prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
"""Implementation of Vector AutoRegressive Model""" from operator import itemgetter import numpy as np from scipy.linalg import solve_triangular from scipy.stats import f as ftest from numpy.linalg import det from arch.unitroot import PhillipsPerron from marketlearn.causality_network.vector_ar.varbase import Base from marketlearn.learning.linear_models.linear_regression import LinearRegression class BiVariateVar(Base): """ Implementation of bi-variate Vector AutoRegressive Model or order 1 Note: - After a VAR model is specified, granger causality tests can be performed - Assumes input is log prices whose difference (returns) is stationary """ def __init__(self, fit_intercept: bool = True, degree: int = 1): """ Constructor used to intialize the VAR model Currently only supports lag of 1 :param fit_intercept: (bool) Flag to add bias (True by default) :param degree: (int) Lag (1 by default) """ self.fit_intercept = fit_intercept self.degree = degree self.lr = LinearRegression(fit_intercept=fit_intercept) self.run = False self.temp_resid = None self.lag_order = None self.k_params = None self.ddof = None self.theta = None self.predictions = None self.residuals = None self.design = None self.response = None def fit(self, x, y, p=1, coint=False) -> 'BiVariateVar': """ Fits the model to training data :param x: (np.array) The first variable log returns. :param y: (np.array) The second variable in log returns :param p: (int) The lagged order :return: (object) Class after fitting """ # Create the multivariate response Y = np.concatenate((x[:, np.newaxis], y[:, np.newaxis]), axis=1) n_samples, _ = Y.shape if p == 0: # Just fit on intercept if any Z =
np.ones(n_samples)
numpy.ones
import datetime import numpy as np import pandas as pd import networkx as nx from . import dtutil TYPE_VARIABLE = "variable" TYPE_BINARY_VARIABLE = "binary" TYPE_COUNTABLE_VARIABLE = "countable" TYPE_TIMESERIES_EVENT = "tsevent" class Variable(object): """Continuous Variable that follows Linear model. Causal effects simply affects the values additively. """ def __init__(self, node_id, node_data, index, defaults, observable=True): self._node_id = node_id self._node_data = node_data self._index = index self._defaults = defaults self._observable = observable self._size = len(self._index) self._values = None @property def values(self): return self._values def get_df(self): return pd.DataFrame(self._values, index=self._index) def _get_spec(self, key, default_value): if key in self._node_data: return self._node_data[key] elif key in self._defaults: return self._defaults[key] else: return default_value def _rand(self): rand_type = self._get_spec("noise_type", None) if rand_type is None: return self._rand_default() elif rand_type == "gaussian": return self._rand_gauss() elif rand_type == "laplace": return self._rand_laplace() elif rand_type == "uniform": return self._rand_uniform() elif rand_type == "poisson": return self._rand_poisson() def _rand_default(self): return self._rand_gauss() def _rand_gauss(self): scale = self._get_spec("gaussian_scale", 1) loc = self._get_spec("gaussian_loc", 0) return np.random.normal(loc, scale, self._size) def _rand_laplace(self): scale = self._get_spec("laplace_scale", 1) loc = self._get_spec("laplace_loc", 0) return np.random.laplace(loc, scale, self._size) def _rand_uniform(self): umin = self._get_spec("uniform_min", 0) umax = self._get_spec("uniform_max", 1) return
np.random.uniform(umin, umax, self._size)
numpy.random.uniform
from sympy import symbols, diff, simplify, Matrix, N import numpy as np from task5 import get_lagrange_dt from task1 import get_inverse X1, X2, X3, x1, x2, x3, t = symbols('X1 X2 X3 x1 x2 x3 t') def get_xKk(eq1, eq2, eq3): inv = get_inverse(eq1, eq2, eq3) t1 = np.pi / 4 xKk = [ [diff(inv[X1], x1).subs({t: t1}), diff(inv[X1], x2).subs({t: t1}), diff(inv[X1], x3).subs({t: t1})], [diff(inv[X2], x1).subs({t: t1}), diff(inv[X2], x2).subs({t: t1}), diff(inv[X2], x3).subs({t: t1})], [diff(inv[X3], x1).subs({t: t1}), diff(inv[X3], x2).subs({t: t1}), diff(inv[X3], x3).subs({t: t1})] ] #xKk = np.around(np.array(xKk).astype(float), decimals = 3) return
np.array(xKk)
numpy.array
#------------------------------------------------------------------------------- # # Time conversion utilities - test # # Author: <NAME> Chen <<EMAIL>> # # Original Author: <NAME> <<EMAIL>> #------------------------------------------------------------------------------- # Copyright (C) 2019 Geoist team # #------------------------------------------------------------------------------- # pylint: disable=missing-docstring, invalid-name, too-few-public-methods from math import modf, floor from numpy import array, vectorize, inf, nan from numpy.random import uniform from numpy.testing import assert_allclose from unittest import TestCase, main from geoist.magmod._pytimeconv import ( decimal_year_to_mjd2000, mjd2000_to_decimal_year, mjd2000_to_year_fraction, ) class TestMjd2000ToYearFraction(TestCase): @staticmethod def reference(value): return vectorize(_mjd2000_to_year_fraction)(value) @staticmethod def eval(value): return mjd2000_to_year_fraction(value) @staticmethod def _assert(tested, expected): assert_allclose(tested, expected, rtol=1e-14, atol=1e-11) def test_mjd2000_to_year_fraction_far_range(self): values = uniform(-730487., 730485., (100, 100)) self._assert(self.eval(values), self.reference(values)) def test_mjd2000_to_year_fraction_near_range(self): values =
uniform(-36524., 36525., (100, 100))
numpy.random.uniform
import jax.numpy as jnp from jax import grad, vmap, hessian, jit from jax.config import config; config.update("jax_enable_x64", True) # numpy import numpy as onp from numpy import random import argparse import logging import datetime from time import time import os # solving -grad(a*grad u) + alpha u^m = f on torus, to be completed def get_parser(): parser = argparse.ArgumentParser(description='NonLinElliptic equation GP solver') parser.add_argument("--freq_a", type=float, default = 1.0) parser.add_argument("--freq_u", type=float, default = 4.0) parser.add_argument("--alpha", type=float, default = 1.0) parser.add_argument("--m", type = int, default = 3) parser.add_argument("--dim", type = int, default = 2) parser.add_argument("--kernel", type=str, default="periodic") parser.add_argument("--sigma-scale", type = float, default = 0.25) # sigma = args.sigma-scale*sqrt(dim) parser.add_argument("--N_domain", type = int, default = 1000) parser.add_argument("--nugget", type = float, default = 1e-10) parser.add_argument("--GNsteps", type = int, default = 3) parser.add_argument("--logroot", type=str, default='./logs/') parser.add_argument("--randomseed", type=int, default=9999) parser.add_argument("--num_exp", type=int, default=1) args = parser.parse_args() return args @jit def get_GNkernel_train(x,y,wx0,wx1,wxg,wy0,wy1,wyg,d,sigma): # wx0 * delta_x + wxg * nabla delta_x + wx1 * Delta delta_x return wx0*wy0*kappa(x,y,d,sigma) + wx0*wy1*Delta_y_kappa(x,y,d,sigma) + wy0*wx1*Delta_x_kappa(x,y,d,sigma) + wx1*wy1*Delta_x_Delta_y_kappa(x,y,d,sigma) + wx0*D_wy_kappa(x,y,d,sigma,wyg) + wy0*D_wx_kappa(x,y,d,sigma,wxg) + wx1*Delta_x_D_wy_kappa(x,y,d,sigma,wyg) + wy1*D_wx_Delta_y_kappa(x,y,d,sigma,wxg) + D_wx_D_wy_kappa(x,y,d,sigma,wxg,wyg) @jit def get_GNkernel_train_boundary(x,y,wy0,wy1,wyg,d,sigma): return wy0*kappa(x,y,d,sigma) + wy1*Delta_y_kappa(x,y,d,sigma) + D_wy_kappa(x,y,d,sigma,wyg) @jit def get_GNkernel_val_predict(x,y,wy0,wy1,wyg,d,sigma): return wy0*kappa(x,y,d,sigma) + wy1*Delta_y_kappa(x,y,d,sigma) + D_wy_kappa(x,y,d,sigma,wyg) def assembly_Theta(X_domain, w0, w1, wg, sigma): # X_domain, dim: N_domain*d; # w0 col vec: coefs of Diracs, dim: N_domain; # w1 coefs of Laplacians, dim: N_domain N_domain,d = onp.shape(X_domain) Theta = onp.zeros((N_domain,N_domain)) XdXd0 = onp.reshape(onp.tile(X_domain,(1,N_domain)),(-1,d)) XdXd1 = onp.tile(X_domain,(N_domain,1)) arr_wx0 = onp.reshape(onp.tile(w0,(1,N_domain)),(-1,1)) arr_wx1 = onp.reshape(onp.tile(w1,(1,N_domain)),(-1,1)) arr_wxg = onp.reshape(onp.tile(wg,(1,N_domain)),(-1,d)) arr_wy0 = onp.tile(w0,(N_domain,1)) arr_wy1 = onp.tile(w1,(N_domain,1)) arr_wyg = onp.tile(wg,(N_domain,1)) val = vmap(lambda x,y,wx0,wx1,wxg,wy0,wy1,wyg: get_GNkernel_train(x,y,wx0,wx1,wxg,wy0,wy1,wyg,d,sigma))(XdXd0,XdXd1,arr_wx0,arr_wx1,arr_wxg,arr_wy0,arr_wy1,arr_wyg) Theta[:N_domain,:N_domain] = onp.reshape(val, (N_domain,N_domain)) return Theta def assembly_Theta_value_predict(X_infer, X_domain, w0, w1, wg, sigma): N_infer, d = onp.shape(X_infer) N_domain, _ = onp.shape(X_domain) Theta = onp.zeros((N_infer,N_domain)) XiXd0 = onp.reshape(onp.tile(X_infer,(1,N_domain)),(-1,d)) XiXd1 = onp.tile(X_domain,(N_infer,1)) arr_wy0 = onp.tile(w0,(N_infer,1)) arr_wy1 = onp.tile(w1,(N_infer,1)) arr_wyg = onp.tile(wg,(N_infer,1)) val = vmap(lambda x,y,wy0,wy1,wyg: get_GNkernel_val_predict(x,y,wy0,wy1,wyg,d,sigma))(XiXd0,XiXd1,arr_wy0,arr_wy1,arr_wyg) Theta[:N_infer,:N_domain] = onp.reshape(val, (N_infer,N_domain)) return Theta def GPsolver(X_domain, sigma, nugget, sol_init, GN_step = 4): # N_domain, d = onp.shape(X_domain) sol = sol_init rhs_f = vmap(f)(X_domain)[:,onp.newaxis] wg = -vmap(grad_a)(X_domain) #size? w1 = -vmap(a)(X_domain)[:,onp.newaxis] time_begin = time() for i in range(GN_step): w0 = alpha*m*(sol**(m-1)) Theta_train = assembly_Theta(X_domain, w0, w1, wg, sigma) Theta_test = assembly_Theta_value_predict(X_domain, X_domain, w0, w1, wg, sigma) rhs = rhs_f + alpha*(m-1)*(sol**m) sol = Theta_test @ (onp.linalg.solve(Theta_train + nugget*onp.diag(onp.diag(Theta_train)),rhs)) total_mins = (time() - time_begin) / 60 logging.info(f'[Timer] GP iteration {i+1}/{GN_step}, finished in {total_mins:.2f} minutes') return sol def sample_points(N_domain, d, choice = 'random'): X_domain = onp.random.uniform(low=0.0, high=1.0, size=(N_domain,d)) return X_domain def logger(args, level = 'INFO'): log_root = args.logroot + 'VarCoefEllipticTorus' log_name = 'dim' + str(args.dim) + '_kernel' + str(args.kernel) logdir = os.path.join(log_root, log_name) os.makedirs(logdir, exist_ok=True) log_para = 'alpha' + str(args.alpha) + 'm' + str(args.m) + 'sigma-scale' + str(args.sigma_scale) + '_Ndomain' + str(args.N_domain) + '_nugget' + str(args.nugget).replace(".","") + '_freqa' + str(args.freq_a) + '_frequ' + str(args.freq_u) + '_numexp' + str(args.num_exp) date = str(datetime.datetime.now()) log_base = date[date.find("-"):date.rfind(".")].replace("-", "").replace(":", "").replace(" ", "_") filename = log_para + '_' + log_base + '.log' logging.basicConfig(level=logging.__dict__[level], format="%(asctime)s [%(levelname)s] %(message)s", handlers=[ logging.FileHandler(logdir+'/'+filename), logging.StreamHandler()] ) return logdir+'/'+filename def set_random_seeds(args): random_seed = args.randomseed random.seed(random_seed) if __name__ == '__main__': ## get argument parser args = get_parser() filename = logger(args, level = 'INFO') logging.info(f'argument is {args}') @jit def a(x): return jnp.exp(jnp.sin(jnp.sum(args.freq_a * jnp.cos(2*jnp.pi*x)))) @jit def grad_a(x): return grad(a)(x) @jit def u(x): return jnp.sin(jnp.sum(args.freq_u * jnp.cos(2*jnp.pi*x))) @jit def f(x): return -a(x) * jnp.trace(hessian(u)(x))-jnp.sum(grad(a)(x) * grad(u)(x)) + alpha*(u(x)**m) @jit def g(x): return u(x) alpha = args.alpha m = args.m logging.info(f"[Equation] alpha: {alpha}, m: {m}") logging.info(f"[Function] frequency of a: {args.freq_a}, frequency of u: {args.freq_u}") if args.kernel == "periodic": from kernels.periodic_kernel import * d = args.dim N_domain = args.N_domain ratio = args.sigma_scale sigma = ratio*onp.sqrt(d) nugget = args.nugget GN_step = args.GNsteps logging.info(f'GN step: {GN_step}, d: {d}, sigma: {sigma}, number of points: N_domain {N_domain}, kernel: {args.kernel}, nugget: {args.nugget}') logging.info(f"***** Total number of random experiments {args.num_exp} *****") err_2_all = [] err_inf_all = [] for idx_exp in range(args.num_exp): logging.info(f"[Experiment] number: {idx_exp}") args.randomseed = idx_exp set_random_seeds(args) logging.info(f"[Seeds] random seeds: {args.randomseed}") X_domain = sample_points(N_domain, d, choice = 'random') sol_init = onp.random.randn(args.N_domain,1) sol = GPsolver(X_domain, sigma, nugget, sol_init, GN_step = GN_step) logging.info('[Calculating errs at collocation points ...]') sol_truth = vmap(u)(X_domain)[:,onp.newaxis] err = abs(sol-sol_truth) err_2 = onp.linalg.norm(err,'fro')/(onp.sqrt(N_domain)) err_2_all.append(err_2) err_inf = onp.max(err) err_inf_all.append(err_inf) logging.info(f'[L infinity error] {err_inf}') logging.info(f'[L2 error] {err_2}') logging.info(f'[Average L infinity error] {onp.mean(err_inf_all)}') logging.info(f'[Average L2 error] {
onp.mean(err_2_all)
numpy.mean
import unittest import numpy as np import sys,os import matplotlib.pyplot as plt from mocu.utils.utils import * from mocu.utils.costfunctions import * from mocu.src.experimentaldesign import * import warnings class MocuTestMultivariate(unittest.TestCase): """ Class for tests involving mocu sampling with multivariable X/Y/Theta. """ @classmethod def setUpClass(self): warnings.filterwarnings("ignore") # Prior knowledge: discrete ranges/distributions for (theta,psi) theta = [1,3] rho_theta = [1./3 , 2./3] Theta = dict(zip(['theta','rho_theta'] , [theta,rho_theta])) psi =
np.linspace(-4,0,101)
numpy.linspace
""" Timing and Telemetry Data - :mod:`fastf1.core` ============================================== The Fast-F1 core is a collection of functions and data objects for accessing and analyzing F1 timing and telemetry data. Data Objects ------------ All data is provided through the following data objects: .. autosummary:: :nosignatures: Weekend Session Laps Lap Telemetry SessionResults DriverResult The :class:`Session` object is mainly used as an entry point for loading timing data and telemetry data. The :class:`Session` can create a :class:`Laps` object which contains all timing, track and session status data for a whole session. Usually you will be using :func:`get_session` to get a :class:`Session` object. The :class:`Laps` object holds detailed information about multiples laps. The :class:`Lap` object holds the same information as :class:`Laps` but only for one single lap. When selecting a single lap from a :class:`Laps` object, an object of type :class:`Lap` will be returned. Apart from only providing data, the :class:`Laps`, :class:`Lap` and :class:`Telemetry` objects implement various methods for selecting and analyzing specific parts of the data. Functions --------- .. autosummary:: :nosignatures: get_session get_round """ import collections from functools import cached_property import logging import warnings import numpy as np import pandas as pd import fastf1 from fastf1 import api, ergast from fastf1.utils import recursive_dict_get, to_timedelta logging.basicConfig(level=logging.INFO, style='{', format="{module: <8} {levelname: >10} \t{message}") D_LOOKUP = [[44, 'HAM', 'Mercedes'], [77, 'BOT', 'Mercedes'], [55, 'SAI', 'Ferrari'], [16, 'LEC', 'Ferrari'], [33, 'VER', 'Red Bull'], [11, 'PER', 'Red Bull'], [3, 'RIC', 'McLaren'], [4, 'NOR', 'McLaren'], [5, 'VET', '<NAME>'], [18, 'STR', 'Aston Martin'], [14, 'ALO', 'Alpine'], [31, 'OCO', 'Alpine'], [22, 'TSU', 'AlphaTauri'], [10, 'GAS', 'AlphaTauri'], [47, 'MSC', 'Haas F1 Team'], [9, 'MAZ', 'Haas F1 Team'], [7, 'RAI', '<NAME>o'], [99, 'GIO', 'Alfa Romeo'], [6, 'LAT', 'Williams'], [63, 'RUS', 'Williams']] def get_session(*args, **kwargs): """ .. deprecated:: 2.2 replaced by :func:`fastf1.get_session` """ # TODO remove warnings.warn("`fastf1.core.get_session` has been deprecated and will be" "removed in a future version.\n" "Use `fastf1.get_session` instead.", FutureWarning) from fastf1 import events return events.get_session(*args, **kwargs) def get_round(year, match): """ .. deprecated:: 2.2 will be removed without replacement; Use :func:`fastf1.get_event` instead to get an :class:`~fastf1.events.Event` object which provides information including the round number for the event. """ # TODO remove warnings.warn("_func:`fastf1.core.get_round` has been deprecated and will " "be removed without replacement in a future version.\n" "Use :func:`fastf1.get_event` instead to get an " ":class:`~fastf1.events.Event` object which provides " "information including the round number for the event.", FutureWarning) from fastf1 import events event = events.get_event(year, match) return event.RoundNumber class Telemetry(pd.DataFrame): """Multi-channel time series telemetry data The object can contain multiple telemetry channels. Multiple telemetry objects with different channels can be merged on time. Each telemetry channel is one dataframe column. Partial telemetry (e.g. for one lap only) can be obtained through various methods for slicing the data. Additionally, methods for adding common computed data channels are available. The following telemetry channels existed in the original API data: - **Car data**: - `Speed` (float): Car speed - `RPM` (int): Car RPM - `nGear` (int): Car gear number - `Throttle` (float): 0-100 Throttle pedal pressure - `Brake` (float): 0-100 Brake pedal pressure - `DRS` (int): DRS indicator (See :meth:`car_data` for more info) - **Position data**: - `X` (float): X position - `Y` (float): Y position - `Z` (float): Z position - `Status` (string): Flag - OffTrack/OnTrack - **For both of the above**: - `Time` (timedelta): Time (0 is start of the data slice) - `SessionTime` (timedelta): Time elapsed since the start of the session - `Date` (datetime): The full date + time at which this sample was created - `Source` (str): Flag indicating how this sample was created: - 'car': sample from original api car data - 'pos': sample from original api position data - 'interpolated': this sample was artificially created; all values are computed/interpolated Example: A sample's source is indicated as 'car'. It contains values for speed, rpm and x, y, z coordinates. Originally, this sample (with its timestamp) was received when loading car data. This means that the speed and rpm value are original values as received from the api. The coordinates are interpolated for this sample. All methods of :class:`Telemetry` which resample or interpolate data will preserve and adjust the source flag correctly when modifying data. Through merging/slicing it is possible to obtain any combination of telemetry channels! The following additional computed data channels can be added: - Distance driven between two samples: :meth:`add_differential_distance` - Distance driven since the first sample: :meth:`add_distance` - Relative distance driven since the first sample: :meth:`add_relative_distance` - Distance to driver ahead and car number of said driver: :meth:`add_driver_ahead` .. note:: See the separate explanation concerning the various definitions of 'Time' for more information on the three date and time related channels: :ref:`time-explanation` Slicing this class will return :class:`Telemetry` again for slices containing multiple rows. Single rows will be returned as :class:`pandas.Series`. Args: *args (any): passed through to `pandas.DataFrame` superclass session (:class:`Session`): Instance of associated session object. Required for full functionality! driver (str): Driver number as string. Required for full functionality! **kwargs (any): passed through to `pandas.DataFrame` superclass """ TELEMETRY_FREQUENCY = 'original' """Defines the frequency used when resampling the telemetry data. Either the string ``'original'`` or an integer to specify a frequency in Hz.""" _CHANNELS = { 'X': {'type': 'continuous', 'missing': 'quadratic'}, 'Y': {'type': 'continuous', 'missing': 'quadratic'}, 'Z': {'type': 'continuous', 'missing': 'quadratic'}, 'Status': {'type': 'discrete'}, 'Speed': {'type': 'continuous', 'missing': 'linear'}, # linear is often required as quadratic overshoots 'RPM': {'type': 'continuous', 'missing': 'linear'}, # on sudden changes like sudden pedal application) 'Throttle': {'type': 'continuous', 'missing': 'linear'}, 'Brake': {'type': 'discrete'}, 'DRS': {'type': 'discrete'}, 'nGear': {'type': 'discrete'}, 'Source': {'type': 'excluded'}, # special case, custom handling 'Date': {'type': 'excluded'}, # special case, used as the index during resampling 'Time': {'type': 'excluded'}, # special case, Time/SessionTime recalculated from 'Date' 'SessionTime': {'type': 'excluded'}, 'Distance': {'type': 'continuous', 'missing': 'quadratic'}, 'RelativeDistance': {'type': 'continuous', 'missing': 'quadratic'}, 'DifferentialDistance': {'type': 'continuous', 'missing': 'quadratic'}, 'DriverAhead': {'type': 'discrete'}, 'DistanceToDriverAhead': {'type': 'continuous', 'missing': 'linear'} } """Known telemetry channels which are supported by default""" _metadata = ['session', 'driver'] def __init__(self, *args, session=None, driver=None, **kwargs): super().__init__(*args, **kwargs) self.session = session self.driver = driver @property def _constructor(self): def _new(*args, **kwargs): return Telemetry(*args, **kwargs).__finalize__(self) return _new @property def base_class_view(self): """For a nicer debugging experience; can view DataFrame through this property in various IDEs""" return pd.DataFrame(self) def join(self, *args, **kwargs): """Wraps :mod:`pandas.DataFrame.join` and adds metadata propagation. When calling `self.join` metadata will be propagated from self to the joined dataframe. """ meta = dict() for var in self._metadata: meta[var] = getattr(self, var) ret = super().join(*args, **kwargs) for var, val in meta.items(): setattr(ret, var, val) return ret def merge(self, *args, **kwargs): """Wraps :mod:`pandas.DataFrame.merge` and adds metadata propagation. When calling `self.merge` metadata will be propagated from self to the merged dataframe. """ meta = dict() for var in self._metadata: meta[var] = getattr(self, var) ret = super().merge(*args, **kwargs) for var, val in meta.items(): setattr(ret, var, val) return ret def slice_by_mask(self, mask, pad=0, pad_side='both'): """Slice self using a boolean array as a mask. Args: mask (array-like): Array of boolean values with the same length as self pad (int): Number of samples used for padding the sliced data pad_side (str): Where to pad the data; possible options: 'both', 'before', 'after' Returns: :class:`Telemetry` """ if pad: if pad_side in ('both', 'before'): i_left_pad = max(0, np.min(np.where(mask)) - pad) else: i_left_pad = np.min(np.where(mask)) if pad_side in ('both', 'after'): i_right_pad = min(len(mask), np.max(np.where(mask)) + pad) else: i_right_pad = np.max(np.where(mask)) mask[i_left_pad: i_right_pad + 1] = True data_slice = self.loc[mask].copy() return data_slice def slice_by_lap(self, ref_laps, pad=0, pad_side='both', interpolate_edges=False): """Slice self to only include data from the provided lap or laps. .. note:: Self needs to contain a 'SessionTime' column. .. note:: When slicing with an instance of :class:`Laps` as a reference, the data will be sliced by first and last lap. Missing laps in between will not be considered and data for these will still be included in the sliced result. Args: ref_laps (Lap or Laps): The lap/laps by which to slice self pad (int): Number of samples used for padding the sliced data pad_side (str): Where to pad the data; possible options: 'both', 'before', 'after interpolate_edges (bool): Add an interpolated sample at the beginning and end to exactly match the provided time window. Returns: :class:`Telemetry` """ if isinstance(ref_laps, Laps) and len(ref_laps) > 1: if 'DriverNumber' not in ref_laps.columns: ValueError("Laps is missing 'DriverNumber'. Cannot return telemetry for unknown driver.") if not len(ref_laps['DriverNumber'].unique()) <= 1: raise ValueError("Cannot create telemetry for multiple drivers at once!") end_time = ref_laps['Time'].max() start_time = ref_laps['LapStartTime'].min() elif isinstance(ref_laps, (Lap, Laps)): if isinstance(ref_laps, Laps): # one lap in Laps ref_laps = ref_laps.iloc[0] # needs to be handled as a single lap if 'DriverNumber' not in ref_laps.index: ValueError("Lap is missing 'DriverNumber'. Cannot return telemetry for unknown driver.") end_time = ref_laps['Time'] start_time = ref_laps['LapStartTime'] else: raise TypeError("Attribute 'ref_laps' needs to be an instance of `Lap` or `Laps`") return self.slice_by_time(start_time, end_time, pad, pad_side, interpolate_edges) def slice_by_time(self, start_time, end_time, pad=0, pad_side='both', interpolate_edges=False): """Slice self to only include data in a specific time frame. .. note:: Self needs to contain a 'SessionTime' column. Slicing by time use the 'SessionTime' as its reference. Args: start_time (Timedelta): Start of the section end_time (Timedelta): End of the section pad (int): Number of samples used for padding the sliced data pad_side (str): Where to pad the data; possible options: 'both', 'before', 'after interpolate_edges (bool): Add an interpolated sample at the beginning and end to exactly match the provided time window. Returns: :class:`Telemetry` """ if interpolate_edges: edges = Telemetry({'SessionTime': (start_time, end_time), 'Date': (start_time + self.session.t0_date, end_time + self.session.t0_date)}, session=self.session) d = self.merge_channels(edges) else: d = self.copy() # TODO no copy? sel = ((d['SessionTime'] <= end_time) & (d['SessionTime'] >= start_time)) if np.any(sel): data_slice = d.slice_by_mask(sel, pad, pad_side) if 'Time' in data_slice.columns: # shift time to 0 so laps can overlap data_slice.loc[:, 'Time'] = data_slice['SessionTime'] - start_time return data_slice return Telemetry() def merge_channels(self, other, frequency=None): """Merge telemetry objects containing different telemetry channels. The two objects don't need to have a common time base. The data will be merged, optionally resampled and missing values will be interpolated. :attr:`Telemetry.TELEMETRY_FREQUENCY` determines if and how the data is resampled. This can be overridden using the `frequency` keyword fo this method. Merging and resampling: If the frequency is 'original', data will not be resampled. The two objects will be merged and all timestamps of both objects are kept. Values will be interpolated so that all telemetry channels contain valid data for all timestamps. This is the default and recommended option. If the frequency is specified as an integer in Hz the data will be merged as before. After that, the merged time base will be resampled from the first value on at the specified frequency. Afterwards, the data will be interpolated to fit the new time base. This means that usually most if not all values of the data will be interpolated values. This is detrimental for overall accuracy. Interpolation: Missing values after merging will be interpolated for all known telemetry channels using :meth:`fill_missing`. Different interpolation methods are used depending on what kind of data the channel contains. For example, forward fill is used to interpolated 'nGear' while linear interpolation is used for 'RPM' interpolation. .. note :: Unknown telemetry channels will be merged but missing values will not be interpolated. This can either be done manually or a custom telemetry channel can be added using :meth:`register_new_channel`. .. note :: Do not resample data multiple times. Always resample based on the original data to preserve accuracy Args: other (:class:`Telemetry` or :class:`pandas.DataFrame`): Object to be merged with self frequency (str or int): Optional frequency to overwrite global preset. (Either string 'original' or integer for a frequency in Hz) Returns: :class:`Telemetry` """ # merge the data and interpolate missing; 'Date' needs to be the index data = self.set_index('Date') other = other.set_index('Date') # save dtypes before merging so they can be restored after merging # necessary for example because merging produces NaN values which would cause an int column to become float # but it can be converted back to int after interpolating missing values dtype_map = dict() for df in data, other: for col in df.columns: if col not in dtype_map.keys(): dtype_map[col] = df[col].dtype # Exclude columns existing on both dataframes from one dataframe before merging (cannot merge with duplicates) on_both_columns = set(other.columns).intersection(set(data.columns)) merged = other.merge(data[data.columns.difference(on_both_columns, sort=False)], how='outer', left_index=True, right_index=True, sort=True) # now use the previously excluded columns to update the missing values in the merged dataframe for col in on_both_columns: merged[col].update(data[col]) if 'Driver' in merged.columns and len(merged['Driver'].unique()) > 1: raise ValueError("Cannot merge multiple drivers") if not frequency: frequency = data.TELEMETRY_FREQUENCY i = data.get_first_non_zero_time_index() if i is None: raise ValueError("No valid 'Time' data. Cannot resample!") ref_date = merged.index[i] # data needs to be resampled/interpolated differently, depending on what kind of data it is # how to handle which column is defined in self._CHANNELS if frequency == 'original': # no resampling but still interpolation due to merging merged = merged.fill_missing() merged = merged.reset_index().rename(columns={'index': 'Date'}) # make 'Date' a column again else: frq = f'{1 / frequency}S' resampled_columns = dict() for ch in self._CHANNELS.keys(): if ch not in merged.columns: continue sig_type = self._CHANNELS[ch]['type'] if sig_type == 'continuous': missing = self._CHANNELS[ch]['missing'] res = merged.loc[:, ch] \ .resample(frq, origin=ref_date).mean().interpolate(method=missing, fill_value='extrapolate') elif sig_type == 'discrete': res = merged.loc[:, ch].resample(frq, origin=ref_date).ffill().ffill().bfill() # first ffill is a method of the resampler object and will ONLY ffill values created during # resampling but not already existing NaN values. NaN values already existed because of merging, # therefore call ffill a second time as a method of the returned series to fill these too # only use bfill after ffill to fix first row else: continue resampled_columns[ch] = res res_source = merged.loc[:, 'Source'].resample(frq, origin=ref_date).asfreq().fillna(value='interpolation') resampled_columns['Source'] = res_source # join resampled columns and make 'Date' a column again merged = Telemetry(resampled_columns, session=self.session).reset_index().rename(columns={'index': 'Date'}) # recalculate the time columns merged['SessionTime'] = merged['Date'] - self.session.t0_date merged['Time'] = merged['SessionTime'] - merged['SessionTime'].iloc[0] # restore data types from before merging for col in dtype_map.keys(): try: merged.loc[:, col] = merged.loc[:, col].astype(dtype_map[col]) except ValueError: logging.warning(f"Failed to preserve data type for column '{col}' while merging telemetry.") return merged def resample_channels(self, rule=None, new_date_ref=None, **kwargs): """Resample telemetry data. Convenience method for frequency conversion and resampling. Up and down sampling of data is supported. 'Date' and 'SessionTime' need to exist in the data. 'Date' is used as the main time reference. There are two ways to use this method: - Usage like :meth:`pandas.DataFrame.resample`: In this case you need to specify the 'rule' for resampling and any additional keywords will be passed on to :meth:`pandas.Series.resample` to create a new time reference. See the pandas method to see which options are available. - using the 'new_date_ref' keyword a :class:`pandas.Series` containing new values for date (dtype :class:`pandas.Timestamp`) can be provided. The existing data will be resampled onto this new time reference. Args: rule (optional, str): Resampling rule for :meth:`pandas.Series.resample` new_date_ref (optional, pandas.Series): New custom Series of reference dates **kwargs (optional, any): Only in combination with 'rule'; additional parameters for :meth:`pandas.Series.resample` """ if rule is not None and new_date_ref is not None: raise ValueError("You can only specify one of 'rule' or 'new_index'") if rule is None and new_date_ref is None: raise ValueError("You need to specify either 'rule' or 'new_index'") if new_date_ref is None: st = pd.Series(index=pd.DatetimeIndex(self['Date']), dtype=int).resample(rule, **kwargs).asfreq() new_date_ref = pd.Series(st.index) new_tel = Telemetry(session=self.session, driver=self.driver, columns=self.columns) new_tel.loc[:, 'Date'] = new_date_ref combined_tel = self.merge_channels(Telemetry({'Date': new_date_ref}, session=self.session)) mask = combined_tel['Date'].isin(new_date_ref) new_tel = combined_tel.loc[mask, :] return new_tel def fill_missing(self): """Calculate missing values in self. Only known telemetry channels will be interpolated. Unknown channels are skipped and returned unmodified. Interpolation will be done according to the default mapping and according to options specified for registered custom channels. For example: | Linear interpolation will be used for continuous values (Speed, RPM) | Forward-fill will be used for discrete values (Gear, DRS, ...) See :meth:`register_new_channel` for adding custom channels. """ ret = self.copy() for ch in self._CHANNELS.keys(): if ch not in self.columns: continue sig_type = self._CHANNELS[ch]['type'] if sig_type == 'continuous': # yes, this is necessary to prevent pandas from crashing if ret[ch].dtype == 'object': warnings.warn("Interpolation not possible for telemetry " "channel because dtype is 'object'") missing = self._CHANNELS[ch]['missing'] ret.loc[:, ch] = ret.loc[:, ch] \ .interpolate(method=missing, limit_direction='both', fill_value='extrapolate') elif sig_type == 'discrete': ret.loc[:, ch] = ret.loc[:, ch].ffill().ffill().bfill() # first ffill is a method of the resampler object and will ONLY ffill values created during # resampling but not already existing NaN values. NaN values already existed because of merging, # therefore call ffill a second time as a method of the returned series to fill these too # only use bfill after ffill to fix first row if 'Source' in ret.columns: ret.loc[:, 'Source'] = ret.loc[:, 'Source'].fillna(value='interpolation') if 'Date' in self.columns: ret['SessionTime'] = ret['Date'] - self.session.t0_date elif isinstance(ret.index, pd.DatetimeIndex): ret['SessionTime'] = ret.index - self.session.t0_date # assume index is Date ret['Time'] = ret['SessionTime'] - ret['SessionTime'].iloc[0] return ret @classmethod def register_new_channel(cls, name, signal_type, interpolation_method=None): """Register a custom telemetry channel. Registered telemetry channels are automatically interpolated when merging or resampling data. Args: name (str): Telemetry channel/column name signal_type (str): One of three possible signal types: - 'continuous': Speed, RPM, Distance, ... - 'discrete': DRS, nGear, status values, ... - 'excluded': Data channel will be ignored during resampling interpolation_method (optional, str): The interpolation method which should be used. Can only be specified and is required in combination with ``signal_type='continuous'``. See :meth:`pandas.Series.interpolate` for possible interpolation methods. """ if signal_type not in ('discrete', 'continuous', 'excluded'): raise ValueError(f"Unknown signal type {signal_type}.") if signal_type == 'continuous' and interpolation_method is None: raise ValueError("signal_type='continuous' requires interpolation_method to be specified.") cls._CHANNELS[name] = {'type': signal_type, 'missing': interpolation_method} def get_first_non_zero_time_index(self): """Return the first index at which the 'Time' value is not zero or NA/NaT""" # find first row where time is not zero; usually this is the first row but sometimes..... i_arr = np.where((self['Time'] != pd.Timedelta(0)) & ~pd.isna(self['Time']))[0] if i_arr.size != 0: return np.min(i_arr) return None def add_differential_distance(self, drop_existing=True): """Add column 'DifferentialDistance' to self. This column contains the distance driven between subsequent samples. Calls :meth:`calculate_differential_distance` and joins the result with self. Args: drop_existing (bool): Drop and recalculate column if it already exists Returns: :class:`Telemetry`: self joined with new column or self if column exists and `drop_existing` is False. """ if ('DifferentialDistance' in self.columns) and not drop_existing: return self new_dif_dist = pd.DataFrame( {'DifferentialDistance': self.calculate_differential_distance()} ) if 'DifferentialDistance' in self.columns: return self.drop(labels='DifferentialDistance', axis=1) \ .join(new_dif_dist, how='outer') return self.join(new_dif_dist, how='outer') def add_distance(self, drop_existing=True): """Add column 'Distance' to self. This column contains the distance driven since the first sample of self in meters. The data is produced by integrating the differential distance between subsequent laps. You should not apply this function to telemetry of many laps simultaneously to reduce integration error. Instead apply it only to single laps or few laps at a time! Calls :meth:`integrate_distance` and joins the result with self. Args: drop_existing (bool): Drop and recalculate column if it already exists Returns: :class:`Telemetry`: self joined with new column or self if column exists and `drop_existing` is False. """ if ('Distance' in self.columns) and not drop_existing: return self new_dist = pd.DataFrame({'Distance': self.integrate_distance()}) if 'Distance' in self.columns: return self.drop(labels='Distance', axis=1).join(new_dist, how='outer') return self.join(new_dist, how='outer') def add_relative_distance(self, drop_existing=True): """Add column 'RelativeDistance' to self. This column contains the distance driven since the first sample as a floating point number where ``0.0`` is the first sample of self and ``1.0`` is the last sample. This is calculated the same way as 'Distance' (see: :meth:`add_distance`). The same warnings apply. Args: drop_existing (bool): Drop and recalculate column if it already exists Returns: :class:`Telemetry`: self joined with new column or self if column exists and `drop_existing` is False. """ if 'RelativeDistance' in self.columns: if drop_existing: d = self.drop(labels='RelativeDistance', axis=1) else: return self else: d = self if 'Distance' in d.columns: rel_dist = d.loc[:, 'Distance'] / d.loc[:, 'Distance'].iloc[-1] else: dist = d.integrate_distance() rel_dist = dist / dist.iloc[-1] return d.join(pd.DataFrame({'RelativeDistance': rel_dist}), how='outer') def add_driver_ahead(self, drop_existing=True): """Add column 'DriverAhead' and 'DistanceToDriverAhead' to self. DriverAhead: Driver number of the driver ahead as string DistanceToDriverAhead: Distance to next car ahead in meters .. note:: Cars in the pit lane are currently not excluded from the data. They will show up when overtaken on pit straight even if they're not technically in front of the car. A fix for this is TBD with other improvements. This should only be applied to data of single laps or few laps at a time to reduce integration error. For longer time spans it should be applied per lap and the laps should be merged afterwards. If you absolutely need to apply it to a whole session, use the legacy implementation. Note that data of the legacy implementation will be considerably less smooth. (see :mod:`fastf1.legacy`) Calls :meth:`calculate_driver_ahead` and joins the result with self. Args: drop_existing (bool): Drop and recalculate column if it already exists Returns: :class:`Telemetry`: self joined with new column or self if column exists and `drop_existing` is False. """ if 'DriverAhead' in self.columns and 'DistanceToDriverAhead' in self.columns: if drop_existing: d = self.drop(labels='DriverAhead', axis=1) \ .drop(labels='DistanceToDriverAhead', axis=1) else: return self else: d = self drv_ahead, dist = self.calculate_driver_ahead() return d.join(pd.DataFrame({'DriverAhead': drv_ahead, 'DistanceToDriverAhead': dist}, index=d.index), how='outer') def calculate_differential_distance(self): """Calculate the distance between subsequent samples of self. Distance is in meters Returns: :class:`pandas.Series` """ if not all([col in self.columns for col in ('Speed', 'Time')]): raise ValueError("Telemetry does not contain required channels 'Time' and 'Speed'.") if self.size != 0: dt = self['Time'].dt.total_seconds().diff() dt.iloc[0] = self['Time'].iloc[0].total_seconds() ds = self['Speed'] / 3.6 * dt return ds else: return pd.Series() def integrate_distance(self): """Return the distance driven since the first sample of self. Distance is in meters. The data is produce by integration. Integration error will stack up when used for long slices of data. This should therefore only be used for data of single laps or few laps at a time. Returns: :class:`pd.Series` """ ds = self.calculate_differential_distance() if not ds.empty: return ds.cumsum() else: return pd.Series() def calculate_driver_ahead(self): """Calculate driver ahead and distance to driver ahead. Driver ahead: Driver number of the driver ahead as string Distance to driver ahead: Distance to the car ahead in meters .. note:: This gives a smoother/cleaner result than the legacy implementation but WILL introduce integration error when used over long distances (more than one or two laps may sometimes be considered a long distance). If in doubt, do sanity checks (against the legacy version or in another way). Returns: driver ahead (numpy.array), distance to driver ahead (numpy.array) """ t_start = self['SessionTime'].iloc[0] t_end = self['SessionTime'].iloc[-1] combined_distance = pd.DataFrame() # Assume the following lap profile as a catch all for all drivers # # |------ Lap before ------|------ n Laps between ------|------ Lap after ------| # ^ ^ # t_start t_end # Integration of the distance needs to start at the finish line so that there exists a common zero point # Therefore find the "lap before" which is the lap during which the telemetry slice starts and the "lap after" # where the telemetry slice ends # Integrate distance over all relevant laps and slice by t_start and t_end after to get the interesting # part only own_laps = self.session.laps[self.session.laps['DriverNumber'] == self.driver] first_lap_number = (own_laps[own_laps['LapStartTime'] <= t_start])['LapNumber'].iloc[-1] for drv in self.session.drivers: # find correct first relevant lap; very important for correct zero point in distance drv_laps = self.session.laps[self.session.laps['DriverNumber'] == drv] if drv_laps.empty: # Only include drivers who participated in this session continue drv_laps_before = drv_laps[(drv_laps['LapStartTime'] <= t_start)] if not drv_laps_before.empty: lap_n_before = drv_laps_before['LapNumber'].iloc[-1] if lap_n_before < first_lap_number: # driver is behind on track an therefore will cross the finish line AFTER self # therefore above check for LapStartTime <= t_start is wrong # the first relevant lap is the first lap with LapStartTime > t_start which is lap_n_before += 1 lap_n_before += 1 else: lap_n_before = min(drv_laps['LapNumber']) # find last relevant lap so as to no do too much unnecessary calculation later drv_laps_after = drv_laps[drv_laps['Time'] >= t_end] lap_n_after = drv_laps_after['LapNumber'].iloc[0] \ if not drv_laps_after.empty \ else max(drv_laps['LapNumber']) relevant_laps = drv_laps[(drv_laps['LapNumber'] >= lap_n_before) & (drv_laps['LapNumber'] <= lap_n_after)] if relevant_laps.empty: continue # first slice by lap and calculate distance, so that distance is zero at finish line drv_tel = self.session.car_data[drv].slice_by_lap(relevant_laps).add_distance() \ .loc[:, ('SessionTime', 'Distance')].rename(columns={'Distance': drv}) # now slice again by time to only get the relevant time frame drv_tel = drv_tel.slice_by_time(t_start, t_end) if drv_tel.empty: continue drv_tel = drv_tel.set_index('SessionTime') combined_distance = combined_distance.join(drv_tel, how='outer') # create driver map for array drv_map = combined_distance.loc[:, combined_distance.columns != self.driver].columns.to_numpy() own_dst = combined_distance.loc[:, self.driver].to_numpy() other_dst = combined_distance.loc[:, combined_distance.columns != self.driver].to_numpy() # replace distance with nan if it does not change # prepend first row before diff so that array size stays the same; but missing first sample because of that other_dst[np.diff(other_dst, n=1, axis=0, prepend=other_dst[0, :].reshape((1, -1))) == 0] = np.nan # resize own_dst to match shape of other_dst for easy subtraction own_dst = np.repeat(own_dst.reshape((-1, 1)), other_dst.shape[1], axis=1) delta_dst = other_dst - own_dst delta_dst[np.isnan(delta_dst)] = np.inf # substitute nan with inf, else nan is returned as min delta_dst[delta_dst < 0] = np.inf # remove cars behind so that neg numbers are not returned as min index_ahead = np.argmin(delta_dst, axis=1) drv_ahead = np.array([drv_map[i] for i in index_ahead]) drv_ahead[np.all(delta_dst == np.inf, axis=1)] = '' # remove driver from all inf rows dist_to_drv_ahead = np.array([delta_dst[i, index_ahead[i]] for i in range(len(index_ahead))]) dist_to_drv_ahead[
np.all(delta_dst == np.inf, axis=1)
numpy.all
import anndata import multiprocessing as mp import numpy as np import os import pandas as pd import pytest import rpy2.robjects.packages import rpy2.robjects.pandas2ri import scipy.sparse as ss import scipy.stats as st import scmodes import scmodes.benchmark.gof from .fixtures import test_data ashr = rpy2.robjects.packages.importr('ashr') rpy2.robjects.pandas2ri.activate() def test__gof(): np.random.seed(0) mu = 10 px = st.poisson(mu=mu) x = px.rvs(size=100) d, p = scmodes.benchmark.gof._gof(x, cdf=px.cdf, pmf=px.pmf) assert d >= 0 assert 0 <= p <= 1 def test__rpp(): np.random.seed(0) mu = 10 px = st.poisson(mu=mu) x = px.rvs(size=100) F = px.cdf(x - 1) f = px.pmf(x) vals = scmodes.benchmark.gof._rpp(F, f) assert vals.shape == x.shape def test_gof_point(test_data): x = test_data res = scmodes.benchmark.gof_point(x) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() def test_gamma_cdf(): np.random.seed(0) x = st.nbinom(n=10, p=.1).rvs(size=100) Fx = scmodes.benchmark.gof._zig_cdf(x, size=1, log_mu=-5, log_phi=-1) assert Fx.shape == x.shape assert np.isfinite(Fx).all() assert (Fx >= 0).all() assert (Fx <= 1).all() def test_zig_cdf(): np.random.seed(0) x = st.nbinom(n=10, p=.1).rvs(size=100) Fx = scmodes.benchmark.gof._zig_cdf(x, size=1, log_mu=-5, log_phi=-1, logodds=-3) assert Fx.shape == x.shape assert (Fx >= 0).all() assert (Fx <= 1).all() def test_zig_pmf_cdf(): x = np.arange(50) import scmodes.benchmark.gof size = 1000 log_mu=-5 log_phi=-1 logodds=-1 Fx = scmodes.benchmark.gof._zig_cdf(x, size=size, log_mu=log_mu, log_phi=log_phi, logodds=logodds) Fx_1 = scmodes.benchmark.gof._zig_cdf(x - 1, size=size, log_mu=log_mu, log_phi=log_phi, logodds=logodds) fx = scmodes.benchmark.gof._zig_pmf(x, size=size, log_mu=log_mu, log_phi=log_phi, logodds=logodds) assert np.isclose(Fx - Fx_1, fx).all() def test_gof_gamma(test_data): x = test_data res = scmodes.benchmark.gof_gamma(x) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() def test_gof_gamma_size(test_data): x = test_data s = 1 + np.median(x, axis=1).reshape(-1, 1) res = scmodes.benchmark.gof_gamma(x, s=s, lr=1e-3) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() def test_gof_gamma_adata(test_data): x = test_data y = anndata.AnnData(x.values, obs=pd.DataFrame(x.index), var=pd.DataFrame(x.columns)) res = scmodes.benchmark.gof_gamma(y, lr=1e-3) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() assert (res.index == x.columns).all() def test_gof_gamma_adata_key(test_data): x = test_data y = anndata.AnnData(x.values, obs=pd.DataFrame(x.index), var=pd.DataFrame(x.columns)) res = scmodes.benchmark.gof_gamma(y, key=0, lr=1e-3) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() assert (res.index == x.columns).all() def test_gof_zig(test_data): x = test_data res = scmodes.benchmark.gof_zig(x) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() def test_gof_zig_size(test_data): x = test_data s = 1 + np.median(x, axis=1).reshape(-1, 1) res = scmodes.benchmark.gof_zig(x, s=s, lr=1e-3) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() def test_gof_zig_adata(test_data): x = test_data y = anndata.AnnData(x.values, obs=pd.DataFrame(x.index), var=pd.DataFrame(x.columns)) res = scmodes.benchmark.gof_zig(y, lr=1e-3) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() assert (res.index == x.columns).all() def test_gof_zig_adata_key(test_data): x = test_data y = anndata.AnnData(x.values, obs=pd.DataFrame(x.index), var=pd.DataFrame(x.columns)) res = scmodes.benchmark.gof_zig(y, key=0, lr=1e-3) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() assert (res.index == x.columns).all() def test__ash_pmf(test_data): x = test_data gene = 'ENSG00000116251' xj = x[gene] size = x.sum(axis=1) lam = xj / size fit = ashr.ash_workhorse( # these are ignored by ash pd.Series(np.zeros(xj.shape)), 1, outputlevel=pd.Series(['fitted_g', 'data']), # numpy2ri doesn't DTRT, so we need to use pandas lik=ashr.lik_pois(y=xj, scale=size, link='identity'), mixsd=pd.Series(np.geomspace(lam.min() + 1e-8, lam.max(), 25)), mode=pd.Series([lam.min(), lam.max()])) res = scmodes.benchmark.gof._ash_pmf(xj, fit) assert res.shape == xj.shape assert np.isfinite(res).all() assert (res >= 0).all() assert (res <= 1).all() def test__ash_cdf(test_data): x = test_data gene = 'ENSG00000116251' xj = x[gene] size = x.sum(axis=1) lam = xj / size fit = ashr.ash_workhorse( # these are ignored by ash pd.Series(np.zeros(xj.shape)), 1, outputlevel=pd.Series(['fitted_g', 'data']), # numpy2ri doesn't DTRT, so we need to use pandas lik=ashr.lik_pois(y=xj, scale=size, link='identity'), mixsd=pd.Series(np.geomspace(lam.min() + 1e-8, lam.max(), 25)), mode=pd.Series([lam.min(), lam.max()])) res = scmodes.benchmark.gof._ash_cdf(xj, fit, s=size) assert np.isfinite(res).all() assert (res >= 0).all() assert (res <= 1).all() def test__ash_cdf_pmf(test_data): x = test_data gene = 'ENSG00000116251' xj = x[gene] size = x.sum(axis=1) lam = xj / size fit = ashr.ash_workhorse( # these are ignored by ash pd.Series(np.zeros(xj.shape)), 1, outputlevel=pd.Series(['fitted_g', 'data']), # numpy2ri doesn't DTRT, so we need to use pandas lik=ashr.lik_pois(y=xj, scale=size, link='identity'), mixsd=pd.Series(np.geomspace(lam.min() + 1e-8, lam.max(), 25)), mode=pd.Series([lam.min(), lam.max()])) Fx = scmodes.benchmark.gof._ash_cdf(xj, fit, s=size) Fx_1 = scmodes.benchmark.gof._ash_cdf(xj - 1, fit, s=size) fx = scmodes.benchmark.gof._ash_pmf(xj, fit) assert np.isclose(Fx - Fx_1, fx).all() def test__gof_unimodal(test_data): x = test_data gene = 'ENSG00000116251' k, d, p = scmodes.benchmark.gof._gof_unimodal(gene, x[gene], x.sum(axis=1)) assert k == gene assert np.isfinite(d) assert d >= 0 assert np.isfinite(p) assert 0 <= p <= 1 def test_gof_unimodal(test_data): x = test_data res = scmodes.benchmark.gof_unimodal(x) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() def test_gof_unimodal_size(test_data): x = test_data s = x.sum(axis=1) res = scmodes.benchmark.gof_unimodal(x, s=s) assert res.shape[0] == x.shape[1] assert np.isfinite(res['stat']).all() assert np.isfinite(res['p']).all() def test__point_expfam_cdf(test_data): x = test_data s = x.sum(axis=1) xj = x['ENSG00000116251'] res = scmodes.ebpm.ebpm_point_expfam(xj, s) F = scmodes.benchmark.gof._point_expfam_cdf(xj.values.ravel(), res=res, size=s) assert np.isfinite(F).all() assert (F >= 0).all() assert (F <= 1).all() def test__point_expfam_pmf(test_data): x = test_data s = x.sum(axis=1) xj = x['ENSG00000116251'] res = scmodes.ebpm.ebpm_point_expfam(xj, s) f = scmodes.benchmark.gof._point_expfam_pmf(xj.values.ravel(), res=res, size=s) assert np.isfinite(f).all() assert (f >= 0).all() assert (f <= 1).all() def test__point_expfam_cdf_pmf(test_data): x = test_data s = x.sum(axis=1) xj = x['ENSG00000116251'] res = scmodes.ebpm.ebpm_point_expfam(xj, s) F = scmodes.benchmark.gof._point_expfam_cdf(xj.values.ravel(), res=res, size=s) F_1 = scmodes.benchmark.gof._point_expfam_cdf(xj.values.ravel() - 1, res=res, size=s) f = scmodes.benchmark.gof._point_expfam_pmf(xj.values.ravel(), res=res, size=s) assert np.isclose(F - F_1, f).all() def test__gof_npmle(test_data): x = test_data gene = 'ENSG00000116251' k, d, p = scmodes.benchmark.gof._gof_npmle(gene, x[gene], x.sum(axis=1)) assert k == gene assert np.isfinite(d) assert d >= 0 assert
np.isfinite(p)
numpy.isfinite
#!/usr/bin/env python # A Global import to make code python 2 and 3 compatible from __future__ import print_function def make_graphs(graph_dir, mat_dict, centroids, aparc_names, n_rand=1000): #mat_dict comes from make_corr_matrices.py ''' A function that makes all the required graphs from the correlation matrices in mat_dict. These include the full graph with all connections including weights, and binarized graphs at 30 different costs betwen 1% to 30%. These graphs are fully connected because the minimum spanning tree is used before the strongest edges are added up to the required density. If the graphs do not already exist they are saved as gpickle files in graph_dir. If they do exist then they're read in from those files. In addition, files with values for the nodal topological measures and global topological measures are created and saved or loaded as appropriate. The function requires the centroids and aparc_names values in order to calculate the nodal measures. The value n_rand is the number of random graphs to calculate for the global and nodal measure calculations. The function returns a dictionary of graphs, nodal measures and global measures ''' #========================================================================== # IMPORTS #========================================================================== import os import networkx as nx import numpy as np import pickle #========================================================================== # Print to screen what you're up to #========================================================================== print ("--------------------------------------------------") print ("Making or loading graphs") #========================================================================== # Create an empty dictionary #========================================================================== graph_dict = {} #========================================================================== # Loop through all the matrices in mat_dict #========================================================================== for k in mat_dict.keys(): print (' {}'.format(k)) # Read in the matrix M = mat_dict[k] # Get the covars name mat_name, covars_name = k.split('_COVARS_') #------------------------------------------------------------------------- # Make the full graph first #------------------------------------------------------------------------- # Define the graph's file name and its dictionary key g_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'Graph_{}_COST_100.gpickle'.format(mat_name)) g_key = '{}_COST_100'.format(k) print (' Loading COST: 100',) # If it already exists just read it in from the pickled file if os.path.isfile(g_filename): graph_dict[g_key] = nx.read_gpickle(g_filename) # Otherwise you'll have to create it using the graph_at_cost function above else: graph_dict[g_key] = full_graph(M) # Save it as a gpickle file so you don't have to do this next time! dirname = os.path.dirname(g_filename) if not os.path.isdir(dirname): os.makedirs(dirname) nx.write_gpickle(graph_dict[g_key], g_filename) #------------------------------------------------------------------------- # Then for all the different costs between 1% and 30% #------------------------------------------------------------------------- for cost in [2] + range(5,21,5): #------------------------------------------------------------------------- # Define the graph's file name along with those of the the associated # global and nodal dictionaries #------------------------------------------------------------------------- g_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'Graph_{}_COST_{:02.0f}.gpickle'.format(mat_name, cost)) global_dict_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'GlobalDict_{}_COST_{:02.0f}.p'.format(mat_name, cost)) nodal_dict_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'NodalDict_{}_COST_{:02.0f}.p'.format(mat_name, cost)) rich_club_filename = os.path.join(graph_dir, 'COVARS_{}'.format(covars_name), 'RichClub_{}_COST_{:02.0f}.p'.format(mat_name, cost)) g_key = '{}_COST_{:02.0f}'.format(k, cost) #------------------------------------------------------------------------- # Make or load the graph #------------------------------------------------------------------------- # If the graph already exists just read it in from the pickled file if os.path.isfile(g_filename): graph_dict[g_key] = nx.read_gpickle(g_filename) # Otherwise you'll have to create it using the graph_at_cost function else: graph_dict[g_key] = graph_at_cost(M, cost) # Save it as a gpickle file so you don't have to do this next time! nx.write_gpickle(graph_dict[g_key], g_filename) #------------------------------------------------------------------------- # Make or load the global and nodal measures dictionaries #------------------------------------------------------------------------- # If the rich_club measures files already exists just read it # and the nodal and global measures files in if os.path.isfile(rich_club_filename): # Print to screen so you know where you're up to if cost == 20: print ('- {:02.0f}'.format(cost)) else: print ('- {:02.0f}'.format(cost),) graph_dict['{}_GlobalMeasures'.format(g_key)] = pickle.load(open(global_dict_filename)) graph_dict['{}_NodalMeasures'.format(g_key)] = pickle.load(open(nodal_dict_filename)) graph_dict['{}_RichClub'.format(g_key)] = pickle.load(open(rich_club_filename)) # Otherwise you'll have to create them using the calculate_global_measures # and calculate_nodal_measures functions else: G = graph_dict[g_key] print ('\n Calculating COST: {:02.0f}'.format(cost)) # You need to calculate the same nodal partition for the global # and nodal measures nodal_partition = calc_nodal_partition(G) # And you'll also want the same list of random graphs R_list, R_nodal_partition_list = make_random_list(G, n_rand=n_rand) graph_dict['{}_GlobalMeasures'.format(g_key)] = calculate_global_measures(G, R_list=R_list, nodal_partition=nodal_partition, R_nodal_partition_list=R_nodal_partition_list) (graph_dict[g_key], graph_dict['{}_NodalMeasures'.format(g_key)]) = calculate_nodal_measures(G, centroids, aparc_names, nodal_partition=nodal_partition) graph_dict['{}_RichClub'.format(g_key)] = rich_club(G, R_list=R_list) # Save them as pickle files so you don't have to do this next time! pickle.dump(graph_dict['{}_GlobalMeasures'.format(g_key)], open(global_dict_filename, "wb")) pickle.dump(graph_dict['{}_NodalMeasures'.format(g_key)], open(nodal_dict_filename, "wb")) pickle.dump(graph_dict['{}_RichClub'.format(g_key)], open(rich_club_filename, "wb")) nx.write_gpickle(graph_dict[g_key], g_filename) # Return the full graph dictionary return graph_dict def full_graph(M): ''' Very easy, set the diagonals to 0 and then save the graph ''' import numpy as np import networkx as nx # Make a copy of the matrix thr_M = np.copy(M) # Set all diagonal values to 0 thr_M[np.diag_indices_from(thr_M)] = 0 # Read this full matrix into a graph G G = nx.from_numpy_matrix(thr_M) return G def graph_at_cost(M, cost): ''' A function that first creates the minimum spanning tree for the graph, and then adds in edges according to their connection strength up to a particular cost ''' import numpy as np import networkx as nx # Make a copy of the matrix thr_M = np.copy(M) # Set all diagonal values to 0 thr_M[np.diag_indices_from(thr_M)] = 0 # Multiply all values by -1 because the minimum spanning tree # looks for the smallest distance - not the largest correlation! thr_M = thr_M*-1 # Read this full matrix into a graph G G = nx.from_numpy_matrix(thr_M) # Make a list of all the sorted edges in the full matrix G_edges_sorted = [ edge for edge in sorted(G.edges(data = True), key = lambda edge_info: edge_info[2]['weight']) ] # Calculate minimum spanning tree and make a list of the mst_edges mst = nx.minimum_spanning_tree(G) mst_edges = mst.edges(data = True) # Create a list of edges that are *not* in the mst # (because you don't want to add them in twice!) G_edges_sorted_notmst = [ edge for edge in G_edges_sorted if not edge in mst_edges ] # Figure out the number of edges you want to keep for this # particular cost. You have to round this number because it # won't necessarily be an integer, and you have to subtract # the number of edges in the minimum spanning tree because we're # going to ADD this number of edges to it n_edges = (cost/100.0) * len(G_edges_sorted) n_edges = np.int(np.around(n_edges)) n_edges = n_edges - len(mst.edges()) # If your cost is so small that your minimum spanning tree already covers it # then you can't do any better than the MST and you'll just have to return # it with an accompanying error message if n_edges < 0: print ('Unable to calculate matrix at this cost - minimum spanning tree is too large') # Otherwise, add in the appropriate number of edges (n_edges) # from your sorted list (G_edges_sorted_notmst) else: mst.add_edges_from(G_edges_sorted_notmst[:n_edges]) # And return the *updated* minimum spanning tree # as your graph return mst def make_random_list(G, n_rand=10): ''' A little (but useful) function to wrap around random_graph and return a list of random graphs (matched for degree distribution) that can be passed to multiple calculations so you don't have to do it multiple times ''' R_list = [] R_nodal_partition_list = [] print (' Creating {} random graphs - may take a little while'.format(n_rand)) for i in range(n_rand): if len(R_list) <= i: R_list += [ random_graph(G) ] R_nodal_partition_list += [ calc_nodal_partition(R_list[i]) ] return R_list, R_nodal_partition_list def calculate_global_measures(G, R_list=None, n_rand=10, nodal_partition=None, R_nodal_partition_list=None): ''' A wrapper function that calls a bunch of useful functions and reports a plethora of network measures for the real graph G, and for n random graphs that are matched on degree distribution (unless otherwise stated) ''' import networkx as nx import numpy as np #==== SET UP ====================== # If you haven't already calculated random graphs # or you haven't given this function as many random # graphs as it is expecting then calculate a random # graph here if R_list is None: R_list, R_nodal_partition_list = make_random_list(n_rand) else: n = len(R_list) # If you haven't passed the nodal partition # then calculate it here if not nodal_partition: nodal_partition = calc_nodal_partition(G) #==== MEASURES ==================== global_measures_dict = {} #---- Clustering coefficient ------ global_measures_dict['C'] = nx.average_clustering(G) rand_array = np.ones(n) for i in range(n): rand_array[i] = nx.average_clustering(R_list[i]) global_measures_dict['C_rand'] = rand_array #---- Shortest path length -------- global_measures_dict['L'] = nx.average_shortest_path_length(G) rand_array = np.ones(n) for i in range(n): rand_array[i] = nx.average_shortest_path_length(R_list[i]) global_measures_dict['L_rand'] = rand_array #---- Assortativity --------------- global_measures_dict['a'] = np.mean(nx.degree_assortativity_coefficient(G)) rand_array = np.ones(n) for i in range(n): rand_array[i] = np.mean(nx.degree_assortativity_coefficient(R_list[i])) global_measures_dict['a_rand'] = rand_array #---- Modularity ------------------ global_measures_dict['M'] = calc_modularity(G, nodal_partition) rand_array = np.ones(n) for i in range(n): rand_array[i] = calc_modularity(R_list[i], R_nodal_partition_list[i]) global_measures_dict['M_rand'] = rand_array #---- Efficiency ------------------ global_measures_dict['E'] = calc_efficiency(G) rand_array = np.ones(n) for i in range(n): rand_array[i] = calc_efficiency(R_list[i]) global_measures_dict['E_rand'] = rand_array #---- Small world ----------------- sigma_array = np.ones(n) for i in range(n): sigma_array[i] = ( ( global_measures_dict['C'] / global_measures_dict['C_rand'][i] ) / ( global_measures_dict['L'] / global_measures_dict['L_rand'][i] ) ) global_measures_dict['sigma'] = sigma_array global_measures_dict['sigma_rand'] = 1.0 return global_measures_dict def calculate_nodal_measures(G, centroids, aparc_names, nodal_partition=None, names_308_style=True): ''' A function which returns a dictionary of numpy arrays for a graph's * degree * participation coefficient * average distance * total distance * clustering * closeness * interhemispheric proportion * name If you have names in 308 style (as described in Whitaker, Vertes et al 2016) then you can also add in * hemisphere * 34_name (Desikan Killiany atlas region) * 68_name (Desikan Killiany atlas region with hemisphere) ''' import numpy as np import networkx as nx #==== SET UP ====================== # If you haven't passed the nodal partition # then calculate it here if not nodal_partition: nodal_partition = calc_nodal_partition(G) #==== MEASURES ==================== nodal_dict = {} #---- Degree ---------------------- deg = G.degree().values() nodal_dict['degree'] = list(deg) #---- Closeness ------------------- closeness = nx.closeness_centrality(G).values() nodal_dict['closeness'] = list(closeness) #---- Betweenness ----------------- betweenness = nx.betweenness_centrality(G).values() nodal_dict['betweenness'] = list(betweenness) #---- Shortest path length -------- L = shortest_path(G).values() nodal_dict['shortest_path'] = list(L) #---- Clustering ------------------ clustering = nx.clustering(G).values() nodal_dict['clustering'] = list(clustering) #---- Participation coefficent ---- #---- and module assignment ------- partition, pc_dict = participation_coefficient(G, nodal_partition) nodal_dict['module'] = list(partition.values()) nodal_dict['pc'] = list(pc_dict.values()) #---- Euclidean distance and ------ #---- interhem proporition -------- G = assign_nodal_distance(G, centroids) average_dist = nx.get_node_attributes(G, 'average_dist').values() total_dist = nx.get_node_attributes(G, 'total_dist').values() interhem_prop = nx.get_node_attributes(G, 'interhem_proportion').values() nodal_dict['average_dist'] = list(average_dist) nodal_dict['total_dist'] = list(total_dist) nodal_dict['interhem_prop'] = list(interhem_prop) #---- Names ----------------------- G = assign_node_names(G, aparc_names, names_308_style=names_308_style) name = nx.get_node_attributes(G, 'name').values() nodal_dict['name'] = list(name) if names_308_style: name_34 = nx.get_node_attributes(G, 'name_34').values() name_68 = nx.get_node_attributes(G, 'name_68').values() hemi = nx.get_node_attributes(G, 'hemi').values() nodal_dict['name_34'] = list(name_34) nodal_dict['name_68'] = list(name_68) nodal_dict['hemi'] = list(hemi) return G, nodal_dict def random_graph(G, Q=10): ''' Create a random graph that preserves degree distribution by swapping pairs of edges (double edge swap). Inputs: G: networkx graph Q: constant that determines how many swaps to conduct for every edge in the graph Default Q =10 Returns: R: networkx graph CAVEAT: If it is not possible in 15 attempts to create a connected random graph then this code will just return the original graph (G). This means that if you come to look at the values that are an output of calculate_global_measures and see that the values are the same for the random graph as for the main graph it is not necessarily the case that the graph is random, it may be that the graph was so low cost (density) that this code couldn't create an appropriate random graph! This should only happen for ridiculously low cost graphs that wouldn't make all that much sense to investigate anyway... so if you think carefully it shouldn't be a problem.... I hope! ''' import networkx as nx # Copy the graph R = G.copy() # Calculate the number of edges and set a constant # as suggested in the nx documentation E = R.number_of_edges() # Start with assuming that the random graph is not connected # (because it might not be after the first permuatation!) connected=False attempt=0 # Keep making random graphs until they are connected! while not connected and attempt < 15: # Now swap some edges in order to preserve the degree distribution nx.double_edge_swap(R,Q*E,max_tries=Q*E*10) # Check that this graph is connected! If not, start again connected = nx.is_connected(R) if not connected: attempt +=1 if attempt == 15: print (' ** Attempt aborted - can not randomise graph **') R = G.copy() return R def calc_modularity(G, nodal_partition): ''' A function that calculates modularity from the best partition of a graph using the louvain method ''' import community modularity = community.modularity(nodal_partition, G) return modularity def calc_nodal_partition(G): ''' You only need to create the nodal partition using the community module once. It takes a while and can be different every time you try so it's best to save a partition and use that for any subsequent calculations ''' import community # Make sure the edges are binarized for u,v,d in G.edges(data=True): d['weight']=1 # Now calculate the best partition nodal_partition = community.best_partition(G) return nodal_partition def calc_efficiency(G): ''' A little wrapper to calculate global efficiency ''' import networkx as nx E=0.0 for node in G: path_length=nx.single_source_shortest_path_length(G, node) E += 1.0/sum(path_length.values()) return E def participation_coefficient(G, nodal_partition): ''' Computes the participation coefficient for each node (Guimera et al. 2005). Returns dictionary of the participation coefficient for each node. ''' # Import the modules you'll need import networkx as nx import numpy as np # Reverse the dictionary because the output of Louvain is "backwards" # meaning it saves the module per node, rather than the nodes in each # module module_partition = {} for m,n in zip(nodal_partition.values(),nodal_partition.keys()): try: module_partition[m].append(n) except KeyError: module_partition[m] = [n] # Create an empty dictionary for the participation # coefficients pc_dict = {} all_nodes = set(G.nodes()) # Print a little note to the screen because it can take a long # time to run this code print (' Calculating participation coefficient - may take a little while') # Loop through modules for m in module_partition.keys(): # Get the set of nodes in this module mod_list = set(module_partition[m]) # Loop through each node (source node) in this module for source in mod_list: # Calculate the degree for the source node degree = float(nx.degree(G=G, nbunch=source)) # Calculate the number of these connections # that are to nodes in *other* modules count = 0 for target in mod_list: # If the edge is in there then increase the counter by 1 if (source, target) in G.edges(): count += 1 # This gives you the within module degree wm_degree = float(count) # The participation coeficient is 1 - the square of # the ratio of the within module degree and the total degree pc = 1 - ((float(wm_degree) / float(degree))**2) # Save the participation coefficient to the dictionary pc_dict[source] = pc return nodal_partition, pc_dict def assign_nodal_distance(G, centroids): ''' Give each node in the graph their x, y, z coordinates and then calculate the eucledian distance for every edge that connects to each node Also calculate the number of interhemispheric edges (defined as edges which different signs for the x coordinate Returns the graph ''' import networkx as nx import numpy as np from scipy.spatial import distance # First assign the x, y, z values to each node for i, node in enumerate(G.nodes()): G.node[node]['x'] = centroids[i, 0] G.node[node]['y'] = centroids[i, 1] G.node[node]['z'] = centroids[i, 2] G.node[node]['centroids'] = centroids[i, :] # Loop through every node in turn for i, node in enumerate(G.nodes()): # Loop through the edges connecting to this node # Note that "node1" should always be exactly the same # as "node", I've just used another name to keep # the code clear (which I may not have achieved given # that I thought this comment was necesary...) for node1, node2 in G.edges(nbunch=[node]): # Calculate the eulidean distance for this edge cent1 = G.node[node1]['centroids'] cent2 = G.node[node2]['centroids'] dist = distance.euclidean(cent1, cent2) # And assign this value to the edge G.edge[node1][node2]['euclidean'] = dist # Also figure out whether this edge is interhemispheric # by multiplying the x values. If x1 * x2 is negative # then the nodes are in different hemispheres. x1 = G.node[node1]['x'] x2 = G.node[node2]['x'] if x1*x2 > 0: G.edge[node1][node2]['interhem'] = 0 else: G.edge[node1][node2]['interhem'] = 1 # Create two nodal attributes (average distance and # total distance) by summarizing the euclidean distance # for all edges which connect to the node euc_list = [ G.edge[m][n]['euclidean'] for m, n in G.edges(nbunch=node) ] G.node[node]['average_dist'] = np.mean(euc_list) G.node[node]['total_dist'] = np.sum(euc_list) # Create an interhem nodal attribute by getting the average # of the interhem values for all edges which connect to the node interhem_list = [ G.edge[m][n]['interhem'] for m, n in G.edges(nbunch=node) ] G.node[node]['interhem_proportion'] =
np.mean(interhem_list)
numpy.mean
"""Rotations in three dimensions - SO(3). See :doc:`rotations` for more information. """ import warnings import math import numpy as np from numpy.testing import assert_array_almost_equal unitx = np.array([1.0, 0.0, 0.0]) unity = np.array([0.0, 1.0, 0.0]) unitz = np.array([0.0, 0.0, 1.0]) R_id = np.eye(3) a_id = np.array([1.0, 0.0, 0.0, 0.0]) q_id = np.array([1.0, 0.0, 0.0, 0.0]) q_i = np.array([0.0, 1.0, 0.0, 0.0]) q_j = np.array([0.0, 0.0, 1.0, 0.0]) q_k = np.array([0.0, 0.0, 0.0, 1.0]) e_xyz_id = np.array([0.0, 0.0, 0.0]) e_zyx_id = np.array([0.0, 0.0, 0.0]) p0 = np.array([0.0, 0.0, 0.0]) eps = 1e-7 def norm_vector(v): """Normalize vector. Parameters ---------- v : array-like, shape (n,) nd vector Returns ------- u : array, shape (n,) nd unit vector with norm 1 or the zero vector """ norm = np.linalg.norm(v) if norm == 0.0: return v else: return np.asarray(v) / norm def norm_matrix(R): """Normalize rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix with small numerical errors Returns ------- R : array, shape (3, 3) Normalized rotation matrix """ R = np.asarray(R) c2 = R[:, 1] c3 = norm_vector(R[:, 2]) c1 = norm_vector(np.cross(c2, c3)) c2 = norm_vector(np.cross(c3, c1)) return np.column_stack((c1, c2, c3)) def norm_angle(a): """Normalize angle to (-pi, pi]. Parameters ---------- a : float or array-like, shape (n,) Angle(s) in radians Returns ------- a_norm : float or array-like, shape (n,) Normalized angle(s) in radians """ # Source of the solution: http://stackoverflow.com/a/32266181 return -((np.pi - np.asarray(a)) % (2.0 * np.pi) - np.pi) def norm_axis_angle(a): """Normalize axis-angle representation. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The length of the axis vector is 1 and the angle is in [0, pi). No rotation is represented by [1, 0, 0, 0]. """ angle = a[3] norm = np.linalg.norm(a[:3]) if angle == 0.0 or norm == 0.0: return np.array([1.0, 0.0, 0.0, 0.0]) res = np.empty(4) res[:3] = a[:3] / norm angle = norm_angle(angle) if angle < 0.0: angle *= -1.0 res[:3] *= -1.0 res[3] = angle return res def norm_compact_axis_angle(a): """Normalize compact axis-angle representation. Parameters ---------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). The angle is in [0, pi). No rotation is represented by [0, 0, 0]. """ angle = np.linalg.norm(a) if angle == 0.0: return np.zeros(3) axis = a / angle return axis * norm_angle(angle) def perpendicular_to_vectors(a, b): """Compute perpendicular vector to two other vectors. Parameters ---------- a : array-like, shape (3,) 3d vector b : array-like, shape (3,) 3d vector Returns ------- c : array-like, shape (3,) 3d vector that is orthogonal to a and b """ return np.cross(a, b) def perpendicular_to_vector(a): """Compute perpendicular vector to one other vector. There is an infinite number of solutions to this problem. Thus, we restrict the solutions to [1, 0, z] and return [0, 0, 1] if the z component of a is 0. Parameters ---------- a : array-like, shape (3,) 3d vector Returns ------- b : array-like, shape (3,) A 3d vector that is orthogonal to a. It does not necessarily have unit length. """ if abs(a[2]) < eps: return np.copy(unitz) # Now that we solved the problem for [x, y, 0], we can solve it for all # other vectors by restricting solutions to [1, 0, z] and find z. # The dot product of orthogonal vectors is 0, thus # a[0] * 1 + a[1] * 0 + a[2] * z == 0 or -a[0] / a[2] = z return np.array([1.0, 0.0, -a[0] / a[2]]) def angle_between_vectors(a, b, fast=False): """Compute angle between two vectors. Parameters ---------- a : array-like, shape (n,) nd vector b : array-like, shape (n,) nd vector fast : bool, optional (default: False) Use fast implementation instead of numerically stable solution Returns ------- angle : float Angle between a and b """ if len(a) != 3 or fast: return np.arccos( np.clip(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)), -1.0, 1.0)) else: return np.arctan2(np.linalg.norm(np.cross(a, b)), np.dot(a, b)) def vector_projection(a, b): """Orthogonal projection of vector a on vector b. Parameters ---------- a : array-like, shape (3,) Vector a that will be projected on vector b b : array-like, shape (3,) Vector b on which vector a will be projected Returns ------- a_on_b : array, shape (3,) Vector a """ b_norm_squared = np.dot(b, b) if b_norm_squared == 0.0: return np.zeros(3) return np.dot(a, b) * b / b_norm_squared def random_vector(random_state=np.random.RandomState(0), n=3): """Generate an nd vector with normally distributed components. Each component will be sampled from :math:`\mathcal{N}(\mu=0, \sigma=1)`. Parameters ---------- random_state : np.random.RandomState, optional (default: random seed 0) Random number generator n : int, optional (default: 3) Number of vector components Returns ------- v : array-like, shape (n,) Random vector """ return random_state.randn(n) def random_axis_angle(random_state=np.random.RandomState(0)): """Generate random axis-angle. The angle will be sampled uniformly from the interval :math:`[0, \pi)` and each component of the rotation axis will be sampled from :math:`\mathcal{N}(\mu=0, \sigma=1)` and than the axis will be normalized to length 1. Parameters ---------- random_state : np.random.RandomState, optional (default: random seed 0) Random number generator Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) """ angle = np.pi * random_state.rand() a = np.array([0, 0, 0, angle]) a[:3] = norm_vector(random_state.randn(3)) return a def random_compact_axis_angle(random_state=np.random.RandomState(0)): """Generate random compact axis-angle. The angle will be sampled uniformly from the interval :math:`[0, \pi)` and each component of the rotation axis will be sampled from :math:`\mathcal{N}(\mu=0, \sigma=1)` and than the axis will be normalized to length 1. Parameters ---------- random_state : np.random.RandomState, optional (default: random seed 0) Random number generator Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) """ a = random_axis_angle(random_state) return a[:3] * a[3] def random_quaternion(random_state=np.random.RandomState(0)): """Generate random quaternion. Parameters ---------- random_state : np.random.RandomState, optional (default: random seed 0) Random number generator Returns ------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) """ return norm_vector(random_state.randn(4)) def cross_product_matrix(v): """Generate the cross-product matrix of a vector. The cross-product matrix :math:`\\boldsymbol{V}` satisfies the equation .. math:: \\boldsymbol{V} \\boldsymbol{w} = \\boldsymbol{v} \\times \\boldsymbol{w} It is a skew-symmetric (antisymmetric) matrix, i.e. :math:`-\\boldsymbol{V} = \\boldsymbol{V}^T`. Parameters ---------- v : array-like, shape (3,) 3d vector Returns ------- V : array-like, shape (3, 3) Cross-product matrix """ return np.array([[0.0, -v[2], v[1]], [v[2], 0.0, -v[0]], [-v[1], v[0], 0.0]]) def check_skew_symmetric_matrix(V, tolerance=1e-6, strict_check=True): """Input validation of a skew-symmetric matrix. Check whether the transpose of the matrix is its negative: .. math:: V^T = -V Parameters ---------- V : array-like, shape (3, 3) Cross-product matrix tolerance : float, optional (default: 1e-6) Tolerance threshold for checks. strict_check : bool, optional (default: True) Raise a ValueError if V.T is not numerically close enough to -V. Otherwise we print a warning. Returns ------- V : array-like, shape (3, 3) Validated cross-product matrix """ V = np.asarray(V, dtype=np.float) if V.ndim != 2 or V.shape[0] != 3 or V.shape[1] != 3: raise ValueError("Expected skew-symmetric matrix with shape (3, 3), " "got array-like object with shape %s" % (V.shape,)) if not np.allclose(V.T, -V, atol=tolerance): error_msg = ("Expected skew-symmetric matrix, but it failed the test " "V.T = %r\n-V = %r" % (V.T, -V)) if strict_check: raise ValueError(error_msg) else: warnings.warn(error_msg) return V def check_matrix(R, tolerance=1e-6, strict_check=True): """Input validation of a rotation matrix. We check whether R multiplied by its inverse is approximately the identity matrix and the determinant is approximately 1. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix tolerance : float, optional (default: 1e-6) Tolerance threshold for checks. Default tolerance is the same as in assert_rotation_matrix(R). strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- R : array, shape (3, 3) Validated rotation matrix """ R = np.asarray(R, dtype=np.float) if R.ndim != 2 or R.shape[0] != 3 or R.shape[1] != 3: raise ValueError("Expected rotation matrix with shape (3, 3), got " "array-like object with shape %s" % (R.shape,)) RRT = np.dot(R, R.T) if not np.allclose(RRT, np.eye(3), atol=tolerance): error_msg = ("Expected rotation matrix, but it failed the test " "for inversion by transposition. np.dot(R, R.T) " "gives %r" % RRT) if strict_check: raise ValueError(error_msg) else: warnings.warn(error_msg) R_det = np.linalg.det(R) if abs(R_det - 1) > tolerance: error_msg = ("Expected rotation matrix, but it failed the test " "for the determinant, which should be 1 but is %g; " "that is, it probably represents a rotoreflection" % R_det) if strict_check: raise ValueError(error_msg) else: warnings.warn(error_msg) return R def check_axis_angle(a): """Input validation of axis-angle representation. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) Returns ------- a : array, shape (4,) Validated axis of rotation and rotation angle: (x, y, z, angle) """ a = np.asarray(a, dtype=np.float) if a.ndim != 1 or a.shape[0] != 4: raise ValueError("Expected axis and angle in array with shape (4,), " "got array-like object with shape %s" % (a.shape,)) return norm_axis_angle(a) def check_compact_axis_angle(a): """Input validation of compact axis-angle representation. Parameters ---------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) Returns ------- a : array, shape (3,) Validated axis of rotation and rotation angle: angle * (x, y, z) """ a = np.asarray(a, dtype=np.float) if a.ndim != 1 or a.shape[0] != 3: raise ValueError("Expected axis and angle in array with shape (3,), " "got array-like object with shape %s" % (a.shape,)) return norm_compact_axis_angle(a) def check_quaternion(q, unit=True): """Input validation of quaternion representation. Parameters ---------- q : array-like, shape (4,) Quaternion to represent rotation: (w, x, y, z) unit : bool, optional (default: True) Normalize the quaternion so that it is a unit quaternion Returns ------- q : array-like, shape (4,) Validated quaternion to represent rotation: (w, x, y, z) """ q = np.asarray(q, dtype=np.float) if q.ndim != 1 or q.shape[0] != 4: raise ValueError("Expected quaternion with shape (4,), got " "array-like object with shape %s" % (q.shape,)) if unit: return norm_vector(q) else: return q def check_quaternions(Q, unit=True): """Input validation of quaternion representation. Parameters ---------- Q : array-like, shape (n_steps, 4) Quaternions to represent rotations: (w, x, y, z) unit : bool, optional (default: True) Normalize the quaternions so that they are unit quaternions Returns ------- Q : array-like, shape (n_steps, 4) Validated quaternions to represent rotations: (w, x, y, z) """ Q_checked = np.asarray(Q, dtype=np.float) if Q_checked.ndim != 2 or Q_checked.shape[1] != 4: raise ValueError( "Expected quaternion array with shape (n_steps, 4), got " "array-like object with shape %s" % (Q_checked.shape,)) if unit: for i in range(len(Q)): Q_checked[i] = norm_vector(Q_checked[i]) return Q_checked def matrix_from_two_vectors(a, b): """Compute rotation matrix from two vectors. We assume that the two given vectors form a plane so that we can compute a third, orthogonal vector with the cross product. The x-axis will point in the same direction as a, the y-axis corresponds to the normalized vector rejection of b on a, and the z-axis is the cross product of the other basis vectors. Parameters ---------- a : array-like, shape (3,) First vector, must not be 0 b : array-like, shape (3,) Second vector, must not be 0 or parallel to v1 Returns ------- R : array, shape (3, 3) Rotation matrix """ if np.linalg.norm(a) == 0: raise ValueError("a must not be the zero vector.") if np.linalg.norm(b) == 0: raise ValueError("b must not be the zero vector.") c = perpendicular_to_vectors(a, b) if np.linalg.norm(c) == 0: raise ValueError("a and b must not be parallel.") a = norm_vector(a) b_on_a_projection = vector_projection(b, a) b_on_a_rejection = b - b_on_a_projection b = norm_vector(b_on_a_rejection) c = norm_vector(c) return np.column_stack((a, b, c)) def matrix_from_axis_angle(a): """Compute rotation matrix from axis-angle. This is called exponential map or Rodrigues' formula. This typically results in an active rotation matrix. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ a = check_axis_angle(a) ux, uy, uz, theta = a c = math.cos(theta) s = math.sin(theta) ci = 1.0 - c R = np.array([[ci * ux * ux + c, ci * ux * uy - uz * s, ci * ux * uz + uy * s], [ci * uy * ux + uz * s, ci * uy * uy + c, ci * uy * uz - ux * s], [ci * uz * ux - uy * s, ci * uz * uy + ux * s, ci * uz * uz + c], ]) # This is equivalent to # R = (np.eye(3) * np.cos(a[3]) + # (1.0 - np.cos(a[3])) * a[:3, np.newaxis].dot(a[np.newaxis, :3]) + # cross_product_matrix(a[:3]) * np.sin(a[3])) return R def matrix_from_compact_axis_angle(a): """Compute rotation matrix from compact axis-angle. This is called exponential map or Rodrigues' formula. This typically results in an active rotation matrix. Parameters ---------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ a = axis_angle_from_compact_axis_angle(a) return matrix_from_axis_angle(a) def matrix_from_quaternion(q): """Compute rotation matrix from quaternion. This typically results in an active rotation matrix. Parameters ---------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ q = check_quaternion(q) uq = norm_vector(q) w, x, y, z = uq x2 = 2.0 * x * x y2 = 2.0 * y * y z2 = 2.0 * z * z xy = 2.0 * x * y xz = 2.0 * x * z yz = 2.0 * y * z xw = 2.0 * x * w yw = 2.0 * y * w zw = 2.0 * z * w R = np.array([[1.0 - y2 - z2, xy - zw, xz + yw], [xy + zw, 1.0 - x2 - z2, yz - xw], [xz - yw, yz + xw, 1.0 - x2 - y2]]) return R def matrix_from_angle(basis, angle): """Compute passive rotation matrix from rotation about basis vector. Parameters ---------- basis : int from [0, 1, 2] The rotation axis (0: x, 1: y, 2: z) angle : float Rotation angle Returns ------- R : array-like, shape (3, 3) Rotation matrix """ c = np.cos(angle) s = np.sin(angle) if basis == 0: R = np.array([[1.0, 0.0, 0.0], [0.0, c, s], [0.0, -s, c]]) elif basis == 1: R = np.array([[c, 0.0, -s], [0.0, 1.0, 0.0], [s, 0.0, c]]) elif basis == 2: R = np.array([[c, s, 0.0], [-s, c, 0.0], [0.0, 0.0, 1.0]]) else: raise ValueError("Basis must be in [0, 1, 2]") return R passive_matrix_from_angle = matrix_from_angle def active_matrix_from_angle(basis, angle): """Compute active rotation matrix from rotation about basis vector. Parameters ---------- basis : int from [0, 1, 2] The rotation axis (0: x, 1: y, 2: z) angle : float Rotation angle Returns ------- R : array-like, shape (3, 3) Rotation matrix """ c = np.cos(angle) s = np.sin(angle) if basis == 0: R = np.array([[1.0, 0.0, 0.0], [0.0, c, -s], [0.0, s, c]]) elif basis == 1: R = np.array([[c, 0.0, s], [0.0, 1.0, 0.0], [-s, 0.0, c]]) elif basis == 2: R = np.array([[c, -s, 0.0], [s, c, 0.0], [0.0, 0.0, 1.0]]) else: raise ValueError("Basis must be in [0, 1, 2]") return R def matrix_from_euler_xyz(e): """Compute passive rotation matrix from intrinsic xyz Tait-Bryan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = passive_matrix_from_angle(0, alpha).dot( passive_matrix_from_angle(1, beta)).dot( passive_matrix_from_angle(2, gamma)) return R def matrix_from_euler_zyx(e): """Compute passive rotation matrix from intrinsic zyx Tait-Bryan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ gamma, beta, alpha = e R = passive_matrix_from_angle(2, gamma).dot( passive_matrix_from_angle(1, beta)).dot( passive_matrix_from_angle(0, alpha)) return R def active_matrix_from_intrinsic_euler_xzx(e): """Compute active rotation matrix from intrinsic xzx Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, z'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, alpha).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(0, gamma)) return R def active_matrix_from_extrinsic_euler_xzx(e): """Compute active rotation matrix from extrinsic xzx Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, z-, and x-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, gamma).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(0, alpha)) return R def active_matrix_from_intrinsic_euler_xyx(e): """Compute active rotation matrix from intrinsic xyx Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, alpha).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(0, gamma)) return R def active_matrix_from_extrinsic_euler_xyx(e): """Compute active rotation matrix from extrinsic xyx Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y-, and x-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, gamma).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(0, alpha)) return R def active_matrix_from_intrinsic_euler_yxy(e): """Compute active rotation matrix from intrinsic yxy Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, x'-, and y''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, alpha).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(1, gamma)) return R def active_matrix_from_extrinsic_euler_yxy(e): """Compute active rotation matrix from extrinsic yxy Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, x-, and y-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, gamma).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(1, alpha)) return R def active_matrix_from_intrinsic_euler_yzy(e): """Compute active rotation matrix from intrinsic yzy Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, z'-, and y''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, alpha).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(1, gamma)) return R def active_matrix_from_extrinsic_euler_yzy(e): """Compute active rotation matrix from extrinsic yzy Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, z-, and y-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, gamma).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(1, alpha)) return R def active_matrix_from_intrinsic_euler_zyz(e): """Compute active rotation matrix from intrinsic zyz Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, alpha).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(2, gamma)) return R def active_matrix_from_extrinsic_euler_zyz(e): """Compute active rotation matrix from extrinsic zyz Euler angles. .. warning:: This function was not implemented correctly in versions 1.3 and 1.4 as the order of the angles was reversed, which actually corresponds to intrinsic rotations. This has been fixed in version 1.5. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y-, and z-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, gamma).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(2, alpha)) return R def active_matrix_from_intrinsic_euler_zxz(e): """Compute active rotation matrix from intrinsic zxz Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, x'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, alpha).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(2, gamma)) return R def active_matrix_from_extrinsic_euler_zxz(e): """Compute active rotation matrix from extrinsic zxz Euler angles. .. warning:: This function was not implemented correctly in versions 1.3 and 1.4 as the order of the angles was reversed, which actually corresponds to intrinsic rotations. This has been fixed in version 1.5. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, x-, and z-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, gamma).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(2, alpha)) return R def active_matrix_from_intrinsic_euler_xzy(e): """Compute active rotation matrix from intrinsic xzy Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, z'-, and y''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, alpha).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(1, gamma)) return R def active_matrix_from_extrinsic_euler_xzy(e): """Compute active rotation matrix from extrinsic xzy Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, z-, and y-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, gamma).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(0, alpha)) return R def active_matrix_from_intrinsic_euler_xyz(e): """Compute active rotation matrix from intrinsic xyz Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, alpha).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(2, gamma)) return R def active_matrix_from_extrinsic_euler_xyz(e): """Compute active rotation matrix from extrinsic xyz Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y-, and z-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, gamma).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(0, alpha)) return R def active_matrix_from_intrinsic_euler_yxz(e): """Compute active rotation matrix from intrinsic yxz Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, x'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, alpha).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(2, gamma)) return R def active_matrix_from_extrinsic_euler_yxz(e): """Compute active rotation matrix from extrinsic yxz Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, x-, and z-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, gamma).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(1, alpha)) return R def active_matrix_from_intrinsic_euler_yzx(e): """Compute active rotation matrix from intrinsic yzx Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, z'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, alpha).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(0, gamma)) return R def active_matrix_from_extrinsic_euler_yzx(e): """Compute active rotation matrix from extrinsic yzx Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, z-, and x-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, gamma).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(1, alpha)) return R def active_matrix_from_intrinsic_euler_zyx(e): """Compute active rotation matrix from intrinsic zyx Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, alpha).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(0, gamma)) return R def active_matrix_from_extrinsic_euler_zyx(e): """Compute active rotation matrix from extrinsic zyx Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y-, and x-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, gamma).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(2, alpha)) return R def active_matrix_from_intrinsic_euler_zxy(e): """Compute active rotation matrix from intrinsic zxy Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, x'-, and y''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, alpha).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(1, gamma)) return R def active_matrix_from_extrinsic_euler_zxy(e): """Compute active rotation matrix from extrinsic zxy Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, x-, and y-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, gamma).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(2, alpha)) return R def active_matrix_from_extrinsic_roll_pitch_yaw(rpy): """Compute active rotation matrix from extrinsic roll, pitch, and yaw. Parameters ---------- rpy : array-like, shape (3,) Angles for rotation around x- (roll), y- (pitch), and z-axes (yaw), extrinsic rotations Returns ------- R : array-like, shape (3, 3) Rotation matrix """ return active_matrix_from_extrinsic_euler_xyz(rpy) def matrix_from(R=None, a=None, q=None, e_xyz=None, e_zyx=None): """Compute rotation matrix from another representation. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) e_xyz : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) e_zyx : array-like, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ if R is not None: return R if a is not None: return matrix_from_axis_angle(a) if q is not None: return matrix_from_quaternion(q) if e_xyz is not None: return matrix_from_euler_xyz(e_xyz) if e_zyx is not None: return matrix_from_euler_zyx(e_zyx) raise ValueError("Cannot compute rotation matrix from no rotation.") def _general_intrinsic_euler_from_active_matrix( R, n1, n2, n3, proper_euler, strict_check=True): """General algorithm to extract intrinsic euler angles from a matrix. The implementation is based on SciPy's implementation: https://github.com/scipy/scipy/blob/master/scipy/spatial/transform/rotation.pyx Parameters ---------- R : array-like, shape (3, 3) Active rotation matrix n1 : array, shape (3,) First rotation axis (basis vector) n2 : array, shape (3,) Second rotation axis (basis vector) n3 : array, shape (3,) Third rotation axis (basis vector) proper_euler : bool Is this an Euler angle convention or a Cardan / Tait-Bryan convention? Proper Euler angles rotate about the same axis twice, for example, z, y', and z''. strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- euler_angles : array, shape (3,) Extracted intrinsic rotation angles in radians about the axes n1, n2, and n3 in this order. The first and last angle are normalized to [-pi, pi]. The middle angle is normalized to either [0, pi] (proper Euler angles) or [-pi/2, pi/2] (Cardan / Tait-Bryan angles). References ---------- Shuster, Markley: General Formula for Extracting the Euler Angles, https://arc.aiaa.org/doi/abs/10.2514/1.16622 """ D = check_matrix(R, strict_check=strict_check) # Differences to the paper: # - we call the angles alpha, beta, and gamma # - we obtain angles from intrinsic rotations, thus some matrices are # transposed like in SciPy's implementation # Step 2 # - Equation 5 n1_cross_n2 = np.cross(n1, n2) lmbda = np.arctan2( np.dot(n1_cross_n2, n3), np.dot(n1, n3) ) # - Equation 6 C = np.vstack((n2, n1_cross_n2, n1)) # Step 3 # - Equation 8 CDCT = np.dot(np.dot(C, D), C.T) O = np.dot(CDCT, active_matrix_from_angle(0, lmbda).T) # Step 4 # - Equation 10a beta = lmbda + np.arccos(O[2, 2]) safe1 = abs(beta - lmbda) >= np.finfo(float).eps safe2 = abs(beta - lmbda - np.pi) >= np.finfo(float).eps if safe1 and safe2: # Default case, no gimbal lock # Step 5 # - Equation 10b alpha = np.arctan2(O[0, 2], -O[1, 2]) # - Equation 10c gamma = np.arctan2(O[2, 0], O[2, 1]) # Step 7 if proper_euler: valid_beta = 0.0 <= beta <= np.pi else: # Cardan / Tait-Bryan angles valid_beta = -0.5 * np.pi <= beta <= 0.5 * np.pi # - Equation 12 if not valid_beta: alpha += np.pi beta = 2.0 * lmbda - beta gamma -= np.pi else: # Step 6 - Handle gimbal locks # a) gamma = 0.0 if not safe1: # b) alpha = np.arctan2(O[1, 0] - O[0, 1], O[0, 0] + O[1, 1]) else: # c) alpha = np.arctan2(O[1, 0] + O[0, 1], O[0, 0] - O[1, 1]) euler_angles = norm_angle([alpha, beta, gamma]) return euler_angles def euler_xyz_from_matrix(R, strict_check=True): """Compute xyz Euler angles from passive rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Passive rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e_xyz : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) """ R = check_matrix(R, strict_check=strict_check) if np.abs(R[0, 2]) != 1.0: # NOTE: There are two solutions: angle2 and pi - angle2! angle2 = np.arcsin(-R[0, 2]) angle1 = np.arctan2(R[1, 2] / np.cos(angle2), R[2, 2] / np.cos(angle2)) angle3 = np.arctan2(R[0, 1] / np.cos(angle2), R[0, 0] / np.cos(angle2)) else: if R[0, 2] == 1.0: angle3 = 0.0 angle2 = -np.pi / 2.0 angle1 = np.arctan2(-R[1, 0], -R[2, 0]) else: angle3 = 0.0 angle2 = np.pi / 2.0 angle1 = np.arctan2(R[1, 0], R[2, 0]) return np.array([angle1, angle2, angle3]) def euler_zyx_from_matrix(R, strict_check=True): """Compute zyx Euler angles from passive rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Passive rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e_zyx : array-like, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) """ R = check_matrix(R, strict_check=strict_check) if np.abs(R[2, 0]) != 1.0: # NOTE: There are two solutions: angle2 and pi - angle2! angle2 = np.arcsin(R[2, 0]) angle3 = np.arctan2(-R[2, 1] / np.cos(angle2), R[2, 2] / np.cos(angle2)) angle1 = np.arctan2(-R[1, 0] / np.cos(angle2), R[0, 0] / np.cos(angle2)) else: if R[2, 0] == 1.0: angle3 = 0.0 angle2 = np.pi / 2.0 angle1 = np.arctan2(R[0, 1], -R[0, 2]) else: angle3 = 0.0 angle2 = -np.pi / 2.0 angle1 = np.arctan2(R[0, 1], R[0, 2]) return np.array([angle1, angle2, angle3]) def intrinsic_euler_xzx_from_active_matrix(R, strict_check=True): """Compute intrinsic xzx Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around x-, z'-, and x''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unitz, unitx, True, strict_check) def extrinsic_euler_xzx_from_active_matrix(R, strict_check=True): """Compute active rotation matrix from extrinsic xzx Euler angles. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, z-, and x-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unitz, unitx, True, strict_check)[::-1] def intrinsic_euler_xyx_from_active_matrix(R, strict_check=True): """Compute intrinsic xyx Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around x-, y'-, and x''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unity, unitx, True, strict_check) def extrinsic_euler_xyx_from_active_matrix(R, strict_check=True): """Compute extrinsic xyx Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around x-, y-, and x-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unity, unitx, True, strict_check)[::-1] def intrinsic_euler_yxy_from_active_matrix(R, strict_check=True): """Compute intrinsic yxy Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, x'-, and y''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitx, unity, True, strict_check) def extrinsic_euler_yxy_from_active_matrix(R, strict_check=True): """Compute extrinsic yxy Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, x-, and y-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitx, unity, True, strict_check)[::-1] def intrinsic_euler_yzy_from_active_matrix(R, strict_check=True): """Compute intrinsic yzy Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, z'-, and y''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitz, unity, True, strict_check) def extrinsic_euler_yzy_from_active_matrix(R, strict_check=True): """Compute extrinsic yzy Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, z-, and y-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitz, unity, True, strict_check)[::-1] def intrinsic_euler_zyz_from_active_matrix(R, strict_check=True): """Compute intrinsic zyz Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, y'-, and z''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unity, unitz, True, strict_check) def extrinsic_euler_zyz_from_active_matrix(R, strict_check=True): """Compute extrinsic zyz Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, y-, and z-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unity, unitz, True, strict_check)[::-1] def intrinsic_euler_zxz_from_active_matrix(R, strict_check=True): """Compute intrinsic zxz Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, x'-, and z''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unitx, unitz, True, strict_check) def extrinsic_euler_zxz_from_active_matrix(R, strict_check=True): """Compute extrinsic zxz Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, x-, and z-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unitx, unitz, True, strict_check)[::-1] def intrinsic_euler_xzy_from_active_matrix(R, strict_check=True): """Compute intrinsic xzy Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, z'-, and y''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unitz, unity, False, strict_check) def extrinsic_euler_xzy_from_active_matrix(R, strict_check=True): """Compute extrinsic xzy Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, z-, and y-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitz, unitx, False, strict_check)[::-1] def intrinsic_euler_xyz_from_active_matrix(R, strict_check=True): """Compute intrinsic xyz Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unity, unitz, False, strict_check) def extrinsic_euler_xyz_from_active_matrix(R, strict_check=True): """Compute extrinsic xyz Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, y-, and z-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unity, unitx, False, strict_check)[::-1] def intrinsic_euler_yxz_from_active_matrix(R, strict_check=True): """Compute intrinsic yxz Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, x'-, and z''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitx, unitz, False, strict_check) def extrinsic_euler_yxz_from_active_matrix(R, strict_check=True): """Compute extrinsic yxz Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, x-, and z-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unitx, unity, False, strict_check)[::-1] def intrinsic_euler_yzx_from_active_matrix(R, strict_check=True): """Compute intrinsic yzx Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, z'-, and x''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitz, unitx, False, strict_check) def extrinsic_euler_yzx_from_active_matrix(R, strict_check=True): """Compute extrinsic yzx Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, z-, and x-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unitz, unity, False, strict_check)[::-1] def intrinsic_euler_zyx_from_active_matrix(R, strict_check=True): """Compute intrinsic zyx Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unity, unitx, False, strict_check) def extrinsic_euler_zyx_from_active_matrix(R, strict_check=True): """Compute extrinsic zyx Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around z-, y-, and x-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unity, unitz, False, strict_check)[::-1] def intrinsic_euler_zxy_from_active_matrix(R, strict_check=True): """Compute intrinsic zxy Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around z-, x'-, and y''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unitx, unity, False, strict_check) def extrinsic_euler_zxy_from_active_matrix(R, strict_check=True): """Compute extrinsic zxy Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, x-, and y-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitx, unitz, False, strict_check)[::-1] def axis_angle_from_matrix(R, strict_check=True): """Compute axis-angle from rotation matrix. This operation is called logarithmic map. Note that there are two possible solutions for the rotation axis when the angle is 180 degrees (pi). We usually assume active rotations. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The angle is constrained to [0, pi]. """ R = check_matrix(R, strict_check=strict_check) angle = np.arccos((np.trace(R) - 1.0) / 2.0) if angle == 0.0: # R == np.eye(3) return np.array([1.0, 0.0, 0.0, 0.0]) a = np.empty(4) # We can usually determine the rotation axis by inverting Rodrigues' # formula. Subtracting opposing off-diagonal elements gives us # 2 * sin(angle) * e, # where e is the normalized rotation axis. axis_unnormalized = np.array( [R[2, 1] - R[1, 2], R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]]) if abs(angle - np.pi) < 1e-4: # np.trace(R) close to -1 # The threshold is a result from this discussion: # https://github.com/rock-learning/pytransform3d/issues/43 # The standard formula becomes numerically unstable, however, # Rodrigues' formula reduces to R = I + 2 (ee^T - I), with the # rotation axis e, that is, ee^T = 0.5 * (R + I) and we can find the # squared values of the rotation axis on the diagonal of this matrix. # We can still use the original formula to reconstruct the signs of # the rotation axis correctly. a[:3] = np.sqrt(0.5 * (np.diag(R) + 1.0)) * np.sign(axis_unnormalized) else: a[:3] = axis_unnormalized # The norm of axis_unnormalized is 2.0 * np.sin(angle), that is, we # could normalize with a[:3] = a[:3] / (2.0 * np.sin(angle)), # but the following is much more precise for angles close to 0 or pi: a[:3] /= np.linalg.norm(a[:3]) a[3] = angle return a def axis_angle_from_quaternion(q): """Compute axis-angle from quaternion. This operation is called logarithmic map. We usually assume active rotations. Parameters ---------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The angle is constrained to [0, pi) so that the mapping is unique. """ q = check_quaternion(q) p = q[1:] p_norm = np.linalg.norm(p) if p_norm < np.finfo(float).eps: return np.array([1.0, 0.0, 0.0, 0.0]) else: axis = p / p_norm angle = (2.0 * np.arccos(q[0]),) return np.hstack((axis, angle)) def axis_angle_from_compact_axis_angle(a): """Compute axis-angle from compact axis-angle representation. We usually assume active rotations. Parameters ---------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The angle is constrained to [0, pi]. """ a = check_compact_axis_angle(a) angle = np.linalg.norm(a) if angle == 0.0: return np.array([1.0, 0.0, 0.0, 0.0]) else: axis = a / angle return np.hstack((axis, (angle,))) def axis_angle_from_two_directions(a, b): """Compute axis-angle representation from two direction vectors. The rotation will transform direction vector a to direction vector b. The direction vectors don't have to be normalized as this will be done internally. Note that there is more than one possible solution. Parameters ---------- a : array-like, shape (3,) First direction vector b : array-like, shape (3,) Second direction vector Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The angle is constrained to [0, pi]. """ a = norm_vector(a) b = norm_vector(b) cos_angle = a.dot(b) if abs(-1.0 - cos_angle) < eps: # For 180 degree rotations we have an infinite number of solutions, # but we have to pick one axis. axis = perpendicular_to_vector(a) else: axis = np.cross(a, b) aa = np.empty(4) aa[:3] = norm_vector(axis) aa[3] = np.arccos(cos_angle) return norm_axis_angle(aa) def compact_axis_angle(a): """Compute 3-dimensional axis-angle from a 4-dimensional one. In a 3-dimensional axis-angle, the 4th dimension (the rotation) is represented by the norm of the rotation axis vector, which means we transform :math:`\\left( \\boldsymbol{\hat{e}}, \\theta \\right)` to :math:`\\theta \\boldsymbol{\hat{e}}`. We usually assume active rotations. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) (compact representation). """ a = check_axis_angle(a) return a[:3] * a[3] def compact_axis_angle_from_matrix(R): """Compute compact axis-angle from rotation matrix. This operation is called logarithmic map. Note that there are two possible solutions for the rotation axis when the angle is 180 degrees (pi). We usually assume active rotations. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). The angle is constrained to [0, pi]. """ a = axis_angle_from_matrix(R) return compact_axis_angle(a) def compact_axis_angle_from_quaternion(q): """Compute compact axis-angle from quaternion (logarithmic map). We usually assume active rotations. Parameters ---------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). The angle is constrained to [0, pi]. """ a = axis_angle_from_quaternion(q) return compact_axis_angle(a) def quaternion_from_matrix(R, strict_check=True): """Compute quaternion from rotation matrix. We usually assume active rotations. .. warning:: When computing a quaternion from the rotation matrix there is a sign ambiguity: q and -q represent the same rotation. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) """ R = check_matrix(R, strict_check=strict_check) q = np.empty(4) # Source: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ trace = np.trace(R) if trace > 0.0: sqrt_trace = np.sqrt(1.0 + trace) q[0] = 0.5 * sqrt_trace q[1] = 0.5 / sqrt_trace * (R[2, 1] - R[1, 2]) q[2] = 0.5 / sqrt_trace * (R[0, 2] - R[2, 0]) q[3] = 0.5 / sqrt_trace * (R[1, 0] - R[0, 1]) else: if R[0, 0] > R[1, 1] and R[0, 0] > R[2, 2]: sqrt_trace = np.sqrt(1.0 + R[0, 0] - R[1, 1] - R[2, 2]) q[0] = 0.5 / sqrt_trace * (R[2, 1] - R[1, 2]) q[1] = 0.5 * sqrt_trace q[2] = 0.5 / sqrt_trace * (R[1, 0] + R[0, 1]) q[3] = 0.5 / sqrt_trace * (R[0, 2] + R[2, 0]) elif R[1, 1] > R[2, 2]: sqrt_trace = np.sqrt(1.0 + R[1, 1] - R[0, 0] - R[2, 2]) q[0] = 0.5 / sqrt_trace * (R[0, 2] - R[2, 0]) q[1] = 0.5 / sqrt_trace * (R[1, 0] + R[0, 1]) q[2] = 0.5 * sqrt_trace q[3] = 0.5 / sqrt_trace * (R[2, 1] + R[1, 2]) else: sqrt_trace = np.sqrt(1.0 + R[2, 2] - R[0, 0] - R[1, 1]) q[0] = 0.5 / sqrt_trace * (R[1, 0] - R[0, 1]) q[1] = 0.5 / sqrt_trace * (R[0, 2] + R[2, 0]) q[2] = 0.5 / sqrt_trace * (R[2, 1] + R[1, 2]) q[3] = 0.5 * sqrt_trace return q def quaternion_from_axis_angle(a): """Compute quaternion from axis-angle. This operation is called exponential map. We usually assume active rotations. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) Returns ------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) """ a = check_axis_angle(a) theta = a[3] q = np.empty(4) q[0] = np.cos(theta / 2) q[1:] = np.sin(theta / 2) * a[:3] return q def quaternion_from_compact_axis_angle(a): """Compute quaternion from compact axis-angle (exponential map). We usually assume active rotations. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: angle * (x, y, z) Returns ------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) """ a = axis_angle_from_compact_axis_angle(a) return quaternion_from_axis_angle(a) def quaternion_xyzw_from_wxyz(q_wxyz): """Converts from w, x, y, z to x, y, z, w convention. Parameters ---------- q_wxyz : array-like, shape (4,) Quaternion with scalar part before vector part Returns ------- q_xyzw : array-like, shape (4,) Quaternion with scalar part after vector part """ q_wxyz = check_quaternion(q_wxyz) return np.array([q_wxyz[1], q_wxyz[2], q_wxyz[3], q_wxyz[0]]) def quaternion_wxyz_from_xyzw(q_xyzw): """Converts from x, y, z, w to w, x, y, z convention. Parameters ---------- q_xyzw : array-like, shape (4,) Quaternion with scalar part after vector part Returns ------- q_wxyz : array-like, shape (4,) Quaternion with scalar part before vector part """ q_xyzw = check_quaternion(q_xyzw) return np.array([q_xyzw[3], q_xyzw[0], q_xyzw[1], q_xyzw[2]]) def quaternion_integrate(Qd, q0=np.array([1.0, 0.0, 0.0, 0.0]), dt=1.0): """Integrate angular velocities to quaternions. Parameters ---------- A : array-like, shape (n_steps, 3) Angular velocities in a compact axis-angle representation. Each angular velocity represents the rotational offset after one unit of time. q0 : array-like, shape (4,), optional (default: [1, 0, 0, 0]) Unit quaternion to represent initial rotation: (w, x, y, z) dt : float, optional (default: 1) Time interval between steps. Returns ------- Q : array-like, shape (n_steps, 4) Quaternions to represent rotations: (w, x, y, z) """ Q = np.empty((len(Qd), 4)) Q[0] = q0 for t in range(1, len(Qd)): qd = (Qd[t] + Qd[t - 1]) / 2.0 Q[t] = concatenate_quaternions( quaternion_from_compact_axis_angle(dt * qd), Q[t - 1]) return Q def quaternion_gradient(Q, dt=1.0): """Time-derivatives of a sequence of quaternions. Note that this function does not provide the exact same functionality for quaternions as [NumPy's gradient function](https://numpy.org/doc/stable/reference/generated/numpy.gradient.html) for positions. Gradients are always computed as central differences except the first and last gradient. We additionally accept a parameter dt that defines the time interval between each quaternion. Note that this means that we expect this to be constant for the whole sequence. Parameters ---------- Q : array-like, shape (n_steps, 4) Quaternions to represent rotations: (w, x, y, z) dt : float, optional (default: 1) Time interval between steps. If you have non-constant dt, you can pass 1 and manually divide angular velocities by their corresponding time interval afterwards. Returns ------- A : array-like, shape (n_steps, 3) Angular velocities in a compact axis-angle representation. Each angular velocity represents the rotational offset after one unit of time. """ Q = check_quaternions(Q) Qd = np.empty((len(Q), 3)) Qd[0] = compact_axis_angle_from_quaternion( concatenate_quaternions(Q[1], q_conj(Q[0]))) / dt for t in range(1, len(Q) - 1): # divided by two because of central differences Qd[t] = compact_axis_angle_from_quaternion( concatenate_quaternions(Q[t + 1], q_conj(Q[t - 1]))) / (2.0 * dt) Qd[-1] = compact_axis_angle_from_quaternion( concatenate_quaternions(Q[-1], q_conj(Q[-2]))) / dt return Qd def concatenate_quaternions(q1, q2): """Concatenate two quaternions. We use Hamilton's quaternion multiplication. Suppose we want to apply two extrinsic rotations given by quaternions q1 and q2 to a vector v. We can either apply q2 to v and then q1 to the result or we can concatenate q1 and q2 and apply the result to v. Parameters ---------- q1 : array-like, shape (4,) First quaternion q2 : array-like, shape (4,) Second quaternion Returns ------- q12 : array-like, shape (4,) Quaternion that represents the concatenated rotation q1 * q2 """ q1 = check_quaternion(q1, unit=False) q2 = check_quaternion(q2, unit=False) q12 = np.empty(4) q12[0] = q1[0] * q2[0] - np.dot(q1[1:], q2[1:]) q12[1:] = q1[0] * q2[1:] + q2[0] * q1[1:] + np.cross(q1[1:], q2[1:]) return q12 def q_prod_vector(q, v): """Apply rotation represented by a quaternion to a vector. We use Hamilton's quaternion multiplication. Parameters ---------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) v : array-like, shape (3,) 3d vector Returns ------- w : array-like, shape (3,) 3d vector """ q = check_quaternion(q) t = 2 * np.cross(q[1:], v) return v + q[0] * t + np.cross(q[1:], t) def q_conj(q): """Conjugate of quaternion. The conjugate of a unit quaternion inverts the rotation represented by this unit quaternion. The conjugate of a quaternion q is often denoted as q*. Parameters ---------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) Returns ------- q_c : array-like, shape (4,) Conjugate (w, -x, -y, -z) """ q = check_quaternion(q) return
