prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ Created on Tue Nov 27 11:15:03 2018 @author: XieTianwen @assignment_author: <NAME> [On Sat. Dec. 01 09:46 8102] """ import numpy as np import matplotlib.pyplot as plt def power_iteration(M,eta=1e-7,max_iter_N=100): """ M: the matrix for eigen vector decomposition [np.array] eta: minimum tolerance max_iter_N: max iteration times for computing use power iteration to get the largest eigen vector of matrix M """ # initialize x x = np.random.randn(M.shape[0]) lam = 0 for k in range(max_iter_N): y = x / x.max() x = M.dot(y) beta = x.max() err = abs(beta - lam) print("{}/{} err:{}".format(k+1,max_iter_N,err)) y = x / beta if err <= eta: print("Power Iteration Stop! [Success]") break else: lam = beta if k >= (max_iter_N - 1): print("Exceed Max Iteration! [Failure]") return beta,y # eigen value, normalized eigen vector def orthogonal_vec(a): """ get an orthogonol vector of vector a """ b = np.ones_like(a) a_m = a.T.dot(a) oc = b - a.T.dot(a.T.dot(b)/a_m) return oc def second_sv_fn(B,s_py,max_iter_N=10): """ B: matrix s_py: vector of sqrt_P of y get the 2nd largest sigular vector of B """ norm = lambda x:x/np.sqrt(x.dot(x.T)) # normalizer psi_1 = orthogonal_vec(s_py) for i in range(max_iter_N): psi_0 = psi_1 phi_1 = B.dot(psi_1) phi_1 = phi_1 / phi_1.max() psi_1 = phi_1.T.dot(B) phi_1 = phi_1 / phi_1.max() err = np.mean((abs(psi_0-psi_1))) print("{}/{} err psi {}:".format(i+1,max_iter_N,err)) phi_1 = norm(phi_1) psi_1 = norm(psi_1) # U,_,V = svd(B) # psi_1 == V[1,;] # phi_1 == U[:,1] return phi_1,psi_1 def main(): plt.style.use('ggplot') num = np.load('num.npy') ''' your codes ''' # acquire matrix B Pxy = num / np.sum(num) Px = np.sum(num,1) /
np.sum(num)
numpy.sum
# Allen Institute Software License - This software license is the 2-clause BSD # license plus a third clause that prohibits redistribution for commercial # purposes without further permission. # # Copyright 2015-2016. Allen Institute. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Redistributions for commercial purposes are not permitted without the # Allen Institute's written permission. # For purposes of this license, commercial purposes is the incorporation of the # Allen Institute's software into anything for which you will charge fees or # other compensation. Contact <EMAIL> for commercial licensing # opportunities. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import sys import math import numpy as np import scipy.signal as signal import logging # Design notes: # to generate an average feature file, all sweeps must have all features # to generate a fitness score of a sweep to a feature file,, the sweep # must have all features in the file. If one is absent, a penalty # of TODO ??? will be assessed # set of features class EphysFeatures( object ): def __init__(self, name): # feature mean and standard deviations self.mean = {} self.stdev = {} # human-readable names for features self.glossary = {} # table indicating how to score feature # 'hit' feature exists: # 'ignore' do nothing # 'stdev' score is # stdevs from target mean # 'miss' feature absent: # 'constant' score = scoring['constant'] # 'mean_mult' score = mean * scoring['mean_mult'] # self.scoring = {} self.name = name ################################################################ # ignore scores ignore_score = { "hit": "ignore" } self.glossary["n_spikes"] = "Number of spikes" self.scoring["n_spikes"] = ignore_score ################################################################ # ignore misses ignore_miss = { "hit":"stdev", "miss":"const", "const":0 } self.glossary["adapt"] = "Adaptation index" self.scoring["adapt"] = ignore_miss self.glossary["latency"] = "Time to first spike (ms)" self.scoring["latency"] = ignore_miss ################################################################ # base miss off mean mean_score = { "hit":"stdev", "miss":"mean_mult", "mean_mult":2 } self.glossary["ISICV"] = "ISI-CV" self.scoring["ISICV"] = mean_score ################################################################ # normal scoring normal_score = { "hit":"stdev", "miss":"const", "const":20 } self.glossary["isi_avg"] = "Average ISI (ms)" self.scoring["isi_avg"] = ignore_score self.glossary["doublet"] = "Doublet ISI (ms)" self.scoring["doublet"] = normal_score self.glossary["f_fast_ahp"] = "Fast AHP (mV)" self.scoring["f_fast_ahp"] = normal_score self.glossary["f_slow_ahp"] = "Slow AHP (mV)" self.scoring["f_slow_ahp"] = normal_score self.glossary["f_slow_ahp_time"] = "Slow AHP time" self.scoring["f_slow_ahp_time"] = normal_score self.glossary["base_v"] = "Baseline voltage (mV)" self.scoring["base_v"] = normal_score #self.glossary["base_v2"] = "Baseline voltage 2 (mV)" #self.scoring["base_v2"] = normal_score #self.glossary["base_v3"] = "Baseline voltage 3 (mV)" #self.scoring["base_v3"] = normal_score ################################################################ # per spike scoring perspike_score = { "hit":"perspike", "miss":"const", "const":20, "skip_last_n":0 } self.glossary["f_peak"] = "Spike height (mV)" self.scoring["f_peak"] = perspike_score.copy() self.glossary["f_trough"] = "Spike depth (mV)" self.scoring["f_trough"] = perspike_score.copy() self.scoring["f_trough"]["skip_last_n"] = 1 # self.glossary["f_w"] = "Spike width at -30 mV (ms)" # self.scoring["f_w"] = perspike_score.copy() self.glossary["upstroke"] = "Peak upstroke (mV/ms)" self.scoring["upstroke"] = perspike_score.copy() self.glossary["upstroke_v"] = "Vm of peak upstroke (mV)" self.scoring["upstroke_v"] = perspike_score.copy() self.glossary["downstroke"] = "Peak downstroke (mV/ms)" self.scoring["downstroke"] = perspike_score.copy() self.glossary["downstroke_v"] = "Vm of peak downstroke (mV)" self.scoring["downstroke_v"] = perspike_score.copy() self.glossary["threshold"] = "Threshold voltage (mV)" self.scoring["threshold"] = perspike_score.copy() self.glossary["width"] = "Spike width at half-max (ms)" self.scoring["width"] = perspike_score.copy() self.scoring["width"]["skip_last_n"] = 1 self.glossary["thresh_ramp"] = "Change in dv/dt over first 5 mV past threshold (mV/ms)" self.scoring["thresh_ramp"] = perspike_score.copy() ################################################################ # heavily penalize when there are no spikes spike_score = { "hit":"stdev", "miss":"const", "const":250 } self.glossary["rate"] = "Firing rate (Hz)" self.scoring["rate"] = spike_score def print_out(self): print(("Features from " + self.name)) for k in list(self.mean.keys()): if k in self.glossary: st = "%30s = " % self.glossary[k] if self.mean[k] is not None: st += "%g" % self.mean[k] else: st += "--------" if k in self.stdev and self.stdev[k] is not None: st += " +/- %g" % self.stdev[k] print(st) # initialize summary feature set from file def clone(self, param_dict): for k in list(param_dict.keys()): self.mean[k] = param_dict[k]["mean"] self.stdev[k] = param_dict[k]["stdev"] class EphysFeatureExtractor( object ): def __init__(self): # list of feature set instances self.feature_list = [] # names of each element in feature list self.feature_source = [] # feature set object representing combination of all instances self.summary = None # adds new feature set instance to feature_list def process_instance(self, name, v, curr, t, onset, dur, stim_name): feature = EphysFeatures(name) ################################################################ # set stop time -- run until end of stimulus or end of sweep # comment-out the one of the two approaches # detect spikes only during stimulus start = onset stop = onset + dur # detect spikes for all of sweep #start = 0 #stop = t[-1] ################################################################ # pull out spike times # calculate the derivative only within target window # otherwise get spurious detection at ends of stimuli # filter with 10kHz cutoff if constant 200kHz sample rate (ie experimental trace) start_idx = np.where(t >= start)[0][0] stop_idx = np.where(t >= stop)[0][0] v_target = v[start_idx:stop_idx] if np.abs(t[1] - t[0] - 5e-6) < 1e-7 and np.var(np.diff(t)) < 1e-6: b, a = signal.bessel(4, 0.1, "low") smooth_v = signal.filtfilt(b, a, v_target, axis=0) dv = np.diff(smooth_v) else: dv = np.diff(v_target) dvdt = dv / (np.diff(t[start_idx:stop_idx]) * 1e3) # in mV/ms dv_cutoff = 20 thresh_pct = 0.05 spikes = [] temp_spk_idxs = np.where(np.diff(np.greater_equal(dvdt, dv_cutoff).astype(int)) == 1)[0] # find positive-going crossings of 100 mV/ms spk_idxs = [] for i, temp in enumerate(temp_spk_idxs): if i == 0: spk_idxs.append(temp) elif np.any(dvdt[temp_spk_idxs[i - 1]:temp] < 0): # check if the dvdt has gone back down below zero between presumed spike times # sometimes the dvdt bobbles around detection threshold and produces spurious guesses at spike times spk_idxs.append(temp) spk_idxs += start_idx # set back to the "index space" of the original trace # recalculate full dv/dt for feature analysis (vs spike detection) if np.abs(t[1] - t[0] - 5e-6) < 1e-7 and np.var(np.diff(t)) < 1e-6: b, a = signal.bessel(4, 0.1, "low") smooth_v = signal.filtfilt(b, a, v, axis=0) dv = np.diff(smooth_v) else: dv = np.diff(v) dvdt = dv / (np.diff(t) * 1e3) # in mV/ms # First time through, accumulate upstrokes to calculate average threshold target for spk_n, spk_idx in enumerate(spk_idxs): # Etay defines spike as time of threshold crossing spk = {} if spk_n < len(spk_idxs) - 1: next_idx = spk_idxs[spk_n + 1] else: next_idx = stop_idx if spk_n > 0: prev_idx = spk_idxs[spk_n - 1] else: prev_idx = start_idx # Find the peak peak_idx = np.argmax(v[spk_idx:next_idx]) + spk_idx spk["peak_idx"] = peak_idx spk["f_peak"] = v[peak_idx] spk["f_peak_i"] = curr[peak_idx] spk["f_peak_t"] = t[peak_idx] # Check if end of stimulus interval cuts off spike - if so, don't process spike if spk_n == len(spk_idxs) - 1 and peak_idx == next_idx-1: continue if spk_idx == peak_idx: continue # this was bugfix, but why? ramp? # Determine maximum upstroke of spike upstroke_idx = np.argmax(dvdt[spk_idx:peak_idx]) + spk_idx spk["upstroke"] = dvdt[upstroke_idx] if np.isnan(spk["upstroke"]): # sometimes dvdt will be NaN because of multiple cvode points at same time step close_idx = upstroke_idx + 1 while (np.isnan(dvdt[close_idx])): close_idx += 1 spk["upstroke_idx"] = close_idx spk["upstroke"] = dvdt[close_idx] spk["upstroke_v"] = v[close_idx] spk["upstroke_i"] = curr[close_idx] spk["upstroke_t"] = t[close_idx] else: spk["upstroke_idx"] = upstroke_idx spk["upstroke_v"] = v[upstroke_idx] spk["upstroke_i"] = curr[upstroke_idx] spk["upstroke_t"] = t[upstroke_idx] # Preliminarily define threshold where dvdt = 5% * max upstroke thresh_pct = 0.05 find_thresh_idxs = np.where(dvdt[prev_idx:upstroke_idx] <= thresh_pct * spk["upstroke"])[0] if len(find_thresh_idxs) < 1: # Can't find a good threshold value - probably a bad simulation case # Fall back to the upstroke value threshold_idx = upstroke_idx else: threshold_idx = find_thresh_idxs[-1] + prev_idx spk["threshold_idx"] = threshold_idx spk["threshold"] = v[threshold_idx] spk["threshold_v"] = v[threshold_idx] spk["threshold_i"] = curr[threshold_idx] spk["threshold_t"] = t[threshold_idx] spk["rise_time"] = spk["f_peak_t"] - spk["threshold_t"] PERIOD = t[1] - t[0] width_volts = (v[peak_idx] + v[threshold_idx]) / 2 recording_width = False for i in range(threshold_idx, min(len(v), threshold_idx + int(0.001 / PERIOD))): if not recording_width and v[i] >= width_volts: recording_width = True idx0 = i elif recording_width and v[i] < width_volts: spk["half_height_width"] = t[i] - t[idx0] break # </KEITH> # Check for things that are probably not spikes: # if there is more than 2 ms between the detection event and the peak, don't count it if t[peak_idx] - t[threshold_idx] > 0.002: continue # if the "spike" is less than 2 mV, don't count it if v[peak_idx] - v[threshold_idx] < 2.0: continue # if the absolute value of the peak is less than -30 mV, don't count it if v[peak_idx] < -30.0: continue spikes.append(spk) # Refine threshold target based on average of all spikes if len(spikes) > 0: threshold_target = np.array([spk["upstroke"] for spk in spikes]).mean() * thresh_pct for spk_n, spk in enumerate(spikes): if spk_n < len(spikes) - 1: next_idx = spikes[spk_n + 1]["threshold_idx"] else: next_idx = stop_idx if spk_n > 0: prev_idx = spikes[spk_n - 1]["peak_idx"] else: prev_idx = start_idx # Restore variables from before # peak_idx = spk['peak_idx'] peak_idx =
np.argmax(v[spk['threshold_idx']:next_idx])
numpy.argmax
"""Defines the GUI IO file for Usm3d.""" import os from collections import defaultdict, OrderedDict import numpy as np from pyNastran.utils import object_attributes from pyNastran.utils.numpy_utils import integer_float_types from pyNastran.converters.usm3d.usm3d_reader import Usm3d from pyNastran.converters.usm3d.time_accurate_results import get_n_list from pyNastran.gui.gui_objects.gui_result import GuiResult from pyNastran.gui.utils.vtk.vtk_utils import ( create_vtk_cells_of_constant_element_type, numpy_to_vtk_points) class Usm3dIO: def __repr__(self): return '<Usm3dIO class>' def __init__(self, gui): self.gui = gui assert gui is not None def get_usm3d_wildcard_geometry_results_functions(self): data = ('Usm3D', 'USM3D (*.cogsg; *.front)', self.load_usm3d_geometry, 'Usm3d (*.flo)', self.load_usm3d_results) return data def on_reload_usm3d(self): """ For USM3D, we dynamically load the latest CFD results time step, hich is really handy when you're running a job. """ # minimum is 1 nstep = 100 if self.gui.out_filename is None: msg = 'usm3d_filename=%r must not be None\n' % self.gui.out_filename dir_gui = [] for key in object_attributes(self.gui): try: value = getattr(self.gui, key) except KeyError: # self.edge_actor is a if key not in ['edge_actor']: self.gui.log.warning('key=%s is undefined...' % key) if isinstance(value, (integer_float_types, str)): dir_gui.append(key) dir_gui.sort() msg += 'dir(gui) = [%s]' % ', '.join(dir_gui) raise RuntimeError(msg) flo_filename = self.gui.out_filename dirname = os.path.dirname(flo_filename) if dirname == '': dirname = os.getcwd() basename = os.path.basename(flo_filename) base = os.path.splitext(basename)[0] # box.flo -> box_100.flo if '_' in base: model_name, n = base.rsplit('_', 1) #print("model_name=%r n=%r" % (model_name, n)) n = int(n) n_list = get_n_list(dirname, model_name) inn = n_list.index(n) if inn+nstep < len(n_list): nnew = n_list[inn+nstep] else: nnew = max(n_list) if nnew == n: raise RuntimeError('%r is the last file' % self.gui.out_filename) #print("inn=%r nnew=%r" % (inn, nnew)) flo_filename = model_name + '_%s.flo' % nnew else: flo_filename = self.gui.out_filename #msg = ( #'The current file is must have the format of ' #'xxx_%%i.flo, not %r' % self.out_filename) #raise RuntimeError(msg) #print("loading %r" % flo_filename) self.load_usm3d_results(flo_filename) self.gui.out_filename = os.path.join(dirname, flo_filename) #print("done stepping...") #def _get_next_n(self, base): #n = int(n) ## get the max N value #nmax = -1 #for flo_filename in flo_filenames: #base, ext = os.path.splitext(flo_filename) #if ext == '.flo': #n = base.split('_')[-1] #try: # get the incrementation index #n = int(n) #if n > nold: #return n #except: #raise NotImplementedError() #return None def load_usm3d_results(self, flo_filename): model = Usm3d(log=self.gui.log, debug=False) npoints = self.gui.nnodes unused_node_ids_volume, loads = model.read_flo(flo_filename, n=npoints) cases = self.gui.result_cases form = self.gui.get_form() bcs = None mapbc = None bcmap_to_bc_name = None self._fill_usm3d_results(cases, form, bcs, mapbc, bcmap_to_bc_name, loads, is_geometry=False) def load_usm3d_geometry(self, cogsg_filename, name='main', plot=True): model_name = name skip_reading = self.gui._remove_old_geometry(cogsg_filename) if skip_reading: return self.gui.eid_maps[name] = {} self.gui.nid_maps[name] = {} model = Usm3d(log=self.gui.log, debug=False) base_filename, ext = os.path.splitext(cogsg_filename) #node_filename = base_filename + '.node' #ele_filename = base_filename + '.ele' if ext == '.cogsg': dimension_flag = 3 #elif ext == '.ele': #dimension_flag = 3 else: raise RuntimeError('unsupported extension. Use "cogsg" or "front".') read_loads = True nodes, tris_tets, tris, bcs, mapbc, loads, flo_filename = model.read_usm3d( base_filename, dimension_flag, read_loads=read_loads) del tris_tets nodes = model.nodes tris = model.tris tets = model.tets bcs = model.bcs mapbc = model.mapbc loads = model.loads self.gui.out_filename = None if flo_filename is not None: self.gui.out_filename = flo_filename bcmap_to_bc_name = model.bcmap_to_bc_name self.gui.nnodes = nodes.shape[0] ntris = 0 ntets = 0 if tris is not None: ntris = tris.shape[0] if dimension_flag == 2: pass elif dimension_flag == 3: ntets = tets.shape[0] ntets = 0 else: raise RuntimeError() self.gui.nelements = ntris + ntets self.gui.log.debug("nnodes = %i" % self.gui.nnodes) self.gui.log.debug("nelements = %i" % self.gui.nelements) grid = self.gui.grid grid.Allocate(self.gui.nelements, 1000) self.gui.nid_map = {} self.gui.eid_map = {} assert nodes is not None nnodes = nodes.shape[0] node_ids = np.arange(1, nnodes + 1, dtype='int32') points = numpy_to_vtk_points(nodes) if ntris: element_ids = np.arange(1, ntris + 1, dtype='int32') etype = 5 # vtkTriangle().GetCellType() create_vtk_cells_of_constant_element_type(grid, tris, etype) else: ntets = tets.shape[0] element_ids = np.arange(1, ntets + 1, dtype='int32') if dimension_flag == 2: pass elif dimension_flag == 3: if ntets: etype = 10 # vtkTetra().GetCellType() assert tets.max() > 0, tets.min() create_vtk_cells_of_constant_element_type(grid, tets, etype) else: raise RuntimeError('dimension_flag=%r' % dimension_flag) grid.SetPoints(points) grid.Modified() self.gui.node_ids = node_ids self.gui.element_ids = element_ids # regions/loads self.gui.scalar_bar_actor.Modified() cases = OrderedDict() form = [] form, cases = self._fill_usm3d_results(cases, form, bcs, mapbc, bcmap_to_bc_name, loads, is_geometry=True) self.gui._finish_results_io2(model_name, form, cases) def clear_usm3d(self): """dummy function""" pass def _fill_usm3d_results(self, cases, form, bcs, mapbc, bcmap_to_bc_name, loads, is_geometry=True): """sets up usm3d results""" if 'Mach' in loads: avg_mach = loads['Mach'].mean() note = ': avg(Mach)=%g' % avg_mach else: note = '' self.gui.isubcase_name_map = { 1: ['Usm3d%s' % note, ''], 2: ['Usm3d%s' % note, ''], } form, cases = self._fill_usm3d_case( cases, form, bcs, mapbc, bcmap_to_bc_name, loads, is_geometry=is_geometry) return form, cases def _fill_usm3d_case(self, cases, form, bcs, mapbc, bcmap_to_bc_name, loads, is_geometry=True): """actually fills the sidebar""" self.gui.scalar_bar_actor.VisibilityOff() colormap = self.gui.settings.colormap subcasemap_id = 1 icase = len(cases) itime = 0 if is_geometry: assert self.gui.element_ids is not None, self.gui.element_ids assert len(self.gui.element_ids) > 0, self.gui.element_ids eid_res = GuiResult( subcasemap_id, 'ElementID', 'ElementID', 'centroid', self.gui.element_ids, nlabels=None, labelsize=None, ncolors=None, colormap=colormap, data_format='%i', uname='GuiResult') cases[icase] = (eid_res, (itime, 'ElementID')) form.append(('ElementID', icase, [])) icase += 1 if bcs is not None: region_res = GuiResult( subcasemap_id, 'Patch', 'Patch', 'centroid', bcs, # patch_id nlabels=None, labelsize=None, ncolors=None, colormap=colormap, data_format='%i', uname='GuiResult') cases[icase] = (region_res, (itime, 'Patch')) form.append(('Patch', icase, [])) icase += 1 if bcs is not None: patch_id = bcs form += [ ('BC', icase, []), ('Family', icase + 1, []), ] bc_value = np.zeros(bcs.shape, dtype='int32') family = np.zeros(bcs.shape, dtype='int32') mapbc_print = defaultdict(list) for region, mapi in sorted(mapbc.items()): bcnum = mapi[0] familyi = mapi[1] mapbc_print[bcnum].append(region) try: name = bcmap_to_bc_name[bcnum] except KeyError: name = '???' #self.log.info('Region=%i BC=%s name=%r' % (region, bcnum, name)) ipatch =
