.complexArray(realArray), 9), np.round(real + 1j * np.zeros_like(real), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) realArray = NumCpp.NdArray(shape) imagArray = NumCpp.NdArray(shape) real = np.random.rand(shape.rows, shape.cols) imag = np.random.rand(shape.rows, shape.cols) realArray.setArray(real) imagArray.setArray(imag) assert np.array_equal(np.round(NumCpp.complexArray(realArray, imagArray), 9), np.round(real + 1j * imag, 9)) #################################################################################### def test_concatenate(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.NONE).flatten(), np.concatenate([data1.flatten(), data2.flatten(), data3.flatten(), data4.flatten()])) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape3 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape4 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.ROW), np.concatenate([data1, data2, data3, data4], axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.COL), np.concatenate([data1, data2, data3, data4], axis=1)) #################################################################################### def test_conj(): components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.conjScaler(value), 9) == np.round(np.conj(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.conjArray(cArray), 9), np.round(np.conj(data), 9)) #################################################################################### def test_contains(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert NumCpp.contains(cArray, value, NumCpp.Axis.NONE).getNumpyArray().item() == (value in data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert NumCpp.contains(cArray, value, NumCpp.Axis.NONE).getNumpyArray().item() == (value in data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.COL).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.COL).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data.T: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data.T: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.asarray(truth)) #################################################################################### def test_copy(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.copy(cArray), data) #################################################################################### def test_copysign(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.copysign(cArray1, cArray2), np.copysign(data1, data2)) #################################################################################### def test_copyto(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray() data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) assert np.array_equal(NumCpp.copyto(cArray2, cArray1), data1) #################################################################################### def test_cos(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.cosScaler(value), 9) == np.round(np.cos(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.cosScaler(value), 9) == np.round(np.cos(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cosArray(cArray), 9), np.round(np.cos(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cosArray(cArray), 9), np.round(np.cos(data), 9)) #################################################################################### def test_cosh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.coshScaler(value), 9) == np.round(np.cosh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.coshScaler(value), 9) == np.round(np.cosh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.coshArray(cArray), 9), np.round(np.cosh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.coshArray(cArray), 9), np.round(np.cosh(data), 9)) #################################################################################### def test_count_nonzero(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert NumCpp.count_nonzero(cArray, NumCpp.Axis.NONE) == np.count_nonzero(data) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.count_nonzero(cArray, NumCpp.Axis.NONE) == np.count_nonzero(data) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.ROW).flatten(), np.count_nonzero(data, axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.ROW).flatten(), np.count_nonzero(data, axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.COL).flatten(), np.count_nonzero(data, axis=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.COL).flatten(), np.count_nonzero(data, axis=1)) #################################################################################### def test_cross(): shape = NumCpp.Shape(1, 2) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).item() == np.cross(data1, data2).item() shape = NumCpp.Shape(1, 2) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).item() == np.cross(data1, data2).item() shape = NumCpp.Shape(2, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(2, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 2) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray().flatten(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 2) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray().flatten(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(1, 3) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.cross(data1, data2).flatten()) shape = NumCpp.Shape(1, 3) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.cross(data1, data2).flatten()) shape = NumCpp.Shape(3, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(3, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 3) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 3) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.cross(data1, data2, axis=1)) #################################################################################### def test_cube(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cube(cArray), 9), np.round(data * data * data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cube(cArray), 9), np.round(data * data * data, 9)) #################################################################################### def test_cumprod(): shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.NONE).flatten(), data.cumprod()) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.NONE).flatten(), data.cumprod()) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.ROW), data.cumprod(axis=0)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.ROW), data.cumprod(axis=0)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.COL), data.cumprod(axis=1)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.COL), data.cumprod(axis=1)) #################################################################################### def test_cumsum(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.NONE).flatten(), data.cumsum()) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.NONE).flatten(), data.cumsum()) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.ROW), data.cumsum(axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.ROW), data.cumsum(axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.COL), data.cumsum(axis=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.COL), data.cumsum(axis=1)) #################################################################################### def test_deg2rad(): value = np.abs(np.random.rand(1).item()) * 360 assert np.round(NumCpp.deg2radScaler(value), 9) == np.round(np.deg2rad(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 360 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.deg2radArray(cArray), 9), np.round(np.deg2rad(data), 9)) #################################################################################### def test_degrees(): value = np.abs(np.random.rand(1).item()) * 2 * np.pi assert np.round(NumCpp.degreesScaler(value), 9) == np.round(np.degrees(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 2 * np.pi cArray.setArray(data) assert np.array_equal(np.round(NumCpp.degreesArray(cArray), 9), np.round(np.degrees(data), 9)) #################################################################################### def test_deleteIndices(): shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.NONE).flatten(), np.delete(data, indicesPy, axis=None)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.ROW), np.delete(data, indicesPy, axis=0)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.COL), np.delete(data, indicesPy, axis=1)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, shape.size(), [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.NONE).flatten(), np.delete(data, index, axis=None)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.ROW), np.delete(data, index, axis=0)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.COL), np.delete(data, index, axis=1)) #################################################################################### def test_diag(): shapeInput = np.random.randint(2, 25, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) k = np.random.randint(0, np.min(shapeInput), [1, ]).item() elements = np.random.randint(1, 100, shapeInput) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diag(cElements, k).flatten(), np.diag(elements, k)) shapeInput = np.random.randint(2, 25, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) k = np.random.randint(0, np.min(shapeInput), [1, ]).item() real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diag(cElements, k).flatten(), np.diag(elements, k)) #################################################################################### def test_diagflat(): numElements = np.random.randint(2, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() elements = np.random.randint(1, 100, [numElements, ]) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(2, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() real = np.random.randint(1, 100, [numElements, ]) imag = np.random.randint(1, 100, [numElements, ]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(1, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() elements = np.random.randint(1, 100, [numElements, ]) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(1, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() real = np.random.randint(1, 100, [numElements, ]) imag = np.random.randint(1, 100, [numElements, ]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) #################################################################################### def test_diagonal(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.ROW).flatten(), np.diagonal(data, offset, axis1=0, axis2=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.ROW).flatten(), np.diagonal(data, offset, axis1=0, axis2=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.COL).flatten(), np.diagonal(data, offset, axis1=1, axis2=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.COL).flatten(), np.diagonal(data, offset, axis1=1, axis2=0)) #################################################################################### def test_diff(): shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.NONE).flatten(), np.diff(data.flatten())) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.NONE).flatten(), np.diff(data.flatten())) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.ROW), np.diff(data, axis=0)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.ROW), np.diff(data, axis=0)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.COL).astype(np.uint32), np.diff(data, axis=1)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.COL), np.diff(data, axis=1)) #################################################################################### def test_divide(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2[data2 == 0] = 1 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = 0 while value == 0: value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) data[data == 0] = 1 cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 data2[data2 == complex(0)] = complex(1) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = 0 while value == complex(0): value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[data == complex(0)] = complex(1) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2[data2 == 0] = 1 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 data2[data2 == complex(0)] = complex(1) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) while value == complex(0): value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) data[data == 0] = 1 cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = 0 while value == 0: value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[data == complex(0)] = complex(1) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) #################################################################################### def test_dot(): size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 50, [shape.rows, shape.cols]) real2 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() shapeInput = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.dot(cArray1, cArray2), np.dot(data1, data2)) shapeInput = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) real1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) imag2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.dot(cArray1, cArray2), np.dot(data1, data2)) #################################################################################### def test_empty(): shapeInput = np.random.randint(1, 100, [2, ]) cArray = NumCpp.emptyRowCol(shapeInput[0].item(), shapeInput[1].item()) assert cArray.shape[0] == shapeInput[0] assert cArray.shape[1] == shapeInput[1] assert cArray.size == shapeInput.prod() shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.emptyShape(shape) assert cArray.shape[0] == shape.rows assert cArray.shape[1] == shape.cols assert cArray.size == shapeInput.prod() shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.empty_like(cArray1) assert cArray2.shape().rows == shape.rows assert cArray2.shape().cols == shape.cols assert cArray2.size() == shapeInput.prod() #################################################################################### def test_endianess(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) assert NumCpp.endianess(cArray) == NumCpp.Endian.NATIVE #################################################################################### def test_equal(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 10, [shape.rows, shape.cols]) data2 = np.random.randint(0, 10, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.equal(cArray1, cArray2), np.equal(data1, data2)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.equal(cArray1, cArray2), np.equal(data1, data2)) #################################################################################### def test_exp2(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.expScaler(value), 9) == np.round(np.exp(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.expScaler(value), 9) == np.round(np.exp(value), 9) value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.exp2Scaler(value), 9) == np.round(np.exp2(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.exp2Array(cArray), 9), np.round(np.exp2(data), 9)) #################################################################################### def test_exp(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expArray(cArray), 9), np.round(np.exp(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expArray(cArray), 9), np.round(np.exp(data), 9)) value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.expm1Scaler(value), 9) == np.round(np.expm1(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.expm1Scaler(value), 9) == np.round(np.expm1(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expm1Array(cArray), 9), np.round(np.expm1(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.rand(shape.rows, shape.cols) imag = np.random.rand(shape.rows, shape.cols) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expm1Array(cArray), 9), np.round(np.expm1(data), 9)) #################################################################################### def test_eye(): shapeInput = np.random.randint(1, 100, [1, ]).item() randK = np.random.randint(0, shapeInput, [1, ]).item() assert np.array_equal(NumCpp.eye1D(shapeInput, randK), np.eye(shapeInput, k=randK)) shapeInput = np.random.randint(1, 100, [1, ]).item() randK = np.random.randint(0, shapeInput, [1, ]).item() assert np.array_equal(NumCpp.eye1DComplex(shapeInput, randK), np.eye(shapeInput, k=randK) + 1j * np.zeros([shapeInput, shapeInput])) shapeInput = np.random.randint(10, 100, [2, ]) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eye2D(shapeInput[0].item(), shapeInput[1].item(), randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK)) shapeInput = np.random.randint(10, 100, [2, ]) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eye2DComplex(shapeInput[0].item(), shapeInput[1].item(), randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK) + 1j * np.zeros(shapeInput)) shapeInput = np.random.randint(10, 100, [2, ]) cShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eyeShape(cShape, randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK)) shapeInput = np.random.randint(10, 100, [2, ]) cShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eyeShapeComplex(cShape, randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK) + 1j * np.zeros(shapeInput)) #################################################################################### def test_fill_diagonal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) NumCpp.fillDiagonal(cArray, 666) np.fill_diagonal(data, 666) assert np.array_equal(cArray.getNumpyArray(), data) #################################################################################### def test_find(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) value = data.mean() cMask = NumCpp.operatorGreater(cArray, value) cMaskArray = NumCpp.NdArrayBool(cMask.shape[0], cMask.shape[1]) cMaskArray.setArray(cMask) idxs = NumCpp.find(cMaskArray).astype(np.int64) idxsPy = np.nonzero((data > value).flatten())[0] assert np.array_equal(idxs.flatten(), idxsPy) #################################################################################### def test_findN(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) value = data.mean() cMask = NumCpp.operatorGreater(cArray, value) cMaskArray = NumCpp.NdArrayBool(cMask.shape[0], cMask.shape[1]) cMaskArray.setArray(cMask) idxs = NumCpp.findN(cMaskArray, 8).astype(np.int64) idxsPy = np.nonzero((data > value).flatten())[0] assert np.array_equal(idxs.flatten(), idxsPy[:8]) #################################################################################### def fix(): value = np.random.randn(1).item() * 100 assert NumCpp.fixScaler(value) == np.fix(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) assert np.array_equal(NumCpp.fixArray(cArray), np.fix(data)) #################################################################################### def test_flatten(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.flatten(cArray).getNumpyArray(), np.resize(data, [1, data.size])) #################################################################################### def test_flatnonzero(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.flatnonzero(cArray).getNumpyArray().flatten(), np.flatnonzero(data)) #################################################################################### def test_flip(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.flip(cArray, NumCpp.Axis.NONE).getNumpyArray(), np.flip(data.reshape(1, data.size), axis=1).reshape(shapeInput)) #################################################################################### def test_fliplr(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.fliplr(cArray).getNumpyArray(), np.fliplr(data)) #################################################################################### def test_flipud(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.flipud(cArray).getNumpyArray(), np.flipud(data)) #################################################################################### def test_floor(): value = np.random.randn(1).item() * 100 assert NumCpp.floorScaler(value) == np.floor(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) assert np.array_equal(NumCpp.floorArray(cArray), np.floor(data)) #################################################################################### def test_floor_divide(): value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 assert NumCpp.floor_divideScaler(value1, value2) == np.floor_divide(value1, value2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.floor_divideArray(cArray1, cArray2), np.floor_divide(data1, data2)) #################################################################################### def test_fmax(): value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 assert NumCpp.fmaxScaler(value1, value2) == np.fmax(value1, value2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.fmaxArray(cArray1, cArray2), np.fmax(data1, data2)) #################################################################################### def test_fmin(): value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 assert NumCpp.fminScaler(value1, value2) == np.fmin(value1, value2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.fminArray(cArray1, cArray2), np.fmin(data1, data2)) #################################################################################### def test_fmod(): value1 = np.random.randint(1, 100, [1, ]).item() * 100 + 1000 value2 = np.random.randint(1, 100, [1, ]).item() * 100 + 1000 assert NumCpp.fmodScaler(value1, value2) == np.fmod(value1, value2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt32(shape) cArray2 = NumCpp.NdArrayUInt32(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) * 100 + 1000 data2 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.fmodArray(cArray1, cArray2), np.fmod(data1, data2)) #################################################################################### def test_fromfile(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) tempDir = r'C:\Temp' if not os.path.exists(tempDir): os.mkdir(tempDir) tempFile = os.path.join(tempDir, 'NdArrayDump.bin') NumCpp.dump(cArray, tempFile) assert os.path.isfile(tempFile) data2 = NumCpp.fromfile(tempFile, '').reshape(shape) assert np.array_equal(data, data2) os.remove(tempFile) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) tempDir = tempfile.gettempdir() tempFile = os.path.join(tempDir, 'NdArrayDump') NumCpp.tofile(cArray, tempFile, '\n') assert os.path.exists(tempFile + '.txt') data2 = NumCpp.fromfile(tempFile + '.txt', '\n').reshape(shape) assert np.array_equal(data, data2) os.remove(tempFile + '.txt') #################################################################################### def test_fromiter(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.fromiter(cArray).flatten(), data.flatten()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.fromiter(cArray).flatten(), data.flatten()) #################################################################################### def test_full(): shapeInput = np.random.randint(1, 100, [1, ]).item() value = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullSquare(shapeInput, value) assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and cArray.size == shapeInput**2 and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [1, ]).item() value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullSquareComplex(shapeInput, value) assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and cArray.size == shapeInput**2 and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [2, ]) value = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullRowCol(shapeInput[0].item(), shapeInput[1].item(), value) assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and cArray.size == shapeInput.prod() and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [2, ]) value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullRowColComplex(shapeInput[0].item(), shapeInput[1].item(), value) assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and cArray.size == shapeInput.prod() and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) value = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullShape(shape, value) assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and cArray.size == shapeInput.prod() and np.all(cArray == value)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) value = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.fullShape(shape, value) assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and cArray.size == shapeInput.prod() and np.all(cArray == value)) #################################################################################### def test_full_like(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) value = np.random.randint(1, 100, [1, ]).item() cArray2 = NumCpp.full_like(cArray1, value) assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and cArray2.size() == shapeInput.prod() and np.all(cArray2.getNumpyArray() == value)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item() cArray2 = NumCpp.full_likeComplex(cArray1, value) assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and cArray2.size() == shapeInput.prod() and np.all(cArray2.getNumpyArray() == value)) #################################################################################### def test_gcd(): if not NumCpp.NUMCPP_NO_USE_BOOST or NumCpp.STL_GCD_LCM: value1 = np.random.randint(1, 1000, [1, ]).item() value2 = np.random.randint(1, 1000, [1, ]).item() assert NumCpp.gcdScaler(value1, value2) == np.gcd(value1, value2) if not NumCpp.NUMCPP_NO_USE_BOOST: size = np.random.randint(20, 100, [1, ]).item() cArray = NumCpp.NdArrayUInt32(1, size) data = np.random.randint(1, 1000, [size, ], dtype=np.uint32) cArray.setArray(data) assert NumCpp.gcdArray(cArray) == np.gcd.reduce(data) # noqa #################################################################################### def test_gradient(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 1000, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.ROW), np.gradient(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 1000, [shape.rows, shape.cols]) imag = np.random.randint(1, 1000, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.ROW), np.gradient(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 1000, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.COL), np.gradient(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 1000, [shape.rows, shape.cols]) imag = np.random.randint(1, 1000, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.COL), np.gradient(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 1000, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.NONE).flatten(), np.gradient(data.flatten(), axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 1000, [shape.rows, shape.cols]) imag = np.random.randint(1, 1000, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.NONE).flatten(), np.gradient(data.flatten(), axis=0)) #################################################################################### def test_greater(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.greater(cArray1, cArray2).getNumpyArray(), np.greater(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.greater(cArray1, cArray2).getNumpyArray(), np.greater(data1, data2)) #################################################################################### def test_greater_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.greater_equal(cArray1, cArray2).getNumpyArray(), np.greater_equal(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.greater_equal(cArray1, cArray2).getNumpyArray(), np.greater_equal(data1, data2)) #################################################################################### def test_histogram(): shape = NumCpp.Shape(1024, 1024) cArray = NumCpp.NdArray(shape) data = np.random.randn(1024, 1024) * np.random.randint(1, 10, [1, ]).item() + np.random.randint(1, 10, [1, ]).item() cArray.setArray(data) numBins = np.random.randint(10, 30, [1, ]).item() histogram, bins = NumCpp.histogram(cArray, numBins) h, b = np.histogram(data, numBins) assert np.array_equal(histogram.getNumpyArray().flatten().astype(np.int32), h) assert np.array_equal(np.round(bins.getNumpyArray().flatten(), 9), np.round(b, 9)) shape = NumCpp.Shape(1024, 1024) cArray = NumCpp.NdArray(shape) data = np.random.randn(1024, 1024) * np.random.randint(1, 10, [1, ]).item() + np.random.randint(1, 10, [1, ]).item() cArray.setArray(data) binEdges = np.linspace(data.min(), data.max(), 15, endpoint=True) cBinEdges = NumCpp.NdArray(1, binEdges.size) cBinEdges.setArray(binEdges) histogram = NumCpp.histogram(cArray, cBinEdges) h, _ = np.histogram(data, binEdges) assert np.array_equal(histogram.flatten().astype(np.int32), h) #################################################################################### def test_hstack(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.hstack(cArray1, cArray2, cArray3, cArray4), np.hstack([data1, data2, data3, data4])) #################################################################################### def test_hypot(): value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 assert NumCpp.hypotScaler(value1, value2) == np.hypot(value1, value2) value1 = np.random.randn(1).item() * 100 + 1000 value2 = np.random.randn(1).item() * 100 + 1000 value3 = np.random.randn(1).item() * 100 + 1000 assert (np.round(NumCpp.hypotScalerTriple(value1, value2, value3), 9) == np.round(np.sqrt(value1**2 + value2**2 + value3**2), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.hypotArray(cArray1, cArray2), 9), np.round(np.hypot(data1, data2), 9)) #################################################################################### def test_identity(): squareSize = np.random.randint(10, 100, [1, ]).item() assert np.array_equal(NumCpp.identity(squareSize).getNumpyArray(), np.identity(squareSize)) squareSize = np.random.randint(10, 100, [1, ]).item() assert np.array_equal(NumCpp.identityComplex(squareSize).getNumpyArray(), np.identity(squareSize) + 1j * np.zeros([squareSize, squareSize])) #################################################################################### def test_imag(): components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.imagScaler(value), 9) == np.round(np.imag(value), 9) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.imagArray(cArray), 9), np.round(np.imag(data), 9)) #################################################################################### def test_interp(): endPoint = np.random.randint(10, 20, [1, ]).item() numPoints = np.random.randint(50, 100, [1, ]).item() resample = np.random.randint(2, 5, [1, ]).item() xpData = np.linspace(0, endPoint, numPoints, endpoint=True) fpData = np.sin(xpData) xData = np.linspace(0, endPoint, numPoints * resample, endpoint=True) cXp = NumCpp.NdArray(1, numPoints) cFp = NumCpp.NdArray(1, numPoints) cX = NumCpp.NdArray(1, numPoints * resample) cXp.setArray(xpData) cFp.setArray(fpData) cX.setArray(xData) assert np.array_equal(np.round(NumCpp.interp(cX, cXp, cFp).flatten(), 9), np.round(np.interp(xData, xpData, fpData), 9)) #################################################################################### def test_intersect1d(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt32(shape) cArray2 = NumCpp.NdArrayUInt32(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]).astype(np.uint32) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]).astype(np.uint32) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.intersect1d(cArray1, cArray2).getNumpyArray().flatten(), np.intersect1d(data1, data2)) #################################################################################### def test_invert(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.invert(cArray).getNumpyArray(), np.invert(data)) #################################################################################### def test_isclose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.rand(shape.rows, shape.cols) data2 = data1 + np.random.randn(shape.rows, shape.cols) * 1e-5 cArray1.setArray(data1) cArray2.setArray(data2) rtol = 1e-5 atol = 1e-8 assert np.array_equal(NumCpp.isclose(cArray1, cArray2, rtol, atol).getNumpyArray(), np.isclose(data1, data2, rtol=rtol, atol=atol)) #################################################################################### def test_isinf(): value = np.random.randn(1).item() * 100 + 1000 assert NumCpp.isinfScaler(value) == np.isinf(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data[data > 1000] = np.inf cArray.setArray(data) assert np.array_equal(NumCpp.isinfArray(cArray), np.isinf(data)) #################################################################################### def test_isnan(): value = np.random.randn(1).item() * 100 + 1000 assert NumCpp.isnanScaler(value) == np.isnan(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 data[data > 1000] = np.nan cArray.setArray(data) assert np.array_equal(NumCpp.isnanArray(cArray), np.isnan(data)) #################################################################################### def test_lcm(): if not NumCpp.NUMCPP_NO_USE_BOOST or NumCpp.STL_GCD_LCM: value1 = np.random.randint(1, 1000, [1, ]).item() value2 = np.random.randint(1, 1000, [1, ]).item() assert NumCpp.lcmScaler(value1, value2) == np.lcm(value1, value2) if not NumCpp.NUMCPP_NO_USE_BOOST: size = np.random.randint(2, 10, [1, ]).item() cArray = NumCpp.NdArrayUInt32(1, size) data = np.random.randint(1, 100, [size, ], dtype=np.uint32) cArray.setArray(data) assert NumCpp.lcmArray(cArray) == np.lcm.reduce(data) # noqa #################################################################################### def test_ldexp(): value1 = np.random.randn(1).item() * 100 value2 = np.random.randint(1, 20, [1, ]).item() assert np.round(NumCpp.ldexpScaler(value1, value2), 9) == np.round(np.ldexp(value1, value2), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayUInt8(shape) data1 = np.random.randn(shape.rows, shape.cols) * 100 data2 = np.random.randint(1, 20, [shape.rows, shape.cols], dtype=np.uint8) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.ldexpArray(cArray1, cArray2), 9), np.round(np.ldexp(data1, data2), 9)) #################################################################################### def test_left_shift(): shapeInput = np.random.randint(20, 100, [2, ]) bitsToshift = np.random.randint(1, 32, [1, ]).item() shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(1, np.iinfo(np.uint32).max, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.left_shift(cArray, bitsToshift).getNumpyArray(), np.left_shift(data, bitsToshift)) #################################################################################### def test_less(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.less(cArray1, cArray2).getNumpyArray(), np.less(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.less(cArray1, cArray2).getNumpyArray(), np.less(data1, data2)) #################################################################################### def test_less_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.less_equal(cArray1, cArray2).getNumpyArray(), np.less_equal(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.less_equal(cArray1, cArray2).getNumpyArray(), np.less_equal(data1, data2)) #################################################################################### def test_load(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) tempDir = tempfile.gettempdir() tempFile = os.path.join(tempDir, 'NdArrayDump.bin') NumCpp.dump(cArray, tempFile) assert os.path.isfile(tempFile) data2 = NumCpp.load(tempFile).reshape(shape) assert np.array_equal(data, data2) os.remove(tempFile) #################################################################################### def test_linspace(): start = np.random.randint(1, 10, [1, ]).item() end = np.random.randint(start + 10, 100, [1, ]).item() numPoints = np.random.randint(1, 100, [1, ]).item() assert np.array_equal(np.round(NumCpp.linspace(start, end, numPoints, True).getNumpyArray().flatten(), 9), np.round(np.linspace(start, end, numPoints, endpoint=True), 9)) start = np.random.randint(1, 10, [1, ]).item() end = np.random.randint(start + 10, 100, [1, ]).item() numPoints = np.random.randint(1, 100, [1, ]).item() assert np.array_equal(np.round(NumCpp.linspace(start, end, numPoints, False).getNumpyArray().flatten(), 9), np.round(np.linspace(start, end, numPoints, endpoint=False), 9)) #################################################################################### def test_log(): value = np.random.randn(1).item() * 100 + 1000 assert np.round(NumCpp.logScaler(value), 9) == np.round(np.log(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.logScaler(value), 9) == np.round(np.log(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.logArray(cArray), 9), np.round(np.log(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.logArray(cArray), 9), np.round(np.log(data), 9)) #################################################################################### def test_log10(): value = np.random.randn(1).item() * 100 + 1000 assert np.round(NumCpp.log10Scaler(value), 9) == np.round(np.log10(value), 9) components = np.random.randn(2).astype(np.double) * 100 + 100 value = complex(components[0], components[1]) assert np.round(NumCpp.log10Scaler(value), 9) == np.round(np.log10(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.log10Array(cArray), 9), np.round(np.log10(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.log10Array(cArray), 9), np.round(np.log10(data), 9)) #################################################################################### def test_log1p(): value = np.random.randn(1).item() * 100 + 1000 assert np.round(NumCpp.log1pScaler(value), 9) == np.round(np.log1p(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.log1pArray(cArray), 9), np.round(np.log1p(data), 9)) #################################################################################### def test_log2(): value = np.random.randn(1).item() * 100 + 1000 assert np.round(NumCpp.log2Scaler(value), 9) == np.round(np.log2(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 + 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.log2Array(cArray), 9), np.round(np.log2(data), 9)) #################################################################################### def test_logical_and(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 20, [shape.rows, shape.cols]) data2 = np.random.randint(0, 20, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.logical_and(cArray1, cArray2).getNumpyArray(), np.logical_and(data1, data2)) #################################################################################### def test_logical_not(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 20, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.logical_not(cArray).getNumpyArray(), np.logical_not(data)) #################################################################################### def test_logical_or(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 20, [shape.rows, shape.cols]) data2 = np.random.randint(0, 20, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.logical_or(cArray1, cArray2).getNumpyArray(), np.logical_or(data1, data2)) #################################################################################### def test_logical_xor(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 20, [shape.rows, shape.cols]) data2 = np.random.randint(0, 20, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.logical_xor(cArray1, cArray2).getNumpyArray(), np.logical_xor(data1, data2)) #################################################################################### def test_matmul(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 20, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 20, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.matmul(cArray1, cArray2), np.matmul(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) data1 = np.random.randint(0, 20, [shape1.rows, shape1.cols]) real2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) imag2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.matmul(cArray1, cArray2), np.matmul(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) imag2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.matmul(cArray1, cArray2), np.matmul(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArray(shape2) real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(0, 20, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.matmul(cArray1, cArray2), np.matmul(data1, data2)) #################################################################################### def test_max(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.max(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.max(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.max(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.max(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.max(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.max(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) #################################################################################### def test_maximum(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.maximum(cArray1, cArray2), np.maximum(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.maximum(cArray1, cArray2), np.maximum(data1, data2)) #################################################################################### def test_mean(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.round(NumCpp.mean(cArray, NumCpp.Axis.NONE).getNumpyArray().item(), 9) == \ np.round(np.mean(data, axis=None).item(), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.round(NumCpp.mean(cArray, NumCpp.Axis.NONE).getNumpyArray().item(), 9) == \ np.round(np.mean(data, axis=None).item(), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.mean(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 9), np.round(np.mean(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.mean(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 9), np.round(np.mean(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.mean(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 9), np.round(np.mean(data, axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.mean(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 9), np.round(np.mean(data, axis=1), 9)) #################################################################################### def test_median(): isEven = True while isEven: shapeInput = np.random.randint(20, 100, [2, ]) isEven = shapeInput.prod().item() % 2 == 0 shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) # noqa cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.median(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten().item() == np.median(data, axis=None).item() isEven = True while isEven: shapeInput = np.random.randint(20, 100, [2, ]) isEven = shapeInput.prod().item() % 2 == 0 shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.median(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.median(data, axis=0)) isEven = True while isEven: shapeInput = np.random.randint(20, 100, [2, ]) isEven = shapeInput.prod().item() % 2 == 0 shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.median(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.median(data, axis=1)) #################################################################################### def test_meshgrid(): start = np.random.randint(0, 20, [1, ]).item() end = np.random.randint(30, 100, [1, ]).item() step = np.random.randint(1, 5, [1, ]).item() dataI = np.arange(start, end, step) iSlice = NumCpp.Slice(start, end, step) start = np.random.randint(0, 20, [1, ]).item() end = np.random.randint(30, 100, [1, ]).item() step = np.random.randint(1, 5, [1, ]).item() dataJ = np.arange(start, end, step) jSlice = NumCpp.Slice(start, end, step) iMesh, jMesh = np.meshgrid(dataI, dataJ) iMeshC, jMeshC = NumCpp.meshgrid(iSlice, jSlice) assert np.array_equal(iMeshC.getNumpyArray(), iMesh) assert np.array_equal(jMeshC.getNumpyArray(), jMesh) #################################################################################### def test_min(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.min(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.min(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.min(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.min(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.min(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.min(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) #################################################################################### def test_minimum(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.minimum(cArray1, cArray2), np.minimum(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.minimum(cArray1, cArray2), np.minimum(data1, data2)) #################################################################################### def test_mod(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt32(shape) cArray2 = NumCpp.NdArrayUInt32(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) data2 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.mod(cArray1, cArray2).getNumpyArray(), np.mod(data1, data2)) #################################################################################### def test_multiply(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.multiply(cArray1, cArray2), data1 * data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(cArray, value), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(value, cArray), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.multiply(cArray1, cArray2), data1 * data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(cArray, value), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(value, cArray), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.multiply(cArray1, cArray2), data1 * data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.multiply(cArray1, cArray2), data1 * data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(cArray, value), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(value, cArray), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(cArray, value), data * value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.multiply(value, cArray), data * value) #################################################################################### def test_nan_to_num(): shapeInput = np.random.randint(50, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.size(), ]).astype(np.double) nan_idx = np.random.choice(range(data.size), 10, replace=False) pos_inf_idx = np.random.choice(range(data.size), 10, replace=False) neg_inf_idx = np.random.choice(range(data.size), 10, replace=False) data[nan_idx] = np.nan data[pos_inf_idx] = np.inf data[neg_inf_idx] = -np.inf data = data.reshape(shapeInput) cArray.setArray(data) nan_replace = float(np.random.randint(100)) pos_inf_replace = float(np.random.randint(100)) neg_inf_replace = float(np.random.randint(100)) assert np.array_equal(NumCpp.nan_to_num(cArray, nan_replace, pos_inf_replace, neg_inf_replace), np.nan_to_num(data, nan=nan_replace, posinf=pos_inf_replace, neginf=neg_inf_replace)) #################################################################################### def test_nanargmax(): shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nanargmax(cArray, NumCpp.Axis.NONE).item() == np.nanargmax(data) shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanargmax(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nanargmax(data, axis=0)) shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanargmax(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nanargmax(data, axis=1)) #################################################################################### def test_nanargmin(): shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nanargmin(cArray, NumCpp.Axis.NONE).item() == np.nanargmin(data) shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanargmin(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nanargmin(data, axis=0)) shapeInput = np.random.randint(10, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanargmin(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nanargmin(data, axis=1)) #################################################################################### def test_nancumprod(): shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nancumprod(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.nancumprod(data, axis=None)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nancumprod(cArray, NumCpp.Axis.ROW).getNumpyArray(), np.nancumprod(data, axis=0)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nancumprod(cArray, NumCpp.Axis.COL).getNumpyArray(), np.nancumprod(data, axis=1)) #################################################################################### def test_nancumsum(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nancumsum(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.nancumsum(data, axis=None)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nancumsum(cArray, NumCpp.Axis.ROW).getNumpyArray(), np.nancumsum(data, axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nancumsum(cArray, NumCpp.Axis.COL).getNumpyArray(), np.nancumsum(data, axis=1)) #################################################################################### def test_nanmax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nanmax(cArray, NumCpp.Axis.NONE).item() == np.nanmax(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanmax(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nanmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanmax(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nanmax(data, axis=1)) #################################################################################### def test_nanmean(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nanmean(cArray, NumCpp.Axis.NONE).item() == np.nanmean(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanmean(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nanmean(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanmean(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nanmean(data, axis=1)) #################################################################################### def test_nanmedian(): isEven = True while isEven: shapeInput = np.random.randint(20, 100, [2, ]) isEven = shapeInput.prod().item() % 2 == 0 shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) # noqa cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert (NumCpp.nanmedian(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten().item() == np.nanmedian(data, axis=None).item()) # isEven = True # while isEven: # shapeInput = np.random.randint(20, 100, [2, ]) # isEven = shapeInput[0].item() % 2 == 0 # shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) # cArray = NumCpp.NdArray(shape) # data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) # data = data.flatten() # data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan # data = data.reshape(shapeInput) # cArray.setArray(data) # assert np.array_equal(NumCpp.nanmedian(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), # np.nanmedian(data, axis=0)) # # isEven = True # while isEven: # shapeInput = np.random.randint(20, 100, [2, ]) # isEven = shapeInput[1].item() % 2 == 0 # shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) # cArray = NumCpp.NdArray(shape) # data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) # data = data.flatten() # data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan # data = data.reshape(shapeInput) # cArray.setArray(data) # assert np.array_equal(NumCpp.nanmedian(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), # np.nanmedian(data, axis=1)) #################################################################################### def test_nanmin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nanmin(cArray, NumCpp.Axis.NONE).item() == np.nanmin(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanmin(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nanmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanmin(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nanmin(data, axis=1)) #################################################################################### def test_nanpercentile(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.NONE, 'lower').item() == np.nanpercentile(data, percentile, axis=None, interpolation='lower')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.NONE, 'higher').item() == np.nanpercentile(data, percentile, axis=None, interpolation='higher')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.NONE, 'nearest').item() == np.nanpercentile(data, percentile, axis=None, interpolation='nearest')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.NONE, 'midpoint').item() == np.nanpercentile(data, percentile, axis=None, interpolation='midpoint')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.NONE, 'linear').item() == np.nanpercentile(data, percentile, axis=None, interpolation='linear')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.ROW, 'lower').getNumpyArray().flatten(), np.nanpercentile(data, percentile, axis=0, interpolation='lower')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.ROW, 'higher').getNumpyArray().flatten(), np.nanpercentile(data, percentile, axis=0, interpolation='higher')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.ROW, 'nearest').getNumpyArray().flatten(), np.nanpercentile(data, percentile, axis=0, interpolation='nearest')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal( np.round(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.ROW, 'midpoint').getNumpyArray().flatten(), 9), np.round(np.nanpercentile(data, percentile, axis=0, interpolation='midpoint'), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(np.round(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.ROW, 'linear').getNumpyArray().flatten(), 9), np.round(np.nanpercentile(data, percentile, axis=0, interpolation='linear'), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.COL, 'lower').getNumpyArray().flatten(), np.nanpercentile(data, percentile, axis=1, interpolation='lower')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.COL, 'higher').getNumpyArray().flatten(), np.nanpercentile(data, percentile, axis=1, interpolation='higher')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.COL, 'nearest').getNumpyArray().flatten(), np.nanpercentile(data, percentile, axis=1, interpolation='nearest')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal( np.round(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.COL, 'midpoint').getNumpyArray().flatten(), 9), np.round(np.nanpercentile(data, percentile, axis=1, interpolation='midpoint'), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal( np.round(NumCpp.nanpercentile(cArray, percentile, NumCpp.Axis.COL, 'linear').getNumpyArray().flatten(), 9), np.round(np.nanpercentile(data, percentile, axis=1, interpolation='linear'), 9)) #################################################################################### def test_nanprod(): shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 15, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nanprod(cArray, NumCpp.Axis.NONE).item() == np.nanprod(data, axis=None) shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 15, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanprod(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nanprod(data, axis=0)) shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 15, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nanprod(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nanprod(data, axis=1)) #################################################################################### def test_nans(): shapeInput = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.nansSquare(shapeInput) assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and cArray.size == shapeInput ** 2 and np.all(np.isnan(cArray))) shapeInput = np.random.randint(20, 100, [2, ]) cArray = NumCpp.nansRowCol(shapeInput[0].item(), shapeInput[1].item()) assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and cArray.size == shapeInput.prod() and np.all(np.isnan(cArray))) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.nansShape(shape) assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and cArray.size == shapeInput.prod() and np.all(np.isnan(cArray))) #################################################################################### def test_nans_like(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.nans_like(cArray1) assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and cArray2.size() == shapeInput.prod() and np.all(np.isnan(cArray2.getNumpyArray()))) #################################################################################### def test_nanstd(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.round(NumCpp.nanstdev(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.nanstd(data), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.nanstdev(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 9), np.round(np.nanstd(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.nanstdev(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 9), np.round(np.nanstd(data, axis=1), 9)) #################################################################################### def test_nansum(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert NumCpp.nansum(cArray, NumCpp.Axis.NONE).item() == np.nansum(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nansum(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.nansum(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(NumCpp.nansum(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.nansum(data, axis=1)) #################################################################################### def test_nanvar(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.round(NumCpp.nanvar(cArray, NumCpp.Axis.NONE).item(), 8) == np.round(np.nanvar(data), 8) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.nanvar(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 8), np.round(np.nanvar(data, axis=0), 8)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) data = data.flatten() data[np.random.randint(0, shape.size(), [shape.size() // 10, ])] = np.nan data = data.reshape(shapeInput) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.nanvar(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 8), np.round(np.nanvar(data, axis=1), 8)) #################################################################################### def test_nbytes(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.nbytes(cArray) == data.size * 8 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.nbytes(cArray) == data.size * 16 #################################################################################### def test_negative(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.negative(cArray).getNumpyArray(), 9), np.round(np.negative(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.negative(cArray).getNumpyArray(), 9), np.round(np.negative(data), 9)) #################################################################################### def test_newbyteorderArray(): value = np.random.randint(1, 100, [1, ]).item() assert (NumCpp.newbyteorderScaler(value, NumCpp.Endian.BIG) == np.asarray([value], dtype=np.uint32).newbyteorder().item()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.newbyteorderArray(cArray, NumCpp.Endian.BIG), data.newbyteorder()) #################################################################################### def test_none(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.none(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.logical_not(np.any(data).item()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.none(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.logical_not(np.any(data).item()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.none(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.logical_not(np.any(data, axis=0))) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.none(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.logical_not(np.any(data, axis=0))) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.none(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.logical_not(np.any(data, axis=1))) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.none(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.logical_not(np.any(data, axis=1))) #################################################################################### def test_nonzero(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) row, col = np.nonzero(data) rowC, colC = NumCpp.nonzero(cArray) assert (np.array_equal(rowC.getNumpyArray().flatten(), row) and np.array_equal(colC.getNumpyArray().flatten(), col)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) row, col = np.nonzero(data) rowC, colC = NumCpp.nonzero(cArray) assert (np.array_equal(rowC.getNumpyArray().flatten(), row) and np.array_equal(colC.getNumpyArray().flatten(), col)) #################################################################################### def test_norm(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.norm(cArray, NumCpp.Axis.NONE).flatten() == np.linalg.norm(data.flatten()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.norm(cArray, NumCpp.Axis.NONE).item() is not None shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) norms = NumCpp.norm(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten() allPass = True for idx, row in enumerate(data.transpose()): if norms[idx] != np.linalg.norm(row): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) norms = NumCpp.norm(cArray, NumCpp.Axis.COL).getNumpyArray().flatten() allPass = True for idx, row in enumerate(data): if norms[idx] != np.linalg.norm(row): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) norms = NumCpp.norm(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten() assert norms is not None #################################################################################### def test_not_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.not_equal(cArray1, cArray2).getNumpyArray(), np.not_equal(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.not_equal(cArray1, cArray2).getNumpyArray(), np.not_equal(data1, data2)) #################################################################################### def test_ones(): shapeInput = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.onesSquare(shapeInput) assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and cArray.size == shapeInput ** 2 and np.all(cArray == 1)) shapeInput = np.random.randint(1, 100, [1, ]).item() cArray = NumCpp.onesSquareComplex(shapeInput) assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and cArray.size == shapeInput ** 2 and np.all(cArray == complex(1, 0))) shapeInput = np.random.randint(20, 100, [2, ]) cArray = NumCpp.onesRowCol(shapeInput[0].item(), shapeInput[1].item()) assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and cArray.size == shapeInput.prod() and np.all(cArray == 1)) shapeInput = np.random.randint(20, 100, [2, ]) cArray = NumCpp.onesRowColComplex(shapeInput[0].item(), shapeInput[1].item()) assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and cArray.size == shapeInput.prod() and np.all(cArray == complex(1, 0))) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.onesShape(shape) assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and cArray.size == shapeInput.prod() and np.all(cArray == 1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.onesShapeComplex(shape) assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and cArray.size == shapeInput.prod() and np.all(cArray == complex(1, 0))) #################################################################################### def test_ones_like(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.ones_like(cArray1) assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and cArray2.size() == shapeInput.prod() and np.all(cArray2.getNumpyArray() == 1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.ones_likeComplex(cArray1) assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and cArray2.size() == shapeInput.prod() and np.all(cArray2.getNumpyArray() == complex(1, 0))) #################################################################################### def test_outer(): size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 50, [shape.rows, shape.cols], dtype=np.uint32) data2 = np.random.randint(1, 50, [shape.rows, shape.cols], dtype=np.uint32) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.outer(cArray1, cArray2), np.outer(data1, data2)) size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.outer(cArray1, cArray2), np.outer(data1, data2)) #################################################################################### def test_pad(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) padWidth = np.random.randint(1, 10, [1, ]).item() padValue = np.random.randint(1, 100, [1, ]).item() data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray = NumCpp.NdArray(shape) cArray.setArray(data) assert np.array_equal(NumCpp.pad(cArray, padWidth, padValue).getNumpyArray(), np.pad(data, padWidth, mode='constant', constant_values=padValue)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) padWidth = np.random.randint(1, 10, [1, ]).item() padValue = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item() real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray = NumCpp.NdArrayComplexDouble(shape) cArray.setArray(data) assert np.array_equal(NumCpp.pad(cArray, padWidth, padValue).getNumpyArray(), np.pad(data, padWidth, mode='constant', constant_values=padValue)) #################################################################################### def test_partition(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) kthElement = np.random.randint(0, shapeInput.prod(), [1, ], dtype=np.uint32).item() partitionedArray = NumCpp.partition(cArray, kthElement, NumCpp.Axis.NONE).getNumpyArray().flatten() assert (np.all(partitionedArray[kthElement] <= partitionedArray[kthElement]) and np.all(partitionedArray[kthElement:] >= partitionedArray[kthElement])) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) kthElement = np.random.randint(0, shapeInput.prod(), [1, ], dtype=np.uint32).item() partitionedArray = NumCpp.partition(cArray, kthElement, NumCpp.Axis.NONE).getNumpyArray().flatten() assert (np.all(partitionedArray[kthElement] <= partitionedArray[kthElement]) and np.all(partitionedArray[kthElement:] >= partitionedArray[kthElement])) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) kthElement = np.random.randint(0, shapeInput[0], [1, ], dtype=np.uint32).item() partitionedArray = NumCpp.partition(cArray, kthElement, NumCpp.Axis.ROW).getNumpyArray().transpose() allPass = True for row in partitionedArray: if not (np.all(row[kthElement] <= row[kthElement]) and np.all(row[kthElement:] >= row[kthElement])): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) kthElement = np.random.randint(0, shapeInput[0], [1, ], dtype=np.uint32).item() partitionedArray = NumCpp.partition(cArray, kthElement, NumCpp.Axis.ROW).getNumpyArray().transpose() allPass = True for row in partitionedArray: if not (np.all(row[kthElement] <= row[kthElement]) and np.all(row[kthElement:] >= row[kthElement])): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) kthElement = np.random.randint(0, shapeInput[1], [1, ], dtype=np.uint32).item() partitionedArray = NumCpp.partition(cArray, kthElement, NumCpp.Axis.COL).getNumpyArray() allPass = True for row in partitionedArray: if not (np.all(row[kthElement] <= row[kthElement]) and np.all(row[kthElement:] >= row[kthElement])): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) kthElement = np.random.randint(0, shapeInput[1], [1, ], dtype=np.uint32).item() partitionedArray = NumCpp.partition(cArray, kthElement, NumCpp.Axis.COL).getNumpyArray() allPass = True for row in partitionedArray: if not (np.all(row[kthElement] <= row[kthElement]) and np.all(row[kthElement:] >= row[kthElement])): allPass = False break assert allPass #################################################################################### def test_percentile(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.percentile(cArray, percentile, NumCpp.Axis.NONE, 'lower').item() == np.percentile(data, percentile, axis=None, interpolation='lower')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.percentile(cArray, percentile, NumCpp.Axis.NONE, 'higher').item() == np.percentile(data, percentile, axis=None, interpolation='higher')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.percentile(cArray, percentile, NumCpp.Axis.NONE, 'nearest').item() == np.percentile(data, percentile, axis=None, interpolation='nearest')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.percentile(cArray, percentile, NumCpp.Axis.NONE, 'midpoint').item() == np.percentile(data, percentile, axis=None, interpolation='midpoint')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert (NumCpp.percentile(cArray, percentile, NumCpp.Axis.NONE, 'linear').item() == np.percentile(data, percentile, axis=None, interpolation='linear')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.percentile(cArray, percentile, NumCpp.Axis.ROW, 'lower').getNumpyArray().flatten(), np.percentile(data, percentile, axis=0, interpolation='lower')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.percentile(cArray, percentile, NumCpp.Axis.ROW, 'higher').getNumpyArray().flatten(), np.percentile(data, percentile, axis=0, interpolation='higher')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.percentile(cArray, percentile, NumCpp.Axis.ROW, 'nearest').getNumpyArray().flatten(), np.percentile(data, percentile, axis=0, interpolation='nearest')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(np.round(NumCpp.percentile(cArray, percentile, NumCpp.Axis.ROW, 'midpoint').getNumpyArray().flatten(), 9), np.round(np.percentile(data, percentile, axis=0, interpolation='midpoint'), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(np.round(NumCpp.percentile(cArray, percentile, NumCpp.Axis.ROW, 'linear').getNumpyArray().flatten(), 9), np.round(np.percentile(data, percentile, axis=0, interpolation='linear'), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.percentile(cArray, percentile, NumCpp.Axis.COL, 'lower').getNumpyArray().flatten(), np.percentile(data, percentile, axis=1, interpolation='lower')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.percentile(cArray, percentile, NumCpp.Axis.COL, 'higher').getNumpyArray().flatten(), np.percentile(data, percentile, axis=1, interpolation='higher')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(NumCpp.percentile(cArray, percentile, NumCpp.Axis.COL, 'nearest').getNumpyArray().flatten(), np.percentile(data, percentile, axis=1, interpolation='nearest')) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(np.round(NumCpp.percentile(cArray, percentile, NumCpp.Axis.COL, 'midpoint').getNumpyArray().flatten(), 9), np.round(np.percentile(data, percentile, axis=1, interpolation='midpoint'), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) percentile = np.random.rand(1).item() * 100 assert np.array_equal(np.round(NumCpp.percentile(cArray, percentile, NumCpp.Axis.COL, 'linear').getNumpyArray().flatten(), 9), np.round(np.percentile(data, percentile, axis=1, interpolation='linear'), 9)) #################################################################################### def test_polar(): components = np.random.rand(2).astype(np.double) assert NumCpp.polarScaler(components[0], components[1]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) magArray = NumCpp.NdArray(shape) angleArray = NumCpp.NdArray(shape) mag = np.random.rand(shape.rows, shape.cols) angle = np.random.rand(shape.rows, shape.cols) magArray.setArray(mag) angleArray.setArray(angle) assert NumCpp.polarArray(magArray, angleArray) is not None #################################################################################### def test_power(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) exponent = np.random.randint(0, 5, [1, ]).item() cArray.setArray(data) assert np.array_equal(np.round(NumCpp.powerArrayScaler(cArray, exponent), 9), np.round(np.power(data, exponent), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) exponent = np.random.randint(0, 5, [1, ]).item() cArray.setArray(data) assert np.array_equal(np.round(NumCpp.powerArrayScaler(cArray, exponent), 9), np.round(np.power(data, exponent), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cExponents = NumCpp.NdArrayUInt8(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) exponents = np.random.randint(0, 5, [shape.rows, shape.cols]).astype(np.uint8) cArray.setArray(data) cExponents.setArray(exponents) assert np.array_equal(np.round(NumCpp.powerArrayArray(cArray, cExponents), 9), np.round(np.power(data, exponents), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cExponents = NumCpp.NdArrayUInt8(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) exponents = np.random.randint(0, 5, [shape.rows, shape.cols]).astype(np.uint8) cArray.setArray(data) cExponents.setArray(exponents) assert np.array_equal(np.round(NumCpp.powerArrayArray(cArray, cExponents), 9), np.round(np.power(data, exponents), 9)) #################################################################################### def test_powerf(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) exponent = np.random.rand(1).item() * 3 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.powerfArrayScaler(cArray, exponent), 9), np.round(np.power(data, exponent), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) exponent = np.random.rand(1).item() * 3 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.powerfArrayScaler(cArray, exponent), 9), np.round(np.power(data, exponent), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cExponents = NumCpp.NdArray(shape) data = np.random.randint(0, 20, [shape.rows, shape.cols]) exponents = np.random.rand(shape.rows, shape.cols) * 3 cArray.setArray(data) cExponents.setArray(exponents) assert np.array_equal(np.round(NumCpp.powerfArrayArray(cArray, cExponents), 9), np.round(np.power(data, exponents), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cExponents = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) exponents = np.random.rand(shape.rows, shape.cols) * 3 + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) cExponents.setArray(exponents) assert np.array_equal(np.round(NumCpp.powerfArrayArray(cArray, cExponents), 9), np.round(np.power(data, exponents), 9)) #################################################################################### def test_prod(): shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 15, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert NumCpp.prod(cArray, NumCpp.Axis.NONE).item() == data.prod() shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 15, [shape.rows, shape.cols]) imag = np.random.randint(1, 15, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.prod(cArray, NumCpp.Axis.NONE).item() == data.prod() shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 15, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(NumCpp.prod(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), data.prod(axis=0)) shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 15, [shape.rows, shape.cols]) imag = np.random.randint(1, 15, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.prod(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), data.prod(axis=0)) shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 15, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(NumCpp.prod(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), data.prod(axis=1)) shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 15, [shape.rows, shape.cols]) imag = np.random.randint(1, 15, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.prod(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), data.prod(axis=1)) #################################################################################### def test_proj(): components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert NumCpp.projScaler(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cData = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cData.setArray(data) assert NumCpp.projArray(cData) is not None #################################################################################### def test_ptp(): shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.ptp(cArray, NumCpp.Axis.NONE).getNumpyArray().item() == data.ptp() shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.ptp(cArray, NumCpp.Axis.NONE).getNumpyArray().item() == data.ptp() shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 15, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.ptp(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten().astype(np.uint32), data.ptp(axis=0)) shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 15, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.ptp(cArray, NumCpp.Axis.COL).getNumpyArray().flatten().astype(np.uint32), data.ptp(axis=1)) #################################################################################### def test_put(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) numIndices = np.random.randint(0, shape.size()) indices = np.asarray(range(numIndices), np.uint32) value = np.random.randint(1, 500) cIndices = NumCpp.NdArrayUInt32(1, numIndices) cIndices.setArray(indices) NumCpp.put(cArray, cIndices, value) data.put(indices, value) assert np.array_equal(cArray.getNumpyArray(), data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) numIndices = np.random.randint(0, shape.size()) indices = np.asarray(range(numIndices), dtype=np.uint32) values = np.random.randint(1, 500, [numIndices, ]) cIndices = NumCpp.NdArrayUInt32(1, numIndices) cValues = NumCpp.NdArray(1, numIndices) cIndices.setArray(indices) cValues.setArray(values) NumCpp.put(cArray, cIndices, cValues) data.put(indices, values) assert np.array_equal(cArray.getNumpyArray(), data) #################################################################################### def test_rad2deg(): value = np.abs(np.random.rand(1).item()) * 2 * np.pi assert np.round(NumCpp.rad2degScaler(value), 9) == np.round(np.rad2deg(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 2 * np.pi cArray.setArray(data) assert np.array_equal(np.round(NumCpp.rad2degArray(cArray), 9), np.round(np.rad2deg(data), 9)) #################################################################################### def test_radians(): value = np.abs(np.random.rand(1).item()) * 360 assert np.round(NumCpp.radiansScaler(value), 9) == np.round(np.radians(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 360 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.radiansArray(cArray), 9), np.round(np.radians(data), 9)) #################################################################################### def test_ravel(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) cArray2 = NumCpp.ravel(cArray) assert np.array_equal(cArray2.getNumpyArray().flatten(), np.ravel(data)) #################################################################################### def test_real(): components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.realScaler(value), 9) == np.round(np.real(value), 9) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.realArray(cArray), 9), np.round(np.real(data), 9)) #################################################################################### def test_reciprocal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.reciprocal(cArray), 9), np.round(np.reciprocal(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]).astype(np.double) imag = np.random.randint(1, 100, [shape.rows, shape.cols]).astype(np.double) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.reciprocal(cArray), 9), np.round(np.reciprocal(data), 9)) #################################################################################### def test_remainder(): # numpy and cmath remainders are calculated differently, so convert for testing purposes values = np.random.rand(2) * 100 values = np.sort(values) res = NumCpp.remainderScaler(values[1].item(), values[0].item()) if res < 0: res += values[0].item() assert np.round(res, 9) == np.round(np.remainder(values[1], values[0]), 9) # numpy and cmath remainders are calculated differently, so convert for testing purposes shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.rand(shape.rows, shape.cols) * 100 + 10 data2 = data1 - np.random.rand(shape.rows, shape.cols) * 10 cArray1.setArray(data1) cArray2.setArray(data2) res = NumCpp.remainderArray(cArray1, cArray2) res[res < 0] = res[res < 0] + data2[res < 0] assert np.array_equal(np.round(res, 9), np.round(np.remainder(data1, data2), 9)) #################################################################################### def test_replace(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) oldValue = np.random.randint(1, 100, 1).item() newValue = np.random.randint(1, 100, 1).item() dataCopy = data.copy() dataCopy[dataCopy == oldValue] = newValue assert np.array_equal(NumCpp.replace(cArray, oldValue, newValue), dataCopy) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) oldValue = np.random.randint(1, 100, 1).item() + 1j * np.random.randint(1, 100, 1).item() newValue = np.random.randint(1, 100, 1).item() + 1j * np.random.randint(1, 100, 1).item() dataCopy = data.copy() dataCopy[dataCopy == oldValue] = newValue assert np.array_equal(NumCpp.replace(cArray, oldValue, newValue), dataCopy) #################################################################################### def test_reshape(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) newShape = data.size NumCpp.reshape(cArray, newShape) assert np.array_equal(cArray.getNumpyArray(), data.reshape(1, newShape)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) newShape = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) NumCpp.reshape(cArray, newShape) assert np.array_equal(cArray.getNumpyArray(), data.reshape(shapeInput[::-1])) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) newShape = NumCpp.Shape(shapeInput[1].item(), shapeInput[0].item()) NumCpp.reshapeList(cArray, newShape) assert np.array_equal(cArray.getNumpyArray(), data.reshape(shapeInput[::-1])) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) newNumCols = np.random.choice(np.array(list(factors(data.size))), 1).item() NumCpp.reshape(cArray, -1, newNumCols) assert np.array_equal(cArray.getNumpyArray(), data.reshape(-1, newNumCols)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) newNumRows = np.random.choice(np.array(list(factors(data.size))), 1).item() NumCpp.reshape(cArray, newNumRows, -1) assert np.array_equal(cArray.getNumpyArray(), data.reshape(newNumRows, -1)) #################################################################################### def test_resize(): shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput2 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput2[0].item(), shapeInput2[1].item()) cArray = NumCpp.NdArray(shape1) data = np.random.randint(1, 100, [shape1.rows, shape1.cols], dtype=np.uint32) cArray.setArray(data) NumCpp.resizeFast(cArray, shape2) assert cArray.shape().rows == shape2.rows assert cArray.shape().cols == shape2.cols shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput2 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput2[0].item(), shapeInput2[1].item()) cArray = NumCpp.NdArray(shape1) data = np.random.randint(1, 100, [shape1.rows, shape1.cols], dtype=np.uint32) cArray.setArray(data) NumCpp.resizeSlow(cArray, shape2) assert cArray.shape().rows == shape2.rows assert cArray.shape().cols == shape2.cols #################################################################################### def test_right_shift(): shapeInput = np.random.randint(20, 100, [2, ]) bitsToshift = np.random.randint(1, 32, [1, ]).item() shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(1, np.iinfo(np.uint32).max, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.right_shift(cArray, bitsToshift).getNumpyArray(), np.right_shift(data, bitsToshift)) #################################################################################### def test_rint(): value = np.abs(np.random.rand(1).item()) * 2 * np.pi assert NumCpp.rintScaler(value) == np.rint(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 2 * np.pi cArray.setArray(data) assert np.array_equal(NumCpp.rintArray(cArray), np.rint(data)) #################################################################################### def test_rms(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert (np.round(NumCpp.rms(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten().item(), 9) == np.round(np.sqrt(np.mean(np.square(data), axis=None)).item(), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert (np.round(NumCpp.rms(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten().item(), 9) == np.round(np.sqrt(np.mean(np.square(data), axis=None)).item(), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.rms(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 9), np.round(np.sqrt(np.mean(np.square(data), axis=0)), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.rms(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 9), np.round(np.sqrt(np.mean(np.square(data), axis=0)), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.rms(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 9), np.round(np.sqrt(np.mean(np.square(data), axis=1)), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.rms(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 9), np.round(np.sqrt(np.mean(np.square(data), axis=1)), 9)) #################################################################################### def test_roll(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) amount = np.random.randint(0, data.size, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.roll(cArray, amount, NumCpp.Axis.NONE).getNumpyArray(), np.roll(data, amount, axis=None)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) amount = np.random.randint(0, shape.cols, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.roll(cArray, amount, NumCpp.Axis.ROW).getNumpyArray(), np.roll(data, amount, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) amount = np.random.randint(0, shape.rows, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.roll(cArray, amount, NumCpp.Axis.COL).getNumpyArray(), np.roll(data, amount, axis=1)) #################################################################################### def test_rot90(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) amount = np.random.randint(1, 4, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.rot90(cArray, amount).getNumpyArray(), np.rot90(data, amount)) #################################################################################### def test_round(): value = np.abs(np.random.rand(1).item()) * 2 * np.pi assert NumCpp.roundScaler(value, 10) == np.round(value, 10) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 2 * np.pi cArray.setArray(data) assert np.array_equal(NumCpp.roundArray(cArray, 9), np.round(data, 9)) #################################################################################### def test_row_stack(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape3 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape4 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.row_stack(cArray1, cArray2, cArray3, cArray4), np.row_stack([data1, data2, data3, data4])) #################################################################################### def test_setdiff1d(): shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt32(shape) cArray2 = NumCpp.NdArrayUInt32(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) data2 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.setdiff1d(cArray1, cArray2).getNumpyArray().flatten(), np.setdiff1d(data1, data2)) shapeInput = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.setdiff1d(cArray1, cArray2).getNumpyArray().flatten(), np.setdiff1d(data1, data2)) #################################################################################### def test_shape(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) assert cArray.shape().rows == shape.rows and cArray.shape().cols == shape.cols #################################################################################### def test_sign(): value = np.random.randn(1).item() * 100 assert NumCpp.signScaler(value) == np.sign(value) value = np.random.randn(1).item() * 100 + 1j * np.random.randn(1).item() * 100 assert NumCpp.signScaler(value) == np.sign(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) assert np.array_equal(NumCpp.signArray(cArray), np.sign(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.signArray(cArray), np.sign(data)) #################################################################################### def test_signbit(): value = np.random.randn(1).item() * 100 assert NumCpp.signbitScaler(value) == np.signbit(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) assert np.array_equal(NumCpp.signbitArray(cArray), np.signbit(data)) #################################################################################### def test_sin(): value = np.random.randn(1).item() assert np.round(NumCpp.sinScaler(value), 9) == np.round(np.sin(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.sinScaler(value), 9) == np.round(np.sin(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.sinArray(cArray), 9), np.round(np.sin(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.sinArray(cArray), 9), np.round(np.sin(data), 9)) #################################################################################### def test_sinc(): value = np.random.randn(1) assert np.round(NumCpp.sincScaler(value.item()), 9) == np.round(np.sinc(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.sincArray(cArray), 9), np.round(np.sinc(data), 9)) #################################################################################### def test_sinh(): value = np.random.randn(1).item() assert np.round(NumCpp.sinhScaler(value), 9) == np.round(np.sinh(value), 9) value = np.random.randn(1).item() + 1j * np.random.randn(1).item() assert np.round(NumCpp.sinhScaler(value), 9) == np.round(np.sinh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.sinhArray(cArray), 9), np.round(np.sinh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randn(shape.rows, shape.cols) + 1j * np.random.randn(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.sinhArray(cArray), 9), np.round(np.sinh(data), 9)) #################################################################################### def test_size(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) assert cArray.size() == shapeInput.prod().item() #################################################################################### def test_sort(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) d = data.flatten() d.sort() assert np.array_equal(NumCpp.sort(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten(), d) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) d = data.flatten() d.sort() assert np.array_equal(NumCpp.sort(cArray, NumCpp.Axis.NONE).getNumpyArray().flatten(), d) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pSorted = np.sort(data, axis=0) cSorted = NumCpp.sort(cArray, NumCpp.Axis.ROW).getNumpyArray() assert np.array_equal(cSorted, pSorted) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pSorted = np.sort(data, axis=0) cSorted = NumCpp.sort(cArray, NumCpp.Axis.ROW).getNumpyArray() assert np.array_equal(cSorted, pSorted) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pSorted = np.sort(data, axis=1) cSorted = NumCpp.sort(cArray, NumCpp.Axis.COL).getNumpyArray() assert np.array_equal(cSorted, pSorted) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pSorted = np.sort(data, axis=1) cSorted = NumCpp.sort(cArray, NumCpp.Axis.COL).getNumpyArray() assert np.array_equal(cSorted, pSorted) #################################################################################### def test_sqrt(): value = np.random.randint(1, 100, [1, ]).item() assert np.round(NumCpp.sqrtScaler(value), 9) == np.round(np.sqrt(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.sqrtScaler(value), 9) == np.round(np.sqrt(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.sqrtArray(cArray), 9), np.round(np.sqrt(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.sqrtArray(cArray), 9), np.round(np.sqrt(data), 9)) #################################################################################### def test_square(): value = np.random.randint(1, 100, [1, ]).item() assert np.round(NumCpp.squareScaler(value), 9) == np.round(np.square(value), 9) value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item() assert np.round(NumCpp.squareScaler(value), 9) == np.round(np.square(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.squareArray(cArray), 9), np.round(np.square(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.squareArray(cArray), 9), np.round(np.square(data), 9)) #################################################################################### def test_stack(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) cArray4 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data3 = np.random.randint(1, 100, [shape.rows, shape.cols]) data4 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.stack(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.ROW), np.vstack([data1, data2, data3, data4])) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) cArray4 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data3 = np.random.randint(1, 100, [shape.rows, shape.cols]) data4 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.stack(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.COL), np.hstack([data1, data2, data3, data4])) #################################################################################### def test_stdev(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.round(NumCpp.stdev(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.std(data), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.stdev(cArray, NumCpp.Axis.NONE).item() is not None shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.stdev(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 9), np.round(np.std(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.stdev(cArray, NumCpp.Axis.ROW) is not None shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.stdev(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 9), np.round(np.std(data, axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.stdev(cArray, NumCpp.Axis.COL) is not None #################################################################################### def test_subtract(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.subtract(cArray1, cArray2), data1 - data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.subtract(cArray, value), data - value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.subtract(value, cArray), value - data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.subtract(cArray1, cArray2), data1 - data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.subtract(cArray, value), data - value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.subtract(value, cArray), value - data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.subtract(cArray1, cArray2), data1 - data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.subtract(cArray1, cArray2), data1 - data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.subtract(cArray, value), data - value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.subtract(value, cArray), value - data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.subtract(cArray, value), data - value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.subtract(value, cArray), value - data) #################################################################################### def test_sumo(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.sum(cArray, NumCpp.Axis.NONE).item() == np.sum(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.sum(cArray, NumCpp.Axis.NONE).item() == np.sum(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(NumCpp.sum(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.sum(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.sum(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.sum(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(NumCpp.sum(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.sum(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.sum(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), np.sum(data, axis=1)) #################################################################################### def test_swap(): shapeInput1 = np.random.randint(20, 100, [2, ]) shapeInput2 = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput2[0].item(), shapeInput2[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]).astype(np.double) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) NumCpp.swap(cArray1, cArray2) assert (np.array_equal(cArray1.getNumpyArray(), data2) and np.array_equal(cArray2.getNumpyArray(), data1)) #################################################################################### def test_swapaxes(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(NumCpp.swapaxes(cArray).getNumpyArray(), data.T) #################################################################################### def test_tan(): value = np.random.rand(1).item() * np.pi assert np.round(NumCpp.tanScaler(value), 9) == np.round(np.tan(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.tanScaler(value), 9) == np.round(np.tan(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.tanArray(cArray), 9), np.round(np.tan(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.tanArray(cArray), 9), np.round(np.tan(data), 9)) #################################################################################### def test_tanh(): value = np.random.rand(1).item() * np.pi assert np.round(NumCpp.tanhScaler(value), 9) == np.round(np.tanh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.tanhScaler(value), 9) == np.round(np.tanh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.tanhArray(cArray), 9), np.round(np.tanh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.tanhArray(cArray), 9), np.round(np.tanh(data), 9)) #################################################################################### def test_tile(): shapeInput = np.random.randint(1, 10, [2, ]) shapeRepeat = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shapeR = NumCpp.Shape(shapeRepeat[0].item(), shapeRepeat[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.tileRectangle(cArray, shapeR.rows, shapeR.cols), np.tile(data, shapeRepeat)) shapeInput = np.random.randint(1, 10, [2, ]) shapeRepeat = np.random.randint(1, 10, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shapeR = NumCpp.Shape(shapeRepeat[0].item(), shapeRepeat[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.tileShape(cArray, shapeR), np.tile(data, shapeRepeat)) #################################################################################### def test_tofile(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) tempDir = tempfile.gettempdir() filename = os.path.join(tempDir, 'temp.bin') NumCpp.tofile(cArray, filename, '') assert os.path.exists(filename) data2 = np.fromfile(filename, np.double).reshape(shapeInput) assert np.array_equal(data, data2) os.remove(filename) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) tempDir = tempfile.gettempdir() filename = os.path.join(tempDir, 'temp.txt') NumCpp.tofile(cArray, filename, '\n') assert os.path.exists(filename) data2 = np.fromfile(filename, dtype=np.double, sep='\n').reshape(shapeInput) assert np.array_equal(data, data2) os.remove(filename) #################################################################################### def test_toStlVector(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) out = np.asarray(NumCpp.toStlVector(cArray)) assert np.array_equal(out, data.flatten()) #################################################################################### def test_trace(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) offset = np.random.randint(0, shape.rows, [1, ]).item() assert np.array_equal(NumCpp.trace(cArray, offset, NumCpp.Axis.ROW), data.trace(offset, axis1=1, axis2=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) offset = np.random.randint(0, shape.rows, [1, ]).item() assert np.array_equal(NumCpp.trace(cArray, offset, NumCpp.Axis.COL), data.trace(offset, axis1=0, axis2=1)) #################################################################################### def test_transpose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(NumCpp.transpose(cArray).getNumpyArray(), np.transpose(data)) #################################################################################### def test_trapz(): shape = NumCpp.Shape(np.random.randint(10, 20, [1, ]).item(), 1) cArray = NumCpp.NdArray(shape) coeffs = np.random.randint(0, 10, [2, ]) dx = np.random.rand(1).item() data = np.array([x ** 2 - coeffs[0] * x + coeffs[1] for x in range(shape.size())]) cArray.setArray(data) integralC = NumCpp.trapzDx(cArray, dx, NumCpp.Axis.NONE).item() integralPy = np.trapz(data, dx=dx) assert np.round(integralC, 8) == np.round(integralPy, 8) shape = NumCpp.Shape(np.random.randint(10, 20, [1, ]).item(), np.random.randint(10, 20, [1, ]).item()) cArray = NumCpp.NdArray(shape) coeffs = np.random.randint(0, 10, [2, ]) dx = np.random.rand(1).item() data = np.array([x ** 2 - coeffs[0] * x - coeffs[1] for x in range(shape.size())]).reshape(shape.rows, shape.cols) cArray.setArray(data) integralC = NumCpp.trapzDx(cArray, dx, NumCpp.Axis.ROW).flatten() integralPy = np.trapz(data, dx=dx, axis=0) assert np.array_equal(np.round(integralC, 8), np.round(integralPy, 8)) shape = NumCpp.Shape(np.random.randint(10, 20, [1, ]).item(), np.random.randint(10, 20, [1, ]).item()) cArray = NumCpp.NdArray(shape) coeffs = np.random.randint(0, 10, [2, ]) dx = np.random.rand(1).item() data = np.array([x ** 2 - coeffs[0] * x - coeffs[1] for x in range(shape.size())]).reshape(shape.rows, shape.cols) cArray.setArray(data) integralC = NumCpp.trapzDx(cArray, dx, NumCpp.Axis.COL).flatten() integralPy = np.trapz(data, dx=dx, axis=1) assert np.array_equal(np.round(integralC, 8), np.round(integralPy, 8)) shape = NumCpp.Shape(1, np.random.randint(10, 20, [1, ]).item()) cArrayY = NumCpp.NdArray(shape) cArrayX = NumCpp.NdArray(shape) coeffs = np.random.randint(0, 10, [2, ]) dx = np.random.rand(shape.rows, shape.cols) data = np.array([x ** 2 - coeffs[0] * x + coeffs[1] for x in range(shape.size())]) cArrayY.setArray(data) cArrayX.setArray(dx) integralC = NumCpp.trapz(cArrayY, cArrayX, NumCpp.Axis.NONE).item() integralPy = np.trapz(data, x=dx) assert np.round(integralC, 8) == np.round(integralPy, 8) shape = NumCpp.Shape(np.random.randint(10, 20, [1, ]).item(), np.random.randint(10, 20, [1, ]).item()) cArrayY = NumCpp.NdArray(shape) cArrayX = NumCpp.NdArray(shape) coeffs = np.random.randint(0, 10, [2, ]) dx = np.random.rand(shape.rows, shape.cols) data = np.array([x ** 2 - coeffs[0] * x + coeffs[1] for x in range(shape.size())]).reshape(shape.rows, shape.cols) cArrayY.setArray(data) cArrayX.setArray(dx) integralC = NumCpp.trapz(cArrayY, cArrayX, NumCpp.Axis.ROW).flatten() integralPy = np.trapz(data, x=dx, axis=0) assert np.array_equal(np.round(integralC, 8), np.round(integralPy, 8)) shape = NumCpp.Shape(np.random.randint(10, 20, [1, ]).item(), np.random.randint(10, 20, [1, ]).item()) cArrayY = NumCpp.NdArray(shape) cArrayX = NumCpp.NdArray(shape) coeffs = np.random.randint(0, 10, [2, ]) dx = np.random.rand(shape.rows, shape.cols) data = np.array([x ** 2 - coeffs[0] * x + coeffs[1] for x in range(shape.size())]).reshape(shape.rows, shape.cols) cArrayY.setArray(data) cArrayX.setArray(dx) integralC = NumCpp.trapz(cArrayY, cArrayX, NumCpp.Axis.COL).flatten() integralPy = np.trapz(data, x=dx, axis=1) assert np.array_equal(np.round(integralC, 8), np.round(integralPy, 8)) #################################################################################### def test_tril(): squareSize = np.random.randint(10, 100, [1, ]).item() offset = np.random.randint(0, squareSize // 2, [1, ]).item() assert np.array_equal(NumCpp.trilSquare(squareSize, offset), np.tri(squareSize, k=offset)) squareSize = np.random.randint(10, 100, [1, ]).item() offset = np.random.randint(0, squareSize // 2, [1, ]).item() assert np.array_equal(NumCpp.trilSquareComplex(squareSize, offset), np.tri(squareSize, k=offset) + 1j * np.zeros([squareSize, squareSize])) shapeInput = np.random.randint(10, 100, [2, ]) offset = np.random.randint(0, np.min(shapeInput) // 2, [1, ]).item() assert np.array_equal(NumCpp.trilRect(shapeInput[0].item(), shapeInput[1].item(), offset), np.tri(shapeInput[0].item(), shapeInput[1].item(), k=offset)) shapeInput = np.random.randint(10, 100, [2, ]) offset = np.random.randint(0, np.min(shapeInput) // 2, [1, ]).item() assert np.array_equal(NumCpp.trilRectComplex(shapeInput[0].item(), shapeInput[1].item(), offset), np.tri(shapeInput[0].item(), shapeInput[1].item(), k=offset) + 1j * np.zeros(shapeInput)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) offset = np.random.randint(0, shape.rows // 2, [1, ]).item() assert np.array_equal(NumCpp.trilArray(cArray, offset), np.tril(data, k=offset)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) offset = np.random.randint(0, shape.rows // 2, [1, ]).item() assert np.array_equal(NumCpp.trilArray(cArray, offset), np.tril(data, k=offset)) #################################################################################### def test_triu(): squareSize = np.random.randint(10, 100, [1, ]).item() offset = np.random.randint(0, squareSize // 2, [1, ]).item() assert np.array_equal(NumCpp.triuSquare(squareSize, offset), np.tri(squareSize, k=-offset).T) squareSize = np.random.randint(10, 100, [1, ]).item() offset = np.random.randint(0, squareSize // 2, [1, ]).item() assert np.array_equal(NumCpp.triuSquareComplex(squareSize, offset), np.tri(squareSize, k=-offset).T + 1j * np.zeros([squareSize, squareSize])) shapeInput = np.random.randint(10, 100, [2, ]) offset = np.random.randint(0, np.min(shapeInput), [1, ]).item() # NOTE: numpy triu appears to have a bug... just check that NumCpp runs without error assert NumCpp.triuRect(shapeInput[0].item(), shapeInput[1].item(), offset) is not None shapeInput = np.random.randint(10, 100, [2, ]) offset = np.random.randint(0, np.min(shapeInput), [1, ]).item() # NOTE: numpy triu appears to have a bug... just check that NumCpp runs without error assert NumCpp.triuRectComplex(shapeInput[0].item(), shapeInput[1].item(), offset) is not None shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) offset = np.random.randint(0, shape.rows // 2, [1, ]).item() assert np.array_equal(NumCpp.triuArray(cArray, offset), np.triu(data, k=offset)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) offset = np.random.randint(0, shape.rows // 2, [1, ]).item() assert np.array_equal(NumCpp.triuArray(cArray, offset), np.triu(data, k=offset)) #################################################################################### def test_trim_zeros(): numElements = np.random.randint(50, 100, [1, ]).item() offsetBeg = np.random.randint(0, 10, [1, ]).item() offsetEnd = np.random.randint(10, numElements, [1, ]).item() shape = NumCpp.Shape(1, numElements) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) data[0, :offsetBeg] = 0 data[0, -offsetEnd:] = 0 cArray.setArray(data) assert np.array_equal(NumCpp.trim_zeros(cArray, 'f').getNumpyArray().flatten(), np.trim_zeros(data.flatten(), 'f')) numElements = np.random.randint(50, 100, [1, ]).item() offsetBeg = np.random.randint(0, 10, [1, ]).item() offsetEnd = np.random.randint(10, numElements, [1, ]).item() shape = NumCpp.Shape(1, numElements) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[0, :offsetBeg] = complex(0, 0) data[0, -offsetEnd:] = complex(0, 0) cArray.setArray(data) assert np.array_equal(NumCpp.trim_zeros(cArray, 'f').getNumpyArray().flatten(), np.trim_zeros(data.flatten(), 'f')) numElements = np.random.randint(50, 100, [1, ]).item() offsetBeg = np.random.randint(0, 10, [1, ]).item() offsetEnd = np.random.randint(10, numElements, [1, ]).item() shape = NumCpp.Shape(1, numElements) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) data[0, :offsetBeg] = 0 data[0, -offsetEnd:] = 0 cArray.setArray(data) assert np.array_equal(NumCpp.trim_zeros(cArray, 'b').getNumpyArray().flatten(), np.trim_zeros(data.flatten(), 'b')) numElements = np.random.randint(50, 100, [1, ]).item() offsetBeg = np.random.randint(0, 10, [1, ]).item() offsetEnd = np.random.randint(10, numElements, [1, ]).item() shape = NumCpp.Shape(1, numElements) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[0, :offsetBeg] = complex(0, 0) data[0, -offsetEnd:] = complex(0, 0) cArray.setArray(data) assert np.array_equal(NumCpp.trim_zeros(cArray, 'b').getNumpyArray().flatten(), np.trim_zeros(data.flatten(), 'b')) numElements = np.random.randint(50, 100, [1, ]).item() offsetBeg = np.random.randint(0, 10, [1, ]).item() offsetEnd = np.random.randint(10, numElements, [1, ]).item() shape = NumCpp.Shape(1, numElements) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) data[0, :offsetBeg] = 0 data[0, -offsetEnd:] = 0 cArray.setArray(data) assert np.array_equal(NumCpp.trim_zeros(cArray, 'fb').getNumpyArray().flatten(), np.trim_zeros(data.flatten(), 'fb')) numElements = np.random.randint(50, 100, [1, ]).item() offsetBeg = np.random.randint(0, 10, [1, ]).item() offsetEnd = np.random.randint(10, numElements, [1, ]).item() shape = NumCpp.Shape(1, numElements) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[0, :offsetBeg] = complex(0, 0) data[0, -offsetEnd:] = complex(0, 0) cArray.setArray(data) assert np.array_equal(NumCpp.trim_zeros(cArray, 'fb').getNumpyArray().flatten(), np.trim_zeros(data.flatten(), 'fb')) #################################################################################### def test_trunc(): value = np.random.rand(1).item() * np.pi assert NumCpp.truncScaler(value) == np.trunc(value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(NumCpp.truncArray(cArray), np.trunc(data)) #################################################################################### def test_union1d(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt32(shape) cArray2 = NumCpp.NdArrayUInt32(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) data2 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.union1d(cArray1, cArray2).getNumpyArray().flatten(), np.union1d(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.union1d(cArray1, cArray2).getNumpyArray().flatten(), np.union1d(data1, data2)) #################################################################################### def test_unique(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.unique(cArray).getNumpyArray().flatten(), np.unique(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.unique(cArray).getNumpyArray().flatten(), np.unique(data)) #################################################################################### def test_unwrap(): value = np.random.randn(1).item() * 3 * np.pi assert np.round(NumCpp.unwrapScaler(value), 9) == np.round(np.arctan2(np.sin(value), np.cos(value)), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.unwrapArray(cArray), 9), np.round(np.arctan2(np.sin(data), np.cos(data)), 9)) #################################################################################### def test_var(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.round(NumCpp.var(cArray, NumCpp.Axis.NONE).item(), 8) == np.round(np.var(data), 8) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.var(cArray, NumCpp.Axis.NONE) is not None shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.var(cArray, NumCpp.Axis.ROW).getNumpyArray().flatten(), 8), np.round(np.var(data, axis=0), 8)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.var(cArray, NumCpp.Axis.ROW) is not None shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.var(cArray, NumCpp.Axis.COL).getNumpyArray().flatten(), 8), np.round(np.var(data, axis=1), 8)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.var(cArray, NumCpp.Axis.COL) is not None #################################################################################### def test_vstack(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape3 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape4 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.vstack(cArray1, cArray2, cArray3, cArray4), np.vstack([data1, data2, data3, data4])) #################################################################################### def test_where(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayMask = NumCpp.NdArrayBool(shape) cArrayA = NumCpp.NdArray(shape) cArrayB = NumCpp.NdArray(shape) dataMask = np.random.randint(0, 2, [shape.rows, shape.cols], dtype=bool) dataA = np.random.randint(1, 100, [shape.rows, shape.cols]) dataB = np.random.randint(1, 100, [shape.rows, shape.cols]) cArrayMask.setArray(dataMask) cArrayA.setArray(dataA) cArrayB.setArray(dataB) assert np.array_equal(NumCpp.where(cArrayMask, cArrayA, cArrayB), np.where(dataMask, dataA, dataB)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayMask = NumCpp.NdArrayBool(shape) dataMask = np.random.randint(0, 2, [shape.rows, shape.cols], dtype=bool) cArrayMask.setArray(dataMask) cArrayA = NumCpp.NdArrayComplexDouble(shape) realA = np.random.randint(1, 100, [shape.rows, shape.cols]) imagA = np.random.randint(1, 100, [shape.rows, shape.cols]) dataA = realA + 1j * imagA cArrayA.setArray(dataA) cArrayB = NumCpp.NdArrayComplexDouble(shape) realB = np.random.randint(1, 100, [shape.rows, shape.cols]) imagB = np.random.randint(1, 100, [shape.rows, shape.cols]) dataB = realB + 1j * imagB cArrayB.setArray(dataB) assert np.array_equal(NumCpp.where(cArrayMask, cArrayA, cArrayB), np.where(dataMask, dataA, dataB)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayMask = NumCpp.NdArrayBool(shape) cArrayA = NumCpp.NdArray(shape) dataMask = np.random.randint(0, 2, [shape.rows, shape.cols], dtype=bool) dataA = np.random.randint(1, 100, [shape.rows, shape.cols]) dataB = np.random.randint(1, 100) cArrayMask.setArray(dataMask) cArrayA.setArray(dataA) assert np.array_equal(NumCpp.where(cArrayMask, cArrayA, dataB), np.where(dataMask, dataA, dataB)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayMask = NumCpp.NdArrayBool(shape) dataMask = np.random.randint(0, 2, [shape.rows, shape.cols], dtype=bool) cArrayMask.setArray(dataMask) cArrayA = NumCpp.NdArrayComplexDouble(shape) realA = np.random.randint(1, 100, [shape.rows, shape.cols]) imagA = np.random.randint(1, 100, [shape.rows, shape.cols]) dataA = realA + 1j * imagA cArrayA.setArray(dataA) realB = np.random.randint(1, 100) imagB = np.random.randint(1, 100) dataB = realB + 1j * imagB assert np.array_equal(NumCpp.where(cArrayMask, cArrayA, dataB), np.where(dataMask, dataA, dataB)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayMask = NumCpp.NdArrayBool(shape) cArrayB = NumCpp.NdArray(shape) dataMask = np.random.randint(0, 2, [shape.rows, shape.cols], dtype=bool) dataB = np.random.randint(1, 100, [shape.rows, shape.cols]) dataA = np.random.randint(1, 100) cArrayMask.setArray(dataMask) cArrayB.setArray(dataB) assert np.array_equal(NumCpp.where(cArrayMask, dataA, cArrayB), np.where(dataMask, dataA, dataB)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayMask = NumCpp.NdArrayBool(shape) dataMask = np.random.randint(0, 2, [shape.rows, shape.cols], dtype=bool) cArrayMask.setArray(dataMask) cArrayB = NumCpp.NdArrayComplexDouble(shape) realB = np.random.randint(1, 100, [shape.rows, shape.cols]) imagB = np.random.randint(1, 100, [shape.rows, shape.cols]) dataB = realB + 1j * imagB cArrayB.setArray(dataB) realA = np.random.randint(1, 100) imagA = np.random.randint(1, 100) dataA = realA + 1j * imagA assert np.array_equal(NumCpp.where(cArrayMask, dataA, cArrayB), np.where(dataMask, dataA, dataB)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayMask = NumCpp.NdArrayBool(shape) dataMask = np.random.randint(0, 2, [shape.rows, shape.cols], dtype=bool) cArrayMask.setArray(dataMask) dataB = np.random.randint(1, 100) dataA = np.random.randint(1, 100) assert np.array_equal(NumCpp.where(cArrayMask, dataA, dataB), np.where(dataMask, dataA, dataB)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayMask = NumCpp.NdArrayBool(shape) dataMask = np.random.randint(0, 2, [shape.rows, shape.cols], dtype=bool) cArrayMask.setArray(dataMask) realB =
np.random.randint(1, 100)
numpy.random.randint
from typing import Union, Optional import pytest import scanpy as sc import cellrank.external as cre from anndata import AnnData from cellrank.tl.kernels import ConnectivityKernel from cellrank.external.kernels._utils import MarkerGenes from cellrank.external.kernels._wot_kernel import LastTimePoint import numpy as np import pandas as pd from scipy.sparse import spmatrix, csr_matrix from pandas.core.dtypes.common import is_categorical_dtype from matplotlib.cm import get_cmap from matplotlib.colors import to_hex class TestOTKernel: def test_no_connectivities(self, adata_large: AnnData): del adata_large.obsp["connectivities"] terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) ok = ok.compute_transition_matrix(1, 0.001) assert ok._conn is None np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) def test_method_not_implemented(self, adata_large: AnnData): terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) with pytest.raises( NotImplementedError, match="Method `'unbal'` is not yet implemented." ): ok.compute_transition_matrix(1, 0.001, method="unbal") def test_no_terminal_states(self, adata_large: AnnData): with pytest.raises(RuntimeError, match="Unable to initialize the kernel."): cre.kernels.StationaryOTKernel( adata_large, g=np.ones((adata_large.n_obs,), dtype=np.float64), ) def test_normal_run(self, adata_large: AnnData): terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) ok = ok.compute_transition_matrix(1, 0.001) assert isinstance(ok, cre.kernels.StationaryOTKernel) assert isinstance(ok._transition_matrix, csr_matrix) np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) assert isinstance(ok.params, dict) @pytest.mark.parametrize("connectivity_kernel", (None, ConnectivityKernel)) def test_compute_projection( self, adata_large: AnnData, connectivity_kernel: Optional[ConnectivityKernel] ): terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) ok = ok.compute_transition_matrix(1, 0.001) if connectivity_kernel is not None: ck = connectivity_kernel(adata_large).compute_transition_matrix() combined_kernel = 0.9 * ok + 0.1 * ck combined_kernel.compute_transition_matrix() else: combined_kernel = ok expected_error = ( r"<StationaryOTKernel> is not a kNN based kernel. The embedding projection " r"only works for kNN based kernels." ) with pytest.raises(AttributeError, match=expected_error): combined_kernel.compute_projection() class TestWOTKernel: def test_no_connectivities(self, adata_large: AnnData): del adata_large.obsp["connectivities"] ok = cre.kernels.WOTKernel( adata_large, time_key="age(days)" ).compute_transition_matrix() assert ok._conn is None np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) def test_invalid_solver_kwargs(self, adata_large: AnnData): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") with pytest.raises(TypeError, match="unexpected keyword argument 'foo'"): ok.compute_transition_matrix(foo="bar") def test_inversion_updates_adata(self, adata_large: AnnData): key = "age(days)" ok = cre.kernels.WOTKernel(adata_large, time_key=key) assert is_categorical_dtype(adata_large.obs[key]) assert adata_large.obs[key].cat.ordered np.testing.assert_array_equal(ok.experimental_time, adata_large.obs[key]) orig_time = ok.experimental_time ok = ~ok inverted_time = ok.experimental_time assert is_categorical_dtype(adata_large.obs[key]) assert adata_large.obs[key].cat.ordered np.testing.assert_array_equal(ok.experimental_time, adata_large.obs[key]) np.testing.assert_array_equal( orig_time.cat.categories, inverted_time.cat.categories ) np.testing.assert_array_equal(orig_time.index, inverted_time.index) with pytest.raises(AssertionError): np.testing.assert_array_equal(orig_time, inverted_time) @pytest.mark.parametrize("cmap", ["inferno", "viridis"]) def test_update_colors(self, adata_large: AnnData, cmap: str): ckey = "age(days)_colors" _ = cre.kernels.WOTKernel(adata_large, time_key="age(days)", cmap=cmap) colors = adata_large.uns[ckey] cmap = get_cmap(cmap) assert isinstance(colors, np.ndarray) assert colors.shape == (2,) np.testing.assert_array_equal(colors, [to_hex(cmap(0)), to_hex(cmap(cmap.N))]) @pytest.mark.parametrize("cmat", [None, "Ms", "X_pca", "good_shape", "bad_shape"]) def test_cost_matrices(self, adata_large: AnnData, cmat: str): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") if isinstance(cmat, str) and "shape" in cmat: cost_matrices = { (12.0, 35.0): np.random.normal(size=(73 + ("bad" in cmat), 127)) } else: cost_matrices = cmat if cmat == "bad_shape": with pytest.raises(ValueError, match=r"Expected cost matrix for time pair"): ok.compute_transition_matrix(cost_matrices=cost_matrices) else: ok = ok.compute_transition_matrix(cost_matrices=cost_matrices) param = ok.params["cost_matrices"] if cmat == "Ms": assert param == "layer:Ms" elif cmat == "X_pca": assert param == "obsm:X_pca" elif cmat == "good_shape": # careful, param is `nstr`, which does not equal anything assert str(param) == "precomputed" else: assert param == "default" @pytest.mark.parametrize("n_iters", [3, 5]) def test_growth_rates(self, adata_large: AnnData, n_iters: int): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") ok = ok.compute_transition_matrix(growth_iters=n_iters) assert isinstance(ok.growth_rates, pd.DataFrame) np.testing.assert_array_equal(adata_large.obs_names, ok.growth_rates.index) np.testing.assert_array_equal( ok.growth_rates.columns, [f"g{i}" for i in range(n_iters + 1)] ) np.testing.assert_array_equal( adata_large.obs["estimated_growth_rates"], ok.growth_rates[f"g{n_iters}"] ) assert ok.params["growth_iters"] == n_iters @pytest.mark.parametrize("key_added", [None, "gr"]) def test_birth_death_process(self, adata_large: AnnData, key_added: Optional[str]): np.random.seed(42) adata_large.obs["foo"] = np.random.normal(size=(adata_large.n_obs,)) adata_large.obs["bar"] = np.random.normal(size=(adata_large.n_obs,)) ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") gr = ok.compute_initial_growth_rates("foo", "bar", key_added=key_added) if key_added is None: assert isinstance(gr, pd.Series) np.testing.assert_array_equal(gr.index, adata_large.obs_names) else: assert gr is None assert "gr" in adata_large.obs @pytest.mark.parametrize("ltp", list(LastTimePoint)) def test_last_time_point(self, adata_large: AnnData, ltp: LastTimePoint): key = "age(days)" ok = cre.kernels.WOTKernel(adata_large, time_key=key).compute_transition_matrix( last_time_point=ltp, conn_kwargs={"n_neighbors": 11}, threshold=None, ) ixs = np.where(adata_large.obs[key] == 35.0)[0] T = ok.transition_matrix[ixs, :][:, ixs].A if ltp == LastTimePoint.UNIFORM: np.testing.assert_allclose(T, np.ones_like(T) / float(len(ixs))) elif ltp == LastTimePoint.DIAGONAL: np.testing.assert_allclose(T, np.eye(len(ixs))) elif ltp == LastTimePoint.CONNECTIVITIES: adata_subset = adata_large[adata_large.obs[key] == 35.0] sc.pp.neighbors(adata_subset, n_neighbors=11) T_actual = ( ConnectivityKernel(adata_subset) .compute_transition_matrix() .transition_matrix.A ) np.testing.assert_allclose(T, T_actual) @pytest.mark.parametrize("organism", ["human", "mouse"]) def test_compute_scores_default(self, adata_large: AnnData, organism: str): pk, ak = "p_score", "a_score" if organism == "human": adata_large.var_names = adata_large.var_names.str.upper() ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") assert pk not in ok.adata.obs assert ak not in ok.adata.obs ok.compute_initial_growth_rates( organism=organism, proliferation_key=pk, apoptosis_key=ak, use_raw=False ) assert pk in ok.adata.obs assert ak in ok.adata.obs def test_normal_run(self, adata_large: AnnData): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") ok = ok.compute_transition_matrix() assert isinstance(ok, cre.kernels.WOTKernel) assert isinstance(ok._transition_matrix, csr_matrix) np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) assert isinstance(ok.params, dict) assert isinstance(ok.growth_rates, pd.DataFrame) assert isinstance(ok.transport_maps, dict) np.testing.assert_array_equal(adata_large.obs_names, ok.growth_rates.index) np.testing.assert_array_equal(ok.growth_rates.columns, ["g0", "g1"]) assert isinstance(ok.transport_maps[12.0, 35.0], AnnData) assert ok.transport_maps[12.0, 35.0].X.dtype == np.float64 @pytest.mark.parametrize("threshold", [None, 90, 100, "auto"]) def test_threshold(self, adata_large, threshold: Optional[Union[int, str]]): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") ok = ok.compute_transition_matrix(threshold=threshold) assert isinstance(ok._transition_matrix, csr_matrix) np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) assert ok.params["threshold"] == threshold if threshold == 100: for row in ok.transition_matrix: np.testing.assert_allclose(row.data, 1.0 / len(row.data)) def test_copy(self, adata_large: AnnData): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") ok = ok.compute_transition_matrix() ok2 = ok.copy() assert isinstance(ok2, cre.kernels.WOTKernel) assert ok is not ok2