np.array([q[0], -q[1], -q[2], -q[3]])
numpy.array
# Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # PART OF THIS FILE AT ALL TIMES. #!/usr/bin/env python import argparse import logging import os import sys import time import cv2 import numpy as np from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score logger = logging.getLogger() logger.setLevel(logging.INFO) USE_L2_METRIC = False def load_pairs(pairs_path): # print("...Reading pairs.") pairs = [] with open(pairs_path, 'r') as f: for line in f.readlines()[1:]: pair = line.strip().split() pairs.append(pair) assert(len(pairs) == 6000) return np.array(pairs) def pairs_info(pair): suffix = 'jpg' if len(pair) == 3: name1 = "{}_{}.{}".format(pair[0], pair[1].zfill(4), suffix) name2 = "{}_{}.{}".format(pair[0], pair[2].zfill(4), suffix) same = 1 elif len(pair) == 4: name1 = "{}_{}.{}".format(pair[0], pair[1].zfill(4), suffix) name2 = "{}_{}.{}".format(pair[2], pair[3].zfill(4), suffix) same = 0 else: raise Exception( "Unexpected pair length: {}".format(len(pair))) return (name1, name2, same) def eval_acc(threshold, diff): y_true = [] y_predict = [] for d in diff: same = 1 if float(d[2]) > threshold else 0 y_predict.append(same) y_true.append(int(d[3])) y_true = np.array(y_true) y_predict = np.array(y_predict) accuracy = accuracy_score(y_true, y_predict) return accuracy def find_best_threshold(thresholds, predicts): best_threshold = best_acc = 0 for threshold in thresholds: accuracy = eval_acc(threshold, predicts) if accuracy >= best_acc: best_acc = accuracy best_threshold = threshold return best_threshold def acc(predicts): # print("...Computing accuracy.") #folds = KFold(n=6000, n_folds=10, shuffle=False) folds = KFold(10, False) if USE_L2_METRIC: thresholds = np.arange(170, 180, 0.5) else: thresholds = np.arange(-1.0, 1.0, 0.005) accuracy = [] thd = [] # print(predicts) for idx, (train, test) in enumerate(folds.split(predicts)): # logging.info("processing fold {}...".format(idx)) best_thresh = find_best_threshold(thresholds, predicts[train]) accuracy.append(eval_acc(best_thresh, predicts[test])) thd.append(best_thresh) return accuracy,thd def get_predict_file(features, pair_path, write=False): pairs = load_pairs(pair_path) predicts = [] for pair in pairs: name1, name2, same = pairs_info(pair) # logging.info("processing name1:{} <---> name2:{}".format(name1, name2)) f1 = features[name1] f2 = features[name2] dis = np.dot(f1, f2)/np.linalg.norm(f1)/np.linalg.norm(f2) predicts.append([name1, name2, str(dis), str(same)]) # print 'Done generate predict file!' return np.array(predicts) def print_result(predicts): accuracy, threshold = acc(predicts) # logging.info("10-fold accuracy is:\n{}\n".format(accuracy)) # logging.info("10-fold threshold is:\n{}\n".format(threshold)) # print("mean threshold is {:.4f}".format(np.mean(threshold))) print("mean is {:.4f}, var is {:.4f}".format(np.mean(accuracy), np.std(accuracy))) return np.mean(accuracy) def test(features, pair_path, write=False): start = time.time() predicts = get_predict_file(features, pair_path, write) accuracy, threshold = acc(predicts) print("mean is {:.4f}, var is {:.4f}, time: {}s".format(np.mean(accuracy),
np.std(accuracy)
numpy.std
import numpy as np a = np.array([3,6,2,6,2]) b = np.array([3,1,5,6,21]) print(a+b) # se suman con sus respectivos indices print("\033[1;33m"+"----------------------------------------"+'\033[0;m') a = np.array([3,6,2,6,2]) b = np.array([3,1,5,6,21]) print(a>b) # Verifica con sus respectivos indices print("\033[1;33m"+"----------------------------------------"+'\033[0;m') a = np.array([3,1,5,6,21]) print(a.argmax()) # Obtiene la posicion del numero mas alto print("\033[1;33m"+"----------------------------------------"+'\033[0;m') a =
np.array([3,1,5,6,21])
numpy.array
from UQpy.SampleMethods.RSS.rss import RSS from UQpy.SampleMethods.STS import RectangularSTS import numpy as np import scipy.stats as stats import copy class RectangularRSS(RSS): """ Executes Refined Stratified Sampling using Rectangular Stratification. ``RectangularRSS`` is a child class of ``RSS``. ``RectangularRSS`` takes in all parameters defined in the parent ``RSS`` class with differences note below. Only those inputs and attributes that differ from the parent class are listed below. See documentation for ``RSS`` for additional details. **Inputs:** * **sample_object** (``RectangularSTS`` object): The `sample_object` for ``RectangularRSS`` must be an object of the ``RectangularSTS`` class. **Methods:** """ def __init__(self, sample_object=None, runmodel_object=None, krig_object=None, local=False, max_train_size=None, step_size=0.005, qoi_name=None, n_add=1, nsamples=None, random_state=None, verbose=False): if not isinstance(sample_object, RectangularSTS): raise NotImplementedError("UQpy Error: sample_object must be an object of the RectangularSTS class.") self.strata_object = copy.deepcopy(sample_object.strata_object) super().__init__(sample_object=sample_object, runmodel_object=runmodel_object, krig_object=krig_object, local=local, max_train_size=max_train_size, step_size=step_size, qoi_name=qoi_name, n_add=n_add, nsamples=nsamples, random_state=random_state, verbose=verbose) def run_rss(self): """ Overwrites the ``run_rss`` method in the parent class to perform refined stratified sampling with rectangular strata. It is an instance method that does not take any additional input arguments. See the ``RSS`` class for additional details. """ if self.runmodel_object is not None: self._gerss() else: self._rss() self.weights = self.strata_object.volume def _gerss(self): """ This method generates samples using Gradient Enhanced Refined Stratified Sampling. """ if self.verbose: print('UQpy: Performing GE-RSS with rectangular stratification...') # Initialize the vector of gradients at each training point dy_dx = np.zeros((self.nsamples, np.size(self.training_points[1]))) # Primary loop for adding samples and performing refinement. for i in range(self.samples.shape[0], self.nsamples, self.n_add): p = min(self.n_add, self.nsamples - i) # Number of points to add in this iteration # If the quantity of interest is a dictionary, convert it to a list qoi = [None] * len(self.runmodel_object.qoi_list) if type(self.runmodel_object.qoi_list[0]) is dict: for j in range(len(self.runmodel_object.qoi_list)): qoi[j] = self.runmodel_object.qoi_list[j][self.qoi_name] else: qoi = self.runmodel_object.qoi_list # ################################ # -------------------------------- # 1. Determine the strata to break # -------------------------------- # Compute the gradients at the existing sample points if self.max_train_size is None or len( self.training_points) <= self.max_train_size or i == self.samples.shape[0]: # Use the entire sample set to train the surrogate model (more expensive option) dy_dx[:i] = self.estimate_gradient(np.atleast_2d(self.training_points), np.atleast_2d(np.array(qoi)), self.strata_object.seeds + 0.5 * self.strata_object.widths) else: # Use only max_train_size points to train the surrogate model (more economical option) # Find the nearest neighbors to the most recently added point from sklearn.neighbors import NearestNeighbors knn = NearestNeighbors(n_neighbors=self.max_train_size) knn.fit(np.atleast_2d(self.training_points)) neighbors = knn.kneighbors(
np.atleast_2d(self.training_points[-1])
numpy.atleast_2d
# -*- coding: utf-8 -*- """ Created on Wed Apr 26 14:20:58 2017 AFM test for Raybin """ #%% Imports import tkinter as tk from tkinter import filedialog, ttk import os import sys import lmfit from PIL import Image from joblib import Parallel, delayed import numpy as np import pandas as pd import scipy from skimage import restoration, morphology, filters, feature import matplotlib.pyplot as plt plt.rcParams['animation.ffmpeg_path'] = r'C:\ffmpeg\bin\ffmpeg.exe' import matplotlib.animation as manimation try: from igor.binarywave import load as loadibw except: print('You will be unable to open Asylum data without igor') #%% Defs #%% def AutoDetect( FileName , Opt ): """ Attempt to autodetect the instrument used to collect the image Currently supports the Zeiss Merlin V0.2 0.1 - Orig 0.2 - Asylum AFM added """ if Opt.FExt == ".ibw": # file is igor if Opt.Machine!="Asylum AFM":Opt.Machine="Asylum AFM"; # avoid race condition in parallel loop RawData= loadibw(FileName)['wave'] Labels = RawData['labels'][2] Labels = [i.decode("utf-8") for i in Labels] # make it strings # Need to add a selector here for future height/phase AFMIndex=[ i for i, s in enumerate(Labels) if Opt.AFMLayer in s] #they index from 1???? AFMIndex= AFMIndex[0]-1 # fix that quick imarray = RawData['wData'][:,:,AFMIndex] #slow scan is column in original data # AFM data has to be leveled :( TArray=imarray.transpose() # necessary so that slow scan Y and fast scan is X EG afm tip goes along row > < then down to next row etc if Opt.AFMLevel == 1: #median leveling MeanSlow=imarray.mean(axis=0) # this calculates the mean of each slow scan row Mean=imarray.mean() # mean of everything MeanOffset=MeanSlow-Mean # determine the offsets imfit=imarray-MeanOffset # adjust the image elif Opt.AFMLevel==2: # median of dif leveling DMean=np.diff(TArray,axis=0).mean(axis=1) # calc the 1st order diff from one row to next. Then average these differences DMean=np.insert(DMean,0,0) # the first row we don't want to adjust so pop in a 0 imfit = imarray-DMean elif Opt.AFMLevel==3: # Polynomial leveling imfit = np.zeros(imarray.shape) FastInd = np.arange(imarray.shape[0]) # this is 0 - N rows for SlowInd in np.arange(imarray.shape[1]): # for each column eg slowscan axis Slow = imarray[:, SlowInd] PCoef = np.polyfit(FastInd, Slow, Opt.AFMPDeg) POffset = np.polyval(PCoef , FastInd) imfit[:, SlowInd] = imarray[:, SlowInd] - POffset else: imfit=imarray #Brightness/Contrast RESET needed for denoising. Need to figure out how to keep track of this? add an opt? # imfit = imfit - imfit.min() # imfit = imfit*255/imfit.max() if Opt.NmPP!=RawData['wave_header']['sfA'][0]*1e9:Opt.NmPP=RawData['wave_header']['sfA'][0]*1e9 # hopefully avoid issues with parallel RawData.clear() imarray=imfit else: im= Image.open(FileName) if im.mode!="P": im=im.convert(mode='P') print("Image was not in the original format, and has been converted back to grayscale. Consider using the original image.") imarray = np.array(im) SkimFile = open( FileName ,'rb') MetaF=exifread.process_file(SkimFile) SkimFile.close() try: Opt.FInfo=str(MetaF['Image Tag 0x8546'].values); Opt.NmPP=float(Opt.FInfo[17:30])*10**9; Opt.Machine="Merlin"; except: pass # if Opt.NmPP!=0: # print("Instrument was autodetected as %s, NmPP is %f \n" % (Opt.Machine ,Opt.NmPP) ) # else: # print("Instrument was not detected, and NmPP was not set. Please set NmPP and rerun") return(imarray); def PeakPara(LineIn, NmPP, CValley, SetFWidth): Length = LineIn.size gmodel = lmfit.Model(gaussian) Inits = gmodel.make_params() FPeak = np.zeros(CValley.shape) FPWidth = np.zeros(CValley.shape) GradCurve = np.diff(np.sign((np.gradient(LineIn)))) # this just says where sign of 1D changes for pp in range(len(CValley)): #loop through peak positions (guesstimates) PCur = int(CValley[pp]) # this is our current *peak* guesstimate # first goal : Refine the peak guesstimate for this line FitWidth = SetFWidth # look at local area only PLow = int(np.maximum((PCur-FitWidth),0)) PHigh = int(np.min((PCur+FitWidth+1,Length-1))) try:PCur = int(np.arange(PLow,PHigh)[np.argmax(GradCurve[PLow:PHigh])+1]) except:pass # set peak as the minimum (max 2nd div) # the +1 is to fix the derivative offset from data #now expand our range to the next domains FitWidth = SetFWidth * 2 PLow = int(np.maximum((PCur-FitWidth),0)) PHigh = int(np.min((PCur+FitWidth+1,Length-1))) # now fix the point to the Right of the valley # Remember we are looking for mim of second derivative +1 is to fix diff offset PHigh = int(PCur + np.argmin(GradCurve[PCur:PHigh]) +1) # now fix the point to the left of the valley. #Do the flip so the first point we find is closest to peak # do -1 cus we're moving otherway PLow = int(PCur - np.argmin(np.flip(GradCurve[PLow:PCur],0)) -1) # PLow is now the max peak to the left of the current valley # PHigh is now the max peak to the right of the current valley LocalCurve = abs((LineIn[PLow:PHigh]-max(LineIn[PLow:PHigh]))) # this just flips the curve to be right side up with a minimum of 0 # so we can map it onto the typical gaussian Inits['amp']=lmfit.Parameter(name='amp', value= max(LocalCurve)) Inits['wid']=lmfit.Parameter(name='wid', value= FitWidth) Inits['cen']=lmfit.Parameter(name='cen', value= PCur, min=PCur-7, max=PCur+7) try: Res = gmodel.fit(LocalCurve, Inits, x=np.arange(PLow,PHigh)) FPeak[pp] = Res.best_values['cen']*NmPP FPWidth[pp] = abs(np.copy(Res.best_values['wid']*2.35482*NmPP)) # FWHM in NM if (abs(Res.best_values['cen'] - PCur) > 5) or (Res.best_values['wid'] > 50) or (Res.best_values['cen']==PCur): FPWidth[pp] = np.nan FPeak[pp] = np.nan except: FPWidth[pp] = np.nan FPeak[pp] = np.nan return( FPeak, FPWidth) #%% def onclick(event): global XPeak XPeak = np.append(XPeak, event.xdata) FPlot1.axvline(x=event.xdata,linewidth=2, color='r') plt.draw() def onkey(event): global Block global XPeak sys.stdout.flush() if event.key == "escape": Block = 0 FPlot.canvas.mpl_disconnect(cid) # disconnect both click FPlot.canvas.mpl_disconnect(kid) # and keypress events if event.key == "c": XPeak = np.array([]) FPlot1.cla() FPlot1.plot(Xplot,RawComp,'b',Xplot,SavFil,'k') FPlot1.legend(['Raw','Filt.'],loc="upper right") plt.draw() #%% def gaussian(x, amp, cen, wid): return amp * np.exp(-(x-cen)**2 / (2*wid**2)) #%% def Hooks(x, K, Offset): return 0.5*x**2*K+Offset #%% if __name__ == '__main__': # OK Vers = "AAA" # Will hold options class Opt: pass # WIll hold outputs class Output: pass #%% Default options #IndividualLog =1; # Write a log for each sample? CombLog = 1 # If One write a combined log, if two clean it out each time(don't append) #ShowImage = 0 # Show images? plt.ioff() Opt.Boltz = 8.617e-5 # boltzmann, using eV/K here Opt.NmPP = 0 # Nanometers per pixel scaling (will autodetect) Opt.l0 = 50 # nanometer l0 Opt.DomPerTrench = 7 # how many domains are there in a trench? #%% AFM Settings Opt.AFMLayer = "Phase" #Matched Phase ZSensor Opt.AFMLevel = 3 # 0 = none 1 = Median 2= Median of Dif 3 = polyfit Opt.AFMPDeg = 1 # degree of polynomial. # Autocorrelation max shift Opt.ACCutoff = 50 Opt.ACSize = 400 Opt.AngMP = 5 # Do a midpoint average based on this many points # EG AngMP = 5 then 1 2 3 4 5, 3 will be calc off angle 1 - 5 Opt.Machine = "Unknown" #%% Plot Options Opt.TDriftP = 0; #%% Select Files FOpen=tk.Tk() currdir = os.getcwd() FNFull = tk.filedialog.askopenfilename(parent=FOpen, title='Please select a file', multiple=1) FOpen.withdraw() #if len(FNFull) > 0: # print("You chose %s" % FNFull) #%% Do Once ImNum = 0 Opt.Name = FNFull[ImNum] # this hold the full file name Opt.FPath, Opt.BName= os.path.split(Opt.Name) # File Path/ File Name (Opt.FName, Opt.FExt) = os.path.splitext(Opt.BName) # File name/File Extension split firstim = AutoDetect( FNFull[ImNum], Opt) Shap0 =firstim.shape[0] Shap1 = firstim.shape[1] RawIn = np.zeros((Shap0,Shap1,len(FNFull))) RawComb = np.zeros((Shap0,Shap1*len(FNFull))) XPeak = np.array([]) Block = 1 #%% print(FNFull[0]) Opt.TempC = float(input('Temperature in Celsius : ')) Opt.Temp = Opt.TempC+273.15 #%% Import data ( can't be parallelized as it breaks the importer ) for ii in range(0, len(FNFull)): try: if Opt.NmPPSet!=0:Opt.NmPP=Opt.NmPPSet # so if we set one then just set it except: pass RawIn[:,:,ii]=AutoDetect( FNFull[ii], Opt) # autodetect the machine, nmpp and return the raw data array print('Loading raw data %i/%i' %(ii,len(FNFull))) #if ii%2 == 1: # RawIn[:,:,ii] = np.flipud(RawIn[:,:,ii]) # if odd flip upside down RawComb[:,ii*Shap1:(ii+1)*Shap1] = RawIn[:,:,ii] # make one array with all data in an order not used do as seperate experiments #%% Find the markers between arrays # per image for ImNum in range(0, len(FNFull)): Opt.Name = FNFull[ImNum] # this hold the full file name Opt.FPath, Opt.BName= os.path.split(Opt.Name) # File Path/ File Name (Opt.FName, Opt.FExt) = os.path.splitext(Opt.BName) # File name/File Extension split # Make output folder if needed try: os.stat(os.path.join(Opt.FPath,"output")) except: os.mkdir(os.path.join(Opt.FPath,"output")) RawComp = RawIn[:,:,ImNum].sum(axis=1) # sum along the channels to get a good idea where peaks are RawTop = RawIn[:,:5,ImNum].sum(axis=1) RawBot = RawIn[:,-5:,ImNum].sum(axis=1) #%% SavFil = scipy.signal.savgol_filter(RawComp,5,2,axis = 0) TopFil = scipy.signal.savgol_filter(RawTop,5,2,axis = 0) BotFil = scipy.signal.savgol_filter(RawBot,5,2,axis = 0) D1SavFil = scipy.signal.savgol_filter(RawComp,5,2,deriv = 1,axis = 0) D2SavFil = scipy.signal.savgol_filter(RawComp,5,2, deriv = 2,axis = 0) FPlot = plt.figure(figsize=(8,3)) FPlot.clf() FPlot.suptitle('Click the first domain (valley) for each trench. Then hit ESCAPE \n' +'Hit c to Cancel and restart if you did an oopsy') Xplot = range(0, Shap0) FPlot1 = FPlot.add_subplot(211) FPlot1.plot(Xplot,RawComp,'b',Xplot,SavFil,'k') FPlot1.legend(['Raw','Filt.'],loc="upper right") FPlot2 = FPlot.add_subplot(212) FPlot2.plot(Xplot,D1SavFil,'r',Xplot,D2SavFil,'k') FPlot2.legend(['1st Deriv','2nd Deriv'],loc="upper right") FPlot.show() if Block == 1: cid = FPlot.canvas.mpl_connect('button_press_event', onclick) kid = FPlot.canvas.mpl_connect('key_press_event', onkey) while Block == 1: plt.pause(1) FPlot.savefig(os.path.join(Opt.FPath,"output",Opt.FName + "SVG.png"), dpi=300) FPlot.clf() plt.close(FPlot) # What is the peak corresponding to pattern? #%% #Following is per image. Find the peaks #PatPeak = np.zeros((100,RawComp.shape[1])) #PolyPeak = np.zeros((150,RawComp.shape[1])) PSpace = int(np.floor(Opt.l0/Opt.NmPP*.5)) # peaks must be at least 70% of L0 apart Peak = np.zeros((0,0)) Valley = np.zeros((0,0)) PatSep = np.zeros((1,1))#start with zero as a potential separator for xx in range(len(SavFil)-1): if D1SavFil[xx]*D1SavFil[xx+1] <= 0: # if 1D changes signs if (D2SavFil[xx]+D2SavFil[xx+1])/2 <= 0: # if 2D is neg if (SavFil[xx]+SavFil[xx+1])/2 < SavFil.max()*.6 : # if we're above 3k then it's the pattern Peak = np.append(Peak,xx) else: PatSep=np.append(PatSep,xx) else: Valley = np.append(Valley,xx) #% add the last value as a potential pat separator PatSep = np.append(PatSep,len(SavFil)-1) #%% use manual sep clicked earlier to do the clean up CPatSep = np.zeros_like(XPeak) for xx in range(XPeak.size): CPatSep[xx] = Valley[np.argmin(abs(Valley-XPeak[xx]))] CPatSep = np.unique(CPatSep) # just in case we accidentally double clicked a peak CValley = np.zeros(int(CPatSep.size*Opt.DomPerTrench)) for xx in range(CPatSep.size): CPatSepInd = np.nonzero(Valley == CPatSep[xx])[0][0] CValley[Opt.DomPerTrench*xx:Opt.DomPerTrench*(xx+1)] = Valley[CPatSepInd:(CPatSepInd+Opt.DomPerTrench)] CPatSep -= 5 #scoot our separators off the peak CPatSep = np.append(CPatSep, len(SavFil)-1) CBins = np.digitize(CValley,CPatSep) BinCount = np.histogram(CValley,CPatSep)[0] MidInd = np.zeros(CPatSep.size-1,dtype='uint') EdgeInd = np.zeros((CPatSep.size-1)*2,dtype='uint') for bb in range(CPatSep.size-1): MidInd[bb] = bb*Opt.DomPerTrench+((Opt.DomPerTrench-1)/2) EdgeInd[bb*2] = bb*Opt.DomPerTrench EdgeInd[bb*2+1] = (bb+1)*Opt.DomPerTrench-1 #%% FitWidth = int(Opt.l0/Opt.NmPP*.5) #FitWidth = int(4) #% Parallel cus gotta go fast print('\n Image '+Opt.FName+'\n') __spec__ = "ModuleSpec(name='builtins', loader=<class '_frozen_importlib.BuiltinImporter'>)" POut = Parallel(n_jobs=-1,verbose=5)(delayed(PeakPara)(RawIn[:,tt,ImNum], Opt.NmPP, CValley, FitWidth) # backend='threading' removed for tt in range(RawIn.shape[1])) FPTuple, FPWTuple = zip(*POut) FPeak = np.array(FPTuple).transpose() FPWidth = np.array(FPWTuple).transpose() print('Done') #Everything past here is already in Nanometers. PEAK FITTING OUTPUTS IT #%% Save filtered data np.savetxt(os.path.join(Opt.FPath,"output",Opt.FName + "FitPeak.csv"),FPeak,delimiter=',') np.savetxt(os.path.join(Opt.FPath,"output",Opt.FName + "FitFWHM.csv"),FPWidth,delimiter=',') #%% Calc Displacement FDisp = ((FPeak.transpose() - np.nanmean(FPeak,axis=1)).transpose()) FPWidthDisp = ((FPWidth.transpose() - np.nanmean(FPWidth,axis=1)).transpose()) #%% Do thermal drift correction XTD = np.arange(FDisp.shape[1]) YTD = np.nanmean(FDisp,axis=0) TDFit = np.polyfit(XTD,YTD,1) TDPlot = np.polyval(TDFit,XTD) if Opt.TDriftP == 1: TDF, TDAx = plt.subplots() TDF.suptitle('Thermal Drift y=%f*x+%f' % (TDFit[0],TDFit[1])) TDAx.plot(XTD,YTD,XTD,TDPlot) TDF.savefig(os.path.join(Opt.FPath,"output",Opt.FName + "ThermalDrift.png"), dpi=600) TDF.clf() plt.close(TDF) #%% now correct the data for drift FDispCorrect = (FDisp - TDPlot) #%% move on PanDisp = pd.DataFrame(data=FDispCorrect.transpose()) PanWidth = pd.DataFrame(data=FPWidth.transpose()) #StackDisp #StackWidth #%% Cross Corref StackDisp = FDispCorrect.transpose()[:,0:Opt.DomPerTrench] StackWidth = FPWidth.transpose()[:,0:Opt.DomPerTrench] for xx in np.arange(1,CPatSep.size-1): StackDisp=np.concatenate( (StackDisp,FDispCorrect.transpose()[:,xx*Opt.DomPerTrench:(xx+1)*Opt.DomPerTrench]) ) StackWidth=np.concatenate((StackWidth,FPWidth.transpose()[:,xx*Opt.DomPerTrench:(xx+1)*Opt.DomPerTrench])) PDStackD = pd.DataFrame(data=StackDisp) PDStackW = pd.DataFrame(data=StackWidth) StackD1O = np.zeros((0,2)) # 1 over correlation StackW1O = np.zeros((0,2)) # ditto for width StackD2O = np.zeros((0,2)) # 2 over correlation StackW2O = np.zeros((0,2)) # ditto for width StackD3O = np.zeros((0,2)) # 3 over correlation StackW3O = np.zeros((0,2)) # ditto for width for nn in range(Opt.DomPerTrench-1): StackD1O = np.append( StackD1O, np.array((PDStackD.values[:,nn],PDStackD.values[:,nn+1])).transpose(),axis = 0 ) StackW1O = np.append( StackW1O, np.array((PDStackW.values[:,nn],PDStackW.values[:,nn+1])).transpose(),axis = 0 ) if nn < Opt.DomPerTrench-2: StackD2O = np.append( StackD2O, np.array((PDStackD.values[:,nn],PDStackD.values[:,nn+2])).transpose(),axis = 0 ) StackW2O = np.append( StackW2O, np.array((PDStackW.values[:,nn],PDStackW.values[:,nn+2])).transpose(),axis = 0 ) if nn < Opt.DomPerTrench-3: StackD3O = np.append( StackD3O, np.array((PDStackD.values[:,nn],PDStackD.values[:,nn+3])).transpose(),axis = 0 ) StackW3O = np.append( StackW3O, np.array((PDStackW.values[:,nn],PDStackW.values[:,nn+3])).transpose(),axis = 0 ) CCDisp = PDStackD.corr() # calcualte cross correlations CCWidth = PDStackW.corr() # calcualte cross correlations #%% Plot Pek Cross Corr CCF , CCAx = plt.subplots() CCF.suptitle('Peak displacement correlations (Pearson)') CCIm = CCAx.imshow(CCDisp, cmap="seismic_r", vmin=-1, vmax=1) CCF.colorbar(CCIm) CCF.savefig(os.path.join(Opt.FPath,"output",Opt.FName + "DisplacementCC.png"), dpi=300) CCF.clf() plt.close(CCF) #%% CCWidthF , CCWidthAx = plt.subplots() CCWidthF.suptitle('FWHM correlations (Pearson)') CCWidthIm = CCWidthAx.imshow(CCWidth, cmap="seismic_r", vmin=-1, vmax=1) CCWidthF.colorbar(CCWidthIm) CCWidthF.savefig(os.path.join(Opt.FPath,"output",Opt.FName + "WidthCC.png"), dpi=300) CCWidthF.clf() plt.close(CCWidthF) #%% CrossCorF , CrossCorAx = plt.subplots(1,3, figsize=(12,4)) CrossCorF.suptitle('1st Order Correlations, 2nd Order Correlations, Third Order Correlations') CrossCorAx[0].hexbin(StackD1O[:,0],StackD1O[:,1],gridsize=20,extent=(-10, 10, -10, 10)) CrossCorAx[0].set_aspect('equal') CrossCorAx[1].hexbin(StackD2O[:,0],StackD2O[:,1],gridsize=20,extent=(-10, 10, -10, 10)) CrossCorAx[1].set_aspect('equal') CrossCorAx[2].hexbin(StackD3O[:,0],StackD3O[:,1],gridsize=20,extent=(-10, 10, -10, 10)) CrossCorAx[2].set_aspect('equal') CrossCorF.savefig(os.path.join(Opt.FPath,"output",Opt.FName + "CrossCor.png"), dpi=600) #%% CrossCorF.clf() plt.close(CrossCorF) #%% Autocorrelation Opt.AcSize ACPeak = pd.DataFrame() CCPeak = pd.DataFrame() ACMSD = pd.DataFrame() CCMSD = pd.DataFrame() ACWidth = pd.DataFrame() CCWidth = pd.DataFrame() for lag in range(Opt.ACSize): ACPeak = ACPeak.append( PanDisp.corrwith(PanDisp.shift(periods=lag)).rename('lag%i' %lag)) CCPeak = CCPeak.append( PanDisp.corrwith(PanDisp.shift(periods=lag).shift(1,axis=1)).rename('lag%i' %lag)) ACMSD = ACMSD.append(((PanDisp.shift(periods=lag)-PanDisp)**2).mean().rename('lag%i' %lag)) ACWidth = ACWidth.append( PanWidth.corrwith(PanWidth.shift(periods=lag)).rename('lag%i' %lag)) CCWidth = CCWidth.append( PanWidth.corrwith(PanWidth.shift(periods=lag).shift(1,axis=1)).rename('lag%i' %lag)) #%% Power Spectral Density PSDPeak = np.abs(np.fft.rfft(FDispCorrect))**2 PSDWidth = np.abs(np.fft.rfft(FPWidthDisp))**2 PSDFreq = np.fft.rfftfreq(FPeak.shape[1],0.05) # Sampling rate is 20 hz so sample time = .05? PSDCk = (4*PSDPeak-PSDWidth)/(4*PSDPeak+PSDWidth) PSDF , PSDAx = plt.subplots(nrows=3, sharex = True) PSDF.suptitle('Power Spectral Density (Position, Width and CK)') PSDAx[0].loglog(PSDFreq[1:],
np.nanmean(PSDPeak, axis=0)
numpy.nanmean
import numpy as np from math import pi import openmc import pytest from tests.testing_harness import HashedPyAPITestHarness @pytest.fixture def model(): model = openmc.model.Model() fuel = openmc.Material() fuel.set_density('g/cm3', 10.0) fuel.add_nuclide('U235', 1.0) zr = openmc.Material() zr.set_density('g/cm3', 1.0) zr.add_nuclide('Zr90', 1.0) model.materials.extend([fuel, zr]) box1 = openmc.model.rectangular_prism(10.0, 10.0) box2 = openmc.model.rectangular_prism(20.0, 20.0, boundary_type='reflective') top = openmc.ZPlane(z0=10.0, boundary_type='vacuum') bottom = openmc.ZPlane(z0=-10.0, boundary_type='vacuum') cell1 = openmc.Cell(fill=fuel, region=box1 & +bottom & -top) cell2 = openmc.Cell(fill=zr, region=~box1 & box2 & +bottom & -top) model.geometry = openmc.Geometry([cell1, cell2]) model.settings.batches = 5 model.settings.inactive = 0 model.settings.particles = 1000 # Create meshes mesh_1d = openmc.RegularMesh() mesh_1d.dimension = [5] mesh_1d.lower_left = [-7.5] mesh_1d.upper_right = [7.5] mesh_2d = openmc.RegularMesh() mesh_2d.dimension = [5, 5] mesh_2d.lower_left = [-7.5, -7.5] mesh_2d.upper_right = [7.5, 7.5] mesh_3d = openmc.RegularMesh() mesh_3d.dimension = [5, 5, 5] mesh_3d.lower_left = [-7.5, -7.5, -7.5] mesh_3d.upper_right = [7.5, 7.5, 7.5] dx = dy = dz = 15 / 5 reg_mesh_exp_vols = np.full(mesh_3d.dimension, dx*dy*dz) np.testing.assert_equal(mesh_3d.volumes, reg_mesh_exp_vols) recti_mesh = openmc.RectilinearMesh() recti_mesh.x_grid = np.linspace(-7.5, 7.5, 18) recti_mesh.y_grid = np.linspace(-7.5, 7.5, 18) recti_mesh.z_grid = np.logspace(0, np.log10(7.5), 11) dx = dy = 15 / 17 dz = np.diff(np.logspace(0, np.log10(7.5), 11)) dxdy = np.full(recti_mesh.dimension[:2], dx*dy) recti_mesh_exp_vols =
np.multiply.outer(dxdy, dz)
numpy.multiply.outer
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import math import time import numpy as np import torch as th import torch.nn.functional as F import torch.optim as optim from ogb.nodeproppred import DglNodePropPredDataset, Evaluator from scipy import io from sklearn import metrics import itertools import matplotlib.colors as colors from matplotlib import pyplot as plt from matplotlib.ticker import AutoMinorLocator, MultipleLocator from models import AGNN global device, in_feats, n_classes, epsilon device = None in_feats, n_classes = None, None epsilon = 1 - math.log(2) def gen_model(args): norm = "both" if args.use_norm else "none" if args.use_labels: model = AGNN( in_feats + n_classes, n_classes, n_hidden=args.n_hidden, n_layers=args.n_layers, n_heads=args.n_heads, activation=F.relu, dropout=args.dropout, attn_drop=args.attn_drop, norm=norm, ) else: model = AGNN( in_feats, n_classes, n_hidden=args.n_hidden, n_layers=args.n_layers, n_heads=args.n_heads, activation=F.relu, dropout=args.dropout, attn_drop=args.attn_drop, norm=norm, ) return model def cross_entropy(x, labels): y = F.cross_entropy(x, labels[:, 0], reduction="none") y = th.log(epsilon + y) - math.log(epsilon) return th.mean(y) def compute_acc(pred, labels, evaluator): return evaluator.eval({"y_pred": pred.argmax(dim=-1, keepdim=True), "y_true": labels})["acc"] def add_labels(feat, labels, idx): onehot = th.zeros([feat.shape[0], n_classes]).to(device) onehot[idx, labels[idx, 0]] = 1 return th.cat([feat, onehot], dim=-1) def adjust_learning_rate(optimizer, lr, epoch): if epoch <= 50: for param_group in optimizer.param_groups: param_group["lr"] = lr * epoch / 50 def train(model, graph, labels, train_idx, optimizer, use_labels): model.train() feat = graph.ndata["feat"] if use_labels: mask_rate = 0.5 mask = th.rand(train_idx.shape) < mask_rate train_labels_idx = train_idx[mask] train_pred_idx = train_idx[~mask] feat = add_labels(feat, labels, train_labels_idx) else: mask_rate = 0.5 mask = th.rand(train_idx.shape) < mask_rate train_pred_idx = train_idx[mask] optimizer.zero_grad() pred = model(graph, feat) loss = cross_entropy(pred[train_pred_idx], labels[train_pred_idx]) loss.backward() th.nn.utils.clip_grad_norm(model.parameters(),10) optimizer.step() return loss, pred @th.no_grad() def evaluate(model, graph, labels, train_idx, val_idx, test_idx, use_labels, evaluator): model.eval() feat = graph.ndata["feat"] if use_labels: feat = add_labels(feat, labels, train_idx) pred = model(graph, feat) train_loss = cross_entropy(pred[train_idx], labels[train_idx]) val_loss = cross_entropy(pred[val_idx], labels[val_idx]) test_loss = cross_entropy(pred[test_idx], labels[test_idx]) return ( compute_acc(pred[train_idx], labels[train_idx], evaluator), compute_acc(pred[val_idx], labels[val_idx], evaluator), compute_acc(pred[test_idx], labels[test_idx], evaluator), train_loss, val_loss, test_loss, ) def count_parameters(args): model = gen_model(args) print([np.prod(p.size()) for p in model.parameters() if p.requires_grad]) return sum([np.prod(p.size()) for p in model.parameters() if p.requires_grad]) # %% Define class with the model arguments class args: cpu = True #Run cpu only if true. This overrides the gpu value gpu = 0 #Change number if different GPU device ID n_runs = 1 #Number of model runs n_epochs = 1000 #2000 #Number of epochs use_labels = False #Use labels in the training set as input features use_norm = False #Use symmetrically normalized adjacency matrix lr = 0.002 #0.002 Learning rate n_layers = 2 #3 #Number of layers n_heads = 1 #3 n_hidden = 256 #256 dropout = 0.75 #0.75 attn_drop = 0.05 wd = 0 log_every = 1 #print result every log_every-th epoch #plot_curves = True # Define folder to save plots and model in foldername = "test" # set cpu or gpu if args.cpu: device = th.device("cpu") else: device = th.device("cuda:%d" % args.gpu) # load data data = DglNodePropPredDataset(name="ogbn-arxiv") evaluator = Evaluator(name="ogbn-arxiv") splitted_idx = data.get_idx_split() train_idx, val_idx, test_idx = splitted_idx["train"], splitted_idx["valid"], splitted_idx["test"] graph, labels = data[0] # add reverse edges srcs, dsts = graph.all_edges() graph.add_edges(dsts, srcs) # add self-loop print(f"Total edges before adding self-loop {graph.number_of_edges()}") graph = graph.remove_self_loop().add_self_loop() print(f"Total edges after adding self-loop {graph.number_of_edges()}") in_feats = graph.ndata["feat"].shape[1] n_classes = (labels.max() + 1).item() # graph.create_format_() train_idx = train_idx.to(device) val_idx = val_idx.to(device) test_idx = test_idx.to(device) labels = labels.to(device) graph = graph.to(device) # %% Run the model val_accs = [] test_accs = [] # define model and optimizer model = gen_model(args) model = model.to(device) optimizer = optim.RMSprop(model.parameters(), lr=args.lr, weight_decay=args.wd) # training loop total_time = 0 best_val_acc, best_test_acc, best_val_loss = 0, 0, float("inf") #save accuracy and loss values accs, train_accs, val_accs, test_accs = [], [], [], [] losses, train_losses, val_losses, test_losses = [], [], [], [] for epoch in range(1, args.n_epochs + 1): print("Starting Epoch ", epoch) tic = time.time() adjust_learning_rate(optimizer, args.lr, epoch) loss, pred = train(model, graph, labels, train_idx, optimizer, args.use_labels) acc = compute_acc(pred[train_idx], labels[train_idx], evaluator) train_acc, val_acc, test_acc, train_loss, val_loss, test_loss = evaluate( model, graph, labels, train_idx, val_idx, test_idx, args.use_labels, evaluator ) toc = time.time() total_time += toc - tic print("Epoch run-time ", toc-tic) if val_loss < best_val_loss: best_val_loss = val_loss best_val_acc = val_acc best_test_acc = test_acc if epoch % args.log_every == 0: print(f"\nEpoch: {epoch}/{args.n_epochs}") print( f"Loss: {loss.item():.4f}, Acc: {acc:.4f}\n" f"Train/Val/Test loss: {train_loss:.4f}/{val_loss:.4f}/{test_loss:.4f}\n" f"Train/Val/Test/Best val/Best test acc: {train_acc:.4f}/{val_acc:.4f}/{test_acc:.4f}/{best_val_acc:.4f}/{best_test_acc:.4f}" ) for l, e in zip( [accs, train_accs, val_accs, test_accs, losses, train_losses, val_losses, test_losses], [acc, train_acc, val_acc, test_acc, loss.item(), train_loss, val_loss, test_loss], ): l.append(e) # %% Printouts print("*" * 50) print(f"Average epoch time: {total_time / args.n_epochs}") print(f"Total Time: {total_time}") print(f"Test acc: {best_test_acc}") print() print("Val Accs:", best_val_acc) print("Test Accs:", best_test_acc) print(f"Number of params: {count_parameters(args)}") # %% Generate plots of accuracy and loss vs epochs fig = plt.figure(figsize=(15, 12)) ax = fig.gca() ax.tick_params(labelright=True) for y, label in zip([train_accs, val_accs, test_accs], ["train acc", "val acc", "test acc"]): plt.plot(range(args.n_epochs), y, label=label) ax.legend(prop={'size': 20}) ax.tick_params(axis='both', labelsize = 20) plt.title("Accuracy vs Epochs", fontsize=30) plt.ylabel('Accuracy', fontsize=20) plt.xlabel('Epochs', fontsize=20) plt.grid(which="major", color="silver", linestyle="dotted") plt.grid(which="minor", color="silver", linestyle="dotted") #plt.tight_layout() plt.savefig(foldername + "/gat_accuracy.png", bbox_inches='tight') plt.show() fig = plt.figure(figsize=(15, 12)) ax = fig.gca() ax.tick_params(labelright=True) for y, label in zip([train_losses, val_losses, test_losses], ["train loss", "val loss", "test loss"]): plt.plot(range(args.n_epochs), y, label=label) ax.legend(prop={'size': 20}) ax.tick_params(axis='both', labelsize = 20) plt.title("Loss vs Epochs", fontsize=30) plt.ylabel('Loss', fontsize=20) plt.xlabel('Epochs', fontsize=20) plt.grid(which="major", color="silver", linestyle="dotted") plt.grid(which="minor", color="silver", linestyle="dotted") #plt.tight_layout() plt.savefig(foldername + "/gat_loss.png", bbox_inches='tight') plt.show() # %% Generate histogram of predicted labels category_names = ["cs.AI", "cs.AR", "cs.CC", "cs.CE", "cs.CG", "cs.CL", "cs.CR", "cs.CV", "cs.CY", "cs.DB", "cs.DC", "cs.DL", "cs.DM", "cs.DS", "cs.ET", "cs.FL", "cs.GL", "cs.GR", "cs.GT", "cs.HC", "cs.IR", "cs.IT", "cs.LG", "cs.LO", "cs.MA", "cs.MM", "cs.MS", "cs.NA", "cs.NE", "cs.NI", "cs.OH", "cs.OS", "cs.PF", "cs.PL", "cs.RO", "cs.SC", "cs.SD", "cs.SE", "cs.SI", "cs.SY"] # Get predicted categories feat = graph.ndata["feat"] pred = model(graph, feat) pred = pred.argmax(dim=-1, keepdim=True) # Split predicted cateogories by train, validate and test sets train_pred = th.flatten(pred[train_idx]).numpy() val_pred = th.flatten(pred[val_idx]).numpy() test_pred = th.flatten(pred[test_idx]).numpy() # Get the ground truth labels for train set for sorting order later train_labels = th.flatten(labels[train_idx]).numpy() true_train_freq, train_freq, val_freq, test_freq = [], [], [], [] for i in range(n_classes): true_train_freq.append(np.count_nonzero(train_labels==i)) train_freq.append(np.count_nonzero(train_pred==i)) val_freq.append(np.count_nonzero(val_pred==i)) test_freq.append(np.count_nonzero(test_pred==i)) train_freq, val_freq, test_freq =
np.array(train_freq)
numpy.array
import time import numpy as np from scipy.sparse import csr_matrix from scipy.sparse.csgraph import connected_components import pandas as pd from rdkit import Chem from . import chem class BlockMoleculeData: def __init__(self): self.blockidxs = [] # indexes of every block self.blocks = [] # rdkit molecule objects for every self.slices = [0] # atom index at which every block starts self.numblocks = 0 self.jbonds = [] # [block1, block2, bond1, bond2] self.stems = [] # [block1, bond1] self._mol = None def add_block(self, block_idx, block, block_r, stem_idx, atmidx): """ :param block_idx: :param block: :param block_r: :param stem_idx: :param atmidx: :return: """ self.blockidxs.append(block_idx) self.blocks.append(block) self.slices.append(self.slices[-1] + block.GetNumAtoms()) self.numblocks += 1 [self.stems.append([self.numblocks-1,r]) for r in block_r[1:]] if len(self.blocks)==1: self.stems.append([self.numblocks-1, block_r[0]]) else: if stem_idx is None: assert atmidx is not None, "need stem or atom idx" stem_idx = np.where(self.stem_atmidxs==atmidx)[0][0] else: assert atmidx is None, "can't use stem and atom indices at the same time" stem = self.stems[stem_idx] bond = [stem[0], self.numblocks-1, stem[1], block_r[0]] self.stems.pop(stem_idx) self.jbonds.append(bond) # destroy properties self._mol = None return None def delete_blocks(self, block_mask): """ :param block_mask: :return: """ # update number of blocks self.numblocks = np.sum(np.asarray(block_mask, dtype=np.int32)) self.blocks = list(np.asarray(self.blocks)[block_mask]) self.blockidxs = list(np.asarray(self.blockidxs)[block_mask]) # update junction bonds reindex = np.cumsum(np.asarray(block_mask,np.int32)) - 1 jbonds = [] for bond in self.jbonds: if block_mask[bond[0]] and block_mask[bond[1]]: jbonds.append(np.array([reindex[bond[0]], reindex[bond[1]], bond[2], bond[3]])) self.jbonds = jbonds # update r-groups stems = [] for stem in self.stems: if block_mask[stem[0]]: stems.append(np.array([reindex[stem[0]],stem[1]])) self.stems = stems # update slices natms = [block.GetNumAtoms() for block in self.blocks] self.slices = [0] + list(np.cumsum(natms)) # destroy properties self._mol = None return reindex def remove_jbond(self, jbond_idx=None, atmidx=None): if jbond_idx is None: assert atmidx is not None, "need jbond or atom idx" jbond_idx = np.where(self.jbond_atmidxs == atmidx)[0][0] else: assert atmidx is None, "can't use stem and atom indices at the same time" # find index of the junction bond to remove jbond = self.jbonds.pop(jbond_idx) # find the largest connected component; delete rest jbonds = np.asarray(self.jbonds, dtype=np.int32) jbonds = jbonds.reshape([len(self.jbonds),4]) # handle the case when single last jbond was deleted graph = csr_matrix((np.ones(self.numblocks-2), (jbonds[:,0], jbonds[:,1])), shape=(self.numblocks, self.numblocks)) _, components = connected_components(csgraph=graph, directed=False, return_labels=True) block_mask = components==np.argmax(np.bincount(components)) reindex = self.delete_blocks(block_mask) if block_mask[jbond[0]]: stem = np.asarray([reindex[jbond[0]], jbond[2]]) else: stem = np.asarray([reindex[jbond[1]], jbond[3]]) self.stems.append(stem) atmidx = self.slices[stem[0]] + stem[1] return atmidx @property def stem_atmidxs(self): stems = np.asarray(self.stems) if stems.shape[0]==0: stem_atmidxs = np.array([]) else: stem_atmidxs = np.asarray(self.slices)[stems[:,0]] + stems[:,1] return stem_atmidxs @property def jbond_atmidxs(self): jbonds = np.asarray(self.jbonds) if jbonds.shape[0]==0: jbond_atmidxs = np.array([]) else: jbond_atmidxs = np.stack([np.concatenate([np.asarray(self.slices)[jbonds[:,0]] + jbonds[:,2]]), np.concatenate([np.asarray(self.slices)[jbonds[:,1]] + jbonds[:,3]])],1) return jbond_atmidxs @property def mol(self): if self._mol == None: self._mol, _ = chem.mol_from_frag(jun_bonds=self.jbonds, frags=self.blocks) return self._mol @property def smiles(self): return Chem.MolToSmiles(self.mol) class MolMDP: def __init__(self, blocks_file): blocks = pd.read_json(blocks_file) self.block_smi = blocks["block_smi"].to_list() self.block_rs = blocks["block_r"].to_list() self.block_nrs = np.asarray([len(r) for r in self.block_rs]) self.block_mols = [Chem.MolFromSmiles(smi) for smi in blocks["block_smi"]] self.block_natm = np.asarray([b.GetNumAtoms() for b in self.block_mols]) self.reset() @property def num_blocks(self): "number of possible buildoing blocks in molMDP" return len(self.block_smi) def reset(self): self.molecule = BlockMoleculeData() return None def add_block(self, block_idx, stem_idx=None, atmidx=None): assert (block_idx >= 0) and (block_idx <= len(self.block_mols)), "unknown block" self.molecule.add_block(block_idx, block=self.block_mols[block_idx], block_r=self.block_rs[block_idx], stem_idx=stem_idx, atmidx=atmidx) return None def remove_jbond(self, jbond_idx=None, atmidx=None): atmidx = self.molecule.remove_jbond(jbond_idx, atmidx) return atmidx def random_walk(self, length): done = False while not done: if self.molecule.numblocks==0: block_idx = np.random.choice(np.arange(self.num_blocks)) stem_idx = None self.add_block(block_idx=block_idx, stem_idx=stem_idx) if self.molecule.numblocks >= length: if self.molecule.slices[-1] > 1: done = True else: self.reset() elif len(self.molecule.stems) > 0: block_idx = np.random.choice(
np.arange(self.num_blocks)
numpy.arange
#!/usr/bin/env python3 """Construct a "swipe" trajectory to bring the object back to the centre.""" import argparse import time import progressbar import numpy as np from scipy.spatial.transform import Rotation import trifinger_simulation def min_jerk_trajectory(current, setpoint, frequency, avg_speed): """Compute minimum jerk trajectory. Based on [Mika's tech blog](https://mika-s.github.io/python/control-theory/trajectory-generation/2017/12/06/trajectory-generation-with-a-minimum-jerk-trajectory.html) License: CC BY-SA 3.0 """ trajectory = [] trajectory_derivative = [] num_steps =
np.linalg.norm(current - setpoint)
numpy.linalg.norm
import json import os from PIL import Image import argparse import time import numpy as np import sys import csv layer = None def _prof_summary(report): sums=dict() counts=dict() summary=[] for line in [v for v in report.split('\n') if v]: row = [v for v in line.split(' ') if v] name=row[0] val=float(row[1]) new_val = sums.get(name,0) + val new_cnt =counts.get(name,0) + 1 sums[name ] = new_val counts[name] = new_cnt for name in sums: summary.append((name,sums[name],counts[name])) summary.sort(key = lambda x:x[1]) print("Summary:") print("------") for r in summary: print("%10.5f %5d %s" % ( r[1],r[2],r[0])) print("------") def export_torch_model(model,batch,path,opset = None): import torch inp = torch.randn(batch,3,224,224) model.eval() torch.onnx.export(model,inp,path,input_names = ["data"],output_names=["prob"],opset_version=opset) class CaffeModel(object): def __init__(self,proto,params,device = -1): import caffe if device >= 0: caffe.set_mode_gpu() caffe.set_device(device) self.net = caffe.Net(proto,caffe.TEST) self.net.copy_from(params) def eval(self,batch): global layer data = self.net.blobs[self.net.inputs[0]] lname = layer if layer else self.net.outputs[0] prob = self.net.blobs[lname] if data.data.shape[0] != batch.shape[0]: data.reshape(*batch.shape) self.net.reshape() np.copyto(data.data,batch) host_prob = np.zeros(prob.data.shape,dtype=np.float32) self.net.forward() np.copyto(host_prob,prob.data) return host_prob class DLPrimModel(object): def __init__(self,proto,params,device): import dlprim as dp caffe_model=dp.CaffeModel(); caffe_model.load(proto,params) self.ctx = dp.Context(device) self.net = dp.Net(self.ctx) #self.net.keep_intermediate_tensors = True self.net.mode = dp.PREDICT base_path = proto.replace('.prototxt','') with open(base_path +'.json','w') as f: f.write(caffe_model.network) f.write('\n') self.net.load_model(caffe_model) self.net.save_parameters(base_path + '.dlp') def eval(self,batch): import dlprim as dp data = self.net.tensor(self.net.input_names[0]) if data.shape[0] != batch.shape[0]: data.reshape(dp.Shape(*batch.shape)) self.net.reshape() global layer lname = layer if layer else self.net.output_names[0] prob = self.net.tensor(lname) prob_cpu = np.zeros(prob.shape,dtype=np.float32) q = self.ctx.make_execution_context(0) data.to_device(batch,q) self.net.forward(q) prob.to_host(prob_cpu,q) q.finish() return prob_cpu def predict_on_images(model,images,config): tw = 224 th = 224 mean = config['mean'] mean =
np.array(mean)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: <NAME> <<EMAIL>> # Copyright (C) 2017 <NAME> <<EMAIL>> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for checking the poincare module from the models package. """ import functools import logging import unittest import numpy as np from gensim.models.keyedvectors import KeyedVectors, REAL, pseudorandom_weak_vector from gensim.test.utils import datapath import gensim.models.keyedvectors logger = logging.getLogger(__name__) class TestKeyedVectors(unittest.TestCase): def setUp(self): self.vectors = KeyedVectors.load_word2vec_format(datapath('euclidean_vectors.bin'), binary=True) self.model_path = datapath("w2v_keyedvectors_load_test.modeldata") self.vocab_path = datapath("w2v_keyedvectors_load_test.vocab") def test_most_similar(self): """Test most_similar returns expected results.""" expected = [ 'conflict', 'administration', 'terrorism', 'call', 'israel' ] predicted = [result[0] for result in self.vectors.most_similar('war', topn=5)] self.assertEqual(expected, predicted) def test_most_similar_vector(self): """Can we pass vectors to most_similar directly?""" positive = self.vectors.vectors[0:5] most_similar = self.vectors.most_similar(positive=positive) assert most_similar is not None def test_most_similar_parameter_types(self): """Are the positive/negative parameter types are getting interpreted correctly?""" partial = functools.partial(self.vectors.most_similar, topn=5) position = partial('war', 'peace') position_list = partial(['war'], ['peace']) keyword = partial(positive='war', negative='peace') keyword_list = partial(positive=['war'], negative=['peace']) # # The above calls should all yield identical results. # assert position == position_list assert position == keyword assert position == keyword_list def test_most_similar_cosmul_parameter_types(self): """Are the positive/negative parameter types are getting interpreted correctly?""" partial = functools.partial(self.vectors.most_similar_cosmul, topn=5) position = partial('war', 'peace') position_list = partial(['war'], ['peace']) keyword = partial(positive='war', negative='peace') keyword_list = partial(positive=['war'], negative=['peace']) # # The above calls should all yield identical results. # assert position == position_list assert position == keyword assert position == keyword_list def test_vectors_for_all_list(self): """Test vectors_for_all returns expected results with a list of keys.""" words = [ 'conflict', 'administration', 'terrorism', 'an out-of-vocabulary word', 'another out-of-vocabulary word', ] vectors_for_all = self.vectors.vectors_for_all(words) expected = 3 predicted = len(vectors_for_all) assert expected == predicted expected = self.vectors['conflict'] predicted = vectors_for_all['conflict'] assert
np.allclose(expected, predicted)
numpy.allclose
#!/usr/bin/env python3 import os import copy # BEGIN THREAD SETTINGS this sets the number of threads used by numpy in the program (should be set to 1 for Parts 1 and 3) implicit_num_threads = 2 os.environ["OMP_NUM_THREADS"] = str(implicit_num_threads) os.environ["MKL_NUM_THREADS"] = str(implicit_num_threads) os.environ["OPENBLAS_NUM_THREADS"] = str(implicit_num_threads) # END THREAD SETTINGS import pickle import numpy as np import numpy from numpy import random import scipy import matplotlib import mnist import pickle matplotlib.use('agg') from matplotlib import pyplot as plt import threading import time from scipy.special import softmax from tqdm import tqdm mnist_data_directory = os.path.join(os.path.dirname(__file__), "data") # TODO add any additional imports and global variables # SOME UTILITY FUNCTIONS that you may find to be useful, from my PA3 implementation # feel free to use your own implementation instead if you prefer def multinomial_logreg_error(Xs, Ys, W): predictions = numpy.argmax(numpy.dot(W, Xs), axis=0) error = numpy.mean(predictions != numpy.argmax(Ys, axis=0)) return error def multinomial_logreg_grad_i(Xs, Ys, ii, gamma, W, dtype=np.float64): WdotX = numpy.dot(W, Xs[:,ii]) expWdotX = numpy.exp(WdotX - numpy.amax(WdotX, axis=0), dtype=dtype) softmaxWdotX = expWdotX / numpy.sum(expWdotX, axis=0, dtype=dtype) return numpy.dot(softmaxWdotX - Ys[:,ii], Xs[:,ii].transpose()) / len(ii) + gamma * W # END UTILITY FUNCTIONS def load_MNIST_dataset(): PICKLE_FILE = os.path.join(mnist_data_directory, "MNIST.pickle") try: dataset = pickle.load(open(PICKLE_FILE, 'rb')) except: # load the MNIST dataset mnist_data = mnist.MNIST(mnist_data_directory, return_type="numpy", gz=True) Xs_tr, Lbls_tr = mnist_data.load_training(); Xs_tr = Xs_tr.transpose() / 255.0 Ys_tr = numpy.zeros((10, 60000)) for i in range(60000): Ys_tr[Lbls_tr[i], i] = 1.0 # one-hot encode each label # shuffle the training data numpy.random.seed(4787) perm = numpy.random.permutation(60000) Xs_tr = numpy.ascontiguousarray(Xs_tr[:,perm]) Ys_tr = numpy.ascontiguousarray(Ys_tr[:,perm]) Xs_te, Lbls_te = mnist_data.load_testing(); Xs_te = Xs_te.transpose() / 255.0 Ys_te = numpy.zeros((10, 10000)) for i in range(10000): Ys_te[Lbls_te[i], i] = 1.0 # one-hot encode each label Xs_te = numpy.ascontiguousarray(Xs_te) Ys_te = numpy.ascontiguousarray(Ys_te) dataset = (Xs_tr, Ys_tr, Xs_te, Ys_te) pickle.dump(dataset, open(PICKLE_FILE, 'wb')) return dataset # SGD + Momentum (adapt from Programming Assignment 3) # # Xs training examples (d * n) # Ys training labels (c * n) # gamma L2 regularization constant # W0 the initial value of the parameters (c * d) # alpha step size/learning rate # beta momentum hyperparameter # B minibatch size # num_epochs number of epochs (passes through the training set) to run # # returns the final model arrived at at the end of training def sgd_mss_with_momentum(Xs, Ys, gamma, W0, alpha, beta, B, num_epochs): # TODO students should use their implementation from programming assignment 3 # or adapt this version, which is from my own solution to programming assignment 3 models = [] (d, n) = Xs.shape V = numpy.zeros(W0.shape) W = W0 # print("Running minibatch sequential-scan SGD with momentum") for it in tqdm(range(num_epochs)): for ibatch in range(int(n/B)): ii = range(ibatch*B, (ibatch+1)*B) V = beta * V - alpha * multinomial_logreg_grad_i(Xs, Ys, ii, gamma, W) W = W + V # if ((ibatch+1) % monitor_period == 0): # models.append(W) return models # SGD + Momentum (No Allocation) => all operations in the inner loop should be a # call to a numpy.____ function with the "out=" argument explicitly specified # so that no extra allocations occur # # Xs training examples (d * n) # Ys training labels (c * n) # gamma L2 regularization constant # W0 the initial value of the parameters (c * d) # alpha step size/learning rate # beta momentum hyperparameter # B minibatch size # num_epochs number of epochs (passes through the training set) to run # monitor_period how frequently, in terms of batches (not epochs) to output the parameter vector # # returns the final model arrived at at the end of training def sgd_mss_with_momentum_noalloc(Xs, Ys, gamma, W0, alpha, beta, B, num_epochs): (d, n) = Xs.shape (c, d) = W0.shape # TODO students should initialize the parameter vector W and pre-allocate any needed arrays here Y_temp = np.zeros((c,B)) W_temp = np.zeros(W0.shape) amax_temp = np.zeros(B) softmax_temp = np.zeros((c,B)) V = np.zeros(W0.shape) g = np.zeros(W0.shape) X_batch = [] Y_batch = [] for i in range(n // B): ii = [(i*B + j) for j in range(B)] X_batch.append(np.ascontiguousarray(Xs[:,ii])) Y_batch.append(np.ascontiguousarray(Ys[:,ii])) # print("Running minibatch sequential-scan SGD with momentum (no allocation)") for it in tqdm(range(num_epochs)): for i in range(int(n/B)): # ii = range(ibatch*B, (ibatch+1)*B) # TODO this section of code should only use numpy operations with the "out=" argument specified (students should implement this) np.matmul(W0, X_batch[i], out=Y_temp) # WdotX = numpy.dot(W0, Xs[:,ii]) # expWdotX = numpy.exp(WdotX - numpy.amax(WdotX, axis=0), dtype=dtype) # softmaxWdotX = expWdotX / numpy.sum(expWdotX, axis=0, dtype=dtype) np.amax(Y_temp, axis=0, out=amax_temp) np.subtract(Y_temp, amax_temp, out=softmax_temp) np.exp(softmax_temp, out=softmax_temp) np.sum(softmax_temp, axis=0, out=amax_temp) np.divide(softmax_temp, amax_temp, out=softmax_temp) # numpy.dot(softmaxWdotX - Ys[:,ii], Xs[:,ii].transpose()) / len(ii) + gamma * W np.subtract(softmax_temp, Y_batch[i], out=Y_temp) # Y_temp = softmax(Y_temp, axis=0) - Y_batch[i] np.matmul(Y_temp, X_batch[i].T, out=W_temp) np.divide(W_temp, B, out=W_temp) np.multiply(gamma, W0, out=g) np.add(W_temp, g, out=g) # g = W_temp / B + gamma * W0 np.multiply(V, beta, out=V) np.multiply(g, alpha, out=g) # V = (beta * V) - (alpha * g) np.subtract(V, g, out=V) np.add(V, W0, out=W0) # W0 = W0 + V return W0 # SGD + Momentum (threaded) # # Xs training examples (d * n) # Ys training labels (c * n) # gamma L2 regularization constant # W0 the initial value of the parameters (c * d) # alpha step size/learning rate # beta momentum hyperparameter # B minibatch size # num_epochs number of epochs (passes through the training set) to run # monitor_period how frequently, in terms of batches (not epochs) to output the parameter vector # num_threads how many threads to use # # returns the final model arrived at at the end of training def sgd_mss_with_momentum_threaded(Xs, Ys, gamma, W0, alpha, beta, B, num_epochs, num_threads): (d, n) = Xs.shape (c, d) = W0.shape # TODO perform any global setup/initialization/allocation (students should implement this) g = [W0 for i in range(num_threads)] Bt = B//num_threads W_temp1 = np.zeros(W0.shape) # construct the barrier object iter_barrier = threading.Barrier(num_threads + 1) # a function for each thread to run def thread_main(ithread): # TODO perform any per-thread allocations for it in range(num_epochs): W_temp = np.zeros(W0.shape) amax_temp = np.zeros(Bt) softmax_temp = np.zeros((c,Bt)) for ibatch in range(int(n/B)): # TODO work done by thread in each iteration; this section of code should primarily use numpy operations with the "out=" argument specified (students should implement this) ii = range(ibatch*B + ithread*Bt, ibatch*B + (ithread+1)*Bt) iter_barrier.wait() np.dot(g[ithread], Xs[:,ii], out=softmax_temp)
np.amax(softmax_temp, axis=0, out=amax_temp)
numpy.amax
import os #운영체제와 상호 작용하기 위한 라이브 러리 import sys import xml.etree.ElementTree as ET #xml을 tree 형태로 읽어오는 라이브러리, as ET는 라이브러리를 단축시키기 위한 명령어 import shutil # 파일 및 디렉터리 작업을 수행하는 데 사용할 모듈 (파일 복사 이동 ) import random # 난수 형성 함수 from xml.dom import minidom #xml 에 접근하기 위한 함수 import operator # list의 차를 구하기 위한 라이브 러리 import math # 표준편차를 구하기위한 수학계산 라이브러리 import numpy as np # 표준편차를 구하기위한 수학계산 라이브러리 from matplotlib import pyplot as plt import pandas as pd from collections import Counter import csv import pickle from collections import Counter #list 중복값 카운팅 하기 import time start = time.time() # sys.stdout = open('output.txt','a') #print 로 출력된 내용을 텍스트로 저장함 answer = ['car','person'] attr = ['width', 'height', 'box'] car_array = [] person_array = [] # zz=[] # zz1=[] car_count = 0 person_count = 0 total_box = 0 total_xml = 0 total_box_count = 0 total_car = 0 total_person = 0 person_w = [] person_h = [] car_w = [] car_h = [] other =0 c_w = [] c_h = [] p_w = [] p_h = [] p_b = [] c_b = [] c_height_list = [] c_width_list = [] c_box_len_list = [] p_height_list = [] p_width_list = [] p_box_len_list = [] path_list = [] file_list = [] name_list = [] dir_len = len(path_list) root_path = "D:/backup/DataSet" target_path = "D:/backup/DataSet" parser = ET.XMLParser(encoding="utf-8") # XMLParser는 xml에서 원하는 구문을 출력할수있게 해준다 rootpath = r"D:\backup\DataSet" xmlRootpath = r'D:\backup\DataSet' xmlList = [] coun=0 for (path, dir, files) in os.walk(xmlRootpath): for file in files: if file.endswith(".xml"): # for x in os.listdir(root_path): # if x.endswith('xml'): empty = os.path.join(root_path,path) path_list.append(empty) total_xml += 1 tree = ET.parse(os.path.join(empty, file)) # x에 대한정보를 가져온다 root = tree.getroot() # 문서의 최상단을 가리킴 여기서는 annotations #print(os.path.join(empty, file)) for child in root.findall("object"): #root(annotations) 아래 자식image 의 객수만큼 반복한다) bndbox=child.find('bndbox') name = child.find('name').text total_box_count += 1 xmin = int(float(bndbox.find("xmin").text)) ymin = int(float(bndbox.find("ymin").text)) xmax = int(float(bndbox.find("xmax").text)) ymax = int(float(bndbox.find("ymax").text)) # print(name+' %s %s %s %s' %(xmin, ymin, xmax, ymax)) #5 if name == "person": person_count += 1 total_person += 1 p_w = abs(float(xmin)-float(xmax)) p_h = abs(float(ymin)-float(ymax)) p_b = abs(float(p_w*p_h)) # print("person width=" + str(p_w), "person height" + str(p_h)) # print("label:person"+" xmin:"+str(xmin)+" ymin:"+str(ymin)+" xmax:"+str(xmax)+" ymax:"+str(ymax)+" width=" + str(p_w), " height" + str(p_h)) person_w.append(p_w) person_h.append(p_h) p_box_len_list.append(p_b) elif name == "car": car_count += 1 total_car += 1 c_w = abs(float(xmin)-float(xmax)) c_h = abs(float(ymin)-float(ymax)) c_b = abs(float(c_w * c_h)) # print("car width=" + str(c_w), "car height=" + str(c_h)) #print("label:car" + " xmin:" + str(xmin) + " ymin:" + str(ymin) + " xmax:" + str(xmax) + " ymax:" + str(ymax) + " width=" + str(c_w), " height" + str(c_h)) car_w.append(c_w) car_h.append(c_h) c_box_len_list.append(c_b) else: other += 1 # print("car num:"+str(car_count)+" person num:"+str(person_count)) person_array.append(person_count) car_array.append(car_count) car_count=0 person_count=0 person_np = np.array(person_array) car_np = np.array(car_array) # np.max(arr) max 값 구하기 x = np.array(person_w)#person_width y = np.array(person_h)#person_height z = x*y #person _w*h zz = list(z) # print(z) x1 = np.array(car_w) #car width y1 = np.array(car_h) #car height z1 = x1*y1 #car_w*h zz1 = list(z1) a = round(np.average(x),2) b = round(np.average(y),2) c = round(np.average(z),2) a1 = round(np.average(x1),2) b1 = round(np.average(y1),2) c1 = round(
np.average(z1)
numpy.average
import sys import os sys.path.append( os.path.abspath( os.path.join(os.path.abspath(__file__), '..', '..') ) ) import fitting import kernel import regression import numpy as np import matplotlib.pyplot as plt def gaussian(x, mu, sig): return 1 / np.sqrt(2 * np.pi * sig ** 2) * np.exp(-0.5 * (x - mu) ** 2 / (sig ** 2)) argv = sys.argv if len(argv) != 2: print("Usage: python test_regression.py fit_linear|fit_by_linear|fit_gaussian_process" "|fit_sparse_linear|fit_dual_gaussian_process|fit_relevance_vector") sys.exit(-1) if argv[1] == 'fit_linear': I = 50 x = np.linspace(1, 9, I) phi = np.array([[7], [-0.5]]) sig = 0.6 w_test = np.zeros((I, 1)) X = np.append(np.ones((I, 1)), x.reshape((I, 1)), axis=1) X_phi = X @ phi w = np.random.normal(X_phi, sig) fit_phi, fit_sig = regression.fit_linear(X.transpose(), w) granularity = 500 domain = np.linspace(0, 10, granularity) X, Y = np.meshgrid(domain, domain) XX = np.append(np.ones((granularity, 1)), domain.reshape((granularity, 1)), axis=1) temp = XX @ fit_phi Z = np.zeros((granularity, granularity)) for j in range(granularity): mu = temp[j, 0] for i in range(granularity): ww = domain[i] Z[i, j] = gaussian(ww, mu, fit_sig) plt.figure("Fit linear regression") plt.pcolor(X, Y, Z) plt.scatter(x, w, edgecolors="w") plt.show() elif argv[1] == "fit_by_linear": granularity = 500 a = -5 b = 5 domain = np.linspace(a, b, granularity) X, Y = np.meshgrid(domain, domain) x = X.reshape((X.size, 1)) y = Y.reshape((Y.size, 1)) xy_matrix = np.append(x, y, axis=1) # Compute the prior 2D normal distribution over phi mu_1 = np.array([0, 0]) var_prior = 6 covariance_1 = var_prior *
np.eye(2)
numpy.eye
#!/usr/bin/env python import time import glfw import numpy as np from operator import itemgetter from mujoco_py import const, MjViewer from mujoco_worldgen.util.types import store_args from envs.hns.ma_policy.util import listdict2dictnp from functools import reduce import pdb import torch import copy def handle_dict_obs(keys, order_obs, mask_order_obs, dict_obs, num_agents, num_hiders): # obs = [] # share_obs = [] for i, key in enumerate(order_obs): if key in keys: if mask_order_obs[i] == None: temp_share_obs = dict_obs[key].reshape(num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = dict_obs[key].reshape(num_agents,-1).copy() temp_mask = dict_obs[mask_order_obs[i]].copy() temp_obs = dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros((mins_temp_mask.sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) # obs.append(reshape_obs) # share_obs.append(reshape_share_obs) # obs = np.array(obs)[:,num_hiders:] # share_obs = np.array(share_obs)[:,num_hiders:] obs = reshape_obs[num_hiders:] share_obs = reshape_share_obs[num_hiders:] return obs, share_obs def splitobs(obs, keepdims=True): ''' Split obs into list of single agent obs. Args: obs: dictionary of numpy arrays where first dim in each array is agent dim ''' n_agents = obs[list(obs.keys())[0]].shape[0] return [{k: v[[i]] if keepdims else v[i] for k, v in obs.items()} for i in range(n_agents)] class PolicyViewer(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.total_rew = 0.0 self.ob = env.reset() for policy in self.policies: policy.reset() assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 while self.duration is None or time.time() < self.end_time: if len(self.policies) == 1: action, _ = self.policies[0].act(self.ob) else: self.ob = splitobs(self.ob, keepdims=False) ob_policy_idx = np.split(np.arange(len(self.ob)), len(self.policies)) actions = [] for i, policy in enumerate(self.policies): inp = itemgetter(*ob_policy_idx[i])(self.ob) inp = listdict2dictnp([inp] if ob_policy_idx[i].shape[0] == 1 else inp) ac, info = policy.act(inp) actions.append(ac) action = listdict2dictnp(actions, keepdims=True) self.ob, rew, done, env_info = self.env.step(action) self.total_rew += rew if done or env_info.get('discard_episode', False): self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_hs_single(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, all_args, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.total_rew = 0.0 self.dict_obs = env.reset() #for policy in self.policies: # policy.reset() assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] ''' self.order_obs = ['agent_qpos_qvel','box_obs','ramp_obs','food_obs','observation_self'] self.mask_order_obs = ['mask_aa_obs','mask_ab_obs','mask_ar_obs','mask_af_obs',None] ''' # self.order_obs = ['agent_qpos_qvel', 'box_obs','ramp_obs','construction_site_obs','vector_door_obs', 'observation_self'] # self.mask_order_obs = ['mask_aa_obs', 'mask_ab_obs','mask_ar_obs',None,None,None] self.order_obs = ['agent_qpos_qvel', 'box_obs','ramp_obs','construction_site_obs', 'observation_self'] self.mask_order_obs = [None,None,None,None,None] self.keys = self.env.observation_space.spaces.keys() self.num_agents = 2 self.num_hiders = 1 self.num_seekers = 1 for agent_id in range(self.num_agents): # deal with dict action space action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] reshape_obs, reshape_share_obs = handle_dict_obs(self.keys, self.order_obs, self.mask_order_obs, self.dict_obs, self.num_agents, self.num_hiders) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) while self.duration is None or time.time() < self.end_time: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_seekers): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) # rearrange action action_movement = [] action_pull = [] action_glueall = [] for k in range(self.num_hiders): #action_movement.append(np.random.randint(11, size=3)) #hider随机游走 action_movement.append(np.array([5,5,5])) #hider静止不动 action_pull.append(0) action_glueall.append(0) for k in range(self.num_seekers): action_movement.append(actions[k][0][:3]) action_pull.append(np.int(actions[k][0][3])) action_glueall.append(np.int(actions[k][0][4])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} self.dict_obs, rew, done, env_info = self.env.step(one_env_action) self.total_rew += rew self.obs = [] self.share_obs = [] reshape_obs, reshape_share_obs = handle_dict_obs(self.keys, self.order_obs, self.mask_order_obs, self.dict_obs, self.num_agents, self.num_hiders) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False): self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.dict_obs = self.env.reset() self.obs = [] self.share_obs = [] reshape_obs, reshape_share_obs = handle_dict_obs(self.keys, self.order_obs, self.mask_order_obs, self.dict_obs, self.num_agents, self.num_hiders) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_bl(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, args, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.args = args self.num_agents = args.num_agents self.total_rew = 0.0 self.dict_obs = env.reset() self.eval_num = 10 self.eval_episode = 0 self.success_rate_sum = 0 self.step = 0 self.H = 5 #for policy in self.policies: # policy.reset() #assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] self.order_obs = ['agent_qpos_qvel', 'box_obs', 'ramp_obs', 'construction_site_obs', 'observation_self'] self.mask_order_obs = [None, None, None, None, None] for agent_id in range(self.num_agents): # deal with dict action space action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) # generate the obs space obs_shape = [] obs_dim = 0 for key in self.order_obs: if key in self.env.observation_space.spaces.keys(): space = list(self.env.observation_space[key].shape) if len(space)<2: space.insert(0,1) obs_shape.append(space) obs_dim += reduce(lambda x,y:x*y,space) obs_shape.insert(0,obs_dim) split_shape = obs_shape[1:] self.policies[0].base.obs_shape = obs_shape self.policies[0].base.encoder_actor.embedding.split_shape = split_shape self.policies[0].base.encoder_critic.embedding.split_shape = split_shape self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.test_lock_rate = np.zeros(self.args.episode_length) self.test_return_rate = np.zeros(self.args.episode_length) self.test_success_rate = np.zeros(self.args.episode_length) while (self.duration is None or time.time() < self.end_time) and self.eval_episode < self.eval_num: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_agents): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) action_movement = [] action_pull = [] action_glueall = [] for agent_id in range(self.num_agents): action_movement.append(actions[agent_id][0][:self.action_movement_dim[agent_id]]) action_glueall.append(int(actions[agent_id][0][self.action_movement_dim[agent_id]])) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull.append(int(actions[agent_id][0][-1])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} self.dict_obs, rew, done, env_info = self.env.step(one_env_action) self.step += 1 #READ INFO self.test_lock_rate[self.step] = env_info['lock_rate'] self.test_return_rate[self.step] = env_info['return_rate'] if env_info['lock_rate'] == 1: self.test_success_rate[self.step] = env_info['return_rate'] else: self.test_success_rate[self.step] = 0 # print("Step %d Lock Rate"%self.step, self.test_lock_rate[self.step]) # print("Step %d Return Rate"%self.step, self.test_return_rate[self.step]) # print("Step %d Success Rate"%self.step, self.test_success_rate[self.step]) #print(self.dict_obs['box_obs'][0][0]) self.total_rew += rew self.is_lock = self.test_lock_rate[self.step] self.is_return = self.test_return_rate[self.step] self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False) or self.step >= self.args.episode_length - 1: self.eval_episode += 1 self.success_rate_sum += np.mean(self.test_success_rate[-self.H:]) print("Test Episode %d/%d Success Rate:"%(self.eval_episode, self.eval_num), np.mean(self.test_success_rate[-self.H:])) self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) self.add_overlay(const.GRID_TOPRIGHT, "Lock", str(self.is_lock)) self.add_overlay(const.GRID_TOPRIGHT, "Return", str(self.is_return)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() if self.eval_episode == self.eval_num: print("Mean Success Rate:", self.success_rate_sum / self.eval_num) def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.dict_obs = self.env.reset() self.obs = [] self.share_obs = [] # reset the buffer self.test_lock_rate = np.zeros(self.args.episode_length) self.test_return_rate = np.zeros(self.args.episode_length) self.test_success_rate = np.zeros(self.args.episode_length) self.step = 0 for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_bl_good_case(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, args, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.args = args self.num_agents = args.num_agents self.total_rew = 0.0 # init starts self.eval_num = 1 self.eval_episode = 0 self.success_rate_sum = 0 self.step = 0 self.H = 5 buffer_length = 2000 boundary = args.grid_size-2 boundary_quadrant = [round(args.grid_size / 2), args.grid_size-3, 1, round(args.grid_size/2)-3] start_boundary = [round(args.grid_size / 2), args.grid_size-3, 1, round(args.grid_size/2)-3] # x1,x2,y1,y2 qudrant set last_node = node_buffer(args.num_agents, args.num_boxes, buffer_length, archive_initial_length=args.n_rollout_threads, reproduction_num=160, max_step=1, start_boundary=start_boundary, boundary=boundary, boundary_quadrant=boundary_quadrant) #self.starts = last_node.produce_good_case(self.eval_num, start_boundary, args.num_agents, args.num_boxes) self.starts = [[np.array([16, 4]), np.array([21, 2]), np.array([22, 2]), np.array([16, 4])]] print("[starts]", self.starts[0]) self.dict_obs = env.reset(self.starts[0]) #for policy in self.policies: # policy.reset() #assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] self.order_obs = ['agent_qpos_qvel', 'box_obs', 'ramp_obs', 'construction_site_obs', 'observation_self'] self.mask_order_obs = [None, None, None, None, None] for agent_id in range(self.num_agents): # deal with dict action space action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) # generate the obs space obs_shape = [] obs_dim = 0 for key in self.order_obs: if key in self.env.observation_space.spaces.keys(): space = list(self.env.observation_space[key].shape) if len(space)<2: space.insert(0,1) obs_shape.append(space) obs_dim += reduce(lambda x,y:x*y,space) obs_shape.insert(0,obs_dim) split_shape = obs_shape[1:] self.policies[0].base.obs_shape = obs_shape self.policies[0].base.encoder_actor.embedding.split_shape = split_shape self.policies[0].base.encoder_critic.embedding.split_shape = split_shape self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.test_lock_rate = np.zeros(self.args.episode_length) self.test_return_rate = np.zeros(self.args.episode_length) self.test_success_rate = np.zeros(self.args.episode_length) while self.duration is None or time.time() < self.end_time or self.eval_episode <= self.eval_num: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_agents): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) action_movement = [] action_pull = [] action_glueall = [] for agent_id in range(self.num_agents): action_movement.append(actions[agent_id][0][:self.action_movement_dim[agent_id]]) action_glueall.append(int(actions[agent_id][0][self.action_movement_dim[agent_id]])) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull.append(int(actions[agent_id][0][-1])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} self.dict_obs, rew, done, env_info = self.env.step(one_env_action) self.step += 1 #READ INFO self.test_lock_rate[self.step] = env_info['lock_rate'] self.test_return_rate[self.step] = env_info['return_rate'] if env_info['lock_rate'] == 1: self.test_success_rate[self.step] = env_info['return_rate'] else: self.test_success_rate[self.step] = 0 #print(self.dict_obs['box_obs'][0][0]) self.total_rew += rew self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False) or self.step >= self.args.episode_length - 1: self.eval_episode += 1 self.success_rate_sum += np.mean(self.test_success_rate[-self.H:]) print("Test Episode %d/%d Success Rate:"%(self.eval_episode, self.eval_num), np.mean(self.test_success_rate[-self.H:])) if self.eval_episode == self.eval_num: break self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() if self.eval_episode == self.eval_num: print("Mean Success Rate:", self.success_rate_sum / self.eval_num) def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) print("[starts]", self.starts[self.eval_episode]) self.dict_obs = self.env.reset(self.starts[self.eval_episode]) self.obs = [] self.share_obs = [] # reset the buffer self.test_lock_rate = np.zeros(self.args.episode_length) self.test_return_rate = np.zeros(self.args.episode_length) self.test_success_rate = np.zeros(self.args.episode_length) self.step = 0 for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_sc(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.total_rew = 0.0 self.dict_obs = env.reset() #for policy in self.policies: # policy.reset() #assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] ''' self.order_obs = ['agent_qpos_qvel','box_obs','ramp_obs','food_obs','observation_self'] self.mask_order_obs = ['mask_aa_obs','mask_ab_obs','mask_ar_obs','mask_af_obs',None] ''' self.order_obs = ['box_obs','ramp_obs','construction_site_obs','vector_door_obs', 'observation_self'] self.mask_order_obs = ['mask_ab_obs','mask_ar_obs',None,None,None] self.num_agents = 1 for agent_id in range(self.num_agents): # deal with dict action space action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) self.masks = np.ones((1, self.num_agents, 1)).astype(np.float32) if self.duration is not None: self.end_time = time.time() + self.duration self.total_rew_avg = 0.0 self.n_episodes = 0 self.obs = [] self.share_obs = [] print(self.dict_obs) for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) print(self.obs) print(self.share_obs) while self.duration is None or time.time() < self.end_time: values = [] actions= [] recurrent_hidden_statess = [] recurrent_hidden_statess_critic = [] with torch.no_grad(): for agent_id in range(self.num_agents): self.policies[0].eval() value, action, action_log_prob, recurrent_hidden_states, recurrent_hidden_states_critic = self.policies[0].act(agent_id, torch.tensor(self.share_obs[:,agent_id,:]), torch.tensor(self.obs[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states[:,agent_id,:]), torch.tensor(self.recurrent_hidden_states_critic[:,agent_id,:]), torch.tensor(self.masks[:,agent_id,:])) values.append(value.detach().cpu().numpy()) actions.append(action.detach().cpu().numpy()) recurrent_hidden_statess.append(recurrent_hidden_states.detach().cpu().numpy()) recurrent_hidden_statess_critic.append(recurrent_hidden_states_critic.detach().cpu().numpy()) action_movement = [] action_pull = [] action_glueall = [] for agent_id in range(self.num_agents): action_movement.append(actions[agent_id][0][:self.action_movement_dim[agent_id]]) action_glueall.append(int(actions[agent_id][0][self.action_movement_dim[agent_id]])) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull.append(int(actions[agent_id][0][-1])) action_movement = np.stack(action_movement, axis = 0) action_glueall = np.stack(action_glueall, axis = 0) if 'action_pull' in self.env.action_space.spaces.keys(): action_pull = np.stack(action_pull, axis = 0) one_env_action = {'action_movement': action_movement, 'action_pull': action_pull, 'action_glueall': action_glueall} print(action_pull) self.dict_obs, rew, done, env_info = self.env.step(one_env_action) print(self.dict_obs) self.total_rew += rew self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.array(recurrent_hidden_statess).transpose(1,0,2) self.recurrent_hidden_states_critic = np.array(recurrent_hidden_statess_critic).transpose(1,0,2) if done or env_info.get('discard_episode', False): self.reset_increment() if self.display_window: self.add_overlay(const.GRID_TOPRIGHT, "Reset env; (current seed: {})".format(self.seed), "N - next / P - previous ") self.add_overlay(const.GRID_TOPRIGHT, "Reward", str(self.total_rew)) if hasattr(self.env.unwrapped, "viewer_stats"): for k, v in self.env.unwrapped.viewer_stats.items(): self.add_overlay(const.GRID_TOPRIGHT, k, str(v)) self.env.render() def reset_increment(self): self.total_rew_avg = (self.n_episodes * self.total_rew_avg + self.total_rew) / (self.n_episodes + 1) self.n_episodes += 1 print(f"Reward: {self.total_rew} (rolling average: {self.total_rew_avg})") self.total_rew = 0.0 self.seed += 1 self.env.seed(self.seed) self.dict_obs = self.env.reset() self.obs = [] self.share_obs = [] for i, key in enumerate(self.order_obs): if key in self.env.observation_space.spaces.keys(): if self.mask_order_obs[i] == None: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_obs = temp_share_obs.copy() else: temp_share_obs = self.dict_obs[key].reshape(self.num_agents,-1).copy() temp_mask = self.dict_obs[self.mask_order_obs[i]].copy() temp_obs = self.dict_obs[key].copy() mins_temp_mask = ~temp_mask temp_obs[mins_temp_mask]=np.zeros(((mins_temp_mask).sum(),temp_obs.shape[2])) temp_obs = temp_obs.reshape(self.num_agents,-1) if i == 0: reshape_obs = temp_obs.copy() reshape_share_obs = temp_share_obs.copy() else: reshape_obs = np.concatenate((reshape_obs,temp_obs),axis=1) reshape_share_obs = np.concatenate((reshape_share_obs,temp_share_obs),axis=1) self.obs.append(reshape_obs) self.share_obs.append(reshape_share_obs) self.obs = np.array(self.obs).astype(np.float32) self.share_obs = np.array(self.share_obs).astype(np.float32) self.recurrent_hidden_states = np.zeros((1, self.num_agents, 64)).astype(np.float32) self.recurrent_hidden_states_critic = np.zeros((1, self.num_agents, 64)).astype(np.float32) #for policy in self.policies: # policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) class PolicyViewer_bc(MjViewer): ''' PolicyViewer runs a policy with an environment and optionally displays it. env - environment to run policy in policy - policy object to run display_window - if true, show the graphical viewer seed - environment seed to view duration - time in seconds to run the policy, run forever if duration=None ''' @store_args def __init__(self, env, policies, display_window=True, seed=None, duration=None): if seed is None: self.seed = env.seed()[0] else: self.seed = seed env.seed(seed) self.total_rew = 0.0 self.dict_obs = env.reset() #for policy in self.policies: # policy.reset() #assert env.metadata['n_actors'] % len(policies) == 0 if hasattr(env, "reset_goal"): self.goal = env.reset_goal() super().__init__(self.env.unwrapped.sim) # TO DO: remove circular dependency on viewer object. It looks fishy. self.env.unwrapped.viewer = self if self.render and self.display_window: self.env.render() def key_callback(self, window, key, scancode, action, mods): super().key_callback(window, key, scancode, action, mods) # Trigger on keyup only: if action != glfw.RELEASE: return # Increment experiment seed if key == glfw.KEY_N: self.reset_increment() # Decrement experiment trial elif key == glfw.KEY_P: print("Pressed P") self.seed = max(self.seed - 1, 0) self.env.seed(self.seed) self.ob = self.env.reset() for policy in self.policies: policy.reset() if hasattr(self.env, "reset_goal"): self.goal = self.env.reset_goal() self.update_sim(self.env.unwrapped.sim) def run(self): self.action_movement_dim = [] ''' self.order_obs = ['agent_qpos_qvel','box_obs','ramp_obs','food_obs','observation_self'] self.mask_order_obs = ['mask_aa_obs','mask_ab_obs','mask_ar_obs','mask_af_obs',None] ''' ''' self.order_obs = ['box_obs','ramp_obs','construction_site_obs','vector_door_obs', 'observation_self'] self.mask_order_obs = [None,'mask_ar_obs',None,None,None] ''' self.order_obs = ['agent_qpos_qvel','box_obs','ramp_obs','construction_site_obs','vector_door_obs', 'observation_self'] self.mask_order_obs = [None,None,'mask_ar_obs',None,None,None] self.num_agents = 2 for agent_id in range(self.num_agents): action_movement = self.env.action_space['action_movement'][agent_id].nvec self.action_movement_dim.append(len(action_movement)) self.masks =
np.ones((1, self.num_agents, 1))
numpy.ones
import sys import operator import pytest import ctypes import gc import warnings import numpy as np from numpy.core._rational_tests import rational from numpy.core._multiarray_tests import create_custom_field_dtype from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, HAS_REFCOUNT) from numpy.compat import pickle from itertools import permutations def assert_dtype_equal(a, b): assert_equal(a, b) assert_equal(hash(a), hash(b), "two equivalent types do not hash to the same value !") def assert_dtype_not_equal(a, b): assert_(a != b) assert_(hash(a) != hash(b), "two different types hash to the same value !") class TestBuiltin: @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object, np.compat.unicode]) def test_run(self, t): """Only test hash runs at all.""" dt = np.dtype(t) hash(dt) @pytest.mark.parametrize('t', [int, float]) def test_dtype(self, t): # Make sure equivalent byte order char hash the same (e.g. < and = on # little endian) dt = np.dtype(t) dt2 = dt.newbyteorder("<") dt3 = dt.newbyteorder(">") if dt == dt2: assert_(dt.byteorder != dt2.byteorder, "bogus test") assert_dtype_equal(dt, dt2) else: assert_(dt.byteorder != dt3.byteorder, "bogus test") assert_dtype_equal(dt, dt3) def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right)) def test_invalid_types(self): # Make sure invalid type strings raise an error assert_raises(TypeError, np.dtype, 'O3') assert_raises(TypeError, np.dtype, 'O5') assert_raises(TypeError, np.dtype, 'O7') assert_raises(TypeError, np.dtype, 'b3') assert_raises(TypeError, np.dtype, 'h4') assert_raises(TypeError, np.dtype, 'I5') assert_raises(TypeError, np.dtype, 'e3') assert_raises(TypeError, np.dtype, 'f5') if np.dtype('g').itemsize == 8 or np.dtype('g').itemsize == 16: assert_raises(TypeError, np.dtype, 'g12') elif np.dtype('g').itemsize == 12: assert_raises(TypeError, np.dtype, 'g16') if np.dtype('l').itemsize == 8: assert_raises(TypeError, np.dtype, 'l4') assert_raises(TypeError, np.dtype, 'L4') else: assert_raises(TypeError, np.dtype, 'l8') assert_raises(TypeError, np.dtype, 'L8') if np.dtype('q').itemsize == 8: assert_raises(TypeError, np.dtype, 'q4') assert_raises(TypeError, np.dtype, 'Q4') else: assert_raises(TypeError, np.dtype, 'q8') assert_raises(TypeError, np.dtype, 'Q8') @pytest.mark.parametrize("dtype", ['Bool', 'Complex32', 'Complex64', 'Float16', 'Float32', 'Float64', 'Int8', 'Int16', 'Int32', 'Int64', 'Object0', 'Timedelta64', 'UInt8', 'UInt16', 'UInt32', 'UInt64', 'Void0', "Float128", "Complex128"]) def test_numeric_style_types_are_invalid(self, dtype): with assert_raises(TypeError): np.dtype(dtype) @pytest.mark.parametrize( 'value', ['m8', 'M8', 'datetime64', 'timedelta64', 'i4, (2,3)f8, f4', 'a3, 3u8, (3,4)a10', '>f', '<f', '=f', '|f', ]) def test_dtype_bytes_str_equivalence(self, value): bytes_value = value.encode('ascii') from_bytes = np.dtype(bytes_value) from_str = np.dtype(value) assert_dtype_equal(from_bytes, from_str) def test_dtype_from_bytes(self): # Empty bytes object assert_raises(TypeError, np.dtype, b'') # Byte order indicator, but no type assert_raises(TypeError, np.dtype, b'|') # Single character with ordinal < NPY_NTYPES returns # type by index into _builtin_descrs assert_dtype_equal(np.dtype(bytes([0])), np.dtype('bool')) assert_dtype_equal(np.dtype(bytes([17])), np.dtype(object)) # Single character where value is a valid type code assert_dtype_equal(np.dtype(b'f'), np.dtype('float32')) # Bytes with non-ascii values raise errors assert_raises(TypeError, np.dtype, b'\xff') assert_raises(TypeError, np.dtype, b's\xff') def test_bad_param(self): # Can't give a size that's too small assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'i1'], 'offsets':[0, 4], 'itemsize':4}) # If alignment is enabled, the alignment (4) must divide the itemsize assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'i1'], 'offsets':[0, 4], 'itemsize':9}, align=True) # If alignment is enabled, the individual fields must be aligned assert_raises(ValueError, np.dtype, {'names':['f0', 'f1'], 'formats':['i1', 'f4'], 'offsets':[0, 2]}, align=True) def test_field_order_equality(self): x = np.dtype({'names': ['A', 'B'], 'formats': ['i4', 'f4'], 'offsets': [0, 4]}) y = np.dtype({'names': ['B', 'A'], 'formats': ['f4', 'i4'], 'offsets': [4, 0]}) assert_equal(x == y, False) # But it is currently an equivalent cast: assert np.can_cast(x, y, casting="equiv") class TestRecord: def test_equivalent_record(self): """Test whether equivalent record dtypes hash the same.""" a = np.dtype([('yo', int)]) b = np.dtype([('yo', int)]) assert_dtype_equal(a, b) def test_different_names(self): # In theory, they may hash the same (collision) ? a = np.dtype([('yo', int)]) b = np.dtype([('ye', int)]) assert_dtype_not_equal(a, b) def test_different_titles(self): # In theory, they may hash the same (collision) ? a = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'titles': ['Red pixel', 'Blue pixel']}) b = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], 'titles': ['RRed pixel', 'Blue pixel']}) assert_dtype_not_equal(a, b) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_refcount_dictionary_setting(self): names = ["name1"] formats = ["f8"] titles = ["t1"] offsets = [0] d = dict(names=names, formats=formats, titles=titles, offsets=offsets) refcounts = {k: sys.getrefcount(i) for k, i in d.items()} np.dtype(d) refcounts_new = {k: sys.getrefcount(i) for k, i in d.items()} assert refcounts == refcounts_new def test_mutate(self): # Mutating a dtype should reset the cached hash value a = np.dtype([('yo', int)]) b = np.dtype([('yo', int)]) c = np.dtype([('ye', int)]) assert_dtype_equal(a, b) assert_dtype_not_equal(a, c) a.names = ['ye'] assert_dtype_equal(a, c) assert_dtype_not_equal(a, b) state = b.__reduce__()[2] a.__setstate__(state) assert_dtype_equal(a, b) assert_dtype_not_equal(a, c) def test_not_lists(self): """Test if an appropriate exception is raised when passing bad values to the dtype constructor. """ assert_raises(TypeError, np.dtype, dict(names={'A', 'B'}, formats=['f8', 'i4'])) assert_raises(TypeError, np.dtype, dict(names=['A', 'B'], formats={'f8', 'i4'})) def test_aligned_size(self): # Check that structured dtypes get padded to an aligned size dt = np.dtype('i4, i1', align=True) assert_equal(dt.itemsize, 8) dt = np.dtype([('f0', 'i4'), ('f1', 'i1')], align=True) assert_equal(dt.itemsize, 8) dt = np.dtype({'names':['f0', 'f1'], 'formats':['i4', 'u1'], 'offsets':[0, 4]}, align=True) assert_equal(dt.itemsize, 8) dt = np.dtype({'f0': ('i4', 0), 'f1':('u1', 4)}, align=True) assert_equal(dt.itemsize, 8) # Nesting should preserve that alignment dt1 = np.dtype([('f0', 'i4'), ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]), ('f2', 'i1')], align=True) assert_equal(dt1.itemsize, 20) dt2 = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['i4', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 'i1'], 'offsets':[0, 4, 16]}, align=True) assert_equal(dt2.itemsize, 20) dt3 = np.dtype({'f0': ('i4', 0), 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4), 'f2': ('i1', 16)}, align=True) assert_equal(dt3.itemsize, 20) assert_equal(dt1, dt2) assert_equal(dt2, dt3) # Nesting should preserve packing dt1 = np.dtype([('f0', 'i4'), ('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]), ('f2', 'i1')], align=False) assert_equal(dt1.itemsize, 11) dt2 = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['i4', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 'i1'], 'offsets':[0, 4, 10]}, align=False) assert_equal(dt2.itemsize, 11) dt3 = np.dtype({'f0': ('i4', 0), 'f1': ([('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')], 4), 'f2': ('i1', 10)}, align=False) assert_equal(dt3.itemsize, 11) assert_equal(dt1, dt2) assert_equal(dt2, dt3) # Array of subtype should preserve alignment dt1 = np.dtype([('a', '|i1'), ('b', [('f0', '<i2'), ('f1', '<f4')], 2)], align=True) assert_equal(dt1.descr, [('a', '|i1'), ('', '|V3'), ('b', [('f0', '<i2'), ('', '|V2'), ('f1', '<f4')], (2,))]) def test_union_struct(self): # Should be able to create union dtypes dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[0, 0, 2]}, align=True) assert_equal(dt.itemsize, 4) a = np.array([3], dtype='<u4').view(dt) a['f1'] = 10 a['f2'] = 36 assert_equal(a['f0'], 10 + 36*256*256) # Should be able to specify fields out of order dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[4, 0, 2]}, align=True) assert_equal(dt.itemsize, 8) # field name should not matter: assignment is by position dt2 = np.dtype({'names':['f2', 'f0', 'f1'], 'formats':['<u4', '<u2', '<u2'], 'offsets':[4, 0, 2]}, align=True) vals = [(0, 1, 2), (3, -1, 4)] vals2 = [(0, 1, 2), (3, -1, 4)] a = np.array(vals, dt) b = np.array(vals2, dt2) assert_equal(a.astype(dt2), b) assert_equal(b.astype(dt), a) assert_equal(a.view(dt2), b) assert_equal(b.view(dt), a) # Should not be able to overlap objects with other types assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['O', 'i1'], 'offsets':[0, 2]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', 'O'], 'offsets':[0, 3]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':[[('a', 'O')], 'i1'], 'offsets':[0, 2]}) assert_raises(TypeError, np.dtype, {'names':['f0', 'f1'], 'formats':['i4', [('a', 'O')]], 'offsets':[0, 3]}) # Out of order should still be ok, however dt = np.dtype({'names':['f0', 'f1'], 'formats':['i1', 'O'], 'offsets':[np.dtype('intp').itemsize, 0]}) @pytest.mark.parametrize(["obj", "dtype", "expected"], [([], ("(2)f4,"), np.empty((0, 2), dtype="f4")), (3, "(3)f4,", [3, 3, 3]), (np.float64(2), "(2)f4,", [2, 2]), ([((0, 1), (1, 2)), ((2,),)], '(2,2)f4', None), (["1", "2"], "(2)i,", None)]) def test_subarray_list(self, obj, dtype, expected): dtype = np.dtype(dtype) res = np.array(obj, dtype=dtype) if expected is None: # iterate the 1-d list to fill the array expected = np.empty(len(obj), dtype=dtype) for i in range(len(expected)): expected[i] = obj[i] assert_array_equal(res, expected) def test_comma_datetime(self): dt = np.dtype('M8[D],datetime64[Y],i8') assert_equal(dt, np.dtype([('f0', 'M8[D]'), ('f1', 'datetime64[Y]'), ('f2', 'i8')])) def test_from_dictproxy(self): # Tests for PR #5920 dt = np.dtype({'names': ['a', 'b'], 'formats': ['i4', 'f4']}) assert_dtype_equal(dt, np.dtype(dt.fields)) dt2 = np.dtype((np.void, dt.fields)) assert_equal(dt2.fields, dt.fields) def test_from_dict_with_zero_width_field(self): # Regression test for #6430 / #2196 dt = np.dtype([('val1', np.float32, (0,)), ('val2', int)]) dt2 = np.dtype({'names': ['val1', 'val2'], 'formats': [(np.float32, (0,)), int]}) assert_dtype_equal(dt, dt2) assert_equal(dt.fields['val1'][0].itemsize, 0) assert_equal(dt.itemsize, dt.fields['val2'][0].itemsize) def test_bool_commastring(self): d = np.dtype('?,?,?') # raises? assert_equal(len(d.names), 3) for n in d.names: assert_equal(d.fields[n][0], np.dtype('?')) def test_nonint_offsets(self): # gh-8059 def make_dtype(off): return np.dtype({'names': ['A'], 'formats': ['i4'], 'offsets': [off]}) assert_raises(TypeError, make_dtype, 'ASD') assert_raises(OverflowError, make_dtype, 2**70) assert_raises(TypeError, make_dtype, 2.3) assert_raises(ValueError, make_dtype, -10) # no errors here: dt = make_dtype(np.uint32(0)) np.zeros(1, dtype=dt)[0].item() def test_fields_by_index(self): dt = np.dtype([('a', np.int8), ('b', np.float32, 3)]) assert_dtype_equal(dt[0], np.dtype(np.int8)) assert_dtype_equal(dt[1], np.dtype((np.float32, 3))) assert_dtype_equal(dt[-1], dt[1]) assert_dtype_equal(dt[-2], dt[0]) assert_raises(IndexError, lambda: dt[-3]) assert_raises(TypeError, operator.getitem, dt, 3.0) assert_equal(dt[1], dt[np.int8(1)]) @pytest.mark.parametrize('align_flag',[False, True]) def test_multifield_index(self, align_flag): # indexing with a list produces subfields # the align flag should be preserved dt = np.dtype([ (('title', 'col1'), '<U20'), ('A', '<f8'), ('B', '<f8') ], align=align_flag) dt_sub = dt[['B', 'col1']] assert_equal( dt_sub, np.dtype({ 'names': ['B', 'col1'], 'formats': ['<f8', '<U20'], 'offsets': [88, 0], 'titles': [None, 'title'], 'itemsize': 96 }) ) assert_equal(dt_sub.isalignedstruct, align_flag) dt_sub = dt[['B']] assert_equal( dt_sub, np.dtype({ 'names': ['B'], 'formats': ['<f8'], 'offsets': [88], 'itemsize': 96 }) ) assert_equal(dt_sub.isalignedstruct, align_flag) dt_sub = dt[[]] assert_equal( dt_sub, np.dtype({ 'names': [], 'formats': [], 'offsets': [], 'itemsize': 96 }) ) assert_equal(dt_sub.isalignedstruct, align_flag) assert_raises(TypeError, operator.getitem, dt, ()) assert_raises(TypeError, operator.getitem, dt, [1, 2, 3]) assert_raises(TypeError, operator.getitem, dt, ['col1', 2]) assert_raises(KeyError, operator.getitem, dt, ['fake']) assert_raises(KeyError, operator.getitem, dt, ['title']) assert_raises(ValueError, operator.getitem, dt, ['col1', 'col1']) def test_partial_dict(self): # 'names' is missing assert_raises(ValueError, np.dtype, {'formats': ['i4', 'i4'], 'f0': ('i4', 0), 'f1':('i4', 4)}) def test_fieldless_views(self): a = np.zeros(2, dtype={'names':[], 'formats':[], 'offsets':[], 'itemsize':8}) assert_raises(ValueError, a.view, np.dtype([])) d = np.dtype((np.dtype([]), 10)) assert_equal(d.shape, (10,)) assert_equal(d.itemsize, 0) assert_equal(d.base, np.dtype([])) arr = np.fromiter((() for i in range(10)), []) assert_equal(arr.dtype, np.dtype([])) assert_raises(ValueError, np.frombuffer, b'', dtype=[]) assert_equal(np.frombuffer(b'', dtype=[], count=2), np.empty(2, dtype=[])) assert_raises(ValueError, np.dtype, ([], 'f8')) assert_raises(ValueError, np.zeros(1, dtype='i4').view, []) assert_equal(np.zeros(2, dtype=[]) == np.zeros(2, dtype=[]), np.ones(2, dtype=bool)) assert_equal(np.zeros((1, 2), dtype=[]) == a, np.ones((1, 2), dtype=bool)) class TestSubarray: def test_single_subarray(self): a = np.dtype((int, (2))) b = np.dtype((int, (2,))) assert_dtype_equal(a, b) assert_equal(type(a.subdtype[1]), tuple) assert_equal(type(b.subdtype[1]), tuple) def test_equivalent_record(self): """Test whether equivalent subarray dtypes hash the same.""" a = np.dtype((int, (2, 3))) b = np.dtype((int, (2, 3))) assert_dtype_equal(a, b) def test_nonequivalent_record(self): """Test whether different subarray dtypes hash differently.""" a = np.dtype((int, (2, 3))) b = np.dtype((int, (3, 2))) assert_dtype_not_equal(a, b) a = np.dtype((int, (2, 3))) b = np.dtype((int, (2, 2))) assert_dtype_not_equal(a, b) a = np.dtype((int, (1, 2, 3))) b = np.dtype((int, (1, 2))) assert_dtype_not_equal(a, b) def test_shape_equal(self): """Test some data types that are equal""" assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', tuple()))) # FutureWarning during deprecation period; after it is passed this # should instead check that "(1)f8" == "1f8" == ("f8", 1). with pytest.warns(FutureWarning): assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', 1))) assert_dtype_equal(np.dtype((int, 2)), np.dtype((int, (2,)))) assert_dtype_equal(np.dtype(('<f4', (3, 2))),
np.dtype(('<f4', (3, 2)))
numpy.dtype