np.where(patch_id == region)
numpy.where
''' ===================================== Author : <NAME> Date : Feb. 16, 2020 Location: UC San Diego, La Jolla, CA ===================================== ''' import numpy as np import cvxpy as cp class OptionsClass: """ Options Class """ def __init__(self): self.options = None self.solverName = 'None' def set_option(self, key, value): try: if type(value) is self.options[key][2]: self.options[key][0] = value else: print(f"The type of value for the keyword '{key}' should be '{self.options[key][2]}'.") except: raise ValueError('Incorrect option keyword or type: ' + key) def get_option(self, key): try: value = self.options[key][0] return value except: raise ValueError('Incorrect option keyword: ' + key) def reset_options(self, key): try: self.options[key] = self.options[key][1] except: raise ValueError('Incorrect option keyword: ' + key) class CbfClfQpOptions(OptionsClass): def __init__(self): OptionsClass.__init__(self) self.setup() self.solver_name = 'CBF-CLF' def setup(self): self.options = { # [Current value, default value, type] 'u_max': [None, None, np.ndarray], 'u_min': [None, None, np.ndarray], 'clf_lambda': [None, 5, float], 'cbf_gamma': [None, 5, float], 'weight_input': [None, None, np.ndarray], 'weight_slack': [None, 2e-2, float], } # def define_slack(self): # TODO class CbfClfQp: """ This is the implementation of the vanilla CBF-CLF-QP method. The optimization problem is: min (u-u_ref).T * H * (u-u_ref) + p * delta**2 s.t. L_f V(x) + L_g V(x) * u + lambda * V(x) <= delta ---> CLF constraint L_f B(x) + L_g B(x) * u + gamma * B(x) >= 0 ---> CBF constraint Input: :param system : The dynamic system of interest, containing CBF, CLF, and their Lie derivatives :param x : The current state x :param u_ref : The reference control input :param slack : The slack activated or not, 1 -> activate while 0 -> not activate :param verbose : Show the optimization log or not """ def __init__(self, system, option_class): if hasattr(system, 'udim'): self.udim = system.udim else: raise KeyError('udim is not given in the system dynamic!') self.cbf = system.cbf # todo check lf.lg/cbf clfs symbolic expression and their size! self.lf_cbf = system.lf_cbf self.lg_cbf = system.lg_cbf self.clf = system.clf self.lf_clf = system.lf_clf self.lg_clf = system.lg_clf # todo take input from the option class self.weight_input = np.atleast_2d(option_class.get_option('weight_input')) self.weight_slack = np.atleast_2d(option_class.get_option('weight_slack')) self.H = None self.slack_H = None # todo self.A = None self.b = None # Hyperparameters: CLF <- Lambda & CBF <- Gamma self.clf_lambda = option_class.get_option('clf_lambda') self.cbf_gamma = option_class.get_option('cbf_gamma') self.u_max = option_class.get_option('u_max') if self.u_max.shape != (self.udim,): raise ValueError('The size of u_max should be udim-by-, a one dimensional vector in python.') self.u_min = option_class.get_option('u_min') if self.u_min.shape != (self.udim,): raise ValueError('The size of u_min should be udim-by-, a one dimensional vector in python.') self.with_slack = None def cbf_clf_qp(self, x, u_ref=None, with_slack=1, verbose=0): """ :param x : The current state :param u_ref : A real number of 1D vector with shape (udim,) :param with_slack: Indicator if there is slack variable :param verbose : Indicator if QP info is displayed :return: """ inf = np.inf self.with_slack = with_slack slack = None if u_ref is None: u_ref = np.zeros(self.udim) else: if u_ref.shape != (self.udim,): raise ValueError(f'u_ref should have the shape size (u_dim,), now it is {u_ref.shape}') # Read the weight input and build up the matrix H in the cost function if self.weight_input.shape == (1, 1): # Weight input is a scalar self.H = self.weight_input * np.eye(self.udim) elif self.weight_input.shape == (self.udim, 1): # Weight_input is a vector, use it to form the diagonal of the H matrix self.H = np.diag(self.weight_input) elif self.weight_input.shape == (self.udim, self.udim): # Weight_input is a udim * udim matrix self.H = np.copy(self.weight_input) else: self.H = np.eye(self.udim) V = self.clf(x) lf_V = self.lf_clf(x) lg_V = self.lg_clf(x) B = self.cbf(x) lf_B = self.lf_cbf(x) lg_B = self.lg_cbf(x) if self.with_slack: # slack variable is activated # Constraints: A [u; slack] <= b # LfV + LgV * u + lambda * V <= slack # LfB + LgB * u + gamma * B >= 0 lg_V = np.hstack((lg_V, -
np.ones((1, 1))
numpy.ones
import numpy as np import warnings warnings.filterwarnings("ignore") def knee_pt(y, x=None): x_was_none = False use_absolute_dev_p = True res_x = np.nan idx_of_result = np.nan if type(y) is not np.ndarray: print('knee_pt: y must be a numpy 1D vector') return res_x, idx_of_result else: if y.ndim >= 2: print('knee_pt: y must be 1 dimensional') return res_x, idx_of_result if np.size(y) == 0: print('knee_pt: y can not be an empty vector') return res_x, idx_of_result else: if x is None: x_was_none = True x = np.arange(1, np.amax(y.shape) + 1, dtype=np.int) if x.shape != y.shape: print('knee_pt: y and x must have the same dimensions') return res_x, idx_of_result if y.size < 3: res_x, idx_of_result = np.min(y), np.argmin(y) return res_x, idx_of_result if np.all(np.diff(x) >= 0) and (not x_was_none): idx = np.argsort(x) y = np.sort(y) x = np.sort(x) else: idx = np.arange(0, np.amax(x.shape)) sigma_xy = np.cumsum(np.multiply(x, y), axis=0) sigma_x = np.cumsum(x, axis=0) sigma_y =
np.cumsum(y, axis=0)
numpy.cumsum
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os.path from os import stat import cv2.cv2 import torch from typing import Any, List, Optional, Union import numpy as np from gym import spaces import habitat_sim import numpy as np import scipy.ndimage as nd from matplotlib.transforms import Affine2D from mapper.map import convert_midlevel_to_map from mapper.mid_level.decoder import UpResNet from mapper.mid_level.encoder import mid_level_representations from mapper.mid_level.fc import FC from mapper.transform import egomotion_transform from mapper.update import update_map try: import cupy import cupyx.scipy.ndimage as ndc CUPYAVAILABLE = True print('Using cupyx') except ImportError: print("cuda not enabled for affine transforms") CUPYAVAILABLE = False import habitat from config.config import MAP_DIMENSIONS, MAP_SIZE, MAP_DOWNSAMPLE, DATASET_SAVE_PERIOD, DATASET_SAVE_FOLDER, \ START_IMAGE_NUMBER, MID_LEVEL_DIMENSIONS, DEBUG, REPRESENTATION_NAMES, device, RESIDUAL_LAYERS_PER_BLOCK, \ RESIDUAL_NEURON_CHANNEL, RESIDUAL_SIZE, STRIDES, BATCHSIZE from habitat.core.dataset import Episode from habitat.core.logging import logger from habitat.core.registry import registry from habitat.core.simulator import ( AgentState, Config, DepthSensor, Observations, RGBSensor, SemanticSensor, Sensor, SensorSuite, ShortestPathPoint, Simulator, SensorTypes, ) from habitat.core.spaces import Space from habitat.utils import profiling_utils from habitat.utils.visualizations import fog_of_war, maps import matplotlib.pyplot as plt from habitat.utils.visualizations.maps import quat_to_angle_axis RGBSENSOR_DIMENSION = 3 def overwrite_config(config_from: Config, config_to: Any) -> None: r"""Takes Habitat-API config and Habitat-Sim config structures. Overwrites Habitat-Sim config with Habitat-API values, where a field name is present in lowercase. Mostly used to avoid :ref:`sim_cfg.field = hapi_cfg.FIELD` code. Args: config_from: Habitat-API config node. config_to: Habitat-Sim config structure. """ def if_config_to_lower(config): if isinstance(config, Config): return {key.lower(): val for key, val in config.items()} else: return config for attr, value in config_from.items(): if hasattr(config_to, attr.lower()): setattr(config_to, attr.lower(), if_config_to_lower(value)) def check_sim_obs(obs, sensor): assert obs is not None, ( "Observation corresponding to {} not present in " "simulator's observations".format(sensor.uuid) ) @registry.register_sensor class HabitatSimRGBSensor(RGBSensor): sim_sensor_type: habitat_sim.SensorType def __init__(self, sim, config): self._sim = sim self.sim_sensor_type = habitat_sim.SensorType.COLOR super().__init__(config=config) self.image_number = 0 self.prev_pose = None def _get_observation_space(self, *args: Any, **kwargs: Any): return spaces.Box( low=0, high=255, shape=(self.config.HEIGHT, self.config.WIDTH, RGBSENSOR_DIMENSION), dtype=np.uint8, ) def get_observation(self, sim_obs): obs = sim_obs.get(self.uuid, None) check_sim_obs(obs, self) # remove alpha channel obs = obs[:, :, :RGBSENSOR_DIMENSION] # if self.image_number % DATASET_SAVE_PERIOD == 0: # print('Saving RGB image: ', self.image_number) # plt.imsave(os.path.join(DATASET_SAVE_FOLDER, 'images', f'rgb_{self.current_scene_name}_{str((self.image_number // DATASET_SAVE_PERIOD) + START_IMAGE_NUMBER)}.jpeg'), obs) self.image_number = self.image_number + 1 return obs @registry.register_sensor(name='MIDLEVEL') class HabitatSimMidLevelSensor(Sensor): """ Holds mid level encodings """ sim_sensor_type: habitat_sim.SensorType def __init__(self, sim, config): self._sim = sim self.sim_sensor_type = habitat_sim.SensorType.NONE super().__init__(config=config) def _get_uuid(self, *args: Any, **kwargs: Any) -> str: return 'midlevel' def _get_sensor_type(self, *args: Any, **kwargs: Any) -> SensorTypes: return self.sim_sensor_type def _get_observation_space(self, *args: Any, **kwargs: Any): return spaces.Box( low=0, high=255, shape=MID_LEVEL_DIMENSIONS, dtype=np.uint8, ) def get_observation(self, sim_obs): obs = sim_obs.get('rgb', None) check_sim_obs(obs, self) # remove alpha channel obs = obs[:, :, :RGBSENSOR_DIMENSION] obs = torch.Tensor(obs) obs = obs.to(device) obs = torch.transpose(obs, 0, 2) obs = obs.unsqueeze(0) if DEBUG: print(f"Encoding image of shape {obs.shape} with mid level encoders.") obs = mid_level_representations(obs, REPRESENTATION_NAMES) if DEBUG: print(f'Returning encoded representation of shape {obs.shape}.') sim_obs['midlevel'] = obs obs = obs[0, :, :, :] return obs @registry.register_sensor(name="EGOMOTION") class AgentPositionSensor(Sensor): def __init__(self, sim, config): self.sim_sensor_type = habitat_sim.SensorType.NONE super().__init__(config=config) self._sim = sim self.prev_pose = None # Defines the name of the sensor in the sensor suite dictionary def _get_uuid(self, *args, **kwargs): return "egomotion" # Defines the type of the sensor def _get_sensor_type(self, *args, **kwargs): return self.sim_sensor_type # Defines the size and range of the observations of the sensor def _get_observation_space(self, *args, **kwargs): return spaces.Box( low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(1,1,3), dtype=np.float32, ) # This is called whenver reset is called or an action is taken def get_observation(self, sim_obs) -> Any: pos = (self._sim.get_agent_state().position[0],self._sim.get_agent_state().position[2]) sim_quat = self._sim.get_agent_state().rotation alpha = -quat_to_angle_axis(sim_quat)[0] + np.pi/2 state = np.array([pos[0],pos[1],alpha]) if self.prev_pose is None: self.prev_pose = state initial_displacement = torch.Tensor(np.zeros((1, 1, 3))) initial_displacement = initial_displacement.to(device) sim_obs['egomotion'] = initial_displacement return initial_displacement world_displacement = state - self.prev_pose # displacement in the world frame world_to_robot_transformation_matrix = Affine2D().rotate_around(0, 0, np.pi/2-self.prev_pose[2]).get_matrix() # negative rotation to compensate for positive rotation robot_displacement = torch.Tensor(world_to_robot_transformation_matrix @ world_displacement) robot_displacement = robot_displacement.to(device) robot_displacement = torch.unsqueeze(robot_displacement, 0) robot_displacement = torch.unsqueeze(robot_displacement, 0) self.prev_pose = state sim_obs['egomotion'] = robot_displacement return robot_displacement @registry.register_sensor(name='MIDLEVEL_MAP_SENSOR') class HabitatSimMidLevelMapSensor(Sensor): """ Holds the map generated from mid level representations. """ sim_sensor_type: habitat_sim.SensorType def __init__(self, sim, config): self._sim = sim self.sim_sensor_type = habitat_sim.SensorType.NONE super().__init__(config=config) # zero confidence, so this is not taken into account in first map update. self.previous_map = torch.zeros((BATCHSIZE, *MAP_DIMENSIONS)) self.previous_map = self.previous_map.to(device) # self.previous_map.requires_grad_(True) self.fc = FC() self.fc.to(device) self.upresnet = UpResNet( layers=RESIDUAL_LAYERS_PER_BLOCK, channels=RESIDUAL_NEURON_CHANNEL, sizes=RESIDUAL_SIZE, strides=STRIDES ) self.upresnet.to(device) def _get_uuid(self, *args: Any, **kwargs: Any) -> str: return 'midlevel_map' def _get_sensor_type(self, *args: Any, **kwargs: Any) -> SensorTypes: return self.sim_sensor_type def _get_observation_space(self, *args: Any, **kwargs: Any): return spaces.Box( low=0, high=1, shape=MAP_DIMENSIONS, dtype=np.float32, ) def get_observation(self, sim_obs): # return previous map for policy, but ensure to calculate the new map for the next update return_value = self.previous_map.clone() midlevel_obs = sim_obs["midlevel"] egomotion_obs = sim_obs["egomotion"] decoded_map = convert_midlevel_to_map(midlevel_obs, self.fc, self.upresnet) dx = egomotion_obs previous_map = egomotion_transform(self.previous_map, dx) with torch.no_grad(): new_map = update_map(decoded_map, previous_map) self.previous_map = new_map return return_value[0, :, :, :] @registry.register_sensor(name='MAP_SENSOR') class HabitatSimMapSensor(Sensor): sim_sensor_type: habitat_sim.SensorType """ Custom class to create a map sensor. """ def __init__(self, sim, config): # self.sim_sensor_type = habitat_sim.SensorType.TENSOR ----> TENSOR DOESN'T EXIST IN 2019 TENSORFLOW :( self.sim_sensor_type = habitat_sim.SensorType.COLOR super().__init__(config=config) self._sim = sim self.image_number = 0 self.cone = self.vis_cone((MAP_DIMENSIONS[1], MAP_DIMENSIONS[2]), np.pi/1.1) self.map_scale_factor = 4 self.map_upsample_factor = 2 self.global_map = None self.origin = None self.displacements = [] # Defines the name of the sensor in the sensor suite dictionary def _get_uuid(self, *args: Any, **kwargs: Any) -> str: return 'map' # Defines the type of the sensor def _get_sensor_type(self, *args: Any, **kwargs: Any) -> SensorTypes: return self.sim_sensor_type # Defines the size and range of the observations of the sensor def _get_observation_space(self, *args: Any, **kwargs: Any) -> Space: return spaces.Box( low=0, high=1, shape=(MAP_DIMENSIONS[1], MAP_DIMENSIONS[2], MAP_DIMENSIONS[0]), dtype=np.uint8, ) def vis_cone(self, map_size, fov): cone = np.zeros(map_size) ci = np.floor(map_size[0]/2) cj = np.floor(map_size[1]/2) for ii in range(map_size[0]): for jj in range(map_size[1]): di = ii - ci dj = jj - cj angle =
np.arctan2(dj, -di)
numpy.arctan2
import numpy as np import matplotlib.pyplot as plt from skimage.measure import label, regionprops import skimage.io as io import skimage.filters as filt import skimage.morphology as morph from skimage.draw import disk import amglib.imageutils as amg import pandas as pd from skimage.feature import match_template def get_dot_template(img, roi,se=morph.disk(5)) : """ Extracts sub image from the region given by a ROI Parameters ---------- img : ndarray (2D) The source image roi : array Region of interest to extract. Organized as (x0,y0,x1,y1) se : ndarray (2D) Structure element for the median filter used to remove outliers from the template. Returns ------- ndarray (2D) The template image """ template=filt.median(img[roi[0]:roi[2],roi[1]:roi[3]],se) return template def get_black_bodies(img, greythres,areas = [2000,4000],R=2) : bb=img<greythres lbb=label(bb) plt.imshow(bb) mask =
np.zeros(lbb.shape)
numpy.zeros
""" File: waveforms_flux_dev.py Author: <NAME> Purpose: generate flux CZ gate waveforms Prerequisites: Usage: Bugs: """ import numpy as np import logging log = logging.getLogger(__name__) def victor_waveform( fluxlutman, which_gate: str, sim_ctrl_cz=None, return_dict=False, force_start_end_swtspt=True, ): # NB: the ramps are extra time, they are NOT substracted from sq_length! amp_at_sweetspot = 0.0 amp_at_int_11_02 = fluxlutman.calc_eps_to_amp( 0, state_A="11", state_B="02", which_gate=which_gate ) / ( fluxlutman.cfg_awg_channel_range() / 2 * fluxlutman.cfg_awg_channel_amplitude() ) if fluxlutman.get("czv_fixed_amp_{}".format(which_gate)): amp_at_int_11_02 = 0.5 sampling_rate = fluxlutman.sampling_rate() # New parameters specific to this parameterization time_ramp_middle = fluxlutman.get("czv_time_ramp_middle_{}".format(which_gate)) time_ramp_outside = fluxlutman.get("czv_time_ramp_outside_{}".format(which_gate)) speed_limit = fluxlutman.get("czv_speed_limit_{}".format(which_gate)) total_time = fluxlutman.get("czv_total_time_{}".format(which_gate)) invert_polarity = fluxlutman.get("czv_invert_polarity_{}".format(which_gate)) norm_sq_amp_par = fluxlutman.get("czv_sq_amp_{}".format(which_gate)) time_q_ph_corr = fluxlutman.get("czv_time_q_ph_corr_{}".format(which_gate)) amp_q_ph_corr = fluxlutman.get("czv_amp_q_ph_corr_{}".format(which_gate)) dt = 1 / sampling_rate half_time_ramp_middle = time_ramp_middle / 2.0 half_time_sq = speed_limit / 2.0 half_time_q_ph_corr = time_q_ph_corr / 2.0 half_time_at_swtspt = ( total_time - time_ramp_middle - 2 * time_ramp_outside - speed_limit ) / 2.0 if half_time_at_swtspt < 0: raise ValueError( "Total time is not enough to accomodate for speed " "limit and pulse ramps!" ) half_total_time = ( half_time_at_swtspt + half_time_ramp_middle + half_time_sq + time_ramp_outside ) time = np.arange(0.0, half_total_time, dt) t1 = half_time_at_swtspt t2 = t1 + half_time_ramp_middle t3 = t2 + half_time_sq conditions = [time <= t1, time > t1, time >= t2, time > t3] funcs = [ lambda x: amp_at_sweetspot, lambda x: (x - half_time_at_swtspt) * norm_sq_amp_par / half_time_ramp_middle, lambda x: norm_sq_amp_par, lambda x: -(x - t3) * norm_sq_amp_par / time_ramp_outside + norm_sq_amp_par, ] half_NZ_amps = np.piecewise(time, conditions, funcs) if fluxlutman.get("czv_correct_q_phase_{}".format(which_gate)): # Insert extra square part to correct single qubit phase insert_idx = np.where(half_NZ_amps >= amp_q_ph_corr)[0][-1] + 1 amps_q_phase_correction = np.full(int(half_time_q_ph_corr / dt), amp_q_ph_corr) half_NZ_amps = np.insert(half_NZ_amps, insert_idx, amps_q_phase_correction) amp = np.concatenate((np.flip(half_NZ_amps, 0), -half_NZ_amps[1:])) # Extra points for starting and finishing at the sweetspot if force_start_end_swtspt and amp[0] != 0.0: amp = np.concatenate(([amp_at_sweetspot], amp, [amp_at_sweetspot])) if invert_polarity: amp = -amp amp = amp_at_int_11_02 * amp tlist = np.cumsum(np.full(len(amp) - 1, dt)) tlist = np.concatenate(([0.0], tlist)) # Set first point to have t=0 # Extra processing in case we are generating waveform for simulations if sim_ctrl_cz is not None: dt_num = np.size(tlist) - 1 dt_num_interp = dt_num * sim_ctrl_cz.simstep_div() + 1 time_interp =