np.testing.assert_array_equal(ok.transition_matrix.A, ok2.transition_matrix.A)
numpy.testing.assert_array_equal
from math import fabs import numpy as np from numba import jit from numba.extending import overload @overload(np.clip) def np_clip(a, a_min, a_max, out=None): """ Numba Overload of np.clip :type a: np.ndarray :type a_min: int :type a_max: int :type out: np.ndarray :rtype: np.ndarray """ if out is None: out = np.empty_like(a) for i in range(len(a)): if a[i] < a_min: out[i] = a_min elif a[i] > a_max: out[i] = a_max else: out[i] = a[i] return out @jit(nopython=True) def convolve(data, kernel): """ Convolution 1D Array :type data: np.ndarray :type kernel: np.ndarray :rtype: np.ndarray """ size_data = len(data) size_kernel = len(kernel) size_out = size_data - size_kernel + 1 out = np.array([np.nan] * size_out) kernel = np.flip(kernel) for i in range(size_out): window = data[i:i + size_kernel] out[i] = sum([window[j] * kernel[j] for j in range(size_kernel)]) return out @jit(nopython=True) def sma(data, period): """ Simple Moving Average :type data: np.ndarray :type period: int :rtype: np.ndarray """ size = len(data) out = np.array([np.nan] * size) for i in range(period - 1, size): window = data[i - period + 1:i + 1] out[i] =
np.mean(window)
numpy.mean
"""Orthogonal matching pursuit algorithms """ # Author: <NAME> # # License: BSD 3 clause import warnings import numpy as np from scipy import linalg from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel, _pre_fit from ..base import RegressorMixin from ..utils import array2d, as_float_array from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed from ..utils.arrayfuncs import solve_triangular premature = """ Orthogonal matching pursuit ended prematurely due to linear dependence in the dictionary. The requested precision might not have been met. """ def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True, return_path=False): """Orthogonal Matching Pursuit step using the Cholesky decomposition. Parameters ---------- X : array, shape (n_samples, n_features) Input dictionary. Columns are assumed to have unit norm. y : array, shape (n_samples,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coef : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. """ if copy_X: X = X.copy('F') else: # even if we are allowed to overwrite, still copy it if bad order X = np.asfortranarray(X) min_float = np.finfo(X.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,)) potrs, = get_lapack_funcs(('potrs',), (X,)) alpha = np.dot(X.T, y) residual = y gamma = np.empty(0) n_active = 0 indices = np.arange(X.shape[1]) # keeping track of swapping max_features = X.shape[1] if tol is not None else n_nonzero_coefs L = np.empty((max_features, max_features), dtype=X.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(np.dot(X.T, residual))) if lam < n_active or alpha[lam] ** 2 < min_float: # atom already selected or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=2) break if n_active > 0: # Updates the Cholesky decomposition of X' X L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam]) solve_triangular(L[:n_active, :n_active], L[n_active, :n_active]) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=2) break L[n_active, n_active] = np.sqrt(1 - v) X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam]) alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active] indices[n_active], indices[lam] = indices[lam], indices[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma residual = y - np.dot(X[:, :n_active], gamma) if tol is not None and nrm2(residual) ** 2 <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active] else: return gamma, indices[:n_active] def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None, copy_Gram=True, copy_Xy=True, return_path=False): """Orthogonal Matching Pursuit step on a precomputed Gram matrix. This function uses the the Cholesky decomposition method. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data matrix Xy : array, shape (n_features,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol_0 : float Squared norm of y, required if tol is not None. tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coefs : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. """ Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram) if copy_Xy: Xy = Xy.copy() min_float = np.finfo(Gram.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,)) potrs, = get_lapack_funcs(('potrs',), (Gram,)) indices = np.arange(len(Gram)) # keeping track of swapping alpha = Xy tol_curr = tol_0 delta = 0 gamma =
np.empty(0)
numpy.empty
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Export PINNs (Schrodinger) model""" import numpy as np import mindspore.common.dtype as mstype from mindspore import (Tensor, context, export, load_checkpoint, load_param_into_net) from src.Schrodinger.net import PINNs def export_sch(num_neuron, N0, Nb, Nf, ck_file, export_format, export_name): """ export PINNs for Schrodinger model Args: num_neuron (int): number of neurons for fully connected layer in the network N0 (int): number of data points sampled from the initial condition, 0<N0<=256 for the default NLS dataset Nb (int): number of data points sampled from the boundary condition, 0<Nb<=201 for the default NLS dataset. Size of training set = N0+2*Nb Nf (int): number of collocation points, collocation points are used to calculate regularizer for the network from Schoringer equation. 0<Nf<=51456 for the default NLS dataset ck_file (str): path for checkpoint file export_format (str): file format to export export_name (str): name of exported file """ context.set_context(mode=context.GRAPH_MODE, device_target='GPU') layers = [2, num_neuron, num_neuron, num_neuron, num_neuron, 2] lb = np.array([-5.0, 0.0]) ub =
np.array([5.0, np.pi/2])
numpy.array
import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_validate from mlutil.eval import TimeSeriesSplit def test_dummy(): assert True def test_TimeSeriesSplit(): X = np.vstack([
np.random.normal(size=100)
numpy.random.normal
import random from numpy import array from automaton import RuleParser from automaton.CellState import CellState from automaton.ProcessingFunction import get_neural_processing_function_bundle from automaton.SimpleProcessor import SimpleProcessor from automaton.World import World from neural.SimpleLayeredNeuralNetwork import SimpleLayeredNeuralNetwork from neural.SimpleNeuralNetwork import SimpleNeuralNetwork from util.training import load_training_set, reduce_training_set def learn_from_file(file_learn, file_output=None, cycles=10000, reduce=False, multi=False, neural_num=3): training_set_tmp = load_training_set(file_learn) if reduce: training_set_tmp = reduce_training_set(training_set_tmp) if multi: network = SimpleLayeredNeuralNetwork() network.add_layer(neural_num, len(training_set_tmp[0][0])) network.add_layer(1, neural_num) layers = network.layers else: network = SimpleNeuralNetwork(len(training_set_tmp[0][0])) layers = network.synaptic_weights network.print_weights() network.train(
array(training_set_tmp[0])
numpy.array
# log-likelihoods for pymc3. # requires theano import numpy as np from scipy.optimize._numdiff import approx_derivative import theano.tensor as tt class _LogLikeWithGrad(tt.Op): # Theano op for calculating a log-likelihood itypes = [tt.dvector] # expects a vector of parameter values when called otypes = [tt.dscalar] # outputs a single scalar value (the log likelihood) def __init__(self, loglike): # add inputs as class attributes self.likelihood = loglike # initialise the gradient Op (below) self.logpgrad = _LogLikeGrad(self.likelihood) def perform(self, node, inputs, outputs): # the method that is used when calling the Op (theta,) = inputs # this will contain my variables # call the log-likelihood function logl = self.likelihood(theta) outputs[0][0] =
np.array(logl)
numpy.array
from __future__ import absolute_import, division, print_function from six.moves import map import numpy as np import matplotlib as mpl import utool as ut #(print, print_, printDBG, rrr, profile) = utool.inject(__name__, '[custom_constants]', DEBUG=False) ut.noinject(__name__, '[custom_constants]') # GENERAL FONTS SMALLEST = 6 SMALLER = 8 SMALL = 10 MED = 12 LARGE = 14 LARGER = 18 #fpargs = dict(family=None, style=None, variant=None, stretch=None, fname=None) def FontProp(*args, **kwargs): r""" overwrite fontproperties with custom settings Kwargs: fname=u'', name=u'', style=u'normal', variant=u'normal', weight=u'normal', stretch=u'normal', size=u'medium' """ kwargs['family'] = 'monospace' font_prop = mpl.font_manager.FontProperties(*args, **kwargs) return font_prop FONTS = ut.DynStruct() FONTS.smallest = FontProp(weight='light', size=SMALLEST) FONTS.small = FontProp(weight='light', size=SMALL) FONTS.smaller = FontProp(weight='light', size=SMALLER) FONTS.med = FontProp(weight='light', size=MED) FONTS.large = FontProp(weight='light', size=LARGE) FONTS.medbold = FontProp(weight='bold', size=MED) FONTS.largebold = FontProp(weight='bold', size=LARGE) # SPECIFIC FONTS if False: # personal FONTS.legend = FONTS.small FONTS.figtitle = FONTS.med FONTS.axtitle = FONTS.small FONTS.subtitle = FONTS.med #FONTS.xlabel = FONTS.smaller FONTS.xlabel = FONTS.small FONTS.ylabel = FONTS.small FONTS.relative = FONTS.smallest else: # personal FONTS.legend = FONTS.med FONTS.figtitle = FONTS.large FONTS.axtitle = FONTS.med FONTS.subtitle = FONTS.med #FONTS.xlabel = FONTS.smaller FONTS.xlabel = FONTS.med FONTS.ylabel = FONTS.med FONTS.relative = FONTS.med # COLORS RED = np.array((255, 0, 0, 255)) / 255.0 YELLOW = np.array((255, 255, 0, 255)) / 255.0 GREEN = np.array(( 0, 255, 0, 255)) / 255.0 CYAN = np.array(( 0, 255, 255, 255)) / 255.0 BLUE = np.array(( 0, 0, 255, 255)) / 255.0 MAGENTA = np.array((255, 0, 255, 255)) / 255.0 ORANGE = np.array((255, 127, 0, 255)) / 255.0 BLACK = np.array(( 0, 0, 0, 255)) / 255.0 WHITE = np.array((255, 255, 255, 255)) / 255.0 GRAY = np.array((127, 127, 127, 255)) / 255.0 LIGHTGRAY = np.array((220, 220, 220, 255)) / 255.0 DEEP_PINK = np.array((255, 20, 147, 255)) / 255.0 PINK = np.array((255, 100, 100, 255)) / 255.0 LIGHT_PINK = np.array((255, 200, 200, 255)) / 255.0 FALSE_RED = np.array((255, 51, 0, 255)) / 255.0 TRUE_GREEN = np.array(( 0, 255, 0, 255)) / 255.0 # TRUE_BLUE = np.array(( 0, 255, 255, 255)) / 255.0 TRUE_BLUE = np.array(( 0, 115, 207, 255)) / 255.0 DARK_GREEN = np.array(( 0, 127, 0, 255)) / 255.0 DARK_BLUE = np.array(( 0, 0, 127, 255)) / 255.0 DARK_RED = np.array((127, 0, 0, 255)) / 255.0 DARK_ORANGE = np.array((127, 63, 0, 255)) / 255.0 DARK_YELLOW = np.array((127, 127, 0, 255)) / 255.0 PURPLE = np.array((102, 0, 153, 255)) / 255.0 BRIGHT_PURPLE = np.array((255, 0, 255, 255)) / 255.0 LIGHT_PURPLE = np.array((255, 102, 255, 255)) / 255.0 BRIGHT_GREEN = np.array(( 39, 255, 20, 255)) / 255.0 PURPLE2 = np.array((150, 51, 200, 255)) / 255.0 LIGHT_BLUE = np.array((102, 100, 255, 255)) / 255.0 LIGHT_GREEN = np.array((102, 255, 102, 255)) / 255.0 NEUTRAL = np.array((225, 229, 231, 255)) / 255.0 NEUTRAL_BLUE = np.array((159, 159, 241, 255)) / 255.0 UNKNOWN_PURP = PURPLE # GOLDEN RATIOS PHI_numer = 1 +
np.sqrt(5)
numpy.sqrt
#!/usr/bin/env python # coding: utf-8 # ## Model Training and Evaluation # ### Load Preprocessed data # In[1]: # retrieve the preprocessed data from previous notebook get_ipython().run_line_magic('store', '-r x_train') get_ipython().run_line_magic('store', '-r x_test') get_ipython().run_line_magic('store', '-r y_train') get_ipython().run_line_magic('store', '-r y_test') get_ipython().run_line_magic('store', '-r yy') get_ipython().run_line_magic('store', '-r le') # ### Initial model architecture - MLP # # We will start with constructing a Multilayer Perceptron (MLP) Neural Network using Keras and a Tensorflow backend. # # Starting with a `sequential` model so we can build the model layer by layer. # # We will begin with a simple model architecture, consisting of three layers, an input layer, a hidden layer and an output layer. All three layers will be of the `dense` layer type which is a standard layer type that is used in many cases for neural networks. # # The first layer will receive the input shape. As each sample contains 40 MFCCs (or columns) we have a shape of (1x40) this means we will start with an input shape of 40. # # The first two layers will have 256 nodes. The activation function we will be using for our first 2 layers is the `ReLU`, or `Rectified Linear Activation`. This activation function has been proven to work well in neural networks. # # We will also apply a `Dropout` value of 50% on our first two layers. This will randomly exclude nodes from each update cycle which in turn results in a network that is capable of better generalisation and is less likely to overfit the training data. # # Our output layer will have 10 nodes (num_labels) which matches the number of possible classifications. The activation is for our output layer is `softmax`. Softmax makes the output sum up to 1 so the output can be interpreted as probabilities. The model will then make its prediction based on which option has the highest probability. # In[2]: import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.optimizers import Adam from keras.utils import np_utils from sklearn import metrics num_labels = yy.shape[1] filter_size = 2 # Construct model model = Sequential() model.add(Dense(256, input_shape=(40,))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(256)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_labels)) model.add(Activation('softmax')) # ### Compiling the model # # For compiling our model, we will use the following three parameters: # # * Loss function - we will use `categorical_crossentropy`. This is the most common choice for classification. A lower score indicates that the model is performing better. # # * Metrics - we will use the `accuracy` metric which will allow us to view the accuracy score on the validation data when we train the model. # # * Optimizer - here we will use `adam` which is a generally good optimizer for many use cases. # # In[3]: # Compile the model model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam') # In[4]: # Display model architecture summary model.summary() # Calculate pre-training accuracy score = model.evaluate(x_test, y_test, verbose=0) accuracy = 100*score[1] print("Pre-training accuracy: %.4f%%" % accuracy) # ### Training # # Here we will train the model. # # We will start with 100 epochs which is the number of times the model will cycle through the data. The model will improve on each cycle until it reaches a certain point. # # We will also start with a low batch size, as having a large batch size can reduce the generalisation ability of the model. # In[5]: from keras.callbacks import ModelCheckpoint from datetime import datetime num_epochs = 100 num_batch_size = 32 checkpointer = ModelCheckpoint(filepath='saved_models/weights.best.basic_mlp.hdf5', verbose=1, save_best_only=True) start = datetime.now() model.fit(x_train, y_train, batch_size=num_batch_size, epochs=num_epochs, validation_data=(x_test, y_test), callbacks=[checkpointer], verbose=1) duration = datetime.now() - start print("Training completed in time: ", duration) # ### Test the model # # Here we will review the accuracy of the model on both the training and test data sets. # In[6]: # Evaluating the model on the training and testing set score = model.evaluate(x_train, y_train, verbose=0) print("Training Accuracy: ", score[1]) score = model.evaluate(x_test, y_test, verbose=0) print("Testing Accuracy: ", score[1]) # The initial Training and Testing accuracy scores are quite high. As there is not a great difference between the Training and Test scores (~5%) this suggests that the model has not suffered from overfitting. # ### Predictions # # Here we will build a method which will allow us to test the models predictions on a specified audio .wav file. # In[7]: import librosa import numpy as np def extract_feature(file_name): try: audio_data, sample_rate = librosa.load(file_name, res_type='kaiser_fast') mfccs = librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=40) mfccsscaled = np.mean(mfccs.T,axis=0) except Exception as e: print("Error encountered while parsing file: ", file) return None, None return np.array([mfccsscaled]) # In[8]: def print_prediction(file_name): prediction_feature = extract_feature(file_name) predicted_vector = model.predict_classes(prediction_feature) predicted_class = le.inverse_transform(predicted_vector) print("The predicted class is:", predicted_class[0], '\n') predicted_proba_vector = model.predict_proba(prediction_feature) predicted_proba = predicted_proba_vector[0] for i in range(len(predicted_proba)): category = le.inverse_transform(
np.array([i])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 2 23:07:56 2017 @author: <NAME> """ import numpy as np import matplotlib.pyplot as plt import scipy.linalg as scipylin def bvpinit(A, mesh, degree, Proj_L, B_L, Proj_R, B_R): # Begin with some error checking to make sure that everything will work # Check that A and the projection conditions are callable. If not (i.e. # they are arrays), then make them callable so that the code in solve can # treat them as if they are callable objects. This way, the user can # either pass in arrays or functions if not callable(A): A_copy = A.copy() def A(x): return A_copy if not callable(Proj_L): Proj_L_copy = Proj_L.copy() def Proj_L(x): return Proj_L_copy if not callable(Proj_R): Proj_R_copy = Proj_R.copy() def Proj_R(x): return Proj_R_copy if not callable(B_L): B_L_copy = B_L.copy() def B_L(x): return B_L_copy if not callable(B_R): B_R_copy = B_R.copy() def B_R(x): return B_R_copy # Get our system dimensions, and the number of intervals sys_dim = len(A(mesh[0])) num_intervals = len(mesh)-1 # Check that mesh is in increasing order if np.all(mesh != sorted(mesh)): raise ValueError("To initialize cheby_bvp, mesh must be in order from"+ " least to greatest.") # Check that A returns a square shape dimA = A(1).shape if (len(dimA) != 2) or (dimA[0] != dimA[1]): raise ValueError("To initialize cheby_bvp, A must be square, but "+ "has shape "+str(dimA)) # Check that Proj_L and Proj_R return arrays that have 2 dimensions dimPR = Proj_R(mesh[-1]).shape dimPL = Proj_L(mesh[0]).shape if len(dimPR) != 2 or len(dimPL) != 2: raise ValueError("To initialize cheby_bvp, Proj_L and Proj_R must"+ " have 2 dimensions. However, Proj_L has "+str(len(dimPL))+ " dimensions, and Proj_R has "+str(len(dimPR))+" dimensions.") # Check that the number of boundary conditions do not exceed the dimensions # of our system dimL = B_L(mesh[0]).shape[0] dimR = B_R(mesh[-1]).shape[0] if dimL + dimR != sys_dim: raise ValueError("""Cannot initialize cheby_bvp because the system's boundary conditions are overdetermined or underdetermined. You must have len(B_L)+len(B_R) == sys_dim, where sys_dim is A.shape[0] (e.g. if A is a 4x4, len(B_L)+len(B_R) = 4) Currently, you have len(B_L) = """+str(dimL)+", len(B_R) = "+str(dimR)+""", and sys_dim = """+str(sys_dim)+".") # Initialize d, the dict with subinterval information d = Struct( { 'A': A, 'Proj_L': Proj_L, 'B_L': B_L, 'Proj_R': Proj_R, 'B_R': B_R, 'N': np.zeros((num_intervals), dtype=np.intp), #Is this field necessary? 'a': np.zeros((num_intervals)), 'b': np.zeros((num_intervals)), 'theta': np.zeros((num_intervals, degree)), 'nodes_0': np.zeros((num_intervals, degree)), #Is this field necessary? 'nodes': np.zeros((num_intervals, degree)), 'Tcf': np.zeros((num_intervals, degree, degree),dtype=np.complex), 'Ta': np.zeros((num_intervals, degree),dtype=np.complex), 'Tb': np.zeros((num_intervals, degree),dtype=np.complex), 'Ta_x': np.zeros((num_intervals, degree),dtype=np.complex), 'Tb_x': np.zeros((num_intervals, degree),dtype=np.complex), 'T': np.zeros((num_intervals, degree, degree),dtype=np.complex), 'T_x': np.zeros((num_intervals, degree, degree),dtype=np.complex), 'T_xcf': np.zeros((num_intervals, degree, degree),dtype=np.complex), 'cf': np.zeros((num_intervals, sys_dim, degree),dtype=np.complex), 'cfx': np.zeros((num_intervals, sys_dim, degree),dtype=np.complex), 'err': np.zeros((num_intervals)), 'x': [], 'y': [], 'dim': sys_dim }) # Filling in subinterval values [a,b] d['a'] = mesh[:-1] d['b'] = mesh[1:] # Degree of polynomials d['N'].fill(degree) out = cheby_bvp(d) return out class Struct(dict): """ Struct inherits from dict and adds this functionality: Instead of accessing the keys of struct by typing struct['key'], one may instead type struct.key. These two options will do exactly the same thing. A new Struct object can also be created with a dict as an input parameter, and the resulting Struct object will have the same data members as the dict passed to it. """ def __init__(self,inpt={}): super(Struct,self).__init__(inpt) def __getattr__(self, name): return self.__getitem__(name) def __setattr__(self,name,value): self.__setitem__(name,value) class cheby_bvp(Struct): """ The cheby_bvp class inherits from Struct. When a user calls bvpinit, a cheby_bvp object is returned which will have the methods below, as well as the data fields in bvpinit, as its attributes. """ def __init__(self,startStruct): super(cheby_bvp,self).__init__(startStruct) def solve(self, max_err=None, xSize=25): """ solve takes a cheby_bvp object and solves the boundary value problem that is contained in it. """ #d = dict(d) # copies d so that init could be reused if wanted; should it be copied? sys_dim = len(self['A'](self['a'][0])) num_intervals = len(self['a']) # total number of nodes we solve for; iterates through each interval equ_dim = 0; # interval specific objects for j in range(num_intervals): # degree of polynomial degreeRange = np.array(range(self['N'][j])) equ_dim = equ_dim + self['N'][j] # Chebyshev nodes self['theta'][j] = (degreeRange + 0.5)*np.pi/self['N'][j] # nodes in [-1,1] self['nodes_0'][j] = np.cos(self['theta'][j]) # nodes in [a,b] self['nodes'][j] = 0.5*(self['a'][j]+self['b'][j])+0.5*(self['a'][j]-self['b'][j])*self['nodes_0'][j] # Transformation to get Chebyshev coefficients Id2 = (2/self['N'][j])*np.eye(self['N'][j]) Id2[0,0] = Id2[0,0]/2 self['Tcf'][j] = Id2.dot(np.cos(np.outer(self['theta'][j], degreeRange)).T) # Chebyshev polynomials at the end points self['Ta'][j] = np.cos(np.zeros((1,self['N'][j]))) self['Tb'][j] = np.cos(np.pi*degreeRange) # Derivative of Chebyshev polynomials at end points self['Ta_x'][j] =
np.square(degreeRange)
numpy.square
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Imaging improve: reinit, uncert, rand_norm, rand_splitnorm, rand_pointing, slice, slice_inv_sq, crop, rebin, groupixel smooth, artifact, mask Jy_per_pix_to_MJy_per_sr(improve): header, image, wave iuncert(improve): unc islice(improve): image, wave, filenames, clean icrop(improve): header, image, wave irebin(improve): header, image, wave igroupixel(improve): header, image, wave ismooth(improve): header, image, wave imontage(improve): reproject, reproject_mc, coadd, clean iswarp(improve): footprint, combine, combine_mc, clean iconvolve(improve): spitzer_irs, choker, do_conv, image, wave, filenames, clean cupid(improve): spec_build, sav_build, header, image, wave wmask, wclean, interfill, hextract, hswarp, concatenate """ from tqdm import tqdm, trange import os import math import numpy as np from scipy.io import readsav from scipy.interpolate import interp1d from astropy import wcs from astropy.io import ascii from astropy.table import Table from reproject import reproject_interp, reproject_exact, reproject_adaptive from reproject.mosaicking import reproject_and_coadd import subprocess as SP import warnings # warnings.filterwarnings("ignore", category=RuntimeWarning) # warnings.filterwarnings("ignore", message="Skipping SYSTEM_VARIABLE record") ## Local from utilities import InputError from inout import (fitsext, csvext, ascext, fclean, read_fits, write_fits, savext, write_hdf5, # read_csv, write_csv, read_ascii, ) from arrays import listize, closest, pix2sup, sup2pix from maths import nanavg, bsplinterpol from astrom import fixwcs, get_pc, pix2sr ##----------------------------------------------- ## ## <improve> based tools ## ##----------------------------------------------- class improve: ''' IMage PROcessing VEssel ''' def __init__(self, filIN=None, header=None, image=None, wave=None, wmod=0, verbose=False): ''' self: filIN, wmod, hdr, w, cdelt, pc, cd, Ndim, Nx, Ny, Nw, im, wvl ''' ## INPUTS self.filIN = filIN self.wmod = wmod self.verbose = verbose ## Read image/cube if filIN is not None: ds = read_fits(filIN) self.hdr = ds.header self.im = ds.data self.wvl = ds.wave else: self.hdr = header self.im = image self.wvl = wave if self.im is not None: self.Ndim = self.im.ndim if self.Ndim==3: self.Nw, self.Ny, self.Nx = self.im.shape ## Nw=1 patch if self.im.shape[0]==1: self.Ndim = 2 elif self.Ndim==2: self.Ny, self.Nx = self.im.shape self.Nw = None if self.hdr is not None: hdr = self.hdr.copy() ws = fixwcs(header=hdr, mode='red_dim') self.hdred = ws.header # reduced header self.w = ws.wcs pcdelt = get_pc(wcs=ws.wcs) self.cdelt = pcdelt.cdelt self.pc = pcdelt.pc self.cd = pcdelt.cd if verbose==True: print('<improve> file: ', filIN) print('Raw size (pix): {} * {}'.format(self.Nx, self.Ny)) def reinit(self, filIN=None, header=None, image=None, wave=None, wmod=0, verbose=False): ''' Update init variables ''' ## INPUTS self.filIN = filIN self.wmod = wmod self.verbose = verbose ## Read image/cube if filIN is not None: ds = read_fits(filIN) self.hdr = ds.header self.im = ds.data self.wvl = ds.wave else: self.hdr = header self.im = image self.wvl = wave self.Ndim = self.im.ndim self.hdr['NAXIS'] = self.Ndim if self.Ndim==3: self.Nw, self.Ny, self.Nx = self.im.shape ## Nw=1 patch if self.im.shape[0]==1: self.Ndim = 2 del self.hdr['NAXIS3'] else: self.hdr['NAXIS3'] = self.Nw elif self.Ndim==2: self.Ny, self.Nx = self.im.shape self.Nw = None self.hdr['NAXIS2'] = self.Ny self.hdr['NAXIS1'] = self.Nx hdr = self.hdr.copy() ws = fixwcs(header=hdr, mode='red_dim') self.hdred = ws.header # reduced header self.w = ws.wcs pcdelt = get_pc(wcs=ws.wcs) self.cdelt = pcdelt.cdelt self.pc = pcdelt.pc self.cd = pcdelt.cd if verbose==True: print('<improve> file: ', filIN) print('Image size (pix): {} * {}'.format(self.Nx, self.Ny)) def uncert(self, filOUT=None, filUNC=None, filWGT=None, wfac=1., BG_image=None, BG_weight=None, zerovalue=np.nan): ''' Estimate uncertainties from the background map So made error map is uniform/weighted ------ INPUT ------ filOUT output uncertainty map (FITS) filUNC input uncertainty map (FITS) filWGT input weight map (FITS) wfac multiplication factor for filWGT (Default: 1) BG_image background image array used to generate unc map BG_weight background weight array zerovalue value used to replace zero value (Default: NaN) ------ OUTPUT ------ unc estimated unc map ''' if filUNC is not None: unc = read_fits(filUNC).data else: if BG_image is not None: im = BG_image Ny, Nx = BG_image.shape else: im = self.im Ny = self.Ny Nx = self.Nx Nw = self.Nw ## sigma: std dev of (weighted) flux distribution of bg region if BG_weight is not None: if self.Ndim==3: sigma = np.nanstd(im * BG_weight, axis=(1,2)) elif self.Ndim==2: sigma = np.nanstd(im * BG_weight) else: if self.Ndim==3: sigma = np.nanstd(im, axis=(1,2)) elif self.Ndim==2: sigma = np.nanstd(im) ## wgt: weight map if filWGT is not None: wgt = read_fits(filWGT).data * wfac else: wgt = np.ones(self.im.shape) * wfac ## unc: weighted rms = root of var/wgt if self.Ndim==3: unc = [] for w in range(Nw): unc.append(np.sqrt(1./wgt[w,:,:]) * sigma(w)) unc = np.array(unc) elif self.Ndim==2: unc = np.sqrt(1./wgt) * sigma ## Replace zero values unc[unc==0] = zerovalue self.unc = unc if filOUT is not None: write_fits(filOUT, self.hdr, unc, self.wvl, self.wmod) return unc def rand_norm(self, filUNC=None, unc=None, sigma=1., mu=0.): ''' Add random N(0,1) noise ''' if filUNC is not None: unc = read_fits(filUNC).data if unc is not None: ## unc should have the same dimension with im theta = np.random.normal(mu, sigma, self.im.shape) self.im += theta * unc return self.im def rand_splitnorm(self, filUNC=None, unc=None, sigma=1., mu=0.): ''' Add random SN(0,lam,lam*tau) noise ------ INPUT ------ filUNC 2 FITS files for unc of left & right sides unc 2 uncertainty ndarrays ------ OUTPUT ------ ''' if filUNC is not None: unc = [] for f in filUNC: unc.append(read_fits(f).data) if unc is not None: ## unc[i] should have the same dimension with self.im tau = unc[1]/unc[0] peak = 1/(1+tau) theta = np.random.normal(mu, sigma, self.im.shape) # ~N(0,1) flag = np.random.random(self.im.shape) # ~U(0,1) if self.Ndim==2: for x in range(self.Nx): for y in range(self.Ny): if flag[y,x]<peak[y,x]: self.im[y,x] += -abs(theta[y,x]) * unc[0][y,x] else: self.im[y,x] += abs(theta[y,x]) * unc[1][y,x] elif self.Ndim==3: for x in range(self.Nx): for y in range(self.Ny): for k in range(self.Nw): if flag[k,y,x]<peak[k,y,x]: self.im[k,y,x] += -abs( theta[k,y,x]) * unc[0][k,y,x] else: self.im[k,y,x] += abs( theta[k,y,x]) * unc[1][k,y,x] return self.im def rand_pointing(self, sigma=0, header=None, fill='med', xscale=1, yscale=1, swarp=False, tmpdir=None): ''' Add pointing uncertainty to WCS ------ INPUT ------ sigma pointing accuracy (arcsec) header baseline fill fill value of no data regions after shift 'med': axis median (default) 'avg': axis average 'near': nearest non-NaN value on the same axis float: constant xscale,yscale regrouped super pixel size swarp use SWarp to perform position shifts Default: False (not support supix) ------ OUTPUT ------ ''' if sigma>=0: sigma /= 3600. d_ro = abs(np.random.normal(0., sigma)) # N(0,sigma) d_phi = np.random.random() *2. * np.pi # U(0,2*pi) # d_ro, d_phi = 0.0002, 4.5 # print('d_ro,d_phi = ', d_ro,d_phi) ## New header/WCS if header is None: header = self.hdr wcs = fixwcs(header=header, mode='red_dim').wcs Nx = header['NAXIS1'] Ny = header['NAXIS2'] newheader = header.copy() newheader['CRVAL1'] += d_ro * np.cos(d_phi) newheader['CRVAL2'] += d_ro * np.sin(d_phi) newcs = fixwcs(header=newheader, mode='red_dim').wcs ## Convert world increment to pix increment pix = wcs.all_world2pix(newheader['CRVAL1'], newheader['CRVAL2'], 1) d_x = pix[0] - header['CRPIX1'] d_y = pix[1] - header['CRPIX2'] # print('Near CRPIXn increments: ', d_x, d_y) # val1 = np.array(newcs.all_pix2world(0.5, 0.5, 1)) # d_x, d_y = wcs.all_world2pix(val1[np.newaxis,:], 1)[0] - 0.5 # print('Near (1,1) increments: ', d_x, d_y) oldimage = self.im ## Resampling if swarp: ## Set path of tmp files (SWarp use only) if tmpdir is None: path_tmp = os.getcwd()+'/tmp_swp/' else: path_tmp = tmpdir if not os.path.exists(path_tmp): os.makedirs(path_tmp) ## Works but can be risky since iswarp.combine included rand_pointing... write_fits(path_tmp+'tmp_rand_shift', newheader, self.im, self.wvl) swp = iswarp(refheader=self.hdr, tmpdir=path_tmp) rep = swp.combine(path_tmp+'tmp_rand_shift', combtype='avg', keepedge=True) self.im = rep.data else: if self.Ndim==3: Nxs = math.ceil(Nx/xscale) cube_supx = np.zeros((self.Nw,Ny,Nxs)) frac2 = d_x / xscale f2 = math.floor(frac2) frac1 = 1 - frac2 for xs in range(Nxs): if frac2>=0: x0 = sup2pix(0, xscale, Npix=Nx, origin=0) else: x0 = sup2pix(Nxs-1, xscale, Npix=Nx, origin=0) if fill=='med': fill_value = np.nanmedian(self.im,axis=2) elif fill=='avg': fill_value = np.nanmean(self.im,axis=2) elif fill=='near': fill_value = np.nanmean(self.im[:,:,x0[0]:x0[-1]+1],axis=2) else: fill_value = fill if frac2>=0: if xs>=f2: x1 = sup2pix(xs-f2, xscale, Npix=Nx, origin=0) cube_supx[:,:,xs] += (f2+frac1) * np.nanmean(self.im[:,:,x1[0]:x1[-1]+1],axis=2) if xs>f2: x2 = sup2pix(xs-f2-1, xscale, Npix=Nx, origin=0) cube_supx[:,:,xs] += (frac2-f2) * np.nanmean(self.im[:,:,x2[0]:x2[-1]+1],axis=2) else: cube_supx[:,:,xs] += (frac2-f2) * fill_value else: cube_supx[:,:,xs] += fill_value # if self.verbose: # warnings.warn('Zero appears at super x = {}'.format(xs)) else: if xs<=Nxs+f2: x2 = sup2pix(xs-f2-1, xscale, Npix=Nx, origin=0) cube_supx[:,:,xs] += (frac2-f2) * np.nanmean(self.im[:,:,x2[0]:x2[-1]+1],axis=2) if xs<Nxs+f2: x1 = sup2pix(xs-f2, xscale, Npix=Nx, origin=0) cube_supx[:,:,xs] += (f2+frac1) * np.nanmean(self.im[:,:,x1[0]:x1[-1]+1],axis=2) else: cube_supx[:,:,xs] += (f2+frac1) * fill_value else: cube_supx[:,:,xs] += fill_value # if self.verbose: # warnings.warn('Zero appears at super x = {}'.format(xs)) Nys = math.ceil(Ny/yscale) supcube = np.zeros((self.Nw,Nys,Nxs)) frac2 = d_y / yscale f2 = math.floor(frac2) frac1 = 1 - frac2 for ys in range(Nys): if frac2>=0: y0 = sup2pix(0, yscale, Npix=Ny, origin=0) else: y0 = sup2pix(Nys-1, yscale, Npix=Ny, origin=0) if fill=='med': fill_value = np.nanmedian(cube_supx,axis=1) elif fill=='avg': fill_value = np.nanmean(cube_supx,axis=1) elif fill=='near': fill_value = np.nanmean(cube_supx[:,y0[0]:y0[-1]+1,:],axis=1) else: fill_value = fill if frac2>=0: if ys>=f2: y1 = sup2pix(ys-f2, yscale, Npix=Ny, origin=0) supcube[:,ys,:] += (f2+frac1) * np.nanmean(cube_supx[:,y1[0]:y1[-1]+1,:],axis=1) if ys>f2: y2 = sup2pix(ys-f2-1, yscale, Npix=Ny, origin=0) supcube[:,ys,:] += (frac2-f2) * np.nanmean(cube_supx[:,y2[0]:y2[-1]+1,:],axis=1) else: supcube[:,ys,:] += (frac2-f2) * fill_value else: supcube[:,ys,:] += fill_value # if self.verbose: # warnings.warn('Zero appears at super y = {}'.format(ys)) else: if ys<=Nys+f2: y2 = sup2pix(ys-f2-1, yscale, Npix=Ny, origin=0) supcube[:,ys,:] += (frac2-f2) * np.nanmean(cube_supx[:,y2[0]:y2[-1]+1,:],axis=1) if ys<Nys+f2: y1 = sup2pix(ys-f2, yscale, Npix=Ny, origin=0) supcube[:,ys,:] += (f2+frac1) * np.nanmean(cube_supx[:,y1[0]-1:y1[-1],:],axis=1) else: supcube[:,ys,:] += (f2+frac1) * fill_value else: supcube[:,ys,:] += fill_value # if self.verbose: # warnings.warn('Zero appears at super y = {}'.format(ys)) for x in range(Nx): for y in range(Ny): xs = pix2sup(x, xscale, origin=0) ys = pix2sup(y, yscale, origin=0) self.im[:,y,x] = supcube[:,ys,xs] elif self.Ndim==2: Nxs = math.ceil(Nx/xscale) cube_supx = np.zeros((Ny,Nxs)) frac2 = d_x / xscale f2 = math.floor(frac2) frac1 = 1 - frac2 for xs in range(Nxs): if frac2>=0: x0 = sup2pix(0, xscale, Npix=Nx, origin=0) else: x0 = sup2pix(Nxs-1, xscale, Npix=Nx, origin=0) if fill=='med': fill_value = np.nanmedian(self.im,axis=1) elif fill=='avg': fill_value = np.nanmean(self.im,axis=1) elif fill=='near': fill_value = np.nanmean(self.im[:,x0[0]:x0[-1]+1],axis=1) else: fill_value = fill if frac2>=0: if xs>=f2: x1 = sup2pix(xs-f2, xscale, Npix=Nx, origin=0) cube_supx[:,xs] += (f2+frac1) * np.nanmean(self.im[:,x1[0]:x1[-1]+1],axis=1) if xs>f2: x2 = sup2pix(xs-f2-1, xscale, Npix=Nx, origin=0) cube_supx[:,xs] += (frac2-f2) * np.nanmean(self.im[:,x2[0]:x2[-1]+1],axis=1) else: cube_supx[:,xs] += (frac2-f2) * fill_value else: cube_supx[:,xs] += fill_value # if self.verbose: # warnings.warn('Zero appears at super x = {}'.format(xs)) else: if xs<=Nxs+f2: x2 = sup2pix(xs-f2-1, xscale, Npix=Nx, origin=0) cube_supx[:,xs] += (frac2-f2) * np.nanmean(self.im[:,x2[0]:x2[-1]+1],axis=1) if xs<Nxs+f2: x1 = sup2pix(xs-f2, xscale, Npix=Nx, origin=0) cube_supx[:,xs] += (f2+frac1) * np.nanmean(self.im[:,x1[0]:x1[-1]+1],axis=1) else: cube_supx[:,xs] += (f2+frac1) * fill_value else: cube_supx[:,xs] += fill_value # if self.verbose: # warnings.warn('Zero appears at super x = {}'.format(xs)) Nys = math.ceil(Ny/yscale) supcube = np.zeros((Nys,Nxs)) frac2 = d_y / yscale f2 = math.floor(frac2) frac1 = 1 - frac2 for ys in range(Nys): if frac2>=0: y0 = sup2pix(0, yscale, Npix=Ny, origin=0) else: y0 = sup2pix(Nys-1, yscale, Npix=Ny, origin=0) if fill=='med': fill_value = np.nanmedian(cube_supx,axis=0) elif fill=='avg': fill_value = np.nanmean(cube_supx,axis=0) elif fill=='near': fill_value = np.nanmean(cube_supx[y0[0]:y0[-1]+1,:],axis=0) else: fill_value = fill if frac2>=0: if ys>=f2: y1 = sup2pix(ys-f2, yscale, Npix=Ny, origin=0) supcube[ys,:] += (f2+frac1) * np.nanmean(cube_supx[y1[0]:y1[-1]+1,:],axis=0) if ys>f2: y2 = sup2pix(ys-f2-1, yscale, Npix=Ny, origin=0) supcube[ys,:] += (frac2-f2) * np.nanmean(cube_supx[y2[0]:y2[-1]+1,:],axis=0) else: supcube[ys,:] += (frac2-f2) * fill_value else: supcube[ys,:] += fill_value # if self.verbose: # warnings.warn('Zero appears at super y = {}'.format(ys)) else: if ys<=Nys+f2: y2 = sup2pix(ys-f2-1, yscale, Npix=Ny, origin=0) supcube[ys,:] += (frac2-f2) * np.nanmean(cube_supx[y2[0]:y2[-1]+1,:],axis=0) if ys<Nys+f2: y1 = sup2pix(ys-f2, yscale, Npix=Ny, origin=0) supcube[ys,:] += (f2+frac1) * np.nanmean(cube_supx[y1[0]-1:y1[-1],:],axis=0) else: supcube[ys,:] += (f2+frac1) * fill_value else: supcube[ys,:] += fill_value # if self.verbose: # warnings.warn('Zero appears at super y = {}'.format(ys)) for x in range(Nx): for y in range(Ny): xs = pix2sup(x, xscale, origin=0) ys = pix2sup(y, yscale, origin=0) self.im[y,x] = supcube[ys,xs] ## Original NaN mask mask_nan = np.isnan(oldimage) self.im[mask_nan] = np.nan ## Recover new NaN pixels with zeros mask_recover = np.logical_and(np.isnan(self.im), ~mask_nan) self.im[mask_recover] = 0 return self.im def slice(self, filSL, postfix='', ext=''): ## 3D cube slicing slist = [] if self.Ndim==3: # hdr = self.hdr.copy() # for kw in self.hdr.keys(): # if '3' in kw: # del hdr[kw] # hdr['NAXIS'] = 2 for k in range(self.Nw): ## output filename list f = filSL+'_'+'0'*(4-len(str(k)))+str(k)+postfix slist.append(f+ext) write_fits(f, self.hdred, self.im[k,:,:]) # gauss_noise inclu elif self.Ndim==2: f = filSL+'_0000'+postfix slist.append(f+ext) write_fits(f, self.hdred, self.im) # gauss_noise inclu if self.verbose==True: print('Input file is a 2D image which cannot be sliced! ') print('Rewritten with only random noise added (if provided).') return slist def slice_inv_sq(self, filSL, postfix=''): ## Inversed square cube slicing inv_sq = 1./self.im**2 slist = [] if self.Ndim==3: # hdr = self.hdr.copy() # for kw in self.hdr.keys(): # if '3' in kw: # del hdr[kw] # hdr['NAXIS'] = 2 for k in range(self.Nw): ## output filename list f = filSL+'_'+'0'*(4-len(str(k)))+str(k)+postfix slist.append(f) write_fits(f, self.hdred, inv_sq[k,:,:]) # gauss_noise inclu elif self.Ndim==2: f = filSL+'_0000'+postfix slist.append(f) write_fits(f, self.hdred, inv_sq) # gauss_noise inclu return slist def crop(self, filOUT=None, sizpix=None, cenpix=None, sizval=None, cenval=None): ''' If pix and val co-exist, pix will be taken. ------ INPUT ------ filOUT output file sizpix crop size in pix (dx, dy) cenpix crop center in pix (x, y) sizval crop size in deg (dRA, dDEC) -> (dx, dy) cenval crop center in deg (RA, DEC) -> (x, y) ------ OUTPUT ------ self.im cropped image array ''' oldimage = self.im hdr = self.hdr ## Crop center ##------------- if cenpix is None: if cenval is None: raise ValueError('Crop center unavailable! ') else: ## Convert coord try: cenpix = np.array(self.w.all_world2pix(cenval[0], cenval[1], 1)) except wcs.wcs.NoConvergence as e: cenpix = e.best_solution print("Best solution:\n{0}".format(e.best_solution)) print("Achieved accuracy:\n{0}".format(e.accuracy)) print("Number of iterations:\n{0}".format(e.niter)) else: cenval = self.w.all_pix2world(np.array([cenpix]), 1)[0] if not (0<cenpix[0]-0.5<self.Nx and 0<cenpix[1]-0.5<self.Ny): raise ValueError('Crop centre overpassed image border! ') ## Crop size ##----------- if sizpix is None: if sizval is None: raise ValueError('Crop size unavailable! ') else: ## CDELTn needed (Physical increment at the reference pixel) sizpix = np.array(sizval) / abs(self.cdelt) sizpix = np.array([math.floor(n) for n in sizpix]) else: sizval = np.array(sizpix) * abs(self.cdelt) if self.verbose==True: print('----------') print("Crop centre (RA, DEC): [{:.8}, {:.8}]".format(*cenval)) print("Crop size (dRA, dDEC): [{}, {}]\n".format(*sizval)) print("Crop centre (x, y): [{}, {}]".format(*cenpix)) print("Crop size (dx, dy): [{}, {}]".format(*sizpix)) print('----------') ## Lowerleft origin ##------------------ xmin = math.floor(cenpix[0] - sizpix[0]/2.) ymin = math.floor(cenpix[1] - sizpix[1]/2.) xmax = xmin + sizpix[0] ymax = ymin + sizpix[1] if not (xmin>=0 and xmax<=self.Nx and ymin>=0 and ymax<=self.Ny): raise ValueError('Crop region overpassed image border! ') ## OUTPUTS ##--------- ## New image if self.Ndim==3: newimage = oldimage[:, ymin:ymax, xmin:xmax] # gauss_noise inclu ## recover 3D non-reduced header # hdr = read_fits(self.filIN).header elif self.Ndim==2: newimage = oldimage[ymin:ymax, xmin:xmax] # gauss_noise inclu ## Modify header ##--------------- hdr['CRPIX1'] = math.floor(sizpix[0]/2. + 0.5) hdr['CRPIX2'] = math.floor(sizpix[1]/2. + 0.5) hdr['CRVAL1'] = cenval[0] hdr['CRVAL2'] = cenval[1] self.hdr = hdr self.im = newimage ## Write cropped image/cube if filOUT is not None: # comment = "[ICROP]ped at centre: [{:.8}, {:.8}]. ".format(*cenval) # comment = "with size [{}, {}] (pix).".format(*sizpix) write_fits(filOUT, self.hdr, self.im, self.wvl, self.wmod) ## Update self variables self.reinit(header=self.hdr, image=self.im, wave=self.wvl, wmod=self.wmod, verbose=self.verbose) return self.im def rebin(self, pixscale=None, total=False, extrapol=False, filOUT=None): ''' Shrinking (box averaging) or expanding (bilinear interpolation) astro images New/old images collimate on zero point. [REF] IDL lib frebin/hrebin https://idlastro.gsfc.nasa.gov/ftp/pro/astrom/hrebin.pro https://github.com/wlandsman/IDLAstro/blob/master/pro/frebin.pro ------ INPUT ------ pixscale output pixel scale in arcsec/pixel scalar - square pixel tuple - same Ndim with image total Default: False True - sum the non-NaN pixels False - mean extrapol Default: False True - value weighted by non NaN fractions False - NaN if any fraction is NaN filOUT output file ------ OUTPUT ------ newimage rebinned image array ''' oldimage = self.im hdr = self.hdr oldheader = hdr.copy() oldw = self.w # cd = w.pixel_scale_matrix oldcd = self.cd oldcdelt = self.cdelt oldNx = self.Nx oldNy = self.Ny if pixscale is not None: pixscale = listize(pixscale) if len(pixscale)==1: pixscale.extend(pixscale) else: warnings.warn('Non-square pixels present as square on DS9. ' 'WCS will not work either.') ## convert arcsec to degree cdelt = np.array(pixscale) / 3600. ## Expansion (>1) or contraction (<1) in X/Y xratio = cdelt[0] / abs(oldcdelt[0]) yratio = cdelt[1] / abs(oldcdelt[1]) else: pixscale = listize(abs(oldcdelt) * 3600.) xratio = 1. yratio = 1. if self.verbose==True: print('----------') print('The actual map size is {} * {}'.format(self.Nx, self.Ny)) print('The actual pixel scale is {} * {} arcsec'.format(*pixscale)) print('----------') raise InputError('<improve.rebin>', 'No pixscale, nothing has been done!') ## Modify header ##--------------- ## Fix CRVALn crpix1 = hdr['CRPIX1'] crpix2 = hdr['CRPIX2'] hdr['CRPIX1'] = (crpix1 - 0.5) / xratio + 0.5 hdr['CRPIX2'] = (crpix2 - 0.5) / yratio + 0.5 cd = oldcd * [xratio,yratio] hdr['CD1_1'] = cd[0][0] hdr['CD2_1'] = cd[1][0] hdr['CD1_2'] = cd[0][1] hdr['CD2_2'] = cd[1][1] for kw in oldheader.keys(): if 'PC' in kw: del hdr[kw] if 'CDELT' in kw: del hdr[kw] # lam = yratio/xratio # pix_ratio = xratio*yratio Nx = math.ceil(oldNx / xratio) Ny = math.ceil(oldNy / yratio) # Nx = int(oldNx/xratio + 0.5) # Ny = int(oldNy/yratio + 0.5) ## Rebin ##------- ''' ## Ref: poppy(v0.3.4).utils.krebin ## Klaus P's fastrebin from web sh = shape[0],a.shape[0]//shape[0],shape[1],a.shape[1]//shape[1] return a.reshape(sh).sum(-1).sum(1) ''' if self.Ndim==3: image_newx =
np.zeros((self.Nw,oldNy,Nx))
numpy.zeros
#!/usr/bin/python # ************************** # * Author : baiyyang # * Email : <EMAIL> # * Description : # * create time : 2018/3/13下午5:05 # * file name : data_helpers.py import numpy as np import re import jieba import string from zhon.hanzi import punctuation import collections from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder def clean_str(s): """ Tokenization/string cleaning for all datasets excepts for SSI. :param s: :return: """ s = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", s) s = re.sub(r"\'s", " \'s", s) s = re.sub(r"\'ve", " \'ve", s) s = re.sub(r"n\'t", " n\'t", s) s = re.sub(r"\'re", " \'re", s) s = re.sub(r"\'d", " \'d", s) s = re.sub(r"\'ll", " \'ll", s) s = re.sub(r",", " , ", s) s = re.sub(r"!", " ! ", s) s = re.sub(r"\(", " \( ", s) s = re.sub(r"\)", " \) ", s) s = re.sub(r"\?", " \? ", s) s = re.sub(r"\s{2,}", " ", s) return s.strip().lower() def load_data_and_labels(positive_data_file, negative_data_file): """ Loads MR polarity data from files, splits the data into words and generates labels. Return split sentences and labels. :param positive_data_file: :param negative_data_file: :return: """ # Load data from files positive_examples = list(open(positive_data_file, 'r', encoding='utf-8').readlines()) positive_examples = [s.strip() for s in positive_examples] negative_examples = list(open(negative_data_file, 'r', encoding='utf-8').readlines()) negative_examples = [s.strip() for s in negative_examples] # Split by words x_text = positive_examples + negative_examples x_text = [clean_str(sent) for sent in x_text] # Generate labels positive_labels = [[0, 1] for _ in positive_examples] negative_labels = [[1, 0] for _ in negative_examples] y = np.concatenate([positive_labels, negative_labels], 0) return [x_text, y] def load_data_and_labels_chinese(train_data_file, test_data_file): """ 加载中文医疗疾病分类数据集 :param train_data_file: :param test_data_file: :return: """ words = [] contents = [] train_datas = [] test_datas = [] test_labels = [] labels = [] # 生成训练数据集 with open(train_data_file, 'r', encoding='utf-8') as f: for line in f: data, label = line.strip().split('\t') labels.append(label) # 分词 segments = [seg for seg in jieba.cut(data, cut_all=False)] segments_ = [seg.strip() for seg in segments if seg not in punctuation and seg not in string.punctuation] contents.append([seg_ for seg_ in segments_ if seg_ != '']) words.extend(segments_) words = [word for word in words if word != ''] count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(9999)) word2id = {} for word, _ in count: word2id[word] = len(word2id) # id2word = dict(zip(word2id.values(), word2id.keys())) print('dictionary_size:', len(word2id)) sentence_max_length = max([len(content) for content in contents]) print('sentence_max_length:', sentence_max_length) for content in contents: train_data = [word2id[word] if word in word2id.keys() else word2id['UNK'] for word in content] train_data.extend([0] * (sentence_max_length - len(train_data))) train_datas.append(train_data) label_encoder = LabelEncoder() integer_encoded = label_encoder.fit_transform(np.array(labels)) onehot_encoder = OneHotEncoder(sparse=False) train_labels = onehot_encoder.fit_transform(integer_encoded.reshape(len(integer_encoded), 1)) print(train_labels.shape) # 生成测试数据集 labels = [] contents = [] with open(test_data_file, 'r', encoding='utf-8') as f: for line in f: data, label = line.strip().split('\t') labels.append(label) # 分词 segments = [segment for segment in jieba.cut(data, cut_all=False)] segments_ = [segment.strip() for segment in segments if segment not in punctuation and segment not in string.punctuation] contents.append([seg_ for seg_ in segments_ if seg_ != '']) for content in contents: test_data = [word2id[word] if word in word2id.keys() else word2id['UNK'] for word in content] if sentence_max_length > len(test_data): test_data.extend([0] * (sentence_max_length - len(test_data))) else: test_data = test_data[:sentence_max_length] test_datas.append(test_data) integer_encoded = label_encoder.fit_transform(
np.array(labels)
numpy.array
#! /usr/bin/env python # -*- coding: utf-8 -*- # <NAME> # Created : 10/24/2017 # Last Modified: 04/06/2018 # Vanderbilt University from __future__ import print_function, division, absolute_import __author__ =['<NAME>'] __copyright__ =["Copyright 2017 <NAME>, "] __email__ =['<EMAIL>'] __maintainer__ =['<NAME>'] """ Computes the 1-halo `Quenched` fractions for SDSS DR7 """ # Path to Custom Utilities folder import os import sys import git # Importing Modules from cosmo_utils import mock_catalogues as cm from cosmo_utils import utils as cu from cosmo_utils.utils import file_utils as cfutils from cosmo_utils.utils import file_readers as cfreaders from cosmo_utils.utils import work_paths as cwpaths from cosmo_utils.utils import stats_funcs as cstats from cosmo_utils.mock_catalogues import catls_utils as cmcu import numpy as num import math import pandas as pd import pickle #sns.set() from progressbar import (Bar, ETA, FileTransferSpeed, Percentage, ProgressBar, ReverseBar, RotatingMarker) # Extra-modules from argparse import ArgumentParser from argparse import HelpFormatter from operator import attrgetter import copy from datetime import datetime from multiprocessing import Pool, Process, cpu_count ## Functions ## --------- PARSING ARGUMENTS ------------## class SortingHelpFormatter(HelpFormatter): def add_arguments(self, actions): """ Modifier for `argparse` help parameters, that sorts them alphabetically """ actions = sorted(actions, key=attrgetter('option_strings')) super(SortingHelpFormatter, self).add_arguments(actions) def _str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def _check_pos_val(val, val_min=0): """ Checks if value is larger than `val_min` Parameters ---------- val: int or float value to be evaluated by `val_min` val_min: float or int, optional (default = 0) minimum value that `val` can be Returns ------- ival: float value if `val` is larger than `val_min` Raises ------- ArgumentTypeError: Raised if `val` is NOT larger than `val_min` """ ival = float(val) if ival <= val_min: msg = '`{0}` is an invalid input!'.format(ival) msg += '`val` must be larger than `{0}`!!'.format(val_min) raise argparse.ArgumentTypeError(msg) return ival def get_parser(): """ Get parser object for `eco_mocks_create.py` script. Returns ------- args: input arguments to the script """ ## Define parser object description_msg = 'Script to evaluate 1-halo conformity quenched fractions \ on SDSS DR7' parser = ArgumentParser(description=description_msg, formatter_class=SortingHelpFormatter,) # parser.add_argument('--version', action='version', version='%(prog)s 1.0') ## Number of HOD's to create. Dictates how many different types of ## mock catalogues to create parser.add_argument('-hod_model_n', dest='hod_n', help="Number of distinct HOD model to use. Default = 0", type=int, choices=range(0,1), metavar='[0]', default=0) ## Type of dark matter halo to use in the simulation parser.add_argument('-halotype', dest='halotype', help='Type of the DM halo.', type=str, choices=['so','fof'], default='fof') ## CLF/CSMF method of assigning galaxy properties parser.add_argument('-clf_method', dest='clf_method', help=""" Method for assigning galaxy properties to mock galaxies. Options: (1) = Independent assignment of (g-r), sersic, logssfr (2) = (g-r) decides active/passive designation and draws values independently. (3) (g-r) decides active/passive designation, and assigns other galaxy properties for that given galaxy. """, type=int, choices=[1,2,3], default=3) ## SDSS Sample parser.add_argument('-sample', dest='sample', help='SDSS Luminosity sample to analyze', type=int, choices=[19,20,21], default=19) ## SDSS Kind parser.add_argument('-kind', dest='catl_kind', help='Type of data being analyzed.', type=str, choices=['data','mocks'], default='data') ## SDSS Type parser.add_argument('-abopt', dest='catl_type', help='Type of Abund. Matching used in catalogue', type=str, choices=['mr'], default='mr') ## Total number of Iterations parser.add_argument('-itern', dest='itern_tot', help='Total number of iterations to perform on the `shuffled` scenario', type=int, choices=range(10,10000), metavar='[10-10000]', default=1000) ## Minimum Number of Galaxies in 1 group parser.add_argument('-nmin', dest='ngals_min', help='Minimum number of galaxies in a galaxy group', type=int, default=2) ## Bin in Group mass parser.add_argument('-mg', dest='Mg_bin', help='Bin width for the group masses', type=_check_pos_val, default=0.4) ## Logarithm of the galaxy property parser.add_argument('-log', dest='prop_log', help='Use `log` or `non-log` units for `M*` and `sSFR`', type=str, choices=['log', 'nonlog'], default='log') ## Mock Start parser.add_argument('-catl_start', dest='catl_start', help='Starting index of mock catalogues to use', type=int, choices=range(101), metavar='[0-100]', default=0) ## Mock Finish parser.add_argument('-catl_finish', dest='catl_finish', help='Finishing index of mock catalogues to use', type=int, choices=range(101), metavar='[0-100]', default=100) ## `Perfect Catalogue` Option parser.add_argument('-perf', dest='perf_opt', help='Option for using a `Perfect` catalogue', type=_str2bool, default=False) ## Type of correlation function to perform parser.add_argument('-corrtype', dest='corr_type', help='Type of correlation function to perform', type=str, choices=['galgal'], default='galgal') ## Shuffling Marks parser.add_argument('-shuffle', dest='shuffle_marks', help='Option for shuffling marks of Cens. and Sats.', choices=['cen_sh', 'sat_sh', 'censat_sh'], default='censat_sh') ## Option for removing file parser.add_argument('-remove', dest='remove_files', help='Delete pickle file containing pair counts', type=_str2bool, default=False) ## Type of error estimation parser.add_argument('-sigma', dest='type_sigma', help='Type of error to use. Percentiles or St. Dev.', type=str, choices=['std','perc'], default='std') ## Statistics for evaluating conformity parser.add_argument('-frac_stat', dest='frac_stat', help='Statistics to use to evaluate the conformity signal', type=str, choices=['diff', 'ratio'], default='diff') ## CPU Counts parser.add_argument('-cpu', dest='cpu_frac', help='Fraction of total number of CPUs to use', type=float, default=0.75) ## Show Progbar parser.add_argument('-prog', dest='prog_bar', help='Option to print out progress bars for each for loop', type=_str2bool, default=True) ## Program message parser.add_argument('-progmsg', dest='Prog_msg', help='Program message to use throught the script', type=str, default=cfutils.Program_Msg(__file__)) ## Random Seed parser.add_argument('-seed', dest='seed', help='Random seed to be used for the analysis', type=int, metavar='[0-4294967295]', default=1) ## Random Seed for CLF parser.add_argument('-clf_seed', dest='clf_seed', help='Random seed to be used for CLF', type=int, metavar='[0-4294967295]', default=0) ## Parsing Objects args = parser.parse_args() return args def add_to_dict(param_dict): """ Aggregates extra variables to dictionary Parameters ---------- param_dict: python dictionary dictionary with input parameters and values Returns ---------- param_dict: python dictionary dictionary with old and new values added """ ### Sample - Int sample_s = str(param_dict['sample']) ### Sample - Mr sample_Mr = 'Mr{0}'.format(param_dict['sample']) ### Perfect Catalogue if param_dict['perf_opt']: perf_str = 'haloperf' else: perf_str = '' ### Figure fig_idx = 24 ### Survey Details sample_title = r'\boldmath$M_{r}< -%d$' %(param_dict['sample']) ## Project Details # String for Main directories param_str_arr = [ param_dict['catl_kind'] , param_dict['catl_type'] , param_dict['sample'] , param_dict['prop_log'] , param_dict['Mg_bin'] , param_dict['itern_tot'] , param_dict['ngals_min' ], param_dict['shuffle_marks'], param_dict['type_sigma'], param_dict['frac_stat'] , perf_str ] param_str_p = 'kind_{0}_type_{1}_sample_{2}_proplog_{3}_Mgbin_{4}_' param_str_p += 'itern_{5}_nmin_{6}_sh_marks_{7}_type_sigma_{8}_' param_str_p += 'fracstat_{9}_perf_str_{10}' param_str = param_str_p.format(*param_str_arr) ### ### To dictionary param_dict['sample_s' ] = sample_s param_dict['sample_Mr' ] = sample_Mr param_dict['perf_str' ] = perf_str param_dict['fig_idx' ] = fig_idx param_dict['sample_title' ] = sample_title param_dict['param_str' ] = param_str return param_dict def param_vals_test(param_dict): """ Checks if values are consistent with each other. Parameters ----------- param_dict: python dictionary dictionary with `project` variables Raises ----------- ValueError: Error This function raises a `ValueError` error if one or more of the required criteria are not met """ ## ## Check the `perf_opt` for when `catl_kind` is 'data' if (param_dict['catl_kind']=='data') and (param_dict['perf_opt']): msg = '{0} `catl_kind` ({1}) must smaller than `perf_opt` ({2})'\ .format( param_dict['Prog_msg'], param_dict['catl_kind'], param_dict['perf_opt']) raise ValueError(msg) else: pass ## ## Checking that `nmin` is larger than 2 if param_dict['ngals_min'] >= 2: pass else: msg = '{0} `ngals_min` ({1}) must be larger than `2`'.format( param_dict['Prog_msg'], param_dict['ngals_min']) raise ValueError(msg) ## ## Checking `cpu_frac` range if (param_dict['cpu_frac'] > 0) and (param_dict['cpu_frac'] <= 1): pass else: msg = '{0} `cpu_frac` ({1}) must be between (0,1]'.format( param_dict['Prog_msg'], param_dict['cpu_frac']) raise ValueError(msg) ## ## Checking that `catl_start` < `catl_finish` if param_dict['catl_start'] < param_dict['catl_finish']: pass else: msg = '{0} `catl_start` ({1}) must smaller than `catl_finish` ({2})'\ .format( param_dict['Prog_msg'], param_dict['catl_start'], param_dict['catl_finish']) raise ValueError(msg) def directory_skeleton(param_dict, proj_dict): """ Creates the directory skeleton for the current project Parameters ---------- param_dict: python dictionary dictionary with `project` variables proj_dict: python dictionary dictionary with info of the project that uses the `Data Science` Cookiecutter template. Returns --------- proj_dict: python dictionary Dictionary with current and new paths to project directories """ ### MCF Folder prefix if param_dict['catl_kind'] == 'data': path_prefix = os.path.join( 'SDSS', param_dict['catl_kind'], param_dict['catl_type'], param_dict['sample_Mr'], 'Frac_results') elif param_dict['catl_kind'] == 'mocks': path_prefix = os.path.join( 'SDSS', param_dict['catl_kind'], 'halos_{0}'.format(param_dict['halotype']), 'hod_model_{0}'.format(param_dict['hod_n']), 'clf_seed_{0}'.format(param_dict['clf_seed']), 'clf_method_{0}'.format(param_dict['clf_method']), param_dict['catl_type'], param_dict['sample_Mr'], 'Frac_results') ### MCF Output directory - Results pickdir = os.path.join( proj_dict['data_dir'], 'processed', path_prefix, 'catl_pickle_files', param_dict['corr_type'], param_dict['param_str']) # Creating Folders cfutils.Path_Folder(pickdir) ## Adding to `proj_dict` proj_dict['pickdir'] = pickdir return proj_dict def sigma_calcs(data_arr, type_sigma='std', perc_arr = [68., 95., 99.7], return_mean_std=False): """ Calcualates the 1-, 2-, and 3-sigma ranges for `data_arr` Parameters ----------- data_arr: numpy.ndarray, shape( param_dict['nrpbins'], param_dict['itern_tot']) array of values, from which to calculate percentiles or St. Dev. type_sigma: string, optional (default = 'std') option for calculating either `percentiles` or `standard deviations` Options: - 'perc': calculates percentiles - 'std' : uses standard deviations as 1-, 2-, and 3-sigmas perc_arr: array_like, optional (default = [68., 95., 99.7]) array of percentiles to calculate return_mean_std: boolean, optional (default = False) option for returning mean and St. Dev. along with `sigma_dict` Return ---------- sigma_dict: python dicitionary dictionary containg the 1-, 2-, and 3-sigma upper and lower ranges for `data-arr` mark_mean: array_like array of the mean value of `data_arr`. Only returned if `return_mean_std == True` mark_std: array_like array of the St. Dev. value of `data_arr`. Only returned if `return_mean_std == True` """ ## Creating dictionary for saving `sigma`s sigma_dict = {} for ii in range(len(perc_arr)): sigma_dict[ii] = [] ## Using Percentiles to estimate errors if type_sigma=='perc': for ii, perc_ii in enumerate(perc_arr): mark_lower = num.nanpercentile(data_arr, 50.-(perc_ii/2.),axis=1) mark_upper = num.nanpercentile(data_arr, 50.+(perc_ii/2.),axis=1) # Saving to dictionary sigma_dict[ii] = num.column_stack((mark_lower, mark_upper)).T ## Using standard deviations to estimate errors if type_sigma=='std': mean_val = num.nanmean(data_arr, axis=1) std_val = num.nanstd( data_arr, axis=1) for ii in range(len(perc_arr)): mark_lower = mean_val - ((ii+1) * std_val) mark_upper = mean_val + ((ii+1) * std_val) # Saving to dictionary sigma_dict[ii] = num.column_stack((mark_lower, mark_upper)).T ## ## Estimating mean and St. Dev. of `data_arr` mark_mean = num.nanmean(data_arr, axis=1) mark_std = num.nanstd (data_arr, axis=1) if return_mean_std: return sigma_dict, mark_mean, mark_std else: return sigma_dict ## --------- Analysis functions ------------## def frac_prop_calc(df_bin_org, prop, param_dict, catl_keys_dict): """ Computes the quenched fractions of satellites in a given mass bin. Parameters ---------- df_bin_org: pandas DataFrame Dataframe for the selected group/halo mass bin prop: string galaxy property being evaluated param_dict: python dictionary dictionary with input parameters and values catl_keys_dict: python dictionary dictionary containing keys for the galaxy properties in catalogue Returns ---------- """ ## Program message Prog_msg = param_dict['Prog_msg'] ## Constants Cens = int(1) Sats = int(0) itern = param_dict['itern_tot'] ## Catalogue Variables for galaxy properties gm_key = catl_keys_dict['gm_key'] id_key = catl_keys_dict['id_key'] galtype_key = catl_keys_dict['galtype_key'] ## Group statistics groupid_unq = df_bin_org[id_key].unique() ngroups = groupid_unq.shape[0] ## ## Selecting columns df_bin_mod = df_bin_org.copy()[[galtype_key, id_key, prop]] ## ## Normalizing `prop` by the `prop_lim` df_bin_mod.loc[:,prop] /= param_dict['prop_lim'][prop] ## ## Determining galaxy fractions for `df_bin_mod` cens_pd_org = df_bin_mod.loc[(df_bin_mod[galtype_key]==Cens)].copy().reset_index() sats_pd_org = df_bin_mod.loc[(df_bin_mod[galtype_key]==Sats)].copy().reset_index() ## ## Quench Satellite fraction sat_quenched_frac = frac_stat_calc( cens_pd_org , sats_pd_org , prop , catl_keys_dict, param_dict , frac_stat=param_dict['frac_stat']) ## ## Converting `sat_quenched_frac` to numpy array sat_quenched_frac = sat_quenched_frac ## ## Calculation fractions for Shuffles sat_quenched_frac_sh = num.zeros((param_dict['itern_tot'],)) # ProgressBar properties if param_dict['prog_bar']: widgets = [Bar('>'), ' ', ETA(), ' ', ReverseBar('<')] pbar_mock = ProgressBar( widgets=widgets, maxval= 10 * itern).start() ## Iterating `itern` times and calculating quenched fractions for ii in range(itern): ## Quenched fractions sat_quenched_frac_sh[ii] = frac_stat_calc(cens_pd_org , sats_pd_org , prop , catl_keys_dict, param_dict , shuffle=True , frac_stat=param_dict['frac_stat']) if param_dict['prog_bar']: pbar_mock.update(ii) if param_dict['prog_bar']: pbar_mock.finish() return sat_quenched_frac, sat_quenched_frac_sh.T def frac_stat_calc(cens_pd_org, sats_pd_org, prop, catl_keys_dict, param_dict, frac_stat='diff', shuffle=False): """ Computes quenched fractions of satellites for a given galaxy property `prop` in a given mass bin. Parameters ---------- cens_pd_org: pandas DataFrame dataframe with only central galaxies in the given group mass bin. Centrals belong to groups with galaxies >= `param_dict['ngals_min']` sats_pd_org: pandas DataFrame dataframe with only satellite galaxies in the given group mass bin. Satellites belong to groups with galaxies >= `param_dict['ngals_min']` prop: string galaxy property being analyzed catl_keys_dict: python dictionary dictionary containing keys for the galaxy properties in catalogue param_dict: python dictionary dictionary with input parameters and values frac_stat: string, optional (default = 'diff') statistics to use to evaluate the conformity signal Options: - 'diff' : Takes the difference between P(sat=q|cen=q) and P(sat=q|cen=act) - 'ratio': Takes the ratio between P(sat=q|cen=q) and P(sat=q|cen=act) shuffle: boolean, optional (default = False) option for shuffling the galaxies' properties among themselves, i.e. centrals among centrals, and satellites among satellites. Returns ------- frac_sat_pas_cen_act: float number of `passive` satellites around `active` centrals over the total number of satelltes around `active` centrals frac_sat_pas_cen_pas: float number of `passive` satellites around `passive` centrals over the total number of satelltes around `passive` centrals frac_stat: float 'ratio' or 'difference' of between P(sat=q|cen=q) and P(sat=q|cen=act) """ ## Keys for group/halo ID, mass, and galaxy type gm_key = catl_keys_dict['gm_key'] id_key = catl_keys_dict['id_key'] galtype_key = catl_keys_dict['galtype_key'] ## Copies of `cens_pd_org` and `sats_pd_org` cens_pd = cens_pd_org.copy() sats_pd = sats_pd_org.copy() ## Choosing if to shuffle `prop` if shuffle: ## Choosing which kind of shuffle to use # Shuffling only Centrals if param_dict['shuffle_marks'] == 'cen_sh': cens_prop_sh = cens_pd[prop].copy().values num.random.shuffle(cens_prop_sh) cens_pd.loc[:,prop] = cens_prop_sh # Shuffling only Satellites if param_dict['shuffle_marks'] == 'sat_sh': sats_prop_sh = sats_pd[prop].copy().values num.random.shuffle(sats_prop_sh) sats_pd.loc[:,prop] = sats_prop_sh # Shuffling both Centrals and Satellites if param_dict['shuffle_marks'] == 'censat_sh': # Centrals cens_prop_sh = cens_pd[prop].copy().values num.random.shuffle(cens_prop_sh) cens_pd.loc[:,prop] = cens_prop_sh # Satellites sats_prop_sh = sats_pd[prop].copy().values
num.random.shuffle(sats_prop_sh)
numpy.random.shuffle
""" Synopsis: A binder for enabling this package using numpy arrays. Author: <NAME> <<EMAIL>, <EMAIL>> """ from ctypes import cdll, POINTER, c_int, c_double, byref import numpy as np import ctypes import pandas as pd from numpy.ctypeslib import ndpointer lib = cdll.LoadLibrary("./miniball_python.so") def miniball(val): """ Computes the miniball. input: val, a 2D numpy-array with points as rows, features as columns. output: a dict containing: - center: a 1D numpy-vector with the center of the miniball. - radius: The radius. - radius_squared. The radius squared. """ if isinstance(val, pd.DataFrame): val = val.values assert isinstance(val, np.ndarray) if val.flags["C_CONTIGUOUS"] is False: val = val.copy(order="C") a = c_double(0) b = c_double(0) lib.miniball.argtypes = [ ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), c_int, c_int, POINTER(c_double), POINTER(ctypes.c_double), ] rows = int(val.shape[0]) cols = int(val.shape[1]) lib.miniball.restype = POINTER(ctypes.c_double * val.shape[1]) center = lib.miniball(val, rows, cols, byref(a), byref(b)) return { "center": np.array([i for i in center.contents]), "radius": a.value, "radius_squared": b.value, } if __name__ == "__main__": print( miniball(
np.array([[3.0, 1.0], [3.0, 1.0], [1.0, 0.0]], dtype=np.double)
numpy.array
""" Defines classes with represent SPAM operations, along with supporting functionality. """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import numpy as _np import scipy.sparse as _sps import collections as _collections import numbers as _numbers import itertools as _itertools import functools as _functools import copy as _copy from .. import optimize as _opt from ..tools import matrixtools as _mt from ..tools import optools as _gt from ..tools import basistools as _bt from ..tools import listtools as _lt from ..tools import slicetools as _slct from ..tools import compattools as _compat from ..tools import symplectic as _symp from .basis import Basis as _Basis from .protectedarray import ProtectedArray as _ProtectedArray from . import modelmember as _modelmember from . import term as _term from . import stabilizer as _stabilizer from .polynomial import Polynomial as _Polynomial from . import replib from .opcalc import bulk_eval_compact_polys_complex as _bulk_eval_compact_polys_complex IMAG_TOL = 1e-8 # tolerance for imaginary part being considered zero def optimize_spamvec(vecToOptimize, targetVec): """ Optimize the parameters of vecToOptimize so that the the resulting SPAM vector is as close as possible to targetVec. This is trivial for the case of FullSPAMVec instances, but for other types of parameterization this involves an iterative optimization over all the parameters of vecToOptimize. Parameters ---------- vecToOptimize : SPAMVec The vector to optimize. This object gets altered. targetVec : SPAMVec The SPAM vector used as the target. Returns ------- None """ #TODO: cleanup this code: if isinstance(vecToOptimize, StaticSPAMVec): return # nothing to optimize if isinstance(vecToOptimize, FullSPAMVec): if(targetVec.dim != vecToOptimize.dim): # special case: gates can have different overall dimension vecToOptimize.dim = targetVec.dim # this is a HACK to allow model selection code to work correctly vecToOptimize.set_value(targetVec) # just copy entire overall matrix since fully parameterized return assert(targetVec.dim == vecToOptimize.dim) # vectors must have the same overall dimension targetVector = _np.asarray(targetVec) def _objective_func(param_vec): vecToOptimize.from_vector(param_vec) return _mt.frobeniusnorm(vecToOptimize - targetVector) x0 = vecToOptimize.to_vector() minSol = _opt.minimize(_objective_func, x0, method='BFGS', maxiter=10000, maxfev=10000, tol=1e-6, callback=None) vecToOptimize.from_vector(minSol.x) #print("DEBUG: optimized vector to min frobenius distance %g" % _mt.frobeniusnorm(vecToOptimize-targetVector)) def convert(spamvec, toType, basis, extra=None): """ Convert SPAM vector to a new type of parameterization, potentially creating a new SPAMVec object. Raises ValueError for invalid conversions. Parameters ---------- spamvec : SPAMVec SPAM vector to convert toType : {"full","TP","static","static unitary","clifford",LINDBLAD} The type of parameterizaton to convert to. "LINDBLAD" is a placeholder for the various Lindblad parameterization types. See :method:`Model.set_all_parameterizations` for more details. basis : {'std', 'gm', 'pp', 'qt'} or Basis object The basis for `spamvec`. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). extra : object, optional Additional information for conversion. Returns ------- SPAMVec The converted SPAM vector, usually a distinct object from the object passed as input. """ if toType == "full": if isinstance(spamvec, FullSPAMVec): return spamvec # no conversion necessary else: typ = spamvec._prep_or_effect if isinstance(spamvec, SPAMVec) else "prep" return FullSPAMVec(spamvec.todense(), typ=typ) elif toType == "TP": if isinstance(spamvec, TPSPAMVec): return spamvec # no conversion necessary else: return TPSPAMVec(spamvec.todense()) # above will raise ValueError if conversion cannot be done elif toType == "TrueCPTP": # a non-lindbladian CPTP spamvec that hasn't worked well... if isinstance(spamvec, CPTPSPAMVec): return spamvec # no conversion necessary else: return CPTPSPAMVec(spamvec, basis) # above will raise ValueError if conversion cannot be done elif toType == "static": if isinstance(spamvec, StaticSPAMVec): return spamvec # no conversion necessary else: typ = spamvec._prep_or_effect if isinstance(spamvec, SPAMVec) else "prep" return StaticSPAMVec(spamvec, typ=typ) elif toType == "static unitary": dmvec = _bt.change_basis(spamvec.todense(), basis, 'std') purevec = _gt.dmvec_to_state(dmvec) return StaticSPAMVec(purevec, "statevec", spamvec._prep_or_effect) elif _gt.is_valid_lindblad_paramtype(toType): if extra is None: purevec = spamvec # right now, we don't try to extract a "closest pure vec" # to spamvec - below will fail if spamvec isn't pure. else: purevec = extra # assume extra info is a pure vector nQubits = _np.log2(spamvec.dim) / 2.0 bQubits = bool(abs(nQubits - round(nQubits)) < 1e-10) # integer # of qubits? proj_basis = "pp" if (basis == "pp" or bQubits) else basis typ = spamvec._prep_or_effect if isinstance(spamvec, SPAMVec) else "prep" return LindbladSPAMVec.from_spamvec_obj( spamvec, typ, toType, None, proj_basis, basis, truncate=True, lazy=True) elif toType == "clifford": if isinstance(spamvec, StabilizerSPAMVec): return spamvec # no conversion necessary purevec = spamvec.flatten() # assume a pure state (otherwise would # need to change Model dim) return StabilizerSPAMVec.from_dense_purevec(purevec) else: raise ValueError("Invalid toType argument: %s" % toType) def _convert_to_lindblad_base(vec, typ, new_evotype, mxBasis="pp"): """ Attempts to convert `vec` to a static (0 params) SPAMVec with evoution type `new_evotype`. Used to convert spam vecs to being LindbladSPAMVec objects. """ if vec._evotype == new_evotype and vec.num_params() == 0: return vec # no conversion necessary if new_evotype == "densitymx": return StaticSPAMVec(vec.todense(), "densitymx", typ) if new_evotype in ("svterm", "cterm"): if isinstance(vec, ComputationalSPAMVec): # special case when conversion is easy return ComputationalSPAMVec(vec._zvals, new_evotype, typ) elif vec._evotype == "densitymx": # then try to extract a (static) pure state from vec wth # evotype 'statevec' or 'stabilizer' <=> 'svterm', 'cterm' if isinstance(vec, DenseSPAMVec): dmvec = _bt.change_basis(vec, mxBasis, 'std') purestate = StaticSPAMVec(_gt.dmvec_to_state(dmvec), 'statevec', typ) elif isinstance(vec, PureStateSPAMVec): purestate = vec.pure_state_vec # evotype 'statevec' else: raise ValueError("Unable to obtain pure state from density matrix type %s!" % type(vec)) if new_evotype == "cterm": # then purestate 'statevec' => 'stabilizer' (if possible) if typ == "prep": purestate = StabilizerSPAMVec.from_dense_purevec(purestate.todense()) else: # type == "effect" purestate = StabilizerEffectVec.from_dense_purevec(purestate.todense()) return PureStateSPAMVec(purestate, new_evotype, mxBasis, typ) raise ValueError("Could not convert %s (evotype %s) to %s w/0 params!" % (str(type(vec)), vec._evotype, new_evotype)) def finite_difference_deriv_wrt_params(spamvec, wrtFilter=None, eps=1e-7): """ Computes a finite-difference Jacobian for a SPAMVec object. The returned value is a matrix whose columns are the vectorized derivatives of the spam vector with respect to a single parameter, matching the format expected from the spam vectors's `deriv_wrt_params` method. Parameters ---------- spamvec : SPAMVec The spam vector object to compute a Jacobian for. eps : float, optional The finite difference step to use. Returns ------- numpy.ndarray An M by N matrix where M is the number of gate elements and N is the number of gate parameters. """ dim = spamvec.get_dimension() spamvec2 = spamvec.copy() p = spamvec.to_vector() fd_deriv = _np.empty((dim, spamvec.num_params()), 'd') # assume real (?) for i in range(spamvec.num_params()): p_plus_dp = p.copy() p_plus_dp[i] += eps spamvec2.from_vector(p_plus_dp, close=True) fd_deriv[:, i:i + 1] = (spamvec2 - spamvec) / eps fd_deriv.shape = [dim, spamvec.num_params()] if wrtFilter is None: return fd_deriv else: return _np.take(fd_deriv, wrtFilter, axis=1) def check_deriv_wrt_params(spamvec, deriv_to_check=None, wrtFilter=None, eps=1e-7): """ Checks the `deriv_wrt_params` method of a SPAMVec object. This routine is meant to be used as an aid in testing and debugging SPAMVec classes by comparing the finite-difference Jacobian that *should* be returned by `spamvec.deriv_wrt_params` with the one that actually is. A ValueError is raised if the two do not match. Parameters ---------- spamvec : SPAMVec The gate object to test. deriv_to_check : numpy.ndarray or None, optional If not None, the Jacobian to compare against the finite difference result. If None, `spamvec.deriv_wrt_parms()` is used. Setting this argument can be useful when the function is called *within* a LinearOperator class's `deriv_wrt_params()` method itself as a part of testing. eps : float, optional The finite difference step to use. Returns ------- None """ fd_deriv = finite_difference_deriv_wrt_params(spamvec, wrtFilter, eps) if deriv_to_check is None: deriv_to_check = spamvec.deriv_wrt_params() #print("Deriv shapes = %s and %s" % (str(fd_deriv.shape), # str(deriv_to_check.shape))) #print("finite difference deriv = \n",fd_deriv) #print("deriv_wrt_params deriv = \n",deriv_to_check) #print("deriv_wrt_params - finite diff deriv = \n", # deriv_to_check - fd_deriv) for i in range(deriv_to_check.shape[0]): for j in range(deriv_to_check.shape[1]): diff = abs(deriv_to_check[i, j] - fd_deriv[i, j]) if diff > 5 * eps: print("deriv_chk_mismatch: (%d,%d): %g (comp) - %g (fd) = %g" % (i, j, deriv_to_check[i, j], fd_deriv[i, j], diff)) if _np.linalg.norm(fd_deriv - deriv_to_check) > 100 * eps: raise ValueError("Failed check of deriv_wrt_params:\n" " norm diff = %g" % _np.linalg.norm(fd_deriv - deriv_to_check)) class SPAMVec(_modelmember.ModelMember): """ Excapulates a parameterization of a state preparation OR POVM effect vector. This class is the common base class for all specific parameterizations of a SPAM vector. """ def __init__(self, rep, evotype, typ): """ Initialize a new SPAM Vector """ if isinstance(rep, int): # For operators that have no representation themselves (term ops) dim = rep # allow passing an integer as `rep`. rep = None else: dim = rep.dim super(SPAMVec, self).__init__(dim, evotype) self._rep = rep self._prep_or_effect = typ @property def size(self): """ Return the number of independent elements in this gate (when viewed as a dense array) """ return self.dim @property def outcomes(self): """ Return the z-value outcomes corresponding to this effect SPAM vector in the context of a stabilizer-state simulation. """ raise NotImplementedError("'outcomes' property is not implemented for %s objects" % self.__class__.__name__) def set_value(self, vec): """ Attempts to modify SPAMVec parameters so that the specified raw SPAM vector becomes vec. Will raise ValueError if this operation is not possible. Parameters ---------- vec : array_like or SPAMVec A numpy array representing a SPAM vector, or a SPAMVec object. Returns ------- None """ raise ValueError("Cannot set the value of a %s directly!" % self.__class__.__name__) def set_time(self, t): """ Sets the current time for a time-dependent operator. For time-independent operators (the default), this function does absolutely nothing. Parameters ---------- t : float The current time. Returns ------- None """ pass def todense(self, scratch=None): """ Return this SPAM vector as a (dense) numpy array. The memory in `scratch` maybe used when it is not-None. """ raise NotImplementedError("todense(...) not implemented for %s objects!" % self.__class__.__name__) # def torep(self, typ, outrep=None): # """ # Return a "representation" object for this SPAM vector. # Such objects are primarily used internally by pyGSTi to compute # things like probabilities more efficiently. # # Parameters # ---------- # typ : {'prep','effect'} # The type of representation (for cases when the vector type is # not already defined). # # outrep : StateRep # If not None, an existing state representation appropriate to this # SPAM vector that may be used instead of allocating a new one. # # Returns # ------- # StateRep # """ # if typ == "prep": # if self._evotype == "statevec": # return replib.SVStateRep(self.todense()) # elif self._evotype == "densitymx": # return replib.DMStateRep(self.todense()) # raise NotImplementedError("torep(%s) not implemented for %s objects!" % # (self._evotype, self.__class__.__name__)) # elif typ == "effect": # if self._evotype == "statevec": # return replib.SVEffectRep_Dense(self.todense()) # elif self._evotype == "densitymx": # return replib.DMEffectRep_Dense(self.todense()) # raise NotImplementedError("torep(%s) not implemented for %s objects!" % # (self._evotype, self.__class__.__name__)) # else: # raise ValueError("Invalid `typ` argument for torep(): %s" % typ) def get_taylor_order_terms(self, order, max_poly_vars=100, return_poly_coeffs=False): """ Get the `order`-th order Taylor-expansion terms of this SPAM vector. This function either constructs or returns a cached list of the terms at the given order. Each term is "rank-1", meaning that it is a state preparation followed by or POVM effect preceded by actions on a density matrix `rho` of the form: `rho -> A rho B` The coefficients of these terms are typically polynomials of the SPAMVec's parameters, where the polynomial's variable indices index the *global* parameters of the SPAMVec's parent (usually a :class:`Model`) , not the SPAMVec's local parameter array (i.e. that returned from `to_vector`). Parameters ---------- order : int The order of terms to get. return_coeff_polys : bool Whether a parallel list of locally-indexed (using variable indices corresponding to *this* object's parameters rather than its parent's) polynomial coefficients should be returned as well. Returns ------- terms : list A list of :class:`RankOneTerm` objects. coefficients : list Only present when `return_coeff_polys == True`. A list of *compact* polynomial objects, meaning that each element is a `(vtape,ctape)` 2-tuple formed by concatenating together the output of :method:`Polynomial.compact`. """ raise NotImplementedError("get_taylor_order_terms(...) not implemented for %s objects!" % self.__class__.__name__) def get_highmagnitude_terms(self, min_term_mag, force_firstorder=True, max_taylor_order=3, max_poly_vars=100): """ Get the terms (from a Taylor expansion of this SPAM vector) that have magnitude above `min_term_mag` (the magnitude of a term is taken to be the absolute value of its coefficient), considering only those terms up to some maximum Taylor expansion order, `max_taylor_order`. Note that this function also *sets* the magnitudes of the returned terms (by calling `term.set_magnitude(...)`) based on the current values of this SPAM vector's parameters. This is an essential step to using these terms in pruned-path-integral calculations later on. Parameters ---------- min_term_mag : float the threshold for term magnitudes: only terms with magnitudes above this value are returned. force_firstorder : bool, optional if True, then always return all the first-order Taylor-series terms, even if they have magnitudes smaller than `min_term_mag`. This behavior is needed for using GST with pruned-term calculations, as we may begin with a guess model that has no error (all terms have zero magnitude!) and still need to compute a meaningful jacobian at this point. max_taylor_order : int, optional the maximum Taylor-order to consider when checking whether term- magnitudes exceed `min_term_mag`. Returns ------- highmag_terms : list A list of the high-magnitude terms that were found. These terms are *sorted* in descending order by term-magnitude. first_order_indices : list A list of the indices into `highmag_terms` that mark which of these terms are first-order Taylor terms (useful when we're forcing these terms to always be present). """ #NOTE: SAME as for LinearOperator class -- TODO consolidate in FUTURE #print("DB: SPAM get_high_magnitude_terms") v = self.to_vector() taylor_order = 0 terms = []; last_len = -1; first_order_magmax = 1.0 while len(terms) > last_len: # while we keep adding something if taylor_order > 1 and first_order_magmax**taylor_order < min_term_mag: break # there's no way any terms at this order reach min_term_mag - exit now! MAX_CACHED_TERM_ORDER = 1 if taylor_order <= MAX_CACHED_TERM_ORDER: #print("order ",taylor_order," : ",len(terms), "terms") terms_at_order, cpolys = self.get_taylor_order_terms(taylor_order, max_poly_vars, True) coeffs = _bulk_eval_compact_polys_complex( cpolys[0], cpolys[1], v, (len(terms_at_order),)) # an array of coeffs mags = _np.abs(coeffs) last_len = len(terms) #OLD: terms_at_order = [ t.copy_with_magnitude(abs(coeff)) for coeff, t in zip(coeffs, terms_at_order) ] if taylor_order == 1: #OLD: first_order_magmax = max([t.magnitude for t in terms_at_order]) first_order_magmax = max(mags) if force_firstorder: terms.extend([(taylor_order, t.copy_with_magnitude(mag)) for coeff, mag, t in zip(coeffs, mags, terms_at_order)]) else: for mag, t in zip(mags, terms_at_order): if mag >= min_term_mag: terms.append((taylor_order, t.copy_with_magnitude(mag))) else: for mag, t in zip(mags, terms_at_order): if mag >= min_term_mag: terms.append((taylor_order, t.copy_with_magnitude(mag))) else: terms.extend([(taylor_order, t) for t in self.get_taylor_order_terms_above_mag(taylor_order, max_poly_vars, min_term_mag)]) taylor_order += 1 if taylor_order > max_taylor_order: break #Sort terms based on magnitude sorted_terms = sorted(terms, key=lambda t: t[1].magnitude, reverse=True) first_order_indices = [i for i, t in enumerate(sorted_terms) if t[0] == 1] return [t[1] for t in sorted_terms], first_order_indices def get_taylor_order_terms_above_mag(self, order, max_poly_vars, min_term_mag): """ TODO: docstring """ v = self.to_vector() terms_at_order, cpolys = self.get_taylor_order_terms(order, max_poly_vars, True) coeffs = _bulk_eval_compact_polys_complex( cpolys[0], cpolys[1], v, (len(terms_at_order),)) # an array of coeffs terms_at_order = [t.copy_with_magnitude(abs(coeff)) for coeff, t in zip(coeffs, terms_at_order)] return [t for t in terms_at_order if t.magnitude >= min_term_mag] def frobeniusdist2(self, otherSpamVec, typ, transform=None, inv_transform=None): """ Return the squared frobenius difference between this spam vector and `otherSpamVec`, optionally transforming this vector first using `transform` and `inv_transform` (depending on the value of `typ`). Parameters ---------- otherSpamVec : SPAMVec The other spam vector typ : { 'prep', 'effect' } Which type of SPAM vector is being transformed. transform, inv_transform : numpy.ndarray The transformation (if not None) to be performed. Returns ------- float """ vec = self.todense() if typ == 'prep': if inv_transform is None: return _gt.frobeniusdist2(vec, otherSpamVec.todense()) else: return _gt.frobeniusdist2(_np.dot(inv_transform, vec), otherSpamVec.todense()) elif typ == "effect": if transform is None: return _gt.frobeniusdist2(vec, otherSpamVec.todense()) else: return _gt.frobeniusdist2(_np.dot(_np.transpose(transform), vec), otherSpamVec.todense()) else: raise ValueError("Invalid 'typ' argument: %s" % typ) def residuals(self, otherSpamVec, typ, transform=None, inv_transform=None): """ Return a vector of residuals between this spam vector and `otherSpamVec`, optionally transforming this vector first using `transform` and `inv_transform` (depending on the value of `typ`). Parameters ---------- otherSpamVec : SPAMVec The other spam vector typ : { 'prep', 'effect' } Which type of SPAM vector is being transformed. transform, inv_transform : numpy.ndarray The transformation (if not None) to be performed. Returns ------- float """ vec = self.todense() if typ == 'prep': if inv_transform is None: return _gt.residuals(vec, otherSpamVec.todense()) else: return _gt.residuals(_np.dot(inv_transform, vec), otherSpamVec.todense()) elif typ == "effect": if transform is None: return _gt.residuals(vec, otherSpamVec.todense()) else: return _gt.residuals(_np.dot(_np.transpose(transform), vec), otherSpamVec.todense()) def transform(self, S, typ): """ Update SPAM (column) vector V as inv(S) * V or S^T * V for preparation or effect SPAM vectors, respectively. Note that this is equivalent to state preparation vectors getting mapped: `rho -> inv(S) * rho` and the *transpose* of effect vectors being mapped as `E^T -> E^T * S`. Generally, the transform function updates the *parameters* of the SPAM vector such that the resulting vector is altered as described above. If such an update cannot be done (because the gate parameters do not allow for it), ValueError is raised. Parameters ---------- S : GaugeGroupElement A gauge group element which specifies the "S" matrix (and it's inverse) used in the above similarity transform. typ : { 'prep', 'effect' } Which type of SPAM vector is being transformed (see above). """ if typ == 'prep': Si = S.get_transform_matrix_inverse() self.set_value(_np.dot(Si, self.todense())) elif typ == 'effect': Smx = S.get_transform_matrix() self.set_value(_np.dot(_np.transpose(Smx), self.todense())) #Evec^T --> ( Evec^T * S )^T else: raise ValueError("Invalid typ argument: %s" % typ) def depolarize(self, amount): """ Depolarize this SPAM vector by the given `amount`. Generally, the depolarize function updates the *parameters* of the SPAMVec such that the resulting vector is depolarized. If such an update cannot be done (because the gate parameters do not allow for it), ValueError is raised. Parameters ---------- amount : float or tuple The amount to depolarize by. If a tuple, it must have length equal to one less than the dimension of the gate. All but the first element of the spam vector (often corresponding to the identity element) are multiplied by `amount` (if a float) or the corresponding `amount[i]` (if a tuple). Returns ------- None """ if isinstance(amount, float) or _compat.isint(amount): D = _np.diag([1] + [1 - amount] * (self.dim - 1)) else: assert(len(amount) == self.dim - 1) D = _np.diag([1] + list(1.0 - _np.array(amount, 'd'))) self.set_value(_np.dot(D, self.todense())) def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ return 0 # no parameters def to_vector(self): """ Get the SPAM vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ return _np.array([], 'd') # no parameters def from_vector(self, v, close=False, nodirty=False): """ Initialize the SPAM vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of gate parameters. Length must == num_params() Returns ------- None """ assert(len(v) == 0) # should be no parameters, and nothing to do def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. An empty 2D array in the StaticSPAMVec case (num_params == 0). Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ dtype = complex if self._evotype == 'statevec' else 'd' derivMx = _np.zeros((self.dim, 0), dtype) if wrtFilter is None: return derivMx else: return _np.take(derivMx, wrtFilter, axis=1) def has_nonzero_hessian(self): """ Returns whether this SPAM vector has a non-zero Hessian with respect to its parameters, i.e. whether it only depends linearly on its parameters or not. Returns ------- bool """ #Default: assume Hessian can be nonzero if there are any parameters return self.num_params() > 0 def hessian_wrt_params(self, wrtFilter1=None, wrtFilter2=None): """ Construct the Hessian of this SPAM vector with respect to its parameters. This function returns a tensor whose first axis corresponds to the flattened operation matrix and whose 2nd and 3rd axes correspond to the parameters that are differentiated with respect to. Parameters ---------- wrtFilter1, wrtFilter2 : list Lists of indices of the paramters to take first and second derivatives with respect to. If None, then derivatives are taken with respect to all of the vectors's parameters. Returns ------- numpy array Hessian with shape (dimension, num_params1, num_params2) """ if not self.has_nonzero_hessian(): return _np.zeros(self.size, self.num_params(), self.num_params()) # FUTURE: create a finite differencing hessian method? raise NotImplementedError("hessian_wrt_params(...) is not implemented for %s objects" % self.__class__.__name__) #Note: no __str__ fn @staticmethod def convert_to_vector(V): """ Static method that converts a vector-like object to a 2D numpy dim x 1 column array. Parameters ---------- V : array_like Returns ------- numpy array """ if isinstance(V, SPAMVec): vector = V.todense().copy() vector.shape = (vector.size, 1) elif isinstance(V, _np.ndarray): vector = V.copy() if len(vector.shape) == 1: # convert (N,) shape vecs to (N,1) vector.shape = (vector.size, 1) else: try: len(V) # XXX this is an abuse of exception handling except: raise ValueError("%s doesn't look like an array/list" % V) try: d2s = [len(row) for row in V] except TypeError: # thrown if len(row) fails because no 2nd dim d2s = None if d2s is not None: if any([len(row) != 1 for row in V]): raise ValueError("%s is 2-dimensional but 2nd dim != 1" % V) typ = 'd' if _np.all(_np.isreal(V)) else 'complex' try: vector = _np.array(V, typ) # vec is already a 2-D column vector except TypeError: raise ValueError("%s doesn't look like an array/list" % V) else: typ = 'd' if _np.all(_np.isreal(V)) else 'complex' vector = _np.array(V, typ)[:, None] # make into a 2-D column vec assert(len(vector.shape) == 2 and vector.shape[1] == 1) return vector.flatten() # HACK for convention change -> (N,) instead of (N,1) class DenseSPAMVec(SPAMVec): """ Excapulates a parameterization of a state preparation OR POVM effect vector. This class is the common base class for all specific parameterizations of a SPAM vector. """ def __init__(self, vec, evotype, prep_or_effect): """ Initialize a new SPAM Vector """ dtype = complex if evotype == "statevec" else 'd' vec = _np.asarray(vec, dtype=dtype) vec.shape = (vec.size,) # just store 1D array flatten vec = _np.require(vec, requirements=['OWNDATA', 'C_CONTIGUOUS']) if prep_or_effect == "prep": if evotype == "statevec": rep = replib.SVStateRep(vec) elif evotype == "densitymx": rep = replib.DMStateRep(vec) else: raise ValueError("Invalid evotype for DenseSPAMVec: %s" % evotype) elif prep_or_effect == "effect": if evotype == "statevec": rep = replib.SVEffectRep_Dense(vec) elif evotype == "densitymx": rep = replib.DMEffectRep_Dense(vec) else: raise ValueError("Invalid evotype for DenseSPAMVec: %s" % evotype) else: raise ValueError("Invalid `prep_or_effect` argument: %s" % prep_or_effect) super(DenseSPAMVec, self).__init__(rep, evotype, prep_or_effect) assert(self.base1D.flags['C_CONTIGUOUS'] and self.base1D.flags['OWNDATA']) def todense(self, scratch=None): """ Return this SPAM vector as a (dense) numpy array. The memory in `scratch` maybe used when it is not-None. """ #don't use scratch since we already have memory allocated return self.base1D # *must* be a numpy array for Cython arg conversion @property def base1D(self): return self._rep.base @property def base(self): bv = self.base1D.view() bv.shape = (bv.size, 1) # 'base' is by convention a (N,1)-shaped array return bv def __copy__(self): # We need to implement __copy__ because we defer all non-existing # attributes to self.base (a numpy array) which *has* a __copy__ # implementation that we don't want to use, as it results in just a # copy of the numpy array. cls = self.__class__ cpy = cls.__new__(cls) cpy.__dict__.update(self.__dict__) return cpy def __deepcopy__(self, memo): # We need to implement __deepcopy__ because we defer all non-existing # attributes to self.base (a numpy array) which *has* a __deepcopy__ # implementation that we don't want to use, as it results in just a # copy of the numpy array. cls = self.__class__ cpy = cls.__new__(cls) memo[id(self)] = cpy for k, v in self.__dict__.items(): setattr(cpy, k, _copy.deepcopy(v, memo)) return cpy #Access to underlying array def __getitem__(self, key): self.dirty = True return self.base.__getitem__(key) def __getslice__(self, i, j): self.dirty = True return self.__getitem__(slice(i, j)) # Called for A[:] def __setitem__(self, key, val): self.dirty = True return self.base.__setitem__(key, val) def __getattr__(self, attr): #use __dict__ so no chance for recursive __getattr__ if '_rep' in self.__dict__: # sometimes in loading __getattr__ gets called before the instance is loaded ret = getattr(self.base, attr) else: raise AttributeError("No attribute:", attr) self.dirty = True return ret #Mimic array def __pos__(self): return self.base def __neg__(self): return -self.base def __abs__(self): return abs(self.base) def __add__(self, x): return self.base + x def __radd__(self, x): return x + self.base def __sub__(self, x): return self.base - x def __rsub__(self, x): return x - self.base def __mul__(self, x): return self.base * x def __rmul__(self, x): return x * self.base def __truediv__(self, x): return self.base / x def __rtruediv__(self, x): return x / self.base def __floordiv__(self, x): return self.base // x def __rfloordiv__(self, x): return x // self.base def __pow__(self, x): return self.base ** x def __eq__(self, x): return self.base == x def __len__(self): return len(self.base) def __int__(self): return int(self.base) def __long__(self): return int(self.base) def __float__(self): return float(self.base) def __complex__(self): return complex(self.base) def __str__(self): s = "%s with dimension %d\n" % (self.__class__.__name__, self.dim) s += _mt.mx_to_string(self.todense(), width=4, prec=2) return s class StaticSPAMVec(DenseSPAMVec): """ Encapsulates a SPAM vector that is completely fixed, or "static", meaning that is contains no parameters. """ def __init__(self, vec, evotype="auto", typ="prep"): """ Initialize a StaticSPAMVec object. Parameters ---------- vec : array_like or SPAMVec a 1D numpy array representing the SPAM operation. The shape of this array sets the dimension of the SPAM op. evotype : {"densitymx", "statevec"} the evolution type being used. typ : {"prep", "effect"} whether this is a state preparation or an effect (measurement) SPAM vector. """ vec = SPAMVec.convert_to_vector(vec) if evotype == "auto": evotype = "statevec" if _np.iscomplexobj(vec) else "densitymx" elif evotype == "statevec": vec = _np.asarray(vec, complex) # ensure all statevec vecs are complex (densitymx could be either?) assert(evotype in ("statevec", "densitymx")), \ "Invalid evolution type '%s' for %s" % (evotype, self.__class__.__name__) DenseSPAMVec.__init__(self, vec, evotype, typ) class FullSPAMVec(DenseSPAMVec): """ Encapsulates a SPAM vector that is fully parameterized, that is, each element of the SPAM vector is an independent parameter. """ def __init__(self, vec, evotype="auto", typ="prep"): """ Initialize a FullSPAMVec object. Parameters ---------- vec : array_like or SPAMVec a 1D numpy array representing the SPAM operation. The shape of this array sets the dimension of the SPAM op. evotype : {"densitymx", "statevec"} the evolution type being used. typ : {"prep", "effect"} whether this is a state preparation or an effect (measurement) SPAM vector. """ vec = SPAMVec.convert_to_vector(vec) if evotype == "auto": evotype = "statevec" if _np.iscomplexobj(vec) else "densitymx" assert(evotype in ("statevec", "densitymx")), \ "Invalid evolution type '%s' for %s" % (evotype, self.__class__.__name__) DenseSPAMVec.__init__(self, vec, evotype, typ) def set_value(self, vec): """ Attempts to modify SPAMVec parameters so that the specified raw SPAM vector becomes vec. Will raise ValueError if this operation is not possible. Parameters ---------- vec : array_like or SPAMVec A numpy array representing a SPAM vector, or a SPAMVec object. Returns ------- None """ vec = SPAMVec.convert_to_vector(vec) if(vec.size != self.dim): raise ValueError("Argument must be length %d" % self.dim) self.base1D[:] = vec self.dirty = True def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ return 2 * self.size if self._evotype == "statevec" else self.size def to_vector(self): """ Get the SPAM vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ if self._evotype == "statevec": return _np.concatenate((self.base1D.real, self.base1D.imag), axis=0) else: return self.base1D def from_vector(self, v, close=False, nodirty=False): """ Initialize the SPAM vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of gate parameters. Length must == num_params() Returns ------- None """ if self._evotype == "statevec": self.base1D[:] = v[0:self.dim] + 1j * v[self.dim:] else: self.base1D[:] = v if not nodirty: self.dirty = True def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ if self._evotype == "statevec": derivMx = _np.concatenate((_np.identity(self.dim, complex), 1j * _np.identity(self.dim, complex)), axis=1) else: derivMx = _np.identity(self.dim, 'd') if wrtFilter is None: return derivMx else: return _np.take(derivMx, wrtFilter, axis=1) def has_nonzero_hessian(self): """ Returns whether this SPAM vector has a non-zero Hessian with respect to its parameters, i.e. whether it only depends linearly on its parameters or not. Returns ------- bool """ return False class TPSPAMVec(DenseSPAMVec): """ Encapsulates a SPAM vector that is fully parameterized except for the first element, which is frozen to be 1/(d**0.25). This is so that, when the SPAM vector is interpreted in the Pauli or Gell-Mann basis, the represented density matrix has trace == 1. This restriction is frequently used in conjuction with trace-preserving (TP) gates. """ #Note: here we assume that the first basis element is (1/sqrt(x) * I), # where I the d-dimensional identity (where len(vector) == d**2). So # if Tr(basisEl*basisEl) == Tr(1/x*I) == d/x must == 1, then we must # have x == d. Thus, we multiply this first basis element by # alpha = 1/sqrt(d) to obtain a trace-1 matrix, i.e., finding alpha # s.t. Tr(alpha*[1/sqrt(d)*I]) == 1 => alpha*d/sqrt(d) == 1 => # alpha = 1/sqrt(d) = 1/(len(vec)**0.25). def __init__(self, vec): """ Initialize a TPSPAMVec object. Parameters ---------- vec : array_like or SPAMVec a 1D numpy array representing the SPAM operation. The shape of this array sets the dimension of the SPAM op. """ vector = SPAMVec.convert_to_vector(vec) firstEl = len(vector)**-0.25 if not _np.isclose(vector[0], firstEl): raise ValueError("Cannot create TPSPAMVec: " "first element must equal %g!" % firstEl) DenseSPAMVec.__init__(self, vec, "densitymx", "prep") assert(isinstance(self.base, _ProtectedArray)) @property def base(self): bv = self.base1D.view() bv.shape = (bv.size, 1) return _ProtectedArray(bv, indicesToProtect=(0, 0)) def set_value(self, vec): """ Attempts to modify SPAMVec parameters so that the specified raw SPAM vector becomes vec. Will raise ValueError if this operation is not possible. Parameters ---------- vec : array_like or SPAMVec A numpy array representing a SPAM vector, or a SPAMVec object. Returns ------- None """ vec = SPAMVec.convert_to_vector(vec) firstEl = (self.dim)**-0.25 if(vec.size != self.dim): raise ValueError("Argument must be length %d" % self.dim) if not _np.isclose(vec[0], firstEl): raise ValueError("Cannot create TPSPAMVec: " "first element must equal %g!" % firstEl) self.base1D[1:] = vec[1:] self.dirty = True def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ return self.dim - 1 def to_vector(self): """ Get the SPAM vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ return self.base1D[1:] # .real in case of complex matrices? def from_vector(self, v, close=False, nodirty=False): """ Initialize the SPAM vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of gate parameters. Length must == num_params() Returns ------- None """ assert(_np.isclose(self.base1D[0], (self.dim)**-0.25)) self.base1D[1:] = v if not nodirty: self.dirty = True def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ derivMx = _np.identity(self.dim, 'd') # TP vecs assumed real derivMx = derivMx[:, 1:] # remove first col ( <=> first-el parameters ) if wrtFilter is None: return derivMx else: return _np.take(derivMx, wrtFilter, axis=1) def has_nonzero_hessian(self): """ Returns whether this SPAM vector has a non-zero Hessian with respect to its parameters, i.e. whether it only depends linearly on its parameters or not. Returns ------- bool """ return False class ComplementSPAMVec(DenseSPAMVec): """ Encapsulates a SPAM vector that is parameterized by `I - sum(other_spam_vecs)` where `I` is a (static) identity element and `other_param_vecs` is a list of other spam vectors in the same parent :class:`POVM`. This only *partially* implements the SPAMVec interface (some methods such as `to_vector` and `from_vector` will thunk down to base class versions which raise `NotImplementedError`), as instances are meant to be contained within a :class:`POVM` which takes care of vectorization. """ def __init__(self, identity, other_spamvecs): """ Initialize a ComplementSPAMVec object. Parameters ---------- identity : array_like or SPAMVec a 1D numpy array representing the static identity operation from which the sum of the other vectors is subtracted. other_spamvecs : list of SPAMVecs A list of the "other" parameterized SPAM vectors which are subtracted from `identity` to compute the final value of this "complement" SPAM vector. """ self.identity = FullSPAMVec( SPAMVec.convert_to_vector(identity)) # so easy to transform # or depolarize by parent POVM self.other_vecs = other_spamvecs #Note: we assume that our parent will do the following: # 1) set our gpindices to indicate how many parameters we have # 2) set the gpindices of the elements of other_spamvecs so # that they index into our local parameter vector. DenseSPAMVec.__init__(self, self.identity, "densitymx", "effect") # dummy self._construct_vector() # reset's self.base def _construct_vector(self): self.base1D.flags.writeable = True self.base1D[:] = self.identity.base1D - sum([vec.base1D for vec in self.other_vecs]) self.base1D.flags.writeable = False def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ return len(self.gpindices_as_array()) def to_vector(self): """ Get the SPAM vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ raise ValueError(("ComplementSPAMVec.to_vector() should never be called" " - use TPPOVM.to_vector() instead")) def from_vector(self, v, close=False, nodirty=False): """ Initialize this SPAM vector using a vector of its parameters. Parameters ---------- v : numpy array The 1D vector of parameters. Returns ------- None """ #Rely on prior .from_vector initialization of self.other_vecs, so # we just construct our vector based on them. #Note: this is needed for finite-differencing in map-based calculator self._construct_vector() if not nodirty: self.dirty = True def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ if len(self.other_vecs) == 0: return _np.zeros((self.dim, 0), 'd') # Complement vecs assumed real Np = len(self.gpindices_as_array()) neg_deriv = _np.zeros((self.dim, Np), 'd') for ovec in self.other_vecs: local_inds = _modelmember._decompose_gpindices( self.gpindices, ovec.gpindices) #Note: other_vecs are not copies but other *sibling* effect vecs # so their gpindices index the same space as this complement vec's # does - so we need to "_decompose_gpindices" neg_deriv[:, local_inds] += ovec.deriv_wrt_params() derivMx = -neg_deriv if wrtFilter is None: return derivMx else: return _np.take(derivMx, wrtFilter, axis=1) def has_nonzero_hessian(self): """ Returns whether this SPAM vector has a non-zero Hessian with respect to its parameters, i.e. whether it only depends linearly on its parameters or not. Returns ------- bool """ return False class CPTPSPAMVec(DenseSPAMVec): """ Encapsulates a SPAM vector that is parameterized through the Cholesky decomposition of it's standard-basis representation as a density matrix (not a Liouville vector). The resulting SPAM vector thus represents a positive density matrix, and additional constraints on the parameters also guarantee that the trace == 1. This SPAM vector is meant for use with CPTP processes, hence the name. """ def __init__(self, vec, basis, truncate=False): """ Initialize a CPTPSPAMVec object. Parameters ---------- vec : array_like or SPAMVec a 1D numpy array representing the SPAM operation. The shape of this array sets the dimension of the SPAM op. basis : {"std", "gm", "pp", "qt"} or Basis The basis `vec` is in. Needed because this parameterization requires we construct the density matrix corresponding to the Lioville vector `vec`. trunctate : bool, optional Whether or not a non-positive, trace=1 `vec` should be truncated to force a successful construction. """ vector = SPAMVec.convert_to_vector(vec) basis = _Basis.cast(basis, len(vector)) self.basis = basis self.basis_mxs = basis.elements # shape (len(vec), dmDim, dmDim) self.basis_mxs = _np.rollaxis(self.basis_mxs, 0, 3) # shape (dmDim, dmDim, len(vec)) assert(self.basis_mxs.shape[-1] == len(vector)) # set self.params and self.dmDim self._set_params_from_vector(vector, truncate) #scratch space self.Lmx = _np.zeros((self.dmDim, self.dmDim), 'complex') DenseSPAMVec.__init__(self, vector, "densitymx", "prep") def _set_params_from_vector(self, vector, truncate): density_mx = _np.dot(self.basis_mxs, vector) density_mx = density_mx.squeeze() dmDim = density_mx.shape[0] assert(dmDim == density_mx.shape[1]), "Density matrix must be square!" trc = _np.trace(density_mx) assert(truncate or _np.isclose(trc, 1.0)), \ "`vec` must correspond to a trace-1 density matrix (truncate == False)!" if not _np.isclose(trc, 1.0): # truncate to trace == 1 density_mx -= _np.identity(dmDim, 'd') / dmDim * (trc - 1.0) #push any slightly negative evals of density_mx positive # so that the Cholesky decomp will work. evals, U = _np.linalg.eig(density_mx) Ui = _np.linalg.inv(U) assert(truncate or all([ev >= -1e-12 for ev in evals])), \ "`vec` must correspond to a positive density matrix (truncate == False)!" pos_evals = evals.clip(1e-16, 1e100) density_mx = _np.dot(U, _np.dot(_np.diag(pos_evals), Ui)) try: Lmx = _np.linalg.cholesky(density_mx) except _np.linalg.LinAlgError: # Lmx not postitive definite? pos_evals = evals.clip(1e-12, 1e100) # try again with 1e-12 density_mx = _np.dot(U, _np.dot(_np.diag(pos_evals), Ui)) Lmx = _np.linalg.cholesky(density_mx) #check TP condition: that diagonal els of Lmx squared add to 1.0 Lmx_norm = _np.trace(_np.dot(Lmx.T.conjugate(), Lmx)) # sum of magnitude^2 of all els assert(_np.isclose(Lmx_norm, 1.0)), \ "Cholesky decomp didn't preserve trace=1!" self.dmDim = dmDim self.params = _np.empty(dmDim**2, 'd') for i in range(dmDim): assert(_np.linalg.norm(_np.imag(Lmx[i, i])) < IMAG_TOL) self.params[i * dmDim + i] = Lmx[i, i].real # / paramNorm == 1 as asserted above for j in range(i): self.params[i * dmDim + j] = Lmx[i, j].real self.params[j * dmDim + i] = Lmx[i, j].imag def _construct_vector(self): dmDim = self.dmDim # params is an array of length dmDim^2-1 that # encodes a lower-triangular matrix "Lmx" via: # Lmx[i,i] = params[i*dmDim + i] / param-norm # i = 0...dmDim-2 # *last diagonal el is given by sqrt(1.0 - sum(L[i,j]**2)) # Lmx[i,j] = params[i*dmDim + j] + 1j*params[j*dmDim+i] (i > j) param2Sum = _np.vdot(self.params, self.params) # or "dot" would work, since params are real paramNorm = _np.sqrt(param2Sum) # also the norm of *all* Lmx els for i in range(dmDim): self.Lmx[i, i] = self.params[i * dmDim + i] / paramNorm for j in range(i): self.Lmx[i, j] = (self.params[i * dmDim + j] + 1j * self.params[j * dmDim + i]) / paramNorm Lmx_norm = _np.trace(_np.dot(self.Lmx.T.conjugate(), self.Lmx)) # sum of magnitude^2 of all els assert(_np.isclose(Lmx_norm, 1.0)), "Violated trace=1 condition!" #The (complex, Hermitian) density matrix is build by # assuming Lmx is its Cholesky decomp, which makes # the density matrix is pos-def. density_mx = _np.dot(self.Lmx, self.Lmx.T.conjugate()) assert(_np.isclose(_np.trace(density_mx), 1.0)), "density matrix must be trace == 1" # write density matrix in given basis: = sum_i alpha_i B_i # ASSUME that basis is orthogonal, i.e. Tr(Bi^dag*Bj) = delta_ij basis_mxs = _np.rollaxis(self.basis_mxs, 2) # shape (dmDim, dmDim, len(vec)) vec = _np.array([_np.trace(_np.dot(M.T.conjugate(), density_mx)) for M in basis_mxs]) #for now, assume Liouville vector should always be real (TODO: add 'real' flag later?) assert(_np.linalg.norm(_np.imag(vec)) < IMAG_TOL) vec = _np.real(vec) self.base1D.flags.writeable = True self.base1D[:] = vec[:] # so shape is (dim,1) - the convention for spam vectors self.base1D.flags.writeable = False def set_value(self, vec): """ Attempts to modify SPAMVec parameters so that the specified raw SPAM vector becomes vec. Will raise ValueError if this operation is not possible. Parameters ---------- vec : array_like or SPAMVec A numpy array representing a SPAM vector, or a SPAMVec object. Returns ------- None """ try: self._set_params_from_vector(vec, truncate=False) self.dirty = True except AssertionError as e: raise ValueError("Error initializing the parameters of this " "CPTPSPAMVec object: " + str(e)) def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ assert(self.dmDim**2 == self.dim) # should at least be true without composite bases... return self.dmDim**2 def to_vector(self): """ Get the SPAM vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ return self.params def from_vector(self, v, close=False, nodirty=False): """ Initialize the SPAM vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of gate parameters. Length must == num_params() Returns ------- None """ assert(len(v) == self.num_params()) self.params[:] = v[:] self._construct_vector() if not nodirty: self.dirty = True def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ dmDim = self.dmDim nP = len(self.params) assert(nP == dmDim**2) # number of parameters # v_i = trace( B_i^dag * Lmx * Lmx^dag ) # d(v_i) = trace( B_i^dag * (dLmx * Lmx^dag + Lmx * (dLmx)^dag) ) #trace = linear so commutes w/deriv # / # where dLmx/d[ab] = { # \ L, Lbar = self.Lmx, self.Lmx.conjugate() F1 = _np.tril(_np.ones((dmDim, dmDim), 'd')) F2 = _np.triu(_np.ones((dmDim, dmDim), 'd'), 1) * 1j conj_basis_mxs = self.basis_mxs.conjugate() # Derivative of vector wrt params; shape == [vecLen,dmDim,dmDim] *not dealing with TP condition yet* # (first get derivative assuming last diagonal el of Lmx *is* a parameter, then use chain rule) dVdp = _np.einsum('aml,mb,ab->lab', conj_basis_mxs, Lbar, F1) # only a >= b nonzero (F1) dVdp += _np.einsum('mal,mb,ab->lab', conj_basis_mxs, L, F1) # ditto dVdp += _np.einsum('bml,ma,ab->lab', conj_basis_mxs, Lbar, F2) # only b > a nonzero (F2) dVdp += _np.einsum('mbl,ma,ab->lab', conj_basis_mxs, L, F2.conjugate()) # ditto dVdp.shape = [dVdp.shape[0], nP] # jacobian with respect to "p" params, # which don't include normalization for TP-constraint #Now get jacobian of actual params wrt the params used above. Denote the actual # params "P" in variable names, so p_ij = P_ij / sqrt(sum(P_xy**2)) param2Sum = _np.vdot(self.params, self.params) paramNorm = _np.sqrt(param2Sum) # norm of *all* Lmx els (note lastDiagEl dpdP = _np.identity(nP, 'd') # all p_ij params == P_ij / paramNorm = P_ij / sqrt(sum(P_xy**2)) # and so have derivs wrt *all* Pxy elements. for ij in range(nP): for kl in range(nP): if ij == kl: # dp_ij / dP_ij = 1.0 / (sum(P_xy**2))^(1/2) - 0.5 * P_ij / (sum(P_xy**2))^(3/2) * 2*P_ij # = 1.0 / (sum(P_xy**2))^(1/2) - P_ij^2 / (sum(P_xy**2))^(3/2) dpdP[ij, ij] = 1.0 / paramNorm - self.params[ij]**2 / paramNorm**3 else: # dp_ij / dP_kl = -0.5 * P_ij / (sum(P_xy**2))^(3/2) * 2*P_kl # = - P_ij * P_kl / (sum(P_xy**2))^(3/2) dpdP[ij, kl] = - self.params[ij] * self.params[kl] / paramNorm**3 #Apply the chain rule to get dVdP: dVdP = _np.dot(dVdp, dpdP) # shape (vecLen, nP) - the jacobian! dVdp = dpdP = None # free memory! assert(_np.linalg.norm(_np.imag(dVdP)) < IMAG_TOL) derivMx = _np.real(dVdP) if wrtFilter is None: return derivMx else: return _np.take(derivMx, wrtFilter, axis=1) def has_nonzero_hessian(self): """ Returns whether this SPAM vector has a non-zero Hessian with respect to its parameters, i.e. whether it only depends linearly on its parameters or not. Returns ------- bool """ return True def hessian_wrt_params(self, wrtFilter1=None, wrtFilter2=None): """ Construct the Hessian of this SPAM vector with respect to its parameters. This function returns a tensor whose first axis corresponds to the flattened operation matrix and whose 2nd and 3rd axes correspond to the parameters that are differentiated with respect to. Parameters ---------- wrtFilter1, wrtFilter2 : list Lists of indices of the paramters to take first and second derivatives with respect to. If None, then derivatives are taken with respect to all of the vectors's parameters. Returns ------- numpy array Hessian with shape (dimension, num_params1, num_params2) """ raise NotImplementedError("TODO: add hessian computation for CPTPSPAMVec") class TensorProdSPAMVec(SPAMVec): """ Encapsulates a SPAM vector that is a tensor-product of other SPAM vectors. """ def __init__(self, typ, factors, povmEffectLbls=None): """ Initialize a TensorProdSPAMVec object. Parameters ---------- typ : {"prep","effect"} The type of spam vector - either a product of preparation vectors ("prep") or of POVM effect vectors ("effect") factors : list of SPAMVecs or POVMs if `typ == "prep"`, a list of the component SPAMVecs; if `typ == "effect"`, a list of "reference" POVMs into which `povmEffectLbls` indexes. povmEffectLbls : array-like Only non-None when `typ == "effect"`. The effect label of each factor POVM which is tensored together to form this SPAM vector. """ assert(len(factors) > 0), "Must have at least one factor!" self.factors = factors # do *not* copy - needs to reference common objects self.Np = sum([fct.num_params() for fct in factors]) if typ == "effect": self.effectLbls = _np.array(povmEffectLbls) elif typ == "prep": assert(povmEffectLbls is None), '`povmEffectLbls` must be None when `typ != "effects"`' self.effectLbls = None else: raise ValueError("Invalid `typ` argument: %s" % typ) dim = _np.product([fct.dim for fct in factors]) evotype = self.factors[0]._evotype #Arrays for speeding up kron product in effect reps if evotype in ("statevec", "densitymx") and typ == "effect": # types that require fast kronecker prods max_factor_dim = max(fct.dim for fct in factors) self._fast_kron_array = _np.ascontiguousarray( _np.empty((len(factors), max_factor_dim), complex if evotype == "statevec" else 'd')) self._fast_kron_factordims = _np.ascontiguousarray( _np.array([fct.dim for fct in factors], _np.int64)) else: # "stabilizer", "svterm", "cterm" self._fast_kron_array = None self._fast_kron_factordims = None #Create representation if evotype == "statevec": if typ == "prep": # prep-type vectors can be represented as dense effects too rep = replib.SVStateRep(_np.ascontiguousarray(_np.zeros(dim, complex))) #sometimes: return replib.SVEffectRep_Dense(self.todense()) ??? else: # "effect" rep = replib.SVEffectRep_TensorProd(self._fast_kron_array, self._fast_kron_factordims, len(self.factors), self._fast_kron_array.shape[1], dim) elif evotype == "densitymx": if typ == "prep": vec = _np.require(_np.zeros(dim, 'd'), requirements=['OWNDATA', 'C_CONTIGUOUS']) rep = replib.DMStateRep(vec) #sometimes: return replib.DMEffectRep_Dense(self.todense()) ??? else: # "effect" rep = replib.DMEffectRep_TensorProd(self._fast_kron_array, self._fast_kron_factordims, len(self.factors), self._fast_kron_array.shape[1], dim) elif evotype == "stabilizer": if typ == "prep": #Rep is stabilizer-rep tuple, just like StabilizerSPAMVec sframe_factors = [f.todense() for f in self.factors] # StabilizerFrame for each factor rep = _stabilizer.sframe_kronecker(sframe_factors).torep() #Sometimes ??? # prep-type vectors can be represented as dense effects too; this just means that self.factors # => self.factors should all be StabilizerSPAMVec objs #else: # self._prep_or_effect == "effect", so each factor is a StabilizerEffectVec # outcomes = _np.array(list(_itertools.chain(*[f.outcomes for f in self.factors])), _np.int64) # return replib.SBEffectRep(outcomes) else: # self._prep_or_effect == "effect", so each factor is a StabilizerZPOVM # like above, but get a StabilizerEffectVec from each StabilizerZPOVM factor factorPOVMs = self.factors factorVecs = [factorPOVMs[i][self.effectLbls[i]] for i in range(1, len(factorPOVMs))] outcomes = _np.array(list(_itertools.chain(*[f.outcomes for f in factorVecs])), _np.int64) rep = replib.SBEffectRep(outcomes) #OLD - now can remove outcomes prop? #raise ValueError("Cannot convert Stabilizer tensor product effect to a representation!") # should be using effect.outcomes property... else: # self._evotype in ("svterm","cterm") rep = dim # no reps for term-based evotypes SPAMVec.__init__(self, rep, evotype, typ) self._update_rep() # initializes rep data #sets gpindices, so do before stuff below if typ == "effect": #Set our parent and gpindices based on those of factor-POVMs, which # should all be owned by a TensorProdPOVM object. # (for now say we depend on *all* the POVMs parameters (even though # we really only depend on one element of each POVM, which may allow # using just a subset of each factor POVMs indices - but this is tricky). self.set_gpindices(_slct.list_to_slice( _np.concatenate([fct.gpindices_as_array() for fct in factors], axis=0), True, False), factors[0].parent) # use parent of first factor # (they should all be the same) else: # don't init our own gpindices (prep case), since our parent # is likely to be a Model and it will init them correctly. #But do set the indices of self.factors, since they're now # considered "owned" by this product-prep-vec (different from # the "effect" case when the factors are shared). off = 0 for fct in factors: assert(isinstance(fct, SPAMVec)), "Factors must be SPAMVec objects!" N = fct.num_params() fct.set_gpindices(slice(off, off + N), self); off += N assert(off == self.Np) def _fill_fast_kron(self): """ Fills in self._fast_kron_array based on current self.factors """ if self._prep_or_effect == "prep": for i, factor_dim in enumerate(self._fast_kron_factordims): self._fast_kron_array[i][0:factor_dim] = self.factors[i].todense() else: factorPOVMs = self.factors for i, (factor_dim, Elbl) in enumerate(zip(self._fast_kron_factordims, self.effectLbls)): self._fast_kron_array[i][0:factor_dim] = factorPOVMs[i][Elbl].todense() def _update_rep(self): if self._evotype in ("statevec", "densitymx"): if self._prep_or_effect == "prep": self._rep.base[:] = self.todense() else: self._fill_fast_kron() # updates effect reps elif self._evotype == "stabilizer": if self._prep_or_effect == "prep": #we need to update self._rep, which is a SBStateRep object. For now, we # kinda punt and just create a new rep and copy its data over to the existing # rep instead of having some kind of update method within SBStateRep... # (TODO FUTURE - at least a .copy_from method?) sframe_factors = [f.todense() for f in self.factors] # StabilizerFrame for each factor new_rep = _stabilizer.sframe_kronecker(sframe_factors).torep() self._rep.smatrix[:, :] = new_rep.smatrix[:, :] self._rep.pvectors[:, :] = new_rep.pvectors[:, :] self._rep.amps[:, :] = new_rep.amps[:, :] else: pass # I think the below (e.g. 