import os import torch import random import copy import csv from glob import glob from PIL import Image import numpy as np from scipy import ndimage import SimpleITK as sitk from skimage import measure from skimage.transform import resize from torch.utils.data import Dataset import torchvision.transforms as transforms NORMALIZATION_STATISTICS = {"luna16": [[0.2563873675129015, 0.2451283333368983]], "self_learning_cubes_32": [[0.11303308354465243, 0.12595135887180803]], "self_learning_cubes_64": [[0.11317437834743148, 0.12611378817031038]], "lidc": [[0.23151727, 0.2168428080133056]], "luna_fpr": [[0.18109835972793722, 0.1853707675313153]], "lits_seg": [[0.46046468844492944, 0.17490586272419967]], "pe": [[0.26125720740546626, 0.20363551346695796]], "pe16": [[0.2887357771623902, 0.24429971299033243]], # [[0.29407377554678416, 0.24441741466975556]], ->256x256x128 "brats": [[0.28239742604241436, 0.22023889204407615]], "luna16_lung": [[0.1968134997129321, 0.20734707135528743]]} # ---------------------------------------------2D Data augmentation--------------------------------------------- class Augmentation(): def __init__(self, normalize): if normalize.lower() == "imagenet": self.normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) elif normalize.lower() == "chestx-ray": self.normalize = transforms.Normalize([0.5056, 0.5056, 0.5056], [0.252, 0.252, 0.252]) elif normalize.lower() == "none": self.normalize = None else: print("mean and std for [{}] dataset do not exist!".format(normalize)) exit(-1) def get_augmentation(self, augment_name, mode, *args): try: aug = getattr(Augmentation, augment_name) return aug(self, mode, *args) except: print("Augmentation [{}] does not exist!".format(augment_name)) exit(-1) def basic(self, mode): transformList = [] transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) transformSequence = transforms.Compose(transformList) return transformSequence def _basic_crop(self, transCrop, mode="train"): transformList = [] if mode == "train": transformList.append(transforms.RandomCrop(transCrop)) else: transformList.append(transforms.CenterCrop(transCrop)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) transformSequence = transforms.Compose(transformList) return transformSequence def basic_crop_224(self, mode): transCrop = 224 return self._basic_crop(transCrop, mode) def _basic_resize(self, size, mode="train"): transformList = [] transformList.append(transforms.Resize(size)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) transformSequence = transforms.Compose(transformList) return transformSequence def basic_resize_224(self, mode): size = 224 return self._basic_resize(size, mode) def _basic_crop_rot(self, transCrop, mode="train"): transformList = [] if mode == "train": transformList.append(transforms.RandomCrop(transCrop)) transformList.append(transforms.RandomRotation(7)) else: transformList.append(transforms.CenterCrop(transCrop)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) transformSequence = transforms.Compose(transformList) return transformSequence def basic_crop_rot_224(self, mode): transCrop = 224 return self._basic_crop_rot(transCrop, mode) def _basic_crop_flip(self, transCrop, transResize, mode="train"): transformList = [] if mode == "train": transformList.append(transforms.RandomCrop(transCrop)) transformList.append(transforms.RandomHorizontalFlip()) else: transformList.append(transforms.Resize(transResize)) transformList.append(transforms.CenterCrop(transCrop)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) transformSequence = transforms.Compose(transformList) return transformSequence def basic_crop_flip_224(self, mode): transCrop = 224 transResize = 256 return self._basic_crop_flip(transCrop, transResize, mode) def _basic_rdcrop_flip(self, transCrop, transResize, mode="train"): transformList = [] if mode == "train": transformList.append(transforms.RandomResizedCrop(transCrop)) transformList.append(transforms.RandomHorizontalFlip()) else: transformList.append(transforms.Resize(transResize)) transformList.append(transforms.CenterCrop(transCrop)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) transformSequence = transforms.Compose(transformList) return transformSequence def basic_rdcrop_flip_224(self, mode): transCrop = 224 transResize = 256 return self._basic_rdcrop_flip(transCrop, transResize, mode) def _full(self, transCrop, transResize, mode="train", test_augment=True): transformList = [] if mode == "train": transformList.append(transforms.RandomResizedCrop(transCrop)) transformList.append(transforms.RandomHorizontalFlip()) transformList.append(transforms.RandomRotation(7)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) elif mode == "valid": transformList.append(transforms.Resize(transResize)) transformList.append(transforms.CenterCrop(transCrop)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) elif mode == "test": if test_augment: transformList.append(transforms.Resize(transResize)) transformList.append(transforms.TenCrop(transCrop)) transformList.append( transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops]))) if self.normalize is not None: transformList.append(transforms.Lambda(lambda crops: torch.stack([self.normalize(crop) for crop in crops]))) else: transformList.append(transforms.Resize(transResize)) transformList.append(transforms.CenterCrop(transCrop)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) transformSequence = transforms.Compose(transformList) return transformSequence def full_224(self, mode, test_augment=True): transCrop = 224 transResize = 256 return self._full(transCrop, transResize, mode, test_augment=test_augment) def full_448(self, mode): transCrop = 448 transResize = 512 return self._full(transCrop, transResize, mode) def _full_colorjitter(self, transCrop, transResize, mode="train"): transformList = [] if mode == "train": transformList.append(transforms.RandomResizedCrop(transCrop)) transformList.append(transforms.RandomHorizontalFlip()) transformList.append(transforms.RandomRotation(7)) transformList.append(transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) elif mode == "valid": transformList.append(transforms.Resize(transResize)) transformList.append(transforms.CenterCrop(transCrop)) transformList.append(transforms.ToTensor()) if self.normalize is not None: transformList.append(self.normalize) elif mode == "test": transformList.append(transforms.Resize(transResize)) transformList.append(transforms.TenCrop(transCrop)) transformList.append( transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops]))) if self.normalize is not None: transformList.append(transforms.Lambda(lambda crops: torch.stack([self.normalize(crop) for crop in crops]))) transformSequence = transforms.Compose(transformList) return transformSequence def full_colorjitter_224(self, mode): transCrop = 224 transResize = 256 return self._full_colorjitter(transCrop, transResize, mode) # ---------------------------------------------3D Data Normalization-------------------------------------------- def channel_wise_normalize_3d(data, mean_std): num_data = data.shape[0] num_channel = data.shape[1] if len(mean_std) == 1: mean_std = [mean_std[0]] * num_channel normalized_data = [] for i in range(num_data): img = data[i, ...] normalized_img = [] for j in range(num_channel): img_per_channel = img[j, ...] mean, std = mean_std[j][0], mean_std[j][1] _img = (img_per_channel - mean) / std normalized_img.append(_img) normalized_data.append(normalized_img) return np.array(normalized_data) # ---------------------------------------------Downstream ChestX-ray14------------------------------------------ class ChestX_ray14(Dataset): def __init__(self, pathImageDirectory, pathDatasetFile, augment, num_class=14, anno_percent=100): self.img_list = [] self.img_label = [] self.augment = augment with open(pathDatasetFile, "r") as fileDescriptor: line = True while line: line = fileDescriptor.readline() if line: lineItems = line.split() imagePath = os.path.join(pathImageDirectory, lineItems[0]) imageLabel = lineItems[1:num_class + 1] imageLabel = [int(i) for i in imageLabel] self.img_list.append(imagePath) self.img_label.append(imageLabel) indexes = np.arange(len(self.img_list)) if anno_percent < 100: random.Random(99).shuffle(indexes) num_data = int(indexes.shape[0] * anno_percent / 100.0) indexes = indexes[:num_data] _img_list, _img_label = copy.deepcopy(self.img_list), copy.deepcopy(self.img_label) self.img_list = [] self.img_label = [] for i in indexes: self.img_list.append(_img_list[i]) self.img_label.append(_img_label[i]) def __getitem__(self, index): imagePath = self.img_list[index] imageData = Image.open(imagePath).convert('RGB') imageLabel = torch.FloatTensor(self.img_label[index]) if self.augment != None: imageData = self.augment(imageData) return imageData, imageLabel def __len__(self): return len(self.img_list) # ---------------------------------------------Downstream CheXpert------------------------------------------ class CheXpert(Dataset): def __init__(self, pathImageDirectory, pathDatasetFile, augment, num_class=14, uncertain_label="LSR-Ones", unknown_label=0, anno_percent=100): self.img_list = [] self.img_label = [] self.augment = augment assert uncertain_label in ["Ones", "Zeros", "LSR-Ones", "LSR-Zeros"] self.uncertain_label = uncertain_label with open(pathDatasetFile, "r") as fileDescriptor: csvReader = csv.reader(fileDescriptor) next(csvReader, None) for line in csvReader: imagePath = os.path.join(pathImageDirectory, line[0]) label = line[5:] for i in range(num_class): if label[i]: a = float(label[i]) if a == 1: label[i] = 1 elif a == 0: label[i] = 0 elif a == -1: # uncertain label label[i] = -1 else: label[i] = unknown_label # unknown label self.img_list.append(imagePath) imageLabel = [int(i) for i in label] self.img_label.append(imageLabel) indexes = np.arange(len(self.img_list)) if anno_percent < 100: random.Random(99).shuffle(indexes) num_data = int(indexes.shape[0] * anno_percent / 100.0) indexes = indexes[:num_data] _img_list, _img_label = copy.deepcopy(self.img_list), copy.deepcopy(self.img_label) self.img_list = [] self.img_label = [] for i in indexes: self.img_list.append(_img_list[i]) self.img_label.append(_img_label[i]) def __getitem__(self, index): imagePath = self.img_list[index] imageData = Image.open(imagePath).convert('RGB') label = [] for l in self.img_label[index]: if l == -1: if self.uncertain_label == "Ones": label.append(1) elif self.uncertain_label == "Zeros": label.append(0) elif self.uncertain_label == "LSR-Ones": label.append(random.uniform(0.55, 0.85)) elif self.uncertain_label == "LSR-Zeros": label.append(random.uniform(0, 0.3)) else: label.append(l) imageLabel = torch.FloatTensor(label) if self.augment != None: imageData = self.augment(imageData) return imageData, imageLabel def __len__(self): return len(self.img_list) # ---------------------------------------------------NPY DataSet------------------------------------------------ class NPYDataLoader(Dataset): def __init__(self, data): self.data_x, self.data_y = data def __len__(self): return self.data_x.shape[0] def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() return self.data_x[idx, ...], self.data_y[idx, ...] # --------------------------------------------Downstream LUNA FPR 3D-------------------------------------------- def LUNA_FPR_3D(data_dir, fold, input_size, hu_range, crop=True, normalization=None, set="data", anno_percent=100, shuffle=True): input_rows, input_cols, input_deps = input_size[0], input_size[1], input_size[2] hu_min, hu_max = hu_range[0], hu_range[1] def load_image(data_dir, fold, input_rows, input_cols, hu_min, hu_max, crop=True): positives, negatives = [], [] for subset in fold: LUNA16_PROCESSED_DIR_POS = os.path.join(data_dir, "subset" + str(subset), "positives") LUNA16_PROCESSED_DIR_NEG = os.path.join(data_dir, "subset" + str(subset), "negatives") positive_file_list = glob(os.path.join(LUNA16_PROCESSED_DIR_POS, "*.npy")) negative_file_list = glob(os.path.join(LUNA16_PROCESSED_DIR_NEG, "*.npy")) positive_index = [x for x in range(len(positive_file_list))] negative_index = [x for x in range(len(negative_file_list))] if shuffle: random.shuffle(positive_index) random.shuffle(negative_index) for i in range(min(len(positive_file_list), len(negative_file_list))): im_pos_ = np.load(positive_file_list[positive_index[i]]) im_neg_ = np.load(negative_file_list[negative_index[i]]) if crop: im_pos = np.zeros((input_rows, input_cols, im_pos_.shape[-1]), dtype="float") im_neg = np.zeros((input_rows, input_cols, im_pos_.shape[-1]), dtype="float") for z in range(im_pos_.shape[-1]): im_pos[:, :, z] = resize(im_pos_[:, :, z], (input_rows, input_cols), preserve_range=True) im_neg[:, :, z] = resize(im_neg_[:, :, z], (input_rows, input_cols), preserve_range=True) else: im_pos, im_neg = im_pos_, im_neg_ im_pos[im_pos < hu_min] = hu_min im_pos[im_pos > hu_max] = hu_max im_neg[im_neg < hu_min] = hu_min im_neg[im_neg > hu_max] = hu_max im_pos = (im_pos - hu_min) / (hu_max - hu_min) im_neg = (im_neg - hu_min) / (hu_max - hu_min) positives.append(im_pos) negatives.append(im_neg) positives, negatives = np.array(positives), np.array(negatives) positives, negatives = np.expand_dims(positives, axis=-1), np.expand_dims(negatives, axis=-1) return positives, negatives x_pos, x_neg = load_image(data_dir, fold, input_rows, input_cols, hu_min, hu_max, crop=crop) x_data = np.concatenate((x_pos, x_neg), axis=0) y_data = np.concatenate((np.ones((x_pos.shape[0],)), np.zeros((x_neg.shape[0],)), ), axis=0) x_data = np.expand_dims(np.squeeze(x_data), axis=1) if normalization is not None and normalization.lower() != "none": mean_std = NORMALIZATION_STATISTICS[normalization.lower()] x_data = channel_wise_normalize_3d(x_data, mean_std=mean_std) if anno_percent < 100: ind_list = [i for i in range(x_data.shape[0])] random.Random(99).shuffle(ind_list) num_data = int(x_data.shape[0] * anno_percent / 100.0) x_data = x_data[ind_list[:num_data], ...] y_data = y_data[ind_list[:num_data], ...] print("x_{}: {} | {:.2f} ~ {:.2f}".format(set, x_data.shape, np.min(x_data), np.max(x_data))) print("y_{}: {} | {:.2f} ~ {:.2f}".format(set, y_data.shape, np.min(y_data), np.max(y_data))) return x_data, y_data # ----------------------------------------------Downstream LIDC 3D---------------------------------------------- def LIDC_3D(data_dir, set, normalization=None, anno_percent=100): x_data = np.squeeze(np.load(os.path.join(data_dir, 'x_' + set + '_64x64x32.npy'))) y_data = np.squeeze(np.load(os.path.join(data_dir, 'm_' + set + '_64x64x32.npy'))) x_data = np.expand_dims(x_data, axis=1) y_data = np.expand_dims(y_data, axis=1) if normalization is not None and normalization.lower() != "none": mean_std = NORMALIZATION_STATISTICS[normalization.lower()] x_data = channel_wise_normalize_3d(x_data, mean_std=mean_std) if anno_percent < 100: ind_list = [i for i in range(x_data.shape[0])] random.Random(99).shuffle(ind_list) num_data = int(x_data.shape[0] * anno_percent / 100.0) x_data = x_data[ind_list[:num_data], ...] y_data = y_data[ind_list[:num_data], ...] print("x_{}: {} | {:.2f} ~ {:.2f}".format(set, x_data.shape, np.min(x_data), np.max(x_data))) print("y_{}: {} | {:.2f} ~ {:.2f}".format(set, y_data.shape, np.min(y_data), np.max(y_data))) return x_data, y_data # ----------------------------------------------Downstream LiTS 3D---------------------------------------------- def LiTS_3D(data_path, id_list, obj="liver", normalization=None, anno_percent=100, input_size=(64, 64, 32), hu_range=(-1000.0, 1000.0), status=None): def load_data_npy(data_path, id_list, obj="liver", input_size=(64, 64, 32), hu_range=(-1000.0, 1000.0), status=None): x_data, y_data = [], [] input_rows, input_cols, input_deps = input_size[0], input_size[1], input_size[2] hu_min, hu_max = hu_range[0], hu_range[1] for patient_id in id_list: Vol = np.load(os.path.join(data_path, "volume-" + str(patient_id) + ".npy")) Vol[Vol > hu_max] = hu_max Vol[Vol < hu_min] = hu_min Vol = (Vol - hu_min) / (hu_max - hu_min) Vol = np.expand_dims(Vol, axis=0) Mask = np.load(os.path.join(data_path, "segmentation-" + str(patient_id) + ".npy")) liver_mask, lesion_mask = copy.deepcopy(Mask), copy.deepcopy(Mask) liver_mask[Mask > 0.5] = 1 liver_mask[Mask <= 0.5] = 0 lesion_mask[Mask > 1] = 1 lesion_mask[Mask <= 1] = 0 Mask = np.concatenate((np.expand_dims(liver_mask, axis=0), np.expand_dims(lesion_mask, axis=0)), axis=0) if obj == "liver": for i in range(input_rows - 1, Vol.shape[1] - input_rows + 1, input_rows): for j in range(input_cols - 1, Vol.shape[2] - input_cols + 1, input_cols): for k in range(input_deps - 1, Vol.shape[3] - input_deps + 1, input_deps): if np.sum(Mask[0, i:i + input_rows, j:j + input_cols, k:k + input_deps]) > 0 or random.random() < 0.01: x_data.append(Vol[:, i:i + input_rows, j:j + input_cols, k:k + input_deps]) y_data.append(Mask[:, i:i + input_rows, j:j + input_cols, k:k + input_deps]) if np.sum(Mask[0]) > 1000: cx, cy, cz = ndimage.measurements.center_of_mass(np.squeeze(Mask[0])) # print(cx, cy, cz) cx, cy, cz = int(cx), int(cy), int(cz) for delta_x in range(-10, 20, 20): for delta_y in range(-10, 20, 20): for delta_z in range(-5, 10, 10): if cx + delta_x - int(input_rows / 2) < 0 or cx + delta_x + int(input_rows / 2) > Vol.shape[1] - 1 or \ cy + delta_y - int(input_cols / 2) < 0 or cy + delta_y + int(input_cols / 2) > Vol.shape[2] - 1 or \ cz + delta_z - int(input_deps / 2) < 0 or cz + delta_z + int(input_deps / 2) > Vol.shape[3] - 1: pass else: x_data.append(Vol[:, cx + delta_x - int(input_rows / 2):cx + delta_x + int(input_rows / 2), \ cy + delta_y - int(input_cols / 2):cy + delta_y + int(input_cols / 2), \ cz + delta_z - int(input_deps / 2):cz + delta_z + int(input_deps / 2)]) y_data.append(Mask[:, cx + delta_x - int(input_rows / 2):cx + delta_x + int(input_rows / 2), \ cy + delta_y - int(input_cols / 2):cy + delta_y + int(input_cols / 2), \ cz + delta_z - int(input_deps / 2):cz + delta_z + int(input_deps / 2)]) elif obj == "lesion": if np.sum(Mask[1]) > 0: labels = measure.label(Mask[1], neighbors=8, background=0) for label in np.unique(labels): if label == 0: continue labelMask = np.zeros(Mask[1].shape, dtype="int") labelMask[labels == label] = 1 cx, cy, cz = ndimage.measurements.center_of_mass(np.squeeze(labelMask)) cx, cy, cz = int(cx), int(cy), int(cz) if labelMask[cx, cy, cz] == 1: for delta_x in range(-5, 5, 5): for delta_y in range(-5, 5, 5): for delta_z in range(-3, 3, 3): if cx + delta_x - int(input_rows / 2) < 0 or cx + delta_x + int(input_rows / 2) > Vol.shape[1] - 1 \ or \ cy + delta_y - int(input_cols / 2) < 0 or cy + delta_y + int(input_cols / 2) > Vol.shape[2] - 1 \ or \ cz + delta_z - int(input_deps / 2) < 0 or cz + delta_z + int(input_deps / 2) > Vol.shape[3] - 1: pass else: x_data.append( Vol[:, cx + delta_x - int(input_rows / 2):cx + delta_x + int(input_rows / 2), \ cy + delta_y - int(input_cols / 2):cy + delta_y + int(input_cols / 2), \ cz + delta_z - int(input_deps / 2):cz + delta_z + int(input_deps / 2)]) y_data.append( Mask[:, cx + delta_x - int(input_rows / 2):cx + delta_x + int(input_rows / 2), \ cy + delta_y - int(input_cols / 2):cy + delta_y + int(input_cols / 2), \ cz + delta_z - int(input_deps / 2):cz + delta_z + int(input_deps / 2)]) else: print("Objetc [{}] does not exist!".format(obj)) return
np.array(x_data)
numpy.array
''' Classes for representing tomograms with segmentations ''' import os import copy import numpy as np import scipy as sp from shutil import rmtree from .utils import * from pyorg import pexceptions, sub, disperse_io from pyorg.globals.utils import unpickle_obj from pyorg import globals as gl try: import pickle as pickle except: import pickle __author__ = '<NAME>' ##### Global variables NM3_TO_UM3 = 1e-9 # GLOBAL FUNCTIONS # Clean an directory contents (directory is preserved) # dir: directory path def clean_dir(dir): for root, dirs, files in os.walk(dir): for f in files: os.unlink(os.path.join(root, f)) for d in dirs: rmtree(os.path.join(root, d)) # PARALLEL PROCESSES # CLASSES ############################################################################ # Class for a Segmentation: set of voxel in a tomogram # class Segmentation(object): def __init__(self, tomo, lbl): """ :param tomo: tomogram which contains the segmentation :param lbl: label for the segmentation """ # Input parsing self.__ids = np.where(tomo == lbl) self.__vcount = len(self.__ids[0]) assert self.__vcount > 0 self.__lbl = lbl # Pre-compute bounds for accelerate computations self.__bounds = np.zeros(shape=6, dtype=np.float32) self.__update_bounds() #### Set/Get functionality def get_ids(self): return self.__ids def get_label(self): return self.__lbl def get_voxels_count(self): """ :return: the number of voxel in the segmentation """ return self.__vcount def get_bounds(self): """ :return: surface bounds (x_min, x_max, y_min, y_max, z_min, z_max) as array """ return self.__bounds #### External functionality def bound_in_bounds(self, bounds): """ Check if the object's bound are at least partially in another bound :param bounds: input bound :return: """ x_over, y_over, z_over = True, True, True if (self.__bounds[0] > bounds[1]) or (self.__bounds[1] < bounds[0]): x_over = False if (self.__bounds[2] > bounds[3]) or (self.__bounds[3] < bounds[2]): y_over = False if (self.__bounds[4] > bounds[5]) or (self.__bounds[5] < bounds[4]): y_over = False return x_over and y_over and z_over def point_in_bounds(self, point): """ Check if a point within filament's bounds :param point: point to check :return: """ x_over, y_over, z_over = True, True, True if (self.__bounds[0] > point[0]) or (self.__bounds[1] < point[0]): x_over = False if (self.__bounds[2] > point[1]) or (self.__bounds[3] < point[1]): y_over = False if (self.__bounds[4] > point[2]) or (self.__bounds[5] < point[2]): y_over = False return x_over and y_over and z_over def pickle(self, fname): """ VTK attributes requires a special treatment during pickling :param fname: file name ended with .pkl :return: """ # Dump pickable objects and store the file names of the unpickable objects stem, ext = os.path.splitext(fname) self.__vtp_fname = stem + '_curve.vtp' pkl_f = open(fname, 'w') try: pickle.dump(self, pkl_f) finally: pkl_f.close() # INTERNAL FUNCTIONALITY AREA def __update_bounds(self): self.__bounds[0], self.__bounds[1] = self.__ids[0].min(), self.__ids[0].max() self.__bounds[2], self.__bounds[3] = self.__ids[1].min(), self.__ids[1].max() self.__bounds[4], self.__bounds[5] = self.__ids[2].min(), self.__ids[2].max() ############################################################################ # Class for a OMSegmentation: oriented membrane segmentation. # Contains two segmentations, one with the membrane the other with the lumen # class OMSegmentation(object): def __init__(self, tomo_mb, tomo_lm, lbl): """ :param tomo_mb: tomogram with the membrane (None is allowed) :param tomo_lm: tomogram with the lumen :param lbl: """ # Input parsing self.__ids_lm = np.where(tomo_lm == lbl) self.__vcount_lm = len(self.__ids_lm[0]) self.__lbl = lbl assert self.__vcount_lm > 0 if tomo_mb is None: self.__ids_mb = self.__ids_lm self.__vcount_mb = self.__vcount_lm else: self.__ids_mb = np.where(tomo_mb == lbl) self.__vcount_mb = len(self.__ids_mb[0]) assert self.__vcount_mb > 0 # Pre-compute bounds for accelerate computations self.__bounds = np.zeros(shape=6, dtype=np.float32) self.__update_bounds() #### Set/Get functionality def get_label(self): """ :return: an integer label """ return self.__lbl def get_ids(self, mode='lm'): """ :param mode: 'mb' or 'lumen' ids :return: segmented voxel indices an array with 4 dimension (N,X,Y,Z) """ assert (mode == 'mb') or (mode == 'lm') if mode == 'mb': return self.__ids_mb elif mode == 'lm': return self.__ids_lm def get_voxels_count(self, mode='mb'): """ :param mode: to count 'mb' or 'lumen' voxels :return: the number of voxel in the segmentation """ assert (mode == 'mb') or (mode == 'lm') if mode == 'mb': return self.__vcount_mb elif mode == 'lm': return self.__vcount_lm def get_bounds(self): """ :return: surface bounds (x_min, x_max, y_min, y_max, z_min, z_max) as array """ return self.__bounds #### External functionality def bound_in_bounds(self, bounds): """ Check if the object's bound are at least partially in another bound :param bounds: input bound :return: """ hold_bounds = self.__bounds x_over, y_over, z_over = True, True, True if (hold_bounds[0] > bounds[1]) or (hold_bounds[1] < bounds[0]): x_over = False if (hold_bounds[2] > bounds[3]) or (hold_bounds[3] < bounds[2]): y_over = False if (hold_bounds[4] > bounds[5]) or (hold_bounds[5] < bounds[4]): y_over = False return x_over and y_over and z_over def point_in_bounds(self, point): """ Check if a point within filament's bounds :param point: point to check :return: """ hold_bounds = self.__bounds x_over, y_over, z_over = True, True, True if (hold_bounds[0] > point[0]) or (hold_bounds[1] < point[0]): x_over = False if (hold_bounds[2] > point[1]) or (hold_bounds[3] < point[1]): y_over = False if (hold_bounds[4] > point[2]) or (hold_bounds[5] < point[2]): y_over = False return x_over and y_over and z_over def pickle(self, fname): """ VTK attributes requires a special treatment during pickling :param fname: file name ended with .pkl :return: """ # Dump pickable objects and store the file names of the unpickable objects stem, ext = os.path.splitext(fname) self.__vtp_fname = stem + '_curve.vtp' pkl_f = open(fname, 'w') try: pickle.dump(self, pkl_f) finally: pkl_f.close() # INTERNAL FUNCTIONALITY AREA def __update_bounds(self): bounds_mb, bounds_lm = np.zeros(shape=6, dtype=np.float32), np.zeros(shape=6, dtype=np.float32) bounds_mb[0], bounds_mb[1] = self.__ids_mb[0].min(), self.__ids_mb[0].max() bounds_mb[2], bounds_mb[3] = self.__ids_mb[1].min(), self.__ids_mb[1].max() bounds_mb[4], bounds_mb[5] = self.__ids_mb[2].min(), self.__ids_mb[2].max() bounds_lm[0], bounds_lm[1] = self.__ids_lm[0].min(), self.__ids_lm[0].max() bounds_lm[2], bounds_lm[3] = self.__ids_lm[1].min(), self.__ids_lm[1].max() bounds_lm[4], bounds_lm[5] = self.__ids_lm[2].min(), self.__ids_lm[2].max() if bounds_mb[0] < bounds_lm[0]: self.__bounds[0] = bounds_mb[0] else: self.__bounds[0] = bounds_lm[0] if bounds_mb[1] < bounds_lm[1]: self.__bounds[1] = bounds_mb[1] else: self.__bounds[1] = bounds_lm[1] if bounds_mb[2] < bounds_lm[2]: self.__bounds[2] = bounds_mb[2] else: self.__bounds[2] = bounds_lm[2] if bounds_mb[3] < bounds_lm[3]: self.__bounds[3] = bounds_mb[3] else: self.__bounds[3] = bounds_lm[3] if bounds_mb[4] < bounds_lm[4]: self.__bounds[4] = bounds_mb[4] else: self.__bounds[4] = bounds_lm[4] if bounds_mb[5] < bounds_lm[5]: self.__bounds[5] = bounds_mb[5] else: self.__bounds[5] = bounds_lm[5] ############################################################################ # Class for tomograms with oriented membrane segmentations # class TomoOMSegmentations(object): def __init__(self, name, voi_mb=None, voi_lm=None, max_dst=0, res=1): """ :param name: name to identify the tomogram :param voi_mb: if None (default) the membrane tomogram is loaded from tomo_fname, otherwise this is actually the input tomogram :param voi_lm: if None (default) the lumen tomogram is loaded from tomo_fname, otherwise this is actually the input tomogram :param max_dst: maximum distance to lumen border for membrane segmentation (in segmentation pixels) :param res: input value """ # Input parsing if not isinstance(name, str): error_msg = 'Input is not a string.' raise pexceptions.PySegInputError(expr='__init__ (TomoOMSegmentations)', msg=error_msg) if (voi_mb is not None) and (not isinstance(voi_mb, np.ndarray)): error_msg = 'Input VOI for membranes must be an numpy.ndarray.' raise pexceptions.PySegInputError(expr='__init__ (TomoOMSegmentations)', msg=error_msg) if (voi_lm is not None) and (not isinstance(voi_lm, np.ndarray)): error_msg = 'Input VOI for lumen must be an numpy.ndarray.' raise pexceptions.PySegInputError(expr='__init__ (TomoOMSegmentations)', msg=error_msg) self.__name = name self.__segs = list() # Create the lumen's label field if voi_mb.shape != voi_lm.shape: error_msg = 'Input tomograms for membranes and lumen must have the same sizes.' raise pexceptions.PySegInputError(expr='__init__ (TomoOMSegmentations)', msg=error_msg) self.__lbl_voi_lm, nlbls = sp.ndimage.label(voi_lm, structure=np.ones(shape=(3, 3, 3))) lbls_lm = list(range(1, nlbls+1)) # disperse_io.save_numpy(self.__lbl_voi_lm, '/fs/pool/pool-ruben/antonio/filaments/ltomos_omsegs/test/hold_lm.mrc') hold_lm = sp.ndimage.morphology.binary_dilation(voi_lm > 0) dst_field_lm, dst_ids_lm = sp.ndimage.morphology.distance_transform_edt(hold_lm, return_distances=True, return_indices=True) # hold_lm = sp.ndimage.morphology.binary_dilation(voi_lm == 0) # dst_field_inv_lm, dst_ids_inv_lm = sp.ndimage.morphology.distance_transform_edt(hold_lm, return_distances=True, # return_indices=True) # Set lumen labels to membrane segmentation mb_ids = np.where(voi_mb) self.__lbl_voi_mb = np.zeros(shape=voi_mb.shape, dtype=np.int32) for x, y, z in zip(mb_ids[0], mb_ids[1], mb_ids[2]): hold_dst = dst_field_lm[x, y, z] if (hold_dst > 0) and (hold_dst <= max_dst): x_idx, y_idx, z_idx = dst_ids_lm[:, x, y, z] x_l = x_idx - 2 if x_l <= 0: x_l = 0 x_h = x_idx + 3 if x_h >= self.__lbl_voi_mb.shape[0]: x_h = self.__lbl_voi_mb.shape[0] y_l = y_idx - 2 if y_l <= 0: y_l = 0 y_h = y_idx + 3 if y_h >= self.__lbl_voi_mb.shape[1]: y_h = self.__lbl_voi_mb.shape[1] z_l = z_idx - 2 if z_l <= 0: z_l = 0 z_h = z_idx + 3 if z_h >= self.__lbl_voi_mb.shape[2]: z_h = self.__lbl_voi_mb.shape[2] hold_lbls_lm = self.__lbl_voi_lm[x_l:x_h, y_l:y_h, z_l:z_h] try: hold_lbl_lm = np.argmax(np.bincount(hold_lbls_lm[hold_lbls_lm > 0])) self.__lbl_voi_mb[x, y, z] = hold_lbl_lm except ValueError: pass # print 'jol 1' # else: # hold_dst_inv = dst_field_inv_lm[x, y, z] # if (hold_dst_inv > 0) and (hold_dst_inv <= max_dst): # x_idx, y_idx, z_idx = dst_ids_inv_lm[:, x, y, z] # x_l = x_idx - 2 # if x_l <= 0: # x_l = 0 # x_h = x_idx + 3 # if x_h >= self.__lbl_voi_mb.shape[0]: # x_h = self.__lbl_voi_mb.shape[0] # y_l = y_idx - 2 # if y_l <= 0: # y_l = 0 # y_h = y_idx + 3 # if y_h >= self.__lbl_voi_mb.shape[1]: # y_h = self.__lbl_voi_mb.shape[1] # z_l = z_idx - 2 # if z_l <= 0: # z_l = 0 # z_h = z_idx + 3 # if z_h >= self.__lbl_voi_mb.shape[2]: # z_h = self.__lbl_voi_mb.shape[2] # hold_lbls_lm = self.__lbl_voi_lm[x_l:x_h, y_l:y_h, z_l:z_h] # try: # hold_lbl_lm = np.argmax(np.bincount(hold_lbls_lm[hold_lbls_lm > 0])) # self.__lbl_voi_mb[x, y, z] = hold_lbl_lm # except ValueError: # pass # print 'Jol 2' # else: # pass # print 'Jol 3' # Create the segmentations for lbl_lm in lbls_lm: try: self.__segs.append(OMSegmentation(self.__lbl_voi_mb, self.__lbl_voi_lm, lbl_lm)) except AssertionError: continue # Pixel size settings self.set_resolution(res) # GET/SET AREA def set_resolution(self, res): """ Set resolution in nm/pixel :param res: input value :return: """ assert res > 0 self.__res = res self.__res_3 = self.__res * self.__res * self.__res def get_voi(self, mode='mb'): """ Get the tomograms with the segmentations VOI :param mode: 'mb' membrane, 'lm' lumen, 'mb-lm' membrane and lumen fused :return: a binary ndarray """ if mode == 'mb': return self.__lbl_voi_mb > 0 elif mode == 'lm': return self.__lbl_voi_lm > 0 elif mode == 'mb-lm': return (self.__voi_mb + self.__voi_lm) > 0 else: error_msg = 'Input mode not valid: ' + str(mode) raise pexceptions.PySegInputError(expr='get_voi (TomoOMSegmentations)', msg=error_msg) def get_lbl_voi(self, mode='mb'): """ Get the labeled tomograms with the segmentations :param mode: 'mb' membrane, 'lm' lumen :return: an ndarray with the segmentations labeled """ if mode == 'mb': return self.__lbl_voi_mb elif mode == 'lm': return self.__lbl_voi_lm else: error_msg = 'Input mode not valid: ' + str(mode) raise pexceptions.PySegInputError(expr='get_voi (TomoOMSegmentations)', msg=error_msg) def get_tomo_name(self): return self.__name def get_segmentations(self): return self.__segs def get_num_segmentations(self): return len(self.__segs) def get_tomo_vol(self): """ Compute the volume of the whole tomogram (um**3) :return: a float value """ return np.asarray(self.__lbl_voi_mb.shape, dtype=np.float).prod() \ * self.__res * self.__res * self.__res * NM3_TO_UM3 # EXTERNAL FUNCTIONALITY AREA def delete_segmentation(self, seg_ids): """ Remove segmentations from the list :param seg_ids: integer ids of the segmentations (their position in the current list of segmentations) :return: None """ # Loop for keeping survivors hold_segs = list() for i in range(len(self.__segs)): if not i in seg_ids: hold_segs.append(self.__segs[i]) # Updating the list of segmentations self.__segs = hold_segs def pickle(self, fname): """ :param fname: file name ended with .pkl :return: """ pkl_f = open(fname, 'w') try: pickle.dump(self, pkl_f) finally: pkl_f.close() def compute_voi_volume(self, mode='mb'): """ Compute voi volume in voxels :param mode: 'mb' membrane, 'lm' lumen, 'mb-lm' membrane and lumen fused :return: the volume (um**3) for each organelle """ if mode == 'mb': return self.__voi_mb.sum() * self.__res_3 * NM3_TO_UM3 elif mode == 'lm': return self.__voi_lm.sum() * self.__res_3 * NM3_TO_UM3 elif mode == 'mb-lm': return (self.__voi_mb.sum() + self.__voi_lm.sum()) * self.__res_3 * NM3_TO_UM3 else: error_msg = 'Input mode not valid: ' + str(mode) raise pexceptions.PySegInputError(expr='compute_voi_volume (TomoOMSegmentations)', msg=error_msg) def compute_seg_volumes(self, mode='mb'): """ Compute the volumes for each segmentation :param mode: 'mb' membrane, 'lm' lumen :return: an array with the volume (um**3) for each organelle """ vols = np.zeros(shape=len(self.__segs), dtype=np.float32) for i, seg in enumerate(self.__segs): vols[i] = seg.get_voxels_count(mode) * self.__res * self.__res * self.__res * NM3_TO_UM3 return vols def compute_om_seg_dsts(self): """ Computes the distance among the different oriented membrane segmentations :return: a 3D array (tomogram segmemntation) where each voxels encodes the distance to the closes membrane segmentation, background pixels are set to zero. """ # Initialization dsts_field =
np.zeros(shape=self.__lbl_voi_lm.shape, dtype=np.float32)
numpy.zeros
# emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the NiBabel package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import numpy as np import itertools from io import BytesIO from numpy.testing import assert_array_equal, assert_array_almost_equal, dec # Decorator to skip tests requiring save / load if scipy not available for mat # files from ..optpkg import optional_package _, have_scipy, _ = optional_package('scipy') scipy_skip =
dec.skipif(not have_scipy, 'scipy not available')
numpy.testing.dec.skipif
""" SUH-SPH interpolation comparison ================================== """ import numpy as np from bfieldtools.mesh_conductor import MeshConductor, StreamFunction from mayavi import mlab import trimesh import matplotlib.pyplot as plt from bfieldtools.sphtools import basis_fields as sphfield from bfieldtools.sphtools import field as sph_field_eval from bfieldtools.sphtools import basis_potentials, potential import mne from bfieldtools.viz import plot_data_on_vertices, plot_mesh #%% SAVE_DIR = "./MNE interpolation/" #%% EVOKED = True with np.load(SAVE_DIR + "mne_data.npz", allow_pickle=True) as data: p = data["p"] n = data["n"] mesh = trimesh.Trimesh(vertices=data["vertices"], faces=data["faces"]) if EVOKED: evoked = mne.Evoked(SAVE_DIR + "left_auditory-ave.fif") i0, i1 = evoked.time_as_index(0.08)[0], evoked.time_as_index(0.09)[0] field = evoked.data[:, i0:i1].mean(axis=1) else: # take "data" from lead field matrix, i.e, topography of a single dipole from mne.datasets import sample import os data_path = sample.data_path() raw_fname = data_path + "/MEG/sample/sample_audvis_raw.fif" trans = data_path + "/MEG/sample/sample_audvis_raw-trans.fif" src = data_path + "/subjects/sample/bem/sample-oct-6-src.fif" bem = data_path + "/subjects/sample/bem/sample-5120-5120-5120-bem-sol.fif" subjects_dir = os.path.join(data_path, "subjects") # Note that forward solutions can also be read with read_forward_solution fwd = mne.make_forward_solution( raw_fname, trans, src, bem, meg=True, eeg=False, mindist=5.0, n_jobs=2 ) # Take only magnetometers mags = np.array([n[-1] == "1" for n in fwd["sol"]["row_names"]]) L = fwd["sol"]["data"][mags, :] # Take the first dipole field = L[:, 56] #%% radius for inner/outer sph R = np.min(np.linalg.norm(p, axis=1)) - 0.02 #%% lmax = 7 # maximum degree Bca, Bcb = sphfield(p, lmax, normalization="energy", R=R) # sph-components at sensors Bca_sensors = np.einsum("ijk,ij->ik", Bca, n) Bcb_sensors = np.einsum("ijk,ij->ik", Bcb, n) #%% Visualize sph components at the helmet # idx = 20 # evoked1 = evoked.copy() # evoked1.data[:, :] = np.tile(Bca_sensors[:, idx].T, (evoked.times.shape[0], 1)).T # evoked1.plot_topomap(times=0.080, ch_type="mag", colorbar=False) # evoked1 = evoked.copy() # evoked1.data[:, :] = np.tile(Bcb_sensors[:, idx].T, (evoked.times.shape[0], 1)).T # evoked1.plot_topomap(times=0.080, ch_type="mag", colorbar=False) #%% calculate inner sph-coeffients with pinv PINV = True if PINV: alpha = np.linalg.pinv(Bca_sensors, rcond=1e-15) @ field else: # Calculate using regularization ssa = np.linalg.svd(Bca_sensors @ Bca_sensors.T, False, False) reg_exp = 6 _lambda = np.max(ssa) * (10 ** (-reg_exp)) # angular-Laplacian in the sph basis is diagonal La = np.diag([l * (l + 1) for l in range(1, lmax + 1) for m in range(-l, l + 1)]) BB = Bca_sensors.T @ Bca_sensors + _lambda * La alpha = np.linalg.solve(BB, Bca_sensors.T @ field) # Reconstruct field in helmet # reco_sph = np.zeros(field.shape) # i = 0 # for l in range(1, lmax + 1): # for m in range(-1 * l, l + 1): # reco_sph += alpha[i] * Bca_sensors[:, i] # i += 1 # Produces the same result as the loop reco_sph = Bca_sensors @ alpha print( "SPH-reconstruction relative error:", np.linalg.norm(reco_sph - field) / np.linalg.norm(field), ) #%% ##%% Fit the surface current for the auditory evoked response using pinv # c = MeshConductor(mesh_obj=mesh, basis_name="suh", N_suh=35) # M = c.mass # B_sensors = np.einsum("ijk,ij->ik", c.B_coupling(p), n) # # # asuh = np.linalg.pinv(B_sensors, rcond=1e-15) @ field # # s = StreamFunction(asuh, c) # b_filt = B_sensors @ s #%% Suh fit c = MeshConductor(mesh_obj=mesh, basis_name="suh", N_suh=150) M = c.mass B_sensors = np.einsum("ijk,ij->ik", c.B_coupling(p), n) ss = np.linalg.svd(B_sensors @ B_sensors.T, False, False) reg_exp = 1 plot_this = True rel_errors = [] _lambda = np.max(ss) * (10 ** (-reg_exp)) # Laplacian in the suh basis is diagonal BB = B_sensors.T @ B_sensors + _lambda * (-c.laplacian) / np.max(abs(c.laplacian)) a = np.linalg.solve(BB, B_sensors.T @ field) s = StreamFunction(a, c) reco_suh = B_sensors @ s print( "SUH-reconstruction relative error:", np.linalg.norm(reco_suh - field) / np.linalg.norm(field), ) f = mlab.figure(bgcolor=(1, 1, 1)) surf = s.plot(False, figure=f) surf.actor.mapper.interpolate_scalars_before_mapping = True surf.module_manager.scalar_lut_manager.number_of_colors = 16 #%% Plot the evoked and the reconsctructions # evoked1 = evoked.copy() # evoked1.data[:, :] = np.tile(field.T, (evoked.times.shape[0], 1)).T # evoked1.plot_topomap(times=0.080, ch_type="mag") # evoked1 = evoked.copy() # evoked1.data[:, :] = np.tile(reco_sph.T, (evoked.times.shape[0], 1)).T # evoked1.plot_topomap(times=0.080, ch_type="mag") # evoked1 = evoked.copy() # evoked1.data[:, :] = np.tile(reco_suh.T, (evoked.times.shape[0], 1)).T # evoked1.plot_topomap(times=0.080, ch_type="mag") #%% Plot spectra fig, ax = plt.subplots(1, 1) ax.plot(alpha ** 2) L = np.zeros((0,)) M = np.zeros((0,)) for l in range(1, lmax + 1): m_l =
np.arange(-l, l + 1, step=1, dtype=np.int_)
numpy.arange
import sys import numpy as np import random from os.path import join from seisflows.tools import unix from seisflows.workflow.inversion import inversion from scipy.fftpack import fft, fftfreq from seisflows.tools.array import loadnpy, savenpy from seisflows.tools.seismic import setpar, setpararray PAR = sys.modules['seisflows_parameters'] PATH = sys.modules['seisflows_paths'] system = sys.modules['seisflows_system'] solver = sys.modules['seisflows_solver'] optimize = sys.modules['seisflows_optimize'] class inversion_se(inversion): """ Waveform inversion with source encoding """ def check(self): super().check() # get random source if 'RANDOM_OVER_IT' not in PAR: setattr(PAR, 'RANDOM_OVER_IT', 1) # increase frequency over iterations if 'FREQ_INCREASE_PER_IT' not in PAR: setattr(PAR, 'FREQ_INCREASE_PER_IT', 0) # maximum frequency shift over iterations if 'MAX_FREQ_SHIFT' not in PAR: setattr(PAR, 'MAX_FREQ_SHIFT', None) # number of frequency per event if 'NFREQ_PER_EVENT' not in PAR: setattr(PAR, 'NFREQ_PER_EVENT', 1) # default number of super source if 'NSRC' not in PAR: setattr(PAR, 'NSRC', 1) # number of timesteps after steady state NTPSS = int(round(1/((PAR.FREQ_MAX-PAR.FREQ_MIN)/PAR.NEVT/PAR.NFREQ_PER_EVENT)/PAR.DT)) if 'NTPSS' in PAR: assert(PATH.NTPSS == NTPSS) else: setattr(PAR, 'NTPSS', NTPSS) print('Number of timesteps after steady state:', NTPSS) def setup(self): super().setup() unix.mkdir(join(PATH.FUNC, 'residuals')) unix.mkdir(join(PATH.GRAD, 'residuals')) def initialize(self): """ Prepares for next model update iteration """ self.write_model(path=PATH.GRAD, suffix='new') if PAR.RANDOM_OVER_IT or optimize.iter == 1: self.get_random_frequencies() print('Generating synthetics') system.run('solver', 'eval_func', hosts='all', path=PATH.GRAD) self.write_misfit(path=PATH.GRAD, suffix='new') def clean(self): super().clean() unix.mkdir(join(PATH.FUNC, 'residuals')) unix.mkdir(join(PATH.GRAD, 'residuals')) def get_random_frequencies(self): """ Randomly assign a unique frequency for each source """ # ref preprocess/ortho.py setup() ntpss = PAR.NTPSS dt = PAR.DT nt = PAR.NT nrec = PAR.NREC nevt = PAR.NEVT nfpe = PAR.NFREQ_PER_EVENT nsrc = nevt * nfpe freq_min = float(PAR.FREQ_MIN) freq_max = float(PAR.FREQ_MAX) # read data processed py ortho freq_idx = loadnpy(PATH.ORTHO + '/freq_idx') freq = loadnpy(PATH.ORTHO + '/freq') sff_obs = loadnpy(PATH.ORTHO + '/sff_obs') ft_obs = loadnpy(PATH.ORTHO + '/ft_obs') nfreq = len(freq_idx) # ntrace = ft_obs.shape[3] # declaring arrays ft_obs_se = np.zeros((nfreq, nrec), dtype=complex) # encoded frequency of observed seismpgram # frequency processing # TODO freq_mask freq_mask_se = np.ones((nfreq, nrec)) freq_shift = (optimize.iter - 1) * PAR.FREQ_INCREASE_PER_IT if PAR.MAX_FREQ_SHIFT != None: freq_shift = min(freq_shift, PAR.MAX_FREQ_SHIFT) # random frequency freq_range = np.linspace(freq_min + freq_shift, freq_max + freq_shift, nsrc + 1)[:-1] freq_thresh = (freq_max - freq_min) / nsrc / 20 rdm_idx = random.sample(range(0, nsrc), nsrc) # randomly assign frequencies freq_rdm = freq_range[rdm_idx] # assign frequencies stf_filenames = [None] * nsrc for ifpe in range(nfpe): for ievt in range(nevt): isrc = ifpe * nevt + ievt # index of sourrce f0 = freq_rdm[isrc] # central frequency of source # get sinus source time function T = 2 * np.pi * dt *
np.linspace(0, nt - 1, nt)
numpy.linspace
import numpy as np def check_uv(u, v): """ Returns weightings for frequencies u and v for anisotropic surfaces """ if abs(u) + abs(v) == 0: return 4. elif u * v == 0: return 2. return 1. vcheck = np.vectorize(check_uv) def wave_function(x, u, Lx): """ Wave in Fourier sum """ coeff = 2 * np.pi / Lx if u >= 0: return np.cos(coeff * u * x) return np.sin(coeff * abs(u) * x) def d_wave_function(x, u, Lx): """ First derivative of wave in Fourier sum wrt x """ coeff = 2 * np.pi / Lx if u >= 0: return - coeff * u * np.sin(coeff * u * x) return coeff * abs(u) * np.cos(coeff * abs(u) * x) def dd_wave_function(x, u, Lx): """ Second derivative of wave in Fouier sum wrt x """ coeff = 2 * np.pi / Lx return - coeff ** 2 * u ** 2 * wave_function(x, u, Lx) def cos_sin_indices(u_array): """Return indices of wave function arrays for both cos and sin functions""" cos_indices = np.argwhere(u_array >= 0) sin_indices = np.argwhere(u_array < 0) return cos_indices, sin_indices def wave_function_array(x, u_array, Lx): """ Returns numpy array of all waves in Fourier sum """ coeff = 2 * np.pi / Lx q = coeff * np.abs(u_array) * x cos_indices, sin_indices = cos_sin_indices(u_array) f_array = np.zeros(u_array.shape) f_array[cos_indices] += np.cos(q[cos_indices]) f_array[sin_indices] += np.sin(q[sin_indices]) return f_array def d_wave_function_array(x, u_array, Lx): """ d_wave_function_array(x, u_array, Lx) Returns numpy array of all derivatives of waves in Fourier sum """ coeff = 2 * np.pi / Lx q = coeff * np.abs(u_array) * x cos_indices, sin_indices = cos_sin_indices(u_array) f_array = np.zeros(u_array.shape) f_array[cos_indices] -= np.sin(q[cos_indices]) f_array[sin_indices] += np.cos(q[sin_indices]) f_array *= coeff * np.abs(u_array) return f_array def dd_wave_function_array(x, u_array, Lx): """Returns numpy array of all second derivatives of waves in Fourier sum""" coeff = 2 * np.pi / Lx f_array = wave_function_array(x, u_array, Lx) return - coeff ** 2 * u_array ** 2 * f_array def wave_arrays(qm): """Return full arrays of each (u, v) 2D wave frequency combination for a given maximum frequency, `qm`""" v_mat, u_mat = np.meshgrid( np.arange(-qm, qm + 1), np.arange(-qm, qm + 1) ) u_array = u_mat.flatten() v_array = v_mat.flatten() return u_array, v_array def wave_indices(qu, u_array, v_array): """Return indices of both u_array and v_array that contain waves resulting from truncation of `qu` upper bound frequency""" wave_mask = ( (u_array >= -qu) * (u_array <= qu) * (v_array >= -qu) * (v_array <= qu) ) indices =
np.argwhere(wave_mask)
numpy.argwhere
"""Copyright 2020 Huawei Technologies Co., Ltd. Licensed under the Apache License, Version 2.0 (the "License"); You may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" import numpy as np import copy import math class WHENet(object): """WHENet""" def __init__(self, camera_width, camera_height, whenet_model): self.whenet = whenet_model self.camera_height = camera_height self.camera_width = camera_width def inference(self, nparryList, box_width, box_height): """ WHENet preprocessing, inference and postprocessing Args: nparryList: result from YOLO V3, which is detected head area box_width: width of the detected area box_height: height of the detected area Returns: return yaw pitch roll value values in numpy format """ resultList_whenet = self.whenet.execute([nparryList]) # postprocessing: convert model output to yaw pitch roll value yaw, pitch, roll = self.whenet_angle(resultList_whenet) print('Yaw, pitch, roll angles: ', yaw, pitch, roll) # obtain coordinate points from head pose angles for plotting return self.whenet_draw(yaw, pitch, roll, tdx=box_width, tdy=box_height, size=200) def softmax(self, x): """softmax""" x -= np.max(x, axis=1, keepdims=True) a = np.exp(x) b = np.sum(np.exp(x), axis=1, keepdims=True) return a / b def whenet_draw(self, yaw, pitch, roll, tdx=None, tdy=None, size=200): """ Plot lines based on yaw pitch roll values Args: yaw, pitch, roll: values of angles tdx, tdy: center of detected head area Returns: graph: locations of three lines """ # taken from hopenet pitch = pitch * np.pi / 180 yaw = -(yaw * np.pi / 180) roll = roll * np.pi / 180 tdx = tdx tdy = tdy # X-Axis pointing to right. drawn in red x1 = size * (math.cos(yaw) * math.cos(roll)) + tdx y1 = size * (math.cos(pitch) * math.sin(roll) + math.cos(roll) * math.sin(pitch) * math.sin(yaw)) + tdy # Y-Axis | drawn in green x2 = size * (-math.cos(yaw) * math.sin(roll)) + tdx y2 = size * (math.cos(pitch) * math.cos(roll) - math.sin(pitch) * math.sin(yaw) * math.sin(roll)) + tdy # Z-Axis (out of the screen) drawn in blue x3 = size * (math.sin(yaw)) + tdx y3 = size * (-math.cos(yaw) * math.sin(pitch)) + tdy return { "yaw_x": x1, "yaw_y": y1, "pitch_x": x2, "pitch_y": y2, "roll_x": x3, "roll_y": y3 } def whenet_angle(self, resultList_whenet): """ Obtain yaw pitch roll value in degree based on the output of model Args: resultList_whenet: result of WHENet Returns: yaw_predicted, pitch_predicted, roll_predicted: yaw pitch roll values """ yaw = resultList_whenet[0] yaw =
np.reshape(yaw, (1, 120, 1, 1))
numpy.reshape
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index = IntervalIndex(data, closed=closed) # validate the expected index assert expected_index.empty assert expected_index.closed == closed assert expected_index.dtype.subtype == expected_dtype tm.assert_numpy_array_equal(expected_index.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) def test_constructors_errors(self): # scalar msg = ('IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): IntervalIndex(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): IntervalIndex([0, 1]) with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_intervals([0, 1]) # invalid closed msg = "invalid options for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed within intervals msg = 'intervals must all be closed on the same side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with tm.assert_raises_regex(ValueError, msg): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # mismatched closed inferred from intervals vs constructor. msg = 'conflicting values for closed' with tm.assert_raises_regex(ValueError, msg): iv = [Interval(0, 1, closed='both'), Interval(1, 2, closed='both')] IntervalIndex(iv, closed='neither') # no point in nesting periods in an IntervalIndex msg = 'Period dtypes are not supported, use a PeriodIndex instead' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) # decreasing breaks/arrays msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks(range(10, -1, -1)) with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays(range(10, -1, -1), range(9, -2, -1)) def test_constructors_datetimelike(self, closed): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx, closed=closed) expected = IntervalIndex.from_breaks(idx.values, closed=closed) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self, closed): index = self.create_index(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) tm.assert_index_equal(index.left, Index(np.arange(10))) tm.assert_index_equal(index.right, Index(np.arange(1, 11))) tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5))) assert index.closed == closed ivs = [Interval(l, r, closed) for l, r in zip(range(10), range(1, 11))] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.create_index_with_nan(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9]) expected_right = expected_left + 1 expected_mid = expected_left + 0.5 tm.assert_index_equal(index.left, expected_left) tm.assert_index_equal(index.right, expected_right) tm.assert_index_equal(index.mid, expected_mid) assert index.closed == closed ivs = [Interval(l, r, closed) if notna(l) else np.nan for l, r in zip(expected_left, expected_right)] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self, closed): index = self.create_index(closed=closed) assert not index.hasnans result = index.isna() expected = np.repeat(False, len(index)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.repeat(True, len(index)) tm.assert_numpy_array_equal(result, expected) index = self.create_index_with_nan(closed=closed) assert index.hasnans result = index.isna() expected = np.array([False, True] + [False] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.array([True, False] + [True] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) def test_copy(self, closed): expected = self.create_index(closed=closed) result = expected.copy() assert result.equals(expected) result = expected.copy(deep=True) assert result.equals(expected) assert result.left is not expected.left def test_ensure_copied_data(self, closed): # exercise the copy flag in the constructor # not copying index = self.create_index(closed=closed) result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(pd.date_range('20130101', periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='foo') expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='bar') assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed) assert not expected.equals(expected_other_closed) def test_astype(self, closed): idx = self.create_index(closed=closed) for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('klass', [list, tuple, np.array, pd.Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected) def test_delete(self, closed): expected = IntervalIndex.from_breaks(np.arange(1, 11), closed=closed) result = self.create_index(closed=closed).delete(0) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [ interval_range(0, periods=10, closed='neither'), interval_range(1.7, periods=8, freq=2.5, closed='both'), interval_range(Timestamp('20170101'), periods=12, closed='left'), interval_range(Timedelta('1 day'), periods=6, closed='right'), IntervalIndex.from_tuples([('a', 'd'), ('e', 'j'), ('w', 'z')]), IntervalIndex.from_tuples([(1, 2), ('a', 'z'), (3.14, 6.28)])]) def test_insert(self, data): item = data[0] idx_item = IntervalIndex([item]) # start expected = idx_item.append(data) result = data.insert(0, item) tm.assert_index_equal(result, expected) # end expected = data.append(idx_item) result = data.insert(len(data), item) tm.assert_index_equal(result, expected) # mid expected = data[:3].append(idx_item).append(data[3:]) result = data.insert(3, item) tm.assert_index_equal(result, expected) # invalid type msg = 'can only insert Interval objects and NA into an IntervalIndex' with tm.assert_raises_regex(ValueError, msg): data.insert(1, 'foo') # invalid closed msg = 'inserted item must be closed on the same side as the index' for closed in {'left', 'right', 'both', 'neither'} - {item.closed}: with tm.assert_raises_regex(ValueError, msg): bad_item = Interval(item.left, item.right, closed=closed) data.insert(1, bad_item) # GH 18295 (test missing) na_idx = IntervalIndex([np.nan], closed=data.closed) for na in (np.nan, pd.NaT, None): expected = data[:1].append(na_idx).append(data[1:]) result = data.insert(1, na) tm.assert_index_equal(result, expected) def test_take(self, closed): index = self.create_index(closed=closed) result = index.take(range(10)) tm.assert_index_equal(result, index) result = index.take([0, 0, 1]) expected = IntervalIndex.from_arrays( [0, 0, 1], [1, 1, 2], closed=closed) tm.assert_index_equal(result, expected) def test_unique(self, closed): # unique non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_unique # unique overlapping - distinct endpoints idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed) assert idx.is_unique # unique overlapping - shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_unique # unique nested idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed) assert idx.is_unique # duplicate idx = IntervalIndex.from_tuples( [(0, 1), (0, 1), (2, 3)], closed=closed) assert not idx.is_unique # unique mixed idx = IntervalIndex.from_tuples([(0, 1), ('a', 'b')], closed=closed) assert idx.is_unique # duplicate mixed idx = IntervalIndex.from_tuples( [(0, 1), ('a', 'b'), (0, 1)], closed=closed) assert not idx.is_unique # empty idx = IntervalIndex([], closed=closed) assert idx.is_unique def test_monotonic(self, closed): # increasing non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing non-overlapping idx = IntervalIndex.from_tuples( [(4, 5), (2, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (4, 5), (2, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping idx = IntervalIndex.from_tuples( [(0, 2), (0.5, 2.5), (1, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping idx = IntervalIndex.from_tuples( [(1, 3), (0.5, 2.5), (0, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered overlapping idx = IntervalIndex.from_tuples( [(0.5, 2.5), (0, 2), (1, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(2, 3), (1, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # stationary idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed) assert idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # empty idx = IntervalIndex([], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self, closed): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed) assert i[0] == Interval(0.0, 1.0, closed=closed) assert i[1] == Interval(1.0, 2.0, closed=closed) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed=closed) tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed=closed) tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed=closed) tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) pytest.raises(KeyError, idx.get_loc, 1.5) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed='both') assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(1, 2) == (0, 2) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) def test_slice_locs_fails(self): index = IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)]) with pytest.raises(KeyError): index.slice_locs(1, 2) def test_get_loc_interval(self): assert self.index.get_loc(Interval(0, 1)) == 0 assert self.index.get_loc(Interval(0, 0.5)) == 0 assert self.index.get_loc(Interval(0, 1, 'left')) == 0 pytest.raises(KeyError, self.index.get_loc, Interval(2, 3)) pytest.raises(KeyError, self.index.get_loc, Interval(-1, 0, 'left')) def test_get_indexer(self): actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(self.index) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) index = IntervalIndex.from_breaks([0, 1, 2], closed='left') actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index[:1]) expected = np.array([0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index) expected = np.array([-1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_subintervals(self): # TODO: is this right? # return indexers for wholly contained subintervals target = IntervalIndex.from_breaks(np.linspace(0, 2, 5)) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='p') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2]) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(target[[0, -1]]) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left') actual = self.index.get_indexer(target) expected = np.array([0, 0, 0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_contains(self): # Only endpoints are valid. i = IntervalIndex.from_arrays([0, 1], [1, 2]) # Invalid assert 0 not in i assert 1 not in i assert 2 not in i # Valid assert Interval(0, 1) in i assert Interval(0, 2) in i assert Interval(0, 0.5) in i assert Interval(3, 5) not in i assert Interval(-1, 0, closed='left') not in i def testcontains(self): # can select values that are IN the range of a value i = IntervalIndex.from_arrays([0, 1], [1, 2]) assert i.contains(0.1) assert i.contains(0.5) assert i.contains(1) assert i.contains(Interval(0, 1)) assert i.contains(Interval(0, 2)) # these overlaps completely assert i.contains(Interval(0, 3)) assert i.contains(Interval(1, 3)) assert not i.contains(20) assert not i.contains(-20) def test_dropna(self, closed): expected = IntervalIndex.from_tuples( [(0.0, 1.0), (1.0, 2.0)], closed=closed) ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) ii = IntervalIndex.from_arrays( [0, 1, np.nan], [1, 2, np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) def test_non_contiguous(self, closed): index = IntervalIndex.from_tuples([(0, 1), (2, 3)], closed=closed) target = [0.5, 1.5, 2.5] actual = index.get_indexer(target) expected = np.array([0, -1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) assert 1.5 not in index def test_union(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(13), closed=closed) result = index.union(other) tm.assert_index_equal(result, expected) result = other.union(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.union(index), index) tm.assert_index_equal(index.union(index[:1]), index) def test_intersection(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(5, 11), closed=closed) result = index.intersection(other) tm.assert_index_equal(result, expected) result = other.intersection(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.intersection(index), index) def test_difference(self, closed): index = self.create_index(closed=closed) tm.assert_index_equal(index.difference(index[:1]), index[1:]) def test_symmetric_difference(self, closed): idx = self.create_index(closed=closed) result = idx[1:].symmetric_difference(idx[:-1]) expected = IntervalIndex([idx[0], idx[-1]]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('op_name', [ 'union', 'intersection', 'difference', 'symmetric_difference']) def test_set_operation_errors(self, closed, op_name): index = self.create_index(closed=closed) set_op = getattr(index, op_name) # test errors msg = ('can only do set operations between two IntervalIndex objects ' 'that are closed on the same side') with tm.assert_raises_regex(ValueError, msg): set_op(Index([1, 2, 3])) for other_closed in {'right', 'left', 'both', 'neither'} - {closed}: other = self.create_index(closed=other_closed) with tm.assert_raises_regex(ValueError, msg): set_op(other) def test_isin(self, closed): index = self.create_index(closed=closed) expected = np.array([True] + [False] * (len(index) - 1)) result = index.isin(index[:1]) tm.assert_numpy_array_equal(result, expected) result = index.isin([index[0]]) tm.assert_numpy_array_equal(result, expected) other = IntervalIndex.from_breaks(np.arange(-2, 10), closed=closed) expected = np.array([True] * (len(index) - 1) + [False]) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) for other_closed in {'right', 'left', 'both', 'neither'}: other = self.create_index(closed=other_closed) expected = np.repeat(closed == other_closed, len(index)) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) def test_comparison(self): actual = Interval(0, 1) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = Interval(0.5, 1.5) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > Interval(0.5, 1.5) tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index expected = np.array([True, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index <= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index >= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index < self.index expected = np.array([False, False]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index == IntervalIndex.from_breaks([0, 1, 2], 'left') tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index.values == self.index tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index <= self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index != self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index > self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index.values > self.index tm.assert_numpy_array_equal(actual, np.array([False, False])) # invalid comparisons actual = self.index == 0 tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index == self.index.left tm.assert_numpy_array_equal(actual, np.array([False, False])) with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index > 0 with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index <= 0 with pytest.raises(TypeError): self.index > np.arange(2) with pytest.raises(ValueError): self.index > np.arange(3) def test_missing_values(self, closed): idx = Index([np.nan, Interval(0, 1, closed=closed), Interval(1, 2, closed=closed)]) idx2 = IntervalIndex.from_arrays( [np.nan, 0, 1], [np.nan, 1, 2], closed=closed) assert idx.equals(idx2) with pytest.raises(ValueError): IntervalIndex.from_arrays( [np.nan, 0, 1], np.array([0, 1, 2]), closed=closed) tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False])) def test_sort_values(self, closed): index = self.create_index(closed=closed) result = index.sort_values() tm.assert_index_equal(result, index) result = index.sort_values(ascending=False) tm.assert_index_equal(result, index[::-1]) # with nan index = IntervalIndex([Interval(1, 2), np.nan, Interval(0, 1)]) result = index.sort_values() expected = IntervalIndex([Interval(0, 1), Interval(1, 2), np.nan]) tm.assert_index_equal(result, expected) result = index.sort_values(ascending=False) expected = IntervalIndex([np.nan, Interval(1, 2), Interval(0, 1)]) tm.assert_index_equal(result, expected) def test_datetime(self): dates = date_range('2000', periods=3) idx = IntervalIndex.from_breaks(dates) tm.assert_index_equal(idx.left, dates[:2]) tm.assert_index_equal(idx.right, dates[-2:]) expected = date_range('2000-01-01T12:00', periods=2) tm.assert_index_equal(idx.mid, expected) assert Timestamp('2000-01-01T12') not in idx assert Timestamp('2000-01-01T12') not in idx target = date_range('1999-12-31T12:00', periods=7, freq='12H') actual = idx.get_indexer(target) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_append(self, closed): index1 = IntervalIndex.from_arrays([0, 1], [1, 2], closed=closed) index2 = IntervalIndex.from_arrays([1, 2], [2, 3], closed=closed) result = index1.append(index2) expected = IntervalIndex.from_arrays( [0, 1, 1, 2], [1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) result = index1.append([index1, index2]) expected = IntervalIndex.from_arrays( [0, 1, 0, 1, 1, 2], [1, 2, 1, 2, 2, 3], closed=closed) tm.assert_index_equal(result, expected) msg = ('can only append two IntervalIndex objects that are closed ' 'on the same side') for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: index_other_closed = IntervalIndex.from_arrays( [0, 1], [1, 2], closed=other_closed) with tm.assert_raises_regex(ValueError, msg): index1.append(index_other_closed) def test_is_non_overlapping_monotonic(self, closed): # Should be True in all cases tpls = [(0, 1), (2, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is True idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is True # Should be False in all cases (overlapping) tpls = [(0, 2), (1, 3), (4, 5), (6, 7)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False in all cases (non-monotonic) tpls = [(0, 1), (2, 3), (6, 7), (4, 5)] idx = IntervalIndex.from_tuples(tpls, closed=closed) assert idx.is_non_overlapping_monotonic is False idx = IntervalIndex.from_tuples(tpls[::-1], closed=closed) assert idx.is_non_overlapping_monotonic is False # Should be False for closed='both', overwise True (GH16560) if closed == 'both': idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is False else: idx = IntervalIndex.from_breaks(range(4), closed=closed) assert idx.is_non_overlapping_monotonic is True class TestIntervalRange(object): def test_construction_from_numeric(self, closed, name): # combinations of start/end/periods without freq expected = IntervalIndex.from_breaks( np.arange(0, 6), name=name, closed=closed) result = interval_range(start=0, end=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=0, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=5, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with freq expected = IntervalIndex.from_tuples([(0, 2), (2, 4), (4, 6)], name=name, closed=closed) result = interval_range(start=0, end=6, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=0, periods=3, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=6, periods=3, freq=2, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. expected = IntervalIndex.from_tuples([(0.0, 1.5), (1.5, 3.0)], name=name, closed=closed) result = interval_range(start=0, end=4, freq=1.5, name=name, closed=closed) tm.assert_index_equal(result, expected) def test_construction_from_timestamp(self, closed, name): # combinations of start/end/periods without freq start, end = Timestamp('2017-01-01'), Timestamp('2017-01-06') breaks = date_range(start=start, end=end) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with fixed freq freq = '2D' start, end = Timestamp('2017-01-01'), Timestamp('2017-01-07') breaks = date_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timestamp('2017-01-08') result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with non-fixed freq freq = 'M' start, end = Timestamp('2017-01-01'), Timestamp('2017-12-31') breaks = date_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=11, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=11, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timestamp('2018-01-15') result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) def test_construction_from_timedelta(self, closed, name): # combinations of start/end/periods without freq start, end = Timedelta('1 day'), Timedelta('6 days') breaks = timedelta_range(start=start, end=end) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=5, name=name, closed=closed) tm.assert_index_equal(result, expected) # combinations of start/end/periods with fixed freq freq = '2D' start, end = Timedelta('1 day'), Timedelta('7 days') breaks = timedelta_range(start=start, end=end, freq=freq) expected = IntervalIndex.from_breaks(breaks, name=name, closed=closed) result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(start=start, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) result = interval_range(end=end, periods=3, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) # output truncates early if freq causes end to be skipped. end = Timedelta('7 days 1 hour') result = interval_range(start=start, end=end, freq=freq, name=name, closed=closed) tm.assert_index_equal(result, expected) def test_constructor_coverage(self): # float value for periods expected = pd.interval_range(start=0, periods=10) result = pd.interval_range(start=0, periods=10.5) tm.assert_index_equal(result, expected) # equivalent timestamp-like start/end start, end = Timestamp('2017-01-01'), Timestamp('2017-01-15') expected = pd.interval_range(start=start, end=end) result = pd.interval_range(start=start.to_pydatetime(), end=end.to_pydatetime()) tm.assert_index_equal(result, expected) result = pd.interval_range(start=start.asm8, end=end.asm8) tm.assert_index_equal(result, expected) # equivalent freq with timestamp equiv_freq = ['D', Day(), Timedelta(days=1), timedelta(days=1), DateOffset(days=1)] for freq in equiv_freq: result = pd.interval_range(start=start, end=end, freq=freq) tm.assert_index_equal(result, expected) # equivalent timedelta-like start/end start, end = Timedelta(days=1), Timedelta(days=10) expected = pd.interval_range(start=start, end=end) result = pd.interval_range(start=start.to_pytimedelta(), end=end.to_pytimedelta()) tm.assert_index_equal(result, expected) result = pd.interval_range(start=start.asm8, end=end.asm8) tm.assert_index_equal(result, expected) # equivalent freq with timedelta equiv_freq = ['D', Day(), Timedelta(days=1), timedelta(days=1)] for freq in equiv_freq: result = pd.interval_range(start=start, end=end, freq=freq) tm.assert_index_equal(result, expected) def test_errors(self): # not enough params msg = ('Of the three parameters: start, end, and periods, ' 'exactly two must be specified') with tm.assert_raises_regex(ValueError, msg): interval_range(start=0) with tm.assert_raises_regex(ValueError, msg): interval_range(end=5) with tm.assert_raises_regex(ValueError, msg): interval_range(periods=2) with tm.assert_raises_regex(ValueError, msg): interval_range() # too many params with tm.assert_raises_regex(ValueError, msg): interval_range(start=0, end=5, periods=6) # mixed units msg = 'start, end, freq need to be type compatible' with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=Timestamp('20130101'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=Timedelta('1 day'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=Timedelta('1 day'), freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timestamp('20130101'), end=Timestamp('20130110'), freq=2) with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=10, freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=Timestamp('20130110'), freq='D') with tm.assert_raises_regex(TypeError, msg): interval_range(start=Timedelta('1 day'), end=Timedelta('10 days'), freq=2) # invalid periods msg = 'periods must be a number, got foo' with tm.assert_raises_regex(TypeError, msg): interval_range(start=0, periods='foo') # invalid start msg = 'start must be numeric or datetime-like, got foo' with tm.assert_raises_regex(ValueError, msg): interval_range(start='foo', periods=10) # invalid end msg = r'end must be numeric or datetime-like, got \(0, 1\]' with tm.assert_raises_regex(ValueError, msg): interval_range(end=Interval(0, 1), periods=10) # invalid freq for datetime-like msg = 'freq must be numeric or convertible to DateOffset, got foo' with tm.assert_raises_regex(ValueError, msg): interval_range(start=0, end=10, freq='foo') with tm.assert_raises_regex(ValueError, msg): interval_range(start=Timestamp('20130101'), periods=10, freq='foo') with tm.assert_raises_regex(ValueError, msg): interval_range(end=Timedelta('1 day'), periods=10, freq='foo') class TestIntervalTree(object): def setup_method(self, method): gentree = lambda dtype: IntervalTree(np.arange(5, dtype=dtype), np.arange(5, dtype=dtype) + 2) self.tree = gentree('int64') self.trees = {dtype: gentree(dtype) for dtype in ['int32', 'int64', 'float32', 'float64']} def test_get_loc(self): for dtype, tree in self.trees.items(): tm.assert_numpy_array_equal(tree.get_loc(1), np.array([0], dtype='int64')) tm.assert_numpy_array_equal(np.sort(tree.get_loc(2)), np.array([0, 1], dtype='int64')) with pytest.raises(KeyError): tree.get_loc(-1) def test_get_indexer(self): for dtype, tree in self.trees.items(): tm.assert_numpy_array_equal( tree.get_indexer(np.array([1.0, 5.5, 6.5])), np.array([0, 4, -1], dtype='int64')) with pytest.raises(KeyError): tree.get_indexer(np.array([3.0])) def test_get_indexer_non_unique(self): indexer, missing = self.tree.get_indexer_non_unique( np.array([1.0, 2.0, 6.5])) tm.assert_numpy_array_equal(indexer[:1], np.array([0], dtype='int64')) tm.assert_numpy_array_equal(np.sort(indexer[1:3]), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(indexer[3:]), np.array([-1], dtype='int64')) tm.assert_numpy_array_equal(missing, np.array([2], dtype='int64')) def test_duplicates(self): tree = IntervalTree([0, 0, 0], [1, 1, 1]) tm.assert_numpy_array_equal(np.sort(tree.get_loc(0.5)), np.array([0, 1, 2], dtype='int64')) with pytest.raises(KeyError): tree.get_indexer(np.array([0.5])) indexer, missing = tree.get_indexer_non_unique(np.array([0.5])) tm.assert_numpy_array_equal(np.sort(indexer), np.array([0, 1, 2], dtype='int64')) tm.assert_numpy_array_equal(missing, np.array([], dtype='int64')) def test_get_loc_closed(self): for closed in ['left', 'right', 'both', 'neither']: tree = IntervalTree([0], [1], closed=closed) for p, errors in [(0, tree.open_left), (1, tree.open_right)]: if errors: with pytest.raises(KeyError): tree.get_loc(p) else: tm.assert_numpy_array_equal(tree.get_loc(p), np.array([0], dtype='int64')) @pytest.mark.skipif(compat.is_platform_32bit(), reason="int type mismatch on 32bit") def test_get_indexer_closed(self): x =
np.arange(1000, dtype='float64')
numpy.arange
# set environment variable: # export COCOTB_REDUCED_LOG_FMT=true to prettify output so that it fits on the screen width import random import cocotb from cocotb.clock import Clock from cocotb.triggers import Join import numpy as np from collections import defaultdict from collections import deque import dill import sys from pprint import pprint as pp from rl_utils import get_state_reward, tick, reset, get_state_reward, Switcher, ACTION_NAME_MAP, initialize_counters, initialize_inputs def epsilon_greedy(Q, state, nA, eps): """Selects epsilon-greedy action for supplied state. Params ====== Q (dictionary): action-value function state (int): current state nA (int): number actions in the environment eps (float): epsilon """ if random.random() > eps: # select greedy action with probability epsilon return
np.argmax(Q[state])
numpy.argmax
import os, sys import inspect currentdir = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) import numpy as np import pytest import librosa import soundpy as sp test_dir = 'test_audio/' test_audiofile = '{}audio2channels.wav'.format(test_dir) test_traffic = '{}traffic.wav'.format(test_dir) test_python = '{}python.wav'.format(test_dir) test_horn = '{}car_horn.wav'.format(test_dir) samples_48000, sr_48000 = librosa.load(test_audiofile, sr=48000) samples_44100, sr_44100 = librosa.load(test_audiofile, sr=44100) samples_22050, sr_22050 = librosa.load(test_audiofile, sr=22050) samples_16000, sr_16000 = librosa.load(test_audiofile, sr=16000) samples_8000, sr_8000 = librosa.load(test_audiofile, sr=8000) def test_shape_samps_channels_mono(): input_data = np.array([1,2,3,4,5]) output_data = sp.dsp.shape_samps_channels(input_data) assert np.array_equal(input_data, output_data) def test_shape_samps_channels_stereo_correct(): input_data = np.array([1,2,3,4,5,6,7,8,9,10]).reshape(5,2) output_data = sp.dsp.shape_samps_channels(input_data) assert np.array_equal(input_data, output_data) def test_shape_samps_channels_stereo_incorrect(): input_data = np.array([1,2,3,4,5,6,7,8,9,10]).reshape(2,5) output_data = sp.dsp.shape_samps_channels(input_data) assert np.array_equal(input_data.T, output_data) def test_calc_phase(): np.random.seed(seed=0) rand_fft = np.random.random(2) + np.random.random(2) * 1j phase = sp.dsp.calc_phase(rand_fft) value1 = np.array([0.67324134+0.73942281j, 0.79544405+0.60602703j]) assert np.allclose(value1, phase) def test_calc_phase_framelength10_default(): frame_length = 10 time = np.arange(0, 10, 0.1) signal = np.sin(time)[:frame_length] fft_vals = np.fft.fft(signal) phase = sp.dsp.calc_phase(fft_vals) value1 = np.array([ 1. +0.j, -0.37872566+0.92550898j]) assert np.allclose(value1, phase[:2]) def test_calc_phase_framelength10_radiansTrue(): frame_length = 10 time = np.arange(0, 10, 0.1) signal = np.sin(time)[:frame_length] fft_vals = np.fft.fft(signal) phase = sp.dsp.calc_phase(fft_vals, radians = True) value1 = np.array([ 0., 1.95921533]) assert np.allclose(value1, phase[:2]) def test_reconstruct_whole_spectrum(): x = np.array([3.,2.,1.,0.,0.,0.,0.]) x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x) expected = np.array([3., 2., 1., 0., 1., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == len(x) def test_reconstruct_whole_spectrum_input4_nfft7(): x = np.array([3.,2.,1.,0.]) n_fft = 7 x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x, n_fft=n_fft) expected = np.array([3., 2., 1., 0., 1., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == n_fft def test_reconstruct_whole_spectrum_input4_nfft6(): x = np.array([3.,2.,1.,0.]) n_fft= 6 x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x, n_fft=n_fft) print(x_reconstructed) expected = np.array([3., 2., 1., 0., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == n_fft def test_reconstruct_whole_spectrum_input4_nfft5(): x = np.array([3.,2.,1.,0.]) n_fft = 5 x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x, n_fft=n_fft) print(x_reconstructed) expected = np.array([3., 2., 1., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == n_fft def test_reconstruct_whole_spectrum_input4_nfft14(): x = np.array([3.,2.,1.,0.]) n_fft = 14 x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x, n_fft=n_fft) print(x_reconstructed) expected = np.array([3., 2., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 2., 3.]) assert np.array_equal(expected, x_reconstructed) assert len(x_reconstructed) == n_fft def test_reconstruct_whole_spectrum_complexvals(): np.random.seed(seed=0) x_complex = np.random.random(2) + np.random.random(2) * 1j n_fft = int(2*len(x_complex)) x_reconstructed = sp.dsp.reconstruct_whole_spectrum(x_complex, n_fft = n_fft) expected = np.array([0.5488135 +0.60276338j, 0.71518937+0.54488318j, 0. +0.j, 0.5488135 +0.60276338j]) print(x_reconstructed) assert np.allclose(expected, x_reconstructed) assert len(x_reconstructed) == n_fft def test_overlap_add(): enhanced_matrix = np.ones((4, 4)) frame_length = 4 overlap = 2 sig = sp.dsp.overlap_add(enhanced_matrix, frame_length, overlap) expected = np.array([1., 1., 2., 2., 2., 2., 2., 2., 1., 1.]) assert np.array_equal(expected, sig) def test_overlap_add(): enhanced_matrix = np.ones((4, 4)) frame_length = 4 overlap = 1 sig = sp.dsp.overlap_add(enhanced_matrix, frame_length, overlap) expected = np.array([1., 1., 1., 2., 1., 1., 2., 1., 1., 2., 1., 1., 1.]) assert np.array_equal(expected, sig) def test_overlap_add_complexvals(): enhanced_matrix = np.ones((4, 4),dtype=np.complex) frame_length = 4 overlap = 1 sig = sp.dsp.overlap_add(enhanced_matrix, frame_length, overlap) expected = np.array([1.+0.j, 1.+0.j, 1.+0.j, 2.+0.j, 1.+0.j, 1.+0.j, 2.+0.j, 1.+0.j, 1.+0.j, 2.+0.j,1.+0.j, 1.+0.j, 1.+0.j]) assert sig.dtype == expected.dtype def test_overlap_add_framelength_mismatch(): enhanced_matrix = np.ones((4, 4)) frame_length = 3 overlap = 1 with pytest.raises(TypeError): sig = sp.dsp.overlap_add(enhanced_matrix, frame_length, overlap) def test_calc_num_subframes_fullframes(): expected = 5 subframes = sp.dsp.calc_num_subframes(30,10,5) assert expected == subframes def test_calc_num_subframes_mismatchframes(): expected = 5 subframes = sp.dsp.calc_num_subframes(33,10,5) print(subframes) assert expected == subframes def test_calc_num_subframes_mismatchframes_zeropad(): expected = 6 subframes = sp.dsp.calc_num_subframes(33,10,5, zeropad=True) print(subframes) assert expected == subframes def test_generate_sound_default(): data, sr = sp.dsp.generate_sound() expected1 = np.array([0., 0.06260483, 0.12366658, 0.18168021, 0.2352158 ]) expected2 = 2000 expected3 = 8000 assert np.allclose(expected1, data[:5]) assert len(data) == expected2 assert sr == expected3 def test_generate_sound_freq5(): sound, sr = sp.dsp.generate_sound(freq=5, amplitude=0.5, sr=5, dur_sec=1) expected1 = np.array([ 0.000000e+00, 5.000000e-01, 3.061617e-16, -5.000000e-01, -6.123234e-16]) expected_sr = 5 expected_len = expected_sr * 1 assert np.allclose(expected1, sound) assert sr == expected_sr assert len(sound) == expected_len def test_get_time_points(): time = sp.dsp.get_time_points(dur_sec = 0.1, sr=50) expected = np.array([0. ,0.025 ,0.05 , 0.075, 0.1 ]) assert np.allclose(time, expected) def test_generate_noise(): noise = sp.dsp.generate_noise(5, random_seed=0) expected = np.array([0.04410131, 0.01000393, 0.02446845, 0.05602233, 0.04668895]) assert np.allclose(expected, noise) def test_set_signal_length_longer(): input_samples = np.array([1,2,3,4,5]) samples = sp.dsp.set_signal_length(input_samples, numsamps = 8) expected = np.array([1,2,3,4,5,0,0,0]) assert len(samples) == 8 assert np.array_equal(samples, expected) def test_set_signal_length_shorter(): input_samples = np.array([1,2,3,4,5]) samples = sp.dsp.set_signal_length(input_samples, numsamps = 4) expected =
np.array([1,2,3,4])
numpy.array
import torch, random, json import numpy as np def load_vectors(vecfile, dim=300, unk_rand=True, seed=0): ''' Loads saved vectors; :param vecfile: the name of the file to load the vectors from. :return: a numpy array of all the vectors. ''' vecs = np.load(vecfile) np.random.seed(seed) if unk_rand: vecs = np.vstack((vecs, np.random.randn(dim))) # <unk> -> V-2 ?? else: vecs = np.vstack((vecs, np.zeros(dim))) # <unk> -> V - 2?? vecs = np.vstack((vecs, np.zeros(dim))) # pad -> V-1 ??? vecs = vecs.astype(float, copy=False) return vecs def prepare_batch_with_sentences_in_rev(sample_batched, max_tok_len=35, pos_filtered=False, **kwargs): ''' Prepares a batch of data, preserving sentence boundaries and returning the sentences in reverse order. Also returns reversed text and topic. :param sample_batched: a list of dictionaries, where each is a sample :param max_sen_len: the maximum # sentences allowed :param padding_idx: the index for padding for dummy sentences :param pos_filtered: a flag determining whether to return pos filtered text :return: the text batch, has shape (S, B, Tij) where S is the max sen len, B is the batch size, and Tij is the number of tokens in sentence i of batch element j; the topic batch, a list of all topic instances; the a list of labels for the post, topic instances AND (depending on flag) the text pos filtered, with the same shape as the text batches ''' topic_batch = torch.tensor([b['topic'] for b in sample_batched]) labels = [torch.tensor(b['label']) for b in sample_batched] max_sen_len = kwargs['max_sen_len'] padding_idx = kwargs['padding_idx'] text_batch = [] text_batch_pos2filter = dict() sens = [] txt_lens_lst = [] for i in range(1, max_sen_len + 1): sn_idx = max_sen_len - i s_lst = [] s_lst_pos_D = dict() si = [] s_len_lst = [] for b in sample_batched: if len(b['text']) > sn_idx: s_lst.append(torch.tensor([b['text'][sn_idx]])) si.append(1) else: s_lst.append(torch.tensor([[padding_idx] * max_tok_len])) si.append(0) s_len_lst.append(b['txt_l'][sn_idx]) if kwargs.get('use_conn', False): for pos in b['text_pos2filtered']: s_lst_pos = s_lst_pos_D.get(pos, []) if len(b['text_pos_filtered'][pos]) > sn_idx and len(b['text_pos_filtered'][pos][sn_idx]) > 0: s_lst_pos.append(torch.tensor([b['text_pos_filtered'][pos][sn_idx]])) else: s_lst_pos.append(torch.tensor([[padding_idx] * max_tok_len])) text_batch.append(torch.cat(s_lst, dim=0)) if kwargs.get('use_conn', False): for t in s_lst_pos_D: text_batch_pos2filter[t] = text_batch_pos2filter.get(t, []) text_batch_pos2filter[t].append(torch.cat(s_lst_pos_D[t], dim=0)) sens.append(si) txt_lens_lst.append(s_len_lst) txt_lens = txt_lens_lst # (S, B, T)? top_lens = [b['top_l'] for b in sample_batched] args = {'text': text_batch, 'topic': topic_batch, 'labels': labels, 'sentence_mask': sens, 'txt_l': txt_lens, 'top_l': top_lens} if pos_filtered: args['text_pos2filter'] = text_batch_pos2filter return args def prepare_batch_with_reverse(sample_batched, **kwargs): ''' Prepares a batch of data to be used in training or evaluation. Includes the text reversed. :param sample_batched: a list of dictionaries, where each is a sample :param pos_filtered: a flag determining whether to return pos filtered text :return: a list of all the post instances (sorted in decreasing order of len), a list of all topic instances (corresponding to the sorted posts), a list of all the post instances (sored in decreasing order of len), reversed a list of all topic instances (corresponding to the sorted posts, reversed a list of labels for the post,topic instances AND (depending on flag) a list of all posts instances with only certain POS (sorted in dec order of len) a list of all post instances reversed with only certain POS (sorted in dec order of len) ''' text_lens = np.array([b['txt_l'] for b in sample_batched]) text_batch = torch.tensor([b['text'] for b in sample_batched]) topic_batch = torch.tensor([b['topic'] for b in sample_batched]) labels = [b['label'] for b in sample_batched] top_lens = [b['top_l'] for b in sample_batched] raw_text_batch = [b['ori_text'] for b in sample_batched] raw_top_batch = [b['ori_topic'] for b in sample_batched] args = {'text': text_batch, 'topic': topic_batch, 'labels': labels, 'txt_l': text_lens, 'top_l': top_lens, 'ori_text': raw_text_batch, 'ori_topic': raw_top_batch} if kwargs.get('use_conn', False): text_pos2filtered = dict() for t in sample_batched[0]['text_pos2filtered']: text_pos2filtered[t] = torch.tensor([b['text_pos2filtered'][t] for b in sample_batched]) args['text_pos2filter'] = text_pos2filtered return args def prepare_batch_raw(sample_batched, **kwargs): text_lens =
np.array([b['txt_l'] for b in sample_batched])
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import unittest from hypothesis import given import hypothesis.strategies as st from caffe2.python import core, utils import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial # # Should match original Detectron code at # https://github.com/facebookresearch/Detectron/blob/master/lib/ops/collect_and_distribute_fpn_rpn_proposals.py # def boxes_area(boxes): """Compute the area of an array of boxes.""" w = (boxes[:, 2] - boxes[:, 0] + 1) h = (boxes[:, 3] - boxes[:, 1] + 1) areas = w * h assert
np.all(areas >= 0)
numpy.all
from unittest import TestCase from src.layers import Linear import tensorflow as tf import numpy as np class TestLinearLayer(TestCase): def test_compilation_and_build(self): # We define a small model, if no errors are raised, test passes. # Build MLP model model = tf.keras.models.Sequential([Linear(5), Linear(5)]) # Compile model.compile( loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"], ) # Initialize model.build(input_shape=(32, 8)) def test_forward_propagation(self): # We define a small model and pass in a dummy input. If shape is correct, # no nans and no infinite values appear in the output, test passes. # Build MLP model model = tf.keras.models.Sequential([Linear(5), Linear(5)]) # Compile model.compile( loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"], ) # Initialize model.build(input_shape=(32, 8)) # Dummy input X = np.random.randn(32, 8) y_hat = model(X).numpy() self.assertEquals((32, 5), y_hat.shape) self.assertEquals(False, np.isnan(y_hat.sum())) self.assertEquals(True, np.isfinite(y_hat.sum())) def test_gradient_check(self): # We define a small model and pass in a dummy input, get the loss, fit, and # get the loss again. If the loss decreases, the test passes model = tf.keras.models.Sequential([Linear(5), Linear(5)]) # Compile model.compile( loss="sparse_categorical_crossentropy", optimizer="adam", ) # Initialize model.build(input_shape=(32, 8)) # Dummy input X =
np.random.randn(32, 8)
numpy.random.randn
# -*- coding: UTF-8 -*- # @Author : <NAME> # @Email : <EMAIL> """ KDA Reference: "Toward Dynamic User Intention: Temporal Evolutionary Effects of Item Relations in Sequential Recommendation" Chenyang Wang et al., TOIS'2021. CMD example: python main.py --model_name KDA --emb_size 64 --include_attr 1 --freq_rand 0 --lr 1e-3 --l2 1e-6 --num_heads 4 \ --history_max 20 --dataset 'Grocery_and_Gourmet_Food' """ import torch import torch.nn as nn import numpy as np import pandas as pd from utils import layers from models.BaseModel import SequentialModel from helpers.DFTReader import DFTReader class KDA(SequentialModel): reader = 'DFTReader' extra_log_args = ['num_layers', 'num_heads', 'gamma', 'freq_rand', 'include_val'] @staticmethod def parse_model_args(parser): parser.add_argument('--emb_size', type=int, default=64, help='Size of embedding vectors.') parser.add_argument('--neg_head_p', type=float, default=0.5, help='The probability of sampling negative head entity.') parser.add_argument('--num_layers', type=int, default=1, help='Number of self-attention layers.') parser.add_argument('--num_heads', type=int, default=1, help='Number of attention heads.') parser.add_argument('--gamma', type=float, default=-1, help='Coefficient of KG loss (-1 for auto-determine).') parser.add_argument('--attention_size', type=int, default=10, help='Size of attention hidden space.') parser.add_argument('--pooling', type=str, default='average', help='Method of pooling relational history embeddings: average, max, attention') parser.add_argument('--include_val', type=int, default=1, help='Whether include relation value in the relation representation') return SequentialModel.parse_model_args(parser) def __init__(self, args, corpus): self.relation_num = corpus.n_relations self.entity_num = corpus.n_entities self.freq_x = corpus.freq_x self.freq_dim = args.n_dft // 2 + 1 self.freq_rand = args.freq_rand self.emb_size = args.emb_size self.neg_head_p = args.neg_head_p self.layer_num = args.num_layers self.head_num = args.num_heads self.attention_size = args.attention_size self.pooling = args.pooling.lower() self.include_val = args.include_val self.gamma = args.gamma if self.gamma < 0: self.gamma = len(corpus.relation_df) / len(corpus.all_df) super().__init__(args, corpus) def _define_params(self): self.user_embeddings = nn.Embedding(self.user_num, self.emb_size) self.entity_embeddings = nn.Embedding(self.entity_num, self.emb_size) self.relation_embeddings = nn.Embedding(self.relation_num, self.emb_size) # First-level aggregation self.relational_dynamic_aggregation = RelationalDynamicAggregation( self.relation_num, self.freq_dim, self.relation_embeddings, self.include_val, self.device ) # Second-level aggregation self.attn_head = layers.MultiHeadAttention(self.emb_size, self.head_num, bias=False) self.W1 = nn.Linear(self.emb_size, self.emb_size) self.W2 = nn.Linear(self.emb_size, self.emb_size) self.dropout_layer = nn.Dropout(self.dropout) self.layer_norm = nn.LayerNorm(self.emb_size) # Pooling if self.pooling == 'attention': self.A = nn.Linear(self.emb_size, self.attention_size) self.A_out = nn.Linear(self.attention_size, 1, bias=False) # Prediction self.item_bias = nn.Embedding(self.item_num, 1) def actions_before_train(self): if not self.freq_rand: dft_freq_real = torch.tensor(np.real(self.freq_x)) # R * n_freq dft_freq_imag = torch.tensor(np.imag(self.freq_x)) self.relational_dynamic_aggregation.freq_real.weight.data.copy_(dft_freq_real) self.relational_dynamic_aggregation.freq_imag.weight.data.copy_(dft_freq_imag) def forward(self, feed_dict): self.check_list = [] prediction = self.rec_forward(feed_dict) out_dict = {'prediction': prediction} if feed_dict['phase'] == 'train': kg_prediction = self.kg_forward(feed_dict) out_dict['kg_prediction'] = kg_prediction return out_dict def rec_forward(self, feed_dict): u_ids = feed_dict['user_id'] # B i_ids = feed_dict['item_id'] # B * -1 v_ids = feed_dict['item_val'] # B * -1 * R history = feed_dict['history_items'] # B * H delta_t_n = feed_dict['history_delta_t'].float() # B * H batch_size, seq_len = history.shape u_vectors = self.user_embeddings(u_ids) i_vectors = self.entity_embeddings(i_ids) v_vectors = self.entity_embeddings(v_ids) # B * -1 * R * V his_vectors = self.entity_embeddings(history) # B * H * V """ Relational Dynamic History Aggregation """ valid_mask = (history > 0).view(batch_size, 1, seq_len, 1) context = self.relational_dynamic_aggregation( his_vectors, delta_t_n, i_vectors, v_vectors, valid_mask) # B * -1 * R * V """ Multi-layer Self-attention """ for i in range(self.layer_num): residual = context # self-attention context = self.attn_head(context, context, context) # feed forward context = self.W1(context) context = self.W2(context.relu()) # dropout, residual and layer_norm context = self.dropout_layer(context) context = self.layer_norm(residual + context) """ Pooling Layer """ if self.pooling == 'attention': query_vectors = context * u_vectors[:, None, None, :] # B * -1 * R * V user_attention = self.A_out(self.A(query_vectors).tanh()).squeeze(-1) # B * -1 * R user_attention = (user_attention - user_attention.max()).softmax(dim=-1) his_vector = (context * user_attention[:, :, :, None]).sum(dim=-2) # B * -1 * V elif self.pooling == 'max': his_vector = context.max(dim=-2).values # B * -1 * V else: his_vector = context.mean(dim=-2) # B * -1 * V """ Prediction """ i_bias = self.item_bias(i_ids).squeeze(-1) prediction = ((u_vectors[:, None, :] + his_vector) * i_vectors).sum(dim=-1) prediction = prediction + i_bias return prediction.view(feed_dict['batch_size'], -1) def kg_forward(self, feed_dict): head_ids = feed_dict['head_id'].long() # B * -1 tail_ids = feed_dict['tail_id'].long() # B * -1 value_ids = feed_dict['value_id'].long() # B relation_ids = feed_dict['relation_id'].long() # B head_vectors = self.entity_embeddings(head_ids) tail_vectors = self.entity_embeddings(tail_ids) value_vectors = self.entity_embeddings(value_ids) relation_vectors = self.relation_embeddings(relation_ids) # DistMult if self.include_val: prediction = (head_vectors * (relation_vectors + value_vectors)[:, None, :] * tail_vectors).sum(-1) else: prediction = (head_vectors * relation_vectors[:, None, :] * tail_vectors).sum(-1) return prediction def loss(self, out_dict): predictions = out_dict['prediction'] pos_pred, neg_pred = predictions[:, 0], predictions[:, 1:] neg_softmax = (neg_pred - neg_pred.max()).softmax(dim=1) rec_loss = -((pos_pred[:, None] - neg_pred).sigmoid() * neg_softmax).sum(dim=1).log().mean() predictions = out_dict['kg_prediction'] pos_pred, neg_pred = predictions[:, 0], predictions[:, 1:] neg_softmax = (neg_pred - neg_pred.max()).softmax(dim=1) kg_loss = -((pos_pred[:, None] - neg_pred).sigmoid() * neg_softmax).sum(dim=1).log().mean() loss = rec_loss + self.gamma * kg_loss return loss class Dataset(SequentialModel.Dataset): def __init__(self, model, corpus, phase): super().__init__(model, corpus, phase) if self.phase == 'train': self.kg_data, self.neg_heads, self.neg_tails = None, None, None def _prepare(self): # Prepare item-to-value dict item_val = self.corpus.item_meta_df.copy() item_val[self.corpus.item_relations] = 0 # set the value of natural item relations to None for idx, r in enumerate(self.corpus.attr_relations): base = self.corpus.n_items + np.sum(self.corpus.attr_max[:idx]) item_val[r] = item_val[r].apply(lambda x: x + base).astype(int) item_vals = item_val[self.corpus.relations].values # this ensures the order is consistent to relations self.item_val_dict = dict() for item, vals in zip(item_val['item_id'].values, item_vals.tolist()): self.item_val_dict[item] = [0] + vals # the first dimension None for the virtual relation super()._prepare() def _get_feed_dict(self, index): feed_dict = super()._get_feed_dict(index) feed_dict['item_val'] = [self.item_val_dict[item] for item in feed_dict['item_id']] delta_t = self.data['time'][index] - feed_dict['history_times'] feed_dict['history_delta_t'] = DFTReader.norm_time(delta_t, self.corpus.t_scalar) if self.phase == 'train': feed_dict['head_id'] = np.concatenate([[self.kg_data['head'][index]], self.neg_heads[index]]) feed_dict['tail_id'] = np.concatenate([[self.kg_data['tail'][index]], self.neg_tails[index]]) feed_dict['relation_id'] = self.kg_data['relation'][index] feed_dict['value_id'] = self.kg_data['value'][index] return feed_dict def generate_kg_data(self) -> pd.DataFrame: rec_data_size = len(self) replace = (rec_data_size > len(self.corpus.relation_df)) kg_data = self.corpus.relation_df.sample(n=rec_data_size, replace=replace).reset_index(drop=True) kg_data['value'] = np.zeros(len(kg_data), dtype=int) # default for None tail_select = kg_data['tail'].apply(lambda x: x < self.corpus.n_items) item_item_df = kg_data[tail_select] item_attr_df = kg_data.drop(item_item_df.index) item_attr_df['value'] = item_attr_df['tail'].values sample_tails = list() # sample items sharing the same attribute for head, val in zip(item_attr_df['head'].values, item_attr_df['tail'].values): share_attr_items = self.corpus.share_attr_dict[val] tail_idx = np.random.randint(len(share_attr_items)) sample_tails.append(share_attr_items[tail_idx]) item_attr_df['tail'] = sample_tails kg_data = pd.concat([item_item_df, item_attr_df], ignore_index=True) return kg_data def actions_before_epoch(self): super().actions_before_epoch() self.kg_data = self.generate_kg_data() heads, tails = self.kg_data['head'].values, self.kg_data['tail'].values relations, vals = self.kg_data['relation'].values, self.kg_data['value'].values self.neg_heads = np.random.randint(1, self.corpus.n_items, size=(len(self.kg_data), self.model.num_neg)) self.neg_tails = np.random.randint(1, self.corpus.n_items, size=(len(self.kg_data), self.model.num_neg)) for i in range(len(self.kg_data)): item_item_relation = (tails[i] <= self.corpus.n_items) for j in range(self.model.num_neg): if
np.random.rand()
numpy.random.rand