np.linspace(tlist[0], tlist[-1], dt_num_interp)
numpy.linspace
# SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2021 Scipp contributors (https://github.com/scipp) # @file # @author <NAME> import numpy as np import pytest import scipp as sc from .common import assert_export def make_variables(): data = np.arange(1, 4, dtype=float) a = sc.Variable(dims=['x'], values=data) b = sc.Variable(dims=['x'], values=data) a_slice = a['x', :] b_slice = b['x', :] return a, b, a_slice, b_slice, data def test_astype(): var = sc.Variable(dims=['x'], values=np.array([1, 2, 3, 4], dtype=np.int64), unit='s') assert var.dtype == sc.dtype.int64 assert var.unit == sc.units.s for target_dtype in (sc.dtype.float64, float, 'float64'): var_as_float = var.astype(target_dtype) assert var_as_float.dtype == sc.dtype.float64 assert var_as_float.unit == sc.units.s def test_astype_bad_conversion(): var = sc.Variable(dims=['x'], values=np.array([1, 2, 3, 4], dtype=np.int64)) assert var.dtype == sc.dtype.int64 for target_dtype in (sc.dtype.string, str, 'str'): with pytest.raises(sc.DTypeError): var.astype(target_dtype) def test_astype_datetime(): var = sc.arange('x', np.datetime64(1, 's'), np.datetime64(5, 's')) assert var.dtype == sc.dtype.datetime64 assert var.unit == sc.units.s for target_dtype in (sc.dtype.datetime64, np.datetime64, 'datetime64', 'datetime64[s]'): same = var.astype(target_dtype) assert same.dtype == sc.dtype.datetime64 assert same.unit == sc.units.s def test_astype_datetime_different_unit(): var = sc.arange('x', np.datetime64(1, 's'), np.datetime64(5, 's')) assert var.unit == sc.units.s with pytest.raises(sc.UnitError): var.astype('datetime64[ms]') def test_operation_with_scalar_quantity(): reference = sc.Variable(dims=['x'], values=np.arange(4.0) * 1.5) reference.unit = sc.units.kg var = sc.Variable(dims=['x'], values=np.arange(4.0)) var *= sc.scalar(1.5, unit=sc.units.kg) assert sc.identical(reference, var) def test_single_dim_access(): var = sc.Variable(dims=['x'], values=[0.0]) assert var.dim == 'x' def test_0D_scalar_access(): var = sc.Variable(dims=(), values=0.0) assert var.value == 0.0 var.value = 1.2 assert var.value == 1.2 assert var.values.shape == () assert var.values == 1.2 def test_0D_scalar_string(): var = sc.scalar('a') assert var.value == 'a' var.value = 'b' assert sc.identical(var, sc.scalar('b')) def test_1D_scalar_access_fail(): var = sc.empty(dims=['x'], shape=(1, )) with pytest.raises(RuntimeError): assert var.value == 0.0 with pytest.raises(RuntimeError): var.value = 1.2 def test_1D_access_shape_mismatch_fail(): var = sc.empty(dims=['x'], shape=(2, )) with pytest.raises(RuntimeError): var.values = 1.2 def test_1D_access(): var = sc.empty(dims=['x'], shape=(2, )) assert len(var.values) == 2 assert var.values.shape == (2, ) var.values[1] = 1.2 assert var.values[1] == 1.2 def test_1D_set_from_list(): var = sc.empty(dims=['x'], shape=(2, )) var.values = [1.0, 2.0] assert sc.identical(var, sc.Variable(dims=['x'], values=[1.0, 2.0])) def test_1D_string(): var = sc.Variable(dims=['x'], values=['a', 'b']) assert len(var.values) == 2 assert var.values[0] == 'a' assert var.values[1] == 'b' var.values = ['c', 'd'] assert sc.identical(var, sc.Variable(dims=['x'], values=['c', 'd'])) def test_1D_converting(): var = sc.Variable(dims=['x'], values=[1, 2]) var.values = [3.3, 4.6] # floats get truncated assert sc.identical(var, sc.Variable(dims=['x'], values=[3, 4])) def test_1D_dataset(): var = sc.empty(dims=['x'], shape=(2, ), dtype=sc.dtype.Dataset) d1 = sc.Dataset(data={'a': 1.5 * sc.units.m}) d2 = sc.Dataset(data={'a': 2.5 * sc.units.m}) var.values = [d1, d2] assert sc.identical(var.values[0], d1) assert sc.identical(var.values[1], d2) def test_1D_access_bad_shape_fail(): var = sc.empty(dims=['x'], shape=(2, )) with pytest.raises(RuntimeError): var.values = np.arange(3) def test_2D_access(): var = sc.empty(dims=['x', 'y'], shape=(2, 3)) assert var.values.shape == (2, 3) assert len(var.values) == 2 assert len(var.values[0]) == 3 var.values[1] = 1.2 # numpy assigns to all elements in "slice" var.values[1][2] = 2.2 assert var.values[1][0] == 1.2 assert var.values[1][1] == 1.2 assert var.values[1][2] == 2.2 def test_2D_access_bad_shape_fail(): var = sc.empty(dims=['x', 'y'], shape=(2, 3)) with pytest.raises(RuntimeError): var.values = np.ones(shape=(3, 2)) def test_2D_access_variances(): shape = (2, 3) var = sc.Variable(dims=['x', 'y'], values=np.full(shape, 29.0), variances=np.zeros(shape)) assert var.values.shape == (2, 3) assert var.variances.shape == (2, 3) var.values[1] = 1.2 assert np.array_equal(var.variances, np.zeros(shape=shape)) var.variances = np.ones(shape=shape) assert np.array_equal(var.variances, np.ones(shape=shape)) def test_getitem(): var = sc.Variable(dims=['x', 'y'], values=np.arange(0, 8).reshape(2, 4)) var_slice = var['x', 1:2] assert sc.identical( var_slice, sc.Variable(dims=['x', 'y'], values=np.arange(4, 8).reshape(1, 4))) def test_setitem_broadcast(): var = sc.Variable(dims=['x'], values=[1, 2, 3, 4], dtype=sc.dtype.int64) var['x', 1:3] = sc.scalar(5, dtype=sc.dtype.int64) assert sc.identical( var, sc.Variable(dims=['x'], values=[1, 5, 5, 4], dtype=sc.dtype.int64)) def test_slicing(): var = sc.Variable(dims=['x'], values=np.arange(0, 3)) for slice_, expected in ((slice(0, 2), [0, 1]), (slice(-3, -1), [0, 1]), (slice(2, 1), [])): var_slice = var[('x', slice_)] assert len(var_slice.values) == len(expected) assert np.array_equal(var_slice.values, np.array(expected)) def test_sizes(): a = sc.scalar(1) assert a.sizes == {} a = sc.empty(dims=['x'], shape=[2]) assert a.sizes == {'x': 2} a = sc.empty(dims=['y', 'z'], shape=[3, 4]) assert a.sizes == {'y': 3, 'z': 4} def test_iadd(): expected = sc.scalar(2.2) a = sc.scalar(1.2) b = a a += 1.0 assert sc.identical(a, expected) assert sc.identical(b, expected) # This extra check is important: It can happen that an implementation of, # e.g., __iadd__ does an in-place modification, updating `b`, but then the # return value is assigned to `a`, which could break the connection unless # the correct Python object is returned. a += 1.0 assert sc.identical(a, b) def test_isub(): expected = sc.scalar(2.2 - 1.0) a = sc.scalar(2.2) b = a a -= 1.0 assert sc.identical(a, expected) assert sc.identical(b, expected) a -= 1.0 assert sc.identical(a, b) def test_imul(): expected = sc.scalar(2.4) a = sc.scalar(1.2) b = a a *= 2.0 assert sc.identical(a, expected) assert sc.identical(b, expected) a *= 2.0 assert sc.identical(a, b) def test_idiv(): expected = sc.scalar(1.2) a = sc.scalar(2.4) b = a a /= 2.0 assert sc.identical(a, expected) assert sc.identical(b, expected) a /= 2.0 assert sc.identical(a, b) def test_iand(): expected = sc.scalar(False) a = sc.scalar(True) b = a a &= sc.scalar(False) assert sc.identical(a, expected) assert sc.identical(b, expected) a |= sc.scalar(True) assert sc.identical(a, b) def test_ior(): expected = sc.scalar(True) a = sc.scalar(False) b = a a |= sc.scalar(True) assert sc.identical(a, expected) assert sc.identical(b, expected) a &= sc.scalar(True) assert sc.identical(a, b) def test_ixor(): expected = sc.scalar(True) a = sc.scalar(False) b = a a ^= sc.scalar(True) assert sc.identical(a, expected) assert sc.identical(b, expected) a ^= sc.scalar(True) assert sc.identical(a, b) def test_binary_plus(): a, b, a_slice, b_slice, data = make_variables() c = a + b assert np.array_equal(c.values, data + data) c = a + 2.0 assert np.array_equal(c.values, data + 2.0) c = a + b_slice assert np.array_equal(c.values, data + data) c += b assert np.array_equal(c.values, data + data + data) c += b_slice assert
np.array_equal(c.values, data + data + data + data)
numpy.array_equal
import os import numpy as np import pytest import xarray as xr from xclim import atmos from xclim.core.calendar import percentile_doy from xclim.core.options import set_options from xclim.core.units import convert_units_to from xclim.testing import open_dataset K2C = 273.15 class TestCSDI: def test_simple(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn += K2C tn[10:20] -= 2 tn = tasmin_series(tn) tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert out[0] == 10 def test_convert_units(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn[10:20] -= 2 tn = tasmin_series(tn + K2C) tn.attrs["units"] = "C" tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert out[0] == 10 def test_nan_presence(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + K2C + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn[10:20] -= 2 tn[9] = np.nan tn = tasmin_series(tn) tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert np.isnan(out[0]) class TestDTR: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_DTR_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan dtr = atmos.daily_temperature_range(tasmin, tasmax, freq="MS") dtrC = atmos.daily_temperature_range(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] dtr1 = max1 - min1 np.testing.assert_array_equal(dtr, dtrC) assert dtr.attrs["units"] == "K" assert np.allclose(dtr1[0:31].mean(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) dtr = atmos.max_daily_temperature_range(tasmin, tasmax, freq="MS") dtrC = atmos.max_daily_temperature_range(tasmin_C, tasmax_C, freq="MS") np.testing.assert_array_equal(dtr, dtrC) assert dtr.attrs["units"] == "K" assert np.allclose(dtr1[0:31].max(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) class TestDTRVar: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_dtr_var_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan dtr = atmos.daily_temperature_range_variability(tasmin, tasmax, freq="MS") dtrC = atmos.daily_temperature_range_variability(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] assert dtr.attrs["units"] == "K" dtr1a = max1 - min1 dtr1 = abs(np.diff(dtr1a)) np.testing.assert_array_equal(dtr, dtrC) # first month jan use 0:30 (n==30) because of day to day diff assert np.allclose(dtr1[0:30].mean(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) class TestETR: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_dtr_var_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan etr = atmos.extreme_temperature_range(tasmin, tasmax, freq="MS") etrC = atmos.extreme_temperature_range(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] np.testing.assert_array_equal(etr, etrC) etr1 = max1[0:31].max() - min1[0:31].min() assert np.allclose(etr1, etr.values[0, 0, 0]) assert np.isnan(etr.values[1, 1, 0]) assert np.isnan(etr.values[0, -1, -1]) class TestTmean: nc_files = ( os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc"), os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc"), ) def test_Tmean_3d_data(self): ds_tmax = open_dataset(self.nc_files[0]) ds_tmin = open_dataset(self.nc_files[1]) tas = atmos.tg(ds_tmin.tasmin, ds_tmax.tasmax) tas_C = atmos.tg(ds_tmin.tasmin, ds_tmax.tasmax) tas_C.values -= K2C tas_C.attrs["units"] = "C" # put a nan somewhere tas.values[180, 1, 0] = np.nan tas_C.values[180, 1, 0] = np.nan tmmean = atmos.tg_mean(tas) tmmeanC = atmos.tg_mean(tas_C) x1 = tas.values[:, 0, 0] tmmean1 = x1.mean() # TODO: Investigate the differences between the two outputs. # The conversion to K is done after / before the mean. np.testing.assert_array_almost_equal(tmmeanC, tmmean, 3) # test single point vs manual assert np.allclose(tmmean1, tmmean.values[0, 0, 0], tmmeanC.values[0, 0, 0]) # test single nan point assert np.isnan(tmmean.values[0, 1, 0]) # test all nan point assert np.isnan(tmmean.values[0, -1, -1]) class TestTx: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_TX_3d_data(self): tasmax = open_dataset(self.nc_file).tasmax tasmax_C = open_dataset(self.nc_file).tasmax tasmax_C.values -= K2C tasmax_C.attrs["units"] = "C" # put a nan somewhere tasmax.values[180, 1, 0] = np.nan tasmax_C.values[180, 1, 0] = np.nan txmean = atmos.tx_mean(tasmax) txmax = atmos.tx_max(tasmax) txmin = atmos.tx_min(tasmax) txmeanC = atmos.tx_mean(tasmax_C) txmaxC = atmos.tx_max(tasmax_C) txminC = atmos.tx_min(tasmax_C) no_nan = ( ~np.isnan(txmean).values & ~np.isnan(txmax).values & ~np.isnan(txmin).values ) # test maxes always greater than mean and mean always greater than min (non nan values only) assert np.all(txmax.values[no_nan] > txmean.values[no_nan]) & np.all( txmean.values[no_nan] > txmin.values[no_nan] ) np.testing.assert_array_almost_equal(txmeanC, txmean, 3) np.testing.assert_array_equal(txminC, txmin) np.testing.assert_array_equal(txmaxC, txmax) x1 = tasmax.values[:, 0, 0] txmean1 = x1.mean() txmin1 = x1.min() txmax1 = x1.max() # test single point vs manual assert np.allclose(txmean1, txmean.values[0, 0, 0], txmeanC.values[0, 0, 0]) assert np.allclose(txmax1, txmax.values[0, 0, 0], txmaxC.values[0, 0, 0]) assert np.allclose(txmin1, txmin.values[0, 0, 0], txminC.values[0, 0, 0]) # test single nan point assert np.isnan(txmean.values[0, 1, 0]) assert np.isnan(txmin.values[0, 1, 0]) assert np.isnan(txmax.values[0, 1, 0]) # test all nan point assert np.isnan(txmean.values[0, -1, -1]) assert np.isnan(txmin.values[0, -1, -1]) assert np.isnan(txmax.values[0, -1, -1]) class TestTn: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_TN_3d_data(self): tasmin = open_dataset(self.nc_file).tasmin tasmin_C = open_dataset(self.nc_file).tasmin tasmin_C.values -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[180, 1, 0] = np.nan tasmin_C.values[180, 1, 0] = np.nan tnmean = atmos.tn_mean(tasmin) tnmax = atmos.tn_max(tasmin) tnmin = atmos.tn_min(tasmin) tnmeanC = atmos.tn_mean(tasmin_C) tnmaxC = atmos.tn_max(tasmin_C) tnminC = atmos.tn_min(tasmin_C) no_nan = ( ~np.isnan(tnmean).values & ~np.isnan(tnmax).values & ~np.isnan(tnmin).values ) # test maxes always greater than mean and mean alwyas greater than min (non nan values only) assert np.all(tnmax.values[no_nan] > tnmean.values[no_nan]) & np.all( tnmean.values[no_nan] > tnmin.values[no_nan] ) np.testing.assert_array_almost_equal(tnmeanC, tnmean, 3) np.testing.assert_array_equal(tnminC, tnmin) np.testing.assert_array_equal(tnmaxC, tnmax) x1 = tasmin.values[:, 0, 0] txmean1 = x1.mean() txmin1 = x1.min() txmax1 = x1.max() # test single point vs manual assert np.allclose(txmean1, tnmean.values[0, 0, 0], tnmeanC.values[0, 0, 0]) assert np.allclose(txmax1, tnmax.values[0, 0, 0], tnmaxC.values[0, 0, 0]) assert np.allclose(txmin1, tnmin.values[0, 0, 0], tnminC.values[0, 0, 0]) # test single nan point assert np.isnan(tnmean.values[0, 1, 0]) assert np.isnan(tnmin.values[0, 1, 0]) assert np.isnan(tnmax.values[0, 1, 0]) # test all nan point assert np.isnan(tnmean.values[0, -1, -1]) assert np.isnan(tnmin.values[0, -1, -1]) assert np.isnan(tnmax.values[0, -1, -1]) class TestConsecutiveFrostDays: def test_one_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [1]) def test_three_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [3]) def test_two_equal_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 a[6:9] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [3]) def test_two_events_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 a[6:10] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [4]) def test_convert_units_freeze_day(self, tasmin_series): a = np.zeros(365) + 5.0 a[2:5] -= 20 a[6:10] -= 20 ts = tasmin_series(a) ts.attrs["units"] = "C" out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [4]) def test_one_nan_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2] -= 20 a[-1] = np.nan ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [np.nan]) class TestConsecutiveFrostFreeDays: def test_real_data(self, atmosds): tasmin = atmosds.tasmin test = atmos.maximum_consecutive_frost_free_days(tasmin) np.testing.assert_allclose(test[2, 0], [68], rtol=1e-1) assert ( "Annual maximum number of consecutive days with minimum daily temperature above or equal to 0 degc." ) in test.description class TestFrostSeasonLength: def test_simple(self, tasmin_series): a = np.zeros(730) + K2C + 15 a[300:400] = K2C - 5 a[404:407] = K2C - 5 tasmin = tasmin_series(a, start="2000-01-01") # Default, window = 5, mid_date = 07-01, freq= AS-JUL out = atmos.frost_season_length(tasmin=tasmin) np.testing.assert_array_equal(out, [np.nan, 107, np.nan]) out = atmos.frost_season_length(tasmin=tasmin, window=3) np.testing.assert_array_equal(out, [np.nan, 100, np.nan]) out = atmos.frost_season_length(tasmin=tasmin, mid_date="07-01", freq="YS") np.testing.assert_array_equal(out, [np.nan, np.nan]) class TestColdSpellDays: def test_simple(self, tas_series): a = np.zeros(365) + K2C a[10:20] -= 15 # 10 days a[40:43] -= 50 # too short -> 0 a[80:100] -= 30 # at the end and beginning ts = tas_series(a) out = atmos.cold_spell_days(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [10, 0, 12, 8, 0, 0, 0, 0, 0, 0, 0, 0]) out = atmos.cold_spell_frequency(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_convert_units(self, tas_series): a = np.zeros(365) a[10:20] -= 15 # 10 days a[40:43] -= 50 # too short -> 0 a[80:100] -= 30 # at the end and beginning ts = tas_series(a) ts.attrs["units"] = "C" out = atmos.cold_spell_days(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [10, 0, 12, 8, 0, 0, 0, 0, 0, 0, 0, 0]) out = atmos.cold_spell_frequency(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_nan_presence(self, tas_series): a = np.zeros(365) + K2C a[10:20] -= 15 # 10 days a[40:43] -= 50 # too short -> 0 a[80:100] -= 30 # at the end and beginning a[-1] = np.nan ts = tas_series(a) out = atmos.cold_spell_days(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [10, 0, 12, 8, 0, 0, 0, 0, 0, 0, 0, np.nan]) out = atmos.cold_spell_frequency(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, np.nan]) class TestFrostDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tasmin = open_dataset(self.nc_file).tasmin tasminC = open_dataset(self.nc_file).tasmin tasminC -= K2C tasminC.attrs["units"] = "C" # put a nan somewhere tasmin.values[180, 1, 0] = np.nan tasminC.values[180, 1, 0] = np.nan # compute with both skipna options thresh = 273.16 fd = atmos.frost_days(tasmin, freq="YS") fdC = atmos.frost_days(tasminC, freq="YS") # fds = xci.frost_days(tasmin, thresh=thresh, freq='YS', skipna=True) x1 = tasmin.values[:, 0, 0] fd1 = (x1[x1 < thresh]).size np.testing.assert_array_equal(fd, fdC) assert np.allclose(fd1, fd.values[0, 0, 0]) # assert (np.allclose(fd1, fds.values[0, 0, 0])) assert np.isnan(fd.values[0, 1, 0]) # assert (np.allclose(fd2, fds.values[0, 1, 0])) assert np.isnan(fd.values[0, -1, -1]) # assert (np.isnan(fds.values[0, -1, -1])) class TestIceDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax tasC = open_dataset(self.nc_file).tasmax tasC -= K2C tasC.attrs["units"] = "C" # put a nan somewhere tas.values[180, 1, 0] = np.nan tasC.values[180, 1, 0] = np.nan # compute with both skipna options thresh = 273.16 fd = atmos.ice_days(tas, freq="YS") fdC = atmos.ice_days(tasC, freq="YS") x1 = tas.values[:, 0, 0] fd1 = (x1[x1 < thresh]).size np.testing.assert_array_equal(fd, fdC) assert np.allclose(fd1, fd.values[0, 0, 0]) assert np.isnan(fd.values[0, 1, 0]) assert np.isnan(fd.values[0, -1, -1]) class TestCoolingDegreeDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax tas.attrs["cell_methods"] = "time: mean within days" # put a nan somewhere tas.values[180, 1, 0] = np.nan # compute with both skipna options thresh = 18 + K2C cdd = atmos.cooling_degree_days(tas, thresh="18 C", freq="YS") x1 = tas.values[:, 0, 0] cdd1 = (x1[x1 > thresh] - thresh).sum() assert np.allclose(cdd1, cdd.values[0, 0, 0]) assert np.isnan(cdd.values[0, 1, 0]) assert np.isnan(cdd.values[0, -1, -1]) def test_convert_units(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax tas.values -= K2C tas.attrs["units"] = "C" tas.attrs["cell_methods"] = "time: mean within days" # put a nan somewhere tas.values[180, 1, 0] = np.nan # compute with both skipna options thresh = 18 cdd = atmos.cooling_degree_days(tas, thresh="18 C", freq="YS") x1 = tas.values[:, 0, 0] # x2 = tas.values[:, 1, 0] cdd1 = (x1[x1 > thresh] - thresh).sum() # gdd2 = (x2[x2 > thresh] - thresh).sum() assert np.allclose(cdd1, cdd.values[0, 0, 0]) # assert (np.allclose(gdd1, gdds.values[0, 0, 0])) assert np.isnan(cdd.values[0, 1, 0]) # assert (np.allclose(gdd2, gdds.values[0, 1, 0])) assert np.isnan(cdd.values[0, -1, -1]) # assert (np.isnan(gdds.values[0, -1, -1])) class TestHeatingDegreeDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax # put a nan somewhere tas.values[180, 1, 0] = np.nan tas.attrs["cell_methods"] = "time: mean within days" # compute with both skipna options thresh = 17 + K2C hdd = atmos.heating_degree_days(tas, freq="YS") x1 = tas.values[:, 0, 0] hdd1 = (thresh - x1).clip(min=0).sum() assert np.allclose(hdd1, hdd.values[0, 0, 0]) assert np.isnan(hdd.values[0, 1, 0]) assert np.isnan(hdd.values[0, -1, -1]) def test_convert_units(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax # put a nan somewhere tas.values[180, 1, 0] = np.nan tas.values -= K2C tas.attrs["units"] = "C" tas.attrs["cell_methods"] = "time: mean within days" # compute with both skipna options thresh = 17 hdd = atmos.heating_degree_days(tas, freq="YS") x1 = tas.values[:, 0, 0] hdd1 = (thresh - x1).clip(min=0).sum() assert np.allclose(hdd1, hdd.values[0, 0, 0]) assert np.isnan(hdd.values[0, 1, 0]) assert np.isnan(hdd.values[0, -1, -1]) class TestGrowingDegreeDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax tas.attrs["cell_methods"] = "time: mean within days" # put a nan somewhere tas.values[180, 1, 0] = np.nan # compute with both skipna options thresh = K2C + 4 gdd = atmos.growing_degree_days(tas, freq="YS") # gdds = xci.growing_degree_days(tas, thresh=thresh, freq='YS', skipna=True) x1 = tas.values[:, 0, 0] # x2 = tas.values[:, 1, 0] gdd1 = (x1[x1 > thresh] - thresh).sum() # gdd2 = (x2[x2 > thresh] - thresh).sum() assert np.allclose(gdd1, gdd.values[0, 0, 0]) assert np.isnan(gdd.values[0, 1, 0]) assert np.isnan(gdd.values[0, -1, -1]) class TestHeatWaveFrequency: def test_1d(self, tasmax_series, tasmin_series): tn1 = np.zeros(366) tx1 = np.zeros(366) tn1[:10] = np.array([20, 23, 23, 23, 23, 21, 23, 23, 23, 23]) tx1[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tn = tasmin_series(tn1 + K2C, start="1/1/2000") tx = tasmax_series(tx1 + K2C, start="1/1/2000") tnC = tasmin_series(tn1, start="1/1/2000") tnC.attrs["units"] = "C" txC = tasmax_series(tx1, start="1/1/2000") txC.attrs["units"] = "C" hwf = atmos.heat_wave_frequency( tn, tx, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) hwfC = atmos.heat_wave_frequency( tnC, txC, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) np.testing.assert_array_equal(hwf, hwfC) np.testing.assert_allclose(hwf.values[:1], 2) hwf = atmos.heat_wave_frequency( tn, tx, thresh_tasmin="22 C", thresh_tasmax="30 C", window=4, freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 1) # one long hw hwf = atmos.heat_wave_frequency( tn, tx, thresh_tasmin="10 C", thresh_tasmax="10 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 1) # no hw hwf = atmos.heat_wave_frequency( tn, tx, thresh_tasmin="40 C", thresh_tasmax="40 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 0) class TestHeatWaveMaxLength: def test_1d(self, tasmax_series, tasmin_series): tn1 = np.zeros(366) tx1 = np.zeros(366) tn1[:10] = np.array([20, 23, 23, 23, 23, 21, 23, 23, 23, 23]) tx1[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tn = tasmin_series(tn1 + K2C, start="1/1/2000") tx = tasmax_series(tx1 + K2C, start="1/1/2000") tnC = tasmin_series(tn1, start="1/1/2000") tnC.attrs["units"] = "C" txC = tasmax_series(tx1, start="1/1/2000") txC.attrs["units"] = "C" hwf = atmos.heat_wave_max_length( tn, tx, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) hwfC = atmos.heat_wave_max_length( tnC, txC, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) np.testing.assert_array_equal(hwf, hwfC) np.testing.assert_allclose(hwf.values[:1], 4) hwf = atmos.heat_wave_max_length( tn, tx, thresh_tasmin="20 C", thresh_tasmax="30 C", window=4, freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 5) # one long hw hwf = atmos.heat_wave_max_length( tn, tx, thresh_tasmin="10 C", thresh_tasmax="10 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 10) # no hw hwf = atmos.heat_wave_max_length( tn, tx, thresh_tasmin="40 C", thresh_tasmax="40 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 0) class TestHeatWaveTotalLength: def test_1d(self, tasmax_series, tasmin_series): tn1 = np.zeros(366) tx1 = np.zeros(366) tn1[:10] = np.array([20, 23, 23, 23, 23, 21, 23, 23, 23, 23]) tx1[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tn = tasmin_series(tn1 + K2C, start="1/1/2000") tx = tasmax_series(tx1 + K2C, start="1/1/2000") tnC = tasmin_series(tn1, start="1/1/2000") tnC.attrs["units"] = "C" txC = tasmax_series(tx1, start="1/1/2000") txC.attrs["units"] = "C" hwf = atmos.heat_wave_total_length( tn, tx, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) hwfC = atmos.heat_wave_total_length( tnC, txC, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) np.testing.assert_array_equal(hwf, hwfC) np.testing.assert_allclose(hwf.values[:1], 7) hwf = atmos.heat_wave_total_length( tn, tx, thresh_tasmin="20 C", thresh_tasmax="30 C", window=4, freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 5) # one long hw hwf = atmos.heat_wave_total_length( tn, tx, thresh_tasmin="10 C", thresh_tasmax="10 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 10) # no hw hwf = atmos.heat_wave_total_length( tn, tx, thresh_tasmin="40 C", thresh_tasmax="40 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 0) class TestHeatWaveIndex: def test_simple(self, tasmax_series): tx = np.zeros(366) tx[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tx = tasmax_series(tx + K2C, start="1/1/2000") hwi = atmos.heat_wave_index(tx, freq="YS")
np.testing.assert_array_equal(hwi, [10])
numpy.testing.assert_array_equal
import numpy as np import os import matplotlib.pyplot as plt import sklearn.datasets as skld import sklearn.model_selection as sklms import sklearn.ensemble as skle from bayeso import bo from bayeso.utils import utils_bo from bayeso.utils import utils_common from bayeso.utils import utils_plotting from bayeso import constants STR_FUN_TARGET = 'real1' INT_BO = 20 INT_ITER = 50 INT_INIT = 3 data = skld.fetch_olivetti_faces() images = data.images targets = data.target print(images.shape) print(targets.shape) X_train, X_test, y_train, y_test = sklms.train_test_split(images, targets, test_size=0.2, random_state=42, stratify=targets) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1] * X_train.shape[2])) X_test =
np.reshape(X_test, (X_test.shape[0], X_test.shape[1] * X_test.shape[2]))
numpy.reshape
import sys sys.path.append('../') import rosbag import matplotlib.pyplot as plt import numpy as np from scipy import interpolate from tempfile import TemporaryFile from analysis_lib.data_smooth import convolution_window_1d class bag_analysis: def __init__(self, path_file): # uwb coordinate system self.bag = rosbag.Bag(path_file) self.rotation_opti = [[-0.04425313, 0.99902035], [-0.99902035, -0.04425313]] self.transition_opti = [[4.41968278], [4.13352817]] self.transition_odom = [[1], [1]] self.uwb_data = [] self.opti_data = [] self.odom_data = [] def read_anchor_dis(self, topic_name): self.bag_msg = self.bag.read_messages(topics = topic_name) self.agent_dis = [[] for i in range(4)] for topic, msg, t in self.bag_msg: if topic == topic_name and len(msg.nodes) == 4: for i in range(4): distance = msg.nodes[i].distance self.agent_dis[i].append(distance) return self.agent_dis def read_location(self, topic_name, mode = 'uwb'): bag_msg = self.bag.read_messages(topics = topic_name) for topic, msg, t in bag_msg: if topic == topic_name: if mode == 'uwb': self.uwb_data.append([msg.position.x, msg.position.y]) if mode == 'optitrack': self.opti_data.append([msg.x, msg.y]) if mode == 'odom': self.odom_data.append([msg.pose.pose.position.x, msg.pose.pose.position.y]) if len(self.uwb_data) != 0: self.uwb_data = np.array(self.uwb_data) if len(self.opti_data) != 0: self.opti_data = np.array(self.opti_data) if len(self.odom_data) != 0: self.odom_data = np.array(self.odom_data) return self.uwb_data, self.opti_data, self.odom_data # def trans_data(): def update_trans_opti(self, transition, rotation): self.rotation_opti = rotation self.transition_opti = transition def update_trans_odom(self, transition = []): if not transition: self.transition_odom = self.uwb_data[0, :] - self.odom_data[0, :] else: self.transition_odom = transition # def read_locations(self, topic_name): def transform(self): self.opti_data = np.transpose(np.dot(self.rotation_opti, np.transpose(self.opti_data)) + self.transition_opti) self.odom_data = self.odom_data + self.transition_odom def smooth_dis_data(self): self.agent_dis_smooth = convolution_window_1d(self.agent_dis) def dis_plot(self, ax, name, if_raw = True, if_smooth = True, window_len = 0): num1 = 0 num2 = 0 if if_raw == True: for distance in self.agent_dis: num1 = num1 + 1 x_arrange = np.arange(len(distance)) distance =
np.array(distance)
numpy.array
from pathlib import Path import cv2 import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from src.dataset import TianchiOCRDataset, TianchiOCRDataLoader def norm(v): return np.sqrt((v * v).sum()) def calc_quadrilateral_w_h_ratios(q): w, h = np.abs(q[:, 4] - q[:, 0]),
np.abs(q[:, 5] - q[:, 1])
numpy.abs
import os import tempfile from unittest import TestCase import numpy as np from keras.layers import Dense from keras.constraints import max_norm from keras.models import Sequential, load_model from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras_lamb import Lamb class TestOptimizer(TestCase): def test_fit(self): model = Sequential() model.add(Dense(input_shape=(5,), units=3, bias_constraint=max_norm(10.0))) model.compile(optimizer=Lamb(decay=1e-6), loss='mse') model_path = os.path.join(tempfile.gettempdir(), 'keras_lamb_%.4f.h5' % np.random.random()) model.save(model_path) model = load_model(model_path, custom_objects={'Lamb': Lamb}) model.summary() target_w = np.random.standard_normal((5, 3)) target_b =
np.random.standard_normal(3)
numpy.random.standard_normal
# coding=utf-8 import sys sys.path.insert(0, '/home/chujie/PycharmProjects/amsoftmax_face_recognition_caffe/AM-Softmax-caffe/python') import caffe import cv2 import os import numpy as np import math import copy from numpy.linalg import inv, norm, lstsq from numpy.linalg import matrix_rank as rank of = 0 # 人脸对齐时多裁剪像素点 std_mean = 127.5 std_scale = 0.0078125 batchsize = 128 factor = 0.709 minisize = 30 # 检测人脸的最小值 # pnet pnet_stride = 2 pnet_cell_size = 12 pnet_thread = 0.95 # rnet rnet_thread = 0.95 # onet onet_thread = 0.95 def Align_sphereface(input_image, points, output_size=(96, 112)): image = copy.deepcopy(input_image) src = np.matrix([[points[0], points[2], points[4], points[6], points[8]], [points[1], points[3], points[5], points[7], points[9]], [1, 1, 1, 1, 1]]) dst = np.matrix([[30.2946, 65.5318, 48.0252, 33.5493, 62.7299], [51.6963, 51.5014, 71.7366, 92.3655, 92.2041]]) T = (src * src.T).I * src * dst.T img_affine = cv2.warpAffine(image, T.T, output_size) return img_affine def Align_seqface(input_image, points, output_size=(128, 128)): image = copy.deepcopy(input_image) eye_center_x = (points[0] + points[2]) * 0.5 eye_center_y = (points[1] + points[3]) * 0.5 mouse_center_x = (points[6] + points[8]) * 0.5 mouse_center_y = (points[7] + points[9]) * 0.5 rad_tan = 1.0 * (points[3] - points[1]) / (points[2] - points[0]) rad = math.atan(rad_tan) deg = np.rad2deg(rad) width = int(math.fabs(math.sin(rad)) * image.shape[0] + math.fabs(math.cos(rad)) * image.shape[1]) height = int(math.fabs(math.cos(rad)) * image.shape[0] + math.fabs(math.sin(rad)) * image.shape[1]) transformMat = cv2.getRotationMatrix2D((eye_center_x, eye_center_y), deg, 1.0) dst = cv2.warpAffine(image, transformMat, (width, height)) diff_x = mouse_center_x - eye_center_x diff_y = mouse_center_y - eye_center_y r_mouse_center_y = diff_y * float(math.cos(rad)) - diff_x * float(math.sin(rad)) + eye_center_y d = r_mouse_center_y - eye_center_y + 1 dx = int(d * 3 / 2.0) dy = int(d * 3 / 3.0) x0 = int(eye_center_x) - dx x0 = max(x0, 0) x1 = int(eye_center_x + (3 * d - dx)) - 1 x1 = min(x1, width - 1) y0 = int(eye_center_y) - dy y0 = max(y0, 0) y1 = int(eye_center_y + (3 * d - dy)) - 1 y1 = min(y1, height - 1) alignface = dst[y0:y1, x0:x1, :] alignface = cv2.resize(alignface, (128, 128)) return alignface def CalScale(width, height): scales = [] scale = 12.0 / minisize # 12.0/30 minWH = min(height, width) * scale while minWH >= 12.0: scales.append(scale) minWH *= factor scale *= factor return scales def BBoxRegression(results): for result in results: box = result['faceBox'] bbox_reg = result['bbox_reg'] w = box[2] - box[0] + 1 h = box[3] - box[1] + 1 box[0] += bbox_reg[0] * w box[1] += bbox_reg[1] * h box[2] += bbox_reg[2] * w box[3] += bbox_reg[3] * h return results def BBoxPad(results, width, height): for result in results: box = result['faceBox'] box[0] = round(max(box[0], 0.0)) box[1] = round(max(box[1], 0.0)) box[2] = round(min(box[2], width - 1.0)) box[3] = round(min(box[3], height - 1.0)) return results def BBoxPadSquare(results, width, height): for result in results: box = result['faceBox'] w = box[2] - box[0] + 1; h = box[3] - box[1] + 1; side = max(w, h) box[0] = round(max(box[0] + (w - side) * 0.5, 0)) box[1] = round(max(box[1] + (h - side) * 0.5, 0.)) box[2] = round(min(box[0] + side - 1.0, width - 1.0)) box[3] = round(min(box[1] + side - 1.0, height - 1.0)) return results def NMS(results, thresh, methodType): bboxes_nms = [] if len(results) == 0: return bboxes_nms else: results = sorted(results, key=lambda result: result['bbox_score'], reverse=True) flag =
np.zeros_like(results)
numpy.zeros_like
import numpy as np import pp from scipy.constants import c as SPEED_OF_LIGHT from simphony.elements import Model from simphony.tools import freq2wl, interpolate, wl2freq def load(component, **kwargs): """ load Sparameters for a component Args: component: component factory or instance **kwargs """ component = pp.call_if_func(component, **kwargs) pins, f, s = pp.sp.load(component) def interpolate_sp(freq): return interpolate(freq, f, s) m = Model() m.pins = pins m.s_params = (f, s) m.s_parameters = interpolate_sp m.freq_range = ( m.s_params[0][0], m.s_params[0][-1], ) #: The valid frequency range for this model. return m if __name__ == "__main__": import matplotlib.pyplot as plt c = load(pp.c.mmi1x2()) wav =
np.linspace(1520, 1570, 1024)
numpy.linspace
#!/usr/bin/env python #************************************************************************ # # Plot figures and output numbers for Plate 1.1 . # For BAMS SotC 2016 # #************************************************************************ # SVN Info # $Rev:: 29 $: Revision of last commit # $Author:: rdunn $: Author of last commit # $Date:: 2020-08-05 12:12:39 +0100 (Wed, 05 Aug #$: Date of last commit #************************************************************************ # START #************************************************************************ from __future__ import absolute_import from __future__ import print_function import matplotlib.pyplot as plt import datetime as dt import numpy as np import iris import utils # RJHD utilities import settings DATALOC = "{}/{}/data/".format(settings.ROOTLOC, settings.YEAR) image_loc = "{}/{}/images/".format(settings.ROOTLOC, settings.YEAR) LW = 2 print("Standardise individual plotting scripts \nThen use main() and import statements so \ncan call the read routines only once") insitu = "k" satellite = "r" reanalyses = "b" #************************************************************************ def make_plot(ax, ts_list, color, plot_label="", ylabel="", ylim=[], ls="-", scatter=False): """ Plot the lines and other details on the axis. """ assert isinstance(ts_list, list) zorder = 1 if color == "k": zorder = 10 if color == "r": zorder = 5 for ts in ts_list: if scatter: ax.plot(ts.times, ts.data, color=color, ls="", marker=".", zorder=zorder) else: ax.plot(ts.times, ts.data, color=color, ls=ls, lw=LW, zorder=zorder) if ylabel != "": ax.set_ylabel(ylabel) if ylim != []: ax.set_ylim(ylim) if plot_label != "": ax.text(0.02, 0.75, plot_label, transform=ax.transAxes) # autogenerate text for caption if color == insitu: print("In Situ: {}".format(len(ts_list))) elif color == satellite: print("Satellite: {}".format(len(ts_list))) elif color == reanalyses: print("Reanalyses: {}".format(len(ts_list))) return # make_plot #************************************************************************ # have separate read script for each section. ''' black - in situ blue - reanalyses red - satellite ''' #************************************************************************ def read_sie(filename): indata = np.genfromtxt(filename, dtype=(float), skip_header=3) arctic_max = utils.Timeseries("SIE", indata[:, 0], indata[:, 2]) arctic_min = utils.Timeseries("SIE", indata[:, 0], indata[:, 4]) antarctic_min = utils.Timeseries("SIE", indata[:, 0], indata[:, 6]) antarctic_max = utils.Timeseries("SIE", indata[:, 0], indata[:, 8]) return arctic_max, arctic_min, antarctic_min, antarctic_max # read_sie #************************************************************************ def read_ohc(filename): indata = np.genfromtxt(filename, dtype=(float), skip_header=1) hadley = utils.Timeseries("OHC", indata[:, 0], indata[:, 1]) csiro = utils.Timeseries("OHC", indata[:, 0], indata[:, 3]) pmel = utils.Timeseries("OHC", indata[:, 0], indata[:, 5]) ncei = utils.Timeseries("OHC", indata[:, 0], indata[:, 7]) mri = utils.Timeseries("OHC", indata[:, 0], indata[:, 9]) iap = utils.Timeseries("OHC", indata[:, 0], indata[:, 9]) # reapply updated climatology dummy, hadley = utils.calculate_climatology_and_anomalies_1d(hadley, 1993, 2016) dummy, csiro = utils.calculate_climatology_and_anomalies_1d(csiro, 1993, 2016) dummy, pmel = utils.calculate_climatology_and_anomalies_1d(pmel, 1993, 2016) dummy, ncei = utils.calculate_climatology_and_anomalies_1d(ncei, 1993, 2016) dummy, mri = utils.calculate_climatology_and_anomalies_1d(mri, 1993, 2016) dummy, iap = utils.calculate_climatology_and_anomalies_1d(iap, 1993, 2016) return hadley, csiro, pmel, ncei, mri, iap # read_ohc #************************************************************************ def read_slr(filename): indata = np.genfromtxt(filename, dtype=(float)) slr = utils.Timeseries("SLR", indata[:, 0], indata[:, 1]) return slr # read_SLR #************************************************************************ def read_swv(filename): indata = np.genfromtxt(filename, dtype=(float), delimiter=",") swv = utils.Timeseries("SWV", indata[:, 0], indata[:, 1]) return swv # read_SWV #************************************************************************ def read_arct(filename): """ Read the Arctic Temperatures""" indata = np.genfromtxt(filename, delimiter=",", skip_header=1) arct = utils.Timeseries("ARCT", indata[:, 0], indata[:, 1]) return arct # read_arct #************************************************************************ def toYearFraction(date): import time def sinceEpoch(date): # returns seconds since epoch return time.mktime(date.timetuple()) s = sinceEpoch year = date.year startOfThisYear = dt(year=year, month=1, day=1) startOfNextYear = dt(year=year+1, month=1, day=1) yearElapsed = s(date) - s(startOfThisYear) yearDuration = s(startOfNextYear) - s(startOfThisYear) fraction = yearElapsed/yearDuration return date.year + fraction #************************************************************************ def annual_from_monthly(indata): try: times = indata.times.reshape(-1, 12) monthly = indata.data.reshape(-1, 12) annuals =