'outcomes') is not altered by any parameters #factorPOVMs = self.factors #factorVecs = [factorPOVMs[i][self.effectLbls[i]] for i in range(1, len(factorPOVMs))] #outcomes = _np.array(list(_itertools.chain(*[f.outcomes for f in factorVecs])), _np.int64) #rep = replib.SBEffectRep(outcomes) def todense(self): """ Return this SPAM vector as a (dense) numpy array. """ if self._evotype in ("statevec", "densitymx"): if len(self.factors) == 0: return _np.empty(0, complex if self._evotype == "statevec" else 'd') #NOTE: moved a fast version of todense to replib - could use that if need a fast todense call... if self._prep_or_effect == "prep": ret = self.factors[0].todense() # factors are just other SPAMVecs for i in range(1, len(self.factors)): ret = _np.kron(ret, self.factors[i].todense()) else: factorPOVMs = self.factors ret = factorPOVMs[0][self.effectLbls[0]].todense() for i in range(1, len(factorPOVMs)): ret = _np.kron(ret, factorPOVMs[i][self.effectLbls[i]].todense()) return ret elif self._evotype == "stabilizer": if self._prep_or_effect == "prep": # => self.factors should all be StabilizerSPAMVec objs #Return stabilizer-rep tuple, just like StabilizerSPAMVec sframe_factors = [f.todense() for f in self.factors] return _stabilizer.sframe_kronecker(sframe_factors) else: # self._prep_or_effect == "effect", so each factor is a StabilizerEffectVec raise ValueError("Cannot convert Stabilizer tensor product effect to an array!") # should be using effect.outcomes property... else: # self._evotype in ("svterm","cterm") raise NotImplementedError("todense() not implemented for %s evolution type" % self._evotype) #def torep(self, typ, outrep=None): # """ # Return a "representation" object for this SPAM vector. # # Such objects are primarily used internally by pyGSTi to compute # things like probabilities more efficiently. # # Parameters # ---------- # typ : {'prep','effect'} # The type of representation (for cases when the vector type is # not already defined). # # outrep : StateRep # If not None, an existing state representation appropriate to this # SPAM vector that may be used instead of allocating a new one. # # Returns # ------- # StateRep # """ # assert(len(self.factors) > 0), "Cannot get representation of a TensorProdSPAMVec with no factors!" # assert(self._prep_or_effect in ('prep', 'effect')), "Invalid internal type: %s!" % self._prep_or_effect # # #FUTURE: use outrep as scratch for rep constructor? # if self._evotype == "statevec": # if self._prep_or_effect == "prep": # prep-type vectors can be represented as dense effects too # if typ == "prep": # return replib.SVStateRep(self.todense()) # else: # return replib.SVEffectRep_Dense(self.todense()) # else: # return replib.SVEffectRep_TensorProd(self._fast_kron_array, self._fast_kron_factordims, # len(self.factors), self._fast_kron_array.shape[1], self.dim) # elif self._evotype == "densitymx": # if self._prep_or_effect == "prep": # if typ == "prep": # return replib.DMStateRep(self.todense()) # else: # return replib.DMEffectRep_Dense(self.todense()) # # else: # return replib.DMEffectRep_TensorProd(self._fast_kron_array, self._fast_kron_factordims, # len(self.factors), self._fast_kron_array.shape[1], self.dim) # # elif self._evotype == "stabilizer": # if self._prep_or_effect == "prep": # # prep-type vectors can be represented as dense effects too; this just means that self.factors # if typ == "prep": # # => self.factors should all be StabilizerSPAMVec objs # #Return stabilizer-rep tuple, just like StabilizerSPAMVec # sframe_factors = [f.todense() for f in self.factors] # StabilizerFrame for each factor # return _stabilizer.sframe_kronecker(sframe_factors).torep() # else: # self._prep_or_effect == "effect", so each factor is a StabilizerEffectVec # outcomes = _np.array(list(_itertools.chain(*[f.outcomes for f in self.factors])), _np.int64) # return replib.SBEffectRep(outcomes) # # else: # self._prep_or_effect == "effect", so each factor is a StabilizerZPOVM # # like above, but get a StabilizerEffectVec from each StabilizerZPOVM factor # factorPOVMs = self.factors # factorVecs = [factorPOVMs[i][self.effectLbls[i]] for i in range(1, len(factorPOVMs))] # outcomes = _np.array(list(_itertools.chain(*[f.outcomes for f in factorVecs])), _np.int64) # return replib.SBEffectRep(outcomes) # # #OLD - now can remove outcomes prop? # #raise ValueError("Cannot convert Stabilizer tensor product effect to a representation!") # # should be using effect.outcomes property... # # else: # self._evotype in ("svterm","cterm") # raise NotImplementedError("torep() not implemented for %s evolution type" % self._evotype) def get_taylor_order_terms(self, order, max_poly_vars=100, return_coeff_polys=False): """ Get the `order`-th order Taylor-expansion terms of this SPAM vector. This function either constructs or returns a cached list of the terms at the given order. Each term is "rank-1", meaning that it is a state preparation followed by or POVM effect preceded by actions on a density matrix `rho` of the form: `rho -> A rho B` The coefficients of these terms are typically polynomials of the SPAMVec's parameters, where the polynomial's variable indices index the *global* parameters of the SPAMVec's parent (usually a :class:`Model`) , not the SPAMVec's local parameter array (i.e. that returned from `to_vector`). Parameters ---------- order : int The order of terms to get. return_coeff_polys : bool Whether a parallel list of locally-indexed (using variable indices corresponding to *this* object's parameters rather than its parent's) polynomial coefficients should be returned as well. Returns ------- terms : list A list of :class:`RankOneTerm` objects. coefficients : list Only present when `return_coeff_polys == True`. A list of *compact* polynomial objects, meaning that each element is a `(vtape,ctape)` 2-tuple formed by concatenating together the output of :method:`Polynomial.compact`. """ from .operation import EmbeddedOp as _EmbeddedGateMap terms = [] fnq = [int(round(_np.log2(f.dim))) // 2 for f in self.factors] # num of qubits per factor # assumes density matrix evolution total_nQ = sum(fnq) # total number of qubits for p in _lt.partition_into(order, len(self.factors)): if self._prep_or_effect == "prep": factor_lists = [self.factors[i].get_taylor_order_terms(pi, max_poly_vars) for i, pi in enumerate(p)] else: factorPOVMs = self.factors factor_lists = [factorPOVMs[i][Elbl].get_taylor_order_terms(pi, max_poly_vars) for i, (pi, Elbl) in enumerate(zip(p, self.effectLbls))] # When possible, create COLLAPSED factor_lists so each factor has just a single # (SPAMVec) pre & post op, which can be formed into the new terms' # TensorProdSPAMVec ops. # - DON'T collapse stabilizer states & clifford ops - can't for POVMs collapsible = False # bool(self._evotype =="svterm") # need to use reps for collapsing now... TODO? if collapsible: factor_lists = [[t.collapse_vec() for t in fterms] for fterms in factor_lists] for factors in _itertools.product(*factor_lists): # create a term with a TensorProdSPAMVec - Note we always create # "prep"-mode vectors, since even when self._prep_or_effect == "effect" these # vectors are created with factor (prep- or effect-type) SPAMVecs not factor POVMs # we workaround this by still allowing such "prep"-mode # TensorProdSPAMVecs to be represented as effects (i.e. in torep('effect'...) works) coeff = _functools.reduce(lambda x, y: x.mult(y), [f.coeff for f in factors]) pre_op = TensorProdSPAMVec("prep", [f.pre_ops[0] for f in factors if (f.pre_ops[0] is not None)]) post_op = TensorProdSPAMVec("prep", [f.post_ops[0] for f in factors if (f.post_ops[0] is not None)]) term = _term.RankOnePolyPrepTerm.simple_init(coeff, pre_op, post_op, self._evotype) if not collapsible: # then may need to add more ops. Assume factor ops are clifford gates # Embed each factors ops according to their target qubit(s) and just daisy chain them stateSpaceLabels = tuple(range(total_nQ)); curQ = 0 for f, nq in zip(factors, fnq): targetLabels = tuple(range(curQ, curQ + nq)); curQ += nq term.pre_ops.extend([_EmbeddedGateMap(stateSpaceLabels, targetLabels, op) for op in f.pre_ops[1:]]) # embed and add ops term.post_ops.extend([_EmbeddedGateMap(stateSpaceLabels, targetLabels, op) for op in f.post_ops[1:]]) # embed and add ops terms.append(term) if return_coeff_polys: def _decompose_indices(x): return tuple(_modelmember._decompose_gpindices( self.gpindices, _np.array(x, _np.int64))) poly_coeffs = [t.coeff.map_indices(_decompose_indices) for t in terms] # with *local* indices tapes = [poly.compact(complex_coeff_tape=True) for poly in poly_coeffs] if len(tapes) > 0: vtape = _np.concatenate([t[0] for t in tapes]) ctape = _np.concatenate([t[1] for t in tapes]) else: vtape = _np.empty(0, _np.int64) ctape = _np.empty(0, complex) coeffs_as_compact_polys = (vtape, ctape) #self.local_term_poly_coeffs[order] = coeffs_as_compact_polys #FUTURE? return terms, coeffs_as_compact_polys else: return terms # Cache terms in FUTURE? def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ return self.Np def to_vector(self): """ Get the SPAM vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ if self._prep_or_effect == "prep": return _np.concatenate([fct.to_vector() for fct in self.factors], axis=0) else: raise ValueError(("'`to_vector` should not be called on effect-like" " TensorProdSPAMVecs (instead it should be called" " on the POVM)")) def from_vector(self, v, close=False, nodirty=False): """ Initialize the SPAM vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of gate parameters. Length must == num_params() Returns ------- None """ if self._prep_or_effect == "prep": for sv in self.factors: sv.from_vector(v[sv.gpindices], close, nodirty) # factors hold local indices elif all([self.effectLbls[i] == list(povm.keys())[0] for i, povm in enumerate(self.factors)]): #then this is the *first* vector in the larger TensorProdPOVM # and we should initialize all of the factorPOVMs for povm in self.factors: local_inds = _modelmember._decompose_gpindices( self.gpindices, povm.gpindices) povm.from_vector(v[local_inds], close, nodirty) #Update representation, which may be a dense matrix or # just fast-kron arrays or a stabilizer state. self._update_rep() def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. An empty 2D array in the StaticSPAMVec case (num_params == 0). Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ assert(self._evotype in ("statevec", "densitymx")) typ = complex if self._evotype == "statevec" else 'd' derivMx = _np.zeros((self.dim, self.num_params()), typ) #Product rule to compute jacobian for i, fct in enumerate(self.factors): # loop over the spamvec/povm we differentiate wrt vec = fct if (self._prep_or_effect == "prep") else fct[self.effectLbls[i]] if vec.num_params() == 0: continue # no contribution deriv = vec.deriv_wrt_params(None) # TODO: use filter?? / make relative to this gate... deriv.shape = (vec.dim, vec.num_params()) if i > 0: # factors before ith if self._prep_or_effect == "prep": pre = self.factors[0].todense() for vecA in self.factors[1:i]: pre = _np.kron(pre, vecA.todense()) else: pre = self.factors[0][self.effectLbls[0]].todense() for j, fctA in enumerate(self.factors[1:i], start=1): pre = _np.kron(pre, fctA[self.effectLbls[j]].todense()) deriv = _np.kron(pre[:, None], deriv) # add a dummy 1-dim to 'pre' and do kron properly... if i + 1 < len(self.factors): # factors after ith if self._prep_or_effect == "prep": post = self.factors[i + 1].todense() for vecA in self.factors[i + 2:]: post = _np.kron(post, vecA.todense()) else: post = self.factors[i + 1][self.effectLbls[i + 1]].todense() for j, fctA in enumerate(self.factors[i + 2:], start=i + 2): post = _np.kron(post, fctA[self.effectLbls[j]].todense()) deriv = _np.kron(deriv, post[:, None]) # add a dummy 1-dim to 'post' and do kron properly... if self._prep_or_effect == "prep": local_inds = fct.gpindices # factor vectors hold local indices else: # in effect case, POVM-factors hold global indices (b/c they're meant to be shareable) local_inds = _modelmember._decompose_gpindices( self.gpindices, fct.gpindices) assert(local_inds is not None), \ "Error: gpindices has not been initialized for factor %d - cannot compute derivative!" % i derivMx[:, local_inds] += deriv derivMx.shape = (self.dim, self.num_params()) # necessary? if wrtFilter is None: return derivMx else: return _np.take(derivMx, wrtFilter, axis=1) def has_nonzero_hessian(self): """ Returns whether this SPAM vector has a non-zero Hessian with respect to its parameters, i.e. whether it only depends linearly on its parameters or not. Returns ------- bool """ return False def __str__(self): s = "Tensor product %s vector with length %d\n" % (self._prep_or_effect, self.dim) #ar = self.todense() #s += _mt.mx_to_string(ar, width=4, prec=2) if self._prep_or_effect == "prep": # factors are just other SPAMVecs s += " x ".join([_mt.mx_to_string(fct.todense(), width=4, prec=2) for fct in self.factors]) else: # factors are POVMs s += " x ".join([_mt.mx_to_string(fct[self.effectLbls[i]].todense(), width=4, prec=2) for i, fct in enumerate(self.factors)]) return s class PureStateSPAMVec(SPAMVec): """ Encapsulates a SPAM vector that is a pure state but evolves according to one of the density matrix evolution types ("denstiymx", "svterm", and "cterm"). It is parameterized by a contained pure-state SPAMVec which evolves according to a state vector evolution type ("statevec" or "stabilizer"). """ def __init__(self, pure_state_vec, evotype='densitymx', dm_basis='pp', typ="prep"): """ Initialize a PureStateSPAMVec object. Parameters ---------- pure_state_vec : array_like or SPAMVec a 1D numpy array or object representing the pure state. This object sets the parameterization and dimension of this SPAM vector (if `pure_state_vec`'s dimension is `d`, then this SPAM vector's dimension is `d^2`). Assumed to be a complex vector in the standard computational basis. evotype : {'densitymx', 'svterm', 'cterm'} The evolution type of this SPAMVec. Note that the evotype of `pure_state_vec` must be compatible with this value. In particular, `pure_state_vec` must have an evotype of `"statevec"` (then allowed values are `"densitymx"` and `"svterm"`) or `"stabilizer"` (then the only allowed value is `"cterm"`). dm_basis : {'std', 'gm', 'pp', 'qt'} or Basis object The basis for this SPAM vector - that is, for the *density matrix* corresponding to `pure_state_vec`. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). """ if not isinstance(pure_state_vec, SPAMVec): pure_state_vec = StaticSPAMVec(SPAMVec.convert_to_vector(pure_state_vec), 'statevec') self.pure_state_vec = pure_state_vec self.basis = dm_basis # only used for dense conversion pure_evo = pure_state_vec._evotype if pure_evo == "statevec": if evotype not in ("densitymx", "svterm"): raise ValueError(("`evotype` arg must be 'densitymx' or 'svterm'" " when `pure_state_vec` evotype is 'statevec'")) elif pure_evo == "stabilizer": if evotype not in ("cterm",): raise ValueError(("`evotype` arg must be 'densitymx' or 'svterm'" " when `pure_state_vec` evotype is 'statevec'")) else: raise ValueError("`pure_state_vec` evotype must be 'statevec' or 'stabilizer' (not '%s')" % pure_evo) dim = self.pure_state_vec.dim**2 rep = dim # no representation yet... maybe this should be a dense vector # (in "densitymx" evotype case -- use todense)? TODO #Create representation SPAMVec.__init__(self, rep, evotype, typ) def todense(self, scratch=None): """ Return this SPAM vector as a (dense) numpy array. The memory in `scratch` maybe used when it is not-None. """ dmVec_std = _gt.state_to_dmvec(self.pure_state_vec.todense()) return _bt.change_basis(dmVec_std, 'std', self.basis) def get_taylor_order_terms(self, order, max_poly_vars=100, return_coeff_polys=False): """ Get the `order`-th order Taylor-expansion terms of this SPAM vector. This function either constructs or returns a cached list of the terms at the given order. Each term is "rank-1", meaning that it is a state preparation followed by or POVM effect preceded by actions on a density matrix `rho` of the form: `rho -> A rho B` The coefficients of these terms are typically polynomials of the SPAMVec's parameters, where the polynomial's variable indices index the *global* parameters of the SPAMVec's parent (usually a :class:`Model`) , not the SPAMVec's local parameter array (i.e. that returned from `to_vector`). Parameters ---------- order : int The order of terms to get. return_coeff_polys : bool Whether a parallel list of locally-indexed (using variable indices corresponding to *this* object's parameters rather than its parent's) polynomial coefficients should be returned as well. Returns ------- terms : list A list of :class:`RankOneTerm` objects. coefficients : list Only present when `return_coeff_polys == True`. A list of *compact* polynomial objects, meaning that each element is a `(vtape,ctape)` 2-tuple formed by concatenating together the output of :method:`Polynomial.compact`. """ if self.num_params() > 0: raise ValueError(("PureStateSPAMVec.get_taylor_order_terms(...) is only " "implemented for the case when its underlying " "pure state vector has 0 parameters (is static)")) if order == 0: # only 0-th order term exists (assumes static pure_state_vec) purevec = self.pure_state_vec coeff = _Polynomial({(): 1.0}, max_poly_vars) if self._prep_or_effect == "prep": terms = [_term.RankOnePolyPrepTerm.simple_init(coeff, purevec, purevec, self._evotype)] else: terms = [_term.RankOnePolyEffectTerm.simple_init(coeff, purevec, purevec, self._evotype)] if return_coeff_polys: coeffs_as_compact_polys = coeff.compact(complex_coeff_tape=True) return terms, coeffs_as_compact_polys else: return terms else: if return_coeff_polys: vtape = _np.empty(0, _np.int64) ctape = _np.empty(0, complex) return [], (vtape, ctape) else: return [] #TODO REMOVE #def get_direct_order_terms(self, order, base_order): # """ # Parameters # ---------- # order : int # The order of terms to get. # # Returns # ------- # list # A list of :class:`RankOneTerm` objects. # """ # if self.num_params() > 0: # raise ValueError(("PureStateSPAMVec.get_taylor_order_terms(...) is only " # "implemented for the case when its underlying " # "pure state vector has 0 parameters (is static)")) # # if order == 0: # only 0-th order term exists (assumes static pure_state_vec) # if self._evotype == "svterm": tt = "dense" # elif self._evotype == "cterm": tt = "clifford" # else: raise ValueError("Invalid evolution type %s for calling `get_taylor_order_terms`" % self._evotype) # # purevec = self.pure_state_vec # terms = [ _term.RankOneTerm(1.0, purevec, purevec, tt) ] # else: # terms = [] # return terms def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ return self.pure_state_vec.num_params() def to_vector(self): """ Get the SPAM vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ return self.pure_state_vec.to_vector() def from_vector(self, v, close=False, nodirty=False): """ Initialize the SPAM vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of gate parameters. Length must == num_params() Returns ------- None """ self.pure_state_vec.from_vector(v, close, nodirty) #Update dense rep if one is created (TODO) def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. An empty 2D array in the StaticSPAMVec case (num_params == 0). Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ raise NotImplementedError("Still need to work out derivative calculation of PureStateSPAMVec") def has_nonzero_hessian(self): """ Returns whether this SPAM vector has a non-zero Hessian with respect to its parameters, i.e. whether it only depends linearly on its parameters or not. Returns ------- bool """ return self.pure_state_vec.has_nonzero_hessian() def __str__(self): s = "Pure-state spam vector with length %d holding:\n" % self.dim s += " " + str(self.pure_state_vec) return s class LindbladSPAMVec(SPAMVec): """ A Lindblad-parameterized SPAMVec (that is also expandable into terms)""" @classmethod def from_spamvec_obj(cls, spamvec, typ, paramType="GLND", purevec=None, proj_basis="pp", mxBasis="pp", truncate=True, lazy=False): """ Creates a LindbladSPAMVec from an existing SPAMVec object and some additional information. This function is different from `from_spam_vector` in that it assumes that `spamvec` is a :class:`SPAMVec`-derived object, and if `lazy=True` and if `spamvec` is already a matching LindbladSPAMVec, it is returned directly. This routine is primarily used in spam vector conversion functions, where conversion is desired only when necessary. Parameters ---------- spamvec : SPAMVec The spam vector object to "convert" to a `LindbladSPAMVec`. typ : {"prep","effect"} Whether this is a state preparation or POVM effect vector. paramType : str, optional The high-level "parameter type" of the gate to create. This specifies both which Lindblad parameters are included and what type of evolution is used. Examples of valid values are `"CPTP"`, `"H+S"`, `"S terms"`, and `"GLND clifford terms"`. purevec : numpy array or SPAMVec object, optional A SPAM vector which represents a pure-state, taken as the "ideal" reference state when constructing the error generator of the returned `LindbladSPAMVec`. Note that this vector still acts on density matrices (if it's a SPAMVec it should have a "densitymx", "svterm", or "cterm" evolution type, and if it's a numpy array it should have the same dimension as `spamvec`). If None, then it is taken to be `spamvec`, and so `spamvec` must represent a pure state in this case. proj_basis: {'std', 'gm', 'pp', 'qt'}, list of matrices, or Basis object The basis used to construct the Lindblad-term error generators onto which the SPAM vector's error generator is projected. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt), list of numpy arrays, or a custom basis object. mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). truncate : bool, optional Whether to truncate the projections onto the Lindblad terms in order to meet constraints (e.g. to preserve CPTP) when necessary. If False, then an error is thrown when the given `spamvec` cannot be realized by the specified set of Lindblad projections. lazy : bool, optional If True, then if `spamvec` is already a LindbladSPAMVec with the requested details (given by the other arguments), then `spamvec` is returned directly and no conversion/copying is performed. If False, then a new object is always returned. Returns ------- LindbladSPAMVec """ if not isinstance(spamvec, SPAMVec): spamvec = StaticSPAMVec(spamvec, typ=typ) # assume spamvec is just a vector if purevec is None: purevec = spamvec # right now, we don't try to extract a "closest pure vec" # to spamvec - below will fail if spamvec isn't pure. elif not isinstance(purevec, SPAMVec): purevec = StaticSPAMVec(purevec, typ=typ) # assume spamvec is just a vector #Break paramType in to a "base" type and an evotype from .operation import LindbladOp as _LPGMap bTyp, evotype, nonham_mode, param_mode = _LPGMap.decomp_paramtype(paramType) ham_basis = proj_basis if (("H+" in bTyp) or bTyp in ("CPTP", "GLND")) else None nonham_basis = proj_basis def beq(b1, b2): """ Check if bases have equal names """ b1 = b1.name if isinstance(b1, _Basis) else b1 b2 = b2.name if isinstance(b2, _Basis) else b2 return b1 == b2 def normeq(a, b): if a is None and b is None: return True if a is None or b is None: return False return _mt.safenorm(a - b) < 1e-6 # what about possibility of Clifford gates? if isinstance(spamvec, LindbladSPAMVec) \ and spamvec._evotype == evotype and spamvec.typ == typ \ and beq(ham_basis, spamvec.error_map.ham_basis) and beq(nonham_basis, spamvec.error_map.other_basis) \ and param_mode == spamvec.error_map.param_mode and nonham_mode == spamvec.error_map.nonham_mode \ and beq(mxBasis, spamvec.error_map.matrix_basis) and lazy: #normeq(gate.pure_state_vec,purevec) \ # TODO: more checks for equality?! return spamvec # no creation necessary! else: #Convert vectors (if possible) to SPAMVecs # of the appropriate evotype and 0 params. bDiff = spamvec is not purevec spamvec = _convert_to_lindblad_base(spamvec, typ, evotype, mxBasis) purevec = _convert_to_lindblad_base(purevec, typ, evotype, mxBasis) if bDiff else spamvec assert(spamvec._evotype == evotype) assert(purevec._evotype == evotype) return cls.from_spam_vector( spamvec, purevec, typ, ham_basis, nonham_basis, param_mode, nonham_mode, truncate, mxBasis, evotype) @classmethod def from_spam_vector(cls, spamVec, pureVec, typ, ham_basis="pp", nonham_basis="pp", param_mode="cptp", nonham_mode="all", truncate=True, mxBasis="pp", evotype="densitymx"): """ Creates a Lindblad-parameterized spamvec from a state vector and a basis which specifies how to decompose (project) the vector's error generator. spamVec : SPAMVec the SPAM vector to initialize from. The error generator that tranforms `pureVec` into `spamVec` forms the parameterization of the returned LindbladSPAMVec. pureVec : numpy array or SPAMVec An array or SPAMVec in the *full* density-matrix space (this vector will have the same dimension as `spamVec` - 4 in the case of a single qubit) which represents a pure-state preparation or projection. This is used as the "base" preparation/projection when computing the error generator that will be parameterized. Note that this argument must be specified, as there is no natural default value (like the identity in the case of gates). typ : {"prep","effect"} Whether this is a state preparation or POVM effect vector. ham_basis: {'std', 'gm', 'pp', 'qt'}, list of matrices, or Basis object The basis is used to construct the Hamiltonian-type lindblad error Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt), list of numpy arrays, or a custom basis object. nonham_basis: {'std', 'gm', 'pp', 'qt'}, list of matrices, or Basis object The basis is used to construct the Stochastic-type lindblad error Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt), list of numpy arrays, or a custom basis object. param_mode : {"unconstrained", "cptp", "depol", "reldepol"} Describes how the Lindblad coefficients/projections relate to the SPAM vector's parameter values. Allowed values are: `"unconstrained"` (coeffs are independent unconstrained parameters), `"cptp"` (independent parameters but constrained so map is CPTP), `"reldepol"` (all non-Ham. diagonal coeffs take the *same* value), `"depol"` (same as `"reldepol"` but coeffs must be *positive*) nonham_mode : {"diagonal", "diag_affine", "all"} Which non-Hamiltonian Lindblad projections are potentially non-zero. Allowed values are: `"diagonal"` (only the diagonal Lind. coeffs.), `"diag_affine"` (diagonal coefficients + affine projections), and `"all"` (the entire matrix of coefficients is allowed). truncate : bool, optional Whether to truncate the projections onto the Lindblad terms in order to meet constraints (e.g. to preserve CPTP) when necessary. If False, then an error is thrown when the given `gate` cannot be realized by the specified set of Lindblad projections. mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). evotype : {"densitymx","svterm","cterm"} The evolution type of the spamvec being constructed. `"densitymx"` is usual Lioville density-matrix-vector propagation via matrix-vector products. `"svterm"` denotes state-vector term-based evolution (spamvec is obtained by evaluating the rank-1 terms up to some order). `"cterm"` is similar but stabilizer states. Returns ------- LindbladSPAMVec """ #Compute a (errgen, pureVec) pair from the given # (spamVec, pureVec) pair. assert(pureVec is not None), "Must supply `pureVec`!" # since there's no good default? if not isinstance(spamVec, SPAMVec): spamVec = StaticSPAMVec(spamVec, evotype, typ) # assume spamvec is just a vector if not isinstance(pureVec, SPAMVec): pureVec = StaticSPAMVec(pureVec, evotype, typ) # assume spamvec is just a vector d2 = pureVec.dim #Determine whether we're using sparse bases or not sparse = None if ham_basis is not None: if isinstance(ham_basis, _Basis): sparse = ham_basis.sparse elif not isinstance(ham_basis, str) and len(ham_basis) > 0: sparse = _sps.issparse(ham_basis[0]) if sparse is None and nonham_basis is not None: if isinstance(nonham_basis, _Basis): sparse = nonham_basis.sparse elif not isinstance(nonham_basis, str) and len(nonham_basis) > 0: sparse = _sps.issparse(nonham_basis[0]) if sparse is None: sparse = False # the default if spamVec is None or spamVec is pureVec: if sparse: errgen = _sps.csr_matrix((d2, d2), dtype='d') else: errgen = _np.zeros((d2, d2), 'd') else: #Construct "spam error generator" by comparing *dense* vectors pvdense = pureVec.todense() svdense = spamVec.todense() errgen = _gt.spam_error_generator(svdense, pvdense, mxBasis) if sparse: errgen = _sps.csr_matrix(errgen) assert(pureVec._evotype == evotype), "`pureVec` must have evotype == '%s'" % evotype from .operation import LindbladErrorgen as _LErrorgen from .operation import LindbladOp as _LPGMap from .operation import LindbladDenseOp as _LPOp errgen = _LErrorgen.from_error_generator(errgen, ham_basis, nonham_basis, param_mode, nonham_mode, mxBasis, truncate, evotype) errcls = _LPOp if (pureVec.dim <= 64 and evotype == "densitymx") else _LPGMap errmap = errcls(None, errgen) return cls(pureVec, errmap, typ) @classmethod def from_lindblad_terms(cls, pureVec, Ltermdict, typ, basisdict=None, param_mode="cptp", nonham_mode="all", truncate=True, mxBasis="pp", evotype="densitymx"): """ Create a Lindblad-parameterized spamvec with a given set of Lindblad terms. Parameters ---------- pureVec : numpy array or SPAMVec An array or SPAMVec in the *full* density-matrix space (this vector will have dimension 4 in the case of a single qubit) which represents a pure-state preparation or projection. This is used as the "base" preparation or projection that is followed or preceded by, respectively, the parameterized Lindblad-form error generator. Ltermdict : dict A dictionary specifying which Linblad terms are present in the gate parameteriztion. Keys are `(termType, basisLabel1, <basisLabel2>)` tuples, where `termType` can be `"H"` (Hamiltonian), `"S"` (Stochastic), or `"A"` (Affine). Hamiltonian and Affine terms always have a single basis label (so key is a 2-tuple) whereas Stochastic tuples with 1 basis label indicate a *diagonal* term, and are the only types of terms allowed when `nonham_mode != "all"`. Otherwise, Stochastic term tuples can include 2 basis labels to specify "off-diagonal" non-Hamiltonian Lindblad terms. Basis labels can be strings or integers. Values are complex coefficients (error rates). typ : {"prep","effect"} Whether this is a state preparation or POVM effect vector. basisdict : dict, optional A dictionary mapping the basis labels (strings or ints) used in the keys of `Ltermdict` to basis matrices (numpy arrays or Scipy sparse matrices). param_mode : {"unconstrained", "cptp", "depol", "reldepol"} Describes how the Lindblad coefficients/projections relate to the SPAM vector's parameter values. Allowed values are: `"unconstrained"` (coeffs are independent unconstrained parameters), `"cptp"` (independent parameters but constrained so map is CPTP), `"reldepol"` (all non-Ham. diagonal coeffs take the *same* value), `"depol"` (same as `"reldepol"` but coeffs must be *positive*) nonham_mode : {"diagonal", "diag_affine", "all"} Which non-Hamiltonian Lindblad projections are potentially non-zero. Allowed values are: `"diagonal"` (only the diagonal Lind. coeffs.), `"diag_affine"` (diagonal coefficients + affine projections), and `"all"` (the entire matrix of coefficients is allowed). truncate : bool, optional Whether to truncate the projections onto the Lindblad terms in order to meet constraints (e.g. to preserve CPTP) when necessary. If False, then an error is thrown when the given dictionary of Lindblad terms doesn't conform to the constrains. mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object The source and destination basis, respectively. Allowed values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp), and Qutrit (qt) (or a custom basis object). evotype : {"densitymx","svterm","cterm"} The evolution type of the spamvec being constructed. `"densitymx"` is usual Lioville density-matrix-vector propagation via matrix-vector products. `"svterm"` denotes state-vector term-based evolution (spamvec is obtained by evaluating the rank-1 terms up to some order). `"cterm"` is similar but stabilizer states. Returns ------- LindbladOp """ #Need a dimension for error map construction (basisdict could be completely empty) if not isinstance(pureVec, SPAMVec): pureVec = StaticSPAMVec(pureVec, evotype, typ) # assume spamvec is just a vector d2 = pureVec.dim from .operation import LindbladOp as _LPGMap errmap = _LPGMap(d2, Ltermdict, basisdict, param_mode, nonham_mode, truncate, mxBasis, evotype) return cls(pureVec, errmap, typ) def __init__(self, pureVec, errormap, typ): """ Initialize a LindbladSPAMVec object. Essentially a pure state preparation or projection that is followed or preceded by, respectively, the action of LindbladDenseOp. Parameters ---------- pureVec : numpy array or SPAMVec An array or SPAMVec in the *full* density-matrix space (this vector will have dimension 4 in the case of a single qubit) which represents a pure-state preparation or projection. This is used as the "base" preparation or projection that is followed or preceded by, respectively, the parameterized Lindblad-form error generator. (This argument is *not* copied if it is a SPAMVec. A numpy array is converted to a new StaticSPAMVec.) errormap : MapOperator The error generator action and parameterization, encapsulated in a gate object. Usually a :class:`LindbladOp` or :class:`ComposedOp` object. (This argument is *not* copied, to allow LindbladSPAMVecs to share error generator parameters with other gates and spam vectors.) typ : {"prep","effect"} Whether this is a state preparation or POVM effect vector. """ from .operation import LindbladOp as _LPGMap evotype = errormap._evotype assert(evotype in ("densitymx", "svterm", "cterm")), \ "Invalid evotype: %s for %s" % (evotype, self.__class__.__name__) if not isinstance(pureVec, SPAMVec): pureVec = StaticSPAMVec(pureVec, evotype, typ) # assume spamvec is just a vector assert(pureVec._evotype == evotype), \ "`pureVec` evotype must match `errormap` ('%s' != '%s')" % (pureVec._evotype, evotype) assert(pureVec.num_params() == 0), "`pureVec` 'reference' must have *zero* parameters!" d2 = pureVec.dim self.state_vec = pureVec self.error_map = errormap self.terms = {} if evotype in ("svterm", "cterm") else None self.local_term_poly_coeffs = {} if evotype in ("svterm", "cterm") else None # TODO REMOVE self.direct_terms = {} if evotype in ("svterm","cterm") else None # TODO REMOVE self.direct_term_poly_coeffs = {} if evotype in ("svterm","cterm") else None #Create representation if evotype == "densitymx": assert(self.state_vec._prep_or_effect == typ), "LindbladSPAMVec prep/effect mismatch with given statevec!" if typ == "prep": dmRep = self.state_vec._rep errmapRep = self.error_map._rep rep = errmapRep.acton(dmRep) # FUTURE: do this acton in place somehow? (like C-reps do) #maybe make a special _Errgen *state* rep? else: # effect dmEffectRep = self.state_vec._rep errmapRep = self.error_map._rep rep = replib.DMEffectRep_Errgen(errmapRep, dmEffectRep, id(self.error_map)) # an effect that applies a *named* errormap before computing with dmEffectRep else: rep = d2 # no representations for term-based evotypes SPAMVec.__init__(self, rep, evotype, typ) # sets self.dim def _update_rep(self): if self._evotype == "densitymx": if self._prep_or_effect == "prep": # _rep is a DMStateRep dmRep = self.state_vec._rep errmapRep = self.error_map._rep self._rep.base[:] = errmapRep.acton(dmRep).base[:] # copy from "new_rep" else: # effect # _rep is a DMEffectRep_Errgen, which just holds references to the # effect and error map's representations (which we assume have been updated) # so there's no need to update anything here pass def submembers(self): """ Get the ModelMember-derived objects contained in this one. Returns ------- list """ return [self.error_map] def copy(self, parent=None): """ Copy this object. Returns ------- LinearOperator A copy of this object. """ # We need to override this method so that embedded gate has its # parent reset correctly. cls = self.__class__ # so that this method works for derived classes too copyOfMe = cls(self.state_vec, self.error_map.copy(parent), self._prep_or_effect) return self._copy_gpindices(copyOfMe, parent) def set_gpindices(self, gpindices, parent, memo=None): """ Set the parent and indices into the parent's parameter vector that are used by this ModelMember object. Parameters ---------- gpindices : slice or integer ndarray The indices of this objects parameters in its parent's array. parent : Model or ModelMember The parent whose parameter array gpindices references. Returns ------- None """ self.terms = {} # clear terms cache since param indices have changed now self.local_term_poly_coeffs = {} # TODO REMOVE self.direct_terms = {} # TODO REMOVE self.direct_term_poly_coeffs = {} _modelmember.ModelMember.set_gpindices(self, gpindices, parent, memo) def todense(self, scratch=None): """ Return this SPAM vector as a (dense) numpy array. The memory in `scratch` maybe used when it is not-None. """ if self._prep_or_effect == "prep": #error map acts on dmVec return _np.dot(self.error_map.todense(), self.state_vec.todense()) else: #Note: if this is an effect vector, self.error_map is the # map that acts on the *state* vector before dmVec acts # as an effect: E.T -> dot(E.T,errmap) ==> E -> dot(errmap.T,E) return _np.dot(self.error_map.todense().conjugate().T, self.state_vec.todense()) #def torep(self, typ, outvec=None): # """ # Return a "representation" object for this SPAMVec. # # Such objects are primarily used internally by pyGSTi to compute # things like probabilities more efficiently. # # Returns # ------- # StateRep # """ # if self._evotype == "densitymx": # # if typ == "prep": # dmRep = self.state_vec.torep(typ) # errmapRep = self.error_map.torep() # return errmapRep.acton(dmRep) # FUTURE: do this acton in place somehow? (like C-reps do) # #maybe make a special _Errgen *state* rep? # # else: # effect # dmEffectRep = self.state_vec.torep(typ) # errmapRep = self.error_map.torep() # return replib.DMEffectRep_Errgen(errmapRep, dmEffectRep, id(self.error_map)) # # an effect that applies a *named* errormap before computing with dmEffectRep # # else: # #framework should not be calling "torep" on states w/a term-based evotype... # # they should call torep on the *terms* given by get_taylor_order_terms(...) # raise ValueError("Invalid evotype '%s' for %s.torep(...)" % # (self._evotype, self.__class__.__name__)) def get_taylor_order_terms(self, order, max_poly_vars=100, return_coeff_polys=False): """ Get the `order`-th order Taylor-expansion terms of this SPAM vector. This function either constructs or returns a cached list of the terms at the given order. Each term is "rank-1", meaning that it is a state preparation followed by or POVM effect preceded by actions on a density matrix `rho` of the form: `rho -> A rho B` The coefficients of these terms are typically polynomials of the SPAMVec's parameters, where the polynomial's variable indices index the *global* parameters of the SPAMVec's parent (usually a :class:`Model`) , not the SPAMVec's local parameter array (i.e. that returned from `to_vector`). Parameters ---------- order : int The order of terms to get. return_coeff_polys : bool Whether a parallel list of locally-indexed (using variable indices corresponding to *this* object's parameters rather than its parent's) polynomial coefficients should be returned as well. Returns ------- terms : list A list of :class:`RankOneTerm` objects. coefficients : list Only present when `return_coeff_polys == True`. A list of *compact* polynomial objects, meaning that each element is a `(vtape,ctape)` 2-tuple formed by concatenating together the output of :method:`Polynomial.compact`. """ if order not in self.terms: if self._evotype not in ('svterm', 'cterm'): raise ValueError("Invalid evolution type %s for calling `get_taylor_order_terms`" % self._evotype) assert(self.gpindices is not None), "LindbladSPAMVec must be added to a Model before use!" state_terms = self.state_vec.get_taylor_order_terms(0, max_poly_vars); assert(len(state_terms) == 1) stateTerm = state_terms[0] err_terms, cpolys = self.error_map.get_taylor_order_terms(order, max_poly_vars, True) if self._prep_or_effect == "prep": terms = [_term.compose_terms((stateTerm, t)) for t in err_terms] # t ops occur *after* stateTerm's else: # "effect" # Effect terms are special in that all their pre/post ops act in order on the *state* before the final # effect is used to compute a probability. Thus, constructing the same "terms" as above works here # too - the difference comes when this SPAMVec is used as an effect rather than a prep. terms = [_term.compose_terms((stateTerm, t)) for t in err_terms] # t ops occur *after* stateTerm's #OLD: now this is done within calculator when possible b/c not all terms can be collapsed #terms = [ t.collapse() for t in terms ] # collapse terms for speed # - resulting in terms with just a single pre/post op, each == a pure state #assert(stateTerm.coeff == Polynomial_1.0) # TODO... so can assume local polys are same as for errorgen self.local_term_poly_coeffs[order] = cpolys self.terms[order] = terms if return_coeff_polys: return self.terms[order], self.local_term_poly_coeffs[order] else: return self.terms[order] def get_taylor_order_terms_above_mag(self, order, max_poly_vars, min_term_mag): state_terms = self.state_vec.get_taylor_order_terms(0, max_poly_vars); assert(len(state_terms) == 1) stateTerm = state_terms[0] stateTerm = stateTerm.copy_with_magnitude(1.0) #assert(stateTerm.coeff == Polynomial_1.0) # TODO... so can assume local polys are same as for errorgen err_terms = self.error_map.get_taylor_order_terms_above_mag( order, max_poly_vars, min_term_mag / stateTerm.magnitude) #This gives the appropriate logic, but *both* prep or effect results in *same* expression, so just run it: #if self._prep_or_effect == "prep": # terms = [_term.compose_terms((stateTerm, t)) for t in err_terms] # t ops occur *after* stateTerm's #else: # "effect" # # Effect terms are special in that all their pre/post ops act in order on the *state* before the final # # effect is used to compute a probability. Thus, constructing the same "terms" as above works here # # too - the difference comes when this SPAMVec is used as an effect rather than a prep. # terms = [_term.compose_terms((stateTerm, t)) for t in err_terms] # t ops occur *after* stateTerm's terms = [_term.compose_terms_with_mag((stateTerm, t), stateTerm.magnitude * t.magnitude) for t in err_terms] # t ops occur *after* stateTerm's return terms def get_total_term_magnitude(self): """ Get the total (sum) of the magnitudes of all this SPAM vector's terms. The magnitude of a term is the absolute value of its coefficient, so this function returns the number you'd get from summing up the absolute-coefficients of all the Taylor terms (at all orders!) you get from expanding this SPAM vector in a Taylor series. Returns ------- float """ # return (sum of absvals of *all* term coeffs) return self.error_map.get_total_term_magnitude() # error map is only part with terms def get_total_term_magnitude_deriv(self): """ Get the derivative of the total (sum) of the magnitudes of all this operator's terms with respect to the operators (local) parameters. Returns ------- numpy array An array of length self.num_params() """ return self.error_map.get_total_term_magnitude_deriv() def deriv_wrt_params(self, wrtFilter=None): """ Construct a matrix whose columns are the derivatives of the SPAM vector with respect to a single param. Thus, each column is of length get_dimension and there is one column per SPAM vector parameter. Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ dmVec = self.state_vec.todense() derrgen = self.error_map.deriv_wrt_params(wrtFilter) # shape (dim*dim, nParams) derrgen.shape = (self.dim, self.dim, derrgen.shape[1]) # => (dim,dim,nParams) if self._prep_or_effect == "prep": #derror map acts on dmVec #return _np.einsum("ijk,j->ik", derrgen, dmVec) # return shape = (dim,nParams) return _np.tensordot(derrgen, dmVec, (1, 0)) # return shape = (dim,nParams) else: # self.error_map acts on the *state* vector before dmVec acts # as an effect: E.dag -> dot(E.dag,errmap) ==> E -> dot(errmap.dag,E) #return _np.einsum("jik,j->ik", derrgen.conjugate(), dmVec) # return shape = (dim,nParams) return _np.tensordot(derrgen.conjugate(), dmVec, (0, 0)) # return shape = (dim,nParams) def hessian_wrt_params(self, wrtFilter1=None, wrtFilter2=None): """ Construct the Hessian of this SPAM vector with respect to its parameters. This function returns a tensor whose first axis corresponds to the flattened operation matrix and whose 2nd and 3rd axes correspond to the parameters that are differentiated with respect to. Parameters ---------- wrtFilter1, wrtFilter2 : list Lists of indices of the paramters to take first and second derivatives with respect to. If None, then derivatives are taken with respect to all of the vectors's parameters. Returns ------- numpy array Hessian with shape (dimension, num_params1, num_params2) """ dmVec = self.state_vec.todense() herrgen = self.error_map.hessian_wrt_params(wrtFilter1, wrtFilter2) # shape (dim*dim, nParams1, nParams2) herrgen.shape = (self.dim, self.dim, herrgen.shape[1], herrgen.shape[2]) # => (dim,dim,nParams1, nParams2) if self._prep_or_effect == "prep": #derror map acts on dmVec #return _np.einsum("ijkl,j->ikl", herrgen, dmVec) # return shape = (dim,nParams) return _np.tensordot(herrgen, dmVec, (1, 0)) # return shape = (dim,nParams) else: # self.error_map acts on the *state* vector before dmVec acts # as an effect: E.dag -> dot(E.dag,errmap) ==> E -> dot(errmap.dag,E) #return _np.einsum("jikl,j->ikl", herrgen.conjugate(), dmVec) # return shape = (dim,nParams) return _np.tensordot(herrgen.conjugate(), dmVec, (0, 0)) # return shape = (dim,nParams) def num_params(self): """ Get the number of independent parameters which specify this SPAM vector. Returns ------- int the number of independent parameters. """ return self.error_map.num_params() def to_vector(self): """ Extract a vector of the underlying gate parameters from this gate. Returns ------- numpy array a 1D numpy array with length == num_params(). """ return self.error_map.to_vector() def from_vector(self, v, close=False, nodirty=False): """ Initialize the gate using a vector of its parameters. Parameters ---------- v : numpy array The 1D vector of gate parameters. Length must == num_params(). Returns ------- None """ self.error_map.from_vector(v, close, nodirty) self._update_rep() if not nodirty: self.dirty = True def transform(self, S, typ): """ Update SPAM (column) vector V as inv(S) * V or S^T * V for preparation or effect SPAM vectors, respectively. Note that this is equivalent to state preparation vectors getting mapped: `rho -> inv(S) * rho` and the *transpose* of effect vectors being mapped as `E^T -> E^T * S`. Generally, the transform function updates the *parameters* of the SPAM vector such that the resulting vector is altered as described above. If such an update cannot be done (because the gate parameters do not allow for it), ValueError is raised. Parameters ---------- S : GaugeGroupElement A gauge group element which specifies the "S" matrix (and it's inverse) used in the above similarity transform. typ : { 'prep', 'effect' } Which type of SPAM vector is being transformed (see above). """ #Defer everything to LindbladOp's # `spam_tranform` function, which applies either # error_map -> inv(S) * error_map ("prep" case) OR # error_map -> error_map * S ("effect" case) self.error_map.spam_transform(S, typ) self._update_rep() self.dirty = True def depolarize(self, amount): """ Depolarize this SPAM vector by the given `amount`. Generally, the depolarize function updates the *parameters* of the SPAMVec such that the resulting vector is depolarized. If such an update cannot be done (because the gate parameters do not allow for it), ValueError is raised. Parameters ---------- amount : float or tuple The amount to depolarize by. If a tuple, it must have length equal to one less than the dimension of the spam vector. All but the first element of the spam vector (often corresponding to the identity element) are multiplied by `amount` (if a float) or the corresponding `amount[i]` (if a tuple). Returns ------- None """ self.error_map.depolarize(amount) self._update_rep() class StabilizerSPAMVec(SPAMVec): """ A stabilizer state preparation represented internally using a compact representation of its stabilizer group. """ @classmethod def from_dense_purevec(cls, purevec): """ Create a new StabilizerSPAMVec from a pure-state vector. Currently, purevec must be a single computational basis state (it cannot be a superpostion of multiple of them). Parameters ---------- purevec : numpy.ndarray A complex-valued state vector specifying a pure state in the standard computational basis. This vector has length 2^n for n qubits. Returns ------- StabilizerSPAMVec """ nqubits = int(round(_np.log2(len(purevec)))) v = (_np.array([1, 0], 'd'), _np.array([0, 1], 'd')) # (v0,v1) for zvals in _itertools.product(*([(0, 1)] * nqubits)): testvec = _functools.reduce(_np.kron, [v[i] for i in zvals]) if _np.allclose(testvec, purevec.flat): return cls(nqubits, zvals) raise ValueError(("Given `purevec` must be a z-basis product state - " "cannot construct StabilizerSPAMVec")) def __init__(self, nqubits, zvals=None, sframe=None): """ Initialize a StabilizerSPAMVec object. Parameters ---------- nqubits : int Number of qubits zvals : iterable, optional An iterable over anything that can be cast as True/False to indicate the 0/1 value of each qubit in the Z basis. If None, the all-zeros state is created. sframe : StabilizerFrame, optional A complete stabilizer frame to initialize this state from. If this is not None, then `nqubits` and `zvals` must be None. """ if sframe is not None: assert(nqubits is None and zvals is None), "`nqubits` and `zvals` must be None when `sframe` isn't!" self.sframe = sframe else: self.sframe = _stabilizer.StabilizerFrame.from_zvals(nqubits, zvals) rep = self.sframe.torep() # dim == 2**nqubits SPAMVec.__init__(self, rep, "stabilizer", "prep") def todense(self, scratch=None): """ Return this SPAM vector as a (dense) numpy array of shape (2^(nqubits), 1). The memory in `scratch` maybe used when it is not-None. """ statevec = self.sframe.to_statevec() statevec.shape = (statevec.size, 1) return statevec #def torep(self, typ, outvec=None): # """ # Return a "representation" object for this SPAMVec. # # Such objects are primarily used internally by pyGSTi to compute # things like probabilities more efficiently. # # Returns # ------- # SBStateRep # """ # return self.sframe.torep() def __str__(self): s = "Stabilizer spam vector for %d qubits with rep:\n" % (self.sframe.nqubits) s += str(self.sframe) return s class StabilizerEffectVec(SPAMVec): # FUTURE: merge this with ComptationalSPAMVec (w/evotype == "stabilizer")? """ A dummy SPAM vector that points to a set/product of 1-qubit POVM outcomes from stabilizer-state measurements. """ @classmethod def from_dense_purevec(cls, purevec): """ Create a new StabilizerEffectVec from a pure-state vector. Currently, purevec must be a single computational basis state (it cannot be a superpostion of multiple of them). Parameters ---------- purevec : numpy.ndarray A complex-valued state vector specifying a pure state in the standard computational basis. This vector has length 2^n for n qubits. Returns ------- StabilizerSPAMVec """ nqubits = int(round(_np.log2(len(purevec)))) v = (_np.array([1, 0], 'd'), _np.array([0, 1], 'd')) # (v0,v1) for zvals in _itertools.product(*([(0, 1)] * nqubits)): testvec = _functools.reduce(_np.kron, [v[i] for i in zvals]) if _np.allclose(testvec, purevec.flat): return cls(zvals) raise ValueError(("Given `purevec` must be a z-basis product state - " "cannot construct StabilizerEffectVec")) def __init__(self, outcomes): """ Initialize a StabilizerEffectVec object. Parameters ---------- outcomes : iterable A list or other iterable of integer 0 or 1 outcomes specifying which POVM effect vector this object represents within the full `stabilizerPOVM` """ self._outcomes = _np.ascontiguousarray(_np.array(outcomes, int), _np.int64) #Note: dtype='i' => int in Cython, whereas dtype=int/np.int64 => long in Cython rep = replib.SBEffectRep(self._outcomes) # dim == 2**nqubits == 2**len(outcomes) SPAMVec.__init__(self, rep, "stabilizer", "effect") #def torep(self, typ, outvec=None): # # changes to_statevec/to_dmvec -> todense, and have # # torep create an effect rep object... # return replib.SBEffectRep(_np.ascontiguousarray(self._outcomes, _np.int64)) def todense(self): """ Return this SPAM vector as a dense state vector of shape (2^(nqubits), 1) Returns ------- numpy array """ v = (_np.array([1, 0], 'd'), _np.array([0, 1], 'd')) # (v0,v1) - eigenstates of sigma_z statevec = _functools.reduce(_np.kron, [v[i] for i in self.outcomes]) statevec.shape = (statevec.size, 1) return statevec @property def outcomes(self): """ The 0/1 outcomes identifying this effect within its StabilizerZPOVM """ return self._outcomes def __str__(self): nQubits = len(self.outcomes) s = "Stabilizer effect vector for %d qubits with outcome %s" % (nQubits, str(self.outcomes)) return s class ComputationalSPAMVec(SPAMVec): """ A static SPAM vector that is tensor product of 1-qubit Z-eigenstates. This is called a "computational basis state" in many contexts. """ @classmethod def from_dense_vec(cls, vec, evotype): """ Create a new ComputationalSPAMVec from a dense vector. Parameters ---------- vec : numpy.ndarray A state vector specifying a computational basis state in the standard basis. This vector has length 2^n or 4^n for n qubits depending on `evotype`. evotype : {"densitymx", "statevec", "stabilizer", "svterm", "cterm"} The evolution type of the resulting SPAM vector. This value must be consistent with `len(vec)`, in that `"statevec"` and `"stabilizer"` expect 2^n whereas the rest expect 4^n. Returns ------- ComputationalSPAMVec """ if evotype in ('stabilizer', 'statevec'): nqubits = int(round(_np.log2(len(vec)))) v0 = _np.array((1, 0), complex) # '0' qubit state as complex state vec v1 = _np.array((0, 1), complex) # '1' qubit state as complex state vec else: nqubits = int(round(_np.log2(len(vec)) / 2)) v0 = 1.0 / _np.sqrt(2) * _np.array((1, 0, 0, 1), 'd') # '0' qubit state as Pauli dmvec v1 = 1.0 / _np.sqrt(2) * _np.array((1, 0, 0, -1), 'd') # '1' qubit state as Pauli dmvec v = (v0, v1) for zvals in _itertools.product(*([(0, 1)] * nqubits)): testvec = _functools.reduce(_np.kron, [v[i] for i in zvals]) if
_np.allclose(testvec, vec.flat)
numpy.allclose
"""62-make-diffusionmaps-and-geometricharmonicsinterpolator-compatible-with-scikit-learn-api Unit test for the Geometric Harmonics module. """ import unittest import diffusion_maps as legacy_dmap import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_swiss_roll from sklearn.model_selection import ParameterGrid from sklearn.utils.estimator_checks import check_estimator from datafold.dynfold.outofsample import ( GeometricHarmonicsInterpolator, LaplacianPyramidsInterpolator, MultiScaleGeometricHarmonicsInterpolator, ) from datafold.dynfold.tests.helper import * from datafold.pcfold.distance import IS_IMPORTED_RDIST from datafold.pcfold.kernels import DmapKernelFixed, GaussianKernel def plot_scatter(points: np.ndarray, values: np.ndarray, **kwargs) -> None: title = kwargs.pop("title", None) if title: plt.title(title) plt.scatter( points[:, 0], points[:, 1], c=values, marker="o", rasterized=True, s=2.5, **kwargs, ) cb = plt.colorbar() cb.set_clim([np.min(values), np.max(values)]) cb.set_ticks(np.linspace(np.min(values), np.max(values), 5)) plt.xlim([-4, 4]) plt.ylim([-4, 4]) plt.xlabel("$x$") plt.ylabel("$y$") plt.gca().set_aspect("equal") def f(points: np.ndarray) -> np.ndarray: """Function to interpolate.""" # return np.ones(points.shape[0]) # return np.arange(points.shape[0]) return np.sin(np.linalg.norm(points, axis=-1)) class GeometricHarmonicsTest(unittest.TestCase): # TODO: not tested yet: # * error measurements (kfold, etc.), also with nD interpolation def setUp(self): # self.num_points = 1000 # self.points = downsample(np.load('data.npy'), self.num_points) # self.values = np.ones(self.num_points) # np.save('actual-data.npy', self.points) # self.points = np.load('actual-data.npy') # self.num_points = self.points.shape[0] # self.values = np.ones(self.num_points) self.points = make_points(23, -4, -4, 4, 4) self.num_points = self.points.shape[0] self.values = f(self.points) def test_valid_sklearn_estimator(self): # disable check on boston housing dataset # see: https://scikit-learn.org/stable/developers/develop.html#estimator-tags estimator = GeometricHarmonicsInterpolator(n_eigenpairs=1) for estimator, check in check_estimator(estimator, generate_only=True): check(estimator) self.assertTrue(estimator._get_tags()["multioutput"]) self.assertTrue(estimator._get_tags()["requires_y"]) def test_geometric_harmonics_interpolator(self, plot=False): eps = 1e-1 ghi = GeometricHarmonicsInterpolator( GaussianKernel(epsilon=eps), n_eigenpairs=self.num_points - 3, dist_kwargs=dict(cut_off=1e1 * eps), ) ghi = ghi.fit(self.points, self.values) points = make_points(100, -4, -4, 4, 4) values = ghi.predict(points) residual = values - f(points) self.assertLess(np.max(np.abs(residual)), 7.5e-2) print(f"Original function={f(points)}") print(f"Sampled points={self.values}") print(f"Reconstructed function={values}") print(f"Residual={residual}") if plot: plt.subplot(2, 2, 1) plot_scatter(points, f(points), title="Original function") plt.subplot(2, 2, 2) plot_scatter(self.points, self.values, title="Sampled function") plt.subplot(2, 2, 4) plot_scatter(points, values, title="Reconstructed function") plt.subplot(2, 2, 3) plot_scatter(points, residual, title="Residual", cmap="RdBu_r") plt.tight_layout() plt.show() def test_eigenfunctions(self, plot=False): eps = 1e1 cut_off = 1e1 * eps n_eigenpairs = 3 points = make_strip(0, 0, 1, 1e-1, 3000) dm = DiffusionMaps( GaussianKernel(epsilon=eps), n_eigenpairs=n_eigenpairs, dist_kwargs=dict(cut_off=1e100), ).fit(points) setting = { "kernel": GaussianKernel(eps), "n_eigenpairs": n_eigenpairs, "is_stochastic": False, "dist_kwargs": dict(cut_off=cut_off), } ev1 = GeometricHarmonicsInterpolator(**setting).fit( points, dm.eigenvectors_[:, 1] ) ev2 = GeometricHarmonicsInterpolator(**setting).fit( points, dm.eigenvectors_[:, 2] ) rel_err1 = np.linalg.norm( dm.eigenvectors_[:, 1] - ev1.predict(points), np.inf ) / np.linalg.norm(dm.eigenvectors_[:, 1], np.inf) self.assertAlmostEqual(rel_err1, 0, places=1) rel_err2 = np.linalg.norm( dm.eigenvectors_[:, 2] - ev2.predict(points), np.inf ) / np.linalg.norm(dm.eigenvectors_[:, 2], np.inf) self.assertAlmostEqual(rel_err2, 0, places=1) if plot: new_points = make_points(50, 0, 0, 1, 1e-1) ev1i = ev1.predict(new_points) ev2i = ev2.predict(new_points) plt.subplot(1, 2, 1) plt.scatter(new_points[:, 0], new_points[:, 1], c=ev1i, cmap="RdBu_r") plt.subplot(1, 2, 2) plt.scatter(new_points[:, 0], new_points[:, 1], c=ev2i, cmap="RdBu_r") plt.show() def test_dense_sparse(self): data, _ = make_swiss_roll(n_samples=1000, noise=0, random_state=1) dim_red_eps = 1.25 dense_setting = { "kernel": GaussianKernel(dim_red_eps), "n_eigenpairs": 6, "is_stochastic": False, "dist_kwargs": dict(cut_off=np.inf), } sparse_setting = { "kernel": GaussianKernel(dim_red_eps), "n_eigenpairs": 6, "is_stochastic": False, "dist_kwargs": dict(cut_off=1e100), } dmap_dense = DiffusionMaps(**dense_setting).fit(data) values = dmap_dense.eigenvectors_[:, 1] dmap_sparse = DiffusionMaps(**sparse_setting).fit(data) # Check if any error occurs (functional test) and whether the provided DMAP is # changed in any way. gh_dense = GeometricHarmonicsInterpolator(**dense_setting).fit(data, values) gh_sparse = GeometricHarmonicsInterpolator(**sparse_setting).fit(data, values) self.assertEqual(gh_dense._dmap_kernel, dmap_dense._dmap_kernel) self.assertEqual(gh_sparse._dmap_kernel, dmap_sparse._dmap_kernel) # The parameters are set equal to the previously generated DMAP, therefore both # have to be equal. gh_dense_cmp = GeometricHarmonicsInterpolator(**dense_setting).fit( data, values, store_kernel_matrix=True ) gh_sparse_cmp = GeometricHarmonicsInterpolator(**sparse_setting).fit( data, values, store_kernel_matrix=True ) self.assertEqual(gh_dense_cmp._dmap_kernel, dmap_dense._dmap_kernel) self.assertEqual(gh_sparse_cmp._dmap_kernel, dmap_sparse._dmap_kernel) # Check the the correct format is set self.assertTrue(isinstance(gh_dense_cmp.kernel_matrix_, np.ndarray)) self.assertTrue(isinstance(gh_sparse_cmp.kernel_matrix_, csr_matrix)) gh_dense_cmp.predict(data) gh_sparse_cmp.predict(data) # Check if sparse (without cutoff) and dense case give close results nptest.assert_allclose( gh_sparse_cmp.predict(data), gh_dense_cmp.predict(data), rtol=1e-14, atol=1e-15, ) nptest.assert_allclose( gh_sparse_cmp.gradient(data), gh_dense_cmp.gradient(data), rtol=1e-14, atol=1e-15, ) def test_variable_number_of_points(self): # Simply check if something fails np.random.seed(1) data = np.random.randn(100, 5) values = np.random.randn(100) parameter_grid = ParameterGrid( { "is_stochastic": [False], "alpha": [0, 1], "dist_kwargs": [ dict(cut_off=10), dict(cut_off=100), dict(cut_off=np.inf), ], } ) for setting in parameter_grid: gh = GeometricHarmonicsInterpolator( GaussianKernel(epsilon=0.01), n_eigenpairs=3, **setting ).fit(data, values) # larger number of samples than original data oos_data = np.random.randn(200, 5) gh.predict(oos_data) gh.gradient(oos_data) oos_data = np.random.randn(100, 5) # same size as original data gh.predict(oos_data) gh.gradient(oos_data) oos_data = np.random.randn(50, 5) # less than original data gh.predict(oos_data) gh.gradient(oos_data) oos_data = np.random.randn(1, 5) # single sample gh.predict(oos_data) gh.gradient(oos_data) @unittest.skip(reason="functionality and testing not finished") def test_multiscale(self): x_lims_train = (0, 10) y_lims_train = (0, 10) x_lims_test = (-2, 12) y_lims_test = (-2, 12) nr_sample_x_train = 30 nr_sample_y_train = 30 nr_sample_x_test = 200 nr_sample_y_test = 200 xx, yy = np.meshgrid( np.linspace(*x_lims_train, nr_sample_x_train), np.linspace(*y_lims_train, nr_sample_y_train), ) zz = np.sin(yy) * np.sin(xx) X_train = np.vstack( [xx.reshape(np.product(xx.shape)), yy.reshape(np.product(yy.shape))] ).T y_train = zz.reshape(np.product(zz.shape)) xx_oos, yy_oos = np.meshgrid( np.linspace(*x_lims_test, nr_sample_x_test), np.linspace(*y_lims_test, nr_sample_y_test), ) zz_oos = np.sin(yy_oos) * np.sin(xx_oos) X_oos = np.vstack( [ xx_oos.reshape(np.product(xx_oos.shape)), yy_oos.reshape(np.product(yy_oos.shape)), ] ).T y_test = zz_oos.reshape(np.product(zz_oos.shape)) gh_single_interp = GeometricHarmonicsInterpolator( epsilon=13.0, n_eigenpairs=130, alpha=0, is_stochastic=False # condition=1.0, # admissible_error=1, # initial_scale=5, ).fit(X_train, y_train) gh_multi_interp = MultiScaleGeometricHarmonicsInterpolator( initial_scale=50, n_eigenpairs=11, condition=50, admissible_error=0.4 ).fit(X_train, y_train) print("-----------------") print("Residuum (train error):") score_single_train = gh_single_interp.score(X_train, y_train) score_multi_train = gh_multi_interp.score(X_train, y_train) print(f"gh single = {score_single_train}") print(f"gh multi = {score_multi_train}") print("---") print("Test error:") score_single_test = gh_single_interp.score(X_oos, y_test) score_multi_test = gh_multi_interp.score(X_oos, y_test) print(f"gh single = {score_single_test}") print(f"gh multi = {score_multi_test}") print("----------------- \n") ################################################################################# ################################################################################# ################################################################################# # TRAIN DATA f, ax = plt.subplots(2, 3, sharex=True, sharey=True) cur_row = ax[0] cur_row[0].contourf(xx, yy, zz) vlim = (np.min(zz), np.max(zz)) cur_row[0].plot(xx, yy, ".", c="k") cur_row[0].set_title("Original") # plt.figure("Single-scale geometric harmonics") cur_row[1].plot(xx, yy, ".", c="k") cur_row[1].contourf( xx, yy, gh_single_interp.predict(X_train).reshape( nr_sample_x_train, nr_sample_y_train ), vmin=vlim[0], vmax=vlim[1], ) cur_row[1].set_title("Single geometric harmonics") cur_row[2].plot(xx, yy, ".", c="k") cur_row[2].contourf( xx, yy, gh_multi_interp(X_train).reshape(nr_sample_x_train, nr_sample_y_train), vmin=vlim[0], vmax=vlim[1], ) cur_row[2].set_title("Multi-scale geometric") cur_row = ax[1] abs_diff_single_train = np.abs( zz - gh_single_interp.predict(X_train).reshape( nr_sample_x_train, nr_sample_y_train ) ) abs_diff_multi_train = np.abs( zz - gh_multi_interp(X_train).reshape(nr_sample_x_train, nr_sample_y_train) ) vmin = np.min([abs_diff_single_train.min(), abs_diff_multi_train.min()]) vmax = np.max([abs_diff_single_train.max(), abs_diff_multi_train.max()]) cur_row[1].set_title("abs difference single scale") cnf = cur_row[1].contourf( xx, yy, abs_diff_single_train, cmap="Reds", vmin=vmin, vmax=vmax ) # f.colorbar(cnf) cur_row[1].plot(xx, yy, ".", c="k") cur_row[2].set_title("abs difference multi scale") cnf = cur_row[2].contourf( xx, yy, abs_diff_multi_train, cmap="Reds", vmin=vmin, vmax=vmax ) # f.colorbar(cnf) cur_row[2].plot(xx, yy, ".", c="k") ################################################################################# ################################################################################# ################################################################################# # OOS DATA f, ax = plt.subplots(2, 3, sharex=True, sharey=True) cur_row = ax[0] cur_row[0].contourf(xx_oos, yy_oos, zz_oos) vlim = (np.min(zz_oos), np.max(zz_oos)) cur_row[0].set_title("Original") cur_row[1].set_title("Single geometric harmonics") cur_row[1].contourf( xx_oos, yy_oos, gh_single_interp.predict(X_oos).reshape(nr_sample_x_test, nr_sample_y_test), vmin=vlim[0], vmax=vlim[1], ) cur_row[2].set_title("Multi scale geometric harmonics") cur_row[2].contourf( xx_oos, yy_oos, gh_multi_interp(X_oos).reshape(nr_sample_x_test, nr_sample_y_test), vmin=vlim[0], vmax=vlim[1], ) cur_row = ax[1] abs_diff_single_train = np.abs( zz_oos - gh_single_interp.predict(X_oos).reshape( nr_sample_x_test, nr_sample_y_test ) ) abs_diff_multi_train = np.abs( zz_oos - gh_multi_interp(X_oos).reshape(nr_sample_x_test, nr_sample_y_test) ) vmin = np.min([abs_diff_single_train.min(), abs_diff_multi_train.min()]) vmax = np.max([abs_diff_single_train.max(), abs_diff_multi_train.max()]) cur_row[1].set_title("abs difference single scale") cnf = cur_row[1].contourf( xx_oos, yy_oos, abs_diff_single_train, cmap="Reds", vmin=vmin, vmax=vmax ) # f.colorbar(cnf) cur_row[2].set_title("abs difference multi scale") cnf = cur_row[2].contourf( xx_oos, yy_oos, abs_diff_multi_train, cmap="Reds", vmin=vmin, vmax=vmax ) # f.colorbar(cnf) plt.show() @unittest.skipIf(not IS_IMPORTED_RDIST, "rdist is not available") def test_different_backends(self): data, _ = make_swiss_roll(1000, random_state=1) eps_interp = 100 # in this case much larger compared to 1.25 for dim. reduction n_eigenpairs = 50 setting = { "kernel": GaussianKernel(eps_interp), "n_eigenpairs": n_eigenpairs, "dist_kwargs": dict(cut_off=1e100, backend="scipy.kdtree"), } setting2 = { "kernel": GaussianKernel(eps_interp), "n_eigenpairs": n_eigenpairs, "dist_kwargs": dict(cut_off=1e100, backend="scipy.kdtree"), } actual_phi_rdist = GeometricHarmonicsInterpolator(**setting).fit( data, data[:, 0] ) actual_phi_kdtree = GeometricHarmonicsInterpolator(**setting2).fit( data, data[:, 0] ) nptest.assert_allclose( actual_phi_rdist.eigenvalues_, actual_phi_kdtree.eigenvalues_, atol=9e-14, rtol=1e-14, ) assert_equal_eigenvectors( actual_phi_rdist.eigenvectors_, actual_phi_kdtree.eigenvectors_ ) result_rdist = actual_phi_rdist.predict(data) result_kdtree = actual_phi_kdtree.predict(data) # TODO: it is not clear why relative large tolerances are required... (also see # further below). nptest.assert_allclose(result_rdist, result_kdtree, atol=1e-12, rtol=1e-13) # def test_gradient(self): # xx, yy = np.meshgrid(np.linspace(0, 10, 20), np.linspace(0, 100, 20)) # zz = xx + np.sin(yy) # # data_points = np.vstack( # [xx.reshape(np.product(xx.shape)), yy.reshape(np.product(yy.shape))] # ).T # target_values = zz.reshape(np.product(zz.shape)) # # gh_interp = GeometricHarmonicsInterpolator(epsilon=100, n_eigenpairs=50) # gh_interp = gh_interp.fit(data_points, target_values) # score = gh_interp.score(data_points, target_values) # print(f"score={score}") # # plt.figure() # plt.contourf(xx, yy, zz) # plt.figure() # plt.contourf(xx, yy, gh_interp(data_points).reshape(20, 20)) # # grad_x = xx # grad_y = np.cos(yy) # grad = np.vstack( # [ # grad_x.reshape(np.product(grad_x.shape)), # grad_y.reshape(np.product(grad_y.shape)), # ] # ).T # # print(np.linalg.norm(gh_interp.gradient(data_points) - grad)) def test_stochastic_kernel(self): # Currently, only check if it runs through (with is_stochastic=True data = np.linspace(0, 2 * np.pi, 40)[:, np.newaxis] values = np.sin(data) gh_interp = GeometricHarmonicsInterpolator( kernel=GaussianKernel(epsilon=0.5), n_eigenpairs=30, is_stochastic=True, alpha=0, symmetrize_kernel=False, dist_kwargs=dict(cut_off=np.inf), ).fit(data, values) score = gh_interp.score(data, values) # NOTE: if is_stochastic=True and alpha =0, the GH is not able to reproduce the # sin curve exactly. # To identify changes in the implementation, this checks against a reference # solution print(score) # Somehow, the remote computer produces a slightly different result... reference = 0.04836717878208042 self.assertLessEqual(score, reference) def test_renormalization_kernel(self, plot=False): # Currently, only check if it runs through (with is_stochastic=True) data = np.linspace(0, 2 * np.pi, 100)[:, np.newaxis] values = np.sin(data) from scipy.spatial.distance import pdist gh_interp = GeometricHarmonicsInterpolator( GaussianKernel(epsilon=2), n_eigenpairs=30, is_stochastic=True, alpha=1, symmetrize_kernel=True, dist_kwargs=dict( cut_off=np.inf, ), ).fit(data, values) data_interp = np.linspace(0, 2 * np.pi, 100)[:, np.newaxis] predicted_partial = gh_interp.predict(data[:10, :]) predicted_all = gh_interp.predict(data_interp) score = gh_interp.score(data, values) # NOTE: if is_stochastic=True and alpha=1 the GH is able to reproduce the # sin curve more accurately. # self.assertEqual(score, 0.0005576927798107333) if plot: # To identify changes in the implementation, this checks against a reference # solution print(score) plt.plot(data, values, "-*") plt.plot(data_interp, predicted_all, "-*") plt.plot(data[:10, :], predicted_partial, "-*") plt.show() class GeometricHarmonicsLegacyTest(unittest.TestCase): # We want to produce exactly the same results as the forked DMAP repository. These # are test to make sure this is the case. def setUp(self): np.random.seed(1) self.data, _ = make_swiss_roll(n_samples=1000, noise=0, random_state=1) dim_red_eps = 1.25 dmap = DiffusionMaps( GaussianKernel(epsilon=dim_red_eps), n_eigenpairs=6, dist_kwargs=dict(cut_off=1e100), ).fit(self.data) self.phi_all = dmap.eigenvectors_[:, [1, 5]] # column wise like X_all train_idx_stop = int(self.data.shape[0] * 2 / 3) self.data_train = self.data[:train_idx_stop, :] self.data_test = self.data[train_idx_stop:, :] self.phi_train = self.phi_all[:train_idx_stop, :] self.phi_test = self.phi_all[train_idx_stop:, :] def test_method_example1(self): # Example from method_examples/diffusion_maps/geometric_harmonics -- # out-of-samples case. eps_interp = 100 # in this case much larger compared to 1.25 for dim. reduction n_eigenpairs = 50 # Because the distances were changed (to consistently squared) the # interpolation DMAP has to be computed again for the legacy case. legacy_dmap_interp = legacy_dmap.SparseDiffusionMaps( points=self.data_train, # use part of data epsilon=eps_interp, # eps. for interpolation num_eigenpairs=n_eigenpairs, # number of basis functions cut_off=np.inf, normalize_kernel=False, ) setting = { "kernel": GaussianKernel(epsilon=eps_interp), "n_eigenpairs": n_eigenpairs, "dist_kwargs": dict(cut_off=1e100), } actual_phi0 = GeometricHarmonicsInterpolator(**setting).fit( self.data_train, self.phi_train[:, 0] ) actual_phi1 = GeometricHarmonicsInterpolator(**setting).fit( self.data_train, self.phi_train[:, 1] ) actual_phi2d = GeometricHarmonicsInterpolator(**setting).fit( self.data_train, self.phi_train ) expected_phi0 = legacy_dmap.GeometricHarmonicsInterpolator( points=self.data_train, values=self.phi_train[:, 0], # legacy code requires to set epsilon even in the case when # "diffusion_maps" is handled epsilon=-1, diffusion_maps=legacy_dmap_interp, ) expected_phi1 = legacy_dmap.GeometricHarmonicsInterpolator( points=self.data_train, values=self.phi_train[:, 1], epsilon=-1, diffusion_maps=legacy_dmap_interp, ) # The reason why there is a relatively large atol is because we changed the way # to compute an internal parameter in the GeometricHarmonicsInterpolator (from # n**3 to n**2) -- this introduced some numerical differences. nptest.assert_allclose( actual_phi0.predict(self.data), expected_phi0(self.data), rtol=1e-10, atol=1e-14, ) nptest.assert_allclose( actual_phi1.predict(self.data), expected_phi1(self.data), rtol=1e-10, atol=1e-14, ) # only phi_test because the computation is quite expensive nptest.assert_allclose( actual_phi0.gradient(self.data_test), expected_phi0.gradient(self.data_test), rtol=1e-13, atol=1e-14, ) nptest.assert_allclose( actual_phi1.gradient(self.data_test), expected_phi1.gradient(self.data_test), rtol=1e-13, atol=1e-14, ) # nD case nptest.assert_allclose( actual_phi2d.predict(self.data)[:, 0], expected_phi0(self.data), rtol=1e-11, atol=1e-12, ) nptest.assert_allclose( actual_phi2d.predict(self.data)[:, 1], expected_phi1(self.data), rtol=1e-11, atol=1e-12, ) nptest.assert_allclose( actual_phi2d.gradient(self.data_test, vcol=0), expected_phi0.gradient(self.data_test), rtol=1e-13, atol=1e-14, ) nptest.assert_allclose( actual_phi2d.gradient(self.data_test, vcol=1), expected_phi1.gradient(self.data_test), rtol=1e-13, atol=1e-14, ) def test_method_example2(self): # Example from method_examples/diffusion_maps/geometric_harmonics -- inverse case. np.random.seed(1) eps_interp = 0.0005 # in this case much smaller compared to 1.25 for dim. reduction or 100 for the # forward map n_eigenpairs = 100 legacy_dmap_interp = legacy_dmap.SparseDiffusionMaps( points=self.phi_train, # (!!) we use phi now epsilon=eps_interp, # new eps. for interpolation num_eigenpairs=n_eigenpairs, cut_off=1e100, normalize_kernel=False, ) setting = { "kernel": GaussianKernel(epsilon=eps_interp), "n_eigenpairs": n_eigenpairs, "is_stochastic": False, "dist_kwargs": dict(cut_off=1e100), } actual_x0 = GeometricHarmonicsInterpolator(**setting).fit( self.phi_train, self.data_train[:, 0] ) actual_x1 = GeometricHarmonicsInterpolator(**setting).fit( self.phi_train, self.data_train[:, 1] ) actual_x2 = GeometricHarmonicsInterpolator(**setting).fit( self.phi_train, self.data_train[:, 2] ) # interpolate both values at once (new feature) actual_2values = GeometricHarmonicsInterpolator(**setting).fit( self.phi_train, self.data_train ) # compare to legacy GH expected_x0 = legacy_dmap.GeometricHarmonicsInterpolator( points=self.phi_train, values=self.data_train[:, 0], epsilon=-1, diffusion_maps=legacy_dmap_interp, ) expected_x1 = legacy_dmap.GeometricHarmonicsInterpolator( points=self.phi_train, values=self.data_train[:, 1], epsilon=-1, diffusion_maps=legacy_dmap_interp, ) expected_x2 = legacy_dmap.GeometricHarmonicsInterpolator( points=self.phi_train, values=self.data_train[:, 2], epsilon=-1, diffusion_maps=legacy_dmap_interp, ) nptest.assert_allclose( actual_x0.predict(self.phi_all), expected_x0(self.phi_all), rtol=1e-4, atol=1e-6, ) nptest.assert_allclose( actual_x1.predict(self.phi_all), expected_x1(self.phi_all), rtol=1e-4, atol=1e-6, ) nptest.assert_allclose( actual_x2.predict(self.phi_all), expected_x2(self.phi_all), rtol=1e-4, atol=1e-6, ) # only phi_test because the computation is quite expensive nptest.assert_allclose( actual_x0.gradient(self.phi_test), expected_x0.gradient(self.phi_test), rtol=1e-13, atol=1e-14, ) nptest.assert_allclose( actual_x1.gradient(self.phi_test), expected_x1.gradient(self.phi_test), rtol=1e-13, atol=1e-14, ) nptest.assert_allclose( actual_x2.gradient(self.phi_test), expected_x2.gradient(self.phi_test), rtol=1e-13, atol=1e-14, ) nptest.assert_allclose( actual_2values.predict(self.phi_all)[:, 0], expected_x0(self.phi_all), rtol=1e-5, atol=1e-7, ) nptest.assert_allclose( actual_2values.predict(self.phi_all)[:, 1], expected_x1(self.phi_all), rtol=1e-5, atol=1e-7, ) nptest.assert_allclose( actual_2values.predict(self.phi_all)[:, 2], expected_x2(self.phi_all), rtol=1e-5, atol=1e-7, ) nptest.assert_allclose( actual_2values.gradient(self.phi_test, vcol=0), expected_x0.gradient(self.phi_test), rtol=1e-13, atol=1e-14, ) nptest.assert_allclose( actual_2values.gradient(self.phi_test, vcol=1), expected_x1.gradient(self.phi_test), rtol=1e-13, atol=1e-14, ) nptest.assert_allclose( actual_2values.gradient(self.phi_test, vcol=2), expected_x2.gradient(self.phi_test), rtol=1e-13, atol=1e-14, ) def test_same_underlying_kernel(self): # Actually not a legacy test, but uses the set up. eps_interp = 0.0005 actual = DmapKernelFixed( GaussianKernel(epsilon=eps_interp), is_stochastic=False, alpha=1 ) # GH must be trained before to set kernel gh = GeometricHarmonicsInterpolator( kernel=GaussianKernel(eps_interp), n_eigenpairs=1, is_stochastic=False ).fit(self.data_train, self.phi_train) self.assertEqual(gh._dmap_kernel, actual) class LaplacianPyramidsTest(unittest.TestCase): def setUpSyntheticFernandez(self) -> None: rng = np.random.default_rng(2) self.X_fern = np.linspace(0, 10 * np.pi, 2000)[:, np.newaxis] self.X_fern_test = np.sort(rng.uniform(0, 10 * np.pi, 500))[:, np.newaxis] delta = 0.05 # EVALUATE TRAIN DATA indicator_range2 = np.logical_and( self.X_fern > 10 * np.pi / 3, self.X_fern <= 10 * np.pi ) indicator_range3 = np.logical_and( self.X_fern > 2 * 10 * np.pi / 2, self.X_fern <= 10 * np.pi ) noise = rng.uniform(low=-delta, high=delta, size=self.X_fern.shape[0]) noise = noise[:, np.newaxis] self.y_fern = ( np.sin(self.X_fern) + 0.5 * np.sin(3 * self.X_fern) * indicator_range2 + 0.25 *
np.sin(9 * self.X_fern)
numpy.sin
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu Jun 29 08:21:57 2017 @author: rebecca """ #Copyright 2018 <NAME> # #Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #imports from __future__ import division import numpy as np import math as m import matplotlib.pylab as plt #import pdb #commonly changed inputs f_bedload = 0.25 #% of sand totaltimestep = 5000 L = 120 #domain size (# of cells in x-direction); typically on order of 100 W = 240 #domain size (# of cells in y-direction); W = 2L for semicircle growth plotinterval = 10 plotintervalstrat = 250 #record strata less frequently runID = 1 itermax = 1 # # of interations of water routing Np_water = 2000 # number of water parcels; typically 2000 Np_sed = 2000 # number of sediment parcels veg = 1 #veg on or off #operations used in the model class model_steps(object): def direction_setup(self): #set up grid with # of neighbors and directions Nnbr = np.zeros((L,W), dtype=np.int) nbr = np.zeros((L,W,8)) #center nodes Nnbr[1:L-1,1:W-1] = 8 nbr[1:L-1,1:W-1,:] = [(k+1) for k in range(8)] # left side Nnbr[0,1:W-1] = 5 for k in range(5): nbr[0,1:W-1,k] = (6+(k+1))%8 nbr[0,1:W-1,1] = 8 #replace zeros with 8 # upper side Nnbr[1:L-1,W-1] = 5 for k in range(5): nbr[1:L-1,W-1,k] = (4+(k+1))%8 nbr[1:L-1,W-1,3] = 8 #replace zeros with 8 # lower side Nnbr[1:L-1,0] = 5 for k in range(5): nbr[1:L-1,0,k] = (k+1)%8 # lower-left corner Nnbr[0,0] = 3 for k in range(3): nbr[0,0,k] = (k+1)%8 # upper-left corner Nnbr[0,W-1] = 3 for k in range(3): nbr[0,W-1,k] = (6+(k+1))%8 nbr[0,W-1,1] = 8 #replace zeros with 8 self.Nnbr = Nnbr self.nbr = nbr def subsidence_setup(self): #set up subsidence sigma = np.zeros((L,W)) sigma_max = 0.0*self.h0/1000 sigma_min = -0.0*self.h0/1000 for i in range(3,L): for j in range(W): sigma[i,j] = j/W*(sigma_max-sigma_min)+sigma_min self.sigma = sigma def setup(self): #define model parameters and set up grid self.CTR = int((W-1)/2) # center cell N0 = 5 # num of inlet cells self.omega_flow_iter = 2*1/itermax strataBtm = 1 #bottom layer elevation self.dx = 50 #cell size, m self.u0 = 1.0 #(m/s) characteristic flow velocity/inlet channel velocity self.h0 = 5 # (m) characteristic flow depth/inlet channel depth; typically m to tens of m self.S0 = 0.0003*f_bedload+0.0001*(1-f_bedload) #characteristic topographic slope; typically 10^-4-10^-5 V0 = self.h0*(self.dx**2) #(m^3) reference volume; volume to fill a channel cell to characteristic flow depth dVs = 0.1*N0**2*V0 #sediment volume added in each timestep; used to determine time step size; Qw0 = self.u0*self.h0*N0*self.dx C0 = 0.1*1/100 #sediment concentration Qs0 = Qw0*C0 #sediment total input discharge self.dt = dVs/Qs0 #time step size self.qw0 = Qw0/N0/self.dx #water unit input discharge self.qs0 = self.qw0*C0 #sediment unit input discharge self.Qp_water = Qw0/Np_water #volume of each water parcel self.Vp_sed = dVs/Np_sed #volume of each sediment parcel self.GRAVITY = 9.81 self.u_max = 2.0*self.u0 hB = 1.0*self.h0 #(m) basin depth self.H_SL = 0 # sea level elevation (downstream boundary condition) self.SLR = 0.0/1000/60/60/24/365#*self.h0/self.dt #put mm/yr as first number, converts to m/s self.dry_depth = min(0.1,0.1*self.h0) #(m) critical depth to switch to 'dry' node self.gamma = self.GRAVITY*self.S0*self.dx/self.u0/self.u0 #determines ratio of influence of inertia versus water surface gradient in calculating routing direction; controls how much water spreads laterally #parameters for random walk probability calc self.theta_water = 1.0 #depth dependence (power of h) in routing water parcels self.theta_sand = 2.0*self.theta_water # depth dependence (power of h) in routing sand parcels; sand in lower part of water column, more likely to follow topographic lows self.theta_mud = 1.0*self.theta_water # depth dependence (power of h) in routing mud parcels #sediment deposition/erosion related parameters self.beta = 3 #non-linear exponent of sediment flux to flow velocity self._lambda = 1.0 #"sedimentation lag" - 1.0 means no lag self.U_dep_mud = 0.3*self.u0 #if velocity is lower than this, mud is deposited self.U_ero_sand = 1.05*self.u0 #if velocity higher than this, sand eroded self.U_ero_mud = 1.5*self.u0 #if velocity higher than this, mud eroded #topo diffusion relation parameters self.alpha = np.zeros((L,W)) #0.05*(0.25*1*0.125) # topo-diffusion coefficient self.N_crossdiff = int(round(dVs/V0)) if veg == 0: self.alpha = self.alpha + 0.1 #veg related paremeters self.d_stem = 0.006 #stem diameter (m) self.timestep_count = 0 #for tracking if interflood self.f_veg = np.zeros((L,W)) #fractional cover/density of vegetation for each cell self.K = 800 #carrying capacity (stems/cell) self.a = 0.88*4/(m.pi*self.d_stem**2*self.K*((4/self.d_stem/self.K)-(0.7/self.d_stem/self.K))) #coefficient to make vegetation have proper influence self.flood_dur = 3*24*60*60 #(s) 1 day, flood duration if veg == 1: self.f_veg_init = 0.05 #starting density is 5% self.r_veg = 1/(365*24*60*60) #(s-1) growth rate flood_freq = 100*24*60*60 #(s) 100 days, flood frequency/interflood period self.dt_veg = flood_freq #time for veg growth self.d_root = 0.2 #(m) root depth is 20 cm self.eta_change = np.zeros((L,W)) self.eta_change_net = np.zeros((L,W)) #smoothing water surface self.Nsmooth = 10 #iteration of surface smoothing per timestep self.Csmooth = 0.9 #center-weighted surface smoothing #under-relaxation between iterations self.omega_sfc = 0.1 #under-relaxation coef for water surface self.omega_flow = 0.9 #under-relaxation coef for water flow #storage prep self.eta = np.zeros((L,W)) # bed elevation self.H = np.zeros((L,W)) #free surface elevation self.h = np.zeros((L,W)) #depth of water self.qx = np.zeros((L,W)) #unit discharge vector (x-comp) self.qy = np.zeros((L,W)) #unit discharge vector (y-comp) self.qw = np.zeros((L,W)) #unit discharge vector magnitude self.ux = np.zeros((L,W)) #velocity vector (x-comp) self.uy = np.zeros((L,W)) #velocity vector (y-comp) self.uw = np.zeros((L,W)) #velocity magnitude #value definition SQ05 = m.sqrt(0.5) SQ2 = m.sqrt(2) self.dxn_ivec = [1,SQ05,0,-SQ05,-1,-SQ05,0,SQ05] #E --> clockwise self.dxn_jvec = [0,SQ05,1,SQ05,0,-SQ05,-1,-SQ05] #E --> clockwise self.dxn_iwalk = [1,1,0,-1,-1,-1,0,1] #E --> clockwise self.dxn_jwalk = [0,1,1,1,0,-1,-1,-1] #E --> clockwise self.dxn_dist = [1,SQ2,1,SQ2,1,SQ2,1,SQ2] #E --> clockwise self.wall_flag = np.zeros((L,W)) self.boundflag = np.zeros((L,W), dtype=np.int) result = [(m.sqrt((i-3)**2+(j-self.CTR)**2)) for i in range(L) for j in range(W)] result = np.reshape(result,(L,W)) self.boundflag[result >= min(L-5,W/2-5)] = 1 #initial setup self.L0 = 3 # type_ocean = 0 type_chn = 1 type_sed = 2 types = np.zeros((L,W)) types[0:self.L0,:] = type_sed types[0:self.L0,int(self.CTR-round(N0/2)+1):int(self.CTR-round(N0/2)+N0+1)] = type_chn self.wall_flag[types>1] = 1 #topo setup self.h[types==0] = hB self.h[types==1] = self.h0 self.H[0,:] = max(0,self.L0-1)*self.dx*self.S0 self.H[1,:] = max(0,self.L0-2)*self.dx*self.S0 self.H[2,:] = max(0,self.L0-3)*self.dx*self.S0 self.eta = self.H-self.h #flow setup; flow doesn't satisfy mass conservation self.qx[types==1] = self.qw0 self.qx[types==0] = self.qw0/5 self.qw = np.sqrt(self.qx**2+self.qy**2) self.ux[self.h>0] = self.qx[self.h>0]/self.h[self.h>0] self.uy[self.h>0] = self.qy[self.h>0]/self.h[self.h>0] self.uw[self.h>0] = self.qw[self.h>0]/self.h[self.h>0] self.direction_setup() self.subsidence_setup() self.wet_flag = np.zeros((L,W)) self.py_start = np.arange(self.CTR-round(N0/2)+1,self.CTR-round(N0/2)+N0+1, dtype=np.int) #vector of inlet cells y coord self.px_start = 0 self.dxn_iwalk_inlet = self.dxn_iwalk[0] #x comp of inlet flow direction self.dxn_jwalk_inlet = self.dxn_jwalk[0] #y comp of inlet flow direction self.itmax = 2*(L+W) #self.Hnew = np.zeros((L,W)) #temp water surface elevation before smoothing self.qxn = np.zeros((L,W)) #placeholder for qx during calculations self.qyn = np.zeros((L,W)) self.qwn = np.zeros((L,W)) self.sfc_visit = np.zeros((L,W)) # number of water parcels that have visited cell self.sfc_sum = np.zeros((L,W)) #sum of water surface elevations from parcels that have visited cell self.prepath_flag = np.zeros((L,W)) #flag for one parcel, to see if it should continue self.iseq = np.zeros((self.itmax,1)) #tracks which cells were visited by parcel self.jseq = np.zeros((self.itmax,1)) self.qs = np.zeros((L,W)) #prepare to record strata self.z0 = self.H_SL-self.h0*strataBtm #bottom layer elevation self.dz = 0.01*self.h0 #layer thickness zmax = int(round((self.H_SL+self.SLR*totaltimestep*self.dt+self.S0*L/2*self.dx-self.z0)/self.dz)+10) #max layer number strata0 =-1 #default value of none self.strata =
np.ones((L,W,zmax))
numpy.ones
import numpy as np from PIL import Image, ImageDraw from .colors import * def colorize_class_preds(class_maps, no_classes): # class maps are level-batch-class-H-W np_arrays = [] for lvl in class_maps: lvl = map_color_values(lvl, no_classes, True) np_arrays.append(lvl) return np_arrays def normalize_centerness(center_maps): p_min = 1E6 p_max = -1E6 for lvl in center_maps: p_min = np.min([p_min, np.min(lvl)]) p_max = np.max([p_max, np.max(lvl)]) normed_imgs = [] for lvl in center_maps: lvl = (lvl - p_min) / (p_max - p_min) * 255 normed_imgs.append(lvl) return normed_imgs def image_pyramid(pred_maps, target_size): """Turns as series of images to a column of target_size images.""" resized_imgs = [] for lvl in pred_maps: lvl = lvl.astype(np.uint8) lvl_img = Image.fromarray(lvl) lvl_img = lvl_img.resize(target_size[::-1]) lvl_img = np.array(lvl_img) resized_imgs.append(lvl_img) resized_imgs.append(np.full((10,) + lvl_img.shape[1:], 255)) img_cat = np.concatenate(resized_imgs) return img_cat.astype(np.uint8) def get_present_classes(classes_vis): """Finds all classes that exist in a given picture.""" unique_vals = [] for vis in classes_vis: if isinstance(vis, np.ndarray): unique_vals.extend(np.unique(vis)) else: unique_vals.extend(np.unique(vis.cpu().numpy())) ret = set(unique_vals) try: ret.remove(-1) except KeyError: pass ret = list(ret) ret.sort() return ret def stitch_big_image(images_list): """Stitches separate np.ndarray images into a single large array.""" if isinstance(images_list[0], np.ndarray): # stitch vertically # stack to 3 channels if necessary max_len = 0 for ind, ele in enumerate(images_list): if ele.shape[-1] == 1: images_list[ind] = np.concatenate([ele, ele, ele], -1) if ele.shape[1] > max_len: max_len = ele.shape[1] for ind, ele in enumerate(images_list): if ele.shape[1] < max_len: pad_ele = np.zeros( (ele.shape[0], max_len-ele.shape[1], 3), np.uint8 ) images_list[ind] = np.concatenate([pad_ele, images_list[ ind]], 1) return
np.concatenate(images_list, 0)
numpy.concatenate
#!/usr/bin/env python from datetime import datetime import time from kobot.msg import range_n_bearing_sensor, landmark_sensor, floor_sensor import rospy from geometry_msgs.msg import Twist, Vector3, PointStamped, PoseStamped from std_msgs.msg import UInt8, Bool, String from nav_msgs.msg import Odometry import numpy as np import math import random import tf # for publishing dictionary as encoded string import json class LBADriver(object): def __init__(self): self.nu = 0 # max_d = 1.74 max_d = 1.1 th_len = 3 d_len = 2 self.x_goal = 0.0 self.y_goal = 0.0 self.action_dim = [th_len, d_len] # a_th_arr = np.linspace(2*math.pi/10, 8*math.pi/10, th_len) # a_th_arr = [math.pi/6, math.pi/3, math.pi/2, 2*math.pi/3,5*math.pi/6] # a_th_arr = [2*math.pi/10, math.pi/2, 8*math.pi/10] a_th_arr = [math.pi/3, math.pi/2, 2*math.pi/3] # a_th_arr = [math.pi/2] # a_d_arr = np.linspace(max_d, max_d, d_len) a_d_arr = [0.9,1.4] actions = [] for a_th in a_th_arr: action_d = [] for a_d in a_d_arr: action_d.append([a_th, a_d]) actions.append(action_d) self.actions = actions self.landmark_id_list = [40, 41, 42, 43, 44, 45] # convert landmark ids to str self.landmark_id_list = [str(i) for i in self.landmark_id_list] self.Q_table = {} self.check_table = {} # initialize dict. with landmark ids are keys # and a np array is reward values for landmark_id in self.landmark_id_list: self.Q_table[landmark_id] = np.zeros((th_len, d_len)) self.check_table[landmark_id] = np.zeros((th_len, d_len)) self.get_params() # default vals. self.active_landmark = None self.action_id = [None, None] self.prev_landmark = None self.obs_detected = False self.robot_detected = False self.going_cue = False self.sub_lock = False self.range_prev = [0]*8 self.is_robot_prev = [0]*8 self.robot_pose = [0, 0, 0] self.I_c = 0 self.I_avg_prev = 0 # message initalizers w/ def. vals. self.obj_msg = Bool() self.obj_msg = False self.intensity_msg = UInt8() self.intensity_msg = 0 self.landmark_msg = UInt8() self.landmark_msg = 0 self.landmark_dict = {} # first define publishers to not get any err. self.nav_vel_pub = rospy.Publisher( "nav_vel", Twist, queue_size=1) self.Q_table_pub = rospy.Publisher( "Q_table", String, queue_size=1) self.check_table_pub = rospy.Publisher( "check_table", String, queue_size=1) # publishers for neopixel visualization self.intensity_vis_pub = rospy.Publisher( "lba/intensity", UInt8, queue_size=1) self.landmark_vis_pub = rospy.Publisher( "lba/landmark", UInt8, queue_size=1) # publisher for encoded landmark dict. self.dict_pub = rospy.Publisher( "landmark", String, queue_size=1) # publisher for closed loop position control self.pose_goal_pub = rospy.Publisher( "move_base_simple/goal", PoseStamped, queue_size=1) # publisher for switching between vel. and pos. control self.move_lock_pub = rospy.Publisher( "move_lock", Bool, queue_size=1) freq = 20 if rospy.has_param('odom_freq'): freq = rospy.get_param('odom_freq') self.rate_turn_theta = rospy.Rate(freq) # transformer objects self.listener = tf.TransformListener() self.broadcaster = tf.TransformBroadcaster() rospy.Subscriber("goal_reached", Bool, self.goal_reached_callback, queue_size=1) rospy.Subscriber("sensors/range_n_bearing", range_n_bearing_sensor, self.rb_callback, queue_size=1) rospy.Subscriber("sensors/landmark_sensor", UInt8, self.landmark_callback, queue_size=1) rospy.Subscriber("sensors/floor_sensor", floor_sensor, self.intensity_callback, queue_size=1) rospy.Subscriber("wheel_odom", Odometry, self.odom_callback, queue_size=1) def goal_reached_callback(self, data): """ Callback called when position controller informs that goal is reached """ if data.data: self.going_cue = False rospy.loginfo("Goal reached") if self.I_c > self.I_thresh: self.publish_neopixel('green') self.update_Q_table(self.I_c) else: self.publish_neopixel('white') self.update_Q_table(-1) else: self.going_cue = False rospy.loginfo("Goal not reached") def select_action(self): """ Decide on whether to explore or exploit the Q Table with a random action defined by epsilon value """ if self.going_cue: return epsilon = random.uniform(0.0, 1.0) if epsilon < self.epsilon: rospy.loginfo("Random action") # exploration self.publish_neopixel('red') th_indx = random.randint(0, self.action_dim[0]-1) d_indx = random.randint(0, self.action_dim[1]-1) self.action_id = [th_indx, d_indx] else: rospy.loginfo("Best action") # explotation self.publish_neopixel('green') actions = self.Q_table[self.active_landmark] # TODO if we have more than one action # best actions having same value choose # randomly from them i, j = np.unravel_index(
np.argmax(actions, axis=None)
numpy.argmax
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2018-2020 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """This module provides Arc ROI item for the :class:`~silx.gui.plot.PlotWidget`. """ __authors__ = ["<NAME>"] __license__ = "MIT" __date__ = "28/06/2018" import numpy from ... import utils from .. import items from ...colors import rgba from ....utils.proxy import docstring from ._roi_base import HandleBasedROI from ._roi_base import InteractionModeMixIn from ._roi_base import RoiInteractionMode class _ArcGeometry: """ Non-mutable object to store the geometry of the arc ROI. The aim is is to switch between consistent state without dealing with intermediate values. """ def __init__(self, center, startPoint, endPoint, radius, weight, startAngle, endAngle, closed=False): """Constructor for a consistent arc geometry. There is also specific class method to create different kind of arc geometry. """ self.center = center self.startPoint = startPoint self.endPoint = endPoint self.radius = radius self.weight = weight self.startAngle = startAngle self.endAngle = endAngle self._closed = closed @classmethod def createEmpty(cls): """Create an arc geometry from an empty shape """ zero = numpy.array([0, 0]) return cls(zero, zero.copy(), zero.copy(), 0, 0, 0, 0) @classmethod def createRect(cls, startPoint, endPoint, weight): """Create an arc geometry from a definition of a rectangle """ return cls(None, startPoint, endPoint, None, weight, None, None, False) @classmethod def createCircle(cls, center, startPoint, endPoint, radius, weight, startAngle, endAngle): """Create an arc geometry from a definition of a circle """ return cls(center, startPoint, endPoint, radius, weight, startAngle, endAngle, True) def withWeight(self, weight): """Return a new geometry based on this object, with a specific weight """ return _ArcGeometry(self.center, self.startPoint, self.endPoint, self.radius, weight, self.startAngle, self.endAngle, self._closed) def withRadius(self, radius): """Return a new geometry based on this object, with a specific radius. The weight and the center is conserved. """ startPoint = self.center + (self.startPoint - self.center) / self.radius * radius endPoint = self.center + (self.endPoint - self.center) / self.radius * radius return _ArcGeometry(self.center, startPoint, endPoint, radius, self.weight, self.startAngle, self.endAngle, self._closed) def withStartAngle(self, startAngle): """Return a new geometry based on this object, with a specific start angle """ vector = numpy.array([numpy.cos(startAngle), numpy.sin(startAngle)]) startPoint = self.center + vector * self.radius # Never add more than 180 to maintain coherency deltaAngle = startAngle - self.startAngle if deltaAngle > numpy.pi: deltaAngle -= numpy.pi * 2 elif deltaAngle < -numpy.pi: deltaAngle += numpy.pi * 2 startAngle = self.startAngle + deltaAngle return _ArcGeometry( self.center, startPoint, self.endPoint, self.radius, self.weight, startAngle, self.endAngle, self._closed, ) def withEndAngle(self, endAngle): """Return a new geometry based on this object, with a specific end angle """ vector = numpy.array([numpy.cos(endAngle), numpy.sin(endAngle)]) endPoint = self.center + vector * self.radius # Never add more than 180 to maintain coherency deltaAngle = endAngle - self.endAngle if deltaAngle > numpy.pi: deltaAngle -= numpy.pi * 2 elif deltaAngle < -numpy.pi: deltaAngle += numpy.pi * 2 endAngle = self.endAngle + deltaAngle return _ArcGeometry( self.center, self.startPoint, endPoint, self.radius, self.weight, self.startAngle, endAngle, self._closed, ) def translated(self, dx, dy): """Return the translated geometry by dx, dy""" delta = numpy.array([dx, dy]) center = None if self.center is None else self.center + delta startPoint = None if self.startPoint is None else self.startPoint + delta endPoint = None if self.endPoint is None else self.endPoint + delta return _ArcGeometry(center, startPoint, endPoint, self.radius, self.weight, self.startAngle, self.endAngle, self._closed) def getKind(self): """Returns the kind of shape defined""" if self.center is None: return "rect" elif numpy.isnan(self.startAngle): return "point" elif self.isClosed(): if self.weight <= 0 or self.weight * 0.5 >= self.radius: return "circle" else: return "donut" else: if self.weight * 0.5 < self.radius: return "arc" else: return "camembert" def isClosed(self): """Returns True if the geometry is a circle like""" if self._closed is not None: return self._closed delta = numpy.abs(self.endAngle - self.startAngle) self._closed = numpy.isclose(delta, numpy.pi * 2) return self._closed def __str__(self): return str((self.center, self.startPoint, self.endPoint, self.radius, self.weight, self.startAngle, self.endAngle, self._closed)) class ArcROI(HandleBasedROI, items.LineMixIn, InteractionModeMixIn): """A ROI identifying an arc of a circle with a width. This ROI provides - 3 handle to control the curvature - 1 handle to control the weight - 1 anchor to translate the shape. """ ICON = 'add-shape-arc' NAME = 'arc ROI' SHORT_NAME = "arc" """Metadata for this kind of ROI""" _plotShape = "line" """Plot shape which is used for the first interaction""" ThreePointMode = RoiInteractionMode("3 points", "Provides 3 points to define the main radius circle") PolarMode = RoiInteractionMode("Polar", "Provides anchors to edit the ROI in polar coords") # FIXME: MoveMode was designed cause there is too much anchors # FIXME: It would be good replace it by a dnd on the shape MoveMode = RoiInteractionMode("Translation", "Provides anchors to only move the ROI") def __init__(self, parent=None): HandleBasedROI.__init__(self, parent=parent) items.LineMixIn.__init__(self) InteractionModeMixIn.__init__(self) self._geometry = _ArcGeometry.createEmpty() self._handleLabel = self.addLabelHandle() self._handleStart = self.addHandle() self._handleMid = self.addHandle() self._handleEnd = self.addHandle() self._handleWeight = self.addHandle() self._handleWeight._setConstraint(self._arcCurvatureMarkerConstraint) self._handleMove = self.addTranslateHandle() shape = items.Shape("polygon") shape.setPoints([[0, 0], [0, 0]]) shape.setColor(rgba(self.getColor())) shape.setFill(False) shape.setOverlay(True) shape.setLineStyle(self.getLineStyle()) shape.setLineWidth(self.getLineWidth()) self.__shape = shape self.addItem(shape) self._initInteractionMode(self.ThreePointMode) self._interactiveModeUpdated(self.ThreePointMode) def availableInteractionModes(self): """Returns the list of available interaction modes :rtype: List[RoiInteractionMode] """ return [self.ThreePointMode, self.PolarMode, self.MoveMode] def _interactiveModeUpdated(self, modeId): """Set the interaction mode. :param RoiInteractionMode modeId: """ if modeId is self.ThreePointMode: self._handleStart.setSymbol("s") self._handleMid.setSymbol("s") self._handleEnd.setSymbol("s") self._handleWeight.setSymbol("d") self._handleMove.setSymbol("+") elif modeId is self.PolarMode: self._handleStart.setSymbol("o") self._handleMid.setSymbol("o") self._handleEnd.setSymbol("o") self._handleWeight.setSymbol("d") self._handleMove.setSymbol("+") elif modeId is self.MoveMode: self._handleStart.setSymbol("") self._handleMid.setSymbol("+") self._handleEnd.setSymbol("") self._handleWeight.setSymbol("") self._handleMove.setSymbol("+") else: assert False if self._geometry.isClosed(): if modeId != self.MoveMode: self._handleStart.setSymbol("x") self._handleEnd.setSymbol("x") self._updateHandles() def _updated(self, event=None, checkVisibility=True): if event == items.ItemChangedType.VISIBLE: self._updateItemProperty(event, self, self.__shape) super(ArcROI, self)._updated(event, checkVisibility) def _updatedStyle(self, event, style): super(ArcROI, self)._updatedStyle(event, style) self.__shape.setColor(style.getColor()) self.__shape.setLineStyle(style.getLineStyle()) self.__shape.setLineWidth(style.getLineWidth()) def setFirstShapePoints(self, points): """"Initialize the ROI using the points from the first interaction. This interaction is constrained by the plot API and only supports few shapes. """ # The first shape is a line point0 = points[0] point1 = points[1] # Compute a non collinear point for the curvature center = (point1 + point0) * 0.5 normal = point1 - center normal = numpy.array((normal[1], -normal[0])) defaultCurvature = numpy.pi / 5.0 weightCoef = 0.20 mid = center - normal * defaultCurvature distance = numpy.linalg.norm(point0 - point1) weight = distance * weightCoef geometry = self._createGeometryFromControlPoints(point0, mid, point1, weight) self._geometry = geometry self._updateHandles() def _updateText(self, text): self._handleLabel.setText(text) def _updateMidHandle(self): """Keep the same geometry, but update the location of the control points. So calling this function do not trigger sigRegionChanged. """ geometry = self._geometry if geometry.isClosed(): start = numpy.array(self._handleStart.getPosition()) midPos = geometry.center + geometry.center - start else: if geometry.center is None: midPos = geometry.startPoint * 0.5 + geometry.endPoint * 0.5 else: midAngle = geometry.startAngle * 0.5 + geometry.endAngle * 0.5 vector = numpy.array([numpy.cos(midAngle), numpy.sin(midAngle)]) midPos = geometry.center + geometry.radius * vector with utils.blockSignals(self._handleMid): self._handleMid.setPosition(*midPos) def _updateWeightHandle(self): geometry = self._geometry if geometry.center is None: # rectangle center = (geometry.startPoint + geometry.endPoint) * 0.5 normal = geometry.endPoint - geometry.startPoint normal = numpy.array((normal[1], -normal[0])) distance = numpy.linalg.norm(normal) if distance != 0: normal = normal / distance weightPos = center + normal * geometry.weight * 0.5 else: if geometry.isClosed(): midAngle = geometry.startAngle + numpy.pi * 0.5 elif geometry.center is not None: midAngle = (geometry.startAngle + geometry.endAngle) * 0.5 vector = numpy.array([numpy.cos(midAngle), numpy.sin(midAngle)]) weightPos = geometry.center + (geometry.radius + geometry.weight * 0.5) * vector with utils.blockSignals(self._handleWeight): self._handleWeight.setPosition(*weightPos) def _getWeightFromHandle(self, weightPos): geometry = self._geometry if geometry.center is None: # rectangle center = (geometry.startPoint + geometry.endPoint) * 0.5 return numpy.linalg.norm(center - weightPos) * 2 else: distance = numpy.linalg.norm(geometry.center - weightPos) return abs(distance - geometry.radius) * 2 def _updateHandles(self): geometry = self._geometry with utils.blockSignals(self._handleStart): self._handleStart.setPosition(*geometry.startPoint) with utils.blockSignals(self._handleEnd): self._handleEnd.setPosition(*geometry.endPoint) self._updateMidHandle() self._updateWeightHandle() self._updateShape() def _updateCurvature(self, start, mid, end, updateCurveHandles, checkClosed=False, updateStart=False): """Update the curvature using 3 control points in the curve :param bool updateCurveHandles: If False curve handles are already at the right location """ if checkClosed: closed = self._isCloseInPixel(start, end) else: closed = self._geometry.isClosed() if closed: if updateStart: start = end else: end = start if updateCurveHandles: with utils.blockSignals(self._handleStart): self._handleStart.setPosition(*start) with utils.blockSignals(self._handleMid): self._handleMid.setPosition(*mid) with utils.blockSignals(self._handleEnd): self._handleEnd.setPosition(*end) weight = self._geometry.weight geometry = self._createGeometryFromControlPoints(start, mid, end, weight, closed=closed) self._geometry = geometry self._updateWeightHandle() self._updateShape() def _updateCloseInAngle(self, geometry, updateStart): azim = numpy.abs(geometry.endAngle - geometry.startAngle) if numpy.pi < azim < 3 * numpy.pi: closed = self._isCloseInPixel(geometry.startPoint, geometry.endPoint) geometry._closed = closed if closed: sign = 1 if geometry.startAngle < geometry.endAngle else -1 if updateStart: geometry.startPoint = geometry.endPoint geometry.startAngle = geometry.endAngle - sign * 2*numpy.pi else: geometry.endPoint = geometry.startPoint geometry.endAngle = geometry.startAngle + sign * 2*numpy.pi def handleDragUpdated(self, handle, origin, previous, current): modeId = self.getInteractionMode() if handle is self._handleStart: if modeId is self.ThreePointMode: mid = numpy.array(self._handleMid.getPosition()) end = numpy.array(self._handleEnd.getPosition()) self._updateCurvature( current, mid, end, checkClosed=True, updateStart=True, updateCurveHandles=False ) elif modeId is self.PolarMode: v = current - self._geometry.center startAngle = numpy.angle(complex(v[0], v[1])) geometry = self._geometry.withStartAngle(startAngle) self._updateCloseInAngle(geometry, updateStart=True) self._geometry = geometry self._updateHandles() elif handle is self._handleMid: if modeId is self.ThreePointMode: if self._geometry.isClosed(): radius = numpy.linalg.norm(self._geometry.center - current) self._geometry = self._geometry.withRadius(radius) self._updateHandles() else: start = numpy.array(self._handleStart.getPosition()) end = numpy.array(self._handleEnd.getPosition()) self._updateCurvature(start, current, end, updateCurveHandles=False) elif modeId is self.PolarMode: radius = numpy.linalg.norm(self._geometry.center - current) self._geometry = self._geometry.withRadius(radius) self._updateHandles() elif modeId is self.MoveMode: delta = current - previous self.translate(*delta) elif handle is self._handleEnd: if modeId is self.ThreePointMode: start = numpy.array(self._handleStart.getPosition()) mid = numpy.array(self._handleMid.getPosition()) self._updateCurvature( start, mid, current, checkClosed=True, updateStart=False, updateCurveHandles=False ) elif modeId is self.PolarMode: v = current - self._geometry.center endAngle = numpy.angle(complex(v[0], v[1])) geometry = self._geometry.withEndAngle(endAngle) self._updateCloseInAngle(geometry, updateStart=False) self._geometry = geometry self._updateHandles() elif handle is self._handleWeight: weight = self._getWeightFromHandle(current) self._geometry = self._geometry.withWeight(weight) self._updateShape() elif handle is self._handleMove: delta = current - previous self.translate(*delta) def _isCloseInPixel(self, point1, point2): manager = self.parent() if manager is None: return False plot = manager.parent() if plot is None: return False point1 = plot.dataToPixel(*point1) if point1 is None: return False point2 = plot.dataToPixel(*point2) if point2 is None: return False return abs(point1[0] - point2[0]) + abs(point1[1] - point2[1]) < 15 def _normalizeGeometry(self): """Keep the same phisical geometry, but with normalized parameters. """ geometry = self._geometry if geometry.weight * 0.5 >= geometry.radius: radius = (geometry.weight * 0.5 + geometry.radius) * 0.5 geometry = geometry.withRadius(radius) geometry = geometry.withWeight(radius * 2) self._geometry = geometry return True return False def handleDragFinished(self, handle, origin, current): modeId = self.getInteractionMode() if handle in [self._handleStart, self._handleMid, self._handleEnd]: if modeId is self.ThreePointMode: self._normalizeGeometry() self._updateHandles() if self._geometry.isClosed(): if modeId is self.MoveMode: self._handleStart.setSymbol("") self._handleEnd.setSymbol("") else: self._handleStart.setSymbol("x") self._handleEnd.setSymbol("x") else: if modeId is self.ThreePointMode: self._handleStart.setSymbol("s") self._handleEnd.setSymbol("s") elif modeId is self.PolarMode: self._handleStart.setSymbol("o") self._handleEnd.setSymbol("o") if modeId is self.MoveMode: self._handleStart.setSymbol("") self._handleEnd.setSymbol("") def _createGeometryFromControlPoints(self, start, mid, end, weight, closed=None): """Returns the geometry of the object""" if closed or (closed is None and numpy.allclose(start, end)): # Special arc: It's a closed circle center = (start + mid) * 0.5 radius = numpy.linalg.norm(start - center) v = start - center startAngle = numpy.angle(complex(v[0], v[1])) endAngle = startAngle + numpy.pi * 2.0 return _ArcGeometry.createCircle( center, start, end, radius, weight, startAngle, endAngle ) elif numpy.linalg.norm(numpy.cross(mid - start, end - start)) < 1e-5: # Degenerated arc, it's a rectangle return _ArcGeometry.createRect(start, end, weight) else: center, radius = self._circleEquation(start, mid, end) v = start - center startAngle = numpy.angle(complex(v[0], v[1])) v = mid - center midAngle = numpy.angle(complex(v[0], v[1])) v = end - center endAngle = numpy.angle(complex(v[0], v[1])) # Is it clockwise or anticlockwise relativeMid = (endAngle - midAngle + 2 * numpy.pi) % (2 * numpy.pi) relativeEnd = (endAngle - startAngle + 2 * numpy.pi) % (2 * numpy.pi) if relativeMid < relativeEnd: if endAngle < startAngle: endAngle += 2 * numpy.pi else: if endAngle > startAngle: endAngle -= 2 * numpy.pi return _ArcGeometry(center, start, end, radius, weight, startAngle, endAngle) def _createShapeFromGeometry(self, geometry): kind = geometry.getKind() if kind == "rect": # It is not an arc # but we can display it as an intermediate shape normal = geometry.endPoint - geometry.startPoint normal = numpy.array((normal[1], -normal[0])) distance = numpy.linalg.norm(normal) if distance != 0: normal /= distance points = numpy.array([ geometry.startPoint + normal * geometry.weight * 0.5, geometry.endPoint + normal * geometry.weight * 0.5, geometry.endPoint - normal * geometry.weight * 0.5, geometry.startPoint - normal * geometry.weight * 0.5]) elif kind == "point": # It is not an arc # but we can display it as an intermediate shape # NOTE: At least 2 points are expected points = numpy.array([geometry.startPoint, geometry.startPoint]) elif kind == "circle": outerRadius = geometry.radius + geometry.weight * 0.5 angles = numpy.linspace(0, 2 * numpy.pi, num=50) # It's a circle points = [] numpy.append(angles, angles[-1]) for angle in angles: direction = numpy.array([numpy.cos(angle), numpy.sin(angle)]) points.append(geometry.center + direction * outerRadius) points = numpy.array(points) elif kind == "donut": innerRadius = geometry.radius - geometry.weight * 0.5 outerRadius = geometry.radius + geometry.weight * 0.5 angles = numpy.linspace(0, 2 * numpy.pi, num=50) # It's a donut points = [] # NOTE: NaN value allow to create 2 separated circle shapes # using a single plot item. It's a kind of cheat points.append(numpy.array([float("nan"), float("nan")])) for angle in angles: direction = numpy.array([numpy.cos(angle), numpy.sin(angle)]) points.insert(0, geometry.center + direction * innerRadius) points.append(geometry.center + direction * outerRadius) points.append(numpy.array([float("nan"), float("nan")])) points = numpy.array(points) else: innerRadius = geometry.radius - geometry.weight * 0.5 outerRadius = geometry.radius + geometry.weight * 0.5 delta = 0.1 if geometry.endAngle >= geometry.startAngle else -0.1 if geometry.startAngle == geometry.endAngle: # Degenerated, it's a line (single radius) angle = geometry.startAngle direction = numpy.array([numpy.cos(angle), numpy.sin(angle)]) points = [] points.append(geometry.center + direction * innerRadius) points.append(geometry.center + direction * outerRadius) return numpy.array(points) angles = numpy.arange(geometry.startAngle, geometry.endAngle, delta) if angles[-1] != geometry.endAngle: angles = numpy.append(angles, geometry.endAngle) if kind == "camembert": # It's a part of camembert points = [] points.append(geometry.center) points.append(geometry.startPoint) delta = 0.1 if geometry.endAngle >= geometry.startAngle else -0.1 for angle in angles: direction = numpy.array([numpy.cos(angle), numpy.sin(angle)]) points.append(geometry.center + direction * outerRadius) points.append(geometry.endPoint) points.append(geometry.center) elif kind == "arc": # It's a part of donut points = [] points.append(geometry.startPoint) for angle in angles: direction = numpy.array([numpy.cos(angle), numpy.sin(angle)]) points.insert(0, geometry.center + direction * innerRadius) points.append(geometry.center + direction * outerRadius) points.insert(0, geometry.endPoint) points.append(geometry.endPoint) else: assert False points = numpy.array(points) return points def _updateShape(self): geometry = self._geometry points = self._createShapeFromGeometry(geometry) self.__shape.setPoints(points) index = numpy.nanargmin(points[:, 1]) pos = points[index] with utils.blockSignals(self._handleLabel): self._handleLabel.setPosition(pos[0], pos[1]) if geometry.center is None: movePos = geometry.startPoint * 0.34 + geometry.endPoint * 0.66 else: movePos = geometry.center with utils.blockSignals(self._handleMove): self._handleMove.setPosition(*movePos) self.sigRegionChanged.emit() def getGeometry(self): """Returns a tuple containing the geometry of this ROI It is a symmetric function of :meth:`setGeometry`. If `startAngle` is smaller than `endAngle` the rotation is clockwise, else the rotation is anticlockwise. :rtype: Tuple[numpy.ndarray,float,float,float,float] :raise ValueError: In case the ROI can't be represented as section of a circle """ geometry = self._geometry if geometry.center is None: raise ValueError("This ROI can't be represented as a section of circle") return geometry.center, self.getInnerRadius(), self.getOuterRadius(), geometry.startAngle, geometry.endAngle def isClosed(self): """Returns true if the arc is a closed shape, like a circle or a donut. :rtype: bool """ return self._geometry.isClosed() def getCenter(self): """Returns the center of the circle used to draw arcs of this ROI. This center is usually outside the the shape itself. :rtype: numpy.ndarray """ return self._geometry.center def getStartAngle(self): """Returns the angle of the start of the section of this ROI (in radian). If `startAngle` is smaller than `endAngle` the rotation is clockwise, else the rotation is anticlockwise. :rtype: float """ return self._geometry.startAngle def getEndAngle(self): """Returns the angle of the end of the section of this ROI (in radian). If `startAngle` is smaller than `endAngle` the rotation is clockwise, else the rotation is anticlockwise. :rtype: float """ return self._geometry.endAngle def getInnerRadius(self): """Returns the radius of the smaller arc used to draw this ROI. :rtype: float """ geometry = self._geometry radius = geometry.radius - geometry.weight * 0.5 if radius < 0: radius = 0 return radius def getOuterRadius(self): """Returns the radius of the bigger arc used to draw this ROI. :rtype: float """ geometry = self._geometry radius = geometry.radius + geometry.weight * 0.5 return radius def setGeometry(self, center, innerRadius, outerRadius, startAngle, endAngle): """ Set the geometry of this arc. :param numpy.ndarray center: Center of the circle. :param float innerRadius: Radius of the smaller arc of the section. :param float outerRadius: Weight of the bigger arc of the section. It have to be bigger than `innerRadius` :param float startAngle: Location of the start of the section (in radian) :param float endAngle: Location of the end of the section (in radian). If `startAngle` is smaller than `endAngle` the rotation is clockwise, else the rotation is anticlockwise. """ assert innerRadius <= outerRadius assert numpy.abs(startAngle - endAngle) <= 2 * numpy.pi center = numpy.array(center) radius = (innerRadius + outerRadius) * 0.5 weight = outerRadius - innerRadius vector = numpy.array([numpy.cos(startAngle), numpy.sin(startAngle)]) startPoint = center + vector * radius vector = numpy.array([numpy.cos(endAngle), numpy.sin(endAngle)]) endPoint = center + vector * radius geometry = _ArcGeometry(center, startPoint, endPoint, radius, weight, startAngle, endAngle, closed=None) self._geometry = geometry self._updateHandles() @docstring(HandleBasedROI) def contains(self, position): # first check distance, fastest center = self.getCenter() distance = numpy.sqrt((position[1] - center[1]) ** 2 + ((position[0] - center[0])) ** 2) is_in_distance = self.getInnerRadius() <= distance <= self.getOuterRadius() if not is_in_distance: return False rel_pos = position[1] - center[1], position[0] - center[0] angle = numpy.arctan2(*rel_pos) # angle is inside [-pi, pi] # Normalize the start angle between [-pi, pi] # with a positive angle range start_angle = self.getStartAngle() end_angle = self.getEndAngle() azim_range = end_angle - start_angle if azim_range < 0: start_angle = end_angle azim_range = -azim_range start_angle = numpy.mod(start_angle + numpy.pi, 2 * numpy.pi) - numpy.pi if angle < start_angle: angle += 2 * numpy.pi return start_angle <= angle <= start_angle + azim_range def translate(self, x, y): self._geometry = self._geometry.translated(x, y) self._updateHandles() def _arcCurvatureMarkerConstraint(self, x, y): """Curvature marker remains on perpendicular bisector""" geometry = self._geometry if geometry.center is None: center = (geometry.startPoint + geometry.endPoint) * 0.5 vector = geometry.startPoint - geometry.endPoint vector = numpy.array((vector[1], -vector[0])) vdist = numpy.linalg.norm(vector) if vdist != 0: normal = numpy.array((vector[1], -vector[0])) / vdist else: normal = numpy.array((0, 0)) else: if geometry.isClosed(): midAngle = geometry.startAngle + numpy.pi * 0.5 else: midAngle = (geometry.startAngle + geometry.endAngle) * 0.5 normal = numpy.array([numpy.cos(midAngle), numpy.sin(midAngle)]) center = geometry.center dist = numpy.dot(normal, (numpy.array((x, y)) - center)) dist = numpy.clip(dist, geometry.radius, geometry.radius * 2) x, y = center + dist * normal return x, y @staticmethod def _circleEquation(pt1, pt2, pt3): """Circle equation from 3 (x, y) points :return: Position of the center of the circle and the radius :rtype: Tuple[Tuple[float,float],float] """ x, y, z = complex(*pt1), complex(*pt2), complex(*pt3) w = z - x w /= y - x c = (x - y) * (w - abs(w) ** 2) / 2j / w.imag - x return
numpy.array((-c.real, -c.imag))
numpy.array