""" Linear mixed effects models for Statsmodels The data are partitioned into disjoint groups. The probability model for group i is: Y = X*beta + Z*gamma + epsilon where * n_i is the number of observations in group i * Y is a n_i dimensional response vector * X is a n_i x k_fe design matrix for the fixed effects * beta is a k_fe-dimensional vector of fixed effects slopes * Z is a n_i x k_re design matrix for the random effects * gamma is a k_re-dimensional random vector with mean 0 and covariance matrix Psi; note that each group gets its own independent realization of gamma. * epsilon is a n_i dimensional vector of iid normal errors with mean 0 and variance sigma^2; the epsilon values are independent both within and between groups Y, X and Z must be entirely observed. beta, Psi, and sigma^2 are estimated using ML or REML estimation, and gamma and epsilon are random so define the probability model. The mean structure is E[Y|X,Z] = X*beta. If only the mean structure is of interest, GEE is a good alternative to mixed models. The primary reference for the implementation details is: <NAME>, <NAME> (1988). "Newton Raphson and EM algorithms for linear mixed effects models for repeated measures data". Journal of the American Statistical Association. Volume 83, Issue 404, pages 1014-1022. See also this more recent document: http://econ.ucsb.edu/~doug/245a/Papers/Mixed%20Effects%20Implement.pdf All the likelihood, gradient, and Hessian calculations closely follow Lindstrom and Bates. The following two documents are written more from the perspective of users: http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf http://lme4.r-forge.r-project.org/slides/2009-07-07-Rennes/3Longitudinal-4.pdf Notation: * `cov_re` is the random effects covariance matrix (referred to above as Psi) and `scale` is the (scalar) error variance. For a single group, the marginal covariance matrix of endog given exog is scale*I + Z * cov_re * Z', where Z is the design matrix for the random effects in one group. Notes: 1. Three different parameterizations are used here in different places. The regression slopes (usually called `fe_params`) are identical in all three parameterizations, but the variance parameters differ. The parameterizations are: * The "natural parameterization" in which cov(endog) = scale*I + Z * cov_re * Z', as described above. This is the main parameterization visible to the user. * The "profile parameterization" in which cov(endog) = I + Z * cov_re1 * Z'. This is the parameterization of the profile likelihood that is maximized to produce parameter estimates. (see Lindstrom and Bates for details). The "natural" cov_re is equal to the "profile" cov_re1 times scale. * The "square root parameterization" in which we work with the Cholesky factor of cov_re1 instead of cov_re1 directly. All three parameterizations can be "packed" by concatenating fe_params together with the lower triangle of the dependence structure. Note that when unpacking, it is important to either square or reflect the dependence structure depending on which parameterization is being used. 2. The situation where the random effects covariance matrix is singular is numerically challenging. Small changes in the covariance parameters may lead to large changes in the likelihood and derivatives. 3. The optimization strategy is to first use OLS to get starting values for the mean structure. Then we optionally perform a few EM steps, followed by optionally performing a few steepest ascent steps. This is followed by conjugate gradient optimization using one of the scipy gradient optimizers. The EM and steepest ascent steps are used to get adequate starting values for the conjugate gradient optimization, which is much faster. """ import numpy as np import statsmodels.base.model as base from scipy.optimize import fmin_ncg, fmin_cg, fmin_bfgs, fmin from statsmodels.tools.decorators import cache_readonly from scipy.stats.distributions import norm import pandas as pd import patsy from statsmodels.compat.collections import OrderedDict from statsmodels.compat import range import warnings from statsmodels.tools.sm_exceptions import ConvergenceWarning from statsmodels.base._penalties import Penalty from statsmodels.compat.numpy import np_matrix_rank from pandas import DataFrame def _get_exog_re_names(exog_re): if isinstance(exog_re, (pd.Series, pd.DataFrame)): return exog_re.columns.tolist() return ["Z{0}".format(k + 1) for k in range(exog_re.shape[1])] class MixedLMParams(object): """ This class represents a parameter state for a mixed linear model. Parameters ---------- k_fe : integer The number of covariates with fixed effects. k_re : integer The number of covariates with random effects. use_sqrt : boolean If True, the covariance matrix is stored using as the lower triangle of its Cholesky square root, otherwise it is stored as the lower triangle of the covariance matrix. Notes ----- This object represents the parameter state for the model in which the scale parameter has been profiled out. """ def __init__(self, k_fe, k_re, use_sqrt=True): self.k_fe = k_fe self.k_re = k_re self.k_re2 = k_re * (k_re + 1) / 2 self.k_tot = self.k_fe + self.k_re2 self.use_sqrt = use_sqrt self._ix = np.tril_indices(self.k_re) self._params = np.zeros(self.k_tot) def from_packed(params, k_fe, use_sqrt): """ Factory method to create a MixedLMParams object based on the given packed parameter vector. Parameters ---------- params : array-like The mode parameters packed into a single vector. k_fe : integer The number of covariates with fixed effects use_sqrt : boolean If True, the random effects covariance matrix is stored as its Cholesky factor, otherwise the lower triangle of the covariance matrix is stored. Returns ------- A MixedLMParams object. """ k_re2 = len(params) - k_fe k_re = (-1 + np.sqrt(1 + 8*k_re2)) / 2 if k_re != int(k_re): raise ValueError("Length of `packed` not compatible with value of `fe`.") k_re = int(k_re) pa = MixedLMParams(k_fe, k_re, use_sqrt) pa.set_packed(params) return pa from_packed = staticmethod(from_packed) def from_components(fe_params, cov_re=None, cov_re_sqrt=None, use_sqrt=True): """ Factory method to create a MixedLMParams object from given values for each parameter component. Parameters ---------- fe_params : array-like The fixed effects parameter (a 1-dimensional array). cov_re : array-like The random effects covariance matrix (a square, symmetric 2-dimensional array). cov_re_sqrt : array-like The Cholesky (lower triangular) square root of the random effects covariance matrix. use_sqrt : boolean If True, the random effects covariance matrix is stored as the lower triangle of its Cholesky factor, otherwise the lower triangle of the covariance matrix is stored. Returns ------- A MixedLMParams object. """ k_fe = len(fe_params) k_re = cov_re.shape[0] pa = MixedLMParams(k_fe, k_re, use_sqrt) pa.set_fe_params(fe_params) pa.set_cov_re(cov_re) return pa from_components = staticmethod(from_components) def copy(self): """ Returns a copy of the object. """ obj = MixedLMParams(self.k_fe, self.k_re, self.use_sqrt) obj.set_packed(self.get_packed().copy()) return obj def get_packed(self, use_sqrt=None): """ Returns the model parameters packed into a single vector. Parameters ---------- use_sqrt : None or bool If None, `use_sqrt` has the value of this instance's `use_sqrt`. Otherwise it is set to the given value. """ if (use_sqrt is None) or (use_sqrt == self.use_sqrt): return self._params pa = self._params.copy() cov_re = self.get_cov_re() if use_sqrt: L = np.linalg.cholesky(cov_re) pa[self.k_fe:] = L[self._ix] else: pa[self.k_fe:] = cov_re[self._ix] return pa def set_packed(self, params): """ Sets the packed parameter vector to the given vector, without any validity checking. """ self._params = params def get_fe_params(self): """ Returns the fixed effects paramaters as a ndarray. """ return self._params[0:self.k_fe] def set_fe_params(self, fe_params): """ Set the fixed effect parameters to the given vector. """ self._params[0:self.k_fe] = fe_params def set_cov_re(self, cov_re=None, cov_re_sqrt=None): """ Set the random effects covariance matrix to the given value. Parameters ---------- cov_re : array-like The random effects covariance matrix. cov_re_sqrt : array-like The Cholesky square root of the random effects covariance matrix. Only the lower triangle is read. Notes ----- The first of `cov_re` and `cov_re_sqrt` that is not None is used. """ if cov_re is not None: if self.use_sqrt: cov_re_sqrt = np.linalg.cholesky(cov_re) self._params[self.k_fe:] = cov_re_sqrt[self._ix] else: self._params[self.k_fe:] = cov_re[self._ix] elif cov_re_sqrt is not None: if self.use_sqrt: self._params[self.k_fe:] = cov_re_sqrt[self._ix] else: cov_re = np.dot(cov_re_sqrt, cov_re_sqrt.T) self._params[self.k_fe:] = cov_re[self._ix] def get_cov_re(self): """ Returns the random effects covariance matrix. """ pa = self._params[self.k_fe:] cov_re = np.zeros((self.k_re, self.k_re)) cov_re[self._ix] = pa if self.use_sqrt: cov_re = np.dot(cov_re, cov_re.T) else: cov_re = (cov_re + cov_re.T) - np.diag(np.diag(cov_re)) return cov_re # This is a global switch to use direct linear algebra calculations # for solving factor-structured linear systems and calculating # factor-structured determinants. If False, use the # Sherman-Morrison-Woodbury update which is more efficient for # factor-structured matrices. Should be False except when testing. _no_smw = False def _smw_solve(s, A, AtA, B, BI, rhs): """ Solves the system (s*I + A*B*A') * x = rhs for x and returns x. Parameters ---------- s : scalar See above for usage A : square symmetric ndarray See above for usage AtA : square ndarray A.T * A B : square symmetric ndarray See above for usage BI : square symmetric ndarray The inverse of `B`. Can be None if B is singular rhs : ndarray See above for usage Returns ------- x : ndarray See above If the global variable `_no_smw` is True, this routine uses direct linear algebra calculations. Otherwise it uses the Sherman-Morrison-Woodbury identity to speed up the calculation. """ # Direct calculation if _no_smw or BI is None: mat = np.dot(A, np.dot(B, A.T)) # Add constant to diagonal mat.flat[::mat.shape[0]+1] += s return np.linalg.solve(mat, rhs) # Use SMW identity qmat = BI + AtA / s u = np.dot(A.T, rhs) qmat = np.linalg.solve(qmat, u) qmat = np.dot(A, qmat) rslt = rhs / s - qmat / s**2 return rslt def _smw_logdet(s, A, AtA, B, BI, B_logdet): """ Use the matrix determinant lemma to accelerate the calculation of the log determinant of s*I + A*B*A'. Parameters ---------- s : scalar See above for usage A : square symmetric ndarray See above for usage AtA : square matrix A.T * A B : square symmetric ndarray See above for usage BI : square symmetric ndarray The inverse of `B`; can be None if B is singular. B_logdet : real The log determinant of B Returns ------- The log determinant of s*I + A*B*A'. """ p = A.shape[0] if _no_smw or BI is None: mat = np.dot(A, np.dot(B, A.T)) # Add constant to diagonal mat.flat[::p+1] += s _, ld = np.linalg.slogdet(mat) return ld ld = p * np.log(s) qmat = BI + AtA / s _, ld1 = np.linalg.slogdet(qmat) return B_logdet + ld + ld1 class MixedLM(base.LikelihoodModel): """ An object specifying a linear mixed effects model. Use the `fit` method to fit the model and obtain a results object. Parameters ---------- endog : 1d array-like The dependent variable exog : 2d array-like A matrix of covariates used to determine the mean structure (the "fixed effects" covariates). groups : 1d array-like A vector of labels determining the groups -- data from different groups are independent exog_re : 2d array-like A matrix of covariates used to determine the variance and covariance structure (the "random effects" covariates). If None, defaults to a random intercept for each group. use_sqrt : bool If True, optimization is carried out using the lower triangle of the square root of the random effects covariance matrix, otherwise it is carried out using the lower triangle of the random effects covariance matrix. missing : string The approach to missing data handling Notes ----- The covariates in `exog` and `exog_re` may (but need not) partially or wholly overlap. `use_sqrt` should almost always be set to True. The main use case for use_sqrt=False is when complicated patterns of fixed values in the covariance structure are set (using the `free` argument to `fit`) that cannot be expressed in terms of the Cholesky factor L. """ def __init__(self, endog, exog, groups, exog_re=None, use_sqrt=True, missing='none', **kwargs): self.use_sqrt = use_sqrt # Some defaults self.reml = True self.fe_pen = None self.re_pen = None # If there is one covariate, it may be passed in as a column # vector, convert these to 2d arrays. # TODO: Can this be moved up in the class hierarchy? # yes, it should be done up the hierarchy if exog is not None and exog.ndim == 1: exog = exog[:,None] if exog_re is not None and exog_re.ndim == 1: exog_re = exog_re[:,None] # Calling super creates self.endog, etc. as ndarrays and the # original exog, endog, etc. are self.data.endog, etc. super(MixedLM, self).__init__(endog, exog, groups=groups, exog_re=exog_re, missing=missing, **kwargs) self.k_fe = exog.shape[1] # Number of fixed effects parameters if exog_re is None: # Default random effects structure (random intercepts). self.k_re = 1 self.k_re2 = 1 self.exog_re = np.ones((len(endog), 1), dtype=np.float64) self.data.exog_re = self.exog_re self.data.param_names = self.exog_names + ['Intercept'] else: # Process exog_re the same way that exog is handled # upstream # TODO: this is wrong and should be handled upstream wholly self.data.exog_re = exog_re self.exog_re = np.asarray(exog_re) if not self.data._param_names: # HACK: could've been set in from_formula already # needs refactor (self.data.param_names, self.data.exog_re_names) = self._make_param_names(exog_re) # Model dimensions # Number of random effect covariates self.k_re = exog_re.shape[1] # Number of covariance parameters self.k_re2 = self.k_re * (self.k_re + 1) // 2 self.k_params = self.k_fe + self.k_re2 # Convert the data to the internal representation, which is a # list of arrays, corresponding to the groups. group_labels = list(set(groups)) group_labels.sort() row_indices = dict((s, []) for s in group_labels) for i,g in enumerate(groups): row_indices[g].append(i) self.row_indices = row_indices self.group_labels = group_labels self.n_groups = len(self.group_labels) # Split the data by groups self.endog_li = self.group_list(self.endog) self.exog_li = self.group_list(self.exog) self.exog_re_li = self.group_list(self.exog_re) # Precompute this. self.exog_re2_li = [np.dot(x.T, x) for x in self.exog_re_li] # The total number of observations, summed over all groups self.n_totobs = sum([len(y) for y in self.endog_li]) # why do it like the above? self.nobs = len(self.endog) # Set the fixed effects parameter names if self.exog_names is None: self.exog_names = ["FE%d" % (k + 1) for k in range(self.exog.shape[1])] def _make_param_names(self, exog_re): exog_names = list(self.exog_names) exog_re_names = _get_exog_re_names(exog_re) param_names = [] jj = self.k_fe for i in range(exog_re.shape[1]): for j in range(i + 1): if i == j: param_names.append(exog_re_names[i] + " RE") else: param_names.append(exog_re_names[j] + " x " + exog_re_names[i] + " RE") jj += 1 return exog_names + exog_re_names, exog_re_names @classmethod def from_formula(cls, formula, data, re_formula=None, subset=None, *args, **kwargs): """ Create a Model from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. re_formula : string A one-sided formula defining the variance structure of the model. The default gives a random intercept for each group. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a `pandas.DataFrame` args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with one exception. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the calling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Returns ------- model : Model instance Notes ------ `data` must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. If `re_formula` is not provided, the default is a random intercept for each group. This method currently does not correctly handle missing values, so missing values should be explicitly dropped from the DataFrame before calling this method. """ if "groups" not in kwargs.keys(): raise AttributeError("'groups' is a required keyword argument in MixedLM.from_formula") # If `groups` is a variable name, retrieve the data for the # groups variable. if type(kwargs["groups"]) == str: kwargs["groups"] = np.asarray(data[kwargs["groups"]]) if re_formula is not None: eval_env = kwargs.get('eval_env', None) if eval_env is None: eval_env = 1 elif eval_env == -1: from patsy import EvalEnvironment eval_env = EvalEnvironment({}) exog_re = patsy.dmatrix(re_formula, data, eval_env=eval_env) exog_re_names = exog_re.design_info.column_names exog_re = np.asarray(exog_re) else: exog_re = np.ones((data.shape[0], 1), dtype=np.float64) exog_re_names = ["Intercept RE"] mod = super(MixedLM, cls).from_formula(formula, data, subset=None, exog_re=exog_re, *args, **kwargs) mod.data.param_names = mod.exog_names + exog_re_names mod.data.exog_re_names = exog_re_names return mod def group_list(self, array): """ Returns `array` split into subarrays corresponding to the grouping structure. """ if array.ndim == 1: return [np.array(array[self.row_indices[k]]) for k in self.group_labels] else: return [np.array(array[self.row_indices[k], :]) for k in self.group_labels] def fit_regularized(self, start_params=None, method='l1', alpha=0, ceps=1e-4, ptol=1e-6, maxit=200, **fit_kwargs): """ Fit a model in which the fixed effects parameters are penalized. The dependence parameters are held fixed at their estimated values in the unpenalized model. Parameters ---------- method : string of Penalty object Method for regularization. If a string, must be 'l1'. alpha : array-like Scalar or vector of penalty weights. If a scalar, the same weight is applied to all coefficients; if a vector, it contains a weight for each coefficient. If method is a Penalty object, the weights are scaled by alpha. For L1 regularization, the weights are used directly. ceps : positive real scalar Fixed effects parameters smaller than this value in magnitude are treaded as being zero. ptol : positive real scalar Convergence occurs when the sup norm difference between successive values of `fe_params` is less than `ptol`. maxit : integer The maximum number of iterations. fit_kwargs : keywords Additional keyword arguments passed to fit. Returns ------- A MixedLMResults instance containing the results. Notes ----- The covariance structure is not updated as the fixed effects parameters are varied. The algorithm used here for L1 regularization is a"shooting" or cyclic coordinate descent algorithm. If method is 'l1', then `fe_pen` and `cov_pen` are used to obtain the covariance structure, but are ignored during the L1-penalized fitting. References ---------- <NAME>., <NAME>. and <NAME>. Regularized Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1) (2008) http://www.jstatsoft.org/v33/i01/paper http://statweb.stanford.edu/~tibs/stat315a/Supplements/fuse.pdf """ if type(method) == str and (method.lower() != 'l1'): raise ValueError("Invalid regularization method") # If method is a smooth penalty just optimize directly. if isinstance(method, Penalty): # Scale the penalty weights by alpha method.alpha = alpha fit_kwargs.update({"fe_pen": method}) return self.fit(**fit_kwargs) if np.isscalar(alpha): alpha = alpha * np.ones(self.k_fe, dtype=np.float64) # Fit the unpenalized model to get the dependence structure. mdf = self.fit(**fit_kwargs) fe_params = mdf.fe_params cov_re = mdf.cov_re scale = mdf.scale try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None for itr in range(maxit): fe_params_s = fe_params.copy() for j in range(self.k_fe): if abs(fe_params[j]) < ceps: continue # The residuals fe_params[j] = 0. expval = np.dot(self.exog, fe_params) resid_all = self.endog - expval # The loss function has the form # a*x^2 + b*x + pwt*|x| a, b = 0., 0. for k, lab in enumerate(self.group_labels): exog = self.exog_li[k] ex_r = self.exog_re_li[k] ex2_r = self.exog_re2_li[k] resid = resid_all[self.row_indices[lab]] x = exog[:,j] u = _smw_solve(scale, ex_r, ex2_r, cov_re, cov_re_inv, x) a += np.dot(u, x) b -= 2 * np.dot(u, resid) pwt1 = alpha[j] if b > pwt1: fe_params[j] = -(b - pwt1) / (2 * a) elif b < -pwt1: fe_params[j] = -(b + pwt1) / (2 * a) if np.abs(fe_params_s - fe_params).max() < ptol: break # Replace the fixed effects estimates with their penalized # values, leave the dependence parameters in their unpenalized # state. params_prof = mdf.params.copy() params_prof[0:self.k_fe] = fe_params scale = self.get_scale(fe_params, mdf.cov_re_unscaled) # Get the Hessian including only the nonzero fixed effects, # then blow back up to the full size after inverting. hess = self.hessian_full(params_prof) pcov = np.nan * np.ones_like(hess) ii = np.abs(params_prof) > ceps ii[self.k_fe:] = True ii = np.flatnonzero(ii) hess1 = hess[ii, :][:, ii] pcov[np.ix_(ii,ii)] = np.linalg.inv(-hess1) results = MixedLMResults(self, params_prof, pcov / scale) results.fe_params = fe_params results.cov_re = cov_re results.scale = scale results.cov_re_unscaled = mdf.cov_re_unscaled results.method = mdf.method results.converged = True results.cov_pen = self.cov_pen results.k_fe = self.k_fe results.k_re = self.k_re results.k_re2 = self.k_re2 return MixedLMResultsWrapper(results) def _reparam(self): """ Returns parameters of the map converting parameters from the form used in optimization to the form returned to the user. Returns ------- lin : list-like Linear terms of the map quad : list-like Quadratic terms of the map Notes ----- If P are the standard form parameters and R are the modified parameters (i.e. with square root covariance), then P[i] = lin[i] * R + R' * quad[i] * R """ k_fe, k_re, k_re2 = self.k_fe, self.k_re, self.k_re2 k_tot = k_fe + k_re2 ix = np.tril_indices(self.k_re) lin = [] for k in range(k_fe): e = np.zeros(k_tot) e[k] = 1 lin.append(e) for k in range(k_re2): lin.append(np.zeros(k_tot)) quad = [] for k in range(k_tot): quad.append(np.zeros((k_tot, k_tot))) ii = np.tril_indices(k_re) ix = [(a,b) for a,b in zip(ii[0], ii[1])] for i1 in range(k_re2): for i2 in range(k_re2): ix1 = ix[i1] ix2 = ix[i2] if (ix1[1] == ix2[1]) and (ix1[0] <= ix2[0]): ii = (ix2[0], ix1[0]) k = ix.index(ii) quad[k_fe+k][k_fe+i2, k_fe+i1] += 1 for k in range(k_tot): quad[k] = 0.5*(quad[k] + quad[k].T) return lin, quad def hessian_sqrt(self, params): """ Returns the Hessian matrix of the log-likelihood evaluated at a given point, calculated with respect to the parameterization in which the random effects covariance matrix is represented through its Cholesky square root. Parameters ---------- params : MixedLMParams or array-like The model parameters. If array-like, must contain packed parameters that are compatible with this model. Returns ------- The Hessian matrix of the profile log likelihood function, evaluated at `params`. Notes ----- If `params` is provided as a MixedLMParams object it may be of any parameterization. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.use_sqrt) score0 = self.score_full(params) hess0 = self.hessian_full(params) params_vec = params.get_packed(use_sqrt=True) lin, quad = self._reparam() k_tot = self.k_fe + self.k_re2 # Convert Hessian to new coordinates hess = 0. for i in range(k_tot): hess += 2 * score0[i] * quad[i] for i in range(k_tot): vi = lin[i] + 2*np.dot(quad[i], params_vec) for j in range(k_tot): vj = lin[j] + 2*np.dot(quad[j], params_vec) hess += hess0[i, j] * np.outer(vi, vj) return hess def loglike(self, params): """ Evaluate the (profile) log-likelihood of the linear mixed effects model. Parameters ---------- params : MixedLMParams, or array-like. The parameter value. If array-like, must be a packed parameter vector compatible with this model. Returns ------- The log-likelihood value at `params`. Notes ----- This is the profile likelihood in which the scale parameter `scale` has been profiled out. The input parameter state, if provided as a MixedLMParams object, can be with respect to any parameterization. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.use_sqrt) fe_params = params.get_fe_params() cov_re = params.get_cov_re() try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None _, cov_re_logdet = np.linalg.slogdet(cov_re) # The residuals expval = np.dot(self.exog, fe_params) resid_all = self.endog - expval likeval = 0. # Handle the covariance penalty if self.cov_pen is not None: likeval -= self.cov_pen.func(cov_re, cov_re_inv) # Handle the fixed effects penalty if self.fe_pen is not None: likeval -= self.fe_pen.func(fe_params) xvx, qf = 0., 0. for k, lab in enumerate(self.group_labels): exog = self.exog_li[k] ex_r = self.exog_re_li[k] ex2_r = self.exog_re2_li[k] resid = resid_all[self.row_indices[lab]] # Part 1 of the log likelihood (for both ML and REML) ld = _smw_logdet(1., ex_r, ex2_r, cov_re, cov_re_inv, cov_re_logdet) likeval -= ld / 2. # Part 2 of the log likelihood (for both ML and REML) u = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, resid) qf += np.dot(resid, u) # Adjustment for REML if self.reml: mat = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, exog) xvx += np.dot(exog.T, mat) if self.reml: likeval -= (self.n_totobs - self.k_fe) * np.log(qf) / 2. _,ld =
np.linalg.slogdet(xvx)
numpy.linalg.slogdet
import contextlib import copy import warnings import numpy as np from skrobot.coordinates.dual_quaternion import DualQuaternion from skrobot.coordinates.math import _check_valid_rotation from skrobot.coordinates.math import _check_valid_translation from skrobot.coordinates.math import _wrap_axis from skrobot.coordinates.math import angle_between_vectors from skrobot.coordinates.math import cross_product from skrobot.coordinates.math import matrix2quaternion from skrobot.coordinates.math import matrix_log from skrobot.coordinates.math import normalize_vector from skrobot.coordinates.math import quaternion2matrix from skrobot.coordinates.math import quaternion_multiply from skrobot.coordinates.math import quaternion_normalize from skrobot.coordinates.math import random_rotation from skrobot.coordinates.math import random_translation from skrobot.coordinates.math import rotate_matrix from skrobot.coordinates.math import rotation_angle from skrobot.coordinates.math import rotation_matrix from skrobot.coordinates.math import rpy2quaternion from skrobot.coordinates.math import rpy_angle def transform_coords(c1, c2, out=None): """Return Coordinates by applying c1 to c2 from the left Parameters ---------- c1 : skrobot.coordinates.Coordinates c2 : skrobot.coordinates.Coordinates Coordinates c3 : skrobot.coordinates.Coordinates or None Output argument. If this value is specified, the results will be in-placed. Returns ------- Coordinates(pos=translation, rot=q) : skrobot.coordinates.Coordinates new coordinates Examples -------- >>> from skrobot.coordinates import Coordinates >>> from skrobot.coordinates import transform_coords >>> from numpy import pi >>> c1 = Coordinates() >>> c2 = Coordinates() >>> c3 = transform_coords(c1, c2) >>> c3.translation array([0., 0., 0.]) >>> c3.rotation array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> c1 = Coordinates().translate([0.1, 0.2, 0.3]).rotate(pi / 3.0, 'x') >>> c2 = Coordinates().translate([0.3, -0.3, 0.1]).rotate(pi / 2.0, 'y') >>> c3 = transform_coords(c1, c2) >>> c3.translation array([ 0.4 , -0.03660254, 0.09019238]) >>> c3.rotation >>> c3.rotation array([[ 1.94289029e-16, 0.00000000e+00, 1.00000000e+00], [ 8.66025404e-01, 5.00000000e-01, -1.66533454e-16], [-5.00000000e-01, 8.66025404e-01, 2.77555756e-17]]) """ if out is None: out = Coordinates() elif not isinstance(out, Coordinates): raise TypeError("Input type should be skrobot.coordinates.Coordinates") out.translation = c1.translation + np.dot(c1.rotation, c2.translation) out.rotation = quaternion_normalize( quaternion_multiply(c1.quaternion, c2.quaternion)) return out class Coordinates(object): """Coordinates class to manipulate rotation and translation. Parameters ---------- pos : list or numpy.ndarray shape of (3,) translation vector. or 4x4 homogeneous transformation matrix. If the homogeneous transformation matrix is given, `rot` will be overwritten. rot : list or numpy.ndarray we can take 3x3 rotation matrix or [yaw, pitch, roll] or quaternion [w, x, y, z] order name : str or None name of this coordinates """ def __init__(self, pos=[0, 0, 0], rot=np.eye(3), name=None, hook=None): if (isinstance(pos, list) or isinstance(pos, np.ndarray)): T = np.array(pos, dtype=np.float64) if T.shape == (4, 4): pos = T[:3, 3] rot = T[:3, :3] self.rotation = rot self.translation = pos if name is None: name = '' self.name = name self.parent = None self._hook = hook if hook else lambda: None @contextlib.contextmanager def disable_hook(self): hook = self._hook self._hook = lambda: None try: yield finally: self._hook = hook @property def rotation(self): """Return rotation matrix of this coordinates. Returns ------- self._rotation : numpy.ndarray 3x3 rotation matrix Examples -------- >>> import numpy as np >>> from skrobot.coordinates import Coordinates >>> c = Coordinates() >>> c.rotation array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> c.rotate(np.pi / 2.0, 'y') >>> c.rotation array([[ 2.22044605e-16, 0.00000000e+00, 1.00000000e+00], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [-1.00000000e+00, 0.00000000e+00, 2.22044605e-16]]) """ self._hook() return self._rotation @rotation.setter def rotation(self, rotation): """Set rotation of this coordinate This setter checkes the given rotation and set it this coordinate. Parameters ---------- rotation : list or numpy.ndarray we can take 3x3 rotation matrix or rpy angle [yaw, pitch, roll] or quaternion [w, x, y, z] order """ rotation = np.array(rotation) # Convert quaternions if rotation.shape == (4,): self._q = np.array([q for q in rotation]) if np.abs(np.linalg.norm(self._q) - 1.0) > 1e-3: raise ValueError('Invalid quaternion. Must be ' 'norm 1.0, get {}'. format(np.linalg.norm(self._q))) rotation = quaternion2matrix(self._q) elif rotation.shape == (3,): # Convert [yaw-pitch-roll] to rotation matrix self._q = rpy2quaternion(rotation) rotation = quaternion2matrix(self._q) else: self._q = matrix2quaternion(rotation) # Convert lists and tuples if type(rotation) in (list, tuple): rotation = np.array(rotation).astype(np.float32) _check_valid_rotation(rotation) self._rotation = rotation * 1. @property def translation(self): """Return translation of this coordinates. Returns ------- self._translation : numpy.ndarray vector shape of (3, ). unit is [m] Examples -------- >>> from skrobot.coordinates import Coordinates >>> c = Coordinates() >>> c.translation array([0., 0., 0.]) >>> c.translate([0.1, 0.2, 0.3]) >>> c.translation array([0.1, 0.2, 0.3]) """ self._hook() return self._translation @translation.setter def translation(self, translation): """Set translation of this coordinate This setter checkes the given translation and set it this coordinate. Parameters ---------- translation : list or tuple or numpy.ndarray shape of (3,) translation vector """ # Convert lists to translation arrays if type(translation) in (list, tuple) and len(translation) == 3: translation = np.array([t for t in translation]).astype(np.float64) _check_valid_translation(translation) self._translation = translation.squeeze() * 1. @property def name(self): """Return this coordinate's name Returns ------- self._name : str name of this coordinate """ return self._name @name.setter def name(self, name): """Setter of this coordinate's name Parameters ---------- name : str name of this coordinate """ if not isinstance(name, str): raise TypeError('name should be string, get {}'. format(type(name))) self._name = name @property def dimension(self): """Return dimension of this coordinate Returns ------- len(self.translation) : int dimension of this coordinate """ return len(self.translation) def changed(self): """Return False This is used for CascadedCoords compatibility Returns ------- False : bool always return False """ return False def translate(self, vec, wrt='local'): """Translate this coordinates. Note that this function changes this coordinates self. So if you don't want to change this class, use copy_worldcoords() Parameters ---------- vec : list or numpy.ndarray shape of (3,) translation vector. unit is [m] order. wrt : str or Coordinates (optional) translate with respect to wrt. Examples -------- >>> import numpy as np >>> from skrobot.coordinates import Coordinates >>> c = Coordinates() >>> c.translation array([0., 0., 0.], dtype=float32) >>> c.translate([0.1, 0.2, 0.3]) >>> c.translation array([0.1, 0.2, 0.3], dtype=float32) >>> c = Coordinates() >>> c.copy_worldcoords().translate([0.1, 0.2, 0.3]) >>> c.translation array([0., 0., 0.], dtype=float32) >>> c = Coordinates().rotate(np.pi / 2.0, 'y') >>> c.translate([0.1, 0.2, 0.3]) >>> c.translation array([ 0.3, 0.2, -0.1]) >>> c = Coordinates().rotate(np.pi / 2.0, 'y') >>> c.translate([0.1, 0.2, 0.3], 'world') >>> c.translation array([0.1, 0.2, 0.3]) """ vec = np.array(vec, dtype=np.float64) return self.newcoords( self.rotation, self.parent_orientation(vec, wrt) + self.translation) def transform_vector(self, v): """"Return vector represented at world frame. Vector v given in the local coords is converted to world representation. Parameters ---------- v : numpy.ndarray 3d vector. We can take batch of vector like (batch_size, 3) Returns ------- transformed_point : numpy.ndarray transformed point """ v = np.array(v, dtype=np.float64) if v.ndim == 2: return (np.matmul(self.rotation, v.T) + self.translation.reshape(3, -1)).T return np.matmul(self.rotation, v) + self.translation def inverse_transform_vector(self, vec): """Transform vector in world coordinates to local coordinates Parameters ---------- vec : numpy.ndarray 3d vector. We can take batch of vector like (batch_size, 3) Returns ------- transformed_point : numpy.ndarray transformed point """ vec = np.array(vec, dtype=np.float64) if vec.ndim == 2: return (np.matmul(self.rotation.T, vec.T) - np.matmul( self.rotation.T, self.translation).reshape(3, -1)).T return np.matmul(self.rotation.T, vec) - \ np.matmul(self.rotation.T, self.translation) def inverse_transformation(self, dest=None): """Return a invese transformation of this coordinate system. Create a new coordinate with inverse transformation of this coordinate system. .. math:: \\left( \\begin{array}{ccc} R^{-1} & - R^{-1} p \\\\ 0 & 1 \\end{array} \\right) Parameters ---------- dest : None or skrobot.coordinates.Coordinates If dest is given, the result of transformation is in-placed to dest. Returns ------- dest : skrobot.coordinates.Coordinates result of inverse transformation. """ if dest is None: dest = Coordinates() dest.rotation = self.rotation.T dest.translation = np.matmul(dest.rotation, self.translation) dest.translation = -1.0 * dest.translation return dest def transformation(self, c2, wrt='local'): c2 = c2.worldcoords() c1 = self.worldcoords() inv = c1.inverse_transformation() if wrt == 'local' or wrt == self: transform_coords(inv, c2, inv) elif wrt == 'parent' or \ wrt == self.parent or \ wrt == 'world': transform_coords(c2, inv, inv) elif isinstance(wrt, Coordinates): xw = wrt.worldcoords() transform_coords(c2, inv, inv) transform_coords(xw.inverse_transformation(), inv, inv) transform_coords(inv, xw, inv) else: raise ValueError('wrt {} not supported'.format(wrt)) return inv def T(self): """Return 4x4 homogeneous transformation matrix. Returns ------- matrix : numpy.ndarray homogeneous transformation matrix shape of (4, 4) Examples -------- >>> from numpy import pi >>> from skrobot.coordinates import make_coords >>> c = make_coords() >>> c.T() array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) >>> c.translate([0.1, 0.2, 0.3]) >>> c.rotate(pi / 2.0, 'y') array([[ 2.22044605e-16, 0.00000000e+00, 1.00000000e+00, 1.00000000e-01], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, 2.00000000e-01], [-1.00000000e+00, 0.00000000e+00, 2.22044605e-16, 3.00000000e-01], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) """ matrix = np.zeros((4, 4), dtype=np.float64) matrix[3, 3] = 1.0 matrix[:3, :3] = self.rotation matrix[:3, 3] = self.translation return matrix @property def quaternion(self): """Property of quaternion Returns ------- self._q : numpy.ndarray [w, x, y, z] quaternion Examples -------- >>> from numpy import pi >>> from skrobot.coordinates import make_coords >>> c = make_coords() >>> c.quaternion array([1., 0., 0., 0.]) >>> c.rotate(pi / 3, 'y').rotate(pi / 5, 'z') >>> c.quaternion array([0.8236391 , 0.1545085 , 0.47552826, 0.26761657]) """ return self._q @property def dual_quaternion(self): """Property of DualQuaternion Return DualQuaternion representation of this coordinate. Returns ------- DualQuaternion : skrobot.coordinates.dual_quaternion.DualQuaternion DualQuaternion representation of this coordinate """ qr = normalize_vector(self.quaternion) x, y, z = self.translation qd = quaternion_multiply(np.array([0, x, y, z]), qr) * 0.5 return DualQuaternion(qr, qd) def parent_orientation(self, v, wrt): if wrt == 'local' or wrt == self: return np.matmul(self.rotation, v) if wrt == 'parent' \ or wrt == self.parent \ or wrt == 'world': return v if coordinates_p(wrt): return np.matmul(wrt.worldrot(), v) raise ValueError('wrt {} not supported'.format(wrt)) def rotate_vector(self, v): """Rotate 3-dimensional vector using rotation of this coordinate Parameters ---------- v : numpy.ndarray vector shape of (3,) Returns ------- np.matmul(self.rotation, v) : numpy.ndarray rotated vector Examples -------- >>> from skrobot.coordinates import Coordinates >>> from numpy import pi >>> c = Coordinates().rotate(pi, 'z') >>> c.rotate_vector([1, 2, 3]) array([-1., -2., 3.]) """ return np.matmul(self.rotation, v) def inverse_rotate_vector(self, v): return np.matmul(v, self.rotation) def transform(self, c, wrt='local'): """Transform this coordinates by coords based on wrt Note that this function changes this coordinates translation and rotation. If you would like not to change this coordinates, Please use copy_worldcoords() Parameters ---------- c : skrobot.coordinates.Coordinates coordinate wrt : str or skrobot.coordinates.Coordinates If wrt is 'local' or self, multiply c from the right. If wrt is 'world' or 'parent' or self.parent, transform c with respect to worldcoord. If wrt is Coordinates, transform c with respect to c. Returns ------- self : skrobot.coordinates.Coordinates return this coordinate Examples -------- """ if wrt == 'local' or wrt == self: # multiply c from the right transform_coords(self, c, self) elif wrt == 'parent' or wrt == self.parent \ or wrt == 'world': # multiply c from the left transform_coords(c, self, self) elif isinstance(wrt, Coordinates): transform_coords(wrt.inverse_transformation(), self, self) transform_coords(c, self, self) transform_coords(wrt.worldcoords(), self, self) else: raise ValueError('transform wrt {} is not supported'.format(wrt)) return self def move_coords(self, target_coords, local_coords): """Transform this coordinate so that local_coords to target_coords. Parameters ---------- target_coords : skrobot.coordinates.Coordinates target coords. local_coords : skrobot.coordinates.Coordinates local coords to be aligned. Returns ------- self.worldcoords() : skrobot.coordinates.Coordinates world coordinates. """ self.transform( local_coords.transformation(target_coords), local_coords) return self.worldcoords() def rpy_angle(self): """Return a pair of rpy angles of this coordinates. Returns ------- rpy_angle(self.rotation) : tuple(numpy.ndarray, numpy.ndarray) a pair of rpy angles. See also skrobot.coordinates.math.rpy_angle Examples -------- >>> import numpy as np >>> from skrobot.coordinates import Coordinates >>> c = Coordinates().rotate(np.pi / 2.0, 'x').rotate(np.pi / 3.0, 'z') >>> r.rpy_angle() (array([ 3.84592537e-16, -1.04719755e+00, 1.57079633e+00]), array([ 3.14159265, -2.0943951 , -1.57079633])) """ return rpy_angle(self.rotation) def axis(self, ax): ax = _wrap_axis(ax) return self.rotate_vector(ax) def difference_position(self, coords, translation_axis=True): """Return differences in positoin of given coords. Parameters ---------- coords : skrobot.coordinates.Coordinates given coordinates translation_axis : str or bool or None (optional) we can take 'x', 'y', 'z', 'xy', 'yz', 'zx', 'xx', 'yy', 'zz', True or False(None). Returns ------- dif_pos : numpy.ndarray difference position of self coordinates and coords considering translation_axis. Examples -------- >>> from skrobot.coordinates import Coordinates >>> from skrobot.coordinates import transform_coords >>> from numpy import pi >>> c1 = Coordinates().translate([0.1, 0.2, 0.3]).rotate( ... pi / 3.0, 'x') >>> c2 = Coordinates().translate([0.3, -0.3, 0.1]).rotate( ... pi / 2.0, 'y') >>> c1.difference_position(c2) array([ 0.2 , -0.42320508, 0.3330127 ]) >>> c1 = Coordinates().translate([0.1, 0.2, 0.3]).rotate(0, 'x') >>> c2 = Coordinates().translate([0.3, -0.3, 0.1]).rotate( ... pi / 3.0, 'x') >>> c1.difference_position(c2) array([ 0.2, -0.5, -0.2]) """ dif_pos = self.inverse_transform_vector(coords.worldpos()) translation_axis = _wrap_axis(translation_axis) dif_pos[translation_axis == 1] = 0.0 return dif_pos def difference_rotation(self, coords, rotation_axis=True): """Return differences in rotation of given coords. Parameters ---------- coords : skrobot.coordinates.Coordinates given coordinates rotation_axis : str or bool or None (optional) we can take 'x', 'y', 'z', 'xx', 'yy', 'zz', 'xm', 'ym', 'zm', 'xy', 'yx', 'yz', 'zy', 'zx', 'xz', True or False(None). Returns ------- dif_rot : numpy.ndarray difference rotation of self coordinates and coords considering rotation_axis. Examples -------- >>> from numpy import pi >>> from skrobot.coordinates import Coordinates >>> from skrobot.coordinates.math import rpy_matrix >>> coord1 = Coordinates() >>> coord2 = Coordinates(rot=rpy_matrix(pi / 2.0, pi / 3.0, pi / 5.0)) >>> coord1.difference_rotation(coord2) array([-0.32855112, 1.17434985, 1.05738936]) >>> coord1.difference_rotation(coord2, rotation_axis=False) array([0, 0, 0]) >>> coord1.difference_rotation(coord2, rotation_axis='x') array([0. , 1.36034952, 0.78539816]) >>> coord1.difference_rotation(coord2, rotation_axis='y') array([0.35398131, 0. , 0.97442695]) >>> coord1.difference_rotation(coord2, rotation_axis='z') array([-0.88435715, 0.74192175, 0. ]) Using mirror option ['xm', 'ym', 'zm'], you can allow differences of mirror direction. >>> coord1 = Coordinates() >>> coord2 = Coordinates().rotate(pi, 'x') >>> coord1.difference_rotation(coord2, 'xm') array([-2.99951957e-32, 0.00000000e+00, 0.00000000e+00]) >>> coord1 = Coordinates() >>> coord2 = Coordinates().rotate(pi / 2.0, 'x') >>> coord1.difference_rotation(coord2, 'xm') array([-1.57079633, 0. , 0. ]) """ def need_mirror_for_nearest_axis(coords0, coords1, ax): a0 = coords0.axis(ax) a1 = coords1.axis(ax) a1_mirror = - a1 dr1 = angle_between_vectors(a0, a1, normalize=False) \ * normalize_vector(cross_product(a0, a1)) dr1m = angle_between_vectors(a0, a1_mirror, normalize=False) \ * normalize_vector(cross_product(a0, a1_mirror)) return np.linalg.norm(dr1) < np.linalg.norm(dr1m) if rotation_axis in ['x', 'y', 'z']: a0 = self.axis(rotation_axis) a1 = coords.axis(rotation_axis) if np.abs(np.linalg.norm(np.array(a0) - np.array(a1))) < 0.001: dif_rot = np.array([0, 0, 0], 'f') else: dif_rot = np.matmul( self.worldrot().T, angle_between_vectors(a0, a1, normalize=False) * normalize_vector(cross_product(a0, a1))) elif rotation_axis in ['xx', 'yy', 'zz']: ax = rotation_axis[0] a0 = self.axis(ax) a2 = coords.axis(ax) if not need_mirror_for_nearest_axis(self, coords, ax): a2 = - a2 dif_rot = np.matmul( self.worldrot().T, angle_between_vectors(a0, a2, normalize=False) * normalize_vector(cross_product(a0, a2))) elif rotation_axis in ['xy', 'yx', 'yz', 'zy', 'zx', 'xz']: if rotation_axis in ['xy', 'yx']: ax1 = 'z' ax2 = 'x' elif rotation_axis in ['yz', 'zy']: ax1 = 'x' ax2 = 'y' else: ax1 = 'y' ax2 = 'z' a0 = self.axis(ax1) a1 = coords.axis(ax1) dif_rot = np.matmul( self.worldrot().T, angle_between_vectors(a0, a1, normalize=False) * normalize_vector(cross_product(a0, a1))) norm = np.linalg.norm(dif_rot) if np.isclose(norm, 0.0): self_coords = self.copy_worldcoords() else: self_coords = self.copy_worldcoords().rotate(norm, dif_rot) a0 = self_coords.axis(ax2) a1 = coords.axis(ax2) dif_rot = np.matmul( self_coords.worldrot().T, angle_between_vectors(a0, a1, normalize=False) * normalize_vector(cross_product(a0, a1))) elif rotation_axis in ['xm', 'ym', 'zm']: rot = coords.worldrot() ax = rotation_axis[0] if not need_mirror_for_nearest_axis(self, coords, ax): rot = rotate_matrix(rot, np.pi, ax) dif_rot = matrix_log(np.matmul(self.worldrot().T, rot)) elif rotation_axis is False or rotation_axis is None: dif_rot = np.array([0, 0, 0]) elif rotation_axis is True: dif_rotmatrix = np.matmul(self.worldrot().T, coords.worldrot()) dif_rot = matrix_log(dif_rotmatrix) else: raise ValueError return dif_rot def rotate_with_matrix(self, mat, wrt='local'): """Rotate this coordinate by given rotation matrix. This is a subroutine of self.rotate function. Parameters ---------- mat : numpy.ndarray rotation matrix shape of (3, 3) wrt : str or skrobot.coordinates.Coordinates with respect to. Returns ------- self : skrobot.coordinates.Coordinates """ if wrt == 'local' or wrt == self: rot = np.matmul(self.rotation, mat) self.newcoords(rot, self.translation) elif wrt == 'parent' or wrt == self.parent or \ wrt == 'world' or wrt is None or \ wrt == worldcoords: rot = np.matmul(mat, self.rotation) self.newcoords(rot, self.translation) elif isinstance(wrt, Coordinates): r2 = wrt.worldrot() r2t = r2.T r2t = np.matmul(mat, r2t) r2t = np.matmul(r2, r2t) self.rotation = np.matmul(r2t, self.rotation) else: raise ValueError('wrt {} is not supported'.format(wrt)) return self def rotate(self, theta, axis=None, wrt='local'): """Rotate this coordinate by given theta and axis. This coordinate system is rotated relative to theta radians around the `axis` axis. Note that this function does not change a position of this coordinate. If you want to rotate this coordinates around with world frame, you can use `transform` function. Please see examples. Parameters ---------- theta : float relartive rotation angle in radian. axis : str or None or numpy.ndarray axis of rotation. The value of `axis` is represented as `wrt` frame. wrt : str or skrobot.coordinates.Coordinates Returns ------- self : skrobot.coordinates.Coordinates Examples -------- >>> from skrobot.coordinates import Coordinates >>> from numpy import pi >>> c = Coordinates() >>> c.translate((1.0, 0, 0)) >>> c.rotate(pi / 2.0, 'z', wrt='local') >>> c.translation array([1., 0., 0.]) >>> c.transform(Coordinates().rotate(np.pi / 2.0, 'z'), wrt='world') >>> c.translation array([0., 1., 0.]) """ if isinstance(axis, list) or isinstance(axis, np.ndarray): self.rotate_with_matrix( rotation_matrix(theta, axis), wrt) elif axis is None or axis is False: self.rotate_with_matrix(theta, wrt) elif wrt == 'local' or wrt == self: self.rotation = rotate_matrix(self.rotation, theta, axis) elif wrt == 'parent' or wrt == 'world': self.rotation = rotate_matrix(self.rotation, theta, axis, True) elif isinstance(wrt, Coordinates): # C1'=C2*R*C2(-1)*C1 self.rotate_with_matrix( rotation_matrix(theta, axis), wrt) else: raise ValueError('wrt {} not supported'.format(wrt)) return self.newcoords(self.rotation, self.translation) def copy(self): """Return a deep copy of the Coordinates.""" return self.copy_coords() def copy_coords(self): """Return a deep copy of the Coordinates.""" return Coordinates(pos=copy.deepcopy(self.worldpos()), rot=copy.deepcopy(self.worldrot())) def coords(self): """Return a deep copy of the Coordinates.""" return self.copy_coords() def worldcoords(self): """Return thisself""" self._hook() return self def copy_worldcoords(self): """Return a deep copy of the Coordinates.""" return self.coords() def worldrot(self): """Return rotation of this coordinate See also skrobot.coordinates.Coordinates.rotation Returns ------- self.rotation : numpy.ndarray rotation matrix of this coordinate """ return self.rotation def worldpos(self): """Return translation of this coordinate See also skrobot.coordinates.Coordinates.translation Returns ------- self.translation : numpy.ndarray translation of this coordinate """ return self.translation def newcoords(self, c, pos=None): """Update of coords is always done through newcoords.""" if pos is not None: self.rotation = copy.deepcopy(c) self.translation = copy.deepcopy(pos) else: self.rotation = copy.deepcopy(c.rotation) self.translation = copy.deepcopy(c.translation) return self def __mul__(self, other_c): """Return Transformed Coordinates. Note that this function creates new Coordinates and does not change translation and rotation, unlike transform function. Parameters ---------- other_c : skrobot.coordinates.Coordinates input coordinates. Returns ------- out : skrobot.coordinates.Coordinates transformed coordinates multiplied other_c from the right. T = T_{self} T_{other_c}. """ return transform_coords(self, other_c) def __pow__(self, exponent): """Return exponential homogeneous matrix. If exponent equals -1, return inverse transformation of this coords. Parameters ---------- exponent : numbers.Number exponent value. If exponent equals -1, return inverse transformation of this coords. In current, support only -1 case. Returns ------- out : skrobot.coordinates.Coordinates output. """ if np.isclose(exponent, -1): return self.inverse_transformation() raise NotImplementedError def __repr__(self): return self.__str__() def __str__(self): self.worldrot() pos = self.worldpos() self.rpy = rpy_angle(self.rotation)[0] if self.name: prefix = self.__class__.__name__ + ':' + self.name else: prefix = self.__class__.__name__ return "#<{0} {1} "\ "{2:.3f} {3:.3f} {4:.3f} / {5:.1f} {6:.1f} {7:.1f}>".\ format(prefix, hex(id(self)), pos[0], pos[1], pos[2], self.rpy[0], self.rpy[1], self.rpy[2]) class CascadedCoords(Coordinates): def __init__(self, parent=None, *args, **kwargs): super(CascadedCoords, self).__init__(*args, **kwargs) self.manager = self self._changed = True self._descendants = [] self._worldcoords = Coordinates(pos=self.translation, rot=self.rotation, hook=self.update) self.parent = parent if parent is not None: # Because we must self.parent = parent in this case, # force=True is required. parent.assoc(self, force=True) @property def descendants(self): return self._descendants def assoc(self, child, relative_coords=None, force=False, **kwargs): """Associate child coords to this coordinate. If `relative_coords` is `None`, the translation and rotation of childcoord in the world coordinate system do not change. If `relative_coords` is specified, childcoord is assoced at translation and rotation of `relative_coords`. By default, if child is already assoced to some other coords, raise an exception. But if `force` is `True`, you can overwrite the existing assoc relation. Parameters ---------- child : CascadedCoords child coordinate. relative_coords : None or Coordinates child coordinate's relative coordinate. force : bool predicate for overwriting the existing assoc-relation Returns ------- child : CascadedCoords assoced child. """ if 'c' in kwargs: warnings.warn( 'Argument `c` is deprecated. ' 'Please use `relative_coords` instead', DeprecationWarning) relative_coords = kwargs['c'] is_invalid_assoc = (child.parent is not None) and (not force) if is_invalid_assoc: msg = "child already has an assoc relation with '{0}'."\ " To overwrite this, please specify force=True."\ .format(child.parent.name) raise RuntimeError(msg) if not (child in self.descendants): if relative_coords is None: relative_coords = self.worldcoords().transformation( child.worldcoords()) child.parent = self child.newcoords(relative_coords) self._descendants.append(child) return child def dissoc(self, child): if child in self.descendants: c = child.worldcoords().copy_coords() self._descendants.remove(child) child.parent = None child.newcoords(c) def newcoords(self, c, pos=None): super(CascadedCoords, self).newcoords(c, pos) self.changed() return self def changed(self): if self._changed is False: self._changed = True return [c.changed() for c in self.descendants] return [False] def parentcoords(self): if self.parent: return self.parent.worldcoords() return worldcoords def transform_vector(self, v): return self.worldcoords().transform_vector(v) def inverse_transform_vector(self, v): return self.worldcoords().inverse_transform_vector(v) def rotate_with_matrix(self, matrix, wrt): if wrt == 'local' or wrt == self: self.rotation = np.dot(self.rotation, matrix) return self.newcoords(self.rotation, self.translation) elif wrt == 'parent' or wrt == self.parent: self.rotation = np.matmul(matrix, self.rotation) return self.newcoords(self.rotation, self.translation) else: parent_coords = self.parentcoords() parent_rot = parent_coords.rotation if isinstance(wrt, Coordinates): wrt_rot = wrt.worldrot() matrix = np.matmul(wrt_rot, matrix) matrix = np.matmul(matrix, wrt_rot.T) matrix = np.matmul(matrix, parent_rot) matrix = np.matmul(parent_rot.T, matrix) self.rotation =
np.matmul(matrix, self.rotation)
numpy.matmul
import numpy as np from . import covRadii from . import frag from . import optExceptions from . import physconst as pc from . import v3d from .addIntcos import connectivityFromDistances, addCartesianIntcos from .printTools import print_opt class MOLSYS(object): # new-style classes required for getter/setters def __init__(self, fragments, fb_fragments=None, intcos=None): # ordinary fragments with internal structure self._fragments = [] if fragments: self._fragments = fragments # fixed body fragments defined by Euler/rotation angles self._fb_fragments = [] if fb_fragments: self._fb_fragments = fb_fragments def __str__(self): s = '' for iF, F in enumerate(self._fragments): s += "Fragment %d\n" % (iF + 1) s += F.__str__() for iB, B in enumerate(self._fb_fragments): s += "Fixed boxy Fragment %d\n" % (iB + 1) s += B.__str__() return s @classmethod def fromPsi4Molecule(cls, mol): print_opt("\n\tGenerating molecular system for optimization from PSI4.\n") NF = mol.nfragments() print_opt("\t%d Fragments in PSI4 molecule object.\n" % NF) frags = [] for iF in range(NF): fragMol = mol.extract_subsets(iF + 1) fragNatom = fragMol.natom() print_opt("\tCreating fragment %d with %d atoms\n" % (iF + 1, fragNatom)) fragGeom = np.zeros((fragNatom, 3), float) fragGeom[:] = fragMol.geometry() #fragZ = np.zeros( fragNatom, int) fragZ = [] for i in range(fragNatom): fragZ.append(int(fragMol.Z(i))) #fragZ[i] = fragMol.Z(i) fragMasses = np.zeros(fragNatom, float) for i in range(fragNatom): fragMasses[i] = fragMol.mass(i) frags.append(frag.FRAG(fragZ, fragGeom, fragMasses)) return cls(frags) @property def Natom(self): s = 0 for F in self._fragments: s += F.Natom return s @property def Nfragments(self): return len(self._fragments) + len(self._fb_fragments) # Return overall index of first atom in fragment, beginning 0,1,... def frag_1st_atom(self, iF): if iF >= len(self._fragments): return ValueError() start = 0 for i in range(0, iF): start += self._fragments[i].Natom return start def frag_atom_range(self, iF): start = self.frag_1st_atom(iF) return range(start, start + self._fragments[iF].Natom) # accepts absolute atom index, returns fragment index def atom2frag_index(self, atom_index): for iF, F in enumerate(self._fragments): if atom_index in self.frag_atom_range(iF): return iF raise optExceptions.OPT_FAIL("atom2frag_index: atom_index impossibly large") # Given a list of atoms, return all the fragments to which they belong def atomList2uniqueFragList(self, atomList): fragList = [] for a in atomList: f = self.atom2frag_index(a) if f not in fragList: fragList.append(f) return fragList @property def geom(self): geom = np.zeros((self.Natom, 3), float) for iF, F in enumerate(self._fragments): row = self.frag_1st_atom(iF) geom[row:(row + F.Natom), :] = F.geom return geom @geom.setter def geom(self, newgeom): for iF, F in enumerate(self._fragments): row = self.frag_1st_atom(iF) F.geom[:] = newgeom[row:(row + F.Natom), :] @property def masses(self): m =
np.zeros(self.Natom, float)
numpy.zeros
d=[0.473045614952593, 0.447736468125885, 0.428985913357516, 0.420760369024789, 0.41515124352135, 0.405833793375885, 0.397526168918568, 0.394253238719156, 0.380917877188419, 0.330384285055802, 0.326863689244717, 0.327041417142448, 0.323839959911076, 0.321145648600365, 0.317525426500985, 0.316773847322366, 0.310774706528829, 0.307701107902387, 0.306279591776957, 0.305636809626806, 0.305085583722019, 0.300419285479095, 0.298809515219522, 0.295884244372572, 0.29218159873572, 0.289437474625885, 0.288242644225782, 0.28692067005731, 0.283844122914778, 0.282990704879198, 0.28017749282843, 0.274036119895761, 0.267471195712531, 0.259408710782269, 0.257203625892448 ] sigma=0.10895354 import numpy as np import matplotlib.pyplot as plt import math def P(x): return math.exp(-x**2/(2*2*sigma**2))/(2*math.pi**0.5*sigma) plt.rcParams['figure.figsize'] = (8.0, 4.0) plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 plt.rcParams['text.usetex']=False nx=
np.arange(-0.7,0.7,0.0005)
numpy.arange
import os import numpy as np from rs_embed import EmbeddingData from query.models import Labeler LANDMARKS_DIR = '/app/data/landmarks' LANDMARKS_PATH = os.path.join(LANDMARKS_DIR, 'landmarks_binary.bin') ID_PATH = os.path.join(LANDMARKS_DIR, 'landmarks_ids.bin') LANDMARKS_DIM = 272 def _load(): id_file_size = os.path.getsize(ID_PATH) assert id_file_size % 8 == 0, \ 'Id file size is not a multiple of sizeof(u64)' n = int(id_file_size / 8) emb_file_size = os.path.getsize(LANDMARKS_PATH) assert emb_file_size % 4 == 0, \ 'Embedding file size is a multiple of sizeof(f32)' d = int((emb_file_size / 4) / (id_file_size / 8)) assert emb_file_size % d == 0, \ 'Embedding file size is a multiple of d={}'.format(d) emb_data = EmbeddingData(ID_PATH, LANDMARKS_PATH, LANDMARKS_DIM) assert emb_data.count() == n, \ 'Count does not match expected: {} != {}'.format(n, emb_data.count()) return emb_data _LANDMARKS_DATA = _load() LABELER = Labeler.objects.get(name='fan2d') class LandmarksWrapper(): def __init__(self, landmarks, landmarks_id, labeler): self.landmarks = np.frombuffer( np.array(landmarks, dtype=np.float32).tobytes(), dtype=np.float64).reshape(68, 2) self.id = landmarks_id self.labeler = labeler # Slice values for each set of landmarks FACE_OUTLINE = (0, 17) RIGHT_EYEBROW = (17, 22) LEFT_EYEBROW = (22, 27) NOSE_BRIDGE = (27, 31) NOSE_BOTTOM = (31, 36) RIGHT_EYE = (36, 42) LEFT_EYE = (42, 48) OUTER_LIPS = (48, 60) INNER_LIPS = (60, 68) def _get_landmarks(self, slice_values): return self.landmarks[slice_values[0]:slice_values[1]] def face_outline(self): return self._get_landmarks(self.FACE_OUTLINE) def right_eyebrow(self): return self._get_landmarks(self.RIGHT_EYEBROW) def left_eyebrow(self): return self._get_landmarks(self.LEFT_EYEBROW) def nose_bridge(self): return self._get_landmarks(self.NOSE_BRIDGE) def nose_bottom(self): return self._get_landmarks(self.NOSE_BOTTOM) def right_eye(self): return self._get_landmarks(self.RIGHT_EYE) def left_eye(self): return self._get_landmarks(self.LEFT_EYE) def outer_lips(self): return self._get_landmarks(self.OUTER_LIPS) def inner_lips(self): return self._get_landmarks(self.INNER_LIPS) def get(faces_qs): """Generator of Face objects -> list of LandmarksWrapper objects.""" faces_qs = list(faces_qs) ids = [f.id for f in faces_qs] # get returns list of (id, landmarks bytes) result = _LANDMARKS_DATA.get(ids) assert len(result) == len(faces_qs), "{} != {}".format( len(result), len(faces_qs)) return [ LandmarksWrapper(
np.array(landmarks_id_bytes[1])
numpy.array
# coding: utf-8 import yt import numpy as np from yt.fields.api import ValidateParameter from mpl_toolkits.axes_grid1 import AxesGrid from yt.utilities.physical_constants import mp, kb from yt import derived_field from yt.units.yt_array import YTQuantity from yt.funcs import just_one from scipy.spatial.distance import euclidean from yt.fields.derived_field import \ ValidateSpatial def unit_override(): return {"length_unit":(1,"Rsun"), "time_unit":(6.955e+05 ,"s"), "mass_unit":(3.36427433875e+17,"g"), "magnetic_unit":(1.121e-02,"G")} def sim_parameters(): return {"gamma":1.05} def create_fields(ds): units_override = {"length_unit":(1,"Rsun"), "time_unit":(6.955e+05 ,"s"), "mass_unit":(3.36427433875e+17,"g"), "magnetic_unit":(1.121e-02,"G")} def _radialvelocity(field, data): return data['velocity_x']*data['x']/data['radius'] + \ data['velocity_y']*data['y']/data['radius'] + \ data['velocity_z']*data['z']/data['radius'] ds.add_field(('gas', "radialvelocity"), function=_radialvelocity, units="cm/s", take_log=False) def _sound_speed(field, data): gamma = 1.05 ftype = field.name[0] tr = gamma * data[ftype, "pressure"] / data[ftype, "density"] return np.sqrt(tr) ds.add_field(('gas', "sound_speed"), function=_sound_speed, units="cm/s", take_log=False) def _mach_number(field, data): """ M{|v|/c_sound} """ ftype = field.name[0] return data[ftype, "velocity_magnitude"] / data[ftype, "sound_speed"] ds.add_field(('gas', "mach_number"), function=_mach_number, units="", take_log=False) def _temperature(field, data): return (data["gas", "pressure"]*mp)/(2.0*data["gas", "density"]*kb) ds.add_field(('gas', "temperature"), function=_temperature, units="K", take_log=True) def _radius_planet(field, data): a = 0.047*1.496e+13/6.955e+10 shift = data.ds.arr(np.ones_like(data['x']))*a x_planet = data['x'] - shift return np.sqrt(x_planet*x_planet \ + data['y']*data['y'] \ + data['z']*data['z']) ds.add_field(('index', "radius_planet"), function=_radius_planet, units="cm", take_log=False) def _ni(field, data): return data["density"]/(1.09*mp) ds.add_field(("gas", "ni"), function=_ni, units="cm**-3") def _BGx1(field, data): B0s = YTQuantity(2.0, "G") B0p = YTQuantity(1.0, "G") Rs = YTQuantity(6.955e+10, "cm") Rp = YTQuantity(1.5*0.10045*Rs, "cm") a = YTQuantity(0.047, "au").in_units("cm") center = data.get_field_parameter('center') x1 = data["x"].in_units('cm') x2 = data["y"].in_units('cm') x3 = data["z"].in_units('cm') rs = np.sqrt(x1*x1 + x2*x2 + x3*x3) rp = np.sqrt((x1-a)*(x1-a) + x2*x2 + x3*x3) BGx1 = data.ds.arr(np.zeros_like(data["magnetic_field_x"]), "G") BGx1 = 3.0*x1*x3*B0s*Rs**3*rs**(-5) + 3.0*(x1 - a)*x3*B0p*Rp**3*rp**(-5) BGx1[rs <= Rs] = 3.0*x1[rs <= Rs]*x3[rs <= Rs]*B0s*Rs**3*rs[rs <= Rs]**(-5) BGx1[rs <= 0.5*Rs] = 0.0 BGx1[rp <= Rp] = 3.0*(x1[rp <= Rp] - a)*x3[rp <= Rp]\ *B0p*Rp**3*rp[rp <= Rp]**(-5) BGx1[rp <= 0.5*Rp] = 0.0 return BGx1 ds.add_field(("gas", "BGx1"), function=_BGx1, units="G", take_log=False) def _BGx2(field, data): B0s = YTQuantity(2.0, "G") B0p = YTQuantity(1.0, "G") Rs = YTQuantity(6.955e+10, "cm") Rp = YTQuantity(1.5*0.10045*Rs, "cm") a = YTQuantity(0.047, "au").in_units("cm") center = data.get_field_parameter('center') x1 = data["x"].in_units('cm') x2 = data["y"].in_units('cm') x3 = data["z"].in_units('cm') rs = np.sqrt(x1*x1 + x2*x2 + x3*x3) rp = np.sqrt((x1-a)*(x1-a) + x2*x2 + x3*x3) BGx2 = data.ds.arr(np.zeros_like(data["magnetic_field_y"]), "G") BGx2 = 3.0*x3*x2*B0s*Rs**3*rs**(-5) + 3.0*x3*x2*B0p*Rp**3*rp**(-5) BGx2[rs <= Rs] = 3.0*x3[rs <= Rs]*x2[rs <= Rs]\ *B0s*Rs**3*rs[rs <= Rs]**(-5) BGx2[rs <= 0.5*Rs] = 0.0 BGx2[rp <= Rp] = 3.0*x3[rp <= Rp]*x2[rp <= Rp]\ *B0p*Rp**3*rp[rp <= Rp]**(-5) BGx2[rp <= 0.5*Rp] = 0.0 return BGx2 ds.add_field(("gas", "BGx2"), function=_BGx2, units="G", take_log=False) def _BGx3(field, data): B0s = YTQuantity(2.0, "G") B0p = YTQuantity(1.0, "G") Rs = YTQuantity(6.955e+10, "cm") Rp = YTQuantity(1.5*0.10045*Rs, "cm") a = YTQuantity(0.047, "au").in_units("cm") x1 = data["x"].in_units('cm') x2 = data["y"].in_units('cm') x3 = data["z"].in_units('cm') rs =
np.sqrt(x1*x1 + x2*x2 + x3*x3)
numpy.sqrt
from abc import ABC, abstractmethod import numpy as np import matplotlib.pyplot as plt import datetime as dt import os import json import copy import utils OUT_PATH = './out/' class ForecastModel(ABC): """ Abstract superclass of all probabilistic forecasting models. """ @abstractmethod def __init__(self, y, t, u=None, ID='', seed=0, global_model=False): self.seed = seed self.global_model = global_model self.s_d = 48 self.s_w = self.s_d * 7 # Maximum forecast horizon self.max_horizon = self.s_w self.y = y self.t = t if u is not None and u.ndim == 1: u = u[:, np.newaxis] self.u = u # Mean, maximum and minimum value of the measurements self.y_mean = np.nanmean(y, axis=0) self.y_max = np.nanmax(y, axis=0) self.y_min = np.nanmin(y, axis=0) # Maximum, minimum, mean and std value of the input if u is not None: self.u_max = np.nanmax(u, axis=0, keepdims=True) self.u_min =
np.nanmin(u, axis=0, keepdims=True)
numpy.nanmin
import numpy as np import pandas as pd from bilby.core.prior import TruncatedNormal, PriorDict from agn_utils.data_formetter import ld_to_dl BOUNDS = dict( cos_theta_1=(-1, 1), cos_theta_12=(-1, 1), ) PRIOR_VOLUME = ( (BOUNDS["cos_theta_1"][1] - BOUNDS["cos_theta_1"][0]) * (BOUNDS["cos_theta_12"][1] - BOUNDS["cos_theta_12"][0]) ) def simulate_posterior(sample, fractional_sigma=0.1, n_samples=1000): posterior = pd.DataFrame() for key in sample: if key in BOUNDS: bound = BOUNDS[key] else: bound = (-np.inf, np.inf) sigma = sample[key] * fractional_sigma new_true = TruncatedNormal( mu=sample[key], sigma=sigma, minimum=bound[0], maximum=bound[1] ).sample() posterior[key] = TruncatedNormal( mu=new_true, sigma=sigma, minimum=bound[0], maximum=bound[1] ).sample(n_samples) posterior["prior"] = 1 / PRIOR_VOLUME return posterior def simulate_population_posteriors(sig1=5, sig12=5, number_events=10, n_samp=50000, fractional_sigma=1): pop_prior = PriorDict(dict( cos_theta_1=TruncatedNormal(mu=1, sigma=sig1, minimum=-1, maximum=1), cos_theta_12=TruncatedNormal(mu=1, sigma=sig12, minimum=-1, maximum=1) )) params = pop_prior.keys() posteriors = {p: [] for p in params} trues = {p: [] for p in params} for i in range(number_events): true = pop_prior.sample() posterior = simulate_posterior(true, n_samples=n_samp, fractional_sigma=1) for p in params: posteriors[p].append(posterior[p].values) trues[p].append(true[p]) for p in params: posteriors[p] = np.array(posteriors[p]) trues[p] = np.array(trues[p]) return dict( trues=trues, posteriors=posteriors ) def simulate_exact_population_posteriors(sig1=5, sig12=5, number_events=10, n_samp=10000): pop_prior = PriorDict(dict( cos_tilt_1=TruncatedNormal(mu=1, sigma=sig1, minimum=-1, maximum=1), cos_theta_12=TruncatedNormal(mu=1, sigma=sig12, minimum=-1, maximum=1) )) posteriors = [pop_prior.sample(n_samp) for _ in range(number_events)] posteriors = ld_to_dl(posteriors) posteriors = {k:
np.array(v)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # S_ProjectionVGSub [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=S_ProjectionVGSub&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-subordinated-brownian-motion). # ## Prepare the environment # + import os import os.path as path import sys sys.path.append(path.abspath('../../functions-legacy')) from collections import namedtuple from numpy import arange, array, zeros, diff, abs, log, exp, sqrt, tile, r_, atleast_2d, newaxis from numpy import sum as npsum, min as npmin, max as npmax from scipy.io import loadmat import matplotlib.pyplot as plt from matplotlib.pyplot import plot, subplots, ylabel, \ xlabel, title, xticks plt.style.use('seaborn') from CONFIG import GLOBAL_DB, TEMPORARY_DB from ARPM_utils import struct_to_dict, datenum, save_plot from intersect_matlab import intersect from EffectiveScenarios import EffectiveScenarios from ConditionalFP import ConditionalFP from MMFP import MMFP from VG import VG from ShiftedVGMoments import ShiftedVGMoments # - # ## Upload databases # + try: db = loadmat(os.path.join(GLOBAL_DB, 'db_OptionStrategy'), squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_OptionStrategy'), squeeze_me=True) OptionStrategy = struct_to_dict(db['OptionStrategy']) try: db = loadmat(os.path.join(GLOBAL_DB, 'db_VIX'), squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_VIX'), squeeze_me=True) VIX = struct_to_dict(db['VIX']) # - # ## Merge data # + # invariants (daily P&L) pnl = OptionStrategy.cumPL epsi = diff(pnl) dates_x = array([datenum(i) for i in OptionStrategy.Dates]) dates_x = dates_x[1:] # conditioning variable (VIX) z = VIX.value dates_z = VIX.Date # merging datasets [dates, i_epsi, i_z] = intersect(dates_x, dates_z) pnl = pnl[i_epsi + 1] epsi = epsi[i_epsi] z = z[i_z] t_ = len(epsi) # - # ## Compute the Flexible Probabilities conditioned via Entropy Pooling # + # prior lam = log(2) / 1800 # half life 5y prior = exp(-lam*abs(arange(t_, 1 + -1, -1))).reshape(1,-1) prior = prior / npsum(prior) # conditioner VIX = namedtuple('VIX', 'Series TargetValue Leeway') VIX.Series = z.reshape(1,-1) VIX.TargetValue = atleast_2d(z[-1]) VIX.Leeway = 0.35 # flexible probabilities conditioned via EP p = ConditionalFP(VIX, prior) # effective number of scenarios typ = namedtuple('type','Entropy') typ.Entropy = 'Exp' ens = EffectiveScenarios(p, typ) # - # ## Estimation of shifted-VG model # + # initial guess on parameters shift0 = 0 theta0 = 0 sigma0 = 0.01 nu0 = 1 par0 = [shift0, theta0, sigma0, nu0] # calibration HFP = namedtuple('HFP', ['FlexProbs','Scenarios']) HFP.FlexProbs = p HFP.Scenarios = epsi par = MMFP(HFP, 'SVG', par0) shift = par.c theta = par.theta sigma = par.sigma nu = par.nu # #changing parameterization from {theta,sigma, nu} to {c,m,g} # [c, m, g] = ParamChangeVG(theta,sigma,nu) # - # ## Initialize projection variables tau = 15 # investment horizon dt = 1 / 75 # infinitesimal step for simulations t_j =
arange(0,tau+dt,dt)
numpy.arange
#! /usr/bin/env python # coding=utf-8 #================================================================ # Copyright (C) 2019 * Ltd. All rights reserved. # # Editor : VIM # File name : evaluate.py # Author : YunYang1994 # Created date: 2019-02-21 15:30:26 # Description : # #================================================================ import cv2 import os import shutil import numpy as np import tensorflow as tf import core.utils as utils from core.config import cfg from core.yolov3 import YOLOV3 os.environ["CUDA_VISIBLE_DEVICES"]="0" class YoloTest(object): def __init__(self): self.input_size = cfg.TEST.INPUT_SIZE self.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE self.classes = utils.read_class_names(cfg.YOLO.CLASSES) self.num_classes = len(self.classes) self.anchors = np.array(utils.get_anchors(cfg.YOLO.ANCHORS)) self.score_threshold = cfg.TEST.SCORE_THRESHOLD self.iou_threshold = cfg.TEST.IOU_THRESHOLD self.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY self.annotation_path = cfg.TEST.ANNOT_PATH self.weight_file = cfg.TEST.WEIGHT_FILE self.write_image = cfg.TEST.WRITE_IMAGE self.write_image_path = cfg.TEST.WRITE_IMAGE_PATH self.show_label = cfg.TEST.SHOW_LABEL with tf.name_scope('input'): self.input_data = tf.placeholder(dtype=tf.float32, name='input_data') self.trainable = tf.placeholder(dtype=tf.bool, name='trainable') model = YOLOV3(self.input_data, self.trainable) self.pred_sbbox, self.pred_mbbox, self.pred_lbbox = model.pred_sbbox, model.pred_mbbox, model.pred_lbbox with tf.name_scope('ema'): ema_obj = tf.train.ExponentialMovingAverage(self.moving_ave_decay) self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) self.saver = tf.train.Saver(ema_obj.variables_to_restore()) self.saver.restore(self.sess, self.weight_file) def predict(self, image): org_image =
np.copy(image)
numpy.copy
import os import numpy as np import h5py as h5 import glob import shutil from .data_reader import DataReader_pred from .predict_fn import pred_fn import pkg_resources model_dir = pkg_resources.resource_filename('phasenet', os.path.join('model', '190703-214543')) script_path = os.path.dirname(os.path.realpath(__file__)) def format_data_hdf5(data, root_PN_inputs='.', filename='data.h5'): """Format data for PhasetNet (hdf5). Save the data array in an hdf5 file such that PhaseNet can process it. Parameters ------------- data: (n_stations, 3, n_samples) nd.array Numpy array with the continuous 3-component seismic data on which we want to pick the P- and S-wave arrivals. root_PN_inputs: string, default to '.' Path to the root folder where formatted data will be stored. filename: string, default to 'data.h5' Name of the file listing the filenames of all 3-component time series to process. """ import h5py as h5 with h5.File(os.path.join(root_PN_inputs, filename), 'w') as f: f.create_group('data') for i in range(data.shape[0]): # place the component axis at the end three_comp_data = np.swapaxes(data[i, ...], 0, 1) f['data'].create_dataset(f'sample{i}', data=three_comp_data) def format_data_ram(data): """Format data for PhasetNet. Build the data dictionary for PhaseNet. Parameters ------------- data: (n_stations, 3, n_samples) nd.array Numpy array with the continuous 3-component seismic data on which we want to pick the P- and S-wave arrivals. """ data_pn = {} for i in range(data.shape[0]): data_pn[f'sample{i}'] = np.swapaxes(data[i, ...], 0, 1) return data_pn def run_pred(input_length, model_path=model_dir, data=None, data_path='./dataset/waveform_pred/', log_dir='./dataset/log/', data_file='./dataset/data.h5', format='hdf5', amplitude=False, batch_size=1, threshold_P=0.6, threshold_S=0.6, **kwargs): """Run PhaseNet and fetch its raw output: the P and S probabilities. Results are stored at the user-defined location `output_filename`. Extra kwargs are passed to `phasenet.predict_fn.pred_fn`. Parameters ------------ input_length: int Duration, in samples, of the 3-component seismograms. model_path: string, default to '/home/ebeauce/PhaseNet/model/190703-214543' Path to the trained model. It is of course necessary to change the default value to the adequate value on your machine (e.g. where you downloaded PhaseNet). data_path: string, default to './dataset/waveform_pred/' Path to the folder with the 3-component seismograms in npz files. log_dir: string, default to './dataset/log/' data_list: string, default to './dataset/data_list.csv' output_filename: string, default to './prediction.npy' Name of the file with PhaseNet's outputs. batch_size: int, default to 1 Number of 3-component seismograms processed by PhaseNet at once. This should to take into account the machine's RAM. threshold_P: float, default to 0.6 P-wave identification threshold. When PhaseNet's raw output (proba) exceeds `threshold_P`, a detection is triggered. threshold_S: float, default to 0.6 S-wave identification threshold. When PhaseNet's raw output (proba) exceeds `threshold_S`, a detection is triggered. """ if format == 'hdf5': data_reader = DataReader_pred( format='hdf5', data_list='', # not used with hdf5 format hdf5_file=data_file, hdf5_group='data', amplitude=amplitude) elif format == 'ram': data_reader = DataReader_pred( format='ram', data=data, amplitude=amplitude) PhaseNet_proba, PhaseNet_picks = pred_fn( data_reader, model_dir=model_path, log_dir=log_dir, batch_size=batch_size, input_length=input_length, min_p_prob=threshold_P, min_s_prob=threshold_S, **kwargs) if format == 'hdf5': # PhaseNet does not take care of closing the hdf5 file data_reader.h5.close() return PhaseNet_proba, PhaseNet_picks def automatic_picking(data, station_names, PN_base=None, PN_dataset_name=None, format='ram', mini_batch_size=126, threshold_P=0.6, threshold_S=0.6, **kwargs): """Wrapper function to call PhaseNet from a python script. Extra kwargs are passed to `phasenet.predict_fn.pred_fn`. Parameters ----------- data: (n_events, n_stations, 3, n_samples) nd.array Numpy array with the continuous 3-component seismograms of `n_events` earthquakes recorded at a network of `n_stations` stations. station_names: list or array of strings Name of the `n_stations` stations of the array, in the same order as given in `data`. PN_base: string, default to None Path to the root folder where PhaseNet formatted data will be stored. Required if `format='ram'`. PN_dataset_name: string, default to None Name of the folder, inside `PN_base`, where the formatted data of a given experiment will be stored. Required if `format='ram'`. mini_batch_size: int, default to 126 Number of 3-component seismograms processed by PhaseNet at once. This should to take into account the machine's RAM. threshold_P: float, default to 0.6 P-wave identification threshold. When PhaseNet's raw output (proba) exceeds `threshold_P`, a detection is triggered. threshold_S: float, default to 0.6 S-wave identification threshold. When PhaseNet's raw output (proba) exceeds `threshold_S`, a detection is triggered. Returns --------- PhaseNet_probas: (n_events, n_stations, n_samples, 2) numpy.narray, float Probabilities of P- and S-wave arrival on the continuous time axis. PhaseNet_probas[..., 0] is the P-wave probability. PhaseNet_probas[..., 1] is the S-wave probability. PhaseNet_picks: dictionary Dictionary with four fields: 'P_proba', 'P_picks', 'S_proba', 'S_picks'. Each of these fields contains another dictionary with one entry per station. Finally, the content of each PhaseNet_picks[field][station] is an (n_events, numpy.ndarrays) array of arrays with all picks and associated probabilities for each event. """ if format == 'hdf5': if not os.path.isdir(PN_base): print(f'Creating the formatted data root folder at {PN_base}') os.mkdir(PN_base) # clean up input/output directories if necessary root_PN_inputs = os.path.join(PN_base, PN_dataset_name) if not os.path.isdir(root_PN_inputs): print(f'Creating the experiment root folder at {root_PN_inputs}') os.mkdir(root_PN_inputs) else: PN_base = '' root_PN_inputs = '' # assume the data were provided in the shape # (n_events x n_stations x 3-comp x time_duration) n_events = data.shape[0] n_stations = data.shape[1] input_length = data.shape[3] # for efficiency, we merge the event and the station axes batch_size = n_events*n_stations print('n events: {:d}, n stations: {:d}, batch size (n events x n stations): {:d}'. format(n_events, n_stations, batch_size)) data = data.reshape(batch_size, 3, input_length) # make sure the minibatch size is not larger than the # total number of traces minibatch_size = min(mini_batch_size, batch_size) # generate the input files necessary for PhaseNet if format == 'hdf5': format_data_hdf5(data, root_PN_inputs=root_PN_inputs) data_pn = None elif format == 'ram': data_pn = format_data_ram(data) # call PhaseNet PhaseNet_proba, PhaseNet_picks = run_pred( input_length, data_file=os.path.join(root_PN_inputs, 'data.h5'), log_dir=os.path.join(root_PN_inputs, 'log'), batch_size=mini_batch_size, threshold_P=threshold_P, threshold_S=threshold_S, format=format, data=data_pn, **kwargs) # the new PhaseNet_proba is an array of time series with [..., 0] = proba of P arrival # and [..., 1] = proba of S arrival (the original [..., 0] was simply 1 - Pp - Ps) PhaseNet_proba = PhaseNet_proba.reshape((n_events, n_stations, input_length, 3))[..., 1:] PhaseNet_picks = PhaseNet_picks.reshape((n_events, n_stations, 2, 2)) # return picks in a comprehensive python dictionary picks = {} picks['P_picks'] = {} picks['P_proba'] = {} picks['S_picks'] = {} picks['S_proba'] = {} for s in range(n_stations): # (n_events, arrays): array of arrays with all detected P-arrival picks picks['P_picks'][station_names[s]] = PhaseNet_picks[:, s, 0, 0] # (n_events, arrays): array of arrays with probabilities of all detected P-arrival picks picks['P_proba'][station_names[s]] = PhaseNet_picks[:, s, 0, 1] # (n_events, arrays): array of arrays with all detected S-arrival picks picks['S_picks'][station_names[s]] = PhaseNet_picks[:, s, 1, 0] # (n_events, arrays): array of arrays with probabilities of all detected S-arrival picks picks['S_proba'][station_names[s]] = PhaseNet_picks[:, s, 1, 1] if format == 'hdf5': # clean up when done shutil.rmtree(root_PN_inputs) return PhaseNet_proba, picks # -------------------------------------------------------------------------------- # The following functions were tailored for template matching applications # -------------------------------------------------------------------------------- def get_best_picks(picks, buffer_length=50): """Filter picks to keep the best one on each 3-comp seismogram. """ for st in picks['P_picks'].keys(): for n in range(len(picks['P_picks'][st])): pp = picks['P_picks'][st][n] ps = picks['S_picks'][st][n] # ---------------- # remove picks form the buffer length valid_P_picks = picks['P_picks'][st][n] > int(buffer_length) valid_S_picks = picks['S_picks'][st][n] > int(buffer_length) picks['P_picks'][st][n] = picks['P_picks'][st][n][valid_P_picks] picks['S_picks'][st][n] = picks['S_picks'][st][n][valid_S_picks] picks['P_proba'][st][n] = picks['P_proba'][st][n][valid_P_picks] picks['S_proba'][st][n] = picks['S_proba'][st][n][valid_S_picks] # take only the highest probability trigger if len(picks['S_picks'][st][n]) > 0: best_S_trigger = picks['S_proba'][st][n].argmax() picks['S_picks'][st][n] = picks['S_picks'][st][n][best_S_trigger] picks['S_proba'][st][n] = picks['S_proba'][st][n][best_S_trigger] # update P picks: keep only those that are before the best S pick valid_P_picks = picks['P_picks'][st][n] < picks['S_picks'][st][n] picks['P_picks'][st][n] = picks['P_picks'][st][n][valid_P_picks] picks['P_proba'][st][n] = picks['P_proba'][st][n][valid_P_picks] else: # if no valid S pick: fill in with nan picks['S_picks'][st][n] = np.nan picks['S_proba'][st][n] = np.nan if len(picks['P_picks'][st][n]) > 0: best_P_trigger = picks['P_proba'][st][n].argmax() picks['P_picks'][st][n] = picks['P_picks'][st][n][best_P_trigger] picks['P_proba'][st][n] = picks['P_proba'][st][n][best_P_trigger] else: # if no valid P pick: fill in with nan picks['P_picks'][st][n] = np.nan picks['P_proba'][st][n] = np.nan # convert picks to float to allow NaNs picks['P_picks'][st] = np.float32(picks['P_picks'][st]) picks['S_picks'][st] = np.float32(picks['S_picks'][st]) picks['P_proba'][st] = np.float32(picks['P_proba'][st]) picks['S_proba'][st] =
np.float32(picks['S_proba'][st])
numpy.float32
# -*- coding: utf-8 -*- """ License: MIT @author: gaj E-mail: <EMAIL> Paper References: [1] <NAME>, <NAME>, and <NAME>, “Improving component substitution Pansharpening through multivariate regression of MS+Pan data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 10, pp. 3230–3239, October 2007. [2] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, “A Critical Comparison Among Pansharpening Algorithms”, IEEE Transaction on Geoscience and Remote Sensing, 2014. """ import numpy as np from methods.utils import upsample_interp23 import cv2 def estimation_alpha(pan, hs, mode='global'): if mode == 'global': IHC = np.reshape(pan, (-1, 1)) ILRC = np.reshape(hs, (hs.shape[0]*hs.shape[1], hs.shape[2])) alpha = np.linalg.lstsq(ILRC, IHC)[0] elif mode == 'local': patch_size = 32 all_alpha = [] print(pan.shape) for i in range(0, hs.shape[0]-patch_size, patch_size): for j in range(0, hs.shape[1]-patch_size, patch_size): patch_pan = pan[i:i+patch_size, j:j+patch_size, :] patch_hs = hs[i:i+patch_size, j:j+patch_size, :] IHC = np.reshape(patch_pan, (-1, 1)) ILRC = np.reshape(patch_hs, (-1, hs.shape[2])) local_alpha = np.linalg.lstsq(ILRC, IHC)[0] all_alpha.append(local_alpha) all_alpha = np.array(all_alpha) alpha = np.mean(all_alpha, axis=0, keepdims=False) return alpha def GSA(pan, hs): M, N, c = pan.shape m, n, C = hs.shape ratio = int(np.round(M/m)) print('get sharpening ratio: ', ratio) assert int(np.round(M/m)) == int(np.round(N/n)) #upsample u_hs = upsample_interp23(hs, ratio) #remove means from u_hs means =
np.mean(u_hs, axis=(0, 1))
numpy.mean
""" Classic cart-pole system implemented by <NAME> et al. Copied from http://incompleteideas.net/sutton/book/code/pole.c permalink: https://perma.cc/C9ZM-652R """ import math import gym from gym import spaces, logger from gym.utils import seeding import numpy as np from scipy.integrate import ode g = 9.8 # gravity force_mag = 10.0 tau = 0.02 # seconds between state updates # cart m_cart = 1 # pole 1 l_1 = 1 # length m_1 = 0.1 # mass # pole 2 l_2 = 1 # length m_2 = 0.1 # mass def f(time, state, input): x = state[0] x_dot = state[1] theta_1 = state[2] theta_1_dot = state[3] theta_2 = state[4] theta_2_dot = state[5] x_dot_dot = ((l_1 * l_2 * m_2 * np.sin(theta_1 - theta_2) * theta_1_dot ** 2 + g * l_2 * m_2 *
np.sin(theta_2)
numpy.sin
import numpy as np ############################ # simulation helpers # ############################ def simulate_pulse(IF_freq, chi, k, Ts, Td, power): I = [0] Q = [0] # solve numerically a simplified version of the readout resonator for t in range(Ts): I.append(I[-1] + (power / 2 - k * I[-1] + Q[-1] * chi)) Q.append(Q[-1] + (power / 2 - k * Q[-1] - I[-1] * chi)) for t in range(Td - 1): I.append(I[-1] + (-k * I[-1] + Q[-1] * chi)) Q.append(Q[-1] + (-k * Q[-1] - I[-1] * chi)) I = np.array(I) Q =
np.array(Q)
numpy.array
# http://github.com/timestocome # adapted from: # https://github.com/maxpumperla/betago # https://www.manning.com/books/deep-learning-and-the-game-of-go # attempt to solve MNIST by averaging number images import numpy as np from load_mnist import load_data from layers import sigmoid_double from matplotlib import pyplot as plt # compute average over all samples in training set def average_digit(data, digit): filtered_data = [x[0] for x in data if np.argmax(x[1]) == digit] filtered_array = np.asarray(filtered_data) return np.average(filtered_array, axis=0) train, test = load_data() # train, test on digit 8 avg_eight = average_digit(train, 8) # image showing 8 average img = (np.reshape(avg_eight, (28, 28))) plt.imshow(img) plt.show() # test a few random samples x_3 = train[2][0] x_18 = train[17][0] # check distance between average 8 and random samples W = np.transpose(avg_eight) np.dot(W, x_3) np.dot(W, x_18) # make predictions def predict(x, W, b): return sigmoid_double(
np.dot(W, x)
numpy.dot
import numpy as np metric_optimum = { "MAE": "min", "MSE": "min", "accuracy": "max", "sensitivity": "max", "specificity": "max", "PPV": "max", "NPV": "max", "BA": "max", "loss": "min", } class MetricModule: def __init__(self, metrics, n_classes=2): self.n_classes = n_classes # Check if wanted metrics are implemented list_fn = [ method_name for method_name in dir(MetricModule) if callable(getattr(MetricModule, method_name)) ] self.metrics = dict() for metric in metrics: if f"{metric.lower()}_fn" in list_fn: self.metrics[metric] = getattr(MetricModule, f"{metric.lower()}_fn") else: raise ValueError( f"The metric {metric} is not implemented in the module" ) def apply(self, y, y_pred): """ This is a function to calculate the different metrics based on the list of true label and predicted label Args: y (List): list of labels y_pred (List): list of predictions Returns: (Dict[str:float]) metrics results """ if y is not None and y_pred is not None: results = dict() y = np.array(y) y_pred = np.array(y_pred) for metric_key, metric_fn in self.metrics.items(): metric_args = list(metric_fn.__code__.co_varnames) if "class_number" in metric_args: for class_number in range(self.n_classes): results[f"{metric_key}-{class_number}"] = metric_fn( y, y_pred, class_number ) else: results[metric_key] = metric_fn(y, y_pred) else: results = dict() return results @staticmethod def mae_fn(y, y_pred): """ Args: y (List): list of labels y_pred (List): list of predictions Returns: (float) mean absolute error """ return np.mean(np.abs(y - y_pred)) @staticmethod def mse_fn(y, y_pred): """ Args: y (List): list of labels y_pred (List): list of predictions Returns: (float) mean squared error """ return np.mean(np.square(y - y_pred)) @staticmethod def accuracy_fn(y, y_pred): """ Args: y (List): list of labels y_pred (List): list of predictions Returns: (float) accuracy """ true = np.sum(y_pred == y) return true / len(y) @staticmethod def sensitivity_fn(y, y_pred, class_number): """ Args: y (List): list of labels y_pred (List): list of predictions class_number (int): number of the class studied Returns: (float) sensitivity """ true_positive = np.sum((y_pred == class_number) & (y == class_number)) false_negative = np.sum((y_pred != class_number) & (y == class_number)) if (true_positive + false_negative) != 0: return true_positive / (true_positive + false_negative) else: return 0.0 @staticmethod def specificity_fn(y, y_pred, class_number): """ Args: y (List): list of labels y_pred (List): list of predictions class_number (int): number of the class studied Returns: (float) specificity """ true_negative = np.sum((y_pred != class_number) & (y != class_number)) false_positive = np.sum((y_pred == class_number) & (y != class_number)) if (false_positive + true_negative) != 0: return true_negative / (false_positive + true_negative) else: return 0.0 @staticmethod def ppv_fn(y, y_pred, class_number): """ Args: y (List): list of labels y_pred (List): list of predictions class_number (int): number of the class studied Returns: (float) positive predictive value """ true_positive = np.sum((y_pred == class_number) & (y == class_number)) false_positive =
np.sum((y_pred == class_number) & (y != class_number))
numpy.sum
from bw2calc.errors import ( OutsideTechnosphere, NonsquareTechnosphere, EmptyBiosphere, InconsistentGlobalIndex, ) from bw2calc.lca import LCA from pathlib import Path import bw_processing as bwp import json import numpy as np import pytest from collections.abc import Mapping fixture_dir = Path(__file__).resolve().parent / "fixtures" ###### ### Basic functionality ###### def test_example_db_basic(): mapping = dict(json.load(open(fixture_dir / "bw2io_example_db_mapping.json"))) print(mapping) packages = [ fixture_dir / "bw2io_example_db.zip", fixture_dir / "ipcc_simple.zip", ] lca = LCA( {mapping["Driving an electric car"]: 1}, data_objs=packages, ) lca.lci() lca.lcia() assert lca.supply_array.sum() assert lca.technosphere_matrix.sum() assert lca.score def test_basic(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() answer = np.zeros((2,)) answer[lca.dicts.activity[101]] = 1 answer[lca.dicts.activity[102]] = 0.5 assert np.allclose(answer, lca.supply_array) def test_basic_negative_production(): pass def test_basic_substitution(): pass def test_basic_nonunitary_production(): pass def test_circular_inputs(): pass ###### ### __init__ ###### def test_invalid_datapackage(): packages = ["basic_fixture.zip"] with pytest.raises(TypeError): LCA({1: 1}, data_objs=packages) def test_demand_not_mapping(): packages = [fixture_dir / "basic_fixture.zip"] with pytest.raises(ValueError): LCA((1, 1), data_objs=packages) def test_demand_mapping_but_not_dict(): class M(Mapping): def __getitem__(self, key): return 1 def __iter__(self): return iter((1,)) def __len__(self): return 1 packages = [fixture_dir / "basic_fixture.zip"] lca = LCA(M(), data_objs=packages) lca.lci() answer = np.zeros((2,)) answer[lca.dicts.activity[101]] = 1 answer[lca.dicts.activity[102]] = 0.5 assert np.allclose(answer, lca.supply_array) ###### ### __next__ ###### def test_next_data_array(): packages = [fixture_dir / "array_sequential.zip"] lca = LCA({1: 1}, data_objs=packages, use_arrays=True) lca.lci() lca.lcia() for x in range(1, 5): assert lca.biosphere_matrix.sum() == x next(lca) def test_next_only_vectors(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() lca.lcia() current = lca.characterized_inventory.sum() next(lca) assert lca.characterized_inventory.sum() == current def test_next_plain_monte_carlo(): packages = [ fixture_dir / "mc_basic.zip", ] mc = LCA({3: 1}, data_objs=packages, use_distributions=True) mc.lci() mc.lcia() first = mc.score next(mc) assert first != mc.score def test_next_monte_carlo_as_iterator(): packages = [ fixture_dir / "mc_basic.zip", ] mc = LCA({3: 1}, data_objs=packages, use_distributions=True) mc.lci() mc.lcia() for _, _ in zip(mc, range(10)): assert mc.score > 0 def test_next_monte_carlo_all_matrices_change(): packages = [ fixture_dir / "mc_basic.zip", ] mc = LCA({3: 1}, data_objs=packages, use_distributions=True) mc.lci() mc.lcia() a = [ mc.technosphere_matrix.sum(), mc.biosphere_matrix.sum(), mc.characterization_matrix.sum(), ] next(mc) b = [ mc.technosphere_matrix.sum(), mc.biosphere_matrix.sum(), mc.characterization_matrix.sum(), ] print(a, b) for x, y in zip(a, b): assert x != y ###### ### build_demand_array ###### def test_build_demand_array(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() assert lca.demand_array.shape == (2,) assert lca.demand_array.sum() == 1 assert lca.demand_array[lca.dicts.product[1]] == 1 def test_build_demand_array_pass_dict(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() lca.build_demand_array({2: 5}) assert lca.demand_array.shape == (2,) assert lca.demand_array.sum() == 5 assert lca.demand_array[lca.dicts.product[2]] == 5 def test_build_demand_array_outside_technosphere(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({100: 1}, data_objs=packages) with pytest.raises(OutsideTechnosphere): lca.lci() def test_build_demand_array_activity_not_product(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({101: 1}, data_objs=packages) with pytest.raises(ValueError): lca.lci() def test_build_demand_array_pass_object(): packages = [fixture_dir / "basic_fixture.zip"] class Foo: pass obj = Foo() with pytest.raises(ValueError): LCA(obj, data_objs=packages) ###### ### load_lci_data ###### def test_load_lci_data(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() tm = np.array([[1, 0], [-0.5, 1]]) assert np.allclose(lca.technosphere_matrix.toarray(), tm) assert lca.dicts.product[1] == 0 assert lca.dicts.product[2] == 1 assert lca.dicts.activity[101] == 0 assert lca.dicts.activity[102] == 1 assert lca.dicts.biosphere[1] == 0 def test_load_lci_data_nonsquare_technosphere(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5, 2, 3]) indices_array = np.array( [(1, 101), (2, 102), (2, 101), (3, 101), (3, 102)], dtype=bwp.INDICES_DTYPE ) flip_array = np.array([0, 0, 1, 1, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) lca = LCA({1: 1}, data_objs=[dp]) with pytest.raises(NonsquareTechnosphere): lca.lci() # lca.lci() # tm = np.array([ # [1, 0], # [-0.5, 1], # [-2, -3] # ]) # assert np.allclose(lca.technosphere_matrix.toarray(), tm) # assert lca.dicts.product[1] == 0 # assert lca.dicts.product[2] == 1 # assert lca.dicts.product[3] == 2 # assert lca.dicts.activity[101] == 0 # assert lca.dicts.activity[102] == 1 def test_load_lci_data_empty_biosphere_warning(): lca = LCA({1: 1}, data_objs=[fixture_dir / "empty_biosphere.zip"]) with pytest.warns(UserWarning): lca.lci() ###### ### remap_inventory_dicts ###### def test_remap_inventory_dicts(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA( {1: 1}, data_objs=packages, remapping_dicts={"product": {1: ("foo", "bar")}, "biosphere": {1: "z"}}, ) lca.lci() lca.remap_inventory_dicts() tm = np.array([[1, 0], [-0.5, 1]]) assert np.allclose(lca.technosphere_matrix.toarray(), tm) assert lca.dicts.product[("foo", "bar")] == 0 assert lca.dicts.product[2] == 1 assert lca.dicts.activity[101] == 0 assert lca.dicts.activity[102] == 1 assert lca.dicts.biosphere["z"] == 0 ###### ### load_lcia_data ###### def test_load_lcia_data(): packages = [fixture_dir / "basic_fixture.zip"] lca = LCA({1: 1}, data_objs=packages) lca.lci() lca.lcia() cm = np.array([[1]]) assert np.allclose(lca.characterization_matrix.toarray(), cm) def test_load_lcia_data_multiple_characterization_packages(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2, 3]) indices_array = np.array([(1, 101), (2, 102), (3, 101)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1]) indices_array = np.array([(1, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, nrows=1, ) data_array = np.array([2]) indices_array = np.array([(3, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="second-characterization", indices_array=indices_array, global_index=0, nrows=1, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() cm = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 2]]) assert np.allclose(lca.characterization_matrix.toarray(), cm) assert lca.dicts.biosphere[1] == 0 assert lca.dicts.biosphere[2] == 1 assert lca.dicts.biosphere[3] == 2 def test_load_lcia_data_inconsistent_globals(): # Activities: 101, 102 # Products: 1, 2 # Biosphere flows: 201, 202 dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1]) indices_array = np.array([(201, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, nrows=1, ) data_array = np.array([10]) indices_array = np.array([(202, 1)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="second-characterization", indices_array=indices_array, global_index=1, nrows=1, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() with pytest.raises(InconsistentGlobalIndex): lca.lcia() def test_load_lcia_data_none_global_value(): # Should include all because no filter dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1]) indices_array = np.array([(201, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=None, nrows=1, ) data_array = np.array([10]) indices_array = np.array([(202, 1)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="second-characterization", indices_array=indices_array, global_index=None, nrows=1, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() assert lca.characterization_matrix.sum() == 11 def test_load_lcia_data_nonglobal_filtered(): # Activities: 101, 102 # Products: 1, 2 # Biosphere flows: 201, 202 dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1]) indices_array = np.array([(201, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, nrows=1, ) data_array = np.array([10]) indices_array = np.array([(202, 1)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="second-characterization", indices_array=indices_array, global_index=0, nrows=1, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() assert lca.characterization_matrix.sum() == 1 ###### ### Warnings on uncommon inputs ###### @pytest.mark.filterwarnings("ignore:no biosphere") def test_empty_biosphere_lcia(): lca = LCA({1: 1}, data_objs=[fixture_dir / "empty_biosphere.zip"]) lca.lci() assert lca.biosphere_matrix.shape[0] == 0 with pytest.raises(EmptyBiosphere): lca.lcia() def test_lca_has(): mapping = dict(json.load(open(fixture_dir / "bw2io_example_db_mapping.json"))) packages = [ fixture_dir / "bw2io_example_db.zip", fixture_dir / "ipcc_simple.zip", ] lca = LCA( {mapping["Driving an electric car"]: 1}, data_objs=packages, ) lca.lci() lca.lcia() assert lca.has("technosphere") assert lca.has("characterization") assert not lca.has("foo") ###### ### normalize ###### def test_lca_with_normalization(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1, 10]) indices_array = np.array([(201, 0), (202, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, ) data_array = np.array([10, 4]) indices_array = np.array([(201, 0), (202, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="normalization_matrix", data_array=data_array, name="nm", indices_array=indices_array, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() assert lca.score == 11 lca.normalize() assert lca.score == 1 * 10 + 10 * 4 assert lca.normalization_matrix.shape == (2, 2) assert lca.normalization_matrix.sum() == 14 ###### ### weighting ###### def test_lca_with_weighting(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1, 10]) indices_array = np.array([(201, 0), (202, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, ) data_array = np.array([4]) indices_array = np.array([(0, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="weighting_matrix", data_array=data_array, name="wm", indices_array=indices_array, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() assert lca.score == 11 lca.weight() assert lca.score == 11 * 4 assert lca.weighting_matrix.shape == (2, 2) assert lca.weighting_matrix.sum() == 8 def test_lca_with_weighting_deprecation(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1, 10]) indices_array = np.array([(201, 0), (202, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, ) data_array = np.array([4]) indices_array = np.array([(0, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="weighting_matrix", data_array=data_array, name="wm", indices_array=indices_array, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() with pytest.deprecated_call(): lca.weighting() def test_lca_with_weighting_and_normalization(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2]) indices_array = np.array([(201, 101), (202, 102)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1, 10]) indices_array = np.array([(201, 0), (202, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, ) data_array = np.array([10, 4]) indices_array = np.array([(201, 0), (202, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="normalization_matrix", data_array=data_array, name="nm", indices_array=indices_array, ) data_array = np.array([8]) indices_array = np.array([(0, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="weighting_matrix", data_array=data_array, name="wm", indices_array=indices_array, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() assert lca.score == 11 lca.normalize() assert lca.score == (1 * 10 + 10 * 4) lca.weighting() assert lca.score == (1 * 10 + 10 * 4) * 8 ###### ### switch_method ###### def test_switch_method(): dp = bwp.create_datapackage() data_array = np.array([1, 1, 0.5]) indices_array = np.array([(1, 101), (2, 102), (2, 101)], dtype=bwp.INDICES_DTYPE) flip_array = np.array([0, 0, 1], dtype=bool) dp.add_persistent_vector( matrix="technosphere_matrix", data_array=data_array, name="technosphere", indices_array=indices_array, flip_array=flip_array, ) data_array = np.array([1, 2, 3]) indices_array = np.array([(1, 101), (2, 102), (3, 101)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="biosphere_matrix", data_array=data_array, name="biosphere", indices_array=indices_array, ) data_array = np.array([1]) indices_array = np.array([(1, 0)], dtype=bwp.INDICES_DTYPE) dp.add_persistent_vector( matrix="characterization_matrix", data_array=data_array, name="first-characterization", indices_array=indices_array, global_index=0, ) lca = LCA({1: 1}, data_objs=[dp]) lca.lci() lca.lcia() cm = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) assert np.allclose(lca.characterization_matrix.toarray(), cm) assert len(lca.packages) == 1 ndp = bwp.create_datapackage() data_array =
np.array([10])
numpy.array
from __future__ import print_function, division import matplotlib.pyplot as plt import numpy as np from scipy import signal from sklearn.utils import check_random_state def group_lasso_dataset_generator(n_samples=100, n_features=100, gaussian_noise=0.5, random_state=None): """ Generates synthetic data for group lasso tests. This function generates a matrix generated from 7 basic atoms, grouped as [0, 1, 3], [2, 4, 5], linearly combined with random weights. A certain level of gaussian noise is added to the signal. Parameters ---------- n_samples: int, optional Number of samples for the output matrix. n_features: int, optional Number of features the output matrix must have. gaussian_noise: float, optional The level of noise to add to the synthetic data. random_state: RandomState or int, optional RandomState or seed used to generate RandomState for the reproducibility of data. If None each time RandomState is randomly initialised. Returns ------- array_like, shape=(n_samples, n_features) Generated matrix of data array_like, shape=(n_samples, 7) Coefficients array_like, shape=(7, n_features) Dictionary """ rnd = check_random_state(random_state) number_of_atoms = 6 atoms = np.empty([n_features, number_of_atoms]) t = np.linspace(0, 1, n_features) atoms[:, 0] = signal.sawtooth(2 * np.pi * 5 * t) atoms[:, 1] = np.sin(2 * np.pi * t) atoms[:, 2] = np.sin(2 * np.pi * t - 15) atoms[:, 3] = signal.gaussian(n_features, 5) atoms[:, 4] = signal.square(2 * np.pi * 5 * t) atoms[:, 5] = np.abs(np.sin(2 * np.pi * t)) groups = [[0, 1, 3], [2, 4, 5]] signals = np.empty((n_samples, n_features)) coefficients = np.zeros((n_samples, number_of_atoms)) for i in range(n_samples // 2): coeffs = rnd.random_sample(len(groups[0])) * 10 coefficients[i, groups[0]] = coeffs for i in range(n_samples // 2, n_samples): coeffs = rnd.random_sample(len(groups[1])) * 10 coefficients[i, groups[1]] = coeffs signals = coefficients.dot(atoms.T) return signals, coefficients, atoms.T def sparse_signal_generator(n_samples, n_features, frequencies, support_atoms, shift=True): # TODO: sistemare questa documentazione """ The following function generates signals using sawtooth and sin Parameters ------------------- n_samples : int number of signals to be generated n_features : int length of the time series (number of points) frequencies : number of frequencies (to be used for the def of atoms) support_atoms: qualcosa shift : if true shifted atoms, else fixed Returns ------------------- multichannel_matrix : np.array(n_features, n_samples) matrix of signals atoms_matrix : np.array(n_features, number_of_atoms) matrix of signals """ f_array = np.linspace(4. / n_features, 40. / n_features, frequencies) atom_shape = 2 if shift: n_shifts = n_features - support_atoms else: n_shifts = 1 n_atoms = frequencies * atom_shape * n_shifts _low = int(0.4 * n_atoms) _high = int(0.7 * n_atoms) selected_atoms = np.random.randint(low=_low, high=_high, size=(10,)) atoms = np.zeros((n_features, n_atoms)) time_vector = np.arange(support_atoms) diff_supp = n_features - support_atoms for i in range(frequencies): temp1 = np.sin(f_array[i] * time_vector) temp2 = signal.sawtooth(f_array[i] * time_vector) norm1 = np.linalg.norm(np.pad(temp1, (0, diff_supp), mode='constant')) norm2 = np.linalg.norm(np.pad(temp2, (0, diff_supp), mode='constant')) for j in range(n_shifts): atoms[:, i * n_shifts + j] = np.pad(temp1, (j, diff_supp - j), mode='constant') / norm1 atoms[:, i * n_shifts + j + frequencies * n_shifts] = \ np.pad(temp2, (j, diff_supp - j), mode='constant') / norm2 multichannel_signal = np.zeros((n_features, n_samples)) for i in range(n_samples): random_atoms = np.random.choice(selected_atoms, size=5) weight = 10 * np.random.randn(5, ) multichannel_signal[:, i] = np.dot(atoms[:, random_atoms], weight) np.save('signal_gen', multichannel_signal) np.save('atom_gen', atoms) return multichannel_signal, atoms def synthetic_data_non_negative(gaussian_noise=1, random_state=None): """ Generates synthetic non-negative data for dictionary learning tests. This function generates a matrix generated from 7 basic atoms linearly combined with random weights sparse over the atoms. A certain level of gaussian noise is added to the signal. Parameters ---------- gaussian_noise: float, optional The level of noise to add to the synthetic data. random_state: RandomState or int, optional RandomState or seed used to generate RandomState for the reproducibility of data. If None each time RandomState is randomly initialised. Returns ------- array_like, shape=(80, 96) Generated matrix of data array_like, shape=(80, 7) Coefficients array_like, shape=(7, 96) Dictionary """ number_of_features = 96 number_of_samples = 80 number_of_atoms = 7 rnd = check_random_state(random_state) atoms = np.empty([number_of_features, number_of_atoms]) atoms[:, 0] = np.transpose( np.concatenate((np.ones([30, 1]), np.zeros([66, 1])))) atoms[:, 1] = np.transpose( np.concatenate((np.zeros([60, 1]), np.ones([36, 1])))) atoms[:, 2] = np.transpose(np.concatenate( (np.zeros([24, 1]), np.ones([30, 1]), np.zeros([42, 1])))) atoms[:, 3] = signal.gaussian(96, 5) atoms[:, 4] = np.transpose(np.concatenate((np.zeros([17, 1]), np.ones([15, 1]), np.zeros([30, 1]),
np.ones([24, 1])
numpy.ones
''' File name: quaternion_utils.py Programmed by: <NAME> Date: 2019-09-28 Tools for dealing with scalar-first, transform, unit, right quaternions with Malcolm Shuster's conventions. ''' from numpy import array, zeros, cross, dot, concatenate, sin, cos from numpy.linalg import norm def qcomp(q1, q2): ''' Compose two quaternions.''' q1s, q1v = q1[0], q1[1:] q2s, q2v = q2[0], q2[1:] s = q1s*q2s - dot(q2v, q1v) v = q1s*q2v + q2s*q1v - cross(q1v, q2v) return concatenate([array([s]), v]) def qnorm(q): ''' Normalize a quaternion. ''' return q/norm(q) if
norm(q)
numpy.linalg.norm
import random import cv2 import numpy as np import tifffile as tiff import earthpy.plot as ep import matplotlib.pyplot as plt from skimage import measure from skimage import filters def normalize(img): min = img.min() max = img.max() x = 2.0 * (img - min) / (max - min) - 1.0 return x def get_rand_patch(img, mask, sz=160, channel = None): """ :param img: ndarray with shape (x_sz, y_sz, num_channels) :param mask: binary ndarray with shape (x_sz, y_sz, num_classes) :param sz: size of random patch :param Channels 0: Buildings , 1: Roads & Tracks, 2: Trees , 3: Crops, 4: Water :return: patch with shape (sz, sz, num_channels) """ assert len(img.shape) == 3 and img.shape[0] > sz and img.shape[1] > sz and img.shape[0:2] == mask.shape[0:2] xc = random.randint(0, img.shape[0] - sz) yc = random.randint(0, img.shape[1] - sz) patch_img = img[xc:(xc + sz), yc:(yc + sz)] patch_mask = mask[xc:(xc + sz), yc:(yc + sz)] # Apply some random transformations random_transformation = np.random.randint(1,8) if random_transformation == 1: # reverse first dimension patch_img = patch_img[::-1,:,:] patch_mask = patch_mask[::-1,:,:] elif random_transformation == 2: # reverse second dimension patch_img = patch_img[:,::-1,:] patch_mask = patch_mask[:,::-1,:] elif random_transformation == 3: # transpose(interchange) first and second dimensions patch_img = patch_img.transpose([1,0,2]) patch_mask = patch_mask.transpose([1,0,2]) elif random_transformation == 4: patch_img = np.rot90(patch_img, 1) patch_mask = np.rot90(patch_mask, 1) elif random_transformation == 5: patch_img = np.rot90(patch_img, 2) patch_mask = np.rot90(patch_mask, 2) elif random_transformation == 6: patch_img = np.rot90(patch_img, 3) patch_mask = np.rot90(patch_mask, 3) else: pass if channel=='all': return patch_img, patch_mask if channel !='all': patch_mask = patch_mask[:,:,channel] return patch_img, patch_mask def get_patches(x_dict, y_dict, n_patches, sz=160, channel = 'all'): """ :param Channels 0: Buildings , 1: Roads & Tracks, 2: Trees , 3: Crops, 4: Water or 'all' """ x = list() y = list() total_patches = 0 while total_patches < n_patches: img_id = random.sample(x_dict.keys(), 1)[0] img = x_dict[img_id] mask = y_dict[img_id] img_patch, mask_patch = get_rand_patch(img, mask, sz, channel) x.append(img_patch) y.append(mask_patch) total_patches += 1 print('Generated {} patches'.format(total_patches)) return np.array(x), np.array(y) def load_data(path = './data/'): """ :param path: the path of the dataset which includes mband and gt_mband folders :return: X_DICT_TRAIN, Y_DICT_TRAIN, X_DICT_VALIDATION, Y_DICT_VALIDATION """ trainIds = [str(i).zfill(2) for i in range(1, 25)] # all availiable ids: from "01" to "24" X_DICT_TRAIN = dict() Y_DICT_TRAIN = dict() X_DICT_VALIDATION = dict() Y_DICT_VALIDATION = dict() print('Reading images') for img_id in trainIds: img_m = normalize(tiff.imread(path + 'mband/{}.tif'.format(img_id)).transpose([1, 2, 0])) mask = tiff.imread(path + 'gt_mband/{}.tif'.format(img_id)).transpose([1, 2, 0]) / 255 train_xsz = int(3/4 * img_m.shape[0]) # use 75% of image as train and 25% for validation X_DICT_TRAIN[img_id] = img_m[:train_xsz, :, :] Y_DICT_TRAIN[img_id] = mask[:train_xsz, :, :] X_DICT_VALIDATION[img_id] = img_m[train_xsz:, :, :] Y_DICT_VALIDATION[img_id] = mask[train_xsz:, :, :] #print(img_id + ' read') print('Images are read') return X_DICT_TRAIN, Y_DICT_TRAIN, X_DICT_VALIDATION, Y_DICT_VALIDATION def plot_train_data(X_DICT_TRAIN, Y_DICT_TRAIN, image_number = 12): labels =['Orginal Image with the 8 bands', 'Ground Truths: Buildings', 'Ground Truths: Roads & Tracks', 'Ground Truths: Trees' , 'Ground Truths: Crops', 'Ground Truths: Water'] image_number = str(image_number).zfill(2) number_of_GTbands = Y_DICT_TRAIN[image_number].shape[2] f, axarr = plt.subplots(1, number_of_GTbands + 1, figsize=(25,25)) band_indices = [0, 1, 2] print('Image shape is: ',X_DICT_TRAIN[image_number].shape) print("Ground Truth's shape is: ",Y_DICT_TRAIN[image_number].shape) ep.plot_rgb(X_DICT_TRAIN[image_number].transpose([2,0,1]), rgb=band_indices, title=labels[0], stretch=True, ax=axarr[0]) for i in range(0, number_of_GTbands): axarr[i+1].imshow(Y_DICT_TRAIN[image_number][:,:,i]) #print(labels[i+1]) axarr[i+1].set_title(labels[i+1]) plt.show() def Abs_sobel_thresh(image,orient='x',thresh=(40,250) ,sobel_kernel=3): gray=image#cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) if orient=='x': #the operator calculates the derivatives of the pixel values along the horizontal direction to make a filter. sobel=cv2.Sobel(gray,cv2.CV_64F,1,0,ksize= sobel_kernel) if (orient=='y'): sobel=cv2.Sobel(gray,cv2.CV_64F,0,1,ksize= sobel_kernel) abs_sobel=np.absolute(sobel) scaled_sobel=(255*abs_sobel/np.max(abs_sobel)) grad_binary=
np.zeros_like(scaled_sobel)
numpy.zeros_like
from torch.utils.data import DataLoader from dataio.loader import get_dataset, get_dataset_path from dataio.transformation import get_dataset_transformation from utils.util import json_file_to_pyobj from utils.visualiser import Visualiser from models import get_model import os, time # import matplotlib # matplotlib.use('Agg') import matplotlib.cm as cm import matplotlib.pyplot as plt import math, numpy import numpy as np from scipy.misc import imresize from skimage.transform import resize def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() plt.suptitle(title) def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title='', alpha=0.8): plt.ion() filters = units.shape[2] fig = plt.figure(figure_id, figsize=(5,5)) fig.clf() for i in range(filters): plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray') plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha) plt.axis('off') plt.colorbar() plt.title(title, fontsize='small') if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # plt.savefig('{}/{}.png'.format(dir_name,time.time())) ## Load options PAUSE = .01 #config_name = 'config_sononet_attention_fs8_v6.json' #config_name = 'config_sononet_attention_fs8_v8.json' #config_name = 'config_sononet_attention_fs8_v9.json' #config_name = 'config_sononet_attention_fs8_v10.json' #config_name = 'config_sononet_attention_fs8_v11.json' #config_name = 'config_sononet_attention_fs8_v13.json' #config_name = 'config_sononet_attention_fs8_v14.json' #config_name = 'config_sononet_attention_fs8_v15.json' #config_name = 'config_sononet_attention_fs8_v16.json' #config_name = 'config_sononet_grid_attention_fs8_v1.json' config_name = 'config_sononet_grid_attention_fs8_deepsup_v1.json' config_name = 'config_sononet_grid_attention_fs8_deepsup_v2.json' config_name = 'config_sononet_grid_attention_fs8_deepsup_v3.json' config_name = 'config_sononet_grid_attention_fs8_deepsup_v4.json' # config_name = 'config_sononet_grid_att_fs8_avg.json' config_name = 'config_sononet_grid_att_fs8_avg_v2.json' # config_name = 'config_sononet_grid_att_fs8_avg_v3.json' #config_name = 'config_sononet_grid_att_fs8_avg_v4.json' #config_name = 'config_sononet_grid_att_fs8_avg_v5.json' #config_name = 'config_sononet_grid_att_fs8_avg_v5.json' #config_name = 'config_sononet_grid_att_fs8_avg_v6.json' #config_name = 'config_sononet_grid_att_fs8_avg_v7.json' #config_name = 'config_sononet_grid_att_fs8_avg_v8.json' #config_name = 'config_sononet_grid_att_fs8_avg_v9.json' #config_name = 'config_sononet_grid_att_fs8_avg_v10.json' #config_name = 'config_sononet_grid_att_fs8_avg_v11.json' #config_name = 'config_sononet_grid_att_fs8_avg_v12.json' config_name = 'config_sononet_grid_att_fs8_avg_v12_scratch.json' config_name = 'config_sononet_grid_att_fs4_avg_v12.json' #config_name = 'config_sononet_grid_attention_fs8_v3.json' json_opts = json_file_to_pyobj('/vol/bitbucket/js3611/projects/transfer_learning/ultrasound/configs_2/{}'.format(config_name)) train_opts = json_opts.training dir_name = os.path.join('visualisation_debug', config_name) if not os.path.isdir(dir_name): os.makedirs(dir_name) os.makedirs(os.path.join(dir_name,'pos')) os.makedirs(os.path.join(dir_name,'neg')) # Setup the NN Model model = get_model(json_opts.model) if hasattr(model.net, 'classification_mode'): model.net.classification_mode = 'attention' if hasattr(model.net, 'deep_supervised'): model.net.deep_supervised = False # Setup Dataset and Augmentation dataset_class = get_dataset(train_opts.arch_type) dataset_path = get_dataset_path(train_opts.arch_type, json_opts.data_path) dataset_transform = get_dataset_transformation(train_opts.arch_type, opts=json_opts.augmentation) # Setup Data Loader dataset = dataset_class(dataset_path, split='train', transform=dataset_transform['valid']) data_loader = DataLoader(dataset=dataset, num_workers=1, batch_size=1, shuffle=True) # test for iteration, data in enumerate(data_loader, 1): model.set_input(data[0], data[1]) cls = dataset.label_names[int(data[1])] model.validate() pred_class = model.pred[1] pred_cls = dataset.label_names[int(pred_class)] ######################################################### # Display the input image and Down_sample the input image input_img = model.input[0,0].cpu().numpy() #input_img = numpy.expand_dims(imresize(input_img, (fmap_size[0], fmap_size[1]), interp='bilinear'), axis=2) input_img = numpy.expand_dims(input_img, axis=2) # plotNNFilter(input_img, figure_id=0, colormap="gray") plotNNFilterOverlay(input_img, numpy.zeros_like(input_img), figure_id=0, interp='bilinear', colormap=cm.jet, title='[GT:{}|P:{}]'.format(cls, pred_cls),alpha=0) chance = np.random.random() < 0.01 if cls == "BACKGROUND" else 1 if cls != pred_cls: plt.savefig('{}/neg/{:03d}.png'.format(dir_name,iteration)) elif cls == pred_cls and chance: plt.savefig('{}/pos/{:03d}.png'.format(dir_name,iteration)) ######################################################### # Compatibility Scores overlay with input attentions = [] for i in [1,2]: fmap = model.get_feature_maps('compatibility_score%d'%i, upscale=False) if not fmap: continue # Output of the attention block fmap_0 = fmap[0].squeeze().permute(1,2,0).cpu().numpy() fmap_size = fmap_0.shape # Attention coefficient (b x c x w x h x s) attention = fmap[1].squeeze().cpu().numpy() attention = attention[:, :] #attention = numpy.expand_dims(resize(attention, (fmap_size[0], fmap_size[1]), mode='constant', preserve_range=True), axis=2) attention = numpy.expand_dims(resize(attention, (input_img.shape[0], input_img.shape[1]), mode='constant', preserve_range=True), axis=2) # this one is useless #plotNNFilter(fmap_0, figure_id=i+3, interp='bilinear', colormap=cm.jet, title='compat. feature %d' %i) plotNNFilterOverlay(input_img, attention, figure_id=i, interp='bilinear', colormap=cm.jet, title='[GT:{}|P:{}] compat. {}'.format(cls,pred_cls,i), alpha=0.5) attentions.append(attention) #plotNNFilterOverlay(input_img, attentions[0], figure_id=4, interp='bilinear', colormap=cm.jet, title='[GT:{}|P:{}] compat. (all)'.format(cls, pred_cls), alpha=0.5) plotNNFilterOverlay(input_img,
numpy.mean(attentions,0)
numpy.mean