np.ma.mean(monthly, axis=1)
numpy.ma.mean
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import platform from functools import partial import numpy as np import pytest from utils import opr_test import megengine.amp as amp import megengine.config as config import megengine.core.ops.builtin as builtin import megengine.core.tensor.dtype as dtype import megengine.functional as F import megengine.jit as jit from megengine import Parameter, Tensor, is_cuda_available, tensor from megengine.core._trace_option import use_symbolic_shape from megengine.core.autodiff.grad import Grad from megengine.core.tensor.utils import make_shape_tuple from megengine.device import get_device_count from megengine.module import LayerNorm def test_where(): maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32) maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_) xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32) yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32) cases = [ {"input": [maskv0, xv0, yv0]}, {"input": [maskv1, xv1, yv1]}, ] opr_test(cases, F.where, ref_fn=np.where, test_trace=False) maskv2 = np.array([1, 1, 1], dtype=np.bool_) xv2 = np.array([1, 3, 2], dtype=np.float32) yv2 = np.array([5, 6, 9], dtype=np.float32) maskv3 = np.array([0, 0, 0], dtype=np.bool_) xv3 = np.array([1, 3, 2], dtype=np.float32) yv3 = np.array([5, 6, 9], dtype=np.float32) cases = [ {"input": [maskv2, xv2, yv2]}, {"input": [maskv3, xv3, yv3]}, ] opr_test(cases, F.where, ref_fn=np.where, test_trace=False) def test_dropout(): from megengine.autodiff import GradManager from megengine.core._imperative_rt.ops import set_global_rng_seed def test_dropout_with_shape(shape, rate): data = tensor(np.ones(shape, dtype=np.float32)) gm = GradManager().attach([data]) with gm: out = F.nn.dropout(data, rate, training=True) gm.backward(out, tensor(np.ones(shape, dtype=np.float32))) assert not out.numpy().all() np.testing.assert_allclose(out.numpy(), data.grad.numpy(), 1e-7, 1e-7) def test_multiple_dropout(shape, rate): data = tensor(np.ones(shape, dtype=np.float32)) gm = GradManager().attach([data]) with gm: out1 = F.nn.dropout(data, rate, training=True) out2 = F.nn.dropout(out1, rate, training=True) out3 = F.nn.dropout(out2, rate, training=True) gm.backward(out3, tensor(np.ones(shape, dtype=np.float32))) np.testing.assert_allclose(out3.numpy(), data.grad.numpy(), 1e-7, 1e-7) def test_dropout_seed(shape, rate): data = tensor(np.random.randn(*shape), dtype="float32") set_global_rng_seed(111) out1 = F.nn.dropout(data, rate, training=True) out2 = F.nn.dropout(data, rate, training=True) assert not (out1.numpy() == out2.numpy()).all() set_global_rng_seed(111) out3 = F.nn.dropout(data, rate, training=True) assert (out1.numpy() == out3.numpy()).all() set_global_rng_seed(222) out4 = F.nn.dropout(data, rate, training=True) assert not (out1.numpy() == out4.numpy()).all() test_dropout_with_shape([13, 17, 63, 21], 0.4) test_dropout_with_shape([16, 32, 64], 0.3) test_multiple_dropout([1024], 0.2) test_dropout_seed([16, 32], 0.2) def test_matinv(): shape1 = (5, 5) shape2 = (3, 9, 9) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") # make matrix diagonally dominant for numerical stability data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32") data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2) cases = [ {"input": data1}, {"input": data2}, ] opr_test( cases, F.matinv, compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-4), ref_fn=np.linalg.inv, ) def test_matmul(): shape1 = 3 shape2 = 3 shape3 = (3, 5) shape4 = (5, 6) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") data3 = np.random.random(shape3).astype("float32") data4 = np.random.random(shape4).astype("float32") cases = [ {"input": [data1, data2]}, {"input": [data2, data3]}, {"input": [data3, data4]}, ] opr_test(cases, F.matmul, ref_fn=np.matmul) batch_size = 10 shape1 = (2,) shape2 = (batch_size, 2, 3) shape3 = (batch_size, 3, 4) shape4 = (batch_size, 10, 4, 2) shape5 = (batch_size, 10, 2, 4) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") data3 = np.random.random(shape3).astype("float32") data4 = np.random.random(shape4).astype("float32") data5 = np.random.random(shape5).astype("float32") cases = [ {"input": [data1, data2]}, {"input": [data2, data3]}, {"input": [data3, data4]}, {"input": [data4, data5]}, ] opr_test(cases, F.matmul, ref_fn=np.matmul) opr_test( [{"input": [data1, data4]}], F.matmul, ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)), transpose_b=True, ) opr_test( [{"input": [data3, data2]}], F.matmul, ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)), transpose_a=True, transpose_b=True, ) @pytest.mark.parametrize( "shape_a, shape_b", [((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10)),], ) @pytest.mark.parametrize("is_symbolic", [None, True, False]) def test_matmul_empty_tensor(shape_a, shape_b, is_symbolic): def func(a, b): return F.matmul(a, b) if is_symbolic is not None: func = jit.trace(symbolic=is_symbolic)(func) a = tensor(np.random.randn(*shape_a)) b = tensor(np.random.randn(*shape_b)) for _ in range(3): out = func(a, b) assert np.all(out.numpy() == 0) if is_symbolic is None: break def test_interpolate(): def linear_interpolate(): inp = tensor(
np.arange(1, 3, dtype=np.float32)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Sat Jul 29 13:35:12 2017 @author: yu """ import os import numpy as np import scipy.linalg as linalg import cv2 import operator import matplotlib.pyplot as plt def ComputeNorm(x): # function r=ComputeNorm(x) # computes vector norms of x # x: d x m matrix, each column a vector # r: 1 x m matrix, each the corresponding norm (L2) [row, col] = x.shape r = np.zeros((1,col)) for i in range(col): r[0,i] = linalg.norm(x[:,i])#求每一个列向量的范数 return r def myLDA(A,Labels): # function [W,m]=myLDA(A,Label) # computes LDA of matrix A # A: D by N data matrix. Each column is a random vector # W: D by K matrix whose columns are the principal components in decreasing order # m: mean of each projection classLabels = np.unique(Labels) classNum = len(classLabels) dim,datanum = A.shape totalMean = np.mean(A,1) partition = [np.where(Labels==label)[0] for label in classLabels] classMean = [(np.mean(A[:,idx],1),len(idx)) for idx in partition] #compute the within-class scatter matrix W = np.zeros((dim,dim)) for idx in partition: W += np.cov(A[:,idx],rowvar=1)*len(idx) #compute the between-class scatter matrix B = np.zeros((dim,dim)) for mu,class_size in classMean: offset = mu - totalMean B += np.outer(offset,offset)*class_size #solve the generalized eigenvalue problem for discriminant directions ew, ev = linalg.eig(B, W) sorted_pairs = sorted(enumerate(ew), key=operator.itemgetter(1), reverse=True) selected_ind = [ind for ind,val in sorted_pairs[:classNum-1]] LDAW = ev[:,selected_ind] Centers = [np.dot(mu,LDAW) for mu,class_size in classMean] Centers = np.array(Centers).T return LDAW, Centers, classLabels def myPCA(A): # function [W,LL,m]=mypca(A) # computes PCA of matrix A # A: D by N data matrix. Each column is a random vector # W: D by K matrix whose columns are the principal components in decreasing order # LL: eigenvalues # m: mean of columns of A # Note: "lambda" is a Python reserved word # compute mean, and subtract mean from every column [r,c] = A.shape#A是22400*120矩阵 m = np.mean(A,1)#求每一行均值,m应该是1*22400的矩阵 A = A - np.tile(m, (c,1)).T#零均值化,此时A任然是22400*120矩阵 B = np.dot(A.T, A) [d,v] = linalg.eig(B)#求A.T*A的特征值d(返回一行向量,120个)与归一化的特征向量v,v的第i列对应第i个特征值 # sort d in descending order order_index = np.argsort(d) order_index = order_index[::-1]#将特征值从大到小排列 d = d[order_index] v = v[:, order_index]#将特征向量按特征值排列 # compute eigenvectors of scatter matrix W = np.dot(A,v)#根据课件 Av is eigenvector of AA.T,此时的W是AA.t的特征向量 Wnorm = ComputeNorm(W) W1 = np.tile(Wnorm, (r, 1)) W2 = W / W1#标准化特征矩阵? LL = d[0:-1]#特征值,省略最后一个 W = W2[:,0:-1] #omit last column, which is the nullspace,特征向量 return W, LL, m def read_faces(directory): # function faces = read_faces(directory) # Browse the directory, read image files and store faces in a matrix # faces: face matrix in which each colummn is a colummn vector for 1 face image # idLabels: corresponding ids for face matrix A = [] # A will store list of image vectors Label = [] # Label will store list of identity label # browsing the directory for f in os.listdir(directory): if not f[-3:] =='bmp': continue infile = os.path.join(directory, f) im = cv2.imread(infile, 0) # turn an array into vector im_vec = np.reshape(im, -1) A.append(im_vec) name = f.split('_')[0][-1] Label.append(int(name)) faces = np.array(A, dtype=np.float32) faces = faces.T idLabel = np.array(Label) return faces,idLabel def float2uint8(arr): mmin = arr.min() mmax = arr.max() arr = (arr-mmin)/(mmax-mmin)*255 arr = np.uint8(arr) return arr '''PCA feature''' def PCA(k): dir='C:/Users/yu/Desktop/face/train' faces,idlable=read_faces(dir) [r,c]=np.shape(faces) W,LL,m=myPCA(faces) We=W[:,:k] y=np.dot(We.T,(faces-np.tile(m,(c,1)).T)) x=np.dot(We,y)+np.tile(m,(c,1)).T return x,y,W,LL,m,We '''LDA feature''' def LDA(k): dir='C:/Users/yu/Desktop/face/train' faces,idlable=read_faces(dir) [r,c]=np.shape(faces) W,LL,m=myPCA(faces) W1=W[:,:k] x1=np.dot(W1.T,(faces-np.tile(m,(c,1)).T)) Wf,C,classlabel=myLDA(x1,idlable) y=np.dot(Wf.T,np.dot(W1.T,(faces-np.tile(m,(c,1)).T))) return y,Wf,W1,C,classlabel '''enrollment''' def enrollment(y1,C):#y1 is for PCA,C is for LDA Z1=[]#PCA Z2=[]#LDA, Z2 is exactly the Centers returned by myLDA function for i in range(0,10): y11=y1[:,i*12:(i*12+12)] Z1.append(np.mean(y11,1)) Z1=np.transpose(Z1) Z2=C return Z1,Z2 def distance(z,b):#计算欧氏距离 x=z.shape[0] bb=np.tile(b,(x,1)) dis=bb-z dis=dis**2 Dis=dis.sum(axis=1) Dis=Dis**0.5 # dis=linalg.norm(z-bb) return Dis def ConMat(We,Wf,W1,m,z1,z2,alpha): CM1=np.zeros((10,10)) CM2=np.zeros((10,10)) dir='C:/Users/yu/Desktop/face/test' faces,idlabel=read_faces(dir) [r,c]=
np.shape(faces)
numpy.shape
import copy import numpy as np from numba import jit from State import State import logging #logging.basicConfig(filename="logs/Environment.log", level=logging.INFO) class Environment: id_cache={} def __init__(self, NUM_ROWS, NUM_COLS, DEPTH): self.state = None self.prev_states = set() self.duplicate_states = set() self.draw_flag = False self.turn = None self.temp_cp = None self.pieces = [] self.name = 'Gobblet' self.NUM_ROWS = NUM_ROWS self.NUM_COLS = NUM_COLS self.DEPTH = DEPTH self.reset() def reset(self): # resets the board to be empty and the turn to be 'X' self.state = State(np.array([[0 for i in range(self.NUM_COLS)] for j in range(self.NUM_COLS)])) self.moves_made = set() self.duplicate_moves = set() self.draw_flag = False self.turn = 1 self.initialize_pieces() # @jit(nopython=False) def update(self, action, turn=0, check_legal=True): # updates the board given an action represented as 2 indicies e.g. [0, 2] # returns [next_state, result] # where next_state is the board after action is taken logging.info("Storing copy of board . . .") self.temp_cp = self.copy() piece, location = action if type(piece) != dict: piece = self.pieces[self.pieces_idx][piece] location = (location // self.NUM_COLS, location % self.NUM_COLS) logging.info("Ensuring the move is legal . . .") if not self.is_legal((piece, location)): if check_legal: print(self.state) raise ValueError("The action {} is not legal".format((str(piece), location))) else: return (self.state, 10*self.turn) if turn == 0: turn = self.turn logging.info("Accounting for special rule . . .") if isinstance(piece["location"], tuple): # if the piece was on the board, set its origin to be empty self.state.board[piece["location"]] = 0 # if it was covering another piece, propogate the change upwards lower_loc = self.state.lower_layers[0][tuple(piece["location"])] if lower_loc != 0: self.undo_lower_layers(tuple(piece["location"])) # update the board and the player logging.info("Updating the board and pieces . . .") prev_occupant = int(self.state.board[location]) self.state.board[location] = self.turn * piece["size"] piece["location"] = location self.update_pieces() logging.info("Updating lower layers . . .") if prev_occupant != 0: self.update_lower_layers((piece, location), prev_occupant) # # if self["id"] in self.duplicate_states: # self.draw_flag=True # elif self.id in self.moves_made: # self.duplicate_states.add(self.id) # else: # self.moves_made.add(self.id) result = self.get_result(self.state) # update the turn tracker self.turn *= -1 return (self.copy(), result, result is not None) def undo_move(self): # undo the last move made self.state = self.temp_cp.state self.pieces = self.temp_cp.pieces self.turn = self.temp_cp.turn def undo_lower_layers(self, location, i=-1): if i < 0: layer = self.state.board else: layer = self.state.lower_layers[i] next_layer = self.state.lower_layers[i+1] dest = next_layer[location] layer[location] = int(dest) next_layer[location] = 0 # if i+2 > self.DEPTH-1 and self.state.lower_layers[i+2][location] != 0: # self.undo_lower_layers(location, i+1) # exit_flag = False for idx, stack in enumerate(self.pieces): if exit_flag: break for p in stack: if p["location"] == location and p["size"] == abs(dest): if (idx == 0 and np.sign(dest) == 1) or (idx == 1 and np.sign(dest) == -1): p["stack_number"] -= 1 exit_flag = True def update_lower_layers(self, action, prev_occupant, i=0): # propogate changes throughout lower layers recursively piece, location = action layer = self.state.lower_layers[i] dest = layer[location] if dest != 0 and i < 2: try: self.update_lower_layers(action, dest, i+1) except IndexError: print("IndexError in update_lower_layers") dest = self.turn * piece["size"] self.state.lower_layers[i, location[0], location[1]] = prev_occupant exit_flag = False for idx, stack in enumerate(self.pieces): if exit_flag: break for p in stack: if p["location"] == location and p["size"] == abs(prev_occupant): if (idx == 0 and np.sign(prev_occupant) == 1) or (idx == 1 and np.sign(prev_occupant) == -1): p["stack_number"] += 1 exit_flag = True break #@jit def get_result(self, state): # returns None if the game isn't over, 1 if white wins and -1 if black wins # check rows for row in state.board: ones = np.sign(row) if abs(sum(ones)) == self.NUM_ROWS: return sum(ones) / self.NUM_ROWS # check columns cols = state.board.copy() cols.transpose() for col in cols: ones = np.sign(col) if abs(sum(ones)) == self.NUM_COLS: return sum(ones) / self.NUM_COLS # check diagonals diags = [state.board.diagonal(), np.fliplr(state.board).diagonal()] for diag in diags: ones = np.sign(diag) if abs(sum(ones)) == self.NUM_ROWS: return sum(ones) / self.NUM_ROWS # check for draws # that is, if three identical moves have been made, it's a draw if self.draw_flag or len(self.prev_states) > 50: #print("DRAW BY {}".format("REPETITION" if self.draw_flag else "NO MOVES")) return 0 return None def is_legal(self, action, verbose=True): piece, location = action if type(piece) != dict: piece = self.pieces[self.pieces_idx][piece] location = (location // self.NUM_COLS, location % self.NUM_COLS) curr_piece = self.state.board[location] # the piece has to be bigger than the one currently there if not piece["stack_number"] == 0 or piece["size"] <= abs(curr_piece): return False # implement the rule that a new gobblet on the board must be on an empty space if not isinstance(piece["location"], tuple) and curr_piece != 0: # exception: if there is three in a row through the desired location, the move is valid row = self.state.board[location[0]] col = self.state.board[:, location[1]] diag = [0 for i in range(self.NUM_ROWS)] if location[0]==location[1]: diag = self.state.board.diagonal() elif location[0]+location[1] == self.NUM_ROWS-1: diag = np.fliplr(self.state.board).diagonal() flag = False for i in [row, col, diag]: if flag: break counter = 0 for j in np.squeeze(i): if j != 0: counter += 1 if counter==3: flag = True break if not flag: return False return True def get_legal_moves_idxs(self): # returns the legal moves that can be taken moves = [] illegal_moves = [] add_move = moves.append is_valid_move = self.is_legal for idx, i in enumerate(self.state.board): for jIdx, j in enumerate(i): for piece in self.pieces[self.pieces_idx]: move = (piece, (idx, jIdx)) if is_valid_move(move): add_move((piece["id"], idx*self.NUM_COLS + jIdx)) return moves def initialize_pieces(self): self.pieces = [[{"location":0, "size":4, "stack_number":0, "id":0}, {"location":1, "size":3, "stack_number":1, "id":1}, {"location":2, "size":2, "stack_number":2, "id":2}, {"location":3, "size":1, "stack_number":3, "id":3}, {"location":0, "size":4, "stack_number":0, "id":4}, {"location":1, "size":3, "stack_number":1, "id":5}, {"location":2, "size":2, "stack_number":2, "id":6}, {"location":3, "size":1, "stack_number":3, "id":7}, {"location":0, "size":4, "stack_number":0, "id":8}, {"location":1, "size":3, "stack_number":1, "id":9}, {"location":2, "size":2, "stack_number":2, "id":10}, {"location":3, "size":1, "stack_number":3, "id":11}], [{"location":0, "size":4, "stack_number":0, "id":0}, {"location":1, "size":3, "stack_number":1, "id":1}, {"location":2, "size":2, "stack_number":2, "id":2}, {"location":3, "size":1, "stack_number":3, "id":3}, {"location":0, "size":4, "stack_number":0, "id":4}, {"location":1, "size":3, "stack_number":1, "id":5}, {"location":2, "size":2, "stack_number":2, "id":6}, {"location":3, "size":1, "stack_number":3, "id":7}, {"location":0, "size":4, "stack_number":0, "id":8}, {"location":1, "size":3, "stack_number":1, "id":9}, {"location":2, "size":2, "stack_number":2, "id":10}, {"location":3, "size":1, "stack_number":3, "id":11}] ] @property def pieces_idx(self): return 0 if self.turn == 1 else 1 def update_pieces(self): for player in self.pieces: for piece in player: if piece["id"] % 4 == 0: counter = 0 if isinstance(piece["location"], tuple): continue piece["location"] = counter piece["stack_number"] = counter counter += 1 @property def binary(self): # convert the state to a binary matrix # final format will be 4 x 4 x 9 (ignore hidden pieces and use only current state for now) plane_dim = self.state.board.shape color = np.zeros(plane_dim) if self.turn == -1 else np.ones(plane_dim) board = self.state.board.reshape(-1) #np.append(self.state.board.reshape(-1), self.state.lower_layers.reshape(-1)) p1_pos = np.zeros((plane_dim[0], plane_dim[1], 4)) p1_locs = np.argwhere(np.sign(board.reshape(plane_dim))==1) p1_pos[4-np.abs(self.state.board[p1_locs[:,0], p1_locs[:,1]]), p1_locs[:,0], p1_locs[:,1]] = 1 p2_pos = np.zeros((plane_dim[0], plane_dim[1], 4)) p2_locs = np.argwhere(np.sign(board.reshape(plane_dim))==-1) p2_pos[4-np.abs(self.state.board[p2_locs[:,0], p2_locs[:,1]]), p2_locs[:,0], p2_locs[:,1]] = 1 p2_pos =