from __future__ import division import numpy as np import copy from pysph.base.nnps import LinkedListNNPS from pysph.base.utils import get_particle_array, get_particle_array_wcsph from cyarray.api import UIntArray from numpy.linalg import norm, matrix_power from pysph.sph.equation import Equation from pysph.tools.sph_evaluator import SPHEvaluator from pysph.base.particle_array import ParticleArray def distance(point1, point2=np.array([0.0, 0.0, 0.0])): return np.sqrt(sum((point1 - point2) * (point1 - point2))) def distance_2d(point1, point2=np.array([0.0, 0.0])): return np.sqrt(sum((point1 - point2) * (point1 - point2))) def matrix_exp(matrix): """ Exponential of a matrix. Finds the exponential of a square matrix of any order using the formula exp(A) = I + (A/1!) + (A**2/2!) + (A**3/3!) + ......... Parameters ---------- matrix : numpy matrix of order nxn (square) filled with numbers Returns ------- result : numpy matrix of the same order Examples -------- >>>A = np.matrix([[1, 2],[2, 3]]) >>>matrix_exp(A) matrix([[19.68002699, 30.56514746], [30.56514746, 50.24517445]]) >>>B = np.matrix([[0, 0],[0, 0]]) >>>matrix_exp(B) matrix([[1., 0.], [0., 1.]]) """ matrix = np.asarray(matrix) tol = 1.0e-16 result = matrix_power(matrix, 0) n = 1 condition = True while condition: adding = matrix_power(matrix, n) / (1.0 * np.math.factorial(n)) result += adding residue = np.sqrt(np.sum(np.square(adding)) / np.sum(np.square(result))) condition = (residue > tol) n += 1 return result def extrude(x, y, dx=0.01, extrude_dist=1.0, z_center=0.0): """ Extrudes a 2d geometry. Takes a 2d geometry with x, y values and extrudes it in z direction by the amount extrude_dist with z_center as center Parameters ---------- x : 1d array object with numbers y : 1d array object with numbers dx : a number extrude_dist : a number z_center : a number x, y should be of the same length and no x, y pair should be the same Returns ------- x_new : 1d numpy array object with new x values y_new : 1d numpy array object with new y values z_new : 1d numpy array object with z values x_new, y_new, z_new are of the same length Examples -------- >>>x = np.array([0.0]) >>>y = np.array([0.0]) >>>extrude(x, y, 0.1, 0.2, 0.0) (array([ 0., 0., 0.]), array([ 0., 0., 0.]), array([-0.1, 0., 0.1])) """ z = np.arange(z_center - extrude_dist / 2., z_center + (extrude_dist + dx) / 2., dx) x_new = np.tile(np.asarray(x), len(z)) y_new = np.tile(np.asarray(y), len(z)) z_new = np.repeat(z, len(x)) return x_new, y_new, z_new def translate(x, y, z, x_translate=0.0, y_translate=0.0, z_translate=0.0): """ Translates set of points in 3d cartisean space. Takes set of points and translates each and every point by some mentioned amount in all the 3 directions. Parameters ---------- x : 1d array object with numbers y : 1d array object with numbers z : 1d array object with numbers x_translate : a number y_translate : a number z_translate : a number Returns ------- x_new : 1d numpy array object with new x values y_new : 1d numpy array object with new y values z_new : 1d numpy array object with new z values Examples -------- >>>x = np.array([0.0, 1.0, 2.0]) >>>y = np.array([-1.0, 0.0, 1.5]) >>>z = np.array([0.5, -1.5, 0.0]) >>>translate(x, y, z, 1.0, -0.5, 2.0) (array([ 1., 2., 3.]), array([-1.5, -0.5, 1.]), array([2.5, 0.5, 2.])) """ x_new = np.asarray(x) + x_translate y_new = np.asarray(y) + y_translate z_new = np.asarray(z) + z_translate return x_new, y_new, z_new def rotate(x, y, z, axis=np.array([0.0, 0.0, 1.0]), angle=90.0): """ Rotates set of points in 3d cartisean space. Takes set of points and rotates each point with some angle w.r.t a mentioned axis. Parameters ---------- x : 1d array object with numbers y : 1d array object with numbers z : 1d array object with numbers axis : 1d array with 3 numbers angle(in degrees) : number Returns ------- x_new : 1d numpy array object with new x values y_new : 1d numpy array object with new y values z_new : 1d numpy array object with new z values Examples -------- >>>x = np.array([0.0, 1.0, 2.0]) >>>y = np.array([-1.0, 0.0, 1.5]) >>>z = np.array([0.5, -1.5, 0.0]) >>>axis = np.array([0.0, 0.0, 1.0]) >>>rotate(x, y, z, axis, 90.0) (array([ 1.00000000e+00, 4.25628483e-17, -1.50000000e+00]), array([-4.25628483e-17, 1.00000000e+00, 2.00000000e+00]), array([ 0.5, -1.5, 0. ])) """ theta = angle * np.pi / 180.0 unit_vector = np.asarray(axis) / norm(np.asarray(axis)) matrix = np.cross(np.eye(3), unit_vector * theta) rotation_matrix = matrix_exp(matrix) new_points = [] for xi, yi, zi in zip(np.asarray(x), np.asarray(y), np.asarray(z)): point = np.array([xi, yi, zi]) new = np.dot(rotation_matrix, point) new_points.append(new) new_points = np.array(new_points) x_new = new_points[:, 0] y_new = new_points[:, 1] z_new = new_points[:, 2] return x_new, y_new, z_new def get_2d_wall(dx=0.01, center=np.array([0.0, 0.0]), length=1.0, num_layers=1, up=True): """ Generates a 2d wall which is parallel to x-axis. The wall can be rotated parallel to any axis using the rotate function. 3d wall can be also generated using the extrude function after generating particles using this function. ^ | | y|******************* | wall particles | |____________________> x Parameters ---------- dx : a number which is the spacing required center : 1d array like object which is the center of wall length : a number which is the length of the wall num_layers : Number of layers for the wall up : True if the layers have to created on top of base wall Returns ------- x : 1d numpy array with x coordinates of the wall y : 1d numpy array with y coordinates of the wall """ x = np.arange(-length / 2., length / 2. + dx, dx) + center[0] y = np.ones_like(x) * center[1] value = 1 if up else -1 for i in range(1, num_layers): y1 = np.ones_like(x) * center[1] + value * i * dx y = np.concatenate([y, y1]) return np.tile(x, num_layers), y def get_2d_tank(dx=0.05, base_center=np.array([0.0, 0.0]), length=1.0, height=1.0, num_layers=1, outside=True, staggered=False, top=False): """ Generates an open 2d tank with the base parallel to x-axis and the side walls parallel to y-axis. The tank can be rotated to any direction using rotate function. 3d tank can be generated using extrude function. ^ |* * |* 2d tank * y|* particles * |* * |* * * * * * * * * | base |____________________> x Parameters ---------- dx : a number which is the spacing required base_center : 1d array like object which is the center of base wall length : a number which is the length of the base height : a number which is the length of the side wall num_layers : Number of layers for the tank outside : A boolean value which decides if the layers are inside or outside staggered : A boolean value which decides if the layers are staggered or not top : A boolean value which decides if the top is present or not Returns ------- x : 1d numpy array with x coordinates of the tank y : 1d numpy array with y coordinates of the tank """ dy = dx fac = 1 if outside else 0 if staggered: dx = dx/2 start = fac*(1 - num_layers)*dx end = fac*num_layers*dx + (1 - fac) * dx x, y = np.mgrid[start:length+end:dx, start:height+end:dy] topset = 0 if top else 10*height if staggered: topset += dx y[1::2] += dx offset = 0 if outside else (num_layers-1)*dx cond = ~((x > offset) & (x < length-offset) & (y > offset) & (y < height+topset-offset)) return x[cond] + base_center[0] - length/2, y[cond] + base_center[1] def get_2d_circle(dx=0.01, r=0.5, center=np.array([0.0, 0.0])): """ Generates a completely filled 2d circular area. Parameters ---------- dx : a number which is the spacing required r : a number which is the radius of the circle center : 1d array like object which is the center of the circle Returns ------- x : 1d numpy array with x coordinates of the circle particles y : 1d numpy array with y coordinates of the circle particles """ N = int(2.0 * r / dx) + 1 x, y = np.mgrid[-r:r:N * 1j, -r:r:N * 1j] x, y = np.ravel(x), np.ravel(y) condition = (x * x + y * y <= r * r) x, y = x[condition], y[condition] return x + center[0], y + center[1] def get_2d_hollow_circle(dx=0.01, r=1.0, center=np.array([0.0, 0.0]), num_layers=2, inside=True): """ Generates a hollow 2d circle with some number of layers either on the inside or on the outside of the body which is taken as an argument Parameters ---------- dx : a number which is the spacing required r : a number which is the radius of the circle center : 1d array like object which is the center of the circle num_layers : a number (int) inside : boolean (True or False). If this is True then the layers are generated inside the circle Returns ------- x : 1d numpy array with x coordinates of the circle particles y : 1d numpy array with y coordinates of the circle particles """ r_grid = r + dx * num_layers N = int(2.0 * r_grid / dx) + 1 x, y = np.mgrid[-r_grid:r_grid:N * 1j, -r_grid:r_grid:N * 1j] x, y = np.ravel(x), np.ravel(y) if inside: cond1 = (x * x + y * y <= r * r) cond2 = (x * x + y * y >= (r - num_layers * dx)**2) else: cond1 = (x * x + y * y >= r * r) cond2 = (x * x + y * y <= (r + num_layers * dx)**2) cond = cond1 & cond2 x, y = x[cond], y[cond] return x + center[0], y + center[0] def get_3d_hollow_cylinder(dx=0.01, r=0.5, length=1.0, center=
np.array([0.0, 0.0, 0.0])
numpy.array
import numpy as np import cv2 import os import torch.utils.data as data import math from utils.image import flip, color_aug from utils.image import get_affine_transform, affine_transform from utils.image import gaussian_radius, draw_umich_gaussian, draw_msra_gaussian from utils.image import draw_dense_reg from opts import opts import matplotlib.pyplot as plt class CenterLandmarkDataset(data.Dataset): def get_border(self, border, size): i = 1 while size - border // i <= border // i: i *= 2 return border // i def __getitem__(self, index): img_id = self.images[index] #loadImgs(ids=[img_id]) return a list, whose length = 1 file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name'] img_path = os.path.join(self.img_dir, file_name) ann_ids = self.coco.getAnnIds(imgIds=[img_id]) anns = self.coco.loadAnns(ids=ann_ids) num_objs = min(len(anns), self.max_objs) cropped = False if self.split == 'train': if np.random.random() < 1: cropped = True file_name = file_name.split('.')[0]+'crop.jpg' img_path = os.path.join(self.img_dir, file_name) if self.split == 'val': cropped = True img = cv2.imread(img_path) height, width = img.shape[0], img.shape[1] c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32) s = max(img.shape[0], img.shape[1]) * 1.0 rot = 0 flipped = False rotted = False # input_res is max(input_h, input_w), input is the size of original img if np.random.random() < self.opts.keep_inp_res_prob and max((height | 127) + 1, (width | 127) + 1) < 1024: self.opts.input_h = (height | 127) + 1 self.opts.input_w = (width | 127) + 1 self.opts.output_h = self.opts.input_h // self.opts.down_ratio self.opts.output_w = self.opts.input_w // self.opts.down_ratio self.opts.input_res = max(self.opts.input_h, self.opts.input_w) self.opts.output_res = max(self.opts.output_h, self.opts.output_w) trans_input = get_affine_transform( c, s, rot, [self.opts.input_res, self.opts.input_res]) inp = cv2.warpAffine(img, trans_input, (self.opts.input_res, self.opts.input_res), flags=cv2.INTER_LINEAR) inp = (inp.astype(np.float32) / 255.) inp = (inp - self.mean) / self.std #change data shape to [3, input_size, input_size] inp = inp.transpose(2, 0, 1) #output_res is max(output_h, output_w), output is the size after down sampling output_res = self.opts.output_res num_joints = self.num_joints trans_output_rot = get_affine_transform(c, s, rot, [output_res, output_res]) trans_output = get_affine_transform(c, s, 0, [output_res, output_res]) hm = np.zeros((self.num_classes, output_res, output_res), dtype=np.float32) hm_hp = np.zeros((num_joints, output_res, output_res), dtype=np.float32) dense_kps = np.zeros((num_joints, 2, output_res, output_res), dtype=np.float32) dense_kps_mask = np.zeros((num_joints, output_res, output_res), dtype=np.float32) wh = np.zeros((self.max_objs, 2), dtype=np.float32) kps = np.zeros((self.max_objs, 2*num_joints), dtype=np.float32) reg = np.zeros((self.max_objs, 2), dtype=np.float32) ind = np.zeros((self.max_objs), dtype=np.int64) reg_mask = np.zeros((self.max_objs), dtype=np.uint8) kps_mask = np.zeros((self.max_objs, self.num_joints * 2), dtype=np.uint8) hp_offset = np.zeros((self.max_objs * num_joints, 2), dtype=np.float32) hp_ind = np.zeros((self.max_objs * num_joints), dtype=np.int64) hp_mask = np.zeros((self.max_objs * num_joints), dtype=np.int64) draw_gaussian = draw_msra_gaussian if self.opts.mse_loss else \ draw_umich_gaussian gt_det = [] for k in range(num_objs): ann = anns[k] if cropped: bbox = np.array(ann['bbox']) else: bbox =
np.array(ann['org_bbox'])
numpy.array
from __future__ import absolute_import import copy import logging import numpy as np import xarray as xr import scipy.integrate import scipy.interpolate from collections import OrderedDict try: import pyproj HAS_PYPROJ = True except ImportError: HAS_PYPROJ = False from oceanwaves.utils import * from oceanwaves.units import simplify from oceanwaves.plot import OceanWavesPlotMethods from oceanwaves.spectral import * from oceanwaves.swan import * from oceanwaves.datawell import * from oceanwaves.wavedroid import * # initialize logger logger = logging.getLogger(__name__) class OceanWaves(xr.Dataset): '''Class to store (spectral) data of ocean waves The class is a specific variant of an xarray.Dataset that defines any selection of the following dimensions: time, location, frequency and direction. The dependent variable is some form of wave energy. The class has methods to compute spectral moments and derived wave properties, like the significant wave height and various spectral wave periods. In addition the peak wave period and peak wave directions can be computed using dedicated methods. The class automatically converts locations from a local coordinate reference system to lat/lon coordinates, if the local coordinate reference system is specified. The class interpretates combined variable units and simplifies the result to practical entities. The class provides two plotting routines: 1) plotting of spectral wave data in a raster of subplots and 2) plotting of spectral wabe data on a map. The class supports all convenient properties of an xarray.Dataset, like writing to netCDF or converting to pandas.DataFrame. TODO: * improve plotting routines * add phase functions to use with tides: phase estimates, phase interpolation, etc. ''' SwanSpcReader = SwanSpcReader() SwanTableReader = SwanTableReader() Swan2DReader = Swan2DReader() from_datawell = DatawellReader() from_wavedroid = WaveDroidReader() def __init__(self, time=None, location=None, frequency=None, direction=None, energy=None, spreading=None, time_units='s', location_units='m', frequency_units='Hz', direction_units='deg', energy_units='m^2/Hz', spreading_units='deg', time_var='time', location_var='location', frequency_var='frequency', direction_var='direction', energy_var='energy', spreading_var='spreading', frequency_convention='absolute', direction_convention='nautical', spreading_convention='cosine', spectral=True, directional=True, attrs={}, crs=None, **kwargs): '''Initialize class Sets dimensions, converts coordinates and fills the dataset, if data is provided. Parameters ---------- time : iterable, optional Time coordinates, each item can be a datetime object or float location : iterable of 2-tuples, optional Location coordinates, each item is a 2-tuple with x- and y-coordinates frequency : iterable, optional Frequency cooridinates direction : iterable, optional Direction coordinates energy : matrix, optional Wave energy time_units : str, optional Units of time coordinates (default: s) location_units : str, optional Units of location coordinates (default: m) frequency_units : str, optional Units of frequency coordinates (default: Hz) direction_units : str, optional Units of direction coordinates (default: deg) energy_units : str, optional Units of wave energy (default: m^2/Hz) time_var : str, optional Name of time variable (default: time) location_var : str, optional Name of location variable (default: location) frequency_var : str, optional Name of frequency variable (default: frequency) direction_var : str, optional Name of direction variable (default: direction) energy_var : str, optional Name of wave energy variable (default: energy) frequency_convention : str, optional Convention of frequency definition (default: absolute) direction_convention : str, optional Convention of direction definition (default: nautical) attrs : dict-like, optional Global attributes crs : str, optional Proj4 specification of local coordinate reference system kwargs : dict, optional Additional options passed to the xarray.Dataset initialization method See Also -------- oceanwaves.OceanWaves.reinitialize ''' dims = [] coords = OrderedDict() data_vars = OrderedDict() # simplify dimensions time = np.asarray(time) location = np.asarray(location) frequency = np.asarray(frequency, dtype=np.float) direction = np.asarray(direction, dtype=np.float) spreading = np.asarray(spreading, dtype=np.float) energy = np.asarray(energy, dtype=np.float) # simplify units time_units = simplify(time_units) location_units = simplify(location_units) frequency_units = simplify(frequency_units) direction_units = simplify(direction_units) energy_units = simplify(energy_units) # determine object dimensions if self._isvalid(time): dims.append(time_var) coords[time_var] = xr.Variable( time_var, time ) # only set time units if given. otherwise a datetime # object is assumed that is encoded by xarray. setting # units manually in that case would raise an exception if # the dataset is written to CF-compatible netCDF. if time_units is None or time_units != '': coords[time_var].attrs.update(dict(units=time_units)) if self._isvalid(location): dims.append(location_var) coords[location_var] = xr.Variable( location_var, np.arange(len(location)) ) x, y = list(zip(*location)) coords['%s_x' % location_var] = xr.Variable( location_var, np.asarray(x), attrs=dict(units=location_units) ) coords['%s_y' % location_var] = xr.Variable( location_var, np.asarray(y), attrs=dict(units=location_units) ) coords['%s_lat' % location_var] = xr.Variable( location_var, np.asarray(x) + np.nan, attrs=dict(units='degN') ) coords['%s_lon' % location_var] = xr.Variable( location_var, np.asarray(y) + np.nan, attrs=dict(units='degE') ) if self._isvalid(frequency, mask=frequency>0) and spectral: dims.append(frequency_var) coords[frequency_var] = xr.Variable( frequency_var, frequency[frequency>0], attrs=dict(units=frequency_units) ) if self._isvalid(direction) and directional: dims.append(direction_var) coords[direction_var] = xr.Variable( direction_var, direction, attrs=dict(units=direction_units) ) # determine object shape shp = tuple([len(c) for k, c in coords.items() if k in dims]) # initialize energy variable data_vars[energy_var] = xr.DataArray( np.nan + np.zeros(shp), dims=dims, coords=coords, attrs=dict(units=energy_units) ) # store parameterized frequencies if not spectral: if self._isvalid(frequency): data_vars[frequency_var] = xr.DataArray( frequency, dims=dims, coords=coords, attrs=dict(units=direction_units) ) # store parameterized directions if not directional: if self._isvalid(direction): data_vars[direction_var] = xr.DataArray( direction, dims=dims, coords=coords, attrs=dict(units=direction_units) ) if self._isvalid(spreading): data_vars[spreading_var] = xr.DataArray( spreading, dims=dims, coords=coords, attrs=dict(units=spreading_units) ) # collect global attributes attrs.update(dict( _init=kwargs.copy(), _crs=crs, _names=dict( time = time_var, location = location_var, frequency = frequency_var, direction = direction_var, spreading = spreading_var, energy = energy_var ), _units=dict( time = time_units, location = location_units, frequency = frequency_units, direction = direction_units, energy = energy_units ), _conventions=dict( frequency = frequency_convention, direction = direction_convention, spreading = spreading_convention ) )) # initialize empty object super(OceanWaves, self).__init__( data_vars=data_vars, coords=coords, attrs=attrs, **kwargs ) # set wave energy if self._isvalid(energy): self['_energy'] = dims, energy.reshape(shp) # convert coordinates self.convert_coordinates(crs) @classmethod def from_dataset(cls, dataset, *args, **kwargs): '''Initialize class from xarray.Dataset or OceanWaves object Parameters ---------- dataset : xarray.Dataset or Oceanwaves Base object ''' if isinstance(dataset, OceanWaves): kwargs = dataset._extract_initialization_args(**kwargs) elif isinstance(dataset, xr.Dataset): obj = OceanWaves(*args, **kwargs) dataset = obj._expand_locations(dataset) obj = obj.merge(dataset) kwargs = obj._extract_initialization_args(**kwargs) obj = cls(*args, **kwargs) obj.merge(dataset, inplace=True) return obj def reinitialize(self, **kwargs): '''Reinitializes current object with modified parameters Gathers current object's initialization settings and updates them with the given initialization options. Then initializes a new object with the resulting option set. See for all supported options the initialization method of this class. Parameters ---------- kwargs : dict Keyword/value pairs with initialization options that need to be overwritten Returns ------- OceanWaves New OceanWaves object ''' settings = self._extract_initialization_args(**kwargs) return OceanWaves(**settings).restore(self) def iterdim(self, dim): '''Iterate over given dimension Parameters ---------- dim : str Name of dimension ''' k = self._key_lookup(dim) if k in self.dims.keys(): for i in range(len(self[k])): yield self.isel(**{k:i}) else: yield self def _extract_initialization_args(self, **kwargs): '''Return updated initialization settings Parameters ---------- kwargs : dict Keyword/value pairs with initialization options that need to be overwritten Returns ------- dict Dictionary with initialization arguments ''' settings = dict(crs = self.attrs['_crs'], attrs = dict([ (k, v) for k, v in self.attrs.items() if not k.startswith('_') ])) # add dimensions for dim in ['direction', 'frequency', 'time']: if self.has_dimension(dim): k = self._key_lookup('_%s' % dim) v = self.coords[k] settings[dim] = v.values if 'units' in v.attrs: settings['%s_units' % dim] = v.attrs['units'] # add locations if self.has_dimension('location'): k = self._key_lookup('_location') x = self.variables['%s_x' % k].values y = self.variables['%s_y' % k].values settings['location'] = list(zip(x, y)) settings['location_units'] = self.variables['%s_x' % k].attrs['units'] # add energy k = self._key_lookup('_energy') v = self.variables[k] settings['energy'] = v.values if 'units' in v.attrs: settings['energy_units'] = v.attrs['units'] # add variable names for k, v in self.attrs['_names'].items(): settings['%s_var' % k] = v # add additional arguments settings.update(self.attrs['_init']) settings.update(kwargs) return settings def Hm0(self, f_min=0, f_max=np.inf): '''Compute significant wave height based on zeroth order moment Parameters ---------- f_min : float Minimum frequency to include in moment f_max : float Maximum frequency to include in moment Returns ------- H : xarray.DataArray Significant wave height at each point in time and location in the dataset ''' # compute moments m0 = self.moment(0, f_min=f_min, f_max=f_max) # compute wave height H = 4. * np.sqrt(m0) # determine units units = '(%s)^0.5' % m0.attrs['units'] H.attrs['units'] = simplify(units) return H def Tm01(self): '''Compute wave period based on first order moment Returns ------- T : xarray.DataArray Spectral wave period at each point in time and location in the dataset ''' # compute moments m0 = self.moment(0) m1 = self.moment(1) # compute wave period T = m0/m1 # determine units units = '(%s)/(%s)' % (m0.attrs['units'], m1.attrs['units']) T.attrs['units'] = simplify(units) return T def Tm02(self): '''Compute wave period based on second order moment Returns ------- T : xarray.DataArray Spectral wave period at each point in time and location in the dataset ''' # compute moments m0 = self.moment(0) m2 = self.moment(2) # compute wave period T = np.sqrt(m0/m2) # determine units units = '((%s)/(%s))^0.5' % (m0.attrs['units'], m2.attrs['units']) T.attrs['units'] = simplify(units) return T def Tp(self): '''Alias for :meth:`oceanwaves.OceanWaves.peak_period` ''' return self.peak_period() def peak_period(self): '''Compute peak wave period Returns ------- T : xarray.DataArray Peak wave period at each point in time and location in the dataset ''' if self.has_dimension('frequency', raise_error=True): coords = OrderedDict(self.coords) k = self._key_lookup('_energy') E = self.variables[k] dims = list(E.dims) # determine peak frequencies k = self._key_lookup('_frequency') f = coords.pop(k).values ix = E.argmax(dim=k).values peaks = 1. / f[ix.flatten()].reshape(ix.shape) dims.remove(k) # determine units units = '1/(%s)' % self.variables[k].attrs['units'] units = simplify(units) return xr.DataArray(peaks, coords=coords, dims=dims, attrs=dict(units=units)) def peak_direction(self): '''Compute peak wave direction Returns ------- theta : xarray.DataArray Peak wave direction at each point in time and location in the dataset ''' if self.has_dimension('direction', raise_error=True): coords = OrderedDict(self.coords) k = self._key_lookup('_energy') E = self.variables[k] dims = list(E.dims) # determine peak directions k = self._key_lookup('_direction') theta = coords.pop(k).values ix = E.argmax(dim=k).values peaks = theta[ix.flatten()].reshape(ix.shape) dims.remove(k) # determine units units = self.variables[k].attrs['units'] units = simplify(units) return xr.DataArray(peaks, coords=coords, dims=dims, attrs=dict(units=units)) def directional_spreading(self): '''Estimate directional spreading Estimate directional spreading by assuming a gaussian distribution and computing the variance of the directional spreading. The directional spreading is assumed to be ``3000/var``. Notes ----- This estimate is inaccurate and should be improved based on the cosine model. ''' if self.has_dimension('direction', raise_error=True): coords = OrderedDict(self.coords) k = self._key_lookup('_energy') E = self.variables[k] dims = list(E.dims) # determine peak directions k = self._key_lookup('_direction') theta = coords.pop(k).values ix_direction = dims.index(k) dims.remove(k) # determine directional spreading E /= expand_and_repeat( np.trapz(E, theta, axis=ix_direction), repeat=len(theta), expand_dims=ix_direction ) m1 = np.trapz(theta * E, theta) m2 = np.trapz(theta**2. * E, theta) var = m2 - m1**2. spreading = np.round(3000./var / 5.) * 5. # determine units units = self.variables[k].attrs['units'] units = simplify(units) return xr.DataArray(spreading, coords=coords, dims=dims, attrs=dict(units=units)) def moment(self, n, f_min=0., f_max=np.inf): '''Compute nth order moment of wave spectrum Parameters ---------- n : int Order of moment f_min : float Minimum frequency to include in moment f_max : float Maximum frequency to include in moment Returns ------- m : xarray.DataArray nth order moment of the wave spectrum at each point in time and location in the dataset ''' if self.has_dimension('frequency', raise_error=True): coords = OrderedDict(self.coords) k = self._key_lookup('_energy') E = self.variables[k] dims = list(E.dims) # integrate frequencies k = self._key_lookup('_frequency') f = coords.pop(k).values ix_frequency = dims.index(k) f_mtx = expand_and_repeat( f, shape=E.values.shape, exist_dims=ix_frequency ) dims.remove(k) if f_min == 0. and f_max == np.inf: m = np.trapz(E.values * f_mtx**n, f_mtx, axis=ix_frequency) else: if n != 0: logger.warn('Computing %d-order moment using a frequency range; ' 'Are you sure what you are doing?', n) # integrate range of frequencies f_min = np.maximum(f_min,
np.min(f)
numpy.min
import numpy as np import matplotlib.pyplot as plt import os import shutil from contomo import phantom from contomo import projected_advection_pde from contomo import flow_model from contomo import velocity_solver from contomo import basis from contomo import ray_model from contomo import sinogram_interpolator from contomo import utils ph = phantom.Spheres.load( "/home/axel/Downloads/spherephantom.phantom" ) dx = ph.detector_pixel_size sinograms, sample_times, angles = ph.get_sorted_sinograms_times_and_angles(labels="Dynamic scan") si = sinogram_interpolator.SinogramInterpolator( sample_times, sinograms, smoothness=0, order=2) initial_volume =
np.load("/home/axel/Downloads/intermediate_volume_0000.npy")
numpy.load
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 24 09:18:44 2020 @author: <NAME> <EMAIL> @author: matheustorquato <EMAIL> """ import functools, os import matplotlib.pyplot as plt import numpy as np import datetime as dt import pandas as pd import logging from functools import reduce import scipy.integrate as spi #from pyswarms.single.global_best import GlobalBestPSO import pyswarms as ps from pyswarms.backend.topology import Star from pyswarms.utils.plotters import plot_cost_history from itertools import repeat class SIR: ''' SIR Model''' def __init__(self,tamanhoPop,numeroProcessadores=None): self.N = tamanhoPop self.numeroProcessadores = numeroProcessadores def __cal_EDO(self,x,beta,gamma): ND = len(x)-1 t_start = 0.0 t_end = ND t_inc = 1 t_range = np.arange(t_start, t_end + t_inc, t_inc) beta = np.array(beta) gamma = np.array(gamma) def SIR_diff_eqs(INP, t, beta, gamma): Y = np.zeros((3)) V = INP Y[0] = - beta * V[0] * V[1] #S Y[1] = beta * V[0] * V[1] - gamma * V[1] #I Y[2] = gamma * V[1] #R return Y result_fit = spi.odeint(SIR_diff_eqs, (self.S0, self.I0,self.R0), t_range, args=(beta, gamma)) S=result_fit[:, 0]*self.N R=result_fit[:, 2]*self.N I=result_fit[:, 1]*self.N return S,I,R def __cal_EDO_2(self,x,beta1,gamma,beta2,tempo): ND = len(x)-1 t_start = 0.0 t_end = ND t_inc = 1 t_range = np.arange(t_start, t_end + t_inc, t_inc) def H(t): h = 1.0/(1.0+ np.exp(-2.0*50*t)) return h def beta(t,t1,b,b1): beta = b*H(t1-t) + b1*H(t-t1) return beta gamma = np.array(gamma) def SIR_diff_eqs(INP, t, beta1, gamma,beta2,t1): Y = np.zeros((3)) V = INP Y[0] = - beta(t,t1,beta1,beta2) * V[0] * V[1] #S Y[1] = beta(t,t1,beta1,beta2) * V[0] * V[1] - gamma * V[1] #I Y[2] = gamma * V[1] #R return Y result_fit = spi.odeint(SIR_diff_eqs, (self.S0, self.I0,self.R0), t_range, args=(beta1, gamma,beta2,tempo)) S=result_fit[:, 0]*self.N R=result_fit[:, 2]*self.N I=result_fit[:, 1]*self.N return S,I,R def objectiveFunction(self,coef,x ,y,stand_error): tam2 = len(coef[:,0]) soma = np.zeros(tam2) y = y*self.N if stand_error: if (self.beta_variavel) & (self.day_mudar==None): for i in range(tam2): S,I,R = self.__cal_EDO_2(x,coef[i,0],coef[i,1],coef[i,2],coef[i,3]) soma[i]= (((y-(I+R))/np.sqrt((I+R)+1))**2).mean() elif self.beta_variavel: for i in range(tam2): S,I,R = self.__cal_EDO_2(x,coef[i,0],coef[i,1],coef[i,2],self.day_mudar) soma[i]= (((y-(I+R))/np.sqrt((I+R)+1))**2).mean() else: for i in range(tam2): S,I,R = self.__cal_EDO(x,coef[i,0],coef[i,1]) soma[i]= (((y-(I+R))/np.sqrt((I+R)+1))**2).mean() else: if (self.beta_variavel) & (self.day_mudar==None): for i in range(tam2): S,I,R = self.__cal_EDO_2(x,coef[i,0],coef[i,1],coef[i,2],coef[i,3]) soma[i]= (((y-(I+R)))**2).mean() elif self.beta_variavel: for i in range(tam2): S,I,R = self.__cal_EDO_2(x,coef[i,0],coef[i,1],coef[i,2],self.day_mudar) soma[i]= (((y-(I+R)))**2).mean() else: for i in range(tam2): S,I,R = self.__cal_EDO(x,coef[i,0],coef[i,1]) soma[i]= (((y-(I+R)))**2).mean() return soma def fit(self, x,y , bound = ([0,1/21],[1,1/5]),stand_error=True, beta2=True,day_mudar = None,particles=50,itera=500,c1= 0.5, c2= 0.3, w = 0.9, k=3,p=1): ''' x = dias passados do dia inicial 1 y = numero de casos bound = intervalo de limite para procura de cada parametro, onde None = sem limite bound => (lista_min_bound, lista_max_bound) ''' self.beta_variavel = beta2 self.day_mudar = day_mudar self.y = y self.x = x df = np.array(y)/self.N self.I0 = df[0] self.S0 = 1-self.I0 self.R0 = 0 options = {'c1': c1, 'c2': c2, 'w': w,'k':k,'p':p} optimizer = None if bound==None: if (beta2) & (day_mudar==None): optimizer = ps.single.LocalBestPSO(n_particles=particles, dimensions=4, options=options) elif beta2: optimizer = ps.single.LocalBestPSO(n_particles=particles, dimensions=3, options=options) else: optimizer = ps.single.LocalBestPSO(n_particles=particles, dimensions=2, options=options) else: if (beta2) & (day_mudar==None): if len(bound[0])==2: bound = (bound[0].copy(),bound[1].copy()) bound[0].append(bound[0][0]) bound[1].append(bound[1][0]) bound[0].append(x[4]) bound[1].append(x[-5]) bound[0][3] = x[4] bound[1][3] = x[-5] optimizer = ps.single.LocalBestPSO(n_particles=particles, dimensions=4, options=options,bounds=bound) elif beta2: if len(bound[0])==2: bound = (bound[0].copy(),bound[1].copy()) bound[0].append(bound[0][1]) bound[1].append(bound[1][1]) optimizer = ps.single.LocalBestPSO(n_particles=particles, dimensions=3, options=options,bounds=bound) else: optimizer = ps.single.LocalBestPSO(n_particles=particles, dimensions=2, options=options,bounds=bound) cost = pos = None if beta2: cost, pos = optimizer.optimize(self.objectiveFunction, itera, x = x,y=df,stand_error=stand_error,n_processes=self.numeroProcessadores) else: cost, pos = optimizer.optimize(self.objectiveFunction, itera, x = x,y=df,stand_error=stand_error,n_processes=self.numeroProcessadores) self.beta = pos[0] self.gamma = pos[1] if beta2: self.beta1 = pos[0] self.gamma = pos[1] self.beta2 = pos[2] if day_mudar==None: self.day_mudar = pos[3] else: self.day_mudar = day_mudar self.rmse = cost self.optimize = optimizer def predict(self,x): ''' x = dias passados do dia inicial 1''' if self.beta_variavel: S,I,R = self.__cal_EDO_2(x,self.beta1,self.gamma,self.beta2,self.day_mudar) else: S,I,R = self.__cal_EDO(x,self.beta,self.gamma) self.ypred = I+R self.S = S self.I = I self.R = R return self.ypred def getResiduosQuadatico(self): y = np.array(self.y) ypred = np.array(self.ypred) y = y[0:len(self.x)] ypred = ypred[0:len(self.x)] return (y - ypred)**2 def getReQuadPadronizado(self): y = np.array(self.y) ypred = np.array(self.ypred) y = y[0:len(self.x)] ypred = ypred[0:len(self.x)] res = ((y - ypred)**2)/np.sqrt(ypred+1) return res def plotCost(self): plot_cost_history(cost_history=self.optimize.cost_history) plt.show() def plot(self,local): ypred = self.predict(self.x) plt.plot(ypred,c='b',label='Predição Infectados') plt.plot(self.y,c='r',marker='o', markersize=3,label='Infectados') plt.legend(fontsize=15) plt.title('Dinâmica do CoviD19 - {}'.format(local),fontsize=20) plt.ylabel('Casos COnfirmados',fontsize=15) plt.xlabel('Dias',fontsize=15) plt.show() def getCoef(self): if self.beta_variavel: return ['beta1','beta2','gamma','dia_mudanca'],[self.beta1,self.beta2,self.gamma,self.day_mudar] return ['beta','gamma'], [self.beta,self.gamma] def plotFit(self): plt.style.use('seaborn-deep') fig, axes = plt.subplots(figsize = (18,8)) try: plt.plot(self.x, self.ypred, label = "Fitted", c = "red") plt.scatter(self.x, self.y, label = "Observed", c = "blue") plt.legend(loc='upper left') plt.show() except: print("There is no predicted value") class SEIRHUD: ''' SEIRHU Model''' def __init__(self,tamanhoPop,numeroProcessadores=None): self.N = tamanhoPop self.numeroProcessadores = numeroProcessadores def __cal_EDO(self,x,beta,gammaH,gammaU,delta,h,ia0,is0,e0): ND = len(x)-1 t_start = 0.0 t_end = ND t_inc = 1 t_range =
np.arange(t_start, t_end + t_inc, t_inc)
numpy.arange
#!/usr/bin/python3.8 import numpy as np from scipy.fft import fft,rfft,fftshift,irfft,ifftshift from scipy.signal import gaussian,find_peaks from scipy.optimize import curve_fit from helper import zero_padding,chop_win # helpers from constants import * import helper #%% Constants specific to this file ALPHA = 40.0 # LEARNING RATE EPSILON = 15.0 # finite difference derivative step EPOCHS = 500 # Number of epochs ITERATIONS = 3 # number of steps per epoch N_DIM = 6 # N_SAMPLES_DIM = 2 # Hyper params for loss function N_SAMPLES = 256*4 N_THETAS = 260 THRESH = 0.001 #%% more efficient chop win that downsamples first def chop_win_downsample(w,n_samples=256,ntap=NTAP,lblock=LBLOCK): # assumes ntap*lblock == len(w) s = np.array(np.linspace(0,lblock*(1-1/n_samples),n_samples),dtype='int') # the sample indices return np.reshape(w,(ntap,lblock)).T[s] #%% loss functions def quantization_loss_1(window): """Loss function for quantization errors Params : window function (e.g. SINC) Returns : loss the loss is the sum of recipricals of the eigenvalues """ w2d = chop_win(window,NTAP,LBLOCK) w2d_padded = zero_padding(w2d) ft = np.apply_along_axis(rfft,1,w2d_padded) ft_abs_flat = np.abs(ft).flatten()+0.07 # add cnst term (0.07) so that nothing explodes in sum below loss = np.sum(1/ft_abs_flat) return loss # this brings current value to zero # quite bad def q_loss_method_0(vals,thresh=THRESH): return np.count_nonzero(vals<=thresh) def q_loss_method_1(vals): """Loss function for quantization errors Params : vals : float[] -- array of samples of frequency eigenvalues (norm squared) Returns : loss : float -- the loss function The loss is caluclated below -- ni is the number of values below 0.i """ vsqrt = np.sqrt(vals) n1 = np.count_nonzero(vsqrt<=0.1) n2 = np.count_nonzero(vsqrt<=0.2) - n1 n3 = np.count_nonzero(vsqrt<=0.3) - n2 - n1 n4 = np.count_nonzero(vsqrt<=0.4) - n1 - n2 - n3 n5 = np.count_nonzero(vsqrt<=0.5) - n1 - n2 - n3 - n4 return n1 + 0.6*n2 + 0.3*n3 + 0.15*n4 + 0.1*n5 def q_loss_method_2(vals): """Loss function for quantization errors Params : vals : float[] -- array of samples of frequency eigenvalues (norm squared) Returns : loss : float -- the loss function The loss is caluclated below -- ni is the number of values below 0.i """ n1 = np.count_nonzero(vals<=0.1) n2 = np.count_nonzero(vals<=0.2) - n1 n3 = np.count_nonzero(vals<=0.3) - n2 - n1 n4 = np.count_nonzero(vals<=0.4) - n1 - n2 - n3 n5 = np.count_nonzero(vals<=0.5) - n1 - n2 - n3 - n4 return n1 + 0.6*n2 + 0.3*n3 + 0.15*n4 + 0.1*n5 def q_loss_method_3(vals): return np.sum(1/(0.1+np.sqrt(vals))) def q_loss_method_4(vals): return np.sum(1/(0.1+vals)) def quantization_sample_single_fourier_value_at_pi(window,n_samples=128): """Loss function for quantizaion errors Params : float[] window function (e.g. SINC) Resturns : loss The loss is evaluated as follows chunk up the window samples k chunks (where k is a number like 256 for instance) evaluate y=|W(x)| at x=PI -- where W is the RDFT of [a,b,c,d,0,0,0,...,0] normalized so that x is between 0 and PI return 1/(y+0.1) -- so 10 if it's 0, 5 if it's 0.1, 3. if it's 0.2, 2.5 if it's 0.3 also try return 1/(y**2+0.1) """ p2d = chop_win_downsample(window,n_samples=n_samples) min_guess_ft = lambda arr: sum(arr * np.array((1,-1,1,-1)))# takes as input an array with four elements vals = np.apply_along_axis(min_guess_ft,1,p2d)**2 # square or else negative values... return vals def quantization_sample_fourier_values(window,n_samples=128,n_thetas=50,thetas_cust=None): """Loss function for quantization errors Params, Returns same as above The loss is evaluated as follows Same as above except, evaluates multiple points on array """ # n_samples = 128 # the number of columns to sample in the # n_thetas = 50 # number of thetas to sample from sin = np.sin cos = np.cos p2d = chop_win_downsample(window,n_samples=n_samples) symmetrise = lambda m: m + m.T + np.diag((1,1,1,1)) # fills diagonal with ones def matrix(t): m = np.array(((0,cos(t),cos(2*t),cos(3*t)), (0,0,cos(t)*cos(2*t)+sin(t)*sin(2*t),cos(t)*cos(3*t)+sin(t)*sin(3*t)), (0,0,0,cos(2*t)*cos(3*t)+sin(3*t)), (0,0,0,0))) return symmetrise(m) if type(thetas_cust)!=type(None):theta_arr = thetas_cust else:theta_arr= np.linspace(0,PI,n_thetas) p3d = np.repeat(np.array([p2d]),len(theta_arr),axis=0) eval_at_t = lambda arr1d,t: np.dot(arr1d,np.dot(matrix(t),arr1d)) # optionally put a square root here def eval_at_t_block_2d(idx,p2d,t): vals[idx] = np.apply_along_axis(eval_at_t,1,p2d,t) vals = np.zeros((len(theta_arr),n_samples)) for idx,(arr2d,t) in enumerate(zip(p3d,theta_arr)): eval_at_t_block_2d(idx,arr2d,t) vals = vals.flatten()**2 return vals # First loss function suggested by Jon def loss_eig(window): eigs = quantization_sample_fourier_values(window,n_samples=256,n_thetas=50) eigs[np.where(eigs>=1.0)] = 1.0 # we don't care about large eigenvalues return 1 - np.mean(eigs / (0.1 + eigs)) # minimize this # Second loss function suggested by Jon def loss_width_height(window): large_box = helper.window_pad_to_box_rfft(window,4.0) lb = np.abs(large_box) width = find_peaks(-lb[5:])[0][0] # assumes there is a peak loss_width = np.abs(width) / 10 # 0 for SINC loss_log_height = max(
np.log(lb[width:])
numpy.log
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from numpy.testing import assert_allclose import numpy as np import astropy.units as u from ...utils.testing import requires_data from ...irf import EffectiveAreaTable, EnergyDispersion from ..core import CountsSpectrum from ..sensitivity import SensitivityEstimator @pytest.fixture() def sens(): etrue = np.logspace(0, 1, 21) * u.TeV elo = etrue[:-1] ehi = etrue[1:] area = np.zeros(20) + 1e6 * u.m ** 2 arf = EffectiveAreaTable(energy_lo=elo, energy_hi=ehi, data=area) ereco = np.logspace(0, 1, 5) * u.TeV rmf = EnergyDispersion.from_diagonal_response(etrue, ereco) bkg_array =
np.ones(4)
numpy.ones
#!python3 import numpy as np ################## ## Arrays ################## # Create an array without numpy a1 = [1, 2, 3, 4, 5] print('List:\n{}\n'.format(a1)) # Create an array with numpy a2 = np.array([1, 2, 3, 4, 5]) print('Array:\n{}\n'.format(a2)) # Access array elements print('Access elements') print('List: a1[1]\n{}\n'.format(a1[1])) print('Array: a2[1]\n{}\n'.format(a2[1])) # Create an array of all zeros a = np.zeros((2,2)) print('Zeros:\n{}\n'.format(a)) # Create an array of all ones b =
np.ones((1,2))
numpy.ones
# -*- coding: utf-8 -*- """ @author: <NAME> Affiliation: TU Delft and Deltares, Delft, The Netherlands Pre-processing for Gibbs sampler to: 1. Extract seasonal shape 2. Produce time shifts for the new scenarios """ #============================================================================== #STEP 0 - Import data import matplotlib.pyplot as plt import numpy as np from lmfit.models import LinearModel from scipy.signal import argrelextrema from scipy import stats from scipy.stats import rankdata import statsmodels.api as sm from statsmodels.tsa.seasonal import seasonal_decompose import random from scipy import interpolate #============================================================================== #Define functions def seasonal_mean(x, freq): """ Return means for each period in x. freq is an int that gives the number of periods per cycle. E.g., 12 for monthly. NaNs are ignored in the mean. """ return np.array([np.nanmean(x[i::freq], axis=0) for i in range(freq)]) def seasonal_component(x, freq): """ Tiles seasonal means (periodical avereages) into a time seris as long as the original. """ nobs=len(x) period_averages=seasonal_mean(x, freq) period_averages -= np.mean(period_averages, axis=0) return np.tile(period_averages.T, nobs // freq + 1).T[:nobs] #============================================================================== #Load and initialize data data=np.load(r'tensor_daily_mean_5D.npy') #Replace Nan with 0 data[np.where(np.isnan(data) == True)]=0 #Reshape data=np.append(data[:,:,:,:,0],data[:,:,:,:,1],axis=3) #Data view 3D data_slice=data[:,3,0,:] #CalendarYear calendarYear=365.00 #============================================================================== #Initialize empty vectors #cosine_yearly_fitted=np.zeros((400, 90,np.shape(data)[3])) x_data_ideal_matrix=np.zeros((420, 90,np.shape(data)[3])) x_data_ideal_cont_matrix=np.zeros((420, 90,np.shape(data)[3])) x_data_slice_matrix=np.zeros((420, 90,np.shape(data)[3])) y_data_slice_matrix=np.zeros((420, 90,np.shape(data)[3])) y_data_slice_smooth_matrix=np.zeros((420, 90,np.shape(data)[3])) y_data_slice_smooth_365_nearest_matrix=np.zeros((420, 90,np.shape(data)[3])) x_data_ideal_1D_matrix=np.zeros((np.shape(data)[0], np.shape(data)[3])) y_data_365_nearest_matrix=np.zeros((np.shape(data)[0], np.shape(data)[3])) deviation_matrix=np.zeros((90,np.shape(data)[3])) line_intercept=np.zeros((1,np.shape(data)[3])) line_slope=np.zeros((1,np.shape(data)[3])) residual_pattern_sqr_matrix=np.zeros((int(calendarYear), np.shape(data)[3])) #============================================================================== #Zero to Nan x_data_slice_matrix[x_data_slice_matrix == 0] = np.nan x_data_ideal_matrix[x_data_ideal_matrix == 0] = np.nan x_data_ideal_cont_matrix[x_data_ideal_cont_matrix == 0] = np.nan y_data_slice_matrix[y_data_slice_matrix == 0] = np.nan y_data_slice_smooth_matrix[y_data_slice_smooth_matrix == 0] = np.nan y_data_slice_smooth_365_nearest_matrix[y_data_slice_smooth_365_nearest_matrix == 0] = np.nan x_data_ideal_1D_matrix[x_data_ideal_1D_matrix == 0] = np.nan y_data_365_nearest_matrix[y_data_365_nearest_matrix == 0] = np.nan residual_pattern_sqr_matrix[residual_pattern_sqr_matrix == 0] = np.nan #============================================================================== #Choose time interval by the number of timesteps datalimit1=0 datalimit2=32872 #Initialize empty matrices y_data_detrended_matrix=np.zeros((datalimit2, np.shape(data)[3])) trend=np.zeros((datalimit2,np.shape(data)[3])) residual=np.zeros((datalimit2,np.shape(data)[3])) #Plot param plt.rcParams['figure.figsize'] = (10,5) #Initialize x and y x_data=np.arange(0,datalimit2)/calendarYear y_data_all=data[datalimit1:datalimit2,0,0,:] #Choose scenarios scenarios= [0,1,2,4,5,6,7,9] #range(np.shape(data)[3]) for i in scenarios: y_data=data[datalimit1:datalimit2,0,0,i] #============================================================================== #STEP0 - Identify, trend, seasonality, residual result = seasonal_decompose(y_data, freq=365, model='additive') #Fit lineat trend #Get parameters: alpha and beta #Fit curve with lmfit line_mod=LinearModel(prefix='line_') pars_line = line_mod.guess(y_data, x=x_data) result_line_model=line_mod.fit(y_data, pars_line, x=x_data) print(result_line_model.fit_report()) line_intercept[:,i]=result_line_model.params['line_intercept']._val line_slope[:,i]=result_line_model.params['line_slope']._val trend[:,i]=result_line_model.best_fit #============================================================================== #STEP 2 #Remove trend y_data_detrended=y_data-result_line_model.best_fit y_data_detrended_matrix[:,i]=y_data_detrended y_data_detrend=seasonal_component(y_data_detrended, int(calendarYear)) #seasonal component #============================================================================== #Smooth LOWESS lowess = sm.nonparametric.lowess data_smooth_lowess=lowess(y_data_detrended, x_data, frac=1./500, it=0, delta = 0.01, is_sorted=True, missing='drop', return_sorted=False) # for local minima #add reflective boundary #data_smooth_reflective = np.pad(data_smooth, 0, mode='reflect') local_min_location=np.array(argrelextrema(data_smooth_lowess, np.less, order=300, mode='wrap')) #local_min_location = (np.insert(local_min_location, 90,(len(x_data)-1))).reshape((1,-1)) local_min=data_smooth_lowess[local_min_location] #distance between minima dist_minima=np.transpose(np.diff(local_min_location)) #Plot deviations from calendar year (histogram) deviation=(calendarYear-dist_minima)/calendarYear deviation_matrix[:len(deviation),i]=deviation.flatten(order='F') #============================================================================== #STEP 3 #Chop years and Fit cosine curve #Get parameters: amplitude for j in range(np.shape(local_min_location)[1]-1): y_data_slice=y_data_detrended[np.int(local_min_location[:,j]):np.int(local_min_location[:,j+1])] x_data_slice=np.arange(0,len(y_data_slice))/calendarYear x_data_slice_365=np.arange(0,365)/calendarYear #Remove time change from data x_data_ideal=np.linspace(0,calendarYear,len(y_data_slice))/calendarYear if j==0: x_data_ideal_cont=np.linspace((j*calendarYear),(j+1)*calendarYear,len(y_data_slice))/calendarYear else: x_data_ideal_cont=np.linspace((j*calendarYear)+1,(j+1)*calendarYear,len(y_data_slice))/calendarYear y_data_slice_smooth=lowess(y_data_slice, x_data_ideal, frac=1./10, it=0, is_sorted=True, missing='drop', return_sorted=False) #Interpolate to regular step - smooth data f = interpolate.interp1d(x_data_ideal, y_data_slice_smooth,kind='nearest', fill_value="extrapolate") y_data_slice_smooth_365_nearest= f(x_data_slice_365) # use interpolation function returned by `interp1d` x_data_slice_matrix[:len(x_data[np.int(local_min_location[:,j]):np.int(local_min_location[:,j+1])]),j,i]=x_data_slice x_data_ideal_matrix[:len(x_data[np.int(local_min_location[:,j]):np.int(local_min_location[:,j+1])]),j,i]=x_data_ideal x_data_ideal_cont_matrix[:len(x_data[np.int(local_min_location[:,j]):np.int(local_min_location[:,j+1])]),j,i]=x_data_ideal_cont y_data_slice_matrix[:len(y_data_detrend[np.int(local_min_location[:,j]):np.int(local_min_location[:,j+1])]),j,i]=y_data_slice y_data_slice_smooth_matrix[:len(y_data_detrend[np.int(local_min_location[:,j]):np.int(local_min_location[:,j+1])]),j,i]=y_data_slice_smooth y_data_slice_smooth_365_nearest_matrix[:len(y_data_slice_smooth_365_nearest),j,i]=y_data_slice_smooth_365_nearest #Plot fitted all sin curve (lmfit) plt.figure(figsize=(12, 5)) labels=['Data points'] plt.plot(x_data_ideal_matrix[:,:,i], y_data_slice_matrix[:,:,i], 'bo', alpha = 0.1) plt.plot(x_data_ideal_matrix[:,:,i], y_data_slice_smooth_matrix[:,:,i], 'k-') plt.xlabel('Number of years') plt.ylabel('Radiation') plt.legend(labels) plt.title("Scenario: " + str(i)) plt.show() #x_data_ideal_1D x_data_ideal_1D = x_data_ideal_cont_matrix[:,:,i].flatten(order='F') x_data_ideal_1D = x_data_ideal_1D[~np.isnan(x_data_ideal_1D)] #Interpolate to regular step f = interpolate.interp1d(x_data_ideal_1D, y_data[:len(x_data_ideal_1D)],kind='nearest', fill_value="extrapolate") y_data_365_nearest= f(x_data[:len(x_data_ideal_1D)]) # use interpolation function returned by `interp1d` #Save in matrix x_data_ideal_1D_matrix[:len(x_data_ideal_1D),i]=x_data_ideal_1D y_data_365_nearest_matrix[:len(y_data_365_nearest),i]=y_data_365_nearest print(i) #============================================================================== #============================================================================== #Flatten arrays with all years into 1D vector x_data_ideal_flattened=np.zeros((np.shape(x_data_ideal_matrix)[0], np.shape(x_data_ideal_matrix)[1]*np.shape(x_data_ideal_matrix)[2])) y_data_slice_flattened=np.zeros((np.shape(y_data_slice_matrix)[0], np.shape(y_data_slice_matrix)[1]*np.shape(y_data_slice_matrix)[2])) y_data_slice_smooth_flattened=np.zeros((np.shape(y_data_slice_smooth_matrix)[0], np.shape(y_data_slice_smooth_matrix)[1]*np.shape(y_data_slice_smooth_matrix)[2])) y_data_slice_smooth_365_nearest_flattened=np.zeros((np.shape(y_data_slice_smooth_matrix)[0], np.shape(y_data_slice_smooth_matrix)[1]*np.shape(y_data_slice_smooth_matrix)[2])) for k in range(np.shape(y_data_slice_matrix)[0]): x_data_ideal_flattened[k,:]=x_data_ideal_matrix[k,:,:].flatten(order='F') y_data_slice_flattened[k,:]=y_data_slice_matrix[k,:,:].flatten(order='F') y_data_slice_smooth_flattened[k,:]=y_data_slice_smooth_matrix[k,:,:].flatten(order='F') y_data_slice_smooth_365_nearest_flattened[k,:]=y_data_slice_smooth_365_nearest_matrix[k,:,:].flatten(order='F') #Average smooth curve av_loess_scenario=np.nanmean(y_data_slice_smooth_365_nearest_matrix, axis=1) av_loess_scenario=av_loess_scenario[:365,:] #Save av_loess_scenario np.save(r'av_loess_scenario.npy', av_loess_scenario) #Average smoothed av_loess=np.nanmean(y_data_slice_smooth_365_nearest_flattened, axis=1) av_loess=av_loess[~np.isnan(av_loess)] #============================================================================== #All parameters deviation_flattened=deviation_matrix.flatten(order='F') line_intercept_flattened=line_intercept.flatten(order='F') line_slope_flattened=line_slope.flatten(order='F') #Remove Nans deviation_flattened= deviation_flattened[~np.isnan(deviation_flattened)] #Remove zeros #amplitude_loess_flattened= amplitude_loess_flattened[np.nonzero(amplitude_loess_flattened)] deviation_flattened= deviation_flattened[np.nonzero(deviation_flattened)] line_intercept_flattened=line_intercept_flattened[np.nonzero(line_intercept_flattened)] line_slope_flattened=line_slope_flattened[np.nonzero(line_slope_flattened)] #Analyse parameter change #Parameter statistics #deviation deviation_mean=np.mean(deviation_flattened) deviation_std=np.std(deviation_flattened) print('deviation - mean:',np.round(deviation_mean,decimals=4), 'std:',np.round(deviation_std, decimals=4)) #Deviation per scenario deviation_mean_sc=np.mean(deviation_matrix, axis=0) deviation_std_sc=np.std(deviation_matrix, axis=0) #Remove zeros deviation_mean_sc= deviation_mean_sc[np.nonzero(deviation_mean_sc)] deviation_std_sc= deviation_std_sc[np.nonzero(deviation_std_sc)] #Line intercept line_intercept_mean=np.mean(line_intercept_flattened) line_intercept_std=np.std(line_intercept_flattened) print('line_intercept - mean:',np.round(line_intercept_mean,decimals=2), 'std:',np.round(line_intercept_std, decimals=2)) #Line slope line_slope_mean=np.mean(line_slope_flattened) line_slope_std=np.std(line_slope_flattened) print('line_slope - mean:',np.round(line_slope_mean,decimals=2), 'std:',np.round(line_slope_std, decimals=2)) #============================================================================== #Combine LOESS curves new_loess=[] def new_loess_func(): for l in np.arange(85): if l==0: new_loess = lowess(av_loess[:365], np.squeeze(np.linspace(0, dist_minima[l], num=len(av_loess[:365]))/calendarYear), frac=1./10, it=0, is_sorted=True, missing='drop', return_sorted=False) else: new_loess = np.append(new_loess, (lowess(av_loess[:365], np.squeeze(np.linspace(0, dist_minima[l], num=len(av_loess[:365]))/calendarYear), frac=1./10, it=0, is_sorted=True, missing='drop', return_sorted=False)), axis=0) return new_loess long_loess=new_loess_func() #Mean y_data_detrended y_data_detrended_mean=np.mean(y_data_detrended_matrix, axis=1) #residuals resdiuals_longloess=y_data_detrended_mean[:len(long_loess)]-long_loess[:] #============================================================================== #Add trend and model residual for r in scenarios: model_trend_loess=long_loess+trend[:len(long_loess),r] #residuals #residuals_modeled=y_data[:len(long_cosine)]-model_trend_residual residuals_modeled_loess=y_data_365_nearest_matrix[:len(long_loess),r]-model_trend_loess std_residuals_modeled_loess=np.nanstd(residuals_modeled_loess) #Take variance of residuals residuals_modeled_loess_var=np.square(residuals_modeled_loess) residuals_modeled_loess_var_av=seasonal_mean(residuals_modeled_loess_var, 365) #Pattern in average residual shape residual_pattern=lowess(residuals_modeled_loess_var_av, np.arange(len(residuals_modeled_loess_var_av)), frac=1./10, it=0, is_sorted=True, missing='drop', return_sorted=False) residual_pattern_sqr=
np.sqrt(residual_pattern)
numpy.sqrt
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=too-many-return-statements,unpacking-non-sequence """ Transformations between QuantumChannel representations. """ import numpy as np import scipy.linalg as la from qiskit.exceptions import QiskitError from qiskit.quantum_info.operators.predicates import is_hermitian_matrix from qiskit.quantum_info.operators.predicates import ATOL_DEFAULT def _transform_rep(input_rep, output_rep, data, input_dim, output_dim): """Transform a QuantumChannel between representation.""" if input_rep == output_rep: return data if output_rep == 'Choi': return _to_choi(input_rep, data, input_dim, output_dim) if output_rep == 'Operator': return _to_operator(input_rep, data, input_dim, output_dim) if output_rep == 'SuperOp': return _to_superop(input_rep, data, input_dim, output_dim) if output_rep == 'Kraus': return _to_kraus(input_rep, data, input_dim, output_dim) if output_rep == 'Chi': return _to_chi(input_rep, data, input_dim, output_dim) if output_rep == 'PTM': return _to_ptm(input_rep, data, input_dim, output_dim) if output_rep == 'Stinespring': return _to_stinespring(input_rep, data, input_dim, output_dim) raise QiskitError('Invalid QuantumChannel {}'.format(output_rep)) def _to_choi(rep, data, input_dim, output_dim): """Transform a QuantumChannel to the Choi representation.""" if rep == 'Choi': return data if rep == 'Operator': return _from_operator('Choi', data, input_dim, output_dim) if rep == 'SuperOp': return _superop_to_choi(data, input_dim, output_dim) if rep == 'Kraus': return _kraus_to_choi(data) if rep == 'Chi': return _chi_to_choi(data, input_dim) if rep == 'PTM': data = _ptm_to_superop(data, input_dim) return _superop_to_choi(data, input_dim, output_dim) if rep == 'Stinespring': return _stinespring_to_choi(data, input_dim, output_dim) raise QiskitError('Invalid QuantumChannel {}'.format(rep)) def _to_superop(rep, data, input_dim, output_dim): """Transform a QuantumChannel to the SuperOp representation.""" if rep == 'SuperOp': return data if rep == 'Operator': return _from_operator('SuperOp', data, input_dim, output_dim) if rep == 'Choi': return _choi_to_superop(data, input_dim, output_dim) if rep == 'Kraus': return _kraus_to_superop(data) if rep == 'Chi': data = _chi_to_choi(data, input_dim) return _choi_to_superop(data, input_dim, output_dim) if rep == 'PTM': return _ptm_to_superop(data, input_dim) if rep == 'Stinespring': return _stinespring_to_superop(data, input_dim, output_dim) raise QiskitError('Invalid QuantumChannel {}'.format(rep)) def _to_kraus(rep, data, input_dim, output_dim): """Transform a QuantumChannel to the Kraus representation.""" if rep == 'Kraus': return data if rep == 'Stinespring': return _stinespring_to_kraus(data, output_dim) if rep == 'Operator': return _from_operator('Kraus', data, input_dim, output_dim) # Convert via Choi and Kraus if rep != 'Choi': data = _to_choi(rep, data, input_dim, output_dim) return _choi_to_kraus(data, input_dim, output_dim) def _to_chi(rep, data, input_dim, output_dim): """Transform a QuantumChannel to the Chi representation.""" if rep == 'Chi': return data # Check valid n-qubit input _check_nqubit_dim(input_dim, output_dim) if rep == 'Operator': return _from_operator('Chi', data, input_dim, output_dim) # Convert via Choi representation if rep != 'Choi': data = _to_choi(rep, data, input_dim, output_dim) return _choi_to_chi(data, input_dim) def _to_ptm(rep, data, input_dim, output_dim): """Transform a QuantumChannel to the PTM representation.""" if rep == 'PTM': return data # Check valid n-qubit input _check_nqubit_dim(input_dim, output_dim) if rep == 'Operator': return _from_operator('PTM', data, input_dim, output_dim) # Convert via Superoperator representation if rep != 'SuperOp': data = _to_superop(rep, data, input_dim, output_dim) return _superop_to_ptm(data, input_dim) def _to_stinespring(rep, data, input_dim, output_dim): """Transform a QuantumChannel to the Stinespring representation.""" if rep == 'Stinespring': return data if rep == 'Operator': return _from_operator('Stinespring', data, input_dim, output_dim) # Convert via Superoperator representation if rep != 'Kraus': data = _to_kraus(rep, data, input_dim, output_dim) return _kraus_to_stinespring(data, input_dim, output_dim) def _to_operator(rep, data, input_dim, output_dim): """Transform a QuantumChannel to the Operator representation.""" if rep == 'Operator': return data if rep == 'Stinespring': return _stinespring_to_operator(data, output_dim) # Convert via Kraus representation if rep != 'Kraus': data = _to_kraus(rep, data, input_dim, output_dim) return _kraus_to_operator(data) def _from_operator(rep, data, input_dim, output_dim): """Transform Operator representation to other representation.""" if rep == 'Operator': return data if rep == 'SuperOp': return np.kron(np.conj(data), data) if rep == 'Choi': vec = np.ravel(data, order='F') return np.outer(vec, np.conj(vec)) if rep == 'Kraus': return [data], None if rep == 'Stinespring': return data, None if rep == 'Chi': _check_nqubit_dim(input_dim, output_dim) data = _from_operator('Choi', data, input_dim, output_dim) return _choi_to_chi(data, input_dim) if rep == 'PTM': _check_nqubit_dim(input_dim, output_dim) data = _from_operator('SuperOp', data, input_dim, output_dim) return _superop_to_ptm(data, input_dim) raise QiskitError('Invalid QuantumChannel {}'.format(rep)) def _kraus_to_operator(data): """Transform Kraus representation to Operator representation.""" if data[1] is not None or len(data[0]) > 1: raise QiskitError( 'Channel cannot be converted to Operator representation') return data[0][0] def _stinespring_to_operator(data, output_dim): """Transform Stinespring representation to Operator representation.""" trace_dim = data[0].shape[0] // output_dim if data[1] is not None or trace_dim != 1: raise QiskitError( 'Channel cannot be converted to Operator representation') return data[0] def _superop_to_choi(data, input_dim, output_dim): """Transform SuperOp representation to Choi representation.""" shape = (output_dim, output_dim, input_dim, input_dim) return _reshuffle(data, shape) def _choi_to_superop(data, input_dim, output_dim): """Transform Choi to SuperOp representation.""" shape = (input_dim, output_dim, input_dim, output_dim) return _reshuffle(data, shape) def _kraus_to_choi(data): """Transform Kraus representation to Choi representation.""" choi = 0 kraus_l, kraus_r = data if kraus_r is None: for i in kraus_l: vec = i.ravel(order='F') choi += np.outer(vec, vec.conj()) else: for i, j in zip(kraus_l, kraus_r): choi += np.outer(i.ravel(order='F'), j.ravel(order='F').conj()) return choi def _choi_to_kraus(data, input_dim, output_dim, atol=ATOL_DEFAULT): """Transform Choi representation to Kraus representation.""" # Check if hermitian matrix if is_hermitian_matrix(data, atol=atol): # Get eigen-decomposition of Choi-matrix # This should be a call to la.eigh, but there is an OpenBlas # threading issue that is causing segfaults. # Need schur here since la.eig does not # guarentee orthogonality in degenerate subspaces w, v = la.schur(data, output='complex') w = w.diagonal().real # Check eigenvalues are non-negative if len(w[w < -atol]) == 0: # CP-map Kraus representation kraus = [] for val, vec in zip(w, v.T): if abs(val) > atol: k = np.sqrt(val) * vec.reshape( (output_dim, input_dim), order='F') kraus.append(k) # If we are converting a zero matrix, we need to return a Kraus set # with a single zero-element Kraus matrix if not kraus: kraus.append(np.zeros((output_dim, input_dim), dtype=complex)) return kraus, None # Non-CP-map generalized Kraus representation mat_u, svals, mat_vh = la.svd(data) kraus_l = [] kraus_r = [] for val, vec_l, vec_r in zip(svals, mat_u.T, mat_vh.conj()): kraus_l.append( np.sqrt(val) * vec_l.reshape((output_dim, input_dim), order='F')) kraus_r.append( np.sqrt(val) * vec_r.reshape((output_dim, input_dim), order='F')) return kraus_l, kraus_r def _stinespring_to_kraus(data, output_dim): """Transform Stinespring representation to Kraus representation.""" kraus_pair = [] for stine in data: if stine is None: kraus_pair.append(None) else: trace_dim = stine.shape[0] // output_dim iden = np.eye(output_dim) kraus = [] for j in range(trace_dim): vec = np.zeros(trace_dim) vec[j] = 1 kraus.append(np.kron(iden, vec[None, :]).dot(stine)) kraus_pair.append(kraus) return tuple(kraus_pair) def _stinespring_to_choi(data, input_dim, output_dim): """Transform Stinespring representation to Choi representation.""" trace_dim = data[0].shape[0] // output_dim stine_l = np.reshape(data[0], (output_dim, trace_dim, input_dim)) if data[1] is None: stine_r = stine_l else: stine_r = np.reshape(data[1], (output_dim, trace_dim, input_dim)) return np.reshape( np.einsum('iAj,kAl->jilk', stine_l, stine_r.conj()), 2 * [input_dim * output_dim]) def _stinespring_to_superop(data, input_dim, output_dim): """Transform Stinespring representation to SuperOp representation.""" trace_dim = data[0].shape[0] // output_dim stine_l = np.reshape(data[0], (output_dim, trace_dim, input_dim)) if data[1] is None: stine_r = stine_l else: stine_r = np.reshape(data[1], (output_dim, trace_dim, input_dim)) return np.reshape( np.einsum('iAj,kAl->ikjl', stine_r.conj(), stine_l), (output_dim * output_dim, input_dim * input_dim)) def _kraus_to_stinespring(data, input_dim, output_dim): """Transform Kraus representation to Stinespring representation.""" stine_pair = [None, None] for i, kraus in enumerate(data): if kraus is not None: num_kraus = len(kraus) stine = np.zeros((output_dim * num_kraus, input_dim), dtype=complex) for j, mat in enumerate(kraus): vec = np.zeros(num_kraus) vec[j] = 1 stine += np.kron(mat, vec[:, None]) stine_pair[i] = stine return tuple(stine_pair) def _kraus_to_superop(data): """Transform Kraus representation to SuperOp representation.""" kraus_l, kraus_r = data superop = 0 if kraus_r is None: for i in kraus_l: superop += np.kron(np.conj(i), i) else: for i, j in zip(kraus_l, kraus_r): superop += np.kron(np.conj(j), i) return superop def _chi_to_choi(data, input_dim): """Transform Chi representation to a Choi representation.""" num_qubits = int(np.log2(input_dim)) return _transform_from_pauli(data, num_qubits) def _choi_to_chi(data, input_dim): """Transform Choi representation to the Chi representation.""" num_qubits = int(np.log2(input_dim)) return _transform_to_pauli(data, num_qubits) def _ptm_to_superop(data, input_dim): """Transform PTM representation to SuperOp representation.""" num_qubits = int(np.log2(input_dim)) return _transform_from_pauli(data, num_qubits) def _superop_to_ptm(data, input_dim): """Transform SuperOp representation to PTM representation.""" num_qubits = int(np.log2(input_dim)) return _transform_to_pauli(data, num_qubits) def _bipartite_tensor(mat1, mat2, shape1=None, shape2=None): """Tensor product (A ⊗ B) to bipartite matrices and reravel indices. This is used for tensor product of superoperators and Choi matrices. Args: mat1 (matrix_like): a bipartite matrix A mat2 (matrix_like): a bipartite matrix B shape1 (tuple): bipartite-shape for matrix A (a0, a1, a2, a3) shape2 (tuple): bipartite-shape for matrix B (b0, b1, b2, b3) Returns: np.array: a bipartite matrix for reravel(A ⊗ B). Raises: QiskitError: if input matrices are wrong shape. """ # Convert inputs to numpy arrays mat1 = np.array(mat1) mat2 = np.array(mat2) # Determine bipartite dimensions if not provided dim_a0, dim_a1 = mat1.shape dim_b0, dim_b1 = mat2.shape if shape1 is None: sdim_a0 = int(np.sqrt(dim_a0)) sdim_a1 = int(np.sqrt(dim_a1)) shape1 = (sdim_a0, sdim_a0, sdim_a1, sdim_a1) if shape2 is None: sdim_b0 = int(np.sqrt(dim_b0)) sdim_b1 = int(np.sqrt(dim_b1)) shape2 = (sdim_b0, sdim_b0, sdim_b1, sdim_b1) # Check dimensions if len(shape1) != 4 or shape1[0] * shape1[1] != dim_a0 or \ shape1[2] * shape1[3] != dim_a1: raise QiskitError("Invalid shape_a") if len(shape2) != 4 or shape2[0] * shape2[1] != dim_b0 or \ shape2[2] * shape2[3] != dim_b1: raise QiskitError("Invalid shape_b") return _reravel(mat1, mat2, shape1, shape2) def _reravel(mat1, mat2, shape1, shape2): """Reravel two bipartite matrices.""" # Reshuffle indices left_dims = shape1[:2] + shape2[:2] right_dims = shape1[2:] + shape2[2:] tensor_shape = left_dims + right_dims final_shape = (np.product(left_dims),
np.product(right_dims)
numpy.product
from functools import reduce import importlib import numpy as np import torch from utils.utils import one_hot_encoding __all__ = ('Compose', 'ToTensor', 'LabelSelection', 'ChannelSelection') class Compose: def __init__(self, transforms): if transforms.__class__.__name__ not in ['AttrDict', 'dict']: raise TypeError(f"Not supported {transforms.__class__.__name__} type yet.") transforms_module = importlib.import_module('data_loader.transforms') configure_transform = lambda transform, params: getattr(transforms_module, transform)(**params) \ if type(params).__name__ in ['dict', 'AttrDict'] else getattr(transforms_module, transform)(params) self.transforms = [configure_transform(transform, params) for transform, params in transforms.items()] def __call__(self, dataset): for transform in self.transforms: transform(dataset) def __repr__(self): format_string = self.__class__.__name__ + '(\n' for transform in self.transforms: format_string += f' {transform.__class__.__name__}()\n' format_string += ')' return format_string class ToTensor: def __init__(self, *args, **kwargs): pass def __call__(self, dataset): if type(dataset.x) != torch.Tensor: dataset.x = torch.as_tensor(dataset.x, dtype=torch.float) if type(dataset.y) != torch.Tensor: dataset.y = torch.as_tensor(dataset.y, dtype=torch.long) def __repr__(self): return self.__class__.__name__ class LabelSelection: def __init__(self, target_labels, is_one_hot=False): self.target_labels = target_labels self.is_one_hot = is_one_hot def __call__(self, dataset): if self.is_one_hot == 'one_hot_encoding': dataset.y = np.argmax(dataset.y, axis=1) # Select labels labels = ((dataset.y == label) for label in self.target_labels) idx = reduce(lambda x, y: x | y, labels) dataset.x = dataset.x[idx] dataset.y = dataset.y[idx] # Mapping labels for mapping, label in enumerate(np.unique(dataset.y)): dataset.y[dataset.y == label] = mapping if self.is_one_hot == 'one_hot_encoding': dataset.y = one_hot_encoding(dataset.y) def __repr__(self): return self.__class__.__name__ class ChannelSelection: def __init__(self, target_chans): self.target_chans = target_chans def __call__(self, dataset): target_idx = [i for i, chan in enumerate(self.target_chans) if chan in dataset.ch_names] dataset.x = dataset.x[..., target_idx, :] def __repr__(self): return self.__class__.__name__ class TimeSegmentation: def __init__(self, window_size, step_size, axis=1, merge='stack'): self.window_size = window_size self.step_size = step_size self.axis = axis self.merge = merge def __call__(self, dataset): segments = [] times = np.arange(dataset.x.shape[-1]) start = times[::self.step_size] end = start + self.window_size for s, e in zip(start, end): if e > len(times): break segments.append(dataset.x[..., s:e]) if self.merge == 'stack': dataset.x = np.stack(segments, axis=self.axis) elif self.merge == 'concat': dataset.x =
np.concatenate(segments, axis=self.axis)
numpy.concatenate
import numpy as np from uniswap_simulator import Position def coerce_to_tick_spacing(spacing, ticks): ticks = ticks.copy() ticks[...,0] -= np.mod(ticks[...,0], spacing) ticks[...,1] -= np.mod(ticks[...,1], spacing) - spacing return ticks class DRDP0Strategy: limit_order_width = 10 epsilon = 0.001 def __init__(self, price, lower, upper, fee): self._tick_spacing = 10 if fee == 0.3 / 100: self._tick_spacing = 60 elif fee == 1.0 / 100: self._tick_spacing = 100 self.position = Position(price, lower, upper, fee) self.limit_order = Position(price, lower, price / 1.0001, fee) def reset(self, price): self.position.reset(price) self.limit_order = Position(price, self.position.lower, price / 1.0001, self.position.fee) def mint(self, amount0, amount1): return self.position.mint(amount0, amount1) def update(self, price): amounts = self.position.update(price) amounts += self.limit_order.update(price) self._compound(price, amounts.copy()) return amounts def _compound(self, price, amounts, fraction=0.99): if self.position._earned is None: return inactive_limit_orders = np.any(( price < self.limit_order.lower, price > self.limit_order.upper ), axis=0) earned = self.position._earned.copy() earned += self.limit_order.burn() # change basis of `amounts[...,0]` so that it represents wealth in each asset amounts[...,0] *= price excess0 = amounts[...,0] > amounts[...,1] # compute active trading range (defined by lower and upper ticks) active_ticks = np.log(price) / np.log(1.0001) active_ticks = coerce_to_tick_spacing( self._tick_spacing,
np.vstack((active_ticks, active_ticks))
numpy.vstack
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix from datasets import load_dataset from sklearn.svm import LinearSVC import numpy as np import pandas as pd from sentence_transformers import SentenceTransformer import torch from torch import nn from torch.nn import functional as func from torch.optim import AdamW from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from os import path, makedirs import nets import matplotlib.pyplot as plt #import hiddenlayer as hl #import graphviz # def build_cnn(config): # if config == 1: def gpu_to_cpu(loc, cls): model = cls() model = torch.load(loc, map_location=torch.device('cpu')) torch.save(model, loc) def graph(loss_vals, model_name, dataset_name): epochs = [x[0] for x in loss_vals] loss = [x[1] for x in loss_vals] val_loss = [x[2] for x in loss_vals] plt.plot(epochs, loss, label='Training Loss') plt.plot(epochs, val_loss, label='Validation Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.title('Training info for ' + model_name +' on ' + dataset_name) plt.legend() plt.savefig('graphs/' + model_name + 'loss') plt.clf() def train_svm(X_tr, y_tr, X_te, y_te): svc = LinearSVC(verbose=True) svc.fit(X_tr, y_tr) svm_predictions = svc.predict(X_te) print('SVM_tfidf_acc = {}'.format(accuracy_score(y_te, svm_predictions))) print('SVM_tfidf confusion matrix:') print(confusion_matrix(y_te, svm_predictions)) def train_model(model, opt, train_load, val_load, test_load, epochs, model_name=""): print('Starting training') epoch_losses = [] best_val_loss = 1000 for epoch in range(epochs): model.train() losses = [] lossf = nn.CrossEntropyLoss() for _, batch in enumerate(train_load): embed_gpu, lab_gpu = tuple(i.to(device) for i in batch) opt.zero_grad() logits = model(embed_gpu) loss = lossf(logits, lab_gpu) losses.append(loss.item() / len(batch)) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), 1) opt.step() epoch_loss = np.mean(losses) print('Training Loss: {}'.format(epoch_loss)) val_loss = validate_model(model, val_load, 'Validation') epoch_losses.append((epoch, epoch_loss, val_loss)) graph(epoch_losses, model_name, 'amazon_us_reviews') if val_loss < best_val_loss: torch.save(model, 'checkpoint.pth') validate_model(model, test_load, 'Test') torch.save(model, 'models/' + model_name + '.pth') gpu_to_cpu('checkpoint.pth', nets.Net) gpu_to_cpu('models/' + model_name + '.pth', nets.Net) return epoch_losses def validate_model(model, loader, set_name): model.eval() acc = [] losses = [] for batch in loader: gpu_embed, gpu_lab = tuple(i.to(device) for i in batch) with torch.no_grad(): logits = model(gpu_embed) lossf = nn.CrossEntropyLoss() loss = lossf(logits, gpu_lab) losses.append(loss.item()/len(batch)) _, predictions = torch.max(logits, dim=1) accuracy = (predictions == gpu_lab).cpu().numpy().mean() acc.append(accuracy) print('{} loss: {}'.format(set_name, np.mean(losses))) print('{} acc: {}'.format(set_name, np.mean(acc))) return np.mean(losses) # device = 'cuda' device = 'cpu' #torch.autograd.set_detect_anomaly(True) DATASET_NAME = 'amazon_us_reviews' SUBSET = 'Digital_Software_v1_00' if not path.exists('test/embeddings_tensor.pth'): distilbert = SentenceTransformer('stsb-distilbert-base', device='cpu') dataset = load_dataset(DATASET_NAME, SUBSET) data = dataset['train']['review_body'] labels_sav = dataset['train']['star_rating'] amounts = [] for cl in np.unique(labels_sav): amounts.append((cl, labels_sav.count(cl))) print(amounts) train_data, test_data, train_labels, test_labels = train_test_split(data, labels_sav, stratify=labels_sav, test_size=0.2) train_bin_labels = list(map(lambda x: 1 if x > 3 else 0, train_labels)) test_bin_labels = list(map(lambda x: 1 if x > 3 else 0, test_labels)) train_distilbert_embed = distilbert.encode(train_data, show_progress_bar=False) test_distilbert_embed = distilbert.encode(test_data, show_progress_bar=False) makedirs('train', exist_ok=True) makedirs('test', exist_ok=True) np.save('train/text.npy', train_data, allow_pickle=True) np.save('train/embeddings.npy', train_distilbert_embed, allow_pickle=True) np.save('train/bin_labels.npy', train_bin_labels, allow_pickle=True) np.save('train/labels.npy', train_labels, allow_pickle=True) np.save('test/text.npy', test_data, allow_pickle=True) np.save('test/embeddings.npy', test_distilbert_embed, allow_pickle=True) np.save('test/bin_labels.npy', test_bin_labels, allow_pickle=True) np.save('test/labels.npy', test_labels, allow_pickle=True) torch.save(torch.FloatTensor(test_bin_labels), 'test/bin_labels_tensor.pth') torch.save(torch.FloatTensor(test_distilbert_embed), 'test/embeddings_tensor.pth') train_embeddings = np.load('train/embeddings.npy', allow_pickle=True) train_labels = np.load('train/bin_labels.npy', allow_pickle=True) test_embeddings =
np.load('test/embeddings.npy', allow_pickle=True)
numpy.load
# -*- coding: utf-8 -*- """ Created on Thu Aug 18 11:47:18 2016 @author: sebalander """ # %% IMPORTS from matplotlib.pyplot import plot, imshow, legend, show, figure, gcf, imread from matplotlib.pyplot import xlabel, ylabel from cv2 import Rodrigues # , homogr2pose from numpy import max, zeros, array, sqrt, roots, diag, sum, log from numpy import sin, cos, cross, ones, concatenate, flipud, dot, isreal from numpy import linspace, polyval, eye, linalg, mean, prod, vstack from numpy import ones_like, zeros_like, pi, float64, transpose from numpy import any as anny from numpy.linalg import svd, inv, det from scipy.linalg import norm from scipy.special import chdtri from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d # from copy import deepcopy as dc from importlib import reload from calibration import StereographicCalibration as stereographic from calibration import UnifiedCalibration as unified from calibration import RationalCalibration as rational from calibration import FisheyeCalibration as fisheye from calibration import PolyCalibration as poly reload(stereographic) reload(unified) reload(rational) reload(fisheye) reload(poly) def f64(x): return array(x, dtype=float64) # %% calss that holds all data class syntintr: def __init__(self, k=None, uv=None, s=None, camera=None, model=None): self.k = k self.uv = uv self.s = s self.camera = camera self.model = model class syntches: def __init__(self, nIm=None, nPt=None, rVecs=None, tVecs=None, objPt=None, imgPt=None, imgNse=None): self.nIm = nIm self.nPt = nPt self.rVecs = rVecs self.tVecs = tVecs self.objPt = objPt self.imgPt = imgPt self.imgNse = imgNse class syntextr: def __init__(self, ang=None, h=None, rVecs=None, tVecs=None, objPt=None, imgPt=None, index10=None, imgNse=None): self.ang = ang self.h = h self.rVecs = rVecs self.tVecs = tVecs self.objPt = objPt self.imgPt = imgPt self.index10 = index10 self.imgNse = imgNse class synt: def __init__(self, Intr=None, Ches=None, Extr=None): self.Intr = Intr self.Ches = Ches self.Extr = Extr class realches: def __init__(self, nIm=None, nPt=None, objPt=None, imgPt=None, imgFls=None): self.nIm = nIm self.nPt = nPt self.objPt = objPt self.imgPt = imgPt self.imgFls = imgFls class realbalk: def __init__(self, objPt=None, imgPt=None, priorLLA=None, imgFl=None): self.objPt = objPt self.imgPt = imgPt self.priorLLA = priorLLA self.imgFl = imgFl class realdete: def __init__(self, carGPS=None, carIm=None): self.carGPS = carGPS self.carIm = carIm class real: def __init__(self, Ches=None, Balk=None, Dete=None): self.Ches = Ches self.Balk = Balk self.Dete = Dete class datafull: ''' Nested namedtuples that hold the data for the paper Data Synt Intr # listo: SyntIntr camera 'vcaWide' string camera model model string indicating camera intrinsic model ['poly', 'rational', 'fisheye', 'stereographic'] s is the image size k sintehtic stereographic parameter uv = s / 2 is the stereographic optical center Ches # listo: SyntChes nIm number of images nPt number of point in image objPt chessboard model grid rVecs synth rotation vectors tVecs synth tVecs imgPt synth corners projected from objPt with synth params imgNse noise of 1 sigma for the image Extr # listo: SyntExtr ang angles of synth pose tables h heights of synth pose tables rVecs rotation vectors associated to angles tVecs tVecs associated to angles and h objPt distributed 3D points on the floor imgPt projected to image imgNse noise for image detection, sigma 1 index10 indexes to select 10 points well distributed Real Ches # listo: RealChes nIm number of chess images nPt number of chess points per image objPt chessboard model, 3D imgPt detected corners in chessboard images imgFls list of paths to the chessboard images Balk objPt calibration world points, lat lon imgPt image points for calibration priLLA prior lat-lon-altura imgFl camera snapshot file Dete carGps car gps coordinates carIm car image detection traces ''' def __init__(self, Synt=None, Real=None): self.Synt = Synt self.Real = Real # %% Z=0 PROJECTION def euler(al, be, ga): ''' devuelve matriz de rotacion según angulos de euler. Craigh, pag 42 las rotaciones son en este orden: ga: alrededor de X be: alrededor de Y al: alrededor de Z ''' ca, cb, cg =
cos([al, be, ga])
numpy.cos
"""Utility functions for plots.""" import natsort import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from matplotlib import gridspec from scipy.signal import medfilt from nilearn import plotting as ni_plt from tqdm import tqdm from pynwb import NWBHDF5IO from dandi.dandiapi import DandiAPIClient from nwbwidgets.utils.timeseries import align_by_times, timeseries_time_to_ind import ndx_events def prune_clabels( clabels_orig, targeted=False, targ_tlims=[13, 17], first_val=True, targ_label="Eat" ): """Modify coarse behavior labels based on whether looking at whole day (targeted=False) or specific hours (targeted=True). When selecting specific hours, can look at either the first (first_val=True) or last (first_val=False) label if there are multiple overlapping activity labels.""" clabels = clabels_orig.copy() if not targeted: for i in range(len(clabels_orig)): lab = clabels_orig.loc[i, "labels"] if lab[:5] == "Block": clabels.loc[i, "labels"] = "Blocklist" elif lab == "": clabels.loc[i, "labels"] = "Blocklist" elif lab not in ["Sleep/rest", "Inactive"]: clabels.loc[i, "labels"] = "Active" else: for i in range(len(clabels_orig)): lab = clabels_orig.loc[i, "labels"] if targ_label in lab.split(", "): clabels.loc[i, "labels"] = targ_label else: clabels.loc[i, "labels"] = "Blocklist" # if lab[:5] == 'Block': # clabels.loc[i, 'labels'] = 'Blocklist' # elif lab == '': # clabels.loc[i, 'labels'] = 'Blocklist' # elif first_val: # clabels.loc[i, 'labels'] = lab.split(', ')[0] # else: # clabels.loc[i, 'labels'] = lab.split(', ')[-1] if targeted: start_val, end_val = targ_tlims[0] * 3600, targ_tlims[1] * 3600 clabels = clabels[ (clabels["start_time"] >= start_val) & (clabels["stop_time"] <= end_val) ] clabels.reset_index(inplace=True) uni_labs = np.unique(clabels["labels"].values) return clabels, uni_labs def plot_clabels( clabels, uni_labs, targeted=False, first_val=True, targ_tlims=[13, 17], scale_fact=1 / 3600, bwidth=0.5, targlab_colind=0, ): """Plot coarse labels for one recording day. Note that the colors for the plots are currently pre-defined to work for sub-01 day 4.""" # Define colors for each label act_cols = plt.get_cmap("Reds")(np.linspace(0.15, 0.85, 5)) if targeted: category_colors = np.array(["w", act_cols[targlab_colind]], dtype=object) # if first_val: # category_colors = np.array(['dimgray', act_cols[1], act_cols[2], # act_cols[0], act_cols[3], act_cols[4]], # dtype=object) # else: # category_colors = np.array(['dimgray', act_cols[1], act_cols[0], # act_cols[3], act_cols[4]], # dtype=object) else: category_colors = np.array( [[1, 128 / 255, 178 / 255], "dimgray", "lightgreen", "lightskyblue"], dtype=object, ) # Plot each label as a horizontal bar fig, ax = plt.subplots(figsize=(20, 2), dpi=150) for i in range(len(uni_labs)): lab_inds = np.nonzero(uni_labs[i] == clabels["labels"].values)[0] lab_starts = clabels.loc[lab_inds, "start_time"].values lab_stops = clabels.loc[lab_inds, "stop_time"].values lab_widths = lab_stops - lab_starts rects = ax.barh( np.ones_like(lab_widths), lab_widths * scale_fact, left=lab_starts * scale_fact, height=bwidth, label=uni_labs[i], color=category_colors[i], ) ax.legend( ncol=len(uni_labs), bbox_to_anchor=(0, 1), loc="lower left", fontsize="small" ) # Define x-axis based on if targeted window or not if targeted: plt.xlim(targ_tlims) targ_tlims_int = [int(val) for val in targ_tlims] plt.xticks(targ_tlims_int) ax.set_xticklabels( ["{}:00".format(targ_tlims_int[0]), "{}:00".format(targ_tlims_int[-1])] ) else: plt.xlim([0, 24]) plt.xticks([0, 12, 24]) ax.set_xticklabels(["0:00", "12:00", "0:00"]) # Remove border lines and show plot ax.yaxis.set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["right"].set_visible(False) plt.show() return fig def clabel_table_create( common_acts, n_parts=12, data_lp="/data2/users/stepeter/files_nwb/downloads/000055/" ): """Create table of coarse label durations across participants. Labels to include in the table are specified by common_acts.""" with DandiAPIClient() as client: paths = [] for file in client.get_dandiset("000055", "draft").get_assets_with_path_prefix(""): paths.append(file.path) paths = natsort.natsorted(paths) vals_all = np.zeros([n_parts, len(common_acts) + 1]) for part_ind in tqdm(range(n_parts)): fids = [val for val in paths if "sub-" + str(part_ind + 1).zfill(2) in val] for fid in fids: with DandiAPIClient() as client: asset = client.get_dandiset("000055", "draft").get_asset_by_path(fid) s3_path = asset.get_content_url(follow_redirects=1, strip_query=True) with NWBHDF5IO(s3_path, mode="r", driver="ros3") as io: nwb = io.read() curr_labels = nwb.intervals["epochs"].to_dataframe() durations = ( curr_labels.loc[:, "stop_time"].values - curr_labels.loc[:, "start_time"].values ) # Add up durations of each label for s, curr_act in enumerate(common_acts): for i, curr_label in enumerate(curr_labels["labels"].tolist()): if curr_act in curr_label.split(", "): vals_all[part_ind, s] += durations[i] / 3600 # Add up total durations of selected labels (avoid double counting) for i, curr_label in enumerate(curr_labels["labels"].tolist()): in_lab_grp = False for sub_lab in curr_label.split(", "): if sub_lab in common_acts: in_lab_grp = True vals_all[part_ind, -1] += durations[i] / 3600 if in_lab_grp else 0 del nwb, io # Make final table/dataframe common_acts_col = [val.lstrip("Blocklist (").rstrip(")") for val in common_acts] df_all = pd.DataFrame( vals_all.round(1), index=["P" + str(val + 1).zfill(2) for val in range(n_parts)], columns=common_acts_col + ["Total"], ) return df_all def identify_elecs(group_names): """Determine surface v. depth ECoG electrodes""" is_surf = [] for label in group_names: if "grid" in label.lower(): is_surf.append(True) elif label.lower() in ["mhd", "latd", "lmtd", "ltpd"]: is_surf.append(True) # special cases elif (label.lower() == "ahd") & ("PHD" not in group_names): is_surf.append(True) # special case elif "d" in label.lower(): is_surf.append(False) else: is_surf.append(True) return np.array(is_surf) def load_data_characteristics(nparts=12): """Load data characteristics including the number of good and total ECoG electrodes, hemisphere implanted, and number of recording days for each participant.""" with DandiAPIClient() as client: paths = [] for file in client.get_dandiset("000055", "draft").get_assets_with_path_prefix(""): paths.append(file.path) paths = natsort.natsorted(paths) n_elecs_tot, n_elecs_good = [], [] rec_days, hemis, n_elecs_surf_tot, n_elecs_depth_tot = [], [], [], [] n_elecs_surf_good, n_elecs_depth_good = [], [] for part_ind in tqdm(range(nparts)): fids = [val for val in paths if "sub-" + str(part_ind + 1).zfill(2) in val] rec_days.append(len(fids)) for fid in fids[:1]: with DandiAPIClient() as client: asset = client.get_dandiset("000055", "draft").get_asset_by_path(fid) s3_path = asset.get_content_url(follow_redirects=1, strip_query=True) with NWBHDF5IO(s3_path, mode="r", driver="ros3") as io: nwb = io.read() # Determine good/total electrodes n_elecs_good.append(np.sum(nwb.electrodes["good"][:])) n_elecs_tot.append(len(nwb.electrodes["good"][:])) # Determine implanted hemisphere c_wrist = ( nwb.processing["behavior"].data_interfaces["ReachEvents"].description[0] ) hemis.append("L" if c_wrist == "r" else "R") # Determine surface vs. depth electrode count is_surf = identify_elecs(nwb.electrodes["group_name"][:]) n_elecs_surf_tot.append(np.sum(is_surf)) n_elecs_depth_tot.append(np.sum(1 - is_surf)) n_elecs_surf_good.append( np.sum(nwb.electrodes["good"][is_surf.nonzero()[0]]) ) n_elecs_depth_good.append( np.sum(nwb.electrodes["good"][(1 - is_surf).nonzero()[0]]) ) del nwb, io part_nums = [val + 1 for val in range(nparts)] part_ids = ["P" + str(val).zfill(2) for val in part_nums] return [ rec_days, hemis, n_elecs_surf_tot, n_elecs_surf_good, n_elecs_depth_tot, n_elecs_depth_good, part_nums, part_ids, n_elecs_good, n_elecs_tot, ] def plot_ecog_descript( n_elecs_tot, n_elecs_good, part_ids, nparts=12, allLH=False, nrows=3, chan_labels="all", width=7, height=3, ): """Plot ECoG electrode positions and identified noisy electrodes side by side.""" with DandiAPIClient() as client: paths = [] for file in client.get_dandiset("000055", "draft").get_assets_with_path_prefix(""): paths.append(file.path) paths = natsort.natsorted(paths) fig = plt.figure(figsize=(width * 3, height * 3), dpi=150) # First subplot: electrode locations ncols = nparts // nrows gs = gridspec.GridSpec( nrows=nrows, ncols=ncols, # +2, figure=fig, width_ratios=[width / ncols] * ncols, # [width/ncols/2]*ncols+[width/10, 4*width/10], height_ratios=[height / nrows] * nrows, wspace=0, hspace=-0.5, ) ax = [None] * (nparts) # +1) for part_ind in tqdm(range(nparts)): # Load NWB data file fids = [val for val in paths if "sub-" + str(part_ind + 1).zfill(2) in val] with DandiAPIClient() as client: asset = client.get_dandiset("000055", "draft").get_asset_by_path(fids[0]) s3_path = asset.get_content_url(follow_redirects=1, strip_query=True) with NWBHDF5IO(s3_path, mode="r", driver="ros3") as io: nwb = io.read() # Determine hemisphere to display if allLH: sides_2_display = "l" else: average_xpos_sign = np.nanmean(nwb.electrodes["x"][:]) sides_2_display = "r" if average_xpos_sign > 0 else "l" # Run electrode plotting function ax[part_ind] = fig.add_subplot(gs[part_ind // ncols, part_ind % ncols]) plot_ecog_electrodes_mni_from_nwb_file( nwb, chan_labels, num_grid_chans=64, node_size=50, colors="silver", alpha=0.9, sides_2_display=sides_2_display, node_edge_colors="k", edge_linewidths=1.5, ax_in=ax[part_ind], allLH=allLH, ) del nwb, io # ax[part_ind].text(-0.2,0.1,'P'+str(part_ind+1).zfill(2), fontsize=8) # fig.text(0.1, 0.91, '(a) ECoG electrode positions', fontsize=10) # Second subplot: noisy electrodes per participant # ax[-1] = fig.add_subplot(gs[:, -1]) # ax[-1].bar(part_ids,n_elecs_tot,color='lightgrey') # ax[-1].bar(part_ids,n_elecs_good,color='dimgrey') # ax[-1].spines['right'].set_visible(False) # ax[-1].spines['top'].set_visible(False) # ax[-1].set_xticklabels(part_ids, rotation=45) # ax[-1].legend(['Total','Good'], frameon=False, fontsize=8) # ax[-1].tick_params(labelsize=9) # ax[-1].set_ylabel('Number of electrodes', fontsize=9, labelpad=0) # ax[-1].set_title('(b) Total/good electrodes per participant', # fontsize=10) plt.show() return fig def plot_ecog_electrodes_mni_from_nwb_file( nwb_dat, chan_labels="all", num_grid_chans=64, colors=None, node_size=50, figsize=(16, 6), sides_2_display="auto", node_edge_colors=None, alpha=0.5, edge_linewidths=3, ax_in=None, rem_zero_chans=False, allLH=False, zero_rem_thresh=0.99, elec_col_suppl=None, ): """ Plots ECoG electrodes from MNI coordinate file (only for specified labels) NOTE: If running in Jupyter, use '%matplotlib inline' instead of '%matplotlib notebook' """ # Load channel locations chan_info = nwb_dat.electrodes.to_dataframe() # Create dataframe for electrode locations if chan_labels == "all": locs = chan_info.loc[:, ["x", "y", "z"]] elif chan_labels == "allgood": locs = chan_info.loc[:, ["x", "y", "z", "good"]] else: locs = chan_info.loc[chan_labels, ["x", "y", "z"]] if colors is not None: if (locs.shape[0] > len(colors)) & isinstance(colors, list): locs = locs.iloc[: len(colors), :] # locs.rename(columns={'X':'x','Y':'y','Z':'z'}, inplace=True) chan_loc_x = chan_info.loc[:, "x"].values # Remove NaN electrode locations (no location info) nan_drop_inds = np.nonzero(np.isnan(chan_loc_x))[0] locs.dropna(axis=0, inplace=True) # remove NaN locations if (colors is not None) & isinstance(colors, list): colors_new, loc_inds_2_drop = [], [] for s, val in enumerate(colors): if not (s in nan_drop_inds): colors_new.append(val) else: loc_inds_2_drop.append(s) colors = colors_new.copy() if elec_col_suppl is not None: loc_inds_2_drop.reverse() # go from high to low values for val in loc_inds_2_drop: del elec_col_suppl[val] if chan_labels == "allgood": goodChanInds = chan_info.loc[:, "good", :] inds2drop = np.nonzero(locs["good"] == 0)[0] locs.drop(columns=["good"], inplace=True) locs.drop(locs.index[inds2drop], inplace=True) if colors is not None: colors_new, loc_inds_2_drop = [], [] for s, val in enumerate(colors): if not (s in inds2drop): # np.all(s!=inds2drop): colors_new.append(val) else: loc_inds_2_drop.append(s) colors = colors_new.copy() if elec_col_suppl is not None: loc_inds_2_drop.reverse() # go from high to low values for val in loc_inds_2_drop: del elec_col_suppl[val] if rem_zero_chans: # Remove channels with zero values (white colors) colors_new, loc_inds_2_drop = [], [] for s, val in enumerate(colors): if np.mean(val) < zero_rem_thresh: colors_new.append(val) else: loc_inds_2_drop.append(s) colors = colors_new.copy() locs.drop(locs.index[loc_inds_2_drop], inplace=True) if elec_col_suppl is not None: loc_inds_2_drop.reverse() # go from high to low values for val in loc_inds_2_drop: del elec_col_suppl[val] # Decide whether to plot L or R hemisphere based on x coordinates if len(sides_2_display) > 1: N, axes, sides_2_display = _setup_subplot_view(locs, sides_2_display, figsize) else: N = 1 axes = ax_in if allLH: average_xpos_sign = np.mean(np.asarray(locs["x"])) if average_xpos_sign > 0: locs["x"] = -locs["x"] sides_2_display = "l" if colors is None: colors = list() # Label strips/depths differently for easier visualization (or use defined color list) if len(colors) == 0: for s in range(locs.shape[0]): if s >= num_grid_chans: colors.append("r") else: colors.append("b") if elec_col_suppl is not None: colors = elec_col_suppl.copy() # Rearrange to plot non-grid electrode first if num_grid_chans > 0: # isinstance(colors, list): locs2 = locs.copy() locs2["x"] = np.concatenate( (locs["x"][num_grid_chans:], locs["x"][:num_grid_chans]), axis=0 ) locs2["y"] = np.concatenate( (locs["y"][num_grid_chans:], locs["y"][:num_grid_chans]), axis=0 ) locs2["z"] = np.concatenate( (locs["z"][num_grid_chans:], locs["z"][:num_grid_chans]), axis=0 ) if isinstance(colors, list): colors2 = colors.copy() colors2 = colors[num_grid_chans:] + colors[:num_grid_chans] else: colors2 = colors else: locs2 = locs.copy() if isinstance(colors, list): colors2 = colors.copy() else: colors2 = colors # [colors for i in range(locs2.shape[0])] # Plot the result _plot_electrodes( locs2, node_size, colors2, axes, sides_2_display, N, node_edge_colors, alpha, edge_linewidths, ) def _plot_electrodes( locs, node_size, colors, axes, sides_2_display, N, node_edge_colors, alpha, edge_linewidths, marker="o", ): """ Handles plotting of electrodes. """ if N == 1: ni_plt.plot_connectome( np.eye(locs.shape[0]), locs, output_file=None, node_kwargs={ "alpha": alpha, "edgecolors": node_edge_colors, "linewidths": edge_linewidths, "marker": marker, }, node_size=node_size, node_color=colors, axes=axes, display_mode=sides_2_display, ) elif sides_2_display == "yrz" or sides_2_display == "ylz": colspans = [ 5, 6, 5, ] # different sized subplot to make saggital view similar size to other two slices current_col = 0 total_colspans = int(np.sum(np.asarray(colspans))) for ind, colspan in enumerate(colspans): axes[ind] = plt.subplot2grid( (1, total_colspans), (0, current_col), colspan=colspan, rowspan=1 ) ni_plt.plot_connectome( np.eye(locs.shape[0]), locs, output_file=None, node_kwargs={ "alpha": alpha, "edgecolors": node_edge_colors, "linewidths": edge_linewidths, "marker": marker, }, node_size=node_size, node_color=colors, axes=axes[ind], display_mode=sides_2_display[ind], ) current_col += colspan else: for i in range(N): ni_plt.plot_connectome( np.eye(locs.shape[0]), locs, output_file=None, node_kwargs={ "alpha": alpha, "edgecolors": node_edge_colors, "linewidths": edge_linewidths, "marker": marker, }, node_size=node_size, node_color=colors, axes=axes[i], display_mode=sides_2_display[i], ) def plot_ecog_pow( lp, rois_plt, freq_range, sbplt_titles, part_id="P01", n_parts=12, nrows=2, ncols=4, figsize=(7, 4), ): """Plot ECoG projected spectral power.""" fig, ax = plt.subplots(nrows, ncols, figsize=figsize, dpi=150) # Plot projected power for all participants fig, ax = _ecog_pow_group( fig, ax, lp, rois_plt, freq_range, sbplt_titles, n_parts, nrows, ncols, row_ind=0, ) # Plot projected power for 1 participant fig, ax = _ecog_pow_single( fig, ax, lp, rois_plt, freq_range, sbplt_titles, n_parts, nrows, ncols, row_ind=1, part_id=part_id, ) fig.tight_layout() plt.show() def _ecog_pow_group( fig, ax, lp, rois_plt, freq_range, sbplt_titles, n_parts=12, nrows=2, ncols=4, row_ind=0, ): """Plot projected power for all participants.""" freqs_vals = np.arange(freq_range[0], freq_range[1] + 1).tolist() fig.subplots_adjust(hspace=0.5) fig.subplots_adjust(wspace=0.1) power, freqs, parts = [], [], [] n_wins_sbj = [] for k, roi in enumerate(rois_plt): power_roi, freqs_roi, parts_roi = [], [], [] for j in range(n_parts): dat = np.load(lp + "P" + str(j + 1).zfill(2) + "_" + roi + ".npy") dat = 10 * np.log10(dat) for i in range(dat.shape[0]): power_roi.extend(dat[i, :].tolist()) freqs_roi.extend(freqs_vals) parts_roi.extend(["P" + str(j + 1).zfill(2)] * len(freqs_vals)) if k == 0: n_wins_sbj.append(dat.shape[0]) power.extend(power_roi) freqs.extend(freqs_roi) parts.extend(parts_roi) parts_uni = np.unique(np.asarray(parts_roi))[::-1].tolist() df_roi = pd.DataFrame( {"Power": power_roi, "Freqs": freqs_roi, "Parts": parts_roi} ) col = k % ncols ax_curr = ax[row_ind, col] if nrows > 1 else ax[col] leg = False # 'brief' if k==3 else False sns.lineplot( data=df_roi, x="Freqs", y="Power", hue="Parts", ax=ax_curr, ci="sd", legend=leg, palette=["darkgray"] * len(parts_uni), hue_order=parts_uni, ) # palette='Blues' # ax_curr.set_xscale('log') ax_curr.set_xlim(freq_range) ax_curr.set_ylim([-20, 30]) ax_curr.spines["right"].set_visible(False) ax_curr.spines["top"].set_visible(False) ax_curr.set_xlim(freq_range) ax_curr.set_xticks( [freq_range[0]] + np.arange(20, 101, 20).tolist() + [freq_range[1]] ) ylab = "" # '' if k%ncols > 0 else 'Power\n(dB)' # 10log(uV^2) xlab = "" # 'Frequency (Hz)' if k//ncols==(nrows-1) else '' ax_curr.set_ylabel(ylab, rotation=0, labelpad=15, fontsize=9) ax_curr.set_xlabel(xlab, fontsize=9) if k % ncols > 0: l_yticks = len(ax_curr.get_yticklabels()) ax_curr.set_yticks(ax_curr.get_yticks().tolist()) ax_curr.set_yticklabels([""] * l_yticks) ax_curr.tick_params(axis="both", which="major", labelsize=8) ax_curr.set_title(sbplt_titles[k], fontsize=9) return fig, ax def _ecog_pow_single( fig, ax, lp, rois_plt, freq_range, sbplt_titles, n_parts=12, nrows=2, ncols=4, row_ind=1, part_id="P01", ): """Plot projected power for a single participant.""" part_id = "P01" freqs_vals = np.arange(freq_range[0], freq_range[1] + 1).tolist() power, freqs, parts = [], [], [] n_wins_sbj = [] for k, roi in enumerate(rois_plt): power_roi, freqs_roi, parts_roi = [], [], [] dat = np.load(lp + part_id + "_" + roi + ".npy") dat = 10 * np.log10(dat) for i in range(dat.shape[0]): power_roi.extend(dat[i, :].tolist()) freqs_roi.extend(freqs_vals) parts_roi.extend([i] * len(freqs_vals)) if k == 0: n_wins_sbj.append(dat.shape[0]) power.extend(power_roi) freqs.extend(freqs_roi) parts.extend(parts_roi) parts_uni = np.unique(np.asarray(parts_roi))[::-1].tolist() df_roi = pd.DataFrame( {"Power": power_roi, "Freqs": freqs_roi, "Parts": parts_roi} ) col = k % ncols ax_curr = ax[row_ind, col] if nrows > 1 else ax[col] leg = False # 'brief' if k==3 else False sns.lineplot( data=df_roi, x="Freqs", y="Power", hue="Parts", ax=ax_curr, ci=None, legend=leg, palette=["darkgray"] * len(parts_uni), hue_order=parts_uni, linewidth=0.2, ) # palette='Blues' ax_curr.set_xlim(freq_range) ax_curr.set_ylim([-20, 30]) ax_curr.spines["right"].set_visible(False) ax_curr.spines["top"].set_visible(False) ax_curr.set_xlim(freq_range) ax_curr.set_xticks( [freq_range[0]] + np.arange(20, 101, 20).tolist() + [freq_range[1]] ) ylab = "" # '' if k%ncols > 0 else 'Power\n(dB)' # 10log(uV^2) xlab = "" # 'Frequency (Hz)' if k//ncols==(nrows-1) else '' ax_curr.set_ylabel(ylab, rotation=0, labelpad=15, fontsize=9) ax_curr.set_xlabel(xlab, fontsize=9) if k % ncols > 0: l_yticks = len(ax_curr.get_yticklabels()) ax_curr.set_yticks(ax_curr.get_yticks().tolist()) ax_curr.set_yticklabels([""] * l_yticks) ax_curr.tick_params(axis="both", which="major", labelsize=8) ax_curr.set_title(sbplt_titles[k], fontsize=9) return fig, ax def plot_dlc_recon_errs(fig, ax): """Plots DeepLabCut reconstruction errors on training and heldout images. This information is not present in the NWB files.""" # DLC reconstruction errors [train set, holdout set] sbj_d = { "P01": [1.45, 4.27], "P02": [1.44, 3.58], "P03": [1.58, 6.95], "P04": [1.63, 6.02], "P05": [1.43, 3.42], "P06": [1.43, 6.63], "P07": [1.51, 5.45], "P08": [1.84, 10.35], "P09": [1.4, 4.05], "P10": [1.48, 7.59], "P11": [1.51, 5.45], "P12": [1.52, 4.73], } train_err = [val[0] for key, val in sbj_d.items()] test_err = [val[1] for key, val in sbj_d.items()] nsbjs = len(train_err) sbj_nums = [val + 1 for val in range(nsbjs)] sbj = ["P" + str(val).zfill(2) for val in sbj_nums] # Create plot ax.bar(sbj, train_err, color="dimgrey") ax.bar(sbj, test_err, color="lightgrey") ax.bar(sbj, train_err, color="dimgrey") ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.set_xticklabels(sbj, rotation=45) ax.legend(["Train set", "Holdout set"], frameon=False, fontsize=8) ax.tick_params(labelsize=9) ax.set_ylabel("Reconstruction error (pixels)") ax.set_title("(a) Pose estimation model errors", fontsize=10) def plot_wrist_trajs( fig, ax, lp=None, base_start=-1.5, base_end=-1, before=3, after=3, fs_video=30, n_parts=12, ): """Plot contralateral wrist trajectories during move onset events.""" df_pose, part_lst = _get_wrist_trajs( base_start, base_end, before, after, fs_video, n_parts ) df_pose_orig = df_pose.copy() df_pose = df_pose_orig.loc[df_pose["Contra"] == "contra", :] # Set custom color palette sns.set_palette(sns.color_palette(["gray"])) uni_sbj = np.unique(
np.asarray(part_lst)
numpy.asarray
# -*- coding: utf-8 -*- """ Geophysics for ageobot. TODO: Move some of this to Bruges. """ import numpy as np from PIL import ImageStat def is_greyscale(im): stat = ImageStat.Stat(im) if sum(stat.sum[:3])/3 == stat.sum[0]: return True return False def hilbert(s, phi=0): """ Optional phase shift phi in degrees. I don't understand why I need to handle the real and complex parts separately. """ n = s.size m = int(np.ceil((n + 1) / 2)) r0 = np.exp(1j * np.radians(phi)) # Real part. rr = np.ones(n, dtype=complex) rr[:m] = r0 rr[m+1:] = np.conj(r0) # Imag part. ri = np.ones(n, dtype=complex) ri[:m] = r0 ri[m+1:] = -1 * r0 _Sr = rr * np.fft.fft(s) _Si = ri * np.fft.fft(s) hr = np.fft.ifft(_Sr) hi = np.fft.ifft(_Si) h = np.zeros_like(hr, dtype=complex) h += hr.real + hi.imag * 1j return h def trim_mean(i, proportion): """ Trim mean, roughly emulating scipy.stats.trim_mean(). Must deal with arrays or lists. """ a = np.sort(np.array(i)) k = int(np.floor(a.size * proportion)) return np.nanmean(a[k:-k]) def parabolic(f, x): """ Interpolation. """ x = int(x) f = np.concatenate([f, [f[-1]]]) xv = 1/2. * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x yv = f[x] - 1/4. * (f[x-1] - f[x+1]) * (xv - x) return (xv, yv) def freq_from_crossings(sig, fs): """ Dominant frequency from zero-crossings. """ indices, = np.where((sig[1:] >= 0) & (sig[:-1] < 0)) crossings = [i - sig[i] / (sig[i+1] - sig[i]) for i in indices] print("************* xings", crossings) return fs / np.mean(np.diff(crossings)) def freq_from_autocorr(sig, fs): """ Dominant frequency from autocorrelation. """ sig = sig + 128 corr = np.convolve(sig, sig[::-1], mode='full') corr = corr[int(len(corr)/2):] d = np.diff(corr) start = (d > 0).nonzero()[0][0] # nonzero() returns a tuple peak = np.argmax(corr[int(start):]) + start px, py = parabolic(corr, peak) return fs / px def get_spectrum(signal, fs): windowed = signal * np.blackman(len(signal)) a = abs(np.fft.rfft(windowed)) f = np.fft.rfftfreq(len(signal), 1/fs) db = 20 * np.log10(a) sig = db - np.amax(db) + 20 indices = ((sig[1:] >= 0) & (sig[:-1] < 0)).nonzero() crossings = [z - sig[z] / (sig[z+1] - sig[z]) for z in indices] try: mi, ma = np.amin(crossings),
np.amax(crossings)
numpy.amax
# Copyright 2016 Sandia Corporation and the National Renewable Energy # Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' The Extreme Sea State Contour (ESSC) module contains the tools necessary to calculate environmental contours of extreme sea states for buoy data. ''' import numpy as np import scipy.stats as stats import scipy.optimize as optim import scipy.interpolate as interp import matplotlib.pyplot as plt import h5py from sklearn.decomposition import PCA as skPCA import requests import bs4 import urllib.request import re from datetime import datetime, date import os import glob import copy import statsmodels.api as sm from statsmodels import robust import urllib import matplotlib class EA: '''The Environmental Assessment (EA) class points to functions for various contour methods (including getContours and getSamples) and allows the user to plot results (plotData), sample along the contour (getContourPoints), calculate the wave breaking steepness curve (steepness) and/or use the bootstrap method to calculate 95% confidence bounds about the contours (bootStrap).''' def __init__(): return def getContours(): '''Points to the getContours function in whatever contouring method is used''' return def getSamples(): '''Points to the getSamples function in whatever contouring method is used, currently only implemented for PCA contours. Implementation for additional contour methods planned for future release.''' return def saveContour(self, fileName=None): '''Saves all available contour data obtained via the EA module to a .h5 file Parameters ---------- fileName : string relevent path and filename where the .h5 file will be created and saved. If no filename, the h5 file will be named NDBC(buoyNum).h5 ''' if (fileName is None): fileName = 'NDBC' + str(self.buoy.buoyNum) + '.h5' else: _, file_extension = os.path.splitext(fileName) if not file_extension: fileName = fileName + '.h5' print(fileName); with h5py.File(fileName, 'a') as f: if('method' in f): f['method'][...] = self.method else: f.create_dataset('method', data=self.method) if('parameters' in f): gp = f['parameters'] else: gp = f.create_group('parameters') self._saveParams(gp) if(self.Hs_ReturnContours is not None): if('ReturnContours' in f): grc = f['ReturnContours'] else: grc = f.create_group('ReturnContours') if('T_Return' in grc): f_T_Return = grc['T_Return'] f_T_Return[...] = self.T_ReturnContours else: f_T_Return = grc.create_dataset('T_Return', data=self.T_ReturnContours) f_T_Return.attrs['units'] = 's' f_T_Return.attrs['description'] = 'contour, energy period' if('Hs_Return' in grc): f_Hs_Return = grc['Hs_Return'] f_Hs_Return[...] = self.Hs_ReturnContours else: f_Hs_Return = grc.create_dataset('Hs_Return', data=self.Hs_ReturnContours) f_Hs_Return.attrs['units'] = 'm' f_Hs_Return.attrs['description'] = 'contours, significant wave height' # Samples for full sea state long term analysis if(hasattr(self, 'Hs_SampleFSS') and self.Hs_SampleFSS is not None): if('Samples_FullSeaState' in f): gfss = f['Samples_FullSeaState'] else: gfss = f.create_group('Samples_FullSeaState') if('Hs_SampleFSS' in gfss): f_Hs_SampleFSS = gfss['Hs_SampleFSS'] f_Hs_SampleFSS[...] = self.Hs_SampleFSS else: f_Hs_SampleFSS = gfss.create_dataset('Hs_SampleFSS', data=self.Hs_SampleFSS) f_Hs_SampleFSS.attrs['units'] = 'm' f_Hs_SampleFSS.attrs['description'] = 'full sea state significant wave height samples' if('T_SampleFSS' in gfss): f_T_SampleFSS = gfss['T_SampleFSS'] f_T_SampleFSS[...] = self.T_SampleFSS else: f_T_SampleFSS = gfss.create_dataset('T_SampleFSS', data=self.T_SampleFSS) f_T_SampleFSS.attrs['units'] = 's' f_T_SampleFSS.attrs['description'] = 'full sea state energy period samples' if('Weight_SampleFSS' in gfss): f_Weight_SampleFSS = gfss['Weight_SampleFSS'] f_Weight_SampleFSS[...] = self.Weight_SampleFSS else: f_Weight_SampleFSS = gfss.create_dataset('Weight_SampleFSS', data = self.Weight_SampleFSS) f_Weight_SampleFSS.attrs['description'] = 'full sea state relative weighting samples' # Samples for contour approach long term analysis if(hasattr(self, 'Hs_SampleCA') and self.Hs_SampleCA is not None): if('Samples_ContourApproach' in f): gca = f['Samples_ContourApproach'] else: gca = f.create_group('Samples_ContourApproach') if('Hs_SampleCA' in gca): f_Hs_sampleCA = gca['Hs_SampleCA'] f_Hs_sampleCA[...] = self.Hs_SampleCA else: f_Hs_sampleCA = gca.create_dataset('Hs_SampleCA', data=self.Hs_SampleCA) f_Hs_sampleCA.attrs['units'] = 'm' f_Hs_sampleCA.attrs['description'] = 'contour approach significant wave height samples' if('T_SampleCA' in gca): f_T_sampleCA = gca['T_SampleCA'] f_T_sampleCA[...] = self.T_SampleCA else: f_T_sampleCA = gca.create_dataset('T_SampleCA', data=self.T_SampleCA) f_T_sampleCA.attrs['units'] = 's' f_T_sampleCA.attrs['description'] = 'contour approach energy period samples' def plotData(self): """ Display a plot of the 100-year return contour, full sea state samples and contour samples """ plt.figure() plt.plot(self.buoy.T, self.buoy.Hs, 'bo', alpha=0.1, label='NDBC data') plt.plot(self.T_ReturnContours, self.Hs_ReturnContours, 'k-', label='100 year contour') #plt.plot(self.T_SampleFSS, self.Hs_SampleFSS, 'ro', label='full sea state samples') #plt.plot(self.T_SampleCA, self.Hs_SampleCA, 'y^', label='contour approach samples') plt.legend(loc='lower right', fontsize='small') plt.grid(True) plt.xlabel('Energy period, $T_e$ [s]') plt.ylabel('Sig. wave height, $H_s$ [m]') plt.show() def getContourPoints(self, T_Sample): '''Get Hs points along a specified environmental contour using user-defined T values. Parameters ---------- T_Sample : nparray points for sampling along return contour Returns ------- Hs_SampleCA : nparray points sampled along return contour Example ------- To calculate Hs values along the contour at specific user-defined T values: import WDRT.ESSC as ESSC import numpy as np # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create PCA EA object for buoy pca46022 = ESSC.PCA(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Generate contour Hs_Return, T_Return = pca46022.getContours(Time_SS, Time_r,nb_steps) # Use getContourPoints to find specific points along the contour T_sampleCA = np.arange(12, 26, 2) Hs_sampleCA = pca46022.getContourPoints(T_sampleCA) ''' #finds minimum and maximum energy period values amin = np.argmin(self.T_ReturnContours) amax = np.argmax(self.T_ReturnContours) #finds points along the contour w1 = self.Hs_ReturnContours[amin:amax] w2 = np.concatenate((self.Hs_ReturnContours[amax:], self.Hs_ReturnContours[:amin])) if (np.max(w1) > np.max(w2)): x1 = self.T_ReturnContours[amin:amax] y = self.Hs_ReturnContours[amin:amax] else: x1 = np.concatenate((self.T_ReturnContours[amax:], self.T_ReturnContours[:amin])) y1 = np.concatenate((self.Hs_ReturnContours[amax:], self.Hs_ReturnContours[:amin])) #sorts data based on the max and min energy period values ms = np.argsort(x1) x = x1[ms] y = y1[ms] #interpolates the sorted data si = interp.interp1d(x, y) #finds the wave height based on the user specified energy period values Hs_SampleCA = si(T_Sample) self.T_SampleCA = T_Sample self.Hs_SampleCA = Hs_SampleCA return Hs_SampleCA def steepness(self, SteepMax, T_vals, depth = None): '''This function calculates a steepness curve to be plotted on an H vs. T diagram. First, the function calculates the wavelength based on the depth and T. The T vector can be the input data vector, or will be created below to cover the span of possible T values. The function solves the dispersion relation for water waves using the Newton-Raphson method. All outputs are solved for exactly using: :math:`hw^2/g = kh*tanh(khG)` Approximations that could be used in place of this code for deep and shallow water, as appropriate: deep water: :math:`h/\lambda \geq 1/2, tanh(kh) \sim 1, \lambda = (gT^2)/(2\pi)` shallow water: :math:`h/\lambda \leq 1/20, tanh(kh) \sim kh, \lambda = \sqrt{T(gh)}` Parameters ---------- SteepMax: float Wave breaking steepness estimate (e.g., 0.07). T_vals :np.array Array of T values [sec] at which to calculate the breaking height. depth: float Depth at site Note: if not inputted, the depth will tried to be grabbed from the respective buoy type's website. Returns ------- SteepH: np.array H values [m] that correspond to the T_mesh values creating the steepness curve. T_steep: np.array T values [sec] over which the steepness curve is defined. Example ------- To find limit the steepness of waves on a contour by breaking: import numpy as np import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create PCA EA object for buoy pca46022 = ESSC.PCA(buoy46022) T_vals = np.arange(0.1, np.amax(buoy46022.T), 0.1) # Enter estimate of breaking steepness SteepMax = 0.07 # Reference DNV-RP-C205 # Declare required parameters depth = 391.4 # Depth at measurement point (m) SteepH = pca46022.steepness(depth,SteepMax,T_vals) ''' # Calculate the wavelength at a given depth at each value of T if depth == None: depth = self.__fetchDepth() lambdaT = [] g = 9.81 # [m/s^2] omega = ((2 * np.pi) / T_vals) lambdaT = [] for i in range(len(T_vals)): # Initialize kh using Eckart 1952 (mentioned in Holthuijsen pg. 124) kh = (omega[i]**2) * depth / \ (g * (np.tanh((omega[i]**2) * depth / g)**0.5)) # Find solution using the Newton-Raphson Method for j in range(1000): kh0 = kh f0 = (omega[i]**2) * depth / g - kh0 * np.tanh(kh0) df0 = -np.tanh(kh) - kh * (1 - np.tanh(kh)**2) kh = -f0 / df0 + kh0 f = (omega[i]**2) * depth / g - kh * np.tanh(kh) if abs(f0 - f) < 10**(-6): break lambdaT.append((2 * np.pi) / (kh / depth)) del kh, kh0 lambdaT = np.array(lambdaT, dtype=np.float) SteepH = lambdaT * SteepMax return SteepH def __fetchDepth(self): '''Obtains the depth from the website for a buoy (either NDBC or CDIP)''' if self.buoy.buoyType == "NDBC": url = "https://www.ndbc.noaa.gov/station_page.php?station=%s" % (46022) ndbcURL = requests.get(url) ndbcURL.raise_for_status() ndbcHTML = bs4.BeautifulSoup(ndbcURL.text, "lxml") header = ndbcHTML.find("b", text="Water depth:") return float(str(header.nextSibling).split()[0]) elif self.buoy.buoyType == "CDIP": url = "http://cdip.ucsd.edu/cgi-bin/wnc_metadata?ARCHIVE/%sp1/%sp1_historic" % (self.buoy.buoyNum, self.buoy.buoyNum) cdipURL = requests.get(url) cdipURL.raise_for_status() cdipHTML = bs4.BeautifulSoup(cdipURL.text, "lxml") #Parse the table for the depth value depthString = str(cdipHTML.findChildren("td", {"class" : "plus"})[0]) depthString = depthString.split("<br/>")[2] return float(re.findall(r"[-+]?\d*\.\d+|\d+", depthString)[0]) def bootStrap(self, boot_size=1000, plotResults=True): '''Get 95% confidence bounds about a contour using the bootstrap method. Warning - this function is time consuming. Computation time depends on selected boot_size. Parameters ---------- boot_size: int (optional) Number of bootstrap samples that will be used to calculate 95% confidence interval. Should be large enough to calculate stable statistics. If left blank will be set to 1000. plotResults: boolean (optional) Option for showing plot of bootstrap confidence bounds. If left blank will be set to True and plot will be shown. Returns ------- contourmean_Hs : nparray Hs values for mean contour calculated as the average over all bootstrap contours. contourmean_T : nparray T values for mean contour calculated as the average over all bootstrap contours. Example ------- To generate 95% boostrap contours for a given contour method: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create PCA EA object for buoy pca46022 = ESSC.PCA(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Contour generation Hs_Return, T_Return = pca46022.getContours(Time_SS, Time_r,nb_steps) # Calculate boostrap confidence interval contourmean_Hs, contourmean_T = pca46022.bootStrap(boot_size=10) ''' if (self.method == "Bivariate KDE, Log Transform" or self.method == "Bivariate KDE"): msg = 'WDRT does not support the bootstrap method for this Bivariate KDE (See Issue #47).' print(msg) return None, None #preallocates arrays n = len(self.buoy.Hs) Hs_Return_Boot = np.zeros([self.nb_steps,boot_size]) T_Return_Boot = np.zeros([self.nb_steps,boot_size]) buoycopy = copy.deepcopy(self.buoy); #creates copies of the data based on how it was modeled. for i in range(boot_size): boot_inds = np.random.randint(0, high=n, size=n) buoycopy.Hs = copy.deepcopy(self.buoy.Hs[boot_inds]) buoycopy.T = copy.deepcopy(self.buoy.T[boot_inds]) essccopy=None if self.method == "Principle component analysis": essccopy = PCA(buoycopy, self.size_bin) elif self.method == "Gaussian Copula": essccopy = GaussianCopula(buoycopy, self.n_size, self.bin_1_limit, self.bin_step) elif self.method == "Rosenblatt": essccopy = Rosenblatt(buoycopy, self.n_size, self.bin_1_limit, self.bin_step) elif self.method == "Clayton Copula": essccopy = ClaytonCopula(buoycopy, self.n_size, self.bin_1_limit, self.bin_step) elif self.method == "Gumbel Copula": essccopy = GumbelCopula(buoycopy, self.n_size, self.bin_1_limit, self.bin_step, self.Ndata) elif self.method == "Non-parametric Gaussian Copula": essccopy = NonParaGaussianCopula(buoycopy, self.Ndata, self.max_T, self.max_Hs) elif self.method == "Non-parametric Clayton Copula": essccopy = NonParaClaytonCopula(buoycopy, self.Ndata, self.max_T, self.max_Hs) elif self.method == "Non-parametric Gumbel Copula": essccopy = NonParaGumbelCopula(buoycopy, self.Ndata, self.max_T, self.max_Hs) Hs_Return_Boot[:,i],T_Return_Boot[:,i] = essccopy.getContours(self.time_ss, self.time_r, self.nb_steps) #finds 95% CI values for wave height and energy contour97_5_Hs = np.percentile(Hs_Return_Boot,97.5,axis=1) contour2_5_Hs = np.percentile(Hs_Return_Boot,2.5,axis=1) contourmean_Hs = np.mean(Hs_Return_Boot, axis=1) contour97_5_T = np.percentile(T_Return_Boot,97.5,axis=1) contour2_5_T = np.percentile(T_Return_Boot,2.5,axis=1) contourmean_T = np.mean(T_Return_Boot, axis=1) self.contourMean_Hs = contourmean_Hs self.contourMean_T = contourmean_T #plotting function def plotResults(): plt.figure() plt.plot(self.buoy.T, self.buoy.Hs, 'bo', alpha=0.1, label='NDBC data') plt.plot(self.T_ReturnContours, self.Hs_ReturnContours, 'k-', label='100 year contour') plt.plot(contour97_5_T, contour97_5_Hs, 'r--', label='95% bootstrap confidence interval') plt.plot(contour2_5_T, contour2_5_Hs, 'r--') plt.plot(contourmean_T, contourmean_Hs, 'r-', label='Mean bootstrap contour') plt.legend(loc='lower right', fontsize='small') plt.grid(True) plt.xlabel('Energy period, $T_e$ [s]') plt.ylabel('Sig. wave height, $H_s$ [m]') plt.show() if plotResults: plotResults() return contourmean_Hs, contourmean_T def outsidePoints(self): '''Determines which buoy observations are outside of a given contour. Parameters ---------- None Returns ------- outsideHs : nparray The Hs values of the observations that are outside of the contour outsideT : nparray The T values of the observations that are outside of the contour Example ------- To get correseponding T and Hs arrays of observations that are outside of a given contour: import WDRT.ESSC as ESSC import numpy as np # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create PCA EA object for buoy rosen46022 = ESSC.Rosenblatt(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest # Generate contour Hs_Return, T_Return = rosen46022.getContours(Time_SS, Time_r) # Return the outside point Hs/T combinations outsideT, outsideHs = rosen46022.outsidePoints() ''' #checks if the contour type is a KDE contour - if so, finds the outside points for the KDE contour. if isinstance(self.T_ReturnContours,list): contains_test = np.zeros(len(self.buoy.T),dtype=bool) for t,hs in zip(self.T_ReturnContours,self.Hs_ReturnContours): path_contour = [] path_contour = matplotlib.path.Path(np.column_stack((t,hs))) contains_test = contains_test+path_contour.contains_points(np.column_stack((self.buoy.T,self.buoy.Hs))) out_inds = np.where(~contains_test) else: # For non-KDE methods (copulas, etc.) path_contour = matplotlib.path.Path(np.column_stack((self.T_ReturnContours,self.Hs_ReturnContours))) contains_test = path_contour.contains_points(np.column_stack((self.buoy.T,self.buoy.Hs))) out_inds = np.where(~contains_test) outsideHs =self.buoy.Hs[out_inds] outsideT = self.buoy.T[out_inds] return(outsideT, outsideHs) def contourIntegrator(self): '''Calculates the area of the contour over the two-dimensional input space of interest. Parameters ---------- None Returns ------- area : float The area of the contour in TxHs units. Example ------- To obtain the area of the contour: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create PCA EA object for buoy rosen46022 = ESSC.Rosenblatt(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest # Generate contour Hs_Return, T_Return = rosen46022.getContours(Time_SS, Time_r) # Return the area of the contour rosenArea = rosen46022.contourIntegrator() ''' contourTs = self.T_ReturnContours contourHs = self.Hs_ReturnContours area = 0.5*np.abs(np.dot(contourTs,np.roll(contourHs,1))-np.dot(contourHs,np.roll(contourTs,1))) return area def dataContour(self, tStepSize = 1, hsStepSize = .5): '''Creates a contour around the ordered pairs of buoy observations. How tightly the contour fits around the data will be determined by step size parameters. Please note that this function currently is in beta; it needs further work to be optimized for use. Parameters ---------- tStepSize : float Determines how far to search for the next point in the T direction. Smaller values will produce contours that follow the data more closely. hsStepSize : float Determines how far to search for the next point in the Hs direction. Smaller values will produce contours that follow the data more closely. Returns ------- dataBoundryHs : nparray The Hs values of the boundry observations dataBoundryT : nparray The Hs values of the boundry observations Example ------- To get the corresponding data contour: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create PCA EA object for buoy rosen46022 = ESSC.Rosenblatt(buoy46022) # Calculate the data contour dataHs, dataT = rosen46022.dataContour(tStepSize = 1, hsStepSize = .5) ''' maxHs = max(self.buoy.Hs) minHs = min(self.buoy.Hs) sortedHsBuoy = copy.deepcopy(self.buoy) sortedTBuoy = copy.deepcopy(self.buoy) sortedTIndex = sorted(range(len(self.buoy.T)),key=lambda x:self.buoy.T[x]) sortedHsIndex = sorted(range(len(self.buoy.Hs)),key=lambda x:self.buoy.Hs[x]) sortedHsBuoy.Hs = self.buoy.Hs[sortedHsIndex] sortedHsBuoy.T = self.buoy.T[sortedHsIndex] sortedTBuoy.Hs = self.buoy.Hs[sortedTIndex] sortedTBuoy.T = self.buoy.T[sortedTIndex] hsBin1 = [] hsBin2 = [] hsBin3 = [] hsBin4 = [] tBin1 = [] tBin2 = [] tBin3 = [] tBin4 = [] startingPoint = sortedTBuoy.T[0] hsBin4.append(sortedTBuoy.Hs[0]) tBin4.append(sortedTBuoy.T[0]) while True: tempNextBinTs = sortedTBuoy.T[sortedTBuoy.T < startingPoint + tStepSize] tempNextBinHs = sortedTBuoy.Hs[sortedTBuoy.T < startingPoint + tStepSize] nextBinTs = tempNextBinTs[tempNextBinTs > startingPoint] nextBinHs = tempNextBinHs[tempNextBinTs > startingPoint] try: nextHs = max(nextBinHs) nextT = nextBinTs[nextBinHs.argmax(axis=0)] hsBin4.append(nextHs) tBin4.append(nextT) startingPoint = nextT except ValueError: startingPoint += tStepSize break if nextHs == maxHs: break startingPoint = sortedTBuoy.T[0] hsBin1.append(sortedTBuoy.Hs[0]) tBin1.append(sortedTBuoy.T[0]) while True: tempNextBinTs = sortedTBuoy.T[sortedTBuoy.T < startingPoint + tStepSize] tempNextBinHs = sortedTBuoy.Hs[sortedTBuoy.T < startingPoint + tStepSize] nextBinTs = tempNextBinTs[tempNextBinTs > startingPoint] nextBinHs = tempNextBinHs[tempNextBinTs > startingPoint] try: nextHs = min(nextBinHs) nextT = nextBinTs[nextBinHs.argmin(axis=0)] hsBin1.append(nextHs) tBin1.append(nextT) startingPoint = nextT except ValueError: startingPoint += tStepSize break if nextHs == minHs: break startingPoint = sortedHsBuoy.Hs[sortedHsBuoy.T.argmax(axis=0)] hsBin3.append(sortedHsBuoy.Hs[sortedHsBuoy.T.argmax(axis=0)]) tBin3.append(sortedHsBuoy.T[sortedHsBuoy.T.argmax(axis=0)]) while True: tempNextBinTs = sortedHsBuoy.T[sortedHsBuoy.Hs < startingPoint + hsStepSize] tempNextBinHs = sortedHsBuoy.Hs[sortedHsBuoy.Hs < startingPoint + hsStepSize] nextBinTs = tempNextBinTs[tempNextBinHs > startingPoint] nextBinHs = tempNextBinHs[tempNextBinHs > startingPoint] try: nextT = max(nextBinTs) nextHs = nextBinHs[nextBinTs.argmax(axis=0)] if nextHs not in hsBin4 and nextHs not in hsBin1: hsBin3.append(nextHs) tBin3.append(nextT) startingPoint = nextHs except ValueError: startingPoint += hsStepSize break if nextHs == maxHs: break startingPoint = sortedHsBuoy.Hs[sortedHsBuoy.T.argmax(axis=0)] while True: tempNextBinTs = sortedHsBuoy.T[sortedHsBuoy.Hs > startingPoint - hsStepSize] tempNextBinHs = sortedHsBuoy.Hs[sortedHsBuoy.Hs > startingPoint - hsStepSize] nextBinTs = tempNextBinTs[tempNextBinHs < startingPoint] nextBinHs = tempNextBinHs[tempNextBinHs < startingPoint] try: nextT = max(nextBinTs) nextHs = nextBinHs[nextBinTs.argmax(axis=0)] if nextHs not in hsBin1 and nextHs not in hsBin4: hsBin2.append(nextHs) tBin2.append(nextT) startingPoint = nextHs except ValueError: startingPoint = startingPoint - hsStepSize break if nextHs == minHs: break hsBin2 = hsBin2[::-1] # Reverses the order of the array tBin2 = tBin2[::-1] hsBin4 = hsBin4[::-1] # Reverses the order of the array tBin4 = tBin4[::-1] dataBoundryHs = np.concatenate((hsBin1,hsBin2,hsBin3,hsBin4),axis = 0) dataBoundryT = np.concatenate((tBin1,tBin2,tBin3,tBin4),axis = 0) dataBoundryHs = dataBoundryHs[::-1] dataBoundryT = dataBoundryT[::-1] return(dataBoundryHs, dataBoundryT) def __getCopulaParams(self,n_size,bin_1_limit,bin_step): sorted_idx = sorted(range(len(self.buoy.Hs)),key=lambda x:self.buoy.Hs[x]) Hs = self.buoy.Hs[sorted_idx] T = self.buoy.T[sorted_idx] # Estimate parameters for Weibull distribution for component 1 (Hs) using MLE # Estimate parameters for Lognormal distribution for component 2 (T) using MLE para_dist_1=stats.exponweib.fit(Hs,floc=0,fa=1) para_dist_2=stats.norm.fit(np.log(T)) # Binning ind = np.array([]) ind = np.append(ind,sum(Hs_val <= bin_1_limit for Hs_val in Hs)) # Make sure first bin isn't empty or too small to avoid errors while ind == 0 or ind < n_size: ind = np.array([]) bin_1_limit = bin_1_limit + bin_step ind = np.append(ind,sum(Hs_val <= bin_1_limit for Hs_val in Hs)) for i in range(1,200): bin_i_limit = bin_1_limit+bin_step*(i) ind = np.append(ind,sum(Hs_val <= bin_i_limit for Hs_val in Hs)) if (ind[i-0]-ind[i-1]) < n_size: break # Parameters for conditional distribution of T|Hs for each bin num=len(ind) # num+1: number of bins para_dist_cond = [] hss = [] para_dist_cond.append(stats.norm.fit(np.log(T[range(0,int(ind[0]))]))) # parameters for first bin hss.append(np.mean(Hs[range(0,int(ind[0])-1)])) # mean of Hs (component 1 for first bin) para_dist_cond.append(stats.norm.fit(np.log(T[range(0,int(ind[1]))]))) # parameters for second bin hss.append(np.mean(Hs[range(0,int(ind[1])-1)])) # mean of Hs (component 1 for second bin) for i in range(2,num): para_dist_cond.append(stats.norm.fit(np.log(T[range(int(ind[i-2]),int(ind[i]))]))); hss.append(np.mean(Hs[range(int(ind[i-2]),int(ind[i]))])) # Estimate coefficient using least square solution (mean: third order, sigma: 2nd order) para_dist_cond.append(stats.norm.fit(np.log(T[range(int(ind[num-2]),int(len(Hs)))]))); # parameters for last bin hss.append(np.mean(Hs[range(int(ind[num-2]),int(len(Hs)))])) # mean of Hs (component 1 for last bin) para_dist_cond = np.array(para_dist_cond) hss = np.array(hss) phi_mean = np.column_stack((np.ones(num+1),hss[:],hss[:]**2,hss[:]**3)) phi_std = np.column_stack((np.ones(num+1),hss[:],hss[:]**2)) # Estimate coefficients of mean of Ln(T|Hs)(vector 4x1) (cubic in Hs) mean_cond = np.linalg.lstsq(phi_mean,para_dist_cond[:,0])[0] # Estimate coefficients of standard deviation of Ln(T|Hs) (vector 3x1) (quadratic in Hs) std_cond = np.linalg.lstsq(phi_std,para_dist_cond[:,1])[0] return para_dist_1, para_dist_2, mean_cond, std_cond def __getNonParaCopulaParams(self,Ndata, max_T, max_Hs): sorted_idx = sorted(range(len(self.buoy.Hs)),key=lambda x:self.buoy.Hs[x]) Hs = self.buoy.Hs[sorted_idx] T = self.buoy.T[sorted_idx] # Calcualte KDE bounds (this may be added as an input later) min_limit_1 = 0 max_limit_1 = max_Hs min_limit_2 = 0 max_limit_2 = max_T # Discretize for KDE pts_hs = np.linspace(min_limit_1, max_limit_1, self.Ndata) pts_t = np.linspace(min_limit_2, max_limit_2, self.Ndata) # Calculate optimal bandwidth for T and Hs sig = robust.scale.mad(T) num = float(len(T)) bwT = sig*(4.0/(3.0*num))**(1.0/5.0) sig = robust.scale.mad(Hs) num = float(len(Hs)) bwHs = sig*(4.0/(3.0*num))**(1.0/5.0) # Nonparametric PDF for T temp = sm.nonparametric.KDEUnivariate(T) temp.fit(bw = bwT) f_t = temp.evaluate(pts_t) # Nonparametric CDF for Hs temp = sm.nonparametric.KDEUnivariate(Hs) temp.fit(bw = bwHs) tempPDF = temp.evaluate(pts_hs) F_hs = tempPDF/sum(tempPDF) F_hs = np.cumsum(F_hs) # Nonparametric CDF for T F_t = f_t/sum(f_t) F_t = np.cumsum(F_t) nonpara_dist_1 = np.transpose(np.array([pts_hs, F_hs])) nonpara_dist_2 = np.transpose(np.array([pts_t, F_t])) nonpara_pdf_2 = np.transpose(np.array([pts_t, f_t])) return nonpara_dist_1, nonpara_dist_2, nonpara_pdf_2 def __gumbelCopula(self, u, alpha): ''' Calculates the Gumbel copula density Parameters ---------- u: np.array Vector of equally spaced points between 0 and twice the maximum value of T. alpha: float Copula parameter. Must be greater than or equal to 1. Returns ------- y: np.array Copula density function. ''' #Ignore divide by 0 warnings and resulting NaN warnings np.seterr(all='ignore') v = -np.log(u) v = np.sort(v, axis=0) vmin = v[0, :] vmax = v[1, :] nlogC = vmax * (1 + (vmin / vmax) ** alpha) ** (1 / alpha) y = (alpha - 1 +nlogC)*np.exp(-nlogC+np.sum((alpha-1)*np.log(v)+v, axis =0) +(1-2*alpha)*np.log(nlogC)) np.seterr(all='warn') return(y) class PCA(EA): def __init__(self, buoy, size_bin=250.): ''' Create a PCA EA class for a buoy object. Contours generated under this class will use principal component analysis (PCA) with improved distribution fitting (Eckert et. al 2015) and the I-FORM. Parameters ___________ size_bin : float chosen bin size buoy : NDBCData ESSC.Buoy Object ''' self.method = "Principle component analysis" self.buoy = buoy if size_bin > len(buoy.Hs)*0.25: self.size_bin = len(buoy.Hs)*0.25 print(round(len(buoy.Hs)*0.25,2),'is the max bin size for this buoy. The bin size has been set to this amount.') else: self.size_bin = size_bin self.Hs_ReturnContours = None self.Hs_SampleCA = None self.Hs_SampleFSS = None self.T_ReturnContours = None self.T_SampleCA = None self.T_SampleFSS = None self.Weight_points = None self.coeff, self.shift, self.comp1_params, self.sigma_param, self.mu_param = self.