import os import PIL import numpy as np import scipy.sparse import subprocess import _pickle as cPickle import math import glob from .imdb import imdb from .imdb import ROOT_DIR from ..utils.cython_bbox import bbox_overlaps from ..utils.boxes_grid import get_boxes_grid # TODO: make fast_rcnn irrelevant # >>>> obsolete, because it depends on sth outside of this project from ..fast_rcnn.config import cfg from ..rpn_msr.generate_anchors import generate_anchors # <<<< obsolete class kitti(imdb): def __init__(self, image_set, kitti_path=None): imdb.__init__(self, 'kitti_' + image_set) self._image_set = image_set self._kitti_path = self._get_default_path() if kitti_path is None \ else kitti_path self._data_path = os.path.join(self._kitti_path, 'data_object_image_2') self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist') self._class_to_ind = dict(zip(self.classes, range(self.num_classes))) self._image_ext = '.png' self._image_index = self._load_image_set_index_new() # Default to roidb handler if cfg.IS_RPN: self._roidb_handler = self.gt_roidb else: self._roidb_handler = self.region_proposal_roidb # num of subclasses if image_set == 'train' or image_set == 'val': self._num_subclasses = 125 + 24 + 24 + 1 prefix = 'validation' else: self._num_subclasses = 227 + 36 + 36 + 1 prefix = 'test' self.config = {'top_k': 100000} # statistics for computing recall self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int) self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int) self._num_boxes_proposal = 0 assert os.path.exists(self._kitti_path), \ 'KITTI path does not exist: {}'.format(self._kitti_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path) def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self.image_path_from_index(self.image_index[i]) def image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ # set the prefix if self._image_set == 'test': prefix = 'testing/image_2' else: prefix = 'training/image_2' image_path = os.path.join(self._data_path, prefix, index + self._image_ext) assert os.path.exists(image_path), \ 'Path does not exist: {}'.format(image_path) return image_path def _load_image_set_index(self): """ obsolete, using _load_image_set_index_new instead Load the indexes listed in this dataset's image set file. """ image_set_file = os.path.join(self._kitti_path, self._image_set + '.txt') assert os.path.exists(image_set_file), \ 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.rstrip('\n') for x in f.readlines()] return image_index def _load_image_set_index_new(self): """ Load the indexes listed in this dataset's image set file. """ image_set_file = os.path.join(self._kitti_path, 'training/image_2/') assert os.path.exists(image_set_file), \ 'Path does not exist: {}'.format(image_set_file) image_index = os.listdir(image_set_file) image_set_file = image_set_file + '*.png' image_index = glob.glob(image_set_file) return image_index def _get_default_path(self): """ Return the default path where KITTI is expected to be installed. """ return os.path.join(cfg.DATA_DIR, 'KITTI') def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print ('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_kitti_voxel_exemplar_annotation(index) for index in self.image_index] if cfg.IS_RPN: # print out recall for i in range(1, self.num_classes): print( '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])) print ('{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])) print ('{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))) with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print( 'wrote gt roidb to {}'.format(cache_file)) return gt_roidb def _load_kitti_annotation(self, index): """ Load image and bounding boxes info from txt file in the KITTI format. """ if self._image_set == 'test': lines = [] else: filename = os.path.join(self._data_path, 'training', 'label_2', index + '.txt') lines = [] with open(filename) as f: for line in f: line = line.replace('Van', 'Car') words = line.split() cls = words[0] truncation = float(words[1]) occlusion = int(words[2]) height = float(words[7]) - float(words[5]) if cls in self._class_to_ind and truncation < 0.5 and occlusion < 3 and height > 25: lines.append(line) num_objs = len(lines) boxes = np.zeros((num_objs, 4), dtype=np.float32) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) for ix, line in enumerate(lines): words = line.split() cls = self._class_to_ind[words[0]] boxes[ix, :] = [float(n) for n in words[4:8]] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 overlaps = scipy.sparse.csr_matrix(overlaps) gt_subclasses = np.zeros((num_objs), dtype=np.int32) gt_subclasses_flipped = np.zeros((num_objs), dtype=np.int32) subindexes = np.zeros((num_objs, self.num_classes), dtype=np.int32) subindexes_flipped = np.zeros((num_objs, self.num_classes), dtype=np.int32) subindexes = scipy.sparse.csr_matrix(subindexes) subindexes_flipped = scipy.sparse.csr_matrix(subindexes_flipped) if cfg.IS_RPN: if cfg.IS_MULTISCALE: # compute overlaps between grid boxes and gt boxes in multi-scales # rescale the gt boxes boxes_all = np.zeros((0, 4), dtype=np.float32) for scale in cfg.TRAIN.SCALES: boxes_all = np.vstack((boxes_all, boxes * scale)) gt_classes_all = np.tile(gt_classes, len(cfg.TRAIN.SCALES)) # compute grid boxes s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] boxes_grid, _, _ = get_boxes_grid(image_height, image_width) # compute overlap overlaps_grid = bbox_overlaps(boxes_grid.astype(np.float), boxes_all.astype(np.float)) # check how many gt boxes are covered by grids if num_objs != 0: index = np.tile(range(num_objs), len(cfg.TRAIN.SCALES)) max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in range(1, self.num_classes): fg_inds.extend(np.where((gt_classes_all == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) index_covered = np.unique(index[fg_inds]) for i in range(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[index_covered] == i)[0]) else: assert len(cfg.TRAIN.SCALES_BASE) == 1 scale = cfg.TRAIN.SCALES_BASE[0] feat_stride = 16 # faster rcnn region proposal anchors = generate_anchors() num_anchors = anchors.shape[0] # image size s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] # height and width of the heatmap height = np.round((image_height * scale - 1) / 4.0 + 1) height = np.floor((height - 1) / 2 + 1 + 0.5) height = np.floor((height - 1) / 2 + 1 + 0.5) width = np.round((image_width * scale - 1) / 4.0 + 1) width = np.floor((width - 1) / 2.0 + 1 + 0.5) width = np.floor((width - 1) / 2.0 + 1 + 0.5) # gt boxes gt_boxes = boxes * scale # 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * feat_stride shift_y = np.arange(0, height) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = num_anchors K = shifts.shape[0] all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) # compute overlap overlaps_grid = bbox_overlaps(all_anchors.astype(np.float), gt_boxes.astype(np.float)) # check how many gt boxes are covered by anchors if num_objs != 0: max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in range(1, self.num_classes): fg_inds.extend(np.where((gt_classes == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) for i in range(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[fg_inds] == i)[0]) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_subclasses': gt_subclasses, 'gt_subclasses_flipped': gt_subclasses_flipped, 'gt_overlaps' : overlaps, 'gt_subindexes': subindexes, 'gt_subindexes_flipped': subindexes_flipped, 'flipped' : False} def _load_kitti_voxel_exemplar_annotation(self, index): """ Load image and bounding boxes info from txt file in the KITTI voxel exemplar format. """ if self._image_set == 'train': prefix = 'validation' elif self._image_set == 'trainval': prefix = 'test' else: return self._load_kitti_annotation(index) filename = os.path.join(self._kitti_path, cfg.SUBCLS_NAME, prefix, index + '.txt') assert os.path.exists(filename), \ 'Path does not exist: {}'.format(filename) # the annotation file contains flipped objects lines = [] lines_flipped = [] with open(filename) as f: for line in f: words = line.split() subcls = int(words[1]) is_flip = int(words[2]) if subcls != -1: if is_flip == 0: lines.append(line) else: lines_flipped.append(line) num_objs = len(lines) # store information of flipped objects assert (num_objs == len(lines_flipped)), 'The number of flipped objects is not the same!' gt_subclasses_flipped = np.zeros((num_objs), dtype=np.int32) for ix, line in enumerate(lines_flipped): words = line.split() subcls = int(words[1]) gt_subclasses_flipped[ix] = subcls boxes = np.zeros((num_objs, 4), dtype=np.float32) gt_classes = np.zeros((num_objs), dtype=np.int32) gt_subclasses = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) subindexes = np.zeros((num_objs, self.num_classes), dtype=np.int32) subindexes_flipped = np.zeros((num_objs, self.num_classes), dtype=np.int32) for ix, line in enumerate(lines): words = line.split() cls = self._class_to_ind[words[0]] subcls = int(words[1]) boxes[ix, :] = [float(n) for n in words[3:7]] gt_classes[ix] = cls gt_subclasses[ix] = subcls overlaps[ix, cls] = 1.0 subindexes[ix, cls] = subcls subindexes_flipped[ix, cls] = gt_subclasses_flipped[ix] overlaps = scipy.sparse.csr_matrix(overlaps) subindexes = scipy.sparse.csr_matrix(subindexes) subindexes_flipped = scipy.sparse.csr_matrix(subindexes_flipped) if cfg.IS_RPN: if cfg.IS_MULTISCALE: # compute overlaps between grid boxes and gt boxes in multi-scales # rescale the gt boxes boxes_all = np.zeros((0, 4), dtype=np.float32) for scale in cfg.TRAIN.SCALES: boxes_all = np.vstack((boxes_all, boxes * scale)) gt_classes_all = np.tile(gt_classes, len(cfg.TRAIN.SCALES)) # compute grid boxes s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] boxes_grid, _, _ = get_boxes_grid(image_height, image_width) # compute overlap overlaps_grid = bbox_overlaps(boxes_grid.astype(np.float), boxes_all.astype(np.float)) # check how many gt boxes are covered by grids if num_objs != 0: index = np.tile(range(num_objs), len(cfg.TRAIN.SCALES)) max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in range(1, self.num_classes): fg_inds.extend(np.where((gt_classes_all == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) index_covered = np.unique(index[fg_inds]) for i in range(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[index_covered] == i)[0]) else: assert len(cfg.TRAIN.SCALES_BASE) == 1 scale = cfg.TRAIN.SCALES_BASE[0] feat_stride = 16 # faster rcnn region proposal base_size = 16 ratios = [3.0, 2.0, 1.5, 1.0, 0.75, 0.5, 0.25] scales = 2**np.arange(1, 6, 0.5) anchors = generate_anchors(base_size, ratios, scales) num_anchors = anchors.shape[0] # image size s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] # height and width of the heatmap height = np.round((image_height * scale - 1) / 4.0 + 1) height =
np.floor((height - 1) / 2 + 1 + 0.5)
numpy.floor
import numpy as np import matplotlib.pyplot as plt def addGaussianNoise(d, para, testMode='n'): # This function add noises as follows: # d_i = d_i with probability 1-para['rate'] # d_i = d_i + \epsilon \xi_i with probability para['rate'] # where \xi_i follow the standard normal distribution, # para['rate'] is the corruption percentage, # para['noise_level'] is the noise level, # # The output: # d: the noisy data; # sig: is the covariance of the added noises. # # Ref: <NAME>, A variational Bayesian method to inverse problems with implusive noise, # Journal of Computational Physics, 231, 2012, 423-435 (Page 428, Section 4). if testMode == 'y': np.random.seed(1) noise_level = para['noise_level'] len_d = len(d) r = para['rate'] noise =
np.random.normal(0, 1, len_d)
numpy.random.normal
import argparse import pickle from collections import defaultdict from pprint import pprint from itertools import combinations import numpy as np from scipy.stats import wilcoxon if __name__ == "__main__": np.set_printoptions(precision=2) parser = argparse.ArgumentParser() parser.add_argument('inputs', help='List of pickle files with an ndarray representing a confusion matrix.') args = parser.parse_args() table = defaultdict(lambda: defaultdict(dict)) with open(args.inputs) as g: for l in g: with open(l.rstrip(), 'rb') as f: _cm = pickle.load(f) name = l.split('/')[-1].split('.')[0].split('_')[0] protocol = l.split('/')[-3] corpus = l.split('/')[-2] correct =
np.trace(_cm)
numpy.trace
# -*- coding: utf-8 -*- """ This code evaluates the outputs from calibrated BusSim @author: geomlk """ import numpy as np import matplotlib.pyplot as plt import pickle import os os.chdir("/Users/minhkieu/Documents/Github/dust/Projects/ABM_DA/bussim/") ''' Step 1: Load calibration results ''' def load_calibrated_params_IncreaseRate(IncreaseRate): name0 = ['./Calibration/BusSim_Model2_calibration_IncreaseRate_',str(IncreaseRate),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params, best_mean_model2,Sol_archived_mean,Sol_archived_std,PI_archived = pickle.load(f) name0 = ['./Calibration/BusSim_Model1_calibration_IncreaseRate_',str(IncreaseRate),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params, best_mean_model1,Sol_archived_mean,Sol_archived_std,PI_archived = pickle.load(f) return best_mean_model1,best_mean_model2 def load_calibrated_params_maxDemand(maxDemand): name0 = ['./Calibration/BusSim_Model2_calibration_static_maxDemand_',str(maxDemand),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params, best_mean_model2,Sol_archived_mean,Sol_archived_std,PI_archived = pickle.load(f) name0 = ['./Calibration/BusSim_Model1_calibration_static_maxDemand_',str(maxDemand),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params, best_mean_model1,Sol_archived_mean,Sol_archived_std,PI_archived = pickle.load(f) return best_mean_model1,best_mean_model2 ''' Step 2: Load synthetic real-time data ''' def load_actual_params_IncreaseRate(IncreaseRate): #load up a model from a Pickle name0 = ['./Data/Realtime_data_IncreaseRate_',str(IncreaseRate),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params,t,x,GroundTruth = pickle.load(f) return model_params,t,x def load_actual_params_maxDemand(maxDemand): #load up a model from a Pickle name0 = ['./Data/Realtime_data_static_maxDemand_',str(maxDemand),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params,t,x,GroundTruth = pickle.load(f) return model_params,t,x #define RMSE function def rmse(yhat,y): return np.sqrt(np.square(
np.subtract(yhat, y)
numpy.subtract
import os import numpy as np from gym import utils, spaces from gym.envs.mujoco import mujoco_env def body_index(model, body_name): return model.body_names.index(body_name) def body_pos(model, body_name): ind = body_index(model, body_name) return model.body_pos[ind] def body_quat(model, body_name): ind = body_index(model, body_name) return model.body_quat[ind] def body_frame(env, body_name): """ Returns the rotation matrix to convert to the frame of the named body """ ind = body_index(env.model, body_name) b = env.data.body_xpos[ind] q = env.data.body_xquat[ind] qr, qi, qj, qk = q s = np.square(q).sum() R = np.array([ [1 - 2 * s * (qj ** 2 + qk ** 2), 2 * s * (qi * qj - qk * qr), 2 * s * (qi * qk + qj * qr)], [2 * s * (qi * qj + qk * qr), 1 - 2 * s * (qi ** 2 + qk ** 2), 2 * s * (qj * qk - qi * qr)], [2 * s * (qi * qk - qj * qr), 2 * s * (qj * qk + qi * qr), 1 - 2 * s * (qi ** 2 + qj ** 2)] ]) return R class YumiReacherEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): self.high = np.array([40, 35, 30, 20, 15, 10, 10]) self.low = -self.high self.wt = 0.0 self.we = 0.0 root_dir = os.path.dirname(__file__) xml_path = os.path.join(root_dir, 'yumi', 'yumi.xml') mujoco_env.MujocoEnv.__init__(self, xml_path, 1) utils.EzPickle.__init__(self) # Manually define this to let a be in [-1, 1]^d self.action_space = spaces.Box(low=-np.ones(7) * 2, high=np.ones(7) * 2, dtype=np.float32) self.init_params() def init_params(self, wt=0.9, x=0.0, y=0.0, z=0.2): """ :param wt: Float in range (0, 1), weight on euclidean loss :param x, y, z: Position of goal """ self.wt = wt self.we = 1 - wt qpos = self.init_qpos qpos[-3:] = [x, y, z] qvel = self.init_qvel self.set_state(qpos, qvel) def step(self, a): a_real = a * self.high / 2 self.do_simulation(a_real, self.frame_skip) reward = self._reward(a_real) done = False ob = self._get_obs() return ob, reward, done, {} def _reward(self, a): eef = self.get_body_com('gripper_r_base') goal = self.get_body_com('goal') goal_distance = np.linalg.norm(eef - goal) # This is the norm of the joint angles # The ** 4 is to create a "flat" region around [0, 0, 0, ...] q_norm = np.linalg.norm(self.sim.data.qpos.flat[:7]) ** 4 / 100.0 # TODO in the future # f_desired = np.eye(3) # f_current = body_frame(self, 'gripper_r_base') reward = -( self.wt * goal_distance * 2.0 + # Scalars here is to make this part of the reward approx. [0, 1] self.we * np.linalg.norm(a) / 40 + q_norm ) return reward def _get_obs(self): return np.concatenate([ self.sim.data.qpos.flat[:7],
np.clip(self.sim.data.qvel.flat[:7], -10, 10)
numpy.clip
import bisect import numpy as np ######################################## # Algorithms ######################################## # Compute indices of slice of sorted data which fit into the provided range def slice_sorted(data, rng): return [ bisect.bisect_left(data, rng[0]), bisect.bisect_right(data, rng[1])] # Take a list of strings, return a unique list of strings of the same length # Non-unique strings will be appended their index at the end # It is guaranteed that index increments with position in the list def string_list_pad_unique(data1D, suffix=''): d = {} rez = [] for elem in data1D: if elem not in d.keys(): d[elem] = 0 rez += [elem] else: d[elem] += 1 rez += [elem + suffix + str(d[elem])] return rez ######################################## # Permutation operations ######################################## # Finds permutation map A->B of elements of two arrays, which are permutations of each other def perm_map_arr(a, b): return np.where(b.reshape(b.size, 1) == a)[1] # Same as perm_map_arr, but for string characters def perm_map_str(a, b): return perm_map_arr(np.array(list(a)), np.array(list(b))) ######################################## # Set operations ######################################## # Returns a list only containing unique items # Unlike Set(), order of unique items from the original list is preserved def unique_ordered(lst): return list(dict.fromkeys(lst)) # Returns set subtraction of s1 - s2, preserving order of s1 def unique_subtract(s1, s2): rez = [s for s in s1 if s not in s2] if type(s1) == list: return rez elif type(s1) == str: return "".join(rez) elif type(s1) == tuple: return tuple(rez) else: raise ValueError("Unexpected Type", type(s1)) ######################################## # Non-uniform dimension array lists ######################################## # Test if a given dimension is part of a dimension order def assert_get_dim_idx(dimOrd, trgDim, label="TASK_NAME", canonical=False): if trgDim in dimOrd: return dimOrd.index(trgDim) else: if canonical: dimNameDict = { "p": "processes (aka channels)", "s": "samples (aka times)", "r": "repetitions (aka trials)" } raise ValueError(label, "requires", dimNameDict[trgDim], "dimension; have", dimOrd) else: raise ValueError(label, "not found", trgDim, "in", dimOrd) ######################################## # Non-uniform dimension array lists ######################################## def set_list_shapes(lst, axis=None): if axis is None: return list(set([elem.shape for elem in lst])) else: return list(set([elem.shape[axis] for elem in lst])) def list_assert_get_uniform_shape(lst, axis=None): if len(lst) == 0: raise ValueError("Got empty list") shapes = set_list_shapes(lst, axis) if len(shapes) > 1: raise ValueError("Expected uniform shapes for axis", axis, "; got", shapes) return next(iter(shapes)) ######################################## # Multivariate dimension operations ######################################## # Transpose data dimensions given permutation of axis labels # If augment option is on, then extra axis of length 1 are added when missing def numpy_transpose_byorder(data, orderSrc, orderTrg, augment=False): if data.ndim != len(orderSrc): raise ValueError("Incompatible data", data.shape, "and order", orderSrc) if not augment: if sorted(orderSrc) != sorted(orderTrg): raise ValueError('Cannot transform', orderSrc, "to", orderTrg) return data.transpose(perm_map_str(orderSrc, orderTrg)) else: if not set(orderSrc).issubset(set(orderTrg)): raise ValueError('Cannot augment', orderSrc, "to", orderTrg) nIncr = len(orderTrg) - len(orderSrc) newShape = data.shape + tuple([1]*nIncr) newOrder = orderSrc + unique_subtract(orderTrg, orderSrc) return data.reshape(newShape).transpose(perm_map_str(newOrder, orderTrg)) # Return original shape, but replace all axis that have been reduced with 1s # So final shape looks as if it is of the same dimension as original # Useful for broadcasting reduced arrays onto original arrays def numpy_shape_reduced_axes(shapeOrig, reducedAxis): if reducedAxis is None: # All axes have been reduced return tuple([1]*len(shapeOrig)) else: if not isinstance(reducedAxis, tuple): reducedAxis = (reducedAxis,) shapeNew = list(shapeOrig) for idx in reducedAxis: shapeNew[idx] = 1 return tuple(shapeNew) # Add extra dimensions of size 1 to array at given locations def numpy_add_empty_axes(x, axes): newShape = list(x.shape) for axis in axes: newShape.insert(axis, 1) return x.reshape(tuple(newShape)) # Reshape array by merging all dimensions between l and r def numpy_merge_dimensions(data, l, r): shOrig = list(data.shape) shNew = tuple(shOrig[:l] + [np.prod(shOrig[l:r])] + shOrig[r:]) return data.reshape(shNew) # Move a dimension from one place to another # Example1: [0,1,2,3,4,5], 3, 1 -> [0,3,1,2,4,5] # Example2: [0,1,2,3,4,5], 1, 3 -> [0,2,3,1,4,5] def numpy_move_dimension(data, axisOld, axisNew): ord = list(np.arange(data.ndim)) if axisOld == axisNew: return data elif axisOld > axisNew: ordNew = ord[:axisNew] + [axisOld] + ord[axisNew:axisOld] + ord[axisOld+1:] else: ordNew = ord[:axisOld] + ord[axisOld+1:axisNew+1] + [axisOld] + ord[axisNew+1:] return data.transpose(ordNew) # Specify exact indices for some axis of the array # Returns array of smaller dimension def numpy_take_all(a, axes, indices): slices = tuple(indices[axes.index(i)] if i in axes else slice(None) for i in range(a.ndim)) return a[slices] # Take list whose values are either None or arrays of the same shape # Figure out shape, replace None with np.nan arrays of that shape # Convert whole thing to array def numpy_nonelist_to_array(lst): noneIdxs = np.array([elem is None for elem in lst]).astype(bool) if np.all(~noneIdxs): shapes = set_list_shapes(lst, axis=None) if len(shapes) != 1: raise ValueError("List should contain arrays of the same shape, have", shapes) # All arrays present return np.array(lst) if np.all(noneIdxs): raise ValueError("List only contains None values, can't figure out shape") # For all normal arrays, check that their shape is the same trgShape = list_assert_get_uniform_shape([elem for elem in lst if elem is not None]) baseDim = len(trgShape) if baseDim == 0: # have a list of scalar values return np.array([val if val is not None else np.nan for val in lst]) else: # Replace all None's with NAN arrays of correct shape nonePatch = np.full(trgShape, np.nan) return np.array([e if e is not None else nonePatch for e in lst]) # Assign each string to one key out of provided # If no keys found, assign special key # If more than 1 key found, raise error def bin_data_by_keys(strLst, keys): keysArr = np.array(keys, dtype=object) rez = [] for s in strLst: matchKeys = np.array([k in s for k in keys], dtype=bool) nMatch =
np.sum(matchKeys)
numpy.sum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 30 15:51:43 2019 @author: <NAME> @email: <EMAIL> This code is for DNN training Explained in paper: <NAME>, <NAME>, Deep Self-Supervised Hierarchical Clustering for Speaker Diarization, Interspeech, 2020 Check main function: train_with_threshold , to run for different iterations """ import os import sys import numpy as np import random import pickle import subprocess from collections import OrderedDict import torch import torch.nn as nn import torch.optim as optim from models_train_ahc import weight_initialization,Deep_Ahc_model import torch.utils.data as dloader from arguments import read_arguments as params from pdb import set_trace as bp sys.path.insert(0,'services/') import kaldi_io import services.agglomerative as ahc from services.path_integral_clustering import PIC_ami,PIC_org_threshold,PIC_org, PIC_callhome, PIC_callhome_threshold, PIC_ami_threshold sys.path.insert(0,'tools_diar/steps/libs') # read arguments opt = params() #select device os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpuid # torch.manual_seed(777) # reproducibility loss_lamda = opt.alpha dataset=opt.dataset device = 'cuda' if torch.cuda.is_available() else 'cpu' # device = 'cpu' print(device) # Model defined here def normalize(system): # to make zero mean and unit variance my_mean = np.mean(system) my_std = np.std(system) system = system-my_mean system /= my_std return system def compute_affinity_loss(output,cluster,lamda): mylist = np.arange(len(cluster)) # print('mylist:',mylist) loss=0.0 biglamda=0.0 for k,c in enumerate(cluster): for i in range(len(c)-1): for j in range(i+1,len(c)): nlist=np.delete(mylist,k,0) # bp() try: ind=np.random.choice(nlist) except: bp() b = cluster[ind] # bp() bi = i % len(b) # min(i,abs(i-len(b))) loss += -output[c[i],c[j]]+ lamda*output[c[i],b[bi]]+ lamda*output[c[j],b[bi]] biglamda +=1 return loss/biglamda def mostFrequent(arr, n): # Insert all elements in Hash. Hash = dict() for i in range(n): if arr[i] in Hash.keys(): Hash[arr[i]] += 1 else: Hash[arr[i]] = 1 # find the max frequency max_count = 0 res = -1 for i in Hash: if (max_count < Hash[i]): res = i max_count = Hash[i] return res class Deep_AHC: def __init__(self,data,pldamodel,fname,reco2utt,xvecdimension,model,optimizer,n_prime,writer=None): self.reco2utt = reco2utt self.xvecdimension = xvecdimension self.model = model self.optimizer = optimizer self.n_prime = n_prime self.fname = fname self.final =0 self.forcing_label = 0 self.results_dict={} self.pldamodel = pldamodel self.data = data self.lamda = 0.0 self.K = 30 self.z = 0.1 def write_results_dict(self, output_file): """Writes the results in label file""" f = self.fname output_label = open(output_file+'/'+f+'.labels','w') hypothesis = self.results_dict[f] meeting_name = f reco = self.reco2utt.split()[0] utts = self.reco2utt.rstrip().split()[1:] if reco == meeting_name: for j,utt in enumerate(utts): towrite = utt +' '+str(hypothesis[j])+'\n' output_label.writelines(towrite) output_label.close() rttm_channel=0 segmentsfile = opt.segments+'/'+f+'.segments' python = opt.which_python cmd = '{} tools_diar/diarization/make_rttm.py --rttm-channel 0 {} {}/{}.labels {}/{}.rttm' .format(python,segmentsfile,output_file,f,output_file,f) os.system(cmd) def compute_score(self,rttm_gndfile,rttm_newfile,outpath,overlap): fold_local='services/' scorecode='score.py -r ' # print('--------------------------------------------------') if not overlap: cmd=opt.which_python +' '+ fold_local + 'dscore-master/' + scorecode + rttm_gndfile + ' --ignore_overlaps --collar 0.25 -s ' + rttm_newfile + ' > ' + outpath + '.txt' os.system(cmd) else: cmd=opt.which_python + ' '+ fold_local + 'dscore-master/' + scorecode + rttm_gndfile + ' -s ' + rttm_newfile + ' > ' + outpath + '.txt' os.system(cmd) # print('----------------------------------------------------') # subprocess.check_call(cmd,stderr=subprocess.STDOUT) # print('scoring ',rttm_gndfile) bashCommand="cat {}.txt | grep OVERALL |awk '{{print $4}}'".format(outpath) output=subprocess.check_output(bashCommand,shell=True) return float(output.decode('utf-8').rstrip()) # output = subprocess.check_output(['bash','-c', bashCommand]) def compute_loss(self,A,minibatch,lamda): loss = 0.0 weight = 1 for m in minibatch: loss += -weight*A[m[0],m[1]]+lamda*(A[m[0],m[2]]+A[m[1],m[2]])+ 1.0 # print('sum loss : ',loss) return loss/len(minibatch) def compute_minibatches(self,A,cluster,labels,mergeind=[],cleanind = []): triplets = [] hard = 0 random_sample = 1 multiple = 0 for ind,k in enumerate(cluster): neg = np.where(labels!=ind)[0] for i,a in enumerate(k[:-1]): for p in k[i+1:]: Aavg = (A[a,neg]+A[p,neg])/2.0 if hard: neg_ind = np.argmax(Aavg) fetch_negatives = neg[neg_ind] triplets.append([a,p,fetch_negatives]) if random_sample: max_10 = random.randint(0,len(Aavg)-1) max_neg = min(max_10,len(Aavg)-1) fetch_negatives = neg[max_neg] triplets.append([a,p,fetch_negatives]) if multiple: max_neg = np.random.randint(1, len(Aavg), size=(10,)) #neg_indices = np.argsort(Aavg,axis=None)[::-1][max_neg-1] fetch_negatives = neg[max_neg] for n in fetch_negatives: triplets.append([a,p,n]) random.shuffle(triplets) if len(triplets)==0: ValueError("No triplets generated!") triplets = np.array(triplets) N = len(triplets) N1=0 num_batches = min(opt.N_batches,N) N1 = N -(N % num_batches) batchsize = int(N1/num_batches) print('batchsize:',batchsize) minibatches = triplets[:N1].reshape(-1,batchsize,3) return minibatches,batchsize def compute_minibatches_train(self,period,A,cluster,labels,overlap_ind=[],clusterlen = []): triplets = [] random_sample = 0 multiple = 1 if len(overlap_ind)>0: last_ind = -1 else: last_ind = None trainlabels = np.arange(len(labels)) anch_count_full = int(np.mean(clusterlen)) max_triplets = (anch_count_full-1)**2 pos_count = anch_count_full print('anch_count_full:',anch_count_full) triplets_cluster = [] triplets_cluster_size = np.zeros((len(cluster[:last_ind]),),dtype=int) ind_count = 0 for ind,k in enumerate(cluster[:last_ind]): # if len(k)<10: # continue triplets = [] train_neg = trainlabels[np.where(labels[trainlabels]!=ind)[0]] traink = k anch_count = min(anch_count_full,len(traink)) # bp() possible_triplets = (anch_count-1)**2 num_negatives = int(max_triplets/possible_triplets) # find number of negatives needed to keep balance between small clusters vs large for i,a in enumerate(traink[:anch_count-1]): # mining number of triplets based on smallest/largest cluster for p in traink[i+1:anch_count]: if len(train_neg)!=0: if random_sample: max_10 = random.randint(0,len(train_neg)) max_neg = min(max_10,len(train_neg)-1) fetch_negatives = train_neg[max_neg] triplets.append([a,p,fetch_negatives]) if multiple: minsize=min(num_negatives,len(train_neg)) max_neg = np.random.randint(0, len(train_neg)-1, size=(minsize,)) #neg_indices = np.argsort(Aavg,axis=None)[::-1][max_neg-1] fetch_negatives = train_neg[max_neg] for n in fetch_negatives: triplets.append([a,p,n]) else: triplets.append([a,p,0]) triplets_cluster.append(triplets) triplets_cluster_size[ind_count] = len(triplets) ind_count = ind_count + 1 triplets_cluster_size = triplets_cluster_size[:ind_count] triplets_cluster = np.array(triplets_cluster) N1=0 batches = 1 if batches >= min(triplets_cluster_size): batches = int(batches/2) num_batches = min(batches,min(triplets_cluster_size)) print('num_batches:',num_batches) minibatches = [] # bp() for k,triplets in enumerate(triplets_cluster): # cluster_batchsize = batchratio[k] N = len(triplets) random.shuffle(triplets) N1 = N -(N % num_batches) cluster_batchsize = int(N1/num_batches) # N1 = int(N1/cluster_batchsize)*cluster_batchsize print('cluster_batchsize:',cluster_batchsize) triplets_n1 = np.array(triplets[:N1]) minibatches.append(triplets_n1.reshape(num_batches,-1,3)) print('minibatch shape:',minibatches[k].shape) minibatches_full = [] for i in range(num_batches): for k,triplets in enumerate(triplets_cluster): # bp() if k==0: minibatches_full.append(minibatches[k][i].tolist()) else: minibatches_full[i].extend(minibatches[k][i].tolist()) print('batchsize of batch {}: {}'.format(i,len(minibatches_full[i]))) batchsize = len(minibatches_full[0]) print('batchsize:',batchsize) print("total triplets : ",len(minibatches_full)*batchsize) # return minibatches_full,batchsize return np.array(minibatches_full) def compute_minibatches_train_valid(self,A,cluster,labels,overlap_ind=[],clusterlen = []): triplets = [] tripletsval = [] # labels= labels[np.arange(len(labels))!=cluster[-1]] overlap_label = len(clusterlen)-1 clean_ind = np.where(labels!=overlap_label)[0] # labels = labels [clean_ind] trainlabels = [] val_labels = [] train = 0.8 random_sample = 0 random_sample_val = 1 multiple = 1 if len(overlap_ind)>0: last_ind = -1 else: last_ind = None for i,k in enumerate(cluster[:last_ind]): traink = k[:int(len(k)*train)] valk = k[int(len(k)*train):] trainlabels.extend(traink) val_labels.extend(valk) trainlabels = np.array(trainlabels) val_labels = np.array(val_labels) anch_count_full = int(train * np.mean(clusterlen)) max_triplets = (anch_count_full-1)**2 print('anch_count_full:',anch_count_full) triplets_cluster = [] triplets_cluster_size = np.zeros((len(cluster[:last_ind]),),dtype=int) ind_count = 0 for ind,k in enumerate(cluster[:last_ind]): if len(k)<10: continue triplets = [] train_neg = trainlabels[np.where(labels[trainlabels]!=ind)[0]] # neg = trainlabels[neg] # train_neg = neg[neg == np.array(trainlabels)] traink = k[:int(len(k)*train)] valk = k[int(len(k)*train):] anch_count = min(anch_count_full,len(traink)) # bp() possible_triplets = (anch_count-1)**2 num_negatives = int(max_triplets/possible_triplets) # find number of negatives needed to keep balance between small clusters vs large for i,a in enumerate(traink[:anch_count-1]): # mining number of triplets based on smallest/largest cluster for p in traink[i+1:anch_count]: if len(train_neg)!=0: if random_sample: max_10 = random.randint(0,len(train_neg)) max_neg = min(max_10,len(train_neg)-1) fetch_negatives = train_neg[max_neg] triplets.append([a,p,fetch_negatives]) if multiple: minsize=min(num_negatives,len(train_neg)) max_neg = np.random.randint(0, len(train_neg)-1, size=(minsize,)) #neg_indices = np.argsort(Aavg,axis=None)[::-1][max_neg-1] fetch_negatives = train_neg[max_neg] for n in fetch_negatives: triplets.append([a,p,n]) else: triplets.append([a,p,0]) val_neg = val_labels[
np.where(labels[val_labels]!=ind)
numpy.where
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import timeit import time import datetime from tqdm import tqdm def activation(input_array,function='sigmoid'): if function =='sigmoid': return 1/(1 + np.exp(-input_array)) np.random.seed(8888) x1 = np.linspace(-5,5, 400) x2 = np.linspace(-5,5, 400) np.random.shuffle(x1) np.random.shuffle(x2) d = x1**2 + x2**2 # Normalize d 0.2~0.8 d_max = np.max(d) d_min = np.min(d) d = (d-d_min)/(d_max-d_min)*(0.8-0.2)+0.2 #---------------- Input data ------------------------------ num_in = 2 #----------------Hiddent Layer 1 --------------------- num_L1 = 10 bias_L1 = np.random.uniform(-0.5,0.5,[num_L1,1])#5 1 w_L1 = np.random.uniform(-0.5,0.5,[num_in,num_L1])#2 5 #---------------- Output ----------------------------- num_out = 1 bias_out = np.random.uniform(-0.5,0.5,[num_out,1])# 1 1 w_out = np.random.uniform(-0.5,0.5,[num_L1,num_out])# 5 1 #---------------- Parameter -------------------------- eta = 0.01 mom = 0.9 epoch = 250000 Eav_train = np.zeros([epoch]) Eav_test = np.zeros([epoch]) dw_out = temp1 = np.zeros([num_L1,num_out]) #5 1 dbias_out = temp2 = np.zeros([num_out,1])#1 1 dw_L1 = temp3 = np.zeros([num_in,num_L1])#2 5 dbias_L1 = temp4 = np.zeros([num_L1,1])# 5 1 #---------------- Traning ---------------------------- t0 = timeit.default_timer() now = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") pbar = tqdm(total =epoch) for i in range(epoch): #--------------- Feed Forward ------------------- e = np.zeros([300]) E_train = np.zeros([300]) for j in range(300): #X = np.array([x1[j],x2[j]]).reshape(2,1)# 2 1 X = np.array([x1[j],x2[j]]).reshape(2,1)# 2 1 L1 = activation(np.dot(np.transpose(w_L1),X) + bias_L1,'sigmoid')#5 1 out = activation(np.dot(np.transpose(L1),w_out) + bias_out,'sigmoid')#1 1 #--------------- Back Propagation----------------- e[j] = (d[j]-out) #1 1 E_train[j] = 0.5 * e[j]**2 locg_k = e[j] * (out*(1-out))# 1 1 temp2 = temp2 + mom * dbias_out + eta * locg_k * 1 #1 1 temp1 = temp1 + mom * dw_out + eta * locg_k * L1 #5 1 locg_j = L1*(1-L1) * locg_k * w_out# 5 1 temp4 = temp4 + mom * dbias_L1 + eta * locg_j * 1 # 5 1 temp3 = temp3 + mom * dw_L1 + eta * np.dot(X,np.transpose(locg_j))#2 5 dbias_out = temp2/300 dw_out = temp1/300 dbias_L1 = temp4/300 dw_L1 = temp3/300 temp1 = np.zeros([num_L1,num_out]) #5 1 temp2 = np.zeros([num_out,1])#1 1 temp3 = np.zeros([num_in,num_L1])#2 5 temp4 = np.zeros([num_L1,1])# 5 1 #---------- New weight -------------- bias_out = bias_out + dbias_out w_out = w_out + dw_out bias_L1 = bias_L1 + dbias_L1 w_L1 = w_L1 + dw_L1 #---------- Eave_train Eav_train[i] = np.mean(E_train) #---------- Test data loss --------------- E_test = np.zeros([100]) for j in range(100): X = np.array([x1[300+j],x2[300+j]]).reshape(2,1)# 2 1 L1 = activation(np.dot(np.transpose(w_L1),X) + bias_L1,'sigmoid')#5 1 out = activation(np.dot(np.transpose(L1),w_out) + bias_out,'sigmoid')#1 1 E_test = 0.5*( d[300+j] - out )**2 Eav_test[i] = np.mean(E_test) if i % 1000==0: pbar.update(1000) pbar.close() t1 =(timeit.default_timer()-t0) print('Training time: {} min'.format((t1/60))) #--------- Predict data -------------- y_predict = np.zeros([100]) E_predict = np.zeros([100]) for j in range(100): X = np.array([x1[300+j],x2[300+j]]).reshape(2,1)# 2 1 L1 = activation(np.dot(np.transpose(w_L1),X) + bias_L1,'sigmoid')#5 1 out = activation(np.dot(np.transpose(L1),w_out) + bias_out,'sigmoid')#1 1 y_predict[j] = out E_predict[j] = 0.5*( d[300+j] - out )**2 Eav_predict =
np.mean(E_predict)
numpy.mean
from spikeextractors import RecordingExtractor from spikeextractors.extraction_tools import check_get_traces_args from .basepreprocessorrecording import BasePreprocessorRecordingExtractor import numpy as np from scipy.interpolate import interp1d class RemoveArtifactsRecording(BasePreprocessorRecordingExtractor): preprocessor_name = 'RemoveArtifacts' def __init__(self, recording, triggers, ms_before=0.5, ms_after=3.0, mode='zeros', fit_sample_spacing=1.): self._triggers = np.array(triggers) self._ms_before = ms_before self._ms_after = ms_after self._mode = mode self._fit_sample_spacing = fit_sample_spacing BasePreprocessorRecordingExtractor.__init__(self, recording) self._kwargs = {'recording': recording.make_serialized_dict(), 'triggers': triggers, 'ms_before': ms_before, 'ms_after': ms_after, 'mode': mode, 'fit_sample_spacing': fit_sample_spacing} @check_get_traces_args def get_traces(self, channel_ids=None, start_frame=None, end_frame=None, return_scaled=True): traces = self._recording.get_traces(channel_ids=channel_ids, start_frame=start_frame, end_frame=end_frame, return_scaled=return_scaled) triggers = self._triggers[(self._triggers > start_frame) & (self._triggers < end_frame)] - start_frame pad = [int(self._ms_before * self.get_sampling_frequency() / 1000), int(self._ms_after * self.get_sampling_frequency() / 1000)] traces = traces.copy() if self._mode == 'zeros': for trig in triggers: if trig - pad[0] > 0 and trig + pad[1] < end_frame - start_frame: traces[:, trig - pad[0]:trig + pad[1]] = 0 elif trig - pad[0] <= 0 and trig + pad[1] >= end_frame - start_frame: traces = 0 elif trig - pad[0] <= 0: traces[:, :trig + pad[1]] = 0 elif trig + pad[1] >= end_frame - start_frame: traces[:, trig - pad[0]:] = 0 else: sample_freq = self._recording.get_sampling_frequency() # generate indices for evenly spaced fit points before and after gap fit_sample_range = int(((sample_freq / 1000) * self._fit_sample_spacing * 2) + 1) fit_sample_interval = int(self._fit_sample_spacing * (sample_freq / 1000)) fit_samples = np.array(range(0, fit_sample_range, fit_sample_interval)) rev_fit_samples = fit_sample_range - fit_samples triggers = np.array(triggers).astype(int) for trig in triggers: pre_data_end_idx = trig - pad[0] - 1 post_data_start_idx = trig + pad[1] + 1 # Generate fit points from the sample points determined pre_idx = pre_data_end_idx - rev_fit_samples + 1 post_idx = post_data_start_idx + fit_samples # Get indices of the gap to fill gap_idx = np.array(range(pre_data_end_idx + 1, post_data_start_idx + 0)) # Make sure we are not going out of bounds gap_idx = gap_idx[gap_idx >= 0] gap_idx = gap_idx[gap_idx < len(traces[0])] # correct for out of bounds indices on both sides: if np.max(post_idx) >= len(traces[0]): post_idx = post_idx[post_idx < len(traces[0])] if
np.min(pre_idx)
numpy.min
""" ('Best hyper-parameter option: ', [0.0002296913506475621, 'relu', 0.005450020325607934, [128, 32]]) ('Min validation loss: ', 0.5709372162818909) """ from itertools import permutations from scipy.optimize import minimize from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import random import torch import torch.nn as nn import sys sys.path.append('human2robot/') from constrained_optimization import constraints, objective, piecewise_constraints, piecewise_objective try: from execute import execGesture except: pass from data_processing import decompose, normalize, split, smooth from Human import HumanInterface from io_routines import readCSV, saveNetwork try: from NAO import NAOInterface except: pass from network import Net, numpy2tensor from setting import * def generateHiddenLayerOptions(width_options=[32 * i for i in range(1,5)]): options = [] for length in range(1, len(width_options)+1): options.extend(permutations(width_options, length)) return list(map(list, options)) def choices(N, n): token = list(range(N)) res = [] for _ in range(n): ele = random.choice(token) token.remove(ele) res.append(ele) return res human_interface = HumanInterface.createFromBVH('dataset/BVH/human_skeletion.bvh') try: nao_interface = NAOInterface(IP=P_NAO_IP, PORT=P_NAO_PORT) except: try: nao_interface = NAOInterface(IP=NAO_IP, PORT=NAO_PORT) except: pass fingerIndex = [] fingerJointList = ['RightHandThumb1', 'RightHandThumb2', 'RightHandThumb3', 'RightHandIndex1', 'RightHandIndex2', 'RightHandIndex3', 'RightHandMiddle1', 'RightHandMiddle2', 'RightHandMiddle3', 'RightHandRing1', 'RightHandRing2', 'RightHandRing3', 'RightHandPinky1', 'RightHandPinky2', 'RightHandPinky3', 'LeftHandThumb1', 'LeftHandThumb2', 'LeftHandThumb3', 'LeftHandIndex1', 'LeftHandIndex2', 'LeftHandIndex3', 'LeftHandMiddle1', 'LeftHandMiddle2', 'LeftHandMiddle3', 'LeftHandRing1', 'LeftHandRing2', 'LeftHandRing3', 'LeftHandPinky1', 'LeftHandPinky2', 'LeftHandPinky3', ] for fingerJoint in fingerJointList: index = human_interface.getStartAngleIndex(fingerJoint) fingerIndex.extend([i for i in range(index, index+3)]) # Read dataset talk_list = map(readCSV, talkfile) talk = np.vstack(talk_list); talk = np.delete(talk, fingerIndex, axis=1) talk, _ = normalize(talk); _, human_pca = decompose(talk) human = readCSV('dataset/Human_overlap.csv'); human = np.delete(human, fingerIndex, axis=1) human_test = readCSV('dataset/Human_test.csv'); human_test = np.delete(human_test, fingerIndex, axis=1) nao = readCSV('dataset/NAO_overlap.csv') nao_test = readCSV('dataset/NAO_test.csv') n = np.size(human, 0) if n != np.size(nao, 0): sys.exit("Numbers of input and target are different.") human, human_scaler = normalize(human); human = human_pca.transform(human) nao, nao_scaler = normalize(nao) __human_test__ = human_pca.transform(human_scaler.transform(human_test)) __nao_test__ = nao_scaler.transform(nao_test) __human_test__ = torch.from_numpy(__human_test__).float() __nao_test__ = torch.from_numpy(__nao_test__).float() human_train, human_val, nao_train, nao_val = train_test_split(human, nao, test_size=0.2, random_state=1000) human_train = torch.from_numpy(human_train).float() human_val = torch.from_numpy(human_val).float() nao_train = torch.from_numpy(nao_train).float() nao_val = torch.from_numpy(nao_val).float() keywords = ['Learning Rate', 'Activation Function', 'Weight Decay', 'Hidden Layers', 'Dropout Rate','Validation Error'] lr_range = (-4, 0) reg_range = (-5, -1) hl_options = generateHiddenLayerOptions() af_options = ['relu', 'leaky_relu', 'tanh', 'sigmoid'] try: file = open("random_search_result_with_dr_sigmoid_included.csv", 'r') lines = file.readlines() file.close() if len(lines) == 0: file = open("random_search_result_random_search_result_with_dr_sigmoid_includedwith_dr.csv", 'w') file.writelines(', '.join(keywords) + '\n') else: file = open("random_search_result_with_dr_sigmoid_included.csv", 'a') except: file = open("random_search_result_with_dr_sigmoid_included.csv", 'w') file.writelines(', '.join(keywords) + '\n') best_search = None best_val_error = np.inf num_search = 1000 for i in range(num_search): lr = 10 ** random.uniform(*lr_range) reg = 10 ** random.uniform(*reg_range) dr = random.uniform(0, 1) hidden_layers = random.choice(hl_options) af = random.choice(af_options) net = Net(n_input=np.size(human, 1), n_hidden=hidden_layers, n_output=
np.size(nao, 1)
numpy.size
import typing import numpy as np from audmath.core.utils import polyval def inverse_normal_distribution( y: typing.Union[float, typing.Sequence[float], np.ndarray], ) -> typing.Union[float, np.ndarray]: r"""Inverse normal distribution. Returns the argument :math:`x` for which the area under the Gaussian probability density function is equal to :math:`y`. It returns :math:`\text{nan}` if :math:`y \notin [0, 1]`. The area under the Gaussian probability density function is given by: .. math:: \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp(-t^2 / 2)\,\text{d}t This function is a :mod:`numpy` port of the `Cephes C code`_. <NAME> `implemented it in pure Python`_ under GPL-3 by. The output is identical to the implementation provided by :func:`scipy.special.ndtri`, and :func:`scipy.stats.norm.ppf`, and allows you to avoid installing and importing :mod:`scipy`. :func:`audmath.inverse_normal_distribution` is slower for large arrays as the following comparison of execution times on a standard PC show. .. table:: ========== ======= ======= Samples scipy audmath ========== ======= ======= 10.000 0.00s 0.01s 100.000 0.00s 0.09s 1.000.000 0.02s 0.88s 10.000.000 0.25s 9.30s ========== ======= ======= .. _Cephes C code: https://github.com/jeremybarnes/cephes/blob/60f27df395b8322c2da22c83751a2366b82d50d1/cprob/ndtri.c .. _implemented it in pure Python: https://github.com/dougthor42/PyErf/blob/cf38a2c62556cbd4927c9b3f5523f39b6a492472/pyerf/pyerf.py#L183-L287 Args: y: input value Returns: inverted input Example: >>> inverse_normal_distribution([0.05, 0.4, 0.6, 0.95]) array([-1.64485363, -0.2533471 , 0.2533471 , 1.64485363]) """ # noqa: E501 if isinstance(y, np.ndarray): y = y.copy() y = np.atleast_1d(y) x = np.zeros(y.shape) switch_sign = np.ones(y.shape) # Handle edge cases idx1 = y == 0 x[idx1] = -np.Inf idx2 = y == 1 x[idx2] = np.Inf idx3 = y < 0 x[idx3] = np.NaN idx4 = y > 1 x[idx4] = np.NaN non_valid = np.array([any(i) for i in zip(idx1, idx2, idx3, idx4)]) # Return if no other values are left if non_valid.sum() == len(x): return _force_float(x) switch_sign[non_valid] = 0 # Constants to avoid recalculation ROOT_2PI = np.sqrt(2 * np.pi) EXP_NEG2 =
np.exp(-2)
numpy.exp
#!/usr/bin/env python """ By <NAME> Geoazur <EMAIL> Created : Jul 22, 2016 Last modified: Jul 22, 2016 Translate finite source model in SRCMOD .fsp format to CMTSOLUTION format """ # Import Python Libraries import numpy as np import re def fh(lon, lat, z, strike, distance): """ Given a start point (lon lat), bearing (degrees), and distance (m), calculates the destination point (lon lat) """ theta = strike delta = distance / 6371000. theta = theta * np.pi / 180. lat1 = lat * np.pi / 180. lon1 = lon * np.pi / 180. lat2 = np.arcsin( np.sin(lat1) * np.cos(delta) + \ np.cos(lat1) * np.sin(delta) * np.cos(theta) ) lon2 = lon1 + np.arctan2( np.sin(theta) * np.sin(delta) *
np.cos(lat1)
numpy.cos
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [150.0, 250.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50, } ) return pd.concat( [ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ] ) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (-1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100), "effective_date": ( pd.Timestamp("2014-01-01"), # Filter out # Split before Q1 event & after first estimate pd.Timestamp("2015-01-07"), # Split before Q1 event pd.Timestamp("2015-01-09"), # Split before Q1 event pd.Timestamp("2015-01-13"), # Split before Q1 event pd.Timestamp("2015-01-15"), # Split before Q1 event pd.Timestamp("2015-01-18"), # Split after Q1 event and before Q2 event pd.Timestamp("2015-01-30"), # Filter out - this is after our date index pd.Timestamp("2016-01-01"), ), } ) sid_10_splits = pd.DataFrame( { SID_FIELD_NAME: 10, "ratio": (0.2, 0.3), "effective_date": ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp("2015-01-07"), # Apply a single split before Q1 event. pd.Timestamp("2015-01-20"), ), } ) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame( { SID_FIELD_NAME: 20, "ratio": ( 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), pd.Timestamp("2015-01-30"), ), } ) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame( { SID_FIELD_NAME: 30, "ratio": (8, 9, 10, 11, 12), "effective_date": ( # Split before the event and before the # split-asof-date. pd.Timestamp("2015-01-07"), # Split on date of event but before the # split-asof-date. pd.Timestamp("2015-01-09"), # Split after the event, but before the # split-asof-date. pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), ), } ) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame( { SID_FIELD_NAME: 40, "ratio": (13, 14), "effective_date": ( pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-22"), ), } ) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame( { SID_FIELD_NAME: 50, "ratio": (15, 16), "effective_date": ( pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ), } ) return pd.concat( [ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ] ) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-12") ] ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-01-21") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 231, pd.Timestamp("2015-01-20")), (40, 240.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 250.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 150.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 130 * 1 / 10, cls.window_test_start_date), (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-09"), ), cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 230 * 1 / 10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-12"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 5, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 0.7, cls.window_test_start_date), (20, 121 * 0.7, pd.Timestamp("2015-01-07")), (30, 230 * 11, cls.window_test_start_date), (40, 240, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100 * 5 * 6, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 120 * 0.7 * 0.8, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-07")), (30, 230 * 11 * 12, cls.window_test_start_date), (30, 231, pd.Timestamp("2015-01-20")), (40, 240 * 13, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-21"), ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 110 * 0.3, pd.Timestamp("2015-01-09")), (10, 111 * 0.3, pd.Timestamp("2015-01-12")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-22"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, 310 * 0.3, pd.Timestamp("2015-01-09")), (10, 311 * 0.3, pd.Timestamp("2015-01-15")), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (10, 310 * 0.3, pd.Timestamp("2015-01-09")), (10, 311 * 0.3, pd.Timestamp("2015-01-15")), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6 * 7, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8 * 0.9, cls.window_test_start_date), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-01-17")), (40, 240 * 13 * 14, pd.Timestamp("2015-01-15")), (50, 250.0, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220 * 5 / 3, cls.window_test_start_date), (30, 230 * 1 / 10, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), (50, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-09"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 1 / 4, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 5 / 3, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-12"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-13", "2015-01-14") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200 * 5 * 6, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220 * 0.7 * 0.8, cls.window_test_start_date), (20, 221 * 0.8, pd.Timestamp("2015-01-17")), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedMultipleEstimateColumns(WithEstimates): """ ZiplineTestCase mixin for having multiple estimate columns that are split-adjusted to make sure that adjustments are applied correctly. Attributes ---------- test_start_date : pd.Timestamp The start date of the test. test_end_date : pd.Timestamp The start date of the test. split_adjusted_asof : pd.Timestamp The split-adjusted-asof-date of the data used in the test, to be used to create all loaders of test classes that subclass this mixin. Methods ------- make_expected_timelines_1q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range for each column. Only for 1 quarter out. make_expected_timelines_2q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range. For 2 quarters out, so only for the column that is requested to be loaded with 2 quarters out. Tests ----- test_adjustments_with_multiple_adjusted_columns Tests that if you have multiple columns, we still split-adjust correctly. test_multiple_datasets_different_num_announcements Tests that if you have multiple datasets that ask for a different number of quarters out, and each asks for a different estimates column, we still split-adjust correctly. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") test_start_date = pd.Timestamp("2015-01-06", tz="utc") test_end_date = pd.Timestamp("2015-01-12", tz="utc") split_adjusted_asof = pd.Timestamp("2015-01-08") @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): sid_0_events = pd.DataFrame( { # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp("2015-01-05"), pd.Timestamp("2015-01-05")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), ], "estimate1": [1100.0, 1200.0], "estimate2": [2100.0, 2200.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # This is just an extra sid to make sure that we apply adjustments # correctly for multiple columns when we have multiple sids. sid_1_events = pd.DataFrame( { # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp("2015-01-05"), pd.Timestamp("2015-01-05")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-08"), pd.Timestamp("2015-01-11"), ], "estimate1": [1110.0, 1210.0], "estimate2": [2110.0, 2210.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 1, } ) return pd.concat([sid_0_events, sid_1_events]) @classmethod def make_splits_data(cls): sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (0.3, 3.0), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), ), } ) sid_1_splits = pd.DataFrame( { SID_FIELD_NAME: 1, "ratio": (0.4, 4.0), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), ), } ) return pd.concat([sid_0_splits, sid_1_splits]) @classmethod def make_expected_timelines_1q_out(cls): return {} @classmethod def make_expected_timelines_2q_out(cls): return {} @classmethod def init_class_fixtures(cls): super(WithSplitAdjustedMultipleEstimateColumns, cls).init_class_fixtures() cls.timelines_1q_out = cls.make_expected_timelines_1q_out() cls.timelines_2q_out = cls.make_expected_timelines_2q_out() def test_adjustments_with_multiple_adjusted_columns(self): dataset = MultipleColumnsQuartersEstimates(1) timelines = self.timelines_1q_out window_len = 3 class SomeFactor(CustomFactor): inputs = [dataset.estimate1, dataset.estimate2] window_length = window_len def compute(self, today, assets, out, estimate1, estimate2): assert_almost_equal(estimate1, timelines[today]["estimate1"]) assert_almost_equal(estimate2, timelines[today]["estimate2"]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=self.test_start_date, # last event date we have end_date=self.test_end_date, ) def test_multiple_datasets_different_num_announcements(self): dataset1 = MultipleColumnsQuartersEstimates(1) dataset2 = MultipleColumnsQuartersEstimates(2) timelines_1q_out = self.timelines_1q_out timelines_2q_out = self.timelines_2q_out window_len = 3 class SomeFactor1(CustomFactor): inputs = [dataset1.estimate1] window_length = window_len def compute(self, today, assets, out, estimate1):
assert_almost_equal(estimate1, timelines_1q_out[today]["estimate1"])
numpy.testing.assert_almost_equal
import unittest import numpy as np from pynif3d.utils.transforms import rotation_mat, translation_mat class TestTransform(unittest.TestCase): def test_translation_mat(self): pred = translation_mat(0) real =
np.identity(4)
numpy.identity
#!/usr/bin/env python3 """ deep neural network class """ import numpy as np import matplotlib.pyplot as plt import pickle class DeepNeuralNetwork: """ Deep neuarl network class """ def __init__(self, nx, layers): """ deep neural network constructor """ if type(nx) is not int: raise TypeError("nx must be an integer") if nx < 1: raise ValueError("nx must be a positive integer") if type(layers) is not list or not layers: raise TypeError("layers must be a list of positive integers") self.__L = len(layers) self.__cache = {} self.__weights = {} for i in range(len(layers)): if layers[i] <= 0: raise TypeError("layers must be a list of positive integers") if i == 0: self.__weights['W' + str(i + 1) ] = np.random.randn(layers[i], nx) *\ np.sqrt(2/nx) else: self.__weights['W' + str(i + 1)] = \ np.random.randn(layers[i], layers[i-1]) * \
np.sqrt(2/layers[i-1])
numpy.sqrt
import numpy as np from ._CFunctions import _CGetCon2020Params,_CSetCon2020Params import ctypes as ct def _GetCFG(): ''' Get the current config dictionary ''' eqtype = ct.c_char_p(" ".encode('utf-8')) mui = np.zeros(1,dtype='float64') irho = np.zeros(1,dtype='float64') r0 = np.zeros(1,dtype='float64') r1 = np.zeros(1,dtype='float64') d = np.zeros(1,dtype='float64') xt = np.zeros(1,dtype='float64') xp = np.zeros(1,dtype='float64') Edwards = np.zeros(1,dtype='bool') ErrChk = np.zeros(1,dtype='bool') CartIn = np.zeros(1,dtype='bool') CartOut = np.zeros(1,dtype='bool') _CGetCon2020Params(mui,irho,r0,r1,d,xt,xp,eqtype,Edwards,ErrChk, CartIn,CartOut) cfg = {} cfg['mu_i'] = mui[0] cfg['i_rho'] = irho[0] cfg['r0'] = r0[0] cfg['r1'] = r1[0] cfg['d'] = d[0] cfg['xt'] = xt[0] cfg['xp'] = xp[0] cfg['Edwards'] = Edwards[0] cfg['error_check'] = ErrChk[0] cfg['CartesianIn'] = CartIn[0] cfg['CartesianOut'] = CartOut[0] cfg['equation_type'] = eqtype.value.decode() return cfg def _SetCFG(cfg): ''' Set the model config using a dictionary. ''' eqtype = ct.c_char_p(cfg['equation_type'].encode('utf-8')) mui = np.array([cfg['mu_i']],dtype='float64') irho = np.array([cfg['i_rho']],dtype='float64') r0 = np.array([cfg['r0']],dtype='float64') r1 = np.array([cfg['r1']],dtype='float64') d = np.array([cfg['d']],dtype='float64') xt = np.array([cfg['xt']],dtype='float64') xp = np.array([cfg['xp']],dtype='float64') Edwards = np.array([cfg['Edwards']],dtype='bool') ErrChk = np.array([cfg['error_check']],dtype='bool') CartIn = np.array([cfg['CartesianOut']],dtype='bool') CartOut =
np.array([cfg['CartesianOut']],dtype='bool')
numpy.array
"""Module define operation with functions sym_elems and magn_sym_elems sym_elems: numpy.shape[13, n_elems] [numerator_x, numerator_y, numerator_z, denominator_xyz, r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33] magn_sym_elems: [22, n_elems] [numerator_x, numerator_y, numerator_z, denominator_xyz, r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33, m_11, m_12, m_13, m_21, m_22, m_23, m_31, m_32, m_33] Functions --------- - form_symm_elems_by_b_i_r_ij - calc_numerators_denominator_for_b_i - calc_common_denominator - calc_rational_sum - transform_to_p1 """ import numpy # from cryspy.A_functions_base.function_1_strings import def form_symm_elems_by_b_i_r_ij(b_i, r_ij): """ Parameters ---------- b_i : fractions DESCRIPTION. r_ij : int DESCRIPTION. Returns ------- sym_elems : TYPE [b_num_1, b_num_2, b_num_3, r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33] """ b_num_1, b_num_2, b_num_3, b_den = calc_numerators_denominator_for_b_i(*b_i) (r_11, r_12, r_13, r_21, r_22, r_23, r_31, r_32, r_33) = r_ij n_1st = 13 n_2nd = len(r_11) sym_elems = numpy.zeros(shape=(n_1st, n_2nd), dtype=int) sym_elems[0, :] = b_num_1 sym_elems[1, :] = b_num_2 sym_elems[2, :] = b_num_3 sym_elems[3, :] = b_den sym_elems[4, :] = numpy.array(r_11, dtype=int) sym_elems[5, :] = numpy.array(r_12, dtype=int) sym_elems[6, :] = numpy.array(r_13, dtype=int) sym_elems[7, :] =
numpy.array(r_21, dtype=int)
numpy.array
import control import numpy as np import scipy.linalg def solve_riccati(A, B, Q, R): """ Solves discrete ARE, returns gain matrix K s.t. u = +K*x Faster implementation than control.dlqr for systems with large n (state_dim) """ n = A.shape[0] m = B.shape[1] P =
np.zeros((n, n))
numpy.zeros
################################################## #ASM# module "plotting" for package "common" #ASM# ################################################## #TODO: Fix undo/redo comparison operations of PlotHistory #TODO: enhance some matplotlib functions """ This module assists in many matplotlib related tasks, such as managing plot objects. It automatically imports all from matplotlib.pylab as well as from numpy. Note: If variable *plot_format* is set (in dict __main__._IP.user_ns) to a valid matplotlib.use() format, e.g. 'PS', this will be implemented. Otherwise, the user will be prompted for the plot backend. Setting plot_format=None will bypass this behavior and use the default renderer. """ #_________________________________________Imports_________________________________________ import os import sys import re import copy import types from common.log import Logger from common import misc import numpy np=numpy __module_name__=__name__ from matplotlib import pyplot,axes,colors from matplotlib import pyplot as plt #---- Colormaps stored in files cdict = {'red': ((0.0, 0.0, 0.0), (0.35,0.0, 0.0), (0.5, 1, 1), (0.65, .9, .9), (0.95, 0.5, .5), (1.0, .4, .4)), 'green': ((0.0, 0.0, 0.0), (0.35,0.0, 0.0), (0.5, 1, 1), (0.65,0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0, .4, .4), (0.05, 0.5, 0.5), (0.35, 0.9, 0.9), (0.5, 1, 1), (0.65,0.0, 0.0), (1.0, 0.0, 0.0)) } pyplot.register_cmap(name='BWR', data=cdict) cdict = {'red': ((0.0, 0.0, 0.0), (0.2,0.0, 0.0), (0.5, 1, 1), (0.8, .9, .9), (0.95, 0.5, .5), (1.0, .4, .4)), 'green': ((0.0, 0.0, 0.0), (0.2,0.0, 0.0), (0.5, 1, 1), (0.8,0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0, .4, .4), (0.05, 0.5, 0.5), (0.2, 0.9, 0.9), (0.5, 1, 1), (0.8,0.0, 0.0), (1.0, 0.0, 0.0)) } pyplot.register_cmap(name='BWR2', data=cdict) cdict = {'blue': ((0.0, 0.0, 0.0), (0.2,0.0, 0.0), (0.5, 1, 1), (0.8, .9, .9), (0.95, 0.5, .5), (1.0, .4, .4)), 'green': ((0.0, 0.0, 0.0), (0.2,0.0, 0.0), (0.5, 1, 1), (0.8,0.0, 0.0), (1.0, 0.0, 0.0)), 'red': ((0, .4, .4), (0.05, 0.5, 0.5), (0.2, 0.9, 0.9), (0.5, 1, 1), (0.8,0.0, 0.0), (1.0, 0.0, 0.0)) } pyplot.register_cmap(name='BWR2_r', data=cdict) ##Load all colormaps found in `common/colormaps` directory## # The format of these files should be 4 columns: x, r, g, b # All columns should range from 0 to 1. cmap_dir=os.path.join(os.path.dirname(__file__),'colormaps') for file in os.listdir(cmap_dir): if file.endswith('.csv'): cmap_name=re.sub('\.csv$','',file) cmap_mat=misc.extract_array(open(os.path.join(cmap_dir,file))) x=cmap_mat[:,0]; r=cmap_mat[:,1]; g=cmap_mat[:,2]; b=cmap_mat[:,3] rtuples=numpy.vstack((x,r,r)).transpose().tolist() gtuples=numpy.vstack((x,g,g)).transpose().tolist() btuples=numpy.vstack((x,b,b)).transpose().tolist() cdit={'red':rtuples,'green':gtuples,'blue':btuples} pyplot.register_cmap(name=cmap_name,data=cdit) r=r[::-1]; g=g[::-1]; b=b[::-1] rtuples_r=numpy.vstack((x,r,r)).transpose().tolist() gtuples_r=numpy.vstack((x,g,g)).transpose().tolist() btuples_r=numpy.vstack((x,b,b)).transpose().tolist() cdit_r={'red':rtuples_r,'green':gtuples_r,'blue':btuples_r} pyplot.register_cmap(name=cmap_name+'_r',data=cdit_r) Logger.write('Registered colormaps "%s" and "%s_r"...'%((cmap_name,)*2)) # ----- Colormaps tabulated # New matplotlib colormaps by <NAME>, <NAME>, # and (in the case of viridis) <NAME>. # # This file and the colormaps in it are released under the CC0 license / # public domain dedication. We would appreciate credit if you use or # redistribute these colormaps, but do not impose any legal restrictions. # # To the extent possible under law, the persons who associated CC0 with # mpl-colormaps have waived all copyright and related or neighboring rights # to mpl-colormaps. # # You should have received a copy of the CC0 legalcode along with this # work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. _magma_data = [[0.001462, 0.000466, 0.013866], [0.002258, 0.001295, 0.018331], [0.003279, 0.002305, 0.023708], [0.004512, 0.003490, 0.029965], [0.005950, 0.004843, 0.037130], [0.007588, 0.006356, 0.044973], [0.009426, 0.008022, 0.052844], [0.011465, 0.009828, 0.060750], [0.013708, 0.011771, 0.068667], [0.016156, 0.013840, 0.076603], [0.018815, 0.016026, 0.084584], [0.021692, 0.018320, 0.092610], [0.024792, 0.020715, 0.100676], [0.028123, 0.023201, 0.108787], [0.031696, 0.025765, 0.116965], [0.035520, 0.028397, 0.125209], [0.039608, 0.031090, 0.133515], [0.043830, 0.033830, 0.141886], [0.048062, 0.036607, 0.150327], [0.052320, 0.039407, 0.158841], [0.056615, 0.042160, 0.167446], [0.060949, 0.044794, 0.176129], [0.065330, 0.047318, 0.184892], [0.069764, 0.049726, 0.193735], [0.074257, 0.052017, 0.202660], [0.078815, 0.054184, 0.211667], [0.083446, 0.056225, 0.220755], [0.088155, 0.058133, 0.229922], [0.092949, 0.059904, 0.239164], [0.097833, 0.061531, 0.248477], [0.102815, 0.063010, 0.257854], [0.107899, 0.064335, 0.267289], [0.113094, 0.065492, 0.276784], [0.118405, 0.066479, 0.286321], [0.123833, 0.067295, 0.295879], [0.129380, 0.067935, 0.305443], [0.135053, 0.068391, 0.315000], [0.140858, 0.068654, 0.324538], [0.146785, 0.068738, 0.334011], [0.152839, 0.068637, 0.343404], [0.159018, 0.068354, 0.352688], [0.165308, 0.067911, 0.361816], [0.171713, 0.067305, 0.370771], [0.178212, 0.066576, 0.379497], [0.184801, 0.065732, 0.387973], [0.191460, 0.064818, 0.396152], [0.198177, 0.063862, 0.404009], [0.204935, 0.062907, 0.411514], [0.211718, 0.061992, 0.418647], [0.218512, 0.061158, 0.425392], [0.225302, 0.060445, 0.431742], [0.232077, 0.059889, 0.437695], [0.238826, 0.059517, 0.443256], [0.245543, 0.059352, 0.448436], [0.252220, 0.059415, 0.453248], [0.258857, 0.059706, 0.457710], [0.265447, 0.060237, 0.461840], [0.271994, 0.060994, 0.465660], [0.278493, 0.061978, 0.469190], [0.284951, 0.063168, 0.472451], [0.291366, 0.064553, 0.475462], [0.297740, 0.066117, 0.478243], [0.304081, 0.067835, 0.480812], [0.310382, 0.069702, 0.483186], [0.316654, 0.071690, 0.485380], [0.322899, 0.073782, 0.487408], [0.329114, 0.075972, 0.489287], [0.335308, 0.078236, 0.491024], [0.341482, 0.080564, 0.492631], [0.347636, 0.082946, 0.494121], [0.353773, 0.085373, 0.495501], [0.359898, 0.087831, 0.496778], [0.366012, 0.090314, 0.497960], [0.372116, 0.092816, 0.499053], [0.378211, 0.095332, 0.500067], [0.384299, 0.097855, 0.501002], [0.390384, 0.100379, 0.501864], [0.396467, 0.102902, 0.502658], [0.402548, 0.105420, 0.503386], [0.408629, 0.107930, 0.504052], [0.414709, 0.110431, 0.504662], [0.420791, 0.112920, 0.505215], [0.426877, 0.115395, 0.505714], [0.432967, 0.117855, 0.506160], [0.439062, 0.120298, 0.506555], [0.445163, 0.122724, 0.506901], [0.451271, 0.125132, 0.507198], [0.457386, 0.127522, 0.507448], [0.463508, 0.129893, 0.507652], [0.469640, 0.132245, 0.507809], [0.475780, 0.134577, 0.507921], [0.481929, 0.136891, 0.507989], [0.488088, 0.139186, 0.508011], [0.494258, 0.141462, 0.507988], [0.500438, 0.143719, 0.507920], [0.506629, 0.145958, 0.507806], [0.512831, 0.148179, 0.507648], [0.519045, 0.150383, 0.507443], [0.525270, 0.152569, 0.507192], [0.531507, 0.154739, 0.506895], [0.537755, 0.156894, 0.506551], [0.544015, 0.159033, 0.506159], [0.550287, 0.161158, 0.505719], [0.556571, 0.163269, 0.505230], [0.562866, 0.165368, 0.504692], [0.569172, 0.167454, 0.504105], [0.575490, 0.169530, 0.503466], [0.581819, 0.171596, 0.502777], [0.588158, 0.173652, 0.502035], [0.594508, 0.175701, 0.501241], [0.600868, 0.177743, 0.500394], [0.607238, 0.179779, 0.499492], [0.613617, 0.181811, 0.498536], [0.620005, 0.183840, 0.497524], [0.626401, 0.185867, 0.496456], [0.632805, 0.187893, 0.495332], [0.639216, 0.189921, 0.494150], [0.645633, 0.191952, 0.492910], [0.652056, 0.193986, 0.491611], [0.658483, 0.196027, 0.490253], [0.664915, 0.198075, 0.488836], [0.671349, 0.200133, 0.487358], [0.677786, 0.202203, 0.485819], [0.684224, 0.204286, 0.484219], [0.690661, 0.206384, 0.482558], [0.697098, 0.208501, 0.480835], [0.703532, 0.210638, 0.479049], [0.709962, 0.212797, 0.477201], [0.716387, 0.214982, 0.475290], [0.722805, 0.217194, 0.473316], [0.729216, 0.219437, 0.471279], [0.735616, 0.221713, 0.469180], [0.742004, 0.224025, 0.467018], [0.748378, 0.226377, 0.464794], [0.754737, 0.228772, 0.462509], [0.761077, 0.231214, 0.460162], [0.767398, 0.233705, 0.457755], [0.773695, 0.236249, 0.455289], [0.779968, 0.238851, 0.452765], [0.786212, 0.241514, 0.450184], [0.792427, 0.244242, 0.447543], [0.798608, 0.247040, 0.444848], [0.804752, 0.249911, 0.442102], [0.810855, 0.252861, 0.439305], [0.816914, 0.255895, 0.436461], [0.822926, 0.259016, 0.433573], [0.828886, 0.262229, 0.430644], [0.834791, 0.265540, 0.427671], [0.840636, 0.268953, 0.424666], [0.846416, 0.272473, 0.421631], [0.852126, 0.276106, 0.418573], [0.857763, 0.279857, 0.415496], [0.863320, 0.283729, 0.412403], [0.868793, 0.287728, 0.409303], [0.874176, 0.291859, 0.406205], [0.879464, 0.296125, 0.403118], [0.884651, 0.300530, 0.400047], [0.889731, 0.305079, 0.397002], [0.894700, 0.309773, 0.393995], [0.899552, 0.314616, 0.391037], [0.904281, 0.319610, 0.388137], [0.908884, 0.324755, 0.385308], [0.913354, 0.330052, 0.382563], [0.917689, 0.335500, 0.379915], [0.921884, 0.341098, 0.377376], [0.925937, 0.346844, 0.374959], [0.929845, 0.352734, 0.372677], [0.933606, 0.358764, 0.370541], [0.937221, 0.364929, 0.368567], [0.940687, 0.371224, 0.366762], [0.944006, 0.377643, 0.365136], [0.947180, 0.384178, 0.363701], [0.950210, 0.390820, 0.362468], [0.953099, 0.397563, 0.361438], [0.955849, 0.404400, 0.360619], [0.958464, 0.411324, 0.360014], [0.960949, 0.418323, 0.359630], [0.963310, 0.425390, 0.359469], [0.965549, 0.432519, 0.359529], [0.967671, 0.439703, 0.359810], [0.969680, 0.446936, 0.360311], [0.971582, 0.454210, 0.361030], [0.973381, 0.461520, 0.361965], [0.975082, 0.468861, 0.363111], [0.976690, 0.476226, 0.364466], [0.978210, 0.483612, 0.366025], [0.979645, 0.491014, 0.367783], [0.981000, 0.498428, 0.369734], [0.982279, 0.505851, 0.371874], [0.983485, 0.513280, 0.374198], [0.984622, 0.520713, 0.376698], [0.985693, 0.528148, 0.379371], [0.986700, 0.535582, 0.382210], [0.987646, 0.543015, 0.385210], [0.988533, 0.550446, 0.388365], [0.989363, 0.557873, 0.391671], [0.990138, 0.565296, 0.395122], [0.990871, 0.572706, 0.398714], [0.991558, 0.580107, 0.402441], [0.992196, 0.587502, 0.406299], [0.992785, 0.594891, 0.410283], [0.993326, 0.602275, 0.414390], [0.993834, 0.609644, 0.418613], [0.994309, 0.616999, 0.422950], [0.994738, 0.624350, 0.427397], [0.995122, 0.631696, 0.431951], [0.995480, 0.639027, 0.436607], [0.995810, 0.646344, 0.441361], [0.996096, 0.653659, 0.446213], [0.996341, 0.660969, 0.451160], [0.996580, 0.668256, 0.456192], [0.996775, 0.675541, 0.461314], [0.996925, 0.682828, 0.466526], [0.997077, 0.690088, 0.471811], [0.997186, 0.697349, 0.477182], [0.997254, 0.704611, 0.482635], [0.997325, 0.711848, 0.488154], [0.997351, 0.719089, 0.493755], [0.997351, 0.726324, 0.499428], [0.997341, 0.733545, 0.505167], [0.997285, 0.740772, 0.510983], [0.997228, 0.747981, 0.516859], [0.997138, 0.755190, 0.522806], [0.997019, 0.762398, 0.528821], [0.996898, 0.769591, 0.534892], [0.996727, 0.776795, 0.541039], [0.996571, 0.783977, 0.547233], [0.996369, 0.791167, 0.553499], [0.996162, 0.798348, 0.559820], [0.995932, 0.805527, 0.566202], [0.995680, 0.812706, 0.572645], [0.995424, 0.819875, 0.579140], [0.995131, 0.827052, 0.585701], [0.994851, 0.834213, 0.592307], [0.994524, 0.841387, 0.598983], [0.994222, 0.848540, 0.605696], [0.993866, 0.855711, 0.612482], [0.993545, 0.862859, 0.619299], [0.993170, 0.870024, 0.626189], [0.992831, 0.877168, 0.633109], [0.992440, 0.884330, 0.640099], [0.992089, 0.891470, 0.647116], [0.991688, 0.898627, 0.654202], [0.991332, 0.905763, 0.661309], [0.990930, 0.912915, 0.668481], [0.990570, 0.920049, 0.675675], [0.990175, 0.927196, 0.682926], [0.989815, 0.934329, 0.690198], [0.989434, 0.941470, 0.697519], [0.989077, 0.948604, 0.704863], [0.988717, 0.955742, 0.712242], [0.988367, 0.962878, 0.719649], [0.988033, 0.970012, 0.727077], [0.987691, 0.977154, 0.734536], [0.987387, 0.984288, 0.742002], [0.987053, 0.991438, 0.749504]] _inferno_data = [[0.001462, 0.000466, 0.013866], [0.002267, 0.001270, 0.018570], [0.003299, 0.002249, 0.024239], [0.004547, 0.003392, 0.030909], [0.006006, 0.004692, 0.038558], [0.007676, 0.006136, 0.046836], [0.009561, 0.007713, 0.055143], [0.011663, 0.009417, 0.063460], [0.013995, 0.011225, 0.071862], [0.016561, 0.013136, 0.080282], [0.019373, 0.015133, 0.088767], [0.022447, 0.017199, 0.097327], [0.025793, 0.019331, 0.105930], [0.029432, 0.021503, 0.114621], [0.033385, 0.023702, 0.123397], [0.037668, 0.025921, 0.132232], [0.042253, 0.028139, 0.141141], [0.046915, 0.030324, 0.150164], [0.051644, 0.032474, 0.159254], [0.056449, 0.034569, 0.168414], [0.061340, 0.036590, 0.177642], [0.066331, 0.038504, 0.186962], [0.071429, 0.040294, 0.196354], [0.076637, 0.041905, 0.205799], [0.081962, 0.043328, 0.215289], [0.087411, 0.044556, 0.224813], [0.092990, 0.045583, 0.234358], [0.098702, 0.046402, 0.243904], [0.104551, 0.047008, 0.253430], [0.110536, 0.047399, 0.262912], [0.116656, 0.047574, 0.272321], [0.122908, 0.047536, 0.281624], [0.129285, 0.047293, 0.290788], [0.135778, 0.046856, 0.299776], [0.142378, 0.046242, 0.308553], [0.149073, 0.045468, 0.317085], [0.155850, 0.044559, 0.325338], [0.162689, 0.043554, 0.333277], [0.169575, 0.042489, 0.340874], [0.176493, 0.041402, 0.348111], [0.183429, 0.040329, 0.354971], [0.190367, 0.039309, 0.361447], [0.197297, 0.038400, 0.367535], [0.204209, 0.037632, 0.373238], [0.211095, 0.037030, 0.378563], [0.217949, 0.036615, 0.383522], [0.224763, 0.036405, 0.388129], [0.231538, 0.036405, 0.392400], [0.238273, 0.036621, 0.396353], [0.244967, 0.037055, 0.400007], [0.251620, 0.037705, 0.403378], [0.258234, 0.038571, 0.406485], [0.264810, 0.039647, 0.409345], [0.271347, 0.040922, 0.411976], [0.277850, 0.042353, 0.414392], [0.284321, 0.043933, 0.416608], [0.290763, 0.045644, 0.418637], [0.297178, 0.047470, 0.420491], [0.303568, 0.049396, 0.422182], [0.309935, 0.051407, 0.423721], [0.316282, 0.053490, 0.425116], [0.322610, 0.055634, 0.426377], [0.328921, 0.057827, 0.427511], [0.335217, 0.060060, 0.428524], [0.341500, 0.062325, 0.429425], [0.347771, 0.064616, 0.430217], [0.354032, 0.066925, 0.430906], [0.360284, 0.069247, 0.431497], [0.366529, 0.071579, 0.431994], [0.372768, 0.073915, 0.432400], [0.379001, 0.076253, 0.432719], [0.385228, 0.078591, 0.432955], [0.391453, 0.080927, 0.433109], [0.397674, 0.083257, 0.433183], [0.403894, 0.085580, 0.433179], [0.410113, 0.087896, 0.433098], [0.416331, 0.090203, 0.432943], [0.422549, 0.092501, 0.432714], [0.428768, 0.094790, 0.432412], [0.434987, 0.097069, 0.432039], [0.441207, 0.099338, 0.431594], [0.447428, 0.101597, 0.431080], [0.453651, 0.103848, 0.430498], [0.459875, 0.106089, 0.429846], [0.466100, 0.108322, 0.429125], [0.472328, 0.110547, 0.428334], [0.478558, 0.112764, 0.427475], [0.484789, 0.114974, 0.426548], [0.491022, 0.117179, 0.425552], [0.497257, 0.119379, 0.424488], [0.503493, 0.121575, 0.423356], [0.509730, 0.123769, 0.422156], [0.515967, 0.125960, 0.420887], [0.522206, 0.128150, 0.419549], [0.528444, 0.130341, 0.418142], [0.534683, 0.132534, 0.416667], [0.540920, 0.134729, 0.415123], [0.547157, 0.136929, 0.413511], [0.553392, 0.139134, 0.411829], [0.559624, 0.141346, 0.410078], [0.565854, 0.143567, 0.408258], [0.572081, 0.145797, 0.406369], [0.578304, 0.148039, 0.404411], [0.584521, 0.150294, 0.402385], [0.590734, 0.152563, 0.400290], [0.596940, 0.154848, 0.398125], [0.603139, 0.157151, 0.395891], [0.609330, 0.159474, 0.393589], [0.615513, 0.161817, 0.391219], [0.621685, 0.164184, 0.388781], [0.627847, 0.166575, 0.386276], [0.633998, 0.168992, 0.383704], [0.640135, 0.171438, 0.381065], [0.646260, 0.173914, 0.378359], [0.652369, 0.176421, 0.375586], [0.658463, 0.178962, 0.372748], [0.664540, 0.181539, 0.369846], [0.670599, 0.184153, 0.366879], [0.676638, 0.186807, 0.363849], [0.682656, 0.189501, 0.360757], [0.688653, 0.192239, 0.357603], [0.694627, 0.195021, 0.354388], [0.700576, 0.197851, 0.351113], [0.706500, 0.200728, 0.347777], [0.712396, 0.203656, 0.344383], [0.718264, 0.206636, 0.340931], [0.724103, 0.209670, 0.337424], [0.729909, 0.212759, 0.333861], [0.735683, 0.215906, 0.330245], [0.741423, 0.219112, 0.326576], [0.747127, 0.222378, 0.322856], [0.752794, 0.225706, 0.319085], [0.758422, 0.229097, 0.315266], [0.764010, 0.232554, 0.311399], [0.769556, 0.236077, 0.307485], [0.775059, 0.239667, 0.303526], [0.780517, 0.243327, 0.299523], [0.785929, 0.247056, 0.295477], [0.791293, 0.250856, 0.291390], [0.796607, 0.254728, 0.287264], [0.801871, 0.258674, 0.283099], [0.807082, 0.262692, 0.278898], [0.812239, 0.266786, 0.274661], [0.817341, 0.270954, 0.270390], [0.822386, 0.275197, 0.266085], [0.827372, 0.279517, 0.261750], [0.832299, 0.283913, 0.257383], [0.837165, 0.288385, 0.252988], [0.841969, 0.292933, 0.248564], [0.846709, 0.297559, 0.244113], [0.851384, 0.302260, 0.239636], [0.855992, 0.307038, 0.235133], [0.860533, 0.311892, 0.230606], [0.865006, 0.316822, 0.226055], [0.869409, 0.321827, 0.221482], [0.873741, 0.326906, 0.216886], [0.878001, 0.332060, 0.212268], [0.882188, 0.337287, 0.207628], [0.886302, 0.342586, 0.202968], [0.890341, 0.347957, 0.198286], [0.894305, 0.353399, 0.193584], [0.898192, 0.358911, 0.188860], [0.902003, 0.364492, 0.184116], [0.905735, 0.370140, 0.179350], [0.909390, 0.375856, 0.174563], [0.912966, 0.381636, 0.169755], [0.916462, 0.387481, 0.164924], [0.919879, 0.393389, 0.160070], [0.923215, 0.399359, 0.155193], [0.926470, 0.405389, 0.150292], [0.929644, 0.411479, 0.145367], [0.932737, 0.417627, 0.140417], [0.935747, 0.423831, 0.135440], [0.938675, 0.430091, 0.130438], [0.941521, 0.436405, 0.125409], [0.944285, 0.442772, 0.120354], [0.946965, 0.449191, 0.115272], [0.949562, 0.455660, 0.110164], [0.952075, 0.462178, 0.105031], [0.954506, 0.468744, 0.099874], [0.956852, 0.475356, 0.094695], [0.959114, 0.482014, 0.089499], [0.961293, 0.488716, 0.084289], [0.963387, 0.495462, 0.079073], [0.965397, 0.502249, 0.073859], [0.967322, 0.509078, 0.068659], [0.969163, 0.515946, 0.063488], [0.970919, 0.522853, 0.058367], [0.972590, 0.529798, 0.053324], [0.974176, 0.536780, 0.048392], [0.975677, 0.543798, 0.043618], [0.977092, 0.550850, 0.039050], [0.978422, 0.557937, 0.034931], [0.979666, 0.565057, 0.031409], [0.980824, 0.572209, 0.028508], [0.981895, 0.579392, 0.026250], [0.982881, 0.586606, 0.024661], [0.983779, 0.593849, 0.023770], [0.984591, 0.601122, 0.023606], [0.985315, 0.608422, 0.024202], [0.985952, 0.615750, 0.025592], [0.986502, 0.623105, 0.027814], [0.986964, 0.630485, 0.030908], [0.987337, 0.637890, 0.034916], [0.987622, 0.645320, 0.039886], [0.987819, 0.652773, 0.045581], [0.987926, 0.660250, 0.051750], [0.987945, 0.667748, 0.058329], [0.987874, 0.675267, 0.065257], [0.987714, 0.682807, 0.072489], [0.987464, 0.690366, 0.079990], [0.987124, 0.697944, 0.087731], [0.986694, 0.705540, 0.095694], [0.986175, 0.713153, 0.103863], [0.985566, 0.720782, 0.112229], [0.984865, 0.728427, 0.120785], [0.984075, 0.736087, 0.129527], [0.983196, 0.743758, 0.138453], [0.982228, 0.751442, 0.147565], [0.981173, 0.759135, 0.156863], [0.980032, 0.766837, 0.166353], [0.978806, 0.774545, 0.176037], [0.977497, 0.782258, 0.185923], [0.976108, 0.789974, 0.196018], [0.974638, 0.797692, 0.206332], [0.973088, 0.805409, 0.216877], [0.971468, 0.813122, 0.227658], [0.969783, 0.820825, 0.238686], [0.968041, 0.828515, 0.249972], [0.966243, 0.836191, 0.261534], [0.964394, 0.843848, 0.273391], [0.962517, 0.851476, 0.285546], [0.960626, 0.859069, 0.298010], [0.958720, 0.866624, 0.310820], [0.956834, 0.874129, 0.323974], [0.954997, 0.881569, 0.337475], [0.953215, 0.888942, 0.351369], [0.951546, 0.896226, 0.365627], [0.950018, 0.903409, 0.380271], [0.948683, 0.910473, 0.395289], [0.947594, 0.917399, 0.410665], [0.946809, 0.924168, 0.426373], [0.946392, 0.930761, 0.442367], [0.946403, 0.937159, 0.458592], [0.946903, 0.943348, 0.474970], [0.947937, 0.949318, 0.491426], [0.949545, 0.955063, 0.507860], [0.951740, 0.960587, 0.524203], [0.954529, 0.965896, 0.540361], [0.957896, 0.971003, 0.556275], [0.961812, 0.975924, 0.571925], [0.966249, 0.980678, 0.587206], [0.971162, 0.985282, 0.602154], [0.976511, 0.989753, 0.616760], [0.982257, 0.994109, 0.631017], [0.988362, 0.998364, 0.644924]] _plasma_data = [[0.050383, 0.029803, 0.527975], [0.063536, 0.028426, 0.533124], [0.075353, 0.027206, 0.538007], [0.086222, 0.026125, 0.542658], [0.096379, 0.025165, 0.547103], [0.105980, 0.024309, 0.551368], [0.115124, 0.023556, 0.555468], [0.123903, 0.022878, 0.559423], [0.132381, 0.022258, 0.563250], [0.140603, 0.021687, 0.566959], [0.148607, 0.021154, 0.570562], [0.156421, 0.020651, 0.574065], [0.164070, 0.020171, 0.577478], [0.171574, 0.019706, 0.580806], [0.178950, 0.019252, 0.584054], [0.186213, 0.018803, 0.587228], [0.193374, 0.018354, 0.590330], [0.200445, 0.017902, 0.593364], [0.207435, 0.017442, 0.596333], [0.214350, 0.016973, 0.599239], [0.221197, 0.016497, 0.602083], [0.227983, 0.016007, 0.604867], [0.234715, 0.015502, 0.607592], [0.241396, 0.014979, 0.610259], [0.248032, 0.014439, 0.612868], [0.254627, 0.013882, 0.615419], [0.261183, 0.013308, 0.617911], [0.267703, 0.012716, 0.620346], [0.274191, 0.012109, 0.622722], [0.280648, 0.011488, 0.625038], [0.287076, 0.010855, 0.627295], [0.293478, 0.010213, 0.629490], [0.299855, 0.009561, 0.631624], [0.306210, 0.008902, 0.633694], [0.312543, 0.008239, 0.635700], [0.318856, 0.007576, 0.637640], [0.325150, 0.006915, 0.639512], [0.331426, 0.006261, 0.641316], [0.337683, 0.005618, 0.643049], [0.343925, 0.004991, 0.644710], [0.350150, 0.004382, 0.646298], [0.356359, 0.003798, 0.647810], [0.362553, 0.003243, 0.649245], [0.368733, 0.002724, 0.650601], [0.374897, 0.002245, 0.651876], [0.381047, 0.001814, 0.653068], [0.387183, 0.001434, 0.654177], [0.393304, 0.001114, 0.655199], [0.399411, 0.000859, 0.656133], [0.405503, 0.000678, 0.656977], [0.411580, 0.000577, 0.657730], [0.417642, 0.000564, 0.658390], [0.423689, 0.000646, 0.658956], [0.429719, 0.000831, 0.659425], [0.435734, 0.001127, 0.659797], [0.441732, 0.001540, 0.660069], [0.447714, 0.002080, 0.660240], [0.453677, 0.002755, 0.660310], [0.459623, 0.003574, 0.660277], [0.465550, 0.004545, 0.660139], [0.471457, 0.005678, 0.659897], [0.477344, 0.006980, 0.659549], [0.483210, 0.008460, 0.659095], [0.489055, 0.010127, 0.658534], [0.494877, 0.011990, 0.657865], [0.500678, 0.014055, 0.657088], [0.506454, 0.016333, 0.656202], [0.512206, 0.018833, 0.655209], [0.517933, 0.021563, 0.654109], [0.523633, 0.024532, 0.652901], [0.529306, 0.027747, 0.651586], [0.534952, 0.031217, 0.650165], [0.540570, 0.034950, 0.648640], [0.546157, 0.038954, 0.647010], [0.551715, 0.043136, 0.645277], [0.557243, 0.047331, 0.643443], [0.562738, 0.051545, 0.641509], [0.568201, 0.055778, 0.639477], [0.573632, 0.060028, 0.637349], [0.579029, 0.064296, 0.635126], [0.584391, 0.068579, 0.632812], [0.589719, 0.072878, 0.630408], [0.595011, 0.077190, 0.627917], [0.600266, 0.081516, 0.625342], [0.605485, 0.085854, 0.622686], [0.610667, 0.090204, 0.619951], [0.615812, 0.094564, 0.617140], [0.620919, 0.098934, 0.614257], [0.625987, 0.103312, 0.611305], [0.631017, 0.107699, 0.608287], [0.636008, 0.112092, 0.605205], [0.640959, 0.116492, 0.602065], [0.645872, 0.120898, 0.598867], [0.650746, 0.125309, 0.595617], [0.655580, 0.129725, 0.592317], [0.660374, 0.134144, 0.588971], [0.665129, 0.138566, 0.585582], [0.669845, 0.142992, 0.582154], [0.674522, 0.147419, 0.578688], [0.679160, 0.151848, 0.575189], [0.683758, 0.156278, 0.571660], [0.688318, 0.160709, 0.568103], [0.692840, 0.165141, 0.564522], [0.697324, 0.169573, 0.560919], [0.701769, 0.174005, 0.557296], [0.706178, 0.178437, 0.553657], [0.710549, 0.182868, 0.550004], [0.714883, 0.187299, 0.546338], [0.719181, 0.191729, 0.542663], [0.723444, 0.196158, 0.538981], [0.727670, 0.200586, 0.535293], [0.731862, 0.205013, 0.531601], [0.736019, 0.209439, 0.527908], [0.740143, 0.213864, 0.524216], [0.744232, 0.218288, 0.520524], [0.748289, 0.222711, 0.516834], [0.752312, 0.227133, 0.513149], [0.756304, 0.231555, 0.509468], [0.760264, 0.235976, 0.505794], [0.764193, 0.240396, 0.502126], [0.768090, 0.244817, 0.498465], [0.771958, 0.249237, 0.494813], [0.775796, 0.253658, 0.491171], [0.779604, 0.258078, 0.487539], [0.783383, 0.262500, 0.483918], [0.787133, 0.266922, 0.480307], [0.790855, 0.271345, 0.476706], [0.794549, 0.275770, 0.473117], [0.798216, 0.280197, 0.469538], [0.801855, 0.284626, 0.465971], [0.805467, 0.289057, 0.462415], [0.809052, 0.293491, 0.458870], [0.812612, 0.297928, 0.455338], [0.816144, 0.302368, 0.451816], [0.819651, 0.306812, 0.448306], [0.823132, 0.311261, 0.444806], [0.826588, 0.315714, 0.441316], [0.830018, 0.320172, 0.437836], [0.833422, 0.324635, 0.434366], [0.836801, 0.329105, 0.430905], [0.840155, 0.333580, 0.427455], [0.843484, 0.338062, 0.424013], [0.846788, 0.342551, 0.420579], [0.850066, 0.347048, 0.417153], [0.853319, 0.351553, 0.413734], [0.856547, 0.356066, 0.410322], [0.859750, 0.360588, 0.406917], [0.862927, 0.365119, 0.403519], [0.866078, 0.369660, 0.400126], [0.869203, 0.374212, 0.396738], [0.872303, 0.378774, 0.393355], [0.875376, 0.383347, 0.389976], [0.878423, 0.387932, 0.386600], [0.881443, 0.392529, 0.383229], [0.884436, 0.397139, 0.379860], [0.887402, 0.401762, 0.376494], [0.890340, 0.406398, 0.373130], [0.893250, 0.411048, 0.369768], [0.896131, 0.415712, 0.366407], [0.898984, 0.420392, 0.363047], [0.901807, 0.425087, 0.359688], [0.904601, 0.429797, 0.356329], [0.907365, 0.434524, 0.352970], [0.910098, 0.439268, 0.349610], [0.912800, 0.444029, 0.346251], [0.915471, 0.448807, 0.342890], [0.918109, 0.453603, 0.339529], [0.920714, 0.458417, 0.336166], [0.923287, 0.463251, 0.332801], [0.925825, 0.468103, 0.329435], [0.928329, 0.472975, 0.326067], [0.930798, 0.477867, 0.322697], [0.933232, 0.482780, 0.319325], [0.935630, 0.487712, 0.315952], [0.937990, 0.492667, 0.312575], [0.940313, 0.497642, 0.309197], [0.942598, 0.502639, 0.305816], [0.944844, 0.507658, 0.302433], [0.947051, 0.512699, 0.299049], [0.949217, 0.517763, 0.295662], [0.951344, 0.522850, 0.292275], [0.953428, 0.527960, 0.288883], [0.955470, 0.533093, 0.285490], [0.957469, 0.538250, 0.282096], [0.959424, 0.543431, 0.278701], [0.961336, 0.548636, 0.275305], [0.963203, 0.553865, 0.271909], [0.965024, 0.559118, 0.268513], [0.966798, 0.564396, 0.265118], [0.968526, 0.569700, 0.261721], [0.970205, 0.575028, 0.258325], [0.971835, 0.580382, 0.254931], [0.973416, 0.585761, 0.251540], [0.974947, 0.591165, 0.248151], [0.976428, 0.596595, 0.244767], [0.977856, 0.602051, 0.241387], [0.979233, 0.607532, 0.238013], [0.980556, 0.613039, 0.234646], [0.981826, 0.618572, 0.231287], [0.983041, 0.624131, 0.227937], [0.984199, 0.629718, 0.224595], [0.985301, 0.635330, 0.221265], [0.986345, 0.640969, 0.217948], [0.987332, 0.646633, 0.214648], [0.988260, 0.652325, 0.211364], [0.989128, 0.658043, 0.208100], [0.989935, 0.663787, 0.204859], [0.990681, 0.669558, 0.201642], [0.991365, 0.675355, 0.198453], [0.991985, 0.681179, 0.195295], [0.992541, 0.687030, 0.192170], [0.993032, 0.692907, 0.189084], [0.993456, 0.698810, 0.186041], [0.993814, 0.704741, 0.183043], [0.994103, 0.710698, 0.180097], [0.994324, 0.716681, 0.177208], [0.994474, 0.722691, 0.174381], [0.994553, 0.728728, 0.171622], [0.994561, 0.734791, 0.168938], [0.994495, 0.740880, 0.166335], [0.994355, 0.746995, 0.163821], [0.994141, 0.753137, 0.161404], [0.993851, 0.759304, 0.159092], [0.993482, 0.765499, 0.156891], [0.993033, 0.771720, 0.154808], [0.992505, 0.777967, 0.152855], [0.991897, 0.784239, 0.151042], [0.991209, 0.790537, 0.149377], [0.990439, 0.796859, 0.147870], [0.989587, 0.803205, 0.146529], [0.988648, 0.809579, 0.145357], [0.987621, 0.815978, 0.144363], [0.986509, 0.822401, 0.143557], [0.985314, 0.828846, 0.142945], [0.984031, 0.835315, 0.142528], [0.982653, 0.841812, 0.142303], [0.981190, 0.848329, 0.142279], [0.979644, 0.854866, 0.142453], [0.977995, 0.861432, 0.142808], [0.976265, 0.868016, 0.143351], [0.974443, 0.874622, 0.144061], [0.972530, 0.881250, 0.144923], [0.970533, 0.887896, 0.145919], [0.968443, 0.894564, 0.147014], [0.966271, 0.901249, 0.148180], [0.964021, 0.907950, 0.149370], [0.961681, 0.914672, 0.150520], [0.959276, 0.921407, 0.151566], [0.956808, 0.928152, 0.152409], [0.954287, 0.934908, 0.152921], [0.951726, 0.941671, 0.152925], [0.949151, 0.948435, 0.152178], [0.946602, 0.955190, 0.150328], [0.944152, 0.961916, 0.146861], [0.941896, 0.968590, 0.140956], [0.940015, 0.975158, 0.131326]] _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] from matplotlib.colors import ListedColormap cmaps = {} for (name, data) in (('magma', _magma_data), ('inferno', _inferno_data), ('plasma', _plasma_data), ('viridis', _viridis_data)): cmaps[name] = ListedColormap(data, name=name) pyplot.register_cmap(name=name,cmap=cmaps[name]) # ----- Plotting functions _color_index_=0 all_colors=['b','g','r','c','m','y','k','teal','gray','navy'] def next_color(): global _color_index_ color=all_colors[_color_index_%len(all_colors)] _color_index_+=1 return color ################################### #ASM# 2. function figure_list #ASM# ################################### def figure_list(): """ This function uses some internal wizardry to return a list of the current figure objects. GLOBALS USED: matplotlib._pylab_helpers.Gcf.get_all_fig_managers() """ import matplotlib._pylab_helpers lst = [] for manager in matplotlib._pylab_helpers.Gcf.get_all_fig_managers(): lst.append(manager.canvas.figure) return lst def get_properties(obj,verbose='yes'): """ This function returns a dictionary of artist object properties and their corresponding values. *obj: artist object *verbose: set to 'yes' to spout error messages for properties whose values could not be obtained. DEFAULT: 'no' """ props_to_get=[] for attrib in dir(obj): if attrib[0:4]=='get_': props_to_get.append(attrib.replace('get_','')) values=[] props_used=[] for prop in props_to_get: ##Getp sometimes fails requiring two arguments, but these properties are not important## try: values.append(getp(obj,prop)) props_used.append(prop) except TypeError: if 'y' in verbose: print('ALERT: Couldn\'t retrieve property '+prop+'.') return dict([(props_used[i],values[i]) for i in range(len(values))]) def set_properties(obj,prop_dict,verbose='yes'): """ This function takes an object and and sets its properties according to the property dictionary input. If, for any entry in the dictionary, the property or method to set it does not exist, it will be skipped over. *obj: artist object *prop_dict: a property dictionary of the sort returned by get_properties() *verbose: set to 'yes' to spout error messages for properties which could not be set DEFAULT: 'no' """ misc.check_vars(prop_dict,dict) for key in list(prop_dict.keys()): try: pyplot.setp(obj,key,prop_dict[key]) except AttributeError: if 'y' in verbose: Logger.warning('Property "%s" could not be set.'%key) return obj def minor_ticks(nx=5,ny=5,x=True,y=True): """ Sets *n* minor tick marks per major tick for the x and y axes of the current figure. *nx: integer number of minor ticks for x, DEFAULT: 5 *ny: integer number of minor ticks for y, DEFAULT: 5 *x: True/False, DEFAULT: True *y: True/False, DEFAULT: True """ ax = pyplot.gca() if x: ax.xaxis.set_major_locator(pyplot.AutoLocator()) x_major = ax.xaxis.get_majorticklocs() dx_minor = (x_major[-1]-x_major[0])/(len(x_major)-1)/nx ax.xaxis.set_minor_locator(pyplot.MultipleLocator(dx_minor)) if y: ax.yaxis.set_major_locator(pyplot.AutoLocator()) y_major = ax.yaxis.get_majorticklocs() dy_minor = (y_major[-1]-y_major[0])/(len(y_major)-1)/ny ax.yaxis.set_minor_locator(pyplot.MultipleLocator(dy_minor)) pyplot.plot() return def axes_limits(xlims=None,ylims=None,auto=False): """ Sets limits for the x and y axes. *xlims: tuple of (xmin,xmax) *ylims: tuple of (ymin,ymax) *auto: set to True to turn on autoscaling for both axes """ ax=pyplot.gca() ax.set_autoscale_on(auto) if xlims!=None: ax.set_xlim(xlims[0],xlims[1]) if ylims!=None: ax.set_ylim(ylims[0],ylims[1]) pyplot.draw();return #totally fucked- axes heights are crazy def grid_axes(nplots, xstart=0.15, xstop=.85, spacing=0.02, bottom=0.1, top = 0.85, widths=None, **kwargs): """ Generates a series of plots neighboring each other horizontally and with common y offset and height values. nplots - the number of plots to create xstart - the left margin of the first plot DEFAULT: .05 <- permits visibility of axis label xstop - the right margin of the last plot DEFAULT: 1 <- entire figure spacing - the amount of space between plots DEFAULT: .075 bottom - the bottom margin of the row of plots top - the top margin of the row of plots widths - specify the width of each plot. By default plots are evenly spaced, but if a list of factors is supplied the plots will be adjusted in width. Note that if the total adds up to more than the allotted area, RuntimeError is raised. kwargs - passed to figure.add_axes method """ ###Check types### input_list=(nplots,xstart,xstop,spacing,bottom,top,widths) type_list=[(int,list)] #for nplots type_list.extend([(int,float,list)]*5) #for xstart, xstop, spacing, bottom, top type_list.append((list,type(None))) #for widths type_list=tuple(type_list) misc.check_vars(input_list,type_list,protect=[list]) ###Grid bottom and top arguments equally for each row if necessary### if type(nplots)==list: #if we want more than one row nrows=len(nplots) vsize=((top-bottom+nrows*spacing))/float(nrows) the_bottom=bottom if type(bottom)!=list: #If user hasn't set widths bottom=[the_bottom+(vsize)*i+spacing*bool(i) for i in range(nrows)] bottom.reverse() #top to bottom if type(top)!=list: top=[the_bottom+vsize*(i+1) for i in range(nrows)] top.reverse() #top to bottom ###Make sure widths is properly formatted### if widths!=None: for i in range(len(widths)): if type(widths[i])==list: #specific widths for plots in row widths[i]=tuple(widths[i]) #turn to tuple to prevent iteration into ###Define what to do for each row### fig=pyplot.gcf() def row_of_axes(nplots_row,\ xstart,xstop,spacing,\ bottom,top,widths,kwargs,index): ##Check that we haven't iterated too deep## Logger.raiseException('Provide input values for rows and columns only (e.g. lists of depth 2).',\ unless=(len(index)<2),\ exception=IndexError) ##Check format of widths## if widths==None: widths=[1]*nplots_row elif hasattr(widths,'__len__'): #expect a tuple print(len(widths),nplots_row) Logger.raiseException('When providing *widths* keyword, provide a plot width for each intended sub-plot in each row.',\ unless=(len(widths)==nplots_row),\ exception=IndexError) else: widths=tuple(widths)*nplots_row ###Axes values### avg_width=(xstop-xstart-spacing*(nplots_row-1))/float(nplots_row) height=top-bottom xpos=xstart ###Weighted widths### weighted_widths=[] for j in range(nplots_row): weighted_width=avg_width*widths[j] weighted_widths.append(weighted_width) true_widths=[width/float(sum(weighted_widths))*(nplots_row*avg_width) \ for width in weighted_widths] ###Make new axes in row### row_axes=[] for j in range(nplots_row): width=true_widths[j] rect=[xpos, bottom, width, height] new_axis=fig.add_axes(rect, **kwargs) xpos+=width+spacing row_axes.append(new_axis) return row_axes ###Apply to all rows### new_axes=misc.apply_to_array(row_of_axes,nplots,xstart,xstop,spacing,bottom,top,widths,kwargs,\ protect=[tuple,dict]) pyplot.plot() return new_axes def colorline(x, y, z=None, cmap=plt.get_cmap('copper'), \ norm=plt.Normalize(0.0, 1.0), linewidth=3, alpha=1.0, **kwargs): """ http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb http://matplotlib.org/examples/pylab_examples/multicolored_line.html Plot a colored line with coordinates x and y Optionally specify colors in the array z Optionally specify a colormap, a norm function and a line width """ import matplotlib.collections as mcoll def make_segments(x, y): """ Create list of line segments from x and y coordinates, in the correct format for LineCollection: an array of the form numlines x (points per line) x 2 (x and y) array """ points = np.array([x, y]).T.reshape(-1, 1, 2) segments =
np.concatenate([points[:-1], points[1:]], axis=1)
numpy.concatenate
''' Functions that resample the training data. ''' import numpy as np def validation_data(X, y, fit_kwargs, ratio=1): """ Set validation data from the samples remaining in the pool. """ one_ind = np.where(y == 1)[0] zero_ind = np.where(y == 0)[0] n_one = len(one_ind) n_zero = len(zero_ind) n_zero_add = min(n_zero, int(ratio*n_one)) zero_add = zero_ind[np.random.choice(n_zero, n_zero_add, replace=False)] all_ind =
np.append(one_ind, zero_add)
numpy.append
# # Author: <NAME> # # Copyright (c) 2019 Adobe Systems Incorporated. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Code adapted from https://github.com/rguthrie3/BiLSTM-CRF/blob/master/model.py # and from https://github.com/neulab/cmu-ner/blob/master/models/decoders.py import dynet as dy import numpy as np class CRFDecoder: def __init__(self, model, src_output_dim, tag_emb_dim, tag_size, constraints=None): self.model = model self.start_id = tag_size self.end_id = tag_size + 1 self.tag_size = tag_size + 2 tag_size = tag_size + 2 # optional: transform the hidden space of src encodings into the tag embedding space self.W_src2tag_readout = model.add_parameters((tag_emb_dim, src_output_dim)) self.b_src2tag_readout = model.add_parameters((tag_emb_dim)) self.b_src2tag_readout.zero() self.W_scores_readout2tag = model.add_parameters((tag_size, tag_emb_dim)) self.b_scores_readout2tag = model.add_parameters((tag_size)) self.b_scores_readout2tag.zero() # (to, from), trans[i] is the transition score to i init_transition_matrix = np.random.randn(tag_size, tag_size) # from, to # init_transition_matrix[self.start_id, :] = -1000.0 # init_transition_matrix[:, self.end_id] = -1000.0 init_transition_matrix[self.end_id, :] = -1000.0 init_transition_matrix[:, self.start_id] = -1000.0 if constraints is not None: init_transition_matrix = self._constrained_transition_init(init_transition_matrix, constraints) # print init_transition_matrix self.transition_matrix = model.lookup_parameters_from_numpy(init_transition_matrix) self.interpolation = True # args.interp_crf_score if self.interpolation: self.W_weight_transition = model.add_parameters((1, tag_emb_dim)) self.b_weight_transition = model.add_parameters((1)) self.b_weight_transition.zero() def learn(self, src_enc, tgt_tags): return self.decode_loss(src_enc, [tgt_tags]) def tag(self, src_enc): return self.decoding(src_enc)[1] def _constrained_transition_init(self, transition_matrix, contraints): ''' :param transition_matrix: numpy array, (from, to) :param contraints: [[from_indexes], [to_indexes]] :return: newly initialized transition matrix ''' for cons in contraints: transition_matrix[cons[0], cons[1]] = -1000.0 return transition_matrix def _log_sum_exp_dim_0(self, x): # numerically stable log_sum_exp dims = x.dim() max_score = dy.max_dim(x, 0) # (dim_1, batch_size) if len(dims[0]) == 1: max_score_extend = max_score else: max_score_reshape = dy.reshape(max_score, (1, dims[0][1]), batch_size=dims[1]) max_score_extend = dy.concatenate([max_score_reshape] * dims[0][0]) x = x - max_score_extend exp_x = dy.exp(x) # (dim_1, batch_size), if no dim_1, return ((1,), batch_size) log_sum_exp_x = dy.log(dy.mean_dim(exp_x, d=[0], b=False) * dims[0][0]) return log_sum_exp_x + max_score def forward_alg(self, tag_scores): ''' Forward DP for CRF. tag_scores (list of batched dy.Tensor): (tag_size, batchsize) ''' # Be aware: if a is lookup_parameter with 2 dimension, then a[i] returns one row; # if b = dy.parameter(a), then b[i] returns one column; which means dy.parameter(a) already transpose a transpose_transition_score = self.transition_matrix#.expr(update=True) # transpose_transition_score = dy.transpose(transition_score) # alpha(t', s) = the score of sequence from t=0 to t=t' in log space # np_init_alphas = -100.0 * np.ones((self.tag_size, batch_size)) # np_init_alphas[self.start_id, :] = 0.0 # alpha_tm1 = dy.inputTensor(np_init_alphas, batched=True) alpha_tm1 = transpose_transition_score[self.start_id] + tag_scores[0] # self.transition_matrix[i]: from i, column # transpose_score[i]: to i, row # transpose_score: to, from for tag_score in tag_scores[1:]: # extend for each transit <to> alpha_tm1 = dy.concatenate_cols([alpha_tm1] * self.tag_size) # (from, to, batch_size) # each column i of tag_score will be the repeated emission score to tag i tag_score = dy.transpose(dy.concatenate_cols([tag_score] * self.tag_size)) alpha_t = alpha_tm1 + transpose_transition_score + tag_score alpha_tm1 = self._log_sum_exp_dim_0(alpha_t) # (tag_size, batch_size) terminal_alpha = self._log_sum_exp_dim_0(alpha_tm1 + self.transition_matrix[self.end_id]) # (1, batch_size) return terminal_alpha def score_one_sequence(self, tag_scores, tags, batch_size): ''' tags: list of tag ids at each time step ''' # print tags, batch_size # print batch_size # print "scoring one sentence" tags = [[self.start_id] * batch_size] + tags # len(tag_scores) = len(tags) - 1 score = dy.inputTensor(
np.zeros(batch_size)
numpy.zeros
from pathlib import Path import h5py import numpy as np import torch from torch.utils.data import Dataset from torchvision.datasets.utils import download_and_extract_archive class Traffic4Cast20(Dataset): """ Data for the 2020 traffic4cast challenge. """ URLS = { "https://zurich-ml-datasets.s3.amazonaws.com/traffic4cast/2020/BERLIN.tar?AWSAccessKeyId=<KEY>&Expires=1609923309&Signature=hqE1F%2FkqZmozMMLEEGJUjnYIppo%3D&mkt_tok=<KEY>": { 'filename': "BERLIN.tar", 'md5': "e5ff2ea5bfad2c7098aa1e58e21927a8" }, "https://zurich-ml-datasets.s3.amazonaws.com/traffic4cast/2020/MOSCOW.tar?AWSAccessKeyId=<KEY>&Expires=1609923367&Signature=MKSDRXlbu0mgpOTsh8Lg6WbOK%2FI%3D&mkt_tok=<KEY>": { 'filename': "MOSCOW.tar", 'md5': "8101753853af80c183f3cc10f84d42f4" }, "https://zurich-ml-datasets.s3.amazonaws.com/traffic4cast/2020/ISTANBUL.tar?AWSAccessKeyId=<KEY>&Expires=1609923358&Signature=BSbSFV0%2B%2F5VeU9d0uFFeJiGWuFg%3D&mkt_tok=<KEY>": { 'filename': "ISTANBUL.tar", 'md5': "229730cf5e95d31d1e8494f2a57e50e9" } } def __init__(self, root: str, train: bool = True, city: str = None, single_sample: bool = False, normalised: bool = False, time_diff: int = 0, masking: str = None, sparse: bool = False, download: bool = False, seed: int = None): self.root = Path(root).expanduser().resolve() self.normalised = normalised self.time_diff = time_diff self.mask = None self.sparse = sparse if download: self.download() city = "" if city is None else city.upper() file_id = city if city in {"BERLIN", "ISTANBUL", "MOSCOW"} else "*" mode = "training" if train else "validation" data = [] for file in self.path.glob("_".join([file_id, mode]) + ".npz"): data.append(np.load(file.with_suffix(".npz"))) self.inputs = np.concatenate([arr['ins'] for arr in data], axis=0) self.outputs = np.concatenate([arr['outs'] for arr in data], axis=0) if single_sample: self.inputs = self.inputs.reshape(1, -1, self.inputs.shape[-1]) self.outputs = self.outputs.reshape(1, -1, self.outputs.shape[-1]) if masking == 'zero': self.mask = np.zeros_like(self.inputs[0]) elif masking == 'avg' or sparse: if single_sample: raise NotImplementedError("no meaningful averaging for single seq (yet)") self.mask = np.mean(self.inputs, axis=0) if sparse: rng = np.random.RandomState(seed) self._indices = rng.randint(self.inputs.shape[1], size=self.inputs.shape[:1]) def __getitem__(self, index): inputs = torch.from_numpy(self.inputs[index].astype('float32')) outputs = torch.from_numpy(self.outputs[index].astype('float32')) aux = torch.linspace(0., 1., 288).repeat(len(inputs) // 288).view(-1, 1) if self.sparse: xi = inputs[self.idx] inputs[:] = torch.from_numpy(self.mask) inputs[self.idx] = xi elif self.mask is not None: mask_val = torch.from_numpy(self.mask[len(inputs) - self.time_diff:]) inputs[len(inputs) - self.time_diff:] = mask_val elif self.time_diff: inputs = inputs[:len(inputs) - self.time_diff] aux = aux[:len(inputs)] outputs = outputs[self.time_diff:] if self.normalised: mu, sigma = inputs.mean(), inputs.std() inputs = (inputs - mu) / sigma outputs = (outputs - mu) / sigma return inputs, aux, outputs def __len__(self): return len(self.inputs) @property def idx(self): if self.sparse: # 6AM, 12AM, 6PM +- 5 min return [71, 72, 73, 143, 144, 145, 215, 216, 217] else: # midnight return -1 @property def path(self): return self.root / "traffic4cast20" @staticmethod def _process_dir(path: Path): inputs, outputs = [], [] for file in sorted(path.glob("*.h5")): with h5py.File(file, 'r') as f: data = np.asarray(f['array']) volumes = data[..., :8:2] # last column: NE, NW, SE, SW north_south = np.sum(volumes[..., [0, -1], 1:-1, :], axis=-2) west_east = np.sum(volumes[..., 1:-1, [0, -1], :], axis=-3) corners = volumes[..., [0, -1, 0, -1], [0, 0, -1, -1], :] nw, sw, ne, se = np.moveaxis(corners, -2, 0) incoming = [ np.sum(west_east[..., 0, 0::2], axis=-1) + (sw[..., 0] + nw[..., 2]) / 2, # W np.sum(west_east[..., 1, 1::2], axis=-1) + (se[..., 1] + ne[..., 3]) / 2, # E np.sum(north_south[..., 0, 2:], axis=-1) + (nw[..., 2] + ne[..., 3]) / 2, # N np.sum(north_south[..., 1, :2], axis=-1) + (sw[..., 0] + se[..., 1]) / 2 # S ] outgoing = [ np.sum(west_east[..., 0, 1::2], axis=-1) + sw[..., 1] + nw[..., 3] + (sw[..., 3] + nw[..., 1]) / 2, # W np.sum(west_east[..., 1, 0::2], axis=-1) + se[..., 0] + ne[..., 2] + (se[..., 2] + ne[..., 0]) / 2, # E
np.sum(north_south[..., 0, :2], axis=-1)
numpy.sum