np.append(p2_pos, color)
numpy.append
""" <NAME> University of Manitoba November 8th, 2018 """ import numpy as np from umbms.beamform.extras import get_xy_arrs ############################################################################### # The vacuum permeability and permittivity vac_permeability = 1.256637e-6 vac_permittivity = 8.85e-12 vac_speed = 3e8 # The speed of light in vacuum # The permittivities of the breast tissue analogs used in the lab at the # central frequency (glycerin for fat, 30% Triton X-100 solution for # fibroglandular, and saline solution for tumor) measured_air_perm = 1 measured_adi_perm = 7.08 measured_fib_perm = 44.94 measured_tum_perm = 77.11 ############################################################################### def get_roi(roi_rad, m_size, ant_rad): """Return binary mask for central circular region of interest Returns a binary mask in which a circular region of interest is set to True and the region outside is set to False Parameters ---------- roi_rad : float The radius (in meters) of the inner circular region of interest m_size : int The number of pixels along one dimension used to define the model-space ant_rad : float The radius of the antenna scan trajectory in meters """ # Get arrays for the x,y positions of each pixel pix_xs, pix_ys = get_xy_arrs(m_size, ant_rad) # Find the distance from each pixel to the center of the model space pix_dist_from_center = np.sqrt(pix_xs**2 + pix_ys**2) # Get the region of interest as all the pixels inside the # circle-of-interest roi = np.zeros([m_size, m_size], dtype=np.bool) roi[pix_dist_from_center < roi_rad] = True return roi def get_breast(m_size=500, ant_rad=0.21, adi_rad=0.00, adi_x=0.0, adi_y=0.0, fib_rad=0.0, fib_x=0.0, fib_y=0.0, tum_rad=0.0, tum_x=0.0375, tum_y=0.0375, skin_thickness=0.0, adi_perm=6.4, fib_perm=42.2, tum_perm=75.4, skin_perm=40, air_perm=1.0): """Returns a 2D breast model Returns a breast model containing selected tissue components. Each tissue (excluding skin) is modeled using a circular region and assigned a permittivity corresponding to the measured permittivity at the central scan frequency of the corresponding tissue surrogate. Parameters ---------- m_size : int The number of pixels along one dimension in the model space ant_rad : float The radius (in meters) of the antenna trajectory during the scan adi_rad : float The radius of the adipose tissue component in meters adi_x : float The offset of the adipose tissue component in the x-direction in meters adi_y : float The offset of the adipose tissue component in the y-direction in meters fib_rad : float The radius of the fibroglandular tissue component in meters fib_x : float The offset of the fibroglandular tissue component in the x-direction in meters fib_y : float The offset of the fibroglandular tissue component in the y-direction in meters tum_rad : float The radius of the tumor tissue component in meters tum_x : float The offset of the tumor tissue component in the x-direction in meters tum_y : float The offset of the tumor tissue component in the y-direction in meters skin_thickness : float The thickness of the skin tissue component in meters adi_perm : float The permittivity of the adipose component fib_perm : float The permittivity of the fibroglandular component tum_perm : float The permittivity of the tumor component skin_perm : float The permittivity of the skin component air_perm : float The permittivity of the surrounding medium (assumed to be air) Returns ------- breast_model : array_like 2D arr containing the breast model """ # Get the pixel x,y-positions pix_xs, pix_ys = get_xy_arrs(m_size, ant_rad) # Compute the pixel distances from the center of each tissue # component (excluding skin) pix_dist_from_adi =
np.sqrt((pix_xs - adi_x)**2 + (pix_ys - adi_y)**2)
numpy.sqrt
import numpy as np import pyart import scipy.ndimage.filters def J_function(winds, parameters): """ Calculates the total cost function. This typically does not need to be called directly as get_dd_wind_field is a wrapper around this function and :py:func:`pydda.cost_functions.grad_J`. In order to add more terms to the cost function, modify this function and :py:func:`pydda.cost_functions.grad_J`. Parameters ---------- winds: 1-D float array The wind field, flattened to 1-D for f_min. The total size of the array will be a 1D array of 3*nx*ny*nz elements. parameters: DDParameters The parameters for the cost function evaluation as specified by the :py:func:`pydda.retrieval.DDParameters` class. Returns ------- J: float The value of the cost function """ winds = np.reshape(winds, (3, parameters.grid_shape[0], parameters.grid_shape[1], parameters.grid_shape[2])) Jvel = calculate_radial_vel_cost_function( parameters.vrs, parameters.azs, parameters.els, winds[0], winds[1], winds[2], parameters.wts, rmsVr=parameters.rmsVr, weights=parameters.weights, coeff=parameters.Co) if(parameters.Cm > 0): Jmass = calculate_mass_continuity( winds[0], winds[1], winds[2], parameters.z, parameters.dx, parameters.dy, parameters.dz, coeff=parameters.Cm) else: Jmass = 0 if(parameters.Cx > 0 or parameters.Cy > 0 or parameters.Cz > 0): Jsmooth = calculate_smoothness_cost( winds[0], winds[1], winds[2], Cx=parameters.Cx, Cy=parameters.Cy, Cz=parameters.Cz) else: Jsmooth = 0 if(parameters.Cb > 0): Jbackground = calculate_background_cost( winds[0], winds[1], winds[2], parameters.bg_weights, parameters.u_back, parameters.v_back, parameters.Cb) else: Jbackground = 0 if(parameters.Cv > 0): Jvorticity = calculate_vertical_vorticity_cost( winds[0], winds[1], winds[2], parameters.dx, parameters.dy, parameters.dz, parameters.Ut, parameters.Vt, coeff=parameters.Cv) else: Jvorticity = 0 if(parameters.Cmod > 0): Jmod = calculate_model_cost( winds[0], winds[1], winds[2], parameters.model_weights, parameters.u_model, parameters.v_model, parameters.w_model, coeff=parameters.Cmod) else: Jmod = 0 if parameters.Cpoint > 0: Jpoint = calculate_point_cost( winds[0], winds[1], parameters.x, parameters.y, parameters.z, parameters.point_list, Cp=parameters.Cpoint, roi=parameters.roi) else: Jpoint = 0 if(parameters.print_out is True): print(('| Jvel | Jmass | Jsmooth | Jbg | Jvort | Jmodel | Jpoint |' + ' Max w ')) print(('|' + "{:9.4f}".format(Jvel) + '|' + "{:9.4f}".format(Jmass) + '|' + "{:9.4f}".format(Jsmooth) + '|' + "{:9.4f}".format(Jbackground) + '|' + "{:9.4f}".format(Jvorticity) + '|' + "{:9.4f}".format(Jmod) + '|' + "{:9.4f}".format(Jpoint)) + '|' + "{:9.4f}".format(np.ma.max(np.ma.abs(winds[2])))) return Jvel + Jmass + Jsmooth + Jbackground + Jvorticity + Jmod + Jpoint def grad_J(winds, parameters): """ Calculates the gradient of the cost function. This typically does not need to be called directly as get_dd_wind_field is a wrapper around this function and :py:func:`pydda.cost_functions.J_function`. In order to add more terms to the cost function, modify this function and :py:func:`pydda.cost_functions.grad_J`. Parameters ---------- winds: 1-D float array The wind field, flattened to 1-D for f_min parameters: DDParameters The parameters for the cost function evaluation as specified by the :py:func:`pydda.retrieve.DDParameters` class. Returns ------- grad: 1D float array Gradient vector of cost function """ winds = np.reshape(winds, (3, parameters.grid_shape[0], parameters.grid_shape[1], parameters.grid_shape[2])) grad = calculate_grad_radial_vel( parameters.vrs, parameters.els, parameters.azs, winds[0], winds[1], winds[2], parameters.wts, parameters.weights, parameters.rmsVr, coeff=parameters.Co, upper_bc=parameters.upper_bc) if(parameters.Cm > 0): grad += calculate_mass_continuity_gradient( winds[0], winds[1], winds[2], parameters.z, parameters.dx, parameters.dy, parameters.dz, coeff=parameters.Cm, upper_bc=parameters.upper_bc) if(parameters.Cx > 0 or parameters.Cy > 0 or parameters.Cz > 0): grad += calculate_smoothness_gradient( winds[0], winds[1], winds[2], Cx=parameters.Cx, Cy=parameters.Cy, Cz=parameters.Cz, upper_bc=parameters.upper_bc) if(parameters.Cb > 0): grad += calculate_background_gradient( winds[0], winds[1], winds[2], parameters.bg_weights, parameters.u_back, parameters.v_back, parameters.Cb, upper_bc=parameters.upper_bc) if(parameters.Cv > 0): grad += calculate_vertical_vorticity_gradient( winds[0], winds[1], winds[2], parameters.dx, parameters.dy, parameters.dz, parameters.Ut, parameters.Vt, coeff=parameters.Cv) if(parameters.Cmod > 0): grad += calculate_model_gradient( winds[0], winds[1], winds[2], parameters.model_weights, parameters.u_model, parameters.v_model, parameters.w_model, coeff=parameters.Cmod) if parameters.Cpoint > 0: grad += calculate_point_gradient( winds[0], winds[1], parameters.x, parameters.y, parameters.z, parameters.point_list, Cp=parameters.Cpoint, roi=parameters.roi) if(parameters.print_out is True): print('Norm of gradient: ' + str(np.linalg.norm(grad, np.inf))) return grad def calculate_radial_vel_cost_function(vrs, azs, els, u, v, w, wts, rmsVr, weights, coeff=1.0): """ Calculates the cost function due to difference of the wind field from radar radial velocities. For more information on this cost function, see Potvin et al. (2012) and Shapiro et al. (2009). All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- vrs: List of float arrays List of radial velocities from each radar els: List of float arrays List of elevations from each radar azs: List of float arrays List of azimuths from each radar u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field wts: List of float arrays Float array containing fall speed from radar. rmsVr: float The sum of squares of velocity/num_points. Use for normalization of data weighting coefficient weights: n_radars x_bins x y_bins float array Data weights for each pair of radars coeff: float Constant for cost function Returns ------- J_o: float Observational cost function References ----------- <NAME>., <NAME>, and <NAME>, 2012: Impact of a Vertical Vorticity Constraint in Variational Dual-Doppler Wind Analysis: Tests with Real and Simulated Supercell Data. J. Atmos. Oceanic Technol., 29, 32–49, https://doi.org/10.1175/JTECH-D-11-00019.1 <NAME>., <NAME>, and <NAME>, 2009: Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis. J. Atmos. Oceanic Technol., 26, 2089–2106, https://doi.org/10.1175/2009JTECHA1256.1 """ J_o = 0 lambda_o = coeff / (rmsVr * rmsVr) for i in range(len(vrs)): v_ar = (np.cos(els[i])*np.sin(azs[i])*u + np.cos(els[i])*np.cos(azs[i])*v + np.sin(els[i])*(w - np.abs(wts[i]))) the_weight = weights[i] the_weight[els[i].mask] = 0 the_weight[azs[i].mask] = 0 the_weight[vrs[i].mask] = 0 the_weight[wts[i].mask] = 0 J_o += lambda_o*np.sum(np.square(vrs[i] - v_ar)*the_weight) return J_o def calculate_grad_radial_vel(vrs, els, azs, u, v, w, wts, weights, rmsVr, coeff=1.0, upper_bc=True): """ Calculates the gradient of the cost function due to difference of wind field from radar radial velocities. All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- vrs: List of float arrays List of radial velocities from each radar els: List of float arrays List of elevations from each radar azs: List of azimuths List of azimuths from each radar u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field coeff: float Constant for cost function vel_name: str Background velocity field name weights: n_radars x_bins x y_bins float array Data weights for each pair of radars Returns ------- y: 1-D float array Gradient vector of observational cost function. More information ---------------- The gradient is calculated by taking the functional derivative of the cost function. For more information on functional derivatives, see the Euler-Lagrange Equation: https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation """ # Use zero for all masked values since we don't want to add them into # the cost function p_x1 = np.zeros(vrs[0].shape) p_y1 = np.zeros(vrs[0].shape) p_z1 = np.zeros(vrs[0].shape) lambda_o = coeff / (rmsVr * rmsVr) for i in range(len(vrs)): v_ar = (np.cos(els[i])*np.sin(azs[i])*u + np.cos(els[i])*np.cos(azs[i])*v + np.sin(els[i])*(w - np.abs(wts[i]))) x_grad = (2*(v_ar - vrs[i]) * np.cos(els[i]) * np.sin(azs[i]) * weights[i]) * lambda_o y_grad = (2*(v_ar - vrs[i]) * np.cos(els[i]) * np.cos(azs[i]) * weights[i]) * lambda_o z_grad = (2*(v_ar - vrs[i]) * np.sin(els[i]) * weights[i]) * lambda_o x_grad[els[i].mask] = 0 y_grad[els[i].mask] = 0 z_grad[els[i].mask] = 0 x_grad[azs[i].mask] = 0 y_grad[azs[i].mask] = 0 z_grad[azs[i].mask] = 0 x_grad[els[i].mask] = 0 x_grad[azs[i].mask] = 0 x_grad[vrs[i].mask] = 0 x_grad[wts[i].mask] = 0 y_grad[els[i].mask] = 0 y_grad[azs[i].mask] = 0 y_grad[vrs[i].mask] = 0 y_grad[wts[i].mask] = 0 z_grad[els[i].mask] = 0 z_grad[azs[i].mask] = 0 z_grad[vrs[i].mask] = 0 z_grad[wts[i].mask] = 0 p_x1 += x_grad p_y1 += y_grad p_z1 += z_grad # Impermeability condition p_z1[0, :, :] = 0 if(upper_bc is True): p_z1[-1, :, :] = 0 y = np.stack((p_x1, p_y1, p_z1), axis=0) return y.flatten() def calculate_smoothness_cost(u, v, w, Cx=1e-5, Cy=1e-5, Cz=1e-5): """ Calculates the smoothness cost function by taking the Laplacian of the wind field. All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field Cx: float Constant controlling smoothness in x-direction Cy: float Constant controlling smoothness in y-direction Cz: float Constant controlling smoothness in z-direction Returns ------- Js: float value of smoothness cost function """ du = np.zeros(w.shape) dv = np.zeros(w.shape) dw = np.zeros(w.shape) scipy.ndimage.filters.laplace(u, du, mode='wrap') scipy.ndimage.filters.laplace(v, dv, mode='wrap') scipy.ndimage.filters.laplace(w, dw, mode='wrap') return np.sum(Cx*du**2 + Cy*dv**2 + Cz*dw**2) def calculate_smoothness_gradient(u, v, w, Cx=1e-5, Cy=1e-5, Cz=1e-5, upper_bc=True): """ Calculates the gradient of the smoothness cost function by taking the Laplacian of the Laplacian of the wind field. All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field Cx: float Constant controlling smoothness in x-direction Cy: float Constant controlling smoothness in y-direction Cz: float Constant controlling smoothness in z-direction Returns ------- y: float array value of gradient of smoothness cost function """ du = np.zeros(w.shape) dv = np.zeros(w.shape) dw = np.zeros(w.shape) grad_u = np.zeros(w.shape) grad_v = np.zeros(w.shape) grad_w = np.zeros(w.shape) scipy.ndimage.filters.laplace(u, du, mode='wrap') scipy.ndimage.filters.laplace(v, dv, mode='wrap') scipy.ndimage.filters.laplace(w, dw, mode='wrap') scipy.ndimage.filters.laplace(du, grad_u, mode='wrap') scipy.ndimage.filters.laplace(dv, grad_v, mode='wrap') scipy.ndimage.filters.laplace(dw, grad_w, mode='wrap') # Impermeability condition grad_w[0, :, :] = 0 if(upper_bc is True): grad_w[-1, :, :] = 0 y = np.stack([grad_u*Cx*2, grad_v*Cy*2, grad_w*Cz*2], axis=0) return y.flatten() def calculate_point_cost(u, v, x, y, z, point_list, Cp=1e-3, roi=500.0): """ Calculates the cost function related to point observations. A mean square error cost function term is applied to points that are within the sphere of influence whose radius is determined by *roi*. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field x: Float array X coordinates of grid centers y: Float array Y coordinates of grid centers z: Float array Z coordinated of grid centers point_list: list of dicts List of point constraints. Each member is a dict with keys of "u", "v", to correspond to each component of the wind field and "x", "y", "z" to correspond to the location of the point observation. In addition, "site_id" gives the METAR code (or name) to the station. Cp: float The weighting coefficient of the point cost function. roi: float Radius of influence of observations Returns ------- J: float The cost function related to the difference between wind field and points. """ J = 0.0 for the_point in point_list: # Instead of worrying about whole domain, just find points in radius of influence # Since we know that the weight will be zero outside the sphere of influence anyways the_box = np.where(np.logical_and.reduce( (np.abs(x - the_point["x"]) < roi, np.abs(y - the_point["y"]) < roi, np.abs(z - the_point["z"]) < roi))) J += np.sum(((u[the_box] - the_point["u"])**2 + (v[the_box] - the_point["v"])**2)) return J * Cp def calculate_point_gradient(u, v, x, y, z, point_list, Cp=1e-3, roi=500.0): """ Calculates the gradient of the cost function related to point observations. A mean square error cost function term is applied to points that are within the sphere of influence whose radius is determined by *roi*. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field x: Float array X coordinates of grid centers y: Float array Y coordinates of grid centers z: Float array Z coordinated of grid centers point_list: list of dicts List of point constraints. Each member is a dict with keys of "u", "v", to correspond to each component of the wind field and "x", "y", "z" to correspond to the location of the point observation. In addition, "site_id" gives the METAR code (or name) to the station. Cp: float The weighting coefficient of the point cost function. roi: float Radius of influence of observations Returns ------- gradJ: float array The gradient of the cost function related to the difference between wind field and points. """ gradJ_u = np.zeros_like(u) gradJ_v = np.zeros_like(v) gradJ_w = np.zeros_like(u) for the_point in point_list: the_box = np.where(np.logical_and.reduce( (np.abs(x - the_point["x"]) < roi, np.abs(y - the_point["y"]) < roi, np.abs(z - the_point["z"]) < roi))) gradJ_u[the_box] += 2 * (u[the_box] - the_point["u"]) gradJ_v[the_box] += 2 * (v[the_box] - the_point["v"]) gradJ = np.stack([gradJ_u, gradJ_v, gradJ_w], axis=0).flatten() return gradJ * Cp def calculate_mass_continuity(u, v, w, z, dx, dy, dz, coeff=1500.0, anel=1): """ Calculates the mass continuity cost function by taking the divergence of the wind field. All arrays in the given lists must have the same dimensions and represent the same spatial coordinates. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field dx: float Grid spacing in x direction. dy: float Grid spacing in y direction. dz: float Grid spacing in z direction. z: Float array (1D) 1D Float array with heights of grid coeff: float Constant controlling contribution of mass continuity to cost function anel: int = 1 use anelastic approximation, 0=don't Returns ------- J: float value of mass continuity cost function """ dudx = np.gradient(u, dx, axis=2) dvdy = np.gradient(v, dy, axis=1) dwdz = np.gradient(w, dz, axis=0) if(anel == 1): rho = np.exp(-z/10000.0) drho_dz = np.gradient(rho, dz, axis=0) anel_term = w/rho*drho_dz else: anel_term = np.zeros(w.shape) return coeff*np.sum(np.square(dudx + dvdy + dwdz + anel_term))/2.0 def calculate_mass_continuity_gradient(u, v, w, z, dx, dy, dz, coeff=1500.0, anel=1, upper_bc=True): """ Calculates the gradient of mass continuity cost function. This is done by taking the negative gradient of the divergence of the wind field. All grids must have the same grid specification. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field z: Float array (1D) 1D Float array with heights of grid dx: float Grid spacing in x direction. dy: float Grid spacing in y direction. dz: float Grid spacing in z direction. coeff: float Constant controlling contribution of mass continuity to cost function anel: int = 1 use anelastic approximation, 0=don't Returns ------- y: float array value of gradient of mass continuity cost function """ dudx = np.gradient(u, dx, axis=2) dvdy = np.gradient(v, dy, axis=1) dwdz = np.gradient(w, dz, axis=0) if(anel == 1): rho = np.exp(-z/10000.0) drho_dz = np.gradient(rho, dz, axis=0) anel_term = w/rho*drho_dz else: anel_term = 0 div2 = dudx + dvdy + dwdz + anel_term grad_u = -np.gradient(div2, dx, axis=2)*coeff grad_v = -np.gradient(div2, dy, axis=1)*coeff grad_w = -np.gradient(div2, dz, axis=0)*coeff # Impermeability condition grad_w[0, :, :] = 0 if(upper_bc is True): grad_w[-1, :, :] = 0 y = np.stack([grad_u, grad_v, grad_w], axis=0) return y.flatten() def calculate_fall_speed(grid, refl_field=None, frz=4500.0): """ Estimates fall speed based on reflectivity. Uses methodology of <NAME> and <NAME> Parameters ---------- Grid: Py-ART Grid Py-ART Grid containing reflectivity to calculate fall speed from refl_field: str String containing name of reflectivity field. None will automatically determine the name. frz: float Height of freezing level in m Returns ------- 3D float array: Float array of terminal velocities """ # Parse names of velocity field if refl_field is None: refl_field = pyart.config.get_field_name('reflectivity') refl = grid.fields[refl_field]['data'] grid_z = grid.point_z['data'] term_vel = np.zeros(refl.shape) A = np.zeros(refl.shape) B = np.zeros(refl.shape) rho = np.exp(-grid_z/10000.0) A[np.logical_and(grid_z < frz, refl < 55)] = -2.6 B[np.logical_and(grid_z < frz, refl < 55)] = 0.0107 A[np.logical_and(grid_z < frz, np.logical_and(refl >= 55, refl < 60))] = -2.5 B[np.logical_and(grid_z < frz, np.logical_and(refl >= 55, refl < 60))] = 0.013 A[np.logical_and(grid_z < frz, refl > 60)] = -3.95 B[np.logical_and(grid_z < frz, refl > 60)] = 0.0148 A[np.logical_and(grid_z >= frz, refl < 33)] = -0.817 B[np.logical_and(grid_z >= frz, refl < 33)] = 0.0063 A[np.logical_and(grid_z >= frz, np.logical_and(refl >= 33, refl < 49))] = -2.5 B[np.logical_and(grid_z >= frz, np.logical_and(refl >= 33, refl < 49))] = 0.013 A[np.logical_and(grid_z >= frz, refl > 49)] = -3.95 B[np.logical_and(grid_z >= frz, refl > 49)] = 0.0148 fallspeed = A*np.power(10, refl*B)*np.power(1.2/rho, 0.4) del A, B, rho return fallspeed def calculate_background_cost(u, v, w, weights, u_back, v_back, Cb=0.01): """ Calculates the background cost function. The background cost function is simply the sum of the squared differences between the wind field and the background wind field multiplied by the weighting coefficient. Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field weights: Float array Weights for each point to consider into cost function u_back: 1D float array Zonal winds vs height from sounding w_back: 1D float array Meridional winds vs height from sounding Cb: float Weight of background constraint to total cost function Returns ------- cost: float value of background cost function """ the_shape = u.shape cost = 0 for i in range(the_shape[0]): cost += (Cb*np.sum(np.square(u[i]-u_back[i])*(weights[i]) + np.square(v[i]-v_back[i])*(weights[i]))) return cost def calculate_background_gradient(u, v, w, weights, u_back, v_back, Cb=0.01): """ Calculates the gradient of the background cost function. For each u, v this is given as 2*coefficent*(analysis wind - background wind). Parameters ---------- u: Float array Float array with u component of wind field v: Float array Float array with v component of wind field w: Float array Float array with w component of wind field weights: Float array Weights for each point to consider into cost function u_back: 1D float array Zonal winds vs height from sounding w_back: 1D float array Meridional winds vs height from sounding Cb: float Weight of background constraint to total cost function Returns ------- y: float array value of gradient of background cost function """ the_shape = u.shape u_grad = np.zeros(the_shape) v_grad = np.zeros(the_shape) w_grad = np.zeros(the_shape) for i in range(the_shape[0]): u_grad[i] = Cb*2*(u[i]-u_back[i])*(weights[i]) v_grad[i] = Cb*2*(v[i]-v_back[i])*(weights[i]) y = np.stack([u_grad, v_grad, w_grad], axis=0) return y.flatten() def calculate_vertical_vorticity_cost(u, v, w, dx, dy, dz, Ut, Vt, coeff=1e-5): """ Calculates the cost function due to deviance from vertical vorticity equation. For more information of the vertical vorticity cost function, see Potvin et al. (2012) and Shapiro et al. (2009). Parameters ---------- u: 3D array Float array with u component of wind field v: 3D array Float array with v component of wind field w: 3D array Float array with w component of wind field dx: float array Spacing in x grid dy: float array Spacing in y grid dz: float array Spacing in z grid coeff: float Weighting coefficient Ut: float U component of storm motion Vt: float V component of storm motion Returns ------- Jv: float Value of vertical vorticity cost function. References ---------- Potvin, C.K., <NAME>, and <NAME>, 2012: Impact of a Vertical Vorticity Constraint in Variational Dual-Doppler Wind Analysis: Tests with Real and Simulated Supercell Data. J. Atmos. Oceanic Technol., 29, 32–49, https://doi.org/10.1175/JTECH-D-11-00019.1 <NAME>., <NAME>, and <NAME>, 2009: Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis. J. Atmos. Oceanic Technol., 26, 2089–2106, https://doi.org/10.1175/2009JTECHA1256.1 """ dvdz = np.gradient(v, dz, axis=0) dudz = np.gradient(u, dz, axis=0) dwdz = np.gradient(w, dx, axis=2) dvdx = np.gradient(v, dx, axis=2) dwdy = np.gradient(w, dy, axis=1) dwdx = np.gradient(w, dx, axis=2) dudx = np.gradient(u, dx, axis=2) dvdy = np.gradient(v, dy, axis=2) dudy = np.gradient(u, dy, axis=1) zeta = dvdx - dudy dzeta_dx = np.gradient(zeta, dx, axis=2) dzeta_dy = np.gradient(zeta, dy, axis=1) dzeta_dz = np.gradient(zeta, dz, axis=0) jv_array = ((u - Ut) * dzeta_dx + (v - Vt) * dzeta_dy + w * dzeta_dz + (dvdz * dwdx - dudz * dwdy) + zeta * (dudx + dvdy)) return np.sum(coeff*jv_array**2) def calculate_vertical_vorticity_gradient(u, v, w, dx, dy, dz, Ut, Vt, coeff=1e-5): """ Calculates the gradient of the cost function due to deviance from vertical vorticity equation. This is done by taking the functional derivative of the vertical vorticity cost function. Parameters ---------- u: 3D array Float array with u component of wind field v: 3D array Float array with v component of wind field w: 3D array Float array with w component of wind field dx: float array Spacing in x grid dy: float array Spacing in y grid dz: float array Spacing in z grid Ut: float U component of storm motion Vt: float V component of storm motion coeff: float Weighting coefficient Returns ------- Jv: 1D float array Value of the gradient of the vertical vorticity cost function. References ---------- <NAME>., <NAME>, and <NAME>, 2012: Impact of a Vertical Vorticity Constraint in Variational Dual-Doppler Wind Analysis: Tests with Real and Simulated Supercell Data. J. Atmos. Oceanic Technol., 29, 32–49, https://doi.org/10.1175/JTECH-D-11-00019.1 <NAME>., <NAME>, and <NAME>, 2009: Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis. J. Atmos. Oceanic Technol., 26, 2089–2106, https://doi.org/10.1175/2009JTECHA1256.1 """ # First derivatives dvdz = np.gradient(v, dz, axis=0) dudz = np.gradient(u, dz, axis=0) dwdy = np.gradient(w, dy, axis=1) dudx = np.gradient(u, dx, axis=2) dvdy = np.gradient(v, dy, axis=2) dwdx = np.gradient(w, dx, axis=2) dvdx = np.gradient(v, dx, axis=2) dwdx = np.gradient(w, dx, axis=2) dudz = np.gradient(u, dz, axis=0) dudy = np.gradient(u, dy, axis=1) zeta = dvdx - dudy dzeta_dx = np.gradient(zeta, dx, axis=2) dzeta_dy = np.gradient(zeta, dy, axis=1) dzeta_dz = np.gradient(zeta, dz, axis=0) # Second deriviatives dwdydz = np.gradient(dwdy, dz, axis=0) dwdxdz = np.gradient(dwdx, dz, axis=0) dudzdy = np.gradient(dudz, dy, axis=1) dvdxdy = np.gradient(dvdx, dy, axis=1) dudx2 = np.gradient(dudx, dx, axis=2) dudxdy = np.gradient(dudx, dy, axis=1) dudxdz =
np.gradient(dudx, dz, axis=0)
numpy.gradient
#%% """Demonstrate the effect of compressing the number of thresholds of a random forest.""" import sys from numpy.linalg import LinAlgError from tqdm import tqdm import os.path import numpy as np import xgboost as xgb sys.path.insert(1, "..") from datasets import load_data import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error, log_loss from ttml.ttml import TTML from ttml.tt_rlinesearch import TTLS from ttml.forest_compression import compress_forest_thresholds from sklearn.ensemble import ( RandomForestRegressor, RandomForestClassifier, ) import scipy.special import matplotlib.pyplot as plt dataset_name = "airfoil" DATASET_FOLDER = "../datasets/data" dataset = load_data.dataset_loaders[dataset_name](DATASET_FOLDER) X = dataset["X"] y = dataset["y"] X_train, X_val, y_train, y_val = train_test_split( X.astype(float), y.astype(float), test_size=0.2, random_state=179, ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_val = scaler.transform(X_val) max_leaf_nodes = 100 max_depth = None if dataset["regression"]: forest_estim = RandomForestRegressor task = "regression" metric = mean_squared_error else: forest_estim = RandomForestClassifier task = "classification" metric = log_loss forest = forest_estim( n_estimators=128, max_leaf_nodes=max_leaf_nodes, max_depth=max_depth, ) forest.fit(X_train, y_train) # %% # %% # %%_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error, log_loss from ttml.ttml import TTML from ttml.tt_rlinesearch import TTLS from ttml.forest_compression import compress_forest_thresholds from sklearn.ensemble import ( RandomForestRegressor, RandomForestClassifier, ) import scipy.special import matplotlib.pyplot as plt dataset_name = "airfoil" DATASET_FOLDER = "../datasets/data" dataset = load_data.dataset_loaders[dataset_name](DATASET_FOLDER) X = dataset["X"] y = dataset["y"] X_train, X_val, y_train, y_val = train_test_split( X.astype(float), y.astype(float), test_size=0.2, random_state=179, ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_val = scaler.transform(X_val) max_leaf_nodes = 100 max_depth = None if dataset["regression"]: forest_estim = RandomForestRegressor task = "regression" metric = mean_squared_error else: forest_estim = RandomForestClassifier task = "classification" metric = log_loss forest = forest_estim( n_estimators=128, max_leaf_nodes=max_leaf_nodes, max_depth=max_depth, ) forest.fit(X_train, y_train) def val_loss(forest): loss = metric(y_val, forest.predict(X_val)) return loss uncompresed_loss = val_loss(forest) # %% num_thresholds =
np.arange(10, 100)
numpy.arange
import numpy as np from numpy import einsum from .MaterialBase import Material from Florence.Tensor import trace, Voigt class TranservselyIsotropicHyperElastic(Material): """A compressible transervely isotropic model with the isotropic part being Mooney-Rivlin The energy is given by: W(C) = gamma * ( alpha*(C:I) + beta*(G:I) ) + eta*(1-alpha)*( (N C N)**2 + N G N) - ut*J + lambda/2*(J-1)**2 ut = 2.*gamma*(alpha+2.0*beta) + 2.*(1. - gamma)*eta # for the stress to be zero at the origin the parameter "gamma" controls the amount of anisotropy and the vector N(ndim,1) is the direction of anisotropy """ def __init__(self, ndim, **kwargs): mtype = type(self).__name__ super(TranservselyIsotropicHyperElastic, self).__init__(mtype, ndim, **kwargs) self.ndim = ndim self.nvar = self.ndim self.is_transversely_isotropic = True self.is_nonisotropic = True self.energy_type = "internal_energy" self.nature = "nonlinear" self.fields = "mechanics" if self.ndim==3: self.H_VoigtSize = 6 elif self.ndim==2: self.H_VoigtSize = 3 # LOW LEVEL DISPATCHER self.has_low_level_dispatcher = False self.gamma = 0.5 def Hessian(self,StrainTensors,ElectricFieldx=0,elem=0,gcounter=0): # Get material constants (5 in this case) E = self.E E_A = self.E_A v = self.nu I = StrainTensors['I'] J = StrainTensors['J'][gcounter] b = StrainTensors['b'][gcounter] F = StrainTensors['F'][gcounter] H = J*np.linalg.inv(F).T N = self.anisotropic_orientations[elem][:,None] FN = np.dot(F,N)[:,0] HN = np.dot(H,N)[:,0] innerFN = einsum('i,i',FN,FN) innerHN = einsum('i,i',HN,HN) outerHN = einsum('i,j',HN,HN) gamma = self.gamma lamb = -(E_A*E*v)/(2.*E*v**2 + E_A*v - E_A) ut = (E**2*v**2 + E_A*E*v**2 + E_A*E*v - E_A*E)/(2*(v + 1)*(2*E*v**2 + E_A*v - E_A)) beta = 0. eta_1 = (E_A**2*v**2 - E_A**2 - 2*E_A*E*v**2 + E_A*E + E**2*v**2)/(4*(gamma - 1)*(v + 1)*(2*E*v**2 + E_A*v - E_A)) eta_2 = -(E_A**2*v - E_A**2 + E_A*E - E_A*E*v)/(4*(gamma - 1)*(2*E*v**2 + E_A*v - E_A)) alpha = ut - 4*gamma*beta - 2*(1-gamma)*eta_1 - 2*(1-gamma)*eta_2 alpha = alpha/2./gamma eta = [eta_1,eta_2] H_Voigt = 2.*gamma*beta/J* ( 2.0*einsum('ij,kl',b,b) - einsum('ik,jl',b,b) - einsum('il,jk',b,b) ) - \ (- lamb*(2.*J-1.) ) *einsum('ij,kl',I,I) + \ (ut - lamb*(J-1.) ) * ( einsum('ik,jl',I,I) + einsum('il,jk',I,I) ) for m in range(2,4): H_Voigt += self.TransverseHessianNCN(StrainTensors,m,eta[m-2],gamma,FN,innerFN,elem,gcounter) H_Voigt += self.TransverseHessianNGN(StrainTensors,1.,eta_1,gamma,HN,innerHN,elem,gcounter) H_Voigt += self.TransverseHessianNGN(StrainTensors,1.,eta_2,gamma,HN,innerHN,elem,gcounter) H_Voigt = Voigt(H_Voigt ,1) self.H_VoigtSize = H_Voigt.shape[0] return H_Voigt def TransverseHessianNCN(self,StrainTensors,m,eta,gamma,FN,innerFN,elem,gcounter): I = StrainTensors['I'] J = StrainTensors['J'][gcounter] H_VoigtNCN = 4.*(1-gamma)*eta/J *(m-1)*(innerFN)**(m-2)*einsum('i,j,k,l',FN,FN,FN,FN) return H_VoigtNCN def TransverseHessianNGN(self,StrainTensors,n,eta,gamma,HN,innerHN,elem,gcounter): I = StrainTensors['I'] J = StrainTensors['J'][gcounter] H_VoigtNGN = 4.*(1-gamma)*eta/J * ( n*(innerHN)**n * einsum('ij,kl',I,I) - \ 0.5*(innerHN)**n * ( einsum('ik,jl',I,I) + einsum('il,jk',I,I) ) - \ n*(innerHN)**(n-1)* ( einsum('ij,k,l',I,HN,HN) + einsum('i,j,kl',HN,HN,I) ) + \ (n-1.)*(innerHN)**(n-2)* einsum('i,j,k,l',HN,HN,HN,HN) ) + \ 2.*(1-gamma)*eta/J *(innerHN)**(n-1)* (
einsum('il,j,k',I,HN,HN)
numpy.einsum
""" Copyright (c) Facebook, Inc. and its affiliates. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ """ Definition of PyTorch "Dataset" that iterates through compressed videos and return compressed representations (I-frames, motion vectors, or residuals) for training or testing. """ import os import os.path import random import numpy as np import torch import torch.utils.data as data from coviar import get_num_frames from coviar import load from transforms import color_aug from PIL import Image from skimage.measure import block_reduce from scipy import interpolate import logging logging.basicConfig(level=logging.DEBUG) GOP_SIZE = 12 def video_path_to_flow_path(flow_root, video_path): # example: tmp = video_path.split('/') return os.path.join(flow_root, tmp[-2], tmp[-1][:-4]) def clip_and_scale(img, bound): img = img.astype(np.float) img *= 127.5 / bound return img def get_seg_range(n, num_segments, seg, representation): if representation in ['residual', 'mv', 'flow']: n -= 1 seg_size = float(n - 1) / num_segments seg_begin = int(np.round(seg_size * seg)) seg_end = int(np.round(seg_size * (seg+1))) if seg_end == seg_begin: seg_end = seg_begin + 1 if representation in ['residual', 'mv', 'flow']: # Exclude the 0-th frame, because it's an I-frmae. return seg_begin + 1, seg_end + 1 return seg_begin, seg_end def get_gop_pos(frame_idx, representation): """given frame idx to find the group idx and the position inside a group""" gop_index = frame_idx // GOP_SIZE gop_pos = frame_idx % GOP_SIZE if representation in ['residual', 'mv', 'flow']: if gop_pos == 0: # use the previous frame's residual and MV if it's iframe gop_index -= 1 gop_pos = GOP_SIZE - 1 else: gop_pos = 0 # indeed find the iframe rather than rgb frame in the middle of GOP return gop_index, gop_pos class CoviarDataSet(data.Dataset): def __init__(self, data_root, flow_root, data_name, video_list, representation, new_length, flow_ds_factor, upsample_interp, transform, num_segments, is_train, accumulate, gop, mv_minmaxnorm=0, viz=False, flow_folder='tvl1'): self._data_root = data_root self._flow_root = flow_root self._data_name = data_name self._num_segments = num_segments self._representation = representation self._new_length = new_length self._flow_ds_factor = flow_ds_factor self._upsample_interp = upsample_interp self._mv_minmaxnorm = mv_minmaxnorm self._transform = transform self._is_train = is_train self._accumulate = accumulate self._viz = viz self._flow_folder = flow_folder global GOP_SIZE GOP_SIZE = gop self._input_mean = torch.from_numpy( np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))).float() self._input_std = torch.from_numpy( np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))).float() self._load_list(video_list) def _load_list(self, video_list): self._video_list = [] with open(video_list, 'r') as f: for line in f: video, _, label = line.strip().split() video_path = os.path.join(self._data_root, video[:-4] + '.mp4') flow_path = video_path_to_flow_path(self._flow_root, video_path) self._video_list.append(( video_path, int(label), min(get_num_frames(video_path),len(os.listdir(flow_path))/3))) print('%d videos loaded.' % len(self._video_list)) def _get_train_frame_index(self, num_frames, seg): # Compute the range of the segment. seg_begin, seg_end = get_seg_range(num_frames, self._num_segments, seg, representation=self._representation) # Sample one frame from the segment. v_frame_idx = random.randint(seg_begin, seg_end - 1) return get_gop_pos(v_frame_idx, self._representation) def _get_test_frame_index(self, num_frames, seg): if self._representation in ['mv', 'residual', 'flow']: num_frames -= 1 seg_size = float(num_frames - 1) / self._num_segments v_frame_idx = int(np.round(seg_size * (seg + 0.5))) if self._representation in ['mv', 'residual', 'flow']: v_frame_idx += 1 return get_gop_pos(v_frame_idx, self._representation) def __getitem__(self, index): if self._representation == 'mv': representation_idx = 1 elif self._representation == 'residual': representation_idx = 2 else: representation_idx = 0 if self._is_train: video_path, label, num_frames = random.choice(self._video_list) else: video_path, label, num_frames = self._video_list[index] frames = [] idx_first = -99999 for seg in range(self._num_segments): if self._is_train: gop_index, gop_pos = self._get_train_frame_index(num_frames, seg) else: gop_index, gop_pos = self._get_test_frame_index(num_frames, seg) flow_path = video_path_to_flow_path(self._flow_root, video_path) if self._flow_folder == 'tvl1': flow_tmpl = 'flow_{0}_{1:05d}.jpg' idx = gop_index * GOP_SIZE + gop_pos + 1 if idx_first == -99999: idx_first = idx # read the corresponding pre-computed optical flow along x and y dimension x_img = np.array(Image.open(os.path.join(flow_path, flow_tmpl.format('x', idx))).convert('L')) y_img = np.array(Image.open(os.path.join(flow_path, flow_tmpl.format('y', idx))).convert('L')) flow = np.stack([x_img, y_img], axis=-1) if flow is None: print('Error: loading flow %s failed.' % video_path) # load MV and data pre-processing mv = load(video_path, gop_index, gop_pos, representation_idx, self._accumulate) if mv is None: print('Error: loading video %s failed.' % video_path) mv = np.zeros((256, 256, 2)) if self._representation == 'mv' else np.zeros((256, 256, 3)) else: if self._representation == 'mv': if self._mv_minmaxnorm == 1: mv = clip_and_scale(mv, 20) # scale values from +-20 to +-127.5 mv += 128 mv = (np.minimum(