__generateParams(self.size_bin) def __generateParams(self, size_bin=250.0): pca = skPCA(n_components=2) pca.fit(np.array((self.buoy.Hs - self.buoy.Hs.mean(axis=0), self.buoy.T - self.buoy.T.mean(axis=0))).T) coeff = abs(pca.components_) # Apply correct/expected sign convention coeff[1, 1] = -1.0 * coeff[1, 1] # Apply correct/expected sign convention Comp1_Comp2 = np.dot (np.array((self.buoy.Hs, self.buoy.T)).T, coeff) shift = abs(min(Comp1_Comp2[:, 1])) + 0.1 # Calculate shift shift = abs(min(Comp1_Comp2[:, 1])) + 0.1 # Calculate shift # Apply shift to Component 2 to make all values positive Comp1_Comp2[:, 1] = Comp1_Comp2[:, 1] + shift Comp1_Comp2_sort = Comp1_Comp2[Comp1_Comp2[:, 0].argsort(), :] # Fitting distribution of component 1 comp1_params = stats.invgauss.fit(Comp1_Comp2_sort[:, 0], floc=0) n_data = len(self.buoy.Hs) # Number of observations edges = np.hstack((np.arange(0, size_bin * np.ceil(n_data / size_bin), size_bin), n_data + 1)) ranks = np.arange(n_data) hist_count, _ = np.histogram(ranks, bins=edges) bin_inds = np.digitize(ranks, bins=edges) - 1 Comp2_bins_params = np.zeros((2, int(max(bin_inds) + 1))) Comp1_mean = np.array([]) for bin_loop in range(np.max(bin_inds) + 1): mask_bins = bin_inds == bin_loop # Find location of bin values Comp2_bin = np.sort(Comp1_Comp2_sort[mask_bins, 1]) Comp1_mean = np.append(Comp1_mean, np.mean(Comp1_Comp2_sort[mask_bins, 0])) # Calcualte normal distribution parameters for C2 in each bin Comp2_bins_params[:, bin_loop] = np.array(stats.norm.fit(Comp2_bin)) mu_param, pcov = optim.curve_fit(self.__mu_fcn, Comp1_mean.T, Comp2_bins_params[0, :]) sigma_param = self.__sigma_fits(Comp1_mean, Comp2_bins_params[1, :]) return coeff, shift, comp1_params, sigma_param, mu_param def _saveParams(self, groupObj): if('nb_steps' in groupObj): groupObj['nb_steps'][...] = self.nb_steps else: groupObj.create_dataset('nb_steps', data=self.nb_steps) if('time_r' in groupObj): groupObj['time_r'][...] = self.time_r else: groupObj.create_dataset('time_r', data=self.time_r) if('time_ss' in groupObj): groupObj['time_ss'][...] = self.time_ss else: groupObj.create_dataset('time_ss', data=self.time_ss) if('coeff' in groupObj): groupObj['coeff'][...] = self.coeff else: groupObj.create_dataset('coeff', data=self.coeff) if('shift' in groupObj): groupObj['shift'][...] = self.shift else: groupObj.create_dataset('shift', data=self.shift) if('comp1_params' in groupObj): groupObj['comp1_params'][...] = self.comp1_params else: groupObj.create_dataset('comp1_params', data=self.comp1_params) if('sigma_param' in groupObj): groupObj['sigma_param'][...] = self.sigma_param else: groupObj.create_dataset('sigma_param', data=self.sigma_param) if('mu_param' in groupObj): groupObj['mu_param'][...] = self.mu_param else: groupObj.create_dataset('mu_param', data=self.mu_param) def getContours(self, time_ss, time_r, nb_steps=1000): '''WDRT Extreme Sea State PCA Contour function This function calculates environmental contours of extreme sea states using principal component analysis and the inverse first-order reliability method. Parameters ___________ time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. nb_steps : int Discretization of the circle in the normal space used for inverse FORM calculation. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. nb_steps : float Discretization of the circle in the normal space Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create PCA EA object for buoy pca46022 = ESSC.PCA(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Contour generation example Hs_Return, T_Return = pca46022.getContours(Time_SS, Time_r,nb_steps) ''' self.time_ss = time_ss self.time_r = time_r self.nb_steps = nb_steps # IFORM # Failure probability for the desired return period (time_R) given the # duration of the measurements (time_ss) p_f = 1 / (365 * (24 / time_ss) * time_r) beta = stats.norm.ppf((1 - p_f), loc=0, scale=1) # Reliability theta = np.linspace(0, 2 * np.pi, num = nb_steps) # Vary U1, U2 along circle sqrt(U1^2+U2^2)=beta U1 = beta * np.cos(theta) U2 = beta * np.sin(theta) # Calculate C1 values along the contour Comp1_R = stats.invgauss.ppf(stats.norm.cdf(U1, loc=0, scale=1), mu= self.comp1_params[0], loc=0, scale= self.comp1_params[2]) # Calculate mu values at each point on the circle mu_R = self.__mu_fcn(Comp1_R, self.mu_param[0], self.mu_param[1]) # Calculate sigma values at each point on the circle sigma_R = self.__sigma_fcn(self.sigma_param, Comp1_R) # Use calculated mu and sigma values to calculate C2 along the contour Comp2_R = stats.norm.ppf(stats.norm.cdf(U2, loc=0, scale=1), loc=mu_R, scale=sigma_R) # Calculate Hs and T along the contour Hs_Return, T_Return = self.__princomp_inv(Comp1_R, Comp2_R, self.coeff, self.shift) Hs_Return = np.maximum(0, Hs_Return) # Remove negative values self.Hs_ReturnContours = Hs_Return self.T_ReturnContours = T_Return return Hs_Return, T_Return def getSamples(self, num_contour_points, contour_returns, random_seed=None): '''WDRT Extreme Sea State Contour Sampling function. This function calculates samples of Hs and T using the EA function to sample between contours of user-defined return periods. Parameters ---------- num_contour_points : int Number of sample points to be calculated per contour interval. contour_returns: np.array Vector of return periods that define the contour intervals in which samples will be taken. Values must be greater than zero and must be in increasing order. random_seed: int (optional) Random seed for sample generation, required for sample repeatability. If left blank, a seed will automatically be generated. Returns ------- Hs_Samples: np.array Vector of Hs values for each sample point. Te_Samples: np.array Vector of Te values for each sample point. Weight_points: np.array Vector of probabilistic weights for each sampling point to be used in risk calculations. Example ------- To get weighted samples from a set of contours:: import numpy as np import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create PCA EA object for buoy pca46022 = ESSC.PCA(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest num_contour_points = 10 # Number of points to be sampled for each contour interval contour_returns = np.array([0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100]) # Calculate contour to save required variables to PCA EA object pca46022.getContours(Time_SS, Time_r,nb_steps) # Probabilities defining sampling contour bounds. random_seed = 2 # Random seed for sample generation # Get samples for a full sea state long term analysis Hs_sampleFSS, T_sampleFSS, Weight_sampleFSS = pca46022.getSamples(num_contour_points, contour_returns, random_seed) ''' # Calculate line where Hs = 0 to avoid sampling Hs in negative space Te_zeroline = np.linspace(2.5, 30, 1000) Te_zeroline = np.transpose(Te_zeroline) Hs_zeroline = np.zeros(len(Te_zeroline)) # Transform zero line into principal component space Comp_zeroline = np.dot(np.transpose(np.vstack([Hs_zeroline, Te_zeroline])), self.coeff) Comp_zeroline[:, 1] = Comp_zeroline[:, 1] + self.shift # Find quantiles along zero line C1_zeroline_prob = stats.invgauss.cdf(Comp_zeroline[:, 0], mu = self.comp1_params[0], loc=0, scale = self.comp1_params[2]) mu_zeroline = self.__mu_fcn(Comp_zeroline[:, 0], self.mu_param[0], self.mu_param[1]) sigma_zeroline = self.__sigma_fcn(self.sigma_param, Comp_zeroline[:, 0]) C2_zeroline_prob = stats.norm.cdf(Comp_zeroline[:, 1], loc=mu_zeroline, scale=sigma_zeroline) C1_normzeroline = stats.norm.ppf(C1_zeroline_prob, 0, 1) C2_normzeroline = stats.norm.ppf(C2_zeroline_prob, 0, 1) contour_probs = 1 / (365 * (24 / self.time_ss) * contour_returns) # Reliability contour generation beta_lines = stats.norm.ppf( (1 - contour_probs), 0, 1) # Calculate reliability beta_lines = np.hstack((0, beta_lines)) # Add zero as lower bound to first # contour theta_lines = np.linspace(0, 2 * np.pi, 1000) # Discretize the circle contour_probs = np.hstack((1, contour_probs)) # Add probablity of 1 to the # reliability set, corresponding to probability of the center point of the # normal space # Vary U1,U2 along circle sqrt(U1^2+U2^2) = beta U1_lines = np.dot(np.cos(theta_lines[:, None]), beta_lines[None, :]) U2_lines = np.dot(np.sin(theta_lines[:, None]), beta_lines[None, :]) # Removing values on the H_s = 0 line that are far from the circles in the # normal space that will be evaluated to speed up calculations minval = np.amin(U1_lines) - 0.5 mask = C1_normzeroline > minval C1_normzeroline = C1_normzeroline[mask] C2_normzeroline = C2_normzeroline[mask] # Transform to polar coordinates Theta_zeroline = np.arctan2(C2_normzeroline, C1_normzeroline) Rho_zeroline = np.sqrt(C1_normzeroline**2 + C2_normzeroline**2) Theta_zeroline[Theta_zeroline < 0] = Theta_zeroline[ Theta_zeroline < 0] + 2 * np.pi Sample_alpha, Sample_beta, Weight_points = self.__generateData(beta_lines, Rho_zeroline, Theta_zeroline, num_contour_points,contour_probs,random_seed) Hs_Sample, T_Sample = self.__transformSamples(Sample_alpha, Sample_beta) self.Hs_SampleFSS = Hs_Sample self.T_SampleFSS = T_Sample self.Weight_SampleFSS = Weight_points return Hs_Sample, T_Sample, Weight_points def plotSampleData(self): """ Display a plot of the 100-year return contour, full sea state samples and contour samples """ plt.figure() plt.plot(self.buoy.T, self.buoy.Hs, 'bo', alpha=0.1, label='NDBC data') plt.plot(self.T_ReturnContours, self.Hs_ReturnContours, 'k-', label='100 year contour') plt.plot(self.T_SampleFSS, self.Hs_SampleFSS, 'ro', label='full sea state samples') plt.plot(self.T_SampleCA, self.Hs_SampleCA, 'y^', label='contour approach samples') plt.legend(loc='lower right', fontsize='small') plt.grid(True) plt.xlabel('Energy period, $T_e$ [s]') plt.ylabel('Sig. wave height, $H_s$ [m]') plt.show() def __generateData(self, beta_lines, Rho_zeroline, Theta_zeroline, num_contour_points, contour_probs, random_seed): """ Calculates radius, angle, and weight for each sample point """ ''' Data generating function that calculates the radius, angle, and weight for each sample point. Parameters ---------- beta_lines: np.array Array of mu fitting function parameters. Rho_zeroline: np.array array of radii Theta_zeroline: np.array num_contour_points: np.array contour_probs: np.array random_seed: int seed for generating random data. Returns ------- Sample_alpha: np.array Array of fitted sample angle values. Sample_beta: np.array Array of fitted sample radius values. Weight_points: np.array Array of weights for each point. ''' np.random.seed(random_seed) num_samples = (len(beta_lines) - 1) * num_contour_points Alpha_bounds = np.zeros((len(beta_lines) - 1, 2)) Angular_dist = np.zeros(len(beta_lines) - 1) Angular_ratio = np.zeros(len(beta_lines) - 1) Alpha = np.zeros((len(beta_lines) - 1, num_contour_points + 1)) Weight = np.zeros(len(beta_lines) - 1) Sample_beta = np.zeros(num_samples) Sample_alpha = np.zeros(num_samples) Weight_points = np.zeros(num_samples) for i in range(len(beta_lines) - 1): # Loop over contour intervals # Check if any of the radii for the r = Rho_zeroline - beta_lines[i + 1] # Hs=0, line are smaller than the radii of the contour, meaning # that these lines intersect if any(r < 0): left = np.amin(np.where(r < -0.01)) right = np.amax(np.where(r < -0.01)) Alpha_bounds[i, :] = (Theta_zeroline[left], Theta_zeroline[right] - 2 * np.pi) # Save sampling bounds else: Alpha_bounds[i, :] = np.array((0, 2 * np.pi)) # Find the angular distance that will be covered by sampling the disc Angular_dist[i] = sum(abs(Alpha_bounds[i])) # Calculate ratio of area covered for each contour Angular_ratio[i] = Angular_dist[i] / (2 * np.pi) # Discretize the remaining portion of the disc into 10 equally spaced # areas to be sampled Alpha[i, :] = np.arange(min(Alpha_bounds[i]), max(Alpha_bounds[i]) + 0.1, Angular_dist[i] / num_contour_points) # Calculate the weight of each point sampled per contour Weight[i] = ((contour_probs[i] - contour_probs[i + 1]) * Angular_ratio[i] / num_contour_points) for j in range(num_contour_points): # Generate sample radius by adding a randomly sampled distance to # the 'disc' lower bound Sample_beta[(i) * num_contour_points + j] = (beta_lines[i] + np.random.random_sample() * (beta_lines[i + 1] - beta_lines[i])) # Generate sample angle by adding a randomly sampled distance to # the lower bound of the angle defining a discrete portion of the # 'disc' Sample_alpha[(i) * num_contour_points + j] = (Alpha[i, j] + np.random.random_sample() * (Alpha[i, j + 1] - Alpha[i, j])) # Save the weight for each sample point Weight_points[(i) * num_contour_points + j] = Weight[i] return Sample_alpha, Sample_beta, Weight_points def __transformSamples(self, Sample_alpha, Sample_beta): Sample_U1 = Sample_beta * np.cos(Sample_alpha) Sample_U2 = Sample_beta * np.sin(Sample_alpha) # Sample transformation to principal component space Comp1_sample = stats.invgauss.ppf(stats.norm.cdf(Sample_U1, loc=0, scale=1), mu=self.comp1_params[0], loc=0, scale=self.comp1_params[2]) mu_sample = self.__mu_fcn(Comp1_sample, self.mu_param[0], self.mu_param[1]) # Calculate sigma values at each point on the circle sigma_sample = self.__sigma_fcn(self.sigma_param, Comp1_sample) # Use calculated mu and sigma values to calculate C2 along the contour Comp2_sample = stats.norm.ppf(stats.norm.cdf(Sample_U2, loc=0, scale=1), loc=mu_sample, scale=sigma_sample) # Sample transformation into Hs-T space Hs_Sample, T_Sample = self.__princomp_inv( Comp1_sample, Comp2_sample, self.coeff, self.shift) return Hs_Sample, T_Sample def __mu_fcn(self, x, mu_p_1, mu_p_2): ''' Linear fitting function for the mean(mu) of Component 2 normal distribution as a function of the Component 1 mean for each bin. Used in the EA and getSamples functions. Parameters ---------- mu_p: np.array Array of mu fitting function parameters. x: np.array Array of values (Component 1 mean for each bin) at which to evaluate the mu fitting function. Returns ------- mu_fit: np.array Array of fitted mu values. ''' mu_fit = mu_p_1 * x + mu_p_2 return mu_fit def __sigma_fcn(self,sig_p, x): '''Quadratic fitting formula for the standard deviation(sigma) of Component 2 normal distribution as a function of the Component 1 mean for each bin. Used in the EA and getSamples functions. Parameters ---------- sig_p: np.array Array of sigma fitting function parameters. x: np.array Array of values (Component 1 mean for each bin) at which to evaluate the sigma fitting function. Returns ------- sigma_fit: np.array Array of fitted sigma values. ''' sigma_fit = sig_p[0] * x**2 + sig_p[1] * x + sig_p[2] return sigma_fit def __princomp_inv(self, princip_data1, princip_data2, coeff, shift): '''Takes the inverse of the principal component rotation given data, coefficients, and shift. Used in the EA and getSamples functions. Parameters ---------- princip_data1: np.array Array of Component 1 values. princip_data2: np.array Array of Component 2 values. coeff: np.array Array of principal component coefficients. shift: float Shift applied to Component 2 to make all values positive. Returns ------- original1: np.array Hs values following rotation from principal component space. original2: np.array T values following rotation from principal component space. ''' original1 = np.zeros(len(princip_data1)) original2 = np.zeros(len(princip_data1)) for i in range(len(princip_data2)): original1[i] = (((coeff[0, 1] * (princip_data2[i] - shift)) + (coeff[0, 0] * princip_data1[i])) / (coeff[0, 1]**2 + coeff[0, 0]**2)) original2[i] = (((coeff[0, 1] * princip_data1[i]) - (coeff[0, 0] * (princip_data2[i] - shift))) / (coeff[0, 1]**2 + coeff[0, 0]**2)) return original1, original2 def __betafcn(self, sig_p, rho): '''Penalty calculation for sigma parameter fitting function to impose positive value constraint. Parameters ---------- sig_p: np.array Array of sigma fitting function parameters. rho: float Penalty function variable that drives the solution towards required constraint. Returns ------- Beta1: float Penalty function variable that applies the constraint requiring the y-intercept of the sigma fitting function to be greater than or equal to 0. Beta2: float Penalty function variable that applies the constraint requiring the minimum of the sigma fitting function to be greater than or equal to 0. ''' if -sig_p[2] <= 0: Beta1 = 0.0 else: Beta1 = rho if -sig_p[2] + (sig_p[1]**2) / (4 * sig_p[0]) <= 0: Beta2 = 0.0 else: Beta2 = rho return Beta1, Beta2 # Sigma function sigma_fcn defined outside of EA function def __objfun(self, sig_p, x, y_actual): '''Sum of least square error objective function used in sigma minimization. Parameters ---------- sig_p: np.array Array of sigma fitting function parameters. x: np.array Array of values (Component 1 mean for each bin) at which to evaluate the sigma fitting function. y_actual: np.array Array of actual sigma values for each bin to use in least square error calculation with fitted values. Returns ------- obj_fun_result: float Sum of least square error objective function for fitted and actual values. ''' obj_fun_result = np.sum((self.__sigma_fcn(sig_p, x) - y_actual)**2) return obj_fun_result # Sum of least square error def __objfun_penalty(self, sig_p, x, y_actual, Beta1, Beta2): '''Penalty function used for sigma function constrained optimization. Parameters ---------- sig_p: np.array Array of sigma fitting function parameters. x: np.array Array of values (Component 1 mean for each bin) at which to evaluate the sigma fitting function. y_actual: np.array Array of actual sigma values for each bin to use in least square error calculation with fitted values. Beta1: float Penalty function variable that applies the constraint requiring the y-intercept of the sigma fitting function to be greater than or equal to 0. Beta2: float Penalty function variable that applies the constraint requiring the minimum of the sigma fitting function to be greater than or equal to 0. Returns ------- penalty_fcn: float Objective function result with constraint penalties applied for out of bound solutions. ''' penalty_fcn = (self.__objfun(sig_p, x, y_actual) + Beta1 * (-sig_p[2])**2 + Beta2 * (-sig_p[2] + (sig_p[1]**2) / (4 * sig_p[0]))**2) return penalty_fcn def __sigma_fits(self, Comp1_mean, sigma_vals): '''Sigma parameter fitting function using penalty optimization. Parameters ---------- Comp1_mean: np.array Mean value of Component 1 for each bin of Component 2. sigma_vals: np.array Value of Component 2 sigma for each bin derived from normal distribution fit. Returns ------- sig_final: np.array Final sigma parameter values after constrained optimization. ''' sig_0 = np.array((0.1, 0.1, 0.1)) # Set initial guess rho = 1.0 # Set initial penalty value # Set tolerance, very small values (i.e.,smaller than 10^-5) may cause # instabilities epsilon = 10**-5 # Set inital beta values using beta function Beta1, Beta2 = self.__betafcn(sig_0, rho) # Initial search for minimum value using initial guess sig_1 = optim.fmin(func=self.__objfun_penalty, x0=sig_0, args=(Comp1_mean, sigma_vals, Beta1, Beta2), disp=False) # While either the difference between iterations or the difference in # objective function evaluation is greater than the tolerance, continue # iterating while (np.amin(abs(sig_1 - sig_0)) > epsilon and abs(self.__objfun(sig_1, Comp1_mean, sigma_vals) - self.__objfun(sig_0, Comp1_mean, sigma_vals)) > epsilon): sig_0 = sig_1 # Calculate penalties for this iteration Beta1, Beta2 = self.__betafcn(sig_0, rho) # Find a new minimum sig_1 = optim.fmin(func=self.__objfun_penalty, x0=sig_0, args=(Comp1_mean, sigma_vals, Beta1, Beta2), disp=False) rho = 10 * rho # Increase penalization sig_final = sig_1 return sig_final class GaussianCopula(EA): '''Create a GaussianCopula EA class for a buoy object. Contours generated under this class will use a Gaussian copula.''' def __init__(self, buoy, n_size=40., bin_1_limit=1., bin_step=0.25): ''' Parameters ---------- buoy : NDBCData ESSC.Buoy Object n_size: float minimum bin size used for Copula contour methods bin_1_limit: float maximum value of Hs for the first bin bin_step: float overlap interval for each bin ''' self.method = "Gaussian Copula" self.buoy = buoy self.n_size = n_size self.bin_1_limit = bin_1_limit self.bin_step = bin_step self.Hs_ReturnContours = None # self.Hs_SampleCA = None # self.Hs_SampleFSS = None self.T_ReturnContours = None # self.T_SampleCA = None # self.T_SampleFSS = None # self.Weight_points = None # self.coeff, self.shift, self.comp1_params, self.sigma_param, self.mu_param = self.__generateParams(size_bin) self.para_dist_1,self.para_dist_2,self.mean_cond,self.std_cond = self._EA__getCopulaParams(n_size,bin_1_limit,bin_step) def getContours(self, time_ss, time_r, nb_steps = 1000): '''WDRT Extreme Sea State Gaussian Copula Contour function. This function calculates environmental contours of extreme sea states using a Gaussian copula and the inverse first-order reliability method. Parameters ___________ time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. nb_steps : float Discretization of the circle in the normal space used for inverse FORM calculation. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. nb_steps : float Discretization of the circle in the normal space Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create Environtmal Analysis object using above parameters Gauss46022 = ESSC.GaussianCopula(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Gaussian copula contour generation example Hs_Return, T_Return = Gauss46022.getContours(Time_SS, Time_r,nb_steps) ''' self.time_ss = time_ss self.time_r = time_r self.nb_steps = nb_steps p_f = 1 / (365 * (24 / time_ss) * time_r) beta = stats.norm.ppf((1 - p_f), loc=0, scale=1) # Reliability theta = np.linspace(0, 2 * np.pi, num = nb_steps) # Vary U1, U2 along circle sqrt(U1^2+U2^2)=beta U1 = beta * np.cos(theta) U2 = beta * np.sin(theta) comp_1 = stats.exponweib.ppf(stats.norm.cdf(U1),a=self.para_dist_1[0],c=self.para_dist_1[1],loc=self.para_dist_1[2],scale=self.para_dist_1[3]) tau = stats.kendalltau(self.buoy.T,self.buoy.Hs)[0] # Calculate Kendall's tau rho_gau=np.sin(tau*np.pi/2.) z2_Gau=stats.norm.cdf(U2*np.sqrt(1.-rho_gau**2.)+rho_gau*U1); comp_2_Gaussian = stats.lognorm.ppf(z2_Gau,s=self.para_dist_2[1],loc=0,scale=np.exp(self.para_dist_2[0])) #lognormalinverse Hs_Return = comp_1 T_Return = comp_2_Gaussian self.Hs_ReturnContours = Hs_Return self.T_ReturnContours = T_Return return Hs_Return, T_Return def getSamples(self): '''Currently not implemented in this version.''' raise NotImplementedError def _saveParams(self, groupObj): groupObj.create_dataset('n_size', data=self.n_size) groupObj.create_dataset('bin_1_limit', data=self.bin_1_limit) groupObj.create_dataset('bin_step', data=self.bin_step) groupObj.create_dataset('para_dist_1', data=self.para_dist_1) groupObj.create_dataset('para_dist_2', data=self.para_dist_2) groupObj.create_dataset('mean_cond', data=self.mean_cond) groupObj.create_dataset('std_cond', data=self.std_cond) class Rosenblatt(EA): '''Create a Rosenblatt EA class for a buoy object. Contours generated under this class will use a Rosenblatt transformation and the I-FORM.''' def __init__(self, buoy, n_size=50., bin_1_limit= .5, bin_step=0.25): ''' Parameters ---------- buoy : NDBCData ESSC.Buoy Object n_size: float minimum bin size used for Copula contour methods bin_1_limit: float maximum value of Hs for the first bin bin_step: float overlap interval for each bin ''' self.method = "Rosenblatt" self.buoy = buoy if n_size > 100: self.n_size = 100 print(100,'is the maximum "minimum bin size" for this buoy. The minimum bin size has been set to this amount.') else: self.n_size = n_size if bin_step > max(buoy.Hs)*.1: self.bin_step = max(buoy.Hs)*.1 print(round(max(buoy.Hs)*.1,2),'is the maximum bin overlap for this buoy. The bin overlap has been set to this amount.') else: self.bin_step = bin_step if bin_1_limit > max(buoy.Hs)*.25: self.bin_1_limit = max(buoy.Hs)*.25 print(round(max(buoy.Hs)*.25,2),'is the maximum limit for the first for this buoy. The first bin limit has been set to this amount.') else: self.bin_1_limit = bin_1_limit self.Hs_ReturnContours = None # self.Hs_SampleCA = None # self.Hs_SampleFSS = None self.T_ReturnContours = None # self.T_SampleCA = None # self.T_SampleFSS = None # self.Weight_points = None # self.coeff, self.shift, self.comp1_params, self.sigma_param, self.mu_param = self.__generateParams(size_bin) self.para_dist_1,self.para_dist_2,self.mean_cond,self.std_cond = self._EA__getCopulaParams(self.n_size,self.bin_1_limit,self.bin_step) def getContours(self, time_ss, time_r, nb_steps = 1000): '''WDRT Extreme Sea State Rosenblatt Copula Contour function. This function calculates environmental contours of extreme sea states using a Rosenblatt transformation and the inverse first-order reliability method. Parameters ___________ time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. nb_steps : float Discretization of the circle in the normal space used for inverse FORM calculation. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. nb_steps : float Discretization of the circle in the normal space Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create Environtmal Analysis object using above parameters Rosen46022 = ESSC.Rosenblatt(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Rosenblatt contour generation example Hs_Return, T_Return = Rosen46022.getContours(Time_SS, Time_r,nb_steps) ''' self.time_ss = time_ss self.time_r = time_r self.nb_steps = nb_steps p_f = 1 / (365 * (24 / time_ss) * time_r) beta = stats.norm.ppf((1 - p_f), loc=0, scale=1) # Reliability theta = np.linspace(0, 2 * np.pi, num = nb_steps) # Vary U1, U2 along circle sqrt(U1^2+U2^2)=beta U1 = beta * np.cos(theta) U2 = beta * np.sin(theta) comp_1 = stats.exponweib.ppf(stats.norm.cdf(U1),a=self.para_dist_1[0],c=self.para_dist_1[1],loc=self.para_dist_1[2],scale=self.para_dist_1[3]) lamda_cond=self.mean_cond[0]+self.mean_cond[1]*comp_1+self.mean_cond[2]*comp_1**2+self.mean_cond[3]*comp_1**3 # mean of Ln(T) as a function of Hs sigma_cond=self.std_cond[0]+self.std_cond[1]*comp_1+self.std_cond[2]*comp_1**2 # Standard deviation of Ln(T) as a function of Hs comp_2_Rosenblatt = stats.lognorm.ppf(stats.norm.cdf(U2),s=sigma_cond,loc=0,scale=np.exp(lamda_cond)) # lognormal inverse Hs_Return = comp_1 T_Return = comp_2_Rosenblatt self.Hs_ReturnContours = Hs_Return self.T_ReturnContours = T_Return return Hs_Return, T_Return def getSamples(self): '''Currently not implemented in this version''' raise NotImplementedError def _saveParams(self, groupObj): groupObj.create_dataset('n_size', data=self.n_size) groupObj.create_dataset('bin_1_limit', data=self.bin_1_limit) groupObj.create_dataset('bin_step', data=self.bin_step) groupObj.create_dataset('para_dist_1', data=self.para_dist_1) groupObj.create_dataset('para_dist_2', data=self.para_dist_2) groupObj.create_dataset('mean_cond', data=self.mean_cond) groupObj.create_dataset('std_cond', data=self.std_cond) class ClaytonCopula(EA): '''Create a ClaytonCopula EA class for a buoy object. Contours generated under this class will use a Clayton copula.''' def __init__(self, buoy, n_size=40., bin_1_limit=1., bin_step=0.25): ''' Parameters ---------- buoy : NDBCData ESSC.Buoy Object n_size: float minimum bin size used for Copula contour methods bin_1_limit: float maximum value of Hs for the first bin bin_step: float overlap interval for each bin ''' self.method = "Clayton Copula" self.buoy = buoy self.n_size = n_size self.bin_1_limit = bin_1_limit self.bin_step = bin_step self.Hs_ReturnContours = None # self.Hs_SampleCA = None # self.Hs_SampleFSS = None self.T_ReturnContours = None # self.T_SampleCA = None # self.T_SampleFSS = None # self.Weight_points = None # self.coeff, self.shift, self.comp1_params, self.sigma_param, self.mu_param = self.__generateParams(size_bin) self.para_dist_1,self.para_dist_2,self.mean_cond,self.std_cond = self._EA__getCopulaParams(n_size,bin_1_limit,bin_step) def getContours(self, time_ss, time_r, nb_steps = 1000): '''WDRT Extreme Sea State Clayton Copula Contour function. This function calculates environmental contours of extreme sea states using a Clayton copula and the inverse first-order reliability method. Parameters ---------- time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. nb_steps : float Discretization of the circle in the normal space used for inverse FORM calculation. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. nb_steps : float Discretization of the circle in the normal space Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create Environtmal Analysis object using above parameters Clayton46022 = ESSC.ClaytonCopula(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Clayton copula contour generation example Hs_Return, T_Return = Clayton46022.getContours(Time_SS, Time_r,nb_steps) ''' self.time_ss = time_ss self.time_r = time_r self.nb_steps = nb_steps p_f = 1 / (365 * (24 / time_ss) * time_r) beta = stats.norm.ppf((1 - p_f), loc=0, scale=1) # Reliability theta = np.linspace(0, 2 * np.pi, num = nb_steps) # Vary U1, U2 along circle sqrt(U1^2+U2^2)=beta U1 = beta * np.cos(theta) U2 = beta * np.sin(theta) comp_1 = stats.exponweib.ppf(stats.norm.cdf(U1),a=self.para_dist_1[0],c=self.para_dist_1[1],loc=self.para_dist_1[2],scale=self.para_dist_1[3]) tau = stats.kendalltau(self.buoy.T,self.buoy.Hs)[0] # Calculate Kendall's tau theta_clay = (2.*tau)/(1.-tau) z2_Clay=((1.-stats.norm.cdf(U1)**(-theta_clay)+stats.norm.cdf(U1)**(-theta_clay)/stats.norm.cdf(U2))**(theta_clay/(1.+theta_clay)))**(-1./theta_clay) comp_2_Clayton = stats.lognorm.ppf(z2_Clay,s=self.para_dist_2[1],loc=0,scale=np.exp(self.para_dist_2[0])) #lognormalinverse Hs_Return = comp_1 T_Return = comp_2_Clayton self.Hs_ReturnContours = Hs_Return self.T_ReturnContours = T_Return return Hs_Return, T_Return def getSamples(self): '''Currently not implemented in this version''' raise NotImplementedError def _saveParams(self, groupObj): groupObj.create_dataset('n_size', data=self.n_size) groupObj.create_dataset('bin_1_limit', data=self.bin_1_limit) groupObj.create_dataset('bin_step', data=self.bin_step) groupObj.create_dataset('para_dist_1', data=self.para_dist_1) groupObj.create_dataset('para_dist_2', data=self.para_dist_2) groupObj.create_dataset('mean_cond', data=self.mean_cond) groupObj.create_dataset('std_cond', data=self.std_cond) class GumbelCopula(EA): '''Create a GumbelCopula EA class for a buoy object. Contours generated under this class will use a Gumbel copula.''' def __init__(self, buoy, n_size=40., bin_1_limit=1., bin_step=0.25,Ndata = 1000): ''' Parameters ---------- buoy : NDBCData ESSC.Buoy Object n_size: float minimum bin size used for Copula contour methods bin_1_limit: float maximum value of Hs for the first bin bin_step: float overlap interval for each bin Ndata: int discretization used in the Gumbel copula density estimation, must be less than the number of contour points used in getContours ''' self.method = "Gumbel Copula" self.buoy = buoy self.n_size = n_size self.bin_1_limit = bin_1_limit self.bin_step = bin_step self.Hs_ReturnContours = None # self.Hs_SampleCA = None # self.Hs_SampleFSS = None self.T_ReturnContours = None # self.T_SampleCA = None # self.T_SampleFSS = None # self.Weight_points = None # self.coeff, self.shift, self.comp1_params, self.sigma_param, self.mu_param = self.__generateParams(size_bin) self.Ndata = Ndata self.min_limit_2 = 0. self.max_limit_2 = np.ceil(np.amax(self.buoy.T)*2) self.para_dist_1,self.para_dist_2,self.mean_cond,self.std_cond = self._EA__getCopulaParams(n_size,bin_1_limit,bin_step) def getContours(self, time_ss, time_r, nb_steps = 1000): '''WDRT Extreme Sea State Gumbel Copula Contour function This function calculates environmental contours of extreme sea states using a Gumbel copula and the inverse first-order reliability method. Parameters ___________ time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. nb_steps : float Discretization of the circle in the normal space used for inverse FORM calculation. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. nb_steps : float Discretization of the circle in the normal space Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create Environtmal Analysis object using above parameters Gumbel46022 = ESSC.GumbelCopula(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Gumbel copula contour generation example Hs_Return, T_Return = Gumbel46022.getContours(Time_SS,Time_r,nb_steps) ''' self.time_ss = time_ss self.time_r = time_r self.nb_steps = nb_steps p_f = 1 / (365 * (24 / time_ss) * time_r) beta = stats.norm.ppf((1 - p_f), loc=0, scale=1) # Reliability theta = np.linspace(0, 2 * np.pi, num = nb_steps) # Vary U1, U2 along circle sqrt(U1^2+U2^2)=beta U1 = beta * np.cos(theta) U2 = beta * np.sin(theta) comp_1 = stats.exponweib.ppf(stats.norm.cdf(U1),a=self.para_dist_1[0],c=self.para_dist_1[1],loc=self.para_dist_1[2],scale=self.para_dist_1[3]) tau = stats.kendalltau(self.buoy.T,self.buoy.Hs)[0] # Calculate Kendall's tau theta_gum = 1./(1.-tau) fi_u1=stats.norm.cdf(U1); fi_u2=stats.norm.cdf(U2); x2 = np.linspace(self.min_limit_2,self.max_limit_2,self.Ndata) z2 = stats.lognorm.cdf(x2,s=self.para_dist_2[1],loc=0,scale=np.exp(self.para_dist_2[0])) comp_2_Gumb = np.zeros(nb_steps) for k in range(0,int(nb_steps)): z1 = np.linspace(fi_u1[k],fi_u1[k],self.Ndata) Z = np.array((z1,z2)) Y = self._EA__gumbelCopula(Z, theta_gum) # Copula density function Y =np.nan_to_num(Y) p_x2_x1 = Y*(stats.lognorm.pdf(x2, s = self.para_dist_2[1], loc=0, scale = np.exp(self.para_dist_2[0]))) # pdf 2|1, f(comp_2|comp_1)=c(z1,z2)*f(comp_2) dum = np.cumsum(p_x2_x1) cdf = dum/(dum[self.Ndata-1]) # Estimate CDF from PDF table = np.array((x2, cdf)) # Result of conditional CDF derived based on Gumbel copula table = table.T for j in range(self.Ndata): if fi_u2[k] <= table[0,1]: comp_2_Gumb[k] = min(table[:,0]) break elif fi_u2[k] <= table[j,1]: comp_2_Gumb[k] = (table[j,0]+table[j-1,0])/2 break else: comp_2_Gumb[k] = table[:,0].max() Hs_Return = comp_1 T_Return = comp_2_Gumb self.Hs_ReturnContours = Hs_Return self.T_ReturnContours = T_Return return Hs_Return, T_Return def getSamples(self): '''Currently not implemented in this version.''' raise NotImplementedError def _saveParams(self, groupObj): groupObj.create_dataset('Ndata', data=self.Ndata) groupObj.create_dataset('min_limit_2', data=self.min_limit_2) groupObj.create_dataset('max_limit_2', data=self.max_limit_2) groupObj.create_dataset('n_size', data=self.n_size) groupObj.create_dataset('bin_1_limit', data=self.bin_1_limit) groupObj.create_dataset('bin_step', data=self.bin_step) groupObj.create_dataset('para_dist_1', data=self.para_dist_1) groupObj.create_dataset('para_dist_2', data=self.para_dist_2) groupObj.create_dataset('mean_cond', data=self.mean_cond) groupObj.create_dataset('std_cond', data=self.std_cond) class NonParaGaussianCopula(EA): '''Create a NonParaGaussianCopula EA class for a buoy object. Contours generated under this class will use a Gaussian copula with non-parametric marginal distribution fits.''' def __init__(self, buoy, Ndata = 1000, max_T=None, max_Hs=None): ''' Parameters ---------- buoy : NDBCData ESSC.Buoy Object NData: int discretization resolution used in KDE construction max_T:float Maximum T value for KDE contstruction, must include possible range of contour. Default value is 2*max(T) max_Hs:float Maximum Hs value for KDE contstruction, must include possible range of contour. Default value is 2*max(Hs) ''' self.method = "Non-parametric Gaussian Copula" self.buoy = buoy self.Ndata = Ndata self.Hs_ReturnContours = None # self.Hs_SampleCA = None # self.Hs_SampleFSS = None self.T_ReturnContours = None # self.T_SampleCA = None # self.T_SampleFSS = None # self.Weight_points = None # self.coeff, self.shift, self.comp1_params, self.sigma_param, self.mu_param = self.__generateParams(size_bin) if max_T == None: max_T = max(self.buoy.T)*2. if max_Hs == None: max_Hs = max(self.buoy.Hs)*2. self.max_T = max_T self.max_Hs = max_Hs self.nonpara_dist_1,self.nonpara_dist_2,self.nonpara_pdf_2 = self._EA__getNonParaCopulaParams(Ndata,max_T,max_Hs) def getContours(self, time_ss, time_r, nb_steps = 1000): '''WDRT Extreme Sea State Gaussian Copula Contour function. This function calculates environmental contours of extreme sea states using a Gaussian copula with non-parametric marginal distribution fits and the inverse first-order reliability method. Parameters ___________ time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. nb_steps : float Discretization of the circle in the normal space used for inverse FORM calculation. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. nb_steps : float Discretization of the circle in the normal space Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create Environtmal Analysis object using above parameters NonParaGauss46022 = ESSC.NonParaGaussianCopula(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Non-Parametric Gaussian copula contour generation example Hs_Return, T_Return = NonParaGauss46022.getContours(Time_SS, Time_r,nb_steps) ''' self.time_ss = time_ss self.time_r = time_r self.nb_steps = nb_steps comp_1 = np.zeros(nb_steps) comp_2_Gau = np.zeros(nb_steps) # Inverse FORM p_f = 1 / (365 * (24 / time_ss) * time_r) beta = stats.norm.ppf((1 - p_f), loc=0, scale=1) # Reliability # Normal Space theta = np.linspace(0, 2 * np.pi, num = nb_steps) U1 = beta * np.cos(theta) U2 = beta * np.sin(theta) # Copula parameters tau = stats.kendalltau(self.buoy.T,self.buoy.Hs)[0]# Calculate Kendall's tau rho_gau=np.sin(tau*np.pi/2.); # Component 1 (Hs) z1_Hs = stats.norm.cdf(U1) for k in range(0,nb_steps): for j in range(0,np.size(self.nonpara_dist_1,0)): if z1_Hs[k] <= self.nonpara_dist_1[0,1]: comp_1[k] = min(self.nonpara_dist_1[:,0]) break elif z1_Hs[k] <= self.nonpara_dist_1[j,1]: comp_1[k] = (self.nonpara_dist_1[j,0] + self.nonpara_dist_1[j-1,0])/2 break else: comp_1[k]= max(self.nonpara_dist_1[:,0]) # Component 2 (T) z2_Gau=stats.norm.cdf(U2*np.sqrt(1.-rho_gau**2.)+rho_gau*U1); for k in range(0,nb_steps): for j in range(0,np.size(self.nonpara_dist_2,0)): if z2_Gau[k] <= self.nonpara_dist_2[0,1]: comp_2_Gau[k] = min(self.nonpara_dist_2[:,0]) break elif z2_Gau[k] <= self.nonpara_dist_2[j,1]: comp_2_Gau[k] = (self.nonpara_dist_2[j,0] + self.nonpara_dist_2[j-1,0])/2 break else: comp_2_Gau[k]= max(self.nonpara_dist_2[:,0]) Hs_Return = comp_1 T_Return = comp_2_Gau self.Hs_ReturnContours = Hs_Return self.T_ReturnContours = T_Return return Hs_Return, T_Return def getSamples(self): '''Currently not implemented in this version.''' raise NotImplementedError def _saveParams(self, groupObj): groupObj.create_dataset('nonpara_dist_1', data=self.nonpara_dist_1) groupObj.create_dataset('nonpara_dist_2', data=self.nonpara_dist_2) class NonParaClaytonCopula(EA): '''Create a NonParaClaytonCopula EA class for a buoy object. Contours generated under this class will use a Clayton copula with non-parametric marginal distribution fits.''' def __init__(self, buoy, Ndata = 1000, max_T=None, max_Hs=None): ''' Parameters ---------- buoy : NDBCData ESSC.Buoy Object NData: int discretization resolution used in KDE construction max_T:float Maximum T value for KDE contstruction, must include possible range of contour. Default value is 2*max(T) max_Hs:float Maximum Hs value for KDE contstruction, must include possible range of contour. Default value is 2*max(Hs) ''' self.method = "Non-parametric Clayton Copula" self.buoy = buoy self.Ndata = Ndata self.Hs_ReturnContours = None # self.Hs_SampleCA = None # self.Hs_SampleFSS = None self.T_ReturnContours = None # self.T_SampleCA = None # self.T_SampleFSS = None # self.Weight_points = None # self.coeff, self.shift, self.comp1_params, self.sigma_param, self.mu_param = self.__generateParams(size_bin) if max_T == None: max_T = max(self.buoy.T)*2. if max_Hs == None: max_Hs = max(self.buoy.Hs)*2. self.max_T = max_T self.max_Hs = max_Hs self.nonpara_dist_1,self.nonpara_dist_2,self.nonpara_pdf_2 = self._EA__getNonParaCopulaParams(Ndata,max_T,max_Hs) def getContours(self, time_ss, time_r, nb_steps = 1000): '''WDRT Extreme Sea State non-parameteric Clayton Copula Contour function. This function calculates environmental contours of extreme sea states using a Clayton copula with non-parametric marginal distribution fits and the inverse first-order reliability method. Parameters ___________ time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. nb_steps : float Discretization of the circle in the normal space used for inverse FORM calculation. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. nb_steps : float Discretization of the circle in the normal space Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create Environtmal Analysis object using above parameters NonParaClayton46022 = ESSC.NonParaClaytonCopula(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Non-Parametric Clayton copula contour generation example Hs_Return, T_Return = NonParaClayton46022.getContours(Time_SS, Time_r,nb_steps) ''' self.time_ss = time_ss self.time_r = time_r self.nb_steps = nb_steps comp_1 = np.zeros(nb_steps) comp_2_Clay = np.zeros(nb_steps) # Inverse FORM p_f = 1 / (365 * (24 / time_ss) * time_r) beta = stats.norm.ppf((1 - p_f), loc=0, scale=1) # Reliability # Normal Space theta = np.linspace(0, 2 * np.pi, num = nb_steps) U1 = beta * np.cos(theta) U2 = beta * np.sin(theta) # Copula parameters tau = stats.kendalltau(self.buoy.T,self.buoy.Hs)[0]# Calculate Kendall's tau theta_clay = (2.*tau)/(1.-tau); # Component 1 (Hs) z1_Hs = stats.norm.cdf(U1) for k in range(0,nb_steps): for j in range(0,np.size(self.nonpara_dist_1,0)): if z1_Hs[k] <= self.nonpara_dist_1[0,1]: comp_1[k] = min(self.nonpara_dist_1[:,0]) break elif z1_Hs[k] <= self.nonpara_dist_1[j,1]: comp_1[k] = (self.nonpara_dist_1[j,0] + self.nonpara_dist_1[j-1,0])/2 break else: comp_1[k]= max(self.nonpara_dist_1[:,0]) # Component 2 (T) z2_Clay=((1.-stats.norm.cdf(U1)**(-theta_clay)+stats.norm.cdf(U1)**(-theta_clay)/stats.norm.cdf(U2))**(theta_clay/(1.+theta_clay)))**(-1./theta_clay) for k in range(0,nb_steps): for j in range(0,np.size(self.nonpara_dist_2,0)): if z2_Clay[k] <= self.nonpara_dist_2[0,1]: comp_2_Clay[k,0] = min(self.nonpara_dist_2[:,0]) break elif z2_Clay[k] <= self.nonpara_dist_2[j,1]: comp_2_Clay[k] = (self.nonpara_dist_2[j,0] + self.nonpara_dist_2[j-1,0])/2 break else: comp_2_Clay[k]= max(self.nonpara_dist_2[:,0]) Hs_Return = comp_1 T_Return = comp_2_Clay self.Hs_ReturnContours = Hs_Return self.T_ReturnContours = T_Return return Hs_Return, T_Return def getSamples(self): '''Currently not implemented in this version.''' raise NotImplementedError def _saveParams(self, groupObj): groupObj.create_dataset('nonpara_dist_1', data=self.nonpara_dist_1) groupObj.create_dataset('nonpara_dist_2', data=self.nonpara_dist_2) class NonParaGumbelCopula(EA): '''Create a NonParaGumbelCopula EA class for a buoy object. Contours generated under this class will use a Gumbel copula with non-parametric marginal distribution fits.''' def __init__(self, buoy, Ndata = 1000, max_T=None, max_Hs=None): ''' Parameters ---------- buoy : NDBCData ESSC.Buoy Object NData: int discretization resolution used in KDE construction max_T:float Maximum T value for KDE contstruction, must include possible range of contour. Default value is 2*max(T) max_Hs:float Maximum Hs value for KDE contstruction, must include possible range of contour. Default value is 2*max(Hs) ''' self.method = "Non-parametric Gumbel Copula" self.buoy = buoy self.Ndata = Ndata self.Hs_ReturnContours = None # self.Hs_SampleCA = None # self.Hs_SampleFSS = None self.T_ReturnContours = None # self.T_SampleCA = None # self.T_SampleFSS = None # self.Weight_points = None # self.coeff, self.shift, self.comp1_params, self.sigma_param, self.mu_param = self.__generateParams(size_bin) if max_T == None: max_T = max(self.buoy.T)*2. if max_Hs == None: max_Hs = max(self.buoy.Hs)*2. self.max_T = max_T self.max_Hs = max_Hs self.nonpara_dist_1,self.nonpara_dist_2,self.nonpara_pdf_2 = self._EA__getNonParaCopulaParams(Ndata,max_T,max_Hs) def getContours(self, time_ss, time_r, nb_steps = 1000): '''WDRT Extreme Sea State non-parameteric Gumbel Copula Contour function. This function calculates environmental contours of extreme sea states using a Gumbel copula with non-parametric marginal distribution fits and the inverse first-order reliability method. Parameters ___________ time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. nb_steps : float Discretization of the circle in the normal space used for inverse FORM calculation. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. nb_steps : float Discretization of the circle in the normal space Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create Environtmal Analysis object using above parameters NonParaGumbel46022 = ESSC.NonParaGumbelCopula(buoy46022) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest nb_steps = 1000 # Enter discretization of the circle in the normal space (optional) # Non-Parametric Gumbel copula contour generation example Hs_Return, T_Return = NonParaGumbel46022.getContours(Time_SS, Time_r,nb_steps) ''' self.time_ss = time_ss self.time_r = time_r self.nb_steps = nb_steps comp_1 = np.zeros(nb_steps) comp_2_Gumb = np.zeros(nb_steps) # Inverse FORM p_f = 1 / (365 * (24 / time_ss) * time_r) beta = stats.norm.ppf((1 - p_f), loc=0, scale=1) # Reliability # Normal Space theta = np.linspace(0, 2 * np.pi, num = nb_steps) U1 = beta * np.cos(theta) U2 = beta * np.sin(theta) # Copula parameters tau = stats.kendalltau(self.buoy.T,self.buoy.Hs)[0]# Calculate Kendall's tau theta_gum = 1./(1.-tau); # Component 1 (Hs) z1_Hs = stats.norm.cdf(U1) for k in range(0,nb_steps): for j in range(0,np.size(self.nonpara_dist_1,0)): if z1_Hs[k] <= self.nonpara_dist_1[0,1]: comp_1[k] = min(self.nonpara_dist_1[:,0]) break elif z1_Hs[k] <= self.nonpara_dist_1[j,1]: comp_1[k] = (self.nonpara_dist_1[j,0] + self.nonpara_dist_1[j-1,0])/2 break else: comp_1[k]= max(self.nonpara_dist_1[:,0]) # Component 2 (T) fi_u1=stats.norm.cdf(U1); fi_u2=stats.norm.cdf(U2); for k in range(0,nb_steps): z1 = np.linspace(fi_u1[k],fi_u1[k],self.Ndata) Z = np.array((np.transpose(z1),self.nonpara_dist_2[:,1])) Y = self._EA__gumbelCopula(Z, theta_gum) Y =np.nan_to_num(Y) # Need to look into this p_x2_x1 = Y*self.nonpara_pdf_2[:,1] dum = np.cumsum(p_x2_x1) cdf = dum/(dum[self.Ndata-1]) table = np.array((self.nonpara_pdf_2[:,0], cdf)) table = table.T for j in range(self.Ndata): if fi_u2[k] <= table[0,1]: comp_2_Gumb[k] = min(table[:,0]) break elif fi_u2[k] <= table[j,1]: comp_2_Gumb[k] = (table[j,0]+table[j-1,0])/2 break else: comp_2_Gumb[k] = max(table[:,0]) Hs_Return = comp_1 T_Return = comp_2_Gumb self.Hs_ReturnContours = Hs_Return self.T_ReturnContours = T_Return return Hs_Return, T_Return def getSamples(self): '''Currently not implemented in this version.''' raise NotImplementedError def _saveParams(self, groupObj): groupObj.create_dataset('nonpara_dist_1', data=self.nonpara_dist_1) groupObj.create_dataset('nonpara_dist_2', data=self.nonpara_dist_2) class BivariateKDE(EA): '''Create a BivariateKDE EA class for a buoy object. Contours generated under this class will use a non-parametric KDE to fit the joint distribution.''' def __init__(self, buoy, bw, NData = 100, logTransform = False, max_T=None, max_Hs=None): ''' Parameters ---------- buoy : NDBCData ESSC.Buoy Object bw: np.array Array containing KDE bandwidth for Hs and T NData: int Discretization resolution used in KDE construction logTransform: Boolean Logical. True if log transformation should be taken prior to KDE construction. Default value is False. max_T:float Maximum T value for KDE contstruction, must include possible range of contour. Default value is 2*max(T) max_Hs:float Maximum Hs value for KDE contstruction, must include possible range of contour. Default value is 2*max(Hs) ''' if logTransform: self.method = "Bivariate KDE, Log Transform" else: self.method = "Bivariate KDE" self.buoy = buoy if max_T == None: max_T = max(self.buoy.T)*2. if max_Hs == None: max_Hs = max(self.buoy.Hs)*2. self.max_T = max_T self.max_Hs = max_Hs self.Hs_ReturnContours = None self.T_ReturnContours = None self.NData = NData self.bw = bw self.logTransform = logTransform def getContours(self, time_ss, time_r): '''WDRT Extreme Sea State non-parameteric bivariate KDE Contour function. This function calculates environmental contours of extreme sea states using a bivariate KDE to estimate the joint distribution. The contour is then calculcated directly from the joint distribution. Parameters ___________ time_ss : float Sea state duration (hours) of measurements in input. time_r : np.array Desired return period (years) for calculation of environmental contour, can be a scalar or a vector. Returns ------- Hs_Return : np.array Calculated Hs values along the contour boundary following return to original input orientation. T_Return : np.array Calculated T values along the contour boundary following return to original input orientation. Example ------- To obtain the contours for a NDBC buoy:: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create Environmental Analysis object using above parameters BivariateKDE46022 = ESSC.BivariateKDE(buoy46022, bw = [0.23,0.19], logTransform = False) # Declare required parameters Time_SS = 1. # Sea state duration (hrs) Time_r = 100 # Return periods (yrs) of interest # KDE contour generation example Hs_Return, T_Return = BivariateKDE46022.getContours(Time_SS, Time_r) ''' p_f = 1 / (365 * (24 / time_ss) * time_r) if self.logTransform: # Take log of both variables logTp = np.log(self.buoy.T) logHs = np.log(self.buoy.Hs) ty = [logTp, logHs] else: ty = [self.buoy.T, self.buoy.Hs] # Create grid of points Ndata = self.NData min_limit_1 = 0.01 max_limit_1 = self.max_T min_limit_2 = 0.01 max_limit_2 = self.max_Hs pts_tp = np.linspace(min_limit_1, max_limit_1, Ndata) pts_hs = np.linspace(min_limit_2, max_limit_2, Ndata) pt1,pt2 = np.meshgrid(pts_tp, pts_hs) pts_tp = pt1.flatten() pts_hs = pt2.flatten() # Transform gridded points using log xi = [pts_tp, pts_hs] if self.logTransform: txi = [np.log(pts_tp), np.log(pts_hs)] else: txi = xi m = len(txi[0]) n = len(ty[0]) d = 2 # Create contour f = np.zeros((1,m)) weight = np.ones((1,n)) for i in range(0,m): ftemp = np.ones((n,1)) for j in range(0,d): z = (txi[j][i] - ty[j])/self.bw[j] fk = stats.norm.pdf(z) if self.logTransform: fnew = fk*(1/np.transpose(xi[j][i])) else: fnew = fk fnew = np.reshape(fnew, (n,1)) ftemp = np.multiply(ftemp,fnew) f[:,i] = np.dot(weight,ftemp) fhat = f.reshape(100,100) vals = plt.contour(pt1,pt2,fhat, levels = [p_f]) plt.clf() self.Hs_ReturnContours = [] self.T_ReturnContours = [] for i,seg in enumerate(vals.allsegs[0]): self.Hs_ReturnContours.append(seg[:,1]) self.T_ReturnContours.append(seg[:,0]) # self.Hs_ReturnContours = np.transpose(np.asarray(self.Hs_ReturnContours)[0]) self.T_ReturnContours = np.transpose(np.asarray(self.T_ReturnContours)[0]) # self.vals = vals # contourVals = np.empty((0,2)) # for seg in vals.allsegs[0]: # contourVals = np.append(contourVals,seg, axis = 0) # self.Hs_ReturnContours = contourVals[:,1] # self.T_ReturnContours = contourVals[:,0] return self.Hs_ReturnContours, self.T_ReturnContours class Buoy(object): ''' This class creates a buoy object to store buoy data for use in the environmental assessment functions available in the ESSC module. Attributes __________ swdList : list List that contains numpy arrays of the spectral wave density data, separated by year. freqList: list List that contains numpy arrays that contain the frequency values for each year dateList : list List that contains numpy arrays of the date values for each line of spectral data, separated by year Hs : list Significant wave height. T : list Energy period. dateNum : list List of datetime objects. ''' def __init__(self, buoyNum, buoyType): ''' Parameters ___________ buoyNum : string device number for desired buoy buoyType : string type of buoy device, available options are 'NDBC' or 'CDIP' savePath : string relative path where the data read from ndbc.noaa.gov will be stored ''' self.swdList = [] self.freqList = [] self.dateList = [] self.Hs = [] self.T = [] self.dateNum = [] self.buoyNum = buoyNum self.buoyType = buoyType.upper() def fetchFromWeb(self, savePath = "./Data/",proxy=None): ''' Calls either __fetchCDIP() or __fetchNDBC() depending on the given buoy's type and fetches the necessary data from its respective website. Parameters ---------- saveType: string If set to to "h5", the data will be saved in a compressed .h5 file If set to "txt", the data will be stored in a raw .txt file Otherwise, a file will not be created NOTE: Only applies savePath : string Relative path to place directory with data files. proxy: dict Proxy server and port, i.e., {http":"http://proxyserver:port"} Example _________ >>> import WDRT.ESSC as ESSC >>> buoy = ESSC.Buoy('46022','NDBC') >>> buoy.fetchFromWeb() ''' if self.buoyType == "NDBC": self.__fetchNDBC(proxy) elif self.buoyType == "CDIP": self.__fetchCDIP(savePath,proxy) def __fetchNDBC(self, proxy): ''' Searches ndbc.noaa.gov for the historical spectral wave density data of a given device and writes the annual files from the website to a single .txt file, and stores the values in the swdList, freqList, and dateList member variables. Parameters ---------- saveType: string If set to to "h5", the data will be saved in a compressed .h5 file If set to "txt", the data will be stored in a raw .txt file Otherwise, a file will not be created NOTE: Only applies savePath : string Relative path to place directory with data files. ''' maxRecordedDateValues = 4 #preallocates data numLines = 0 numCols = 0 numDates = 0 dateVals = [] spectralVals = [] #prepares to pull the data from the NDBC website url = "https://www.ndbc.noaa.gov/station_history.php?station=%s" % (self.buoyNum) if proxy == None: ndbcURL = requests.get(url) else: ndbcURL = requests.get(url,proxies=proxy) ndbcURL.raise_for_status() ndbcHTML = bs4.BeautifulSoup(ndbcURL.text, "lxml") headers = ndbcHTML.findAll("b", text="Spectral wave density data: ") #checks for headers in differently formatted webpages if len(headers) == 0: raise Exception("Spectral wave density data for buoy #%s not found" % self.buoyNum) if len(headers) == 2: headers = headers[1] else: headers = headers[0] links = [a["href"] for a in headers.find_next_siblings("a", href=True)] #downloads files for link in links: dataLink = "https://ndbc.noaa.gov" + link fileName = dataLink.replace('download_data', 'view_text_file') data = urllib.request.urlopen(fileName) print("Reading from:", data.geturl()) #First Line of every file contains the frequency data frequency = data.readline() if frequency.split()[4] == b'mm': numDates = 5 else: numDates = 4 frequency = np.array(frequency.split()[numDates:], dtype = np.float) #splits and organizes data into arrays. for line in data: currentLine = line.split() numCols = len(currentLine) if numCols - numDates != len(frequency): print("NDBC File is corrupted - Skipping and deleting data") spectralVals = [] dateVals = [] break if float(currentLine[numDates+1]) < 999: numLines += 1 for j in range(maxRecordedDateValues): dateVals.append(currentLine[j]) for j in range(numCols - numDates): spectralVals.append(currentLine[j + numDates]) if len(spectralVals) != 0: dateValues = np.array(dateVals, dtype=np.int) spectralValues = np.array(spectralVals, dtype=np.float) dateValues = np.reshape(dateValues, (numLines, maxRecordedDateValues)) spectralValues = np.reshape(spectralValues, (numLines, (numCols - numDates))) numLines = 0 numCols = 0 if len(spectralVals) != 0: del dateVals[:] del spectralVals[:] self.swdList.append(spectralValues) self.freqList.append(frequency) self.dateList.append(dateValues) self._prepData() def loadFromTxt(self, dirPath = None): '''Loads NDBC data previously downloaded to a series of text files in the specified directory. Parameters ---------- dirPath : string Relative path to directory containing NDBC text files (created by NBDCdata.fetchFromWeb). If left blank, the method will search all directories for the data using the current directory as the root. Example ------- To load data from previously downloaded files created using fetchFromWeb(): import WDRT.ESSC as ESSC buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.loadFromText() ''' #preallocates arrays dateVals = [] spectralVals = [] numLines = 0 maxRecordedDateValues = 4 #finds the text files (if they exist on the machine) if dirPath is None: for dirpath, subdirs, files in os.walk('.'): for dirs in subdirs: if ("NDBC%s" % self.buoyNum) in dirs: dirPath = os.path.join(dirpath,dirs) break if dirPath is None: raise IOError("Could not find directory containing NDBC data") fileList = glob.glob(os.path.join(dirPath,'SWD*.txt')) if len(fileList) == 0: raise IOError("No NDBC data files found in " + dirPath) #reads in the files for fileName in fileList: print('Reading from: %s' % (fileName)) f = open(fileName, 'r') frequency = f.readline().split() numCols = len(frequency) if frequency[4] == 'mm': frequency = np.array(frequency[5:], dtype=np.float) numTimeVals = 5 else: frequency = np.array(frequency[4:], dtype=np.float) numTimeVals = 4 for line in f: currentLine = line.split() if float(currentLine[numTimeVals + 1]) < 999: numLines += 1 for i in range(maxRecordedDateValues): dateVals.append(currentLine[i]) for i in range(numCols - numTimeVals): spectralVals.append(currentLine[i + numTimeVals]) dateValues = np.array(dateVals, dtype=np.int) spectralValues = np.array(spectralVals, dtype=np.double) dateValues = np.reshape(dateValues, (numLines, maxRecordedDateValues)) spectralValues = np.reshape( spectralValues, (numLines, (numCols - numTimeVals))) del dateVals[:] del spectralVals[:] numLines = 0 numCols = 0 self.swdList.append(spectralValues) self.freqList.append(frequency) self.dateList.append(dateValues) self._prepData() def loadFile(self, dirPath = None): '''Loads file depending on whether it's NDBC or CDIP.''' if self.buoyType == "NDBC": self.loadFromText(dirPath) if self.buoyType == "CDIP": self.loadCDIP(dirPath) def loadFromH5(self, fileName = None): """ Loads NDBC data previously saved in a .h5 file Parameters ---------- fileName : string Name of the .h5 file to load data from. Example ------- To load data from previously downloaded files: import WDRT.ESSC as ESSC buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() buoy46022.saveData() buoy46022.loadFromH5('NDBC46022.h5') """ if fileName == None: fileName = self.buoyType + self.buoyNum + ".h5" _, file_extension = os.path.splitext(fileName) if not file_extension: fileName = fileName + '.h5' print("Reading from: ", fileName) try: f = h5py.File(fileName, 'r') except IOError: raise IOError("Could not find file: " + fileName) self.Hs = np.array(f['buoy_Data/Hs'][:]) self.T = np.array(f['buoy_Data/Te'][:]) self.dateNum = np.array(f['buoy_Data/dateNum'][:]) self.dateList = np.array(f['buoy_Data/dateList'][:]) print("----> SUCCESS") def saveAsH5(self, fileName=None): ''' Saves NDBC buoy data to h5 file after fetchFromWeb() or loadFromText(). This data can later be used to create a buoy object using the loadFromH5() function. Parameters ---------- fileName : string relevent path and filename where the .h5 file will be created and saved. If no filename, the h5 file will be named NDBC(buoyNum).h5 in location where code is running. Example ------- To save data to h5 file after fetchFromWeb or loadFromText: import WDRT.ESSC as ESSC buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() buoy46022.saveAsH5() ''' if (fileName == None): fileName = 'NDBC' + str(self.buoyNum) + '.h5' else: _, file_extension = os.path.splitext(fileName) if not file_extension: fileName = fileName + '.h5' f = h5py.File(fileName, 'w') self._saveData(f) f.close() print("Saved buoy data"); def saveAsTxt(self, savePath = "./Data/"): """ Saves spectral wave density data to a .txt file in the same format as the files found on NDBC's website. Parameters ---------- savePath : string Relative file path where the .txt files will be saved. Example ------- To save data to h5 file after fetchFromWeb or loadFromText: import WDRT.ESSC as ESSC buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() buoy46022.saveAsTxt() """ curYear = self.dateList[0][0] dateIndexDiff = 0 bFile = False #NDBC sometimes splits years into two files, the second one titled "YYYYb" saveDir = os.path.join(savePath, 'NDBC%s' % (self.buoyNum)) print("Saving in :", saveDir) if not os.path.exists(saveDir): os.makedirs(saveDir) for i in range(len(self.swdList)): if not bFile: swdFile = open(os.path.join(saveDir, "SWD-%s-%d.txt" % (self.buoyNum, curYear)), 'w') else: swdFile = open(os.path.join(saveDir, "SWD-%s-%db.txt" % (self.buoyNum, curYear)), 'w') bFile = False freqLine = "YYYY MM DD hh" for j in range(len(self.freqList[i])): freqLine += (" " + "%2.4f" % self.freqList[i][j]) freqLine += "\n" swdFile.write(freqLine) for j in range(len(self.dateList)): if (j + dateIndexDiff + 1) > len(self.dateList): break newYear = self.dateList[j + dateIndexDiff][0] if curYear != newYear: dateIndexDiff += (j) curYear = newYear break if (j+1) > len(self.swdList[i]): dateIndexDiff += (j) bFile = True break swdLine = ' '.join("%0*d" % (2,dateVal) for dateVal in self.dateList[j + dateIndexDiff]) + " " swdLine += " ".join("%6s" % val for val in self.swdList[i][j]) + "\n" swdFile.write(swdLine) def createSubsetBuoy(self, trainingSize): '''Takes a given buoy and creates a subset buoy of a given length in years. Parameters ---------- trainingSize : int The size in years of the subset buoy you would like to create Returns ------- # subsetBuoy : ESSC.Buoy object A buoy (with Hs, T, and dateList values) that is a subset of the given buoy Example ------- To get a corresponding subset of a buoy with a given number of years: import WDRT.ESSC as ESSC # Pull spectral data from NDBC website buoy46022 = ESSC.Buoy('46022','NDBC') buoy46022.fetchFromWeb() # Create a subset of buoy 46022 consisting of the first 10 years subsetBuoy = buoy46022.createSubsetBuoy(10) ''' subsetBuoy = copy.deepcopy(self) sortedIndex = sorted(range(len(self.dateNum)),key=lambda x:self.dateNum[x]) self.dateNum = self.dateNum[sortedIndex] self.dateList = self.dateList[sortedIndex] self.Hs = self.Hs[sortedIndex] self.T = self.T[sortedIndex] years = [0] * len(self.dateList) for i in range(len(self.dateList)): years[i] = self.dateList[i][0] trainingYear = self.dateList[0][0] + trainingSize cond = years <= trainingYear subsetBuoy.Hs = self.Hs[cond] subsetBuoy.T = self.T[cond] subsetBuoy.dateList = self.dateList[cond] return(subsetBuoy) def _saveData(self, fileObj): '''Organizes and saves wave height, energy period, and date data.''' if(self.Hs is not None): gbd = fileObj.create_group('buoy_Data') f_Hs = gbd.create_dataset('Hs', data=self.Hs) f_Hs.attrs['units'] = 'm' f_Hs.attrs['description'] = 'significant wave height' f_T = gbd.create_dataset('Te', data=self.T) f_T.attrs['units'] = 'm' f_T.attrs['description'] = 'energy period' f_dateNum = gbd.create_dataset('dateNum', data=self.dateNum) f_dateNum.attrs['description'] = 'datenum' f_dateList = gbd.create_dataset('dateList', data=self.dateList) f_dateList.attrs['description'] = 'date list' else: RuntimeError('Buoy object contains no data') def __fetchCDIP(self,savePath,proxy): """ Fetches the Hs and T values of a CDIP site by downloading the respective .nc file from http://cdip.ucsd.edu/ Parameters ---------- savePath : string Relative path to place directory with data files. """ url = "http://thredds.cdip.ucsd.edu/thredds/fileServer/cdip/archive/" + str(self.buoyNum) + "p1/" + \ str(self.buoyNum) +"p1_historic.nc" print("Downloading data from: " + url) filePath = savePath + "/" + str(self.buoyNum) + "-CDIP.nc" urllib.request.urlretrieve (url, filePath) self.__processCDIPData(filePath) def loadCDIP(self, filePath = None): """ Loads the Hs and T values of the given site from the .nc file downloaded from http://cdip.ucsd.edu/ Parameters ---------- filePath : string File path to the respective .nc file containing the Hs and T values """ if filePath == None: filePath = "data/" + self.buoyNum + "-CDIP.nc" self.__processCDIPData(filePath) def __averageValues(self): """ Averages the Hs and T values of the given buoy to get hour time-steps rather than half hour time-steps """ self.Hs = np.mean(self.Hs.reshape(-1,2), axis = 1) self.T = np.mean(self.T.reshape(-1,2), axis = 1) def __processCDIPData(self,filePath): """ Loads the Hs and T values from the .nc file downloaded from http://cdip.ucsd.edu/ Parameters ---------- filePath : string File path to the respective .nc file containing the Hs and T values """ import netCDF4 try: data = netCDF4.Dataset(filePath) except IOError: raise IOError("Could not find data for CDIP site: " + self.buoyNum) self.Hs = np.array(data["waveHs"][:], dtype = np.double) self.T = np.array(data["waveTa"][:], dtype = np.double) data.close() #Some CDIP buoys record data every half hour rather than every hour if len(self.Hs)%2 == 0: self.__averageValues() def _prepData(self): '''Runs _getStats and _getDataNums for full set of data, then removes any NaNs. This cleans and prepares the data for use. Returns wave height, energy period, and dates. ''' n = len(self.swdList) Hs = [] T = [] dateNum = [] for ii in range(n): tmp1, tmp2 = _getStats(self.swdList[ii], self.freqList[ii]) Hs.extend(tmp1) T.extend(tmp2) dateNum.extend(_getDateNums(self.dateList[ii])) dateList = [date for year in self.dateList for date in year] Hs = np.array(Hs, dtype=np.float) T =
np.array(T, dtype=np.float)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 7 21:29:28 2019 @author: prasad """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import preprocessing def get_data(column_names): train_df = pd.read_csv('./data/20_percent_missing_train.txt', header=None,sep=',').values test_df = pd.read_csv('./data/20_percent_missing_train.txt', header=None, sep=',').values train_labels = train_df[:][-1] test_labels = test_df[:][-1] train_data = train_df[:][:-1] test_data = test_df[:][:-1] return train_data, train_labels, test_data, test_labels def split(data, num_of_splits = 10): # Special Splitting # Group 1 will consist of points {1,11,21,...}, Group 2 will consist of # points {2,12,22,...}, ..., and Group 10 will consist of points {10,20,30,...} folds = [] for k in range(num_of_splits): fold = [] for i in range(k, len(data), num_of_splits): fold.append(data[i]) fold = np.array(fold) folds.append(fold) return folds # assuming features are bernoulli variables def train_naive_bayes(train_data, train_labels, test_data, test_labels, error_table, preds, labels): mean = np.nanmean(train_data, axis=0) train_data = binarize(train_data, mean) non_spam_indices = np.argwhere(train_labels == 0).flatten() spam_indices = np.argwhere(train_labels == 1).flatten() # get spam and non_spam data non_spam_data = np.take(train_data, non_spam_indices, axis = 0) spam_data = np.take(train_data, spam_indices, axis = 0) # priors priors = get_priors(train_labels) count_non_spam = count(non_spam_data) count_spam = count(spam_data) counts = np.array([count_non_spam, count_spam]) probabilities = prob(counts) predictions = [] test_data = binarize(test_data, mean) for pt in range(len(test_data)): data = test_data[pt] pred = (probabilities * data).sum(axis=1) + priors predictions.append(np.argmax(pred)) c_mat = conf_matrix(predictions, test_labels) error_table.append(c_mat) preds.append(predictions) labels.append(test_labels) return acc(predictions, test_labels) def get_priors(labels): count_spam = np.count_nonzero(labels) count_non_spam = len(labels) - count_spam priors = np.array([np.log(count_non_spam/ len(labels)), np.log(count_spam / len(labels))]) return priors def acc(preds, labels): check = (preds == labels).astype(int) count = np.count_nonzero(check) return count / len(labels) def prob(feature_count): return np.log(feature_count / feature_count.sum(axis=1)[np.newaxis].T) def count(data): greaters = np.sum(data, axis=0) + 1.0 return greaters def binarize(data, mean): data = (data < mean).astype(int) return data def normalize(dataset, train_size): ''' Args dataset: data to be normalized using shift-scale normalization Returns dataset: normalized dataset ''' dataset = preprocessing.minmax_scale(dataset, feature_range=(0, 1)) train_data = dataset[:train_size] test_data = dataset[train_size:] return train_data, test_data def get_labels(data): data_labels = data[:, -1] data = data[:, :-1] return data, data_labels def conf_matrix(preds, test_labels): tp = 0 fp = 0 tn = 0 fn = 0 for i in range(len(preds)): p = preds[i] if p == test_labels[i]: if p == 1: tp += 1 else: tn += 1 else: if p == 1: fp += 1 else: fn += 1 return np.array([tp, fp, fn, tn]) def plot_roc(truth, preds): fprs, tprs, _ = metrics.roc_curve(truth, preds) plt.figure(figsize = (15,10)) plt.title('ROC') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.plot(fprs, tprs, label = 'AUC: {}'.format(metrics.auc(fprs, tprs))) plt.legend(loc = 'lower right') def train_folds(folds): accs = [] error_table = [] predictions = [] labels = [] # for each fold for k in range(len(folds)): # kth fold selected as test set test_data =
np.array(folds[k])
numpy.array
# -*- coding: utf-8 -*- import cobra from cobra.flux_analysis import flux_variability_analysis from .read_spreadsheets import read_spreadsheets from .write_spreadsheet import write_spreadsheet import numpy as np import re import copy from cobra.flux_analysis import pfba try: from cobra.flux_analysis import sample except: from cobra.sampling import sample try: cobra_config = cobra.Configuration() cobra_config.solver = "glpk" #print("glpk set as default solver") except: print("could not set glpk to default solver") import cobra.util.solver as sutil from pprint import pprint def round_sig(x, sig=2): if x==0: value=0 else: value=round(x, sig-int(math.floor(math.log10(abs(x))))-1) return value from cobra.flux_analysis import ( single_gene_deletion, single_reaction_deletion, double_gene_deletion, double_reaction_deletion) from cobra.manipulation.delete import find_gene_knockout_reactions, remove_genes from cobra import Reaction from cobra.flux_analysis.variability import flux_variability_analysis as cobra_flux_variability_analysis def flux_variability_analysis(model,fraction_of_optimum=0,tolerance_feasibility=1e-6,reaction_list=None): fva={} if reaction_list!=None: if isinstance(reaction_list[0], str): reaction_list=[model.reactions.get_by_id(x) for x in reaction_list] try: pandas_fva=cobra_flux_variability_analysis(model,fraction_of_optimum=fraction_of_optimum,reaction_list=reaction_list) except: cobra.io.write_sbml_model(model,"failed_model.sbml") raise Exception('FVA failed, error model saved as failed_model.sbml') for reaction in pandas_fva.index: fva[reaction]={"maximum":pandas_fva.loc[reaction]["maximum"],"minimum":pandas_fva.loc[reaction]["minimum"]} return fva def remove_isoforms_information(model,separator="\."): genes_to_delete=[] for reaction in model.reactions: replace_dict={} for gene in reaction.genes: gene_match=re.match("^(.+)"+separator, gene.id) if gene_match==None: continue replace_dict[gene.id]=gene_match.group(1) print(gene.id+"->"+gene_match.group(1)) gene_reaction_rule=reaction.gene_reaction_rule for gene_id in replace_dict: #gene_reaction_rule=gene_reaction_rule.replace("("+gene_id,"("+replace_dict[gene_id]).replace(" "+gene_id," "+replace_dict[gene_id]) gene_reaction_rule=gene_reaction_rule.replace("("+gene_id,"("+replace_dict[gene_id]).replace(" "+gene_id," "+replace_dict[gene_id]) gene_reaction_rule=re.sub("^"+gene_id, replace_dict[gene_id], gene_reaction_rule, count=0, flags=0) if len(reaction.genes)==1: gene_reaction_rule=gene_reaction_rule.replace(gene_id,replace_dict[gene_id]) if gene_id not in genes_to_delete: genes_to_delete.append(gene_id) print(reaction.gene_reaction_rule) print(gene_reaction_rule) reaction.gene_reaction_rule=gene_reaction_rule genes_to_remove=[] print(genes_to_remove) for gene in model.genes: if len(gene.reactions)==0: print(gene) genes_to_remove.append(gene) for gene in genes_to_remove: #print gene.id try: model.genes.get_by_id(gene.id).remove_from_model() #gene.remove_from_model()""" except: print(gene.id + "could not be removed") def sampling(model,n=100,processes=6,objective=None,starts=1,return_matrix=False,method="optgp",thinning=100): print(method, thinning) reaction_ids=[x.id for x in model.reactions] if objective!=None: print(model.reactions.get_by_id(objective).lower_bound) flux_dict_list=[] for i in range(0,starts): result_matrix = sample(model, n,processes=processes,method=method,thinning=thinning).to_numpy() #Valid methods are optgp and achr. Process is only used in optgp. Thinning (“Thinning” means only recording samples every n iterations) is only used in achr result_matrix=np.asmatrix(result_matrix) if not return_matrix: for row in result_matrix: flux_dict={} for n_flux,flux in enumerate(row): flux_dict[reaction_ids[n_flux]]=flux flux_dict_list.append(flux_dict) if objective!=None: print(flux_dict[objective]) elif return_matrix: if i==0: aggregated_results=result_matrix else: aggregated_results=np.vstack((aggregated_results,result_matrix)) if not return_matrix: return flux_dict_list else: return np.transpose(aggregated_results), reaction_ids def sampling_matrix_get_mean_sd(aggregated_results,reaction_ids,include_absolute_val_stats=False,percentiles=[25,50,75]): stat_dict={} for n,row in enumerate(aggregated_results): mean=np.mean(row) std=
np.std(row)
numpy.std
# -*- coding: utf-8 -*- # @Time : 2018/8/7 13:30 # @Author : <NAME> # @File : feature_pu_model_utils.py from utils.plain_model_utils import ModelUtils import numpy as np class FeaturedDetectionModelUtils(ModelUtils): def __init__(self, dp): super(FeaturedDetectionModelUtils, self).__init__() self.dp = dp def add_dict_info(self, sentences, windowSize, datasetName): perBigDic = set() locBigDic = set() orgBigDic = set() miscBigDic = set() with open("feature_dictionary/" + datasetName + "/personBigDic.txt", "r",encoding='utf-8') as fw: for line in fw: line = line.strip() if len(line) > 0: perBigDic.add(line) with open("feature_dictionary/" + datasetName + "/locationBigDic.txt", "r",encoding='utf-8') as fw: for line in fw: line = line.strip() if len(line) > 0: locBigDic.add(line) with open("feature_dictionary/" + datasetName + "/organizationBigDic.txt", "r",encoding='utf-8') as fw: for line in fw: line = line.strip() if len(line) > 0: orgBigDic.add(line) if self.dp.dataset != "muc" and self.dp.dataset != "twitter": with open("feature_dictionary/" + datasetName + "/miscBigDic.txt", "r",encoding='utf-8') as fw: for line in fw: line = line.strip() if len(line) > 0: miscBigDic.add(line) for i, sentence in enumerate(sentences): for j, data in enumerate(sentence): feature = np.zeros([4, windowSize], dtype=int) maxLen = len(sentence) remainLenRight = maxLen - j - 1 rightSize = min(remainLenRight, windowSize - 1) remainLenLeft = j leftSize = min(remainLenLeft, windowSize - 1) k = 0 words = [] words.append(sentence[j][0]) while k < rightSize: # right side word = sentence[j + k + 1][0] temp = words[-1] word = temp + " " + word words.append(word) k += 1 k = 0 while k < leftSize: # left side word = sentence[j - k - 1][0] temp = words[0] word = word + " " + temp words.insert(0, word) k += 1 for idx, word in enumerate(words): count = len(word.split()) if word in perBigDic: feature[self.dp.tag2Idx["PER"]][count - 1] = 1 elif word in locBigDic: feature[self.dp.tag2Idx["LOC"]][count - 1] = 1 elif word in orgBigDic: feature[self.dp.tag2Idx["ORG"]][count - 1] = 1 feature = feature.reshape([-1]).tolist() sentences[i][j] = [data[0], data[1], feature, data[2], data[3]] def createMatrices(self, sentences, word2Idx, case2Idx, char2Idx): unknownIdx = word2Idx['UNKNOWN_TOKEN'] paddingIdx = word2Idx['PADDING_TOKEN'] dataset = [] wordCount = 0 unknownWordCount = 0 for sentence in sentences: wordIndices = [] caseIndices = [] charIndices = [] featureList = [] entityFlags = [] labeledFlags = [] for word, char, feature, ef, lf in sentence: wordCount += 1 if word in word2Idx: wordIdx = word2Idx[word] elif word.lower() in word2Idx: wordIdx = word2Idx[word.lower()] else: wordIdx = unknownIdx unknownWordCount += 1 charIdx = [] for x in char: if x in char2Idx: charIdx.append(char2Idx[x]) else: charIdx.append(char2Idx["UNKNOWN"]) wordIndices.append(wordIdx) caseIndices.append(self.get_casing(word, case2Idx)) charIndices.append(charIdx) featureList.append(feature) entityFlags.append(ef) labeledFlags.append(lf) dataset.append( [wordIndices, caseIndices, charIndices, featureList, entityFlags, labeledFlags]) return dataset def padding(self, sentences): maxlen = 52 for i, sentence in enumerate(sentences): mask = np.zeros([len(sentences[i][2]), maxlen]) for j, chars in enumerate(sentences[i][2]): for k, c in enumerate(chars): if k < maxlen: mask[j][k] = c sentences[i][2] = mask.tolist() sentences_X = [] sentences_Y = [] sentences_LF = [] for i, sentence in enumerate(sentences): sentences_X.append(sentence[:4]) sentences_Y.append(sentence[4]) sentences_LF.append(sentence[5]) return np.array(sentences_X), np.array(sentences_Y),
np.array(sentences_LF)
numpy.array
# Original filename: dewarp.py # # Author: <NAME> # Email: <EMAIL> # Date: March 2011 # # Summary: Dewarp, recenter, and rotate an image. # import numpy as np import scipy import scipy.ndimage import scipy.interpolate import pyfits import math def distortion_map(dimen=2048, mjd=55000): """ Function distortion_map takes two arguments: 1. A 2048 x 2048 array of flux values 2. The MJD of observations, used to decide which distortion map to use Optional argument: 2. A 2 element list for the new center [y, x], default [1024, 1024] 3. Angle in radians through which to rotate clockwise, default 0 4. Minimum proportion of data from good pixels (if at least this proportion of the interpolated value is from bad pixels, set pixel to NaN), default 0.5 5. Integer dimension of output array (default 2897) dewarp applies the distortion correction and recenters the resulting image in a 2897x2897 array. The coordinates of the central point are defined in the input 2048x2048 array. The function dewarp returns an HDU with the dewarped, rotated, and recentered array. """ dimy = dimen dimx = dimen ################################################################# # Coefficients determined from the MCMC ################################################################# # This is the map prior to May 2011. MJD 55682=May 1st, 2011 if mjd < 55680: a = [-5.914548e-01, -3.835090e-03, -4.091949e-05, 1.056099e+02, -2.330969e-02, -2.250246e-03, -1.624182e-02, 2.437204e-04, -3.810423e-03] b = [1.022675e+02, -1.490726e-02, -2.589800e-03, 5.355218e-01, 2.314851e-03, 5.392667e-04, 2.279097e-02, -8.767285e-04, 1.290849e-03] # Plate scale differs by 8% with the optical secondary, used # in September 2012 (September 10 = MJD 56180) elif
np.abs(mjd - 56180)
numpy.abs
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ============================================================================= # Import # ============================================================================= from collections import defaultdict, OrderedDict from matplotlib.pyplot import figure import matplotlib.pyplot as plt import scipy.spatial as spatial from os.path import exists import numpy as np import argparse import sys import os # ============================================================================= # Argparse some parameters # ============================================================================= parser = argparse.ArgumentParser() parser.add_argument("-seed", "--seed", default=0, type=int) parser.add_argument("-type", "--type", default='default', type=str) parser.add_argument("-distanciation", "--distanciation", default=16, type=float) parser.add_argument("-n_population", "--n_population", default=1, type=int) parser.add_argument("-transfer_rate", "--transfer_rate", default=0.0, type=float) parser.add_argument("-transfer_proportion", "--transfer_proportion", default=0.01, type=float) parser.add_argument("-curfew", "--curfew", default=24, type=int) parser.add_argument("-confined", "--confined", default=0.0, type=float) args = parser.parse_args() #"--seed 20 --distanciation 0.0".split(' ') seed = args.seed #define simulation name simulation_name = f'fix4_{args.type}_{seed}_{args.distanciation}_{args.transfer_rate}_{args.curfew}_{args.confined}' if exists(f'simulation/{simulation_name}/logs.pydict'): sys.exit() print('Simulation name:', simulation_name) # ============================================================================= # Simulation parameters - Starting hypotheses # ----------------------------------------------------------------------------- # n_ is an absolute number # p_ is a probability/proportion with 1 = 100% # ============================================================================= #primary parameters n_hours = 2 * 30 * 24 #2 months n_population = args.n_population #number of densed population / cities n_persons_per_population = 1000 p_contaminated_per_population = 0.01 #init proportion of contaminated people distance_to_pcontamination = OrderedDict({0.1:0.95, 0.5:0.9, 1:0.7, 2:0.6, 5:0.3}) #probability is applied each hour starting_distanciation = args.distanciation #meters | "density" default_movement = 2 #meters per hour contamination_duration = 14 * 24 #hours delay_before_infectious = 3 * 24 #hours death_possibility_delay = 9*24 #hours p_lethality = 0.006 p_lethality_per_hour = 0.006/(contamination_duration-death_possibility_delay) wake_up_time = 8 sleep_up_time = 24 curfew = False if args.curfew == 24 else args.curfew sleep_up_time = sleep_up_time if not curfew else curfew moving_time = list(range(wake_up_time, sleep_up_time)) p_confined = args.confined #proportion of people not moving each day probability_population_transfer = args.transfer_rate proportion_population_transfer = args.transfer_proportion #secondary parameters move_before_start = 50 init_delta_xy = 3 #+/- n meters initializing the population mean_hours_since_contamination = 3*24; std_hours_since_contamination = 2*24 #non-parameters np.random.seed(seed) VULNERABLE = 0 IMMUNIZED = -1 DEAD = -2 plt.ioff() colors = ['black', 'limegreen', 'dodgerblue', 'tomato'] simulation_dir = f'simulation/{simulation_name}' #check assert death_possibility_delay < contamination_duration assert sleep_up_time > wake_up_time assert VULNERABLE > IMMUNIZED > DEAD assert not (p_confined > 0 and probability_population_transfer > 0), 'currently not compatible' if not exists(simulation_dir): os.mkdir(simulation_dir) # ============================================================================= # Generate populations # ----------------------------------------------------------------------------- # generate populations in a grid pattern, each person is separated by starting_distanciation # ============================================================================= populations_yx = [] for i_pop in range(0, n_population): border = int(np.sqrt(n_persons_per_population))+1 xpos = [int(i/border) for i in list(range(0,n_persons_per_population))] ypos = list(range(0, border)) * border ypos = ypos[0:n_persons_per_population] population = np.array((ypos, xpos), dtype=np.float) population *= starting_distanciation for i in range(0,move_before_start): population +=
np.random.uniform(-init_delta_xy,init_delta_xy,population.shape)
numpy.random.uniform
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for input_pipeline.""" import functools from typing import Sequence from absl.testing import absltest from absl.testing import parameterized import numpy as np import tensorflow_datasets as tfds from sparse_mixers import input_pipeline import sentencepiece as spm class MockTokenizer(spm.SentencePieceProcessor): """Mock tokenizer returning pre-specified tokens.""" def EncodeAsIds(self, text): del text # Ignore input and return dummy output return np.array([6, 7, 8]) def pad_id(self): return 1 def eos_id(self): return 2 def bos_id(self): return 3 def PieceToId(self, text): del text # Ignore input and return dummy output return np.random.randint(5, 20) def GetPieceSize(self): return 20 class InputPipelineTest(parameterized.TestCase): def test_clean_multirc_inputs(self): self.assertEqual( input_pipeline._clean_multirc_inputs( dataset_name="super_glue/multirc", text=b"<br>html</b>"), " html ") self.assertEqual( input_pipeline._clean_multirc_inputs( dataset_name="super_glue/multirc", text=b"clean"), "clean") self.assertEqual( input_pipeline._clean_multirc_inputs( dataset_name="not_multirc", text="<br>html</b>"), "<br>html</b>") @parameterized.parameters( "glue/cola", "glue/sst2", "glue/mrpc", "glue/qqp", "glue/stsb", "glue/mnli", "glue/qnli", "glue/rte", "glue/wnli", "super_glue/boolq", "super_glue/cb", "super_glue/copa", "super_glue/multirc", "super_glue/record", "super_glue/rte", "super_glue/wic", "super_glue/wsc", "super_glue/wsc.fixed", "super_glue/axb", "super_glue/axg") def test_classification_inputs(self, dataset_name): batch_size = 2 max_seq_length = 4 data_pipeline = functools.partial( input_pipeline.classification_inputs, split=tfds.Split.TRAIN, batch_size=batch_size, tokenizer=MockTokenizer(), max_seq_length=max_seq_length) with tfds.testing.mock_data(num_examples=10): for batch, _ in zip(data_pipeline(dataset_name=dataset_name), range(1)): self.assertSetEqual( set(batch.keys()), {"input_ids", "type_ids", "idx", "label"}) self.assertTupleEqual(batch["input_ids"].shape, (batch_size, max_seq_length)) self.assertTupleEqual(batch["type_ids"].shape, (batch_size, max_seq_length)) self.assertTupleEqual(batch["idx"].shape, (batch_size,)) self.assertEqual(batch["label"].shape[0], batch_size) def test_singularize_copa_examples(self): dataset = [{ "idx": np.array([0]), "premise": np.array(["I packed up my belongings."], dtype="object"), "question": np.array(["cause"], dtype="object"), "choice1":
np.array(["I was hunting for a new apartment."], dtype="object")
numpy.array
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import numpy as np import pandas as pd import scipy.sparse as sp from typing import List, Dict from GridCal.Engine.basic_structures import Logger import GridCal.Engine.Core.topology as tp from GridCal.Engine.Core.multi_circuit import MultiCircuit from GridCal.Engine.basic_structures import BranchImpedanceMode from GridCal.Engine.basic_structures import BusMode from GridCal.Engine.Simulations.PowerFlow.jacobian_based_power_flow import Jacobian from GridCal.Engine.Core.common_functions import compile_types, find_different_states class OpfTimeCircuit: def __init__(self, nbus, nline, ntr, nvsc, nhvdc, nload, ngen, nbatt, nshunt, nstagen, ntime, sbase, time_array, apply_temperature=False, branch_tolerance_mode: BranchImpedanceMode = BranchImpedanceMode.Specified): """ :param nbus: number of buses :param nline: number of lines :param ntr: number of transformers :param nvsc: :param nhvdc: :param nload: :param ngen: :param nbatt: :param nshunt: """ self.nbus = nbus self.nline = nline self.ntr = ntr self.nvsc = nvsc self.nhvdc = nhvdc self.nload = nload self.ngen = ngen self.nbatt = nbatt self.nshunt = nshunt self.nstagen = nstagen self.ntime = ntime self.Sbase = sbase self.apply_temperature = apply_temperature self.branch_tolerance_mode = branch_tolerance_mode self.time_array = time_array # bus ---------------------------------------------------------------------------------------------------------- self.bus_names = np.empty(nbus, dtype=object) self.bus_types = np.empty(nbus, dtype=int) self.bus_installed_power = np.zeros(nbus, dtype=float) self.bus_active = np.ones((ntime, nbus), dtype=int) self.Vbus = np.ones((ntime, nbus), dtype=complex) # branch common ------------------------------------------------------------------------------------------------ self.nbr = nline + ntr + nvsc # exclude the HVDC model since it is not a real branch self.branch_names = np.empty(self.nbr, dtype=object) self.branch_active = np.zeros((ntime, self.nbr), dtype=int) self.F = np.zeros(self.nbr, dtype=int) # indices of the "from" buses self.T = np.zeros(self.nbr, dtype=int) # indices of the "to" buses self.branch_rates = np.zeros((ntime, self.nbr), dtype=float) self.branch_cost = np.zeros((ntime, self.nbr), dtype=float) self.branch_R = np.zeros(self.nbr, dtype=float) self.branch_X = np.zeros(self.nbr, dtype=float) self.C_branch_bus_f = sp.lil_matrix((self.nbr, nbus), dtype=int) # connectivity branch with their "from" bus self.C_branch_bus_t = sp.lil_matrix((self.nbr, nbus), dtype=int) # connectivity branch with their "to" bus # lines -------------------------------------------------------------------------------------------------------- self.line_names = np.zeros(nline, dtype=object) self.line_R = np.zeros(nline, dtype=float) self.line_X = np.zeros(nline, dtype=float) self.line_B = np.zeros(nline, dtype=float) self.line_temp_base = np.zeros(nline, dtype=float) self.line_temp_oper = np.zeros(nline, dtype=float) self.line_alpha = np.zeros(nline, dtype=float) self.line_impedance_tolerance = np.zeros(nline, dtype=float) self.C_line_bus = sp.lil_matrix((nline, nbus), dtype=int) # this ons is just for splitting islands # transformer 2W + 3W ------------------------------------------------------------------------------------------ self.tr_names = np.zeros(ntr, dtype=object) self.tr_R = np.zeros(ntr, dtype=float) self.tr_X = np.zeros(ntr, dtype=float) self.tr_G = np.zeros(ntr, dtype=float) self.tr_B = np.zeros(ntr) self.tr_tap_f = np.ones(ntr) # tap generated by the difference in nominal voltage at the form side self.tr_tap_t = np.ones(ntr) # tap generated by the difference in nominal voltage at the to side self.tr_tap_mod = np.ones(ntr) # normal tap module self.tr_tap_ang = np.zeros(ntr) # normal tap angle self.C_tr_bus = sp.lil_matrix((ntr, nbus), dtype=int) # this ons is just for splitting islands # hvdc line ---------------------------------------------------------------------------------------------------- self.hvdc_names = np.zeros(nhvdc, dtype=object) self.hvdc_active = np.zeros((ntime, nhvdc), dtype=bool) self.hvdc_rate = np.zeros((ntime, nhvdc), dtype=float) self.hvdc_Pf = np.zeros((ntime, nhvdc)) self.hvdc_Pt = np.zeros((ntime, nhvdc)) self.C_hvdc_bus_f = sp.lil_matrix((nhvdc, nbus), dtype=int) # this ons is just for splitting islands self.C_hvdc_bus_t = sp.lil_matrix((nhvdc, nbus), dtype=int) # this ons is just for splitting islands # vsc converter ------------------------------------------------------------------------------------------------ self.vsc_names = np.zeros(nvsc, dtype=object) self.vsc_R1 = np.zeros(nvsc) self.vsc_X1 = np.zeros(nvsc) self.vsc_Gsw = np.zeros(nvsc) self.vsc_Beq = np.zeros(nvsc) self.vsc_m = np.zeros(nvsc) self.vsc_theta = np.zeros(nvsc) self.C_vsc_bus = sp.lil_matrix((nvsc, nbus), dtype=int) # this ons is just for splitting islands # load --------------------------------------------------------------------------------------------------------- self.load_names = np.empty(nload, dtype=object) self.load_active = np.zeros((ntime, nload), dtype=bool) self.load_s = np.zeros((ntime, nload), dtype=complex) self.load_cost = np.zeros((ntime, nload)) self.C_bus_load = sp.lil_matrix((nbus, nload), dtype=int) # static generators -------------------------------------------------------------------------------------------- self.static_generator_names = np.empty(nstagen, dtype=object) self.static_generator_active = np.zeros((ntime, nstagen), dtype=bool) self.static_generator_s = np.zeros((ntime, nstagen), dtype=complex) self.C_bus_static_generator = sp.lil_matrix((nbus, nstagen), dtype=int) # battery ------------------------------------------------------------------------------------------------------ self.battery_names = np.empty(nbatt, dtype=object) self.battery_controllable = np.zeros(nbatt, dtype=bool) self.battery_dispatchable = np.zeros(nbatt, dtype=bool) self.battery_pmin = np.zeros(nbatt) self.battery_pmax = np.zeros(nbatt) self.battery_enom = np.zeros(nbatt) self.battery_min_soc = np.zeros(nbatt) self.battery_max_soc = np.zeros(nbatt) self.battery_soc_0 = np.zeros(nbatt) self.battery_charge_efficiency = np.zeros(nbatt) self.battery_discharge_efficiency = np.zeros(nbatt) self.battery_installed_p = np.zeros(nbatt) self.battery_active = np.zeros((ntime, nbatt), dtype=bool) self.battery_p = np.zeros((ntime, nbatt)) self.battery_pf = np.zeros((ntime, nbatt)) self.battery_v = np.zeros((ntime, nbatt)) self.battery_cost = np.zeros((ntime, nbatt)) self.C_bus_batt = sp.lil_matrix((nbus, nbatt), dtype=int) # generator ---------------------------------------------------------------------------------------------------- self.generator_names = np.empty(ngen, dtype=object) self.generator_controllable = np.zeros(ngen, dtype=bool) self.generator_dispatchable = np.zeros(ngen, dtype=bool) self.generator_installed_p = np.zeros(ngen) self.generator_pmin = np.zeros(ngen) self.generator_pmax = np.zeros(ngen) self.generator_active = np.zeros((ntime, ngen), dtype=bool) self.generator_p = np.zeros((ntime, ngen)) self.generator_pf = np.zeros((ntime, ngen)) self.generator_v = np.zeros((ntime, ngen)) self.generator_cost = np.zeros((ntime, ngen)) self.C_bus_gen = sp.lil_matrix((nbus, ngen), dtype=int) # shunt -------------------------------------------------------------------------------------------------------- self.shunt_names = np.empty(nshunt, dtype=object) self.shunt_active = np.zeros((ntime, nshunt), dtype=bool) self.shunt_admittance = np.zeros((ntime, nshunt), dtype=complex) self.C_bus_shunt = sp.lil_matrix((nbus, nshunt), dtype=int) # -------------------------------------------------------------------------------------------------------------- # Arrays for the simulation # -------------------------------------------------------------------------------------------------------------- self.Sbus = np.zeros((self.nbus, ntime), dtype=complex) self.Ibus = np.zeros((self.nbus, ntime), dtype=complex) self.Yshunt_from_devices = np.zeros((self.nbus, ntime), dtype=complex) self.Qmax_bus = np.zeros((self.nbus, ntime)) self.Qmin_bus = np.zeros((self.nbus, ntime)) # only one Y matrix per time island, that is the guarantee we get by splitting the TimeCircuit in TimeIslands self.Ybus = None self.Yf = None self.Yt = None self.Yseries = None self.Yshunt = None # self.Ysh_helm = None self.B1 = None self.B2 = None self.Bpqpv = None self.Bref = None self.original_time_idx = np.arange(self.ntime) self.original_bus_idx = np.arange(self.nbus) self.original_branch_idx = np.arange(self.nbr) self.original_tr_idx = np.arange(self.ntr) self.original_gen_idx = np.arange(self.ngen) self.original_bat_idx = np.arange(self.nbatt) self.pq = list() self.pv = list() self.vd = list() self.pqpv = list() self.available_structures = ['Vbus', 'Sbus', 'Ibus', 'Ybus', 'Yshunt', 'Yseries', "B'", "B''", 'Types', 'Jacobian', 'Qmin', 'Qmax'] def consolidate(self): """ Consolidates the information of this object :return: """ self.C_branch_bus_f = self.C_branch_bus_f.tocsc() self.C_branch_bus_t = self.C_branch_bus_t.tocsc() self.C_line_bus = self.C_line_bus.tocsc() self.C_tr_bus = self.C_tr_bus.tocsc() self.C_hvdc_bus_f = self.C_hvdc_bus_f.tocsc() self.C_hvdc_bus_t = self.C_hvdc_bus_t.tocsc() self.C_vsc_bus = self.C_vsc_bus.tocsc() self.C_bus_load = self.C_bus_load.tocsr() self.C_bus_batt = self.C_bus_batt.tocsr() self.C_bus_gen = self.C_bus_gen.tocsr() self.C_bus_shunt = self.C_bus_shunt.tocsr() self.C_bus_static_generator = self.C_bus_static_generator.tocsr() self.bus_installed_power = self.C_bus_gen * self.generator_installed_p self.bus_installed_power += self.C_bus_batt * self.battery_installed_p def get_power_injections(self): """ Compute the power :return: Array of power injections """ # load Sbus = - self.C_bus_load * (self.load_s * self.load_active).T # MW # static generators Sbus += self.C_bus_static_generator * (self.static_generator_s * self.static_generator_active).T # MW # generators Sbus += self.C_bus_gen * (self.generator_p * self.generator_active).T # battery Sbus += self.C_bus_batt * (self.battery_p * self.battery_active).T # HVDC forced power if self.nhvdc: Sbus += ((self.hvdc_active * self.hvdc_Pf) * self.C_hvdc_bus_f).T Sbus += ((self.hvdc_active * self.hvdc_Pt) * self.C_hvdc_bus_t).T Sbus /= self.Sbase return Sbus def R_corrected(self): """ Returns temperature corrected resistances (numpy array) based on a formula provided by: NFPA 70-2005, National Electrical Code, Table 8, footnote #2; and https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity#Linear_approximation (version of 2019-01-03 at 15:20 EST). """ return self.line_R * (1.0 + self.line_alpha * (self.line_temp_oper - self.line_temp_base)) def compute_admittance_matrices(self): """ Compute the admittance matrices :return: Ybus, Yseries, Yshunt """ t = self.original_time_idx[0] # form the connectivity matrices with the states applied ------------------------------------------------------- br_states_diag = sp.diags(self.branch_active[t, :]) Cf = br_states_diag * self.C_branch_bus_f Ct = br_states_diag * self.C_branch_bus_t # Declare the empty primitives --------------------------------------------------------------------------------- # The composition order is and will be: Pi model, HVDC, VSC Ytt = np.empty(self.nbr, dtype=complex) Yff = np.empty(self.nbr, dtype=complex) Yft = np.empty(self.nbr, dtype=complex) Ytf = np.empty(self.nbr, dtype=complex) # Branch primitives in vector form, for Yseries Ytts = np.empty(self.nbr, dtype=complex) Yffs = np.empty(self.nbr, dtype=complex) Yfts = np.empty(self.nbr, dtype=complex) Ytfs = np.empty(self.nbr, dtype=complex) ysh_br = np.empty(self.nbr, dtype=complex) # line --------------------------------------------------------------------------------------------------------- a = 0 b = self.nline # use the specified of the temperature-corrected resistance if self.apply_temperature: line_R = self.R_corrected() else: line_R = self.line_R # modify the branches impedance with the lower, upper tolerance values if self.branch_tolerance_mode == BranchImpedanceMode.Lower: line_R *= (1 - self.line_impedance_tolerance / 100.0) elif self.branch_tolerance_mode == BranchImpedanceMode.Upper: line_R *= (1 + self.line_impedance_tolerance / 100.0) Ys_line = 1.0 / (line_R + 1.0j * self.line_X) Ysh_line = 1.0j * self.line_B Ys_line2 = Ys_line + Ysh_line / 2.0 # branch primitives in vector form for Ybus Ytt[a:b] = Ys_line2 Yff[a:b] = Ys_line2 Yft[a:b] = - Ys_line Ytf[a:b] = - Ys_line # branch primitives in vector form, for Yseries Ytts[a:b] = Ys_line Yffs[a:b] = Ys_line Yfts[a:b] = - Ys_line Ytfs[a:b] = - Ys_line ysh_br[a:b] = Ysh_line / 2.0 # transformer models ------------------------------------------------------------------------------------------- a = self.nline b = a + self.ntr Ys_tr = 1.0 / (self.tr_R + 1.0j * self.tr_X) Ysh_tr = 1.0j * self.tr_B Ys_tr2 = Ys_tr + Ysh_tr / 2.0 tap = self.tr_tap_mod * np.exp(1.0j * self.tr_tap_ang) # branch primitives in vector form for Ybus Ytt[a:b] = Ys_tr2 / (self.tr_tap_t * self.tr_tap_t) Yff[a:b] = Ys_tr2 / (self.tr_tap_f * self.tr_tap_f * tap * np.conj(tap)) Yft[a:b] = - Ys_tr / (self.tr_tap_f * self.tr_tap_t * np.conj(tap)) Ytf[a:b] = - Ys_tr / (self.tr_tap_t * self.tr_tap_f * tap) # branch primitives in vector form, for Yseries Ytts[a:b] = Ys_tr Yffs[a:b] = Ys_tr / (tap * np.conj(tap)) Yfts[a:b] = - Ys_tr / np.conj(tap) Ytfs[a:b] = - Ys_tr / tap ysh_br[a:b] = Ysh_tr / 2.0 # VSC MODEL ---------------------------------------------------------------------------------------------------- a = self.nline + self.ntr b = a + self.nvsc Y_vsc = 1.0 / (self.vsc_R1 + 1.0j * self.vsc_X1) # Y1 Yff[a:b] = Y_vsc Yft[a:b] = -self.vsc_m * np.exp(1.0j * self.vsc_theta) * Y_vsc Ytf[a:b] = -self.vsc_m * np.exp(-1.0j * self.vsc_theta) * Y_vsc Ytt[a:b] = self.vsc_Gsw + self.vsc_m * self.vsc_m * (Y_vsc + 1.0j * self.vsc_Beq) Yffs[a:b] = Y_vsc Yfts[a:b] = -self.vsc_m * np.exp(1.0j * self.vsc_theta) * Y_vsc Ytfs[a:b] = -self.vsc_m * np.exp(-1.0j * self.vsc_theta) * Y_vsc Ytts[a:b] = self.vsc_m * self.vsc_m * (Y_vsc + 1.0j) # HVDC LINE MODEL ---------------------------------------------------------------------------------------------- # does not apply since the HVDC-line model is the simplistic 2-generator model # SHUNT -------------------------------------------------------------------------------------------------------- self.Yshunt_from_devices = self.C_bus_shunt * (self.shunt_admittance * self.shunt_active / self.Sbase).T # form the admittance matrices --------------------------------------------------------------------------------- self.Yf = sp.diags(Yff) * Cf + sp.diags(Yft) * Ct self.Yt = sp.diags(Ytf) * Cf + sp.diags(Ytt) * Ct self.Ybus = sp.csc_matrix(Cf.T * self.Yf + Ct.T * self.Yt) # form the admittance matrices of the series and shunt elements ------------------------------------------------ Yfs = sp.diags(Yffs) * Cf + sp.diags(Yfts) * Ct Yts = sp.diags(Ytfs) * Cf + sp.diags(Ytts) * Ct self.Yseries = sp.csc_matrix(Cf.T * Yfs + Ct.T * Yts) self.Yshunt = Cf.T * ysh_br + Ct.T * ysh_br def get_generator_injections(self): """ Compute the active and reactive power of non-controlled generators (assuming all) :return: """ pf2 = np.power(self.generator_pf, 2.0) pf_sign = (self.generator_pf + 1e-20) / np.abs(self.generator_pf + 1e-20) Q = pf_sign * self.generator_p * np.sqrt((1.0 - pf2) / (pf2 + 1e-20)) return self.generator_p + 1.0j * Q def get_battery_injections(self): """ Compute the active and reactive power of non-controlled batteries (assuming all) :return: """ pf2 = np.power(self.battery_pf, 2.0) pf_sign = (self.battery_pf + 1e-20) / np.abs(self.battery_pf + 1e-20) Q = pf_sign * self.battery_p * np.sqrt((1.0 - pf2) / (pf2 + 1e-20)) return self.battery_p + 1.0j * Q def compute_injections(self): """ Compute the power :return: nothing, the results are stored in the class """ # load self.Sbus = - self.C_bus_load * (self.load_s * self.load_active).T # MW # static generators self.Sbus += self.C_bus_static_generator * (self.static_generator_s * self.static_generator_active).T # MW # generators self.Sbus += self.C_bus_gen * (self.get_generator_injections() * self.generator_active).T # battery self.Sbus += self.C_bus_batt * (self.get_battery_injections() * self.battery_active).T # HVDC forced power if self.nhvdc: self.Sbus += ((self.hvdc_active * self.hvdc_Pf) * self.C_hvdc_bus_f).T self.Sbus += ((self.hvdc_active * self.hvdc_Pt) * self.C_hvdc_bus_t).T self.Sbus /= self.Sbase def consolidate(self): """ Computes the parameters given the filled-in information :return: """ self.compute_injections() self.vd, self.pq, self.pv, self.pqpv = compile_types(Sbus=self.Sbus[:, 0], types=self.bus_types) self.compute_admittance_matrices() def get_structure(self, structure_type) -> pd.DataFrame: """ Get a DataFrame with the input. Arguments: **structure_type** (str): 'Vbus', 'Sbus', 'Ibus', 'Ybus', 'Yshunt', 'Yseries' or 'Types' Returns: pandas DataFrame """ if structure_type == 'Vbus': df = pd.DataFrame(data=self.Vbus, columns=['Voltage (p.u.)'], index=self.bus_names) elif structure_type == 'Sbus': df = pd.DataFrame(data=self.Sbus, columns=['Power (p.u.)'], index=self.bus_names) elif structure_type == 'Ibus': df = pd.DataFrame(data=self.Ibus, columns=['Current (p.u.)'], index=self.bus_names) elif structure_type == 'Ybus': df = pd.DataFrame(data=self.Ybus.toarray(), columns=self.bus_names, index=self.bus_names) elif structure_type == 'Yshunt': df = pd.DataFrame(data=self.Yshunt, columns=['Shunt admittance (p.u.)'], index=self.bus_names) elif structure_type == 'Yseries': df = pd.DataFrame(data=self.Yseries.toarray(), columns=self.bus_names, index=self.bus_names) elif structure_type == "B'": df = pd.DataFrame(data=self.B1.toarray(), columns=self.bus_names, index=self.bus_names) elif structure_type == "B''": df = pd.DataFrame(data=self.B2.toarray(), columns=self.bus_names, index=self.bus_names) elif structure_type == 'Types': df = pd.DataFrame(data=self.bus_types, columns=['Bus types'], index=self.bus_names) elif structure_type == 'Qmin': df = pd.DataFrame(data=self.Qmin_bus, columns=['Qmin'], index=self.bus_names) elif structure_type == 'Qmax': df = pd.DataFrame(data=self.Qmax_bus, columns=['Qmax'], index=self.bus_names) elif structure_type == 'Jacobian': J = Jacobian(self.Ybus, self.Vbus, self.Ibus, self.pq, self.pqpv) """ J11 = dS_dVa[array([pvpq]).T, pvpq].real J12 = dS_dVm[array([pvpq]).T, pq].real J21 = dS_dVa[array([pq]).T, pvpq].imag J22 = dS_dVm[array([pq]).T, pq].imag """ npq = len(self.pq) npv = len(self.pv) npqpv = npq + npv cols = ['dS/dVa'] * npqpv + ['dS/dVm'] * npq rows = cols df = pd.DataFrame(data=J.toarray(), columns=cols, index=rows) else: raise Exception('PF input: structure type not found') return df def get_opf_time_island(self, bus_idx, time_idx) -> "OpfTimeCircuit": """ Get the island corresponding to the given buses :param bus_idx: array of bus indices :param time_idx: array of time indices :return: TiTimeCircuitmeIsland """ # find the indices of the devices of the island line_idx = tp.get_elements_of_the_island(self.C_line_bus, bus_idx) tr_idx = tp.get_elements_of_the_island(self.C_tr_bus, bus_idx) vsc_idx = tp.get_elements_of_the_island(self.C_vsc_bus, bus_idx) hvdc_idx = tp.get_elements_of_the_island(self.C_hvdc_bus_f + self.C_hvdc_bus_t, bus_idx) br_idx = tp.get_elements_of_the_island(self.C_branch_bus_f + self.C_branch_bus_t, bus_idx) load_idx = tp.get_elements_of_the_island(self.C_bus_load.T, bus_idx) stagen_idx = tp.get_elements_of_the_island(self.C_bus_static_generator.T, bus_idx) gen_idx = tp.get_elements_of_the_island(self.C_bus_gen.T, bus_idx) batt_idx = tp.get_elements_of_the_island(self.C_bus_batt.T, bus_idx) shunt_idx = tp.get_elements_of_the_island(self.C_bus_shunt.T, bus_idx) nc = OpfTimeCircuit(nbus=len(bus_idx), nline=len(line_idx), ntr=len(tr_idx), nvsc=len(vsc_idx), nhvdc=len(hvdc_idx), nload=len(load_idx), ngen=len(gen_idx), nbatt=len(batt_idx), nshunt=len(shunt_idx), nstagen=len(stagen_idx), ntime=len(time_idx), sbase=self.Sbase, time_array=self.time_array[time_idx], apply_temperature=self.apply_temperature, branch_tolerance_mode=self.branch_tolerance_mode) nc.original_time_idx = time_idx nc.original_bus_idx = bus_idx nc.original_branch_idx = br_idx nc.original_tr_idx = tr_idx nc.original_gen_idx = gen_idx nc.original_bat_idx = batt_idx # bus ---------------------------------------------------------------------------------------------------------- nc.bus_names = self.bus_names[bus_idx] nc.bus_types = self.bus_types[bus_idx] nc.bus_installed_power = self.bus_installed_power[bus_idx] nc.bus_active = self.bus_active[np.ix_(time_idx, bus_idx)] nc.Vbus = self.Vbus[np.ix_(time_idx, bus_idx)] # branch common ------------------------------------------------------------------------------------------------ nc.branch_names = self.branch_names[br_idx] nc.branch_active = self.branch_active[np.ix_(time_idx, br_idx)] nc.branch_rates = self.branch_rates[np.ix_(time_idx, br_idx)] nc.branch_cost = self.branch_cost[np.ix_(time_idx, br_idx)] nc.branch_R = self.branch_R[br_idx] nc.branch_X = self.branch_X[br_idx] nc.F = self.F[br_idx] nc.T = self.T[br_idx] nc.C_branch_bus_f = self.C_branch_bus_f[np.ix_(br_idx, bus_idx)] nc.C_branch_bus_t = self.C_branch_bus_t[np.ix_(br_idx, bus_idx)] # lines -------------------------------------------------------------------------------------------------------- nc.line_names = self.line_names[line_idx] nc.line_R = self.line_R[line_idx] nc.line_X = self.line_X[line_idx] nc.line_B = self.line_B[line_idx] nc.line_temp_base = self.line_temp_base[line_idx] nc.line_temp_oper = self.line_temp_oper[line_idx] nc.line_alpha = self.line_alpha[line_idx] nc.line_impedance_tolerance = self.line_impedance_tolerance[line_idx] nc.C_line_bus = self.C_line_bus[np.ix_(line_idx, bus_idx)] # transformer 2W + 3W ------------------------------------------------------------------------------------------ nc.tr_names = self.tr_names[tr_idx] nc.tr_R = self.tr_R[tr_idx] nc.tr_X = self.tr_X[tr_idx] nc.tr_G = self.tr_G[tr_idx] nc.tr_B = self.tr_B[tr_idx] nc.tr_tap_f = self.tr_tap_f[tr_idx] nc.tr_tap_t = self.tr_tap_t[tr_idx] nc.tr_tap_mod = self.tr_tap_mod[tr_idx] nc.tr_tap_ang = self.tr_tap_ang[tr_idx] nc.C_tr_bus = self.C_tr_bus[np.ix_(tr_idx, bus_idx)] # hvdc line ---------------------------------------------------------------------------------------------------- nc.hvdc_names = self.hvdc_names[hvdc_idx] nc.hvdc_active = self.hvdc_active[np.ix_(time_idx, hvdc_idx)] nc.hvdc_rate = self.hvdc_rate[np.ix_(time_idx, hvdc_idx)] nc.hvdc_Pf = self.hvdc_Pf[np.ix_(time_idx, hvdc_idx)] nc.hvdc_Pt = self.hvdc_Pt[np.ix_(time_idx, hvdc_idx)] nc.C_hvdc_bus_f = self.C_hvdc_bus_f[np.ix_(hvdc_idx, bus_idx)] nc.C_hvdc_bus_t = self.C_hvdc_bus_t[np.ix_(hvdc_idx, bus_idx)] # vsc converter ------------------------------------------------------------------------------------------------ nc.vsc_names = self.vsc_names[vsc_idx] nc.vsc_R1 = self.vsc_R1[vsc_idx] nc.vsc_X1 = self.vsc_X1[vsc_idx] nc.vsc_Gsw = self.vsc_Gsw[vsc_idx] nc.vsc_Beq = self.vsc_Beq[vsc_idx] nc.vsc_m = self.vsc_m[vsc_idx] nc.vsc_theta = self.vsc_theta[vsc_idx] nc.C_vsc_bus = self.C_vsc_bus[np.ix_(vsc_idx, bus_idx)] # load --------------------------------------------------------------------------------------------------------- nc.load_names = self.load_names[load_idx] nc.load_active = self.load_active[np.ix_(time_idx, load_idx)] nc.load_s = self.load_s[
np.ix_(time_idx, load_idx)
numpy.ix_
from functools import lru_cache from random import randint from imageio import imread import numpy as np import cv2 import torch import h5py class CachedImageReader(): @staticmethod @lru_cache(maxsize=6) def _read(path): return imread(path) def __init__(self, keys=['img','mask','depth']): self.keys = keys def __call__(self, sample): for k in self.keys: sample[k] = self._read(sample[k]) return sample def OtherHandMasker(): def f(sample): box_other = sample['box_other'] box_own = sample['box_own'] mask = np.ones_like(sample['img'][:,:,0]) mask[ box_other[1]:box_other[3], box_other[0]:box_other[2] ] = 0 # making sure current hand is not obscured mask[ box_own[1]:box_own[3], box_own[0]:box_own[2] ] = 1 sample['img'] = sample['img'] * mask[:,:,None] return sample return f def DepthDecoder(): """ Converts a RGB-coded depth into float valued depth. """ def f(sample): encoded = sample['depth'] top_bits, bottom_bits = encoded[:,:,0], encoded[:,:,1] depth_map = (top_bits * 2**8 + bottom_bits).astype('float32') depth_map /= float(2**16 - 1) depth_map *= 5.0 return depth_map return f class NormalizeMeanStd(object): def __init__(self, hmap=True): self.hmap = hmap def __call__(self, sample): mean = np.r_[[0.485, 0.456, 0.406]] std = np.r_[[0.229, 0.224, 0.225]] sample['img'] = (sample['img'].astype('float32') / 255 - mean) / std if self.hmap: sample['hmap'] = sample['hmap'].astype('float32') / sample['hmap'].max() return sample class NormalizeMax(object): def __init__(self, keys=['img','hmap']): self.keys = keys def __call__(self, sample): for k in self.keys: maxval = sample[k].max() if maxval: sample[k] = sample[k].astype('float32') / maxval return sample class Coords2Hmap(): def __init__(self, sigma, shape=(128,128), coords_scaling=1): self.sigma = sigma self.hmap_shape = shape self.c_scale = coords_scaling def __call__(self, sample): hmap = np.zeros((*self.hmap_shape, 21),'float32') coords = sample['coords'] hmap[np.clip((coords[:,0] * self.c_scale).astype('uint'), 0, self.hmap_shape[0]-1), np.clip((coords[:,1] * self.c_scale).astype('uint'),0, self.hmap_shape[1]-1), np.arange(21)] = 10 sample['hmap'] = cv2.GaussianBlur(hmap, (35, 35), self.sigma) return sample class AffineTransform(): def __init__(self, img_size=(256,256), scale_min=0.8, scale_max=1.3, translation_max=45): self.tmax = translation_max self.scale = (int(scale_min*10), int(scale_max*10)) self.img_size = img_size self.center = (img_size[0]//2, img_size[1]//2) self.crd_max = max(img_size)-1 @staticmethod def _pad1(M): return np.pad( M, ((0,0),(0,1)), mode='constant', constant_values=1) def __call__(self, sample): M = cv2.getRotationMatrix2D( self.center, randint(-90,90), randint(*self.scale) / 10) M[:,2:] += np.random.uniform(-self.tmax, self.tmax, (2,1)) sample['img'] = cv2.warpAffine( sample['img'], M, self.img_size, borderMode=cv2.BORDER_REFLECT) Mpad = self._pad1(M.T) Mpad[:2,2:] = 0 crd_t = self._pad1(sample['coords']) @ Mpad sample['coords'] = np.clip(crd_t[:,:2], 1, self.crd_max) return sample class CenterNCrop(): def __init__(self, in_shape, out_size, pad_radius=30): self.in_shape = in_shape self.out_size = out_size self.pad_radius = pad_radius @staticmethod def _getCircle(coords): min_ = coords.min(axis=0) max_ = coords.max(axis=0) center = min_ + (max_ - min_) / 2 radius = np.sqrt(((max_ - center)**2).sum()) return center, radius @staticmethod def circle2BB(circle, pad_radius): cnt, rad = circle rad = rad + pad_radius ymin, ymax = int(cnt[0]-rad), int(cnt[0]+rad) xmin, xmax = int(cnt[1]-rad), int(cnt[1]+rad) return xmin, xmax, ymin, ymax def __call__(self, sample): """ Input {'img': (*in_shape,3), 'coords': (21,2), *} Output {'img': (out_size,out_size,3), 'coords': (21,2), *} """ img, coords = sample['img'], sample['coords'] crcl = self._getCircle(coords) xmin, xmax, ymin, ymax = self.circle2BB(crcl, self.pad_radius) pmin, pmax = 0, 0 if xmin < 0 or ymin < 0: pmin = np.abs(min(xmin, ymin)) if xmax > self.in_shape[0] or ymax > self.in_shape[1]: pmax = max(xmax - self.in_shape[0], ymax - self.in_shape[1]) sample['yx_min_max'] = np.r_[[ymin, xmin, ymax, xmax]] img_pad = np.pad(img, ((pmin, pmax), (pmin, pmax), (0,0)), mode='wrap') if 'mask' in sample: mask = sample['mask'] mask_pad = np.pad(mask, ((pmin, pmax), (pmin, pmax)), mode='wrap') xmin += pmin ymin += pmin xmax += pmin ymax += pmin img_crop = img_pad[ymin:ymax,xmin:xmax,:] if 'mask' in sample: mask_crop = mask_pad[ymin:ymax, xmin:xmax] coords += np.c_[pmin, pmin].astype('uint') rescale = self.out_size / (xmax - xmin) img_resized = cv2.resize(img_crop, (self.out_size, self.out_size)) if 'mask' in sample: mask_resized = cv2.resize(mask_crop, (self.out_size, self.out_size)) coords = coords - np.c_[ymin, xmin] coords = coords*rescale sample['img'] = img_resized sample['coords'] = coords.round().astype('uint8') if 'mask' in sample: sample['mask'] = mask_resized return sample class CropLikeGoogle(): def __init__(self, out_size, box_enlarge=1.5, rand=False): self.out_size = out_size self.box_enlarge = box_enlarge self.R90 = np.r_[[[0,1],[-1,0]]] half = out_size // 2 self._target_triangle = np.float32([ [half, half], [half, 0], [ 0, half] ]) self.rand = rand def get_triangle(self, kp0, kp2, dist=1): """get a triangle used to calculate Affine transformation matrix""" dir_v = kp2 - kp0 dir_v /= np.linalg.norm(dir_v) dir_v_r = dir_v @ self.R90.T return np.float32([kp2, kp2+dir_v*dist, kp2 + dir_v_r*dist]) @staticmethod def triangle_to_bbox(source): # plain old vector arithmetics bbox = np.c_[ [source[2] - source[0] + source[1]], [source[1] + source[0] - source[2]], [3 * source[0] - source[1] - source[2]], [source[2] - source[1] + source[0]], ].reshape(-1,2) return bbox @staticmethod def _pad1(x): return
np.pad(x, ((0,0),(0,1)), constant_values=1, mode='constant')
numpy.pad