import unittest import numpy as np import scipy as sp import matplotlib.pyplot as plt from PySeismoSoil.class_ground_motion import Ground_Motion as GM from PySeismoSoil.class_Vs_profile import Vs_Profile from PySeismoSoil.class_frequency_spectrum import Frequency_Spectrum import os from os.path import join as _join f_dir = _join(os.path.dirname(os.path.realpath(__file__)), 'files') class Test_Class_Ground_Motion(unittest.TestCase): def test_loading_data__two_columns_from_file(self): # Two columns from file gm = GM(_join(f_dir, 'sample_accel.txt'), unit='gal') PGA_benchmark = 294.30 # unit: cm/s/s PGV_benchmark = 31.46 # unit: cm/s PGD_benchmark = 38.77 # unit: cm tol = 1e-2 self.assertAlmostEqual(gm.pga_in_gal, PGA_benchmark, delta=tol) self.assertAlmostEqual(gm.pgv_in_cm_s, PGV_benchmark, delta=tol) self.assertAlmostEqual(gm.pgd_in_cm, PGD_benchmark, delta=tol) self.assertAlmostEqual(gm.peak_Arias_Intensity, 1.524, delta=tol) self.assertAlmostEqual(gm.rms_accel, 0.4645, delta=tol) def test_loading_data__two_columns_from_numpy_array(self): # Two columns from numpy array gm = GM(np.array([[0.1, 0.2, 0.3, 0.4], [1, 2, 3, 4]]).T, unit='m/s/s') self.assertAlmostEqual(gm.pga, 4) def test_loading_data__one_column_from_file(self): # One column from file gm = GM(_join(f_dir, 'one_column_data_example.txt'), unit='g', dt=0.2) self.assertAlmostEqual(gm.pga_in_g, 12.0) def test_loading_data__one_column_from_numpy_array(self): # One column from numpy array gm = GM(np.array([1, 2, 3, 4, 5]), unit='gal', dt=0.1) self.assertAlmostEqual(gm.pga_in_gal, 5.0) def test_loading_data__one_column_without_specifying_dt(self): # One column without specifying dt error_msg = 'is needed for one-column `data`.' with self.assertRaisesRegex(ValueError, error_msg): gm = GM(np.array([1, 2, 3, 4, 5]), unit='gal') def test_loading_data__test_invalid_unit_names(self): # Test invalid unit names with self.assertRaisesRegex(ValueError, 'Invalid `unit` name.'): GM(np.array([1, 2, 3, 4, 5]), unit='test', dt=0.1) with self.assertRaisesRegex(ValueError, r"use '/s/s' instead of 's\^2'"): GM(np.array([1, 2, 3, 4, 5]), unit='m/s^2', dt=0.1) def test_differentiation(self): veloc = np.array([[.1, .2, .3, .4, .5, .6], [1, 3, 7, -1, -3, 5]]).T gm = GM(veloc, unit='m', motion_type='veloc') accel_benchmark = np.array( [[.1, .2, .3, .4, .5, .6], [0, 20, 40, -80, -20, 80]] ).T self.assertTrue(np.allclose(gm.accel, accel_benchmark)) def test_integration__artificial_example(self): gm = GM(_join(f_dir, 'two_column_data_example.txt'), unit='m/s/s') v_bench = np.array([[0.1000, 0.1000], # from MATLAB [0.2000, 0.3000], [0.3000, 0.6000], [0.4000, 1.0000], [0.5000, 1.5000], [0.6000, 1.7000], [0.7000, 2.0000], [0.8000, 2.4000], [0.9000, 2.9000], [1.0000, 3.5000], [1.1000, 3.8000], [1.2000, 4.2000], [1.3000, 4.7000], [1.4000, 5.3000], [1.5000, 6.0000]]) u_bench = np.array([[0.1000, 0.0100], # from MATLAB [0.2000, 0.0400], [0.3000, 0.1000], [0.4000, 0.2000], [0.5000, 0.3500], [0.6000, 0.5200], [0.7000, 0.7200], [0.8000, 0.9600], [0.9000, 1.2500], [1.0000, 1.6000], [1.1000, 1.9800], [1.2000, 2.4000], [1.3000, 2.8700], [1.4000, 3.4000], [1.5000, 4.0000]]) self.assertTrue(np.allclose(gm.veloc, v_bench)) self.assertTrue(np.allclose(gm.displ, u_bench)) def test_integration__real_world_example(self): # Note: In this test, the result by cumulative trapezoidal numerical # integration is used as the benchmark. Since it is infeasible to # achieve perfect "alignment" between the two time histories, # we check the correlation coefficient instead of element-wise # check. veloc_ = np.genfromtxt(_join(f_dir, 'sample_accel.txt')) gm = GM(veloc_, unit='m/s', motion_type='veloc') displ = gm.displ[:, 1] displ_cumtrapz = np.append(0, sp.integrate.cumtrapz(veloc_[:, 1], dx=gm.dt)) r = np.corrcoef(displ_cumtrapz, displ)[1, 1] # cross-correlation self.assertTrue(r >= 0.999) def test_fourier_transform(self): gm = GM(_join(f_dir, 'two_column_data_example.txt'), unit='m/s/s') freq, spec = gm.get_Fourier_spectrum(real_val=False).raw_data.T freq_bench = [ 0.6667, 1.3333, 2.0000, 2.6667, 3.3333, 4.0000, 4.6667, 5.3333, ] FS_bench = [ 60.0000 + 0.0000j, -1.5000 + 7.0569j, -1.5000 + 3.3691j, -7.5000 +10.3229j, -1.5000 + 1.3506j, -1.5000 + 0.8660j, -7.5000 + 2.4369j, -1.5000 + 0.1577j, ] self.assertTrue(np.allclose(freq, freq_bench, atol=0.0001, rtol=0.0)) self.assertTrue(np.allclose(spec, FS_bench, atol=0.0001, rtol=0.0)) def test_baseline_correction(self): gm = GM(_join(f_dir, 'sample_accel.txt'), unit='m/s/s') corrected = gm.baseline_correct(show_fig=True) self.assertTrue(isinstance(corrected, GM)) def test_high_pass_filter(self): gm = GM(_join(f_dir, 'sample_accel.txt'), unit='m') hp = gm.highpass(cutoff_freq=1.0, show_fig=True) self.assertTrue(isinstance(hp, GM)) def test_low_pass_filter(self): gm = GM(_join(f_dir, 'sample_accel.txt'), unit='m') lp = gm.lowpass(cutoff_freq=1.0, show_fig=True) self.assertTrue(isinstance(lp, GM)) def test_band_pass_filter(self): gm = GM(_join(f_dir, 'sample_accel.txt'), unit='m') bp = gm.bandpass(cutoff_freq=[0.5, 8], show_fig=True) self.assertTrue(isinstance(bp, GM)) def test_band_stop_filter(self): gm = GM(_join(f_dir, 'sample_accel.txt'), unit='m') bs = gm.bandstop(cutoff_freq=[0.5, 8], show_fig=True) self.assertTrue(isinstance(bs, GM)) def test_amplify_via_profile(self): gm = GM(_join(f_dir, 'sample_accel.txt'), unit='m') vs_prof = Vs_Profile(_join(f_dir, 'profile_FKSH14.txt')) output_motion = gm.amplify(vs_prof, boundary='elastic') self.assertTrue(isinstance(output_motion, GM)) def test_deconvolution(self): # Assert `deconvolve()` & `amplify()` are reverse operations to each other. gm = GM(_join(f_dir, 'sample_accel.txt'), unit='m') vs_prof = Vs_Profile(_join(f_dir, 'profile_FKSH14.txt')) for boundary in ['elastic', 'rigid']: deconv_motion = gm.deconvolve(vs_prof, boundary=boundary) output_motion = deconv_motion.amplify(vs_prof, boundary=boundary) self.assertTrue(self.nearly_identical(gm.accel, output_motion.accel)) amplified_motion = gm.amplify(vs_prof, boundary=boundary) output_motion = amplified_motion.deconvolve(vs_prof, boundary=boundary) self.assertTrue(self.nearly_identical(gm.accel, output_motion.accel)) def test_plot(self): filename = _join(f_dir, 'sample_accel.txt') gm = GM(filename, unit='m') fig, axes = gm.plot() # automatically generate fig/ax objects self.assertTrue(isinstance(axes, tuple)) self.assertEqual(len(axes), 3) self.assertEqual(axes[0].title.get_text(), os.path.split(filename)[1]) fig2 = plt.figure(figsize=(8, 8)) fig2_, axes = gm.plot(fig=fig2) # feed an external figure object self.assertTrue(np.allclose(fig2_.get_size_inches(), (8, 8))) def test_unit_convert(self): data =
np.array([1, 3, 7, -2, -10, 0])
numpy.array
import dataclasses import math import json import numpy as np import os import matplotlib as mpl import matplotlib.pyplot as plt import warnings import geopandas as gpd import shapely.geometry as shpg from scipy.interpolate import interp1d @dataclasses.dataclass class UncClass: _default_unc = 0.15 # 15% mean: float unit_name: str = "" std_perc: float = _default_unc def std_unit(self): return self.mean * self.std_perc def std_perc_100(self): return self.std_perc * 100. def perc_100_to_perc(self, perc_100): if perc_100 < 1: raise ValueError("Input percentage needs to be greater than 1") self.std_perc = perc_100 / 100. def unit_to_perc(self, unit_std): self.std_perc = unit_std / self.mean class ModelDefaults: def __init__(self): file_root = os.path.dirname(os.path.abspath(__file__)) # print(file_root) defaults_file = "defaults.json" infile = os.path.join(file_root, defaults_file) with open(infile) as load_file: j_data = json.load(load_file) inputs = j_data['input_data'][0] self.general_unc = inputs["general_unc"] self.max_pf = inputs['pf'] self.pf_unit = "MPa" self.density = inputs["density"] self.density_unit = "kg/m^3" self.hydro = inputs["hydro"] self.hydro_unit = "MPa/km" self.hydro_under = inputs["hydro_under"] self.hydro_upper = inputs["hydro_upper"] self.dip = inputs["dip"] self.dip_unit = "deg" az_unc = inputs["az_unc"] self.az_unit = "deg" self.az_unc_perc = az_unc / 360. self.sv = (self.density * 9.81) / 1000 # MPa/km self.max_sv = (5000 * 9.81) / 1000 self.stress_unit = "MPa/km" self.sh_max_az = inputs["sh_max_az"] self.sh_min_az = inputs["sh_min_az"] self.mu = inputs["mu"] self.mu_unit = "unitless" self.F_mu = (math.sqrt(self.mu ** 2 + 1)) ** 2 abs_shmax = self.F_mu * (self.sv - self.hydro) + self.hydro abs_shmin = ((self.sv - self.hydro) / self.F_mu) + self.hydro self.shmax_r = abs_shmax self.shmin_r = (abs_shmax - self.sv) / 2 self.shmax_ss = abs_shmax self.shmin_ss = abs_shmin self.shmax_n = (self.sv - abs_shmin) / 2 self.shmin_n = abs_shmin class ModelInputs: def __init__(self, input_dict): """ Parameters ---------- input_dict """ defaults = ModelDefaults() if "max_pf" in input_dict.keys(): self.max_pf = input_dict["max_pf"] else: self.max_pf = defaults.max_pf if "dip" in input_dict.keys(): if "dip_unc" in input_dict.keys(): self.Dip = UncClass(input_dict["dip"], defaults.dip_unit, input_dict["dip_unc"] / input_dict["dip"]) else: self.Dip = UncClass(input_dict["dip"], defaults.dip_unit) else: self.Dip = UncClass(defaults.dip, defaults.dip_unit) if "sv" in input_dict.keys(): if input_dict["sv"] > defaults.max_sv: warnings.warn('Vertical stress gradient for density > 5000 kg/m^3. Are you sure you input a gradient?') if "sv_unc" in input_dict.keys(): self.Sv = UncClass(input_dict["sv"], defaults.stress_unit, input_dict["sv_unc"]) else: self.Sv = UncClass(input_dict["sv"], defaults.stress_unit) else: self.Sv = UncClass(defaults.sv, defaults.stress_unit) if "hydro" in input_dict.keys(): self.SHydro = UncClass(input_dict["hydro"], defaults.stress_unit) else: if "pf_max" in input_dict.keys(): new_hydro = input_dict["pf_max"] / input_dict["depth"] self.SHydro = UncClass(new_hydro, defaults.stress_unit) else: self.SHydro = UncClass(defaults.hydro, defaults.stress_unit) if "hydro_under" in input_dict.keys(): self.hydro_l = self.SHydro.mean * input_dict["hydro_under"] else: self.hydro_l = self.SHydro.mean * defaults.hydro_under if "hydro_upper" in input_dict.keys(): self.hydro_u = self.SHydro.mean * input_dict["hydro_upper"] else: self.hydro_u = self.SHydro.mean * defaults.hydro_upper if "mu" in input_dict.keys(): if "mu_unc" in input_dict.keys(): self.Mu = UncClass(input_dict["mu"], defaults.mu_unit, input_dict["mu_unc"]) else: self.Mu = UncClass(defaults.mu, defaults.mu_unit) else: self.Mu = UncClass(defaults.mu, defaults.mu_unit) if "shmax" in input_dict.keys(): shmax = float(input_dict['shmax']) if "shmin" in input_dict.keys(): shmin = float(input_dict['shmin']) if shmax > self.Sv.mean > shmin: if {"shMunc", "shmiunc"} <= input_dict.keys(): self.ShMaxSS = UncClass(shmax, defaults.stress_unit, float(input_dict["shMunc"]) / shmax) self.ShMinSS = UncClass(shmin, defaults.stress_unit, float(input_dict["shmiunc"]) / shmin) else: self.ShMaxSS = UncClass(shmax, defaults.stress_unit) self.ShMinSS = UncClass(shmin, defaults.stress_unit) self.ShMaxR = UncClass(defaults.shmax_r, defaults.stress_unit) self.ShMinR = UncClass(defaults.shmin_r, defaults.stress_unit) self.ShMaxN = UncClass(defaults.shmax_n, defaults.stress_unit) self.ShMinN = UncClass(defaults.shmin_n, defaults.stress_unit) elif shmax > shmin > self.Sv.mean: if {"shMunc", "shmiunc"} <= input_dict.keys(): self.ShMaxR = UncClass(shmax, defaults.stress_unit, float(input_dict["shMunc"]) / shmax) self.ShMinR = UncClass(shmin, defaults.stress_unit, float(input_dict["shmiunc"]) / shmin) else: self.ShMaxR = UncClass(shmax, defaults.stress_unit) self.ShMinR = UncClass(shmin, defaults.stress_unit) self.ShMaxSS = UncClass(defaults.shmax_ss, defaults.stress_unit) self.ShMinSS = UncClass(defaults.shmin_ss, defaults.stress_unit) self.ShMaxN = UncClass(defaults.shmax_n, defaults.stress_unit) self.ShMinN = UncClass(defaults.shmin_n, defaults.stress_unit) elif self.Sv.mean > shmax > shmin: if {"shMunc", "shmiunc"} <= input_dict.keys(): self.ShMaxN = UncClass(shmax, defaults.stress_unit, float(input_dict["shMunc"]) / shmax) self.ShMinN = UncClass(shmin, defaults.stress_unit, float(input_dict["shmiunc"]) / shmin) else: self.ShMaxN = UncClass(shmax, defaults.stress_unit) self.ShMinN = UncClass(shmin, defaults.stress_unit) self.ShMaxR = UncClass(defaults.shmax_r, defaults.stress_unit) self.ShMinR = UncClass(defaults.shmin_r, defaults.stress_unit) self.ShMaxSS = UncClass(defaults.shmax_ss, defaults.stress_unit) self.ShMinSS = UncClass(defaults.shmin_ss, defaults.stress_unit) else: # print("default") self.ShMaxR = UncClass(defaults.shmax_r, defaults.stress_unit) self.ShMinR = UncClass(defaults.shmin_r, defaults.stress_unit) self.ShMaxSS = UncClass(defaults.shmax_ss, defaults.stress_unit) self.ShMinSS = UncClass(defaults.shmin_ss, defaults.stress_unit) self.ShMaxN = UncClass(defaults.shmax_n, defaults.stress_unit) self.ShMinN = UncClass(defaults.shmin_n, defaults.stress_unit) if "shmaxaz" in input_dict.keys(): if "az_unc" in input_dict.keys(): self.ShMaxAz = UncClass(input_dict["shmaxaz"], defaults.az_unit, input_dict["az_unc"]) else: self.ShMaxAz = UncClass(input_dict["shmaxaz"], defaults.az_unit, defaults.az_unc_perc) else: self.ShMaxAz = UncClass(defaults.sh_max_az, defaults.az_unit, defaults.az_unc_perc) if "shminaz" in input_dict.keys(): if "az_unc" in input_dict.keys(): self.ShMinAz = UncClass(input_dict["shminaz"], defaults.az_unit, input_dict["az_unc"]) else: self.ShMinAz = UncClass(input_dict["shminaz"], defaults.az_unit, defaults.az_unc_perc) else: if "shmaxaz" in input_dict.keys(): self.ShMinAz = UncClass(self.ShMaxAz.mean + 90., defaults.az_unit, defaults.az_unc_perc) else: self.ShMinAz = UncClass(defaults.sh_min_az, defaults.az_unit, defaults.az_unc_perc) def plot_uncertainty(self, stress, depth): fig, axs = plt.subplots(2, 4, sharex='none', sharey='all') n_samples = 1000 dip = np.random.normal(self.Dip.mean, self.Dip.std_unit(), n_samples) mu = np.random.normal(self.Mu.mean, self.Mu.std_perc, n_samples) s_v = np.random.normal(self.Sv.mean, self.Sv.std_unit(), n_samples) # s_hydro = np.random.normal(self.SHydro.mean, self.SHydro.std_unit(), 500) # lower_pf = -0.04 # upper_pf = 1.18 hydro1 = self.SHydro.mean - self.hydro_l hydro2 = self.SHydro.mean + self.hydro_u s_hydro = (hydro2 - hydro1) * np.random.random(n_samples) + hydro1 if stress == "reverse": sh_max = np.random.normal(self.ShMaxR.mean, self.ShMaxR.std_unit(), n_samples) sh_min = np.random.normal(self.ShMinR.mean, self.ShMinR.std_unit(), n_samples) elif stress == "strike-slip": sh_max = np.random.normal(self.ShMaxSS.mean, self.ShMaxSS.std_unit(), n_samples) sh_min = np.random.normal(self.ShMinSS.mean, self.ShMinSS.std_unit(), n_samples) elif stress == "normal": sh_max = np.random.normal(self.ShMaxN.mean, self.ShMaxN.std_unit(), n_samples) sh_min = np.random.normal(self.ShMinN.mean, self.ShMinN.std_unit(), n_samples) else: sh_max = np.random.normal(0, 1, n_samples) sh_min = np.random.normal(0, 1, n_samples) warnings.warn("Stress field not properly defined.", UserWarning) shmax_az = np.random.normal(self.ShMaxAz.mean, self.ShMaxAz.std_unit(), n_samples) shmin_az = np.random.normal(self.ShMinAz.mean, self.ShMinAz.std_unit(), n_samples) s_v = s_v * depth s_hydro = s_hydro * depth sh_max = sh_max * depth sh_min = sh_min * depth plot_datas = [dip, mu, s_v, s_hydro, sh_max, sh_min, shmax_az, shmin_az] titles = ["Dip", "Mu", "Vert. Stress [MPa]", "Hydro. Pres. [MPa]", "SHMax [MPa]", "Shmin [MPa]", "Shmax Azimuth", "Shmin Azimuth"] i = 0 for ax1 in axs: for ax in ax1: data = plot_datas[i] ax.hist(data, 50) ax.axvline(np.median(data), color="black") ax.set_title(titles[i]) quantiles = np.quantile(data, [0.01, 0.5, 0.99]) if titles[i] == "Mu": quantiles = np.around(quantiles, decimals=2) else: quantiles = np.around(quantiles, decimals=0) ax.set_xticks(quantiles) i = i + 1 fig.tight_layout() class SegmentDet2dResult: """ """ def __init__(self, x1, y1, x2, y2, result, metadata): """""" self.p1 = (x1, y1) self.p2 = (x2, y2) # self.pf_results = pf_results if "line_id" in metadata: self.line_id = metadata["line_id"] if "seg_id" in metadata: self.seg_id = metadata["seg_id"] self.result = result class MeshFaceResult: """ """ def __init__(self, face_num, triangle, p1, p2, p3, pf_results): """ Parameters ---------- face_num p1 p2 p3 """ self.face_num = face_num self.triangle = triangle self.p1 = p1 self.p2 = p2 self.p3 = p3 # if pf_results.size == 0: # x = np.array([0., 0., 0.]) # y = np.array([0., 0.5, 1.]) # self.ecdf = np.column_stack((x, y)) # pf_results.sort() # n = pf_results.size # y = np.linspace(1.0 / n, 1, n) # self.ecdf = np.column_stack((pf_results, y)) pf1 = pf_results[:, 0] mu1 = pf_results[:, 1] slip_tend = pf_results[:, 2] inds = slip_tend >= mu1 n1 = pf1.size pf2 = pf1[inds] n2 = pf2.size if n2 == 0: max_pf = np.max(pf1) x = np.array([max_pf, max_pf, max_pf]) # x = np.empty(5000) # x.fill(np.nan) y = np.array([0., 0.5, 1.]) # y = np.linspace(0., 1., 5000) self.ecdf = np.column_stack((x, y)) self.no_fail = True elif n2 < 100 & n2 > 0: self.no_fail = False pf2.sort() n2 = pf2.size y = np.linspace(1 / n2, 1, n2) n2_2 = 100 z = np.linspace(1 / n2_2, 1, n2_2) pf2_interp = interp1d(y, pf2, kind='linear') pf2_2 = pf2_interp(z) self.ecdf = np.column_stack((pf2_2, z)) else: self.no_fail = False pf2.sort() n2 = pf2.size y = np.linspace(1 / n2, 1, n2) self.ecdf = np.column_stack((pf2, y)) def ecdf_cutoff(self, cutoff): """ Parameters ---------- cutoff: float Returns ------- """ # self.ecdf[:, 0] = self.ecdf[:, 0] - hydrostatic_pres cutoff = cutoff / 100 ind_fail = (np.abs(self.ecdf[:, 1] - cutoff)).argmin() fail_pressure = self.ecdf[ind_fail, 0] return fail_pressure class SegmentMC2dResult: """ """ def __init__(self, x1, y1, x2, y2, pf_results, metadata): """""" self.p1 = (x1, y1) self.p2 = (x2, y2) # self.pf_results = pf_results if "line_id" in metadata: self.line_id = metadata["line_id"] if "seg_id" in metadata: self.seg_id = metadata["seg_id"] pf1 = pf_results[:, 0] mu1 = pf_results[:, 1] slip_tend = pf_results[:, 2] inds = slip_tend >= mu1 n1 = pf1.size pf2 = pf1[inds] n2 = pf2.size if n2 == 0: max_pf = np.max(pf1) x = np.array([max_pf, max_pf, max_pf]) # x = np.empty(5000) # x.fill(np.nan) y = np.array([0., 0.5, 1.]) # y = np.linspace(0., 1., 5000) self.ecdf = np.column_stack((x, y)) self.no_fail = True elif n2 < 100 & n2 > 0: self.no_fail = False pf2.sort() n2 = pf2.size y = np.linspace(1 / n2, 1, n2) n2_2 = 100 z =
np.linspace(1 / n2_2, 1, n2_2)
numpy.linspace
from __future__ import print_function import mxnet as mx from mxnet import nd import numpy as np from d2l import mxnet as d2l from programs.utils import draw_vertical_leg as draw_vertical_leg_new from programs.utils import draw_rectangle_top as draw_rectangle_top_new from programs.utils import draw_square_top as draw_square_top_new from programs.utils import draw_circle_top as draw_circle_top_new from programs.utils import draw_middle_rect_layer as draw_middle_rect_layer_new from programs.utils import draw_circle_support as draw_circle_support_new from programs.utils import draw_square_support as draw_square_support_new from programs.utils import draw_circle_base as draw_circle_base_new from programs.utils import draw_square_base as draw_square_base_new from programs.utils import draw_cross_base as draw_cross_base_new from programs.utils import draw_sideboard as draw_sideboard_new from programs.utils import draw_horizontal_bar as draw_horizontal_bar_new from programs.utils import draw_vertboard as draw_vertboard_new from programs.utils import draw_locker as draw_locker_new from programs.utils import draw_tilt_back as draw_tilt_back_new from programs.utils import draw_chair_beam as draw_chair_beam_new from programs.utils import draw_line as draw_line_new from programs.utils import draw_back_support as draw_back_support_new from programs.loop_gen import decode_loop, translate, rotate, end def get_distance_to_center(): x = np.arange(32) y = np.arange(32) xx, yy = np.meshgrid(x, y) xx = xx + 0.5 yy = yy + 0.5 d = np.sqrt(np.square(xx - int(32 / 2)) + np.square(yy - int(32 / 2))) return d def gather(self, dim, index): """ Gathers values along an axis specified by ``dim``. For a 3-D tensor the output is specified by: out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 Parameters ---------- dim: The axis along which to index index: A tensor of indices of elements to gather Returns ------- Output Tensor """ idx_xsection_shape = index.shape[:dim] + \ index.shape[dim + 1:] self_xsection_shape = self.shape[:dim] + self.shape[dim + 1:] if idx_xsection_shape != self_xsection_shape: raise ValueError("Except for dimension " + str(dim) + ", all dimensions of index and self should be the same size") if index.dtype != np.dtype('int_'): raise TypeError("The values of index must be integers") data_swaped = nd.swapaxes(self, 0, dim).asnumpy() index_swaped = nd.swapaxes(index, 0, dim).asnumpy() #print(data_swaped,index_swaped) #print("index_swaped\n",index_swaped,index_swaped.shape,"data_swaped\n",data_swaped,data_swaped.shape,'\n') gathered = nd.from_numpy(np.choose(index_swaped,data_swaped)).as_in_context(d2l.try_gpu()) return nd.swapaxes(gathered, 0, dim) def scatter_numpy(self, dim, index, src): """ Writes all values from the Tensor src into self at the indices specified in the index Tensor. :param dim: The axis along which to index :param index: The indices of elements to scatter :param src: The source element(s) to scatter :return: self """ if index.dtype != np.dtype('int_'): raise TypeError("The values of index must be integers") if self.ndim != index.ndim: raise ValueError("Index should have the same number of dimensions as output") if dim >= self.ndim or dim < -self.ndim: raise IndexError("dim is out of range") if dim < 0: # Not sure why scatter should accept dim < 0, but that is the behavior in PyTorch's scatter dim = self.ndim + dim idx_xsection_shape = index.shape[:dim] + index.shape[dim + 1:] self_xsection_shape = self.shape[:dim] + self.shape[dim + 1:] if idx_xsection_shape != self_xsection_shape: raise ValueError("Except for dimension " + str(dim) + ", all dimensions of index and output should be the same size") if (index >= self.shape[dim]).any() or (index < 0).any(): raise IndexError("The values of index must be between 0 and (self.shape[dim] -1)") def make_slice(arr, dim, i): slc = [slice(None)] * arr.ndim slc[dim] = i return slc # We use index and dim parameters to create idx # idx is in a form that can be used as a NumPy advanced index for scattering of src param. in self idx = [[*np.indices(idx_xsection_shape).reshape(index.ndim - 1, -1), index[make_slice(index, dim, i)].reshape(1, -1)[0]] for i in range(index.shape[dim])] idx = list(np.concatenate(idx, axis=1)) idx.insert(dim, idx.pop()) if not np.isscalar(src): if index.shape[dim] > src.shape[dim]: raise IndexError("Dimension " + str(dim) + "of index can not be bigger than that of src ") src_xsection_shape = src.shape[:dim] + src.shape[dim + 1:] if idx_xsection_shape != src_xsection_shape: raise ValueError("Except for dimension " + str(dim) + ", all dimensions of index and src should be the same size") # src_idx is a NumPy advanced index for indexing of elements in the src src_idx = list(idx) src_idx.pop(dim) src_idx.insert(dim, np.repeat(np.arange(index.shape[dim]), np.prod(idx_xsection_shape))) self[idx] = src[src_idx] else: self[idx] = src return self def to_contiguous(tensor): if tensor.is_contiguous(): return tensor else: return tensor.contiguous() def clip_gradient(optimizer, grad_clip): for group in optimizer.param_groups: for param in group['params']: param.grad.data.clamp_(-grad_clip, grad_clip) def get_last_block(pgm): bsz = pgm.size(0) n_block = pgm.size(1) n_step = pgm.size(2) pgm = pgm.copy() # not sure if pgm.dim() == 4: idx = nd.argmax(pgm, axis=3) idx = idx.as_in_context(mx.cpu()) # not sure elif pgm.dim() == 3: idx = pgm.as_in_context(mx.cpu()) else: raise ValueError("pgm.dim() != 2 or 3") max_inds = [] for i in range(bsz): j = n_block - 1 while j >= 0: if idx[i, j, 0] == 0: break j = j - 1 if j == -1: max_inds.append(0) else: max_inds.append(j) return np.asarray(max_inds) def sample_block(max_inds, include_tail=False): sample_inds = [] for ind in max_inds: if include_tail: sample_inds.append(np.random.randint(0, ind + 1)) else: sample_inds.append(np.random.randint(0, ind)) return np.asarray(sample_inds) def get_max_step_pgm(pgm): batch_size = pgm.size(0) pgm = pgm.copy() # not sure if pgm.dim() == 3: pgm = pgm[:, 1:, :] idx = get_class(pgm).as_in_context(mx.cpu()) elif pgm.dim() == 2: idx = pgm[:, 1:].as_in_context(mx.cpu()) else: raise ValueError("pgm.dim() != 2 or 3") max_inds = [] for i in range(batch_size): j = 0 while j < idx.shape[1]: if idx[i, j] == 0: break j = j + 1 if j == 0: raise ValueError("no programs for such sample") max_inds.append(j) return np.asarray(max_inds) def get_vacancy(pgm): batch_size = pgm.size(0) pgm = pgm.copy() # not sure if pgm.dim() == 3: pgm = pgm[:, 1:, :] idx = get_class(pgm).as_in_context(mx.cpu()) elif pgm.dim() == 2: idx = pgm[:, 1:].as_in_context(mx.cpu()) else: raise ValueError("pgm.dim() != 2 or 3") vac_inds = [] for i in range(batch_size): j = 0 while j < idx.shape[1]: if idx[i, j] == 0: break j = j + 1 if j == idx.shape[1]: j = j - 1 vac_inds.append(j) return np.asarray(vac_inds) def sample_ind(max_inds, include_start=False): sample_inds = [] for ind in max_inds: if include_start: sample_inds.append(np.random.randint(0, ind + 1)) else: sample_inds.append(np.random.randint(0, ind)) return np.asarray(sample_inds) def sample_last_ind(max_inds, include_start=False): sample_inds = [] for ind in max_inds: if include_start: sample_inds.append(ind) else: sample_inds.append(ind - 1) return np.array(sample_inds) def get_class(pgm): print(pgm) if len(pgm.shape) == 3: idx = nd.argmax(pgm, axis=2) elif len(pgm.shape) == 2: idx = pgm else: raise IndexError("dimension of pgm is wrong") return idx def decode_to_shape_new(pred_pgm, pred_param): batch_size = pred_pgm.shape[0] idx = get_class(pred_pgm) pgm = idx.as_in_context(mx.cpu()).asnumpy() params = pred_param.as_in_context(mx.cpu()).asnumpy() params = np.round(params).astype(np.int32) data = np.zeros((batch_size, 32, 32, 32), dtype=np.uint8) for i in range(batch_size): for j in range(1, pgm.shape[1]): if pgm[i, j] == 0: continue data[i] = render_one_step_new(data[i], pgm[i, j], params[i, j]) return data def decode_pgm(pgm, param, loop_free=True): """ decode and check one single block remove occasionally-happened illegal programs """ flag = 1 data_loop = [] if pgm[0] == translate: if pgm[1] == translate: if 1 <= pgm[2] < translate: data_loop.append(np.hstack((pgm[0], param[0]))) data_loop.append(np.hstack((pgm[1], param[1]))) data_loop.append(np.hstack((pgm[2], param[2]))) data_loop.append(np.hstack(np.asarray([end, 0, 0, 0, 0, 0, 0, 0]))) data_loop.append(np.hstack(np.asarray([end, 0, 0, 0, 0, 0, 0, 0]))) else: flag = 0 elif 1 <= pgm[1] < translate: data_loop.append(np.hstack((pgm[0], param[0]))) data_loop.append(np.hstack((pgm[1], param[1]))) data_loop.append(np.hstack(np.asarray([end, 0, 0, 0, 0, 0, 0, 0]))) else: flag = 0 elif pgm[0] == rotate: if pgm[1] == 10: data_loop.append(np.hstack((pgm[0], param[0]))) data_loop.append(np.hstack((pgm[1], param[1]))) data_loop.append(np.hstack(np.asarray([end, 0, 0, 0, 0, 0, 0, 0]))) if pgm[1] == 17: data_loop.append(np.hstack((pgm[0], param[0]))) data_loop.append(np.hstack((pgm[1], param[1]))) data_loop.append(np.hstack(np.asarray([end, 0, 0, 0, 0, 0, 0, 0]))) else: flag = 0 elif 1 <= pgm[0] < translate: data_loop.append(
np.hstack((pgm[0], param[0]))
numpy.hstack
""" he data is dedicated to classification problem related to the post-operative life expectancy in the lung cancer patients: class 1 - death within one year after surgery, class 2 - survival. """ import numpy as np import pandas as pd from dataset_peek import data_peek def load_thoracic(): fp = "thoracic.csv" raw_data = pd.read_csv(fp, header=None) x =
np.array(raw_data.iloc[:, 0:16])
numpy.array
# # Copyright 2012 by Idiap Research Institute, http://www.idiap.ch # # See the file COPYING for the licence associated with this software. # # Author(s): # <NAME>, December 2012 # import numpy as np import scipy.signal as sp import numpy.linalg as linalg from . import core class Autoregression: """ Class containing autoregression methods; requires an order. The word is taken to be one word 'autoregression', but abbreviated to 'ar'. """ def __init__(self, order): self.order = int(order) # All of the methods below actually calculate gain squared. def ARMatrix(a, order=10, method='matrix'): if a.ndim > 1: ret = np.ndarray((a.shape[0], order)) gain = np.ndarray(a.shape[0]) for f in range(a.shape[0]): ret[f], gain[f] = ARMatrix(a[f], order, method) return ret, gain coef = np.zeros(order) # Follow the matrix based method to the letter. elop contains the # poles reversed, coef is the poles in order. if method == 'matrix': Y = core.Frame(a[:a.size-1], size=order, period=1, pad=False) y = a[order:] YY = np.dot(Y.T,Y) Yy = np.dot(Y.T,y) elop = np.dot(linalg.inv(YY), Yy) for i in range(order): coef[i] = elop[order-i-1] gain = (np.dot(y,y) - np.dot(elop,Yy)) / y.size # Use the autocorrelation to populate the matrices. Here, Yy runs # in ascending index, so we get coef in order right away. elif method == 'acmatrix': ac = core.Autocorrelation(a) YY = np.ndarray((order, order)) Yy = np.ndarray(order) for i in range(order): Yy[i] = ac[i+1] * a.size for j in range(order): YY[i,j] = ac[abs(i-j)] * a.size coef = np.dot(linalg.inv(YY), Yy) gain = (ac[0] - np.dot(coef,Yy / a.size)) else: print("Unknown AR method") exit(1) return (coef, gain) # Raw Levinson-Durbin recursion def levinson(ac, order, prior=0.0): curr = np.zeros(order) prev = np.zeros(order) error = ac[0] + prior for i in range(order): # swap current and previous coefficients tmp = curr curr = prev prev = tmp # Recurse k = ac[i+1] for j in range(i): k -= prev[j] * ac[i-j] curr[i] = k / error error *= 1 - curr[i]**2 for j in range(i): curr[j] = prev[j] - curr[i] * prev[i-j-1] return curr # Levinson-Durbin recursion to calculate reflection coefficients from # autocorrelaton. def ARLevinson(ac, order=10): if ac.ndim > 1: ret = np.ndarray((ac.shape[0], order)) gain = np.ndarray(ac.shape[0]) for f in range(ac.shape[0]): ret[f], gain[f] = ARLevinson(ac[f], order) return ret, gain coef = levinson(ac, order) gain = ac[0] - np.dot(coef, ac[1:order+1]) return coef, gain # Convert ac into matrices def ACToMatrix(ac, order): YY = np.ndarray((order, order)) Yy = np.ndarray(order) for i in range(order): Yy[i] = ac[i+1] * ac.size for j in range(order): YY[i,j] = ac[abs(i-j)] * ac.size return YY, Yy # Ridge regression implementation of AR def ARRidge(ac, order=10, ridge=0.0): if ac.ndim > 1: ret = np.ndarray((ac.shape[0], order)) gain = np.ndarray(ac.shape[0]) for f in range(ac.shape[0]): ret[f], gain[f] = ARRidge(ac[f], order, ridge) return ret, gain coef = levinson(ac, order, ridge*ac[0]) YY, Yy = ACToMatrix(ac, order) gain = ac[0] + np.dot(coef, (np.dot(YY, coef) - 2*Yy)) / ac.size return coef, gain # Lasso-like implementation of AR def ARLasso(ac, order=10, ridge=0.0): if ac.ndim > 1: ret = np.ndarray((ac.shape[0], order)) gain = np.ndarray(ac.shape[0]) for f in range(ac.shape[0]): ret[f], gain[f] = ARLasso(ac[f], order, ridge) return ret, gain # Convert ac into matrices YY, Yy = ACToMatrix(ac, order) # Initialise lasso with ridge gain = ac[0] A = np.zeros((order, order)) for i in range(order): #A[i,i] = ridge*ac[0]*ac.size A[i,i] = 0.01*ac[0] coef = np.dot(linalg.inv(YY+A), Yy) for i in range(10): for j in range(order): A[j,j] = np.sqrt(abs(coef[j])) gain = ac[0] + np.dot(coef, (np.dot(YY, coef) - 2*Yy)) / ac.size B = np.identity(order) * gain X = linalg.inv(np.dot(A, np.dot(YY, A)) + ridge*B) coef = np.dot(np.dot(A, np.dot(X, A)), Yy) # Each iteration should reduce the L1 norm of coef #print i, linalg.norm(coef, ord=1) return coef, gain # AR power spectrum # Old version before I found scipy.signal.freqz() #def ARSpectrum(a, g, nSpec=256, twiddle=None): # if twiddle is None: # # Pre-compute the "twiddle" factors; saves a lot of CPU # twiddle = np.ndarray((nSpec,a.shape[a.ndim-1]), dtype='complex') # for i in range(nSpec): # for j in range(twiddle.shape[1]): # twiddle[i,j] = np.exp(-1.j * np.pi * i * (j+1) / nSpec) # if a.ndim > 1: # ret = np.ndarray((a.shape[0], nSpec)) # for f in range(a.shape[0]): # ret[f] = ARSpectrum(a[f], g[f], nSpec, twiddle) # return ret # # spec = np.ndarray(nSpec) # for i in range(nSpec): # sm = np.dot(a,twiddle[i]) # spec[i] = g / abs(1.0 - sm)**2 # return spec def ARSpectrum(ar, gg, nSpec=256): """ Wrapper around scipy.signal.freqz() that both converts ar to filter coefficients and broadcasts over an array. """ ret = np.ndarray(core.newshape(ar.shape, nSpec)) for a, g, r in core.refiter([ar, gg, ret], core.newshape(ar.shape)): numer = np.sqrt(g) denom = -np.insert(a, 0, -1) tmp, r[...] = np.abs(sp.freqz(numer, denom, nSpec))**2 return ret # AR cepstrum def ARCepstrum(a, g, order=None): if not order: order = a.shape[-1] if a.ndim > 1: ret = np.ndarray((a.shape[0], order+1)) for f in range(a.shape[0]): ret[f] = ARCepstrum(a[f], g[f], order) return ret cep = np.ndarray(order+1) for i in range(order): sum = 0 for k in range(i): index = i-k-1 if (index < a.size): sum += a[index] * cep[k] * (k+1) cep[i] = sum / (i+1) if (i < a.size): cep[i] += a[i] cep[order] = np.log(max(g, 1e-8)) return cep # The opposite recursion: cepstrum to AR coeffs def ARCepstrumToPoly(cep, order=None): """ Convert cepstra to AR polynomial """ if not order: order = cep.shape[-1]-1 ar = np.ndarray(core.newshape(cep.shape, order)) ag = np.ndarray(core.newshape(cep.shape, 1)) for c, a, g in core.refiter([cep, ar, ag], core.newshape(cep.shape)): for i in range(order): sum = 0 for k in range(i): index = i-k-1 if (index < a.size): sum += a[index] * c[k] * (k+1) a[i] = -sum / (i+1) if (i < a.size): a[i] += c[i] g[0] = np.exp(c[order]) return ar, ag.reshape(core.newshape(cep.shape)) # AR excitation filter def ARExcitation(a, ar, gg): if a.ndim > 1: ret = np.ndarray(a.shape) for f in range(a.shape[0]): ret[f] = ARExcitation(a[f], ar[f], gg[f]) return ret # Reverse the coeffs; negate, and add a 1 for the current sample c = np.append(-ar[::-1], 1) r = np.ndarray(len(a)) g = 1.0 / np.sqrt(gg) for i in range(len(a)): if i < len(c): r[i] = np.dot(a[:i+1], c[-i-1:]) * g else: r[i] = np.dot(a[i-len(c)+1:i+1], c) * g return r # AR resynthesis filter def ARResynthesis(e, ar, gg): if e.ndim > 1: ret = np.ndarray(e.shape) for f in range(e.shape[0]): ret[f] = ARResynthesis(e[f], ar[f], gg[f]) return ret c = ar[::-1] r = np.ndarray(len(e)) g = np.sqrt(gg) r[0] = e[0]*g for i in range(1,len(e)): if i < len(c): r[i] = e[i]*g + np.dot(r[:i], c[-i:]) else: r[i] = e[i]*g + np.dot(r[i-len(c):i], c) return r # AR resynthesis filter; assuming later overlap-add def ARResynthesis2(e, ar, gg): assert(e.ndim == 2) # Should iterate down to this ret = np.ndarray(e.shape) for f in range(len(e)): c = ar[f,::-1] g = np.sqrt(gg[f]) ret[f,0] = e[f,0]*g for i in range(1,len(e[f])): if i < len(c): ret[f,i] = e[f,i]*g + np.dot(ret[f,:i], c[-i:]) if f >= 1: # Complete using outputs of previous OLA frame k = len(c) - i j = len(e[f])/2 ret[f,i] += np.dot(ret[f-1,j-k:j], c[:k]) else: ret[f,i] = e[f,i]*g + np.dot(ret[f,i-len(c):i], c) return ret # Sparse AR analysis assuming the excitation is distributed Laplacian. def ARSparse(a, order=10, gamma=1.414): if a.ndim > 1: ret = np.ndarray((a.shape[0], order)) gain = np.ndarray(a.shape[0]) for f in range(a.shape[0]): ret[f], gain[f] = ARSparse(a[f], order, gamma) return ret, gain # Initialise with the ML solution ac = core.Autocorrelation(a) coef, gain = ARLevinson(ac, order) x = 1.0 / np.abs(ARExcitation(a, coef, gain)[order:]) # Follow the matrix based method to the letter. elop contains the # poles reversed, coef is the poles in order. for iter in range(5): X = np.diag(np.sqrt(x)) # Actually root of inverse of X Y = np.dot(X, core.Frame(a[:a.size-1], size=order, period=1, pad=False)) y = np.dot(X, a[order:]) YY = np.dot(Y.T,Y) Yy = np.dot(Y.T,y) elop = np.dot(linalg.inv(YY), Yy) coef = elop[::-1] xx = ARExcitation(a, coef, 1.0)[order:]**2 gain = gamma * np.dot(xx,x) / y.size # for i in range(len(exn)): # exn[i] = max(abs(exn[i]),1e-6) x = 1.0 / np.sqrt(xx / gain) return (coef, gain) # AR analysis assuming the excitation is distributed Student-t. def ARStudent(a, order=10, df=1.0): if a.ndim > 1: ret = np.ndarray((a.shape[0], order)) gain = np.ndarray(a.shape[0]) for f in range(a.shape[0]): ret[f], gain[f] = ARStudent(a[f], order, df) return ret, gain # Initialise with the ML solution ac = core.Autocorrelation(a) coef, gain = ARLevinson(ac, order) x = 1.0 / (ARExcitation(a, coef, gain)[order:]**2 + df) # Follow the matrix based method to the letter. elop contains the # poles reversed, coef is the poles in order. for iter in range(5): X = np.diag(np.sqrt(x)) # Actually root of inverse of X Y = np.dot(X, core.Frame(a[:a.size-1], size=order, period=1, pad=False)) y = np.dot(X, a[order:]) YY = np.dot(Y.T,Y) Yy = np.dot(Y.T,y) elop = np.dot(linalg.inv(YY), Yy) coef = elop[::-1] xx = ARExcitation(a, coef, 1.0)[order:]**2 gain = (df+1) * np.dot(xx,x) / y.size x = 1.0 / (xx / gain + df) return (coef, gain) # Solve polynomial corresponding to AR solution def ARRoots(a): if a.ndim > 1: ret = np.ndarray(a.shape, dtype='complex') for f in range(a.shape[0]): ret[f] = ARRoots(a[f]) return ret # The refection coeffs are negative, so insert -1 and assume that # the whole thing can be multiplied by -1 r = np.roots(np.insert(a, 0, -1)) return r # Tries to find the angle corresponding to the fundamental frequency def ARAngle(a): if a.ndim > 1: ret_m = np.ndarray(a.shape) ret_s = np.ndarray(a.shape) for f in range(a.shape[0]): ret_m[f], ret_s[f] = ARAngle(a[f]) return ret_m, ret_s # First extract the angles of large poles above the real line t = np.zeros(len(a)) j = 0 for i in range(len(a)): if np.abs(a[i]) > 0.85 and np.imag(a[i]) > 0: t[j] = np.angle(a[i]) j += 1 # Build an array of the differences between the sorted angles t = np.sort(t[:j]) for i in range(1,j): t[i-1] = t[i] - t[i-1] # We need the mean and stddev of those differences m = np.mean(t[:j-1]) s = np.std(t[:j-1]) return m, s def ARLogLikelihoodRatio(a, order=10): if a.ndim > 1: ret = np.ndarray(a.shape[0]) for f in range(a.shape[0]): ret[f] = ARLogLikelihoodRatio(a[f], order) return ret # Usual Gaussian ac = core.Autocorrelation(a) coef, gain = ARLevinson(ac, order) exn = ARExcitation(a, coef, gain) llGauss = - len(exn)/2 * np.log(2*np.pi) - 0.5 * np.dot(exn, exn) # Unusual Laplacian gamma = 1 X = np.identity(len(a)-order) for iter in range(5): Y = np.dot(X, Frame(a[:a.size-1], size=order, period=1)) y = np.dot(X, a[order:]) YY = np.dot(Y.T,Y) Yy = np.dot(Y.T,y) elop = np.dot(linalg.inv(YY), Yy) coef = elop[::-1] gain = gamma * (np.dot(y,y) - np.dot(elop,Yy)) / y.size exn = ARExcitation(a, coef, gain) for i in range(len(exn)): exn[i] = max(abs(exn[i]),1e-6) X = np.diag(1 /
np.sqrt(exn[order:])
numpy.sqrt
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'test2.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. import os os.environ["LANG"] = 'C' try: os.environ['LC_NAME'] = 'en_IN:en' except: print("No 'LC_NAME' entry was found.") try: os.environ["LANGUAGE"] = 'en_IN:en' except: print("No 'LANGUAGE' entry was found.") from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QDialog, QApplication, QFileDialog from PyQt5.uic import loadUi import sys import glob import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 12}) from matplotlib.ticker import AutoMinorLocator import matplotlib matplotlib.interactive(True) import numpy as np from time import sleep #REMOVE LATER from datetime import datetime #REMOVE LATER import astropy.io.fits as pyfits from astropy.time import Time from fermipy.gtanalysis import GTAnalysis from fermipy.plotting import ROIPlotter import pathlib libpath = str(pathlib.Path(__file__).parent.resolve())+"/images/" class Worker(QtCore.QObject): starting = QtCore.pyqtSignal() finished = QtCore.pyqtSignal() progress = QtCore.pyqtSignal(int) def run_gtsetup(self): """Long-running task.""" self.starting.emit() ui.setFermipy() self.progress.emit(0) ui.gta.setup() self.progress.emit(1) ui.analysisBasics() self.progress.emit(2) ui.analysis_advanced() self.progress.emit(3) self.finished.emit() class Ui_mainWindow(QDialog): def setupUi(self, mainWindow): mainWindow.setObjectName("mainWindow") mainWindow.resize(870, 595) mainWindow.setWindowOpacity(1.0) self.centralwidget = QtWidgets.QWidget(mainWindow) self.centralwidget.setObjectName("centralwidget") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(670, 480, 191, 41)) self.pushButton.setObjectName("pushButton") self.progressBar = QtWidgets.QProgressBar(self.centralwidget) self.progressBar.setGeometry(QtCore.QRect(10, 530, 851, 20)) self.progressBar.setProperty("value", 0) self.progressBar.setObjectName("progressBar") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(520, 190, 71, 20)) self.label_2.setObjectName("label_2") self.picture = QtWidgets.QLabel(self.centralwidget) self.picture.setEnabled(True) self.picture.setGeometry(QtCore.QRect(560, 210, 251, 251)) font = QtGui.QFont() font.setBold(False) font.setWeight(50) self.picture.setFont(font) self.picture.setMouseTracking(False) self.picture.setAutoFillBackground(False) self.picture.setText("") self.picture.setPixmap(QtGui.QPixmap(libpath+"fermi.png")) self.picture.setScaledContents(True) self.picture.setWordWrap(False) self.picture.setObjectName("picture") self.groupBox_2 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_2.setGeometry(QtCore.QRect(300, 190, 211, 331)) self.groupBox_2.setObjectName("groupBox_2") self.radioButton = QtWidgets.QRadioButton(self.groupBox_2) self.radioButton.setEnabled(False) self.radioButton.setGeometry(QtCore.QRect(40, 170, 61, 23)) self.radioButton.setChecked(True) self.radioButton.setAutoExclusive(True) self.radioButton.setObjectName("radioButton") self.label_4 = QtWidgets.QLabel(self.groupBox_2) self.label_4.setEnabled(False) self.label_4.setGeometry(QtCore.QRect(100, 40, 121, 21)) self.label_4.setObjectName("label_4") self.checkBox_3 = QtWidgets.QCheckBox(self.groupBox_2) self.checkBox_3.setGeometry(QtCore.QRect(10, 150, 131, 23)) self.checkBox_3.setObjectName("checkBox_3") self.label_9 = QtWidgets.QLabel(self.groupBox_2) self.label_9.setEnabled(False) self.label_9.setGeometry(QtCore.QRect(100, 70, 81, 21)) self.label_9.setObjectName("label_9") self.label_10 = QtWidgets.QLabel(self.groupBox_2) self.label_10.setGeometry(QtCore.QRect(100, 120, 121, 21)) self.label_10.setObjectName("label_10") self.checkBox = QtWidgets.QCheckBox(self.groupBox_2) self.checkBox.setGeometry(QtCore.QRect(10, 20, 131, 23)) self.checkBox.setObjectName("checkBox") self.spinBox_3 = QtWidgets.QSpinBox(self.groupBox_2) self.spinBox_3.setGeometry(QtCore.QRect(40, 120, 48, 26)) self.spinBox_3.setMinimum(3) self.spinBox_3.setProperty("value", 10) self.spinBox_3.setObjectName("spinBox_3") self.doubleSpinBox = QtWidgets.QDoubleSpinBox(self.groupBox_2) self.doubleSpinBox.setEnabled(False) self.doubleSpinBox.setGeometry(QtCore.QRect(40, 215, 69, 21)) self.doubleSpinBox.setProperty("value", 1.0) self.doubleSpinBox.setObjectName("doubleSpinBox") self.label_5 = QtWidgets.QLabel(self.groupBox_2) self.label_5.setEnabled(False) self.label_5.setGeometry(QtCore.QRect(120, 210, 81, 31)) self.label_5.setObjectName("label_5") self.spinBox_2 = QtWidgets.QSpinBox(self.groupBox_2) self.spinBox_2.setEnabled(False) self.spinBox_2.setGeometry(QtCore.QRect(40, 70, 48, 26)) self.spinBox_2.setMinimum(1) self.spinBox_2.setProperty("value", 1) self.spinBox_2.setObjectName("spinBox_2") self.checkBox_2 = QtWidgets.QCheckBox(self.groupBox_2) self.checkBox_2.setGeometry(QtCore.QRect(10, 100, 131, 23)) self.checkBox_2.setChecked(True) self.checkBox_2.setObjectName("checkBox_2") self.spinBox = QtWidgets.QSpinBox(self.groupBox_2) self.spinBox.setEnabled(False) self.spinBox.setGeometry(QtCore.QRect(40, 40, 48, 26)) self.spinBox.setMinimum(3) self.spinBox.setProperty("value", 20) self.spinBox.setObjectName("spinBox") self.radioButton_2 = QtWidgets.QRadioButton(self.groupBox_2) self.radioButton_2.setEnabled(False) self.radioButton_2.setGeometry(QtCore.QRect(40, 190, 91, 23)) self.radioButton_2.setChecked(False) self.radioButton_2.setAutoExclusive(True) self.radioButton_2.setObjectName("radioButton_2") self.checkBox_6 = QtWidgets.QCheckBox(self.groupBox_2) self.checkBox_6.setGeometry(QtCore.QRect(40, 310, 131, 23)) self.checkBox_6.setChecked(True) self.checkBox_6.setObjectName("checkBox_6") self.doubleSpinBox_2 = QtWidgets.QDoubleSpinBox(self.groupBox_2) self.doubleSpinBox_2.setGeometry(QtCore.QRect(40, 280, 69, 26)) self.doubleSpinBox_2.setMinimum(0.5) self.doubleSpinBox_2.setProperty("value", 2.0) self.doubleSpinBox_2.setObjectName("doubleSpinBox_2") self.checkBox_5 = QtWidgets.QCheckBox(self.groupBox_2) self.checkBox_5.setGeometry(QtCore.QRect(10, 260, 131, 23)) self.checkBox_5.setChecked(True) self.checkBox_5.setObjectName("checkBox_5") self.checkBox_4 = QtWidgets.QCheckBox(self.groupBox_2) self.checkBox_4.setGeometry(QtCore.QRect(10, 240, 131, 23)) self.checkBox_4.setObjectName("checkBox_4") self.label_11 = QtWidgets.QLabel(self.groupBox_2) self.label_11.setGeometry(QtCore.QRect(120, 280, 101, 21)) self.label_11.setObjectName("label_11") self.groupBox_3 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_3.setGeometry(QtCore.QRect(10, 190, 282, 331)) self.groupBox_3.setObjectName("groupBox_3") self.label_15 = QtWidgets.QLabel(self.groupBox_3) self.label_15.setEnabled(False) self.label_15.setGeometry(QtCore.QRect(30, 30, 111, 17)) self.label_15.setObjectName("label_15") self.lineEdit_6 = QtWidgets.QLineEdit(self.groupBox_3) self.lineEdit_6.setEnabled(False) self.lineEdit_6.setGeometry(QtCore.QRect(30, 50, 101, 21)) self.lineEdit_6.setObjectName("lineEdit_6") self.checkBox_11 = QtWidgets.QCheckBox(self.groupBox_3) self.checkBox_11.setGeometry(QtCore.QRect(10, 150, 141, 23)) self.checkBox_11.setObjectName("checkBox_11") self.comboBox_2 = QtWidgets.QComboBox(self.groupBox_3) self.comboBox_2.setEnabled(False) self.comboBox_2.setGeometry(QtCore.QRect(30, 110, 101, 25)) self.comboBox_2.setObjectName("comboBox_2") self.comboBox_2.addItem("") self.comboBox_2.addItem("") self.comboBox_2.addItem("") self.comboBox_2.addItem("") self.lineEdit_9 = QtWidgets.QLineEdit(self.groupBox_3) self.lineEdit_9.setEnabled(False) self.lineEdit_9.setGeometry(QtCore.QRect(30, 180, 101, 21)) self.lineEdit_9.setObjectName("lineEdit_9") self.checkBox_10 = QtWidgets.QCheckBox(self.groupBox_3) self.checkBox_10.setGeometry(QtCore.QRect(10, 300, 151, 23)) self.checkBox_10.setChecked(True) self.checkBox_10.setObjectName("checkBox_10") self.label_21 = QtWidgets.QLabel(self.groupBox_3) self.label_21.setGeometry(QtCore.QRect(110, 272, 141, 17)) self.label_21.setObjectName("label_21") self.doubleSpinBox_3 = QtWidgets.QDoubleSpinBox(self.groupBox_3) self.doubleSpinBox_3.setEnabled(True) self.doubleSpinBox_3.setGeometry(QtCore.QRect(30, 240, 69, 21)) self.doubleSpinBox_3.setMinimum(1.0) self.doubleSpinBox_3.setProperty("value", 4.0) self.doubleSpinBox_3.setObjectName("doubleSpinBox_3") self.doubleSpinBox_4 = QtWidgets.QDoubleSpinBox(self.groupBox_3) self.doubleSpinBox_4.setEnabled(True) self.doubleSpinBox_4.setGeometry(QtCore.QRect(30, 270, 69, 21)) self.doubleSpinBox_4.setMinimum(0.1) self.doubleSpinBox_4.setProperty("value", 0.5) self.doubleSpinBox_4.setObjectName("doubleSpinBox_4") self.checkBox_8 = QtWidgets.QCheckBox(self.groupBox_3) self.checkBox_8.setGeometry(QtCore.QRect(10, 220, 221, 23)) self.checkBox_8.setChecked(True) self.checkBox_8.setObjectName("checkBox_8") self.label_20 = QtWidgets.QLabel(self.groupBox_3) self.label_20.setGeometry(QtCore.QRect(110, 242, 141, 17)) self.label_20.setObjectName("label_20") self.checkBox_12 = QtWidgets.QCheckBox(self.groupBox_3) self.checkBox_12.setGeometry(QtCore.QRect(10, 90, 131, 21)) self.checkBox_12.setObjectName("checkBox_12") self.radioButton_5 = QtWidgets.QRadioButton(self.groupBox_3) self.radioButton_5.setGeometry(QtCore.QRect(150, 50, 81, 23)) self.radioButton_5.setChecked(True) self.radioButton_5.setAutoExclusive(True) self.radioButton_5.setObjectName("radioButton_5") self.radioButton_6 = QtWidgets.QRadioButton(self.groupBox_3) self.radioButton_6.setGeometry(QtCore.QRect(150, 70, 112, 23)) self.radioButton_6.setAutoExclusive(True) self.radioButton_6.setObjectName("radioButton_6") self.label_3 = QtWidgets.QLabel(self.groupBox_3) self.label_3.setGeometry(QtCore.QRect(150, 30, 131, 17)) self.label_3.setObjectName("label_3") self.label_19 = QtWidgets.QLabel(self.groupBox_3) self.label_19.setEnabled(False) self.label_19.setGeometry(QtCore.QRect(220, 100, 71, 21)) self.label_19.setObjectName("label_19") self.checkBox_13 = QtWidgets.QCheckBox(self.groupBox_3) self.checkBox_13.setEnabled(False) self.checkBox_13.setGeometry(QtCore.QRect(170, 130, 121, 21)) self.checkBox_13.setChecked(False) self.checkBox_13.setObjectName("checkBox_13") self.lineEdit_12 = QtWidgets.QLineEdit(self.groupBox_3) self.lineEdit_12.setEnabled(False) self.lineEdit_12.setGeometry(QtCore.QRect(170, 100, 41, 21)) self.lineEdit_12.setObjectName("lineEdit_12") self.line_4 = QtWidgets.QFrame(self.groupBox_3) self.line_4.setGeometry(QtCore.QRect(0, 210, 281, 16)) self.line_4.setFrameShape(QtWidgets.QFrame.HLine) self.line_4.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_4.setObjectName("line_4") self.checkBox_14 = QtWidgets.QCheckBox(self.groupBox_3) self.checkBox_14.setEnabled(False) self.checkBox_14.setGeometry(QtCore.QRect(170, 150, 121, 21)) self.checkBox_14.setChecked(False) self.checkBox_14.setObjectName("checkBox_14") self.checkBox_15 = QtWidgets.QCheckBox(self.groupBox_3) self.checkBox_15.setEnabled(False) self.checkBox_15.setGeometry(QtCore.QRect(170, 170, 121, 21)) self.checkBox_15.setChecked(False) self.checkBox_15.setObjectName("checkBox_15") self.checkBox_16 = QtWidgets.QCheckBox(self.groupBox_3) self.checkBox_16.setEnabled(True) self.checkBox_16.setGeometry(QtCore.QRect(150, 190, 141, 21)) self.checkBox_16.setChecked(False) self.checkBox_16.setObjectName("checkBox_16") self.label_22 = QtWidgets.QLabel(self.groupBox_3) self.label_22.setGeometry(QtCore.QRect(150, 290, 111, 17)) self.label_22.setObjectName("label_22") self.comboBox_3 = QtWidgets.QComboBox(self.groupBox_3) self.comboBox_3.setEnabled(True) self.comboBox_3.setGeometry(QtCore.QRect(150, 308, 101, 20)) self.comboBox_3.setObjectName("comboBox_3") self.comboBox_3.addItem("") self.comboBox_3.addItem("") self.plainTextEdit = QtWidgets.QPlainTextEdit(self.centralwidget) self.plainTextEdit.setGeometry(QtCore.QRect(520, 210, 341, 261)) self.plainTextEdit.setObjectName("plainTextEdit") self.toolButton_10 = QtWidgets.QToolButton(self.centralwidget) self.toolButton_10.setEnabled(False) self.toolButton_10.setGeometry(QtCore.QRect(650, 110, 26, 24)) self.toolButton_10.setObjectName("toolButton_10") self.lineEdit_7 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_7.setEnabled(False) self.lineEdit_7.setGeometry(QtCore.QRect(510, 110, 131, 25)) self.lineEdit_7.setObjectName("lineEdit_7") self.lineEdit_4 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_4.setGeometry(QtCore.QRect(490, 60, 151, 25)) self.lineEdit_4.setObjectName("lineEdit_4") self.toolButton_4 = QtWidgets.QToolButton(self.centralwidget) self.toolButton_4.setGeometry(QtCore.QRect(650, 60, 26, 24)) self.toolButton_4.setObjectName("toolButton_4") self.label_14 = QtWidgets.QLabel(self.centralwidget) self.label_14.setGeometry(QtCore.QRect(490, 40, 151, 17)) self.label_14.setObjectName("label_14") self.checkBox_9 = QtWidgets.QCheckBox(self.centralwidget) self.checkBox_9.setGeometry(QtCore.QRect(490, 90, 161, 23)) self.checkBox_9.setObjectName("checkBox_9") self.line_2 = QtWidgets.QFrame(self.centralwidget) self.line_2.setGeometry(QtCore.QRect(670, 40, 20, 101)) self.line_2.setFrameShape(QtWidgets.QFrame.VLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.line_3 = QtWidgets.QFrame(self.centralwidget) self.line_3.setGeometry(QtCore.QRect(470, 40, 20, 101)) self.line_3.setFrameShape(QtWidgets.QFrame.VLine) self.line_3.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_3.setObjectName("line_3") self.dateTimeEdit_2 = QtWidgets.QDateTimeEdit(self.centralwidget) self.dateTimeEdit_2.setGeometry(QtCore.QRect(690, 110, 171, 21)) self.dateTimeEdit_2.setDateTime(QtCore.QDateTime(QtCore.QDate(2008, 10, 14), QtCore.QTime(15, 43, 0))) self.dateTimeEdit_2.setMinimumDateTime(QtCore.QDateTime(QtCore.QDate(2008, 8, 14), QtCore.QTime(15, 43, 37))) self.dateTimeEdit_2.setCalendarPopup(False) self.dateTimeEdit_2.setObjectName("dateTimeEdit_2") self.dateTimeEdit = QtWidgets.QDateTimeEdit(self.centralwidget) self.dateTimeEdit.setGeometry(QtCore.QRect(690, 60, 171, 21)) self.dateTimeEdit.setDateTime(QtCore.QDateTime(QtCore.QDate(2008, 8, 4), QtCore.QTime(15, 43, 36))) self.dateTimeEdit.setDate(QtCore.QDate(2008, 8, 4)) self.dateTimeEdit.setTime(QtCore.QTime(15, 43, 36)) self.dateTimeEdit.setMinimumDateTime(QtCore.QDateTime(QtCore.QDate(2008, 8, 4), QtCore.QTime(15, 43, 36))) self.dateTimeEdit.setObjectName("dateTimeEdit") self.label_7 = QtWidgets.QLabel(self.centralwidget) self.label_7.setGeometry(QtCore.QRect(690, 40, 111, 17)) self.label_7.setObjectName("label_7") self.label_8 = QtWidgets.QLabel(self.centralwidget) self.label_8.setGeometry(QtCore.QRect(690, 90, 111, 17)) self.label_8.setObjectName("label_8") self.line = QtWidgets.QFrame(self.centralwidget) self.line.setGeometry(QtCore.QRect(290, 40, 20, 101)) self.line.setFrameShape(QtWidgets.QFrame.VLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.toolButton_5 = QtWidgets.QToolButton(self.centralwidget) self.toolButton_5.setGeometry(QtCore.QRect(610, 490, 26, 24)) self.toolButton_5.setObjectName("toolButton_5") self.lineEdit_10 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_10.setGeometry(QtCore.QRect(520, 490, 81, 25)) self.lineEdit_10.setObjectName("lineEdit_10") self.lineEdit_5 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_5.setGeometry(QtCore.QRect(310, 110, 131, 25)) self.lineEdit_5.setObjectName("lineEdit_5") self.lineEdit_3 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_3.setGeometry(QtCore.QRect(310, 60, 131, 25)) self.lineEdit_3.setObjectName("lineEdit_3") self.label_6 = QtWidgets.QLabel(self.centralwidget) self.label_6.setGeometry(QtCore.QRect(310, 90, 131, 20)) self.label_6.setObjectName("label_6") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(310, 40, 111, 17)) self.label.setObjectName("label") self.label_12 = QtWidgets.QLabel(self.centralwidget) self.label_12.setGeometry(QtCore.QRect(520, 470, 131, 20)) self.label_12.setObjectName("label_12") self.toolButton = QtWidgets.QToolButton(self.centralwidget) self.toolButton.setGeometry(QtCore.QRect(450, 60, 26, 24)) self.toolButton.setWhatsThis("") self.toolButton.setObjectName("toolButton") self.toolButton_2 = QtWidgets.QToolButton(self.centralwidget) self.toolButton_2.setGeometry(QtCore.QRect(450, 110, 26, 24)) self.toolButton_2.setObjectName("toolButton_2") self.toolButton_3 = QtWidgets.QToolButton(self.centralwidget) self.toolButton_3.setEnabled(False) self.toolButton_3.setGeometry(QtCore.QRect(260, 160, 26, 24)) self.toolButton_3.setObjectName("toolButton_3") self.label_17 = QtWidgets.QLabel(self.centralwidget) self.label_17.setGeometry(QtCore.QRect(180, 90, 111, 17)) self.label_17.setObjectName("label_17") self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_2.setGeometry(QtCore.QRect(180, 110, 111, 25)) self.lineEdit_2.setObjectName("lineEdit_2") self.label_18 = QtWidgets.QLabel(self.centralwidget) self.label_18.setGeometry(QtCore.QRect(40, 40, 61, 21)) self.label_18.setObjectName("label_18") self.label_16 = QtWidgets.QLabel(self.centralwidget) self.label_16.setGeometry(QtCore.QRect(180, 40, 81, 17)) self.label_16.setObjectName("label_16") self.comboBox = QtWidgets.QComboBox(self.centralwidget) self.comboBox.setGeometry(QtCore.QRect(40, 60, 71, 25)) self.comboBox.setObjectName("comboBox") self.comboBox.addItem("") self.comboBox.addItem("") self.lineEdit_8 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_8.setEnabled(False) self.lineEdit_8.setGeometry(QtCore.QRect(40, 160, 211, 25)) self.lineEdit_8.setObjectName("lineEdit_8") self.lineEdit = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit.setGeometry(QtCore.QRect(180, 60, 111, 25)) self.lineEdit.setObjectName("lineEdit") self.radioButton_3 = QtWidgets.QRadioButton(self.centralwidget) self.radioButton_3.setEnabled(True) self.radioButton_3.setGeometry(QtCore.QRect(20, 20, 91, 23)) self.radioButton_3.setChecked(True) self.radioButton_3.setAutoExclusive(True) self.radioButton_3.setObjectName("radioButton_3") self.radioButton_4 = QtWidgets.QRadioButton(self.centralwidget) self.radioButton_4.setEnabled(True) self.radioButton_4.setGeometry(QtCore.QRect(20, 140, 91, 23)) self.radioButton_4.setChecked(False) self.radioButton_4.setAutoExclusive(True) self.radioButton_4.setObjectName("radioButton_4") self.label_25 = QtWidgets.QLabel(self.centralwidget) self.label_25.setGeometry(QtCore.QRect(10, 0, 91, 21)) self.label_25.setObjectName("label_25") self.label_23 = QtWidgets.QLabel(self.centralwidget) self.label_23.setGeometry(QtCore.QRect(40, 90, 131, 21)) self.label_23.setObjectName("label_23") self.comboBox_4 = QtWidgets.QComboBox(self.centralwidget) self.comboBox_4.setGeometry(QtCore.QRect(40, 110, 71, 25)) self.comboBox_4.setObjectName("comboBox_4") self.comboBox_4.addItem("") self.comboBox_4.addItem("") self.line_5 = QtWidgets.QFrame(self.centralwidget) self.line_5.setGeometry(QtCore.QRect(160, 40, 20, 101)) self.line_5.setFrameShape(QtWidgets.QFrame.VLine) self.line_5.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_5.setObjectName("line_5") self.lineEdit_11 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_11.setEnabled(False) self.lineEdit_11.setGeometry(QtCore.QRect(310, 160, 131, 25)) self.lineEdit_11.setText("") self.lineEdit_11.setObjectName("lineEdit_11") self.toolButton_6 = QtWidgets.QToolButton(self.centralwidget) self.toolButton_6.setEnabled(False) self.toolButton_6.setGeometry(QtCore.QRect(450, 160, 26, 24)) self.toolButton_6.setObjectName("toolButton_6") self.label_13 = QtWidgets.QLabel(self.centralwidget) self.label_13.setEnabled(False) self.label_13.setGeometry(QtCore.QRect(310, 140, 131, 20)) self.label_13.setObjectName("label_13") self.line_6 = QtWidgets.QFrame(self.centralwidget) self.line_6.setGeometry(QtCore.QRect(140, 220, 20, 181)) self.line_6.setFrameShape(QtWidgets.QFrame.VLine) self.line_6.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_6.setObjectName("line_6") self.line_7 = QtWidgets.QFrame(self.centralwidget) self.line_7.setGeometry(QtCore.QRect(140, 480, 20, 41)) self.line_7.setFrameShape(QtWidgets.QFrame.VLine) self.line_7.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_7.setObjectName("line_7") self.pushButton.raise_() self.progressBar.raise_() self.label_2.raise_() self.groupBox_2.raise_() self.groupBox_3.raise_() self.plainTextEdit.raise_() self.toolButton_10.raise_() self.lineEdit_7.raise_() self.lineEdit_4.raise_() self.toolButton_4.raise_() self.label_14.raise_() self.checkBox_9.raise_() self.line_2.raise_() self.line_3.raise_() self.dateTimeEdit_2.raise_() self.dateTimeEdit.raise_() self.label_7.raise_() self.label_8.raise_() self.line.raise_() self.toolButton_5.raise_() self.lineEdit_10.raise_() self.lineEdit_5.raise_() self.lineEdit_3.raise_() self.label_6.raise_() self.label.raise_() self.label_12.raise_() self.toolButton.raise_() self.toolButton_2.raise_() self.toolButton_3.raise_() self.label_17.raise_() self.lineEdit_2.raise_() self.label_18.raise_() self.label_16.raise_() self.comboBox.raise_() self.lineEdit_8.raise_() self.lineEdit.raise_() self.label_25.raise_() self.picture.raise_() self.label_23.raise_() self.comboBox_4.raise_() self.line_5.raise_() self.lineEdit_11.raise_() self.toolButton_6.raise_() self.label_13.raise_() self.line_6.raise_() self.line_7.raise_() mainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(mainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 870, 22)) self.menubar.setObjectName("menubar") self.menuTutorial = QtWidgets.QMenu(self.menubar) self.menuTutorial.setObjectName("menuTutorial") self.menuCredits = QtWidgets.QMenu(self.menubar) self.menuCredits.setObjectName("menuCredits") mainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(mainWindow) self.statusbar.setObjectName("statusbar") mainWindow.setStatusBar(self.statusbar) self.actionOpen = QtWidgets.QAction(mainWindow) self.actionOpen.setShortcut("") self.actionOpen.setObjectName("actionOpen") self.actionSave = QtWidgets.QAction(mainWindow) self.actionSave.setObjectName("actionSave") self.actionCopy = QtWidgets.QAction(mainWindow) self.actionCopy.setObjectName("actionCopy") self.actionPaste = QtWidgets.QAction(mainWindow) self.actionPaste.setObjectName("actionPaste") self.actionOpen_Tutorial = QtWidgets.QAction(mainWindow) self.actionOpen_Tutorial.setObjectName("actionOpen_Tutorial") self.actionSee_credits = QtWidgets.QAction(mainWindow) self.actionSee_credits.setObjectName("actionSee_credits") self.actionLoad_state = QtWidgets.QAction(mainWindow) self.actionLoad_state.setObjectName("actionLoad_state") self.menuTutorial.addAction(self.actionOpen_Tutorial) self.menuTutorial.addAction(self.actionLoad_state) self.menuCredits.addAction(self.actionSee_credits) self.menubar.addAction(self.menuTutorial.menuAction()) self.menubar.addAction(self.menuCredits.menuAction()) self.retranslateUi(mainWindow) QtCore.QMetaObject.connectSlotsByName(mainWindow) #Click GO! self.pushButton.setToolTip('Click to start the analysis') self.pushButton.clicked.connect(self.runLongTask) #self.actionOpen_Tutorial.connect(self.popup_tutorial) self.actionOpen_Tutorial.triggered.connect(self.popup_tutorial) self.actionSee_credits.triggered.connect(self.popup_credits) self.actionLoad_state.triggered.connect(self.load_GUIstate) ############ Loading main files: self.toolButton.setCheckable(True) self.toolButton.setToolTip('You can download the spacecraft file from https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi') self.toolButton.clicked.connect(self.browsefiles) self.toolButton_2.setCheckable(True) self.toolButton_2.setToolTip('You can download the photon files from https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi') self.toolButton_2.clicked.connect(self.browsefiles) self.toolButton_3.setCheckable(True) self.toolButton_3.setToolTip('Please upload your own config.yaml file') self.toolButton_3.clicked.connect(self.browsefiles) self.toolButton_4.setCheckable(True) self.toolButton_4.setToolTip('You can download the background files from https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html') self.toolButton_4.clicked.connect(self.browsefiles) self.toolButton_5.setCheckable(True) self.toolButton_5.clicked.connect(self.browsefiles) self.toolButton_6.setCheckable(True) self.toolButton_6.setToolTip('You can download the photon files from https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi') self.toolButton_6.clicked.connect(self.browsefiles) self.toolButton_10.setCheckable(True) self.toolButton_10.clicked.connect(self.browsefiles) self.lineEdit_9.setToolTip("e.g.: 4FGL J1222.5+0414,4FGL J1219.7+0444,4FGL ...") ###### Activating/deactivating options self.checkBox.clicked.connect(self.activate) self.checkBox_2.clicked.connect(self.activate) self.checkBox_3.clicked.connect(self.activate) self.checkBox_5.clicked.connect(self.activate) self.checkBox_8.clicked.connect(self.activate) self.checkBox_9.clicked.connect(self.activate) self.checkBox_11.clicked.connect(self.activate) self.checkBox_12.clicked.connect(self.activate) self.radioButton.clicked.connect(self.activate) self.radioButton_2.clicked.connect(self.activate) self.radioButton_3.clicked.connect(self.activate) self.radioButton_4.clicked.connect(self.activate) self.radioButton_5.clicked.connect(self.activate) self.radioButton_6.clicked.connect(self.activate) self.comboBox_4.activated.connect(self.activate) self.comboBox_4.setToolTip("Is your target listed in the catalog selected above?") self.comboBox_2.setToolTip("Select a spectral model for your target") self.comboBox_3.setToolTip("Select the output format for the main plots (i.e. SED, light curve etc)") self.checkBox_13.setToolTip("Check if you wish that only the normalizations can vary") self.checkBox_14.setToolTip("Freeze the Galactic diffuse model") self.checkBox_15.setToolTip("Freeze the isotropic diffuse model") self.checkBox_16.setToolTip("If checked, you will freeze the spectral shape of the target") self.checkBox_8.setToolTip("Check to look for extra sources in the ROI, i.e. sources not listed in the adopted catalog") self.checkBox_6.setToolTip("If checked, the target will be removed from the model. If unchecked, easyFermi computes the residuals TS map") self.label_11.setToolTip("The photon index of the test source") def retranslateUi(self, mainWindow): _translate = QtCore.QCoreApplication.translate mainWindow.setWindowIcon(QtGui.QIcon(libpath+'easyFermiIcon.png')) mainWindow.setWindowTitle(_translate("mainWindow", "easyFermi")) self.pushButton.setText(_translate("mainWindow", "Go!")) self.label_2.setText(_translate("mainWindow", "Log:")) self.groupBox_2.setTitle(_translate("mainWindow", "Science:")) self.radioButton.setText(_translate("mainWindow", "Disk")) self.label_4.setText(_translate("mainWindow", "N⁰ of time bins")) self.checkBox_3.setText(_translate("mainWindow", "Extension:")) self.label_9.setText(_translate("mainWindow", "N⁰ of cores")) self.label_10.setText(_translate("mainWindow", "N⁰ of energy bins")) self.checkBox.setText(_translate("mainWindow", "Light curve:")) self.label_5.setText(_translate("mainWindow", "Max. size")) self.checkBox_2.setText(_translate("mainWindow", "SED:")) self.radioButton_2.setText(_translate("mainWindow", "2D-Gauss")) self.checkBox_6.setText(_translate("mainWindow", "Remove target")) self.checkBox_5.setText(_translate("mainWindow", "TS map:")) self.checkBox_4.setText(_translate("mainWindow", "Relocalize")) self.label_11.setText(_translate("mainWindow", "Photon index")) self.groupBox_3.setTitle(_translate("mainWindow", "Advanced configurations:")) self.label_15.setText(_translate("mainWindow", "Target name/tag:")) self.checkBox_11.setText(_translate("mainWindow", "Delete sources:")) self.comboBox_2.setAccessibleName(_translate("mainWindow", "4FGL")) self.comboBox_2.setAccessibleDescription(_translate("mainWindow", "4FGL")) self.comboBox_2.setItemText(0, _translate("mainWindow", "Select...")) self.comboBox_2.setItemText(1, _translate("mainWindow", "Power-law")) self.comboBox_2.setItemText(2, _translate("mainWindow", "LogPar")) self.comboBox_2.setItemText(3, _translate("mainWindow", "PLEC")) self.lineEdit_9.setText(_translate("mainWindow", "")) self.checkBox_10.setText(_translate("mainWindow", "Diagnostic plots")) self.label_21.setText(_translate("mainWindow", "Minimum separation (⁰)")) self.checkBox_8.setText(_translate("mainWindow", "Find extra sources in the ROI:")) self.label_20.setText(_translate("mainWindow", "Minimum significance")) self.checkBox_12.setText(_translate("mainWindow", "Change model:")) self.radioButton_5.setText(_translate("mainWindow", "Defaut")) self.radioButton_6.setText(_translate("mainWindow", "Customized")) self.label_3.setText(_translate("mainWindow", "Free source radius:")) self.label_19.setText(_translate("mainWindow", "Radius (⁰)")) self.checkBox_13.setText(_translate("mainWindow", "Only norm.")) self.checkBox_14.setText(_translate("mainWindow", "Freeze Gal.")) self.checkBox_15.setText(_translate("mainWindow", "Freeze Iso.")) self.checkBox_16.setText(_translate("mainWindow", "Freeze shape targ.")) self.label_22.setText(_translate("mainWindow", "Output format:")) self.comboBox_3.setAccessibleName(_translate("mainWindow", "4FGL")) self.comboBox_3.setAccessibleDescription(_translate("mainWindow", "4FGL")) self.comboBox_3.setItemText(0, _translate("mainWindow", "pdf")) self.comboBox_3.setItemText(1, _translate("mainWindow", "png")) self.plainTextEdit.setPlainText(_translate("mainWindow", "\n" "")) self.toolButton_10.setText(_translate("mainWindow", "...")) self.toolButton_4.setText(_translate("mainWindow", "...")) self.label_14.setText(_translate("mainWindow", "Dir. of diff. emission:")) self.checkBox_9.setText(_translate("mainWindow", "Use external ltcube:")) self.dateTimeEdit_2.setDisplayFormat(_translate("mainWindow", "dd/MM/yyyy HH:mm:ss")) self.dateTimeEdit.setDisplayFormat(_translate("mainWindow", "dd/MM/yyyy HH:mm:ss")) self.label_7.setText(_translate("mainWindow", "Start:")) self.label_8.setText(_translate("mainWindow", "Stop:")) self.toolButton_5.setText(_translate("mainWindow", "...")) self.lineEdit_10.setText(_translate("mainWindow", ".")) self.label_6.setText(_translate("mainWindow", "Dir. of photon files:")) self.label.setText(_translate("mainWindow", "Spacecraft file:")) self.label_12.setText(_translate("mainWindow", "Output directory:")) self.toolButton.setAccessibleDescription(_translate("mainWindow", "spacecraft mission file")) self.toolButton.setText(_translate("mainWindow", "...")) self.toolButton_2.setText(_translate("mainWindow", "...")) self.toolButton_3.setText(_translate("mainWindow", "...")) self.label_17.setText(_translate("mainWindow", "<html><head/><body><p>E<span style=\" vertical-align:sub;\">min</span>, E<span style=\" vertical-align:sub;\">max</span> (MeV):</p></body></html>")) self.lineEdit_2.setText(_translate("mainWindow", "100, 300000")) self.label_18.setText(_translate("mainWindow", "Catalog:")) self.label_16.setText(_translate("mainWindow", "RA, Dec (⁰):")) self.comboBox.setAccessibleName(_translate("mainWindow", "4FGL")) self.comboBox.setAccessibleDescription(_translate("mainWindow", "4FGL")) self.comboBox.setItemText(0, _translate("mainWindow", "4FGL")) self.comboBox.setItemText(1, _translate("mainWindow", "3FGL")) self.lineEdit_8.setText(_translate("mainWindow", "Configuration file (yaml)")) self.radioButton_3.setText(_translate("mainWindow", "Standard")) self.radioButton_4.setText(_translate("mainWindow", "Custom")) self.label_25.setText(_translate("mainWindow", "Config. file:")) self.label_23.setText(_translate("mainWindow", "Target cataloged?")) self.comboBox_4.setAccessibleName(_translate("mainWindow", "4FGL")) self.comboBox_4.setAccessibleDescription(_translate("mainWindow", "4FGL")) self.comboBox_4.setItemText(0, _translate("mainWindow", "Yes")) self.comboBox_4.setItemText(1, _translate("mainWindow", "No")) self.toolButton_6.setText(_translate("mainWindow", "...")) self.label_13.setText(_translate("mainWindow", "Dir. of photon files:")) self.menuTutorial.setTitle(_translate("mainWindow", "Menu")) self.menuCredits.setTitle(_translate("mainWindow", "Credits")) self.actionOpen.setText(_translate("mainWindow", "Open...")) self.actionSave.setText(_translate("mainWindow", "Save")) self.actionSave.setIconText(_translate("mainWindow", "Save")) self.actionSave.setShortcut(_translate("mainWindow", "Ctrl+S")) self.actionCopy.setText(_translate("mainWindow", "Copy")) self.actionCopy.setShortcut(_translate("mainWindow", "Ctrl+C")) self.actionPaste.setText(_translate("mainWindow", "Paste")) self.actionPaste.setStatusTip(_translate("mainWindow", "Paste a file")) self.actionPaste.setShortcut(_translate("mainWindow", "Ctrl+V")) self.actionOpen_Tutorial.setText(_translate("mainWindow", "Open Tutorial")) self.actionSee_credits.setText(_translate("mainWindow", "See credits")) self.actionLoad_state.setText(_translate("mainWindow", "Load GUI state")) def reportProgress(self, n): if n == 0: self.progressBar.setProperty("value", 5) if self.lineEdit_9.text() != ' ': self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Deleting source(s): "+self.lineEdit_9.text()+".\n") else: self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- No sources deleted.\n") self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Running gtselect, gtbin, etc.\n") if (self.IsThereLtcube is None) & (self.IsThereLtcube3==0): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- It will take up to ~"+str(int(self.Time_intervMJD*206/(30.0*60)))+" min to run the ltcube\n") self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"(Don't worry, it really takes some time...)\n") else: self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Using precomputed ltcube.\n") if n == 1: self.progressBar.setProperty("value", 25) self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Setup finished.\n") self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Computing flux, spectral index, TS, etc.\n") #self.thread.terminate() if n == 2: self.progressBar.setProperty("value", 50) self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+self.fitquality+"\n") self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Main results saved in Target_results.txt\n") if self.freeradiusalert != 'ok': self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+self.freeradiusalert+"\n") if self.checkBox_4.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Relocalizing target...\n") if self.checkBox_5.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Computing TS map.\n") if self.checkBox_2.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Computing SED.\n") if self.checkBox_3.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Computing extension.\n") if self.checkBox.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Computing light curve.\n") if n == 3: self.progressBar.setProperty("value", 75) if self.checkBox_4.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- New position: RA = "+str(round(self.locRA,3))+", Dec = "+str(round(self.locDec,3))+", r_95 = "+str(round(self.locr95,3))+"\n") self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Localization results saved in "+self.sourcename+"_loc.fits\n") if self.checkBox_5.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- TS map saved as a figure and fits files.\n") if self.checkBox_2.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- SED data saved in "+self.sourcename+"_sed.fits\n") self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Preliminar SED shown in figure Quickplot_SED\n") if self.checkBox_3.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Extension data saved in "+self.sourcename+"_ext.fits\n") self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Extension is shown in figure Quickplot_extension\n") if self.checkBox.isChecked(): self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- LC saved in file "+self.sourcename+"_lightcurve.fits\n") self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- LC is shown in figure Quickplot_LC\n") def runLongTask(self): #Making Fermi logo transparent: new_pix = QtGui.QPixmap(libpath+"fermi.png") new_pix.fill(QtCore.Qt.transparent) painter = QtGui.QPainter(new_pix) painter.setOpacity(0.2) painter.drawPixmap(QtCore.QPoint(), QtGui.QPixmap(libpath+"fermi.png")) painter.end() self.picture.setPixmap(new_pix) self.picture.setGeometry(QtCore.QRect(560, 210, 251, 251)) self.plainTextEdit.setPlainText("") can_we_go = self.check_for_erros() if can_we_go: self.thread = QtCore.QThread() self.worker = Worker() self.worker.moveToThread(self.thread) # Step 5: Connect signals and slots self.thread.started.connect(self.worker.run_gtsetup) self.worker.finished.connect(self.thread.quit) self.worker.finished.connect(self.worker.deleteLater) self.thread.finished.connect(self.thread.deleteLater) self.worker.starting.connect(self.readytogo) self.worker.progress.connect(self.reportProgress) # Step 6: Start the thread self.thread.start() # Final reset self.thread.finished.connect( lambda: self.pushButton.setEnabled(True) ) _translate = QtCore.QCoreApplication.translate self.thread.finished.connect( lambda: self.pushButton.setText(_translate("MainWindow", "Go!")) ) self.thread.finished.connect( lambda: self.progressBar.setProperty("value", 100) ) self.thread.finished.connect( lambda: self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Saving GUI status...\n") ) self.thread.finished.connect( self.save_GUIstate ) self.thread.finished.connect( lambda: self.plainTextEdit.setPlainText(self.plainTextEdit.toPlainText()+"- Process finished!\n") ) else: self.popup_go() def save_GUIstate(self): if self.radioButton_3.isChecked(): Standard = 'Yes' Coords = self.lineEdit.text() Energ = self.lineEdit_2.text() date = self.dateTimeEdit.text() date2 = self.dateTimeEdit_2.text() spacecraft = self.lineEdit_3.text() diffuse = self.lineEdit_4.text() dir_photon = self.lineEdit_5.text() Use_external_ltcube = self.checkBox_9.isChecked() external_ltcube = self.lineEdit_7.text() catalog = self.comboBox.currentText() cataloged = self.comboBox_4.currentText() state = [Standard,Coords,Energ,date,date2,spacecraft,diffuse,dir_photon, Use_external_ltcube, external_ltcube, catalog, cataloged] else: Standard = 'No' configfile = self.lineEdit_8.text() dir_photon = self.lineEdit_11.text() state = [Standard, configfile, dir_photon] nickname = self.lineEdit_6.text() change_model = self.checkBox_12.isChecked() which_model = self.comboBox_2.currentText() delete_sources = self.checkBox_11.isChecked() which_sources_deleted = self.lineEdit_9.text() Free_radius_standard = self.radioButton_5.isChecked() Free_radius_custom = self.radioButton_6.isChecked() free_radius = self.lineEdit_12.text() Only_norm = self.checkBox_13.isChecked() Freeze_Gal = self.checkBox_14.isChecked() Freeze_Iso = self.checkBox_15.isChecked() Freeze_targ_shape = self.checkBox_16.isChecked() find_sources = self.checkBox_8.isChecked() min_sig = self.doubleSpinBox_3.value() min_sep = self.doubleSpinBox_4.value() diagnostic = self.checkBox_10.isChecked() output_format = self.comboBox_3.currentText() part2 = [nickname, change_model, which_model, delete_sources, which_sources_deleted, Free_radius_standard, Free_radius_custom, free_radius, Only_norm, Freeze_Gal, Freeze_Iso, Freeze_targ_shape, find_sources, min_sig, min_sep, diagnostic, output_format] LC = self.checkBox.isChecked() LC_Nbins = self.spinBox.value() LC_Ncores = self.spinBox_2.value() SED = self.checkBox_2.isChecked() SED_Nbins = self.spinBox_3.value() extension = self.checkBox_3.isChecked() Disk = self.radioButton.isChecked() Gauss2D = self.radioButton_2.isChecked() max_size = self.doubleSpinBox.value() reloc = self.checkBox_4.isChecked() TS_map = self.checkBox_5.isChecked() test_source_index = self.doubleSpinBox_2.value() remove_targ_from_model = self.checkBox_6.isChecked() output = self.lineEdit_10.text() part3 = [LC, LC_Nbins, LC_Ncores, SED, SED_Nbins, extension, Disk, Gauss2D, max_size, reloc, TS_map, test_source_index, remove_targ_from_model, output] state = state + part2 + part3
np.save(self.OutputDir+'GUI_status.npy', state, allow_pickle=True, fix_imports=True)
numpy.save
# -*- coding:UTF-8 -*- from sklearn.linear_model import LogisticRegression import numpy as np import random """ 函数说明:sigmoid函数 Parameters: inX - 数据 Returns: sigmoid函数 Author: <NAME> Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-09-05 """ def sigmoid(inX): return 1.0 / (1 + np.exp(-inX)) """ 函数说明:改进的随机梯度上升算法 Parameters: dataMatrix - 数据数组 classLabels - 数据标签 numIter - 迭代次数 Returns: weights - 求得的回归系数数组(最优参数) Author: <NAME> Blog: http://blog.csdn.net/c406495762 Zhihu: https://www.zhihu.com/people/Jack--Cui/ Modify: 2017-09-05 """ def stocGradAscent1(dataMatrix, classLabels, numIter=150): m,n = np.shape(dataMatrix) #返回dataMatrix的大小。m为行数,n为列数。 weights =
np.ones(n)
numpy.ones
# -*- coding:utf-8 -*- """ you do not need to update a existing instance of class ConvNetValue. because when you generate a instance of class ConvNetValue, this instance must be a instance who has the latest params of matconvnet. so just generate a new instance from class ConvNetValue when you need it """ import numpy as np import tensorflow as tf import scipy.io import os class ConvNetValue(): def __init__(self, matconvnet = None, Flag=False): if matconvnet == None: self.name = None # TODO: <> params are stored in these dictionary self.W_d = {} self.b_d = {} self.bn_gamma_d = {} self.bn_moments_d = {} self.bn_beta_d = {} self.bn_moving_mean_d = {} self.bn_moving_variance_d = {} self.bnorm_adjust = False self.bn_gamma_adj = None self.bn_moments_adj = None self.bn_beta_adj = None self.bn_moving_mean_adj = None self.bn_moving_variance_adj = None self.num_layers = 5 self.bnorm_yn_n = np.array([1, 1, 1, 1, 0], dtype=bool) self.conv_stride_n = np.array([2, 1, 1, 1, 1]) self.filtergroup_yn_n = np.array([0, 1, 0, 1, 1], dtype=bool) self.bnorm_yn_n = np.array([1, 1, 1, 1, 0], dtype=bool) self.relu_yn_n = np.array([1, 1, 1, 1, 0], dtype=bool) self.trainable_n = np.array([0, 0, 0, 0, 1]) self.pool_stride_n =
np.array([2, 1, 0, 0, 0])
numpy.array
#!/usr/bin/env python from genericpath import exists import numpy as np import glob from distort_calibration import * from cartesian import * from registration_3d import * from optical_tracking import * from em_tracking import * from eval import * from pathlib import Path import argparse import csv from improved_em_tracking import * from fiducials import * def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "data_dir", type=str, help="path to data directory", ) parser.add_argument( "runtype", type=int, help="0 for debug, 1 for unknown", ) parser.add_argument( "letter", type=int, help="index of the letter", ) parser.add_argument( "output_dir", type=str, help="path to output directory(automatically created if does not exist)", ) parser.add_argument( "--eval", type=bool, default=False, help="Whether to evaluate or not" ) return parser.parse_args() def main(): args = parse_args() runtype = args.runtype run = args.letter letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] type = ['debug', 'unknown'] data_dir = args.data_dir # first read in Calbody (Nd, Na, Nc) # then readings (ND, NA, NC, nframes) # the last output determines whether to show the result in terminal em_pivot = em_tracking( data_dir , "pa2-", type[runtype] , letters[run] , output = 0) optical_pivot = optical_tracking( data_dir , "pa2-", type[runtype] , letters[run] , output = 0) #Added improved_em_tracking file instead of the original em_pivot = improved_em_tracking(data_dir, "pa2-", type[runtype] , letters[run], output=0)[1] # print(em_pivot) tmp_ce = distort_calibration( data_dir , "pa2-", type[runtype] , letters[run] ,output = 0) C_exp = tmp_ce[0] Nc = tmp_ce[1] Nframes = tmp_ce[2] # print(optical_pivot.shape) ep = np.transpose(em_pivot) op = np.transpose(optical_pivot) # print(em_pivot) # print(optical_pivot) em_rounded = np.round(em_pivot.reshape(3), decimals=2) opt_rounded = np.round(optical_pivot.reshape(3), decimals=2) C_exp_rounded =
np.round(C_exp, decimals=2)
numpy.round
import pyaudio import numpy as np import time import json import scipy.signal as signal p = pyaudio.PyAudio() CHANNELS = 1 RATE = 44100 with open('hk1.json') as f: h1 = json.load(f) print(h1) with open('hk2.json') as f: h2 = json.load(f) print(h2) with open('hk3.json') as f: h3 = json.load(f) print(h3) h1mian = h1.pop() h1licz = h1.pop() h2mian = h2.pop() h2licz = h2.pop() h3mian = h3.pop() h3licz = h3.pop() h1m3 = h1mian.pop() h1m2 = h1mian.pop() h1m1 = h1mian.pop() h1li3 = h1licz.pop() h1li2 = h1licz.pop() h1li1 = h1licz.pop() h2m3 = h2mian.pop() h2m2 = h2mian.pop() h2m1 = h2mian.pop() h2li3 = h2licz.pop() h2li2 = h2licz.pop() h2li1 = h2licz.pop() h3m3 = h3mian.pop() h3m2 = h3mian.pop() h3m1 = h3mian.pop() h3li3 = h3licz.pop() h3li2 = h3licz.pop() h3li1 = h3licz.pop() ##h1licz = np.array([h1li1, h1li2, h1li3]) ##h1mian = np.array([h1m1, h1m2, h1m3]) ## ##h2licz = np.array([h2li1, h2li2, h2li3]) ##h2mian = np.array([h2m1, h2m2, h2m3]) ## ##h3licz = np.array([h3li1, h3li2, h3li3]) ##h3mian = np.array([h3m1, h3m2, h3m3]) h1licz = np.array([h1li3, h1li2, h1li1]) h1mian = np.array([h1m3, h1m2, h1m1]) h2licz = np.array([h2li3, h2li2, h2li1]) h2mian = np.array([h2m3, h2m2, h2m1]) h3licz = np.array([h3li3, h3li2, h3li1]) h3mian = np.array([h3m3, h3m2, h3m1]) def callback(in_data, frame_count, time_info, flag): # using Numpy to convert to array for processing # audio_data = np.fromstring(in_data, dtype=np.float32) # return in_data, pyaudio.paContinue #print(in_data) in_data_after_conversion = np.frombuffer(in_data, dtype='<f4') #print("AFTER CONVERISON") # print("indata") # print(in_data_after_conversion) filtr_h1 = signal.lfilter(h1licz, h1mian, in_data_after_conversion, axis=0) filtr_h2 = signal.lfilter(h2licz, h2mian, filtr_h1, axis=0) data_filtered = signal.lfilter(h3licz, h3mian, filtr_h2, axis=0) # print("filtered") # print(data_filtered) return
np.float32(data_filtered)
numpy.float32
# -*- coding: utf-8 -*- """ Created on Fri Sep 1 19:11:52 2017 @author: mariapanteli """ import pytest import numpy as np import scripts.map_and_average as map_and_average def test_remove_inds(): labels = np.array(['a', 'a', 'b', 'unknown']) features = np.array([[0, 1], [0,2], [0, 3], [0, 4]]) audiolabels = np.array(['a', 'b', 'c', 'd']) features, labels, audiolabels = map_and_average.remove_inds(features, labels, audiolabels) assert len(features) == 3 and len(labels) == 3 and len(audiolabels) == 3 def test_remove_inds(): labels = np.array(['a', 'a', 'b', 'unknown']) features = np.array([[0, 1], [0,2], [0, 3], [0, 4]]) audiolabels = np.array(['a', 'b', 'c', 'd']) features, labels, audiolabels = map_and_average.remove_inds(features, labels, audiolabels) features_true = np.array([[0, 1], [0,2], [0, 3]]) assert np.array_equal(features, features_true) def test_averageframes(): classlabels = np.array(['a', 'a', 'b', 'b', 'b']) features = np.array([[0, 1], [0,2], [0, 1], [1, 1], [2, 1]]) audiolabels = np.array(['a', 'a', 'b', 'b', 'b']) feat, audio, labels = map_and_average.averageframes(features, audiolabels, classlabels) feat_true = np.array([[0, 1.5], [1, 1]]) assert np.array_equal(feat, feat_true) def test_limit_to_n_seconds(): X = np.random.randn(10, 3) Y = np.random.randn(10) Yaudio = np.concatenate([
np.repeat('a', 7)
numpy.repeat
#calculate the extinction between two bands #from Rieke & Lebofsky 1985 Table 3 import argparse parser=argparse.ArgumentParser( prog = 'CalcMIRExtinction', formatter_class=argparse.RawDescriptionHelpFormatter, description='''Calculate the MIR extinction and flux ratios between two wavelengths or bands based on Rieke & Lebofsky (1985). Values are linearly interpolated between those in Table 3 (0.4-13 microns). The code will extrapolate out to 25 microns, but caution should be used!!! Inputs will be rounded to 0.1 micron. Band names must match Table 3 of Rieke & Lebofsky (1985). Examples: >>python CalcExtinction.py J 30 8.0 >>python CalcExtinction.py J 30 M >>python CalcExtinction.py 8.0 2.0 J >>python CalcExtinction.py 3.3 2.0 8.0 Required packages: numpy, scipy''', epilog='''Author: <NAME> (<EMAIL>) - Last updated: 2020-11-20''') parser.add_argument('ReferenceWavelength',type=str,help='Wavelength or band to use as the reference with known extinction (microns or band letter)') parser.add_argument('ReferenceExtinction',type=float,help='Extinction (mag) in the reference band (A_ReferenceBand).') parser.add_argument('TargetWavelength',type=str,help='Wavelength at which to calculate the extinction and flux ratio (microns or band letter).') args=parser.parse_args() import numpy as np from scipy.interpolate import interp1d #Rieke & Lebofsky 1985 Table 3 band = ['U','B','V','R','I','J','H','K','L','M','N','8.0','8.5','9.0','9.5','10.0','10.5','11.0','11.5','12.0','12.5','13.0'] #microns or band name wl = np.array([0.365, 0.445, 0.551, 0.658, 0.806, 1.220, 1.630, 2.190, 3.450, 4.750, 10.50, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12., 12.5, 13.]) #microns ElamV_EBV = np.array([1.64, 1.0, 0.0, -0.78, -1.60, -2.22, -2.55, -2.744, -2.91, -3.02, -2.93, -3.03, -2.96, -2.87, -2.83, -2.86, -2.87, -2.91, -2.95, -2.98, -3.00, -3.01]) Alam_Av = np.array([1.531, 1.324, 1.000, 0.748, 0.482, 0.282, 0.175, 0.112, 0.058, 0.023, 0.052, 0.020, 0.043, 0.074, 0.087, 0.083, 0.074, 0.060, 0.047, 0.037, 0.030, 0.027]) #sort the wavelengths and interpolate idx_sort =
np.argsort(wl)
numpy.argsort
""" rotsesim.pecvel This code runs a simulation that adds random peculiar velocities to a simulated galaxy sample, then finds H0 using a linear fit, attempting to mitigate the effects of peculiar motion. """ import numpy as np import matplotlib.pyplot as plt from scipy.odr import * #- Define necessary functions for fitting and plotting def fit_velocity(distance, h0): """ Linear fit of velocity vs. distance """ return h0 * distance def fit_h0_disterrors(distance,disterr,velocity): """ Use ODR to fit h0 using distance errors """ model = Model(fit_velocity) data = RealData(distance,velocity,sx=disterr) odr = ODR(data,model,beta0=[0.]) out = odr.run() fith0 = out.beta[0] errh0 = out.sd_beta[0] chi2dof = out.res_var return fith0,errh0,chi2dof def fit_h0_dist_vel_errors(distance,disterr,velocity,velerr,beta=None): """ Use ODR to fit h0 using errors in distance and velocity """ if beta: beta0 = beta else: beta0 = 0. model = Model(fit_velocity) data = RealData(distance,velocity,sx=disterr,sy=velerr) odr = ODR(data,model,beta0=[beta0]) out = odr.run() fith0 = out.beta[0] errh0 = out.sd_beta[0] chi2dof = out.res_var yerr = out.eps return fith0,errh0,chi2dof,yerr def plot_h0_histogram(h0values,h0mean,h0std): """ Plot histogram fit h0 values """ nbins = np.int(np.max(h0values) - np.min(h0values)) plt.xlabel('H0',fontsize=20) plt.ylabel('counts per bin',fontsize=20) plt.title('H0 distribution (H0 mock: avg = {:0.4f}, std = {:0.4f}'.format(h0mean,h0std),fontsize=20) plt.hist(h0values,bins=nbins) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.show() def plot_h0errors_histogram(h0errors,h0errors_mean,h0errors_std): """ Plot histogram fit h0 errors """ nbins = np.int(np.max(h0errors) - np.min(h0errors)) plt.xlabel('H0 errors',fontsize=20) plt.ylabel('counts per bin',fontsize=20) plt.title('H0 error distribution (H0 error: avg = {:0.4f}, std = {:0.4f}'.format(h0errors_mean,h0errors_std),fontsize=20) plt.hist(h0errors,bins=nbins) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.show() def plot_h0_mean_iterations(h0mean): """ Plot progression of h0 mean after iterating """ plt.title('H0 average progression, final H0 = {:0.4f}'.format(h0mean[-1]),fontsize=20) plt.xlabel('iteration',fontsize=20) plt.ylabel('H0 mean',fontsize=20) iteration = np.arange(len(h0mean)) + 1 plt.plot(iteration,h0mean) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.show() def plot_h0_std_iterations(h0std): """ Plot progression of h0 rms after iterating """ plt.title('H0 rms progression, final H0 rms = {:0.4f}'.format(h0std[-1]),fontsize=20) plt.xlabel('iteration',fontsize=20) plt.ylabel('H0 rms',fontsize=20) iteration = np.arange(len(h0std)) + 1 plt.plot(iteration,h0std) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.show() def pecvel_sim(h0,distance,disterr,pecvel,ngal,nsim,iterations,plothist,plotprog,seed): if seed is not None: np.random.seed(seed) seeds = np.random.randint(2**30, size=nsim) #- Generate ngal mock galaxies for nsim simulations dist_all = [] disterr_all = [] vel_all = [] velerr_all = [] fith0_all = [] h0err = [] totchi2 = [] for sim in range(nsim): #- Simulate distances shifted by random amount based on measurement error if seed: np.random.seed(seeds[sim]) dist = np.random.uniform(distance[0],distance[1],ngal) if seed: np.random.seed(seeds[sim]) derr = np.random.normal(disterr[0],disterr[1],ngal) disterror = dist*derr vel = h0*dist if seed: np.random.seed(seeds[sim]) dist = dist + np.random.uniform(-np.abs(disterror),np.abs(disterror),ngal) dist_all.append(dist) disterr_all.append(disterror) #- Simulate galaxy velocities including peculiar velocities if seed: np.random.seed(seeds[sim]) vpec = np.random.uniform(-pecvel,pecvel,ngal) vel = vel + vpec vel_all.append(vel) #- Fit h0 fith0, errh0, chi2 = fit_h0_disterrors(dist,disterror,vel) fith0_all.append(fith0) h0err.append(errh0) totchi2.append(chi2) #- Save difference in velocities from fit as errors fitvel = fith0 * dist verr = fitvel - vel velerr_all.append(verr) h0mean = np.mean(fith0_all) h0std = np.std(fith0_all) h0errmean =
np.mean(h0err)
numpy.mean
#!/usr/bin/env python # -*- coding: utf-8 -*- # Part of the PsychoPy library # Copyright (C) 2002-2018 <NAME> (C) 2019-2021 Open Science Tools Ltd. # Distributed under the terms of the GNU General Public License (GPL). """Tools related to working with various color spaces. The routines provided in the module are used to transform color coordinates between spaces. Most of the functions here are *vectorized*, allowing for array inputs to convert multiple color values at once. **As of version 2021.0 of PsychoPy**, users ought to use the :class:`~psychopy.colors.Color` class for working with color coordinate values. """ from __future__ import absolute_import, division, print_function __all__ = ['srgbTF', 'rec709TF', 'cielab2rgb', 'cielch2rgb', 'dkl2rgb', 'dklCart2rgb', 'rgb2dklCart', 'hsv2rgb', 'rgb2lms', 'lms2rgb', 'rgb2hsv', 'rescaleColor'] from past.utils import old_div import numpy from psychopy import logging from psychopy.tools.coordinatetools import sph2cart def unpackColors(colors): # used internally, not exported by __all__ """Reshape an array of color values to Nx3 format. Many color conversion routines operate on color data in Nx3 format, where rows are color space coordinates. 1x3 and NxNx3 input are converted to Nx3 format. The original shape and dimensions are also returned, allowing the color values to be returned to their original format using 'reshape'. Parameters ---------- colors : ndarray, list or tuple of floats Nx3 or NxNx3 array of colors, last dim must be size == 3 specifying each color coordinate. Returns ------- tuple Nx3 ndarray of converted colors, original shape, original dims. """ # handle the various data types and shapes we might get as input colors = numpy.asarray(colors, dtype=float) orig_shape = colors.shape orig_dim = colors.ndim if orig_dim == 1 and orig_shape[0] == 3: colors = numpy.array(colors, ndmin=2) elif orig_dim == 2 and orig_shape[1] == 3: pass # NOP, already in correct format elif orig_dim == 3 and orig_shape[2] == 3: colors = numpy.reshape(colors, (-1, 3)) else: raise ValueError( "Invalid input dimensions or shape for input colors.") return colors, orig_shape, orig_dim def rescaleColor(rgb, convertTo='signed', clip=False): """Rescale RGB colors. This function can be used to convert RGB value triplets from the PsychoPy signed color format to the normalized OpenGL format. PsychoPy represents colors using values between -1 and 1. However, colors are commonly represented using values between 0 and 1 when working with OpenGL and various other contexts. This function simply rescales values to switch between these formats. Parameters ---------- rgb : `array_like` 1-, 2-, 3-D vector of RGB coordinates to convert. The last dimension should be length-3 in all cases, specifying a single coordinate. convertTo : `str` If 'signed', this function will assume `rgb` is in OpenGL format [0:1] and rescale them to PsychoPy's format [-1:1]. If 'unsigned', input values are treated as OpenGL format and will be rescaled to use PsychoPy's. Default is 'signed'. clip : bool Clip values to the range that can be represented on a display. This is an optional step. Default is `False`. Returns ------- ndarray Rescaled values with the same shape as `rgb`. Notes ----- The `convertTo` argument also accepts strings 'opengl' and 'psychopy' as substitutes for 'signed' and 'unsigned', respectively. This might be more explicit in some contexts. Examples -------- Convert a signed RGB value to unsigned format:: rgb_signed = [-1, 0, 1] rgb_unsigned = rescaleColor(rgb_signed, convertTo='unsigned') """ # While pretty simple, this operation is done often enough to justify having # its own function to avoid writing it out all the time. It also explicitly # shows the direction of which values are being rescaled to make code more # readable. if convertTo == 'signed' or convertTo == 'psychopy': rgb_out = rgb * 2 - 1 # from OpenGL to PsychoPy format elif convertTo == 'unsigned' or convertTo == 'opengl': rgb_out = (rgb + 1) / 2. # from PsychoPy to OpenGL else: raise ValueError("Invalid value for `convertTo`, can either be " "'signed' or 'unsigned'.") if clip: rgb_out = numpy.clip(rgb_out, -1 if convertTo == 'signed' else 0, 1) return rgb_out def srgbTF(rgb, reverse=False, **kwargs): """Apply sRGB transfer function (or gamma) to linear RGB values. Input values must have been transformed using a conversion matrix derived from sRGB primaries relative to D65. Parameters ---------- rgb : tuple, list or ndarray of floats Nx3 or NxNx3 array of linear RGB values, last dim must be size == 3 specifying RBG values. reverse : boolean If True, the reverse transfer function will convert sRGB -> linear RGB. Returns ------- ndarray Array of transformed colors with same shape as input. """ rgb, orig_shape, orig_dim = unpackColors(rgb) # apply the sRGB TF if not reverse: # applies the sRGB transfer function (linear RGB -> sRGB) to_return = numpy.where( rgb <= 0.0031308, rgb * 12.92, (1.0 + 0.055) * rgb ** (1.0 / 2.4) - 0.055) else: # do the inverse (sRGB -> linear RGB) to_return = numpy.where( rgb <= 0.04045, rgb / 12.92, ((rgb + 0.055) / 1.055) ** 2.4) if orig_dim == 1: to_return = to_return[0] elif orig_dim == 3: to_return = numpy.reshape(to_return, orig_shape) return to_return def rec709TF(rgb, **kwargs): """Apply the Rec 709 transfer function (or gamma) to linear RGB values. This transfer function is defined in the ITU-R BT.709 (2015) recommendation document (http://www.itu.int/rec/R-REC-BT.709-6-201506-I/en) and is commonly used with HDTV televisions. Parameters ---------- rgb : tuple, list or ndarray of floats Nx3 or NxNx3 array of linear RGB values, last dim must be size == 3 specifying RBG values. Returns ------- ndarray Array of transformed colors with same shape as input. """ rgb, orig_shape, orig_dim = unpackColors(rgb) # applies the Rec.709 transfer function (linear RGB -> Rec.709 RGB) # mdc - I didn't compute the inverse for this one. to_return = numpy.where(rgb >= 0.018, 1.099 * rgb ** 0.45 - 0.099, 4.5 * rgb) if orig_dim == 1: to_return = to_return[0] elif orig_dim == 3: to_return = numpy.reshape(to_return, orig_shape) return to_return def cielab2rgb(lab, whiteXYZ=None, conversionMatrix=None, transferFunc=None, clip=False, **kwargs): """Transform CIE L*a*b* (1976) color space coordinates to RGB tristimulus values. CIE L*a*b* are first transformed into CIE XYZ (1931) color space, then the RGB conversion is applied. By default, the sRGB conversion matrix is used with a reference D65 white point. You may specify your own RGB conversion matrix and white point (in CIE XYZ) appropriate for your display. Parameters ---------- lab : tuple, list or ndarray 1-, 2-, 3-D vector of CIE L*a*b* coordinates to convert. The last dimension should be length-3 in all cases specifying a single coordinate. whiteXYZ : tuple, list or ndarray 1-D vector coordinate of the white point in CIE-XYZ color space. Must be the same white point needed by the conversion matrix. The default white point is D65 if None is specified, defined as X, Y, Z = 0.9505, 1.0000, 1.0890. conversionMatrix : tuple, list or ndarray 3x3 conversion matrix to transform CIE-XYZ to RGB values. The default matrix is sRGB with a D65 white point if None is specified. Note that values must be gamma corrected to appear correctly according to the sRGB standard. transferFunc : pyfunc or None Signature of the transfer function to use. If None, values are kept as linear RGB (it's assumed your display is gamma corrected via the hardware CLUT). The TF must be appropriate for the conversion matrix supplied (default is sRGB). Additional arguments to 'transferFunc' can be passed by specifying them as keyword arguments. Gamma functions that come with PsychoPy are 'srgbTF' and 'rec709TF', see their docs for more information. clip : bool Make all output values representable by the display. However, colors outside of the display's gamut may not be valid! Returns ------- ndarray Array of RGB tristimulus values. Example ------- Converting a CIE L*a*b* color to linear RGB:: import psychopy.tools.colorspacetools as cst cielabColor = (53.0, -20.0, 0.0) # greenish color (L*, a*, b*) rgbColor = cst.cielab2rgb(cielabColor) Using a transfer function to convert to sRGB:: rgbColor = cst.cielab2rgb(cielabColor, transferFunc=cst.srgbTF) """ lab, orig_shape, orig_dim = unpackColors(lab) if conversionMatrix is None: # XYZ -> sRGB conversion matrix, assumes D65 white point # mdc - computed using makeXYZ2RGB with sRGB primaries conversionMatrix = numpy.asmatrix([ [3.24096994, -1.53738318, -0.49861076], [-0.96924364, 1.8759675, 0.04155506], [0.05563008, -0.20397696, 1.05697151] ]) if whiteXYZ is None: # D65 white point in CIE-XYZ color space # See: https://en.wikipedia.org/wiki/SRGB whiteXYZ = numpy.asarray([0.9505, 1.0000, 1.0890]) L = lab[:, 0] # lightness a = lab[:, 1] # green (-) <-> red (+) b = lab[:, 2] # blue (-) <-> yellow (+) wht_x, wht_y, wht_z = whiteXYZ # white point in CIE-XYZ color space # convert Lab to CIE-XYZ color space # uses reverse transformation found here: # https://en.wikipedia.org/wiki/Lab_color_space xyz_array = numpy.zeros(lab.shape) s = (L + 16.0) / 116.0 xyz_array[:, 0] = s + (a / 500.0) xyz_array[:, 1] = s xyz_array[:, 2] = s - (b / 200.0) # evaluate the inverse f-function delta = 6.0 / 29.0 xyz_array = numpy.where(xyz_array > delta, xyz_array ** 3.0, (xyz_array - (4.0 / 29.0)) * (3.0 * delta ** 2.0)) # multiply in white values xyz_array[:, 0] *= wht_x xyz_array[:, 1] *= wht_y xyz_array[:, 2] *= wht_z # convert to sRGB using the specified conversion matrix rgb_out = numpy.asarray(numpy.dot(xyz_array, conversionMatrix.T)) # apply sRGB gamma correction if requested if transferFunc is not None: rgb_out = transferFunc(rgb_out, **kwargs) # clip unrepresentable colors if requested if clip: rgb_out = numpy.clip(rgb_out, 0.0, 1.0) # make the output match the dimensions/shape of input if orig_dim == 1: rgb_out = rgb_out[0] elif orig_dim == 3: rgb_out = numpy.reshape(rgb_out, orig_shape) return rescaleColor(rgb_out, convertTo='psychopy') def cielch2rgb(lch, whiteXYZ=None, conversionMatrix=None, transferFunc=None, clip=False, **kwargs): """Transform CIE L*C*h* coordinates to RGB tristimulus values. Parameters ---------- lch : tuple, list or ndarray 1-, 2-, 3-D vector of CIE L*C*h* coordinates to convert. The last dimension should be length-3 in all cases specifying a single coordinate. The hue angle *h is expected in degrees. whiteXYZ : tuple, list or ndarray 1-D vector coordinate of the white point in CIE-XYZ color space. Must be the same white point needed by the conversion matrix. The default white point is D65 if None is specified, defined as X, Y, Z = 0.9505, 1.0000, 1.0890 conversionMatrix : tuple, list or ndarray 3x3 conversion matrix to transform CIE-XYZ to RGB values. The default matrix is sRGB with a D65 white point if None is specified. Note that values must be gamma corrected to appear correctly according to the sRGB standard. transferFunc : pyfunc or None Signature of the transfer function to use. If None, values are kept as linear RGB (it's assumed your display is gamma corrected via the hardware CLUT). The TF must be appropriate for the conversion matrix supplied. Additional arguments to 'transferFunc' can be passed by specifying them as keyword arguments. Gamma functions that come with PsychoPy are 'srgbTF' and 'rec709TF', see their docs for more information. clip : boolean Make all output values representable by the display. However, colors outside of the display's gamut may not be valid! Returns ------- ndarray array of RGB tristimulus values """ lch, orig_shape, orig_dim = unpackColors(lch) # convert values to L*a*b* lab = numpy.empty(lch.shape, dtype=lch.dtype) lab[:, 0] = lch[:, 0] lab[:, 1] = lch[:, 1] * numpy.math.cos(numpy.math.radians(lch[:, 2])) lab[:, 2] = lch[:, 1] * numpy.math.sin(
numpy.math.radians(lch[:, 2])
numpy.math.radians
import pyllusion import numpy as np def test_delbeouf(): delboeuf1 = pyllusion.Delboeuf(illusion_strength=1, difference=-2, size_min=0.25) out1 = delboeuf1.to_image() parameters1 = delboeuf1.get_parameters() assert list(parameters1) == ['Difference', 'Size_Inner_Left', 'Size_Inner_Right', 'Size_Inner_Difference', 'Illusion', 'Illusion_Strength', 'Illusion_Type', 'Size_Outer_Left', 'Size_Outer_Right', 'Distance', 'Distance_Reference', 'Distance_Edges_Inner', 'Distance_Edges_Outer', 'Size_Inner_Smaller', 'Size_Inner_Larger', 'Size_Outer_Smaller', 'Size_Outer_Larger', 'Position_Left', 'Position_Right'] assert parameters1['Difference'] == -2 assert parameters1['Illusion_Strength'] == 1 assert parameters1['Illusion'] == 'Delboeuf' assert out1.size == (800, 600) delboeuf2 = pyllusion.Delboeuf(illusion_strength=1, difference=-2, size_min=0.5) out2 = delboeuf2.to_image() parameters2 = delboeuf2.get_parameters() assert parameters1['Size_Inner_Smaller'] < parameters2['Size_Inner_Smaller'] assert np.mean(np.array(out1)) > np.mean(np.array(out2)) out3 = delboeuf2.to_image(width=900, height=900) assert out3.size == (900, 900) def test_ebbinghaus(): ebbinghaus1 = pyllusion.Ebbinghaus(illusion_strength=2, difference=3, size_min=0.25) out1 = ebbinghaus1.to_image() parameters1 = ebbinghaus1.get_parameters() assert list(parameters1) == ['Difference', 'Size_Inner_Left', 'Size_Inner_Right', 'Size_Inner_Difference', 'Illusion', 'Illusion_Strength', 'Illusion_Type', 'Size_Outer_Left', 'Size_Outer_Right', 'Distance', 'Distance_Reference', 'Distance_Edges_Inner', 'Distance_Edges_Outer', 'Size_Inner_Smaller', 'Size_Inner_Larger', 'Size_Outer_Smaller', 'Size_Outer_Larger', 'Position_Outer_x_Left', 'Position_Outer_y_Left', 'Position_Outer_x_Right', 'Position_Outer_y_Right', 'Position_Left', 'Position_Right'] assert parameters1['Difference'] == 3 assert parameters1['Illusion_Strength'] == 2 assert parameters1['Illusion'] == 'Ebbinghaus' assert out1.size == (800, 600) ebbinghaus2 = pyllusion.Ebbinghaus(illusion_strength=2, difference=3, size_min=0.5) out2 = ebbinghaus2.to_image() parameters2 = ebbinghaus2.get_parameters() assert parameters1['Size_Inner_Smaller'] < parameters2['Size_Inner_Smaller'] assert np.mean(np.array(out1)) > np.mean(np.array(out2)) out3 = ebbinghaus2.to_image(width=900, height=900) assert out3.size == (900, 900) def test_mullerlyer(): mullerlyer1 = pyllusion.MullerLyer(illusion_strength=30, difference=0.3, size_min=0.5) out1 = mullerlyer1.to_image() parameters1 = mullerlyer1.get_parameters() assert list(parameters1) == ['Difference', 'Distance', 'Bottom_x1', 'Bottom_y1', 'Bottom_x2', 'Bottom_y2', 'Top_x1', 'Top_y1','Top_x2', 'Top_y2', 'Size_Bottom', 'Size_Top', 'Size_Larger', 'Size_Smaller', 'Distractor_TopLeft1_x1', 'Distractor_TopLeft1_y1', 'Distractor_TopLeft1_x2', 'Distractor_TopLeft1_y2', 'Distractor_TopLeft2_x1', 'Distractor_TopLeft2_y1', 'Distractor_TopLeft2_x2', 'Distractor_TopLeft2_y2', 'Distractor_TopRight1_x1', 'Distractor_TopRight1_y1', 'Distractor_TopRight1_x2', 'Distractor_TopRight1_y2', 'Distractor_TopRight2_x1', 'Distractor_TopRight2_y1', 'Distractor_TopRight2_x2', 'Distractor_TopRight2_y2', 'Distractor_BottomLeft1_x1', 'Distractor_BottomLeft1_y1', 'Distractor_BottomLeft1_x2', 'Distractor_BottomLeft1_y2', 'Distractor_BottomLeft2_x1', 'Distractor_BottomLeft2_y1', 'Distractor_BottomLeft2_x2', 'Distractor_BottomLeft2_y2', 'Distractor_BottomRight1_x1', 'Distractor_BottomRight1_y1', 'Distractor_BottomRight1_x2', 'Distractor_BottomRight1_y2', 'Distractor_BottomRight2_x1', 'Distractor_BottomRight2_y1', 'Distractor_BottomRight2_x2', 'Distractor_BottomRight2_y2', 'Illusion', 'Illusion_Strength', 'Illusion_Type', 'Distractor_Length'] assert parameters1['Difference'] == 0.3 assert parameters1['Illusion_Strength'] == 30 assert parameters1['Illusion'] == 'MullerLyer' assert out1.size == (800, 600) mullerlyer2 = pyllusion.MullerLyer(illusion_strength=30, difference=0.3, size_min=0.8) out2 = mullerlyer2.to_image() parameters2 = mullerlyer2.get_parameters() assert parameters1['Size_Smaller'] < parameters2['Size_Smaller'] assert np.mean(np.array(out1)) > np.mean(np.array(out2)) out3 = mullerlyer2.to_image(width=900, height=900) assert out3.size == (900, 900) def test_ponzo(): ponzo1 = pyllusion.Ponzo(illusion_strength=20, difference=0.2, size_min=0.5) out1 = ponzo1.to_image() parameters1 = ponzo1.get_parameters() assert list(parameters1) == ['Difference', 'Distance', 'Bottom_x1', 'Bottom_y1', 'Bottom_x2', 'Bottom_y2', 'Top_x1', 'Top_y1', 'Top_x2', 'Top_y2', 'Size_Bottom', 'Size_Top', 'Size_Larger', 'Size_Smaller', 'Illusion_Strength', 'Illusion_Type', 'Side_Angle', 'Side_Length', 'Left_x1', 'Left_y1', 'Left_x2', 'Left_y2', 'Right_x1', 'Right_y1', 'Right_x2', 'Right_y2', 'Illusion'] assert parameters1['Difference'] == 0.2 assert parameters1['Illusion_Strength'] == 20 assert parameters1['Illusion'] == 'Ponzo' assert out1.size == (800, 600) ponzo2 = pyllusion.Ponzo(illusion_strength=20, difference=0.2, size_min=0.8) out2 = ponzo2.to_image() parameters2 = ponzo2.get_parameters() assert parameters1['Size_Bottom'] < parameters2['Size_Bottom'] assert np.mean(np.array(out1)) > np.mean(np.array(out2)) out3 = ponzo2.to_image(width=900, height=900) assert out3.size == (900, 900) def test_zollner(): zollner1 = pyllusion.Zollner(illusion_strength=60, difference=0.5, distractors_n=5) out1 = zollner1.to_image() parameters1 = zollner1.get_parameters() assert list(parameters1) == ['Illusion', 'Illusion_Strength', 'Difference', 'Illusion_Type', 'Top_x1', 'Top_y1', 'Top_x2', 'Top_y2', 'Bottom_x1', 'Bottom_y1', 'Bottom_x2', 'Bottom_y2', 'Distractors_n', 'Distractors_Size', 'Distractors_Top_x1', 'Distractors_Top_y1', 'Distractors_Top_x2', 'Distractors_Top_y2', 'Distractors_Bottom_x1', 'Distractors_Bottom_y1', 'Distractors_Bottom_x2', 'Distractors_Bottom_y2', 'Distractors_Angle'] assert parameters1['Difference'] == 0.5 assert parameters1['Illusion_Strength'] == 60 assert parameters1['Illusion'] == 'Zollner' assert out1.size == (800, 600) zollner2 = pyllusion.Zollner(illusion_strength=60, difference=0.5, distractors_n=8) out2 = zollner2.to_image() parameters2 = zollner2.get_parameters() assert parameters1['Distractors_n'] < parameters2['Distractors_n'] assert np.mean(np.array(out1)) > np.mean(np.array(out2)) out3 = zollner2.to_image(width=900, height=900) assert out3.size == (900, 900) def test_rodframe(): rodframe1 = pyllusion.RodFrame(illusion_strength=20, difference=10) out1 = rodframe1.to_image() parameters1 = rodframe1.get_parameters() assert list(parameters1) == ['Illusion', 'Frame_Angle', 'Rod_Angle', 'Angle_Difference', 'Difference', 'Illusion_Strength', 'Illusion_Type'] assert parameters1['Difference'] == 10 assert parameters1['Illusion_Strength'] == 20 assert parameters1['Illusion'] == 'RodFrame' assert out1.size == (800, 600) rodframe2 = pyllusion.RodFrame(illusion_strength=20, difference=10) out2 = rodframe2.to_image(outline=30) parameters2 = rodframe2.get_parameters() assert np.mean(np.array(out1)) > np.mean(np.array(out2)) out3 = rodframe2.to_image(width=900, height=900) assert out3.size == (900, 900) def test_verticalhorizontal(): verticalhorizontal1 = pyllusion.VerticalHorizontal(illusion_strength=90, difference=0) out1 = verticalhorizontal1.to_image() parameters1 = verticalhorizontal1.get_parameters() assert list(parameters1) == ['Illusion', 'Size_Left', 'Size_Right', 'Size_Larger', 'Size_Smaller', 'Difference', 'Illusion_Strength', 'Illusion_Type', 'Left_x1', 'Left_y1', 'Left_x2', 'Left_y2', 'Left_Angle', 'Right_x1', 'Right_y1', 'Right_x2', 'Right_y2', 'Right_Angle'] assert parameters1['Difference'] == 0 assert parameters1['Illusion_Strength'] == 90 assert parameters1['Illusion'] == 'VerticalHorizontal' assert out1.size == (800, 600) verticalhorizontal2 = pyllusion.VerticalHorizontal(illusion_strength=90, difference=0.5) out2 = verticalhorizontal2.to_image() parameters2 = verticalhorizontal2.get_parameters() assert parameters1['Difference'] < parameters2['Difference'] assert np.mean(np.array(out1)) > np.mean(
np.array(out2)
numpy.array
import numpy as np import tensorflow.keras.backend as K from tensorflow.keras.layers import (Activation, Concatenate, Conv2D, Flatten, Input, InputSpec, Layer, Reshape) from tensorflow.keras.models import Model from nets.vgg import VGG16 class Normalize(Layer): def __init__(self, scale, **kwargs): self.axis = 3 self.scale = scale super(Normalize, self).__init__(**kwargs) def build(self, input_shape): self.input_spec = [InputSpec(shape=input_shape)] shape = (input_shape[self.axis],) init_gamma = self.scale *
np.ones(shape)
numpy.ones
# -*- coding: utf-8 -*- """ Created on Fri Jun 19 13:16:25 2015 @author: hbanks Brevity required, prudence preferred """ import os import io import glob import errno import copy import json import time import warnings import numpy as np from scipy.optimize import curve_fit import scipy.interpolate as spi import scipy.optimize as spo import scipy.integrate as intgt import scipy.fftpack as fft import scipy.special as spl import matplotlib.pyplot as plt import scipy.ndimage as ndimage import itertools as itt import multiprocessing as mp import sys sys.path.append('/Users/marketing/Desktop/HSG-turbo/') import hsganalysis.QWPProcessing as qwp from hsganalysis.QWPProcessing.extractMatrices import makeT,saveT np.set_printoptions(linewidth=500) # One of the main results is the HighSidebandCCD.sb_results array. These are the # various mappings between index and real value # I deally, this code should be converted to pandas to avoid this issue, # but that's outside the scope of current work. # [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] # [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] class sbarr(object): SBNUM = 0 CENFREQ = 1 CENFREQERR = 2 AREA = 3 AREAERR = 4 WIDTH = 5 WIDTHERR = 6 #################### # Objects #################### class CCD(object): def __init__(self, fname, spectrometer_offset=None): """ This will read the appropriate file and make a basic CCD object. Fancier things will be handled with the sub classes. Creates: self.parameters = Dictionary holding all of the information from the data file, which comes from the JSON encoded header in the data file self.description = string that is the text box from data taking GUI self.raw_data = raw data output by measurement software, wavelength vs. data, errors. There may be text for some of the entries corresponding to text used for Origin imports, but they should appear as np.nan self.ccd_data = semi-processed 1600 x 3 array of photon energy vs. data with standard error of mean at that pixel calculated by taking multiple images. Standard error is calculated from the data collection software Most subclasses should make a self.proc_data, which will do whatever processing is required to the ccd_data, such as normalizing, taking ratios, etc. :param fname: file name where the data is saved :type fname: str :param spectrometer_offset: if the spectrometer won't go where it's told, use this to correct the wavelengths (nm) :type spectrometer_offset: float """ self.fname = fname # Checking restrictions from Windows path length limits. Check if you can # open the file: try: with open(fname) as f: pass except FileNotFoundError: # Couldn't find the file. Could be you passed the wrong one, but I'm # finding with a large number of subfolders for polarimetry stuff, # you end up exceeding Windows' filelength limit. # Haven't tested on Mac or UNC moutned drives (e.g \\128.x.x.x\Sherwin\) fname = r"\\?\\" + os.path.abspath(fname) # Read in the JSON-formatted parameter string. # The lines are all prepended by '#' for easy numpy importing # so loop over all those lines with open(fname, 'r') as f: param_str = '' line = f.readline() while line[0] == '#': ### changed 09/17/18 # This line assumed there was a single '#' # param_str += line[1:] # while this one handles everal (because I found old files # which had '## <text>...' param_str += line.replace("#", "") line = f.readline() # Parse the JSON string try: self.parameters = json.loads(param_str) except json.JSONDecodeError: # error from _really_ old data where comments were dumped after a # single-line json dumps self.parameters=json.loads(param_str.splitlines()[0]) # Spec[trometer] steps are set to define the same physical data, but taken at # different spectrometer center wavelengths. This value is used later # for stitching these scans together try: self.parameters["spec_step"] = int(self.parameters["spec_step"]) except (ValueError, KeyError): # If there isn't a spe self.parameters["spec_step"] = 0 # Slice through 3 to get rid of comments/origin info. # Would likely be better to check np.isnan() and slicing out those nans. # I used flipup so that the x-axis is an increasing function of frequency self.raw_data = np.flipud(np.genfromtxt(fname, comments='#', delimiter=',')[3:]) # The camera chip is 1600 pixels wide. This line was redudent with the [3:] # slice above and served to make sure there weren't extra stray bad lines # hanging around. # # This should also be updated some day to compensate for any horizontal bining # on the chip, or masking out points that are bad (cosmic ray making it # through processing, room lights or monitor lines interfering with signal) self.ccd_data = np.array(self.raw_data[:1600, :]) # Check to see if the spectrometer offset is set. This isn't specified # during data collection. This is a value that can be appended # when processing if it's realized the data is offset. # This allows the offset to be specified and kept with the data file itself, # instead of trying to do it in individual processing scripts # # It's allowed as a kwarg parameter in this script for trying to determine # what the correct offset should be if spectrometer_offset is not None or "offset" in self.parameters: try: self.ccd_data[:, 0] += float(self.parameters["offset"]) except: self.ccd_data[:, 0] += spectrometer_offset # Convert from nm to eV # self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] self.ccd_data[:, 0] = photon_converter["nm"]["eV"](self.ccd_data[:, 0]) class Photoluminescence(CCD): def __init__(self, fname): """ This object handles PL-type data. The only distinction from the parent class is that the CCD data gets normalized to the exposure time to make different exposures directly comparable. creates: self.proc_data = self.ccd_data divided by the exposure time units: PL counts / second :param fname: name of the file :type fname: str """ super(Photoluminescence, self).__init__(fname) # Create a copy of the array , and then normalize the signal and the errors # by the exposure time self.proc_data = np.array(self.ccd_data) self.proc_data[:, 1] = self.proc_data[:, 1] / self.parameters['exposure'] self.proc_data[:, 2] = self.proc_data[:, 2] / self.parameters['exposure'] class Absorbance(CCD): def __init__(self, fname): """ There are several ways Absorbance data can be loaded You could try to load the abs data output from data collection directly, which has the wavelength, raw, blank and actual absorbance data itself. This is best way to do it. Alternatively, you could want to load the raw transmission/reference data, ignoring (or maybe not even having) the abs calculated from the data collection software. If you want to do it this way, you should pass fname as a list where the first element is the file name for the reference data, and the second is the absorbance data At first, it didn't really seem to make sense to let you pass just the raw reference or raw abs data, Creates: self.ref_data = np array of the reference, freq (eV) vs. reference (counts) self.raw_data = np.array of the raw absorption spectrum, freq (eV) vs. reference (counts) self.proc_data = np.array of the absorption spectrum freq (eV) vs. "absorbance" (dB) Note, the error bars for this data haven't been defined. :param fname: either an absorbance filename, or a length 2 list of filenames :type fname: str :return: None """ if "abs_" in fname: super(Absorbance, self).__init__(fname) # Separate into the separate data sets # The raw counts of the reference data self.ref_data = np.array(self.ccd_data[:, [0, 1]]) # Raw counts of the sample self.raw_data = np.array(self.ccd_data[:, [0, 2]]) # The calculated absorbance data (-10*log10(raw/ref)) self.proc_data = np.array(self.ccd_data[:, [0, 3]]) # Already in dB's else: # Should be here if you pass the reference/trans filenames try: super(Absorbance, self).__init__(fname[0]) self.ref_data = np.array(self.ccd_data) super(Absorbance, self).__init__(fname[1]) self.raw_data = np.array(self.ccd_data) except ValueError: # ValueError gets thrown when importing older data # which had more headers than data columns. Enforce # only loading first two columns to avoid numpy trying # to parse all of the data # See CCD.__init__ for what's going on. self.ref_data = np.flipud(np.genfromtxt(fname[0], comments='#', delimiter=',', usecols=(0, 1))) self.ref_data = np.array(self.ref_data[:1600, :]) self.ref_data[:, 0] = 1239.84 / self.ref_data[:, 0] self.raw_data = np.flipud(np.genfromtxt(fname[1], comments='#', delimiter=',', usecols=(0, 1))) self.raw_data = np.array(self.raw_data[:1600, :]) self.raw_data[:, 0] = 1239.84 / self.raw_data[:, 0] except Exception as e: print("Exception opening absorbance data,", e) # Calculate the absorbance from the raw camera counts. self.proc_data = np.empty_like(self.ref_data) self.proc_data[:, 0] = self.ref_data[:, 0] self.proc_data[:, 1] = -10*np.log10(self.raw_data[:, 1] / self.ref_data[:, 1]) def abs_per_QW(self, qw_number): """ :param qw_number: number of quantum wells in the sample. :type qw_number: int :return: None """ """ This method turns the absorption to the absorbance per quantum well. Is that how this data should be reported? Also, I'm not sure if columns 1 and 2 are correct. """ temp_abs = -np.log(self.proc_data[:, 1] / self.proc_data[:, 2]) / qw_number self.proc_data = np.hstack((self.proc_data, temp_abs)) def fft_smooth(self, cutoff, inspectPlots=False): """ This function removes the Fabry-Perot that affects the absorption data creates: self.clean = np.array of the Fourier-filtered absorption data, freq (eV) vs. absorbance (dB!) self.parameters['fourier cutoff'] = the low pass cutoff frequency, in eV**(-1) :param cutoff: Fourier frequency of the cut off for the low pass filter :type cutoff: int or float :param inspectPlots: Do you want to see the results? :type inspectPlots: bool :return: None """ # self.fixed = -np.log10(abs(self.raw_data[:, 1]) / abs(self.ref_data[:, 1])) # self.fixed = np.nan_to_num(self.proc_data[:, 1]) # self.fixed = np.column_stack((self.raw_data[:, 0], self.fixed)) self.parameters['fourier cutoff'] = cutoff self.clean = low_pass_filter(self.proc_data[:, 0], self.proc_data[:, 1], cutoff, inspectPlots) def save_processing(self, file_name, folder_str, marker='', index=''): """ This bad boy saves the absorption spectrum that has been manipulated. Saves 100 lines of comments. :param file_name: The base name of the file to be saved :type file_name: str :param folder_str: The name of the folder where the file will be saved :type folder_str: str :param marker: A further label that might be the series tag or something :type marker: str :param index: If multiple files are being saved with the same name, include an integer to append to the end of the file :type index: int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' self.save_name = spectra_fname try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing into Origin is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' spec_header = '#' + parameter_str + origin_import_spec # spec_header = '#' + parameter_str + '\n#' + self.description[:-2] + origin_import_spec np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', header=spec_header, comments='', fmt='%0.6e') spectra_fname = 'clean ' + spectra_fname np.savetxt(os.path.join(folder_str, spectra_fname), self.clean, delimiter=',', header=spec_header, comments='', fmt='%0.6e') print("Save image.\nDirectory: {}".format(os.path.join(folder_str, spectra_fname))) # class LaserLineCCD(HighSidebandCCD): # """ # Class for use when doing alinging/testing by sending the laser # directly into the CCD. Modifies how "sidebands" and guess and fit, # simply looking at the max signal. # """ # def guess_sidebands(self, cutoff=8, verbose=False, plot=False): # pass class NeonNoiseAnalysis(CCD): """ This class is used to make handling neon calibration lines easier. It's not great. """ def __init__(self, fname, spectrometer_offset=None): # print 'opening', fname super(NeonNoiseAnalysis, self).__init__(fname, spectrometer_offset=spectrometer_offset) self.addenda = self.parameters['addenda'] self.subtrahenda = self.parameters['subtrahenda'] self.noise_and_signal() self.process_stuff() def noise_and_signal(self): """ This bad boy calculates the standard deviation of the space between the neon lines. The noise regions are, in nm: high: 784-792 low1: 795-806 low2: 815-823 low3: 831-834 the peaks are located at, in nm: #1, weak: 793.6 #2, medium: 794.3 #3, medium: 808.2 #4, weak: 825.9 #5, strong: 830.0 """ print('\n\n') self.ccd_data = np.flipud(self.ccd_data) # self.high_noise_region = np.array(self.ccd_data[30:230, :]) self.high_noise_region = np.array(self.ccd_data[80:180, :]) # for dark current measurements self.low_noise_region1 = np.array(self.ccd_data[380:700, :]) self.low_noise_region2 = np.array(self.ccd_data[950:1200, :]) self.low_noise_region3 = np.array(self.ccd_data[1446:1546, :]) # self.high_noise = np.std(self.high_noise_region[:, 1]) self.high_noise_std = np.std(self.high_noise_region[:, 1]) self.high_noise_sig = np.mean(self.high_noise_region[:, 1]) self.low_noise1 = np.std(self.low_noise_region1[:, 1]) self.low_noise2 = np.std(self.low_noise_region2[:, 1]) self.low_noise_std = np.std(self.low_noise_region2[:, 1]) self.low_noise_sig = np.mean(self.low_noise_region2[:, 1]) self.low_noise3 = np.std(self.low_noise_region3[:, 1]) # self.noise_list = [self.high_noise, self.low_noise1, self.low_noise2, self.low_noise3] self.peak1 = np.array(self.ccd_data[303:323, :]) self.peak2 = np.array(self.ccd_data[319:339, :]) self.peak3 = np.array(self.ccd_data[736:746, :]) self.peak4 = np.array(self.ccd_data[1268:1288, :]) self.peak5 = np.array(self.ccd_data[1381:1421, :]) temp_max = np.argmax(self.peak1[:, 1]) self.signal1 = np.sum(self.peak1[temp_max - 1:temp_max + 2, 1]) self.error1 = np.sqrt(np.sum(self.peak1[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak2[:, 1]) self.signal2 = np.sum(self.peak2[temp_max - 1:temp_max + 2, 1]) self.error2 = np.sqrt(np.sum(self.peak2[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak3[:, 1]) self.signal3 = np.sum(self.peak3[temp_max - 1:temp_max + 2, 1]) self.error3 = np.sqrt(np.sum(self.peak3[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak4[:, 1]) self.signal4 = np.sum(self.peak4[temp_max - 1:temp_max + 2, 1]) self.error4 = np.sqrt(np.sum(self.peak4[temp_max - 1:temp_max + 2, 2] ** 2)) temp_max = np.argmax(self.peak5[:, 1]) self.signal5 = np.sum(self.peak5[temp_max - 1:temp_max + 2, 1]) self.error5 = np.sqrt(np.sum(self.peak5[temp_max - 1:temp_max + 2, 2] ** 2)) self.signal_list = [self.signal1, self.signal2, self.signal3, self.signal4, self.signal5] self.error_list = [self.error1, self.error2, self.error3, self.error4, self.error5] print("Signal list:", self.signal_list) self.ccd_data = np.flipud(self.ccd_data) def process_stuff(self): """ This one puts high_noise, low_noise1, signal2, and error2 in a nice horizontal array """ # self.results = np.array([self.high_noise, self.low_noise1, self.signal5, self.error5]) # average = np.mean([self.low_noise1, self.low_noise2, self.low_noise3]) # self.results = np.array([self.high_noise, self.low_noise1, self.low_noise2, self.low_noise3, self.high_noise/average]) self.results = np.array([self.high_noise_sig, self.high_noise_std, self.low_noise_sig, self.low_noise_std]) def collect_noise(neon_list, param_name, folder_name, file_name, name='Signal'): """ This function acts like save parameter sweep. param_name = string that we're gonna save! """ # param_array = None for elem in neon_list: print("pname: {}".format(elem.parameters[param_name])) print("results:", elem.results) temp = np.insert(elem.results, 0, elem.parameters[param_name]) try: param_array = np.row_stack((param_array, temp)) except UnboundLocalError: param_array = np.array(temp) if len(param_array.shape) == 1: print("I don't think you want this file") return # append the relative peak error print('\n', param_array, '\n') param_array = np.column_stack((param_array, param_array[:, 4] / param_array[:, 3])) # append the snr param_array = np.column_stack((param_array, param_array[:, 3] / param_array[:, 2])) try: param_array = param_array[param_array[:, 0].argsort()] except: print("param_array shape", param_array.shape) raise try: os.mkdir(folder_name) except OSError as e: if e.errno == errno.EEXIST: pass else: raise file_name = file_name + '.txt' origin_import1 = param_name + ",Noise,Noise,Signal,error,rel peak error,peak signal-to-noise" # origin_import1 = param_name + ",Noise,Noise,Noise,Noise,Ratio" origin_import2 = ",counts,counts,counts,counts,," # origin_import2 = ",counts,counts,counts,," origin_import3 = ",High noise region,Low noise region,{},{} error,{} rel error, {}".format(name, name, name, name) # origin_import3 = ",High noise region,Low noise region 1,Low noise region 2,Low noise region 3,High/low" header_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 # print "Spec header: ", spec_header print("the param_array is:", param_array) np.savetxt(os.path.join(folder_name, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') print("Saved the file.\nDirectory: {}".format(os.path.join(folder_name, file_name))) class HighSidebandCCD(CCD): def __init__(self, hsg_thing, parameter_dict=None, spectrometer_offset=None): """ This will read the appropriate file. The header needs to be fixed to reflect the changes to the output header from the Andor file. Because another helper file will do the cleaning and background subtraction, those are no longer part of this init. This also turns all wavelengths from nm (NIR ones) or cm-1 (THz ones) into eV. OR, if an array is thrown in there, it'll handle the array and dict Input: For post-processing analysis: hsg_thing = file name of the hsg spectrum from CCD superclass spectrometer_offset = number of nanometers the spectrometer is off by, should be 0.0...but can be 0.2 or 1.0 For Live-software: hsg_thing = np array of spectrum from camera parameter_dict = equipment dict generated by software Internal: self.hsg_thing = the filename self.parameters = string with all the relevant experimental perameters self.description = the description we added to the file as the data was being taken self.proc_data = processed data that has gone is frequency vs counts/pulse self.dark_stdev = this is not currently handled appropriately self.addenda = the list of things that have been added to the file, in form of [constant, *spectra_added] self.subtrahenda = the list of spectra that have been subtracted from the file. Constant subtraction is dealt with with self.addenda :param hsg_thing: file name for the file to be opened. OR the actually hsg np.ndarray. Fun! :type hsg_thing: str OR np.ndarray :param parameter_dict: If being loaded through the data acquisition GUI, throw the dict in here :type parameter_dict: dict :param spectrometer_offset: Number of nm the spectrometer is off by :type spectrometer_offset: float :return: None, technically """ if isinstance(hsg_thing, str): super(HighSidebandCCD, self).__init__(hsg_thing, spectrometer_offset=spectrometer_offset) # TODO: fix addenda bullshit self.addenda = [] self.subtrahenda = [] elif isinstance(hsg_thing, np.ndarray): self.parameters = parameter_dict.copy() # Probably shouldn't shoehorn this in this way self.addenda = [] self.subtrahenda = [] self.ccd_data = np.array(hsg_thing) self.ccd_data[:, 0] = 1239.84 / self.ccd_data[:, 0] # This data won't have an error column, so attached a column of ones self.ccd_data = np.column_stack((self.ccd_data, np.ones_like(self.ccd_data[:,1]))) self.ccd_data = np.flipud(self.ccd_data) # Because turning into eV switches direction self.fname = "Live Data" else: raise Exception("I don't know what this file type is {}, type: {}".format( hsg_thing, type(hsg_thing) )) self.proc_data = np.array(self.ccd_data) # proc_data is now a 1600 long array with [frequency (eV), signal (counts / FEL pulse), S.E. of signal mean] # self.parameters["nir_freq"] = 1239.84 / float(self.parameters["nir_lambda"]) self.parameters["nir_freq"] = 1239.84 / float(self.parameters.get("nir_lambda", -1)) # self.parameters["thz_freq"] = 0.000123984 * float(self.parameters["fel_lambda"]) self.parameters["thz_freq"] = 0.000123984 * float(self.parameters.get("fel_lambda", -1)) # self.parameters["nir_power"] = float(self.parameters["nir_power"]) self.parameters["nir_power"] = float(self.parameters.get("nir_power", -1)) try: # This is the new way of doing things. Also, now it's power self.parameters["thz_energy"] = float(self.parameters["pulseEnergies"]["mean"]) self.parameters["thz_energy_std"] = float(self.parameters["pulseEnergies"]["std"]) except: # This is the old way TODO: DEPRECATE THIS self.parameters["thz_energy"] = float(self.parameters.get("fel_power", -1)) # things used in fitting/guessing self.sb_list = np.array([]) self.sb_index = np.array([]) self.sb_dict = {} self.sb_results = np.array([]) self.full_dict = {} def __add__(self, other): """ Add together the image data from self.proc_data, or add a constant to that np.array. It will then combine the addenda and subtrahenda lists, as well as add the fel_pulses together. If type(other) is a CCD object, then it will add the errors as well. Input: self = CCD-like object other = int, float or CCD object Internal: ret.proc_data = the self.proc_data + other(.proc_data) ret.addenda = combination of two input addenda lists This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be added, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Add a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] + other ret.addenda[0] = ret.addenda[0] + other # or add the data of two hsg_spectra together else: if np.isclose(ret.parameters['center_lambda'], other.parameters['center_lambda']): ret.proc_data[:, 1] = self.proc_data[:, 1] + other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.addenda[0] = ret.addenda[0] + other.addenda[0] ret.addenda.extend(other.addenda[1:]) ret.subtrahenda.extend(other.subtrahenda) ret.parameters['fel_pulses'] += other.parameters['fel_pulses'] else: raise Exception('Source: Spectrum.__add__:\nThese are not from the same grating settings') return ret def __sub__(self, other): """ This subtracts constants or other data sets between self.proc_data. I think it even keeps track of what data sets are in the file and how they got there. See how __add__ works for more information. This raises a FutureWarning because these were designed early on and haven't been used much. :param other: The thing to be subtracted, it's either a int/float or a HighSidebandCCD object :type other: int/float or HighSidebandCCD :return: Sum of self and other :rtype: HighSidebandCCD """ raise FutureWarning ret = copy.deepcopy(self) # Subtract a constant offset to the data if type(other) in (int, float): ret.proc_data[:, 1] = self.proc_data[:, 1] - other # Need to choose a name ret.addenda[0] = ret.addenda[0] - other # Subtract the data of two hsg_spectra from each other else: if np.isclose(ret.proc_data[0, 0], other.proc_data[0, 0]): ret.proc_data[:, 1] = self.proc_data[:, 1] - other.proc_data[:, 1] ret.proc_data[:, 2] = np.sqrt(self.proc_data[:, 1] ** 2 + other.proc_data[:, 1] ** 2) ret.subtrahenda.extend(other.addenda[1:]) ret.addenda.extend(other.subtrahenda) else: raise Exception('Source: Spectrum.__sub__:\nThese are not from the same grating settings') return ret def __repr__(self): base = """ fname: {}, Series: {series}, spec_step: {spec_step}, fel_lambda: {fel_lambda}, nir_lambda: {nir_lambda}""".format(os.path.basename(self.fname),**self.parameters) return base __str__ = __repr__ def calc_approx_sb_order(self, test_nir_freq): """ This simple method will simply return a float approximating the order of the frequency input. We need this because the CCD wavelength calibration is not even close to perfect. And it shifts by half a nm sometimes. :param test_nir_freq: the frequency guess of the nth sideband :type test_nir_freq: float :return: The approximate order of the sideband in question :rtype: float """ nir_freq = self.parameters['nir_freq'] thz_freq = self.parameters['thz_freq'] # If thz = 0, prevent error if not thz_freq: thz_freq = 1 approx_order = (test_nir_freq - nir_freq) / thz_freq return approx_order def guess_sidebands(self, cutoff=4.5, verbose=False, plot=False, **kwargs): """ Update 05/24/18: Hunter had two different loops for negative order sidebands, then positive order sidebands. They're done pretty much identically, so I've finally merged them into one. Finds the locations of all the sidebands in the proc_data array to be able to seed the fitting method. This works by finding the maximum data value in the array and guessing what sideband it is. It creates an array that includes this information. It will then step down, initially by one THz frequency, then by twos after it hasn't found any odd ones. It then goes up from the max and finds everything above in much the same way. There is currently no rhyme or reason to a cutoff of 8. I don't know what it should be changed to, though. Input: cutoff = signal-to-noise threshold to count a sideband candidate. kwargs: window_size: how big of a window (in pixels) to use for checking for sidebands. Specified in half-width default: 15 Internal: self.sb_list = List of all of the orders the method found self.sb_index = index of all of the peaks of the sidebands self.sb_guess = three-part list including the frequency, amplitude and error guesses for each sideband """ # TODO: this isn't commented appropriately. Will it be made more readable first? if "cutoff" in self.parameters: cutoff = self.parameters["cutoff"] else: self.parameters['cutoff for guess_sidebands'] = cutoff if verbose: print("=" * 15) print() print("Guessing CCD Sideband parameters") print(os.path.basename(self.fname)) print("\tCutoff = {}".format(cutoff)) print() print("=" * 15) x_axis = np.array(self.proc_data[:, 0]) y_axis = np.array(self.proc_data[:, 1]) try: error = np.array(self.proc_data[:, 2]) except IndexError: # Happens on old data where spectra weren't calculated in the live # software. error = np.ones_like(x_axis) min_sb = int(self.calc_approx_sb_order(x_axis[0])) + 1 try: max_sb = int(self.calc_approx_sb_order(x_axis[-1])) except ValueError: print(x_axis) nir_freq = self.parameters["nir_freq"] thz_freq = self.parameters["thz_freq"] if verbose: print("min_sb: {} | max_sb: {}".format(min_sb, max_sb)) # Find max strength sideband and it's order global_max = np.argmax(y_axis) order_init = int(round(self.calc_approx_sb_order(x_axis[global_max]))) # if verbose: # print "The global max is at index", global_max if global_max < 15: check_y = y_axis[:global_max + 15] check_y = np.concatenate((np.zeros(15 - global_max), check_y)) elif global_max > 1585: check_y = y_axis[global_max - 15:] check_y = np.concatenate((check_y, np.zeros(global_max - 1585))) else: check_y = y_axis[global_max - 15:global_max + 15] check_max_index = np.argmax(check_y) check_max_area = np.sum(check_y[check_max_index - 2:check_max_index + 3]) check_ave = np.mean(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_stdev = np.std(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_ratio = (check_max_area - 3 * check_ave) / check_stdev if verbose: print(("{:^16}" * 5).format( "global_max idx", "check_max_area", "check_ave", "check_stdev", "check_ratio")) print(("{:^16.5g}" * 5).format( global_max, check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: self.sb_list = [order_init] self.sb_index = [global_max] sb_freq_guess = [x_axis[global_max]] sb_amp_guess = [y_axis[global_max]] sb_error_est = [ np.sqrt(sum([i ** 2 for i in error[global_max - 2:global_max + 3]])) / ( check_max_area - 5 * check_ave)] else: print("There are no sidebands in", self.fname) raise RuntimeError if verbose: print("\t Looking for sidebands with f < {:.6f}".format(sb_freq_guess[0])) last_sb = sb_freq_guess[0] index_guess = global_max # keep track of how many consecutive sidebands we've skipped. Sometimes one's # noisy or something, so we want to keep looking after skipping one consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init - 1, min_sb - 1, -1): # Check to make sure we're not looking at an odd when # we've decided to skip them. if no_more_odds == True and order % 2 == 1: last_sb = last_sb - thz_freq if verbose: print("I skipped", order) continue # Window size to look for next sideband. Needs to be order dependent # because higher orders get wider, so we need to look at more. # Values are arbitrary. window_size = 0.45 + 0.0004 * order # used to be last_sb? lo_freq_bound = last_sb - thz_freq * ( 1 + window_size) # Not sure what to do about these hi_freq_bound = last_sb - thz_freq * (1 - window_size) if verbose: print("\nSideband", order) print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) # Get the indices where the energies lie within the bounds for this SB sliced_indices = \ np.where((x_axis > lo_freq_bound) & (x_axis < hi_freq_bound))[0] start_index, end_index = sliced_indices.min(), sliced_indices.max() # Get a slice of the y_data which is only in the region of interest check_y = y_axis[sliced_indices] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical # Calculate the "area" of the sideband by looking at the peak value # within the range, and the pixel above/below it check_max_area = np.sum(check_y[check_max_index - 1:check_max_index + 2]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label="{} Box".format(order)) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) # get the slice that doesn't have the peak in it to compare statistics check_region = np.append(check_y[:check_max_index - 1], check_y[check_max_index + 2:]) check_ave = check_region.mean() check_stdev = check_region.std() # Calculate an effective SNR, where check_ave is roughly the # background level check_ratio = (check_max_area - 3 * check_ave) / check_stdev if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 1.5 if verbose: print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.5g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("I just found", last_sb) sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - 3 * check_ave) error_est = np.sqrt( sum( [i ** 2 for i in error[found_index - 1:found_index + 2]] )) / (check_max_area - 3 * check_ave) if verbose: print("My error estimate is:", error_est) sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb - thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break # Look for higher sidebands if verbose: print("\nLooking for higher energy sidebands") last_sb = sb_freq_guess[0] index_guess = global_max consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init + 1, max_sb + 1): if no_more_odds == True and order % 2 == 1: last_sb = last_sb + thz_freq continue window_size = 0.45 + 0.001 * order # used to be 0.28 and 0.0004 lo_freq_bound = last_sb + thz_freq * ( 1 - window_size) # Not sure what to do about these hi_freq_bound = last_sb + thz_freq * (1 + window_size) start_index = False end_index = False if verbose: print("\nSideband", order) # print "The low frequency bound is", lo_freq_bound # print "The high frequency bound is", hi_freq_bound print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) for i in range(index_guess, 1600): if start_index == False and i == 1599: # print "I'm all out of space, captain!" break_condition = True break elif start_index == False and x_axis[i] > lo_freq_bound: # print "start_index is", i start_index = i elif i == 1599: end_index = 1599 # print "hit end of data, end_index is 1599" elif end_index == False and x_axis[i] > hi_freq_bound: end_index = i # print "end_index is", i index_guess = i break if break_condition: break check_y = y_axis[start_index:end_index] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical octant = len(check_y) // 8 # To be able to break down check_y into eighths if octant < 1: octant = 1 check_max_area = np.sum( check_y[check_max_index - octant - 1:check_max_index + octant + 1]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label=order) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) no_peak = (2 * len( check_y)) // 6 # The denominator is in flux, used to be 5 # if verbose: print "\tcheck_y length", len(check_y) check_ave = np.mean(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_stdev = np.std(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_ratio = (check_max_area - (2 * octant + 1) * check_ave) / check_stdev if verbose: print("\tIndices: {}->{} (d={})".format(start_index, end_index, len(check_y))) # print "check_y is", check_y # print "\ncheck_max_area is", check_max_area # print "check_ave is", check_ave # print "check_stdev is", check_stdev # print "check_ratio is", check_ratio print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.6g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 2 if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("\tI'm counting this SB at index {} (f={:.4f})".format( found_index, last_sb), end=' ') # print "\tI found", order, "at index", found_index, "at freq", last_sb sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - (2 * octant + 1) * check_ave) error_est = np.sqrt(sum([i ** 2 for i in error[ found_index - octant:found_index + octant]])) / ( check_max_area - (2 * octant + 1) * check_ave) # This error is a relative error. if verbose: print(". Err = {:.3g}".format(error_est)) # print "\tMy error estimate is:", error_est # print "My relative error is:", error_est / sb_amp_guess sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb + thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if verbose: print("\t\tI did not count this sideband") if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break if verbose: print("I found these sidebands:", self.sb_list) print('-' * 15) print() print() self.sb_guess = np.array([np.asarray(sb_freq_guess), np.asarray(sb_amp_guess), np.asarray(sb_error_est)]).T # self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. def guess_sidebandsOld(self, cutoff=4.5, verbose=False, plot=False, **kwargs): """ 05/24/18 Old code from Hunter's days (or nearly, I've already started cleaning some stuff up). keeping it around in case I break too much stuff Finds the locations of all the sidebands in the proc_data array to be able to seed the fitting method. This works by finding the maximum data value in the array and guessing what sideband it is. It creates an array that includes this information. It will then step down, initially by one THz frequency, then by twos after it hasn't found any odd ones. It then goes up from the max and finds everything above in much the same way. There is currently no rhyme or reason to a cutoff of 8. I don't know what it should be changed to, though. Input: cutoff = signal-to-noise threshold to count a sideband candidate. kwargs: window_size: how big of a window (in pixels) to use for checking for sidebands. Specified in half-width default: 15 Internal: self.sb_list = List of all of the orders the method found self.sb_index = index of all of the peaks of the sidebands self.sb_guess = three-part list including the frequency, amplitude and error guesses for each sideband """ # TODO: this isn't commented appropriately. Will it be made more readable first? if "cutoff" in self.parameters: cutoff = self.parameters["cutoff"] else: self.parameters['cutoff for guess_sidebands'] = cutoff if verbose: print("=" * 15) print() print("Guessing CCD Sideband parameters") print(os.path.basename(self.fname)) print("\tCutoff = {}".format(cutoff)) print() print("=" * 15) x_axis = np.array(self.proc_data[:, 0]) y_axis = np.array(self.proc_data[:, 1]) error = np.array(self.proc_data[:, 2]) min_sb = int(self.calc_approx_sb_order(x_axis[0])) + 1 try: max_sb = int(self.calc_approx_sb_order(x_axis[-1])) except ValueError: print(x_axis) nir_freq = self.parameters["nir_freq"] thz_freq = self.parameters["thz_freq"] if verbose: print("min_sb: {} | max_sb: {}".format(min_sb, max_sb)) # Find max strength sideband and it's order global_max = np.argmax(y_axis) order_init = int(round(self.calc_approx_sb_order(x_axis[global_max]))) # if verbose: # print "The global max is at index", global_max if global_max < 15: check_y = y_axis[:global_max + 15] check_y = np.concatenate((np.zeros(15 - global_max), check_y)) elif global_max > 1585: check_y = y_axis[global_max - 15:] check_y = np.concatenate((check_y, np.zeros(global_max - 1585))) else: check_y = y_axis[global_max - 15:global_max + 15] check_max_index = np.argmax(check_y) check_max_area = np.sum(check_y[check_max_index - 2:check_max_index + 3]) check_ave = np.mean(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_stdev = np.std(check_y[[0, 1, 2, 3, 4, -1, -2, -3, -4, -5]]) check_ratio = (check_max_area - 3 * check_ave) / check_stdev if verbose: print(("{:^16}" * 5).format( "global_max idx", "check_max_area", "check_ave", "check_stdev", "check_ratio")) print(("{:^16.5g}" * 5).format( global_max, check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: self.sb_list = [order_init] self.sb_index = [global_max] sb_freq_guess = [x_axis[global_max]] sb_amp_guess = [y_axis[global_max]] sb_error_est = [ np.sqrt(sum([i ** 2 for i in error[global_max - 2:global_max + 3]])) / ( check_max_area - 5 * check_ave)] else: print("There are no sidebands in", self.fname) raise RuntimeError if verbose: print("\t Looking for sidebands with f < {:.6f}".format(sb_freq_guess[0])) last_sb = sb_freq_guess[0] index_guess = global_max # keep track of how many consecutive sidebands we've skipped. Sometimes one's # noisy or something, so we want to keep looking after skipping one consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init - 1, min_sb - 1, -1): # Check to make sure we're not looking at an odd when # we've decided to skip them. if no_more_odds == True and order % 2 == 1: last_sb = last_sb - thz_freq if verbose: print("I skipped", order) continue # Window size to look for next sideband. Needs to be order dependent # because higher orders get wider, so we need to look at more. # Values are arbitrary. window_size = 0.45 + 0.0004 * order # used to be last_sb? lo_freq_bound = last_sb - thz_freq * ( 1 + window_size) # Not sure what to do about these hi_freq_bound = last_sb - thz_freq * (1 - window_size) if verbose: print("\nSideband", order) print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) # Get the indices where the energies lie within the bounds for this SB sliced_indices = \ np.where((x_axis > lo_freq_bound) & (x_axis < hi_freq_bound))[0] start_index, end_index = sliced_indices.min(), sliced_indices.max() # Get a slice of the y_data which is only in the region of interest check_y = y_axis[sliced_indices] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical # Calculate the "area" of the sideband by looking at the peak value # within the range, and the pixel above/below it check_max_area = np.sum(check_y[check_max_index - 1:check_max_index + 2]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label="{} Box".format(order)) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) # get the slice that doesn't have the peak in it to compare statistics check_region = np.append(check_y[:check_max_index - 1], check_y[check_max_index + 2:]) check_ave = check_region.mean() check_stdev = check_region.std() # Calculate an effective SNR, where check_ave is roughly the # background level check_ratio = (check_max_area - 3 * check_ave) / check_stdev if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 1.5 if verbose: print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.5g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("I just found", last_sb) sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - 3 * check_ave) error_est = np.sqrt( sum( [i ** 2 for i in error[found_index - 1:found_index + 2]] )) / (check_max_area - 3 * check_ave) if verbose: print("My error estimate is:", error_est) sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb - thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break # Look for higher sidebands if verbose: print("\nLooking for higher energy sidebands") last_sb = sb_freq_guess[0] index_guess = global_max consecutive_null_sb = 0 consecutive_null_odd = 0 no_more_odds = False break_condition = False for order in range(order_init + 1, max_sb + 1): if no_more_odds == True and order % 2 == 1: last_sb = last_sb + thz_freq continue window_size = 0.45 + 0.001 * order # used to be 0.28 and 0.0004 lo_freq_bound = last_sb + thz_freq * ( 1 - window_size) # Not sure what to do about these hi_freq_bound = last_sb + thz_freq * (1 + window_size) start_index = False end_index = False if verbose: print("\nSideband", order) # print "The low frequency bound is", lo_freq_bound # print "The high frequency bound is", hi_freq_bound print("\t{:.4f} < f_{} < {:.4f}".format(lo_freq_bound, order, hi_freq_bound)) for i in range(index_guess, 1600): if start_index == False and i == 1599: # print "I'm all out of space, captain!" break_condition = True break elif start_index == False and x_axis[i] > lo_freq_bound: # print "start_index is", i start_index = i elif i == 1599: end_index = 1599 # print "hit end of data, end_index is 1599" elif end_index == False and x_axis[i] > hi_freq_bound: end_index = i # print "end_index is", i index_guess = i break if break_condition: break check_y = y_axis[start_index:end_index] check_max_index = np.argmax( check_y) # This assumes that two floats won't be identical octant = len(check_y) // 8 # To be able to break down check_y into eighths if octant < 1: octant = 1 check_max_area = np.sum( check_y[check_max_index - octant - 1:check_max_index + octant + 1]) if verbose and plot: plt.figure("CCD data") plt.plot([lo_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([hi_freq_bound] * 2, [0, check_y[check_max_index]], 'b') plt.plot([lo_freq_bound, hi_freq_bound], [check_y[check_max_index]] * 2, 'b', label=order) plt.text((lo_freq_bound + hi_freq_bound) / 2, check_y[check_max_index], order) no_peak = (2 * len( check_y)) // 6 # The denominator is in flux, used to be 5 # if verbose: print "\tcheck_y length", len(check_y) check_ave = np.mean(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_stdev = np.std(np.take(check_y, np.concatenate( (np.arange(no_peak), np.arange(-no_peak, 0))))) check_ratio = (check_max_area - (2 * octant + 1) * check_ave) / check_stdev if verbose: print("\tIndices: {}->{} (d={})".format(start_index, end_index, len(check_y))) # print "check_y is", check_y # print "\ncheck_max_area is", check_max_area # print "check_ave is", check_ave # print "check_stdev is", check_stdev # print "check_ratio is", check_ratio print("\t" + ("{:^14}" * 4).format( "check_max_area", "check_ave", "check_stdev", "check_ratio")) print("\t" + ("{:^14.6g}" * 4).format( check_max_area, check_ave, check_stdev, check_ratio)) if order % 2 == 1: # This raises the barrier for odd sideband detection check_ratio = check_ratio / 2 if check_ratio > cutoff: found_index = check_max_index + start_index self.sb_index.append(found_index) last_sb = x_axis[found_index] if verbose: print("\tI'm counting this SB at index {} (f={:.4f})".format( found_index, last_sb), end=' ') # print "\tI found", order, "at index", found_index, "at freq", last_sb sb_freq_guess.append(x_axis[found_index]) sb_amp_guess.append(check_max_area - (2 * octant + 1) * check_ave) error_est = np.sqrt(sum([i ** 2 for i in error[ found_index - octant:found_index + octant]])) / ( check_max_area - (2 * octant + 1) * check_ave) # This error is a relative error. if verbose: print(". Err = {:.3g}".format(error_est)) # print "\tMy error estimate is:", error_est # print "My relative error is:", error_est / sb_amp_guess sb_error_est.append(error_est) self.sb_list.append(order) consecutive_null_sb = 0 if order % 2 == 1: consecutive_null_odd = 0 else: # print "I could not find sideband with order", order last_sb = last_sb + thz_freq consecutive_null_sb += 1 if order % 2 == 1: consecutive_null_odd += 1 if verbose: print("\t\tI did not count this sideband") if consecutive_null_odd == 1 and no_more_odds == False: # print "I'm done looking for odd sidebands" no_more_odds = True if consecutive_null_sb == 2: # print "I can't find any more sidebands" break if verbose: print("I found these sidebands:", self.sb_list) print('-' * 15) print() print() self.sb_guess = np.array([np.asarray(sb_freq_guess), np.asarray(sb_amp_guess), np.asarray(sb_error_est)]).T # self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. def fit_sidebands(self, plot=False, verbose=False): """ This takes self.sb_guess and fits to each maxima to get the details of each sideband. It's really ugly, but it works. The error of the sideband area is approximated from the data, not the curve fit. All else is from the curve fit. Which is definitely underestimating the error, but we don't care too much about those errors (at this point). self.sb_guess = [frequency guess, amplitude guess, relative error of amplitude] for each sideband. Temporary stuff: sb_fits = holder of the fitting results until all spectra have been fit window = an integer that determines the "radius" of the fit window, proportional to thz_freq. Attributes created: self.sb_results = the money maker. Column order: [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] self.full_dict = a dictionary similar to sb_results, but now the keys are the sideband orders. Column ordering is otherwise the same. :param plot: Do you want to see the fits plotted with the data? :type plot: bool :param verbose: Do you want to see the details AND the initial guess fits? :type verbose: bool :return: None """ # print "Trying to fit these" sb_fits = [] if verbose: print("=" * 15) print() print("Fitting CCD Sidebands") print(os.path.basename(self.fname)) print() print("=" * 15) # pretty sure you want this up here so things don't break # when no sidebands found self.full_dict = {} thz_freq = self.parameters["thz_freq"] window = 15 + int(15 * thz_freq / 0.0022) # Adjust the fit window based on the sideband spacing # The 15's are based on empirical knowledge that for # 540 GHz (2.23 meV), the best window size is 30 and # that it seems like the window size should grow slowly? for elem, peakIdx in enumerate(self.sb_index): # Have to do this because guess_sidebands # doesn't out put data in the most optimized way if peakIdx < window: data_temp = self.proc_data[:peakIdx + window, :] elif (1600 - peakIdx) < window: data_temp = self.proc_data[peakIdx - window:, :] else: data_temp = self.proc_data[peakIdx - window:peakIdx + window, :] width_guess = 0.0001 + 0.000001 * self.sb_list[elem] # so the width guess gets wider as order goes up p0 = np.array([self.sb_guess[elem, 0], self.sb_guess[elem, 1] * width_guess, width_guess, 0.1]) # print "Let's fit this shit!" if verbose: print("Fitting SB {}. Peak index: {}, {}th peak in spectra".format( self.sb_list[elem], peakIdx, elem )) # print "\nnumber:", elem, num # print "data_temp:", data_temp # print "p0:", p0 print(' '*20 +"p0 = " + np.array_str(p0, precision=4)) # plot_guess = True # This is to disable plotting the guess function if verbose and plot: plt.figure('CCD data') linewidth = 3 x_vals = np.linspace(data_temp[0, 0], data_temp[-1, 0], num=500) if elem != 0: try: plt.plot(x_vals, gauss(x_vals, *p0), plt.gca().get_lines()[-1].get_color() + '--' # I don't really know. Mostly # just looked around at what functions # matplotlib has... , linewidth=linewidth) except: # to prevent weird mac issues with the matplotlib things? plt.plot(x_vals, gauss(x_vals, *p0), '--', linewidth=linewidth) else: plt.plot(x_vals, gauss(x_vals, *p0), '--', linewidth=linewidth) try: # 11/1/16 # needed to bump maxfev up to 2k because a sideband wasn't being fit # Fix for sb 106 # 05-23 Loren 10nm\hsg_640_Perp352seq_spectrum.txt coeff, var_list = curve_fit( gauss, data_temp[:, 0], data_temp[:, 1], p0=p0, maxfev = 2000) except Exception as e: if verbose: print("\tThe fit failed:") print("\t\t", e) print("\tFitting region: {}->{}".format(peakIdx-window, peakIdx+window)) # print "I couldn't fit", elem # print "It's sideband", num # print "In file", self.fname # print "because", e # print "wanted to fit xindx", peakIdx, "+-", window self.sb_list[elem] = None continue # This will ensure the rest of the loop is not run without an actual fit. coeff[1] = abs(coeff[1]) # The amplitude could be negative if the linewidth is negative coeff[2] = abs(coeff[2]) # The linewidth shouldn't be negative if verbose: print("\tFit successful: ", end=' ') print("p = " + np.array_str(coeff, precision=4)) # print "coeffs:", coeff # print "sigma for {}: {}".format(self.sb_list[elem], coeff[2]) if 10e-4 > coeff[2] > 10e-6: try: sb_fits.append(np.hstack((self.sb_list[elem], coeff, np.sqrt(np.diag(var_list))))) except RuntimeWarning: sb_fits.append(np.hstack((self.sb_list[elem], coeff, np.sqrt(np.abs(np.diag(var_list)))))) # the var_list wasn't approximating the error well enough, even when using sigma and absoluteSigma # self.sb_guess[elem, 2] is the relative error as calculated by the guess_sidebands method # coeff[1] is the area from the fit. Therefore, the product should be the absolute error # of the integrated area of the sideband. The other errors are still underestimated. # # 1/12/18 note: So it looks like what hunter did is calculate an error estimate # for the strength/area by the quadrature sum of errors of the points in the peak # (from like 813 in guess_sidebands: # error_est = np.sqrt(sum([i ** 2 for i in error[found_index - 1:found_index + 2]])) / ( # Where the error is what comes from the CCD by averaging 4 spectra. As far as I can tell, # it doesn't currently pull in the dark counts or anything like that, except maybe # indirectly since it'll cause the variations in the peaks sb_fits[-1][6] = self.sb_guess[elem, 2] * coeff[1] if verbose: print("\tRel.Err: {:.4e} | Abs.Err: {:.4e}".format( self.sb_guess[elem, 2], coeff[1] * self.sb_guess[elem, 2] )) print() # print "The rel. error guess is", self.sb_guess[elem, 2] # print "The abs. error guess is", coeff[1] * self.sb_guess[elem, 2] # The error from self.sb_guess[elem, 2] is a relative error if plot and verbose: plt.figure('CCD data') linewidth = 5 x_vals = np.linspace(data_temp[0, 0], data_temp[-1, 0], num=500) if elem != 0: try: plt.plot(x_vals, gauss(x_vals, *coeff), plt.gca().get_lines()[-1].get_color() + '--' # I don't really know. Mostly # just looked around at what functions # matplotlib has... , linewidth=linewidth) except: # to prevent weird mac issues with the matplotlib things? plt.plot(x_vals, gauss(x_vals, *coeff), '--', linewidth=linewidth) else: plt.plot(x_vals, gauss(x_vals, *coeff), '--', linewidth=linewidth) sb_fits_temp = np.asarray(sb_fits) reorder = [0, 1, 5, 2, 6, 3, 7, 4, 8] # Reorder the list to put the error of the i-th parameter as the i+1th. try: sb_fits = sb_fits_temp[:, reorder] # if verbose: print "The abs. error guess is", sb_fits[:, 0:5] except: raise RuntimeError("No sidebands to fit?") # Going to label the appropriate row with the sideband self.sb_list = sorted(list([x for x in self.sb_list if x is not None])) sb_names = np.vstack(self.sb_list) # Sort by SB order sorter = np.argsort(sb_fits[:, 0]) self.sb_results = np.array(sb_fits[sorter, :7]) if verbose: print("\tsb_results:") print("\t\t" + ("{:^5s}" + ("{:^12s}")*(self.sb_results.shape[1]-1)).format( "SB", "Cen.En.", "", "Area", "", "Width","")) for line in self.sb_results: print('\t\t[' + ("{:^5.0f}"+ "{:<12.4g}"*(line.size-1)).format(*line) + ']') print('-'*19) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def infer_frequencies(self, nir_units="wavenumber", thz_units="GHz", bad_points=-2): """ This guy tries to fit the results from fit_sidebands to a line to get the relevant frequencies :param nir_units: What units do you want this to output? :type nir_units: 'nm', 'wavenumber', 'eV', 'THz' :param thz_units: What units do you want this to output for the THz? :type thz_units: 'GHz', 'wavenumber', 'meV' :param bad_points: How many more-positive order sidebands shall this ignore? :type bad_points: int :return: freqNIR, freqTHz, the frequencies in the appropriate units """ # force same units for in dict freqNIR, freqTHz = calc_laser_frequencies(self, "wavenumber", "wavenumber", bad_points) self.parameters["calculated NIR freq (cm-1)"] = "{}".format(freqNIR, nir_units) self.parameters["calculated THz freq (cm-1)"] = "{}".format(freqTHz, freqTHz) freqNIR, freqTHz = calc_laser_frequencies(self, nir_units, thz_units, bad_points) return freqNIR, freqTHz def save_processing(self, file_name, folder_str, marker='', index='', verbose=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise temp = np.array(self.sb_results) ampli = np.array([temp[:, 3] / temp[:, 5]]) # But [:, 3] is already area? # (The old name was area) # I think it must be amplitude temp[:, 5:7] = temp[:, 5:7] * 1000 # For meV linewidths if verbose: print("sb_results", self.sb_results.shape) print("ampli", ampli.shape) save_results = np.hstack((temp, ampli.T)) spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname self.parameters['addenda'] = self.addenda self.parameters['subtrahenda'] = self.subtrahenda try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nSideband,Center energy,error,Sideband strength,error,Linewidth,error,Amplitude' origin_import_fits += '\norder,eV,,arb. u.,,meV,,arb. u.' origin_import_fits += "\n{},,,{},,,".format(marker, marker) fits_header = '#' + parameter_str + origin_import_fits # print "DEBUG: in saving", folder_str, ",", spectra_fname np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', header=spec_header, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, fit_fname), save_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') if verbose: print("Save image.\nDirectory: {}".format(os.path.join(folder_str, spectra_fname))) class HighSidebandCCDRaw(HighSidebandCCD): """ This class is meant for passing in an image file (currently supports a 2x1600) Which it does all the processing on. """ def __init__(self, hsg_thing, parameter_dict=None, spectrometer_offset=None): # let the supers do the hard work of importing the json dict and all that jazz super(HighSidebandCCDRaw, self).__init__(hsg_thing, parameter_dict=None, spectrometer_offset=None) self.ccd_data = np.genfromtxt(hsg_thing, delimiter=',').T self.proc_data = np.column_stack(( self.gen_wavelengths(self.parameters["center_lambda"], self.parameters["grating"]), np.array(self.ccd_data[:,1], dtype=float)-np.median(self.ccd_data[:,1]), np.ones_like(self.ccd_data[:,1], dtype=float) )) self.proc_data[:, 0] = 1239.84 / self.proc_data[:, 0] self.proc_data = np.flipud(self.proc_data) @staticmethod def gen_wavelengths(center_lambda, grating): ''' This returns a 1600 element list of wavelengths for each pixel in the EMCCD based on grating and center wavelength grating = which grating, 1 or 2 center = center wavelength in nanometers ''' b = 0.75 # length of spectrometer, in m k = -1.0 # order looking at r = 16.0e-6 # distance between pixles on CCD if grating == 1: d = 1. / 1800000. gamma = 0.213258508834 delta = 1.46389935365 elif grating == 2: d = 1. / 1200000. gamma = 0.207412628027 delta = 1.44998344749 elif grating == 3: d = 1. / 600000. gamma = 0.213428934011 delta = 1.34584754696 else: print("What a dick, that's not a valid grating") return None center = center_lambda * 10 ** -9 wavelength_list = np.arange(-799.0, 801.0) output = d * k ** (-1) * ((-1) * np.cos(delta + gamma + (-1) * np.arccos( (-1 / 4) * (1 / np.cos((1 / 2) * gamma)) ** 2 * ( 2 * (np.cos((1 / 2) * gamma) ** 4 * (2 + (-1) * d ** (-2) * k ** 2 * center ** 2 + 2 * np.cos(gamma))) ** ( 1 / 2) + d ** (-1) * k * center * np.sin(gamma))) + np.arctan( b ** (-1) * (r * wavelength_list + b * np.cos(delta + gamma)) * (1 / np.sin(delta + gamma)))) + ( 1 + (-1 / 16) * (1 / np.cos((1 / 2) * gamma)) ** 4 * (2 * ( np.cos((1 / 2) * gamma) ** 4 * ( 2 + (-1) * d ** (-2) * k ** 2 * center ** 2 + 2 * np.cos(gamma))) ** (1 / 2) + d ** ( -1) * k * center * np.sin( gamma)) ** 2) ** (1 / 2)) output = (output + center) * 10 ** 9 return output class PMT(object): def __init__(self, file_name): """ Initializes a SPEX spectrum. It'll open a file, and bring in the details of a sideband spectrum into the object. There isn't currently any reason to use inheritance here, but it could be extended later to include PLE or something of the sort. attributes: self.parameters - dictionary of important experimental parameters this will not necessarily be the same for each file in the object self.fname - the current file path :param file_name: The name of the PMT file :type file_name: str :return: None """ # print "This started" self.fname = file_name # self.files_included = [file_name] with open(file_name, 'r') as f: param_str = '' line = f.readline() # Needed to move past the first line, which is the sideband order. Not generally useful line = f.readline() while line[0] == '#': param_str += line[1:] line = f.readline() self.parameters = json.loads(param_str) class HighSidebandPMT(PMT): def __init__(self, file_path, verbose=False): """ Initializes a SPEX spectrum. It'll open a single file, then read the data from that file using .add_sideband(). The super's init will handle the parameters and the description. attributes: self.parameters - dictionary of important experimental parameters, created in PMT self.sb_dict - keys are sideband order, values are PMT data arrays self.sb_list - sorted list of included sidebands :param file_path: path to the current file :type file_path: str :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: """ super(HighSidebandPMT, self).__init__( file_path) # Creates the json parameters dictionary self.fname = file_path self.parameters["files included"] = [file_path] with open(file_path, 'r') as f: sb_num = int(f.readline()[1:]) raw_temp = np.genfromtxt(file_path, comments='#', delimiter=',')[3:, :] if self.parameters.get("photon counted", False): # The scale factor for photon counting to generic # PMT data depends on... things. It's different each # day. Unfortunately, the overlap in dynamic range between # the two is small, and generally only one sideband # can been seen by both methods. I don't really have # the motivation to automatically calculate the # appropriate factor, so this is your reminder to find # it yourself. import time # assert time.strftime("%x") == "03/15/17" assert self.parameters.get("pc ratio", -1) != -1, self.fname raw_temp[:,3] *= self.parameters["pc ratio"] pass raw_temp[:, 0] = raw_temp[:, 0] / 8065.6 # turn NIR freq into eV self.parameters["thz_freq"] = 0.000123984 * float( self.parameters.get("fel_lambda", -1)) self.parameters["nir_freq"] = float( self.parameters.get("nir_lambda", -1))/8065.6 self.initial_sb = sb_num self.initial_data = np.array(raw_temp) self.sb_dict = {sb_num: np.array(raw_temp)} self.sb_list = [sb_num] def add_sideband(self, other): """ This bad boy will add another PMT sideband object to the sideband spectrum of this object. It handles when you measure the same sideband twice. It assumes both are equally "good" NOTE: This means that if both aren't equally "good" (taking a second scan with higher gain/photon counting because you didn't see it), you need to not add the file (remove/rename the file, etc.) I'd love to overhall the data collection/analysis so this can be more intelligent (Effectively offload a lot of the processing (especially not saving 10 arbitrary points to process later) onto the live software and add sideband strengths alone, like the CCD works. But this would be a bigger change that I can seem to find time for). It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could, if you have two incomplete dictionaries :param other: the new sideband data to add to the larger spectrum. Add means append, no additino is performed :type other: HighSidebandPMT :return: """ """ This bad boy will add another PMT sideband object to the sideband spectrum of this object It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could """ self.parameters["files included"].append(other.fname) if other.initial_sb in self.sb_list: self.sb_list.append(other.initial_sb) # Make things comma delimited? try: self.sb_dict[other.initial_sb] = np.row_stack( (self.sb_dict[other.initial_sb], other.initial_data) ) except KeyError: self.sb_dict[other.initial_sb] = np.array(other.initial_data) except Exception as e: print("THIS IS THE OTHER ERROR", e) raise def process_sidebands(self, verbose=False, baselineCorr = False): """ This bad boy will clean up the garbled mess that is the object before hand, including clearing out misfired shots and doing the averaging. Affects: self.sb_dict = Averages over sidebands Creates: self.sb_list = The sideband orders included in this object. :param verbose: Flag to see the nitty gritty details. :type verbose: bool :param baselineCorr: Whether to subtract the average across the two endpoints :return: None """ for sb_num, sb in list(self.sb_dict.items()): if sb_num == 0: fire_condition = -np.inf # This way the FEL doesn't need to be on during laser line measurement else: fire_condition = np.mean(sb[:, 2]) / 2 # Say FEL fired if the # cavity dump signal is # more than half the mean # of the cavity dump signal frequencies = sorted(list(set(sb[:, 0]))) temp = None for freq in frequencies: data_temp = np.array([]) for point in sb: if point[0] == freq and point[2] > fire_condition: data_temp = np.hstack((data_temp, point[3])) try: temp = np.vstack( (temp, np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]))) except: temp = np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]) # temp[:, 0] = temp[:, 0] / 8065.6 # turn NIR freq into eV temp = temp[temp[:, 0].argsort()] if baselineCorr: x = temp[[0, -1], 0] y = temp[[0, -1], 1] p = np.polyfit(x, y, 1) temp[:, 1] -= np.polyval(p, temp[:,0]) self.sb_dict[sb_num] = np.array(temp) self.sb_list = sorted(self.sb_dict.keys()) if verbose: print("Sidebands included", self.sb_list) def integrate_sidebands(self, verbose=False, cutoff=1.0, **kwargs): """ This method will integrate the sidebands to find their strengths, and then use a magic number to define the width, since they are currently so utterly undersampled for fitting. cutoff is the ratio of area/error which must be exceeded to count It is currently the preferred method for calculating sideband strengths. self.fit_sidebands is probably better with better-sampled lines. Creates: self.sb_results = full list of integrated data. Column order is: [sb order, Freq (eV), "error" (eV), Integrate area (arb.), area error, "Linewidth" (eV), "Linewidth error" (eV) self.full_dict = Dictionary where the SB order column is removed and turned into the keys. The values are the rest of that sideband's results. :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ if verbose: print("="*15) print() print("Integrating PMT Sidebands") print("Cutoff: {}".format(cutoff)) print(os.path.basename(self.fname)) print() print("=" * 15) self.full_dict = {} for sideband in list(self.sb_dict.items()): index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] # stroff = np.nan_to_num(sideband[1][[0,1,-2,1], 1]).sum()/4. area = np.trapz(np.nan_to_num(sideband[1][:, 1]), sideband[1][:, 0]) error = np.sqrt(np.sum(np.nan_to_num( sideband[1][:, 2]) ** 2)) / 8065.6 # Divide by the step size? if verbose: print("\torder: {}, area: {:.3g}, error: {:.3g}, ratio: {:.3f}".format( sideband[0], area, error, area/error )) details = np.array( [sideband[0], nir_frequency, 1 / 8065.6, area, error, 2 / 8065.6, 1 / 8065.6]) if area < 0: if verbose: print("\t\tarea < 0") continue elif area < cutoff/5 * error: # Two seems like a good cutoff? if verbose: print("\t\tI did not keep sideband") continue try: self.sb_results = np.vstack((self.sb_results, details)) except: self.sb_results = np.array(details) self.full_dict[sideband[0]] = details[1:] try: self.sb_results = self.sb_results[self.sb_results[:, 0].argsort()] except (IndexError, AttributeError): # IndexError where there's only one sideband # AttributeError when there aren't any (one sb which wasn't fit) pass if verbose: print('-'*19) def fit_sidebands(self, plot=False, verbose=False): """ This method will fit a gaussian to each of the sidebands provided in the self.sb_dict and make a list just like in the EMCCD version. It will also use the standard error of the integral of the PMT peak as the error of the gaussian area instead of that element from the covariance matrix. Seems more legit. attributes: self.sb_results: the numpy array that contains all of the fit info just like it does in the CCD class. self.full_dict = A dictionary version of self.sb_results :param plot: Flag to see the results plotted :type plot: bool :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ sb_fits = {} for sideband in list(self.sb_dict.items()): if verbose: print("Sideband number", sideband[0]) print("Sideband data:\n", sideband[1]) index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] peak = sideband[1][index, 1] width_guess = 0.0001 # Yep, another magic number p0 = [nir_frequency, peak * width_guess, width_guess, 0.00001] if verbose: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *p0), label="fit :{}".format(sideband[1])) print("p0:", p0) try: coeff, var_list = curve_fit(gauss, sideband[1][:, 0], sideband[1][:, 1], sigma=sideband[1][:, 2], p0=p0) coeff[1] = abs(coeff[1]) coeff[2] = abs(coeff[2]) if verbose: print("coeffs:", coeff) print("stdevs:", np.sqrt(np.diag(var_list))) print("integral", np.trapz(sideband[1][:, 1], sideband[1][:, 0])) if np.sqrt(np.diag(var_list))[0] / coeff[ 0] < 0.5: # The error on where the sideband is should be small sb_fits[sideband[0]] = np.concatenate( (np.array([sideband[0]]), coeff, np.sqrt(np.diag(var_list)))) # print "error then:", sb_fits[sideband[0]][6] relative_error = np.sqrt(sum([x ** 2 for x in sideband[1][index - 1:index + 2, 2]])) / np.sum( sideband[1][index - 1:index + 2, 1]) if verbose: print("relative error:", relative_error) sb_fits[sideband[0]][6] = coeff[1] * relative_error # print "error now:", sb_fits[sideband[0]][6] if plot: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *coeff)) # plt.plot(x_vals, gauss(x_vals, *p0)) else: print("what happened?") except: print("God damn it, Leroy.\nYou couldn't fit this.") sb_fits[sideband[0]] = None for result in sorted(sb_fits.keys()): try: self.sb_results = np.vstack((self.sb_results, sb_fits[result])) except: self.sb_results = np.array(sb_fits[result]) self.sb_results = self.sb_results[:, [0, 1, 5, 2, 6, 3, 7, 4, 8]] self.sb_results = self.sb_results[:, :7] if verbose: print("And the results, please:\n", self.sb_results) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def laser_line(self, verbose=False, **kwargs): """ This method is designed to scale everything in the PMT to the conversion efficiency based on our measurement of the laser line with a fixed attenuation. Creates: self.parameters['normalized?'] = Flag to specify if the laser has been accounted for. :return: None """ if 0 not in self.sb_list: self.parameters['normalized?'] = False return else: laser_index = np.where(self.sb_results[:,0] == 0)[0][0] if verbose: print("sb_results", self.sb_results) print("laser_index", laser_index) laser_strength = np.array(self.sb_results[laser_index, 3:5]) if verbose: print("Laser_strength", laser_strength) for sb in self.sb_results: if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) sb[4] = (sb[3] / laser_strength[0]) * np.sqrt( (sb[4] / sb[3]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[3] = sb[3] / laser_strength[0] if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) for sb in list(self.full_dict.values()): sb[3] = (sb[2] / laser_strength[0]) * np.sqrt( (sb[3] / sb[2]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[2] = sb[2] / laser_strength[0] self.parameters['normalized?'] = True def save_processing(self, file_name, folder_str, marker='', index='', verbose=False): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname # self.parameters["files included"] = list(self.files) try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: PMT.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count( '#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.\n,{:.3f},'.format( self.parameters["fieldStrength"]["mean"]) spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nIndex,Center energy,error,Amplitude,error,Linewidth,error\nInt,eV,,arb. u.,,eV,,\n,,' # + marker fits_header = '#' + parameter_str + origin_import_fits for sideband in sorted(self.sb_dict.keys()): try: complete = np.vstack((complete, self.sb_dict[sideband])) except: complete = np.array(self.sb_dict[sideband]) np.savetxt(os.path.join(folder_str, spectra_fname), complete, delimiter=',', header=spec_header, comments='', fmt='%0.6e') try: np.savetxt(os.path.join(folder_str, fit_fname), self.sb_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') except AttributeError: # Catch the error that happens if you save something without files print("warning, couldn't save fit file (no sidebands found?)") if verbose: print("Saved PMT spectrum.\nDirectory: {}".format( os.path.join(folder_str, spectra_fname))) class HighSidebandPMTOld(PMT): """ Old version: Replaced March 01, 2017 Class initialized by loading in data set. Multiple copies of the same sideband were stacked as raw data and combined, effectively causing (2) 10-pt scans to be treated the same as (1) 20pt scan. This works well until you have photon counted pulses. """ def __init__(self, file_path, verbose=False): """ Initializes a SPEX spectrum. It'll open a single file, then read the data from that file using .add_sideband(). The super's init will handle the parameters and the description. attributes: self.parameters - dictionary of important experimental parameters, created in PMT self.sb_dict - keys are sideband order, values are PMT data arrays self.sb_list - sorted list of included sidebands :param file_path: path to the current file :type file_path: str :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: """ super(HighSidebandPMT, self).__init__( file_path) # Creates the json parameters dictionary self.fname = file_path self.parameters["files included"] = [file_path] with open(file_path, 'r') as f: sb_num = int(f.readline()[1:]) raw_temp = np.genfromtxt(file_path, comments='#', delimiter=',')[3:, :] self.initial_sb = sb_num self.initial_data = np.array(raw_temp) self.sb_dict = {sb_num: np.array(raw_temp)} self.sb_list = [sb_num] def add_sideband(self, other): """ This bad boy will add another PMT sideband object to the sideband spectrum of this object. It handles when you measure the same sideband twice. It assumes both are equally "good" It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could, if you have two incomplete dictionaries :param other: the new sideband data to add to the larger spectrum. Add means append, no additino is performed :type other: HighSidebandPMT :return: """ """ This bad boy will add another PMT sideband object to the sideband spectrum of this object It currently doesn't do any sort of job combining dictionaries or anything, but it definitely could """ self.parameters["files included"].append(other.fname) if other.initial_sb in self.sb_list: self.sb_list.append(other.initial_sb) # Make things comma delimited? try: self.sb_dict[other.initial_sb].vstack((other.initial_data)) except: self.sb_dict[other.initial_sb] = np.array(other.initial_data) def process_sidebands(self, verbose=False): """ This bad boy will clean up the garbled mess that is the object before hand, including clearing out misfired shots and doing the averaging. Affects: self.sb_dict = Averages over sidebands Creates: self.sb_list = The sideband orders included in this object. :param verbose: Flag to see the nitty gritty details. :type verbose: bool :return: None """ for sb_num, sb in list(self.sb_dict.items()): if sb_num == 0: fire_condition = -np.inf # This way the FEL doesn't need to be on during laser line measurement else: fire_condition = np.mean(sb[:, 2]) / 2 # Say FEL fired if the # cavity dump signal is # more than half the mean # of the cavity dump signal frequencies = sorted(list(set(sb[:, 0]))) temp = None for freq in frequencies: data_temp = np.array([]) for point in sb: if point[0] == freq and point[2] > fire_condition: data_temp = np.hstack((data_temp, point[3])) try: temp = np.vstack( (temp, np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]))) except: temp = np.array([freq, np.mean(data_temp), np.std(data_temp) / np.sqrt(len(data_temp))]) temp[:, 0] = temp[:, 0] / 8065.6 # turn NIR freq into eV temp = temp[temp[:, 0].argsort()] self.sb_dict[sb_num] = np.array(temp) self.sb_list = sorted(self.sb_dict.keys()) if verbose: print("Sidebands included", self.sb_list) def integrate_sidebands(self, verbose=False): """ This method will integrate the sidebands to find their strengths, and then use a magic number to define the width, since they are currently so utterly undersampled for fitting. It is currently the preferred method for calculating sideband strengths. self.fit_sidebands is probably better with better-sampled lines. Creates: self.sb_results = full list of integrated data. Column order is: [sb order, Freq (eV), "error" (eV), Integrate area (arb.), area error, "Linewidth" (eV), "Linewidth error" (eV) self.full_dict = Dictionary where the SB order column is removed and turned into the keys. The values are the rest of that sideband's results. :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ self.full_dict = {} for sideband in list(self.sb_dict.items()): index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] area = np.trapz(np.nan_to_num(sideband[1][:, 1]), sideband[1][:, 0]) error = np.sqrt(np.sum(np.nan_to_num( sideband[1][:, 2]) ** 2)) / 8065.6 # Divide by the step size? if verbose: print("order", sideband[0]) print("area", area) print("error", error) print("ratio", area / error) details = np.array( [sideband[0], nir_frequency, 1 / 8065.6, area, error, 2 / 8065.6, 1 / 8065.6]) if area < 0: if verbose: print("area less than 0", sideband[0]) continue elif area < 1.0 * error: # Two seems like a good cutoff? if verbose: print("I did not keep sideband ", sideband[0]) continue try: self.sb_results = np.vstack((self.sb_results, details)) except: self.sb_results = np.array(details) self.full_dict[sideband[0]] = details[1:] try: self.sb_results = self.sb_results[self.sb_results[:, 0].argsort()] except (IndexError, AttributeError): # IndexError where there's only one sideband # AttributeError when there aren't any (one sb which wasn't fit) pass def fit_sidebands(self, plot=False, verbose=False): """ This method will fit a gaussian to each of the sidebands provided in the self.sb_dict and make a list just like in the EMCCD version. It will also use the standard error of the integral of the PMT peak as the error of the gaussian area instead of that element from the covariance matrix. Seems more legit. attributes: self.sb_results: the numpy array that contains all of the fit info just like it does in the CCD class. self.full_dict = A dictionary version of self.sb_results :param plot: Flag to see the results plotted :type plot: bool :param verbose: Flag to see the nitty gritty details :type verbose: bool :return: None """ sb_fits = {} for sideband in list(self.sb_dict.items()): if verbose: print("Sideband number", sideband[0]) print("Sideband data:\n", sideband[1]) index = np.argmax(sideband[1][:, 1]) nir_frequency = sideband[1][index, 0] peak = sideband[1][index, 1] width_guess = 0.0001 # Yep, another magic number p0 = [nir_frequency, peak * width_guess, width_guess, 0.00001] if verbose: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *p0), label="fit :{}".format(sideband[1])) print("p0:", p0) try: coeff, var_list = curve_fit(gauss, sideband[1][:, 0], sideband[1][:, 1], sigma=sideband[1][:, 2], p0=p0) coeff[1] = abs(coeff[1]) coeff[2] = abs(coeff[2]) if verbose: print("coeffs:", coeff) print("stdevs:", np.sqrt(np.diag(var_list))) print("integral", np.trapz(sideband[1][:, 1], sideband[1][:, 0])) if np.sqrt(np.diag(var_list))[0] / coeff[ 0] < 0.5: # The error on where the sideband is should be small sb_fits[sideband[0]] = np.concatenate( (np.array([sideband[0]]), coeff, np.sqrt(np.diag(var_list)))) # print "error then:", sb_fits[sideband[0]][6] relative_error = np.sqrt(sum([x ** 2 for x in sideband[1][index - 1:index + 2, 2]])) / np.sum( sideband[1][index - 1:index + 2, 1]) if verbose: print("relative error:", relative_error) sb_fits[sideband[0]][6] = coeff[1] * relative_error # print "error now:", sb_fits[sideband[0]][6] if plot: x_vals = np.linspace(np.amin(sideband[1][:, 0]), np.amax(sideband[1][:, 0]), num=50) plt.plot(x_vals, gauss(x_vals, *coeff)) # plt.plot(x_vals, gauss(x_vals, *p0)) else: print("what happened?") except: print("God damn it, Leroy.\nYou couldn't fit this.") sb_fits[sideband[0]] = None for result in sorted(sb_fits.keys()): try: self.sb_results = np.vstack((self.sb_results, sb_fits[result])) except: self.sb_results = np.array(sb_fits[result]) self.sb_results = self.sb_results[:, [0, 1, 5, 2, 6, 3, 7, 4, 8]] self.sb_results = self.sb_results[:, :7] if verbose: print("And the results, please:\n", self.sb_results) self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) def laser_line(self, verbose=False): """ This method is designed to scale everything in the PMT to the conversion efficiency based on our measurement of the laser line with a fixed attenuation. Creates: self.parameters['normalized?'] = Flag to specify if the laser has been accounted for. :return: None """ if 0 not in self.sb_list: self.parameters['normalized?'] = False return else: laser_index = np.where(self.sb_results[:, 0] == 0)[0][0] if verbose: print("sb_results", self.sb_results[laser_index, :]) print("laser_index", laser_index) laser_strength = np.array(self.sb_results[laser_index, 3:5]) if verbose: print("Laser_strength", laser_strength) for sb in self.sb_results: if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) sb[4] = (sb[3] / laser_strength[0]) * np.sqrt( (sb[4] / sb[3]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[3] = sb[3] / laser_strength[0] if verbose: print("\torder {}, strength {}, error {}".format(sb[0], sb[3], sb[4])) for sb in list(self.full_dict.values()): sb[3] = (sb[2] / laser_strength[0]) * np.sqrt( (sb[3] / sb[2]) ** 2 + (laser_strength[1] / laser_strength[0]) ** 2) sb[2] = sb[2] / laser_strength[0] self.parameters['normalized?'] = True def save_processing(self, file_name, folder_str, marker='', index=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files: self.proc_data = the continuous spectrum self.sb_results = the individual sideband details :param file_name: The base name for the saved file :type file_name: str :param folder_str: The full name for the folder hte file is saved it. Folder can be created :type folder_str: str :param marker: Marker for the file, appended to file_name, often the self.parameters['series'] :type marker: str :param index: used to keep these files from overwriting themselves when marker is the same :type index: str or int :return: None """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_fits.txt' self.save_name = spectra_fname # self.parameters["files included"] = list(self.files) try: parameter_str = json.dumps(self.parameters, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: PMT.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count( '#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.\n,{:.3f},'.format( self.parameters["fieldStrength"]["mean"]) spec_header = '#' + parameter_str + origin_import_spec origin_import_fits = '\nCenter energy,error,Amplitude,error,Linewidth,error\neV,,arb. u.,,eV,,\n,,' # + marker fits_header = '#' + parameter_str + origin_import_fits for sideband in sorted(self.sb_dict.keys()): try: complete = np.vstack((complete, self.sb_dict[sideband])) except: complete = np.array(self.sb_dict[sideband]) np.savetxt(os.path.join(folder_str, spectra_fname), complete, delimiter=',', header=spec_header, comments='', fmt='%0.6e') try: np.savetxt(os.path.join(folder_str, fit_fname), self.sb_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') except AttributeError: # Catch the error that happens if you save something without files print("warning, couldn't save fit file (no sidebands found?)") print("Saved PMT spectrum.\nDirectory: {}".format( os.path.join(folder_str, spectra_fname))) class TimeTrace(PMT): """ This class will be able to handle time traces output by the PMT softare. """ def __init__(self, file_path): super(HighSidebandPMT, self).__init__(file_path) class FullSpectrum(object): def __init__(self): pass class FullAbsorbance(FullSpectrum): """ I'm imagining this will sew up absorption spectra, but I'm not at all sure how to do that at the moment. """ def __init__(self): pass class FullHighSideband(FullSpectrum): """ I'm imagining this class is created with a base CCD file, then gobbles up other spectra that belong with it, then grabs the PMT object to normalize everything, assuming that PMT object exists. """ def __init__(self, initial_CCD_piece): """ Initialize a full HSG spectrum. Starts with a single CCD image, then adds more on to itself using stitch_hsg_dicts. Creates: self.fname = file name of the initial_CCD_piece self.sb_results = The sideband details from the initializing data self.parameters = The parameter dictionary of the initializing data. May not have all details of spectrum pieces added later. self.full_dict = a copy of the sb_results without the zeroth column, which is SB order :param initial_CCD_piece: The starting part of the spectrum, often the lowest orders seen by CCD :type initial_CCD_piece: HighSidebandCCD :return: None """ self.fname = initial_CCD_piece.fname try: self.sb_results = initial_CCD_piece.sb_results except AttributeError: print(initial_CCD_piece.full_dict) raise self.parameters = initial_CCD_piece.parameters self.parameters['files_here'] = [initial_CCD_piece.fname.split('/')[-1]] self.full_dict = {} for sb in self.sb_results: self.full_dict[sb[0]] = np.asarray(sb[1:]) @staticmethod def parse_sb_array(arr): """ Check to make sure the first even order sideband in an array is not weaker than the second even order. If this happens, it's likely because the SB was in the short pass filter and isn't work counting. We cut it out to prevent it from itnerfering with calculating overlaps :param arr: :return: """ arr = np.array(arr) if (arr[0, sbarr.SBNUM]>0 and arr[1, sbarr.SBNUM]>0 and # make sure they're both pos arr[0, sbarr.AREA] < arr[1, sbarr.AREA]): # and the fact the area is less # print "REMOVING FIRST SIDEBAND FROM FULLSIDEBAND" # print arr[0] # print arr[1] arr = arr[1:] full_dict = {} for sb in arr: full_dict[sb[0]] = np.asarray(sb[1:]) return full_dict, arr def add_CCD(self, ccd_object, verbose=False, force_calc=None, **kwargs): """ This method will be called by the stitch_hsg_results function to add another CCD image to the spectrum. :param ccd_object: The CCD object that will be stiched into the current FullHighSideband object :type ccd_object: HighSidebandCCD :return: None """ if self.parameters["gain"] == ccd_object.parameters["gain"]: calc = False else: calc = True if force_calc is not None: calc = force_calc if "need_ratio" in kwargs: #cascading it through, starting to think # everything should be in a kwarg calc = kwargs.pop("need_ratio") try: # self.full_dict = stitch_hsg_dicts(self.full_dict, ccd_object.full_dict, # need_ratio=calc, verbose=verbose) self.full_dict = stitch_hsg_dicts(self, ccd_object, need_ratio=calc, verbose=verbose, **kwargs) self.parameters['files_here'].append(ccd_object.fname.split('/')[-1]) # update sb_results, too sb_results = [[k]+list(v) for k, v in list(self.full_dict.items())] sb_results = np.array(sb_results) self.sb_results = sb_results[sb_results[:,0].argsort()] except AttributeError: print('Error, not enough sidebands to fit here! {}, {}, {}, {}'.format( self.parameters["series"], self.parameters["spec_step"], ccd_object.parameters["series"], ccd_object.parameters["spec_step"] )) def add_PMT(self, pmt_object, verbose=True): """ This method will be called by the stitch_hsg_results function to add the PMT data to the spectrum. """ # print "I'm adding PMT once" # self.full_dict = stitch_hsg_dicts(pmt_object.full_dict, self.full_dict, # need_ratio=True, verbose=False) self.full_dict = stitch_hsg_dicts(pmt_object, self, need_ratio=True, verbose=verbose) # if verbose: # self.full_dict, ratio = self.full_dict # print "I'm done adding PMT data" self.parameters['files_here'].append(pmt_object.parameters['files included']) self.make_results_array() # if verbose: # return ratio def make_results_array(self): """ The idea behind this method is to create the sb_results array from the finished full_dict dictionary. """ self.sb_results = None # print "I'm making the results array:", sorted(self.full_dict.keys()) for sb in sorted(self.full_dict.keys()): # print "Going to add this", sb try: self.sb_results = np.vstack((self.sb_results, np.hstack((sb, self.full_dict[sb])))) except ValueError: # print "It didn't exist yet!" self.sb_results = np.hstack((sb, self.full_dict[sb])) # print "and I made this array:", self.sb_results[:, 0] def save_processing(self, file_name, folder_str, marker='', index='', verbose=''): """ This will save all of the self.proc_data and the results from the fitting of this individual file. Format: fit_fname = file_name + '_' + marker + '_' + str(index) + '_full.txt' Inputs: file_name = the beginning of the file name to be saved folder_str = the location of the folder where the file will be saved, will create the folder, if necessary. marker = I...I don't know what this was originally for index = used to keep these files from overwriting themselves when in a list Outputs: Two files, one that is self.proc_data, the other is self.sb_results """ try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise temp = np.array(self.sb_results) ampli = np.array([temp[:, 3] / temp[:, 5]]) # I'm pretty sure this is # amplitude, not area temp[:, 5:7] = temp[:, 5:7] * 1000 # For meV linewidths if verbose: print("sb_results", self.sb_results.shape) print("ampli", ampli.shape) save_results = np.hstack((temp, ampli.T)) # spectra_fname = file_name + '_' + marker + '_' + str(index) + '.txt' fit_fname = file_name + '_' + marker + '_' + str(index) + '_full.txt' # self.save_name = spectra_fname # self.parameters['addenda'] = self.addenda # self.parameters['subtrahenda'] = self.subtrahenda try: # PMT files add unnecessary number of lines, dump it into one line # by casting it to a string. reduced = self.parameters.copy() reduced["files_here"] = str(reduced["files_here"]) parameter_str = json.dumps(reduced, sort_keys=True, indent=4, separators=(',', ': ')) except Exception as e: print(e) print("Source: EMCCD_image.save_images\nJSON FAILED") print("Here is the dictionary that broke JSON:\n", self.parameters) return parameter_str = parameter_str.replace('\n', '\n#') num_lines = parameter_str.count('#') # Make the number of lines constant so importing is easier # for num in range(99 - num_lines): parameter_str += '\n#' parameter_str += '\n#' * (99 - num_lines) # origin_import_spec = '\nNIR frequency,Signal,Standard error\neV,arb. u.,arb. u.' # spec_header = '#' + parameter_str + '\n#' + self.description[:-2] + origin_import_spec origin_import_fits = '\nSideband,Center energy,error,Sideband strength,error,Linewidth,error,Amplitude'+\ '\norder,eV,,arb. u.,,meV,,arb. u.\n' + ','.join([marker]*8) fits_header = '#' + parameter_str + origin_import_fits # np.savetxt(os.path.join(folder_str, spectra_fname), self.proc_data, delimiter=',', # header=spec_header, comments='', fmt='%f') np.savetxt(os.path.join(folder_str, fit_fname), save_results, delimiter=',', header=fits_header, comments='', fmt='%0.6e') if verbose: print("Save image.\nDirectory: {}".format(os.path.join(folder_str, fit_fname))) class TheoryMatrix(object): def __init__(self,ThzField,Thzomega,nir_wl,dephase,peakSplit,temp=60): ''' This class is designed to handle everything for creating theory matrices and comparing them to experiement. Init defines some constants that are used throughout the calculation and puts somethings in proper units. Parameters: :ThzField: Give in kV/cm. :Thzomega: Give in Ghz. :nir_wl: Give in nanometers. :dephase: Dephasing, give in meV. Should roughly be the width of absorption peaks :detune: Detuning, give in meV. Difference between NIR excitation and band gap :temp: Temperature, give in K ''' self.F = ThzField * 10**5 self.Thz_w = Thzomega * 10**9 *2*np.pi self.nir_wl = nir_wl * 10**(-9) self.nir_ph = .0012398/self.nir_wl #NIR PHOTON ENERGY self.detune = 1.52 - self.nir_ph self.peakSplit = peakSplit*1.602*10**(-22) self.dephase = dephase*1.602*10**(-22) self.n_ref = 0 self.iterations = 0 self.max_iter = 0 self.hbar = 1.055*10**(-34) # hbar in Js self.temp = temp self.kb = 8.617*10**(-5) # Boltzmann constant in eV/K self.temp_ev = self.temp*self.kb def mu_generator(self,gamma1,gamma2,phi,beta): ''' Given gamma1 and gamma2 produces mu+- according to mu+- = electron mass/(mc^-1+gamma1 -+ 2*gamma2) Note that this formula is only accurate for THz and NIR polarized along [010]. The general form requires gamma3 as well Parameters: :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :phi: [100] to THz orientation, passed from the data array :beta: experimentally measured g3/g2 ratio Returns: mu_p, mu_m effective mass of of mu plus/minus ''' theta = phi + np.pi/4 emass = 9.109*10**(-31) # bare electron mass in kg m_cond = 0.0665 # Effective mass of conduction band mu_p = emass/( 1/m_cond + gamma1 - gamma2*np.sqrt(3*np.sin(2*theta)**2+1+3*np.cos(2*theta)**2*beta**2) ) # Calculates mu_plus mu_m = emass/( 1/m_cond + gamma1 + gamma2*np.sqrt(3*np.sin(2*theta)**2+1+3*np.cos(2*theta)**2*beta**2) ) # Calculates mu_minus return mu_p,mu_m def alpha_value(self,x): ''' alpha parameter given by Qile's notes on two band model for a given x Parameters: :x: the argument of the calculation. Give in radians Returns: :alpha_val: the alpha parameter given in Qile's notes ''' alpha_val = np.cos(x/2) - np.sin(x/2)/(x/2) # This does the calculation. Pretty straightforward return alpha_val def gamma_value(self,x): ''' gamma parameter given by Qile's notes on two band model Parameters: :x: Argument of the calculation. Give in radians Returns: :gamma_val: the gamma parameter given in Qile's notes ''' gamma_val = np.sin(x/2)/(x/2) # does the calculation return gamma_val def Up(self,mu): ''' Calculates the ponderemotive energy Ponderemotive energy given by U = e^2*F_THz^2/(4*mu*w_THz^2) Parameters: :F: Thz field. Give in V/m :mu: effective mass. Give in kg :w: omega, the THz freqeuncy. Give in angular frequency. Returns: :u: The ponderemotive energy ''' F = self.F w = self.Thz_w echarge = 1.602*10**(-19) # electron charge in Coulombs u = echarge**(2)*F**(2)/(4*mu*w**2) # calculates the ponderemotive energy return u def phonon_dephase(self,n): ''' Step function that will compare the energy gained by the sideband to the energy of the phonon (36.6meV). If the energy is less than the phonon, return zero. If it's more return the scattering rate as determined by Yu and Cordana Eq 5.51 This really should be treated as a full integral, but whatever ''' thz_omega = self.Thz_w hbar = self.hbar thz_ev = n*hbar*thz_omega/(1.602*10**-19) # converts to eV phonon_ev = 36.6*10**(-3) # phonon energy in Vv emass = 9.109*10**(-31) # bare electron mass in kg m_cond = 0.0665 # Effective mass of conduction band m_eff = emass*m_cond phonon_n = 1/(np.exp(phonon_ev/self.temp_ev)-1) if thz_ev<phonon_ev: # print('No phonon for order',n) return 0 else: W0 = 7.7*10**12 # characteristic rate rate_frac = phonon_n*np.sqrt((thz_ev+phonon_ev)/thz_ev)+( phonon_n+1)*np.sqrt((thz_ev-phonon_ev)/thz_ev)+( phonon_ev/thz_ev)*(-phonon_n*np.arcsinh(np.sqrt( phonon_ev/thz_ev))+(phonon_n+1)*np.arcsinh(np.sqrt( (thz_ev-phonon_ev)/thz_ev))) # Got this from Yu and Cordana's book fullW = W0*rate_frac return fullW def integrand(self,x,mu,n): ''' Calculate the integrand to integrate A_n+- in two_band_model pdf eqn 13. Given in the new doc pdf from Qile as I_d^(2n) Parameters: :x: Argument of integrand equal to omega*t. This is the variable integrated over. :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :w: Frequency of THz in radians. :F: Thz field in V/m :mu: reduced mass give in kg :n: Order of the sideband Returns: :result: The value of the integrand for a given x value ''' hbar = self.hbar F = self.F w = self.Thz_w dephase = self.dephase detune = self.detune pn_dephase = self.phonon_dephase(n) exp_arg = (-dephase*x/(hbar*w)-pn_dephase*x/w + 1j*x*self.Up(mu)/(hbar*w)*(self.gamma_value(x)**2-1)+1j*n*x/2-1j*detune*x/(hbar*w)) # Argument of the exponential part of the integrand bessel_arg = x*self.Up(mu)*self.alpha_value(x)*self.gamma_value(x)/(hbar*w) # Argument of the bessel function bessel = spl.jv(n/2,bessel_arg) # calculates the J_n(bessel_arg) bessel function result = np.exp(exp_arg)*bessel/x # This is the integrand for a given x return result def Qintegrand(self,x,mu,n): ''' Calculate the integrand in the expression for Q, with the simplification that the canonical momentum is zero upon exciton pair creation. Parameters: :x: integration variable of dimensionless units. Equal to omega*tau :dephase: dephasing rate of the electron hole pair as it is accelerated by the THz field :w: Frequency of THz is radiams :F: THz field in V/m :mu: the effective reduced mass of the electron-hole pair :n: Order of the sideband ''' hbar = self.hbar F = self.F w = self.Thz_w dephase = self.dephase pn_detune = self.phonon_dephase(n) c0 = 2*(x-np.sin(x)) a = 3*np.sin(2*x)-4*np.sin(w*x)-2*w*x*np.cos(2*x) b = -3*np.cos(2*w*x)-4*np.cos(x)+2*w*x*np.sin(2*x)+1 c1 = np.sign(a)*np.sqrt(a**2+b**2) phi = np.arctan2(a,b) exp_arg = -dephase*x/w-1j*pn_detune*x/w + 1j*(self.Up(mu)*x)/(hbar*w**2)*c0 -1j*n*phi bessel_arg = self.Up(mu)/(hbar*w)*c1 bessel = spl.jv(n,bessel_arg) result = np.exp(exp_arg)*bessel*(-1)**(n/2) return result def scale_J_n_T(self,Jraw,Jxx,observedSidebands,crystalAngle,saveFileName, index, save_results=True, scale_to_i=True): ''' This function takes the raw J from fan_n_Tmat or findJ and scales it with Jxx found from scaling sideband strengths with the laser line/PMT In regular processing we actually find all the matrices normalized to Jxx Now can scale to a given sideband order. This is to allow comparision between the measured sideband powers, normalized by the PMT, to the evalueated Path Integral from the two band model. By normalizing the measured values and integrals to a given sideband index, we can remove the physical constants from the evaluation. :param Jraw: set of matrices from findJ :param Jxx: sb_results from PMT and CCD data :param observedSidebands: np array of observed sidebands. Data will be cropped such that these sidebands are included in everything. :param crystalAngle: (Float) Angle of the sample from the 010 crystal face :saveFileName: Str of what you want to call the text files to be saved :save_results: Boolean controls if things are saved to txt files. Currently saves scaled J and T :param index: the sideband index to which we want to normalize. :param saveFileName: Str of what you want to call the text files to be saved. :param scale_to_i: Boolean that controls to normalize to the ith sideband True -> Scale to ith | False -> scale to laser line returns: scaledJ, scaledT matrices scaled by Jxx strengths ''' # Initialize the array for scaling Jxx_scales = np.array([ ]) self.n_ref = index if scale_to_i: for idx in np.arange(len(Jxx[:,0])): if Jxx[idx,0] == index: scale_to = Jxx[idx,3] print('scale to:',scale_to) # sets the scale_to to be Jxx for the ith sideband else: scale_to = 1 # just makes this 1 if you don't want to scale to i scaledJ = Jraw # initialize the scaled J matrix for idx in np.arange(len(Jxx[:,0])): if Jxx[idx,0] in observedSidebands: Jxx_scales = np.append(Jxx_scales,Jxx[idx,3]/scale_to) print('Scaling sb order',Jxx[idx,0]) # Creates scaling factor for idx in np.arange(len(Jxx_scales)): scaledJ[:,:,idx] = Jraw[:,:,idx]*Jxx_scales[idx] # For each sideband scales Jraw by Jxx_scales scaledT = makeT(scaledJ,crystalAngle) # Makes scaledT from our new scaledJ if save_results: saveT(scaledJ, observedSidebands, "{}_scaledJMatrix.txt".format(saveFileName)) saveT(scaledT, observedSidebands, "{}_scaledTMatrix.txt".format(saveFileName)) # Saves the matrices return scaledJ, scaledT def Q_normalized_integrals(self,gamma1,gamma2,n,phi,beta): ''' Returns Q_n^{HH}/Q_n^{LH} == Integrand_n^{HH}/Integrand_n^{LH} Unlike the normallized integrals used in early 2020 analysis, these integrals are of a given Fourier component's intensity from either the HH or LH band, and thus there is no prefactor related to the energy of the given sideband photon Parameters: :dephase: dephasing rate passed to intiallized TMAtrix object :w: the frequency of the THz field, in GHz :F: THz field strength in V/m :gamma1: Gamma1 parameter from Luttinger Hamiltonian :gamma2: Gamma2 parameter from Luttinger Hamiltonian :n: Order of the sideband for this integral :phi: [100] to THz orientation, passed from the cost function funciton (in radians) :beta: experimentally measured g3/g2 ratio Returns: QRatio, the ratio of Q_n^{HH}/Q_n^{LH} ''' mu_p,mu_m = self.mu_generator(gamma1,gamma2,phi,beta) w = self.Thz_w hbar = self.hbar detune = self.detune U_pp = self.Up(mu_p) U_pm = self.Up(mu_m) int_cutoff_HH = ((n*hbar*w-detune)/(8*U_pp))**(1/4) int_cutoff_LH = ((n*hbar*w-detune)/(8*U_pm))**(1/4) # Because the integral is complex, the real and imaginary parts have to be # counted seperatly. re_Q_HH = intgt.quad(lambda x: self.Qintegrand(x,mu_p,n), 0,int_cutoff_HH)[0] re_Q_LH = intgt.quad(lambda x: self.Qintegrand(x,mu_m,n), 0,int_cutoff_LH)[0] im_Q_HH = intgt.quad(lambda x: self.Qintegrand(x,mu_p,n), 0,int_cutoff_HH)[1] im_Q_LH = intgt.quad(lambda x: self.Qintegrand(x,mu_m,n), 0,int_cutoff_LH)[1] # Combine the real and imaginary to have the full integral QRatioRe = re_Q_HH/re_Q_LH QRatioIm = im_Q_HH/im_Q_LH return QRatioRe, QRatioIm def normalized_integrals(self,gamma1,gamma2,n,n_ref,phi,beta): ''' Returns the plus and minus eta for a given sideband order, normalized to order n_ref (should probably be 10?). This whole calculation relies on calculating the ratio of these quantities to get rid of some troubling constants. So you need a reference integral. eta(n)+- = (w_nir + 2*n*w_thz)^2/(w_nir + 2*n_ref*w_thz)^2 * (mu_+-/mu_ref)^2 * (int(n)+-)^2/(int(n_ref)+)^2 This takes gamma1 and gamma2 and gives the effective mass via mu_generator. It then calculates the normalized integrals for both mu's and gives eta, which is the integrals squared with some prefactors. Then you feed this into a cost function that varies gamma1 and gamma2. Parameters: :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :lambda_nir: wavelength of NIR in nm :w_thz: frequency in GHz of fel. DO NOT give in angular form, the code does that for you. :F: THz field strength :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :n: Order of sideband for this integral :n_ref: Order of the reference integral which everything will be divided by :phi: [100] to THz orientation, passed from the data array :beta: experimentally measured g3/g2 ratio Returns: eta_p, eta_m the values of the eta parameter normalized to the appropriate sideband order for plus and minus values of mu. ''' mu_p,mu_m = self.mu_generator(gamma1,gamma2,phi,beta) # gets the plus/minus effective mass omega_thz = self.Thz_w # FEL frequency omega_nir = 2.998*10**8/(self.nir_wl) *2*np.pi # NIR frequency, takes nm (wavelength) and gives angular Hz Field = self.F # THz field hbar = self.hbar dephase = self.dephase int_cutoff = hbar*omega_thz/dephase*10 # This cuts off the integral when x* dephase/hbaromega = 10 # Therefore the values of the integrand will be reduced by a value # of e^(-10) which is about 4.5*10^(-5) re_int_ref = intgt.quad(lambda x: np.real(self.integrand( x,mu_p,n_ref)),0,int_cutoff,limit = 1000000)[0] re_int_p = intgt.quad(lambda x: np.real(self.integrand( x,mu_p,n)),0,int_cutoff,limit = 1000000)[0] re_int_m = intgt.quad(lambda x: np.real(self.integrand( x,mu_m,n)),0,int_cutoff,limit = 1000000)[0] # Ok so these integrands are complex valued, but the intgt.quad integration # does not work with that. So we split the integral up into two parts, # real and imaginary parts. These lines calculate the real part for the # reference, plus, and minus integrals. # The integrals currently are limited to 10,000 iterations. No clue if that's # a good amount or what. We could potentially make this simpler by doing # a trapezoidal rule. # We define the lambda function here to set all the values of the integrand # function we want except for the variable of integration x im_int_ref = intgt.quad(lambda x: np.imag(self.integrand( x,mu_p,n_ref)),0,int_cutoff,limit = 1000000)[0] im_int_p = intgt.quad(lambda x: np.imag(self.integrand( x,mu_p,n)),0,int_cutoff,limit = 1000000)[0] im_int_m = intgt.quad(lambda x: np.imag(self.integrand( x,mu_m,n)),0,int_cutoff,limit = 1000000)[0] # Same as above but these are the imaginary parts of the integrals. int_ref = re_int_ref + 1j*im_int_ref int_p = re_int_p + 1j*im_int_p int_m = re_int_m + 1j*im_int_m # All the king's horses and all the king's men putting together our integrals # again. :) prefactor = ((omega_nir +2*n*omega_thz)**2)/((omega_nir +2*n_ref*omega_thz)**2) # This prefactor is the ratio of energy of the nth sideband to the reference m_pre = (mu_m/mu_p)**2 # There is a term of mu/mu_ref in the eta expression. For the eta_p = prefactor*(np.abs(int_p)**2)/(np.abs(int_ref)**2) eta_m = prefactor*m_pre*(np.abs(int_m)**2)/(np.abs(int_ref)**2) # Putting everthing together in one tasty little result return eta_p,eta_m def cost_func(self,gamma1,gamma2,observedSidebands,n_ref,Jexp,phi,beta,gc_fname,eta_folder): ''' This will sum up a cost function that takes the difference between the theory generated eta's and experimental scaled matrices eta+/eta+_ref = |Jxx|^2 eta-/eta+_ref = |Jyy-Jxx/4|^2/|3/4|^2 The cost function is given as Sqrt(|eta+(theory)-eta+(experiment)|^2 + |eta-(theory)-eta-(experiment)|^2) Where the J elements have been scaled to the n_ref sideband (Jxx_nref) This is designed to run over and over again as you try different gamma values. On my (Joe) lab computer a single run takes ~300-400 sec. The function keeps track of values by writing a file with iteration, gamma1, gamma2, and cost for each run. This lets you keep track of the results as you run. Parameters: :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :lambda_nir: wavelength of NIR in nm :w_thz: frequency of fel :F: THz field strength in kV/cm :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :n_ref: Order of the reference integral which everything will be divided by :Jexp: Scaled experimental Jones matrices in xy basis that will be compared to the theoretical values. Pass in the not flattened way. :phi: [100] to THz orientation, passed from the data array :beta: experimentally measured g3/g2 ratio :gc_fname: File name for the gammas and cost results :eta_folder: Folder name for the eta lists to go in :i: itteration, for parallel processing output purposes Returns: :costs: Cumulative cost function for that run :i: itteration, for parallel processing output purposes :eta_list: list of eta for's for each sideband order of the form sb order | eta_plus theory | eta_plus experiment | eta_minus thoery | eta_minus experiment . . . ''' costs = 0 # initialize the costs for this run t_start = time.time() # keeps track of the time the run started. eta_list = np.array([0,0,0,0,0]) dephase = self.dephase lambda_nir = self.nir_wl omega_nir = 2.998*10**8/(self.nir_wl) *2*np.pi w_thz = self.Thz_w F = self.F for idx in np.arrange(len(observedSidebands)): n = observedSidebands[idx] eta_p,eta_m = self.normalized_integrals(gamma1,gamma2,n,n_ref,phi,beta) # calculates eta from the normalized_integrals function prefactor = ((omega_nir +2*n*w_thz)**2)/((omega_nir +2*n_ref*w_thz)**2) #Have to hard code the index of the 16th order sideband (8,10,12,14,16) exp_p = prefactor*np.abs(Jexp[0,0,idx])**2 exp_m = prefactor*np.abs(Jexp[1,1,idx]-(1/4)*Jexp[0,0,idx])**2*(9/16) # calculates the experimental plus and minus values # 1/9/20 added prefactor to these bad boys costs += np.sqrt(np.abs((exp_p-eta_p)/(exp_p))**2 + np.abs((exp_m-eta_m)/(exp_m))**2) # Adds the cost function for this sideband to the overall cost function # 1/8/20 Changed cost function to be the diiference of the ratio of the two etas # 01/30/20 Changed cost function to be relative difference of eta_pm this_etas = np.array([n,eta_p,exp_p,eta_m,exp_m]) eta_list = np.vstack((eta_list,this_etas)) self.iterations += 1 # Ups the iterations counter g1rnd = round(gamma1,3) g2rnd = round(gamma2,3) costs_rnd = round(costs,5) # Round gamma1,gamma2,costs to remove float rounding bullshit g_n_c = str(self.iterations)+','+str(g1rnd)+','+str(g2rnd)+','+str(costs)+'\n' # String version of iteration, gamma1, gamma2, cost with a new line gc_file = open(gc_fname,'a') #opens the gamma/cost file in append mode gc_file.write(g_n_c) # writes the new line to the file gc_file.close() # closes the file etas_header = "#\n"*95 etas_header += f'# Dephasing: {self.dephase/(1.602*10**(-22))} eV \n' etas_header += f'# Detuning: {self.detune/(1.602*10**(-22))} eV \n' etas_header += f'# Field Strength: {self.F/(10**5)} kV/cm \n' etas_header += f'# THz Frequency: {self.Thz_w/(10**9 * 2*np.pi)} GHz \n' etas_header += f'# NIR Wavelength: {self.nir_wl/(10**(-9))} nm \n' etas_header += 'sb order, eta_plus theory, eta_plus experiment, eta_minus thoery, eta_minus experiment \n' etas_header += 'unitless, unitless, unitless, unitless, unitless \n' # Creates origin frienldy header for the eta's # eta_fname = 'eta_g1_' + str(g1rnd) + '_g2_' + str(g2rnd) + r'.txt' eta_fname = f'eta_g1_{g1rnd}_g2_{g2rnd}.txt' eta_path = os.path.join(eta_folder,eta_fname) #creates the file for this run of etas eta_list = eta_list[1:,:] np.savetxt(eta_path,eta_list, delimiter = ',', header = etas_header, comments = '') #save the etas for these gammas t_taken = round(time.time()-t_start,5) # calcuates time taken for this run print(" ") print("---------------------------------------------------------------------") print(" ") print(f'Iteration number {self.iterations} / {self.max_iter} done') print('for gamma1, gamma2 = ',g1rnd,g2rnd) print('Cost function is = ',costs_rnd) print('This calculation took ',t_taken,' seconds') print(" ") print("---------------------------------------------------------------------") print(" ") # These print statements help you keep track of what's going on as this # goes on and on and on. return costs def Q_cost_func(self,gamma1,gamma2,Gamma_Sidebands,Texp,crystalAngles, beta,gc_fname,Q_folder,ThetaSweep = True): ''' This compairs the T Matrix components measured by experiment to the ''' costs = 0 # Initialize the costs imcost = 0 recost = 0 t_start = time.time() Q_list = np.array([0,0,0,0,0]) if ThetaSweep: for idx in np.arange(len(crystalAngles)): n = Gamma_Sidebands phi = float(crystalAngles[idx]) phi_rad = phi*np.pi/180 theta = phi_rad + np.pi/4 #Calculate the Theoretical Q Ratio QRatioRe, QRatioIm = self.Q_normalized_integrals(gamma1,gamma2,n,phi_rad,beta) QRatio = QRatioRe + 1j*QRatioIm #Prefactor for experimental T Matirx algebra PHI = 5/(3*(np.sin(2*theta) - 1j*beta*np.cos(2*theta))) THETA = 1/(np.sin(2*theta)-1j*beta*np.cos(2*theta)) ExpQ = (Texp[idx,0,0]+PHI*Texp[idx,0,1])/(Texp[idx,0,0]-THETA*Texp[idx,0,1]) costs += np.abs((ExpQ - QRatio)/QRatio) imcost += np.abs((np.imag(ExpQ)-QRatioIm)/QRatioIm) recost += np.abs((np.real(ExpQ)-QRatioRe)/QRatioRe) this_Qs = np.array([phi,np.real(ExpQ),np.imag(ExpQ),QRatioRe,QRatioIm]) Q_list = np.vstack((Q_list,this_Qs)) else: for idx in np.arange(len(Gamma_Sidebands)): n = Gamma_Sidebands[idx] phi = float(crystalAngles) phi_rad = phi*np.pi/180 theta = phi_rad + np.pi/4 #Calculate the Theoretical Q Ratio QRatioRe, QRatioIm = self.Q_normalized_integrals(gamma1,gamma2,n,phi_rad,beta) QRatio = QRatioRe + 1j*QRatioIm #Prefactor for experimental T Matirx algebra PHI = 5/(3*(np.sin(2*theta) - 1j*beta*np.cos(2*theta))) THETA = 1/(np.sin(2*theta)-1j*beta*np.cos(2*theta)) ExpQ = (Texp[0,0,idx]+PHI*Texp[0,1,idx])/(Texp[0,0,idx]-THETA*Texp[0,1,idx]) costs += np.abs((ExpQ - QRatio)/QRatio) imcost += np.abs((np.imag(ExpQ)-QRatioIm)/QRatioIm) recost += np.abs((np.real(ExpQ)-QRatioRe)/QRatioRe) this_Qs = np.array([n,np.real(ExpQ),np.imag(ExpQ),QRatioRe,QRatioIm]) Q_list = np.vstack((Q_list,this_Qs)) self.iterations += 1 g1rnd = round(gamma1,3) g2rnd = round(gamma2,3) costs_rnd = round(costs,5) imcost_rnd = round(imcost,5) recost_rnd = round(recost,5) g_n_c = str(self.iterations) + ',' + str(g1rnd) + ',' + str(g2rnd) + ',' + str(costs) + ',' + str(imcost) + ',' + str(recost) + '\n' gc_file = open(gc_fname,'a') gc_file.write(g_n_c) gc_file.close() # Origin Header Q_header = "#\n"*94 Q_header += f'# Crystal Angle: {phi} Deg \n' Q_header += f'# Dephasing: {self.dephase/(1.602*10**(-22))} eV \n' Q_header += f'# Detuning: {self.detune/(1.602*10**(-22))} eV \n' Q_header += f'# Feild Strength: {self.F/(10**5)} kV/cm \n' Q_header += f'# THz Frequncy {self.Thz_w/(10**9 *2*np.pi)} GHz \n' Q_header += f'# NIR Wavelength {self.nir_wl/(10**(-9))} nm \n' Q_header += 'Crystal Angles, QRatio Experiment Real, Imaginary, QRatio Theory Real, Imaginary\n' Q_header += 'Degrees, unitless, unitless \n' #Eta File Name Q_fname = f'Q_g1_{g1rnd}_g2_{g2rnd}.txt' Q_path = os.path.join(Q_folder,Q_fname) Q_list = Q_list[1:,:] np.savetxt(Q_path,Q_list, delimiter = ',', header = Q_header, comments = '') t_taken = round(time.time() - t_start,5) print(" ") print("---------------------------------------------------------------------") print(" ") print(f'Iteration number {self.iterations} / {self.max_iter} done') print('for gamma1, gamma2 = ',g1rnd,g2rnd) print('Cost function is = ',costs_rnd) print('Imaginary Cost function is =',imcost_rnd) print('Real Cost function is =',recost_rnd) print('This calculation took ',t_taken,' seconds') print(" ") print("---------------------------------------------------------------------") print(" ") return costs,imcost,recost def gamma_sweep(self,gamma1_array,gamma2_array,observedSidebands,n_ref, Jexp,crystalAngle,gc_fname,eta_folder,save_results = True): ''' This function calculates the integrals and cost function for an array of gamma1 and gamma2. You can pass any array of gamma1 and gamma2 values and this will return the costs for all those values. Let's you avoid the weirdness of fitting algorithims. Parameters: :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :lambda_nir: wavelength of NIR in nm :w_thz: frequency of fel :F: THz field strength :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :n: Order of sideband for this integral :n_ref: Order of the reference integral which everything will be divided by :observedSidebands: List or array of observed sidebands. The code will loop over sidebands in this array. :Jexp: Scaled experimental Jones matrices in xy basis that will be compared to the theoretical values. Pass in the not flattened way. :gc_fname: File name for the gammas and cost functions, include .txt :eta_folder: Folder name for the eta lists to go in Returns: gamma_cost_array of form gamma1 | gamma2 | cost | . . . . . . . . . This is just running cost_func over and over again essentially. ''' dephase = self.dephase lambda_nir = self.nir_wl w_thz = self.Thz_w F = self.F phi = crystalAngle self.max_iter = len(gamma1_array)*len(gamma2_array) self.iterations = 0 gamma_cost_array = np.array([0,0,0]) # Initialize the gamma cost array gammas_costs = np.array([]) # This is just for initializing the gamma costs file gammacosts_header = "#\n"*95 gammacosts_header += f'# Dephasing: {self.dephase/(1.602*10**(-22))} eV \n' gammacosts_header += f'# Detuning: {self.detune/(1.602*10**(-22))} eV \n' gammacosts_header += f'# Field Strength: {self.F/(10**5)} kV/cm \n' gammacosts_header += f'# THz Frequency: {self.Thz_w/(10**9 * 2*np.pi)} GHz \n' gammacosts_header += f'# NIR Wavelength: {self.nir_wl/(10**(-9))} nm \n' gammacosts_header += 'Iteration, Gamma1, Gamma2, Cost Function \n' gammacosts_header += 'unitless, unitless, unitless, unitless \n' # Creates origin frienldy header for gamma costs np.savetxt(gc_fname, gammas_costs, delimiter = ',', header = gammacosts_header, comments = '') # create the gamma cost file data = [gamma1_array,gamma2_array] for gamma1 in gamma1_array: for gamma2 in gamma2_array: cost = self.cost_func(gamma1,gamma2,observedSidebands, n_ref,Jexp, phi, 1.42, gc_fname,eta_folder) this_costngamma = np.array([gamma1,gamma2,cost]) gamma_cost_array = np.vstack((gamma_cost_array,this_costngamma)) # calculates the cost for each gamma1/2 and adds the gamma1, gamma2, # and cost to the overall array. # gamma_cost_array = gamma_cost_final[1:,:] # if save_results: # sweepcosts_header = "#\n"*100 # sweepcosts_header += 'Gamma1, Gamma2, Cost Function \n' # sweepcosts_header += 'unitless, unitless, unitless \n' # # sweep_name = 'sweep_costs_' + gc_fname # np.savetxt(sweep_name,gamma_cost_array,delimiter = ',', # header = sweepcosts_header, comments = '') # Ok so right now I think I am going to get rid of saving this file # since it has the same information as the file that is saved in # cost_func but that file is updated every interation where this # one only works at the end. So if the program gets interrupted # the other one will still give you some information. return gamma_cost_array def gamma_th_sweep(self,gamma1_array,gamma2_array,n,crystalAngles, Texp,gc_fname,Q_folder,ThetaSweep = True, save_results = True): ''' This function calculates the integrals and cost function for an array of gamma1 and gamma2. You can pass any array of gamma1 and gamma2 values and this will return the costs for all those values. Let's you avoid the weirdness of fitting algorithims. Parameters: :dephase: dephasing rate. Should be a few meV, ~the width of the exciton absorption peak (according to Qile). Should be float :lambda_nir: wavelength of NIR in nm :w_thz: frequency of fel :F: THz field strength :gamma1: Gamma1 parameter in the luttinger hamiltonian. Textbook value of 6.85 :gamma2: Gamma2 parameter in the luttinger hamiltonian. Textbook value of 2.1 :n: Order of sideband for this integral :n_ref: Order of the reference integral which everything will be divided by :observedSidebands: List or array of observed sidebands. The code will loop over sidebands in this array. :Jexp: Scaled experimental Jones matrices in xy basis that will be compared to the theoretical values. Pass in the not flattened way. :gc_fname: File name for the gammas and cost functions, include .txt :eta_folder: Folder name for the eta lists to go in Returns: gamma_cost_array of form gamma1 | gamma2 | cost | . . . . . . . . . This is just running cost_func over and over again essentially. ''' #Hard Coding the experimental g3/g2 factor beta = 1.42 self.iterations = 0 self.max_iter = len(gamma1_array)*len(gamma2_array) gamma_cost_array = np.array([0,0,0,0,0]) # Initialize the gamma cost array gammas_costs = np.array([]) # This is just for initializing the gamma costs file gammacosts_header = "#\n"*95 gammacosts_header += f'# Detuning: {self.detune/(1.602*10**(-22))} eV \n' gammacosts_header += f'# Field Strength: {self.F/(10**5)} kV/cm \n' gammacosts_header += f'# THz Frequency: {self.Thz_w/(10**9 * 2*np.pi)} GHz \n' gammacosts_header += f'# NIR Wavelength: {self.nir_wl/(10**(-9))} nm \n' gammacosts_header += 'Iteration, Gamma1, Gamma2, Cost Function, Imaginary, Real \n' gammacosts_header += 'unitless, unitless, unitless, unitless, unitless \n' # Creates origin frienldy header for gamma costs np.savetxt(gc_fname, gammas_costs, delimiter = ',', header = gammacosts_header, comments = '') # create the gamma cost file for gamma1 in gamma1_array: for gamma2 in gamma2_array: cost,imcost,recost = self.Q_cost_func(gamma1,gamma2,n, Texp,crystalAngles,beta,gc_fname,Q_folder,ThetaSweep) this_costngamma = np.array([gamma1,gamma2,cost,imcost,recost]) gamma_cost_array = np.vstack((gamma_cost_array,this_costngamma)) # calculates the cost for each gamma1/2 and adds the gamma1, gamma2, # and cost to the overall array. return gamma_cost_array #################### # Fitting functions #################### def gauss(x, *p): """ Gaussian fit function. :param x: The independent variable :type x: np.array, or int or float :param p: [mean, area, width, y offset] to be unpacked :type p: list of floats or ints :return: Depends on x, returns another np.array or float or int :rtype: type(x) """ mu, A, sigma, y0 = p return (A / sigma) * np.exp(-(x - mu) ** 2 / (2. * sigma ** 2)) + y0 def lingauss(x, *p): """ Gaussian fit function with a linear offset :param x: The independent variable :type x: np.array, or int or float :param p: [mean, area, width, constant offset of background, slope of background] to be unpacked :type p: list of floats or ints :return: Depends on x, returns another np.array or float or int :rtype: type(x) """ mu, A, sigma, y0, m = p return (A / sigma) * np.exp(-(x - mu) ** 2 / (2. * sigma ** 2)) + y0 + m * x def lorentzian(x, *p): """ Lorentzian fit with constant offset :param x: The independent variable :type x: np.array, or int or float :param p: [mean, area, width, constant offset of background, slope of background] to be unpacked :type p: list of floats or ints :return: Depends on x, returns another np.array or float or int :rtype: type(x) """ mu, A, gamma, y0 = p return (A / np.pi) * (gamma / ((x - mu) ** 2 + gamma ** 2)) + y0 def background(x, *p): """ Arbitrary pink-noise model background data for absorbance FFT for the intention of replacing a peak in the FFT with the background :param x: The independent variable :type x: np.array, or int or float :param p: [proportionality factor, exponent of power law] :type p: list of floats or ints :return: Depends on x :rtype: type(x) """ a, b = p return a * (1 / x) ** b def gaussWithBackground(x, *p): """ Gaussian with pink-noise background function :param x: independent variable :type x: np.array, or int or float :param p: [mean, area, width, constant background, proportionality of power law, exponent of power law] :type p: list of floats or ints :return: Depends on x :rtype: type(x) """ pGauss = p[:4] a, b = p[4:] return gauss(x, *pGauss) + background(x, a, b) #################### # Collection functions #################### def hsg_combine_spectra(spectra_list, verbose = False, **kwargs): """ This function is all about smooshing different parts of the same hsg spectrum together. It takes a list of HighSidebandCCD spectra and turns the zeroth spec_step into a FullHighSideband object. It then uses the function stitch_hsg_dicts over and over again for the smooshing. Input: spectra_list = list of HighSidebandCCD objects that have sideband spectra larger than the spectrometer can see. Returns: good_list = A list of FullHighSideband objects that have been combined as much as can be. :param spectra_list: randomly-ordered list of HSG spectra, some of which can be stitched together :type spectra_list: List of HighSidebandCCD objects kwargs gets passed onto add_item :return: fully combined list of full hsg spectra. No PMT business yet. :rtype: list of FullHighSideband """ good_list = [] spectra_list = spectra_list.copy() spectra_list.sort(key=lambda x: x.parameters["spec_step"]) # keep a dict for each series' spec step # This allows you to combine spectra whose spec steps # change by values other than 1 (2, if you skip, or 0.5 if you # decide to insert things, or arbitary strings) spec_steps = {} for elem in spectra_list: # if verbose: # print "Spec_step is", elem.parameters["spec_step"] current_steps = spec_steps.get(elem.parameters["series"], []) current_steps.append(elem.parameters["spec_step"]) spec_steps[elem.parameters["series"]] = current_steps if verbose: print("I found these spec steps for each series:") print("\n\t".join("{}: {}".format(*ii) for ii in spec_steps.items())) # sort the list of spec steps for series in spec_steps: spec_steps[series].sort() same_freq = lambda x,y: x.parameters["fel_lambda"] == y.parameters["fel_lambda"] for index in range(len(spectra_list)): try: temp = spectra_list.pop(0) if verbose: print("\nStarting with this guy", temp, "\n") except: break good_list.append(FullHighSideband(temp)) counter = 1 temp_list = list(spectra_list) for piece in temp_list: if verbose: print("\tchecking this spec_step", piece.parameters["spec_step"], end=' ') print(", the counter is", counter) if not same_freq(piece, temp): if verbose: print("\t\tnot the same fel frequencies ({} vs {})".format(piece.parameters["fel_lambda"], temp.parameters["fel_lambda"])) continue if temp.parameters["series"] == piece.parameters["series"]: if piece.parameters["spec_step"] == spec_steps[temp.parameters["series"]][counter]: if verbose: print("I found this one", piece) counter += 1 good_list[-1].add_CCD(piece, verbose=verbose, **kwargs) spectra_list.remove(piece) else: print("\t\tNot the right spec step?", type(piece.parameters["spec_step"])) else: if verbose: print("\t\tNot the same series ({} vs {}".format( piece.parameters["series"],temp.parameters["series"])) good_list[-1].make_results_array() return good_list def hsg_combine_spectra_arb_param(spectra_list, param_name="series", verbose = False): """ This function is all about smooshing different parts of the same hsg spectrum together. It takes a list of HighSidebandCCD spectra and turns the zeroth spec_step into a FullHighSideband object. It then uses the function stitch_hsg_dicts over and over again for the smooshing. This is different than hsg_combine_spectra in that you pass which criteria distinguishes the files to be the "same". Since it can be any arbitrary value, things won't be exactly the same (field strength will never be identical between images). It will start with the first (lowest) spec step, then compare the number of images in the next step. Whichever has Input: spectra_list = list of HighSidebandCCD objects that have sideband spectra larger than the spectrometer can see. Returns: good_list = A list of FullHighSideband objects that have been combined as much as can be. :param spectra_list: randomly-ordered list of HSG spectra, some of which can be stitched together :type spectra_list: list of HighSidebandCCD :return: fully combined list of full hsg spectra. No PMT business yet. :rtype: list of FullHighSideband """ if not spectra_list: raise RuntimeError("Passed an empty spectra list!") if isinstance(param_name, list): # if you pass two things because the param you want # is in a dict (e.g. field strength has mean/std) # do it that way param_name_list = list(param_name) paramGetter = lambda x: x.parameters[param_name_list[0]][param_name_list[1]] param_name = param_name[0] elif isinstance(spectra_list[0].parameters[param_name], dict): paramGetter = lambda x: x.parameters[param_name]["mean"] else: paramGetter = lambda x: x.parameters[param_name] good_list = [] spectra_list.sort(key=lambda x: x.parameters["spec_step"]) # keep a dict for each spec step. spec_steps = {} for elem in spectra_list: if verbose: print("Spec_step is", elem.parameters["spec_step"]) current_steps = spec_steps.get(elem.parameters["spec_step"], []) current_steps.append(elem) spec_steps[elem.parameters["spec_step"]] = current_steps # Next, loop over all of the elements. For each element, if it has not # already been added to a spectra, look at all of the combinations from # other spec steps to figure out which has the smallest overall deviation # to make a new full spectrum good_list = [] already_added = set() for elem in spectra_list: if elem in already_added: continue already_added.add(elem) good_list.append(FullHighSideband(elem)) other_spec_steps = [v for k, v in list(spec_steps.items()) if k != good_list[-1].parameters["spec_step"]] min_distance = np.inf cur_value = paramGetter(good_list[-1]) best_match = None for comb in itt.product(*other_spec_steps): new_values = list(map(paramGetter, comb)) all_values = new_values + [cur_value] if np.std(all_values) < min_distance: min_distance = np.std(all_values) best_match = list(comb) if best_match is None: raise RuntimeError("No matches found. Empty lists passed?") best_values = list(map(paramGetter, best_match)) for spec in best_match: print("Adding new spec step\n\tStarted with spec={},series={}".format( good_list[-1].parameters["spec_step"],good_list[-1].parameters["series"] )) print("\tAdding with spec={},series={}\n".format( spec.parameters["spec_step"], spec.parameters["series"] )) print("\n\nfirst SBs:\n", good_list[-1].sb_results) print("\n\nsecond SBs:\n", spec.sb_results) good_list[-1].add_CCD(spec, True) print("\n\nEnding SBs:\n", good_list[-1].sb_results) already_added.add(spec) best_match.append(good_list[-1]) best_values.append(cur_value) new_value = np.mean(best_values) new_std = np.std(best_values) if isinstance(good_list[-1].parameters[param_name], dict): best_values = np.array([x.parameters[param_name]["mean"] for x in best_match]) best_std = np.array([x.parameters[param_name]["std"] for x in best_match]) new_value = np.average(best_values, weights = best_std) new_std = np.sqrt(np.average((best_values-new_value)**2, weights=best_std)) good_list[-1].parameters[param_name] = { "mean": new_value, "std": new_std } return good_list def pmt_sorter(folder_path, plot_individual = True): """ This function will be fed a folder with a bunch of PMT data files in it. The folder should contain a bunch of spectra with at least one sideband in them, each differing by the series entry in the parameters dictionary. This function will return a list of HighSidebandPMT objects. :param folder_path: Path to a folder containing a bunch of PMT data, can be part of a parameter sweep :type folder_path: str :param plot_individual: Whether to plot each sideband itself :return: A list of all the possible hsg pmt spectra, organized by series tag :rtype: list of HighSidebandPMT """ file_list = glob.glob(os.path.join(folder_path, '*[0-9].txt')) pmt_list = [] plot_sb = lambda x: None if plot_individual: plt.figure("PMT data") def plot_sb(spec): spec = copy.deepcopy(spec) spec.process_sidebands() elem = spec.sb_dict[spec.initial_sb] plt.errorbar(elem[:, 0], elem[:, 1], elem[:, 2], marker='o', label="{} {}, {}.{} ".format( spec.parameters["series"], spec.initial_sb, spec.parameters["pm_hv"], 't' if spec.parameters.get("photon counted", False) else 'f') ) for sb_file in file_list: temp = HighSidebandPMT(sb_file) plot_sb(temp) try: for pmt_spectrum in pmt_list: # pmt_spectrum is a pmt object if temp.parameters['series'] == pmt_spectrum.parameters['series']: pmt_spectrum.add_sideband(temp) break else: # this will execute IF the break was NOT called pmt_list.append(temp) except: pmt_list.append(temp) # for sb_file in file_list: # with open(sb_file,'rU') as f: # param_str = '' # line = f.readline() # line = f.readline() # while line[0] == '#': # param_str += line[1:] # line = f.readline() # # parameters = json.loads(param_str) # try: # for pmt_spectrum in pmt_list: # pmt_spectrum is a pmt object? # if parameters['series'] == pmt_spectrum.parameters['series']: # pmt_spectrum.add_sideband(sb_file) # break # else: # this will execute IF the break was NOT called # pmt_list.append(HighSidebandPMT(sb_file)) # except: # pmt_list.append(HighSidebandPMT(sb_file)) for pmt_spectrum in pmt_list: pmt_spectrum.process_sidebands() return pmt_list def stitch_abs_results(main, new): raise NotImplementedError def hsg_combine_qwp_sweep(path, loadNorm = True, save = False, verbose=False, skipOdds = True): """ Given a path to data taken from rotating the QWP (doing polarimetry), process the data (fit peaks), and parse it into a matrix of sb strength vs QWP angle vs sb number. By default, saves the file into "Processed QWP Dependence" Return should be passed directly into fitting -1 | SB1 | SB1 | SB2 | SB2 | ... | ... | SBn | SBn | angle1 | SB Strength | SB err | SB Strength | SB Err | angle2 | ... | . | . . . :param path: Path to load :param loadNorm: if true, load the normalized data :param save: Save the processed file or not :param verbose: :param skipOdds: Passed on to save sweep; determine whether or not to save odd orders. Generally, odds are artifacts and I don't want them messing up the data, so default to True. :return: """ def getData(fname): """ Helper function for loading the data and getting the header information for incident NIR stuff :param fname: :return: """ if isinstance(fname, str): if loadNorm: ending = "_norm.txt" else: ending = "_snip.txt" header = '' with open(os.path.join("Processed QWP Dependence", fname + ending)) as fh: ln = fh.readline() while ln[0] == '#': header += ln[1:] ln = fh.readline() data = np.genfromtxt(os.path.join("Processed QWP Dependence", fname + ending), delimiter=',', dtype=str) if isinstance(fname, io.BytesIO): header = b'' ln = fname.readline() while ln.decode()[0] == '#': header += ln[1:] ln = fname.readline() fname.seek(0) data = np.genfromtxt(fname, delimiter=',', dtype=str) header = json.loads(header) return data, float(header["lAlpha"]), float(header["lGamma"]), float(header["nir"]), float(header["thz"]) ######### End getData try: sbData, lAlpha, lGamma, nir, thz = getData(path) except: # Do the processing on all the files specs = proc_n_plotCCD(path, keep_empties=True, verbose=verbose) for sp in specs: try: sp.parameters["series"] = round(float(sp.parameters["rotatorAngle"]), 2) except KeyError: # Old style of formatting sp.parameters["series"] = round(float(sp.parameters["detectorHWP"]), 2) specs = hsg_combine_spectra(specs, ignore_weaker_lowers=False) if not save: # If you don't want to save them, set everything up for doing Bytes objects # to replacing saving files full, snip, norm = io.BytesIO(), io.BytesIO(), io.BytesIO() if "nir_pola" not in specs[0].parameters: # in the olden days. Force them. Hopefully making them outside of ±360 # makes it obvious specs[0].parameters["nir_pola"] = 361 specs[0].parameters["nir_polg"] = 361 keyName = "rotatorAngle" if keyName not in specs[0].parameters: # from back before I changed the name keyName = "detectorHWP" save_parameter_sweep(specs, [full, snip, norm], None, keyName, "deg", wanted_indices=[3, 4], header_dict={ "lAlpha": specs[0].parameters["nir_pola"], "lGamma": specs[0].parameters["nir_polg"], "nir": specs[0].parameters["nir_lambda"], "thz": specs[0].parameters["fel_lambda"], }, only_even=skipOdds) if loadNorm: sbData, lAlpha, lGamma, nir, thz = getData(norm) else: sbData, lAlpha, lGamma, nir, thz = getData(snip) else: save_parameter_sweep(specs, os.path.basename(path), "Processed QWP Dependence", "rotatorAngle", "deg", wanted_indices=[3, 4], header_dict={ "lAlpha": specs[0].parameters["nir_pola"], "lGamma": specs[0].parameters["nir_polg"], "nir": specs[0].parameters["nir_lambda"], "thz": specs[0].parameters["fel_lambda"], }, only_even=skipOdds) sbData, lAlpha, lGamma, nir, thz = getData(os.path.basename(path)) laserParams = { "lAlpha": lAlpha, "lGamma": lGamma, "nir": nir, "thz": thz } # get which sidebands were found in this data set # first two rows are origin header, second is sideband number # (and empty strings, which is why the "if ii" below, to prevent # ValueErrors on int(''). foundSidebands = np.array(sorted([float(ii) for ii in set(sbData[2]) if ii])) # Remove first 3 rows, which are strings for origin header, and cast it to floats sbData = sbData[3:].astype(float) # double the sb numbers (to account for sb strength/error) and add a dummy # number so the array is the same shape foundSidebands = np.insert(foundSidebands, range(len(foundSidebands)), foundSidebands) foundSidebands = np.insert(foundSidebands, 0, -1) return laserParams, np.row_stack((foundSidebands, sbData)) def makeCurve(eta, isVertical): """ :param eta: QWP retardance at the wavelength :return: """ cosd = lambda x: np.cos(x * np.pi / 180) sind = lambda x: np.sin(x * np.pi / 180) eta = eta * 2 * np.pi if isVertical: # vertical polarizer def analyzerCurve(x, *S): S0, S1, S2, S3 = S return S0-S1/2*(1+np.cos(eta)) \ + S3*np.sin(eta)*sind(2*x) \ + S1/2*(np.cos(eta)-1)*cosd(4*x) \ + S2/2*(np.cos(eta)-1)*sind(4*x) else: # vertical polarizer def analyzerCurve(x, *S): S0, S1, S2, S3 = S return S0+S1/2*(1+np.cos(eta)) \ - S3*np.sin(eta)*sind(2*x) \ + S1/2*(1-np.cos(eta))*cosd(4*x) \ + S2/2*(1-np.cos(eta))*sind(4*x) return analyzerCurve def proc_n_fit_qwp_data(data, laserParams = dict(), wantedSBs = None, vertAnaDir = True, plot=False, save = False, plotRaw = lambda sbidx, sbnum: False, series = '', eta=None, fourier = True, **kwargs): """ Fit a set of sideband data vs QWP angle to get the stoke's parameters :param data: data in the form of the return of hsg_combine_qwp_sweep :param laserParams: dictionary of the parameters of the laser, the angles and frequencies. See function for expected keys. I don't think the errors are used (except for plotting?), or the wavelengths (but left in for potential future use (wavelength dependent stuff?)) :param wantedSBs: List of the wanted sidebands to fit out. :param vertAnaDir: direction of the analzyer. True if vertical, false if horizontal. :param plot: True/False to plot alpha/gamma/dop. Alternatively, a list of "a", "g", "d" to only plot selected ones :param save: filename to save the files. Accepts BytesIO :param plotRaw: callable that takes an index of the sb and sb number, returns true to plot the raw curve :param series: a string to be put in the header for the origin files :param eta: a function to call to calculate the desired retardance. Input will be the SB order. :param fourier: Will use Fourier analysis over a fit funciton if True if saveStokes is in kwargs and False, it will not save the stokes parameters, since I rarely actually use them. :return: """ defaultLaserParams = { "lAlpha": 90, "ldAlpha": 0.2, "lGamma": 0.0, "ldGamma": 0.2, "lDOP": 1, "ldDOP": 0.02, "nir": 765.7155, "thz": 21.1 } defaultLaserParams.update(laserParams) lAlpha, ldAlpha, lGamma, ldGamma, lDOP, ldDOP = defaultLaserParams["lAlpha"], \ defaultLaserParams["ldAlpha"], \ defaultLaserParams["lGamma"], \ defaultLaserParams["ldGamma"], \ defaultLaserParams["lDOP"], \ defaultLaserParams["ldDOP"] allSbData = data angles = allSbData[1:, 0] # angles += -5 # print("="*20) # print("\n"*3) # print(" WARNING") # print("\n"*3) # print("ANGLES HAVE BEEN MANUALLY OFFEST IN proc_n_fit_qwp_data") # print("\n"*3) # print("="*20) allSbData = allSbData[:, 1:] # trim out the angles if wantedSBs is None: # set to get rid of duplicates, 1: to get rid of the -1 used for # getting arrays the right shape wantedSBs = set(allSbData[0, 1:]) if eta is None: """ It might be easier for the end user to do this by passing eta(wavelength) instead of eta(sborder), but then this function would need to carry around wavelengths, which is extra work. It could convert between NIR/THz wavelengths to SB order, but it's currently unclear whether you'd rather use what the WS6 claims, or what the sidebands say, and you'd probably want to take the extra step to ensure the SB fit rseults if using the spectromter wavelengths. In general, if you have a function as etal(wavelength), you'd probably want to pass this as eta = lambda x: etal(1239.84/(nirEv + x*THzEv)) assuming nirEv/THzEv are the photon energies of the NIR/THz. """ eta = lambda x: 0.25 # allow pasing a flag it ignore odds. I think I generally do, so set it to # default to True skipOdds = kwargs.get("skip_odds", True) # Make an array to keep all of the sideband information. # Start it off by keeping the NIR information (makes for easier plotting into origin) sbFits = [[0] + [-1] * 8 + [lAlpha, ldAlpha, lGamma, ldGamma, lDOP, ldDOP]] # Also, for convenience, keep a dictionary of the information. # This is when I feel like someone should look at porting this over to pandas sbFitsDict = {} sbFitsDict["S0"] = [[0, -1, -1]] sbFitsDict["S1"] = [[0, -1, -1]] sbFitsDict["S2"] = [[0, -1, -1]] sbFitsDict["S3"] = [[0, -1, -1]] sbFitsDict["alpha"] = [[0, lAlpha, ldAlpha]] sbFitsDict["gamma"] = [[0, lGamma, ldGamma]] sbFitsDict["DOP"] = [[0, lDOP, ldDOP]] # Iterate over all sb data. Skip by 2 because error bars are included for sbIdx in range(0, allSbData.shape[1], 2): sbNum = allSbData[0, sbIdx] if sbNum not in wantedSBs: continue if skipOdds and sbNum%2: continue # if verbose: # print("\tlooking at sideband", sbNum) sbData = allSbData[1:, sbIdx] sbDataErr = allSbData[1:, sbIdx + 1] if fourier: # We want to do Fourier Analysis # I've hard coded the maximum expected variance from QWP retardance to be # 5 degrees (converted to radians bc of small angle approximation). # Not sure how to deal with the fact that this method leaves no variance # for the S3 paramter. f0 = 0 f2 = 0 f4 = 0 df0 = 0 df2 = 0 df4 = 0 for k in range(0,16,1): f0 = f0 + allSbData[k+1,sbIdx] f2 = f2 + allSbData[k+1,sbIdx]*np.exp(-1j*np.pi*k/4) f4 = f4 + allSbData[k+1,sbIdx]*np.exp(-1j*np.pi*k/2) df0 = df0 + allSbData[k+1, sbIdx+1] df2 = df2 + allSbData[k+1,sbIdx+1]*np.exp(-1j*np.pi*k/4) df4 = df4 + allSbData[k+1,sbIdx+1]*np.exp(-1j*np.pi*k/2) phi = 5*2*np.pi/180 # Generate the Stokes parameters from the Fourier Components S0 = (f0 - 2*f4.real)/(np.pi) S1 = 4*f4.real/(np.pi) S2 = -4*f4.imag/(np.pi) S3 = 2*f2.imag/(np.pi) # For the Error Propagation, I say phi = 0 and dPhi = 2*phi (value set above) d0 = np.sqrt(df0**2+2*(4*f4.real**2*phi**2+df4.real**2*(1+phi)**2*(1-1*phi)**2)/(1+phi)**4)/(2*np.pi) d1 = np.sqrt((f4.real**2*phi**2+df4.real**2*phi**2)/(1+phi)**4)/(np.pi) d2 = np.sqrt((f4.imag**2*phi**2+df4.imag**2*phi**2)/(1+phi)**4)/(np.pi) d3 = 2*df2.imag/np.pi # Calculate the alpha, gamma, DOP and errors from Stokes parameters thisAlpha = np.arctan2(S2, S1) / 2 * 180. / np.pi thisAlphaError = np.sqrt(d2 ** 2 * S1 ** 2 + d1 ** 2 * S2 ** 2) / (S1 ** 2 + S2 ** 2) * 180./np.pi thisGamma = np.arctan2(S3, np.sqrt(S1 ** 2 + S2 ** 2)) / 2 * 180. / np.pi thisGammaError = np.sqrt((d3 ** 2 * (S1 ** 2 + S2 ** 2) ** 2 + (d1 ** 2 * S1 ** 2 + d2 ** 2 * S2 ** 2) * S3 ** 2) / ( (S1 ** 2 + S2 ** 2) * (S1 ** 2 + S2 ** 2 + S3 ** 2) ** 2)) *180. /np.pi thisDOP = np.sqrt(S1 ** 2 + S2 ** 2 + S3 ** 2) / S0 thisDOPerror = np.sqrt(((d1 ** 2 * S0 ** 2 * S1 ** 2 + d0 ** 2 * (S1 ** 2 + S2 ** 2 + S3 ** 2) ** 2 + S0 ** 2 * ( d2 ** 2 * S2 ** 2 + d3 ** 2 * S3 ** 2)) / (S0 ** 4 * (S1 ** 2 + S2 ** 2 + S3 ** 2)))) # Append The stokes parameters and errors to the dictionary output. sbFitsDict["S0"].append([sbNum, S0, d0]) sbFitsDict["S1"].append([sbNum, S1, d1]) sbFitsDict["S2"].append([sbNum, S2, d2]) sbFitsDict["S3"].append([sbNum, S3, d3]) sbFitsDict["alpha"].append([sbNum, thisAlpha, thisAlphaError]) sbFitsDict["gamma"].append([sbNum, thisGamma, thisGammaError]) sbFitsDict["DOP"].append([sbNum, thisDOP, thisDOPerror]) toAppend = [sbNum, S0, d0, S1, d1, S2, d2, S3, d3, thisAlpha, thisAlphaError, thisGamma, thisGammaError, thisDOP, thisDOPerror] sbFits.append(toAppend) # Otherwise we will do the normal fit else: # try: # p0 = sbFits[-1][1:8:2] # except: # p0 = [1, 1, 0, 0] p0 = [1, 1, 0, 0] etan = eta(sbNum) try: p, pcov = curve_fit(makeCurve(etan, vertAnaDir), angles, sbData, p0=p0) except ValueError: # This is getting tossed around, especially when looking at noisy data, # especially with the laser line, and it's fitting erroneous values. # Ideally, I should be cutting this out and not even returning them, # but that's immedaitely causing p = np.nan*np.array(p0) pcov = np.eye(len(p)) if plot and plotRaw(sbIdx, sbNum): # pg.figure("{}: sb {}".format(dataName, sbNum)) plt.figure("All Curves") plt.errorbar(angles, sbData, sbDataErr, 'o-', name=f"{series}, {sbNum}") # plt.plot(angles, sbData,'o-', label="Data") fineAngles = np.linspace(angles.min(), angles.max(), 300) # plt.plot(fineAngles, # makeCurve(eta, "V" in dataName)(fineAngles, *p0), name="p0") plt.plot(fineAngles, makeCurve(etan, vertAnaDir)(fineAngles, *p)) # plt.show() plt.ylim(0, 1) plt.xlim(0, 360) plt.ylabel("Normalized Intensity") plt.xlabel("QWP Angle (&theta;)") print(f"\t{series} {sbNum}, p={p}") # get the errors d = np.sqrt(np.diag(pcov)) thisData = [sbNum] + list(p) + list(d) d0, d1, d2, d3 = d S0, S1, S2, S3 = p # reorder so errors are after values thisData = [thisData[i] for i in [0, 1, 5, 2, 6, 3, 7, 4, 8]] sbFitsDict["S0"].append([sbNum, S0, d0]) sbFitsDict["S1"].append([sbNum, S1, d1]) sbFitsDict["S2"].append([sbNum, S2, d2]) sbFitsDict["S3"].append([sbNum, S3, d3]) # append alpha value thisData.append(np.arctan2(S2, S1) / 2 * 180. / np.pi) # append alpha error variance = (d2 ** 2 * S1 ** 2 + d1 ** 2 * S2 ** 2) / (S1 ** 2 + S2 ** 2) ** 2 thisData.append(np.sqrt(variance) * 180. / np.pi) sbFitsDict["alpha"].append([sbNum, thisData[-2], thisData[-1]]) # append gamma value thisData.append(np.arctan2(S3, np.sqrt(S1 ** 2 + S2 ** 2)) / 2 * 180. / np.pi) # append gamma error variance = (d3 ** 2 * (S1 ** 2 + S2 ** 2) ** 2 + (d1 ** 2 * S1 ** 2 + d2 ** 2 * S2 ** 2) * S3 ** 2) / ( (S1 ** 2 + S2 ** 2) * (S1 ** 2 + S2 ** 2 + S3 ** 2) ** 2) thisData.append(np.sqrt(variance) * 180. / np.pi) sbFitsDict["gamma"].append([sbNum, thisData[-2], thisData[-1]]) # append degree of polarization thisData.append(np.sqrt(S1 ** 2 + S2 ** 2 + S3 ** 2) / S0) variance = ((d1 ** 2 * S0 ** 2 * S1 ** 2 + d0 ** 2 * (S1 ** 2 + S2 ** 2 + S3 ** 2) ** 2 + S0 ** 2 * ( d2 ** 2 * S2 ** 2 + d3 ** 2 * S3 ** 2)) / (S0 ** 4 * (S1 ** 2 + S2 ** 2 + S3 ** 2))) thisData.append(np.sqrt(variance)) sbFitsDict["DOP"].append([sbNum, thisData[-2], thisData[-1]]) sbFits.append(thisData) sbFits = np.array(sbFits) sbFitsDict = {k: np.array(v) for k, v in sbFitsDict.items()} # This chunk used to insert the "alpha deviation", the difference between the angles and the # nir. I don't think I use this anymore, so stop saving it # origin_header = 'Sideband,S0,S0 err,S1,S1 err,S2,S2 err,S3,S3 err,alpha,alpha deviation,alpha err,gamma,gamma err,DOP,DOP err\n' # origin_header += 'Order,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,deg,deg,deg,deg,deg,arb.u.,arb.u.\n' # origin_header += 'Sideband,{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}'.format(*["{}".format(series)] * 15) # sbFits = np.array(sbFits) # sbFits = np.insert(sbFits, 10, sbFits[:, 9] - lAlpha, axis=1) # sbFits = sbFits[sbFits[:, 0].argsort()] origin_header = "#\n"*100 # to fit all other files for easy origin importing origin_header += 'Sideband,S0,S0 err,S1,S1 err,S2,S2 err,S3,S3 err,alpha,alpha err,gamma,gamma err,DOP,DOP err\n' origin_header += 'Order,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,arb.u,deg,deg,deg,deg,arb.u.,arb.u.\n' origin_header += 'Sideband,{},{},{},{},{},{},{},{},{},{},{},{},{},{}'.format(*["{}".format(series)] * 14) sbFits = sbFits[sbFits[:, 0].argsort()] if isinstance(save, str): sbFitsSave = sbFits if not kwargs.get("saveStokes", True): headerlines = origin_header.splitlines() ln, units, coms = headerlines[-3:] ln = ','.join([ln.split(',')[0]] + ln.split(',')[9:]) units = ','.join([units.split(',')[0]] + units.split(',')[9:]) coms = ','.join([coms.split(',')[0]] + coms.split(',')[9:]) headerlines[-3:] = ln, units, coms # remove them from the save data origin_header = '\n'.join(headerlines) sbFitsSave = np.delete(sbFits, range(1, 9), axis=1) if not os.path.exists(os.path.dirname(save)): os.mkdir(os.path.dirname(save)) np.savetxt(save, np.array(sbFitsSave), delimiter=',', header=origin_header, comments='', fmt='%.6e') # print("a = {:.2f} ± {:.2f}".format(sbFits[1, 9], sbFits[1, 10])) # print("g = {:.2f} ± {:.2f}".format(sbFits[1, 11], sbFits[1, 12])) if plot: plt.figure("alpha") plt.errorbar(sbFitsDict["alpha"][:, 0], sbFitsDict["alpha"][:, 1], sbFitsDict["alpha"][:, 2], 'o-', name = series ) plt.figure("gamma") plt.errorbar(sbFitsDict["gamma"][:, 0], sbFitsDict["gamma"][:, 1], sbFitsDict["gamma"][:, 2], 'o-', name=series ) return sbFits, sbFitsDict #################### # Helper functions #################### def fvb_crr(raw_array, offset=0, medianRatio=1, noiseCoeff=5, debugging=False): """ Remove cosmic rays from a sequency of identical exposures :param raw_array: The array to be cleaned. Successive spectra should be the columns (i.e. 1600 x n) of the raw_array :param offset: baseline to add to raw_array. Not used, but here if it's needed in the future :param medianRatio: Multiplier to the median when deciding a cutoff :param noiseCoeff: Multiplier to the noise on the median May need changing for noisy data :return: """ d = np.array(raw_array) med = ndimage.filters.median_filter(d, size=(1, d.shape[1]), mode='wrap') med = np.median(d, axis=1).reshape(d.shape[0], 1) if debugging: print("shape of median filter:", med.shape) meanMedian = med.mean(axis=1) # meanMedian = med.copy() if debugging: print("shape of meaned median filter:", meanMedian.shape) # Construct a cutoff for each pixel. It was kind of guess and # check cutoff = meanMedian * medianRatio + noiseCoeff * np.std(meanMedian[-100:]) if debugging: print("shape of cutoff criteria:", cutoff.shape) import pyqtgraph as pg winlist = [] app = pg.QtGui.QApplication([]) win = pg.GraphicsLayoutWidget() win.setWindowTitle("Raw Image") p1 = win.addPlot() img = pg.ImageItem() img.setImage(d.copy().T) p1.addItem(img) hist = pg.HistogramLUTItem() hist.setImageItem(img) win.addItem(hist) win.nextRow() p2 = win.addPlot(colspan=2) p2.setMaximumHeight(250) p2.addLegend() for i, v in enumerate(d.T): p2.plot(v, pen=(i, d.shape[1]), name=str(i)) p2.plot(np.sum(d, axis=1), pen=pg.mkPen('w', width=3)) win.show() winlist.append(win) win2 = pg.GraphicsLayoutWidget() win2.setWindowTitle("Median Image") p1 = win2.addPlot() img = pg.ImageItem() img.setImage(med.T) p1.addItem(img) hist = pg.HistogramLUTItem() hist.setImageItem(img) win2.addItem(hist) win2.nextRow() p2 = win2.addPlot(colspan=2) p2.setMaximumHeight(250) p2.plot(np.sum(med, axis=1) / d.shape[1]) win2.show() winlist.append(win2) win2 = pg.GraphicsLayoutWidget() win2.setWindowTitle("d-m") p1 = win2.addPlot() img = pg.ImageItem() img.setImage((d - med).T) p1.addItem(img) hist = pg.HistogramLUTItem() hist.setImageItem(img) win2.addItem(hist) win2.nextRow() p2 = win2.addPlot(colspan=2) p2.setMaximumHeight(250) p2.addLegend() for i, v in enumerate((d - med).T): p2.plot(v, pen=(i, d.shape[1]), name=str(i)) p2.plot(cutoff, pen=pg.mkPen('w', width=3)) win2.show() winlist.append(win2) # Find the bad pixel positions # Note the [:, None] - needed to cast the correct shapes badPixs = np.argwhere((d - med) > (cutoff.reshape(len(cutoff), 1))) for pix in badPixs: # get the other pixels in the row which aren't the cosmic if debugging: print("cleaning pixel", pix) p = d[pix[0], [i for i in range(d.shape[1]) if not i == pix[1]]] if debugging: print("\tRemaining pixels in row are", p) # Replace the cosmic by the average of the others # Could get hairy if more than one cosmic per row. # Maybe when doing many exposures? d[pix[0], pix[1]] = np.mean(p) if debugging: win = pg.GraphicsLayoutWidget() win.setWindowTitle("Clean Image") p1 = win.addPlot() img = pg.ImageItem() img.setImage(d.copy().T) p1.addItem(img) hist = pg.HistogramLUTItem() hist.setImageItem(img) win.addItem(hist) win.nextRow() p2 = win.addPlot(colspan=2) p2.setMaximumHeight(250) p2.plot(np.sum(d, axis=1)) win.show() winlist.append(win) app.exec_() return np.array(d) def stitchData(dataList, plot=False): """ Attempt to stitch together absorbance data. Will translate the second data set to minimize leastsq between the two data sets. :param dataList: Iterable of the data sets to be fit. Currently it only takes the first two elements of the list, but should be fairly straightforward to recursivly handle a list>2. Shifts the second data set to overlap the first elements of dataList can be either np.arrays or Absorbance class, where it will take the proc_data itself :param plot: bool whether or not you want the fit iterations to be plotted (for debugging) :return: a, a (2,) np.array of the shift """ # Data coercsion, make sure we know what we're working wtih first = dataList[0] if isinstance(first, Absorbance): first = first.proc_data second = dataList[1] if isinstance(second, Absorbance): second = second.proc_data if plot: # Keep a reference to whatever plot is open at call-time # Useful if the calling script has plots before and after, as # omitting this will cause future plots to be added to figures here firstFig = plt.gcf() plt.figure("Stitcher") # Plot the raw input data plt.plot(*first.T) plt.plot(*second.T) # Algorithm is set up such that the "second" data set spans the # higher domain than first. Need to enforce this, and remember it # so the correct shift is applied flipped = False if max(first[:, 0]) > max(second[:, 0]): flipped = True first, second = second, first def stitch_hsg_dicts(full_obj, new_obj, need_ratio=False, verbose=False, ratios=[1,1], override_ratio = False, ignore_weaker_lowers = True): """ This helper function takes a FullHighSideband and a sideband object, either CCD or PMT and smushes the new sb_results into the full_dict. The first input doesn't change, so f there's a PMT set of data involved, it should be in the full variable to keep the laser normalization intact. This function almost certainly does not work for stitching many negative orders in it's current state 11/14/16 -------- This function has been updated to take the CCD objects themselves to be more intelligent about stitching. Consider two scans, (a) spec step 0 with 1 gain, spec step 2 with 110 gain and (b) spec step 0 with 50 gain and spec step 1 with 110 gain. The old version would always take spec step 0 to scale to, so while comparisons between spec step 0 and 1 for either case is valid, comparison between (a) and (b) were not, since they were scaled to different gain parameters. This new code will check what the gain values are and scale to the 110 data set, if present. This seems valid because we currently always have a 110 gain exposure for higher order sidebands. The exception is if the laser is present (sideband 0), as that is an absolute measure to which all else should be related. TODO: run some test cases to test this. 06/11/18 -------- That sometimes was breaking if there were only 3-4 sidebands to fit with poor SNR. I've added the override_ratio to be passed to set a specific ratio to scale by. From data on 06/03/18, the 50gain to 110gain is a ~3.6 ratio. I haven't done a clean way of specifying which data set it should be scaled. Right now, it leaves the laser line data, or the 110 gain data alone. Inputs: full = full_dict from FullHighSideband, or HighSidebandPMT. It's important that it contains lower orders than the new_dict. new_dict = another full_dict. need_ratio = If gain or other parameters aren't equal and must resort to calculating the ratio instead of the measurements being equivalent. Changing integration time still means N photons made M counts, but changing gain or using PMT or whatever does affect things. ratios: Will update with the values to the ratios needed to scale the data. ratios[0] is the ratio for the "full_obj" ratios[1] is the ratio for the "new_obj" one of them will be one, one will be the appropriate scale, since one of them is unscaled. This is strictly speaking an output override_ratio: Pass a float to specify the ratio that should be used. ignore_weaker_lowers: Sometimes, a SB is in the short pass filter so a lower order is weaker than the next highest. If True, causes script to ignore all sidebands which are weaker and lower order. Returns: full = extended version of the input full. Overlapping sidebands are averaged because that makes sense? """ if isinstance(full_obj, dict) and isinstance(new_obj, dict): return stitch_hsg_dicts_old(full_obj, new_obj, need_ratio, verbose) if verbose: print("=" * 15) print() print("Stitching HSG dicts") print() print("=" * 15) # remove potentially offensive SBs, i.e. a 6th order SB being in the SPF for more # data, but being meaningless to pull intensity information from. # Note: this might not be the best if you get to higher order stitches where it's # possible that the sidebands might not be monotonic (from noise?) if ignore_weaker_lowers: full_obj.full_dict, full_obj.sb_results = FullHighSideband.parse_sb_array(full_obj.sb_results) new_obj.new_dict, new_obj.sb_results = FullHighSideband.parse_sb_array(new_obj.sb_results) # was fucking around with references and causing updates to arrays when it shouldn't # be full = copy.deepcopy(full_obj.full_dict) new_dict = copy.deepcopy(new_obj.full_dict) # Force a rescaling if you've passed a specified parameter # if isinstance(override_ratio, float): # need_ratio = True # Do some testing to see which dict should be scaled to the other # I honestly forget why I prioritized the PMT first like this. But the third # check looks to make a gain 110 prioritize non-110, unless the non-110 includes # a laser line scaleTo = "" if need_ratio: if isinstance(new_obj, HighSidebandPMT): scaleTo = "new" elif isinstance(full_obj, HighSidebandPMT): scaleTo = "full" elif new_obj.parameters["gain"] == 110 and full_obj.parameters["gain"] != 110 \ and 0 not in full: scaleTo = "new" else: scaleTo = "full" if verbose: print("\tI'm adding these sidebands", new_obj.sb_results[:,0]) print("\t With these:", sorted(full.keys())) overlap = [] # The list that hold which orders are in both dictionaries missing = [] # How to deal with sidebands that are missing from full but in new. for new_sb in new_obj.sb_results[:,0]: full_sbs = sorted(full.keys()) if new_sb in full_sbs: overlap.append(new_sb) elif new_sb not in full_sbs and new_sb < full_sbs[-1]: # This probably doesn't work with bunches of negative orders missing.append(new_sb) if verbose: print("\t ( overlap:", overlap, ")") print("\t ( missing:", missing, ")") # This if-else clause handles how to average together overlapping sidebands # which are seen in both spectra, if need_ratio: # Calculate the appropriate ratio to multiply the new sidebands by. # I'm not entirely sure what to do with the error of this guy. ratio_list = [] try: new_starter = overlap[-1] if verbose: print("\n\tadding these ratios,", end=' ') if len(overlap) > 2: overlap = [x for x in overlap if (x % 2 == 0) ]# and (x != min(overlap) and (x != max(overlap)))] if scaleTo == "new": if verbose: print("scaling to new :") for sb in overlap: ratio_list.append(new_dict[sb][2]/full[sb][2]) if verbose: print("\t\t{:2.0f}: {:.3e}/{:.3e} ~ {:.3e},".format(sb, new_dict[sb][2], full[sb][2], ratio_list[-1])) # new_ratio = 1 06/11/18 Not sure what these were used for ratio = np.mean(ratio_list) else: if verbose: print("scaling to full:") for sb in overlap: ratio_list.append(full[sb][2] / new_dict[sb][2]) if verbose: print("\t\t{:2.0f}: {:.3e}/{:.3e} ~ {:.3e},".format(sb, full[sb][2], new_dict[sb][2], ratio_list[-1])) # new_ratio = np.mean(ratio_list) 06/11/18 Not sure what these were used for ratio = np.mean(ratio_list) # Maybe not the best way to do it, performance wise, since you still # iterate through the list, even though you'll override it. if isinstance(override_ratio, float): ratio = override_ratio if verbose: print("overriding calculated ratio with user inputted") error = np.std(ratio_list) / np.sqrt(len(ratio_list)) except IndexError: # If there's no overlap (which you shouldn't let happen), hardcode a ratio # and error. I looked at all the ratios for the overlaps from 6/15/16 # (540ghz para) to get the rough average. Hopefully they hold for all data. if not overlap: ratio = 0.1695 error = 0.02 # no overlap, so make sure it grabs all the sidebands new_starter = min(new_dict.keys()) else: raise if verbose: # print "Ratio list\n\t", ("{:.3g}, "*len(ratio_list))[:-2].format(*ratio_list) # print "Overlap \n\t", [round(ii, 3) for ii in overlap] print("\t Ratio: {:.3g} +- {:.3g} ({:.2f}%)\n".format(ratio, error, error/ratio*100)) # Adding the new sidebands to the full set and moving errors around. # I don't know exactly what to do about the other aspects of the sidebands # besides the strength and its error. if scaleTo == "full": ratios[1] = ratio for sb in overlap: if verbose: print("For SB {:02d}, original strength is {:.3g} +- {:.3g} ({:.3f}%)".format(int(sb), new_dict[sb][2], new_dict[sb][3], new_dict[sb][3]/new_dict[sb][2]*100 )) new_dict[sb][3] = ratio * new_dict[sb][2] * np.sqrt((error / ratio) ** 2 + (new_dict[sb][3] / new_dict[sb][2]) ** 2) new_dict[sb][2] = ratio * new_dict[sb][2] if verbose: print("\t\t scaled\t\t\t\t{:.3g} +- {:.3g} ({:.3f}%)".format(new_dict[sb][2], new_dict[sb][3], new_dict[sb][3]/new_dict[sb][2]*100)) print("\t\t full\t\t\t\t\t{:.3g} +- {:.3g} ({:.3f}%)".format(full[sb][2], full[sb][3], full[sb][3]/full[sb][2]*100)) sb_error = np.sqrt(full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) ** (-1) avg = (full[sb][2] / (full[sb][3] ** 2) + new_dict[sb][2] / ( new_dict[sb][3] ** 2)) / (full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) full[sb][2] = avg full[sb][3] = sb_error if verbose: print("\t\t replaced with \t\t{:.3g} +- {:.3g} ({:.3f}%)".format(full[sb][2], full[sb][3], full[sb][3]/full[sb][2]*100)) print() lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / ( new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error # This may not be the exactly right way to calculate the error else: ratios[0] = ratio for sb in overlap: full[sb][3] = ratio * full[sb][2] * np.sqrt((error / ratio) ** 2 + (full[sb][3] / full[sb][2]) ** 2) full[sb][2] = ratio * full[sb][2] sberror = np.sqrt(full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) ** (-1) avg = (full[sb][2] / (full[sb][3] ** 2) + new_dict[sb][2] / ( new_dict[sb][3] ** 2)) / (full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) full[sb][2] = avg full[sb][3] = sberror lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / ( new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error # This may not be the exactly right way to calculate the error else: # not needing a new ratio try: new_starter = overlap[-1] # This grabs the sideband order where only the new dictionary has # sideband information. It's not clear why it necessarily has to be # at this line. overlap = [x for x in overlap if (x % 2 == 0) ] # and (x != min(overlap) and (x != max(overlap)))] # This cuts out the lowest order sideband in the overlap for mysterious reasons for sb in overlap: # This for loop average two data points weighted by their relative errors if verbose: print("The sideband", sb) print("Old value", full[sb][4] * 1000) print("Add value", new_dict[sb][4] * 1000) try: error = np.sqrt(full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) ** (-1) avg = (full[sb][2] / (full[sb][3] ** 2) + new_dict[sb][2] / (new_dict[sb][3] ** 2)) / ( full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) full[sb][2] = avg full[sb][3] = error except RuntimeWarning: raise IOError() lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / (new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error # This may not be the exactly right way to calculate the error if verbose: print("New value", lw_avg * 1000) except: new_starter = 0 # I think this makes things work when there's no overlap if verbose: print("appending new elements. new_starter={}".format(new_starter)) for sb in [x for x in list(new_dict.keys()) if ((x > new_starter) or (x in missing))]: full[sb] = new_dict[sb] if scaleTo == "full": full[sb][2] = ratio * full[sb][2] full[sb][3] = full[sb][2] * np.sqrt((error / ratio) ** 2 + (ratio * full[sb][3] / full[sb][2]) ** 2) if scaleTo == "new": for sb in set(full.keys()) - set(sorted(new_dict.keys())[:]): full[sb][2] *= ratio # TODO: I think this is an invalid error # propagation (since ratio has error associated with it full[sb][3] *= ratio if verbose: print("I made this dictionary", sorted(full.keys())) print('-'*19) return full return full, ratio #the fuck? Why was this here? return full def stitch_hsg_dicts_old(full, new_dict, need_ratio=False, verbose=False): """ This helper function takes a FullHighSideband.full_dict attribute and a sideband object, either CCD or PMT and smushes the new sb_results into the full_dict. The first input doesn't change, so f there's a PMT set of data involved, it should be in the full variable to keep the laser normalization intact. This function almost certainly does not work for stitching many negative orders in it's current state 11/14/16 -------- The original function has been updated to take the full object (instead of the dicts alone) to better handle calculating ratios when stitching. This is called once things have been parsed in the original function (or legacy code where dicts are passed instead of the object) Inputs: full = full_dict from FullHighSideband, or HighSidebandPMT. It's important that it contains lower orders than the new_dict. new_dict = another full_dict. need_ratio = If gain or other parameters aren't equal and must resort to calculating the ratio instead of the measurements being equivalent. Changing integration time still means N photons made M counts, but changing gain or using PMT or whatever does affect things. Returns: full = extended version of the input full. Overlapping sidebands are averaged because that makes sense? """ if verbose: print("I'm adding these sidebands in old stitcher", sorted(new_dict.keys())) overlap = [] # The list that hold which orders are in both dictionaries missing = [] # How to deal with sidebands that are missing from full but in new. for new_sb in sorted(new_dict.keys()): full_sbs = sorted(full.keys()) if new_sb in full_sbs: overlap.append(new_sb) elif new_sb not in full_sbs and new_sb < full_sbs[-1]: # This probably doesn't work with bunches of negative orders missing.append(new_sb) if verbose: print("overlap:", overlap) print("missing:", missing) # This if-else clause handles how to average together overlapping sidebands # which are seen in both spectra, if need_ratio: # Calculate the appropriate ratio to multiply the new sidebands by. # I'm not entirely sure what to do with the error of this guy. ratio_list = [] #print '\n1979\nfull[2]', full[0][2] try: new_starter = overlap[-1] if len(overlap) > 2: overlap = [x for x in overlap if (x % 2 == 0) ]#and (x != min(overlap) and (x != max(overlap)))] for sb in overlap: ratio_list.append(full[sb][2] / new_dict[sb][2]) ratio = np.mean(ratio_list) # print # print '-'*15 # print "ratio for {}: {}".format() error = np.std(ratio_list) / np.sqrt(len(ratio_list)) except IndexError: # If there's no overlap (which you shouldn't let happen), # hardcode a ratio and error. # I looked at all the ratios for the overlaps from 6/15/16 # (540ghz para) to get the rough average. Hopefully they hold # for all data. if not overlap: ratio = 0.1695 error = 0.02 # no overlap, so make sure it grabs # all the sidebands new_starter = min(new_dict.keys()) else: raise if verbose: print("Ratio list","\n", [round(ii, 3) for ii in ratio_list]) print("Overlap ","\n", [round(ii, 3) for ii in overlap]) print("Ratio", ratio) print("Error", error) #print '\n2118\nfull[2]', full[0][2] # Adding the new sidebands to the full set and moving errors around. # I don't know exactly what to do about the other aspects of the sidebands # besides the strength and its error. for sb in overlap: full[sb][2] = ratio * new_dict[sb][2] full[sb][3] = full[sb][2] * np.sqrt((error / ratio) ** 2 + (new_dict[sb][3] / new_dict[sb][2]) ** 2) #print '\n2125\nfull[2]', full[0][3] # Now for linewidths lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / (new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error #print '\n2132\nfull[2]', full[0][2] else: try: new_starter = overlap[-1] # This grabs the sideband order where only the new dictionary has # sideband information. It's not clear why it necessarily has to be # at this line. overlap = [x for x in overlap if (x % 2 == 0) and (x != min(overlap) and (x != max(overlap)))] # This cuts out the lowest order sideband in the overlap for mysterious reasons for sb in overlap: # This for loop average two data points weighted by their relative errors if verbose: print("The sideband", sb) print("Old value", full[sb][4] * 1000) print("Add value", new_dict[sb][4] * 1000) error = np.sqrt(full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) ** (-1) avg = (full[sb][2] / (full[sb][3] ** 2) + new_dict[sb][2] / (new_dict[sb][3] ** 2)) / ( full[sb][3] ** (-2) + new_dict[sb][3] ** (-2)) full[sb][2] = avg full[sb][3] = error lw_error = np.sqrt(full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) ** (-1) lw_avg = (full[sb][4] / (full[sb][5] ** 2) + new_dict[sb][4] / (new_dict[sb][5] ** 2)) / ( full[sb][5] ** (-2) + new_dict[sb][5] ** (-2)) full[sb][4] = lw_avg full[sb][5] = lw_error # This may not be the exactly right way to calculate the error if verbose: print("New value", lw_avg * 1000) except: new_starter = 0 # I think this makes things work when there's no overlap if verbose: print("appending new elements. new_starter={}".format(new_starter)) # This loop will add the sidebands which were only seen in the second step for sb in [x for x in list(new_dict.keys()) if ((x >= new_starter) or (x in missing))]: full[sb] = new_dict[sb] if need_ratio: full[sb][2] = ratio * full[sb][2] full[sb][3] = full[sb][2] * np.sqrt((error / ratio) ** 2 + (ratio * full[sb][3] / full[sb][2]) ** 2) #print '\n2164\nfull[2]', full[0][2] if verbose: print("I made this dictionary", sorted(full.keys())) return full def save_parameter_sweep_no_sb(spectrum_list, file_name, folder_str, param_name, unit, verbose=False): """ This function will take a fully processed list of spectrum objects and slice Spectrum.sb_fits appropriately to get an output like: "Parameter" | SB1 freq | err | SB1 amp | error | SB1 linewidth | error | SB2...| SBn...| param1 | . | param2 | . | . . . Currently I'm thinking fuck the offset y0 After constructing this large matrix, it will save it somewhere. """ spectrum_list.sort(key=lambda x: x.parameters[param_name]) included_spectra = dict() param_array = None sb_included = [] for spec in spectrum_list: sb_included = sorted(list(set(sb_included + list(spec.full_dict.keys())))) included_spectra[spec.fname.split('/')[-1]] = spec.parameters[param_name] # If these are from summed spectra, then only the the first file name # from that sum will show up here, which should be fine? if verbose: # print "full name:", spectrum_list[0].fname print("included names:", included_spectra) print("sb_included:", sb_included) for spec in spectrum_list: temp_dict = {} # This is different from full_dict in that the list has the # sideband order as the zeroth element. if verbose: print("the sb_results:", spec.sb_results) if spec.sb_results.ndim == 1: continue for index in range(len(spec.sb_results[:, 0])): if verbose: print("my array slice:", spec.sb_results[index, :]) temp_dict[int(round(spec.sb_results[index, 0]))] = np.array( spec.sb_results[index, 1:]) if verbose: print(temp_dict) for sb in sb_included: blank = np.zeros(6) # print "checking sideband order:", sb # print "blank", blank if sb not in temp_dict: # print "\nNeed to add sideband order:", sb temp_dict[sb] = blank try: # Why is this try-except here? spec_data = np.array([float(spec.parameters[param_name])]) except: spec_data = np.array([float(spec.parameters[param_name][:2])]) for key in sorted(temp_dict.keys()): # print "I am going to hstack this:", temp_dict[key] spec_data = np.hstack((spec_data, temp_dict[key])) try: param_array = np.vstack((param_array, spec_data)) except: param_array = np.array(spec_data) if verbose: print("The shape of the param_array is:", param_array.shape) # print "The param_array itself is:", param_array ''' param_array_norm = np.array(param_array).T # python iterates over rows for elem in [x for x in xrange(len(param_array_norm)) if (x-1)%7 == 3]: temp_max = np.max(param_array_norm[elem]) param_array_norm[elem] = param_array_norm[elem] / temp_max param_array_norm[elem + 1] = param_array_norm[elem + 1] / temp_max ''' snipped_array = param_array[:, 0] norm_array = param_array[:, 0] if verbose: print("Snipped_array is", snipped_array) for ii in range(len(param_array.T)): if (ii - 1) % 6 == 0: if verbose: print("param_array shape", param_array[:, ii]) snipped_array = np.vstack((snipped_array, param_array[:, ii])) norm_array = np.vstack((norm_array, param_array[:, ii])) elif (ii - 1) % 6 == 2: snipped_array = np.vstack((snipped_array, param_array[:, ii])) temp_max = np.max(param_array[:, ii]) norm_array = np.vstack((norm_array, param_array[:, ii] / temp_max)) elif (ii - 1) % 6 == 3: snipped_array = np.vstack((snipped_array, param_array[:, ii])) norm_array = np.vstack((norm_array, param_array[:, ii] / temp_max)) snipped_array = snipped_array.T norm_array = norm_array.T try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise norm_name = file_name + '_norm.txt' snip_name = file_name + '_snip.txt' file_name = file_name + '.txt' try: included_spectra_str = json.dumps(included_spectra, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: save_parameter_sweep\nJSON FAILED") return included_spectra_str = included_spectra_str.replace('\n', '\n#') included_spectra_str += '\n#' * (99 - included_spectra_str.count('\n')) origin_import1 = param_name origin_import2 = unit origin_import3 = "" for order in sb_included: origin_import1 += "Frequency,error,Sideband strength,error,Linewidth,error" origin_import2 += ",eV,,arb. u.,,meV," origin_import3 += ",{0},,{0},,{0},".format(order) origin_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 origin_import1 = param_name origin_import2 = unit origin_import3 = "" for order in sb_included: origin_import1 += ",Frequency,Sideband strength,error" origin_import2 += ",eV,arb. u.," origin_import3 += ",{0},{0},".format(order) origin_snip = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 header_total = '#' + included_spectra_str + '\n' + origin_total header_snip = '#' + included_spectra_str + '\n' + origin_snip # print "Spec header: ", spec_header if verbose: print("the param_array is:", param_array) np.savetxt(os.path.join(folder_str, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, snip_name), snipped_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, norm_name), norm_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') if verbose: print("Saved the file.\nDirectory: {}".format( os.path.join(folder_str, file_name))) def save_parameter_sweep(spectrum_list, file_name, folder_str, param_name, unit, wanted_indices = [1, 3, 4], skip_empties = False, verbose=False, header_dict = {}, only_even=False): """ This function will take a fully processed list of spectrum objects and slice Spectrum.sb_fits appropriately to get an output like: "Parameter" | SB1 freq | err | SB1 amp | error | SB1 linewidth | error | SB2...| SBn...| param1 | . | param2 | . | . . . Currently I'm thinking fuck the offset y0 After constructing this large matrix, it will save it somewhere. Thus function has been update to pass a list of indices to slice for the return values skip_empties: If False, will add a row of zeroes for the parameter even if no sidebands are found. If True, will not add a line for that parameter only_even: don't include odd orders in the saved sweep [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] """ if isinstance(param_name, list): # if you pass two things because the param you want # is in a dict (e.g. field strength has mean/std) # do it that way param_name_list = list(param_name) # keep reference to old one paramGetter = lambda x: x.parameters[param_name_list[0]][param_name_list[1]] # Keep the name for labeling things later on param_name = param_name[0] else: paramGetter = lambda x: x.parameters[param_name] # Sort all of the spectra based on the desired key spectrum_list.sort(key=paramGetter) # keep track of which file name corresponds to which parameter which gets put in included_spectra = dict() # The big array which will be stacked up to keep all of the sideband details vs desired parameter param_array = None # list of which sidebands are seen throughout. sb_included = [] # how many parameters (area, strength, linewidth, pos, etc.) are there? # Here incase software changes and more things are kept in # sb results. Needed to handle how to slice the arrays try: num_params = spectrum_list[0].sb_results.shape[1] except IndexError: # There's a file with only 1 sb and it happens to be first # in the list. num_params = spectrum_list[0].sb_results.shape[0] except AttributeError: # The first file has no sidebands, so just hardcode it, as stated below. num_params=0 # Rarely, there's an issue where I'm doing some testing and there's a set # where the first file has no sidebands in it, so the above thing returns 0 # It seems really silly to do a bunch of testing to try and correct for that, so # I'm going to hardcode the number of parameters. if num_params == 0: num_params = 7 # loop through all of them once to figure out which sidebands are seen in all spectra for spec in spectrum_list: try: # use sets to keep track of only unique sidebands sb_included = sorted(list(set(sb_included + list(spec.full_dict.keys())))) except AttributeError: print("No full dict?", spec.fname) print(spec.sb_list) # If these are from summed spectra, then only the the first file name # from that sum will show up here, which should be fine? included_spectra[spec.fname.split('/')[-1]] = paramGetter(spec) if only_even: sb_included = [ii for ii in sb_included if not ii%2] if verbose: print("included names:", included_spectra) print("sb_included:", sb_included) for spec in spectrum_list: # Flag to keep whethere there are no sidebands or not. Used to skip # issues when trying to index on empty arrays noSidebands = False if verbose: print("the sb_results:", spec.sb_results) # if no sidebands were found, skip this one try: # TODO: (08/14/18) the .ndim==1 isn't the correct check, since it fails # when looking at the laser line. Need to test this with a real # empty data set, vs data set with 1 sb # # # (08/28/18) I'm not sure what the "not spec" is trying to handle # spec.sb_results is None occurs when _no_ sidebands were fit # spec.sb_results.ndim == 1 happens when only one sideband is found if not spec or spec.sb_results is None or spec.sb_results.ndim == 1: if spec.sb_results is None: # Flag no sidebands are afound noSidebands = True elif spec.sb_results[0] == 0: # Cast it to 2d to allow slicing later on. Not sure hwy this is # only done if the laser line is the one found. spec.sb_results = np.atleast_2d(spec.sb_results) elif skip_empties: continue else: noSidebands = True except (AttributeError, TypeError): # continue raise # Make an sb_results of all zeroes where we'll fill # in the sideband info we found new_spec = np.zeros((len(sb_included), num_params)) if not noSidebands: sb_results = spec.sb_results.copy() saw_sbs = sb_results[:, 0] found_sb = sorted(list(set(sb_included) & set(saw_sbs))) found_idx = [sb_included.index(ii) for ii in found_sb] try: new_spec[:, 0] = sb_included except: print("new_spec", new_spec) raise try: if only_even: new_spec[found_idx, :] = sb_results[sb_results[:,0]%2==0] else: new_spec[found_idx, :] = sb_results except ValueError: print(spec.fname) print("included:", sb_included) print("found:", found_sb, found_idx) print(new_spec.shape, sb_results.shape) print(sb_results) print(new_spec) raise spec_data = np.insert(new_spec.flatten(), 0, float(paramGetter(spec))) try: param_array = np.row_stack((param_array, spec_data)) except: param_array = np.array(spec_data) if param_array.ndim == 1: # if you only pass one spectra param_array = param_array[None, :] # recast it to 2D for slicing # the indices we want from the param array from the passed argument snip = wanted_indices N = len(sb_included) # run it out across all of the points across the param_array snipped_indices = [0] + list( 1+np.array(snip * N) + num_params * np.array(sorted(list(range(N)) * len(snip)))) snipped_array = param_array[:, snipped_indices] norm_array = snipped_array.copy() # normalize the area if it's requested if 3 in snip: num_snip = len(snip) strength_idx = snip.index(3) if 4 in snip: #normalize error first if it was requested idx = snip.index(4) norm_array[:, 1 + idx + np.arange(N) * num_snip] /= norm_array[:,1 + strength_idx + np.arange(N) * num_snip].max(axis=0) strength_idx = snip.index(3) norm_array[:, 1+strength_idx+np.arange(N)*num_snip]/=norm_array[:, 1+strength_idx+np.arange(N)*num_snip].max(axis=0) try: os.mkdir(folder_str) except TypeError: pass # if you pass None as folder_str (for using byteIO) except OSError as e: if e.errno == errno.EEXIST: pass else: raise included_spectra.update(header_dict) try: included_spectra_str = json.dumps(included_spectra, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: save_parameter_sweep\nJSON FAILED") return included_spectra_str = included_spectra_str.replace('\n', '\n#') included_spectra_str += '\n#' * (99 - included_spectra_str.count('\n')) # this will make the header chunk for the full, un-sliced data set # TODO: fix naming so you aren't looping twice ### 1/9/18 This isn't needed, right? Why isn't it deleted? origin_import1 = param_name origin_import2 = unit origin_import3 = "" for order in sb_included: origin_import1 += ",sideband,Frequency,error,Sideband strength,error,Linewidth,error" origin_import2 += ",order,eV,eV,arb. u.,arb.u.,meV,meV" origin_import3 += ",,{0},,{0},,{0},".format(order) origin_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 # This little chunk will make a chunk block of header strings for the sliced # data set which can be looped over origin_import1 = param_name origin_import2 = unit origin_import3 = "" wanted_titles = ["Sideband", "Frequency", "error", "Sideband strength","error","Linewidth","error"] wanted_units = ["order", "eV", "eV", "arb. u.", "arb. u.", "eV", "eV"] wanted_comments = ["", "{0}", "", "{0}", "", "{0}", ""] wanted_titles = ",".join([wanted_titles[ii] for ii in wanted_indices]) wanted_units = ",".join([wanted_units[ii] for ii in wanted_indices]) wanted_comments = ",".join([wanted_comments[ii] for ii in wanted_indices]) for order in sb_included: origin_import1 += ","+wanted_titles origin_import2 += ","+wanted_units origin_import3 += ","+wanted_comments.format(order) origin_snip = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 header_total = '#' + included_spectra_str + '\n' + origin_total header_snip = '#' + included_spectra_str + '\n' + origin_snip # print "Spec header: ", spec_header if verbose: print("the param_array is:", param_array) if isinstance(file_name, list): if isinstance(file_name[0], io.BytesIO): np.savetxt(file_name[0], param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') np.savetxt(file_name[1], snipped_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') np.savetxt(file_name[2], norm_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') # Need to reset the file position if you want to read them immediately # Is it better to do that here, or assume you'll do it later? # I'm gonna assume here, because I can't currently think of a time when I'd want # to be at the end of the file [ii.seek(0) for ii in file_name] if verbose: print("Saved the file to bytes objects") else: if file_name: norm_name = file_name + '_norm.txt' snip_name = file_name + '_snip.txt' file_name = file_name + '.txt' np.savetxt(os.path.join(folder_str, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, snip_name), snipped_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, norm_name), norm_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') if verbose: print("Saved the file.\nDirectory: {}".format(os.path.join(folder_str, file_name))) else: if verbose: print("Didn't save") return sb_included, param_array, snipped_array, norm_array def save_parameter_sweep_vs_sideband(spectrum_list, file_name, folder_str, param_name, unit, verbose=False, wanted_indices = [1, 3, 4]): """ Similar to save_parameter_sweep, but the data[:,0] column is sideband number instead of series, and each set of columns correspond to a series step. Pretty much compiles all of the fit parameters from the files that are already saved and puts it into one file to keep from polluting the Origin folder :param spectrum_list: :param file_name: :param folder_str: :param param_name: :param unit: :param verbose: sb number is automatically prepended, so do not include in slicing list [sb number, Freq (eV), Freq error (eV), Gauss area (arb.), Area error, Gauss linewidth (eV), Linewidth error (eV)] [ 0 , 1 , 2, , 3 , 4 , 5 , 6 ] :return: """ spectrum_list.sort(key=lambda x: x.parameters[param_name]) included_spectra = dict() param_array = None sb_included = [] # what parameters were included (for headers) params = sorted([x.parameters[param_name] for x in spectrum_list]) for spec in spectrum_list: sb_included = sorted(list(set(sb_included + list(spec.full_dict.keys())))) included_spectra[spec.fname.split('/')[-1]] = spec.parameters[param_name] # If these are from summed spectra, then only the the first file name # from that sum will show up here, which should be fine? if verbose: # print "full name:", spectrum_list[0].fname print("included names:", included_spectra) print("sb_included:", sb_included) param_array = np.array(sb_included) for spec in spectrum_list: temp_dict = spec.full_dict.copy() #prevent breaking if no sidebands in spectrum if not temp_dict: if verbose: print("No sidebands here? {}, {}".format(spec.parameters["series"], spec.parameters["spec_step"])) continue if verbose: print(temp_dict) # matrix for holding all of the sb information # for a given spectrum spec_matrix = None for sb in sb_included: blank = np.zeros(6) # print "checking sideband order:", sb # print "blank", blank sb_data = temp_dict.get(sb, blank) try: spec_matrix = np.row_stack((spec_matrix, sb_data)) except: spec_matrix = sb_data param_array = np.column_stack((param_array, spec_matrix)) # the indices we want from the param array # 1- freq, 3-area, 4-area error snip = wanted_indices N = len(spectrum_list) # run it out across all of the points across the param_array snipped_indices = [0] + list( np.array(snip*N) + 6*np.array(sorted(list(range(N))*len(snip))) ) snipped_array = param_array[:, snipped_indices] try: os.mkdir(folder_str) except OSError as e: if e.errno == errno.EEXIST: pass else: raise snip_name = file_name + '_snip.txt' file_name = file_name + '.txt' try: included_spectra_str = json.dumps(included_spectra, sort_keys=True, indent=4, separators=(',', ': ')) except: print("Source: save_parameter_sweep\nJSON FAILED") return included_spectra_str = included_spectra_str.replace('\n', '\n#') included_spectra_str += '\n#' * (99 - included_spectra_str.count('\n')) origin_import1 = "Sideband" origin_import2 = "Order" origin_import3 = "SB" for param in params: origin_import1 += ",Frequency,error,Sideband strength,error,Linewidth,error" origin_import2 += ",eV,,arb. u.,,meV," origin_import3 += ",{0},,{0},,{0},".format(param) origin_total = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 # This little chunk will make a chunk block of header strings for the sliced # data set which can be looped over origin_import1 = "Sideband" origin_import2 = "Order" origin_import3 = "SB" wanted_titles = ["Sideband", "Frequency", "error", "Sideband strength", "error", "Linewidth", "error"] wanted_units = ["order", "eV", "eV", "arb. u.", "arb. u.", "eV", "eV"] wanted_comments = ["", "{0}", "", "{0}", "", "{0}", ""] wanted_titles = ",".join([wanted_titles[ii] for ii in wanted_indices]) wanted_units = ",".join([wanted_units[ii] for ii in wanted_indices]) wanted_comments = ",".join([wanted_comments[ii] for ii in wanted_indices]) for param in params: origin_import1 += "," + wanted_titles origin_import2 += "," + wanted_units origin_import3 += "," + wanted_comments.format(param) origin_snip = origin_import1 + "\n" + origin_import2 + "\n" + origin_import3 header_total = '#' + included_spectra_str + '\n' + origin_total header_snip = '#' + included_spectra_str + '\n' + origin_snip # print "Spec header: ", spec_header if verbose: print("the param_array is:", param_array) if file_name: # allow passing false (or empty string) to prevent saving np.savetxt(os.path.join(folder_str, file_name), param_array, delimiter=',', header=header_total, comments='', fmt='%0.6e') np.savetxt(os.path.join(folder_str, snip_name), snipped_array, delimiter=',', header=header_snip, comments='', fmt='%0.6e') if verbose: print("Saved the file.\nDirectory: {}".format(os.path.join(folder_str, file_name))) return None def stitchData(dataList, plot=False): """ Attempt to stitch together absorbance data. Will translate the second data set to minimize leastsq between the two data sets. :param dataList: Iterable of the data sets to be fit. Currently it only takes the first two elements of the list, but should be fairly straightforward to recursivly handle a list>2. Shifts the second data set to overlap the first elements of dataList can be either np.arrays or Absorbance class, where it will take the proc_data itself :param plot: bool whether or not you want the fit iterations to be plotted (for debugging) :return: a, a (2,) np.array of the shift """ # Data coercsion, make sure we know what we're working wtih first = dataList[0] if isinstance(first, Absorbance): first = first.proc_data second = dataList[1] if isinstance(second, Absorbance): second = second.proc_data if plot: # Keep a reference to whatever plot is open at call-time # Useful if the calling script has plots before and after, as # omitting this will cause future plots to be added to figures here firstFig = plt.gcf() plt.figure("Stitcher") # Plot the raw input data plt.plot(*first.T) plt.plot(*second.T) # Algorithm is set up such that the "second" data set spans the # higher domain than first. Need to enforce this, and remember it # so the correct shift is applied flipped = False if max(first[:, 0]) > max(second[:, 0]): flipped = True first, second = second, first def fitter(p, shiftable, immutable): # designed to over # Get the shifts dx = p[0] dy = p[1] # Don't want pass-by-reference nonsense, recast our own refs shiftable = np.array(shiftable) immutable = np.array(immutable) # Shift the data set shiftable[:, 1] += dy shiftable[:, 0] += dx # Create an interpolator. We want a # direct comparision for subtracting the two functions # Different spec grating positions have different wavelengths # so they're not directly comparable. shiftF = spi.interp1d(*shiftable.T) # Find the bounds of where the two data sets overlap overlap = (min(shiftable[:, 0]), max(immutable[:, 0])) print("overlap", overlap) # Determine the indices of the immutable function # where it overlaps. argwhere returns 2-d thing, # requiring the [0] at the end of each call fOlIdx = (min(np.argwhere(immutable[:, 0] >= overlap[0]))[0], max(np.argwhere(immutable[:, 0] <= overlap[1]))[0]) print("fOlIdx", fOlIdx) # Get the interpolated values of the shiftable function at the same # x-coordinates as the immutable case newShift = shiftF(immutable[fOlIdx[0]:fOlIdx[1], 0]) if plot: plt.plot(*immutable[fOlIdx[0]:fOlIdx[1], :].T, marker='o', label="imm", markersize=10) plt.plot(immutable[fOlIdx[0]:fOlIdx[1], 0], newShift, marker='o', label="shift") imm = immutable[fOlIdx[0]:fOlIdx[1], 1] shift = newShift return imm - shift a, _, _, msg, err = spo.leastsq(fitter, [0.0001, 0.01 * max(first[:, 1])], args=(second, first), full_output=1) # print "a", a if plot: # Revert back to the original figure, as per top comments plt.figure(firstFig.number) # Need to invert the shift if we flipped which # model we're supposed to move if flipped: a *= -1 return a def integrateData(data, t1, t2, ave=False): """ Integrate a discrete data set for a given time period. Sums the data between the given bounds and divides by dt. Optional argument to divide by T = t2-t1 for calculating averages. data = 2D array. data[:,0] = t, data[:,1] = y t1 = start of integration t2 = end of integration if data is a NxM, with M>=3, it will take the third column to be the errors of the points, and return the error as the quadrature sum """ t = data[:, 0] y = data[:, 1] if data.shape[0] >= 3: errors = data[:, 2] else: errors = np.ones_like(y) * np.nan gt = set(np.where(t > t1)[0]) lt = set(np.where(t < t2)[0]) # find the intersection of the sets vals = list(gt & lt) # Calculate the average tot = np.sum(y[vals]) error = np.sqrt(np.sum(errors[vals] ** 2)) # Multiply by sampling tot *= (t[1] - t[0]) error *= (t[1] - t[0]) if ave: # Normalize by total width if you want an average tot /= (t2 - t1) errors /= (t2 - t1) if not np.isnan(error): return tot, error return tot def fourier_prep(x_vals, y_vals, num=None): """ This function will take a Nx2 array with unevenly spaced x-values and make them evenly spaced for use in fft-related things. And remove nans! """ y_vals = handle_nans(y_vals) spline = spi.interp1d(x_vals, y_vals, kind='linear') # for some reason kind='quadratic' doesn't work? returns all nans if num is None: num = len(x_vals) even_x = np.linspace(x_vals[0], x_vals[-1], num=num) even_y = spline(even_x) # even_y = handle_nans(even_y) return even_x, even_y def handle_nans(y_vals): """ This function removes nans and replaces them with linearly interpolated values. It requires that the array maps from equally spaced x-values. Taken from Stack Overflow: "Interpolate NaN values in a numpy array" """ nan_idx = np.isnan(y_vals) my_lambda = lambda x: x.nonzero()[0] # Returns the indices where Trues reside y_vals[nan_idx] = np.interp(my_lambda(nan_idx), my_lambda(~nan_idx), y_vals[~nan_idx]) return y_vals def calc_laser_frequencies(spec, nir_units="eV", thz_units="eV", bad_points=-2, inspect_plots=False): """ Calculate the NIR and FEL frequency for a spectrum :param spec: HSGCCD object to fit :type spec: HighSidebandCCD :param nir_units: str of desired units. Options: wavenumber, eV, meV, THz, GHz, nm :param thz_units: str of desired units. Options: wavenumber, eV, meV, THz, GHz, nm :param bad_points: How many bad points which shouldn't be used to calculate the frequencies (generally because the last few points are noisy and unreliable) :return: <NIR freq>, <THz freq> """ if not hasattr(spec, "sb_results"): spec.guess_sidebands() spec.fit_sidebands() sidebands = spec.sb_results[:, 0] locations = spec.sb_results[:, 1] errors = spec.sb_results[:, 2] try: p = np.polyfit(sidebands[1:bad_points], # This is 1 because the peak picker function was calling the 10th order the 9th locations[1:bad_points], deg=1) except TypeError: # if there aren't enough sidebands to fit, give -1 p = [-1, -1] NIRfreq = p[1] THzfreq = p[0] if inspect_plots: plt.figure("Frequency Fit") plt.errorbar(sidebands, locations, errors, marker='o') plt.errorbar(sidebands[:bad_points], locations[:bad_points], errors[:bad_points], marker='o') plt.plot(sidebands, np.polyval(p, sidebands)) converter = { "eV": lambda x: x, "meV": lambda x: 1000. * x, "wavenumber": lambda x: 8065.6 * x, "THz": lambda x: 241.80060 * x, "GHz": lambda x: 241.80060 * 1e3 * x, "nm": lambda x: 1239.83 / x } freqNIR = converter.get(nir_units, converter["eV"])(NIRfreq) freqTHz = converter.get(thz_units, converter["eV"])(THzfreq) return freqNIR, freqTHz def get_data_and_header(fname, returnOrigin = False): """ Given a file to a raw data file, returns the data and the json decoded header. Can choose to return the origin header as well :param fname: Filename to open :return: data, header (dict) """ with open(fname) as fh: line = fh.readline() header_string = '' while line[0]=='#': header_string += line[1:] line = fh.readline() # image files don't have an origin header if not "Images" in fname: oh = line # last readline in loop removes first line in Origin Header # strip the remaining two oh += fh.readline() oh += fh.readline()[:-1] #remove final \n # data = np.genfromtxt(fh, delimiter=',') data = np.genfromtxt(fname, delimiter=',') header = json.loads(header_string) if returnOrigin: return data, header, oh return data, header def natural_glob(*args): # glob/python sort alphabetically, so 1, 10, 11, .., 2, 21, # but I sometimes wnat "natural" sorting: 1, 2, 3, ..., 10, 11, 12, ..., 20, 21, 21 ... # There's tons of stack overflows, so I grabbed one of them. I put it in here # because I use it all the damned time. I also almost always use it when # glob.glob'ing, so just internally do it that way # # This is taken from # https://stackoverflow.com/questions/5967500/how-to-correctly-sort-a-string-with-a-number-inside import re def atoi(text): try: return int(text) except ValueError: return text # return int(text) if text.isdigit() else text def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [atoi(c) for c in re.split('(-?\d+)', text)] return sorted(glob.glob(os.path.join(*args)), key=natural_keys) def convertTime(timeStr): """ The data file headers have the timestamp of data collection. Sometimes you want to convert that to numbers for data's sake, but I constantly forget the functions to convert it from the time-stamp string. So here you go :param timeStr: the time as a string from the data file :return: int of the time since the epoch """ import time return time.mktime(time.strptime(timeStr, "%x %X%p")) # photonConverter[A][B](x): # convert x from A to B. photon_converter = { "nm": {"nm": lambda x: x, "eV": lambda x:1239.84/x, "wavenumber": lambda x: 10000000./x}, "eV": {"nm": lambda x: 1239.84/x, "eV": lambda x: x, "wavenumber":lambda x: 8065.56 * x}, "wavenumber": {"nm": lambda x: 10000000./x, "eV": lambda x: x/8065.56, "wavenumber": lambda x: x} } #################### # Smoothing functions #################### def savitzky_golay(y, window_size, order, deriv=0, rate=1): r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techniques. Parameters ---------- y : array_like, shape (N,) the values of the time history of the signal. window_size : int the length of the window. Must be an odd integer number. order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. deriv: int the order of the derivative to compute (default = 0 means only smoothing) Returns ------- ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative). Notes ----- The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. Examples -------- t = np.linspace(-4, 4, 500) y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) ysg = savitzky_golay(y, window_size=31, order=4) import matplotlib.pyplot as plt plt.plot(t, y, label='Noisy signal') plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') plt.plot(t, ysg, 'r', label='Filtered signal') plt.legend() plt.show() References ---------- .. [1] <NAME>, <NAME>, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, <NAME>, <NAME>, <NAME> Cambridge University Press ISBN-13: 9780521880688 source: http://scipy.github.io/old-wiki/pages/Cookbook/SavitzkyGolay """ import numpy as np from math import factorial try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError as msg: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = list(range(order + 1)) half_window = (window_size - 1) // 2 # precompute coefficients b = np.mat([[k ** i for i in order_range] for k in range(-half_window, half_window + 1)]) m = np.linalg.pinv(b).A[deriv] * rate ** deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs(y[1:half_window + 1][::-1] - y[0]) lastvals = y[-1] + np.abs(y[-half_window - 1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve(m[::-1], y, mode='valid') def fft_filter(data, cutoffFrequency=1520, inspectPlots=False, tryFitting=False, freqSigma=50, ftol=1e-4, isInteractive=False): """ Performs an FFT, then fits a peak in frequency around the input with the input width. If only data is given, it will cut off all frequencies above the default value. inspectPlots = True will plot the FFT and the filtering at each step, as well as the results tryFitting = True will try to fit the peak in frequency space centered at the cutoffFrequency and with a width of freqSigma, using the background function above. Will replace the peak with the background function. Feature not very well tested isInteractive: Will pop up interactive windows to move the cutoff frequency and view the FFT in real time. Requires pyqtgraph and PyQt4 installed (pyqt4 is standard with anaconda/winpython, but pyqtgraph is not) """ # Make a copy so we can return the same thing retData = np.array(data) x = np.array(retData[:, 0]) y = np.array(retData[:, -1]) # Let's you place with zero padding. zeroPadding = len(x) N = len(x) if isInteractive: try: import pyqtgraph as pg from PyQt5 import QtCore, QtWidgets except: raise ImportError("Cannot do interactive plotting without pyqtgraph installed") # Need to make some basic classes fir signals and slots to make things simple class FFTWin(pg.PlotWindow): sigCutoffChanged = QtCore.pyqtSignal(object) sigClosed = QtCore.pyqtSignal() def __init__(self, x, y): super(FFTWin, self).__init__() # Plot the log of the data, # it breaks text boxes to do semilogy self.plotItem.plot(x, np.log10(y), pen='k') # The line for picking the cutoff # Connect signals so the textbox updates and the # realspace window can recalcualte the FFT self.line = pg.InfiniteLine(cutoffFrequency, movable=True) self.line.sigPositionChanged.connect(lambda x: self.sigCutoffChanged.emit(x.value())) self.line.sigPositionChanged.connect(self.updateText) self.addItem(self.line) # Set up the textbox so user knows the frequency # If this ends up being useful, may need # a way to set the cutoff manually self.text = pg.TextItem("{:.4f}".format(cutoffFrequency)) self.addItem(self.text) self.text.setPos(min(x), max(np.log10(y))) # Cheap magic to get the close event # of the main window. Need to keep a reference # to the old function so that we can call it # to properly clean up afterwards self.oldCloseEvent = self.win.closeEvent self.win.closeEvent = self.closeEvent def updateText(self, val): self.text.setText("{:.4f}".format(val.value())) def closeEvent(self, ev): # Just emit that we've been closed and # pass it along to the window closer self.sigClosed.emit() self.oldCloseEvent(ev) class RealWin(pg.PlotWindow): sigClosed = QtCore.pyqtSignal() def __init__(self, data, fftWin): super(RealWin, self).__init__() # To connect signals from it self.fftWin = fftWin self.data = data # Start off with the FFT given by the original # inputted cutoff self.updatePlot(cutoffFrequency) # See above comments self.oldClose = self.win.closeEvent self.win.closeEvent = self.closeEvent fftWin.sigCutoffChanged.connect(self.updatePlot) # Close self if other window is closed fftWin.sigClosed.connect(self.win.close) def updatePlot(self, val): self.plotItem.clear() self.plotItem.plot(*self.data.T, pen=pg.mkPen('k', width=3)) # Recursion! Call this same function to do the FFT newData = fft_filter(self.data, cutoffFrequency=val) self.plotItem.plot(*newData.T, pen=pg.mkPen('r', width=3)) def closeEvent(self, ev): self.sigClosed.emit() try: self.fftWin.win.close() except: pass self.oldClose(ev) k = fft.fftfreq(zeroPadding, x[1] - x[0]) Y = fft.fft(y, n=zeroPadding) # Make the windows fftWin = FFTWin(k, np.abs(Y)) realWin = RealWin(np.array(retData), fftWin) realWin.show() # Need to pause the program until the frequency is selected # Done with this qeventloop. loop = QtCore.QEventLoop() realWin.sigClosed.connect(loop.exit) loop.exec_() # Return with the desired output value return fft_filter(retData, fftWin.line.value()) if inspectPlots: plt.figure("Real Space") plt.plot(x, y, label="Input Data") # Replicate origin directy # http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm # "rotate" the data set so it ends at 0, # enforcing a periodicity in the data. Otherwise # oscillatory artifacts result at the ends onePerc = int(0.01 * N) x1 = np.mean(x[:onePerc]) x2 = np.mean(x[-onePerc:]) y1 = np.mean(y[:onePerc]) y2 = np.mean(y[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x + b y -= flattenLine if inspectPlots: plt.plot(x, y, label="Rotated Data") # Perform the FFT and find the appropriate frequency spacing k = fft.fftfreq(zeroPadding, x[1] - x[0]) Y = fft.fft(y, n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(k, np.abs(Y), label="Raw FFT") if tryFitting: try: # take +/- 4 sigma points around peak to fit to sl = np.abs(k - cutoffFrequency).argmin() + np.array([-1, 1]) * 10 * freqSigma / np.abs(k[0] - k[1]) sl = slice(*[int(j) for j in sl]) p0 = [cutoffFrequency, np.abs(Y)[sl].max() * freqSigma, # estimate the height baased on the max in the set freqSigma, 0.14, 2e3, 1.1] # magic test numbers, they fit the background well if inspectPlots: plt.semilogy(k[sl], gaussWithBackground(k[sl], *p0), label="Peak with initial values") p, _ = curve_fit(gaussWithBackground, k[sl], np.abs(Y)[sl], p0=p0, ftol=ftol) if inspectPlots: plt.semilogy(k[sl], gaussWithBackground(k[sl], *p), label="Fitted Peak") # Want to remove data within 5 sigma ( arb value... ) st = int(p[0] - 5 * p[2]) en = int(p[0] + 5 * p[2]) # Find get the indices to remove. refitRangeIdx = np.argwhere((k > st) & (k < en)) refitRangeIdxNeg = np.argwhere((k < -st) & (k > -en)) # Replace the data with the backgroudn # Note: abuses the symmetry of the FFT of a real function # to get the negative side of the data Y[refitRangeIdx] = background(k[refitRangeIdx], *p[-2:]) Y[refitRangeIdxNeg] = background(k[refitRangeIdx], *p[-2:])[::-1] except: print("ERROR: Trouble fitting the peak in frequency space.\n\t Defaulting to cutting off") # Assume cutoffFrequency was the peak, not the actual cutoff # Leaving it alone means half the peak would remain and the data # wouldn't really be smoothed cutoffFrequency -= 5 * freqSigma # Reset this so the next part gets called tryFitting = False # "if not" instead of "else" because if the above # fitting fails, we can default to the sharp cutoff if not tryFitting: # Define where to remove the data st = cutoffFrequency en = int(max(k)) + 1 # Find the indices to remove the data refitRangeIdx = np.argwhere((k > st) & (k < en)) refitRangeIdxNeg = np.argwhere((k < -st) & (k > -en)) # Kill it all after the cutoff Y[refitRangeIdx] = 0 Y[refitRangeIdxNeg] = 0 smoothIdx = np.argwhere((-st < k) & (k < st)) smoothr = -1. / cutoffFrequency ** 2 * k[smoothIdx] ** 2 + 1 Y[smoothIdx] *= smoothr if inspectPlots: plt.plot(k, np.abs(Y), label="FFT with removed parts") a = plt.legend() a.draggable(True) # invert the FFT y = fft.ifft(Y, n=zeroPadding) # unshift the data y += flattenLine # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y = np.abs(y)[:len(x)] if inspectPlots: plt.figure("Real Space") print(x.size, y.size) plt.plot(x, y, label="Smoothed Data") a = plt.legend() a.draggable(True) retData[:, 0] = x retData[:, -1] = y return retData def low_pass_filter(x_vals, y_vals, cutoff, inspectPlots=True): """ Replicate origin directy http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm "rotate" the data set so it ends at 0, enforcing a periodicity in the data. Otherwise oscillatory artifacts result at the ends This uses a 50th order Butterworth filter. """ x_vals, y_vals = fourier_prep(x_vals, y_vals) if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Non-nan Data") zeroPadding = len(x_vals) # print "zero padding", zeroPadding # This needs to be this way because truncation is bad and actually zero padding N = len(x_vals) onePerc = int(0.01 * N) x1 = np.mean(x_vals[:onePerc]) x2 = np.mean(x_vals[-onePerc:]) y1 = np.mean(y_vals[:onePerc]) y2 = np.mean(y_vals[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x_vals + b y_vals -= flattenLine if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Rotated Data") # even_data = np.column_stack((x_vals, y_vals)) # Perform the FFT and find the appropriate frequency spacing x_fourier = fft.fftfreq(zeroPadding, x_vals[1] - x_vals[0]) y_fourier = fft.fft(y_vals) # , n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(x_fourier, np.abs(y_fourier), label="Raw FFT") # Define where to remove the data band_start = cutoff band_end = int(max(abs(x_fourier))) + 1 ''' # Find the indices to remove the data refitRangeIdx = np.argwhere((x_fourier > band_start) & (x_fourier <= band_end)) refitRangeIdxNeg = np.argwhere((x_fourier < -band_start) & (x_fourier >= -band_end)) #print "x_fourier", x_fourier[795:804] #print "max(x_fourier)", max(x_fourier) #print "refitRangeIdxNeg", refitRangeIdxNeg[:-400] # Kill it all after the cutoff y_fourier[refitRangeIdx] = 0 y_fourier[refitRangeIdxNeg] = 0 # This section does a square filter on the remaining code. smoothIdx = np.argwhere((-band_start < x_fourier) & (x_fourier < band_start)) smoothr = -1 / band_start**2 * x_fourier[smoothIdx]**2 + 1 y_fourier[smoothIdx] *= smoothr ''' # print abs(y_fourier[-10:]) butterworth = np.sqrt(1 / (1 + (x_fourier / cutoff) ** 100)) y_fourier *= butterworth if inspectPlots: plt.plot(x_fourier, np.abs(y_fourier), label="FFT with removed parts") a = plt.legend() a.draggable(True) # print "y_fourier", len(y_fourier) # invert the FFT y_vals = fft.ifft(y_fourier, n=zeroPadding) # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y_vals = y_vals[:len(x_vals)] # unshift the data y_vals += flattenLine y_vals = np.abs(y_vals) if inspectPlots: plt.figure("Real Space") # print x_vals.size, y_vals.size plt.plot(x_vals, y_vals, linewidth=3, label="Smoothed Data") a = plt.legend() a.draggable(True) return np.column_stack((x_vals, y_vals)) def high_pass_filter(x_vals, y_vals, cutoff, inspectPlots=True): """ Replicate origin directy http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm "rotate" the data set so it ends at 0, enforcing a periodicity in the data. Otherwise oscillatory artifacts result at the ends This uses a 50th order Butterworth filter. """ x_vals, y_vals = fourier_prep(x_vals, y_vals) if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Non-nan Data") zeroPadding = len(x_vals) print("zero padding", zeroPadding) # This needs to be this way because truncation is bad and actually zero padding N = len(x_vals) onePerc = int(0.01 * N) x1 = np.mean(x_vals[:onePerc]) x2 = np.mean(x_vals[-onePerc:]) y1 = np.mean(y_vals[:onePerc]) y2 = np.mean(y_vals[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x_vals + b y_vals -= flattenLine if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Rotated Data") # even_data = np.column_stack((x_vals, y_vals)) # Perform the FFT and find the appropriate frequency spacing x_fourier = fft.fftfreq(zeroPadding, x_vals[1] - x_vals[0]) y_fourier = fft.fft(y_vals) # , n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(x_fourier, np.abs(y_fourier), label="Raw FFT") # Define where to remove the data band_start = cutoff band_end = int(max(abs(x_fourier))) + 1 ''' # Find the indices to remove the data refitRangeIdx = np.argwhere((x_fourier > band_start) & (x_fourier <= band_end)) refitRangeIdxNeg = np.argwhere((x_fourier < -band_start) & (x_fourier >= -band_end)) #print "x_fourier", x_fourier[795:804] #print "max(x_fourier)", max(x_fourier) #print "refitRangeIdxNeg", refitRangeIdxNeg[:-400] # Kill it all after the cutoff y_fourier[refitRangeIdx] = 0 y_fourier[refitRangeIdxNeg] = 0 # This section does a square filter on the remaining code. smoothIdx = np.argwhere((-band_start < x_fourier) & (x_fourier < band_start)) smoothr = -1 / band_start**2 * x_fourier[smoothIdx]**2 + 1 y_fourier[smoothIdx] *= smoothr ''' print(abs(y_fourier[-10:])) butterworth = 1 - np.sqrt(1 / (1 + (x_fourier / cutoff) ** 50)) y_fourier *= butterworth if inspectPlots: plt.plot(x_fourier, np.abs(y_fourier), label="FFT with removed parts") a = plt.legend() a.draggable(True) print("y_fourier", len(y_fourier)) # invert the FFT y_vals = fft.ifft(y_fourier, n=zeroPadding) # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y_vals = y_vals[:len(x_vals)] # unshift the data y_vals += flattenLine y_vals = np.abs(y_vals) if inspectPlots: plt.figure("Real Space") print(x_vals.size, y_vals.size) plt.plot(x_vals, y_vals, label="Smoothed Data") a = plt.legend() a.draggable(True) return np.column_stack((x_vals, y_vals)) def band_pass_filter(x_vals, y_vals, cutoff, inspectPlots=True): """ Replicate origin directy http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm "rotate" the data set so it ends at 0, enforcing a periodicity in the data. Otherwise oscillatory artifacts result at the ends This uses a 50th order Butterworth filter. """ x_vals, y_vals = fourier_prep(x_vals, y_vals) if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Non-nan Data") zeroPadding = len(x_vals) print("zero padding", zeroPadding) # This needs to be this way because truncation is bad and actually zero padding N = len(x_vals) onePerc = int(0.01 * N) x1 = np.mean(x_vals[:onePerc]) x2 = np.mean(x_vals[-onePerc:]) y1 = np.mean(y_vals[:onePerc]) y2 = np.mean(y_vals[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x_vals + b y_vals -= flattenLine if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Rotated Data") # even_data = np.column_stack((x_vals, y_vals)) # Perform the FFT and find the appropriate frequency spacing x_fourier = fft.fftfreq(zeroPadding, x_vals[1] - x_vals[0]) y_fourier = fft.fft(y_vals) # , n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(x_fourier, np.abs(y_fourier), label="Raw FFT") # Define where to remove the data band_start = cutoff band_end = int(max(abs(x_fourier))) + 1 ''' # Find the indices to remove the data refitRangeIdx = np.argwhere((x_fourier > band_start) & (x_fourier <= band_end)) refitRangeIdxNeg = np.argwhere((x_fourier < -band_start) & (x_fourier >= -band_end)) #print "x_fourier", x_fourier[795:804] #print "max(x_fourier)", max(x_fourier) #print "refitRangeIdxNeg", refitRangeIdxNeg[:-400] # Kill it all after the cutoff y_fourier[refitRangeIdx] = 0 y_fourier[refitRangeIdxNeg] = 0 # This section does a square filter on the remaining code. smoothIdx = np.argwhere((-band_start < x_fourier) & (x_fourier < band_start)) smoothr = -1 / band_start**2 * x_fourier[smoothIdx]**2 + 1 y_fourier[smoothIdx] *= smoothr ''' print(abs(y_fourier[-10:])) butterworth = 1 - np.sqrt(1 / (1 + (x_fourier / cutoff[0]) ** 50)) butterworth *= np.sqrt(1 / (1 + (x_fourier / cutoff[1]) ** 50)) y_fourier *= butterworth if inspectPlots: plt.plot(x_fourier, np.abs(y_fourier), label="FFT with removed parts") a = plt.legend() a.draggable(True) print("y_fourier", len(y_fourier)) # invert the FFT y_vals = fft.ifft(y_fourier, n=zeroPadding) # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y_vals = y_vals[:len(x_vals)] # unshift the data y_vals += flattenLine y_vals =
np.abs(y_vals)
numpy.abs
# -*- coding: utf-8 -*- """ Created on Wed Apr 15 22:38:18 2020 @author: alankar """ import numpy as np import matplotlib.pyplot as plt from scipy import interpolate from matplotlib.lines import Line2D import pickle #Constants kB = 1.3807e-16 #Boltzman's Constant in CGS mp = 1.6726231e-24 #Mass of a Proton in CGS GAMMA = 5./3 #Specific Heat Ratio for an Ideal Gas fig = plt.figure(figsize=(30,30)) CHI = np.linspace(1.0,1000, 100000) M1=0.5 M2=1.0 M3=1.5 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) #Problem Constants mu = 0.672442 Tcl = 1.e4 #K ncl = 0.1 # particles per cm^3 T_hot = CHI*Tcl LAMBDA_HOT= LAMBDA(T_hot) #erg cm3 s-1 #LAMBDA at T_hot #GET IT FROM COOLTABLE.DAT Tmix= np.sqrt(Tcl*T_hot) #K LAMBDA_MIX = LAMBDA(Tmix) #erg cm3 s-1 #LAMBDA at T_mix #GET IT FROM COOLTABLE.DAT ALPHA = 1. n_hot=ncl/CHI #Normalized Quantities Tcl_4 = Tcl/1e4 #K P3 = (ncl*Tcl)/1e3 #cm-3 K CHI_100=(CHI)/100 LAMBDA_HOT_N23 = LAMBDA_HOT/1e-23 #erg cm3 s-1 LAMBDA_MIX_N21_4 = LAMBDA_MIX/(10**-21.4) #erg cm3 s-1 cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) R1= (2 * (Tcl_4**(5/2)) * M1 * CHI_100 )/(P3*LAMBDA_MIX_N21_4*ALPHA) R2= (2 * (Tcl_4**(5/2)) * M2 * CHI_100 )/(P3*LAMBDA_MIX_N21_4*ALPHA) R3= (2 * (Tcl_4**(5/2)) * M3 * CHI_100 )/(P3*LAMBDA_MIX_N21_4*ALPHA) pc=3.098e18 tcc1= (np.sqrt(CHI)*R1*pc)/(M1*cs_hot) tcc2= (np.sqrt(CHI)*R2*pc)/(M2*cs_hot) tcc3= (np.sqrt(CHI)*R3*pc)/(M3*cs_hot) f1=0.9*((2*R1*(n_hot/0.01))**0.3)*((M1*(cs_hot/1.e7))**0.6) f2=0.9*((2*R2*(n_hot/0.01))**0.3)*((M2*(cs_hot/1.e7))**0.6) f3=0.9*((2*R3*(n_hot/0.01))**0.3)*((M3*(cs_hot/1.e7))**0.6) t_life_pred1=10*tcc1*f1 t_life_pred2=10*tcc2*f2 t_life_pred3=10*tcc3*f3 t_cool_hot=((1/(GAMMA-1))*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y1=np.log10(t_life_pred1/Myr) Y2=np.log10(t_life_pred2/Myr) Y3=np.log10(t_life_pred3/Myr) plt.plot(X,Y1,label='Gronke-Oh Criterion for $\mathrm{\mathcal{M}=0.5}$',linewidth=4.5) plt.plot(X,Y2,label='Gronke-Oh Criterion for $\mathrm{\mathcal{M}=1.0}$',linewidth=4.5, color='red') plt.plot(X,Y3,label='Gronke-Oh Criterion for $\mathrm{\mathcal{M}=1.5}$',linewidth=4.5, color='green') ############################################ data1=np.loadtxt('Li_pt_dest.dat') X1=data1[:,0] Y1=data1[:,1] plt.plot(X1,Y1,'o', color='gray', markersize=30, label='Li Destroyed Clouds',alpha=0.5) data1=np.loadtxt('Li_pt_grth.dat') X1=data1[:,0] Y1=data1[:,1] plt.plot(X1,Y1,'^', color='gray', markersize=30, label='Li Growing Clouds', alpha=0.5) ####################################################### ############################################ M=0.5 R= [10.36,3.49] pc=3.098e18 T_hot=1.e6 n_hot=0.001 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (10*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:blue', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,label=r'Growing Clouds in Our Simulations for $\mathrm{\mathcal{M}=0.5}$',fillstyle=filling, **marker_style) ####################################################### M=1.0 R= [14.0,5.47] pc=3.098e18 T_hot=1.e6 n_hot=0.001 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (10*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:red', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,label=r'Growing Clouds in Our Simulations for $\mathrm{\mathcal{M}=1.0}$',fillstyle=filling, **marker_style) ############################################################# M=1.5 R= [17.0,7.16] pc=3.098e18 T_hot=1.e6 n_hot=0.001 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (10*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:green', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,label=r'Growing Clouds in Our Simulations for $\mathrm{\mathcal{M}=1.5}$',fillstyle=filling, **marker_style) ####################################################### M=0.5 R=[23.92,124.06] pc=3.098e18 T_hot=3.e6 n_hot=0.1/300 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (17.32*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:blue', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,fillstyle=filling, **marker_style) ############################################################## M=1.0 R=[37.64,169.02] pc=3.098e18 T_hot=3.e6 n_hot=0.1/300 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (17.32*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:red', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,fillstyle=filling, **marker_style) ############################################################# M=1.5 R=[49.01,202.45] pc=3.098e18 T_hot=3.e6 n_hot=0.1/300 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (17.32*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:green', linestyle='None', marker='^', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,fillstyle=filling, **marker_style) ####################################################### M=1.0 R= [1.0,0.5] pc=3.098e18 T_hot=1.e6 n_hot=0.001 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=np.sqrt((GAMMA*kB*T_hot)/(mu*mp)) tcc= (10*np.asarray(R)*pc)/(M*cs_hot) f=0.9*((2*np.asarray(R)*(n_hot/0.01))**0.3)*((M*(cs_hot/1.e7))**0.6) t_life_pred=10*tcc*f t_cool_hot=(1.5*kB*T_hot)/(n_hot*LAMBDA_HOT) Myr=365*24*60*60*1.e6 X=np.log10(t_cool_hot/Myr) Y=np.log10(t_life_pred/Myr) X,Y=np.meshgrid(X,Y) marker_style = dict(color='tab:red', linestyle='None', marker='o', markersize=30, markerfacecoloralt='tab:red', markeredgewidth=5) filling = Line2D.fillStyles[-1] plt.plot(X,Y,label=r'Destroyed Clouds in Our Simulations for $\mathrm{\mathcal{M}=1.0}$',fillstyle=filling, **marker_style) #######################################################3 ####################################################### M=1.0 R= [2.8,1.5] pc=3.098e18 T_hot=3.e6 n_hot=0.1/300 cooling = np.loadtxt('cooltable.dat') #solar metallicity LAMBDA = interpolate.interp1d(cooling[:,0], cooling[:,1]) LAMBDA_HOT=LAMBDA(T_hot) cs_hot=
np.sqrt((GAMMA*kB*T_hot)/(mu*mp))
numpy.sqrt