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. """ Common data processing utilities that are used in a typical object detection data pipeline. """ import logging import numpy as np from typing import List, Union import pycocotools.mask as mask_util import torch from PIL import Image from pixellib.torchbackend.instance.structures.masks import BitMasks, PolygonMasks, polygons_to_bitmask from pixellib.torchbackend.instance.structures.boxes import Boxes, BoxMode from pixellib.torchbackend.instance.structures.instances import Instances from pixellib.torchbackend.instance.structures.boxes import _maybe_jit_unused from typing import List, Tuple '''from structures import ( BitMasks, Boxes, BoxMode, Instances, Keypoints, PolygonMasks, RotatedBoxes, polygons_to_bitmask, ) ''' from pixellib.torchbackend.instance.utils.file_io import PathManager import pixellib.torchbackend.instance.data.transforms as T from .catalogdata import MetadataCatalog __all__ = [ "SizeMismatchError", "convert_image_to_rgb", "check_image_size", "transform_proposals", "transform_instance_annotations", "annotations_to_instances", "annotations_to_instances_rotated", "build_augmentation", "build_transform_gen", "create_keypoint_hflip_indices", "filter_empty_instances", "read_image", ] class RotatedBoxes(Boxes): """ This structure stores a list of rotated boxes as a Nx5 torch.Tensor. It supports some common methods about boxes (`area`, `clip`, `nonempty`, etc), and also behaves like a Tensor (support indexing, `to(device)`, `.device`, and iteration over all boxes) """ def __init__(self, tensor: torch.Tensor): """ Args: tensor (Tensor[float]): a Nx5 matrix. Each row is (x_center, y_center, width, height, angle), in which angle is represented in degrees. While there's no strict range restriction for it, the recommended principal range is between [-180, 180) degrees. Assume we have a horizontal box B = (x_center, y_center, width, height), where width is along the x-axis and height is along the y-axis. The rotated box B_rot (x_center, y_center, width, height, angle) can be seen as: 1. When angle == 0: B_rot == B 2. When angle > 0: B_rot is obtained by rotating B w.r.t its center by :math:`|angle|` degrees CCW; 3. When angle < 0: B_rot is obtained by rotating B w.r.t its center by :math:`|angle|` degrees CW. Mathematically, since the right-handed coordinate system for image space is (y, x), where y is top->down and x is left->right, the 4 vertices of the rotated rectangle :math:`(yr_i, xr_i)` (i = 1, 2, 3, 4) can be obtained from the vertices of the horizontal rectangle :math:`(y_i, x_i)` (i = 1, 2, 3, 4) in the following way (:math:`\\theta = angle*\\pi/180` is the angle in radians, :math:`(y_c, x_c)` is the center of the rectangle): .. math:: yr_i = \\cos(\\theta) (y_i - y_c) - \\sin(\\theta) (x_i - x_c) + y_c, xr_i = \\sin(\\theta) (y_i - y_c) + \\cos(\\theta) (x_i - x_c) + x_c, which is the standard rigid-body rotation transformation. Intuitively, the angle is (1) the rotation angle from y-axis in image space to the height vector (top->down in the box's local coordinate system) of the box in CCW, and (2) the rotation angle from x-axis in image space to the width vector (left->right in the box's local coordinate system) of the box in CCW. More intuitively, consider the following horizontal box ABCD represented in (x1, y1, x2, y2): (3, 2, 7, 4), covering the [3, 7] x [2, 4] region of the continuous coordinate system which looks like this: .. code:: none O--------> x | | A---B | | | | D---C | v y Note that each capital letter represents one 0-dimensional geometric point instead of a 'square pixel' here. In the example above, using (x, y) to represent a point we have: .. math:: O = (0, 0), A = (3, 2), B = (7, 2), C = (7, 4), D = (3, 4) We name vector AB = vector DC as the width vector in box's local coordinate system, and vector AD = vector BC as the height vector in box's local coordinate system. Initially, when angle = 0 degree, they're aligned with the positive directions of x-axis and y-axis in the image space, respectively. For better illustration, we denote the center of the box as E, .. code:: none O--------> x | | A---B | | E | | D---C | v y where the center E = ((3+7)/2, (2+4)/2) = (5, 3). Also, .. math:: width = |AB| = |CD| = 7 - 3 = 4, height = |AD| = |BC| = 4 - 2 = 2. Therefore, the corresponding representation for the same shape in rotated box in (x_center, y_center, width, height, angle) format is: (5, 3, 4, 2, 0), Now, let's consider (5, 3, 4, 2, 90), which is rotated by 90 degrees CCW (counter-clockwise) by definition. It looks like this: .. code:: none O--------> x | B-C | | | | |E| | | | | A-D v y The center E is still located at the same point (5, 3), while the vertices ABCD are rotated by 90 degrees CCW with regard to E: A = (4, 5), B = (4, 1), C = (6, 1), D = (6, 5) Here, 90 degrees can be seen as the CCW angle to rotate from y-axis to vector AD or vector BC (the top->down height vector in box's local coordinate system), or the CCW angle to rotate from x-axis to vector AB or vector DC (the left->right width vector in box's local coordinate system). .. math:: width = |AB| = |CD| = 5 - 1 = 4, height = |AD| = |BC| = 6 - 4 = 2. Next, how about (5, 3, 4, 2, -90), which is rotated by 90 degrees CW (clockwise) by definition? It looks like this: .. code:: none O--------> x | D-A | | | | |E| | | | | C-B v y The center E is still located at the same point (5, 3), while the vertices ABCD are rotated by 90 degrees CW with regard to E: A = (6, 1), B = (6, 5), C = (4, 5), D = (4, 1) .. math:: width = |AB| = |CD| = 5 - 1 = 4, height = |AD| = |BC| = 6 - 4 = 2. This covers exactly the same region as (5, 3, 4, 2, 90) does, and their IoU will be 1. However, these two will generate different RoI Pooling results and should not be treated as an identical box. On the other hand, it's easy to see that (X, Y, W, H, A) is identical to (X, Y, W, H, A+360N), for any integer N. For example (5, 3, 4, 2, 270) would be identical to (5, 3, 4, 2, -90), because rotating the shape 270 degrees CCW is equivalent to rotating the same shape 90 degrees CW. We could rotate further to get (5, 3, 4, 2, 180), or (5, 3, 4, 2, -180): .. code:: none O--------> x | | C---D | | E | | B---A | v y .. math:: A = (7, 4), B = (3, 4), C = (3, 2), D = (7, 2), width = |AB| = |CD| = 7 - 3 = 4, height = |AD| = |BC| = 4 - 2 = 2. Finally, this is a very inaccurate (heavily quantized) illustration of how (5, 3, 4, 2, 60) looks like in case anyone wonders: .. code:: none O--------> x | B\ | / C | /E / | A / | `D v y It's still a rectangle with center of (5, 3), width of 4 and height of 2, but its angle (and thus orientation) is somewhere between (5, 3, 4, 2, 0) and (5, 3, 4, 2, 90). """ device = tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu") tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device) if tensor.numel() == 0: # Use reshape, so we don't end up creating a new tensor that does not depend on # the inputs (and consequently confuses jit) tensor = tensor.reshape((0, 5)).to(dtype=torch.float32, device=device) assert tensor.dim() == 2 and tensor.size(-1) == 5, tensor.size() self.tensor = tensor def clone(self) -> "RotatedBoxes": """ Clone the RotatedBoxes. Returns: RotatedBoxes """ return RotatedBoxes(self.tensor.clone()) @_maybe_jit_unused def to(self, device: torch.device): # Boxes are assumed float32 and does not support to(dtype) return RotatedBoxes(self.tensor.to(device=device)) def area(self) -> torch.Tensor: """ Computes the area of all the boxes. Returns: torch.Tensor: a vector with areas of each box. """ box = self.tensor area = box[:, 2] * box[:, 3] return area def normalize_angles(self) -> None: """ Restrict angles to the range of [-180, 180) degrees """ self.tensor[:, 4] = (self.tensor[:, 4] + 180.0) % 360.0 - 180.0 def clip(self, box_size: Tuple[int, int], clip_angle_threshold: float = 1.0) -> None: """ Clip (in place) the boxes by limiting x coordinates to the range [0, width] and y coordinates to the range [0, height]. For RRPN: Only clip boxes that are almost horizontal with a tolerance of clip_angle_threshold to maintain backward compatibility. Rotated boxes beyond this threshold are not clipped for two reasons: 1. There are potentially multiple ways to clip a rotated box to make it fit within the image. 2. It's tricky to make the entire rectangular box fit within the image and still be able to not leave out pixels of interest. Therefore we rely on ops like RoIAlignRotated to safely handle this. Args: box_size (height, width): The clipping box's size. clip_angle_threshold: Iff. abs(normalized(angle)) <= clip_angle_threshold (in degrees), we do the clipping as horizontal boxes. """ h, w = box_size # normalize angles to be within (-180, 180] degrees self.normalize_angles() idx = torch.where(torch.abs(self.tensor[:, 4]) <= clip_angle_threshold)[0] # convert to (x1, y1, x2, y2) x1 = self.tensor[idx, 0] - self.tensor[idx, 2] / 2.0 y1 = self.tensor[idx, 1] - self.tensor[idx, 3] / 2.0 x2 = self.tensor[idx, 0] + self.tensor[idx, 2] / 2.0 y2 = self.tensor[idx, 1] + self.tensor[idx, 3] / 2.0 # clip x1.clamp_(min=0, max=w) y1.clamp_(min=0, max=h) x2.clamp_(min=0, max=w) y2.clamp_(min=0, max=h) # convert back to (xc, yc, w, h) self.tensor[idx, 0] = (x1 + x2) / 2.0 self.tensor[idx, 1] = (y1 + y2) / 2.0 # make sure widths and heights do not increase due to numerical errors self.tensor[idx, 2] = torch.min(self.tensor[idx, 2], x2 - x1) self.tensor[idx, 3] = torch.min(self.tensor[idx, 3], y2 - y1) def nonempty(self, threshold: float = 0.0) -> torch.Tensor: """ Find boxes that are non-empty. A box is considered empty, if either of its side is no larger than threshold. Returns: Tensor: a binary vector which represents whether each box is empty (False) or non-empty (True). """ box = self.tensor widths = box[:, 2] heights = box[:, 3] keep = (widths > threshold) & (heights > threshold) return keep def __getitem__(self, item) -> "RotatedBoxes": """ Returns: RotatedBoxes: Create a new :class:`RotatedBoxes` by indexing. The following usage are allowed: 1. `new_boxes = boxes[3]`: return a `RotatedBoxes` which contains only one box. 2. `new_boxes = boxes[2:10]`: return a slice of boxes. 3. `new_boxes = boxes[vector]`, where vector is a torch.ByteTensor with `length = len(boxes)`. Nonzero elements in the vector will be selected. Note that the returned RotatedBoxes might share storage with this RotatedBoxes, subject to Pytorch's indexing semantics. """ if isinstance(item, int): return RotatedBoxes(self.tensor[item].view(1, -1)) b = self.tensor[item] assert b.dim() == 2, "Indexing on RotatedBoxes with {} failed to return a matrix!".format( item ) return RotatedBoxes(b) def __len__(self) -> int: return self.tensor.shape[0] def __repr__(self) -> str: return "RotatedBoxes(" + str(self.tensor) + ")" def inside_box(self, box_size: Tuple[int, int], boundary_threshold: int = 0) -> torch.Tensor: """ Args: box_size (height, width): Size of the reference box covering [0, width] x [0, height] boundary_threshold (int): Boxes that extend beyond the reference box boundary by more than boundary_threshold are considered "outside". For RRPN, it might not be necessary to call this function since it's common for rotated box to extend to outside of the image boundaries (the clip function only clips the near-horizontal boxes) Returns: a binary vector, indicating whether each box is inside the reference box. """ height, width = box_size cnt_x = self.tensor[..., 0] cnt_y = self.tensor[..., 1] half_w = self.tensor[..., 2] / 2.0 half_h = self.tensor[..., 3] / 2.0 a = self.tensor[..., 4] c = torch.abs(torch.cos(a * math.pi / 180.0)) s = torch.abs(torch.sin(a * math.pi / 180.0)) # This basically computes the horizontal bounding rectangle of the rotated box max_rect_dx = c * half_w + s * half_h max_rect_dy = c * half_h + s * half_w inds_inside = ( (cnt_x - max_rect_dx >= -boundary_threshold) & (cnt_y - max_rect_dy >= -boundary_threshold) & (cnt_x + max_rect_dx < width + boundary_threshold) & (cnt_y + max_rect_dy < height + boundary_threshold) ) return inds_inside def get_centers(self) -> torch.Tensor: """ Returns: The box centers in a Nx2 array of (x, y). """ return self.tensor[:, :2] def scale(self, scale_x: float, scale_y: float) -> None: """ Scale the rotated box with horizontal and vertical scaling factors Note: when scale_factor_x != scale_factor_y, the rotated box does not preserve the rectangular shape when the angle is not a multiple of 90 degrees under resize transformation. Instead, the shape is a parallelogram (that has skew) Here we make an approximation by fitting a rotated rectangle to the parallelogram. """ self.tensor[:, 0] *= scale_x self.tensor[:, 1] *= scale_y theta = self.tensor[:, 4] * math.pi / 180.0 c = torch.cos(theta) s = torch.sin(theta) # In image space, y is top->down and x is left->right # Consider the local coordintate system for the rotated box, # where the box center is located at (0, 0), and the four vertices ABCD are # A(-w / 2, -h / 2), B(w / 2, -h / 2), C(w / 2, h / 2), D(-w / 2, h / 2) # the midpoint of the left edge AD of the rotated box E is: # E = (A+D)/2 = (-w / 2, 0) # the midpoint of the top edge AB of the rotated box F is: # F(0, -h / 2) # To get the old coordinates in the global system, apply the rotation transformation # (Note: the right-handed coordinate system for image space is yOx): # (old_x, old_y) = (s * y + c * x, c * y - s * x) # E(old) = (s * 0 + c * (-w/2), c * 0 - s * (-w/2)) = (-c * w / 2, s * w / 2) # F(old) = (s * (-h / 2) + c * 0, c * (-h / 2) - s * 0) = (-s * h / 2, -c * h / 2) # After applying the scaling factor (sfx, sfy): # E(new) = (-sfx * c * w / 2, sfy * s * w / 2) # F(new) = (-sfx * s * h / 2, -sfy * c * h / 2) # The new width after scaling tranformation becomes: # w(new) = |E(new) - O| * 2 # = sqrt[(sfx * c * w / 2)^2 + (sfy * s * w / 2)^2] * 2 # = sqrt[(sfx * c)^2 + (sfy * s)^2] * w # i.e., scale_factor_w = sqrt[(sfx * c)^2 + (sfy * s)^2] # # For example, # when angle = 0 or 180, |c| = 1, s = 0, scale_factor_w == scale_factor_x; # when |angle| = 90, c = 0, |s| = 1, scale_factor_w == scale_factor_y self.tensor[:, 2] *= torch.sqrt((scale_x * c) ** 2 + (scale_y * s) ** 2) # h(new) = |F(new) - O| * 2 # = sqrt[(sfx * s * h / 2)^2 + (sfy * c * h / 2)^2] * 2 # = sqrt[(sfx * s)^2 + (sfy * c)^2] * h # i.e., scale_factor_h = sqrt[(sfx * s)^2 + (sfy * c)^2] # # For example, # when angle = 0 or 180, |c| = 1, s = 0, scale_factor_h == scale_factor_y; # when |angle| = 90, c = 0, |s| = 1, scale_factor_h == scale_factor_x self.tensor[:, 3] *= torch.sqrt((scale_x * s) ** 2 + (scale_y * c) ** 2) # The angle is the rotation angle from y-axis in image space to the height # vector (top->down in the box's local coordinate system) of the box in CCW. # # angle(new) = angle_yOx(O - F(new)) # = angle_yOx( (sfx * s * h / 2, sfy * c * h / 2) ) # = atan2(sfx * s * h / 2, sfy * c * h / 2) # = atan2(sfx * s, sfy * c) # # For example, # when sfx == sfy, angle(new) == atan2(s, c) == angle(old) self.tensor[:, 4] = torch.atan2(scale_x * s, scale_y * c) * 180 / math.pi @classmethod @_maybe_jit_unused def cat(cls, boxes_list: List["RotatedBoxes"]) -> "RotatedBoxes": """ Concatenates a list of RotatedBoxes into a single RotatedBoxes Arguments: boxes_list (list[RotatedBoxes]) Returns: RotatedBoxes: the concatenated RotatedBoxes """ assert isinstance(boxes_list, (list, tuple)) if len(boxes_list) == 0: return cls(torch.empty(0)) assert all([isinstance(box, RotatedBoxes) for box in boxes_list]) # use torch.cat (v.s. layers.cat) so the returned boxes never share storage with input cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0)) return cat_boxes @property def device(self) -> torch.device: return self.tensor.device @torch.jit.unused def __iter__(self): """ Yield a box as a Tensor of shape (5,) at a time. """ yield from self.tensor def pairwise_iou(boxes1: RotatedBoxes, boxes2: RotatedBoxes) -> None: """ Given two lists of rotated boxes of size N and M, compute the IoU (intersection over union) between **all** N x M pairs of boxes. The box order must be (x_center, y_center, width, height, angle). Args: boxes1, boxes2 (RotatedBoxes): two `RotatedBoxes`. Contains N & M rotated boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ return pairwise_iou_rotated(boxes1.tensor, boxes2.tensor) class SizeMismatchError(ValueError): """ When loaded image has difference width/height compared with annotation. """ # https://en.wikipedia.org/wiki/YUV#SDTV_with_BT.601 _M_RGB2YUV = [[0.299, 0.587, 0.114], [-0.14713, -0.28886, 0.436], [0.615, -0.51499, -0.10001]] _M_YUV2RGB = [[1.0, 0.0, 1.13983], [1.0, -0.39465, -0.58060], [1.0, 2.03211, 0.0]] # https://www.exiv2.org/tags.html _EXIF_ORIENT = 274 # exif 'Orientation' tag def convert_PIL_to_numpy(image, format): """ Convert PIL image to numpy array of target format. Args: image (PIL.Image): a PIL image format (str): the format of output image Returns: (np.ndarray): also see `read_image` """ if format is not None: # PIL only supports RGB, so convert to RGB and flip channels over below conversion_format = format if format in ["BGR", "YUV-BT.601"]: conversion_format = "RGB" image = image.convert(conversion_format) image = np.asarray(image) # PIL squeezes out the channel dimension for "L", so make it HWC if format == "L": image = np.expand_dims(image, -1) # handle formats not supported by PIL elif format == "BGR": # flip channels if needed image = image[:, :, ::-1] elif format == "YUV-BT.601": image = image / 255.0 image = np.dot(image, np.array(_M_RGB2YUV).T) return image def convert_image_to_rgb(image, format): """ Convert an image from given format to RGB. Args: image (np.ndarray or Tensor): an HWC image format (str): the format of input image, also see `read_image` Returns: (np.ndarray): (H,W,3) RGB image in 0-255 range, can be either float or uint8 """ if isinstance(image, torch.Tensor): image = image.cpu().numpy() if format == "BGR": image = image[:, :, [2, 1, 0]] elif format == "YUV-BT.601": image = np.dot(image,
np.array(_M_YUV2RGB)
numpy.array
from deep_rl.utils.misc import random_seed import numpy as np import pickle from generative_playground.utils.gpu_utils import get_gpu_memory_map def run_iterations(agent, visdom = None, invalid_value = None): if visdom is not None: have_visdom = True random_seed() config = agent.config agent_name = agent.__class__.__name__ iteration = 0 steps = [] rewards = [] sm_metrics = np.array([[invalid_value,invalid_value,invalid_value]]) while True: agent.iteration() steps.append(agent.total_steps) rewards.append(np.mean(agent.last_episode_rewards)) if iteration % config.iteration_log_interval == 0: config.logger.info('total steps %d, mean/max/min reward %f/%f/%f' % ( agent.total_steps,
np.mean(agent.last_episode_rewards)
numpy.mean
import glob import os import sys import random import time import numpy as np import cv2 import math import pickle from collections import deque import tensorflow as tf import matplotlib.pyplot as plt gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) from threading import Thread from tqdm import tqdm try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla from carla import ColorConverter as cc SHOW_PREVIEW = True IM_WIDTH = 360 IM_HEIGHT = 240 SECONDS_PER_EPISODE = 30 REPLAY_MEMORY_SIZE = 20_000 MIN_REPLAY_MEMORY_SIZE = 1_000 MINIBATCH_SIZE = 16 PREDICTION_BATCH_SIZE = 1 TRAINING_BATCH_SIZE = MINIBATCH_SIZE // 4 UPDATE_TARGET_EVERY = 5 MODEL_NAME = "Xception" MEMORY_FRACTION = 0.4 MIN_REWARD = -200 EPISODES = 40_000 DISCOUNT = 0.99 epsilon = 1 EPSILON_DECAY = 0.99995 #0.95 #0.99975 MIN_EPSILON = 0.001 AGGREGATE_STATS_EVERY = 10 PREDICTED_ANGLES = [-1, 0, 1] class CarEnv: SHOW_CAM = SHOW_PREVIEW im_width = IM_WIDTH im_height = IM_HEIGHT front_camera = None def __init__(self): self.client = carla.Client("127.0.0.1", 2000) self.client.set_timeout(10.0) self.world = self.client.get_world() self.world.constant_velocity_enabled=True self.blueprint_library = self.world.get_blueprint_library() self.model_3 = self.blueprint_library.filter("model3")[0] def restart(self): self.collision_hist = deque(maxlen=2000) self.actor_list = deque(maxlen=2000) self.lane_invasion = deque(maxlen=2000) self.obstacle_distance = deque(maxlen=2000) self.transform = random.choice(self.world.get_map().get_spawn_points()) self.vehicle = self.world.spawn_actor(self.model_3, self.transform) self.actor_list.append(self.vehicle) # self.rgb_cam = self.blueprint_library.find('sensor.camera.rgb') # self.rgb_cam.set_attribute("image_size_x", f"{self.im_width}") # self.rgb_cam.set_attribute("image_size_y", f"{self.im_height}") # self.rgb_cam.set_attribute("fov", f"110") self.ss_cam = self.blueprint_library.find('sensor.camera.semantic_segmentation') self.ss_cam.set_attribute("image_size_x", f"{self.im_width}") self.ss_cam.set_attribute("image_size_y", f"{self.im_height}") self.ss_cam.set_attribute("fov", f"110") transform = carla.Transform(carla.Location(x=2.5, z=0.7)) self.sensor = self.world.spawn_actor(self.ss_cam, transform, attach_to=self.vehicle) self.actor_list.append(self.sensor) self.sensor.listen(lambda data: self.process_img(data)) self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0)) self.vehicle.enable_constant_velocity(carla.Vector3D(11, 0, 0)) time.sleep(4) col_sensor = self.blueprint_library.find("sensor.other.collision") self.col_sensor = self.world.spawn_actor(col_sensor, transform, attach_to=self.vehicle) self.actor_list.append(self.col_sensor) self.col_sensor.listen(lambda event: self.collision_data(event)) lane_sensor = self.blueprint_library.find("sensor.other.lane_invasion") self.lane_sensor = self.world.spawn_actor(lane_sensor, transform, attach_to=self.vehicle) self.actor_list.append(self.lane_sensor) self.lane_sensor.listen(lambda lanesen: self.lane_data(lanesen)) obs_sensor = self.blueprint_library.find("sensor.other.radar") self.obs_sensor = self.world.spawn_actor( obs_sensor, carla.Transform( carla.Location(x=2.8, z=1.0), carla.Rotation(pitch=5)), attach_to=self.vehicle) self.actor_list.append(self.obs_sensor) self.obs_sensor.listen(lambda obsen: self.obs_data(obsen)) while self.front_camera is None: time.sleep(0.01) self.episode_start = time.time() self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0)) return self.front_camera def collision_data(self, event): self.collision_hist.append(event) def lane_data(self, lanesen): lane_types = set(x.type for x in lanesen.crossed_lane_markings) text = ['%r' % str(x).split()[-1] for x in lane_types] self.lane_invasion.append(text[0]) def obs_data(self, obsen): for detect in obsen: if detect.depth <= float(30.0): self.obstacle_distance.append(detect.depth) def process_img(self, image): image.convert(cc.CityScapesPalette) i = np.array(image.raw_data, dtype='uint8') i2 = i.reshape((self.im_height, self.im_width, 4)) i3 = i2[:, :, :3] if self.SHOW_CAM: cv2.imshow("test", i3) cv2.waitKey(1) self.front_camera = i3 def get_rewards(self,angle): done = False # Assign Reward for Collision reward_collision = 0 if len(self.collision_hist) > 0: reward_collision = -6 done = True #Crossing lanes reward_lane = 0 if len(self.lane_invasion) > 0: lane_invasion_error = self.lane_invasion.pop() #print(lane_invasion_error) if 'Broken' in lane_invasion_error: reward_lane += -2 elif 'Solid' in lane_invasion_error: reward_lane += -4 #Assign reward for obstacle distance reward_obs = 0 # distance = 40 # if len(self.obstacle_distance) > 0 : # distance = self.obstacle_distance.pop() # reward_obs = int(-40 + distance) if (distance < 10) else int(distance) # Assign reward for steering angle # reward_steer = 0 # if abs(angle) > 0.2: # reward_steer = -0.6 total_reward = reward_collision + reward_lane return total_reward, done def step(self, actionIndex): angle = PREDICTED_ANGLES[actionIndex] self.vehicle.apply_control(carla.VehicleControl(steer=angle)) v = self.vehicle.get_velocity() #self.vehicle.set_target_velocity(v) kmh = int(3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)) speed_reward = 1 total_rewards, done = self.get_rewards(angle) total_rewards+=speed_reward if self.episode_start + SECONDS_PER_EPISODE < time.time(): done = True return self.front_camera, total_rewards, done, None class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size # () self.action_size = action_size self.memory = deque(maxlen=REPLAY_MEMORY_SIZE) self.training_initialized = False self.gamma = 0.9 # discount rate self.loss_list = deque(maxlen=20000) self.epsilon = 1 # exploration rate self.epsilon_min = MIN_EPSILON #0.01 self.epsilon_decay = EPSILON_DECAY #0.99995 # changed to 0.95 self.learning_rate = 0.001 self.model = self._build_model() self.target_model = self._build_model() self.episode_number = 0 self.terminate = False # @jit def _build_model(self): base_model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(240, 360, 3)) base_model.trainable = False # Additional Linear Layers inputs = tf.keras.Input(shape=(240, 360, 3)) x = base_model(inputs, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Flatten()(x) x = tf.keras.layers.Dense(units=40, activation='relu')(x) output = tf.keras.layers.Dense(units=3, activation='linear')(x) # Compile the Model model = tf.keras.Model(inputs, output) model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(learning_rate=self.learning_rate)) print(model.summary) return model def memorize(self, state, action, reward, next_state, done): transition = (state, action, reward, next_state, done) self.memory.append(transition) # with open('_out/memory_list.txt', "wb") as myfile: # myfile.write(str(transition).rstrip('\n') +" ") def load(self, name): self.model.load_weights(name) def save(self, name): self.model.save_weights(name) def act(self, state): # randomly select action if np.random.rand() <= self.epsilon: return (random.randrange(self.action_size),True) # use NN to predict action state = np.expand_dims(state, axis=0) act_values = self.model.predict(state) return (np.argmax(act_values[0]), False) def replay(self): with tf.device('/gpu:0'): if len(self.memory) < MIN_REPLAY_MEMORY_SIZE: return minibatch = random.sample(self.memory, MINIBATCH_SIZE) current_states = np.array([transition[0] for transition in minibatch])/255 current_qs_list = self.model.predict(current_states, PREDICTION_BATCH_SIZE) new_current_states = np.array([transition[3] for transition in minibatch])/255 future_qs_list = self.target_model.predict(new_current_states, PREDICTION_BATCH_SIZE) X = [] y = [] for index, (current_state, action, reward, new_state, done) in enumerate(minibatch): if not done: max_future_q = np.max(future_qs_list[index]) new_q = reward + DISCOUNT * max_future_q else: new_q = reward current_qs = current_qs_list[index] current_qs[action] = new_q X.append(current_state) y.append(current_qs) history = self.model.fit(
np.array(X)
numpy.array
import datetime import json import numpy as np import os import pandas as pd from . import util from .util import minute, lin_interp, cos_deg, sin_deg from .base_model import BaseModel class DualTrackModel(BaseModel): delta = None time_points = None time_point_delta = None window = None data_source_lbl = None data_target_lbl = None data_undefined_vals = None data_defined_vals = None data_true_vals = None data_false_vals = None data_far_time = None @classmethod def create_features_and_times(cls, data1, data2, angle=77, max_deltas=0): #TODO: take two data items and create using recipe from # load paired / cook paired t, x, y_tv, label, is_defined = cls.build_features(data1, skip_label=True) t_fv, x_fv, y_fv, _, _ = cls.build_features(data2, interp_t = t, skip_label=True) data = (t, x, y_tv, x_fv, y_fv, label, is_defined) min_ndx = 0 max_ndx = len(y_tv) - cls.time_points features = [] times = [] i0 = 0 while i0 < max_ndx: i1 = min(i0 + cls.time_points + max_deltas * cls.time_point_delta, len(y_tv)) _, f_chunk = cls.cook_paired_data(*data, noise=0, start_ndx=i0, end_ndx=i1) features.append(f_chunk) i0 = i0 + max_deltas * cls.time_point_delta + 1 times = t[cls.time_points//2:-cls.time_points//2] return features, times @classmethod def build_features(cls, obj, skip_label=False, keep_frac=1.0, interp_t=None): n_pts = len(obj['timestamp']) assert 0 < keep_frac <= 1 if keep_frac == 1: mask = None else: # Build a random mask with probability keep_frac. Force # first and last point to be true so the time frame # stays the same. mask = np.random.uniform(0, 1, size=[n_pts]) < keep_frac mask[0] = mask[-1] = True delta = None if (interp_t is not None) else cls.delta assert np.isnan(obj['speed']).sum() == np.isnan(obj['course']).sum() == 0 v = np.array(obj['speed']) # Replace missing speeds with arbitrary 3.5 (between setting and hauling) # TODO: use implied speed instead v[np.isnan(v)] = 3.5 obj['speed'] = v xi, speeds = lin_interp(obj, 'speed', delta=delta, t=interp_t, mask=mask) y0 = speeds # _, cos_yi = lin_interp(obj, 'course', delta=delta, t=interp_t, mask=mask, func=cos_deg) _, sin_yi = lin_interp(obj, 'course', delta=delta, t=interp_t, mask=mask, func=sin_deg) angle_i = np.arctan2(sin_yi, cos_yi) y1 = angle_i # _, y2 = lin_interp(obj, 'lat', delta=delta, t=interp_t, mask=mask) # Longitude can cross the dateline, so interpolate useing cos / sin _, cos_yi = lin_interp(obj, 'lon', delta=delta, t=interp_t, mask=mask, func=cos_deg) _, sin_yi = lin_interp(obj, 'lon', delta=delta, t=interp_t, mask=mask, func=sin_deg) y3 = np.degrees(
np.arctan2(sin_yi, cos_yi)
numpy.arctan2
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den =
N.array([1,2,2])
numpy.array
import photutils from astropy.io import fits, ascii import matplotlib as mpl from mpl_toolkits.axes_grid1 import make_axes_locatable import sys import os from pkg_resources import resource_filename if 'DISPLAY' not in os.environ: mpl.use('Agg') import matplotlib.pyplot as plt from matplotlib import patches from matplotlib import gridspec import glob from photutils import CircularAperture, CircularAnnulus from photutils import RectangularAperture from photutils import aperture_photometry import photutils if photutils.__version__ > "1.0": from . import fit_2dgauss from photutils.centroids import centroid_2dg else: from photutils import centroid_2dg import numpy as np from astropy.time import Time import astropy.units as u import pdb from copy import deepcopy import yaml import warnings from scipy.stats import binned_statistic from astropy.table import Table import multiprocessing from multiprocessing import Pool import time import logging import urllib import tqdm maxCPUs = multiprocessing.cpu_count() // 3 try: import bokeh.plotting from bokeh.models import ColumnDataSource, HoverTool from bokeh.models import Range1d from bokeh.models import WheelZoomTool except ImportError as err2: print("Could not import bokeh plotting. Interactive plotting may not work") from .utils import robust_poly, robust_statistics from .utils import get_baseDir from .instrument_specific import rowamp_sub def run_one_phot_method(allInput): """ Do a photometry/spectroscopy method on one file For example, do aperture photometry on one file This is a slightly awkward workaround because multiprocessing doesn't work on object methods So it's a separate function that takes an object and runs the method Parameters ----------- allInput: 3 part tuple (object, int, string) This contains the object, file index to run (0-based) and name of the method to run """ photObj, ind, method = allInput photMethod = getattr(photObj,method) return photMethod(ind) def run_multiprocessing_phot(photObj,fileIndices,method='phot_for_one_file'): """ Run photometry/spectroscopy methods on all files using multiprocessing Awkward workaround because multiprocessing doesn't work on object methods Parameters ---------- photObj: Photometry object A photometry Object instance fileIndices: list List of file indices method: str Method on which to apply multiprocessing """ allInput = [] for oneInd in fileIndices: allInput.append([photObj,oneInd,method]) n_files = len(fileIndices) if n_files < maxCPUs: raise Exception("Fewer files to process than CPUs, this can confuse multiprocessing") p = Pool(maxCPUs) outputDat = list(tqdm.tqdm(p.imap(run_one_phot_method,allInput),total=n_files)) p.close() return outputDat def read_yaml(filePath): with open(filePath) as yamlFile: yamlStructure = yaml.safe_load(yamlFile) return yamlStructure path_to_example = "parameters/phot_params/example_phot_parameters.yaml" exampleParamPath = resource_filename('tshirt',path_to_example) class phot: def __init__(self,paramFile=exampleParamPath, directParam=None): """ Photometry class Parameters ------ paramFile: str Location of the YAML file that contains the photometry parameters as long as directParam is None. Otherwise, it uses directParam directParam: dict Rather than use the paramFile, you can put a dictionary here. This can be useful for running a batch of photometric extractions. Properties ------- paramFile: str Same as paramFile above param: dict The photometry parameters like file names, aperture sizes, guess locations fileL: list The files on which photometry will be performed nImg: int Number of images in the sequence directParam: dict Parameter dictionary rather than YAML file (useful for batch processing) """ self.pipeType = 'photometry' self.get_parameters(paramFile=paramFile,directParam=directParam) defaultParams = {'srcGeometry': 'Circular', 'bkgSub': True, 'isCube': False, 'cubePlane': 0, 'doCentering': True, 'bkgGeometry': 'CircularAnnulus', 'boxFindSize': 18,'backStart': 9, 'backEnd': 12, 'scaleAperture': False, 'apScale': 2.5, 'apRange': [0.01,9999], 'scaleBackground': False, 'nanTreatment': 'zero', 'backOffset': [0.0,0.0], 'srcName': 'WASP 62','srcNameShort': 'wasp62', 'refStarPos': [[50,50]],'procFiles': '*.fits', 'apRadius': 9,'FITSextension': 0, 'jdRef': 2458868, 'nightName': 'UT2020-01-20','srcName' 'FITSextension': 0, 'HEADextension': 0, 'refPhotCentering': None,'isSlope': False, 'itimeKeyword': 'INTTIME','readNoise': None, 'detectorGain': None,'cornerSubarray': False, 'subpixelMethod': 'exact','excludeList': None, 'dateFormat': 'Two Part','copyCentroidFile': None, 'bkgMethod': 'mean','diagnosticMode': False, 'bkgOrderX': 1, 'bkgOrderY': 1,'backsub_directions': ['Y','X'], 'readFromTshirtExamples': False, 'saturationVal': None, 'satNPix': 5, 'nanReplaceValue': 0.0, 'DATE-OBS': None, 'driftFile': None } for oneKey in defaultParams.keys(): if oneKey not in self.param: self.param[oneKey] = defaultParams[oneKey] xCoors, yCoors = [], [] positions = self.param['refStarPos'] self.nsrc = len(positions) ## Set up file names for output self.check_file_structure() self.dataFileDescrip = self.param['srcNameShort'] + '_'+ self.param['nightName'] self.photFile = os.path.join(self.baseDir,'tser_data','phot','phot_'+self.dataFileDescrip+'.fits') self.centroidFile = os.path.join(self.baseDir,'centroids','cen_'+self.dataFileDescrip+'.fits') self.refCorPhotFile = os.path.join(self.baseDir,'tser_data','refcor_phot','refcor_'+self.dataFileDescrip+'.fits') # Get the file list self.fileL = self.get_fileList() self.nImg = len(self.fileL) self.srcNames = np.array(np.arange(self.nsrc),dtype=str) self.srcNames[0] = 'src' self.set_up_apertures(positions) self.check_parameters() self.get_drift_dat() def get_parameters(self,paramFile,directParam=None): if directParam is None: self.paramFile = paramFile self.param = read_yaml(paramFile) else: self.paramFile = 'direct dictionary' self.param = directParam def check_file_structure(self): """ Check the file structure for plotting/saving data """ baseDir = get_baseDir() structure_file = resource_filename('tshirt','directory_info/directory_list.yaml') dirList = read_yaml(structure_file) for oneFile in dirList: fullPath = os.path.join(baseDir,oneFile) ensure_directories_are_in_place(fullPath) self.baseDir = baseDir def get_fileList(self): if self.param['readFromTshirtExamples'] == True: ## Find the files from the package data examples ## This is only when running example pipeline runs or tests search_path = os.path.join(self.baseDir,'example_tshirt_data',self.param['procFiles']) if len(glob.glob(search_path)) == 0: print("Did not find example tshirt data. Now attempting to download...") get_tshirt_example_data() else: search_path = self.param['procFiles'] origList = np.sort(glob.glob(search_path)) if self.param['excludeList'] is not None: fileList = [] for oneFile in origList: if os.path.basename(oneFile) not in self.param['excludeList']: fileList.append(oneFile) else: fileList = origList if len(fileList) == 0: print("Note: File Search comes up empty") if os.path.exists(self.photFile): print("Note: Reading file list from previous phot file instead.") t1 = Table.read(self.photFile,hdu='FILENAMES') fileList = np.array(t1['File Path']) return fileList def check_parameters(self): assert type(self.param['backOffset']) == list,"Background offset is not a list" assert len(self.param['backOffset']) == 2,'Background offset must by a 2 element list' def set_up_apertures(self,positions): if self.param['srcGeometry'] == 'Circular': self.srcApertures = CircularAperture(positions,r=self.param['apRadius']) elif self.param['srcGeometry'] == 'Square': self.srcApertures = RectangularAperture(positions,w=self.param['apRadius'], h=self.param['apRadius'],theta=0) elif self.param['srcGeometry'] == 'Rectangular': self.srcApertures = RectangularAperture(positions,w=self.param['apWidth'], h=self.param['apHeight'],theta=0) else: print('Unrecognized aperture') self.xCoors = self.srcApertures.positions[:,0] self.yCoors = self.srcApertures.positions[:,1] if self.param['bkgSub'] == True: bkgPositions = np.array(deepcopy(positions)) bkgPositions[:,0] = bkgPositions[:,0] + self.param['backOffset'][0] bkgPositions[:,1] = bkgPositions[:,1] + self.param['backOffset'][1] if self.param['bkgGeometry'] == 'CircularAnnulus': self.bkgApertures = CircularAnnulus(bkgPositions,r_in=self.param['backStart'], r_out=self.param['backEnd']) elif self.param['bkgGeometry'] == 'Rectangular': self.bkgApertures = RectangularAperture(bkgPositions,w=self.param['backWidth'], h=self.param['backHeight'],theta=0) else: raise ValueError('Unrecognized background geometry') def get_default_index(self): """ Get the default index from the file list """ return self.nImg // 2 def get_default_im(self,img=None,head=None): """ Get the default image for postage stamps or star identification maps""" ## Get the data if img is None: img, head = self.getImg(self.fileL[self.get_default_index()]) return img, head def get_default_cen(self,custPos=None,ind=0): """ Get the default centroids for postage stamps or star identification maps Parameters ---------- custPos: numpy array Array of custom positions for the apertures. Otherwise it uses the guess position ind: int Image index. This is used to guess the position if a drift file is given """ if custPos is None: initialPos = deepcopy(self.srcApertures.positions) showApPos = np.zeros_like(initialPos) showApPos[:,0] = initialPos[:,0] + float(self.drift_dat['dx'][ind]) showApPos[:,1] = initialPos[:,1] + float(self.drift_dat['dy'][ind]) else: showApPos = custPos return showApPos def get_drift_dat(self): drift_dat_0 = Table() drift_dat_0['Index'] = np.arange(self.nImg) #drift_dat_0['File'] = self.fileL drift_dat_0['dx'] = np.zeros(self.nImg) drift_dat_0['dy'] = np.zeros(self.nImg) if self.param['driftFile'] == None: self.drift_dat = drift_dat_0 drift_file_found = False else: if self.param['readFromTshirtExamples'] == True: ## Find the files from the package data examples ## This is only when running example pipeline runs or tests drift_file_path = os.path.join(self.baseDir,'example_tshirt_data',self.param['driftFile']) else: drift_file_path = self.param['driftFile'] if os.path.exists(drift_file_path) == False: drift_file_found = False warnings.warn("No Drift file found at {}".format(drift_file_path)) else: drift_file_found = True self.drift_dat = ascii.read(drift_file_path) return drift_file_found def make_drift_file(self,srcInd=0,refIndex=0): """ Use the centroids in photometry to generate a drift file of X/Y offsets Parameters ---------- srcInd: int The source index used for drifts refIndex: int Which file index corresponds to 0.0 drift """ HDUList = fits.open(self.photFile) cenData = HDUList['CENTROIDS'].data photHead = HDUList['PHOTOMETRY'].header nImg = photHead['NIMG'] drift_dat = Table() drift_dat['Index'] = np.arange(nImg) x = cenData[:,srcInd,0] drift_dat['dx'] = x - x[refIndex] y = cenData[:,srcInd,1] drift_dat['dy'] = y - y[refIndex] drift_dat['File'] = HDUList['FILENAMES'].data['File Path'] outPath = os.path.join(self.baseDir,'centroids','drift_'+self.dataFileDescrip+'.ecsv') drift_dat.meta['Zero Index'] = refIndex drift_dat.meta['Source Used'] = srcInd drift_dat.meta['Zero File'] = str(drift_dat['File'][refIndex]) print("Saving Drift file to {}".format(outPath)) drift_dat.write(outPath,overwrite=True,format='ascii.ecsv') def showStarChoices(self,img=None,head=None,custPos=None,showAps=False, srcLabel=None,figSize=None,showPlot=False, apColor='black',backColor='black', vmin=None,vmax=None,index=None, labelColor='white', xLim=None,yLim=None, txtOffset=20): """ Show the star choices for photometry Parameters ------------------ img : numpy 2D array, optional An image to plot head : astropy FITS header, optional header for image custPos : numpy 2D array or list of tuple coordinates, optional Custom positions showAps : bool, optional Show apertures rather than circle stars srcLabel : str or None, optional What should the source label be? The default is "src" srcLabel : list or None, optional Specify the size of the plot. This is useful for looking at high/lower resolution showPlot : bool Show the plot? If True, it will show, otherwise it is saved as a file apColor: str The color for the source apertures backColor: str The color for the background apertures vmin: float or None A value for the :code:`matplotlib.pyplot.plot.imshow` vmin parameter vmax: float or None A value for the :code:`matplotlib.pyplot.plot.imshow` vmax parameter index: int or None The index of the file name. If None, it uses the default labelColor: str Color for the text label for sources xLim: None or two element list Specify the minimum and maximum X for the plot. For example xLim=[40,60] yLim: None or two element list Specify the minimum and maximum Y for the plot. For example yLim=[40,60] txtOffset: float The X and Y offset to place the text label for a source """ fig, ax = plt.subplots(figsize=figSize) if index is None: index = self.get_default_index() if img is None: img, head = self.getImg(self.fileL[index]) else: img_other, head = self.get_default_im(img=img,head=None) if vmin is None: useVmin = np.nanpercentile(img,1) else: useVmin = vmin if vmax is None: useVmax = np.nanpercentile(img,99) else: useVmax = vmax imData = ax.imshow(img,cmap='viridis',vmin=useVmin,vmax=useVmax,interpolation='nearest') ax.invert_yaxis() rad = 50 ## the radius for the matplotlib scatter to show source centers showApPos = self.get_default_cen(custPos=custPos,ind=index) if showAps == True: apsShow = deepcopy(self.srcApertures) apsShow.positions = showApPos self.adjust_apertures(index) if photutils.__version__ >= "0.7": apsShow.plot(axes=ax,color=apColor) else: apsShow.plot(ax=ax,color=apColor) if self.param['bkgSub'] == True: backApsShow = deepcopy(self.bkgApertures) backApsShow.positions = showApPos backApsShow.positions[:,0] = backApsShow.positions[:,0] + self.param['backOffset'][0] backApsShow.positions[:,1] = backApsShow.positions[:,1] + self.param['backOffset'][1] if photutils.__version__ >= "0.7": backApsShow.plot(axes=ax,color=backColor) else: backApsShow.plot(ax=ax,color=backColor) outName = 'ap_labels_{}.pdf'.format(self.dataFileDescrip) else: ax.scatter(showApPos[:,0],showApPos[:,1], s=rad, facecolors='none', edgecolors='r') outName = 'st_labels_{}.pdf'.format(self.dataFileDescrip) for ind, onePos in enumerate(showApPos): #circ = plt.Circle((onePos[0], onePos[1]), rad, color='r') #ax.add_patch(circ) if ind == 0: if srcLabel is None: name='src' else: name=srcLabel else: name=str(ind) ax.text(onePos[0]+txtOffset,onePos[1]+txtOffset,name,color=labelColor) ax.set_xlabel('X (px)') ax.set_ylabel('Y (px)') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(imData,label='Counts',cax=cax) ax.set_xlim(xLim) ax.set_ylim(yLim) if showPlot == True: fig.show() else: outF = os.path.join(self.baseDir,'plots','photometry','star_labels',outName) fig.savefig(outF, bbox_inches='tight') plt.close(fig) def showStamps(self,img=None,head=None,custPos=None,custFWHM=None, vmin=None,vmax=None,showPlot=False,boxsize=None,index=None): """ Shows the fixed apertures on the image with postage stamps surrounding sources Parameters ----------- index: int Index of the file list. This is needed if scaling apertures """ ## Calculate approximately square numbers of X & Y positions in the grid numGridY = int(np.floor(np.sqrt(self.nsrc))) numGridX = int(np.ceil(float(self.nsrc) / float(numGridY))) fig, axArr = plt.subplots(numGridY, numGridX) img, head = self.get_default_im(img=img,head=head) if boxsize == None: boxsize = self.param['boxFindSize'] showApPos = self.get_default_cen(custPos=custPos) if index is None: index = self.get_default_index() self.adjust_apertures(index) for ind, onePos in enumerate(showApPos): if self.nsrc == 1: ax = axArr else: ax = axArr.ravel()[ind] yStamp_proposed = np.array(onePos[1] + np.array([-1,1]) * boxsize,dtype=np.int) xStamp_proposed = np.array(onePos[0] +
np.array([-1,1])
numpy.array
""" Module providing unit-testing for the `~halotools.mock_observables.alignments.w_gplus` function. """ from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import warnings import pytest from astropy.utils.misc import NumpyRNGContext from ..gi_plus_projected import gi_plus_projected from halotools.custom_exceptions import HalotoolsError slow = pytest.mark.slow __all__ = ('test_w_gplus_returned_shape', 'test_w_gplus_threading', 'test_orientation_usage', 'test_round_result') fixed_seed = 43 def test_w_gplus_returned_shape(): """ make sure the result that is returned has the correct shape """ ND = 100 NR = 100 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((ND, 3)) randoms = np.random.random((NR, 3)) period = np.array([1.0, 1.0, 1.0]) rp_bins = np.linspace(0.001, 0.3, 5) pi_max = 0.2 random_orientation = np.random.random((len(sample1), 2)) random_ellipticities = np.random.random((len(sample1))) # analytic randoms result_1 = gi_plus_projected(sample1, random_orientation, random_ellipticities, sample1, rp_bins, pi_max, period=period, num_threads=1) assert np.shape(result_1) == (len(rp_bins)-1, ) result_2 = gi_plus_projected(sample1, random_orientation, random_ellipticities, sample1, rp_bins, pi_max, period=period, num_threads=3) assert np.shape(result_2) == (len(rp_bins)-1, ) # real randoms result_1 = gi_plus_projected(sample1, random_orientation, random_ellipticities, sample1, rp_bins, pi_max, randoms1=randoms, randoms2=randoms, period=period, num_threads=1) assert np.shape(result_1) == (len(rp_bins)-1, ) result_2 = gi_plus_projected(sample1, random_orientation, random_ellipticities, sample1, rp_bins, pi_max, randoms1=randoms, randoms2=randoms, period=period, num_threads=3) assert np.shape(result_2) == (len(rp_bins)-1, ) def test_w_gplus_threading(): """ test to make sure the results are consistent when num_threads=1 or >1 """ ND = 100 NR = 100 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((ND, 3)) randoms = np.random.random((NR, 3)) period = np.array([1.0, 1.0, 1.0]) rp_bins =
np.linspace(0.001, 0.3, 5)
numpy.linspace
# ============================================================================== # Copyright 2021 SciANN -- <NAME>. # All Rights Reserved. # # Licensed under the MIT License. # # A guide for generating collocation points for PINN solvers. # # Includes: # - DataGeneratorX: # Generate 1D collocation grid. # - DataGeneratorXY: # Generate 2D collocation grid for a rectangular domain. # - DataGeneratorXT: # Generate 1D time-dependent collocation grid. # - DataGeneratorXYT: # Generate 2D time-dependent collocation grid for a rectangular domain. # ============================================================================== import numpy as np import matplotlib.pyplot as plt from itertools import cycle cycol = cycle('bgrcmk') class DataGeneratorX: """ Generates 1D collocation grid for training PINNs # Arguments: X: [X0, X1] targets: list and type of targets you wish to impose on PINNs. ('domain', 'bc-left', 'bc-right', 'all') num_sample: total number of collocation points. # Examples: >> dg = DataGeneratorX([0., 1.], ["domain", "bc-left", "bc-right"], 10000) >> input_data, target_data = dg.get_data() """ def __init__(self, X=[0., 1.], targets=['domain', 'bc-left', 'bc-right'], num_sample=10000): 'Initialization' self.Xdomain = X self.targets = targets self.num_sample = num_sample self.input_data = None self.target_data = None self.set_data() def __len__(self): return self.input_data[0].shape[0] def set_data(self): self.input_data, self.target_data = self.generate_data() def get_data(self): return self.input_data, self.target_data def generate_data(self): # distribute half inside domain half on the boundary num_sample = int(self.num_sample/2) counter = 0 # domain points x_dom = np.random.uniform(self.Xdomain[0], self.Xdomain[1], num_sample) ids_dom = np.arange(x_dom.shape[0]) counter += ids_dom.size # left bc points x_bc_left = np.full(int(num_sample/2), self.Xdomain[0]) ids_bc_left = np.arange(x_bc_left.shape[0]) + counter counter += ids_bc_left.size # right bc points x_bc_right = np.full(num_sample-int(num_sample/2), self.Xdomain[1]) ids_bc_right = np.arange(x_bc_right.shape[0]) + counter counter += ids_bc_right.size ids_bc = np.concatenate([ids_bc_left, ids_bc_right]) ids_all = np.concatenate([ids_dom, ids_bc]) ids = { 'domain': ids_dom, 'bc-left': ids_bc_left, 'bc-right': ids_bc_right, 'bc': ids_bc, 'all': ids_all } assert all([t in ids.keys() for t in self.targets]), \ 'accepted target types: {}'.format(ids.keys()) input_data = [ np.concatenate([x_dom, x_bc_left, x_bc_right]).reshape(-1,1), ] total_sample = input_data[0].shape[0] target_data = [] for i, tp in enumerate(self.targets): target_data.append( (ids[tp], 'zeros') ) return input_data, target_data def get_test_grid(self, Nx=1000): xs = np.linspace(self.Xdomain[0], self.Xdomain[1], Nx) return xs def plot_sample_batch(self, batch_size=500): ids = np.random.choice(len(self), batch_size, replace=False) x_data = self.input_data[0][ids,:] y_data = np.random.uniform(-.1, .1, x_data.shape) plt.scatter(x_data, y_data) plt.xlabel('x') plt.ylabel('Random vals') plt.ylim(-1,1) plt.title('Sample batch = {}'.format(batch_size)) plt.show() def plot_data(self): fig = plt.figure() for t, (t_idx, t_val) in zip(self.targets, self.target_data): x_data = self.input_data[0][t_idx,:] y_data = np.random.uniform(-.1, .1, x_data.shape) plt.scatter(x_data, y_data, label=t, c=next(cycol)) plt.ylim(-1,1) plt.xlabel('x') plt.ylabel('Random vals') plt.title('Training Data') plt.legend(title="Training Data", bbox_to_anchor=(1.05, 1), loc='upper left') fig.tight_layout() plt.show() class DataGeneratorXY: """ Generates 2D collocation grid for a rectangular domain # Arguments: X: [X0, X1] Y: [Y0, Y1] targets: list and type of targets you wish to impose on PINNs. ('domain', 'bc-left', 'bc-right', 'bc-bot', 'bc-top', 'all') num_sample: total number of collocation points. # Examples: >> dg = DataGeneratorXY([0., 1.], [0., 1.], ["domain", "bc-left", "bc-right"], 10000) >> input_data, target_data = dg.get_data() """ def __init__(self, X=[0., 1.], Y=[0., 1.], targets=['domain', 'bc-left', 'bc-right', 'bc-bot', 'bc-top'], num_sample=10000): 'Initialization' self.Xdomain = X self.Ydomain = Y self.targets = targets self.num_sample = num_sample self.input_data = None self.target_data = None self.set_data() def __len__(self): return self.input_data[0].shape[0] def set_data(self): self.input_data, self.target_data = self.generate_data() def get_data(self): return self.input_data, self.target_data def generate_data(self): # distribute half inside domain half on the boundary num_sample = int(self.num_sample/2) counter = 0 # domain points x_dom = np.random.uniform(self.Xdomain[0], self.Xdomain[1], num_sample) y_dom = np.random.uniform(self.Ydomain[0], self.Ydomain[1], num_sample) ids_dom = np.arange(x_dom.shape[0]) counter += ids_dom.size # bc points num_sample_per_edge = int(num_sample/4) # left bc points x_bc_left = np.full(num_sample_per_edge, self.Xdomain[0]) y_bc_left = np.random.uniform(self.Ydomain[0], self.Ydomain[1], num_sample_per_edge) ids_bc_left = np.arange(x_bc_left.shape[0]) + counter counter += ids_bc_left.size # right bc points x_bc_right = np.full(num_sample_per_edge, self.Xdomain[1]) y_bc_right = np.random.uniform(self.Ydomain[0], self.Ydomain[1], num_sample_per_edge) ids_bc_right = np.arange(x_bc_right.shape[0]) + counter counter += ids_bc_right.size # bot bc points x_bc_bot = np.random.uniform(self.Xdomain[0], self.Xdomain[1], num_sample_per_edge) y_bc_bot = np.full(num_sample_per_edge, self.Ydomain[0]) ids_bc_bot = np.arange(x_bc_bot.shape[0]) + counter counter += ids_bc_bot.size # right bc points x_bc_top = np.random.uniform(self.Xdomain[0], self.Xdomain[1], num_sample-num_sample_per_edge) y_bc_top = np.full(num_sample-num_sample_per_edge, self.Ydomain[1]) ids_bc_top = np.arange(x_bc_top.shape[0]) + counter counter += ids_bc_top.size ids_bc = np.concatenate([ids_bc_left, ids_bc_right, ids_bc_bot, ids_bc_top]) ids_all = np.concatenate([ids_dom, ids_bc]) ids = { 'domain': ids_dom, 'bc-left': ids_bc_left, 'bc-right': ids_bc_right, 'bc-bot': ids_bc_bot, 'bc-top': ids_bc_top, 'bc': ids_bc, 'all': ids_all } assert all([t in ids.keys() for t in self.targets]), \ 'accepted target types: {}'.format(ids.keys()) input_data = [ np.concatenate([x_dom, x_bc_left, x_bc_right, x_bc_bot, x_bc_top]).reshape(-1,1), np.concatenate([y_dom, y_bc_left, y_bc_right, y_bc_bot, y_bc_top]).reshape(-1,1), ] total_sample = input_data[0].shape[0] target_data = [] for i, tp in enumerate(self.targets): target_data.append( (ids[tp], 'zeros') ) return input_data, target_data def get_test_grid(self, Nx=200, Ny=200): xs = np.linspace(self.Xdomain[0], self.Xdomain[1], Nx) ys = np.linspace(self.Ydomain[0], self.Ydomain[1], Ny) input_data, target_data = np.meshgrid(xs, ys) return [input_data, target_data] def plot_sample_batch(self, batch_size=500): ids = np.random.choice(len(self), batch_size, replace=False) x_data = self.input_data[0][ids,:] y_data = self.input_data[1][ids,:] plt.scatter(x_data, y_data) plt.xlabel('x') plt.ylabel('y') plt.title('Sample batch = {}'.format(batch_size)) plt.show() def plot_data(self): fig = plt.figure() for t, (t_idx, t_val) in zip(self.targets, self.target_data): x_data = self.input_data[0][t_idx,:] y_data = self.input_data[1][t_idx,:] plt.scatter(x_data, y_data, label=t, c=next(cycol)) plt.xlabel('x') plt.ylabel('y') plt.legend(title="Training Data", bbox_to_anchor=(1.05, 1), loc='upper left') fig.tight_layout() plt.show() class DataGeneratorXT: """ Generates 1D time-dependent collocation grid for training PINNs # Arguments: X: [X0, X1] T: [T0, T1] targets: list and type of targets you wish to impose on PINNs. ('domain', 'ic', 'bc-left', 'bc-right', 'all') num_sample: total number of collocation points. logT: generate random samples logarithmic in time. # Examples: >> dg = DataGeneratorXT([0., 1.], [0., 1.], ["domain", "ic", "bc-left", "bc-right"], 10000) >> input_data, target_data = dg.get_data() """ def __init__(self, X=[0., 1.], T=[0., 1.], targets=['domain', 'ic', 'bc-left', 'bc-right'], num_sample=10000, logT=False): 'Initialization' self.Xdomain = X self.Tdomain = T self.logT = logT self.targets = targets self.num_sample = num_sample self.input_data = None self.target_data = None self.set_data() def __len__(self): return self.input_data[0].shape[0] def set_data(self): self.input_data, self.target_data = self.generate_data() def get_data(self): return self.input_data, self.target_data def generate_uniform_T_samples(self, num_sample): if self.logT is True: t_dom = np.random.uniform(np.log1p(self.Tdomain[0]), np.log1p(self.Tdomain[1]), num_sample) t_dom = np.exp(t_dom) - 1. else: t_dom = np.random.uniform(self.Tdomain[0], self.Tdomain[1], num_sample) return t_dom def generate_data(self): # Half of the samples inside the domain. num_sample = int(self.num_sample/2) counter = 0 # domain points x_dom = np.random.uniform(self.Xdomain[0], self.Xdomain[1], num_sample) t_dom = self.generate_uniform_T_samples(num_sample) ids_dom = np.arange(x_dom.shape[0]) counter += ids_dom.size # The other half distributed equally between BC and IC. num_sample = int(self.num_sample/4) # initial conditions x_ic = np.random.uniform(self.Xdomain[0], self.Xdomain[1], num_sample) t_ic = np.full(num_sample, self.Tdomain[0]) ids_ic = np.arange(x_ic.shape[0]) + counter counter += ids_ic.size # bc points num_sample_per_edge = int(num_sample/2) # left bc points x_bc_left = np.full(num_sample_per_edge, self.Xdomain[0]) t_bc_left = self.generate_uniform_T_samples(num_sample_per_edge) ids_bc_left = np.arange(x_bc_left.shape[0]) + counter counter += ids_bc_left.size # right bc points x_bc_right = np.full(num_sample-num_sample_per_edge, self.Xdomain[1]) t_bc_right = self.generate_uniform_T_samples(num_sample-num_sample_per_edge) ids_bc_right = np.arange(x_bc_right.shape[0]) + counter counter += ids_bc_right.size ids_bc = np.concatenate([ids_bc_left, ids_bc_right]) ids_all = np.concatenate([ids_dom, ids_ic, ids_bc]) ids = { 'domain': ids_dom, 'bc-left': ids_bc_left, 'bc-right': ids_bc_right, 'ic': ids_ic, 'bc': ids_bc, 'all': ids_all } assert all([t in ids.keys() for t in self.targets]), \ 'accepted target types: {}'.format(ids.keys()) input_data = [ np.concatenate([x_dom, x_ic, x_bc_left, x_bc_right]).reshape(-1,1), np.concatenate([t_dom, t_ic, t_bc_left, t_bc_right]).reshape(-1,1), ] total_sample = input_data[0].shape[0] target_data = [] for i, tp in enumerate(self.targets): target_data.append( (ids[tp], 'zeros') ) return input_data, target_data def get_test_grid(self, Nx=200, Nt=200): xs = np.linspace(self.Xdomain[0], self.Xdomain[1], Nx) if self.logT: ts = np.linspace(np.log1p(self.Tdomain[0]), np.log1p(self.Tdomain[1]), Nt) ts = np.exp(ts) - 1.0 else: ts = np.linspace(self.Tdomain[0], self.Tdomain[1], Nt) return np.meshgrid(xs, ts) def plot_sample_batch(self, batch_size=500): ids = np.random.choice(len(self), batch_size, replace=False) x_data = self.input_data[0][ids,:] t_data = self.input_data[1][ids,:] plt.scatter(x_data, t_data) plt.xlabel('x') plt.ylabel('t') plt.title('Sample batch = {}'.format(batch_size)) plt.show() def plot_data(self): fig = plt.figure() for t, (t_idx, t_val) in zip(self.targets, self.target_data): x_data = self.input_data[0][t_idx,:] t_data = self.input_data[1][t_idx,:] plt.scatter(x_data, t_data, label=t, c=next(cycol)) plt.xlabel('x') plt.ylabel('t') plt.legend(title="Training Data", bbox_to_anchor=(1.05, 1), loc='upper left') fig.tight_layout() plt.show() class DataGeneratorXYT: """ Generates 2D time-dependent collocation grid for training PINNs # Arguments: X: [X0, X1] Y: [Y0, Y1] T: [T0, T1] targets: list and type of targets you wish to impose on PINNs. ('domain', 'ic', 'bc-left', 'bc-right', 'bc-bot', 'bc-top', 'all') num_sample: total number of collocation points. logT: generate random samples logarithmic in time. # Examples: >> dg = DataGeneratorXYT([0., 1.], [0., 1.], [0., 1.], ["domain", "ic", "bc-left", "bc-right", "bc-bot", "bc-top"], 10000) >> input_data, target_data = dg.get_data() """ def __init__(self, X=[0., 1.], Y=[0., 1.], T=[0., 1.], targets=['domain', 'ic', 'bc-left', 'bc-right', 'bc-bot', 'bc-top'], num_sample=10000, logT=False): 'Initialization' self.Xdomain = X self.Ydomain = Y self.Tdomain = T self.logT = logT self.targets = targets self.num_sample = num_sample self.input_data = None self.target_data = None self.set_data() def __len__(self): return self.input_data[0].shape[0] def set_data(self): self.input_data, self.target_data = self.generate_data() def get_data(self): return self.input_data, self.target_data def generate_uniform_T_samples(self, num_sample): if self.logT is True: t_dom = np.random.uniform(np.log1p(self.Tdomain[0]), np.log1p(self.Tdomain[1]), num_sample) t_dom = np.exp(t_dom) - 1. else: t_dom = np.random.uniform(self.Tdomain[0], self.Tdomain[1], num_sample) return t_dom def generate_data(self): # Half of the samples inside the domain. num_sample = int(self.num_sample/2) counter = 0 # domain points x_dom = np.random.uniform(self.Xdomain[0], self.Xdomain[1], num_sample) y_dom = np.random.uniform(self.Ydomain[0], self.Ydomain[1], num_sample) t_dom = self.generate_uniform_T_samples(num_sample) ids_dom =
np.arange(x_dom.shape[0])
numpy.arange
# packages import numpy as np # project import forecast.helpers as hlp import config.parameters as prm class Sensor(): """ One Sensor object for each sensor in project. It keeps track of the algorithm state between events. When new event_data json is received, iterate algorithm one sample. """ def __init__(self, device, device_id, args): # give to self self.device = device self.device_id = device_id self.args = args # contains level, trend and season for modelled data self.model = { 'unixtime': [], # shared unixtime timeaxis 'temperature': [], # temperature values 'level': [], # modeled level 'trend': [], # modeled trend 'season': [], # modeled season } # contains all previous forecasts in history self.forecast = { 'unixtime': [], # shared unixtime timeaxis 'temperature': [], # temperature values 'residual': [], # forecast residual } # variables self.n_samples = 0 # number of event samples received self.initialised = False self.residual_std = 0 def new_event_data(self, event_data): """ Receive new event from Director and iterate algorithm. Parameters ---------- event_data : dict Event json containing temperature data. """ # convert timestamp to unixtime _, unixtime = hlp.convert_event_data_timestamp(event_data['data']['temperature']['updateTime']) # append new temperature value self.model['unixtime'].append(unixtime) self.model['temperature'].append(event_data['data']['temperature']['value']) self.n_samples += 1 # initialise holt winters if self.n_samples < prm.season_length * prm.n_seasons_init: return elif not self.initialised: self.__initialise_holt_winters() else: # iterate Holt-Winters self.__iterate_holt_winters() # forecast self.__model_forecast() def __initialise_holt_winters(self): """ Calculate initial level, trend and seasonal component. Based on: https://robjhyndman.com/hyndsight/hw-initialization/ """ # convert to numpy array for indexing temperature = np.array(self.model['temperature']) # fit a 3xseason moving average to temperature ma = np.zeros(self.n_samples) for i in range(self.n_samples): # define ma interval xl = max(0, i - int(1.5*prm.season_length)) xr = min(self.n_samples, i + int(1.5*prm.season_length+1)) # mean ma[i] = np.mean(temperature[xl:xr]) # subtract moving average df = temperature - ma # generate average seasonal component avs = [] for i in range(prm.season_length): avs.append(np.mean([df[i+j*prm.season_length] for j in range(prm.n_seasons_init)])) # expand average season into own seasonal component for i in range(self.n_samples): self.model['season'].append(avs[i%len(avs)]) # subtract initial season from original temperature to get adjusted temperature adjusted = temperature - np.array(self.model['season']) # fit a linear trend to adjusted temperature xax = np.arange(self.n_samples) a, b = hlp.algebraic_linreg(xax, adjusted) linreg = a + xax*b # set initial level, slope, and brutlag deviation for i in range(self.n_samples): self.model['level'].append(linreg[i]) self.model['trend'].append(b) # flip flag self.initialised = True def __iterate_holt_winters(self): """ Update level, trend and seasonal component of Holt-Winters model. """ # calculate level (l), trend (b), and season (s) components l = prm.alpha*(self.model['temperature'][-1] - self.model['season'][-prm.season_length]) + (1 - prm.alpha)*(self.model['level'][-1] + self.model['trend'][-1]) b = prm.beta*(l - self.model['level'][-1]) + (1 - prm.beta)*self.model['trend'][-1] s = prm.gamma*(self.model['temperature'][-1] - self.model['level'][-1] - self.model['trend'][-1]) + (1 - prm.gamma)*self.model['season'][-prm.season_length] # append components self.model['level'].append(l) self.model['trend'].append(b) self.model['season'].append(s) def __model_forecast(self): """ Holt-Winters n-step ahead forecasting and prediction interval calculation. Forecast based on: https://otexts.com/fpp2/prediction-intervals.html Prediction intervals based on: https://otexts.com/fpp2/prediction-intervals.html """ # use average step length the last 24h tax = np.array(self.model['unixtime'])[np.array(self.model['unixtime']) > int(self.model['unixtime'][-1])-60*60*24] ux_step =
np.mean(tax[1:] - tax[:-1])
numpy.mean
""" This file contains all the funcitons for creating an image plus with projected lines of a predefined height from radar data. The height can either be predefined or calculated by the radar elevation field of view. This file has been completely reworked on 2019-01-23 for best functionalities. Some function arguments changed, so please verify if you referr to this file. """ # Standard libraries import os import os.path as osp import sys import math import time # 3rd party libraries import cv2 import json import numpy as np from pyquaternion import Quaternion from PIL import Image # Local modules # Allow relative imports when being executed as script. if __name__ == "__main__" and not __package__: sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) import crfnet.raw_data_fusion # noqa: F401 __package__ = "crfnet.raw_data_fusion" from nuscenes.utils.data_classes import PointCloud from ...utils import radar # from nuscenes.utils.geometry_utils import view_points def _resize_image(image_data, target_shape): """ Perfomrs resizing of the image and calculates a matrix to adapt the intrinsic camera matrix :param image_data: [np.array] with shape (height x width x 3) :param target_shape: [tuple] with (width, height) :return resized image: [np.array] with shape (height x width x 3) :return resize matrix: [numpy array (3 x 3)] """ # print('resized', type(image_data)) stupid_confusing_cv2_size_because_width_and_height_are_in_wrong_order = (target_shape[1], target_shape[0]) resized_image = cv2.resize(image_data, stupid_confusing_cv2_size_because_width_and_height_are_in_wrong_order) resize_matrix = np.eye(3, dtype=resized_image.dtype) resize_matrix[1, 1] = target_shape[0]/image_data.shape[0] resize_matrix[0, 0] = target_shape[1]/image_data.shape[1] return resized_image, resize_matrix def _radar_transformation(radar_data, height=None): """ Transforms the given radar data with height z = 0 and another height as input using extrinsic radar matrix to vehicle's co-sy This function appends the distance to the radar point. Parameters: :param radar_data: [numpy array] with radar parameter (e.g. velocity) in rows and radar points for one timestep in columns Semantics: x y z dyn_prop id rcs vx vy vx_comp vy_comp is_quality_valid ambig_state x_rms y_rms invalid_state pdh0 distance :param radar_extrinsic: [numpy array (3x4)] that consists of the extrinsic parameters of the given radar sensor :param height: [tuple] (min height, max height) that defines the (unknown) height of the radar points Returns: :returns radar_data: [numpy array (m x no of points)] that consists of the transformed radar points with z = 0 :returns radar_xyz_endpoint: [numpy array (3 x no of points)] that consits of the transformed radar points z = height """ # Field of view (global) ELEVATION_FOV_SR = 20 ELEVATION_FOV_FR = 14 # initialization num_points = radar_data.shape[1] # Radar points for the endpoint radar_xyz_endpoint = radar_data[0:3,:].copy() # variant 1: constant height substracted by RADAR_HEIGHT RADAR_HEIGHT = 0.5 if height: radar_data[2, :] = np.ones((num_points,)) * (height[0] - RADAR_HEIGHT) # lower points radar_xyz_endpoint[2, :] = np.ones((num_points,)) * (height[1] - RADAR_HEIGHT) # upper points # variant 2: field of view else: dist = radar_data[-1,:] count = 0 for d in dist: # short range mode if d <= 70: radar_xyz_endpoint[2, count] = -d * np.tan(ELEVATION_FOV_SR/2) # long range mode else: radar_xyz_endpoint[2, count] = -d * np.tan(ELEVATION_FOV_FR/2) count += 1 return radar_data, radar_xyz_endpoint def _create_line(P1, P2, img): """ Produces and array that consists of the coordinates and intensities of each pixel in a line between two points :param P1: [numpy array] that consists of the coordinate of the first point (x,y) :param P2: [numpy array] that consists of the coordinate of the second point (x,y) :param img: [numpy array] the image being processed :return itbuffer: [numpy array] that consists of the coordinates and intensities of each pixel in the radii (shape: [numPixels, 3], row = [x,y]) """ # define local variables for readability imageH = img.shape[0] imageW = img.shape[1] P1X = P1[0] P1Y = P1[1] P2X = P2[0] P2Y = P2[1] # difference and absolute difference between points # used to calculate slope and relative location between points dX = P2X - P1X dY = P2Y - P1Y dXa = np.abs(dX) dYa = np.abs(dY) # predefine numpy array for output based on distance between points itbuffer = np.empty( shape=(np.maximum(int(dYa), int(dXa)), 2), dtype=np.float32) itbuffer.fill(np.nan) # Obtain coordinates along the line using a form of Bresenham's algorithm negY = P1Y > P2Y negX = P1X > P2X if P1X == P2X: # vertical line segment itbuffer[:, 0] = P1X if negY: itbuffer[:, 1] = np.arange(P1Y - 1, P1Y - dYa - 1, -1) else: itbuffer[:, 1] = np.arange(P1Y+1, P1Y+dYa+1) elif P1Y == P2Y: # horizontal line segment itbuffer[:, 1] = P1Y if negX: itbuffer[:, 0] = np.arange(P1X-1, P1X-dXa-1, -1) else: itbuffer[:, 0] = np.arange(P1X+1, P1X+dXa+1) else: # diagonal line segment steepSlope = dYa > dXa if steepSlope: slope = dX.astype(np.float32)/dY.astype(np.float32) if negY: itbuffer[:, 1] = np.arange(P1Y-1, P1Y-dYa-1, -1) else: itbuffer[:, 1] = np.arange(P1Y+1, P1Y+dYa+1) itbuffer[:, 0] = (slope*(itbuffer[:, 1]-P1Y)).astype(np.int) + P1X else: slope = dY.astype(np.float32)/dX.astype(np.float32) if negX: itbuffer[:, 0] = np.arange(P1X-1, P1X-dXa-1, -1) else: itbuffer[:, 0] = np.arange(P1X+1, P1X+dXa+1) itbuffer[:, 1] = (slope*(itbuffer[:, 0]-P1X)).astype(np.int) + P1Y # Remove points outside of image colX = itbuffer[:, 0].astype(int) colY = itbuffer[:, 1].astype(int) itbuffer = itbuffer[(colX >= 0) & (colY >= 0) & (colX < imageW) & (colY < imageH)] return itbuffer def _create_vertical_line(P1, P2, img): """ Produces and array that consists of the coordinates and intensities of each pixel in a line between two points :param P1: [numpy array] that consists of the coordinate of the first point (x,y) :param P2: [numpy array] that consists of the coordinate of the second point (x,y) :param img: [numpy array] the image being processed :return itbuffer: [numpy array] that consists of the coordinates and intensities of each pixel in the radii (shape: [numPixels, 3], row = [x,y]) using cross projection """ # define local variables for readability imageH = img.shape[0] imageW = img.shape[1] # difference and absolute difference between points # used to calculate slope and relative location between points P1_y = int(P1[1]) P2_y = int(P2[1]) #try to improve here, using cross projection, add horizontal line. dX=dY/2 dY = P2_y - P1_y dX = math.floor(dY/2) if dY == 0: dY = 1 if dX == 0: dX = 1 dXa =
np.abs(dX)
numpy.abs
# Strain calculation functions import numpy as np from numpy import polyder, polyval, polyfit import crosspy def strain_calc(d, mapnos = 0, strain_method = 'l2'): # This function calculates the strain between two images # Images # nodes_x = roi centres x # nodes_y = roi centres y # disp_x = dx_maps # disp_y = dy_maps # get displacements and positions x = d.x_pos y = d.y_pos dx = d.dx_maps[:,:,mapnos] dy = d.dy_maps[:,:,mapnos] # determine strain method if strain_method == 'l2': e, e_eff, r, f = strain_l2(dx, dy, x, y) else: raise Exception('Invalid strain method!') return e, e_eff, r, f def strain_l2(dx, dy, x, y): # Function to determine strain via polynomial fitting and l2 min # The purpose of this strain algo is to smooth the strain assuming that strain is a continous gradient field # Preallocate arrays rows = np.size(dx,0) cols = np.size(dx,1) e_temp = np.zeros(shape=(rows,cols,3,3)) eeff_temp = np.zeros(shape=(rows,cols,1)) rotation_temp = np.zeros(shape=(rows,cols,3,3)) e11_temp = np.zeros(shape=(rows,cols)) e22_temp = np.zeros(shape=(rows,cols)) e12_temp = np.zeros(shape=(rows,cols)) # First obtain strain values for corners and edges of the map e11_temp, e22_temp, e12_temp = strain_l2_corners(dx, dy, x, y, e11_temp, e22_temp, e12_temp) e11_temp, e22_temp, e12_temp = strain_l2_edges(dx, dy, x, y, e11_temp, e22_temp, e12_temp) # Obtain bulk values in loop below - corners and edges are already determined for i in range(0,rows-1): for j in range(0,cols-1): dhor_3pt_x = np.array([dx[i,j-1], dx[i,j], dx[i,j+1]]) dhor_3pt_y = np.array([dy[i,j-1], dy[i,j], dy[i,j+1]]) dver_3pt_x = np.array([dx[i-1,j], dx[i,j], dx[i+1,j]]) dver_3pt_y = np.array([dy[i-1,j], dy[i,j], dy[i+1,j]]) pos_x3 = np.array([x[i,j-1], x[i,j], x[i,j+1]]) pos_y3 = np.array([y[i-1,j], y[i,j], y[i+1,j]]) # Determine second order poly fit and derivative coef_x = polyder(polyfit(pos_x3, dhor_3pt_x,2)) coef_y = polyder(polyfit(pos_y3, dver_3pt_y,2)) coef_xy = polyder(polyfit(pos_x3, dhor_3pt_y,2)) coef_yx = polyder(polyfit(pos_y3, dhor_3pt_x,2)) # Obtain values of polynomial fit at the centre of object pixel du_dx = polyval(coef_x, x[i,j]) # du from dx map dv_dy = polyval(coef_y, y[i,j]) # dv from dy map du_dy = polyval(coef_xy, x[i,j]) # du from dy map dv_dx = polyval(coef_yx, y[i,j]) # dv from dx map # Create the deformation gradient F from displacements u and v F = np.array([[du_dx, du_dy, 0], [dv_dx, dv_dy, 0], [0, 0, -(du_dx+dv_dy)]])+np.eye(3) Ft = F.transpose() # C_test = np.dot(F,Ft) C = np.matmul(F.transpose(), F) # Green-Lagrange tensor V, Q = np.linalg.eig(C) # eigenvalues V and vector Q V = np.diag(V) Ut = np.sqrt(V) U = np.matmul(Q.transpose(), np.matmul(Ut, Q)) U_1 = np.linalg.inv(U) R = np.dot(F, U_1) # rotations # Determine green strain tensor and rotation tensor from F by symm and anti symm parts e_temp[i,j,:,:] = 0.5*(np.matmul(F.transpose(),F-np.eye(3))) rotation_temp[i,j,:,:] = R # Determine the effective strain xs = np.dot(e_temp[i,j],e_temp[i,j]) eeff_temp[i,j,:] = np.sqrt((2/3)*np.tensordot(e_temp[i,j],e_temp[i,j])) # Form outputs strain = e_temp strain_effective = eeff_temp rotation = R return strain, strain_effective, rotation, F def strain_l2_corners(dx, dy, x, y, e11, e22, e12): # Use first order polynomial fitting for the 4 corners of the map rows = np.size(dx,0)-1 cols = np.size(dx,1)-1 ## first corner - top left dx_x1 = [dx[0,0], dx[0,1]] dx_y1 = [dy[0,0], dy[0,0]] dy_x1 = [dx[0,0], dx[1,1]] dy_y1 = [dy[0,0], dy[1,0]] pos_x1 = [x[0,0], x[0,1]] pos_y1 = [y[0,0], y[1,0]] # determine first order of poly fit coef_x = polyfit(pos_x1, dx_x1,1) coef_y = polyfit(pos_y1, dy_y1,1) coef_xy = polyfit(pos_x1, dx_y1,1) coef_yx = polyfit(pos_y1, dy_x1,1) # equal to strain e11[0,0] = coef_x[0] e22[0,0] = coef_y[0] e12[0,0] = 0.5*(coef_xy[0]+coef_yx[0]) ## second corner - top right dx_x2 = [dx[0,cols-1], dx[0,cols]] dx_y2 = [dy[0,cols], dy[1,cols]] dy_x2 = [dx[0,cols-1], dx[0,cols]] dy_y2 = [dy[0,cols], dy[1,cols]] pos_x2 = [x[0,cols-1], x[1,cols]] pos_y2 = [y[0,cols], y[1,cols]] # determine first order of poly fit coef_2 = polyfit(pos_x2, dx_x2,1) coef_2 = polyfit(pos_y2, dy_y2,1) coef_xy = polyfit(pos_x2, dx_y2,1) coef_yx = polyfit(pos_y2, dy_x2,1) # equal to strain e11[0,cols] = coef_x[0] e22[0,cols] = coef_y[0] e12[0,cols] = 0.5*(coef_xy[0]+coef_yx[0]) ## third corner - bottom left dx_x3 = [dx[rows,0], dx[rows,1]] dx_y3 = [dy[rows-1,0], dy[rows,0]] dy_x3 = [dx[rows,0], dx[rows,1]] dy_y3 = [dy[rows-1,0], dy[rows,0]] pos_x3 = [x[rows,0], x[rows,1]] pos_y3 = [y[rows-1,0], y[rows,0]] # determine first order of poly fit coef_x = polyfit(pos_x3, dx_x3,1) coef_y = polyfit(pos_y3, dy_y3,1) coef_xy = polyfit(pos_x3, dx_y3,1) coef_yx = polyfit(pos_y3, dy_x3,1) # equal to strain e11[rows,0] = coef_x[0] e22[rows,0] = coef_y[0] e12[rows,0] = 0.5*(coef_xy[0]+coef_yx[0]) ## fourth corner - bottom right dx_x4 = [dx[rows,cols-1], dx[rows,cols]] dx_y4 = [dy[rows-1,cols], dy[rows,cols]] dy_x4 = [dx[rows,cols-1], dx[rows,cols]] dy_y4 = [dy[rows-1,cols], dy[rows,cols]] pos_x4 = [x[rows,cols-1], x[rows,cols]] pos_y4 = [y[rows-1,cols], y[rows,cols]] # determine first order of poly fit coef_x = polyfit(pos_x4, dx_x4,1) coef_y = polyfit(pos_y4, dy_y4,1) coef_xy = polyfit(pos_x4, dx_y4,1) coef_yx = polyfit(pos_y4, dy_x4,1) # equal to strain e11[rows,cols] = coef_x[0] e22[rows,cols] = coef_y[0] e12[rows,cols] = 0.5*(coef_xy[0]+coef_yx[0]) return e11, e22, e12 def strain_l2_edges(dx, dy, x, y, e11, e22, e12): # Use polynomial fit to find strain on edges of map rows =
np.size(dx,0)
numpy.size
import os import numpy as np import cv2 from collections import defaultdict import hashlib import glob import configparser from sixd_toolkit.params import dataset_params from sixd_toolkit.pysixd import inout from auto_pose.ae.pysixd_stuff import view_sampler from auto_pose.ae import utils as u import glob def get_gt_scene_crops(scene_id, eval_args, train_args, load_gt_masks=False): dataset_name = eval_args.get('DATA','DATASET') cam_type = eval_args.get('DATA','CAM_TYPE') icp = eval_args.getboolean('EVALUATION','ICP') delta = eval_args.get('METRIC', 'VSD_DELTA') workspace_path = os.environ.get('AE_WORKSPACE_PATH') dataset_path = u.get_dataset_path(workspace_path) H_AE = train_args.getint('Dataset','H') W_AE = train_args.getint('Dataset','W') cfg_string = str([scene_id] + eval_args.items('DATA') + eval_args.items('BBOXES') + [H_AE]) cfg_string = cfg_string.encode('utf-8') current_config_hash = hashlib.md5(cfg_string).hexdigest() current_file_name = os.path.join(dataset_path, current_config_hash + '.npz') if os.path.exists(current_file_name): data = np.load(current_file_name) test_img_crops = data['test_img_crops'].item() test_img_depth_crops = data['test_img_depth_crops'].item() bb_scores = data['bb_scores'].item() bb_vis = data['visib_gt'].item() bbs = data['bbs'].item() if not os.path.exists(current_file_name) or len(test_img_crops) == 0 or len(test_img_depth_crops) == 0: test_imgs = load_scenes(scene_id, eval_args) test_imgs_depth = load_scenes(scene_id, eval_args, depth=True) if icp else None data_params = dataset_params.get_dataset_params(dataset_name, model_type='', train_type='', test_type=cam_type, cam_type=cam_type) # only available for primesense, sixdtoolkit can generate visib_gt = inout.load_yaml(data_params['scene_gt_stats_mpath'].format(scene_id, delta)) gt = inout.load_gt(data_params['scene_gt_mpath'].format(scene_id)) gt_inst_masks = None if load_gt_masks: mask_paths = glob.glob(os.path.join(load_gt_masks, '{:02d}/masks/*.npy'.format(scene_id))) gt_inst_masks = [np.load(mp) for mp in mask_paths] test_img_crops, test_img_depth_crops, bbs, bb_scores, bb_vis = generate_scene_crops(test_imgs, test_imgs_depth, gt, eval_args, (H_AE, W_AE), visib_gt=visib_gt,inst_masks=gt_inst_masks) np.savez(current_file_name, test_img_crops=test_img_crops, test_img_depth_crops=test_img_depth_crops, bbs = bbs, bb_scores=bb_scores, visib_gt=bb_vis) current_cfg_file_name = os.path.join(dataset_path, current_config_hash + '.cfg') with open(current_cfg_file_name, 'w') as f: f.write(cfg_string) print('created new ground truth crops!') else: print('loaded previously generated ground truth crops!') print((len(test_img_crops), len(test_img_depth_crops))) return (test_img_crops, test_img_depth_crops, bbs, bb_scores, bb_vis) def get_sixd_gt_train_crops(obj_id, hw_ae, pad_factor=1.2, dataset='tless', cam_type='primesense'): data_params = dataset_params.get_dataset_params(dataset, model_type='', train_type='', test_type=cam_type, cam_type=cam_type) eval_args = configparser.ConfigParser() eval_args.add_section("DATA") eval_args.add_section("BBOXES") eval_args.add_section("EVALUATION") eval_args.set('BBOXES', 'ESTIMATE_BBS', "False") eval_args.set('EVALUATION','ICP', "False") eval_args.set('BBOXES','PAD_FACTOR', str(pad_factor)) eval_args.set('BBOXES','ESTIMATE_MASKS', "False") eval_args.set('DATA','OBJ_ID', str(obj_id)) gt = inout.load_gt(data_params['obj_gt_mpath'].format(obj_id)) imgs = [] for im_id in range(504): imgs.append(cv2.imread(data_params['train_rgb_mpath'].format(obj_id, im_id))) test_img_crops, _, _, _, _ = generate_scene_crops(np.array(imgs), None, gt, eval_args, hw_ae) return test_img_crops def generate_scene_crops(test_imgs, test_depth_imgs, gt, eval_args, hw_ae, visib_gt = None, inst_masks=None): obj_id = eval_args.getint('DATA','OBJ_ID') estimate_bbs = eval_args.getboolean('BBOXES', 'ESTIMATE_BBS') pad_factor = eval_args.getfloat('BBOXES','PAD_FACTOR') icp = eval_args.getboolean('EVALUATION','ICP') estimate_masks = eval_args.getboolean('BBOXES','ESTIMATE_MASKS') print(hw_ae) H_AE, W_AE = hw_ae test_img_crops, test_img_depth_crops, bb_scores, bb_vis, bbs = {}, {}, {}, {}, {} H,W = test_imgs.shape[1:3] for view,img in enumerate(test_imgs): if icp: depth = test_depth_imgs[view] test_img_depth_crops[view] = {} test_img_crops[view], bb_scores[view], bb_vis[view], bbs[view] = {}, {}, {}, {} if len(gt[view]) > 0: for bbox_idx,bbox in enumerate(gt[view]): if bbox['obj_id'] == obj_id: if 'score' in bbox: if bbox['score']==-1: continue bb = np.array(bbox['obj_bb']) obj_id = bbox['obj_id'] bb_score = bbox['score'] if estimate_bbs else 1.0 if estimate_bbs and visib_gt is not None: vis_frac = visib_gt[view][bbox_idx]['visib_fract'] else: vis_frac = None x,y,w,h = bb size = int(np.maximum(h,w) * pad_factor) left = int(np.max([x+w/2-size/2, 0])) right = int(np.min([x+w/2+size/2, W])) top = int(np.max([y+h/2-size/2, 0])) bottom = int(np.min([y+h/2+size/2, H])) if inst_masks is None: crop = img[top:bottom, left:right].copy() if icp: depth_crop = depth[top:bottom, left:right] else: if not estimate_masks: mask = inst_masks[view] img_copy = np.zeros_like(img) img_copy[mask == (bbox_idx+1)] = img[mask == (bbox_idx+1)] crop = img_copy[top:bottom, left:right].copy() if icp: depth_copy = np.zeros_like(depth) depth_copy[mask == (bbox_idx+1)] = depth[mask == (bbox_idx+1)] depth_crop = depth_copy[top:bottom, left:right] else: # chan = int(bbox['np_channel_id']) chan = bbox_idx mask = inst_masks[view][:,:,chan] # kernel = np.ones((2,2), np.uint8) # mask_eroded = cv2.dilate(mask.astype(np.uint8), kernel, iterations=1) # cv2.imshow('mask_erod',mask_eroded.astype(np.float32)) # cv2.imshow('mask',mask.astype(np.float32)) # cv2.waitKey(0) # mask = mask_eroded.astype(np.bool) img_copy = np.zeros_like(img) img_copy[mask] = img[mask] crop = img_copy[top:bottom, left:right].copy() if icp: depth_copy = np.zeros_like(depth) depth_copy[mask] = depth[mask] depth_crop = depth_copy[top:bottom, left:right] #print bb ## uebler hack: remove! # xmin, ymin, xmax, ymax = bb # x, y, w, h = xmin, ymin, xmax-xmin, ymax-ymin # bb = np.array([x, y, w, h]) ## resized_crop = cv2.resize(crop, (H_AE,W_AE)) if icp: test_img_depth_crops[view].setdefault(obj_id,[]).append(depth_crop) test_img_crops[view].setdefault(obj_id,[]).append(resized_crop) bb_scores[view].setdefault(obj_id,[]).append(bb_score) bb_vis[view].setdefault(obj_id,[]).append(vis_frac) bbs[view].setdefault(obj_id,[]).append(bb) return (test_img_crops, test_img_depth_crops, bbs, bb_scores, bb_vis) def noof_scene_views(scene_id, eval_args): dataset_name = eval_args.get('DATA','DATASET') cam_type = eval_args.get('DATA','CAM_TYPE') p = dataset_params.get_dataset_params(dataset_name, model_type='', train_type='', test_type=cam_type, cam_type=cam_type) noof_imgs = len(os.listdir(os.path.dirname(p['test_rgb_mpath']).format(scene_id))) return noof_imgs def load_scenes(scene_id, eval_args, depth=False): dataset_name = eval_args.get('DATA','DATASET') cam_type = eval_args.get('DATA','CAM_TYPE') p = dataset_params.get_dataset_params(dataset_name, model_type='', train_type='', test_type=cam_type, cam_type=cam_type) cam_p = inout.load_cam_params(p['cam_params_path']) noof_imgs = noof_scene_views(scene_id, eval_args) if depth: imgs = np.empty((noof_imgs,) + p['test_im_size'][::-1], dtype=np.float32) for view_id in range(noof_imgs): depth_path = p['test_depth_mpath'].format(scene_id, view_id) try: imgs[view_id,...] = inout.load_depth2(depth_path) * cam_p['depth_scale'] except: print((depth_path,' not found')) else: print(((noof_imgs,) + p['test_im_size'][::-1] + (3,))) imgs = np.empty((noof_imgs,) + p['test_im_size'][::-1] + (3,), dtype=np.uint8) print(noof_imgs) for view_id in range(noof_imgs): img_path = p['test_rgb_mpath'].format(scene_id, view_id) try: imgs[view_id,...] = cv2.imread(img_path) except: print((img_path,' not found')) return imgs # def generate_masks(scene_id, eval_args): # dataset_name = eval_args.get('DATA','DATASET') # cam_type = eval_args.get('DATA','CAM_TYPE') # p = dataset_params.get_dataset_params(dataset_name, model_type='', train_type='', test_type=cam_type, cam_type=cam_type) # for scene_id in range(1,21): # noof_imgs = noof_scene_views(scene_id, eval_args) # gts = inout.load_gt(dataset_params['scene_gt_mpath'].format(scene_id)) # for view_gt in gts: # for gt in view_gt: def get_all_scenes_for_obj(eval_args): workspace_path = os.environ.get('AE_WORKSPACE_PATH') dataset_path = u.get_dataset_path(workspace_path) dataset_name = eval_args.get('DATA','DATASET') cam_type = eval_args.get('DATA','CAM_TYPE') try: obj_id = eval_args.getint('DATA', 'OBJ_ID') except: obj_id = eval(eval_args.get('DATA', 'OBJECTS'))[0] cfg_string = str(dataset_name) current_config_hash = hashlib.md5(cfg_string).hexdigest() current_file_name = os.path.join(dataset_path, current_config_hash + '.npy') if os.path.exists(current_file_name): obj_scene_dict = np.load(current_file_name).item() else: p = dataset_params.get_dataset_params(dataset_name, model_type='', train_type='', test_type=cam_type, cam_type=cam_type) obj_scene_dict = {} scene_gts = [] for scene_id in range(1,p['scene_count']+1): print(scene_id) scene_gts.append(inout.load_yaml(p['scene_gt_mpath'].format(scene_id))) for obj in range(1,p['obj_count']+1): eval_scenes = set() for scene_i,scene_gt in enumerate(scene_gts): for view_gt in scene_gt[0]: if view_gt['obj_id'] == obj: eval_scenes.add(scene_i+1) obj_scene_dict[obj] = list(eval_scenes) np.save(current_file_name,obj_scene_dict) eval_scenes = obj_scene_dict[obj_id] return eval_scenes def select_img_crops(crop_candidates, test_crops_depth, bbs, bb_scores, visibs, eval_args): estimate_bbs = eval_args.getboolean('BBOXES', 'ESTIMATE_BBS') single_instance = eval_args.getboolean('BBOXES', 'SINGLE_INSTANCE') icp = eval_args.getboolean('EVALUATION', 'ICP') if single_instance and estimate_bbs: idcs = np.array([np.argmax(bb_scores)]) elif single_instance and not estimate_bbs: idcs = np.array([
np.argmax(visibs)
numpy.argmax
#!/usr/bin/env python ''' Fetches invoices based on filenames from a text file and proceeds to crop out each gold field's content based on it's textbox, saving all results into a "crops" directory as .PNG files. The gold standard text, field type and even the bounding box coordinates for each crop out are stored in the .PNG's metadata under the keys "text", "labeltype" and "bbox". ^^^ This would have been the original functionality, but this is a "light" version, only operating with synthetic data. All the real data infrastructure has been removed. ''' from shutil import copyfile import sys from random import choice as oldchoice from random import randint as randint import traceback import itertools from collections import defaultdict from PIL import Image, ImageDraw, ImageFont from PIL import PngImagePlugin import numpy as np from sklearn.utils import check_random_state import cairocffi as cairo from scipy import ndimage from fakestrings import randomstring from scipy.ndimage.filters import gaussian_filter from numpy import * def weighted_choice(choices): total = sum(w for c, w in choices) r = random.uniform(0, total) upto = 0 for c, w in choices: if upto + w >= r: return c upto += w assert False, "Shouldn't get here" def speckle(img): severity = np.random.uniform(0, 0.3) blur = ndimage.gaussian_filter(
np.random.randn(*img.shape)
numpy.random.randn
import time import os import datetime import pathlib import json import cv2 import carla from leaderboard.autoagents import autonomous_agent from team_code.planner import RoutePlanner import numpy as np from PIL import Image, ImageDraw SAVE_PATH = os.environ.get('SAVE_PATH', None) class BaseAgent(autonomous_agent.AutonomousAgent): def setup(self, path_to_conf_file): self.track = autonomous_agent.Track.SENSORS self.config_path = path_to_conf_file self.step = -1 self.wall_start = time.time() self.initialized = False self._sensor_data = { 'width': 400, 'height': 300, 'fov': 100 } self._3d_bb_distance = 50 self.weather_id = None self.save_path = None if SAVE_PATH is not None: now = datetime.datetime.now() string = pathlib.Path(os.environ['ROUTES']).stem + '_' string += '_'.join(map(lambda x: '%02d' % x, (now.month, now.day, now.hour, now.minute, now.second))) print (string) self.save_path = pathlib.Path(os.environ['SAVE_PATH']) / string self.save_path.mkdir(parents=True, exist_ok=False) for sensor in self.sensors(): if hasattr(sensor, 'save') and sensor['save']: (self.save_path / sensor['id']).mkdir() (self.save_path / '3d_bbs').mkdir(parents=True, exist_ok=True) (self.save_path / 'affordances').mkdir(parents=True, exist_ok=True) (self.save_path / 'measurements').mkdir(parents=True, exist_ok=True) (self.save_path / 'lidar').mkdir(parents=True, exist_ok=True) (self.save_path / 'semantic_lidar').mkdir(parents=True, exist_ok=True) (self.save_path / 'topdown').mkdir(parents=True, exist_ok=True) for pos in ['front', 'left', 'right', 'rear']: for sensor_type in ['rgb', 'seg', 'depth', '2d_bbs']: name = sensor_type + '_' + pos (self.save_path / name).mkdir() def _init(self): self._command_planner = RoutePlanner(7.5, 25.0, 257) self._command_planner.set_route(self._global_plan, True) self.initialized = True self._sensor_data['calibration'] = self._get_camera_to_car_calibration(self._sensor_data) self._sensors = self.sensor_interface._sensors_objects def _get_position(self, tick_data): gps = tick_data['gps'] gps = (gps - self._command_planner.mean) * self._command_planner.scale return gps def sensors(self): return [ { 'type': 'sensor.camera.rgb', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'rgb_front' }, { 'type': 'sensor.camera.semantic_segmentation', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'seg_front' }, { 'type': 'sensor.camera.depth', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'depth_front' }, { 'type': 'sensor.camera.rgb', 'x': -1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 180.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'rgb_rear' }, { 'type': 'sensor.camera.semantic_segmentation', 'x': -1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 180.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'seg_rear' }, { 'type': 'sensor.camera.depth', 'x': -1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 180.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'depth_rear' }, { 'type': 'sensor.camera.rgb', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': -60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'rgb_left' }, { 'type': 'sensor.camera.semantic_segmentation', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': -60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'seg_left' }, { 'type': 'sensor.camera.depth', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': -60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'depth_left' }, { 'type': 'sensor.camera.rgb', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'rgb_right' }, { 'type': 'sensor.camera.semantic_segmentation', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'seg_right' }, { 'type': 'sensor.camera.depth', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'depth_right' }, { 'type': 'sensor.lidar.ray_cast', 'x': 1.3, 'y': 0.0, 'z': 2.5, 'roll': 0.0, 'pitch': 0.0, 'yaw': -90.0, 'id': 'lidar' }, { 'type': 'sensor.lidar.ray_cast_semantic', 'x': 1.3, 'y': 0.0, 'z': 2.5, 'roll': 0.0, 'pitch': 0.0, 'yaw': -90.0, 'id': 'semantic_lidar' }, { 'type': 'sensor.other.imu', 'x': 0.0, 'y': 0.0, 'z': 0.0, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'sensor_tick': 0.05, 'id': 'imu' }, { 'type': 'sensor.other.gnss', 'x': 0.0, 'y': 0.0, 'z': 0.0, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'sensor_tick': 0.01, 'id': 'gps' }, { 'type': 'sensor.speedometer', 'reading_frequency': 20, 'id': 'speed' } ] def tick(self, input_data): self.step += 1 affordances = self._get_affordances() traffic_lights = self._find_obstacle('*traffic_light*') stop_signs = self._find_obstacle('*stop*') depth = {} seg = {} bb_3d = self._get_3d_bbs(max_distance=self._3d_bb_distance) bb_2d = {} for pos in ['front', 'left', 'right', 'rear']: seg_cam = 'seg_' + pos depth_cam = 'depth_' + pos _segmentation = np.copy(input_data[seg_cam][1][:, :, 2]) depth[pos] = self._get_depth(input_data[depth_cam][1][:, :, :3]) self._change_seg_tl(_segmentation, depth[pos], traffic_lights) self._change_seg_stop(_segmentation, depth[pos], stop_signs, seg_cam) bb_2d[pos] = self._get_2d_bbs(seg_cam, affordances, bb_3d, _segmentation) #self._draw_2d_bbs(_segmentation, bb_2d[pos]) seg[pos] = _segmentation rgb_front = cv2.cvtColor(input_data['rgb_front'][1][:, :, :3], cv2.COLOR_BGR2RGB) rgb_rear = cv2.cvtColor(input_data['rgb_rear'][1][:, :, :3], cv2.COLOR_BGR2RGB) rgb_left = cv2.cvtColor(input_data['rgb_left'][1][:, :, :3], cv2.COLOR_BGR2RGB) rgb_right = cv2.cvtColor(input_data['rgb_right'][1][:, :, :3], cv2.COLOR_BGR2RGB) gps = input_data['gps'][1][:2] speed = input_data['speed'][1]['speed'] compass = input_data['imu'][1][-1] depth_front = cv2.cvtColor(input_data['depth_front'][1][:, :, :3], cv2.COLOR_BGR2RGB) depth_left = cv2.cvtColor(input_data['depth_left'][1][:, :, :3], cv2.COLOR_BGR2RGB) depth_right = cv2.cvtColor(input_data['depth_right'][1][:, :, :3], cv2.COLOR_BGR2RGB) depth_rear = cv2.cvtColor(input_data['depth_rear'][1][:, :, :3], cv2.COLOR_BGR2RGB) weather = self._weather_to_dict(self._world.get_weather()) return { 'rgb_front': rgb_front, 'seg_front': seg['front'], 'depth_front': depth_front, '2d_bbs_front': bb_2d['front'], 'rgb_rear': rgb_rear, 'seg_rear': seg['rear'], 'depth_rear': depth_rear, '2d_bbs_rear': bb_2d['rear'], 'rgb_left': rgb_left, 'seg_left': seg['left'], 'depth_left': depth_left, '2d_bbs_left': bb_2d['left'], 'rgb_right': rgb_right, 'seg_right': seg['right'], 'depth_right': depth_right, '2d_bbs_right': bb_2d['right'], 'lidar' : input_data['lidar'][1], 'semantic_lidar': input_data['semantic_lidar'][1], 'gps': gps, 'speed': speed, 'compass': compass, 'weather': weather, 'affordances': affordances, '3d_bbs': bb_3d } def save(self, near_node, far_node, near_command, steer, throttle, brake, target_speed, tick_data): frame = self.step // 10 pos = self._get_position(tick_data) theta = tick_data['compass'] speed = tick_data['speed'] weather = tick_data['weather'] data = { 'x': pos[0], 'y': pos[1], 'theta': theta, 'speed': speed, 'target_speed': target_speed, 'x_command': far_node[0], 'y_command': far_node[1], 'command': near_command.value, 'steer': steer, 'throttle': throttle, 'brake': brake, 'weather': weather, 'weather_id': self.weather_id, 'near_node_x': near_node[0], 'near_node_y': near_node[1], 'far_node_x': far_node[0], 'far_node_y': far_node[1], 'is_vehicle_present': self.is_vehicle_present, 'is_pedestrian_present': self.is_pedestrian_present, 'is_red_light_present': self.is_red_light_present, 'is_stop_sign_present': self.is_stop_sign_present, 'should_slow': self.should_slow, 'should_brake': self.should_brake, 'angle': self.angle, 'angle_unnorm': self.angle_unnorm, 'angle_far_unnorm': self.angle_far_unnorm, } measurements_file = self.save_path / 'measurements' / ('%04d.json' % frame) f = open(measurements_file, 'w') json.dump(data, f, indent=4) f.close() for pos in ['front', 'left', 'right', 'rear']: name = 'rgb_' + pos Image.fromarray(tick_data[name]).save(self.save_path / name / ('%04d.png' % frame)) for sensor_type in ['seg', 'depth']: name = sensor_type + '_' + pos Image.fromarray(tick_data[name]).save(self.save_path / name / ('%04d.png' % frame)) for sensor_type in ['2d_bbs']: name = sensor_type + '_' + pos np.save(self.save_path / name / ('%04d.npy' % frame), tick_data[name], allow_pickle=True) Image.fromarray(tick_data['topdown']).save(self.save_path / 'topdown' / ('%04d.png' % frame)) np.save(self.save_path / 'lidar' / ('%04d.npy' % frame), tick_data['lidar'], allow_pickle=True) np.save(self.save_path / 'semantic_lidar' / ('%04d.npy' % frame), tick_data['semantic_lidar'], allow_pickle=True) np.save(self.save_path / '3d_bbs' / ('%04d.npy' % frame), tick_data['3d_bbs'], allow_pickle=True) np.save(self.save_path / 'affordances' / ('%04d.npy' % frame), tick_data['affordances'], allow_pickle=True) def _weather_to_dict(self, carla_weather): weather = { 'cloudiness': carla_weather.cloudiness, 'precipitation': carla_weather.precipitation, 'precipitation_deposits': carla_weather.precipitation_deposits, 'wind_intensity': carla_weather.wind_intensity, 'sun_azimuth_angle': carla_weather.sun_azimuth_angle, 'sun_altitude_angle': carla_weather.sun_altitude_angle, 'fog_density': carla_weather.fog_density, 'fog_distance': carla_weather.fog_distance, 'wetness': carla_weather.wetness, 'fog_falloff': carla_weather.fog_falloff, } return weather def _create_bb_points(self, bb): """ Returns 3D bounding box world coordinates. """ cords = np.zeros((8, 4)) extent = bb[1] loc = bb[0] cords[0, :] = np.array([loc[0] + extent[0], loc[1] + extent[1], loc[2] - extent[2], 1]) cords[1, :] = np.array([loc[0] - extent[0], loc[1] + extent[1], loc[2] - extent[2], 1]) cords[2, :] = np.array([loc[0] - extent[0], loc[1] - extent[1], loc[2] - extent[2], 1]) cords[3, :] = np.array([loc[0] + extent[0], loc[1] - extent[1], loc[2] - extent[2], 1]) cords[4, :] = np.array([loc[0] + extent[0], loc[1] + extent[1], loc[2] + extent[2], 1]) cords[5, :] = np.array([loc[0] - extent[0], loc[1] + extent[1], loc[2] + extent[2], 1]) cords[6, :] = np.array([loc[0] - extent[0], loc[1] - extent[1], loc[2] + extent[2], 1]) cords[7, :] = np.array([loc[0] + extent[0], loc[1] - extent[1], loc[2] + extent[2], 1]) return cords def _translate_tl_state(self, state): if state == carla.TrafficLightState.Red: return 0 elif state == carla.TrafficLightState.Yellow: return 1 elif state == carla.TrafficLightState.Green: return 2 elif state == carla.TrafficLightState.Off: return 3 elif state == carla.TrafficLightState.Unknown: return 4 else: return None def _get_affordances(self): # affordance tl affordances = {} affordances["traffic_light"] = None affecting = self._vehicle.get_traffic_light() if affecting is not None: for light in self._traffic_lights: if light.id == affecting.id: affordances["traffic_light"] = self._translate_tl_state(self._vehicle.get_traffic_light_state()) affordances["stop_sign"] = self._affected_by_stop return affordances def _get_3d_bbs(self, max_distance=50): bounding_boxes = { "traffic_lights": [], "stop_signs": [], "vehicles": [], "pedestrians": [] } bounding_boxes['traffic_lights'] = self._find_obstacle_3dbb('*traffic_light*', max_distance) bounding_boxes['stop_signs'] = self._find_obstacle_3dbb('*stop*', max_distance) bounding_boxes['vehicles'] = self._find_obstacle_3dbb('*vehicle*', max_distance) bounding_boxes['pedestrians'] = self._find_obstacle_3dbb('*walker*', max_distance) return bounding_boxes def _get_2d_bbs(self, seg_cam, affordances, bb_3d, seg_img): """Returns a dict of all 2d boundingboxes given a camera position, affordances and 3d bbs Args: seg_cam ([type]): [description] affordances ([type]): [description] bb_3d ([type]): [description] Returns: [type]: [description] """ bounding_boxes = { "traffic_light": list(), "stop_sign": list(), "vehicles": list(), "pedestrians": list() } if affordances['stop_sign']: baseline = self._get_2d_bb_baseline(self._target_stop_sign) bb = self._baseline_to_box(baseline, seg_cam) if bb is not None: bounding_boxes["stop_sign"].append(bb) if affordances['traffic_light'] is not None: baseline = self._get_2d_bb_baseline(self._vehicle.get_traffic_light(), distance=8) tl_bb = self._baseline_to_box(baseline, seg_cam, height=.5) if tl_bb is not None: bounding_boxes["traffic_light"].append({ "bb": tl_bb, "state": self._translate_tl_state(self._vehicle.get_traffic_light_state()) }) for vehicle in bb_3d["vehicles"]: trig_loc_world = self._create_bb_points(vehicle).T cords_x_y_z = self._world_to_sensor(trig_loc_world, self._get_sensor_position(seg_cam), False) cords_x_y_z = np.array(cords_x_y_z)[:3, :] veh_bb = self._coords_to_2d_bb(cords_x_y_z) if veh_bb is not None: if np.any(seg_img[veh_bb[0][1]:veh_bb[1][1],veh_bb[0][0]:veh_bb[1][0]] == 10): bounding_boxes["vehicles"].append(veh_bb) for pedestrian in bb_3d["pedestrians"]: trig_loc_world = self._create_bb_points(pedestrian).T cords_x_y_z = self._world_to_sensor(trig_loc_world, self._get_sensor_position(seg_cam), False) cords_x_y_z = np.array(cords_x_y_z)[:3, :] ped_bb = self._coords_to_2d_bb(cords_x_y_z) if ped_bb is not None: if np.any(seg_img[ped_bb[0][1]:ped_bb[1][1],ped_bb[0][0]:ped_bb[1][0]] == 4): bounding_boxes["pedestrians"].append(ped_bb) return bounding_boxes def _draw_2d_bbs(self, seg_img, bbs): """For debugging only Args: seg_img ([type]): [description] bbs ([type]): [description] """ for bb_type in bbs: _region = np.zeros(seg_img.shape) if bb_type == "traffic_light": for bb in bbs[bb_type]: _region = np.zeros(seg_img.shape) box = bb['bb'] _region[box[0][1]:box[1][1],box[0][0]:box[1][0]] = 1 seg_img[(_region == 1)] = 23 else: for bb in bbs[bb_type]: _region[bb[0][1]:bb[1][1],bb[0][0]:bb[1][0]] = 1 if bb_type == "stop_sign": seg_img[(_region == 1)] = 26 elif bb_type == "vehicles": seg_img[(_region == 1)] = 10 elif bb_type == "pedestrians": seg_img[(_region == 1)] = 4 def _find_obstacle_3dbb(self, obstacle_type, max_distance=50): """Returns a list of 3d bounding boxes of type obstacle_type. If the object does have a bounding box, this is returned. Otherwise a bb of size 0.5,0.5,2 is returned at the origin of the object. Args: obstacle_type (String): Regular expression max_distance (int, optional): max search distance. Returns all bbs in this radius. Defaults to 50. Returns: List: List of Boundingboxes """ obst = list() _actors = self._world.get_actors() _obstacles = _actors.filter(obstacle_type) for _obstacle in _obstacles: distance_to_car = _obstacle.get_transform().location.distance(self._vehicle.get_location()) if 0 < distance_to_car <= max_distance: if hasattr(_obstacle, 'bounding_box'): loc = _obstacle.bounding_box.location _obstacle.get_transform().transform(loc) extent = _obstacle.bounding_box.extent _rotation_matrix = self.get_matrix(carla.Transform(carla.Location(0,0,0), _obstacle.get_transform().rotation)) rotated_extent = np.squeeze(np.array((np.array([[extent.x, extent.y, extent.z, 1]]) @ _rotation_matrix)[:3])) bb = np.array([ [loc.x, loc.y, loc.z], [rotated_extent[0], rotated_extent[1], rotated_extent[2]] ]) else: loc = _obstacle.get_transform().location bb = np.array([ [loc.x, loc.y, loc.z], [0.5, 0.5, 2] ]) obst.append(bb) return obst def _get_2d_bb_baseline(self, obstacle, distance=2, cam='seg_front'): """Returns 2 coordinates for the baseline for 2d bbs in world coordinates (distance behind trigger volume, as seen from camera) Args: obstacle (Actor): obstacle with distance (int, optional): Distance behind trigger volume. Defaults to 2. Returns: np.ndarray: Baseline """ trigger = obstacle.trigger_volume bb = self._create_2d_bb_points(trigger) trig_loc_world = self._trig_to_world(bb, obstacle, trigger) #self._draw_line(trig_loc_world[:,0], trig_loc_world[:,3], 0.7, color=(0, 255, 255)) cords_x_y_z = np.array(self._world_to_sensor(trig_loc_world, self._get_sensor_position(cam))) indices = (-cords_x_y_z[0]).argsort() # check crooked up boxes if self._get_dist(cords_x_y_z[:,indices[0]],cords_x_y_z[:,indices[1]]) < self._get_dist(cords_x_y_z[:,indices[0]],cords_x_y_z[:,indices[2]]): cords = cords_x_y_z[:, [indices[0],indices[2]]] + np.array([[distance],[0],[0],[0]]) else: cords = cords_x_y_z[:, [indices[0],indices[1]]] + np.array([[distance],[0],[0],[0]]) sensor_world_matrix = self.get_matrix(self._get_sensor_position(cam)) baseline = np.dot(sensor_world_matrix, cords) return baseline def _baseline_to_box(self, baseline, cam, height=1): """Transforms a baseline (in world coords) into a 2d box (in sensor coords) Args: baseline ([type]): [description] cam ([type]): [description] height (int, optional): Box height. Defaults to 1. Returns: [type]: Box in sensor coords """ cords_x_y_z = np.array(self._world_to_sensor(baseline, self._get_sensor_position(cam))[:3, :]) cords = np.hstack((cords_x_y_z, np.fliplr(cords_x_y_z + np.array([[0],[0],[height]])))) return self._coords_to_2d_bb(cords) def _coords_to_2d_bb(self, cords): """Returns coords of a 2d box given points in sensor coords Args: cords ([type]): [description] Returns: [type]: [description] """ cords_y_minus_z_x = np.vstack((cords[1, :], -cords[2, :], cords[0, :])) bbox = (self._sensor_data['calibration'] @ cords_y_minus_z_x).T camera_bbox = np.vstack([bbox[:, 0] / bbox[:, 2], bbox[:, 1] / bbox[:, 2], bbox[:, 2]]).T if np.any(camera_bbox[:,2] > 0): camera_bbox = np.array(camera_bbox) _positive_bb = camera_bbox[camera_bbox[:,2] > 0] min_x = int(np.clip(np.min(_positive_bb[:,0]), 0, self._sensor_data['width'])) min_y = int(np.clip(np.min(_positive_bb[:,1]), 0, self._sensor_data['height'])) max_x = int(np.clip(np.max(_positive_bb[:,0]), 0, self._sensor_data['width'])) max_y = int(np.clip(np.max(_positive_bb[:,1]), 0, self._sensor_data['height'])) return [(min_x,min_y),(max_x,max_y)] else: return None def _change_seg_stop(self, seg_img, depth_img, stop_signs, cam, _region_size=6): """Adds a stop class to the segmentation image Args: seg_img ([type]): [description] depth_img ([type]): [description] stop_signs ([type]): [description] cam ([type]): [description] _region_size (int, optional): [description]. Defaults to 6. """ for stop in stop_signs: _dist = self._get_distance(stop.get_transform().location) _region = np.abs(depth_img - _dist) seg_img[(_region < _region_size) & (seg_img == 12)] = 26 # lane markings trigger = stop.trigger_volume _trig_loc_world = self._trig_to_world(np.array([[0], [0], [0], [1.0]]).T, stop, trigger) _x = self._world_to_sensor(_trig_loc_world, self._get_sensor_position(cam))[0,0] if _x > 0: # stop is in front of camera bb = self._create_2d_bb_points(trigger, 4) trig_loc_world = self._trig_to_world(bb, stop, trigger) cords_x_y_z = self._world_to_sensor(trig_loc_world, self._get_sensor_position(cam), True) #if cords_x_y_z.size: cords_x_y_z = cords_x_y_z[:3, :] cords_y_minus_z_x = np.concatenate([cords_x_y_z[1, :], -cords_x_y_z[2, :], cords_x_y_z[0, :]]) bbox = (self._sensor_data['calibration'] @ cords_y_minus_z_x).T camera_bbox = np.concatenate([bbox[:, 0] / bbox[:, 2], bbox[:, 1] / bbox[:, 2], bbox[:, 2]], axis=1) if np.any(camera_bbox[:,2] > 0): camera_bbox = np.array(camera_bbox) polygon = [(camera_bbox[i, 0], camera_bbox[i, 1]) for i in range(len(camera_bbox))] img = Image.new('L', (self._sensor_data['width'], self._sensor_data['height']), 0) ImageDraw.Draw(img).polygon(polygon, outline=1, fill=1) _region = np.array(img) #seg_img[(_region == 1)] = 27 seg_img[(_region == 1) & (seg_img == 6)] = 27 def _trig_to_world(self, bb, parent, trigger): """Transforms the trigger coordinates to world coordinates Args: bb ([type]): [description] parent ([type]): [description] trigger ([type]): [description] Returns: [type]: [description] """ bb_transform = carla.Transform(trigger.location) bb_vehicle_matrix = self.get_matrix(bb_transform) vehicle_world_matrix = self.get_matrix(parent.get_transform()) bb_world_matrix = vehicle_world_matrix @ bb_vehicle_matrix world_cords = bb_world_matrix @ bb.T return world_cords def _create_2d_bb_points(self, actor_bb, scale_factor=1): """ Returns 2D floor bounding box for an actor. """ cords = np.zeros((4, 4)) extent = actor_bb.extent x = extent.x * scale_factor y = extent.y * scale_factor z = extent.z * scale_factor cords[0, :] = np.array([x, y, 0, 1]) cords[1, :] = np.array([-x, y, 0, 1]) cords[2, :] =
np.array([-x, -y, 0, 1])
numpy.array
import numpy as np from skimage.io import imread, imsave def pad_images( img, pad_width_ratio=0.1 ): ''' pad a 2D (+channel) image so that the outpute shape is img.shape*1.1 the pixel values on the edge follow a normal distribution with : - mean = avg-1*std of the outer 0.1 layer of the image - std = std of the outer 0.1 layer of the image Note: - this function is useful when user wants to study objects touching the boundary - Images will be saved in the "padded_images" subfolder - User should use this subfolder as input for further analysis ''' _type = img.dtype if img.ndim==2: img = np.expand_dims(img, 0) shape = img.shape[1:] layer_width = (int(shape[0]*0.1), int(shape[1]*0.1)) outermask = np.ones(shape) outermask[layer_width[0]:-layer_width[0], layer_width[1]:-layer_width[1]] = 0 img_padded = [] for i in img: # compute mean and std of outer layer img_masked = i * outermask img_masked[outermask==0] = np.nan mean = np.nanmean(img_masked) std = np.nanstd(img_masked) mean = mean-std # pad image plane with nans i_padded = np.pad(i, ((layer_width[0],layer_width[0]),(layer_width[1],layer_width[1])), mode='constant', constant_values=0) # padding values padding_values = np.clip(mean+std*np.random.randn(*i_padded.shape),0,None).astype(np.uint16) padding_values[layer_width[0]:-layer_width[0], layer_width[1]:-layer_width[1]] = 0 # sum the padding values i_padded = i_padded+padding_values # place image plane in full image img_padded.append(i_padded) img_padded =
np.array(img_padded)
numpy.array
# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common corruptions to images. Define 15+4 common image corruptions: Gaussian noise, shot noise, impulse_noise, defocus blur, frosted glass blur, zoom blur, fog, brightness, contrast, elastic, pixelate, jpeg compression, frost, snow, and motion blur. 4 extra corruptions: gaussian blur, saturate, spatter, and speckle noise. """ import io import subprocess import tempfile import numpy as np import tensorflow as tf import tensorflow_datasets.public_api as tfds # To be populated by download_manager FROST_FILENAMES = [] def _imagemagick_bin(): return 'imagemagick' # pylint: disable=unreachable # /////////////// Corruption Helpers /////////////// def around_and_astype(x): """Round a numpy array, and convert to uint8. Args: x: numpy array. Returns: numpy array with dtype uint8. """ return np.around(x).astype(np.uint8) def disk(radius, alias_blur=0.1, dtype=np.float32): """Generating a Gaussian blurring kernel with disk shape. Generating a Gaussian blurring kernel with disk shape using cv2 API. Args: radius: integer, radius of blurring kernel. alias_blur: float, standard deviation of Gaussian blurring. dtype: data type of kernel Returns: cv2 object of the Gaussian blurring kernel. """ if radius <= 8: length = np.arange(-8, 8 + 1) ksize = (3, 3) else: length = np.arange(-radius, radius + 1) ksize = (5, 5) x_axis, y_axis = np.meshgrid(length, length) aliased_disk = np.array((x_axis**2 + y_axis**2) <= radius**2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return tfds.core.lazy_imports.cv2.GaussianBlur( aliased_disk, ksize=ksize, sigmaX=alias_blur) def clipped_zoom(img, zoom_factor): """Zoom image with clipping. Zoom the central part of the image and clip extra pixels. Args: img: numpy array, uncorrupted image. zoom_factor: numpy array, a sequence of float numbers for zoom factor. Returns: numpy array, zoomed image after clipping. """ h = img.shape[0] ch = int(np.ceil(h / float(zoom_factor))) top_h = (h - ch) // 2 w = img.shape[1] cw = int(np.ceil(w / float(zoom_factor))) top_w = (w - cw) // 2 img = tfds.core.lazy_imports.scipy.ndimage.zoom( img[top_h:top_h + ch, top_w:top_w + cw], (zoom_factor, zoom_factor, 1), order=1) # trim off any extra pixels trim_top_h = (img.shape[0] - h) // 2 trim_top_w = (img.shape[1] - w) // 2 return img[trim_top_h:trim_top_h + h, trim_top_w:trim_top_w + w] def plasma_fractal(mapsize=512, wibbledecay=3): """Generate a heightmap using diamond-square algorithm. Modification of the algorithm in https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py Args: mapsize: side length of the heightmap, must be a power of two. wibbledecay: integer, decay factor. Returns: numpy 2d array, side length 'mapsize', of floats in [0,255]. """ if mapsize & (mapsize - 1) != 0: raise ValueError('mapsize must be a power of two.') maparray = np.empty((mapsize, mapsize), dtype=np.float_) maparray[0, 0] = 0 stepsize = mapsize wibble = 100 def wibbledmean(array): return array / 4 + wibble * np.random.uniform(-wibble, wibble, array.shape) def fillsquares(): """For each square, calculate middle value as mean of points + wibble.""" cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0) squareaccum += np.roll(squareaccum, shift=-1, axis=1) maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum) def filldiamonds(): """For each diamond, calculate middle value as meanof points + wibble.""" mapsize = maparray.shape[0] drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] ldrsum = drgrid + np.roll(drgrid, 1, axis=0) lulsum = ulgrid + np.roll(ulgrid, -1, axis=1) ltsum = ldrsum + lulsum maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum) tdrsum = drgrid + np.roll(drgrid, 1, axis=1) tulsum = ulgrid + np.roll(ulgrid, -1, axis=0) ttsum = tdrsum + tulsum maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum) while stepsize >= 2: fillsquares() filldiamonds() stepsize //= 2 wibble /= wibbledecay maparray -= maparray.min() return maparray / maparray.max() # /////////////// End Corruption Helpers /////////////// # /////////////// Corruptions /////////////// def gaussian_noise(x, severity=1): """Gaussian noise corruption to images. Args: x: numpy array, uncorrupted image, assumed to have uint8 pixel in [0,255]. severity: integer, severity of corruption. Returns: numpy array, image with uint8 pixels in [0,255]. Added Gaussian noise. """ c = [.08, .12, 0.18, 0.26, 0.38][severity - 1] x = np.array(x) / 255. x_clip = np.clip(x + np.random.normal(size=x.shape, scale=c), 0, 1) * 255 return around_and_astype(x_clip) def shot_noise(x, severity=1): """Shot noise corruption to images. Args: x: numpy array, uncorrupted image, assumed to have uint8 pixel in [0,255]. severity: integer, severity of corruption. Returns: numpy array, image with uint8 pixels in [0,255]. Added shot noise. """ c = [60, 25, 12, 5, 3][severity - 1] x = np.array(x) / 255. x_clip = np.clip(np.random.poisson(x * c) / float(c), 0, 1) * 255 return around_and_astype(x_clip) def impulse_noise(x, severity=1): """Impulse noise corruption to images. Args: x: numpy array, uncorrupted image, assumed to have uint8 pixel in [0,255]. severity: integer, severity of corruption. Returns: numpy array, image with uint8 pixels in [0,255]. Added impulse noise. """ c = [.03, .06, .09, 0.17, 0.27][severity - 1] x = tfds.core.lazy_imports.skimage.util.random_noise( np.array(x) / 255., mode='s&p', amount=c) x_clip = np.clip(x, 0, 1) * 255 return around_and_astype(x_clip) def defocus_blur(x, severity=1): """Defocus blurring to images. Apply defocus blurring to images using Gaussian kernel. Args: x: numpy array, uncorrupted image, assumed to have uint8 pixel in [0,255]. severity: integer, severity of corruption. Returns: numpy array, image with uint8 pixels in [0,255]. Applied defocus blur. """ c = [(3, 0.1), (4, 0.5), (6, 0.5), (8, 0.5), (10, 0.5)][severity - 1] x = np.array(x) / 255. kernel = disk(radius=c[0], alias_blur=c[1]) channels = [] for d in range(3): channels.append(tfds.core.lazy_imports.cv2.filter2D(x[:, :, d], -1, kernel)) channels = np.array(channels).transpose((1, 2, 0)) # 3x224x224 -> 224x224x3 x_clip = np.clip(channels, 0, 1) * 255 return around_and_astype(x_clip) def glass_blur(x, severity=1): """Frosted glass blurring to images. Apply frosted glass blurring to images by shuffling pixels locally. Args: x: numpy array, uncorrupted image, assumed to have uint8 pixel in [0,255]. severity: integer, severity of corruption. Returns: numpy array, image with uint8 pixels in [0,255]. Applied frosted glass blur. """ # sigma, max_delta, iterations c = [(0.7, 1, 2), (0.9, 2, 1), (1, 2, 3), (1.1, 3, 2), (1.5, 4, 2)][severity - 1] x = np.uint8( tfds.core.lazy_imports.skimage.filters.gaussian( np.array(x) / 255., sigma=c[0], multichannel=True) * 255) # locally shuffle pixels for _ in range(c[2]): for h in range(x.shape[0] - c[1], c[1], -1): for w in range(x.shape[1] - c[1], c[1], -1): dx, dy = np.random.randint(-c[1], c[1], size=(2,)) h_prime, w_prime = h + dy, w + dx # swap x[h, w], x[h_prime, w_prime] = x[h_prime, w_prime], x[h, w] x_clip = np.clip( tfds.core.lazy_imports.skimage.filters.gaussian( x / 255., sigma=c[0], multichannel=True), 0, 1) x_clip *= 255 return around_and_astype(x_clip) def zoom_blur(x, severity=1): """Zoom blurring to images. Applying zoom blurring to images by zooming the central part of the images. Args: x: numpy array, uncorrupted image, assumed to have uint8 pixel in [0,255]. severity: integer, severity of corruption. Returns: numpy array, image with uint8 pixels in [0,255]. Applied zoom blur. """ c = [ np.arange(1, 1.11, 0.01), np.arange(1, 1.16, 0.01), np.arange(1, 1.21, 0.02), np.arange(1, 1.26, 0.02), np.arange(1, 1.31, 0.03) ][severity - 1] x = (np.array(x) / 255.).astype(np.float32) out =
np.zeros_like(x)
numpy.zeros_like
#!/usr/bin/python #-*- coding: utf-8 -* # SAMPLE FOR SIMPLE CONTROL LOOP TO IMPLEMENT BAXTER_CONTROL MPC ALGORITHMS """ MPC sample tracking for Baxter's right limb with specific references. Authors: <NAME> and <NAME>. """ # Built-int imports import time import random # Own imports import baxter_essentials.baxter_class as bc import baxter_essentials.transformation as transf import baxter_control.mpc_controller as b_mpc # General module imports import numpy as np import matplotlib.pyplot as plt def create_plots(iteration_vector, x_matrix, u_matrix, sample_time, title, name1, name2): """ Create simple simulation plots based on vectors It returns two pop-out matplotlib graphs. """ # Define a figure for the creation of the plot figure_1, all_axes = plt.subplots(x_matrix.shape[0], 1) current_axes = 0 for axes_i in all_axes: # Generate the plot and its axes for each Xi and Ui. axes_i.plot(iteration_vector, x_matrix[current_axes, :].T, 'b', linewidth=1) axes_i.plot(iteration_vector, u_matrix[current_axes, :].T, 'g', linewidth=1) current_axes = current_axes + 1 # Customize figure with the specific "x"-"y" labels if (current_axes <= 3): if (name1 == "x"): axes_i.set_ylabel("[rad]") else: axes_i.set_ylabel("[m]") else: axes_i.set_ylabel("[rad]") # Add labels to each subplot axes_i.legend(["{}{}".format(name1, current_axes), "{}{}".format(name2, current_axes)]) # Remove inner axes layers (only leave the outer ones) axes_i.label_outer() # Add personalized text to each subplot (at lower-right side) axes_i.text(0.98, 0.02, 'SGA-EJGG', verticalalignment='bottom', horizontalalignment='right', transform=axes_i.transAxes, color='black', fontsize=6 ) # Add grid axes_i.grid(color='black', linestyle='-', alpha=0.2, linewidth=1) # Change the background color of the external part figure_1.patch.set_facecolor((0.2, 1, 1)) # Configure plot title and horizontal x-label all_axes[0].set_title(title) all_axes[len( all_axes) - 1].set_xlabel("Iterations [k] (Ts={} seconds)".format(sample_time)) def calculate_cartesian_vectors(current_thetas): # CURRENT CARTESIAN POSITION CALCULATIONS... tm_current = bc.BaxterClass().fpk(current_thetas, "right", 7) current_position = tm_current[0:3, 3] current_orientation = transf.Transformation( 0, 0, 0, [0, 0, 0]).get_fixed_angles_from_tm(tm_current) return np.concatenate([current_position, current_orientation], axis=0).reshape(6, 1) def test_1_step_response_without_feedback(show_results=True): """ Sample loop to plot step response with constant change in each DOF without any control algorithm (just to see Baxter's "chaos" response) """ # Variables for simulation x_k = np.matrix([[0.1], [0.15], [0.2], [0.25], [0.3], [0.35], [0.4]]) u_k = np.matrix([[0.01], [0.01], [0.01], [0.01], [0.01], [0.01], [0.01]]) # Desired cartesian goal [x_g, y_g, z_g, x_angle_g, y_angle_g, z_angle_g] # (NOT any goal, just to be able to plot) cartesian_goal = np.array([0, 0, 0, 0, 0, 0]).reshape(6, 1) iteration_vector = list() x_matrix = np.zeros((x_k.shape[0], 0)) u_matrix = np.zeros((u_k.shape[0], 0)) cartesian_matrix = np.zeros((cartesian_goal.shape[0], 0)) cartesian_goal_matrix = np.zeros((cartesian_goal.shape[0], 0)) total_time_in_seconds = 5 sample_time_in_seconds = 0.01 final_time = time.time() + total_time_in_seconds last_time = 0 iteration = 0 while (time.time() < final_time): if (time.time() - last_time >= sample_time_in_seconds): last_time = time.time() iteration_vector.append(iteration) if (show_results == True): print("Iteration (k): ", iteration) iteration = iteration + 1 x_k_plus_1 = x_k + u_k x_k = x_k_plus_1 cartesian_k = calculate_cartesian_vectors(x_k) x_matrix = np.hstack((x_matrix, x_k_plus_1)) u_matrix = np.hstack((u_matrix, u_k)) cartesian_matrix = np.hstack((cartesian_matrix, cartesian_k)) cartesian_goal_matrix = np.hstack( (cartesian_goal_matrix, cartesian_goal)) if (show_results == True): print("iteration_vector:") print(iteration_vector) print("len(iteration_vector):") print(len(iteration_vector)) print("u_matrix:") print(u_matrix) print("x_matrix:") print(x_matrix) print("x_matrix.shape:") print(x_matrix.shape) create_plots( iteration_vector, cartesian_matrix, cartesian_goal_matrix, sample_time_in_seconds, "Cartesian Values responses based on step respone no feedback", "current", "fake-goal" ) create_plots( iteration_vector, x_matrix, u_matrix, sample_time_in_seconds, "X and U vectors response based on step respone no feedback", "x", "u" ) plt.show() def test_2_mpc_first_attempt(show_results=True): """ Sample control loop to test MPC algorithm on Baxter right limbr for custom variables such as N, total_time, sample_time, cartesian_goal, x0, u0 and validate the resulting plots with or without noise. """ # Main conditions for executing the control loop with MPC algorithm N = 1 # Prediction horizon total_time_in_seconds = 20 sample_time_in_seconds = 0.1 # Initial conditions for states and inputs x0 = np.array( [ 0.39500005288049406, -1.2831749290661485, -0.18867963690990588, 2.5905100555414924, -0.11428156869746332, -1.3506700837331067, 0.11504855909140603 ] ).reshape(7, 1) u0 = np.array([0, 0, 0, 0, 0, 0, 0]).reshape(7, 1) # Number inputs (same as number of degrees of freedom) nu = u0.shape[0] # Initial cartesian_goal "default" value cartesian_goal = np.array( [ [ -0.9, -1.0, 1.1, 0.6660425877100662, 1.5192944057794895, -1.3616725381467032 ], ] * N ).transpose().reshape(6, N) # ---------- Main Control loop ------------- # Variables for control loop x_k = x0 u_k = u0 iteration_vector = list() x_matrix = np.zeros((x_k.shape[0], 0)) u_matrix = np.zeros((u_k.shape[0], 0)) cartesian_matrix = np.zeros((cartesian_goal.shape[0], 0)) cartesian_goal_matrix =
np.zeros((cartesian_goal.shape[0], 0))
numpy.zeros
import math import itertools from sklearn.cluster import DBSCAN import numpy as np import pysc2.agents.myAgent.myAgent_13_BIC_DQN.smart_actions as sa from pysc2.agents.myAgent.myAgent_13_BIC_DQN.config import config from pysc2.agents.myAgent.myAgent_13_BIC_DQN.tools import unit_list from pysc2.lib import features # 十进制转任意进制 用于解析动作列表 def transport(action_number, action_dim): result = np.zeros(config.MY_UNIT_NUMBER) an = action_number ad = action_dim for i in range(config.MY_UNIT_NUMBER): if an / ad != 0: result[config.MY_UNIT_NUMBER - i - 1] = int(an % ad) an = int(an / ad) else: break return result def computeDistance(unit, enemy_unit): x_difference = math.pow(unit.x - enemy_unit.x, 2) y_difference = math.pow(unit.y - enemy_unit.y, 2) distance = math.sqrt(x_difference + y_difference) return distance def computeDistance_center(unit): x_difference = math.pow(unit.x - config.MAP_SIZE / 2, 2) y_difference = math.pow(unit.y - config.MAP_SIZE / 2, 2) distance = math.sqrt(x_difference + y_difference) return distance def get_bound(init_obs, obs): bounds = [] init_my_units_tag = [unit.tag for unit in init_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.SELF] init_enemy_units_tag = [unit.tag for unit in init_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.ENEMY] for i in range(config.MY_UNIT_NUMBER): bound = [] my_unit = find_unit_by_tag(obs, init_my_units_tag[i]) if my_unit is None: bound.append(1) for j in range(config.ATTACT_CONTROLLER_ACTIONDIM - config.DEATH_ACTION_DIM): bound.append(0) bounds.append(bound) continue else: bound.append(0) for j in range(config.STATIC_ACTION_DIM): bound.append(1) for j in range(config.ENEMY_UNIT_NUMBER): enemy = find_unit_by_tag(obs, init_enemy_units_tag[j]) if enemy is None: bound.append(0) elif computeDistance(my_unit, enemy) >= config.ATTACK_RANGE: bound.append(0) else: bound.append(1) bounds.append(bound) return bounds def find_unit_by_tag(obs, tag): for unit in obs.observation['raw_units']: if unit.tag == tag: return unit return None ############################################ def assembly_action(init_obs, obs, action_numbers): actions = [] init_my_units = [unit for unit in init_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.SELF] init_enemy_units = [unit for unit in init_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.ENEMY] controller = sa.attack_controller # action_nmbers = transport(action_number, config.ATTACT_CONTROLLER_ACTIONDIM) for i in range(config.MY_UNIT_NUMBER): parameter = [] if action_numbers[i] == 0: continue elif 0 < action_numbers[i] <= 4: my_unit = find_unit_by_tag(obs, init_my_units[i].tag) a = controller[1] dir = action_numbers[i] - config.DEATH_ACTION_DIM parameter.append(0) parameter.append(init_my_units[i].tag) if dir == 0: parameter.append((min([my_unit.x + 2, config.MAP_SIZE]), min([my_unit.y + 2, config.MAP_SIZE]))) elif dir == 1: parameter.append((max([my_unit.x - 2, 0]), max([my_unit.y - 2, 0]))) elif dir == 2: parameter.append((min([my_unit.x + 2, config.MAP_SIZE]), max([my_unit.y - 2, 0]))) elif dir == 3: parameter.append((max([my_unit.x - 2, 0]), min([my_unit.y + 2, config.MAP_SIZE]))) parameter = tuple(parameter) actions.append(a(*parameter)) elif 4 < action_numbers[i] <= 4 + config.ENEMY_UNIT_NUMBER: my_unit = find_unit_by_tag(obs, init_my_units[i].tag) a = controller[2] enemy = int(action_numbers[i] - config.DEATH_ACTION_DIM - config.STATIC_ACTION_DIM) parameter.append(0) parameter.append(my_unit.tag) parameter.append(init_enemy_units[enemy].tag) parameter = tuple(parameter) actions.append(a(*parameter)) return actions def get_agent_state(unit): states = np.array([]) states = np.append(states, computeDistance_center(unit)) states = np.append(states, unit.alliance) states = np.append(states, unit.unit_type) states = np.append(states, unit.x) states = np.append(states, unit.y) states = np.append(states, unit.health) states = np.append(states, unit.shield) states = np.append(states, unit.weapon_cooldown) return states def get_state(init_obs, obs): state = np.array([]) init_my_units_tag = [unit.tag for unit in init_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.SELF] init_enemy_units_tag = [unit.tag for unit in init_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.ENEMY] for i in range(config.MY_UNIT_NUMBER): my_unit = find_unit_by_tag(obs, init_my_units_tag[i]) if my_unit is not None: my_unit_state = get_agent_state(my_unit) state = np.append(state, my_unit_state) else: state = np.append(state, np.zeros(config.COOP_AGENT_OBDIM)) for i in range(config.ENEMY_UNIT_NUMBER): enemy_unit = find_unit_by_tag(obs, init_enemy_units_tag[i]) if enemy_unit is not None: my_unit_state = get_agent_state(enemy_unit) state = np.append(state, my_unit_state) else: state = np.append(state, np.zeros(config.COOP_AGENT_OBDIM)) return state def get_agents_obs(init_obs, obs): agents_obs = [] init_my_units_tag = [unit.tag for unit in init_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.SELF] init_enemy_units_tag = [unit.tag for unit in init_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.ENEMY] for i in range(config.MY_UNIT_NUMBER): # 一次查找己方单位的信息 agent_obs = np.array([]) my_unit = find_unit_by_tag(obs, init_my_units_tag[i]) if my_unit is None: # 此时己方单位已死亡,所以观察值全为0 agent_obs = np.zeros(config.COOP_AGENTS_OBDIM) agents_obs.append(agent_obs) continue for j in range(config.MY_UNIT_NUMBER): my_target_unit = find_unit_by_tag(obs, init_my_units_tag[j]) # 按顺序遍历每个己方单位的信息 if my_target_unit is None or computeDistance(my_unit, my_target_unit) >= config.OB_RANGE: agent_obs = np.append(agent_obs, np.zeros(8)) else: agent_obs = np.append(agent_obs, computeDistance(my_unit, my_target_unit)) agent_obs = np.append(agent_obs, my_target_unit.alliance) agent_obs = np.append(agent_obs, my_target_unit.unit_type) agent_obs = np.append(agent_obs, my_target_unit.x) agent_obs = np.append(agent_obs, my_target_unit.y) agent_obs = np.append(agent_obs, my_target_unit.health) agent_obs = np.append(agent_obs, my_target_unit.shield) agent_obs = np.append(agent_obs, my_target_unit.weapon_cooldown) for j in range(config.ENEMY_UNIT_NUMBER): enemy_target_unit = find_unit_by_tag(obs, init_enemy_units_tag[j]) # 按顺序遍历每个己方单位的信息 if enemy_target_unit is None or computeDistance(my_unit, enemy_target_unit) >= config.OB_RANGE: agent_obs = np.append(agent_obs, np.zeros(8)) else: agent_obs = np.append(agent_obs, computeDistance(my_unit, enemy_target_unit)) agent_obs = np.append(agent_obs, enemy_target_unit.alliance) agent_obs = np.append(agent_obs, enemy_target_unit.unit_type) agent_obs = np.append(agent_obs, enemy_target_unit.x) agent_obs = np.append(agent_obs, enemy_target_unit.y) agent_obs = np.append(agent_obs, enemy_target_unit.health) agent_obs = np.append(agent_obs, enemy_target_unit.shield) agent_obs = np.append(agent_obs, enemy_target_unit.weapon_cooldown) agents_obs.append(agent_obs) return agents_obs def get_reward(obs, pre_obs): reward = 0 my_units_health = [unit.health for unit in obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.SELF] enemy_units_health = [unit.health for unit in obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.ENEMY] # reward = len(my_units_health) / (len(my_units_health) + len(enemy_units_health)) my_units_health_pre = [unit.health for unit in pre_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.SELF] enemy_units_health_pre = [unit.health for unit in pre_obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.ENEMY] if len(enemy_units_health) == 0: reward = sum(my_units_health) + 200 return reward / 200 if len(my_units_health) == 0: reward = -sum(my_units_health) - 200 return reward / 200 if len(my_units_health) < len(my_units_health_pre): reward -= (len(my_units_health_pre) - len(my_units_health)) * 10 if len(enemy_units_health) < len(enemy_units_health_pre): reward += (len(enemy_units_health_pre) - len(enemy_units_health)) * 10 reward += (sum(my_units_health) - sum(my_units_health_pre)) / 2 - (sum(enemy_units_health) - sum(enemy_units_health_pre)) return float(reward) / 200 def win_or_loss(obs): if obs.last(): # my_units = [unit for unit in obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.SELF] enemy_units = [unit for unit in obs.observation['raw_units'] if unit.alliance == features.PlayerRelative.ENEMY] if len(enemy_units) == 0: return 1 else: return -1 else: return 0 ############test############ def get_bound_test(my_units, enemy_units): bound = np.zeros(np.power(config.ATTACT_CONTROLLER_ACTIONDIM, config.MY_UNIT_NUMBER)) leagal_actions = [] for i in range(config.MY_UNIT_NUMBER): if i >= len(my_units): leagal_actions.append([0]) continue else: action = [] action.append(0) for j in range(config.ENEMY_UNIT_NUMBER): if j >= len(enemy_units): action.append(0) else: action.append(1) leagal_actions.append(list(
np.nonzero(action)
numpy.nonzero
# -*- coding: utf-8 -*- """ Created on Wed Nov 08 17:46:45 2017 @author: apfranco """ import numpy as np import scipy from scipy.optimize import leastsq def RockPhysicsCalibration(agd, OM): # ALGORITMO PARA CALIBRACAO DE MODELOS DE FISICA DE ROCHA # # MODELOS # 1 - porosidade de neutrons: # phi = A + B phiE + C vsh ou # 2 - raios gama: # gr = grmin + (grmax - grmin) vsh # 3 - modelo densidade: # rho = rhoq + (rhof-rhoq) * phiE + (rhoc-rhoq) * vsh * (1 - phiE); # 4 - resistividade: # 1/ Rt = ( phiE**m Sw**n ) / ( a Rw (1-chi) ) + ( chi Sw ) / Rsh # # DESCRICAO GERAL: # O programa deve ser rodado para gerar os coefientes e densidades acima descritos # para serem usados em etapas posteriores de inferencia de porosidade, # volume de argila e saturacao. O programa fornece opcao de entrada de # limites estratigraficos conhecidos, realizando uma calibracao geral para # todo o pacote e tambem em grupos separados em funcao do volume de # folhelho como funcao de um valor de corte (cutclay). O programa fornece 3 # opcoes de saida envolvendo calibracao em todo o segmento analizado, em # segmentos menores definidos na entrada (secHoriz) ou em nesses mesmos segmentos # menores subdivididos ainda mais em funcao do conteudo de folhelho. # # PARAMETROS DE ENTRADA: # dados de perfis - raios gama, porosidade, densidade, VP e VS # dados de testemunho (se disponiveis) - volume de argila, porosidade, densidade # top, bot - limites superior e inferior da secao a ser analisada # phiSand - porosidade de areia homogenea (zero em conteudo de argila) # grmin, grmax - valores minimo e maximo para a conversao de raios gama em volume de folhelho # cutclay - valor limite para a transicao de areia para folhelho (grao para matriz suportada) # secHoriz - Matriz (nFac x 2) contendo os limites superior e inferior de cada unidade estratigrafica # satUncert - =0 desliga seletor de calibracao para horizonte com oleo. # Caso contrario iOut necesariamente igual a 3 # iOut - seletor de detalhamento de facies para saida de parametros 1, 2, # ou 3, conforme explicado acima. # modPhiC - seletor do tipo de porosidade de calibracao (porosidade # efetiva): = 1 perfil porosidade de neutros; = 2 porosidade # efetiva independente (ex. testemunho); = 3 porosidade efetiva # calculada pela formula 1 acima. # OBS: CUIDADO opcao modPhiC = 3 carece de aprimoramentos devendo ser usada em # casos muito especificos. Em geral produz matrizes mal condicionadas. # # PARAMETROS DE SAIDA: # calibData_nomePoco - arquivo contendo os dados de referencia para o processo de calibracao # phiC # clayC # rhoC # resC # calibCPR_Vel_nomePoco - arquivo contendo os parametros do modelo linear de velocidade de Han # facies # phiSand # neutron # denLitho # cValuesPhi # cValuesChi # covMatrixPar # coefVP # coefVS # fluidProp # fluidPars print ("CHAMANDO A FUNCAO EM ALGO") #Parametros de entrada inputPars = agd.get_input() well_uid = agd.get_well_uid() log_index = OM.list('log', well_uid)[0] indexes = log_index.get_index()[0] z = indexes[0].data topCL = inputPars.get('topCL', None) #Intervalo para calibracao (com agua) botCL = inputPars.get('botCL', None) top = inputPars.get('top', None) #Intervalo para inferencia bot = inputPars.get('bot', None) indLog = np.argwhere(np.logical_and(z>=top, z<=bot)) indLog = np.squeeze(indLog,1) #Input dos Perfis de pressao press_file = np.loadtxt('U:/bkp_Windows06nov2017/Documents/Pocos_Morena/MA20.prs') z = z[indLog] gr = inputPars.get('gr', None ) gr = gr[indLog] gr = logInterp(gr,z) phi = inputPars.get('phi', None ) phi = phi[indLog] phi = logInterp(phi,z) rhoFull = inputPars.get('rho', None ) rho = rhoFull[indLog] rho = logInterp(rho,z) res = inputPars.get('res', None ) res = res[indLog] if (np.all(res == np.NaN)): res = np.empty(np.size(indLog)) else: res = logInterp(res,z) fac = inputPars.get('fac', None ) fac = fac[indLog] fac = np.array(np.floor(fac), dtype=int) fac = logInterp(fac,z) #Input dos Perfis de pressao zProv = indexes[0].data mpp = 0.0980665*press_file[:,0] mtzp = press_file[:,1] lpres, cpres = np.shape(press_file) if (cpres == 3): mmzp = press_file[:,cpres - 1] else: mmzp = np.empty([0,0]) nDP = np.size(mtzp) tvdss = inputPars.get('tvdss', None ) tvdss = tvdss[indLog] izp = np.empty(nDP, dtype=int) if (np.size(mmzp) == 0): indr = indLog lindr = np.size(indr) - 1 tol = 0.1 for i in range (0, nDP): indp = np.argwhere(np.logical_and(tvdss <= (mtzp[i] + tol), tvdss >= (mtzp[i] - tol))) indp= np.squeeze(indp,1) cizp = np.argwhere(np.logical_and(indp >= indr[0], indp <= indr[lindr])) cizp= np.squeeze(cizp,1) if (np.size(cizp) == 0): izp[i] = np.argmin(np.abs(tvdss - mtzp[i])) else: izp[i] = indp[cizp[0]] mzp = zProv[izp] matsort = np.concatenate([[mzp],[mpp], [mtzp],[izp]]).T indsort = np.argsort(matsort[:,0],0) matsort = np.array([[matsort[indsort,0]],[matsort[indsort,1]],[matsort[indsort,2]],[matsort[indsort,3]]]).T matsort = np.squeeze(matsort) mzp = matsort[:,0] mpp = matsort[:,1] mtzp = matsort[:,2] izp = matsort[:,3].astype(int) zp = zProv[izp[0]:izp[nDP - 1] + 1] rhopp = rhoFull[izp[0]:izp[nDP - 1] + 1] rhopp = logInterp(rhopp, zp) else: mzp = mmzp for i in range (0, nDP): izp[i] = np.argmin(np.abs(zProv - mzp[i])) zp = zProv[izp[0]:izp[nDP - 1] + 1] rhopp = rhoFull[izp[0]:izp[nDP - 1] + 1] rhopp = logInterp(rhopp, zp) phiCore = np.empty([0,0]) secHoriz = np.array([top, bot]) #Parametros e dados de calibracao e saida nFac = 4 modPhiC = 1 #indicador do tipo de dado de calibracao a ser usado como porosidade efetiva #1: perfil de neutrons 2: perfil de porosidade efetiva useCore = 0 iOut = 2 #iuseclay = 0 #indicador do tipo de argilosidade a ser usado #0: vsh direto do perfil 1: clay (calculada atraves do GR) #Parametros de densidade rhoMin = np.array([2.55, 2.569, 2.623, 2.707]) #Existem 4 facies na regiao relatada #Parametros de resistividade mP = 2.0 # expoente de cimentacao em areias limpas: 1.3 (inconsolidado) - 2.0 (consol.) nS = 2.0 # expoente de saturacao em areias limpas 1.5 - 2.0. # E reduzido na presenca de laminacao e microporosidade aT = 0.8 # constante da eq. de Archie Rw = 0.028 # resistividade da agua Rsh = 2.048 # resistividade do folhelho resCoef = np.array([[mP, nS, aT*Rw, Rsh], [1.5, nS, aT*Rw, Rsh], [2.0, nS, aT*Rw, Rsh], [2.0, nS, aT*Rw, Rsh]]) # Secao de Propriedades dos fluidos e matrizes de areia e folhelho #Parametros #calculo da pressao pres_poros = np.mean(mpp) # pressao de poro referencia para o calc da densidade temp = 89.0 # temperatura oC sal = 102400 # salinidade RGO = 75.0 # razao gas oleo API = 29.0 # grau API G = 0.835 # gravidade especifica #Ordenar parametros no vetor para chamada da funcao fluidPars = np.array([pres_poros, temp, sal, RGO, API, G]) #AQUI COMECA O CODIGO secCalibVshPhiRhoRes_vpHan #Trecho de calibracao indCL = np.where(np.logical_and(z>=topCL, z<=botCL)) nData = np.size(z) # Calculo de porosidade efetiva e vsh com estimativa dos valores # de grmin e grmax em todo o pacote coberto pelos dados # Transformacao dos dados observados # Volume de folhelho a partir de rais gama indSh = np.argwhere(fac==4) indSh= np.squeeze(indSh,1) indSd = np.argwhere(fac == 1) indSd= np.squeeze(indSd,1) if (np.size(indSh) == 0 and np.size(indSd) == 0): grmax = np.percentile(gr, 95) grmin = np.percentile(gr, 5) else: grmax = np.percentile(gr[indSh], 95) #146.3745 grmin = np.percentile(gr[indSd], 5) #54.2600 claye = vshGRcalc(gr, grmin, grmax) #Por enquanto usando apenas modPhic == 1 if modPhiC == 1: grlim = grmax ind = np.where (gr>= grlim) phiNsh = np.median(phi[ind]) phiEe = np.fmax(0.01, phi - claye*phiNsh) modPhiC =2 elif (modPhiC == 2 and np.size(phiCore) == 0): print ("Nao existe a funcao chamada aqui dentro") #phiEe = phiSd2phiE (zR, claye, phiSand, secHoriz) elif (modPhiC == 2 and useCore == 1 ): phiEe = phiCore #fluidProp matriz com valores para Kf e densidade para fases salmoura, #oleo e gas, ordenados da seguinte forma: #bulk_salmoura, bulk_oleo, bulk_gas (modulo variavel com a pressao #rho_salmoura, rho_oleo, rho_gas (so a densidade sera fixa) nDP = np.size(mpp) fluidPropP = np.empty([nDP, 2, 3]) #esqueleto de nDP 'paginas' que guardara #as matrizes 2x3 de retorno da funcao seismicPropFluids for i in np.arange(0, nDP): #atualizar pressao de poro fluidPars[0] = mpp[i] fluidPropP[i] = seismicPropFluids(fluidPars) fluidProp = np.mean(fluidPropP, 0) rhoFluids = fluidProp[1] rhoW = rhoFluids[0] rhoO = rhoFluids[1] #rock physics model calibration #selecao de perfis apenas na regial de calibracao com agua phiC = phiEe[indCL] clayC = claye[indCL] rhoCL = rho[indCL] resCL = res[indCL] phiCL = phi[indCL] facCL = fac[indCL] # Calibracao para toda a secao rhoMin_T = np.median(rhoMin); opt = 2 if (opt == 1): [cPhi_T, phiMod_T, cRho_T, rhoMod_T, cRes_T, resMod_T] = calibClayPhiRhoRes(phiCL, rhoCL, resCL, clayC, phiC, rhoMin_T, resCoef, modPhiC) rhoSd = cRho_T[0] rhoWe = cRho_T[1] rhoSh = cRho_T[2] rhoDisp = cRho_T[2] else: [cPhi_T, phiMod_T, cRho_T, rhoMod_T, cRes_T, resMod_T] = calibClayPhiRhoRes2(phiCL, rhoCL, resCL, clayC, phiC , rhoW, resCoef, modPhiC) rhoSd = cRho_T[0] rhoWe = rhoW rhoSh = cRho_T[1] rhoDisp = cRho_T[1] phiPar_T = np.concatenate([[cPhi_T[0]], [cPhi_T[1]], [cPhi_T[2]]]) denPar_T = np.concatenate([[rhoSd], [rhoWe], [rhoO], [rhoSh], [rhoDisp]]) resPar_T = cRes_T [phiMod_T, rhoMod_T, resMod_T] = calibCPRRreMod(phiEe, claye, phiPar_T , denPar_T, resPar_T, modPhiC) facies_T = np.ones((nData,1)) phiMod = np.zeros((nData,1)) rhoMod = np.zeros((nData,1)) resMod = np.zeros((nData,1)) phiPar = np.empty([nFac,3]) denPar = np.empty([nFac,5]) resPar = np.empty([nFac,4]) facH = np.zeros([np.size(facCL),1]) for i in range(0,nFac): ind = np.argwhere(facCL == i + 1) ind= np.squeeze(ind,1) secPhi = phiCL[ind] secRho = rhoCL[ind] secRes = resCL[ind] secClayC = clayC[ind] secPhiC = phiC[ind] #[cHan,vpMod(ind),s2] = calibHan(secVP,secPhiC,secClayC); #coefHanVP(i,:) = cHan'; # a parte de porosidade de neutrons e densidade nao utiliza separacao # e calibracao distinta para grupamentos em termos de volume de # folhelho. Os coeficientes sao repetidos (iguais) para areia e folhelho resCoef_line = np.empty((resCoef.shape[0],1)) resCoef_line[:,0] = resCoef[i] if (opt == 1): [cPhi, dataPhi, cRho, dataRho, cRes, dataRes] = calibClayPhiRhoRes(secPhi, secRho, secRes, secClayC, secPhiC , rhoMin[i], resCoef_line, modPhiC) rhoSd = cRho_T[0] rhoWe = cRho_T[1] rhoSh = cRho_T[2] rhoDisp = cRho_T[2] else: [cPhi, dataPhi, cRho, dataRho, cRes, dataRes] = calibClayPhiRhoRes2(secPhi, secRho, secRes, secClayC, secPhiC , rhoW, resCoef_line, modPhiC) rhoSd = cRho_T[0] rhoWe = rhoW rhoSh = cRho_T[1] rhoDisp = cRho_T[1] phiPar[i] = np.array([cPhi[0], cPhi[1], cPhi[2]]) denPar[i] = np.array([rhoSd, rhoWe, rhoO, rhoSh, rhoDisp]) resPar[i] = cRes facH[ind] = i + 1 resPar_line = np.empty([1,nFac]) resPar_line[0,:] = resPar[i] ind = np.argwhere(fac == i + 1) ind= np.squeeze(ind,1) passArg = np.array([rhoSd, rhoW, rhoSh]) [dataPhi, dataRho, dataRes] = calibCPRRreMod(phiEe[ind], claye[ind], phiPar[i],passArg, resPar_line, modPhiC) phiMod[ind,0] = dataPhi rhoMod[ind,0] = dataRho resMod[ind] = dataRes if (iOut == 1): nOutFac = 1 facies = facies_T neutron = phiPar_T denLitho = denPar_T rhoComp = rhoMod_T phiComp = phiMod_T resComp = resMod_T elif (iOut == 2): nOutFac = np.ones([nFac,1]) facies = facH neutron = phiPar denLitho = denPar denLitho[:,4] = neutron[:,2] rhoComp = rhoMod phiComp = phiMod resComp = resMod else: raise Exception ('Seletor de saida deve ser 1 ou 2') r2Phi = rsquared (phiComp, phi) r2Rho = rsquared (rhoComp, rho) r2Res = rsquared (resComp, res) print ("Fim da calibracao, com seguintes ajustes R2:\n Phi = %7.2f\n RHO = %7.2f\n RES = %7.2f\n" % (r2Phi, r2Rho, r2Res)) #Saida de Dados def calibClayPhiRhoRes(phi, rho, Rt, vsh, phiE, rhoMin, RtCoef, mode): """ FINALIDADE: calcular parametros dos modelos de porosidade e densidade a partir do ajuste dos dados de perfis de porosidade de neutrons e de densidade, usando informacoes de volume de folhelho e de porosidade efetiva com 3 opcoes distintas para a porosidade efetiva: 1 - usa o proprio perfil de neutrons como porosidade efetiva (identidade) 2 - usa um perfil independente de porosidade efetiva (ex. testemunho) ENTRADA: phi - perfil de neutrons rho - perfil de densidade vsh - volume de folhelho (normalmente extraido do perfil de raios gama) phiE - perfil de porosidade efetiva rhoMin - densidade media dos graos minerais constituintes da matriz da rocha RtCoef - mode - indicador de porosidade efetiva, sendo 1, 2 ou 3 conforme os casos acima descritos. SAIDA: phiPar - parametros de ajuste do modelo de porosidade de neutrons phiComp - perfil calculado de porosidade de neutrons rhoPar - parametros de ajuste do modelo de densidade rhoComp - perfil calculado de densidade MODELOS porosidade de neutrons: phi = A + 1.0 phiE + C vsh modelo de densidade: rho = rhoq + (rhof-rhoq) * phiE + (rhoc-rhoq) * vsh; modelo de resistividade: Rt = ( phiE**m Sw**n ) / ( a Rw (1-chi) ) + ( chi Sw ) / Rsh """ if((mode != 1) and (mode != 2) and (mode != 3)): raise Exception("Seletor de porosidadade efetiva de entrada deve ser 1 ou 2!") n = np.size(vsh) if (np.size(phi) != n or np.size(rho) != n): raise Exception("Vetores de entrada devem ter as mesmas dimensoes") if (mode == 1 or mode == 2 and np.size(phiE) != n ): raise Exception ("Vetor de entrada de porosidade efetiva nao esta com dimensao apropriada") options = np.empty([0,0]) lb = np.array([0.0, 0.5]) ub = np.array([0.5, 4.0]) x0 = RtCoef[2:4,0] cRes = RtCoef[0:2,0] phiPar = np.empty(3) rhoPar = np.empty(3) if (mode == 1): # o proprio perfil de neutrons fornece a porosidade efetiva, segundo o # modelo phiN = phiE phiPar = np.array([0.0, 1.0, 0.0]) phiComp = phiE elif (mode == 2): #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiE + vsh) A = np.concatenate([[col1], [phiE], [vsh]]).T xPhi2 = fitNorm1(A,phi,10) # parametros do modelo para ajuste da porosidade de neutrons phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] elif (mode ==3): phiSand = 0.25 #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiSand + vsh) col2 = np.ones(n)*phiSand A = np.concatenate([[col1], [col2], [vsh]]).T xPhi2 = fitNorm1(A,phi,10) #parametros do modelo para ajuste da porosidade de neutrons phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] vecConc = vsh*(1-phiE) B = np.concatenate([[phiE], [vecConc]]) xRho1 = fitNorm1(B, (rho - rhoMin), 10) rhoPar[0] = rhoMin rhoPar[1] = xRho1[0] + rhoMin rhoPar[2] = xRho1[1] + rhoMin rhoComp = np.dot(B,xRho1) + rhoMin xRes = scipy.optimize.leastsq(ofSimandouxPhiChiSw100, x0, args=(Rt, cRes, phiE, vsh))[0] #checar como vai se comportar sem lb e ub RtPar = np.concatenate([cRes, xRes]) RtPar = RtPar.reshape(1, RtPar.size) facies = np.ones((n,1)) RtComp = dCompSimandouxPhiChiSw100(phiE,vsh,facies,RtPar) return phiPar, phiComp, rhoPar, rhoComp, RtPar, RtComp def calibClayPhiRhoRes2(phi, rho, Rt, vsh, phiE, rhoWater, RtCoef, mode): """ FINALIDADE: calcular parametros dos modelos de porosidade e densidade a partir do ajuste dos dados de perfis de porosidade de neutrons e de densidade, usando informacoes de volume de folhelho e de porosidade efetiva com 3 opcoes distintas para a porosidade efetiva: 1 - usa o proprio perfil de neutrons como porosidade efetiva (identidade) 2 - usa um perfil independente de porosidade efetiva (ex. testemunho) ENTRADA: phi - perfil de neutrons rho - perfil de densidade vsh - volume de folhelho (normalmente extraido do perfil de raios gama) phiE - perfil de porosidade efetiva rhoWater - densidade da agua RtCoef - mode - indicador de porosidade efetiva, sendo 1, 2 ou 3 conforme os casos acima descritos. SAIDA: phiPar - parametros de ajuste do modelo de porosidade de neutrons phiComp - perfil calculado de porosidade de neutrons rhoPar - parametros de ajuste do modelo de densidade rhoComp - perfil calculado de densidade MODELOS porosidade de neutrons: phi = A + 1.0 phiE + C vsh modelo de densidade: rho = rhoq + (rhof-rhoq) * phiE + (rhoc-rhoq) * vsh; modelo de resistividade: Rt = ( phiE**m Sw**n ) / ( a Rw (1-chi) ) + ( chi Sw ) / Rsh """ if((mode != 1) and (mode != 2) and (mode != 3)): raise Exception("Seletor de porosidadade efetiva de entrada deve ser 1 ou 2!") n = np.size(vsh) if (np.size(phi) != n or np.size(rho) != n): raise Exception("Vetores de entrada devem ter as mesmas dimensoes") if (mode == 1 or mode == 2 and np.size(phiE) != n ): raise Exception ("Vetor de entrada de porosidade efetiva nao esta com dimensao apropriada") options = np.empty([0,0]) lb = np.array([0.0, 0.5]) ub = np.array([0.5, 4.0]) x0 = RtCoef[2:4,0] cRes = RtCoef[0:2,0] phiPar = np.empty(3) if (mode == 1): # o proprio perfil de neutrons fornece a porosidade efetiva, segundo o # modelo phiN = phiE phiPar = np.array([0.0, 1.0, 0.0]) phiComp = phiE elif (mode == 2): #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiE + vsh) A = np.concatenate([[col1], [phiE], [vsh]]).T xPhi2 = fitNorm1(A,phi,10) # parametros do modelo para ajuste da porosidade de neutrons phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] elif (mode ==3): phiSand = 0.25 #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiSand + vsh) col2 = np.ones(n)*phiSand A = np.concatenate([[col1], [col2], [vsh]]).T xPhi2 = fitNorm1(A,phi,10) #parametros do modelo para ajuste da porosidade de neutrons phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] col2 = vsh*(1-phiE) col1 = (1-vsh)*(1-phiE) B = np.concatenate([[col1], [col2]]).T rhoCte = rhoWater * phiE xRho = fitNorm1(B, (rho - rhoCte),10) rhoPar = np.empty(2) rhoPar[0] = xRho[0] rhoPar[1] = xRho[1] rhoComp = np.dot(B, xRho) + rhoCte xRes = scipy.optimize.leastsq(ofSimandouxPhiChiSw100, x0, args=(Rt, cRes, phiE, vsh))[0] print ("VALORES DE xRES", xRes) RtPar = np.concatenate([cRes, xRes]) RtPar = np.reshape(RtPar,(1,np.size(RtPar))) facies = np.ones((n,1)) RtComp = dCompSimandouxPhiChiSw100(phiE,vsh,facies,RtPar) return phiPar, phiComp, rhoPar, rhoComp, RtPar, RtComp def calibCPRRreMod(phiE, vsh, phiPar, rhoPar, RtPar, mode): # FINALIDADE: calcular os dados modelados usando os modelos calibrados # em outro intervalo do poco, seguindo as 3 opcoes distintas para a porosidade efetiva: # 1 - usa o proprio perfil de neutrons como porosidade efetiva (identidade) # 2 - usa um perfil independente de porosidade efetiva (ex. testemunho) # # ENTRADA: # phi - perfil de neutrons # rho - perfil de densidade # vsh - volume de folhelho (normalmente extraido do perfil de raios gama) # phiE - perfil de porosidade efetiva # phiPar # rhoPar - densidade da agua # RtPar - # mode - indicador de porosidade efetiva, sendo 1, 2 ou 3 conforme os # casos acima descritos. # # SAIDA: # phiComp - perfil calculado de porosidade de neutrons # rhoComp - perfil calculado de densidade # RtComp # # # MODELOS # porosidade de neutrons: # phi = A + 1.0 phiE + C vsh # modelo de densidade: # rho = rhoq + (rhof-rhoq) * phiE + (rhoc-rhoq) * vsh; # modelo de resistividade: # Rt = ( phiE**m Sw**n ) / ( a Rw (1-chi) ) + ( chi Sw ) / Rsh if (mode != 1 and mode != 2 and mode != 3): raise Exception ('Seletor de porosidadade efetiva de entrada deve ser 1 ou 2') n = np.size(vsh) if (mode == 1 or mode == 2 and np.size(phiE) != n ): raise Exception ('Vetor de entrada de porosidade efetiva nao esta com dimensao apropriada'); if (mode == 1): # o proprio perfil de neutrons fornece a porosidade efetiva, segundo o # modelo phiN = phiE phiPar = np.array([0.0, 1.0, 0.0]) phiComp = phiE elif (mode ==2): #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - phiE + vsh phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] elif (mode == 3): phiSand = 0.25 # nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiSand + vsh) phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] #Verificar o uso desse mode 3, talvez seja melhor cortar fora do if la em cima phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] col2 = vsh*(1-phiE) col1 = (1-vsh)*(1 - phiE) B = np.concatenate([[col1], [col2]]) rhoCte = rhoPar[1]*phiE rhoComp = col1 * rhoPar[0] + col2*rhoPar[2] + rhoCte facies = np.ones((n,1)) RtComp = dCompSimandouxPhiChiSw100(phiE,vsh,facies,RtPar) return phiComp, rhoComp, RtComp def fitNorm1(A, d, maxIt): xLS =
np.linalg.lstsq(A,d)
numpy.linalg.lstsq
# # Test for the operator class # import pybamm import numpy as np import unittest def get_mesh_for_testing( xpts=None, rpts=10, ypts=15, zpts=15, geometry=None, cc_submesh=None, order=2 ): param = pybamm.ParameterValues( values={ "Electrode width [m]": 0.4, "Electrode height [m]": 0.5, "Negative tab width [m]": 0.1, "Negative tab centre y-coordinate [m]": 0.1, "Negative tab centre z-coordinate [m]": 0.0, "Positive tab width [m]": 0.1, "Positive tab centre y-coordinate [m]": 0.3, "Positive tab centre z-coordinate [m]": 0.5, "Negative electrode thickness [m]": 0.3, "Separator thickness [m]": 0.3, "Positive electrode thickness [m]": 0.3, } ) if geometry is None: geometry = pybamm.battery_geometry() param.process_geometry(geometry) submesh_types = { "negative electrode": pybamm.MeshGenerator( pybamm.SpectralVolume1DSubMesh, {"order": order} ), "separator": pybamm.MeshGenerator( pybamm.SpectralVolume1DSubMesh, {"order": order} ), "positive electrode": pybamm.MeshGenerator( pybamm.SpectralVolume1DSubMesh, {"order": order} ), "negative particle": pybamm.MeshGenerator( pybamm.SpectralVolume1DSubMesh, {"order": order} ), "positive particle": pybamm.MeshGenerator( pybamm.SpectralVolume1DSubMesh, {"order": order} ), "current collector": pybamm.SubMesh0D, } if cc_submesh: submesh_types["current collector"] = cc_submesh if xpts is None: xn_pts, xs_pts, xp_pts = 40, 25, 35 else: xn_pts, xs_pts, xp_pts = xpts, xpts, xpts var_pts = { "x_n": xn_pts, "x_s": xs_pts, "x_p": xp_pts, "r_n": rpts, "r_p": rpts, "y": ypts, "z": zpts, } return pybamm.Mesh(geometry, submesh_types, var_pts) def get_p2d_mesh_for_testing(xpts=None, rpts=10): geometry = pybamm.battery_geometry() return get_mesh_for_testing(xpts=xpts, rpts=rpts, geometry=geometry) class TestSpectralVolumeConvergence(unittest.TestCase): def test_grad_div_broadcast(self): # create mesh and discretisation spatial_methods = {"macroscale": pybamm.SpectralVolume()} mesh = get_mesh_for_testing() disc = pybamm.Discretisation(mesh, spatial_methods) a = pybamm.PrimaryBroadcast(1, "negative electrode") grad_a = disc.process_symbol(pybamm.grad(a)) np.testing.assert_array_equal(grad_a.evaluate(), 0) a_edge = pybamm.PrimaryBroadcastToEdges(1, "negative electrode") div_a = disc.process_symbol(pybamm.div(a_edge)) np.testing.assert_array_equal(div_a.evaluate(), 0) div_grad_a = disc.process_symbol(pybamm.div(pybamm.grad(a))) np.testing.assert_array_equal(div_grad_a.evaluate(), 0) def test_cartesian_spherical_grad_convergence(self): # note that grad function is the same for cartesian and spherical order = 2 spatial_methods = {"macroscale": pybamm.SpectralVolume(order=order)} whole_cell = ["negative electrode", "separator", "positive electrode"] # Define variable var = pybamm.Variable("var", domain=whole_cell) grad_eqn = pybamm.grad(var) boundary_conditions = { var.id: { "left": (pybamm.Scalar(0), "Dirichlet"), "right": (pybamm.Scalar(np.sin(1) ** 2), "Dirichlet"), } } # Function for convergence testing def get_error(n): # create mesh and discretisation mesh = get_mesh_for_testing(n, order=order) disc = pybamm.Discretisation(mesh, spatial_methods) disc.bcs = boundary_conditions disc.set_variable_slices([var]) # Define exact solutions combined_submesh = mesh.combine_submeshes(*whole_cell) x = combined_submesh.nodes y = np.sin(x) ** 2 # var = sin(x)**2 --> dvardx = 2*sin(x)*cos(x) x_edge = combined_submesh.edges grad_exact = 2 * np.sin(x_edge) * np.cos(x_edge) # Discretise and evaluate grad_eqn_disc = disc.process_symbol(grad_eqn) grad_approx = grad_eqn_disc.evaluate(y=y) # Return difference between approx and exact return grad_approx[:, 0] - grad_exact # Get errors ns = 100 * 2 ** np.arange(5) errs = {n: get_error(int(n)) for n in ns} # expect linear convergence at internal points # (the higher-order convergence is in the integral means, # not in the edge values) errs_internal = np.array([np.linalg.norm(errs[n][1:-1], np.inf) for n in ns]) rates = np.log2(errs_internal[:-1] / errs_internal[1:]) np.testing.assert_array_less(0.99 * np.ones_like(rates), rates) # expect linear convergence at the boundaries for idx in [0, -1]: err_boundary = np.array([errs[n][idx] for n in ns]) rates = np.log2(err_boundary[:-1] / err_boundary[1:]) np.testing.assert_array_less(0.98 * np.ones_like(rates), rates) def test_cartesian_div_convergence(self): whole_cell = ["negative electrode", "separator", "positive electrode"] spatial_methods = {"macroscale": pybamm.SpectralVolume()} # Function for convergence testing def get_error(n): # create mesh and discretisation mesh = get_mesh_for_testing(n) disc = pybamm.Discretisation(mesh, spatial_methods) combined_submesh = mesh.combine_submeshes(*whole_cell) x = combined_submesh.nodes x_edge = pybamm.standard_spatial_vars.x_edge # Define flux and bcs N = x_edge ** 2 * pybamm.cos(x_edge) div_eqn = pybamm.div(N) # Define exact solutions # N = x**2 * cos(x) --> dNdx = x*(2cos(x) - xsin(x)) div_exact = x * (2 * np.cos(x) - x * np.sin(x)) # Discretise and evaluate div_eqn_disc = disc.process_symbol(div_eqn) div_approx = div_eqn_disc.evaluate() # Return difference between approx and exact return div_approx[:, 0] - div_exact # Get errors ns = 10 * 2 ** np.arange(6) errs = {n: get_error(int(n)) for n in ns} # expect quadratic convergence everywhere err_norm = np.array([np.linalg.norm(errs[n], np.inf) for n in ns]) rates = np.log2(err_norm[:-1] / err_norm[1:]) np.testing.assert_array_less(1.99 * np.ones_like(rates), rates) def test_spherical_div_convergence_quadratic(self): # test div( r**2 * sin(r) ) == 2/r*sin(r) + cos(r) spatial_methods = {"negative particle": pybamm.SpectralVolume()} # Function for convergence testing def get_error(n): # create mesh and discretisation (single particle) mesh = get_mesh_for_testing(rpts=n) disc = pybamm.Discretisation(mesh, spatial_methods) submesh = mesh["negative particle"] r = submesh.nodes r_edge = pybamm.SpatialVariableEdge("r_n", domain=["negative particle"]) # Define flux and bcs N = pybamm.sin(r_edge) div_eqn = pybamm.div(N) # Define exact solutions # N = r**3 --> div(N) = 5 * r**2 div_exact = 2 / r * np.sin(r) + np.cos(r) # Discretise and evaluate div_eqn_disc = disc.process_symbol(div_eqn) div_approx = div_eqn_disc.evaluate() # Return difference between approx and exact return div_approx[:, 0] - div_exact # Get errors ns = 10 * 2 ** np.arange(6) errs = {n: get_error(int(n)) for n in ns} # expect quadratic convergence everywhere err_norm = np.array([np.linalg.norm(errs[n], np.inf) for n in ns]) rates =
np.log2(err_norm[:-1] / err_norm[1:])
numpy.log2
from . import DATA_DIR import sys import glob from .background_systems import BackgroundSystemModel from .export import ExportInventory from inspect import currentframe, getframeinfo from pathlib import Path from scipy import sparse import csv import itertools import numexpr as ne import numpy as np import xarray as xr REMIND_FILES_DIR = DATA_DIR / "IAM" class InventoryCalculation: """ Build and solve the inventory for results characterization and inventory export Vehicles to be analyzed can be filtered by passing a `scope` dictionary. Some assumptions in the background system can also be adjusted by passing a `background_configuration` dictionary. .. code-block:: python scope = { 'powertrain':['BEV', 'FCEV', 'ICEV-p'], } background_configuration = { 'country' : 'DE', # will use the network electricity losses of Germany 'custom electricity mix' : [[1,0,0,0,0,0,0,0,0,0], # in this case, 100% hydropower for the first year [0.5,0.5,0,0,0,0,0,0,0,0]], # in this case, 50% hydro, 50% nuclear for the second year 'hydrogen technology' : 'Electrolysis', 'petrol technology': 'bioethanol - wheat straw', 'alternative petrol share':[0.1,0.2], 'battery technology': 'LFP', 'battery origin': 'NO' } InventoryCalculation(CarModel.array, background_configuration=background_configuration, scope=scope, scenario="RCP26") The `custom electricity mix` key in the background_configuration dictionary defines an electricity mix to apply, under the form of one or several array(s), depending on teh number of years to analyze, that should total 1, of which the indices correspond to: - [0]: hydro-power - [1]: nuclear - [2]: natural gas - [3]: solar power - [4]: wind power - [5]: biomass - [6]: coal - [7]: oil - [8]: geothermal - [9]: waste incineration If none is given, the electricity mix corresponding to the country specified in `country` will be selected. If no country is specified, Europe applies. The `alternative petrol share` key contains an array with shares of alternative petrol fuel for each year, to create a custom blend. If none is provided, a blend provided by the Integrated Assessment model REMIND is used, which will depend on the REMIND energy scenario selected. :ivar array: array from the CarModel class :vartype array: CarModel.array :ivar scope: dictionary that contains filters for narrowing the analysis :ivar background_configuration: dictionary that contains choices for background system :ivar scenario: REMIND energy scenario to use ("BAU": business-as-usual or "RCP26": limits radiative forcing to 2.6 W/m^2.). "BAU" selected by default. .. code-block:: python """ def __init__( self, array, scope=None, background_configuration=None, scenario="SSP2-Base" ): if scope is None: scope = {} scope["size"] = array.coords["size"].values.tolist() scope["powertrain"] = array.coords["powertrain"].values.tolist() scope["year"] = array.coords["year"].values.tolist() else: scope["size"] = scope.get("size", array.coords["size"].values.tolist()) scope["powertrain"] = scope.get( "powertrain", array.coords["powertrain"].values.tolist() ) scope["year"] = scope.get("year", array.coords["year"].values.tolist()) self.scope = scope self.scenario = scenario if background_configuration is None: self.background_configuration = {"country": "RER"} else: self.background_configuration = background_configuration if "country" not in self.background_configuration: self.background_configuration["country"] = "RER" if "energy storage" not in self.background_configuration: self.background_configuration["energy storage"] = { "electric": {"type":"NMC", "origin":"CN"} } else: if "electric" not in self.background_configuration["energy storage"]: self.background_configuration["energy storage"]["electric"] = {"type":"NMC", "origin":"CN"} else: if "origin" not in self.background_configuration["energy storage"]["electric"]: self.background_configuration["energy storage"]["electric"]["origin"] = "CN" if "type" not in self.background_configuration["energy storage"]["electric"]: self.background_configuration["energy storage"]["electric"]["type"] = "NMC" array = array.sel( powertrain=self.scope["powertrain"], year=self.scope["year"], size=self.scope["size"], ) self.array = array.stack(desired=["size", "powertrain", "year"]) self.iterations = len(array.value.values) self.number_of_cars = ( len(self.scope["size"]) * len(self.scope["powertrain"]) * len(self.scope["year"]) ) self.array_inputs = { x: i for i, x in enumerate(list(self.array.parameter.values), 0) } self.array_powertrains = { x: i for i, x in enumerate(list(self.array.powertrain.values), 0) } self.A = self.get_A_matrix() self.inputs = self.get_dict_input() self.add_additional_activities() self.rev_inputs = self.get_rev_dict_input() self.index_cng = [self.inputs[i] for i in self.inputs if "ICEV-g" in i[0]] self.index_combustion_wo_cng = [ self.inputs[i] for i in self.inputs if any( ele in i[0] for ele in ["ICEV-p", "HEV-p", "PHEV-p", "ICEV-d", "PHEV-d", "HEV-d"] ) ] self.index_diesel = [self.inputs[i] for i in self.inputs if "ICEV-d" in i[0]] self.index_all_petrol = [ self.inputs[i] for i in self.inputs if any(ele in i[0] for ele in ["ICEV-p", "HEV-p", "PHEV-p"]) ] self.index_petrol = [self.inputs[i] for i in self.inputs if "ICEV-p" in i[0]] self.index_hybrid = [ self.inputs[i] for i in self.inputs if any(ele in i[0] for ele in ["HEV-p", "HEV-d"]) ] self.index_plugin_hybrid = [ self.inputs[i] for i in self.inputs if "PHEV" in i[0] ] self.index_fuel_cell = [self.inputs[i] for i in self.inputs if "FCEV" in i[0]] self.index_emissions = [ self.inputs[i] for i in self.inputs if "air" in i[1][0] and len(i[1]) > 1 and i[0] not in [ "Carbon dioxide, fossil", "Carbon monoxide, non-fossil", "Methane, non-fossil", "Particulates, > 10 um", ] ] self.map_non_fuel_emissions = { ( "Methane, fossil", ("air", "non-urban air or from high stacks"), "kilogram", ): "Methane direct emissions, suburban", ( "Methane, fossil", ("air", "low population density, long-term"), "kilogram", ): "Methane direct emissions, rural", ( "Lead", ("air", "non-urban air or from high stacks"), "kilogram", ): "Lead direct emissions, suburban", ( "Ammonia", ("air", "non-urban air or from high stacks"), "kilogram", ): "Ammonia direct emissions, suburban", ( "NMVOC, non-methane volatile organic compounds, unspecified origin", ("air", "urban air close to ground"), "kilogram", ): "NMVOC direct emissions, urban", ( "PAH, polycyclic aromatic hydrocarbons", ("air", "urban air close to ground"), "kilogram", ): "Hydrocarbons direct emissions, urban", ( "Dinitrogen monoxide", ("air", "low population density, long-term"), "kilogram", ): "Dinitrogen oxide direct emissions, rural", ( "Nitrogen oxides", ("air", "urban air close to ground"), "kilogram", ): "Nitrogen oxides direct emissions, urban", ( "Ammonia", ("air", "urban air close to ground"), "kilogram", ): "Ammonia direct emissions, urban", ( "Particulates, < 2.5 um", ("air", "non-urban air or from high stacks"), "kilogram", ): "Particulate matters direct emissions, suburban", ( "Carbon monoxide, fossil", ("air", "urban air close to ground"), "kilogram", ): "Carbon monoxide direct emissions, urban", ( "Nitrogen oxides", ("air", "low population density, long-term"), "kilogram", ): "Nitrogen oxides direct emissions, rural", ( "NMVOC, non-methane volatile organic compounds, unspecified origin", ("air", "non-urban air or from high stacks"), "kilogram", ): "NMVOC direct emissions, suburban", ( "Benzene", ("air", "non-urban air or from high stacks"), "kilogram", ): "Benzene direct emissions, suburban", ( "Ammonia", ("air", "low population density, long-term"), "kilogram", ): "Ammonia direct emissions, rural", ( "Sulfur dioxide", ("air", "low population density, long-term"), "kilogram", ): "Sulfur dioxide direct emissions, rural", ( "NMVOC, non-methane volatile organic compounds, unspecified origin", ("air", "low population density, long-term"), "kilogram", ): "NMVOC direct emissions, rural", ( "Particulates, < 2.5 um", ("air", "urban air close to ground"), "kilogram", ): "Particulate matters direct emissions, urban", ( "Sulfur dioxide", ("air", "urban air close to ground"), "kilogram", ): "Sulfur dioxide direct emissions, urban", ( "Dinitrogen monoxide", ("air", "non-urban air or from high stacks"), "kilogram", ): "Dinitrogen oxide direct emissions, suburban", ( "Carbon monoxide, fossil", ("air", "low population density, long-term"), "kilogram", ): "Carbon monoxide direct emissions, rural", ( "Methane, fossil", ("air", "urban air close to ground"), "kilogram", ): "Methane direct emissions, urban", ( "Carbon monoxide, fossil", ("air", "non-urban air or from high stacks"), "kilogram", ): "Carbon monoxide direct emissions, suburban", ( "Lead", ("air", "urban air close to ground"), "kilogram", ): "Lead direct emissions, urban", ( "Particulates, < 2.5 um", ("air", "low population density, long-term"), "kilogram", ): "Particulate matters direct emissions, rural", ( "Sulfur dioxide", ("air", "non-urban air or from high stacks"), "kilogram", ): "Sulfur dioxide direct emissions, suburban", ( "Benzene", ("air", "low population density, long-term"), "kilogram", ): "Benzene direct emissions, rural", ( "Nitrogen oxides", ("air", "non-urban air or from high stacks"), "kilogram", ): "Nitrogen oxides direct emissions, suburban", ( "Lead", ("air", "low population density, long-term"), "kilogram", ): "Lead direct emissions, rural", ( "Benzene", ("air", "urban air close to ground"), "kilogram", ): "Benzene direct emissions, urban", ( "PAH, polycyclic aromatic hydrocarbons", ("air", "low population density, long-term"), "kilogram", ): "Hydrocarbons direct emissions, rural", ( "PAH, polycyclic aromatic hydrocarbons", ("air", "non-urban air or from high stacks"), "kilogram", ): "Hydrocarbons direct emissions, suburban", ( "Dinitrogen monoxide", ("air", "urban air close to ground"), "kilogram", ): "Dinitrogen oxide direct emissions, urban", } self.index_noise = [self.inputs[i] for i in self.inputs if "noise" in i[0]] self.list_cat, self.split_indices = self.get_split_indices() self.bs = BackgroundSystemModel() def __getitem__(self, key): """ Make class['foo'] automatically filter for the parameter 'foo' Makes the model code much cleaner :param key: Parameter name :type key: str :return: `array` filtered after the parameter selected """ return self.temp_array.sel(parameter=key) def get_results_table(self, method, level, split, sensitivity=False): """ Format an xarray.DataArray array to receive the results. :param method: impact assessment method. Only "ReCiPe" method available at the moment. :param level: "midpoint" or "endpoint" impact assessment level. Only "midpoint" available at the moment. :param split: "components" or "impact categories". Split by impact categories only applicable when "endpoint" level is applied. :return: xarrray.DataArray """ if split == "components": cat = [ "direct", "energy chain", "maintenance", "glider", "EoL", "powertrain", "energy storage", "road", ] dict_impact_cat = self.get_dict_impact_categories() if sensitivity == False: response = xr.DataArray( np.zeros( ( self.B.shape[1], len(self.scope["size"]), len(self.scope["powertrain"]), len(self.scope["year"]), len(cat), self.iterations, ) ), coords=[ dict_impact_cat[method][level], self.scope["size"], self.scope["powertrain"], self.scope["year"], cat,
np.arange(0, self.iterations)
numpy.arange
import numpy as np import h5py as h5 import ctypes as ct import os from scipy import fft, ifft from scipy.interpolate import interp1d from control import forced_response, TransferFunction import sharpy.utils.cout_utils as cout import sharpy.utils.generator_interface as generator_interface import sharpy.utils.settings as settings import sharpy.utils.solver_interface as solver_interface from sharpy.utils.constants import deg2rad import sharpy.utils.h5utils as h5utils import sharpy.utils.algebra as algebra def compute_xf_zf(hf, vf, l, w, EA, cb): """ Fairlead location (xf, zf) computation """ root1, root2, ln1, ln2, lb = rename_terms(vf, hf, w, l) # Define if there is part of the mooring line on the bed if lb <= 0: nobed = True else: nobed = False # Compute the position of the fairlead if nobed: xf = hf/w*(ln1 - ln2) + hf*l/EA zf = hf/w*(root1 - root2) + 1./EA*(vf*l-w*l**2/2) else: xf = lb + hf/w*ln1 + hf*l/EA if not cb == 0.: xf += cb*w/2/EA*(-lb**2 + (lb - hf/cb/w)*np.maximum((lb - hf/cb/w), 0)) zf = hf/w*(root1 - 1) + vf**2/2/EA/w return xf, zf def compute_jacobian(hf, vf, l, w, EA, cb): """ Analytical computation of the Jacobian of equations in function compute_xf_zf """ root1, root2, ln1, ln2, lb = rename_terms(vf, hf, w, l) # Compute their deivatives der_root1_hf = 0.5*(1. + (vf/hf)**2)**(-0.5)*(2*vf/hf*(-vf/hf/hf)) der_root1_vf = 0.5*(1. + (vf/hf)**2)**(-0.5)*(2*vf/hf/hf) der_root2_hf = 0.5*(1. + ((vf - w*l)/hf)**2)**(-0.5)*(2.*(vf - w*l)/hf*(-(vf - w*l)/hf/hf)) der_root2_vf = 0.5*(1. + ((vf - w*l)/hf)**2)**(-0.5)*(2.*(vf - w*l)/hf/hf) der_ln1_hf = 1./(vf/hf + root1)*(vf/hf/hf + der_root1_hf) der_ln1_vf = 1./(vf/hf + root1)*(1./hf + der_root1_vf) der_ln2_hf = 1./((vf - w*l)/hf + root2)*(-(vf - w*l)/hf/hf + der_root2_hf) der_ln2_vf = 1./((vf - w*l)/hf + root2)*(1./hf + der_root2_vf) der_lb_hf = 0. der_lb_vf = -1./w # Define if there is part of the mooring line on the bed if lb <= 0: nobed = True else: nobed = False # Compute the Jacobian if nobed: der_xf_hf = 1./w*(ln1 - ln2) + hf/w*(der_ln1_hf + der_ln2_hf) + l/EA der_xf_vf = hf/w*(der_ln1_vf + der_ln2_vf) der_zf_hf = 1./w*(root1 - root2) + hf/w*(der_root1_hf - der_root2_hf) der_zf_vf = hf/w*(der_root1_vf - der_root2_vf) + 1./EA*l else: der_xf_hf = der_lb_hf + 1./w*ln1 + hf/w*der_ln1_hf + l/EA if not cb == 0.: arg1_max = l - vf/w - hf/cb/w if arg1_max > 0.: der_xf_hf += cb*w/2/EA*(2*(arg1_max)*(-1/cb/w)) der_xf_vf = der_lb_vf + hf/w*der_ln1_vf + cb*w/2/EA*(-2.*lb*der_lb_vf) if not cb == 0.: arg1_max = l - vf/w - hf/cb/w if arg1_max > 0.: der_xf_vf += cb*w/2/EA*(2.*(lb - hf/cb/w)*der_lb_vf) der_zf_hf = 1/w*(root1 - 1) + hf/w*der_root1_hf der_zf_vf = hf/w*der_root1_vf + vf/EA/w J = np.array([[der_xf_hf, der_xf_vf],[der_zf_hf, der_zf_vf]]) return J def rename_terms(vf, hf, w, l): """ Rename some terms for convenience """ root1 = np.sqrt(1. + (vf/hf)**2) root2 = np.sqrt(1. + ((vf - w*l)/hf)**2) ln1 = np.log(vf/hf + root1) ln2 = np.log((vf - w*l)/hf + root2) lb = l - vf/w return root1, root2, ln1, ln2, lb def quasisteady_mooring(xf, zf, l, w, EA, cb, hf0=None, vf0=None): """ Computation of the forces generated by the mooring system It performs a Newton-Raphson iteration based on the known equations in compute_xf_zf function and the Jacobian """ # Initialise guess for hf0 and vf0 if xf == 0: lambda0 = 1e6 elif np.sqrt(xf**2 + zf**2) > l: lambda0 = 0.2 else: lambda0 = np.sqrt(3*((l**2 - zf**2)/xf**2 - 1)) if hf0 is None: hf0 = np.abs(w*xf/2/lambda0) if vf0 is None: vf0 = w/2*(zf/np.tanh(lambda0) + l) # Compute the solution through Newton-Raphson iteration hf_est = hf0 + 0. vf_est = vf0 + 0. xf_est, zf_est = compute_xf_zf(hf_est, vf_est, l, w, EA, cb) # print("initial: ", xf_est, zf_est) tol = 1e-6 error = 2*tol max_iter = 10000 it = 0 while ((error > tol) and (it < max_iter)): J_est = compute_jacobian(hf_est, vf_est, l, w, EA, cb) inv_J_est = np.linalg.inv(J_est) hf_est += inv_J_est[0, 0]*(xf - xf_est) + inv_J_est[0, 1]*(zf - zf_est) vf_est += inv_J_est[1, 0]*(xf - xf_est) + inv_J_est[1, 1]*(zf - zf_est) # hf += (xf - xf_est)/J[0, 0] + (zf - zf_est)/J[1, 0] # vf += (xf - xf_est)/J[0, 1] + (zf - zf_est)/J[1, 1] xf_est, zf_est = compute_xf_zf(hf_est, vf_est, l, w, EA, cb) error = np.maximum(np.abs(xf - xf_est), np.abs(zf - zf_est)) # print(error) it += 1 if ((it == max_iter) and (error > tol)): cout.cout_wrap(("Mooring system did not converge. error %f" % error), 4) print("Mooring system did not converge. error %f" % error) return hf_est, vf_est def wave_radiation_damping(K, qdot, it, dt): """ This function computes the wave radiation damping assuming K constant """ qdot_int = np.zeros((6,)) for idof in range(6): qdot_int[idof] = np.trapz(np.arange(0, it + 1, 1)*dt, qdot[0:it, idof]) return np.dot(K, qdot_int) def change_of_to_sharpy(matrix_of): """ Change between frame of reference of OpenFAST and the usual one in SHARPy """ sub_mat = np.array([[0., 0, 1], [0., -1, 0], [1., 0, 0]]) C_of_s = np.zeros((6,6)) C_of_s[0:3, 0:3] = sub_mat C_of_s[3:6, 3:6] = sub_mat matrix_sharpy = np.dot(C_of_s.T, np.dot(matrix_of, C_of_s)) return matrix_sharpy # def interp_1st_dim_matrix(A, vec, value): # # # Make sure vec is ordered in strictly ascending order # if (np.diff(vec) <= 0).any(): # cout.cout_wrap("ERROR: vec should be in strictly increasing order", 4) # if not A.shape[0] == vec.shape[0]: # cout.cout_wrap("ERROR: Incoherent vector and matrix size", 4) # # # Compute the positions to interpolate # if value <= vec[0]: # return A[0, ...] # elif ((value >= vec[-1]) or (value > vec[-2] and np.isinf(vec[-1]))): # return A[-1, ...] # else: # i = 0 # while value > vec[i]: # i += 1 # dist = vec[i] - vec[i - 1] # rel_dist_to_im1 = (value - vec[i - 1])/dist # rel_dist_to_i = (vec[i] - value)/dist # # return A[i - 1, ...]*rel_dist_to_i + A[i, ...]*rel_dist_to_im1 def rfval(num, den, z): """ Evaluate a rational function given by the coefficients of the numerator (num) and denominator (den) at z """ return np.polyval(num, z)/np.polyval(den, z) def matrix_from_rf(dict_rf, w): """ Create a matrix from the rational function approximation of each one of the elements """ H = np.zeros((6, 6)) for i in range(6): for j in range(6): pos = "%d_%d" % (i, j) H[i, j] = rfval(dict_rf[pos]['num'], dict_rf[pos]['den'], w) return H def response_freq_dep_matrix(H, omega_H, q, it_, dt): """ Compute the frequency response of a system with a transfer function depending on the frequency F(t) = H(omega) * q(t) """ it = it_ + 1 omega_fft = np.linspace(0, 1/(2*dt), it//2)[:it//2] fourier_q = fft(q[:it, :], axis=0) fourier_f =
np.zeros_like(fourier_q)
numpy.zeros_like
import numpy as np np.random.seed(1234) from time import time import os # os.environ["CUDA_VISIBLE_DEVICES"]="0" from model import WSTC, f1 from keras.optimizers import SGD from gen import augment, pseudodocs from load_data import load_dataset from gensim.models import word2vec def train_word2vec(sentence_matrix, vocabulary_inv, dataset_name, mode='skipgram', num_features=100, min_word_count=5, context=5): model_dir = './' + dataset_name model_name = "embedding" model_name = os.path.join(model_dir, model_name) if os.path.exists(model_name): embedding_model = word2vec.Word2Vec.load(model_name) print("Loading existing Word2Vec model {}...".format(model_name)) else: num_workers = 15 # Number of threads to run in parallel downsampling = 1e-3 # Downsample setting for frequent words print('Training Word2Vec model...') sentences = [[vocabulary_inv[w] for w in s] for s in sentence_matrix] if mode == 'skipgram': sg = 1 print('Model: skip-gram') elif mode == 'cbow': sg = 0 print('Model: CBOW') embedding_model = word2vec.Word2Vec(sentences, workers=num_workers, sg=sg, size=num_features, min_count=min_word_count, window=context, sample=downsampling) embedding_model.init_sims(replace=True) if not os.path.exists(model_dir): os.makedirs(model_dir) print("Saving Word2Vec model {}".format(model_name)) embedding_model.save(model_name) embedding_weights = {key: embedding_model[word] if word in embedding_model else np.random.uniform(-0.25, 0.25, embedding_model.vector_size) for key, word in vocabulary_inv.items()} return embedding_weights def write_output(write_path, y_pred, perm): invperm = np.zeros(len(perm), dtype='int32') for i,v in enumerate(perm): invperm[v] = i y_pred = y_pred[invperm] with open(os.path.join(write_path, 'out.txt'), 'w') as f: for val in y_pred: f.write(str(val) + '\n') print("Classification results are written in {}".format(os.path.join(write_path, 'out.txt'))) return if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='main', formatter_class=argparse.ArgumentDefaultsHelpFormatter) ### Basic settings ### # dataset selection: AG's News (default) and Yelp Review parser.add_argument('--dataset', default='20news', choices=['agnews', 'yelp', 'nyt', 'arxiv', '20news']) # neural model selection: Convolutional Neural Network (default) and Hierarchical Attention Network parser.add_argument('--model', default='cnn', choices=['cnn', 'rnn']) # weak supervision selection: label surface names (default), class-related keywords and labeled documents parser.add_argument('--sup_source', default='keywords', choices=['labels', 'keywords', 'docs']) # whether ground truth labels are available for evaluation: True (default), False parser.add_argument('--with_evaluation', default='True', choices=['True', 'False']) ### Training settings ### # mini-batch size for both pre-training and self-training: 256 (default) parser.add_argument('--batch_size', default=256, type=int) # maximum self-training iterations: 5000 (default) parser.add_argument('--maxiter', default=5e3, type=int) # pre-training epochs: None (default) parser.add_argument('--pretrain_epochs', default=None, type=int) # self-training update interval: None (default) parser.add_argument('--update_interval', default=None, type=int) ### Hyperparameters settings ### # background word distribution weight (alpha): 0.2 (default) parser.add_argument('--alpha', default=0.2, type=float) # number of generated pseudo documents per class (beta): 500 (default) parser.add_argument('--beta', default=500, type=int) # keyword vocabulary size (gamma): 50 (default) parser.add_argument('--gamma', default=50, type=int) # self-training stopping criterion (delta): None (default) parser.add_argument('--delta', default=0.1, type=float) ### Case study settings ### # trained model directory: None (default) parser.add_argument('--trained_weights', default=None) args = parser.parse_args() print(args) alpha = args.alpha beta = args.beta gamma = args.gamma delta = args.delta word_embedding_dim = 100 if args.model == 'cnn': if args.dataset == 'agnews': update_interval = 50 pretrain_epochs = 20 self_lr = 1e-3 max_sequence_length = 100 else: update_interval = 50 pretrain_epochs = 30 self_lr = 1e-4 max_sequence_length = 500 decay = 1e-6 elif args.model == 'rnn': if args.dataset == 'agnews': update_interval = 50 pretrain_epochs = 100 self_lr = 1e-3 sent_len = 45 doc_len = 10 elif args.dataset == 'yelp': update_interval = 100 pretrain_epochs = 200 self_lr = 1e-4 sent_len = 30 doc_len = 40 decay = 1e-5 max_sequence_length = [doc_len, sent_len] if args.update_interval is not None: update_interval = args.update_interval if args.pretrain_epochs is not None: pretrain_epochs = args.pretrain_epochs if args.with_evaluation == 'True': with_evaluation = True else: with_evaluation = False if args.sup_source == 'labels' or args.sup_source == 'keywords': x, y, word_counts, vocabulary, vocabulary_inv_list, len_avg, len_std, word_sup_list, perm = \ load_dataset(args.dataset, model=args.model, sup_source=args.sup_source, with_evaluation=with_evaluation, truncate_len=max_sequence_length) sup_idx = None elif args.sup_source == 'docs': x, y, word_counts, vocabulary, vocabulary_inv_list, len_avg, len_std, word_sup_list, sup_idx, perm = \ load_dataset(args.dataset, model=args.model, sup_source=args.sup_source, with_evaluation=with_evaluation, truncate_len=max_sequence_length) np.random.seed(1234) vocabulary_inv = {key: value for key, value in enumerate(vocabulary_inv_list)} vocab_sz = len(vocabulary_inv) n_classes = len(word_sup_list) if args.model == 'cnn': if x.shape[1] < max_sequence_length: max_sequence_length = x.shape[1] x = x[:, :max_sequence_length] sequence_length = max_sequence_length elif args.model == 'rnn': if x.shape[1] < doc_len: doc_len = x.shape[1] if x.shape[2] < sent_len: sent_len = x.shape[2] x = x[:, :doc_len, :sent_len] sequence_length = [doc_len, sent_len] print("\n### Input preparation ###") embedding_weights = train_word2vec(x, vocabulary_inv, args.dataset) embedding_mat = np.array([np.array(embedding_weights[word]) for word in vocabulary_inv]) wstc = WSTC(input_shape=x.shape, n_classes=n_classes, y=y, model=args.model, vocab_sz=vocab_sz, embedding_matrix=embedding_mat, word_embedding_dim=word_embedding_dim) if args.trained_weights is None: print("\n### Phase 1: vMF distribution fitting & pseudo document generation ###") word_sup_array = np.array([np.array([vocabulary[word] for word in word_class_list]) for word_class_list in word_sup_list]) total_counts = sum(word_counts[ele] for ele in word_counts) total_counts -= word_counts[vocabulary_inv_list[0]] background_array = np.zeros(vocab_sz) for i in range(1,vocab_sz): background_array[i] = word_counts[vocabulary_inv[i]]/total_counts seed_docs, seed_label = pseudodocs(word_sup_array, gamma, background_array, sequence_length, len_avg, len_std, beta, alpha, vocabulary_inv, embedding_mat, args.model, './results/{}/{}/phase1/'.format(args.dataset, args.model)) if args.sup_source == 'docs': if args.model == 'cnn': num_real_doc = len(sup_idx.flatten()) * 10 elif args.model == 'rnn': num_real_doc = len(sup_idx.flatten()) real_seed_docs, real_seed_label = augment(x, sup_idx, num_real_doc) seed_docs =
np.concatenate((seed_docs, real_seed_docs), axis=0)
numpy.concatenate
# -*- coding: utf-8 -*- """ @author: <NAME> """ import math import random import warnings import numpy as np import tensorflow as tf try: tf.train.AdamOptimizer except AttributeError: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import sklearn.metrics #TODO Clean this # Animesh commented this line out from gcn.gcn_datasets import GCNDataset # from gcn.gcn_datasets import GCNDataset try: from . import gcn_datasets except ImportError: import gcn_datasets from common.trace import traceln def init_glorot(shape, name=None): """Glorot & Bengio (AISTATS 2010) init.""" init_range = np.sqrt(6.0/(shape[0]+shape[1])) initial = tf.random_uniform(shape, minval=-init_range, maxval=init_range, dtype=tf.float32) return tf.Variable(initial, name=name) def init_normal(shape,stddev,name=None): initial=tf.random_normal(shape, mean=0.0, stddev=stddev, dtype=np.float32) return tf.Variable(initial, name=name) class MultiGraphNN(object): ''' Abstract Class for a Neural Net learned on a graph list ''' def train_lG(self,session,gcn_graph_train): ''' Train an a list of graph :param session: :param gcn_graph_train: :return: ''' for g in gcn_graph_train: self.train(session, g, n_iter=1) def test_lG(self, session, gcn_graph_test, verbose=True): ''' Test on a list of Graph :param session: :param gcn_graph_test: :return: ''' acc_tp = np.float64(0.0) nb_node_total = np.float64(0.0) mean_acc_test = [] for g in gcn_graph_test: acc = self.test(session, g, verbose=False) mean_acc_test.append(acc) nb_node_total += g.X.shape[0] acc_tp += acc * g.X.shape[0] g_acc = np.mean(mean_acc_test) node_acc = acc_tp / nb_node_total if verbose: traceln('\t -- Mean Graph Accuracy', '%.4f' % g_acc) traceln('\t -- Mean Node Accuracy', '%.4f' % node_acc) return g_acc,node_acc def predict_lG(self,session,gcn_graph_predict,verbose=True): ''' Predict for a list of graph :param session: :param gcn_graph_test: :return: ''' lY_pred=[] for g in gcn_graph_predict: gY_pred = self.predict(session, g, verbose=verbose) lY_pred.append(gY_pred) return lY_pred def predict_prob_lG(self, session, l_gcn_graph, verbose=True): ''' Predict Probabilities for a list of graph :param session: :param l_gcn_graph: :return a list of predictions ''' lY_pred = [] for g in l_gcn_graph: gY_pred = self.prediction_prob(session, g, verbose=verbose) lY_pred.append(gY_pred) return lY_pred def get_nb_params(self): total_parameters = 0 for variable in tf.trainable_variables(): # shape is an array of tf.Dimension shape = variable.get_shape() #traceln(shape) #traceln(len(shape)) variable_parameters = 1 for dim in shape: #traceln(dim) variable_parameters *= dim.value #traceln(variable_parameters) total_parameters += variable_parameters return total_parameters def train_with_validation_set(self,session,graph_train,graph_val,max_iter,eval_iter=10,patience=7,graph_test=None,save_model_path=None): ''' Implements training with a validation set The model is trained and accuracy is measure on a validation sets In addition, the model can be save and one can perform early stopping thanks to the patience argument :param session: :param graph_train: the list of graph to train on :param graph_val: the list of graph used for validation :param max_iter: maximum number of epochs :param eval_iter: evaluate every eval_iter :param patience: stopped training if accuracy is not improved on the validation set after patience_value :param graph_test: Optional. If a test set is provided, then accuracy on the test set is reported :param save_model_path: checkpoints filename to save the model. :return: A Dictionary with training accuracies, validations accuracies and test accuracies if any, and the Wedge parameters ''' best_val_acc=0.0 wait=0 stop_training=False stopped_iter=max_iter train_accuracies=[] validation_accuracies=[] test_accuracies=[] conf_mat=[] start_monitoring_val_acc=False for i in range(max_iter): if stop_training: break if i % eval_iter == 0: traceln('\n -- Epoch ', i,' Patience ', wait) _, tr_acc = self.test_lG(session, graph_train, verbose=False) traceln(' Train Acc ', '%.4f' % tr_acc) train_accuracies.append(tr_acc) _, node_acc = self.test_lG(session, graph_val, verbose=False) traceln(' -- Valid Acc ', '%.4f' % node_acc) validation_accuracies.append(node_acc) if save_model_path: save_path = self.saver.save(session, save_model_path, global_step=i) if graph_test: test_graph_acc,test_acc = self.test_lG(session, graph_test, verbose=False) traceln(' -- Test Acc ', '%.4f' % test_acc,' %.4f' % test_graph_acc) test_accuracies.append(test_acc) if node_acc > best_val_acc: best_val_acc = node_acc wait = 0 else: if wait >= patience: stopped_iter = i stop_training = True wait += 1 else: random.shuffle(graph_train) for g in graph_train: self.train(session, g, n_iter=1) #Final Save traceln(' -- Stopped Model Training after : ',stopped_iter) traceln(' -- Validation Accuracies : ',['%.4f' % (100*sx) for sx in validation_accuracies]) #traceln('Final Training Accuracy') _,node_train_acc = self.test_lG(session, graph_train) traceln(' -- Final Training Accuracy','%.4f' % node_train_acc) traceln(' -- Final Valid Acc') self.test_lG(session, graph_val) R = {} R['train_acc'] = train_accuracies R['val_acc'] = validation_accuracies R['test_acc'] = test_accuracies R['stopped_iter'] = stopped_iter R['confusion_matrix'] = conf_mat #R['W_edge'] =self.get_Wedge(session) if graph_test: _, final_test_acc = self.test_lG(session, graph_test) traceln(' -- Final Test Acc','%.4f' % final_test_acc) R['final_test_acc'] = final_test_acc val = R['val_acc'] traceln(' -- Validation scores', val) epoch_index = np.argmax(val) traceln(' -- Best performance on val set: Epoch', epoch_index,val[epoch_index]) traceln(' -- Test Performance from val', test_accuracies[epoch_index]) return R class EnsembleGraphNN(MultiGraphNN): ''' An ensemble of Graph NN Models Construction Outside of class ''' def __init__(self, graph_nn_models): self.models = graph_nn_models def train_lG(self, session, gcn_graph_train): ''' Train an a list of graph :param session: :param gcn_graph_train: :return: ''' for m in self.models: m.train_lG(session, gcn_graph_train) def test_lG(self, session, gcn_graph_test, verbose=True): ''' Test on a list of Graph :param session: :param gcn_graph_test: :return: ''' acc_tp = np.float64(0.0) nb_node_total = np.float64(0.0) mean_acc_test = [] Y_pred=self.predict_lG(session,gcn_graph_test) Y_true =[g.Y for g in gcn_graph_test] Y_pred_node = np.vstack(Y_pred) node_acc = sklearn.metrics.accuracy_score(np.argmax(np.vstack(Y_true),axis=1),np.argmax(Y_pred_node,axis=1)) g_acc =-1 #node_acc = acc_tp / nb_node_total if verbose: traceln(' -- Mean Graph Accuracy', '%.4f' % g_acc) traceln(' -- Mean Node Accuracy', '%.4f' % node_acc) return g_acc, node_acc def predict_lG(self, session, gcn_graph_predict, verbose=True): ''' Predict for a list of graph :param session: :param gcn_graph_test: :return: ''' lY_pred = [] #Seem Very Slow ... Here #I should predict for all graph nb_models = float(len(self.models)) for g in gcn_graph_predict: #Average Proba Here g_pred=[] for m in self.models: gY_pred = m.prediction_prob(session, g, verbose=verbose) g_pred.append(gY_pred) #traceln(gY_pred) lY_pred.append(np.sum(g_pred,axis=0)/nb_models) return lY_pred def train_with_validation_set(self, session, graph_train, graph_val, max_iter, eval_iter=10, patience=7, graph_test=None, save_model_path=None): raise NotImplementedError class Logit(MultiGraphNN): ''' Logistic Regression for MultiGraph ''' def __init__(self,node_dim,nb_classes,learning_rate=0.1,mu=0.1,node_indim=-1): self.node_dim=node_dim self.n_classes=nb_classes self.learning_rate=learning_rate self.activation=tf.nn.relu self.mu=mu self.optalg = tf.train.AdamOptimizer(self.learning_rate) self.stack_instead_add=False self.train_Wn0=True if node_indim==-1: self.node_indim=self.node_dim else: self.node_indim=node_indim def create_model(self): ''' Create the tensorflow graph for the model :return: ''' self.nb_node = tf.placeholder(tf.int32,(), name='nb_node') self.node_input = tf.placeholder(tf.float32, [None, self.node_dim], name='X_') self.y_input = tf.placeholder(tf.float32, [None, self.n_classes], name='Y') self.Wnode_layers=[] self.Bnode_layers=[] self.W_classif = tf.Variable(tf.random_uniform((self.node_indim, self.n_classes), -1.0 / math.sqrt(self.node_dim), 1.0 / math.sqrt(self.node_dim)), name="W_classif",dtype=np.float32) self.B_classif = tf.Variable(tf.zeros([self.n_classes]), name='B_classif',dtype=np.float32) self.logits =tf.add(tf.matmul(self.node_input,self.W_classif),self.B_classif) cross_entropy_source = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.y_input) # Global L2 Regulization self.loss = tf.reduce_mean(cross_entropy_source) + self.mu * tf.nn.l2_loss(self.W_classif) self.pred = tf.argmax(tf.nn.softmax(self.logits), 1) self.correct_prediction = tf.equal(self.pred, tf.argmax(self.y_input, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) self.grads_and_vars = self.optalg.compute_gradients(self.loss) self.train_step = self.optalg.apply_gradients(self.grads_and_vars) # Add ops to save and restore all the variables. self.init = tf.global_variables_initializer() self.saver= tf.train.Saver(max_to_keep=5) traceln(' -- Number of Params: ', self.get_nb_params()) def save_model(self, session, model_filename): traceln(" -- Saving Model") save_path = self.saver.save(session, model_filename) def restore_model(self, session, model_filename): self.saver.restore(session, model_filename) traceln(" -- Model restored.") def train(self,session,graph,verbose=False,n_iter=1): ''' Apply a train operation, ie sgd step for a single graph :param session: :param graph: a graph from GCN_Dataset :param verbose: :param n_iter: (default 1) number of steps to perform sgd for this graph :return: ''' #TrainEvalSet Here for i in range(n_iter): #traceln('Train',X.shape,EA.shape) feed_batch = { self.nb_node: graph.X.shape[0], self.node_input: graph.X, self.y_input: graph.Y, } Ops =session.run([self.train_step,self.loss], feed_dict=feed_batch) if verbose: traceln(' -- Training Loss',Ops[1]) def test(self,session,graph,verbose=True): ''' Test return the loss and accuracy for the graph passed as argument :param session: :param graph: :param verbose: :return: ''' feed_batch = { self.nb_node: graph.X.shape[0], self.node_input: graph.X, self.y_input: graph.Y, } Ops =session.run([self.loss,self.accuracy], feed_dict=feed_batch) if verbose: traceln(' -- Test Loss',Ops[0],' Test Accuracy:',Ops[1]) return Ops[1] def predict(self,session,graph,verbose=True): ''' Does the prediction :param session: :param graph: :param verbose: :return: ''' feed_batch = { self.nb_node: graph.X.shape[0], self.node_input: graph.X, } Ops = session.run([self.pred], feed_dict=feed_batch) if verbose: traceln(' -- Got Prediction for:',Ops[0].shape) return Ops[0] class EdgeConvNet(MultiGraphNN): ''' Edge-GCN Model for a graph list ''' #Variable ignored by the set_learning_options _setter_variables={ "node_dim":True,"edge_dim":True,"nb_class":True, "num_layers":True,"lr":True,"mu":True, "node_indim":True,"nconv_edge":True, "nb_iter":True,"ratio_train_val":True} def __init__(self,node_dim,edge_dim,nb_classes,num_layers=1,learning_rate=0.1,mu=0.1,node_indim=-1,nconv_edge=1, ): self.node_dim=node_dim self.edge_dim=edge_dim self.n_classes=nb_classes self.num_layers=num_layers self.learning_rate=learning_rate self.activation=tf.nn.tanh #self.activation=tf.nn.relu self.mu=mu self.optalg = tf.train.AdamOptimizer(self.learning_rate) self.stack_instead_add=False self.nconv_edge=nconv_edge self.residual_connection=False#deprecated self.shared_We = False#deprecated self.optim_mode=0 #deprecated self.init_fixed=False #ignore --for test purpose self.logit_convolve=False#ignore --for test purpose self.train_Wn0=True #ignore --for test purpose self.dropout_rate_edge_feat= 0.0 self.dropout_rate_edge = 0.0 self.dropout_rate_node = 0.0 self.dropout_rate_H = 0.0 self.use_conv_weighted_avg=False self.use_edge_mlp=False self.edge_mlp_dim = 5 self.sum_attention=False if node_indim==-1: self.node_indim=self.node_dim else: self.node_indim=node_indim def set_learning_options(self,dict_model_config): """ Set all learning options that not directly accessible from the constructor :param kwargs: :return: """ #traceln( -- dict_model_config) for attrname,val in dict_model_config.items(): #We treat the activation function differently as we can not pickle/serialiaze python function if attrname=='activation_name': if val=='relu': self.activation=tf.nn.relu elif val=='tanh': self.activation=tf.nn.tanh else: raise Exception('Invalid Activation Function') if attrname=='stack_instead_add' or attrname=='stack_convolutions': self.stack_instead_add=val if attrname not in self._setter_variables: try: traceln(' -- set ',attrname,val) setattr(self,attrname,val) except AttributeError: warnings.warn("Ignored options for ECN"+attrname+':'+val) def fastconvolve(self,Wedge,Bedge,F,S,T,H,nconv,Sshape,nb_edge,dropout_p_edge,dropout_p_edge_feat, stack=True, use_dropout=False,zwe=None,use_weighted_average=False, use_edge_mlp=False,Wedge_mlp=None,Bedge_mlp=None,use_attention=False): ''' :param Wedge: Parameter matrix for edge convolution, with hape (n_conv_edge,edge_dim) :param F: The Edge Feature Matrix :param S: the Source (Node,Edge) matrix in sparse format :param T: the Target (Node,Edge) matrix in sparse format :param H: The current node layer :param nconv: The numbder of edge convolutions. :param Sshape: The shapeof matrix S, and T :param nb_edge: The number of edges :param stack: whether to concat all the convolutions or add them :return: a tensor P of shape ( nconv, node_dim) if stack else P is [node_dim] ''' #F is n_edge time nconv #TODO if stack is False we could simply sum,the convolutions and do S diag(sum)T #It would be faster #Drop convolution individually t if use_dropout: #if False: conv_dropout_ind = tf.nn.dropout(tf.ones([nconv], dtype=tf.float32), 1 - dropout_p_edge_feat) ND_conv = tf.diag(conv_dropout_ind) FW_ = tf.matmul(F, Wedge, transpose_b=True) + Bedge FW = tf.matmul(FW_,ND_conv) elif use_edge_mlp: #Wedge mlp is a shared variable across layer which project edge in a lower dim FW0 = tf.nn.tanh( tf.matmul(F,Wedge_mlp) +Bedge_mlp ) traceln(' -- FW0', FW0.get_shape()) FW = tf.matmul(FW0, Wedge, transpose_b=True) + Bedge traceln(' -- FW', FW.get_shape()) else: FW = tf.matmul(F, Wedge, transpose_b=True) + Bedge traceln(' -- FW', FW.get_shape()) self.conv =tf.unstack(FW,axis=1) Cops=[] alphas=[] Tr = tf.SparseTensor(indices=T, values=tf.ones([nb_edge], dtype=tf.float32), dense_shape=[Sshape[1],Sshape[0]]) Tr = tf.sparse_reorder(Tr) TP = tf.sparse_tensor_dense_matmul(Tr,H) if use_attention: attn_params = va = init_glorot([2, int(self.node_dim)]) for i, cw in enumerate(self.conv): #SD= tf.SparseTensor(indices=S,values=cw,dense_shape=[nb_node,nb_edge]) #Warning, pay attention to the ordering of edges if use_weighted_average: cw = zwe[i]*cw if use_dropout: cwd = tf.nn.dropout(cw, 1.0 -dropout_p_edge) SD = tf.SparseTensor(indices=S, values=cwd, dense_shape=Sshape) else: SD = tf.SparseTensor(indices=S, values=cw, dense_shape=Sshape) SD =tf.sparse_reorder(SD) #Does this dropout depends on the convolution ? #if use_dropout: # SD = tf.nn.dropout(SD, 1.0 - dropout_p_edge) Hi =tf.sparse_tensor_dense_matmul(SD,TP) Cops.append(Hi) if use_attention: attn_val = tf.reduce_sum(tf.multiply(attn_params[0], H) + tf.multiply(attn_params[1], Hi), axis=1) alphas.append(attn_val) if stack is True: #If stack we concatenate all the different convolutions P=tf.concat(Cops,1) elif use_attention: alphas_s = tf.stack(alphas, axis=1) alphas_l = tf.nn.softmax(tf.nn.leaky_relu(alphas_s)) #Not Clean to use the dropout for the edge feat #Is this dropout necessary Here ? could do without alphas_do =tf.nn.dropout(alphas_l,1 - dropout_p_edge_feat) wC = [tf.multiply(tf.expand_dims(tf.transpose(alphas_do)[i], 1), C) for i, C in enumerate(Cops)] P = tf.add_n(wC) else: #Else we take the mean P=1.0/(tf.cast(nconv,tf.float32))*tf.add_n(Cops) #traceln('p_add_n',P.get_shape()) return P @staticmethod def logitconvolve_fixed(pY,Yt,A_indegree): ''' Tentative Implement of a fixed logit convolve without taking into account edge features ''' #warning we should test that Yt is column normalized pY_Yt = tf.matmul(pY,Yt,transpose_b=True) #TODO A is dense but shoudl be sparse .... P =tf.matmul(A_indegree,pY_Yt) return P def create_model_stack_convolutions(self): #Create All the Variables for i in range(self.num_layers - 1): if i == 0: Wnli = tf.Variable( tf.random_uniform((self.node_dim * self.nconv_edge + self.node_dim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)), name='Wnl', dtype=tf.float32) else: Wnli = tf.Variable( tf.random_uniform((self.node_indim * self.nconv_edge + self.node_indim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)), name='Wnl', dtype=tf.float32) traceln(' -- Wnli shape', Wnli.get_shape()) Bnli = tf.Variable(tf.zeros([self.node_indim]), name='Bnl' + str(i), dtype=tf.float32) Weli = init_glorot([int(self.nconv_edge), int(self.edge_dim)], name='Wel_') # Weli = tf.Variable(tf.random_normal([int(self.nconv_edge), int(self.edge_dim)], mean=0.0, stddev=1.0), # dtype=np.float32, name='Wel_') Beli = tf.Variable(0.01 * tf.ones([self.nconv_edge]), name='Bel' + str(i), dtype=tf.float32) self.Wnode_layers.append(Wnli) self.Bnode_layers.append(Bnli) self.Wed_layers.append(Weli) self.Bed_layers.append(Beli) self.train_var.extend((self.Wnode_layers)) self.train_var.extend((self.Wed_layers)) self.Hnode_layers = [] self.W_classif = tf.Variable( tf.random_uniform((self.node_indim * self.nconv_edge + self.node_indim, self.n_classes), -1.0 / math.sqrt(self.node_dim), 1.0 / math.sqrt(self.node_dim)), name="W_classif", dtype=np.float32) self.B_classif = tf.Variable(tf.zeros([self.n_classes]), name='B_classif', dtype=np.float32) self.train_var.append((self.W_classif)) self.train_var.append((self.B_classif)) self.node_dropout_ind = tf.nn.dropout(tf.ones([self.nb_node], dtype=tf.float32), 1 - self.dropout_p_node) self.ND = tf.diag(self.node_dropout_ind) edge_dropout = self.dropout_rate_edge > 0.0 or self.dropout_rate_edge_feat > 0.0 traceln(' -- Edge Dropout', edge_dropout, self.dropout_rate_edge, self.dropout_rate_edge_feat) if self.num_layers == 1: self.H = self.activation(tf.add(tf.matmul(self.node_input, self.Wnl0), self.Bnl0)) self.hidden_layers = [self.H] traceln(" -- H shape", self.H.get_shape()) P = self.fastconvolve(self.Wel0, self.Bel0, self.F, self.Ssparse, self.Tsparse, self.H, self.nconv_edge, self.Sshape, self.nb_edge, self.dropout_p_edge, self.dropout_p_edge_feat, stack=self.stack_instead_add, use_dropout=edge_dropout) Hp = tf.concat([self.H, P], 1) # Hp= P+self.H Hi = self.activation(Hp) # Hi_shape = Hi.get_shape() # traceln(Hi_shape) self.hidden_layers.append(Hi) elif self.num_layers > 1: if self.dropout_rate_node > 0.0: #H0 = self.activation(tf.matmul(self.ND, tf.add(tf.matmul(self.node_input, self.Wnl0), self.Bnl0))) H0 = tf.matmul(self.ND, tf.add(tf.matmul(self.node_input, self.Wnl0), self.Bnl0)) else: #H0 = self.activation(tf.add(tf.matmul(self.node_input, self.Wnl0), self.Bnl0)) H0 = tf.add(tf.matmul(self.node_input, self.Wnl0), self.Bnl0) self.Hnode_layers.append(H0) # TODO Default to fast convolve but we change update configs, train and test flags P = self.fastconvolve(self.Wel0, self.Bel0, self.F, self.Ssparse, self.Tsparse, H0, self.nconv_edge, self.Sshape, self.nb_edge, self.dropout_p_edge, self.dropout_p_edge_feat, stack=self.stack_instead_add, use_dropout=edge_dropout, ) Hp = tf.concat([H0, P], 1) # TODO add activation Here. self.hidden_layers = [self.activation(Hp)] #self.hidden_layers = [Hp] for i in range(self.num_layers - 1): if self.dropout_rate_H > 0.0: Hi_ = tf.nn.dropout(tf.matmul(self.hidden_layers[-1], self.Wnode_layers[i]) + self.Bnode_layers[i], 1 - self.dropout_p_H) else: Hi_ = tf.matmul(self.hidden_layers[-1], self.Wnode_layers[i]) + self.Bnode_layers[i] if self.residual_connection: Hi_ = tf.add(Hi_, self.Hnode_layers[-1]) self.Hnode_layers.append(Hi_) # traceln('Hi_shape', Hi_.get_shape()) #traceln('Hi prevous shape', self.hidden_layers[-1].get_shape()) P = self.fastconvolve(self.Wed_layers[i], self.Bed_layers[i], self.F, self.Ssparse, self.Tsparse, Hi_, self.nconv_edge, self.Sshape, self.nb_edge, self.dropout_p_edge, self.dropout_p_edge_feat, stack=self.stack_instead_add, use_dropout=edge_dropout, ) Hp = tf.concat([Hi_, P], 1) Hi = self.activation(Hp) self.hidden_layers.append(Hi) def create_model_sum_convolutions(self): #self.Wed_layers.append(Wel0) for i in range(self.num_layers-1): if i==0: # Animesh's code Wnli = tf.Variable(tf.random_uniform((2 * self.node_dim, self.node_indim), #Wnli = tf.Variable(tf.random_uniform((2 * self.node_indim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)), name='Wnl', dtype=tf.float32) else: Wnli =tf.Variable(tf.random_uniform( (2*self.node_indim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)),name='Wnl',dtype=tf.float32) Bnli = tf.Variable(tf.zeros([self.node_indim]), name='Bnl'+str(i),dtype=tf.float32) Weli= init_glorot([int(self.nconv_edge), int(self.edge_dim)], name='Wel_') #Weli = tf.Variable(tf.random_normal([int(self.nconv_edge), int(self.edge_dim)], mean=0.0, stddev=1.0), # dtype=np.float32, name='Wel_') Beli = tf.Variable(0.01*tf.ones([self.nconv_edge]), name='Bel'+str(i),dtype=tf.float32) self.Wnode_layers.append(Wnli) self.Bnode_layers.append(Bnli) self.Wed_layers.append (Weli) self.Bed_layers.append(Beli) self.train_var.extend((self.Wnode_layers)) self.train_var.extend((self.Wed_layers)) self.Hnode_layers=[] self.W_classif = tf.Variable(tf.random_uniform((2*self.node_indim, self.n_classes), -1.0 / math.sqrt(self.node_dim), 1.0 / math.sqrt(self.node_dim)), name="W_classif",dtype=np.float32) self.B_classif = tf.Variable(tf.zeros([self.n_classes]), name='B_classif',dtype=np.float32) self.train_var.append((self.W_classif)) self.train_var.append((self.B_classif)) self.node_dropout_ind = tf.nn.dropout(tf.ones([self.nb_node], dtype=tf.float32), 1 - self.dropout_p_node) self.ND = tf.diag(self.node_dropout_ind) edge_dropout = self.dropout_rate_edge> 0.0 or self.dropout_rate_edge_feat > 0.0 traceln(' -- Edge Dropout',edge_dropout, self.dropout_rate_edge,self.dropout_rate_edge_feat) if self.num_layers==1: self.H = self.activation(tf.add(tf.matmul(self.node_input, self.Wnl0), self.Bnl0)) self.hidden_layers = [self.H] traceln(" -- H shape",self.H.get_shape()) P = self.fastconvolve(self.Wel0,self.Bel0,self.F,self.Ssparse,self.Tsparse,self.H,self.nconv_edge,self.Sshape,self.nb_edge, self.dropout_p_edge,self.dropout_p_edge_feat,stack=self.stack_instead_add,use_dropout=edge_dropout, use_attention=self.sum_attention ) Hp = tf.concat([self.H, P], 1) Hi=self.activation(Hp) self.hidden_layers.append(Hi) elif self.num_layers>1: if self.dropout_rate_node>0.0: H0 = self.activation(tf.matmul(self.ND,tf.add(tf.matmul(self.node_input,self.Wnl0), self.Bnl0))) else: H0 = self.activation(tf.add(tf.matmul(self.node_input,self.Wnl0),self.Bnl0)) self.Hnode_layers.append(H0) #TODO Default to fast convolve but we change update configs, train and test flags P = self.fastconvolve(self.Wel0,self.Bel0, self.F, self.Ssparse, self.Tsparse, H0, self.nconv_edge, self.Sshape,self.nb_edge, self.dropout_p_edge,self.dropout_p_edge_feat, stack=self.stack_instead_add, use_dropout=edge_dropout, use_attention=self.sum_attention ) if self.use_conv_weighted_avg: Hp = self.zH[0] * H0 + P else: Hp = tf.concat([H0, P], 1) #TODO add activation Here. #self.hidden_layers = [self.activation(Hp)] self.hidden_layers = [Hp] for i in range(self.num_layers-1): if self.dropout_rate_H > 0.0: Hi_ = tf.nn.dropout(tf.matmul(self.hidden_layers[-1], self.Wnode_layers[i]) + self.Bnode_layers[i], 1-self.dropout_p_H) else: Hi_ = tf.matmul(self.hidden_layers[-1], self.Wnode_layers[i]) + self.Bnode_layers[i] if self.residual_connection: Hi_= tf.add(Hi_,self.Hnode_layers[-1]) self.Hnode_layers.append(Hi_) #traceln('Hi_shape',Hi_.get_shape()) # traceln('Hi prevous shape',self.hidden_layers[-1].get_shape()) P = self.fastconvolve(self.Wed_layers[i],self.Bed_layers[i], self.F, self.Ssparse, self.Tsparse, Hi_, self.nconv_edge,self.Sshape, self.nb_edge, self.dropout_p_edge,self.dropout_p_edge_feat, stack=self.stack_instead_add, use_dropout=edge_dropout ) Hp = tf.concat([Hi_, P], 1) Hi = self.activation(Hp) self.hidden_layers.append(Hi) def create_model(self): ''' Create the tensorflow graph for the model :return: ''' self.nb_node = tf.placeholder(tf.int32, (), name='nb_node') self.nb_edge = tf.placeholder(tf.int32, (), name='nb_edge') self.node_input = tf.placeholder(tf.float32, [None, self.node_dim], name='X_') self.y_input = tf.placeholder(tf.float32, [None, self.n_classes], name='Y') self.dropout_p_H = tf.placeholder(tf.float32, (), name='dropout_prob_H') self.dropout_p_node = tf.placeholder(tf.float32, (), name='dropout_prob_N') self.dropout_p_edge = tf.placeholder(tf.float32, (), name='dropout_prob_edges') self.dropout_p_edge_feat = tf.placeholder(tf.float32, (), name='dropout_prob_edgefeat') self.S = tf.placeholder(tf.float32, name='S') self.Ssparse = tf.placeholder(tf.int64, name='Ssparse') # indices self.Sshape = tf.placeholder(tf.int64, name='Sshape') # indices self.T = tf.placeholder(tf.float32, [None, None], name='T') self.Tsparse = tf.placeholder(tf.int64, name='Tsparse') self.F = tf.placeholder(tf.float32, [None, None], name='F') std_dev_in = float(1.0 / float(self.node_dim)) self.Wnode_layers = [] self.Bnode_layers = [] self.Wed_layers = [] self.Bed_layers = [] self.zed_layers = [] self.Wedge_mlp_layers = [] # Should Project edge as well ... self.train_var = [] # if self.node_indim!=self.node_dim: # Wnl0 = tf.Variable(tf.random_uniform((self.node_dim, self.node_indim), # -1.0 / math.sqrt(self.node_dim), # 1.0 / math.sqrt(self.node_dim)),name='Wnl0',dtype=tf.float32) # self.Wnl0 = tf.Variable(tf.eye(self.node_dim), name='Wnl0', dtype=tf.float32, trainable=self.train_Wn0) self.Bnl0 = tf.Variable(tf.zeros([self.node_dim]), name='Bnl0', dtype=tf.float32) if self.init_fixed: #For testing Purposes self.Wel0 = tf.Variable(100 * tf.ones([int(self.nconv_edge), int(self.edge_dim)]), name='Wel0', dtype=tf.float32) # self.Wel0 =tf.Variable(tf.random_normal([int(self.nconv_edge),int(self.edge_dim)],mean=0.0,stddev=1.0), dtype=np.float32, name='Wel0') self.Wel0 = init_glorot([int(self.nconv_edge), int(self.edge_dim)], name='Wel0') self.Bel0 = tf.Variable(0.01 * tf.ones([self.nconv_edge]), name='Bel0', dtype=tf.float32) traceln(' -- Wel0', self.Wel0.get_shape()) self.train_var.extend([self.Wnl0, self.Bnl0]) self.train_var.append(self.Wel0) if self.stack_instead_add: self.create_model_stack_convolutions() else: self.create_model_sum_convolutions() self.logits = tf.add(tf.matmul(self.hidden_layers[-1], self.W_classif), self.B_classif) cross_entropy_source = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.y_input) # Global L2 Regulization self.loss = tf.reduce_mean(cross_entropy_source) + self.mu * tf.nn.l2_loss(self.W_classif) self.predict_proba = tf.nn.softmax(self.logits) self.pred = tf.argmax(tf.nn.softmax(self.logits), 1) self.correct_prediction = tf.equal(self.pred, tf.argmax(self.y_input, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) self.grads_and_vars = self.optalg.compute_gradients(self.loss) self.gv_Gn = [] self.train_step = self.optalg.apply_gradients(self.grads_and_vars) # Add ops to save and restore all the variables. self.init = tf.global_variables_initializer() self.saver = tf.train.Saver(max_to_keep=0) traceln(' -- Number of Params: ', self.get_nb_params()) def create_model_old(self): ''' Create the tensorflow graph for the model :return: ''' self.nb_node = tf.placeholder(tf.int32,(), name='nb_node') self.nb_edge = tf.placeholder(tf.int32, (), name='nb_edge') self.node_input = tf.placeholder(tf.float32, [None, self.node_dim], name='X_') self.y_input = tf.placeholder(tf.float32, [None, self.n_classes], name='Y') #self.EA_input = tf.placeholder(tf.float32, name='EA_input') #self.NA_input = tf.placeholder(tf.float32, name='NA_input') self.dropout_p_H = tf.placeholder(tf.float32,(), name='dropout_prob_H') self.dropout_p_node = tf.placeholder(tf.float32, (), name='dropout_prob_N') self.dropout_p_edge = tf.placeholder(tf.float32, (), name='dropout_prob_edges') self.dropout_p_edge_feat = tf.placeholder(tf.float32, (), name='dropout_prob_edgefeat') self.S = tf.placeholder(tf.float32, name='S') self.Ssparse = tf.placeholder(tf.int64, name='Ssparse') #indices self.Sshape = tf.placeholder(tf.int64, name='Sshape') #indices self.T = tf.placeholder(tf.float32,[None,None], name='T') self.Tsparse = tf.placeholder(tf.int64, name='Tsparse') #self.S_indice = tf.placeholder(tf.in, [None, None], name='S') self.F = tf.placeholder(tf.float32,[None,None], name='F') #self.NA_indegree = tf.placeholder(tf.float32, name='NA_indegree') std_dev_in=float(1.0/ float(self.node_dim)) self.Wnode_layers=[] self.Bnode_layers=[] self.Wed_layers=[] self.Bed_layers=[] #REFACT1 self.zed_layers = [] #REFACT1 self.Wedge_mlp_layers=[] #Should Project edge as well ... self.train_var=[] #if self.node_indim!=self.node_dim: # Wnl0 = tf.Variable(tf.random_uniform((self.node_dim, self.node_indim), # -1.0 / math.sqrt(self.node_dim), # 1.0 / math.sqrt(self.node_dim)),name='Wnl0',dtype=tf.float32) #else: self.Wnl0 = tf.Variable(tf.eye(self.node_dim),name='Wnl0',dtype=tf.float32,trainable=self.train_Wn0) self.Bnl0 = tf.Variable(tf.zeros([self.node_dim]), name='Bnl0',dtype=tf.float32) #self.Wel0 =tf.Variable(tf.random_normal([int(self.nconv_edge),int(self.edge_dim)],mean=0.0,stddev=1.0), dtype=np.float32, name='Wel0') if self.init_fixed: self.Wel0 = tf.Variable(100*tf.ones([int(self.nconv_edge),int(self.edge_dim)]), name='Wel0',dtype=tf.float32) elif self.use_edge_mlp: self.Wel0 = init_glorot([int(self.nconv_edge), int(self.edge_mlp_dim)], name='Wel0') else: self.Wel0 = init_glorot([int(self.nconv_edge),int(self.edge_dim)],name='Wel0') self.Bel0 = tf.Variable(0.01*tf.ones([self.nconv_edge]), name='Bel0' , dtype=tf.float32) #RF self.zel0 = tf.Variable(tf.ones([self.nconv_edge]), name='zel0' , dtype=tf.float32) #RF self.zH = tf.Variable(tf.ones([self.num_layers]),name='zH',dtype=tf.float32) traceln(' -- Wel0',self.Wel0.get_shape()) self.train_var.extend([self.Wnl0,self.Bnl0]) self.train_var.append(self.Wel0) #Parameter for convolving the logits ''' REFACT1 if self.logit_convolve: #self.Wel_logits = init_glorot([int(self.nconv_edge),int(self.edge_dim)],name='Wel_logit') #self.Belg = tf.Variable(tf.zeros( [int(self.nconv_edge)]), name='Belogit' , dtype=tf.float32) self.Wel_logits = tf.Variable(tf.zeros([int(1),int(self.edge_dim)]), name='Wlogit0',dtype=tf.float32,trainable=False) self.Belg = tf.Variable(tf.ones( [int(1)]), name='Belogit' , dtype=tf.float32) #self.logits_Transition = 1.0*tf.Variable(tf.ones([int(self.n_classes) , int(self.n_classes)]), name='logit_Transition') self.logits_Transition=init_glorot([int(self.n_classes), int(self.n_classes)], name='Wel_') self.Wmlp_edge_0= init_glorot([int(self.edge_dim), int(self.edge_mlp_dim)], name='Wedge_mlp') self.Bmlp_edge_0= tf.Variable(tf.ones([self.edge_mlp_dim]),name='Wedge_mlp',dtype=tf.float32) ''' #self.Wed_layers.append(Wel0) for i in range(self.num_layers-1): if self.stack_instead_add: if i==0: Wnli = tf.Variable( tf.random_uniform((self.node_dim * self.nconv_edge + self.node_dim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)), name='Wnl', dtype=tf.float32) else: Wnli =tf.Variable(tf.random_uniform( (self.node_indim*self.nconv_edge+self.node_indim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)),name='Wnl',dtype=tf.float32) traceln(' -- Wnli shape',Wnli.get_shape()) elif self.use_conv_weighted_avg: Wnli = tf.Variable( tf.random_uniform((self.node_indim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)), name='Wnl', dtype=tf.float32) #Wnli = tf.eye(self.node_dim,dtype=tf.float32) traceln(' -- Wnli shape', Wnli.get_shape()) else: if i==0: Wnli = tf.Variable(tf.random_uniform((2 * self.node_indim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)), name='Wnl', dtype=tf.float32) else: Wnli =tf.Variable(tf.random_uniform( (2*self.node_indim, self.node_indim), -1.0 / math.sqrt(self.node_indim), 1.0 / math.sqrt(self.node_indim)),name='Wnl',dtype=tf.float32) Bnli = tf.Variable(tf.zeros([self.node_indim]), name='Bnl'+str(i),dtype=tf.float32) #Weli = tf.Variable(tf.ones([int(self.nconv_edge),int(self.edge_dim)],dtype=tf.float32)) if self.use_edge_mlp: #self.Wel0 = init_glorot([int(self.nconv_edge), int(self.edge_mlp_dim)], name='Wel0') Weli = init_glorot([int(self.nconv_edge), int(self.edge_mlp_dim)], name='Wel_') Beli = tf.Variable(0.01 * tf.ones([self.nconv_edge]), name='Bel' + str(i), dtype=tf.float32) #RF Wmlp_edge_i = init_glorot([int(self.edge_dim), int(self.edge_mlp_dim)], name='Wedge_mlp'+str(i)) #RF Bmlp_edge_i = tf.Variable(tf.ones([self.edge_mlp_dim]), name='Bedge_mlp'+str(i), dtype=tf.float32) #RF self.Wedge_mlp_layers.append(Wmlp_edge_i) else: Weli= init_glorot([int(self.nconv_edge), int(self.edge_dim)], name='Wel_') #Weli = tf.Variable(tf.random_normal([int(self.nconv_edge), int(self.edge_dim)], mean=0.0, stddev=1.0), # dtype=np.float32, name='Wel_') Beli = tf.Variable(0.01*tf.ones([self.nconv_edge]), name='Bel'+str(i),dtype=tf.float32) #RF Wmlp_edge_i = init_glorot([int(self.edge_dim), int(self.edge_mlp_dim)], name='Wedge_mlp' + str(i)) #RF Bmlp_edge_i = tf.Variable(tf.ones([self.edge_mlp_dim]), name='Bedge_mlp' + str(i), dtype=tf.float32) #RF self.Wedge_mlp_layers.append(Wmlp_edge_i) #zeli = tf.Variable(tf.ones([self.nconv_edge]),name='zel'+str(i),dtype=tf.float32) self.Wnode_layers.append(Wnli) self.Bnode_layers.append(Bnli) self.Wed_layers.append (Weli) self.Bed_layers.append(Beli) #self.zed_layers.append(zeli) self.train_var.extend((self.Wnode_layers)) self.train_var.extend((self.Wed_layers)) self.Hnode_layers=[] #TODO Do we project the firt layer or not ? # Initialize the weights and biases for a simple one full connected network if self.stack_instead_add: self.W_classif = tf.Variable(tf.random_uniform((self.node_indim*self.nconv_edge+self.node_indim, self.n_classes), -1.0 / math.sqrt(self.node_dim), 1.0 / math.sqrt(self.node_dim)), name="W_classif",dtype=np.float32) elif self.use_conv_weighted_avg: self.W_classif = tf.Variable(tf.random_uniform((self.node_indim, self.n_classes), -1.0 / math.sqrt(self.node_dim), 1.0 / math.sqrt(self.node_dim)), name="W_classif", dtype=np.float32) else: self.W_classif = tf.Variable(tf.random_uniform((2*self.node_indim, self.n_classes), -1.0 / math.sqrt(self.node_dim), 1.0 / math.sqrt(self.node_dim)), name="W_classif",dtype=np.float32) self.B_classif = tf.Variable(tf.zeros([self.n_classes]), name='B_classif',dtype=np.float32) self.train_var.append((self.W_classif)) self.train_var.append((self.B_classif)) #Use for true add #I = tf.eye(self.nb_node) self.node_dropout_ind = tf.nn.dropout(tf.ones([self.nb_node], dtype=tf.float32), 1 - self.dropout_p_node) self.ND = tf.diag(self.node_dropout_ind) edge_dropout = self.dropout_rate_edge> 0.0 or self.dropout_rate_edge_feat > 0.0 traceln(' -- Edge Dropout',edge_dropout, self.dropout_rate_edge,self.dropout_rate_edge_feat) if self.num_layers==1: self.H = self.activation(tf.add(tf.matmul(self.node_input, self.Wnl0), self.Bnl0)) self.hidden_layers = [self.H] traceln("H shape",self.H.get_shape()) P = self.fastconvolve(self.Wel0,self.Bel0,self.F,self.Ssparse,self.Tsparse,self.H,self.nconv_edge,self.Sshape,self.nb_edge, self.dropout_p_edge,self.dropout_p_edge_feat,stack=self.stack_instead_add,use_dropout=edge_dropout) Hp = tf.concat([self.H, P], 1) #Hp= P+self.H Hi=self.activation(Hp) #Hi_shape = Hi.get_shape() #traceln(Hi_shape) self.hidden_layers.append(Hi) elif self.num_layers>1: if self.dropout_rate_node>0.0: H0 = self.activation(tf.matmul(self.ND,tf.add(tf.matmul(self.node_input, self.Wnl0), self.Bnl0))) else: H0 = self.activation(tf.add(tf.matmul(self.node_input,self.Wnl0),self.Bnl0)) self.Hnode_layers.append(H0) #TODO Default to fast convolve but we change update configs, train and test flags P = self.fastconvolve(self.Wel0,self.Bel0, self.F, self.Ssparse, self.Tsparse, H0, self.nconv_edge, self.Sshape,self.nb_edge, self.dropout_p_edge,self.dropout_p_edge_feat, stack=self.stack_instead_add, use_dropout=edge_dropout, ) #RF zwe=self.zel0, #RF use_weighted_average=self.use_conv_weighted_avg, #RF use_edge_mlp=self.use_edge_mlp, #RFWedge_mlp=self.Wmlp_edge_0, #RF Bedge_mlp=self.Bmlp_edge_0) if self.use_conv_weighted_avg: Hp = self.zH[0] * H0 + P else: Hp = tf.concat([H0, P], 1) #TODO add activation Here. #self.hidden_layers = [self.activation(Hp)] self.hidden_layers = [Hp] for i in range(self.num_layers-1): if self.dropout_rate_H > 0.0: Hi_ = tf.nn.dropout(tf.matmul(self.hidden_layers[-1], self.Wnode_layers[i]) + self.Bnode_layers[i], 1-self.dropout_p_H) else: Hi_ = tf.matmul(self.hidden_layers[-1], self.Wnode_layers[i]) + self.Bnode_layers[i] if self.residual_connection: Hi_= tf.add(Hi_,self.Hnode_layers[-1]) self.Hnode_layers.append(Hi_) # traceln(' -- Hi_shape',Hi_.get_shape()) # traceln(' -- Hi prevous shape',self.hidden_layers[-1].get_shape()) P = self.fastconvolve(self.Wed_layers[i],self.Bed_layers[i], self.F, self.Ssparse, self.Tsparse, Hi_, self.nconv_edge,self.Sshape, self.nb_edge, self.dropout_p_edge,self.dropout_p_edge_feat, stack=self.stack_instead_add, use_dropout=edge_dropout, ) # zwe=self.zed_layers[i], # use_weighted_average=self.use_conv_weighted_avg, # use_edge_mlp=self.use_edge_mlp, # Wedge_mlp=self.Wedge_mlp_layers[i], #RF Bedge_mlp=self.Bmlp_edge_0) if self.use_conv_weighted_avg: Hp = self.zH[i+1]* Hi_ + P else: Hp = tf.concat([Hi_, P], 1) Hi = self.activation(Hp) self.hidden_layers.append(Hi) self.logits =tf.add(tf.matmul(self.hidden_layers[-1],self.W_classif),self.B_classif) cross_entropy_source = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.y_input) # Global L2 Regulization self.loss = tf.reduce_mean(cross_entropy_source) + self.mu * tf.nn.l2_loss(self.W_classif) self.pred = tf.argmax(tf.nn.softmax(self.logits), 1) self.predict_proba = tf.nn.softmax(self.logits) self.correct_prediction = tf.equal(self.pred, tf.argmax(self.y_input, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) self.grads_and_vars = self.optalg.compute_gradients(self.loss) self.gv_Gn=[] #TODO Experiment with gradient noise #if self.stack_instead_add: # for grad, var in self.grads_and_vars: # traceln(grad,var) # if grad is not None: # self.gv_Gn.append( ( tf.add(grad, tf.random_normal(tf.shape(grad), stddev=0.00001)),var) ) #self.gv_Gn = [(tf.add(grad, tf.random_normal(tf.shape(grad), stddev=0.00001)), val) for grad, val in self.grads_and_vars if is not None] self.train_step = self.optalg.apply_gradients(self.grads_and_vars) # Add ops to save and restore all the variables. self.init = tf.global_variables_initializer() self.saver= tf.train.Saver(max_to_keep=0) traceln(' -- Number of Params: ', self.get_nb_params()) def save_model(self, session, model_filename): traceln("Saving Model") save_path = self.saver.save(session, model_filename) def restore_model(self, session, model_filename): self.saver.restore(session, model_filename) traceln("Model restored.") def get_Wedge(self,session): ''' Return the parameters for the Edge Convolutions :param session: :return: ''' if self.num_layers>1: L0=session.run([self.Wel0,self.Wed_layers]) We0=L0[0] list_we=[We0] for we in L0[1]: list_we.append(we) return list_we else: L0=session.run([self.Wel0]) We0=L0[0] list_we=[We0] return list_we def train(self,session,graph,verbose=False,n_iter=1): ''' Apply a train operation, ie sgd step for a single graph :param session: :param graph: a graph from GCN_Dataset :param verbose: :param n_iter: (default 1) number of steps to perform sgd for this graph :return: ''' #TrainEvalSet Here for i in range(n_iter): #traceln(' -- Train',X.shape,EA.shape) #traceln(' -- DropoutEdges',self.dropout_rate_edge) feed_batch = { self.nb_node: graph.X.shape[0], self.nb_edge: graph.F.shape[0], self.node_input: graph.X, self.Ssparse: np.array(graph.Sind, dtype='int64'), self.Sshape: np.array([graph.X.shape[0], graph.F.shape[0]], dtype='int64'), self.Tsparse: np.array(graph.Tind, dtype='int64'), self.F: graph.F, self.y_input: graph.Y, self.dropout_p_H: self.dropout_rate_H, self.dropout_p_node: self.dropout_rate_node, self.dropout_p_edge: self.dropout_rate_edge, self.dropout_p_edge_feat: self.dropout_rate_edge_feat, #self.NA_indegree:graph.NA_indegree } Ops =session.run([self.train_step,self.loss], feed_dict=feed_batch) if verbose: traceln(' -- Training Loss',Ops[1]) def test(self,session,graph,verbose=True): ''' Test return the loss and accuracy for the graph passed as argument :param session: :param graph: :param verbose: :return: ''' feed_batch = { self.nb_node: graph.X.shape[0], self.nb_edge: graph.F.shape[0], self.node_input: graph.X, self.Ssparse: np.array(graph.Sind, dtype='int64'), self.Sshape: np.array([graph.X.shape[0], graph.F.shape[0]], dtype='int64'), self.Tsparse: np.array(graph.Tind, dtype='int64'), self.F: graph.F, self.y_input: graph.Y, self.dropout_p_H: 0.0, self.dropout_p_node: 0.0, self.dropout_p_edge: 0.0, self.dropout_p_edge_feat: 0.0, #self.NA_indegree: graph.NA_indegree } Ops =session.run([self.loss,self.accuracy], feed_dict=feed_batch) if verbose: traceln(' -- Test Loss',Ops[0],' Test Accuracy:',Ops[1]) return Ops[1] def predict(self,session,graph,verbose=True): ''' Does the prediction :param session: :param graph: :param verbose: :return: ''' feed_batch = { self.nb_node: graph.X.shape[0], self.nb_edge: graph.F.shape[0], self.node_input: graph.X, # fast_gcn.S: np.asarray(graph.S.todense()).squeeze(), # fast_gcn.Ssparse: np.vstack([graph.S.row,graph.S.col]), self.Ssparse: np.array(graph.Sind, dtype='int64'), self.Sshape: np.array([graph.X.shape[0], graph.F.shape[0]], dtype='int64'), self.Tsparse: np.array(graph.Tind, dtype='int64'), # fast_gcn.T: np.asarray(graph.T.todense()).squeeze(), self.F: graph.F, self.dropout_p_H: 0.0, self.dropout_p_node: 0.0, self.dropout_p_edge: 0.0, self.dropout_p_edge_feat: 0.0, #self.NA_indegree: graph.NA_indegree } Ops = session.run([self.pred], feed_dict=feed_batch) if verbose: traceln(' -- Got Prediction for:',Ops[0].shape) print(str(Ops)) return Ops[0] def prediction_prob(self,session,graph,verbose=True): ''' Does the prediction :param session: :param graph: :param verbose: :return: ''' feed_batch = { self.nb_node: graph.X.shape[0], self.nb_edge: graph.F.shape[0], self.node_input: graph.X, # fast_gcn.S: np.asarray(graph.S.todense()).squeeze(), # fast_gcn.Ssparse: np.vstack([graph.S.row,graph.S.col]), self.Ssparse: np.array(graph.Sind, dtype='int64'), self.Sshape: np.array([graph.X.shape[0], graph.F.shape[0]], dtype='int64'), self.Tsparse: np.array(graph.Tind, dtype='int64'), # fast_gcn.T: np.asarray(graph.T.todense()).squeeze(), self.F: graph.F, self.dropout_p_H: 0.0, self.dropout_p_node: 0.0, self.dropout_p_edge: 0.0, self.dropout_p_edge_feat: 0.0, #self.NA_indegree: graph.NA_indegree } Ops = session.run([self.predict_proba], feed_dict=feed_batch) if verbose: traceln(' -- Got Prediction for:',Ops[0].shape) return Ops[0] def train_All_lG(self,session,graph_train,graph_val, max_iter, eval_iter = 10, patience = 7, graph_test = None, save_model_path = None): ''' Merge all the graph and train on them :param session: :param graph_train: the list of graph to train on :param graph_val: the list of graph used for validation :param max_iter: maximum number of epochs :param eval_iter: evaluate every eval_iter :param patience: stopped training if accuracy is not improved on the validation set after patience_value :param graph_test: Optional. If a test set is provided, then accuracy on the test set is reported :param save_model_path: checkpoints filename to save the model. :return: A Dictionary with training accuracies, validations accuracies and test accuracies if any, and the Wedge parameters ''' best_val_acc = 0.0 wait = 0 stop_training = False stopped_iter = max_iter train_accuracies = [] validation_accuracies = [] test_accuracies = [] conf_mat = [] start_monitoring_val_acc = False # Not Efficient to compute this for merged_graph = gcn_datasets.GCNDataset.merge_allgraph(graph_train) self.train(session, merged_graph, n_iter=1) for i in range(max_iter): if stop_training: break if i % eval_iter == 0: traceln('\n -- Epoch', i) _, tr_acc = self.test_lG(session, graph_train, verbose=False) traceln(' -- Train Acc', '%.4f' % tr_acc) train_accuracies.append(tr_acc) _, node_acc = self.test_lG(session, graph_val, verbose=False) traceln(' -- Valid Acc', '%.4f' % node_acc) validation_accuracies.append(node_acc) if save_model_path: save_path = self.saver.save(session, save_model_path, global_step=i) if graph_test: _, test_acc = self.test_lG(session, graph_test, verbose=False) traceln(' -- Test Acc', '%.4f' % test_acc) test_accuracies.append(test_acc) # Ypred = self.predict_lG(session, graph_test,verbose=False) # Y_true_flat = [] # Ypred_flat = [] # for graph, ypred in zip(graph_test, Ypred): # ytrue = np.argmax(graph.Y, axis=1) # Y_true_flat.extend(ytrue) # Ypred_flat.extend(ypred) # cm = sklearn.metrics.confusion_matrix(Y_true_flat, Ypred_flat) # conf_mat.append(cm) # TODO min_delta # if tr_acc>0.99: # start_monitoring_val_acc=True if node_acc > best_val_acc: best_val_acc = node_acc wait = 0 else: if wait >= patience: stopped_iter = i stop_training = True wait += 1 else: self.train(session, merged_graph, n_iter=1) # Final Save # if save_model_path: # save_path = self.saver.save(session, save_model_path, global_step=i) # TODO Add the final step mean_acc = [] traceln(' -- Stopped Model Training after ', stopped_iter) traceln(' -- Val Accuracies ', validation_accuracies) traceln(' -- Final Training Accuracy') _, node_train_acc = self.test_lG(session, graph_train) traceln(' -- Train Mean Accuracy', '%.4f' % node_train_acc) traceln(' -- Final Valid Acc') self.test_lG(session, graph_val) R = {} R['train_acc'] = train_accuracies R['val_acc'] = validation_accuracies R['test_acc'] = test_accuracies R['stopped_iter'] = stopped_iter R['confusion_matrix'] = conf_mat # R['W_edge'] =self.get_Wedge(session) if graph_test: _, final_test_acc = self.test_lG(session, graph_test) traceln(' -- Final Test Acc', '%.4f' % final_test_acc) R['final_test_acc'] = final_test_acc return R class GraphConvNet(MultiGraphNN): ''' A Deep Standard GCN model for a graph list ''' def __init__(self,node_dim,nb_classes,num_layers=1,learning_rate=0.1,mu=0.1,node_indim=-1, dropout_rate=0.0,dropout_mode=0): self.node_dim=node_dim self.n_classes=nb_classes self.num_layers=num_layers self.learning_rate=learning_rate self.activation=tf.nn.relu self.mu=mu self.optalg = tf.train.AdamOptimizer(self.learning_rate) self.convolve_last=False self.dropout_rate=dropout_rate #0 No dropout 1, Node Dropout at input 2 Standard dropout for layer # check logit layer self.dropout_mode=dropout_mode if node_indim==-1: self.node_indim=self.node_dim else: self.node_indim=node_indim def create_model(self): self.nb_node = tf.placeholder(tf.int32,(), name='nb_node') self.node_input = tf.placeholder(tf.float32, [None, self.node_dim], name='X_') self.y_input = tf.placeholder(tf.float32, [None, self.n_classes], name='Y') self.NA_input = tf.placeholder(tf.float32, name='NA_input') #Normalized Adjacency Matrix Here self.dropout_p = tf.placeholder(tf.float32,(), name='dropout_prob') #std_dev_in=float(1.0/ float(self.node_dim)) self.Wnode_layers=[] self.Bnode_layers=[] std_dev_input=float(1.0/ float(self.node_dim)) std_dev_indim=float(1.0/ float(self.node_indim)) if self.node_indim!=self.node_dim: self.Wnode = init_glorot((self.node_dim,self.node_indim),name='Wn0') #self.Wnode = init_normal((self.node_dim, self.node_indim),std_dev_input,name='Wn0') else: self.Wnode = tf.Variable(tf.eye(self.node_dim),name='Wn0',dtype=tf.float32) self.Bnode = tf.Variable(tf.zeros([self.node_indim]), name='Bnode',dtype=tf.float32) for i in range(self.num_layers-1): Wnli =init_glorot((2*self.node_indim, self.node_indim),name='Wnl'+str(i)) #Wnli = init_normal((self.node_indim, self.node_indim),std_dev_indim, name='Wnl' + str(i)) self.Wnode_layers.append(Wnli) #The GCN do not seem to use a bias term #Bnli = tf.Variable(tf.zeros([self.node_indim]), name='Bnl'+str(i),dtype=tf.float32) #self.Bnode_layers.append(Bnli) self.W_classif = init_glorot((2*self.node_indim, self.n_classes),name="W_classif") self.B_classif = tf.Variable(tf.zeros([self.n_classes]), name='B_classif',dtype=np.float32) #Input Layer #Check the self-loop . Is included in the normalized adjacency matrix #Check Residual Connections as weel for deeper models #add dropout_placeholder ... to differentiate train and test #x = tf.nn.dropout(x, 1 - self.dropout) #Dropout some nodes at the input of the graph ? #Should I dropout in upper layers as well ? #This way this forces the net to infer the node labels from its neighbors only #Here I dropout the features, but node the edges .. self.node_dropout_ind = tf.nn.dropout(tf.ones([self.nb_node],dtype=tf.float32),1-self.dropout_p) self.ND = tf.diag(self.node_dropout_ind) if self.dropout_mode==1: #self.H = self.activation(tf.matmul(self.ND,tf.add(tf.matmul(self.node_input, self.Wnode), self.Bnode))) P0 = self.activation(tf.matmul(self.ND, tf.add(tf.matmul(self.node_input, self.Wnode), self.Bnode))) self.hidden_layers = [self.H] else: H0 =tf.add(tf.matmul(self.node_input, self.Wnode), self.Bnode) P0 =tf.matmul(self.NA_input, H0) # we should forget the self loop H0_ = self.activation(tf.concat([H0, P0], 1)) self.hidden_layers=[H0_] #self.H = self.activation(tf.add(tf.matmul(self.node_input, self.Wnode), self.Bnode)) #self.hidden_layers = [self.H] for i in range(self.num_layers-1): if self.dropout_mode==2: Hp = tf.nn.dropout(self.hidden_layers[-1],1-self.dropout_p) Hi_ = tf.matmul(Hp, self.Wnode_layers[i]) else: Hi_ = tf.matmul(self.hidden_layers[-1], self.Wnode_layers[i]) P =tf.matmul(self.NA_input, Hi_) #we should forget the self loop #Hp = tf.concat([H0, P], 1) Hi = self.activation(tf.concat([Hi_,P],1)) self.hidden_layers.append(Hi) #This dropout the logits as in GCN if self.dropout_mode==2: Hp = tf.nn.dropout(self.hidden_layers[-1], 1 - self.dropout_p) self.hidden_layers.append(Hp) if self.convolve_last is True: logit_0 = tf.add(tf.matmul(self.hidden_layers[-1], self.W_classif), self.B_classif) self.logits = tf.matmul(self.NA_input,logit_0) #No activation function here else: self.logits =tf.add(tf.matmul(self.hidden_layers[-1],self.W_classif),self.B_classif) cross_entropy_source = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.y_input) #Global L2 Regulization self.loss = tf.reduce_mean(cross_entropy_source) + self.mu * tf.nn.l2_loss(self.W_classif) self.correct_prediction = tf.equal(tf.argmax(tf.nn.softmax(self.logits), 1), tf.argmax(self.y_input, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) self.grads_and_vars = self.optalg.compute_gradients(self.loss) self.train_step = self.optalg.apply_gradients(self.grads_and_vars) traceln(' -- Number of Params: ', self.get_nb_params()) # Add ops to save and restore all the variables. self.init = tf.global_variables_initializer() self.saver = tf.train.Saver() def train(self,session,g,n_iter=1,verbose=False): #TrainEvalSet Here for i in range(n_iter): feed_batch={ self.nb_node:g.X.shape[0], self.node_input:g.X, self.y_input:g.Y, self.NA_input:g.NA, self.dropout_p:self.dropout_rate } Ops =session.run([self.train_step,self.loss], feed_dict=feed_batch) if verbose: traceln(' -- Training Loss',Ops[1]) def test(self,session,g,verbose=True): #TrainEvalSet Here feed_batch={ self.nb_node:g.X.shape[0], self.node_input:g.X, self.y_input:g.Y, self.NA_input:g.NA, self.dropout_p: 0.0 } Ops =session.run([self.loss,self.accuracy], feed_dict=feed_batch) if verbose: traceln(' -- Test Loss',Ops[0],' Test Accuracy:',Ops[1]) return Ops[1] class EdgeLogit(Logit): ''' Logistic Regression for MultiGraph ''' def train(self,session,graph,verbose=False,n_iter=1): ''' Apply a train operation, ie sgd step for a single graph :param session: :param graph: a graph from GCN_Dataset :param verbose: :param n_iter: (default 1) number of steps to perform sgd for this graph :return: ''' #TrainEvalSet Here for i in range(n_iter): #traceln(' -- Train',X.shape,EA.shape) nb_edge =graph.E.shape[0] half_edge =nb_edge/2 feed_batch = { self.nb_node: graph.EC.shape[0], #here we pass the number of edges self.node_input: graph.EC, self.y_input: graph.Yedge, #self.nb_node: half_edge, #here we pass the number of edges #self.node_input: graph.F[:half_edge], #self.y_input: graph.Yedge[:half_edge], } Ops =session.run([self.train_step,self.loss], feed_dict=feed_batch) if verbose: traceln(' -- Training Loss',Ops[1]) def test(self,session,graph,verbose=True): ''' Test return the loss and accuracy for the graph passed as argument :param session: :param graph: :param verbose: :return: ''' nb_edge = graph.E.shape[0] half_edge = nb_edge / 2 feed_batch = { self.nb_node: graph.EC.shape[0], self.node_input: graph.EC, self.y_input: graph.Yedge, #self.nb_node: half_edge, # here we pass the number of edges #self.node_input: graph.F[:half_edge], #self.y_input: graph.Yedge[:half_edge], } Ops =session.run([self.loss,self.accuracy], feed_dict=feed_batch) if verbose: traceln(' -- Test Loss',Ops[0],' Test Accuracy:',Ops[1]) return Ops[1] def predict(self,session,graph,verbose=True): ''' Does the prediction :param session: :param graph: :param verbose: :return: ''' nb_edge = graph.E.shape[0] half_edge = nb_edge / 2 feed_batch = { self.nb_node: graph.EC.shape[0], self.node_input: graph.EC, #self.nb_node: half_edge, # here we pass the number of edges #self.node_input: graph.F[:half_edge], #self.y_input: graph.Yedge[:, half_edge], } Ops = session.run([self.pred], feed_dict=feed_batch) if verbose: traceln(' -- Got Prediction for:',Ops[0].shape) return Ops[0] #TODO Benchmark on Snake, GCN, ECN, graphAttNet vs Cora #TODO Refactorize Code #TODO Add L2 Regularization #TODO Stack or Add Convolution -> Reduce the size # Force the attention to preserve the node information i.e alpha'= 0.8 I +0.2 alpha # Force doing attention only for the logit ? # with a two layer # Branching factor --> Attention # Logit Layer and Attention # There is one diff with ECN the feature for the edges are dynamically calculated # whereas for GAT they are conditionned on the currect Node features # 0.88 # Do a dot product attention or something different ... # Change Initialization of the attention vector # with Attn vector equal [x;0] the attention keeps the source features and do not propagate ... # Should reduce Nb of parameters # This notion of edges is completely arbritrary # We could at all nodes in the graph to see whether there are some depencies, no ?, interesting exp class GraphAttNet(MultiGraphNN): ''' Graph Attention Network ''' # Variable ignored by the set_learning_options _setter_variables = { "node_dim": True, "edge_dim": True, "nb_class": True, "num_layers": True, "lr": True, "node_indim": True, "nb_attention": True, "nb_iter": True, "ratio_train_val": True} def __init__(self,node_dim,nb_classes,num_layers=1,learning_rate=0.1,node_indim=-1,nb_attention=3 ): self.node_dim=node_dim self.n_classes=nb_classes self.num_layers=num_layers self.learning_rate=learning_rate self.activation=tf.nn.elu #self.activation=tf.nn.relu self.optalg = tf.train.AdamOptimizer(self.learning_rate) self.stack_instead_add=False self.residual_connection=False#deprecated self.mu=0.0 self.dropout_rate_node = 0.0 self.dropout_rate_attention = 0.0 self.nb_attention=nb_attention self.distinguish_node_from_neighbor=False self.original_model=False self.attn_type=0 self.dense_model=False if node_indim==-1: self.node_indim=self.node_dim else: self.node_indim=node_indim #TODO GENERIC Could be move in MultigraphNN def set_learning_options(self,dict_model_config): """ Set all learning options that not directly accessible from the constructor :param kwargs: :return: """ traceln(dict_model_config) for attrname,val in dict_model_config.items(): #We treat the activation function differently as we can not pickle/serialiaze python function if attrname=='activation_name': if val=='relu': self.activation=tf.nn.relu elif val=='tanh': self.activation=tf.nn.tanh else: raise Exception('Invalid Activation Function') if attrname=='stack_instead_add' or attrname=='stack_convolutions': self.stack_instead_add=val if attrname not in self._setter_variables: try: traceln(' -- set',attrname,val) setattr(self,attrname,val) except AttributeError: warnings.warn("Ignored options for ECN"+attrname+':'+val) def dense_graph_attention_layer(self,H,W,A,nb_node,dropout_attention,dropout_node,use_dropout=False): ''' Implement a dense attention layer where every node is connected to everybody :param A: :param H: :param W: :param dropout_attention: :param dropout_node: :param use_dropout: :return: ''' ''' for all i,j aHi + bHj repmat all first column contains H1 second columns H2 etc diag may be a special case ''' with tf.name_scope('graph_att_dense_attn'): P = tf.matmul(H, W) Aij_forward = tf.expand_dims(A[0], 0) # attention vector for forward edge and backward edge Aij_backward = tf.expand_dims(A[1], 0) # Here we assume it is the same on contrary to the paper # Compute the attention weight for target node, ie a . Whj if j is the target node att_target_node = tf.matmul(P, Aij_backward,transpose_b=True) # Compute the attention weight for the source node, ie a . Whi if j is the target node att_source_node = tf.matmul(P, Aij_forward, transpose_b=True) Asrc_vect = tf.tile(att_source_node,[nb_node,1]) Asrc = tf.reshape(Asrc_vect,[nb_node,nb_node]) Atgt_vect = tf.tile(att_target_node, [nb_node,1]) Atgt = tf.reshape(Atgt_vect, [nb_node, nb_node]) Att = tf.nn.leaky_relu(Asrc+Atgt) #Att = tf.nn.leaky_relu(Asrc) alphas = tf.nn.softmax(Att) # dropout is done after the softmax if use_dropout: traceln(' -- ... using dropout for attention layer') alphasD = tf.nn.dropout(alphas, 1.0 - dropout_attention) P_D = tf.nn.dropout(P, 1.0 - dropout_node) alphasP = tf.matmul(alphasD, P_D) return alphasD, alphasP else: # We compute the features given by the attentive neighborhood alphasP = tf.matmul(alphas, P) return alphas, alphasP #TODO Change the transpose of the A parameter def simple_graph_attention_layer(self,H,W,A,S,T,Adjind,Sshape,nb_edge, dropout_attention,dropout_node, use_dropout=False,add_self_loop=False,attn_type=0): ''' :param H: The current node feature :param W: The node projection for this layer :param A: The attention weight vector: a :param S: The source edge matrix indices :param T: The target edge matrix indices :param Adjind: The adjcency matrix indices :param Sshape: Shape of S :param nb_edge: Number of edge :param dropout_attention: dropout_rate for the attention :param use_dropout: wether to use dropout :param add_self_loop: wether to add edge (i,i) :return: alphas,nH where alphas is the attention-based adjancency matrix alpha[i,j] correspond to alpha_ij nH correspond to the new features for this layer ie alphas(H,W) ''' with tf.name_scope('graph_att_net_attn'): # This has shape (nb_node,in_dim) and correspond to the project W.h in the paper P=tf.matmul(H,W) #traceln(P.get_shape()) #This has shape #shape,(nb_edge,nb_node) #This sparse tensor contains target nodes for edges. #The indices are [edge_idx,node_target_index] Tr = tf.SparseTensor(indices=T, values=tf.ones([nb_edge], dtype=tf.float32), dense_shape=[Sshape[1], Sshape[0]]) Tr = tf.sparse_reorder(Tr) # reorder so that sparse operations work correctly # This tensor has shape(nb_edge,in_dim) and contains the node target projection, ie Wh TP = tf.sparse_tensor_dense_matmul(Tr, P,name='TP') # This has shape #shape,(nb_node,nb_edge) # This sparse tensor contains source nodes for edges. # The indices are [node_source_index,edge_idx] SD = tf.SparseTensor(indices=S, values=tf.ones([nb_edge],dtype=tf.float32), dense_shape=Sshape) SD = tf.sparse_reorder(SD) #shape,(nb_edge,nb_node) # This tensor has shape(nb_edge,in_dim) and contains the node source projection, ie Wh SP = tf.sparse_tensor_dense_matmul(tf.sparse_transpose(SD), P,name='SP') #shape(nb_edge,in_dim) #traceln(' -- SP', SP.get_shape()) #Deprecated if attn_type==1: #Mutlitplication Attn Module Aij_forward = A # attention vector for forward edge and backward edge Aij_backward = A # Here we assume it is the same on contrary to the paper # Compute the attention weight for target node, ie a . Whj if j is the target node att_target_node = tf.multiply(TP, Aij_forward[0]) # Compute the attention weight for the source node, ie a . Whi if j is the target node att_source_node = tf.multiply(SP, Aij_backward[0]) # The attention values for the edge ij is the sum of attention of node i and j # Attn( node_i, node_j) = Sum_k (a_k)^2 Hik Hjk Is this what we want ? att_source_target_node = tf.reduce_sum( tf.multiply(att_source_node,att_target_node),axis=1) attn_values = tf.nn.leaky_relu( att_source_target_node) # elif attn_type==2: #Inspired by learning to rank approach on w(x+-x-) # Attn( node_i, node_j) = Sum_k (a_k) (Hik- Hjk) Is this what we want ? att_source_target_node = tf.reduce_sum( tf.multiply(SP-TP,A[0]),axis=1) attn_values = tf.nn.leaky_relu( att_source_target_node) else: Aij_forward=tf.expand_dims(A[0],0) # attention vector for forward edge and backward edge Aij_backward=tf.expand_dims(A[1],0) # Here we assume it is the same on contrary to the paper # Compute the attention weight for target node, ie a . Whj if j is the target node att_target_node =tf.matmul(TP,Aij_backward,transpose_b=True) # Compute the attention weight for the source node, ie a . Whi if j is the target node att_source_node = tf.matmul(SP,Aij_forward,transpose_b=True) # The attention values for the edge ij is the sum of attention of node i and j attn_values = tf.nn.leaky_relu(tf.squeeze(att_target_node) + tf.squeeze(att_source_node)) # From that we build a sparse adjacency matrix containing the correct values # which we then feed to a sparse softmax AttAdj = tf.SparseTensor(indices=Adjind, values=attn_values, dense_shape=[Sshape[0], Sshape[0]]) AttAdj = tf.sparse_reorder(AttAdj) #Note very efficient to do this, we should add the loop in the preprocessing if add_self_loop: node_indices=tf.range(Sshape[0]) #Sparse Idendity Aij_forward = tf.expand_dims(A[0], 0) id_indices = tf.stack([node_indices, node_indices], axis=1) val =tf.squeeze(tf.matmul(P,Aij_forward,transpose_b=True)) spI = tf.SparseTensor(indices=id_indices,values=2.0*val,dense_shape=[Sshape[0], Sshape[0]]) AttAdj_I = tf.sparse_add(AttAdj,spI) alphas = tf.sparse_softmax(AttAdj_I) else: alphas = tf.sparse_softmax(AttAdj) #dropout is done after the softmax if use_dropout: traceln(' -- ... using dropout for attention layer') alphasD = tf.SparseTensor(indices=alphas.indices,values=tf.nn.dropout(alphas.values, 1.0 - dropout_attention),dense_shape=alphas.dense_shape) P_D =tf.nn.dropout(P,1.0-dropout_node) alphasP = tf.sparse_tensor_dense_matmul(alphasD, P_D) return alphasD, alphasP else: #We compute the features given by the attentive neighborhood alphasP = tf.sparse_tensor_dense_matmul(alphas,P) return alphas,alphasP def _create_original_model(self): std_dev_in = float(1.0 / float(self.node_dim)) self.use_dropout = self.dropout_rate_attention > 0 or self.dropout_rate_node > 0 self.hidden_layer = [] attns0 = [] # Define the First Layer from the Node Input for a in range(self.nb_attention): # H0 = Maybe do a common H0 and have different attention parameters # Change the attention, maybe ? # Do multiplicative # How to add edges here # Just softmax makes a differences # I could stack [current_node,representation; edge_features;] and do a dot product on that Wa = init_glorot([int(self.node_dim), int(self.node_indim)], name='Wa0' + str(a)) va = init_glorot([2, int(self.node_indim)], name='va0' + str(a)) if self.distinguish_node_from_neighbor: H0 = tf.matmul(self.node_input, Wa) attns0.append(H0) _, nH = self.simple_graph_attention_layer(self.node_input, Wa, va, self.Ssparse, self.Tsparse, self.Aind, self.Sshape, self.nb_edge, self.dropout_p_attn, self.dropout_p_node, use_dropout=self.use_dropout, add_self_loop=True) attns0.append(nH) self.hidden_layer.append( self.activation(tf.concat(attns0, axis=-1))) # Now dims should be indim*self.nb_attention # Define Intermediate Layers for i in range(1, self.num_layers): attns = [] for a in range(self.nb_attention): if self.distinguish_node_from_neighbor: Wia = init_glorot( [int(self.node_indim * self.nb_attention + self.node_indim), int(self.node_indim)], name='Wa' + str(i) + '_' + str(a)) else: Wia = init_glorot([int(self.node_indim * self.nb_attention), int(self.node_indim)], name='Wa' + str(i) + '_' + str(a)) via = init_glorot([2, int(self.node_indim)], name='va' + str(i) + '_' + str(a)) _, nH = self.simple_graph_attention_layer(self.hidden_layer[-1], Wia, via, self.Ssparse, self.Tsparse, self.Aind, self.Sshape, self.nb_edge, self.dropout_p_attn, self.dropout_p_node, use_dropout=self.use_dropout, add_self_loop=True) attns.append(nH) self.hidden_layer.append(self.activation(tf.concat(attns, axis=-1))) # Define Logit Layer out = [] for i in range(self.nb_attention): #for i in range(1): logits_a = init_glorot([int(self.node_indim * self.nb_attention), int(self.n_classes)], name='Logita' + '_' + str(a)) via = init_glorot([2, int(self.n_classes)], name='LogitA' + '_' + str(a)) _, nL = self.simple_graph_attention_layer(self.hidden_layer[-1], logits_a, via, self.Ssparse, self.Tsparse, self.Aind, self.Sshape, self.nb_edge, self.dropout_p_attn, self.dropout_p_node, use_dropout=self.use_dropout, add_self_loop=True) out.append(nL) self.logits = tf.add_n(out) / self.nb_attention #self.logits = out[0] def _create_nodedistint_model(self): ''' Create a model the separe node distinct models :return: ''' std_dev_in = float(1.0 / float(self.node_dim)) self.use_dropout = self.dropout_rate_attention > 0 or self.dropout_rate_node > 0 self.hidden_layer = [] attns0 = [] # Define the First Layer from the Node Input Wa = tf.eye(int(self.node_dim), name='I0') H0 = tf.matmul(self.node_input, Wa) attns0.append(H0) I = tf.Variable(tf.eye(self.node_dim), trainable=False) for a in range(self.nb_attention): # H0 = Maybe do a common H0 and have different attention parameters # Change the attention, maybe ? # Do multiplicative # How to add edges here # Just softmax makes a differences # I could stack [current_node,representation; edge_features;] and do a dot product on that va = init_glorot([2, int(self.node_dim)], name='va0' + str(a)) _, nH = self.simple_graph_attention_layer(H0, I, va, self.Ssparse, self.Tsparse, self.Aind, self.Sshape, self.nb_edge, self.dropout_p_attn, self.dropout_p_node, use_dropout=self.use_dropout, add_self_loop=False,attn_type=self.attn_type) attns0.append(nH) self.hidden_layer.append( self.activation(tf.concat(attns0, axis=-1))) # Now dims should be indim*self.nb_attention # Define Intermediate Layers for i in range(1, self.num_layers): attns = [] if i == 1: previous_layer_dim =int(self.node_dim * self.nb_attention + self.node_dim) Wia = init_glorot([previous_layer_dim, int(self.node_indim)], name='Wa' + str(i) + '_' + str(a)) else: previous_layer_dim = int(self.node_indim * self.nb_attention + self.node_indim) Wia = init_glorot( [previous_layer_dim, int(self.node_indim)], name='Wa' + str(i) + '_' + str(a)) Hi = tf.matmul(self.hidden_layer[-1], Wia) attns.append(Hi) Ia = tf.Variable(tf.eye(self.node_indim), trainable=False) for a in range(self.nb_attention): via = init_glorot([2, int(self.node_indim)], name='va' + str(i) + '_' + str(a)) _, nH = self.simple_graph_attention_layer(Hi, Ia, via, self.Ssparse, self.Tsparse, self.Aind, self.Sshape, self.nb_edge, self.dropout_p_attn, self.dropout_p_node, use_dropout=self.use_dropout, add_self_loop=False,attn_type=self.attn_type) attns.append(nH) self.hidden_layer.append(self.activation(tf.concat(attns, axis=-1))) # Define Logit Layer #TODO Add Attention on Logit Layer #It would not cost too much to add an attn mecha once I get the logits #If x,y are indicated in the node feature then we can implicitly find the type of edges that we are using ... if self.num_layers>1: logits_a = init_glorot([int(self.node_indim * self.nb_attention+self.node_indim), int(self.n_classes)], name='Logita' + '_' + str(a)) else: logits_a = init_glorot([int(self.node_dim * self.nb_attention + self.node_dim), int(self.n_classes)], name='Logita' + '_' + str(a)) Bc = tf.ones([int(self.n_classes)], name='LogitA' + '_' + str(a)) # self.logits = tf.add_n(out) / self.nb_attention self.logits = tf.matmul(self.hidden_layer[-1],logits_a) +Bc def _create_densegraph_model(self): ''' Create a model the separe node distinct models :return: ''' std_dev_in = float(1.0 / float(self.node_dim)) self.use_dropout = self.dropout_rate_attention > 0 or self.dropout_rate_node > 0 self.hidden_layer = [] attns0 = [] # Define the First Layer from the Node Input Wa = tf.eye(int(self.node_dim), name='I0') H0 = tf.matmul(self.node_input, Wa) attns0.append(H0) I = tf.Variable(tf.eye(self.node_dim), trainable=False) for a in range(self.nb_attention): # H0 = Maybe do a common H0 and have different attention parameters # Change the attention, maybe ? # Do multiplicative # How to add edges here # Just softmax makes a differences # I could stack [current_node,representation; edge_features;] and do a dot product on that va = init_glorot([2, int(self.node_dim)], name='va0' + str(a)) _, nH = self.dense_graph_attention_layer(H0, I, va, self.nb_node, self.dropout_p_attn, self.dropout_p_node, use_dropout=self.use_dropout) attns0.append(nH) self.hidden_layer.append( self.activation(tf.concat(attns0, axis=-1))) # Now dims should be indim*self.nb_attention # Define Intermediate Layers for i in range(1, self.num_layers): attns = [] if i == 1: previous_layer_dim =int(self.node_dim * self.nb_attention + self.node_dim) Wia = init_glorot([previous_layer_dim, int(self.node_indim)], name='Wa' + str(i) + '_' + str(a)) else: previous_layer_dim = int(self.node_indim * self.nb_attention + self.node_indim) Wia = init_glorot( [previous_layer_dim, int(self.node_indim)], name='Wa' + str(i) + '_' + str(a)) Hi = tf.matmul(self.hidden_layer[-1], Wia) attns.append(Hi) Ia = tf.Variable(tf.eye(self.node_indim), trainable=False) for a in range(self.nb_attention): via = init_glorot([2, int(self.node_indim)], name='va' + str(i) + '_' + str(a)) _, nH = self.dense_graph_attention_layer(Hi, Ia, via, self.nb_node, self.dropout_p_attn, self.dropout_p_node, use_dropout=self.use_dropout) attns.append(nH) self.hidden_layer.append(self.activation(tf.concat(attns, axis=-1))) # Define Logit Layer #TODO Add Attention on Logit Layer #It would not cost too much to add an attn mecha once I get the logits #If x,y are indicated in the node feature then we can implicitly find the type of edges that we are using ... if self.num_layers>1: logits_a = init_glorot([int(self.node_indim * self.nb_attention+self.node_indim), int(self.n_classes)], name='Logita' + '_' + str(a)) else: logits_a = init_glorot([int(self.node_dim * self.nb_attention + self.node_dim), int(self.n_classes)], name='Logita' + '_' + str(a)) Bc = tf.ones([int(self.n_classes)], name='LogitA' + '_' + str(a)) # self.logits = tf.add_n(out) / self.nb_attention self.logits = tf.matmul(self.hidden_layer[-1],logits_a) +Bc def create_model(self): ''' Create the tensorflow graph for the model :return: ''' self.nb_node = tf.placeholder(tf.int32,(), name='nb_node') self.nb_edge = tf.placeholder(tf.int32, (), name='nb_edge') self.node_input = tf.placeholder(tf.float32, [None, self.node_dim], name='X_') self.y_input = tf.placeholder(tf.float32, [None, self.n_classes], name='Y') #self.dropout_p_H = tf.placeholder(tf.float32,(), name='dropout_prob_H') self.dropout_p_node = tf.placeholder(tf.float32, (), name='dropout_prob_N') self.dropout_p_attn = tf.placeholder(tf.float32, (), name='dropout_prob_edges') self.S = tf.placeholder(tf.float32, name='S') self.Ssparse = tf.placeholder(tf.int64, name='Ssparse') #indices self.Sshape = tf.placeholder(tf.int64, name='Sshape') #indices self.Aind =tf.placeholder(tf.int64, name='Sshape') #Adjacency indices self.T = tf.placeholder(tf.float32,[None,None], name='T') self.Tsparse = tf.placeholder(tf.int64, name='Tsparse') #self.S_indice = tf.placeholder(tf.in, [None, None], name='S') #self.F = tf.placeholder(tf.float32,[None,None], name='F') if self.original_model: self._create_original_model() elif self.dense_model: self._create_densegraph_model() else: self._create_nodedistint_model() cross_entropy_source = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.y_input) self.loss = tf.reduce_mean(cross_entropy_source) self.predict_proba = tf.nn.softmax(self.logits) self.pred = tf.argmax(tf.nn.softmax(self.logits), 1) self.correct_prediction = tf.equal(self.pred, tf.argmax(self.y_input, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) self.grads_and_vars = self.optalg.compute_gradients(self.loss) self.train_step = self.optalg.apply_gradients(self.grads_and_vars) # Add ops to save and restore all the variables. self.init = tf.global_variables_initializer() self.saver= tf.train.Saver(max_to_keep=0) traceln(' -- Number of Params: ', self.get_nb_params()) #TODO Move in MultigraphNN def save_model(self, session, model_filename): traceln("Saving Model") save_path = self.saver.save(session, model_filename) def restore_model(self, session, model_filename): self.saver.restore(session, model_filename) traceln("Model restored.") def train(self,session,graph,verbose=False,n_iter=1): ''' Apply a train operation, ie sgd step for a single graph :param session: :param graph: a graph from GCN_Dataset :param verbose: :param n_iter: (default 1) number of steps to perform sgd for this graph :return: ''' #TrainEvalSet Here for i in range(n_iter): #traceln(' -- Train',X.shape,EA.shape) #traceln(' -- DropoutEdges',self.dropout_rate_edge) Aind = np.array(np.stack([graph.Sind[:, 0], graph.Tind[:, 1]], axis=-1), dtype='int64') feed_batch = { self.nb_node: graph.X.shape[0], self.nb_edge: graph.F.shape[0], self.node_input: graph.X, self.Ssparse: np.array(graph.Sind, dtype='int64'), self.Sshape: np.array([graph.X.shape[0], graph.F.shape[0]], dtype='int64'), self.Tsparse: np.array(graph.Tind, dtype='int64'), #self.F: graph.F, self.Aind: Aind, self.y_input: graph.Y, #self.dropout_p_H: self.dropout_rate_H, self.dropout_p_node: self.dropout_rate_node, self.dropout_p_attn: self.dropout_rate_attention, } Ops =session.run([self.train_step,self.loss], feed_dict=feed_batch) if verbose: traceln(' -- Training Loss',Ops[1]) def test(self,session,graph,verbose=True): ''' Test return the loss and accuracy for the graph passed as argument :param session: :param graph: :param verbose: :return: ''' Aind = np.array(np.stack([graph.Sind[:, 0], graph.Tind[:, 1]], axis=-1), dtype='int64') feed_batch = { self.nb_node: graph.X.shape[0], self.nb_edge: graph.F.shape[0], self.node_input: graph.X, self.Ssparse: np.array(graph.Sind, dtype='int64'), self.Sshape: np.array([graph.X.shape[0], graph.F.shape[0]], dtype='int64'), self.Tsparse: np.array(graph.Tind, dtype='int64'), self.Aind: Aind, #self.F: graph.F, self.y_input: graph.Y, #self.dropout_p_H: 0.0, self.dropout_p_node: 0.0, self.dropout_p_attn: 0.0, #self.dropout_p_edge_feat: 0.0, #self.NA_indegree: graph.NA_indegree } Ops =session.run([self.loss,self.accuracy], feed_dict=feed_batch) if verbose: traceln(' -- Test Loss',Ops[0],' Test Accuracy:',Ops[1]) return Ops[1] def predict(self,session,graph,verbose=True): ''' Does the prediction :param session: :param graph: :param verbose: :return: ''' Aind = np.array(np.stack([graph.Sind[:, 0], graph.Tind[:, 1]], axis=-1), dtype='int64') feed_batch = { self.nb_node: graph.X.shape[0], self.nb_edge: graph.F.shape[0], self.node_input: graph.X, # fast_gcn.S: np.asarray(graph.S.todense()).squeeze(), # fast_gcn.Ssparse: np.vstack([graph.S.row,graph.S.col]), self.Ssparse: np.array(graph.Sind, dtype='int64'), self.Sshape: np.array([graph.X.shape[0], graph.F.shape[0]], dtype='int64'), self.Tsparse:
np.array(graph.Tind, dtype='int64')
numpy.array
r"""<video width="100%" autoplay loop controls> <source src="https://github.com/pkomiske/EnergyFlow/raw/images/CMS2011AJets_EventSpaceTriangulation.mp4" type="video/mp4"> </video> <br> The Energy Mover's Distance (EMD), also known as the Earth Mover's Distance, is a metric between particle collider events introduced in [1902.02346](https://arxiv.org/abs/1902.02346). This submodule contains convenient functions for computing EMDs between individual events and collections of events. The core of the computation is done using the [Python Optimal Transport (POT)](https://pot.readthedocs.io) library, which must be installed in order to use this submodule. From Eq. 1 in [1902.02346](https://arxiv.org/abs/1902.02346), the EMD between two events is the minimum ''work'' required to rearrange one event $\mathcal E$ into the other $\mathcal E'$ by movements of energy $f_{ij}$ from particle $i$ in one event to particle $j$ in the other: $$ \text{EMD}(\mathcal E,\mathcal E^\prime)=\min_{\{f_{ij}\}}\sum_{ij}f_{ij}\frac{ \theta_{ij}}{R} + \left|\sum_iE_i-\sum_jE^\prime_j\right|,\\ f_{ij}\ge 0, \quad \sum_jf_{ij}\le E_i, \quad \sum_if_{ij}\le E^\prime_j, \quad \sum_{ij}f_{ij}=E_\text{min}, $$ where $E_i,E^\prime_j$ are the energies of the particles in the two events, $\theta_{ij}$ is an angular distance between particles, and $E_\text{min}=\min\left(\sum_iE_i,\,\sum_jE^\prime_j\right)$ is the smaller of the two total energies. In a hadronic context, transverse momenta are used instead of energies. """ from __future__ import absolute_import, division, print_function import itertools import multiprocessing import sys import time import numpy as np ot = True try: from ot.lp import emd_c, check_result from scipy.spatial.distance import _distance_wrap # ot imports scipy anyway except: ot = False from energyflow.utils import create_pool, p4s_from_ptyphims __all__ = ['emd', 'emds'] # replace public functions with those issuing simple errors if not ot: def emd(*args, **kwargs): raise NotImplementedError("emd currently requires module 'ot', which is unavailable") def emds(*args, **kwargs): raise NotImplementedError("emd currently requires module 'ot', which is unavailable") # the actual functions for this module if ot: ################## # HELPER FUNCTIONS ################## # parameter checks def _check_params(norm, gdim, phi_col, measure, coords, empty_policy): # check norm if norm is None: raise ValueError("'norm' cannot be None") # check phi_col if phi_col < 1: raise ValueError("'phi_col' cannot be smaller than 1") # check gdim if gdim is not None: if gdim < 1: raise ValueError("'gdim' must be greater than or equal to 1") if phi_col > gdim + 1: raise ValueError("'phi_col' must be less than or equal to 'gdim'") # check measure if measure not in {'euclidean', 'spherical'}: raise ValueError("'measure' must be one of 'euclidean', 'spherical'") # check coords if coords not in {'hadronic', 'cartesian'}: raise ValueError("'coords' must be one of 'hadronic', 'cartesian'") # check empty_policy if not (isinstance(empty_policy, (int, float)) or empty_policy == 'error'): raise ValueError("'empty_policy' must be a number or 'error'") # process events for EMD calculation two_pi = 2*np.pi def _process_for_emd(event, norm, gdim, periodic_phi, phi_col, mask, R, hadr2cart, euclidean, error_on_empty): # ensure event is at least a 2d numpy array event = np.atleast_2d(event) if gdim is None else np.atleast_2d(event)[:,:(gdim+1)] # if we need to map hadronic coordinates to cartesian ones if hadr2cart: event = p4s_from_ptyphims(event) # select the pts and coords pts, coords = event[:,0], event[:,1:] # norm vectors if spherical if not euclidean: # special case for three dimensions (most common), twice as fast if coords.shape[1] == 3: coords /= np.sqrt(coords[:,0]**2 + coords[:,1]**2 + coords[:,2]**2)[:,None] else: coords /= np.sqrt(np.sum(coords**2, axis=1))[:,None] # handle periodic phi (only applicable if using euclidean) elif periodic_phi: if phi_col >= event.shape[1] - 1: evgdim = str(event.shape[1] - 1) raise ValueError("'phi_col' cannot be larger than the ground space " 'dimension, which is ' + evgdim + ' for one of the events') coords[:,phi_col] %= two_pi # handle masking out particles farther than R away from origin if mask: # ensure contiguous coords for scipy distance function coords = np.ascontiguousarray(coords, dtype=np.double) origin = np.zeros((1, coords.shape[1])) # calculate distance from origin rs = _cdist(origin, coords, euclidean, periodic_phi, phi_col)[0] rmask = (rs <= R) # detect when masking actually needs to occur if not np.all(rmask): pts, coords = pts[rmask], coords[rmask] # check that we have at least one particle if pts.size == 0: if error_on_empty: raise ValueError('empty event encountered, must have at least one particle') else: return (None, None) # handle norming pts or adding extra zeros to event if norm: pts = pts/pts.sum() elif norm is None: pass else: coords = np.vstack((coords, np.zeros(coords.shape[1]))) pts = np.concatenate((pts, np.zeros(1))) return (np.ascontiguousarray(pts, dtype=np.double), np.ascontiguousarray(coords, dtype=np.double)) # faster than scipy's cdist function because we can avoid their checks def _cdist(X, Y, euclidean, periodic_phi, phi_col): if euclidean: if periodic_phi: # delta phis (taking into account periodicity) # aleady guaranteed for values to be in [0, 2pi] d_phis = np.pi - np.abs(np.pi - np.abs(X[:,phi_col,None] - Y[:,phi_col])) # split out common case of having only one other dimension if X.shape[1] == 2: non_phi_col = 1 - phi_col d_ys = X[:,non_phi_col,None] - Y[:,non_phi_col] out =
np.sqrt(d_ys**2 + d_phis**2)
numpy.sqrt
from unittest import TestCase from tests.assertions import CustomAssertions import scipy.sparse import numpy as np import tests.rabi as rabi import floq class TestSetBlock(TestCase): def setUp(self): self.dim_block = 5 self.n_block = 3 self.a, self.b, self.c, self.d, self.e, self.f, self.g, self.h, self.i \ = [j*np.ones([self.dim_block, self.dim_block]) for j in range(9)] matrix = np.bmat([[self.a, self.b, self.c], [self.d, self.e, self.f], [self.g, self.h, self.i]]) self.original = np.array(matrix) total_size = self.dim_block*self.n_block self.copy = np.zeros([total_size,total_size]) def test_set(self): # Try to recreate self.original with the new function floq.evolution._add_block(self.a, self.copy, self.dim_block, self.n_block, 0, 0) floq.evolution._add_block(self.b, self.copy, self.dim_block, self.n_block, 0, 1) floq.evolution._add_block(self.c, self.copy, self.dim_block, self.n_block, 0, 2) floq.evolution._add_block(self.d, self.copy, self.dim_block, self.n_block, 1, 0) floq.evolution._add_block(self.e, self.copy, self.dim_block, self.n_block, 1, 1) floq.evolution._add_block(self.f, self.copy, self.dim_block, self.n_block, 1, 2) floq.evolution._add_block(self.g, self.copy, self.dim_block, self.n_block, 2, 0) floq.evolution._add_block(self.h, self.copy, self.dim_block, self.n_block, 2, 1) floq.evolution._add_block(self.i, self.copy, self.dim_block, self.n_block, 2, 2) self.assertTrue(np.array_equal(self.copy,self.original)) class TestAssembleK(CustomAssertions): def setUp(self): self.n_zones = 5 self.frequency = 1 dim=2 a = -1.*np.ones([dim, dim]) b = np.zeros([dim, dim]) c = np.ones([dim, dim]) z = np.zeros([dim, dim]) i = np.identity(dim) self.goalk = np.array( np.bmat( [[b-2*i, a, z, z, z], [c, b-i, a, z, z], [z, c, b, a, z], [z, z, c, b+i, a], [z, z, z, c, b+2*i]])) self.hf = floq.system._canonicalise_operator(np.array([a, b, c])) def test_dense(self): builtk = floq.evolution.assemble_k(self.hf, self.n_zones, self.frequency) self.assertArrayEqual(builtk, self.goalk) def test_sparse(self): builtk = floq.evolution.assemble_k_sparse(self.hf, self.n_zones, self.frequency) self.assertTrue(scipy.sparse.issparse(builtk)) self.assertArrayEqual(builtk.toarray(), self.goalk) class TestDenseToSparse(CustomAssertions): def test_conversion(self): goal = floq.types.ColumnSparseMatrix(np.array([1, 2]), np.array([1, 0, 1]), np.array([2, 1, 3])) built = floq.evolution._dense_to_sparse(np.arange(4).reshape(2, 2)) self.assertColumnSparseMatrixEqual(built, goal) class TestAssembledK(CustomAssertions): def setUp(self): self.n_zones = 5 dim=2 a = -1.*np.ones([dim, dim]) b = np.zeros([dim, dim]) c =
np.ones([dim, dim])
numpy.ones
# -*- coding: utf-8 -*- """ Created on Fri Jun 19 13:16:25 2015 @author: hbanks Brevity required, prudence preferred """ import os import io import glob import errno import copy import json import time import warnings import numpy as np from scipy.optimize import curve_fit import scipy.interpolate as spi import scipy.optimize as spo import scipy.integrate as intgt import scipy.fftpack as fft import scipy.special as spl import matplotlib.pyplot as plt import scipy.ndimage as ndimage import itertools as itt import multiprocessing as mp import sys sys.path.append('/Users/marketing/Desktop/HSG-turbo/') import hsganalysis.QWPProcessing as qwp from hsganalysis.QWPProcessing.extractMatrices import makeT,saveT np.set_printoptions(linewidth=500) # One of the main results is the HighSidebandCCD.sb_results array. These are the # various mappings between index and real value # I deally, this code should be converted to pandas to avoid this issue, # but that's outside the scope of current work. # [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] # [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] class sbarr(object): SBNUM = 0 CENFREQ = 1 CENFREQERR = 2 AREA = 3 AREAERR = 4 WIDTH = 5 WIDTHERR = 6 #################### # Objects #################### class CCD(object): def __init__(self, fname, spectrometer_offset=None): """ This will read the appropriate file and make a basic CCD object. Fancier things will be handled with the sub classes. Creates: self.parameters = Dictionary holding all of the information from the data file, which comes from the JSON encoded header in the data file self.description = string that is the text box from data taking GUI self.raw_data = raw data output by measurement software, wavelength vs. data, errors. There may be text for some of the entries corresponding to text used for Origin imports, but they should appear as np.nan self.ccd_data = semi-processed 1600 x 3 array of photon energy vs. data with standard error of mean at that pixel calculated by taking multiple images. Standard error is calculated from the data collection software Most subclasses should make a self.proc_data, which will do whatever processing is required to the ccd_data, such as normalizing, taking ratios, etc. :param fname: file name where the data is saved :type fname: str :param spectrometer_offset: if the spectrometer won't go where it's told, use this to correct the wavelengths (nm) :type spectrometer_offset: float """ self.fname = fname # Checking restrictions from Windows path length limits. Check if you can # open the file: try: with open(fname) as f: pass except FileNotFoundError: # Couldn't find the file. Could be you passed the wrong one, but I'm # finding with a large number of subfolders for polarimetry stuff, # you end up exceeding Windows' filelength limit. # Haven't tested on Mac or UNC moutned drives (e.g \\128.x.x.x\Sherwin\) fname = r"\\?\\" + os.path.abspath(fname) # Read in the JSON-formatted parameter string. # The lines are all prepended by '#' for easy numpy importing # so loop over all those lines with open(fname, 'r') as f: param_str = '' line = f.readline() while line[0] == '#': ### changed 09/17/18 # This line assumed there was a single '#' # param_str += line[1:] # while this one handles everal (because I found old files # which had '## <text>...' param_str += line.replace("#", "") line = f.readline() # Parse the JSON string try: self.parameters = json.loads(param_str) except json.JSONDecodeError: # error from _really_ old data where comments were dumped after a # single-line json dumps self.parameters=json.loads(param_str.splitlines()[0]) # Spec[trometer] steps are set to define the same physical data, but taken at # different spectrometer center wavelengths. This value is used later # for stitching these scans together try: self.parameters["spec_step"] = int(self.parameters["spec_step"]) except (ValueError, KeyError): # If there isn't a spe self.parameters["spec_step"] = 0 # Slice through 3 to get rid of comments/origin info. # Would likely be better to check np.isnan() and slicing out those nans. # I used flipup so that the x-axis is an increasing function of frequency self.raw_data = np.flipud(np.genfromtxt(fname, comments='#', delimiter=',')[3:]) # The camera chip is 1600 pixels wide. This line was redudent with the [3:] # slice above and served to make sure there weren't extra stray bad lines # hanging around. # # This should also be updated some day to compensate for any horizontal bining # on the chip, or masking out points that are bad (cosmic ray making it # through processing, room lights or monitor lines interfering with signal) self.ccd_data = np.array(self.raw_data[:1600, :]) # Check to see if the spectrometer offset is set. This isn't specified # during data collection. This is a value that can be appended # when processing if it's realized the data is offset. # This allows the offset to be specified and kept with the data file itself, # instead of trying to do it in individual processing scripts # # It's allowed as a kwarg parameter in this script for trying to determine # what the correct offset should be if spectrometer_offset is not None or "offset" in self.parameters: try: self.ccd_data[:, 0] += float(self.parameters["offset"]) except: self.ccd_data[:, 0] += spectrometer_offset # Convert from nm to eV # self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] self.ccd_data[:, 0] = photon_converter["nm"]["eV"](self.ccd_data[:, 0]) class Photoluminescence(CCD): def __init__(self, fname): """ This object handles PL-type data. The only distinction from the parent class is that the CCD data gets normalized to the exposure time to make different exposures directly comparable. creates: self.proc_data = self.ccd_data divided by the exposure time units: PL counts / second :param fname: name of the file :type fname: str """ super(Photoluminescence, self).__init__(fname) # Create a copy of the array , and then normalize the signal and the errors # by the exposure time self.proc_data = np.array(self.ccd_data) self.proc_data[:, 1] = self.proc_data[:, 1] / self.parameters['exposure'] self.proc_data[:, 2] = self.proc_data[:, 2] / self.parameters['exposure'] class Absorbance(CCD): def __init__(self, fname): """ There are several ways Absorbance data can be loaded You could try to load the abs data output from data collection directly, which has the wavelength, raw, blank and actual absorbance data itself. This is best way to do it. Alternatively, you could want to load the raw transmission/reference data, ignoring (or maybe not even having) the abs calculated from the data collection software. If you want to do it this way, you should pass fname as a list where the first element is the file name for the reference data, and the second is the absorbance data At first, it didn't really seem to make sense to let you pass just the raw reference or raw abs data, Creates: self.ref_data = np array of the reference, freq (eV) vs. reference (counts) self.raw_data = np.array of the raw absorption spectrum, freq (eV) vs. reference (counts) self.proc_data = np.array of the absorption spectrum freq (eV) vs. "absorbance" (dB) Note, the error bars for this data haven't been defined. :param fname: either an absorbance filename, or a length 2 list of filenames :type fname: str :return: None """ if "abs_" in fname: super(Absorbance, self).__init__(fname) # Separate into the separate data sets # The raw counts of the reference data self.ref_data = np.array(self.ccd_data[:, [0, 1]]) # Raw counts of the sample self.raw_data = np.array(self.ccd_data[:, [0, 2]]) # The calculated absorbance data (-10*log10(raw/ref)) self.proc_data = np.array(self.ccd_data[:, [0, 3]]) # Already in dB's else: # Should be here if you pass the reference/trans filenames try: super(Absorbance, self).__init__(fname[0]) self.ref_data = np.array(self.ccd_data) super(Absorbance, self).__init__(fname[1]) self.raw_data = np.array(self.ccd_data) except ValueError: # ValueError gets thrown when importing older data # which had more headers than data columns. Enforce # only loading first two columns to avoid numpy trying # to parse all of the data # See CCD.__init__ for what's going on. self.ref_data = np.flipud(np.genfromtxt(fname[0], comments='#', delimiter=',', usecols=(0, 1))) self.ref_data = np.array(self.ref_data[:1600, :]) self.ref_data[:, 0] = 1239.84 / self.ref_data[:, 0] self.raw_data = np.flipud(np.genfromtxt(fname[1], comments='#', delimiter=',', usecols=(0, 1))) self.raw_data = np.array(self.raw_data[:1600, :]) self.raw_data[:, 0] = 1239.84 / self.raw_data[:, 0] except Exception as e: print("Exception opening absorbance data,", e) # Calculate the absorbance from the raw camera counts. self.proc_data = np.empty_like(self.ref_data) self.proc_data[:, 0] = self.ref_data[:, 0] self.proc_data[:, 1] = -10*np.log10(self.raw_data[:, 1] / self.ref_data[:, 1]) def abs_per_QW(self, qw_number): """ :param qw_number: number of quantum wells in the sample. :type qw_number: int :return: None """ """ This method turns the absorption to the absorbance per quantum well. Is that how this data should be reported? Also, I'm not sure if columns 1 and 2 are correct. """ temp_abs = -np.log(self.proc_data[:, 1] / self.proc_data[:, 2]) / qw_number self.proc_data = np.hstack((self.proc_data, temp_abs)) def fft_smooth(self, cutoff, inspectPlots=False): """ This function removes the Fabry-Perot that affects the absorption data creates: self.clean = np.array of the Fourier-filtered absorption data, freq (eV) vs. absorbance (dB!) self.parameters['fourier cutoff'] = the low pass cutoff frequency, in eV**(-1) :param cutoff: Fourier frequency of the cut off for the low pass filter :type cutoff: int or float :param inspectPlots: Do you want to see the results? :type inspectPlots: bool :return: None """ # self.fixed = -np.log10(abs(self.raw_data[:, 1]) / abs(self.ref_data[:, 1])) # self.fixed = np.nan_to_num(self.proc_data[:, 1]) # self.fixed = np.column_stack((self.raw_data[:, 0], self.fixed)) self.parameters['fourier cutoff'] = cutoff self.clean = low_pass_filter(self.proc_data[:, 0], self.proc_data[:, 1], cutoff, inspectPlots) def save_processing(self, file_name, folder_str, marker='', index=''): """ This bad boy saves the absorption spectrum that has been manipulated. Saves 100 lines of comments. :param file_name: The base name of the file to be saved :type file_name: str :param folder_str: The name of the folder where the file will be saved :type folder_str: str :param marker: A further label that might be the series tag or something :type marker: str :param index: If multiple files are being saved with the same name, include an integer to append to the end of the file :type index: int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' self.save_name = spectra_fname try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing into Origin is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' spec_header = '#' + parameter_str + origin_import_spec # spec_header = '#' + parameter_str + '\n#' + self.description[:-2] + origin_import_spec np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', header=spec_header, comments='', fmt='%0.6e') spectra_fname = 'clean ' + spectra_fname np.savetxt(os.path.join(folder_str, spectra_fname), self.clean, delimiter=',', header=spec_header, comments='', fmt='%0.6e') print("Save image.\nDirectory: {}".format(os.path.join(folder_str, spectra_fname))) # class LaserLineCCD(HighSidebandCCD): # """ # Class for use when doing alinging/testing by sending the laser # directly into the CCD. Modifies how "sidebands" and guess and fit, # simply looking at the max signal. # """ # def guess_sidebands(self, cutoff=8, verbose=False, plot=False): # pass class NeonNoiseAnalysis(CCD): """ This class is used to make handling neon calibration lines easier. It's not great. """ def __init__(self, fname, spectrometer_offset=None): # print 'opening', fname super(NeonNoiseAnalysis, self).__init__(fname, spectrometer_offset=spectrometer_offset) self.addenda = self.parameters['addenda'] self.subtrahenda = self.parameters['subtrahenda'] self.noise_and_signal() self.process_stuff() def noise_and_signal(self): """ This bad boy calculates the standard deviation of the space between the neon lines. The noise regions are, in nm: high: 784-792 low1: 795-806 low2: 815-823 low3: 831-834 the peaks are located at, in nm: #1, weak: 793.6 #2, medium: 794.3 #3, medium: 808.2 #4, weak: 825.9 #5, strong: 830.0 """ print('\n\n') self.ccd_data = np.flipud(self.ccd_data) # self.high_noise_region = np.array(self.ccd_data[30:230, :]) self.high_noise_region = np.array(self.ccd_data[80:180, :]) # for dark current measurements self.low_noise_region1 = np.array(self.ccd_data[380:700, :]) self.low_noise_region2 = np.array(self.ccd_data[950:1200, :]) self.low_noise_region3 = np.array(self.ccd_data[1446:1546, :]) # self.high_noise = np.std(self.high_noise_region[:, 1]) self.high_noise_std = np.std(self.high_noise_region[:, 1]) self.high_noise_sig = np.mean(self.high_noise_region[:, 1]) self.low_noise1 = np.std(self.low_noise_region1[:, 1]) self.low_noise2 = np.std(self.low_noise_region2[:, 1]) self.low_noise_std = np.std(self.low_noise_region2[:, 1]) self.low_noise_sig = np.mean(self.low_noise_region2[:, 1]) self.low_noise3 = np.std(self.low_noise_region3[:, 1]) # self.noise_list = [self.high_noise, self.low_noise1, self.low_noise2, self.low_noise3] self.peak1 = np.array(self.ccd_data[303:323, :]) self.peak2 = np.array(self.ccd_data[319:339, :]) self.peak3 = np.array(self.ccd_data[736:746, :]) self.peak4 = np.array(self.ccd_data[1268:1288, :]) self.peak5 = np.array(self.ccd_data[1381:1421, :]) temp_max = np.argmax(self.peak1[:, 1]) self.signal1 = np.sum(self.peak1[temp_max - 1:temp_max + 2, 1]) self.error1 = np.sqrt(np.sum(self.peak1[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak2[:, 1]) self.signal2 = np.sum(self.peak2[temp_max - 1:temp_max + 2, 1]) self.error2 = np.sqrt(np.sum(self.peak2[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak3[:, 1]) self.signal3 = np.sum(self.peak3[temp_max - 1:temp_max + 2, 1]) self.error3 = np.sqrt(np.sum(self.peak3[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak4[:, 1]) self.signal4 = np.sum(self.peak4[temp_max - 1:temp_max + 2, 1]) self.error4 = np.sqrt(np.sum(self.peak4[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak5[:, 1]) self.signal5 = np.sum(self.peak5[temp_max - 1:temp_max + 2, 1]) self.error5 = np.sqrt(np.sum(self.peak5[temp_max - 1:temp_max + 2, 2] ** 2)) self.signal_list = [self.signal1, self.signal2, self.signal3, self.signal4, self.signal5] self.error_list = [self.error1, self.error2, self.error3, self.error4, self.error5] print("Signal list:", self.signal_list) self.ccd_data = np.flipud(self.ccd_data) def process_stuff(self): """ This one puts high_noise, low_noise1, signal2, and error2 in a nice horizontal array """ # self.results = np.array([self.high_noise, self.low_noise1, self.signal5, self.error5]) # average = np.mean([self.low_noise1, self.low_noise2, self.low_noise3]) # self.results = np.array([self.high_noise, self.low_noise1, self.low_noise2, self.low_noise3, self.high_noise/average]) self.results = np.array([self.high_noise_sig, self.high_noise_std, self.low_noise_sig, self.low_noise_std]) def collect_noise(neon_list, param_name, folder_name, file_name, name='Signal'): """ This function acts like save parameter sweep. param_name = string that we're gonna save! """ # param_array = None for elem in neon_list: print("pname: {}".format(elem.parameters[param_name])) print("results:", elem.results) temp = np.insert(elem.results, 0, elem.parameters[param_name]) try: param_array = np.row_stack((param_array, temp)) except UnboundLocalError: param_array = np.array(temp) if len(param_array.shape) == 1: print("I don't think you want this file") return # append the relative peak error print('\n', param_array, '\n') param_array = np.column_stack((param_array, param_array[:, 4] / param_array[:, 3])) # append the snr param_array = np.column_stack((param_array, param_array[:, 3] / param_array[:, 2])) try: param_array = param_array[param_array[:, 0].argsort()] except: print("param_array shape", param_array.shape) raise try: os.mkdir(folder_name) except OSError as e: if e.errno == errno.EEXIST: pass else: raise file_name = file_name + '.txt' origin_import1 = param_name + ",Noise,Noise,Signal,error,rel peak error,peak signal-to-noise" # origin_import1 = param_name + ",Noise,Noise,Noise,Noise,Ratio" origin_import2 = ",counts,counts,counts,counts,," # origin_import2 = ",counts,counts,counts,," origin_import3 = ",High noise region,Low noise region,{},{} error,{} rel error, {}".format(name, name, name, name) # origin_import3 = ",High noise region,Low noise region 1,Low noise region 2,Low noise region 3,High/low" header_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 # print "Spec header: ", spec_header print("the param_array is:", param_array) np.savetxt(os.path.join(folder_name, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') print("Saved the file.\nDirectory: {}".format(os.path.join(folder_name, file_name))) class HighSidebandCCD(CCD): def __init__(self, hsg_thing, parameter_dict=None, spectrometer_offset=None): """ This will read the appropriate file. The header needs to be fixed to reflect the changes to the output header from the Andor file. Because another helper file will do the cleaning and background subtraction, those are no longer part of this init. This also turns all wavelengths from nm (NIR ones) or cm-1 (THz ones) into eV. OR, if an array is thrown in there, it'll handle the array and dict Input: For post-processing analysis: hsg_thing = file name of the hsg spectrum from CCD superclass spectrometer_offset = number of nanometers the spectrometer is off by, should be 0.0...but can be 0.2 or 1.0 For Live-software: hsg_thing = np array of spectrum from camera parameter_dict = equipment dict generated by software Internal: self.hsg_thing = the filename self.parameters = string with all the relevant experimental perameters self.description = the description we added to the file as the data was being taken self.proc_data = processed data that has gone is frequency vs counts/pulse self.dark_stdev = this is not currently handled appropriately self.addenda = the list of things that have been added to the file, in form of [constant, *spectra_added] self.subtrahenda = the list of spectra that have been subtracted from the file. Constant subtraction is dealt with with self.addenda :param hsg_thing: file name for the file to be opened. OR the actually hsg np.ndarray. Fun! :type hsg_thing: str OR np.ndarray :param parameter_dict: If being loaded through the data acquisition GUI, throw the dict in here :type parameter_dict: dict :param spectrometer_offset: Number of nm the spectrometer is off by :type spectrometer_offset: float :return: None, technically """ if isinstance(hsg_thing, str): super(HighSidebandCCD, self).__init__(hsg_thing, spectrometer_offset=spectrometer_offset) # TODO: fix addenda bullshit self.addenda = [] self.subtrahenda = [] elif isinstance(hsg_thing, np.ndarray): self.parameters = parameter_dict.copy() # Probably shouldn't shoehorn this in this way self.addenda = [] self.subtrahenda = [] self.ccd_data = np.array(hsg_thing) self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] # This data won't have an error column, so attached a column of ones self.ccd_data = np.column_stack((self.ccd_data, np.ones_like(self.ccd_data[:,1]))) self.ccd_data = np.flipud(self.ccd_data) # Because turning into eV switches direction self.fname = "Live Data" else: raise Exception("I don't know what this file type is {}, type: {}".format( hsg_thing, type(hsg_thing) )) self.proc_data = np.array(self.ccd_data) # proc_data is now a 1600 long array with [frequency (eV), signal (counts / FEL pulse), S.E. of signal mean] # self.parameters["nir_freq"] = 1239.84 / float(self.parameters["nir_lambda"]) self.parameters["nir_freq"] = 1239.84 / float(self.parameters.get("nir_lambda", -1)) # self.parameters["thz_freq"] = 0.000123984 * float(self.parameters["fel_lambda"]) self.parameters["thz_freq"] = 0.000123984 * float(self.parameters.get("fel_lambda", -1)) # self.parameters["nir_power"] = float(self.parameters["nir_power"]) self.parameters["nir_power"] = float(self.parameters.get("nir_power", -1)) try: # This is the new way of doing things. Also, now it's power self.parameters["thz_energy"] = float(self.parameters["pulseEnergies"]["mean"]) self.parameters["thz_energy_std"] = float(self.parameters["pulseEnergies"]["std"]) except: # This is the old way TODO: DEPRECATE THIS self.parameters["thz_energy"] = float(self.parameters.get("fel_power", -1)) # things used in fitting/guessing self.sb_list = np.array([]) self.sb_index = np.array([]) self.sb_dict = {} self.sb_results = np.array([]) self.full_dict = {} def __add__(self, other): """ Add together the image data from self.proc_data, or add a constant to that np.array. It will then combine the addenda and subtrahenda lists, as well as add the fel_pulses together. If type(other) is a CCD object, then it will add the errors as well. Input: self = CCD-like object other = int, float or CCD object Internal: ret.proc_data = the self.proc_data + other(.proc_data) ret.addenda = combination of two input addenda lists This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be added, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Add a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] + other ret.addenda[0] = ret.addenda[0] + other # or add the data of two hsg_spectra together else: if np.isclose(ret.parameters['center_lambda'], other.parameters['center_lambda']): ret.proc_data[:, 1] = self.proc_data[:, 1] + other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.addenda[0] = ret.addenda[0] + other.addenda[0] ret.addenda.extend(other.addenda[1:]) ret.subtrahenda.extend(other.subtrahenda) ret.parameters['fel_pulses'] += other.parameters['fel_pulses'] else: raise Exception('Source: Spectrum.__add__:\nThese are not from the same grating settings') return ret def __sub__(self, other): """ This subtracts constants or other data sets between self.proc_data. I think it even keeps track of what data sets are in the file and how they got there. See how __add__ works for more information. This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be subtracted, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Subtract a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] - other # Need to choose a name ret.addenda[0] = ret.addenda[0] - other # Subtract the data of two hsg_spectra from each other else: if np.isclose(ret.proc_data[0, 0], other.proc_data[0, 0]): ret.proc_data[:, 1] = self.proc_data[:, 1] - other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.subtrahenda.extend(other.addenda[1:]) ret.addenda.extend(other.subtrahenda) else: raise Exception('Source: Spectrum.__sub__:\nThese are not from the same grating settings') return ret def __repr__(self): base = """ fname: {}, Series: {series}, spec_step: {spec_step}, fel_lambda: {fel_lambda}, nir_lambda: {nir_lambda}""".format(os.path.basename(self.fname),**self.parameters) return base __str__ = __repr__ def calc_approx_sb_order(self, test_nir_freq): """ This simple method will simply return a float approximating the order of the frequency input. We need this because the CCD wavelength calibration is not even close to perfect. And it shifts by half a nm sometimes. :param test_nir_freq: the frequency guess of the nth sideband :type test_nir_freq: float :return: The approximate order of the sideband in question :rtype: float """ nir_freq = self.parameters['nir_freq'] thz_freq = self.parameters['thz_freq'] # If thz = 0, prevent error if not thz_freq: thz_freq = 1 approx_order = (test_nir_freq - nir_freq) / thz_freq return approx_order def guess_sidebands(self, cutoff=4.5, verbose=False, plot=False, **kwargs): """ Update 05/24/18: Hunter had two different loops for negative order sidebands, then positive order sidebands. They're done pretty much identically, so I've finally merged them into one. Finds the locations of all the sidebands in the proc_data array to be able to seed the fitting method. This works by finding the maximum data value in the array and guessing what sideband it is. It creates an array that includes this information. It will then step down, initially by one THz frequency, then by twos after it hasn't found any odd ones. It then goes up from the max and finds everything above in much the same way. There is currently no rhyme or reason to a cutoff of 8. I don't know what it should be changed to, though. Input: cutoff = signal-to-noise threshold to count a sideband candidate. kwargs: window_size: how big of a window (in pixels) to use for checking for sidebands. Specified in half-width default: 15 Internal: self.sb_list = List of all of the orders the method found self.sb_index = index of all of the peaks of the sidebands self.sb_guess = three-part list including the frequency, amplitude and error guesses for each sideband """ # TODO: this isn't commented appropriately. Will it be made more readable first? if "cutoff" in self.parameters: cutoff = self.parameters["cutoff"] else: self.parameters['cutoff for guess_sidebands'] = cutoff if verbose: print("=" * 15) print() print("Guessing CCD Sideband parameters") print(os.path.basename(self.fname)) print("\tCutoff = {}".format(cutoff)) print() print("=" * 15) x_axis =
np.array(self.proc_data[:, 0])
numpy.array
import numpy as np import tensorly as tl tl.set_backend('pytorch') def count_cp4_parameters(tensor_shape, rank = 8): cout, cin, kh, kw = tensor_shape cp4_count = rank * (cin + kh + kw + cout) return cp4_count def count_cp3_parameters(tensor_shape, rank = 8): cout, cin, kh, kw = tensor_shape cp3_count = rank * (cin + kh*kw + cout) return cp3_count def count_tucker2_parameters(tensor_shape, ranks = [8,8]): cout, cin, kh, kw = tensor_shape if type(ranks)!=list or type(ranks)!=tuple: ranks = [ranks, ranks] tucker2_count = ranks[-2]*cin + np.prod(ranks[-2:])*kh*kw + ranks[-1]*cout return np.array(tucker2_count) def count_parameters(tensor_shape, rank = None, key = 'cp3'): cout, cin, kh, kw = tensor_shape if key == 'cp3': params_count = count_cp3_parameters(tensor_shape, rank=rank) elif key == 'tucker2': params_count = count_tucker2_parameters(tensor_shape, ranks=rank) return params_count def estimate_rank_for_compression_rate(tensor_shape, rate = 2, key = 'tucker2'): initial_count =
np.prod(tensor_shape)
numpy.prod
#!/usr/bin/python # -*- coding: utf-8 -*- """ Update a simple plot as rapidly as possible to measure speed. """ ## Add path to library (just for examples; you do not need this) import initExample from collections import deque from pyqtgraph.Qt import QtGui, QtCore import numpy as np import pyqtgraph as pg from time import perf_counter app = pg.mkQApp("Plot Speed Test") p = pg.plot() p.setWindowTitle('pyqtgraph example: PlotSpeedTest') p.setRange(QtCore.QRectF(0, -10, 5000, 20)) p.setLabel('bottom', 'Index', units='B') curve = p.plot() data =
np.random.normal(size=(50, 5000))
numpy.random.normal
"""Class for calibrating the color-based red-sequence model. """ from __future__ import division, absolute_import, print_function from past.builtins import xrange import os import numpy as np import fitsio import time from scipy.optimize import least_squares from ..configuration import Configuration from ..fitters import MedZFitter, RedSequenceFitter, RedSequenceOffDiagonalFitter, CorrectionFitter from ..redsequence import RedSequenceColorPar from ..color_background import ColorBackground from ..galaxy import GalaxyCatalog from ..catalog import Catalog, Entry from ..zred_color import ZredColor from ..utilities import make_nodes, CubicSpline, interpol class RedSequenceCalibrator(object): """ Class for calibrating the color-based red-sequence model. Requires an input galfile that has the following fields: z: host cluster redshift pcol: probability of membership using color/luminosity p: probability of membership using color/luminosity/radial filter refmag: total magnitude in the reference band mag: magnitude array mag_err: magnitude error array """ def __init__(self, conf, galfile): """ Instantiate a RedSequenceCalibrator. Parameters ---------- conf: `str` or `redmapper.Configuration` Configuration yaml file or configuration object galfile: `str` Galaxy file with the required fields """ if not isinstance(conf, Configuration): self.config = Configuration(conf) else: self.config = conf self._galfile = galfile def run(self, doRaise=True): """ Run the red-sequence calibration. Parameters ---------- doRaise: `bool`, optional Raise an error if background cannot be computed for any galaxies Default is True. Can be set to False for certain testing. """ gals = GalaxyCatalog.from_galfile(self._galfile) if self.config.calib_use_pcol: use, = np.where((gals.z > self.config.zrange[0]) & (gals.z < self.config.zrange[1]) & (gals.pcol > self.config.calib_pcut)) else: use, = np.where((gals.z > self.config.zrange[0]) & (gals.z < self.config.zrange[1]) & (gals.p > self.config.calib_pcut)) if use.size == 0: raise RuntimeError("No good galaxies in %s!" % (self._galfile)) gals = gals[use] nmag = self.config.nmag ncol = nmag - 1 # Reference mag nodes for pivot pivotnodes = make_nodes(self.config.zrange, self.config.calib_pivotmag_nodesize) # Covmat nodes covmatnodes = make_nodes(self.config.zrange, self.config.calib_covmat_nodesize) # correction nodes corrnodes = make_nodes(self.config.zrange, self.config.calib_corr_nodesize) # correction slope nodes corrslopenodes = make_nodes(self.config.zrange, self.config.calib_corr_slope_nodesize) # volume factor (hard coded) volnodes = make_nodes(self.config.zrange, 0.01) # Start building the par dtype dtype = [('pivotmag_z', 'f4', pivotnodes.size), ('pivotmag', 'f4', pivotnodes.size), ('minrefmag', 'f4', pivotnodes.size), ('maxrefmag', 'f4', pivotnodes.size), ('medcol', 'f4', (pivotnodes.size, ncol)), ('medcol_width', 'f4', (pivotnodes.size, ncol)), ('covmat_z', 'f4', covmatnodes.size), ('sigma', 'f4', (ncol, ncol, covmatnodes.size)), ('covmat_amp', 'f4', (ncol, ncol, covmatnodes.size)), ('covmat_slope', 'f4', (ncol, ncol, covmatnodes.size)), ('corr_z', 'f4', corrnodes.size), ('corr', 'f4', corrnodes.size), ('corr_slope_z', 'f4', corrslopenodes.size), ('corr_slope', 'f4', corrslopenodes.size), ('corr_r', 'f4', corrslopenodes.size), ('corr2', 'f4', corrnodes.size), ('corr2_slope', 'f4', corrslopenodes.size), ('corr2_r', 'f4', corrslopenodes.size), ('volume_factor_z', 'f4', volnodes.size), ('volume_factor', 'f4', volnodes.size)] # And for each color, make the nodes node_dict = {} self.ztag = [None] * ncol self.ctag = [None] * ncol self.zstag = [None] * ncol self.stag = [None] * ncol for j in xrange(ncol): self.ztag[j] = 'z%02d' % (j) self.ctag[j] = 'c%02d' % (j) self.zstag[j] = 'zs%02d' % (j) self.stag[j] = 'slope%02d' % (j) node_dict[self.ztag[j]] = make_nodes(self.config.zrange, self.config.calib_color_nodesizes[j], maxnode=self.config.calib_color_maxnodes[j]) node_dict[self.zstag[j]] = make_nodes(self.config.zrange, self.config.calib_slope_nodesizes[j], maxnode=self.config.calib_color_maxnodes[j]) dtype.extend([(self.ztag[j], 'f4', node_dict[self.ztag[j]].size), (self.ctag[j], 'f4', node_dict[self.ztag[j]].size), (self.zstag[j], 'f4', node_dict[self.zstag[j]].size), (self.stag[j], 'f4', node_dict[self.zstag[j]].size)]) # Make the pars ... and fill them with the defaults self.pars = Entry(np.zeros(1, dtype=dtype)) self.pars.pivotmag_z = pivotnodes self.pars.covmat_z = covmatnodes self.pars.corr_z = corrnodes self.pars.corr_slope_z = corrslopenodes self.pars.volume_factor_z = volnodes for j in xrange(ncol): self.pars._ndarray[self.ztag[j]] = node_dict[self.ztag[j]] self.pars._ndarray[self.zstag[j]] = node_dict[self.zstag[j]] # And a special subset of color galaxies if self.config.calib_use_pcol: coluse, = np.where(gals.pcol > self.config.calib_color_pcut) else: coluse, = np.where(gals.p > self.config.calib_color_pcut) colgals = gals[coluse] # And a placeholder zredstr which allows us to do stuff self.zredstr = RedSequenceColorPar(None, config=self.config) # And read the color background self.bkg = ColorBackground(self.config.bkgfile_color) # And prepare for luptitude corrections if self.config.b[0] == 0.0: self.do_lupcorr = False else: self.do_lupcorr = True self.bnmgy = self.config.b * 1e9 self.lupzp = 22.5 # Compute pivotmags self._calc_pivotmags(colgals) # Compute median colors self._calc_medcols(colgals) # Compute diagonal parameters self._calc_diagonal_pars(gals, doRaise=doRaise) # Compute off-diagonal parameters self._calc_offdiagonal_pars(gals, doRaise=doRaise) # Compute volume factor self._calc_volume_factor(self.config.zrange[1]) # Write out the parameter file self.save_pars(self.config.parfile, clobber=False) # Compute zreds without corrections # Later will want this parallelized, I think self._calc_zreds(gals, do_correction=False) # Compute correction (mode1) self._calc_corrections(gals) # Compute correction (mode2) self._calc_corrections(gals, mode2=True) # And re-save the parameter file self.save_pars(self.config.parfile, clobber=True) # Recompute zreds with corrections # Later will want this parallelized, I think self._calc_zreds(gals, do_correction=True) # And want to save galaxies and zreds zredfile = os.path.join(self.config.outpath, os.path.basename(self._galfile.rstrip('.fit') + '_zreds.fit')) gals.to_fits_file(zredfile) # Make diagnostic plots self._make_diagnostic_plots(gals) def _compute_startvals(self, nodes, z, val, xval=None, err=None, median=False, fit=False, mincomp=3): """ Compute the starting fit values using a simple algorithm. Must select one (and only one) of median=True (median fit) or fit=True (weighted mean fit). Parameters ---------- nodes: `np.array` Float array of redshift nodes z: `np.array` Float array of redshifts val: `np.array` Float array of values to fit (e.g. refmag, color) xval: `np.array`, optional X-axis value for color-magnitude relation if fitting slope. Usually refmag. Default is None, which means not fitting a slope. err: `np.array`, optional Float array of error on val. Not used if fitting median. Default is None. median: `bool`, optional Perform median fit. Default is False. fit: `bool`, optional Perform weighted mean fit. Default is False. """ def _linfunc(p, x, y): return (p[1] + p[0] * x) - y if (not median and not fit) or (median and fit): raise RuntimeError("Must select one and only one of median and fit") if median: mvals = np.zeros(nodes.size) scvals = np.zeros(nodes.size) else: cvals = np.zeros(nodes.size) svals = np.zeros(nodes.size) if err is not None: if err.size != val.size: raise ValueError("val and err must be the same length") # default all to 0.1 evals = np.zeros(nodes.size) + 0.1 else: evals = None for i in xrange(nodes.size): if i == 0: zlo = nodes[0] else: zlo = (nodes[i - 1] + nodes[i]) / 2. if i == nodes.size - 1: zhi = nodes[i] else: zhi = (nodes[i] + nodes[i + 1]) / 2. u, = np.where((z > zlo) & (z < zhi)) if u.size < mincomp: if i > 0: if median: mvals[i] = mvals[i - 1] scvals[i] = scvals[i - 1] else: cvals[i] = cvals[i - 1] svals[i] = svals[i - 1] if err is not None: evals[i] = evals[i - 1] else: if median: mvals[i] = np.median(val[u]) scvals[i] = np.median(np.abs(val[u] - mvals[i])) else: fit = least_squares(_linfunc, [0.0, 0.0], loss='soft_l1', args=(xval[u], val[u])) cvals[i] = fit.x[1] svals[i] = np.clip(fit.x[0], None, 0.0) if err is not None: evals[i] = np.median(err[u]) if median: return mvals, scvals else: return cvals, svals, evals def _compute_single_lupcorr(self, j, cvals, svals, gals, dmags, mags, lups, mind, sign): """ Compute the luptitude correction for a single color Parameters ---------- j: `int` Color index cvals: `np.array` Float array of spline values for color at pivotmag svals: `np.array` Float array of slope values gals: `redmapper.GalaxyCatalog` Galaxy catalog being fit dmags: `np.array` Float array of refmag - pivotmag mags: `np.array` 2d Float array of true (model) magnitudes lups: `np.array` 2d Float array of true (model) luptitudes mind: `int` magnitude index, currently being worked on. sign: `int`, -1 or 1 Sign of color; -1 if band is redder than ref_ind, +1 if band is bluer than ref_ind Returns ------- lupcorr: `np.array` Float array of luptitude color corrections """ spl = CubicSpline(self.pars._ndarray[self.ztag[j]], cvals) cv = spl(gals.z) spl = CubicSpline(self.pars._ndarray[self.zstag[j]], svals) sv = spl(gals.z) mags[:, mind] = mags[:, mind + sign] + sign * (cv + sv * dmags) flux = 10.**((mags[:, mind] - self.lupzp) / (-2.5)) lups[:, mind] = 2.5 * np.log10(1.0 / self.config.b[mind]) - np.arcsinh(0.5 * flux / self.bnmgy[mind]) / (0.4 * np.log(10.0)) magcol = mags[:, j] - mags[:, j + 1] lupcol = lups[:, j] - lups[:, j + 1] lupcorr = lupcol - magcol return lupcorr def _calc_pivotmags(self, gals): """ Calculate the pivot magnitude parameters. These are put into self.pars.pivotmag, self.pars.maxrefmag, and self.pars.minrefmag Parameters ---------- gals: `redmapper.GalaxyCatalog` Galaxy catalog with fields required for fit. """ self.config.logger.info("Calculating pivot magnitudes...") # With binning, approximate the positions for starting the fit pivmags = np.zeros_like(self.pars.pivotmag_z) for i in xrange(pivmags.size): pivmags, _ = self._compute_startvals(self.pars.pivotmag_z, gals.z, gals.refmag, median=True) medfitter = MedZFitter(self.pars.pivotmag_z, gals.z, gals.refmag) pivmags = medfitter.fit(pivmags) self.pars.pivotmag = pivmags # and min and max... self.pars.minrefmag = self.zredstr.mstar(self.pars.pivotmag_z) - 2.5 * np.log10(30.0) lval_min = np.clip(self.config.lval_reference - 0.1, 0.001, None) self.pars.maxrefmag = self.zredstr.mstar(self.pars.pivotmag_z) - 2.5 * np.log10(lval_min) def _calc_medcols(self, gals): """ Calculate the median color spline parameters. Sets self.pars.medcol, self.pars.medcol_width Parameters ---------- gals: `redmapper.GalaxyCatalog` Galaxy catalog with fields required for fit. """ self.config.logger.info("Calculating median colors...") ncol = self.config.nmag - 1 galcolor = gals.galcol for j in xrange(ncol): col = galcolor[:, j] # get the start values mvals, scvals = self._compute_startvals(self.pars.pivotmag_z, gals.z, col, median=True) # compute the median medfitter = MedZFitter(self.pars.pivotmag_z, gals.z, col) mvals = medfitter.fit(mvals) # and the scatter spl = CubicSpline(self.pars.pivotmag_z, mvals) med = spl(gals.z) medfitter = MedZFitter(self.pars.pivotmag_z, gals.z, np.abs(col - med)) scvals = medfitter.fit(scvals) self.pars.medcol[:, j] = mvals self.pars.medcol_width[:, j] = 1.4826 * scvals def _calc_diagonal_pars(self, gals, doRaise=True): """ Calculate the model parameters and diagonal elements of the covariance matrix (one color at a time). Sets self.pars.sigma, self.pars.covmat_amp, self.pars.cXX, self.pars.slopeXX Parameters ---------- gals: `redmapper.GalaxyCatalog` Galaxy catalog with fields required for fit. doRaise: `bool`, optional Raise if there's a problem with the background? Default is True. """ # The main routine to compute the red sequence on the diagonal ncol = self.config.nmag - 1 galcolor = gals.galcol galcolor_err = gals.galcol_err # compute the pivot mags spl = CubicSpline(self.pars.pivotmag_z, self.pars.pivotmag) pivotmags = spl(gals.z) # And set the right probabilities if self.config.calib_use_pcol: probs = gals.pcol else: probs = gals.p # Figure out the order of the colors for luptitude corrections mags = np.zeros((gals.size, self.config.nmag)) if self.do_lupcorr: col_indices = np.zeros(ncol, dtype=np.int32) sign_indices = np.zeros(ncol, dtype=np.int32) mind_indices = np.zeros(ncol, dtype=np.int32) c=0 for j in xrange(self.config.ref_ind, self.config.nmag): col_indices[c] = j - 1 sign_indices[c] = -1 mind_indices[c] = j c += 1 for j in xrange(self.config.ref_ind - 2, -1, -1): col_indices[c] = j sign_indices[c] = 1 mind_indices[c] = j c += 1 lups = np.zeros_like(mags) mags[:, self.config.ref_ind] = gals.mag[:, self.config.ref_ind] flux = 10.**((mags[:, self.config.ref_ind] - self.lupzp) / (-2.5)) lups[:, self.config.ref_ind] = 2.5 *
np.log10(1.0 / self.config.b[self.config.ref_ind])
numpy.log10
from math import pi, sqrt from scipy.special import dawsn import numpy as np def is_PD(A): try:
np.linalg.cholesky(A)
numpy.linalg.cholesky
import os from contextlib import contextmanager from functools import wraps import six import numpy as np import torch from torch import nn from nics_fix_pt import quant import pytest def _add_call_counter(func): @wraps(func) def _func(*args, **kwargs): _func.num_calls += 1 return func(*args, **kwargs) _func.num_calls = 0 return _func quant.quantitize = _add_call_counter(quant.quantitize) from nics_fix_pt.quant import quantitize @contextmanager def patch_variable(patches): backup = [] for module, name, value in patches: backup.append((module, name, getattr(module, name))) setattr(module, name, value) yield for module, name, value in backup: setattr(module, name, value) def _cnn_data(device="cuda", batch_size=2): return (torch.rand(batch_size, 3, 28, 28, dtype=torch.float, device=device), torch.tensor(np.random.randint(0, high=10, size=batch_size)).long().to(device)) def _supernet_sample_cand(net): ss = net.search_space rollout = ss.random_sample() # arch = [([0, 0, 2, 2, 0, 2, 4, 4], [0, 6, 7, 6, 1, 1, 5, 7]), # ([1, 1, 0, 0, 1, 2, 2, 2], [7, 2, 2, 1, 7, 4, 3, 7])] cand_net = net.assemble_candidate(rollout) return cand_net BITWIDTH = 8 FIX_METHOD = 1 # auto_fix def _generate_default_fix_cfg(names, scale=0, bitwidth=8, method=0): return {n: { "method": torch.autograd.Variable(torch.IntTensor(
np.array([method])
numpy.array
# Develop new version # Original from #/XF11ID/analysis/Analysis_Pipelines/Develop/chxanalys/chxanalys/chx_correlation.py # ###################################################################### # Let's change from mask's to indices ######################################################################## """ This module is for functions specific to spatial correlation in order to tackle the motion of speckles """ from __future__ import absolute_import, division, print_function # from __future__ import absolute_import, division, print_function from skbeam.core.utils import multi_tau_lags from skbeam.core.roi import extract_label_indices from collections import namedtuple import numpy as np from scipy.signal import fftconvolve # for a convenient status bar try: from tqdm import tqdm except ImportError: def tqdm(iterator): return iterator from scipy.fftpack.helper import next_fast_len def get_cor_region(cor, cij, qid, fitw): """YG developed@CHX July/2019, Get a rectangle region of the cor class by giving center and width""" ceni = cor.centers[qid] x1, x2, y1, y2 = ( max(0, ceni[0] - fitw), ceni[0] + fitw, max(0, ceni[1] - fitw), ceni[1] + fitw, ) return cij[qid][x1:x2, y1:y2] def direct_corss_cor(im1, im2): """YG developed@CHX July/2019, directly calculate the cross correlation of two images Input: im1: the first image im2: the second image Return: The cross correlation """ sx, sy = im1.shape Nx, Ny = sx // 2, sy // 2 C = np.zeros([2 * Nx, 2 * Ny]) for i in range(-Nx, Nx): for j in range(-Ny, Ny): if i == 0: if j == 0: d1 = im1[:, :] d2 = im2[:, :] elif j < 0: d1 = im1[:j, :] d2 = im2[-j:, :] else: ##j>0 d1 = im1[j:, :] d2 = im2[:-j, :] elif i < 0: if j == 0: d1 = im1[:, :i] d2 = im2[:, -i:] elif j < 0: d1 = im1[:j, :i] d2 = im2[-j:, -i:] else: ##j>0 d1 = im1[j:, :i] d2 = im2[:-j, -i:] else: # i>0: if j == 0: d1 = im1[:, i:] d2 = im2[:, :-i] elif j < 0: d1 = im1[:j, i:] d2 = im2[-j:, :-i] else: ##j>0 d1 = im1[j:, i:] d2 = im2[:-j, :-i] # print(i,j) C[i + Nx, j + Ny] = np.sum(d1 * d2) / ( np.average(d1) * np.average(d2) * d1.size ) return C.T class CrossCorrelator2: """ Compute a 1D or 2D cross-correlation on data. This uses a mask, which may be binary (array of 0's and 1's), or a list of non-negative integer id's to compute cross-correlations separately on. The symmetric averaging scheme introduced here is inspired by a paper from Schatzel, although the implementation is novel in that it allows for the usage of arbitrary masks. [1]_ Examples -------- >> ccorr = CrossCorrelator(mask.shape, mask=mask) >> # correlated image >> cimg = cc(img1) or, mask may may be ids >> cc = CrossCorrelator(ids) #(where ids is same shape as img1) >> cc1 = cc(img1) >> cc12 = cc(img1, img2) # if img2 shifts right of img1, point of maximum correlation is shifted # right from correlation center References ---------- .. [1] Schatzel, Klaus, <NAME>, and <NAME>. "Photon correlation measurements at large lag times: improving statistical accuracy." Journal of Modern Optics 35.4 (1988): 711-718. """ # TODO : when mask is None, don't compute a mask, submasks def __init__(self, shape, mask=None, normalization=None, progress_bar=True): """ Prepare the spatial correlator for various regions specified by the id's in the image. Parameters ---------- shape : 1 or 2-tuple The shape of the incoming images or curves. May specify 1D or 2D shapes by inputting a 1 or 2-tuple mask : 1D or 2D np.ndarray of int, optional Each non-zero integer represents unique bin. Zero integers are assumed to be ignored regions. If None, creates a mask with all points set to 1 normalization: string or list of strings, optional These specify the normalization and may be any of the following: 'regular' : divide by pixel number 'symavg' : use symmetric averaging Defaults to ['regular'] normalization Delete argument wrap as not used. See fftconvolve as this expands arrays to get complete convolution, IE no need to expand images of subregions. """ if normalization is None: normalization = ["regular"] elif not isinstance(normalization, list): normalization = list([normalization]) self.normalization = normalization self.progress_bar = progress_bar if mask is None: # we can do this easily now. mask = np.ones(shape) # initialize subregion information for the correlations # first find indices of subregions and sort them by subregion id pii, pjj = np.where(mask) bind = mask[pii, pjj] ord = np.argsort(bind) bind = bind[ord] pii = pii[ord] pjj = pjj[ord] # sort them all # make array of pointers into position arrays pos = np.append(0, 1 + np.where(np.not_equal(bind[1:], bind[:-1]))[0]) pos = np.append(pos, len(bind)) self.pos = pos self.ids = bind[pos[:-1]] self.nids = len(self.ids) sizes = np.array( [ [ pii[pos[i] : pos[i + 1]].min(), pii[pos[i] : pos[i + 1]].max(), pjj[pos[i] : pos[i + 1]].min(), pjj[pos[i] : pos[i + 1]].max(), ] for i in range(self.nids) ] ) self.pii = pii self.pjj = pjj self.offsets = sizes[:, 0:3:2].copy() # WE now have two sets of positions of the subregions # (pii-offsets[0],pjj-offsets[1]) in subregion and (pii,pjj) in # images. pos is a pointer such that (pos[i]:pos[i+1]) # are the indices in the position arrays of subregion i. self.sizes = 1 + (np.diff(sizes)[:, [0, 2]]).copy() # make sizes be for regions centers = np.array(self.sizes.copy()) // 2 self.centers = centers if len(self.ids) == 1: self.centers = self.centers[0, :] def __call__(self, img1, img2=None, normalization=None, check_res=False): """Run the cross correlation on an image/curve or against two images/curves Parameters ---------- img1 : 1D or 2D np.ndarray The image (or curve) to run the cross correlation on img2 : 1D or 2D np.ndarray If not set to None, run cross correlation of this image (or curve) against img1. Default is None. normalization : string or list of strings normalization types. If not set, use internally saved normalization parameters Returns ------- ccorrs : 1d or 2d np.ndarray An image of the correlation. The zero correlation is located at shape//2 where shape is the 1 or 2-tuple shape of the array """ progress_bar = self.progress_bar if normalization is None: normalization = self.normalization if img2 is None: self_correlation = True else: self_correlation = False ccorrs = list() pos = self.pos # loop over individual regions if progress_bar: R = tqdm(range(self.nids)) else: R = range(self.nids) for reg in R: # for reg in tqdm(range(self.nids)): #for py3.5 ii = self.pii[pos[reg] : pos[reg + 1]] jj = self.pjj[pos[reg] : pos[reg + 1]] i = ii.copy() - self.offsets[reg, 0] j = jj.copy() - self.offsets[reg, 1] # set up size for fft with padding shape = 2 * self.sizes[reg, :] - 1 fshape = [next_fast_len(int(d)) for d in shape] # fslice = tuple([slice(0, int(sz)) for sz in shape]) submask = np.zeros(self.sizes[reg, :]) submask[i, j] = 1 mma1 = np.fft.rfftn(submask, fshape) # for mask # do correlation by ffts maskcor = np.fft.irfftn(mma1 * mma1.conj(), fshape) # [fslice]) # print(reg, maskcor) # maskcor = _centered(np.fft.fftshift(maskcor), self.sizes[reg,:]) #make smaller?? maskcor = _centered(maskcor, self.sizes[reg, :]) # make smaller?? # choose some small value to threshold maskcor *= maskcor > 0.5 tmpimg = np.zeros(self.sizes[reg, :]) tmpimg[i, j] = img1[ii, jj] im1 = np.fft.rfftn(tmpimg, fshape) # image 1 if self_correlation: # ccorr = np.real(np.fft.ifftn(im1 * im1.conj(), fshape)[fslice]) ccorr = np.fft.irfftn(im1 * im1.conj(), fshape) # [fslice]) # ccorr = np.fft.fftshift(ccorr) ccorr = _centered(ccorr, self.sizes[reg, :]) else: ndim = img1.ndim tmpimg2 = np.zeros_like(tmpimg) tmpimg2[i, j] = img2[ii, jj] im2 = np.fft.rfftn(tmpimg2, fshape) # image 2 ccorr = np.fft.irfftn(im1 * im2.conj(), fshape) # [fslice]) # ccorr = _centered(np.fft.fftshift(ccorr), self.sizes[reg,:]) ccorr = _centered(ccorr, self.sizes[reg, :]) # print('here') ###check here if check_res: if reg == 0: self.norm = maskcor self.ck = ccorr.copy() # print(ccorr.max()) self.tmp = tmpimg self.fs = fshape ###end the check # now handle the normalizations if "symavg" in normalization: mim1 = np.fft.rfftn(tmpimg * submask, fshape) Icorr = np.fft.irfftn(mim1 * mma1.conj(), fshape) # [fslice]) # Icorr = _centered(np.fft.fftshift(Icorr), self.sizes[reg,:]) Icorr = _centered(Icorr, self.sizes[reg, :]) # do symmetric averaging if self_correlation: Icorr2 = np.fft.irfftn(mma1 * mim1.conj(), fshape) # [fslice]) # Icorr2 = _centered(np.fft.fftshift(Icorr2), self.sizes[reg,:]) Icorr2 = _centered(Icorr2, self.sizes[reg, :]) else: mim2 = np.fft.rfftn(tmpimg2 * submask, fshape) Icorr2 = np.fft.irfftn(mma1 * mim2.conj(), fshape) # Icorr2 = _centered(np.fft.fftshift(Icorr2), self.sizes[reg,:]) Icorr2 = _centered(Icorr2, self.sizes[reg, :]) # there is an extra condition that Icorr*Icorr2 != 0 w = np.where(np.abs(Icorr * Icorr2) > 0) # DO WE NEED THIS (use i,j). ccorr[w] *= maskcor[w] / Icorr[w] / Icorr2[w] # print 'size:',tmpimg.shape,Icorr.shape if check_res: if reg == 0: self.ckn = ccorr.copy() if "regular" in normalization: # only run on overlapping regions for correlation w = np.where(maskcor > 0.5) if self_correlation: ccorr[w] /= maskcor[w] * np.average(tmpimg[w]) ** 2 else: ccorr[w] /= ( maskcor[w] * np.average(tmpimg[w]) * np.average(tmpimg2[w]) ) if check_res: if reg == 0: self.ckn = ccorr.copy() # print('here') # print( np.average(tmpimg[w]) ) # print( maskcor[w] ) # print( ccorr.max(), maskcor[w], np.average(tmpimg[w]), np.average(tmpimg2[w]) ) ccorrs.append(ccorr) if len(ccorrs) == 1: ccorrs = ccorrs[0] return ccorrs def _centered(img, sz): n = sz // 2 # ind=np.r_[-n[0]:0,0:sz[0]-n[0]] img = np.take(img, np.arange(-n[0], sz[0] - n[0]), 0, mode="wrap") # ind=np.r_[-n[1]:0,0:sz[1]-n[1]] img = np.take(img, np.arange(-n[1], sz[1] - n[1]), 1, mode="wrap") return img ##define a custmoized fftconvolve ######################################################################################## # modifided version from signaltools.py in scipy (Mark March 2017) # Author: <NAME> # 1999 -- 2002 import warnings import threading # from . import sigtools import numpy as np from scipy._lib.six import callable from scipy._lib._version import NumpyVersion from scipy import linalg from scipy.fftpack import fft, ifft, ifftshift, fft2, ifft2, fftn, ifftn, fftfreq from numpy.fft import rfftn, irfftn from numpy import ( allclose, angle, arange, argsort, array, asarray, atleast_1d, atleast_2d, cast, dot, exp, expand_dims, iscomplexobj, isscalar, mean, ndarray, newaxis, ones, pi, poly, polyadd, polyder, polydiv, polymul, polysub, polyval, prod, product, r_, ravel, real_if_close, reshape, roots, sort, sum, take, transpose, unique, where, zeros, zeros_like, ) # from ._arraytools import axis_slice, axis_reverse, odd_ext, even_ext, const_ext _rfft_mt_safe = NumpyVersion(np.__version__) >= "1.9.0.dev-e24486e" _rfft_lock = threading.Lock() def fftconvolve_new(in1, in2, mode="full"): """Convolve two N-dimensional arrays using FFT. Convolve `in1` and `in2` using the fast Fourier transform method, with the output size determined by the `mode` argument. This is generally much faster than `convolve` for large arrays (n > ~500), but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float). Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`;from scipy.signal import fftconvolve if sizes of `in1` and `in2` are not equal then `in1` has to be the larger array.get_window mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. Returns ------- out : array An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. Examples -------- Autocorrelation of white noise is an impulse. (This is at least 100 times as fast as `convolve`.) >>> from scipy import signal >>> sig = np.random.randn(1000) >>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full') >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1) >>> ax_orig.plot(sig) >>> ax_orig.set_title('White noise') >>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr) >>> ax_mag.set_title('Autocorrelation') >>> fig.tight_layout() >>> fig.show() Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-padding beyond its boundaries. The `convolve2d` function allows for other types of image boundaries, but is far slower. >>> from scipy import misc >>> lena = misc.lena() >>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8)) >>> blurred = signal.fftconvolve(lena, kernel, mode='same') >>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(1, 3) >>> ax_orig.imshow(lena, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_kernel.imshow(kernel, cmap='gray') >>> ax_kernel.set_title('Gaussian kernel') >>> ax_kernel.set_axis_off() >>> ax_blurred.imshow(blurred, cmap='gray') >>> ax_blurred.set_title('Blurred') >>> ax_blurred.set_axis_off() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if in1.ndim == in2.ndim == 0: # scalar inputs return in1 * in2 elif not in1.ndim == in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") elif in1.size == 0 or in2.size == 0: # empty arrays return array([]) s1 = array(in1.shape) s2 = array(in2.shape) complex_result = np.issubdtype(in1.dtype, np.complex) or np.issubdtype( in2.dtype, np.complex ) shape = s1 + s2 - 1 if mode == "valid": _check_valid_mode_shapes(s1, s2) # Speed up FFT by padding to optimal size for FFTPACK # expand by at least twice+1 fshape = [_next_regular(int(d)) for d in shape] fslice = tuple([slice(0, int(sz)) for sz in shape]) # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make # sure we only call rfftn/irfftn from one thread at a time. if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)): try: ret = irfftn(rfftn(in1, fshape) * rfftn(in2, fshape), fshape)[fslice].copy() finally: if not _rfft_mt_safe: _rfft_lock.release() else: # If we're here, it's either because we need a complex result, or we # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and # is already in use by another thread). In either case, use the # (threadsafe but slower) SciPy complex-FFT routines instead. ret = ifftn(fftn(in1, fshape) * fftn(in2, fshape))[fslice].copy() if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": return _centered(ret, s1) elif mode == "valid": return _centered(ret, s1 - s2 + 1) else: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.") def _cross_corr1(img1, img2=None): """Compute the cross correlation of one (or two) images. Parameters ---------- img1 : np.ndarray the image or curve to cross correlate img2 : 1d or 2d np.ndarray, optional If set, cross correlate img1 against img2. A shift of img2 to the right of img1 will lead to a shift of the point of highest correlation to the right. Default is set to None """ ndim = img1.ndim if img2 is None: img2 = img1 if img1.shape != img2.shape: errorstr = "Image shapes don't match. " errorstr += "(img1 : {},{}; img2 : {},{})".format(*img1.shape, *img2.shape) raise ValueError(errorstr) # need to reverse indices for second image # fftconvolve(A,B) = FFT^(-1)(FFT(A)*FFT(B)) # but need FFT^(-1)(FFT(A(x))*conj(FFT(B(x)))) = FFT^(-1)(A(x)*B(-x)) reverse_index = tuple([slice(None, None, -1) for i in range(ndim)]) imgc = fftconvolve(img1, img2[reverse_index], mode="same") return imgc class CrossCorrelator1: """ Compute a 1D or 2D cross-correlation on data. This uses a mask, which may be binary (array of 0's and 1's), or a list of non-negative integer id's to compute cross-correlations separately on. The symmetric averaging scheme introduced here is inspired by a paper from Schätzel, although the implementation is novel in that it allows for the usage of arbitrary masks. [1]_ Examples -------- >> ccorr = CrossCorrelator(mask.shape, mask=mask) >> # correlated image >> cimg = cc(img1) or, mask may may be ids >> cc = CrossCorrelator(ids) #(where ids is same shape as img1) >> cc1 = cc(img1) >> cc12 = cc(img1, img2) # if img2 shifts right of img1, point of maximum correlation is shifted # right from correlation center References ---------- .. [1] Schätzel, Klaus, <NAME>, and <NAME>. “Photon correlation measurements at large lag times: improving statistical accuracy.” Journal of Modern Optics 35.4 (1988): 711-718. """ # TODO : when mask is None, don't compute a mask, submasks def __init__(self, shape, mask=None, normalization=None): """ Prepare the spatial correlator for various regions specified by the id's in the image. Parameters ---------- shape : 1 or 2-tuple The shape of the incoming images or curves. May specify 1D or 2D shapes by inputting a 1 or 2-tuple mask : 1D or 2D np.ndarray of int, optional Each non-zero integer represents unique bin. Zero integers are assumed to be ignored regions. If None, creates a mask with all points set to 1 normalization: string or list of strings, optional These specify the normalization and may be any of the following: 'regular' : divide by pixel number 'symavg' : use symmetric averaging Defaults to ['regular'] normalization Delete argument wrap as not used. See fftconvolve as this expands arrays to get complete convolution, IE no need to expand images of subregions. """ if normalization is None: normalization = ["regular"] elif not isinstance(normalization, list): normalization = list([normalization]) self.normalization = normalization if mask is None: # we can do this easily now. mask = np.ones(shape) # initialize subregions information for the correlation # first find indices of subregions and sort them by subregion id pii, pjj = np.where(mask) bind = mask[pii, pjj] ord = np.argsort(bind) bind = bind[ord] pii = pii[ord] pjj = pjj[ord] # sort them all # make array of pointers into position arrays pos = np.append(0, 1 + np.where(np.not_equal(bind[1:], bind[:-1]))[0]) pos = np.append(pos, len(bind)) self.pos = pos self.ids = bind[pos[:-1]] self.nids = len(self.ids) sizes = np.array( [ [ pii[pos[i] : pos[i + 1]].min(), pii[pos[i] : pos[i + 1]].max(), pjj[pos[i] : pos[i + 1]].min(), pjj[pos[i] : pos[i + 1]].max(), ] for i in range(self.nids) ] ) # make indices for subregions arrays and their sizes pi = pii.copy() pj = pjj.copy() for i in range(self.nids): pi[pos[i] : pos[i + 1]] -= sizes[i, 0] pj[pos[i] : pos[i + 1]] -= sizes[i, 2] self.pi = pi self.pj = pj self.pii = pii self.pjj = pjj sizes = 1 + (np.diff(sizes)[:, [0, 2]]) # make sizes be for regions self.sizes = sizes.copy() # the shapes of each correlation # WE now have two sets of positions of the subregions (pi,pj) in subregion # and (pii,pjj) in images. pos is a pointer such that (pos[i]:pos[i+1]) # is the indices in the position arrays of subregion i. # Making a list of arrays holding the masks for each id. Ideally, mask # is binary so this is one element to quickly index original images self.submasks = list() self.centers = list() # the positions of each axes of each correlation self.positions = list() self.maskcorrs = list() # regions where the correlations are not zero self.pxlst_maskcorrs = list() # basically saving bunch of mask related stuff like indexing etc, just # to save some time when actually computing the cross correlations for id in range(self.nids): submask = np.zeros(self.sizes[id, :]) submask[pi[pos[id] : pos[id + 1]], pj[pos[id] : pos[id + 1]]] = 1 self.submasks.append(submask) maskcorr = _cross_corr1(submask) # quick fix for #if self.wrap is False: # submask = _expand_image1(submask)finite numbers should be integer so # choose some small value to threshold maskcorr *= maskcorr > 0.5 self.maskcorrs.append(maskcorr) self.pxlst_maskcorrs.append(maskcorr > 0) # centers are shape//2 as performed by fftshift center = np.array(maskcorr.shape) // 2 self.centers.append(np.array(maskcorr.shape) // 2) if mask.ndim == 1: self.positions.append(
np.arange(maskcorr.shape[0])
numpy.arange
# -*- coding: utf-8 -*- from numpy import real, min as np_min, max as np_max from numpy.linalg import norm from ....Classes.MeshMat import MeshMat from ....definitions import config_dict from numpy import ( pi, real, min as np_min, max as np_max, abs as np_abs, linspace, exp, ) from ....Classes.MeshVTK import MeshVTK from pyleecan.Functions.Plot.Pyvista.configure_plot import configure_plot from pyleecan.Functions.Plot.Pyvista.plot_surf_deflection import plot_surf_deflection from pyleecan.Functions.Plot.Pyvista.plot_mesh_field import plot_mesh_field COLOR_MAP = config_dict["PLOT"]["COLOR_DICT"]["COLOR_MAP"] FONT_FAMILY_PYVISTA = config_dict["PLOT"]["FONT_FAMILY_PYVISTA"] def plot_contour( self, *args, label=None, index=None, indices=None, is_surf=False, is_radial=False, is_center=False, clim=None, field_name=None, group_names=None, save_path=None, itimefreq=0, is_show_fig=True, win_title=None, factor=None, is_animated=False, title="", p=None, ): """Plot the contour of a field on a mesh using pyvista plotter. Parameters ---------- self : MeshSolution a MeshSolution object *args: list of strings List of axes requested by the user, their units and values (optional) label : str a label index : int an index indices : list list of the points to extract (optional) is_surf : bool field over outer surface is_radial : bool radial component only is_center : bool field at cell-centers clim : list a list of 2 elements for the limits of the colorbar field_name : str title of the field to display on plot group_names : list a list of str corresponding to group name(s) save_path : str path to save the figure is_show_fig : bool To call show at the end of the method is_animated : True to animate magnetic flux density Returns ------- """ if group_names is not None: meshsol_grp = self.get_group(group_names) meshsol_grp.plot_contour( *args, label=label, index=index, indices=indices, is_surf=is_surf, is_radial=is_radial, is_center=is_center, clim=clim, field_name=field_name, group_names=None, save_path=save_path, itimefreq=itimefreq, is_animated=is_animated, title=title, ) else: # Init figure if p is None: if title != "" and win_title == "": win_title = title elif win_title != "" and title == "": title = win_title p, sargs = configure_plot(p=p, win_title=win_title, save_path=save_path) p.add_text( title, position="upper_edge", color="black", font_size=10, font=FONT_FAMILY_PYVISTA, ) # Get the mesh_pv and field mesh_pv, field, field_name = self.get_mesh_field_pv( *args, label=label, index=index, indices=indices, is_surf=is_surf, is_radial=is_radial, is_center=is_center, field_name=field_name, ) # Add field to mesh # if is_surf: # surf = mesh_pv.get_surf(indices=indices) # surf[field_name] = real(field) # mesh_field = surf # else: # mesh_pv[field_name] = real(field) # mesh_field = mesh_pv if clim is None: clim = [np_min(real(field)), np_max(real(field))] if (clim[1] - clim[0]) / clim[1] < 0.01: clim[0] = -abs(clim[1]) clim[1] = abs(clim[1]) plot_mesh_field( p, sargs, field_name, clim=clim, mesh_pv=mesh_pv, field=field, ) ########### # Internal animation (cannot be combined with other plots) if is_animated: p.add_text( 'Adjust 3D view and press "Q"', position="lower_edge", color="gray", font_size=10, font="arial", ) p.show(auto_close=False) p.open_gif(save_path) p.clear() if len(args) == 0 or "time" in args: mesh_pv_B, field_B, field_name_B = self.get_mesh_field_pv("time") nframe = len(field_B) is_time = True else: nframe = 25 mesh_pv_B, field_B, field_name_B = self.get_mesh_field_pv(args) is_time = False t =
linspace(0.0, 1.0, nframe + 1)
numpy.linspace
import random import numpy as np import pytest from _pytest.python_api import approx from flaky import flaky from dowhy.gcm.independence_test import kernel_based, approx_kernel_based from dowhy.gcm.independence_test.kernel import _fast_centering @pytest.fixture def preserve_random_generator_state(): numpy_state = np.random.get_state() random_state = random.getstate() yield np.random.set_state(numpy_state) random.setstate(random_state) @flaky(max_runs=5) def test_kernel_based_conditional_independence_test_independent(): z = np.random.randn(1000, 1) x = np.exp(z + np.random.rand(1000, 1)) y = np.exp(z + np.random.rand(1000, 1)) assert kernel_based(x, y, z) > 0.05 @flaky(max_runs=5) def test_kernel_based_based_conditional_independence_test_dependent(): z = np.random.randn(1000, 1) w = np.random.randn(1000, 1) x = np.exp(z + np.random.rand(1000, 1)) y = np.exp(z + np.random.rand(1000, 1)) assert 0.05 > kernel_based(x, y, w) @flaky(max_runs=5) def test_kernel_based_conditional_independence_test_categorical_independent(): x, y, z = generate_categorical_data() assert kernel_based(x, y, z) > 0.05 @flaky(max_runs=5) def test_kernel_based_conditional_independence_test_categorical_dependent(): x, y, z = generate_categorical_data() assert kernel_based(x, z, y) < 0.05 @flaky(max_runs=2) def test_kernel_based_conditional_independence_test_with_random_seed(preserve_random_generator_state): z = np.random.randn(1000, 1) x = np.exp(z + np.random.rand(1000, 1)) y = np.exp(z + np.random.rand(1000, 1)) assert kernel_based(x, z, y, bootstrap_num_samples_per_run=5, bootstrap_num_runs=2, p_value_adjust_func=np.mean) \ != kernel_based(x, z, y, bootstrap_num_samples_per_run=5, bootstrap_num_runs=2, p_value_adjust_func=np.mean) np.random.seed(0) result_1 = kernel_based(x, z, y, bootstrap_num_samples_per_run=5, bootstrap_num_runs=2, p_value_adjust_func=np.mean) np.random.seed(0) result_2 = kernel_based(x, z, y, bootstrap_num_samples_per_run=5, bootstrap_num_runs=2, p_value_adjust_func=np.mean) assert result_1 == result_2 def test_kernel_based_pairwise_independence_test_raises_error_when_too_few_samples(): with pytest.raises(RuntimeError): kernel_based(np.array([1, 2, 3, 4]), np.array([1, 3, 2, 4])) @flaky(max_runs=5) def test_kernel_based_pairwise_independence_test_independent(): z = np.random.randn(1000, 1) w = np.random.randn(1000, 1) x = np.exp(z + np.random.rand(1000, 1)) assert kernel_based(x, w) > 0.05 @flaky(max_runs=5) def test_kernel_based_pairwise_independence_test_dependent(): z = np.random.randn(1000, 1) x = np.exp(z + np.random.rand(1000, 1)) y = np.exp(z + np.random.rand(1000, 1)) assert kernel_based(x, y) < 0.05 @flaky(max_runs=5) def test_kernel_based_pairwise_independence_test_categorical_independent(): x = np.random.normal(0, 1, 1000) y = (np.random.choice(2, 1000) == 1).astype(str) assert kernel_based(x, y) > 0.05 @flaky(max_runs=5) def test_kernel_based_pairwise_independence_test_categorical_dependent(): x = np.random.normal(0, 1, 1000) y = [] for v in x: if v > 0: y.append(0) else: y.append(1) y = np.array(y).astype(str) assert kernel_based(x, y) < 0.05 @flaky(max_runs=2) def test_kernel_based_pairwise_independence_test_with_random_seed(preserve_random_generator_state): x = np.random.randn(1000, 1) y = x + np.random.randn(1000, 1) assert kernel_based(x, y, bootstrap_num_samples_per_run=10, bootstrap_num_runs=2, p_value_adjust_func=np.mean) \ != kernel_based(x, y, bootstrap_num_samples_per_run=10, bootstrap_num_runs=2, p_value_adjust_func=np.mean) np.random.seed(0) result_1 = kernel_based(x, y, bootstrap_num_samples_per_run=10, bootstrap_num_runs=2, p_value_adjust_func=np.mean) np.random.seed(0) result_2 = kernel_based(x, y, bootstrap_num_samples_per_run=10, bootstrap_num_runs=2, p_value_adjust_func=np.mean) assert result_1 == result_2 def test_kernel_based_pairwise_with_constant(): assert kernel_based(np.random.normal(0, 1, (1000, 2)), np.array([5] * 1000)) != np.nan @flaky(max_runs=5) def test_approx_kernel_based_conditional_independence_test_independent(): z = np.random.randn(1000, 1) x = np.exp(z + np.random.rand(1000, 1)) y = np.exp(z + np.random.rand(1000, 1)) assert approx_kernel_based(x, y, z) > 0.05 @flaky(max_runs=5) def test_approx_kernel_based_conditional_independence_test_dependent(): z =
np.random.randn(1000, 1)
numpy.random.randn
import numpy as np from datetime import datetime as py_dtime from datetime import timedelta import pandas as pd import requests import re from bs4 import BeautifulSoup as bs4 from bqplot import LinearScale, Axis, Lines, Figure, DateScale from bqplot.interacts import HandDraw from ipywidgets import widgets from IPython.display import display import locale import warnings warnings.filterwarnings('ignore') locale.setlocale(locale.LC_ALL, '') # --- MACHINE COSTS --- resp = requests.get('https://cloud.google.com/compute/pricing') html = bs4(resp.text) # Munge the cost data def clean_promo(in_value, use_promo=False): # cleans listings with promotional pricing # defaults to non-promo pricing with use_promo if in_value.find("promo") > -1: if use_promo: return re.search("\d+\.\d+", in_value)[0] else: return re.search("\d+\.\d+", in_value[in_value.find("("):])[0] else: return in_value all_dfs = [] for table in html.find_all('table'): header = table.find('thead').find_all('th') header = [item.text for item in header] data = table.find('tbody').find_all('tr') rows = [] for ii in data: thisrow = [] for jj in ii.find_all('td'): if 'default' in jj.attrs.keys(): thisrow.append(jj.attrs['default']) elif 'ore-hourly' in jj.attrs.keys(): thisrow.append(clean_promo(jj.attrs['ore-hourly'].strip('$'))) elif 'ore-monthly' in jj.attrs.keys(): thisrow.append(clean_promo(jj.attrs['ore-monthly'].strip('$'))) else: thisrow.append(jj.text.strip()) rows.append(thisrow) df = pd.DataFrame(rows[:-1], columns=header) all_dfs.append(df) # Pull out our reference dataframes disk = [df for df in all_dfs if 'Price (per GB / month)' in df.columns][0] machines_list = pd.concat([df for df in all_dfs if 'Machine type' in df.columns]).dropna() machines_list = machines_list.drop('Preemptible price (USD)', axis=1) machines_list = machines_list.rename(columns={'Price (USD)': 'Price (USD / hr)'}) active_machine = machines_list.iloc[0] # Base costs, all per day disk['Price (per GB / month)'] = disk['Price (per GB / month)'].astype(float) cost_storage_hdd = disk[disk['Type'] == 'Standard provisioned space']['Price (per GB / month)'].values[0] cost_storage_hdd /= 30. # To make it per day cost_storage_ssd = disk[disk['Type'] == 'SSD provisioned space']['Price (per GB / month)'].values[0] cost_storage_ssd /= 30. # To make it per day storage_cost = {False: 0, 'ssd': cost_storage_ssd, 'hdd': cost_storage_hdd} # --- WIDGET --- date_start = py_dtime(2017, 1, 1, 0) n_step_min = 2 def autoscale(y, window_minutes=30, user_buffer=10): # Weights for the autoscaling weights =
np.logspace(0, 2, window_minutes)
numpy.logspace
import numpy as np from shapreg import utils, games, stochastic_games from tqdm.auto import tqdm def default_min_variance_samples(game): '''Determine min_variance_samples.''' return 5 def default_variance_batches(game, batch_size): ''' Determine variance_batches. This value tries to ensure that enough samples are included to make A approximation non-singular. ''' if isinstance(game, games.CooperativeGame): return int(
np.ceil(10 * game.players / batch_size)
numpy.ceil
import math import numpy as np import scipy.sparse as sp import torch def calc_mag_gso(dir_adj, gso_type, q): if sp.issparse(dir_adj): id = sp.identity(dir_adj.shape[0], format='csc') # Symmetrizing an adjacency matrix adj = dir_adj + dir_adj.T.multiply(dir_adj.T > dir_adj) - dir_adj.multiply(dir_adj.T > dir_adj) #adj = 0.5 * (dir_adj + dir_adj.transpose()) if q != 0: dir = dir_adj.transpose() - dir_adj trs = np.exp(1j * 2 * np.pi * q * dir.toarray()) trs = sp.csc_matrix(trs) else: trs = id # Fake if gso_type == 'sym_renorm_mag_adj' or gso_type == 'rw_renorm_mag_adj' \ or gso_type == 'neg_sym_renorm_mag_adj' or gso_type == 'neg_rw_renorm_mag_adj' \ or gso_type == 'sym_renorm_mag_lap' or gso_type == 'rw_renorm_mag_lap': adj = adj + id if gso_type == 'sym_norm_mag_adj' or gso_type == 'sym_renorm_mag_adj' \ or gso_type == 'neg_sym_norm_mag_adj' or gso_type == 'neg_sym_renorm_mag_adj' \ or gso_type == 'sym_norm_mag_lap' or gso_type == 'sym_renorm_mag_lap': row_sum = adj.sum(axis=1).A1 row_sum_inv_sqrt = np.power(row_sum, -0.5) row_sum_inv_sqrt[np.isinf(row_sum_inv_sqrt)] = 0. deg_inv_sqrt = sp.diags(row_sum_inv_sqrt, format='csc') # A_{sym} = D^{-0.5} * A * D^{-0.5} sym_norm_adj = deg_inv_sqrt.dot(adj).dot(deg_inv_sqrt) if q == 0: sym_norm_mag_adj = sym_norm_adj elif q == 0.5: sym_norm_mag_adj = sym_norm_adj.multiply(trs.real) else: sym_norm_mag_adj = sym_norm_adj.multiply(trs) if gso_type == 'neg_sym_norm_mag_adj' or gso_type == 'neg_sym_renorm_mag_adj': gso = -1 * sym_norm_mag_adj elif gso_type == 'sym_norm_mag_lap' or gso_type == 'sym_renorm_mag_lap': sym_norm_mag_lap = id - sym_norm_mag_adj gso = sym_norm_mag_lap else: gso = sym_norm_mag_adj elif gso_type == 'rw_norm_mag_adj' or gso_type == 'rw_renorm_mag_adj' \ or gso_type == 'neg_rw_norm_mag_adj' or gso_type == 'neg_rw_renorm_mag_adj' \ or gso_type == 'rw_norm_mag_lap' or gso_type == 'rw_renorm_mag_lap': row_sum = adj.sum(axis=1).A1 row_sum_inv = np.power(row_sum, -1) row_sum_inv[np.isinf(row_sum_inv)] = 0. deg_inv = sp.diags(row_sum_inv, format='csc') # A_{rw} = D^{-1} * A rw_norm_adj = deg_inv.dot(adj) if q == 0: rw_norm_mag_adj = rw_norm_adj elif q == 0.5: rw_norm_mag_adj = rw_norm_adj.multiply(trs.real) else: rw_norm_mag_adj = rw_norm_adj.multiply(trs) if gso_type == 'neg_rw_norm_mag_adj' or gso_type == 'neg_rw_renorm_mag_adj': gso = -1 * rw_norm_mag_adj elif gso_type == 'rw_norm_mag_lap' or gso_type == 'rw_renorm_mag_lap': rw_norm_mag_lap = id - rw_norm_mag_adj gso = rw_norm_mag_lap else: gso = rw_norm_mag_adj else: raise ValueError(f'{gso_type} is not defined.') else: id = np.identity(dir_adj.shape[0]) # Symmetrizing an adjacency matrix adj = np.maximum(dir_adj, dir_adj.T) #adj = 0.5 * (dir_adj + dir_adj.T) if q != 0: dir = dir_adj.T - dir_adj trs =
np.exp(1j * 2 * np.pi * q * dir)
numpy.exp
from hierarc.Likelihood.LensLikelihood.ddt_hist_likelihood import DdtHistLikelihood, DdtHistKDELikelihood import numpy as np import numpy.testing as npt import unittest def log_likelihood(hist_obj, mean, sig_factor): logl_max = hist_obj.log_likelihood(ddt=mean, dd=None) npt.assert_almost_equal(logl_max, 0, decimal=1) logl_sigma = hist_obj.log_likelihood(ddt=mean*(1+sig_factor), dd=None)
npt.assert_almost_equal(logl_sigma-logl_max, -1/2., decimal=1)
numpy.testing.assert_almost_equal
#!/usr/bin/python3 def inv_rank(m, tol=1E-8, method='auto', logger=None, mpc=0, qr=0, **ka): """Computes matrix (pseudo-)inverse and rank with SVD. Eigenvalues smaller than tol*largest eigenvalue are set to 0. Rank of inverted matrix is also returned. Provides to limit the number of eigenvalues to speed up computation. Broadcasts to the last 2 dimensions of the matrix. Parameters ------------ m: numpy.ndarray(shape=(...,n,n),dtype=float) 2-D or higher matrix to be inverted tol: float Eigenvalues < tol*maximum eigenvalue are treated as zero. method: str Method to compute eigenvalues: * auto: Uses scipy for n<mpc or mpc==0 and sklearn otherwise * scipy: Uses scipy.linalg.svd * scipys: NOT IMPLEMENTED. Uses scipy.sparse.linalg.svds * sklearn: Uses sklearn.decomposition.TruncatedSVD logger: object Logger to output warning. Defaults (None) to logging module mpc: int Maximum rank or number of eigenvalues/eigenvectors to consider. Defaults to 0 to disable limit. For very large input matrix, use a small value (e.g. 500) to save time at the cost of accuracy. qr: int Whether to use QR decomposition for matrix inverse. Only effective when method=sklearn, or =auto that defaults to sklearn. * 0: No * 1: Yes with default settings * 2+: Yes with n_iter=qr for sklearn.utils.extmath.randomized_svd ka: Keyword args passed to method Returns ------- mi: numpy.ndarray(shape=(...,n,n),dtype=float) Pseudo-inverse matrices r: numpy.ndarray(shape=(...),dtype=int) or int Matrix ranks """ import numpy as np from numpy.linalg import LinAlgError if logger is None: import logging as logger if m.ndim <= 1 or m.shape[-1] != m.shape[-2]: raise ValueError('Wrong shape for m.') if tol <= 0: raise ValueError('tol must be positive.') if qr < 0 or int(qr) != qr: raise ValueError('qr must be non-negative integer.') if method == 'auto': if m.ndim > 2 and mpc > 0: raise NotImplementedError( 'No current method supports >2 dimensions with mpc>0.') elif m.shape[-1] <= mpc or mpc == 0: # logger.debug('Automatically selected scipy method for matrix inverse.') method = 'scipy' else: # logger.debug('Automatically selected sklearn method for matrix inverse.') method = 'sklearn' n = m.shape[-1] if m.ndim == 2: if method == 'scipy': from scipy.linalg import svd try: s = svd(m, **ka) except LinAlgError: logger.warning( "Default scipy.linalg.svd failed. Falling back to option lapack_driver='gesvd'. Expecting much slower computation." ) s = svd(m, lapack_driver='gesvd', **ka) n2 = n - np.searchsorted(s[1][::-1], tol * s[1][0]) if mpc > 0: n2 = min(n2, mpc) ans = np.matmul(s[2][:n2].T / s[1][:n2], s[2][:n2]).T elif method == 'sklearn': from sklearn.utils.extmath import randomized_svd as svd n2 = min(mpc, n) if mpc > 0 else n # Find enough n_components by increasing in steps while True: if qr == 1: s = svd(m, n2, power_iteration_normalizer='QR', random_state=0, **ka) elif qr > 1: s = svd(m, n2, power_iteration_normalizer='QR', n_iter=qr, random_state=0, **ka) else: s = svd(m, n2, random_state=0, **ka) if n2 == n or s[1][-1] <= tol * s[1][0] or mpc > 0: break n2 += np.min([n2, n - n2]) n2 = n2 - np.searchsorted(s[1][::-1], tol * s[1][0]) if mpc > 0: n2 = min(n2, mpc) ans = np.matmul(s[2][:n2].T / s[1][:n2], s[2][:n2]).T else: raise ValueError('Unknown method {}'.format(method)) else: if method == 'scipy': from scipy.linalg import svd if mpc > 0: raise NotImplementedError('Not supporting >2 dimensions for mpc>0.') warned = False m2 = m.reshape(np.prod(m.shape[:-2]), *m.shape[-2:]) s = [] for xi in m2: try: s.append(svd(xi, **ka)) except LinAlgError: if not warned: warned = True logger.warning( "Default scipy.linalg.svd failed. Falling back to option lapack_driver='gesvd'. Expecting much slower computation." ) s.append(svd(xi, lapack_driver='gesvd', **ka)) n2 = n - np.array([np.searchsorted(x[1][::-1], tol * x[1][0]) for x in s]) ans = [np.matmul(x[2][:y].T / x[1][:y], x[2][:y]).T for x, y in zip(s, n2)] ans = np.array(ans).reshape(*m.shape) n2 = n2.reshape(*m.shape[:-2]) elif method == 'sklearn': raise NotImplementedError( 'Not supporting >2 dimensions for method=sklearn.') else: raise ValueError('Unknown method {}'.format(method)) try: if n2.ndim == 0: n2 = n2.item() except Exception: pass return ans, n2 def association_test_1(vx, vy, dx, dy, dc, dci, dcr, dimreduce=0, lowmem=False): """Fast linear association testing in single-cell non-cohort settings with covariates. Single threaded version to allow for parallel computing wrapper. Mainly used for naive differential expression and co-expression. Computes exact P-value and effect size (gamma) with the model for linear association testing between each vector x and vector y: y=gamma*x+alpha*C+epsilon, epsilon~i.i.d. N(0,sigma**2). Test statistic: conditional R**2 (or proportion of variance explained) between x and y. Null hypothesis: gamma=0. Parameters ---------- vx: any Starting indices of dx. Only used for information passing. vy: any Starting indices of dy. Only used for information passing. dx: numpy.ndarray(shape=(n_x,n_cell)). Predictor matrix for a list of vector x to be tested, e.g. gene expression or grouping. dy: numpy.ndarray(shape=(n_y,n_cell)). Target matrix for a list of vector y to be tested, e.g. gene expression. dc: numpy.ndarray(shape=(n_cov,n_cell)). Covariate matrix as C. dci: numpy.ndarray(shape=(n_cov,n_cov)). Low-rank inverse matrix of dc*dc.T. dcr: int Rank of dci. dimreduce: numpy.ndarray(shape=(ny,),dtype='uint') or int. If each vector y doesn't have full rank in the first place, this parameter is the loss of degree of freedom to allow for accurate P-value computation. lowmem: bool Whether to save memory by neither computing nor returning alpha. Returns ---------- vx: any vx from input for information passing. vy: any vy from input for information passing. pv: numpy.ndarray(shape=(n_x,n_y)) P-values of association testing (gamma==0). gamma: numpy.ndarray(shape=(n_x,n_y)) Maximum likelihood estimator of gamma in model. alpha: numpy.ndarray(shape=(n_x,n_y,n_cov)) or None Maximum likelihood estimator of alpha in model if not lowmem else None. var_x: numpy.ndarray(shape=(n_x,)) Variance of dx unexplained by covariates C. var_y: numpy.ndarray(shape=(n_y,)) Variance of dy unexplained by covariates C. """ import numpy as np from scipy.stats import beta import logging if len(dx.shape) != 2 or len(dy.shape) != 2 or len(dc.shape) != 2: raise ValueError('Incorrect dx/dy/dc size.') n = dx.shape[1] if dy.shape[1] != n or dc.shape[1] != n: raise ValueError('Unmatching dx/dy/dc dimensions.') nc = dc.shape[0] if nc == 0: logging.warning('No covariate dc input.') elif dci.shape != (nc, nc): raise ValueError('Unmatching dci dimensions.') if dcr < 0: raise ValueError('Negative dcr detected.') elif dcr > nc: raise ValueError('dcr higher than covariate dimension.') if n <= dcr + dimreduce + 1: raise ValueError( 'Insufficient number of cells: must be greater than degrees of freedom removed + covariate + 1.' ) nx = dx.shape[0] ny = dy.shape[0] dx1 = dx dy1 = dy if dcr > 0: # Remove covariates ccx = np.matmul(dci, np.matmul(dc, dx1.T)).T ccy = np.matmul(dci, np.matmul(dc, dy1.T)).T dx1 = dx1 - np.matmul(ccx, dc) dy1 = dy1 - np.matmul(ccy, dc) ansvx = (dx1**2).mean(axis=1) ansvx[ansvx == 0] = 1 ansvy = (dy1**2).mean(axis=1) ansvy[ansvy == 0] = 1 ansc = (np.matmul(dy1, dx1.T) / (n * ansvx)).T ansp = ((ansc**2).T * ansvx).T / ansvy if lowmem: ansa = None elif dcr > 0: ansa = np.repeat( ccy.reshape(1, ccy.shape[0], ccy.shape[1]), ccx.shape[0], axis=0) - (ansc * np.repeat(ccx.T.reshape(ccx.shape[1], ccx.shape[0], 1), ccy.shape[0], axis=2)).transpose(1, 2, 0) else: ansa = np.zeros((nx, ny, nc), dtype=dx.dtype) # Compute p-values assert (ansp >= 0).all() and (ansp <= 1 + 1E-8).all() ansp = beta.cdf(1 - ansp, (n - 1 - dcr - dimreduce) / 2, 0.5) assert ansp.shape == (nx, ny) and ansc.shape == (nx, ny) and ansvx.shape == ( nx, ) and ansvy.shape == (ny, ) assert np.isfinite(ansp).all() and np.isfinite(ansc).all() and np.isfinite( ansvx).all() and np.isfinite(ansvy).all() assert (ansp >= 0).all() and (ansp <= 1).all() and (ansvx >= 0).all() and ( ansvy >= 0).all() if lowmem: assert ansa is None else: assert ansa.shape == (nx, ny, nc) and np.isfinite(ansa).all() return [vx, vy, ansp, ansc, ansa, ansvx, ansvy] def association_test_2(vx, vy, dx, dy, dc, sselectx, dimreduce=0, lowmem=False): """Like association_test_1, but takes a different subset of samples for each x. See association_test_1 for additional details. Parameters ---------- vx: any Starting indices of dx. Only used for information passing. vy: any Starting indices of dy. Only used for information passing. dx: numpy.ndarray(shape=(n_x,n_cell)). Predictor matrix for a list of vector x to be tested, e.g. gene expression or grouping. dy: numpy.ndarray(shape=(n_y,n_cell)). Target matrix for a list of vector y to be tested, e.g. gene expression. dc: numpy.ndarray(shape=(n_cov,n_cell)). Covariate matrix as C. sselectx: numpy.ndarray(shape=(n_x,n_cell),dtype=bool) Subset of samples to use for each x. dimreduce: numpy.ndarray(shape=(ny,),dtype='uint') or int. If each vector y doesn't have full rank in the first place, this parameter is the loss of degree of freedom to allow for accurate P-value computation. lowmem: bool Whether to save memory by neither computing nor returning alpha. Returns -------- vx: any vx from input for information passing. vy: any vy from input for information passing. pv: numpy.ndarray(shape=(n_x,n_y)) P-values of association testing (gamma==0). gamma: numpy.ndarray(shape=(n_x,n_y)) Maximum likelihood estimator of gamma in model. alpha: numpy.ndarray(shape=(n_x,n_y,n_cov)) or None Maximum likelihood estimator of alpha in model if not lowmem else None. var_x: numpy.ndarray(shape=(n_x,)) Variance of dx unexplained by covariates C. var_y: numpy.ndarray(shape=(n_x,n_y)) Variance of dy unexplained by covariates C. """ import numpy as np import logging from scipy.stats import beta if len(dx.shape) != 2 or len(dy.shape) != 2 or len(dc.shape) != 2: raise ValueError('Incorrect dx/dy/dc size.') n = dx.shape[1] if dy.shape[1] != n or dc.shape[1] != n: raise ValueError('Unmatching dx/dy/dc dimensions.') nc = dc.shape[0] if nc == 0: logging.warning('No covariate dc input.') if sselectx.shape != dx.shape: raise ValueError('Unmatching sselectx dimensions.') nx = dx.shape[0] ny = dy.shape[0] ansp = np.zeros((nx, ny), dtype=float) ansvx = np.zeros((nx, ), dtype=float) ansvy = np.zeros((nx, ny), dtype=float) ansc = np.zeros((nx, ny), dtype=float) if lowmem: ansa = None else: ansa = np.zeros((nx, ny, nc), dtype=float) ansn = np.zeros((nx, ny), dtype=int) for xi in range(nx): # Select samples t1 = np.nonzero(sselectx[xi])[0] ns = len(t1) if len(np.unique(dx[xi, t1])) < 2: continue dx1 = dx[xi, t1] dy1 = dy[:, t1] if nc > 0: # Remove covariates dc1 = dc[:, t1] t1 = np.matmul(dc1, dc1.T) t1i, r = inv_rank(t1) else: r = 0 ansn[xi] = r if r > 0: # Remove covariates ccx = np.matmul(t1i, np.matmul(dc1, dx1.T)).T ccy = np.matmul(t1i, np.matmul(dc1, dy1.T)).T dx1 = dx1 - np.matmul(ccx, dc1) dy1 = dy1 - np.matmul(ccy, dc1) t1 = (dx1**2).mean() if t1 == 0: # X completely explained by covariate. Should never happen in theory. t1 = 1 ansvx[xi] = t1 ansvy[xi] = (dy1**2).mean(axis=1) ansc[xi] = np.matmul(dx1, dy1.T).ravel() / (ns * t1) if (not lowmem) and r > 0: ansa[xi] = ccy - np.repeat(ansc[xi].reshape(ny, 1), nc, axis=1) * ccx.ravel() ansp[xi] = (ansc[xi]**2) * t1 / ansvy[xi] # Compute p-values assert (ansp >= 0).all() and (ansp <= 1 + 1E-8).all() t1 = (sselectx.sum(axis=1) - 1 - ansn.T - dimreduce).T if (t1 <= 0).any(): raise RuntimeError( 'Insufficient number of cells: must be greater than degrees of freedom removed + covariate + 1.' ) ansp = beta.cdf(1 - ansp, t1 / 2, 0.5) assert ansp.shape == (nx, ny) and ansc.shape == (nx, ny) and ansvx.shape == ( nx, ) and ansvy.shape == (nx, ny) assert np.isfinite(ansp).all() and np.isfinite(ansc).all() and np.isfinite( ansvx).all() and np.isfinite(ansvy).all() assert (ansp >= 0).all() and (ansp <= 1).all() and (ansvx >= 0).all() and ( ansvy >= 0).all() if lowmem: assert ansa is None else: assert ansa.shape == (nx, ny, nc) and np.isfinite(ansa).all() return [vx, vy, ansp, ansc, ansa, ansvx, ansvy] def prod1(vx, vy, dx, dy): """Pickleable function for matrix product that keeps information Parameters ------------- vx: any Information passed vy: any Information passed dx: numpy.ndarray(shape=(...,n)) Matrix for multiplication dy: numpy.ndarray(shape=(...,n)) Matrix for multiplication Returns --------- vx: any vx vy: any vy product: numpy.ndarray(shape=(...)) dx\ @\ dy.T """ import numpy as np return (vx, vy, np.matmul(dx, dy.T)) def association_test_4(vx, vy, prod, prody, prodyy, na, dimreduce=0, lowmem=False, **ka): """Like association_test_1, but regards all other (untested) x's as covariates when testing each x. Also allows for dx==dy setting, where neither tested x or y is regarded as a covariate. See association_test_1 for additional details. Other x's are treated as covariates but their coefficients (alpha) would not be returned to reduce memory footprint. Parameters ---------- vx: any Starting indices of dx. vy: any Starting indices of dy. Only used for information passing. prod: numpy.ndarray(shape=(n_x+n_cov,n_x+n_cov)) A\ @\ A.T, where A=numpy.block([dx,dc]). prody: numpy.ndarray(shape=(n_x+n_cov,n_y)) or None A\ @\ dy.T, where A=numpy.block([dx,dc]). If None, indicating dx==dy and skipping tested y as a covariate. prodyy: numpy.ndarray(shape=(n_y,)) or None (dy**2).sum(axis=1). If None, indicating dx==dy and skipping tested y as a covariate. na: tuple (n_x,n_y,n_cov,n_cell,lenx). Numbers of (x's, y's, covariates, cells, x's to compute association for) dimreduce: numpy.ndarray(shape=(ny,),dtype='uint') or int. If each vector y doesn't have full rank in the first place, this parameter is the loss of degree of freedom to allow for accurate P-value computation. lowmem: bool Whether to save memory by neither computing nor returning alpha. ka: dict Keyword arguments passed to inv_rank. Returns -------- vx: any vx from input for information passing. vy: any vy from input for information passing. pv: numpy.ndarray(shape=(n_x,n_y)) P-values of association testing (gamma==0). gamma: numpy.ndarray(shape=(n_x,n_y)) Maximum likelihood estimator of gamma in model. alpha: numpy.ndarray(shape=(n_x,n_y,n_cov)) or None Maximum likelihood estimator of alpha in model if not lowmem else None. var_x: numpy.ndarray(shape=(lenx,)) or None Variance of dx unexplained by covariates C if prody is not None else None. var_y: numpy.ndarray(shape=(lenx,n_y)) Variance of dy unexplained by covariates C or untested x. """ import numpy as np from scipy.stats import beta import logging import itertools if len(na) != 5: raise ValueError('Wrong format for na') nx, ny, nc, n, lenx = na if nx == 0 or ny == 0 or n == 0: raise ValueError('Dimensions in na==0 detected.') if nc == 0: logging.warning('No covariate dc input.') if lenx <= 0: raise ValueError('lenx must be positive.') if vx < 0 or vx + lenx > nx: raise ValueError('Wrong values of vx and/or lenx, negative or beyond nx.') if prod.shape != (nx + nc, nx + nc): raise ValueError('Unmatching shape for prod. Expected: {}. Got: {}.'.format( (nx + nc, nx + nc), prod.shape)) if prody is None: samexy = True assert prodyy is None prody = prod[:, vy:(vy + ny)] prodyy = prod[np.arange(ny) + vy, np.arange(ny) + vy] else: samexy = False if prody.shape != (nx + nc, ny): raise ValueError('Unmatching shape for prody. Expected: {}. Got: {}.'.format( (nx + nc, ny), prody.shape)) if prodyy.shape != (ny, ): raise ValueError( 'Unmatching shape for prodyy. Expected: {}. Got: {}.'.format( (ny, ), prodyy.shape)) ansp = np.zeros((lenx, ny), dtype=float) ansvx = np.zeros((lenx, ), dtype=float) ansvy = np.zeros((lenx, ny), dtype=float) ansc = np.zeros((lenx, ny), dtype=float) if lowmem: ansa = None else: ansa = np.zeros((lenx, ny, nc), dtype=float) ansn = np.zeros((lenx, ny), dtype=int) if samexy: it = itertools.product(range(lenx), range(ny)) it = [[x[0], [x[1]]] for x in it if x[0] + vx < x[1] + vy] else: it = [[x, np.arange(ny)] for x in range(lenx)] for xi in it: # Covariate IDs t0 = list(filter(lambda x: x != vx + xi[0], range(nx + nc))) if samexy: t0 = list(filter(lambda x: x != vy + xi[1][0], t0)) if len(t0) > 0: t1 = prod[np.ix_(t0, t0)] t1i, r = inv_rank(t1, **ka) else: r = 0 ansn[xi[0], xi[1]] = r if r == 0: # No covariate dxx = prod[vx + xi[0], vx + xi[0]] / n dyy = prodyy[xi[1]] / n dxy = prody[vx + xi[0], xi[1]] / n else: ccx = np.matmul(prod[[vx + xi[0]], t0], t1i) dxx = (prod[vx + xi[0], vx + xi[0]] - float(np.matmul(ccx, prod[t0, [vx + xi[0]]]))) / n ccy = np.matmul(prody[t0][:, xi[1]].T, t1i) dyy = (prodyy[xi[1]] - (ccy.T * prody[t0][:, xi[1]]).sum(axis=0)) / n dxy = (prody[vx + xi[0], xi[1]] - np.matmul(ccy, prod[t0, [vx + xi[0]]]).ravel()) / n if dxx == 0: # X completely explained by covariate. Should never happen in theory. dxx = 1 ansvx[xi[0]] = dxx ansvy[xi[0], xi[1]] = dyy ansc[xi[0], xi[1]] = dxy / dxx if (not lowmem) and r > 0: ansa[xi[0], xi[1]] = ccy[:, -nc:] - np.repeat( ansc[xi[0], xi[1]].reshape(len(xi[1]), 1), nc, axis=1) * ccx[-nc:] ansp[xi[0], xi[1]] = (dxy**2) / (dxx * dyy) # Compute p-values assert (ansp >= 0).all() and (ansp <= 1 + 1E-8).all() t1 = n - 1 - ansn - dimreduce if (t1 <= 0).any(): raise RuntimeError( 'Insufficient number of cells: must be greater than degrees of freedom removed + covariate + 1.' ) ansp = beta.cdf(1 - ansp, t1 / 2, 0.5) assert ansp.shape == (lenx, ny) and ansc.shape == ( lenx, ny) and ansvx.shape == (lenx, ) and ansvy.shape == (lenx, ny) assert np.isfinite(ansp).all() and np.isfinite(ansc).all() and np.isfinite( ansvx).all() and np.isfinite(ansvy).all() assert (ansp >= 0).all() and (ansp <= 1).all() and (ansvx >= 0).all() and ( ansvy >= 0).all() if samexy: ansvx = None if lowmem: assert ansa is None else: assert ansa.shape == (lenx, ny, nc) and np.isfinite(ansa).all() return [vx, vy, ansp, ansc, ansa, ansvx, ansvy] def association_test_5(vx, vy, prod, prody, prodyy, na, mask, dimreduce=0, lowmem=False, **ka): """Like association_test_4, but uses mask to determine which X can affect which Y. Under development. Parameters ---------- vx: any Starting indices of dx. vy: any Starting indices of dy. Only used for information passing. prod: numpy.ndarray(shape=(n_x+n_cov,n_x+n_cov)) A\ @\ A.T, where A=numpy.block([dx,dc]). prody: numpy.ndarray(shape=(n_x+n_cov,n_y)) or None A\ @\ dy.T, where A=numpy.block([dx,dc]). If None, indicating dx==dy and skipping tested y as a covariate. prodyy: numpy.ndarray(shape=(n_y,)) or None (dy**2).sum(axis=1). If None, indicating dx==dy and skipping tested y as a covariate. na: tuple (n_x,n_y,n_cov,n_cell,lenx). Numbers of (x's, y's, covariates, cells, x's to compute association for) mask: numpy.ndarray(shape=(n_x,n_y),dtype=bool) Prior constraint on whether each X can affect each Y. dimreduce: numpy.ndarray(shape=(ny,),dtype='uint') or int. If each vector y doesn't have full rank in the first place, this parameter is the loss of degree of freedom to allow for accurate P-value computation. lowmem: bool Whether to save memory by neither computing nor returning alpha. ka: dict Keyword arguments passed to inv_rank. Returns -------- vx: any vx from input for information passing. vy: any vy from input for information passing. pv: numpy.ndarray(shape=(n_x,n_y)) P-values of association testing (gamma==0). gamma: numpy.ndarray(shape=(n_x,n_y)) Maximum likelihood estimator of gamma in model. alpha: numpy.ndarray(shape=(n_x,n_y,n_cov)) or None Maximum likelihood estimator of alpha in model if not lowmem else None. var_x: numpy.ndarray(shape=(lenx,n_y)) Variance of dx unexplained by covariates C or untested x. var_y: numpy.ndarray(shape=(lenx,n_y)) Variance of dy unexplained by covariates C or untested x. """ import numpy as np from scipy.stats import beta import logging import itertools if len(na) != 5: raise ValueError('Wrong format for na') nx, ny, nc, n, lenx = na if nx == 0 or ny == 0 or n == 0: raise ValueError('Dimensions in na==0 detected.') if nc == 0: logging.warning('No covariate dc input.') if lenx <= 0: raise ValueError('lenx must be positive.') if vx < 0 or vx + lenx > nx: raise ValueError('Wrong values of vx and/or lenx, negative or beyond nx.') if prod.shape != (nx + nc, nx + nc): raise ValueError('Unmatching shape for prod. Expected: {}. Got: {}.'.format( (nx + nc, nx + nc), prod.shape)) if prody.shape != (nx + nc, ny): raise ValueError('Unmatching shape for prody. Expected: {}. Got: {}.'.format( (nx + nc, ny), prody.shape)) if prodyy.shape != (ny, ): raise ValueError( 'Unmatching shape for prodyy. Expected: {}. Got: {}.'.format( (ny, ), prodyy.shape)) if mask.shape != (nx, ny): raise ValueError('Unmatching shape for mask. Expected: {}. Got: {}.'.format( (nx, ny), mask.shape)) ansp = np.zeros((lenx, ny), dtype=float) ansvx = np.zeros((lenx, ny), dtype=float) ansvy = np.zeros((lenx, ny), dtype=float) ansc = np.zeros((lenx, ny), dtype=float) if lowmem: ansa = None else: ansa = np.zeros((lenx, ny, nc), dtype=float) ansn = np.zeros((lenx, ny), dtype=int) it = np.array(np.nonzero(mask)).T it = it[(it[:, 0] >= vx) & (it[:, 0] < vx + lenx)] it[:, 0] -= vx for xi in it: # Covariate IDs t0 = list( filter( lambda x: x != vx + xi[0], itertools.chain(np.nonzero(mask[:, xi[1]])[0], np.arange(nc) + nx))) if len(t0) > 0: t1 = prod[np.ix_(t0, t0)] t1i, r = inv_rank(t1, **ka) else: r = 0 ansn[xi[0], xi[1]] = r if r == 0: # No covariate dxx = prod[vx + xi[0], vx + xi[0]] / n dyy = prodyy[xi[1]] / n dxy = prody[vx + xi[0], xi[1]] / n else: ccx = prod[[vx + xi[0]], t0] @ t1i dxx = (prod[vx + xi[0], vx + xi[0]] - float(np.matmul(ccx, prod[t0, [vx + xi[0]]]))) / n ccy = prody[t0, xi[1]] @ t1i dyy = (prodyy[xi[1]] - ccy @ prody[t0, xi[1]]) / n dxy = (prody[vx + xi[0], xi[1]] - ccy @ prod[t0, vx + xi[0]]) / n if dxx == 0: # X completely explained by covariate. Should never happen in theory. dxx = 1 ansvx[xi[0]] = dxx ansvy[xi[0], xi[1]] = dyy ansc[xi[0], xi[1]] = dxy / dxx if (not lowmem) and r > 0: ansa[xi[0], xi[1]] = ccy[-nc:] - np.repeat(ansc[xi[0], xi[1]], nc) * ccx[-nc:] ansp[xi[0], xi[1]] = (dxy**2) / (dxx * dyy) # Compute p-values assert (ansp >= 0).all() and (ansp <= 1 + 1E-8).all() t1 = n - 1 - ansn - dimreduce if (t1 <= 0).any(): raise RuntimeError( 'Insufficient number of cells: must be greater than degrees of freedom removed + covariate + 1.' ) ansp = beta.cdf(1 - ansp, t1 / 2, 0.5) assert ansp.shape == (lenx, ny) and ansc.shape == ( lenx, ny) and ansvx.shape == (lenx, ny) and ansvy.shape == (lenx, ny) assert np.isfinite(ansp).all() and np.isfinite(ansc).all() and np.isfinite( ansvx).all() and np.isfinite(ansvy).all() assert (ansp >= 0).all() and (ansp <= 1).all() and (ansvx >= 0).all() and ( ansvy >= 0).all() if lowmem: assert ansa is None else: assert ansa.shape == (lenx, ny, nc) and np.isfinite(ansa).all() return [vx, vy, ansp, ansc, ansa, ansvx, ansvy] def _auto_batchsize(bsx, bsy, itemsizex, itemsizey, itemsizec, nc, ns, samexy, maxx=500, maxy=500, sizemax=2**30): import logging if bsx == 0: # Transfer 1GB data max bsx = int((sizemax - itemsizec * nc * ns) // (2 * itemsizex * ns)) bsx = min(bsx, maxx) if samexy: logging.info('Using automatic batch size: {}'.format(bsx)) else: logging.info('Using automatic batch size for X: {}'.format(bsx)) if bsy == 0 or samexy: if samexy: bsy = bsx else: bsy = int((sizemax - itemsizec * nc * ns) // (2 * itemsizey * ns)) bsy = min(bsy, maxy) logging.info('Using automatic batch size for Y: {}'.format(bsy)) return bsx, bsy def association_tests(dx, dy, dc, bsx=0, bsy=0, nth=1, lowmem=True, return_dot=True, single=0, bs4=500, **ka): """Performs association tests between all pairs of two (or one) variables. Performs parallel computation with multiple processes on the same machine. Allows multiple options to treat other/untested dx when testing on one (see parameter *single*). Performs parallel computation with multiple processes on the same machine. Model for differential expression between X and Y: Y=gamma*X+alpha*C+epsilon, epsilon~i.i.d. N(0,sigma**2). Test statistic: conditional R**2 (or proportion of variance explained) between Y and X. Null hypothesis: gamma=0. Parameters ----------- dx: numpy.ndarray(shape=(n_x,n_cell)). Normalized matrix X. dy: numpy.ndarray(shape=(n_y,n_cell),dtype=float) or None Normalized matrix Y. If None, indicates dy=dx, i.e. self-association between pairs within X. dc: numpy.ndarray(shape=(n_cov,n_cell),dtype=float) Normalized covariate matrix C. bsx: int Batch size, i.e. number of Xs in each computing batch. Defaults to 500. bsy: int Batch size, i.e. number of Xs in each computing batch. Defaults to 500. Ignored if dy is None. nth: int Number of parallel processes. Set to 0 for using automatically detected CPU counts. lowmem: bool Whether to replace alpha in return value with None to save memory return_dot: bool Whether to return dot product betwen dx and dy instead of coefficient gamma single: int Type of association test to perform that determines which cells and covariates are used for each association test between X and Y. Accepts the following values: * 0: Simple pairwise association test between each X and Y across all cells. * 1: Association test for each X uses only cells that have all zeros in dx for all other Xs. A typical application is low-MOI CRISPR screen. * 4: Association test for each X uses all cells but regarding all other Xs as covariates that confound mean expression levels. This is suitable for high-MOI CRISPR screen. * 5: Similar with 4 but uses mask to determine which X can affect which Y. Under development. bs4: int Batch size for matrix product when single=4. Defaults to 500. ka: dict Keyword arguments passed to normalisr.association.association_test_X. See below. Returns -------- P-values: numpy.ndarray(shape=(n_x,n_y)) Differential expression P-value matrix. dot/gamma: numpy.ndarray(shape=(n_x,n_y)) If return_dot, inner product between X and Y pairs after removing covariates. Otherwise, matrix gamma. alpha: numpy.ndarray(shape=(n_x,n_y,n_cov)) or None Maximum likelihood estimators of alpha, separatly tested for each grouping if not lowmem else None. varx: numpy.ndarray(shape=(n_x)) or numpy.ndarray(shape=(n_x,n_y)) or None Variance of grouping after removing covariates if dy is not None and single!=5 else None vary: numpy.ndarray(shape=(n_y)) if single==0 else numpy.ndarray(shape=(n_x,n_y)) Variance of gene expression after removing covariates. Its shape depends on parameter single. Keyword arguments -------------------------------- dimreduce: numpy.ndarray(shape=(n_y,),dtype=int) or int If dy doesn't have full rank, such as due to prior covariate removal (although the recommended method is to leave covariates in dc), this parameter allows to specify the loss of ranks/degrees of freedom to allow for accurate P-value computation. Default is 0, indicating no rank loss. mask: numpy.ndarray(shape=(n_x,n_y),dtype=bool) Whether each X can affect each Y. Only active for single==5. """ import numpy as np import logging import itertools from .parallel import autopooler ka0 = dict(ka) ka0['lowmem'] = lowmem if dy is None: dy = dx samexy = True else: samexy = False nx, ns = dx.shape ny = dy.shape[0] nc = dc.shape[0] if single in {0, 1}: bsx, bsy = _auto_batchsize(bsx, bsy, dx.dtype.itemsize, dy.dtype.itemsize, dc.dtype.itemsize, nc, ns, samexy, maxx=500, maxy=500) elif single in {4}: bsx, bsy = _auto_batchsize(bsx, bsy, dx.dtype.itemsize, dy.dtype.itemsize, dc.dtype.itemsize, nc, ns, samexy, maxx=10, maxy=500000) elif single in {5}: bsx, bsy = _auto_batchsize(bsx, bsy, dx.dtype.itemsize, dy.dtype.itemsize, dc.dtype.itemsize, nc, ns, samexy, maxx=500000, maxy=10) else: raise ValueError('Unknown value single={}'.format(single)) it0 = itertools.product( map(lambda x: [x, min(x + bsx, nx)], range(0, nx, bsx)), map(lambda x: [x, min(x + bsy, ny)], range(0, ny, bsy))) if samexy and single not in {5}: it0 = filter(lambda x: x[0][0] <= x[1][0], it0) isdummy = True if single in {0}: # Pre-compute matrix inverse if nc > 0 and (dc != 0).any(): dci, dcr = inv_rank(np.matmul(dc, dc.T)) else: dci = None dcr = 0 # Prepare parallel iterator it0 = map( lambda x: [ association_test_1, (x[0][0], x[1][0], dx[x[0][0]:x[0][1]], dy[x[1][0]:x[1][1]], dc, dci, dcr), ka0], it0) elif single in {1}: if samexy: raise NotImplementedError('dy=None with single=1') # Decide grouping assert dx.max() == 1 t1 = dx.sum(axis=0) t1 = dx == t1 for xi in range(nx): assert len(np.unique(dx[xi, t1[xi]])) > 1 sselectx = t1 # Prepare parallel iterator it0 = map( lambda x: [ association_test_2, (x[0][0], x[1][0], dx[x[0][0]:x[0][1]], dy[x[1][0]:x[1][1]], dc, sselectx[x[0][0]:x[0][1]]), ka0], it0) elif single in {4, 5}: if bs4 == 0: # Transfer 1GB data max bs4 = int((2**30 - dc.dtype.itemsize * nc * ns) // (2 * dx.dtype.itemsize * ns)) bs4 = min(bs4, 500) logging.info( 'Using automatic batch size for matrix product: {}'.format(bs4)) # Compute matrix products t1 = np.concatenate([dx, dc], axis=0) it = itertools.product( map(lambda x: [x, min(x + bs4, nx + nc)], range(0, nx + nc, bs4)), map(lambda x: [x, min(x + bs4, nx + nc)], range(0, nx + nc, bs4))) it = filter(lambda x: x[0][0] <= x[1][0], it) it = map( lambda x: [ prod1, (x[0][0], x[1][0], t1[x[0][0]:x[0][1]], t1[x[1][0]:x[1][1]]), dict()], it) ans0 = autopooler(nth, it, dummy=True) tprod = np.zeros((nx + nc, nx + nc), dtype=dy.dtype) for xi in ans0: tprod[np.ix_(range(xi[0], xi[0] + xi[2].shape[0]), range(xi[1], xi[1] + xi[2].shape[1]))] = xi[2] del ans0 tprod = np.triu(tprod).T + np.triu(tprod, 1) if single == 4: if not samexy: it = itertools.product( map(lambda x: [x, min(x + bs4, nx + nc)], range(0, nx + nc, bs4)), map(lambda x: [x, min(x + bs4, ny)], range(0, ny, bs4))) it = map( lambda x: [ prod1, (x[0][0], x[1][0], t1[x[0][0]:x[0][1]], dy[x[1][0]:x[1][1]]), dict()], it) ans0 = autopooler(nth, it, dummy=True) del t1 tprody = np.zeros((nx + nc, ny), dtype=dy.dtype) for xi in ans0: tprody[np.ix_(range(xi[0], xi[0] + xi[2].shape[0]), range(xi[1], xi[1] + xi[2].shape[1]))] = xi[2] del ans0 tprodyy = (dy**2).sum(axis=1) it0 = map( lambda x: [ association_test_4, (x[0][0], x[1][0], tprod, tprody[:, x[1][0]:x[1][1]], tprodyy[x[1][0]:x[1][1]], [ nx, x[1][1] - x[1][0], nc, ns, x[0][1] - x[0][0]]), ka0], it0) else: it0 = map( lambda x: [ association_test_4, (x[0][0], x[1][0], tprod, None, None, [ nx, x[1][1] - x[1][0], nc, ns, x[0][1] - x[0][0]]), ka0], it0) elif single == 5: mask = ka0.pop('mask') assert mask.shape == (nx, ny) it0 = map( lambda x: [ association_test_5, (x[0][0], x[1][0], tprod, tprod[:, x[1][0]:x[1][1]], tprod[
np.arange(x[1][0], x[1][1])
numpy.arange
__author__ = 'feurerm' import copy import unittest import numpy as np import sklearn.datasets import sklearn.metrics from autosklearn.pipeline.components.data_preprocessing.balancing.balancing \ import Balancing from autosklearn.pipeline.classification import SimpleClassificationPipeline from autosklearn.pipeline.components.classification.adaboost import AdaboostClassifier from autosklearn.pipeline.components.classification.decision_tree import DecisionTree from autosklearn.pipeline.components.classification.extra_trees import ExtraTreesClassifier from autosklearn.pipeline.components.classification.gradient_boosting import GradientBoostingClassifier from autosklearn.pipeline.components.classification.random_forest import RandomForest from autosklearn.pipeline.components.classification.liblinear_svc import LibLinear_SVC from autosklearn.pipeline.components.classification.libsvm_svc import LibSVM_SVC from autosklearn.pipeline.components.classification.sgd import SGD from autosklearn.pipeline.components.feature_preprocessing\ .extra_trees_preproc_for_classification import ExtraTreesPreprocessorClassification from autosklearn.pipeline.components.feature_preprocessing.liblinear_svc_preprocessor import LibLinear_Preprocessor class BalancingComponentTest(unittest.TestCase): def test_balancing_get_weights_treed_single_label(self): Y =
np.array([0] * 80 + [1] * 20)
numpy.array