np.maximum(mv, 0)
numpy.maximum
''' Created on Nov 25, 2011 @author: cryan Code for numerical optimal control. ''' import numpy as np from numpy import sin,cos from copy import deepcopy from scipy.constants import pi from scipy.linalg import expm from scipy.linalg import eigh from scipy.optimize import fmin_l_bfgs_b import matplotlib.pyplot as plt from PulseSequence import PulseSequence from QuantumSystems import Hamiltonian from Evolution import expm_eigen #Try to load the CPPBackEnd try: import PySim.CySim CPPBackEnd = True except ImportError: CPPBackEnd = False class PulseParams(PulseSequence): ''' For now just a container for pulse optimization parameters. Subclasses a PulseSequence as it has to define similar things. ''' def __init__(self): super(PulseParams, self).__init__() self.numChannels = 0 self.numPoints = 0 self.startControlAmps = None #Initial guess for the pulse self.fTol = 1e-4 #optimization paramter: will exit when difference in fidelity is less than this. self.maxfun = 15000 self.derivType = 'approx' self.optimType = 'unitary' #uniary or state2state optimization self.Ugoal = None self.rhoStart = None self.rhoGoal = None @property def dim(self): if self.Ugoal is not None: return self.Ugoal.shape[0] else: if self.rhoStart is not None: return self.rhoStart.shape[0] else: return 0 def create_random_pulse(numChannels, numPoints): ''' Helper function to create smooth pulse starting point. ''' #TODO: return something besides ones return 2e6*np.ones((numChannels, numPoints)) def calc_control_Hams(optimParams, systemParams): ''' A helper function to calculate the control Hamiltonians in the interaction frame. This only needs to be done once per opimization. ''' #We'll store them in a numControlHamsxnumTimeSteps array controlHams = np.zeros((systemParams.numControlHams, optimParams.numTimeSteps, systemParams.dim, systemParams.dim), dtype = np.complex128) #Now loop over each timestep curTime = 0.0 for timect, timeStep in enumerate(optimParams.timeSteps): #Loop over each of the control Hamiltonians for controlct, tmpControl in enumerate(optimParams.controlLines): tmpPhase = 2*pi*tmpControl.freq*curTime + tmpControl.phase if tmpControl.controlType == 'rotating': tmpHam = Hamiltonian(cos(tmpPhase)*systemParams.controlHams[controlct]['inphase'].matrix + sin(tmpPhase)*systemParams.controlHams[controlct]['quadrature'].matrix) elif tmpControl.controlType == 'sinusoidal': tmpHam = Hamiltonian(cos(tmpPhase)*systemParams.controlHams[controlct]['inphase']) else: raise KeyError('Unknown control type.') if optimParams.H_int is not None: #Move the total Hamiltonian into the interaction frame tmpHam.calc_interaction_frame(optimParams.H_int, curTime) controlHams[controlct, timect] = tmpHam.interactionMatrix + optimParams.H_int.matrix else: #Just store the matrix controlHams[controlct, timect] = tmpHam.matrix #Update the times curTime += timeStep return controlHams def evolution_unitary(optimParams, systemParams, controlHams): ''' Main function for evolving a state under unitary conditions ''' totU = np.eye(systemParams.dim) timeStepUs = np.zeros((optimParams.timeSteps.size, systemParams.dim, systemParams.dim), dtype=np.complex128) Vs = np.zeros((optimParams.timeSteps.size, systemParams.dim, systemParams.dim), dtype=np.complex128) Ds = np.zeros((optimParams.timeSteps.size, systemParams.dim), dtype=np.float64) totHams = np.zeros_like(timeStepUs) #Loop over each timestep in the sequence curTime = 0.0 for timect, timeStep in enumerate(optimParams.timeSteps): #Initialize the Hamiltonian to the drift Hamiltonian Htot = deepcopy(systemParams.Hnat) if optimParams.H_int is not None: #Move the total Hamiltonian into the interaction frame Htot.calc_interaction_frame(optimParams.H_int, curTime) Htot.matrix =
np.copy(Htot.interactionMatrix)
numpy.copy
# pylint: disable=redefined-outer-name """ Tests contour. """ import os import numpy as np import pandas as pd import pytest import xarray as xr from pygmt import Figure TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data") POINTS_DATA = os.path.join(TEST_DATA_DIR, "points.txt") @pytest.fixture(scope="module") def data(): """ Load the point data from the test file. """ return pd.read_table(POINTS_DATA, header=None, sep=r"\s+") @pytest.fixture(scope="module") def region(): """ The data region. """ return [10, 70, -5, 10] @pytest.mark.mpl_image_compare def test_contour_vec(region): """ Plot an x-centered gaussian kernel with different y scale. """ fig = Figure() x, y = np.meshgrid(
np.linspace(region[0], region[1])
numpy.linspace
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn.init import xavier_uniform_ class Scholar(object): def __init__(self, config, alpha=1.0, learning_rate=0.001, init_embeddings=None, update_embeddings=True, init_bg=None, update_background=True, adam_beta1=0.99, adam_beta2=0.999, device=None, seed=None, classify_from_covars=True): """ Create the model :param config: a dictionary with the model configuration :param alpha: hyperparameter for the document representation prior :param learning_rate: learning rate for Adam :param init_embeddings: a matrix of embeddings to initialize the first layer of the bag-of-words encoder :param update_embeddings: if True, update word embeddings during training :param init_bg: a vector of empirical log backgound frequencies :param update_background: if True, update the background term during training :param adam_beta1: first hyperparameter for Adam :param adam_beta2: second hyperparameter for Adam :param device: (int) the number of the GPU to use """ if seed is not None: torch.manual_seed(seed) torch.backends.cudnn.deterministic = True self.network_architecture = config self.learning_rate = learning_rate self.adam_beta1 = adam_beta1 self.update_embeddings = update_embeddings self.update_background = update_background # create priors on the hidden state self.n_topics = (config["n_topics"]) if device is None: self.device = 'cpu' else: self.device = 'cuda:' + str(device) # interpret alpha as either a (symmetric) scalar prior or a vector prior if np.array(alpha).size == 1: # if alpha is a scalar, create a symmetric prior vector self.alpha = alpha * np.ones((1, self.n_topics)).astype(np.float32) else: # otherwise use the prior as given self.alpha = np.array(alpha).astype(np.float32) assert len(self.alpha) == self.n_topics # create the pyTorch model self._model = torchScholar(config, self.alpha, update_embeddings, init_emb=init_embeddings, bg_init=init_bg, device=self.device, classify_from_covars=classify_from_covars).to(self.device) # set the criterion self.criterion = nn.BCEWithLogitsLoss() # create the optimizer grad_params = filter(lambda p: p.requires_grad, self._model.parameters()) self.optimizer = optim.Adam(grad_params, lr=learning_rate, betas=(adam_beta1, adam_beta2)) def fit(self, X, Y, PC, TC, eta_bn_prop=1.0, l1_beta=None, l1_beta_c=None, l1_beta_ci=None): """ Fit the model to a minibatch of data :param X: np.array of document word counts [batch size x vocab size] :param Y: np.array of labels [batch size x n_labels] :param PC: np.array of prior covariates influencing the document-topic prior [batch size x n_prior_covars] :param TC: np.array of topic covariates to be associated with topical deviations [batch size x n_topic_covars] :param l1_beta: np.array of prior variances on the topic weights :param l1_beta_c: np.array of prior variances on the weights for topic covariates :param l1_beta_ci: np.array of prior variances on the weights for topic-covariate interactions :return: loss; label pred probs; document representations; neg-log-likelihood; KLD """ # move data to device X = torch.Tensor(X).to(self.device) if Y is not None: Y = torch.Tensor(Y).to(self.device) if PC is not None: PC = torch.Tensor(PC).to(self.device) if TC is not None: TC = torch.Tensor(TC).to(self.device) self.optimizer.zero_grad() # do a forward pass thetas, X_recon, Y_probs, losses = self._model(X, Y, PC, TC, eta_bn_prop=eta_bn_prop, l1_beta=l1_beta, l1_beta_c=l1_beta_c, l1_beta_ci=l1_beta_ci) loss, nl, kld = losses # update model loss.backward() self.optimizer.step() if Y_probs is not None: Y_probs = Y_probs.to('cpu').detach().numpy() return loss.to('cpu').detach().numpy(), Y_probs, thetas.to('cpu').detach().numpy(), nl.to('cpu').detach().numpy(), kld.to('cpu').detach().numpy() def predict(self, X, PC, TC, eta_bn_prop=0.0): """ Predict labels for a minibatch of data """ # input a vector of all zeros in place of the labels that the model has been trained on batch_size = self.get_batch_size(X) Y = np.zeros((batch_size, self.network_architecture['n_labels'])).astype('float32') X = torch.Tensor(X).to(self.device) Y = torch.Tensor(Y).to(self.device) if PC is not None: PC = torch.Tensor(PC).to(self.device) if TC is not None: TC = torch.Tensor(TC).to(self.device) theta, _, Y_recon, _ = self._model(X, Y, PC, TC, do_average=False, var_scale=0.0, eta_bn_prop=eta_bn_prop) return theta, Y_recon.to('cpu').detach().numpy() def predict_from_topics(self, theta, PC, TC, eta_bn_prop=0.0): """ Predict label probabilities from each topic """ theta = torch.Tensor(theta) if PC is not None: PC = torch.Tensor(PC) if TC is not None: TC = torch.Tensor(TC) probs = self._model.predict_from_theta(theta, PC, TC) return probs.to('cpu').detach().numpy() def get_losses(self, X, Y, PC, TC, eta_bn_prop=0.0, n_samples=0): """ Compute and return the loss values for all instances in X, Y, PC, and TC averaged over multiple samples """ batch_size = self.get_batch_size(X) if batch_size == 1: X = np.expand_dims(X, axis=0) if Y is not None and batch_size == 1: Y = np.expand_dims(Y, axis=0) if PC is not None and batch_size == 1: PC = np.expand_dims(PC, axis=0) if TC is not None and batch_size == 1: TC = np.expand_dims(TC, axis=0) X = torch.Tensor(X).to(self.device) if Y is not None: Y = torch.Tensor(Y).to(self.device) if PC is not None: PC = torch.Tensor(PC).to(self.device) if TC is not None: TC = torch.Tensor(TC).to(self.device) if n_samples == 0: _, _, _, temp = self._model(X, Y, PC, TC, do_average=False, var_scale=0.0, eta_bn_prop=eta_bn_prop) loss, NL, KLD = temp losses = loss.to('cpu').detach().numpy() else: _, _, _, temp = self._model(X, Y, PC, TC, do_average=False, var_scale=1.0, eta_bn_prop=eta_bn_prop) loss, NL, KLD = temp losses = loss.to('cpu').detach().numpy() for s in range(1, n_samples): _, _, _, temp = self._model(X, Y, PC, TC, do_average=False, var_scale=1.0, eta_bn_prop=eta_bn_prop) loss, NL, KLD = temp losses += loss.to('cpu').detach().numpy() losses /= float(n_samples) return losses def compute_theta(self, X, Y, PC, TC, eta_bn_prop=0.0): """ Return the latent document representation (mean of posterior of theta) for a given batch of X, Y, PC, and TC """ batch_size = self.get_batch_size(X) if batch_size == 1: X = np.expand_dims(X, axis=0) if Y is not None and batch_size == 1: Y = np.expand_dims(Y, axis=0) if PC is not None and batch_size == 1: PC = np.expand_dims(PC, axis=0) if TC is not None and batch_size == 1: TC = np.expand_dims(TC, axis=0) X = torch.Tensor(X).to(self.device) if Y is not None: Y = torch.Tensor(Y).to(self.device) if PC is not None: PC = torch.Tensor(PC).to(self.device) if TC is not None: TC = torch.Tensor(TC).to(self.device) theta, _, _, _ = self._model(X, Y, PC, TC, do_average=False, var_scale=0.0, eta_bn_prop=eta_bn_prop) return theta.to('cpu').detach().numpy() def get_weights(self): """ Return the topic-vocabulary deviation weights """ emb = self._model.beta_layer.to('cpu').weight.detach().numpy().T self._model.beta_layer.to(self.device) return emb def get_bg(self): """ Return the background terms """ bg = self._model.beta_layer.to('cpu').bias.detach().numpy() self._model.beta_layer.to(self.device) return bg def get_prior_weights(self): """ Return the weights associated with the prior covariates """ emb = self._model.prior_covar_weights.to('cpu').weight.detach().numpy().T self._model.prior_covar_weights.to(self.device) return emb def get_covar_weights(self): """ Return the topic weight (deviations) associated with the topic covariates """ emb = self._model.beta_c_layer.to('cpu').weight.detach().numpy().T self._model.beta_c_layer.to(self.device) return emb def get_covar_interaction_weights(self): """ Return the weights (deviations) associated with the topic-covariate interactions """ emb = self._model.beta_ci_layer.to('cpu').weight.detach().numpy().T self._model.beta_ci_layer.to(self.device) return emb def get_batch_size(self, X): """ Get the batch size for a minibatch of data :param X: the minibatch :return: the size of the minibatch """ if len(X.shape) == 1: batch_size = 1 else: batch_size, _ = X.shape return batch_size def eval(self): self._model.eval() def train(self): self._model.train() class torchScholar(nn.Module): def __init__(self, config, alpha, update_embeddings=True, init_emb=None, bg_init=None, device='cpu', classify_from_covars=False): super(torchScholar, self).__init__() # load the configuration self.vocab_size = config['vocab_size'] self.words_emb_dim = config['embedding_dim'] self.n_topics = config['n_topics'] self.n_labels = config['n_labels'] self.n_prior_covars = config['n_prior_covars'] self.n_topic_covars = config['n_topic_covars'] self.classifier_layers = config['classifier_layers'] self.use_interactions = config['use_interactions'] self.l1_beta_reg = config['l1_beta_reg'] self.l1_beta_c_reg = config['l1_beta_c_reg'] self.l1_beta_ci_reg = config['l1_beta_ci_reg'] self.l2_prior_reg = config['l2_prior_reg'] self.classification_loss_coef = config['classification_loss_coef'] self.reconstr_loss_coef = config['reconstr_loss_coef'] self.kl_loss_coef = config['kl_loss_coef'] self.device = device self.classify_from_covars = classify_from_covars # create a layer for prior covariates to influence the document prior if self.n_prior_covars > 0: self.prior_covar_weights = nn.Linear(self.n_prior_covars, self.n_topics, bias=False) else: self.prior_covar_weights = None # create the encoder self.embeddings_x_layer = nn.Linear(self.vocab_size, self.words_emb_dim, bias=False) emb_size = self.words_emb_dim classifier_input_dim = self.n_topics if self.n_prior_covars > 0: emb_size += self.n_prior_covars if self.classify_from_covars: classifier_input_dim += self.n_prior_covars if self.n_topic_covars > 0: emb_size += self.n_topic_covars if self.classify_from_covars: classifier_input_dim += self.n_topic_covars if self.n_labels > 0: emb_size += self.n_labels self.encoder_dropout_layer = nn.Dropout(p=0.2) if not update_embeddings: self.embeddings_x_layer.weight.requires_grad = False if init_emb is not None: self.embeddings_x_layer.weight.data.copy_(torch.from_numpy(init_emb)).to(self.device) else: xavier_uniform_(self.embeddings_x_layer.weight) # create the mean and variance components of the VAE self.mean_layer = nn.Linear(emb_size, self.n_topics) self.logvar_layer = nn.Linear(emb_size, self.n_topics) self.mean_bn_layer = nn.BatchNorm1d(self.n_topics, eps=0.001, momentum=0.001, affine=True) self.mean_bn_layer.weight.data.copy_(torch.from_numpy(np.ones(self.n_topics))).to(self.device) self.mean_bn_layer.weight.requires_grad = False self.logvar_bn_layer = nn.BatchNorm1d(self.n_topics, eps=0.001, momentum=0.001, affine=True) self.logvar_bn_layer.weight.data.copy_(torch.from_numpy(np.ones(self.n_topics))).to(self.device) self.logvar_bn_layer.weight.requires_grad = False self.z_dropout_layer = nn.Dropout(p=0.2) # create the decoder self.beta_layer = nn.Linear(self.n_topics, self.vocab_size) xavier_uniform_(self.beta_layer.weight) if bg_init is not None: self.beta_layer.bias.data.copy_(torch.from_numpy(bg_init)) self.beta_layer.bias.requires_grad = False self.beta_layer = self.beta_layer.to(self.device) if self.n_topic_covars > 0: self.beta_c_layer = nn.Linear(self.n_topic_covars, self.vocab_size, bias=False).to(self.device) if self.use_interactions: self.beta_ci_layer = nn.Linear(self.n_topics * self.n_topic_covars, self.vocab_size, bias=False).to(self.device) # create the classifier if self.n_labels > 0: if self.classifier_layers == 0: self.classifier_layer_0 = nn.Linear(classifier_input_dim, self.n_labels).to(self.device) else: self.classifier_layer_0 = nn.Linear(classifier_input_dim, classifier_input_dim).to(self.device) self.classifier_layer_1 = nn.Linear(classifier_input_dim, self.n_labels).to(self.device) # create a final batchnorm layer self.eta_bn_layer = nn.BatchNorm1d(self.vocab_size, eps=0.001, momentum=0.001, affine=True).to(self.device) self.eta_bn_layer.weight.data.copy_(torch.from_numpy(np.ones(self.vocab_size)).to(self.device)) self.eta_bn_layer.weight.requires_grad = False # create the document prior terms prior_mean = (np.log(alpha).T - np.mean(np.log(alpha), 1)).T prior_var = (((1.0 / alpha) * (1 - (2.0 / self.n_topics))).T + (1.0 / (self.n_topics * self.n_topics)) *
np.sum(1.0 / alpha, 1)
numpy.sum
""" Runs a model on a single node across multiple gpus. """ import os from pathlib import Path import torch import numpy as np import torch.nn.functional as F import scipy.io as sio import matplotlib.pyplot as plt import configargparse from src.DeepRegression import Model TOL = 1e-14 def main(hparams): if hparams.gpu == 0: device = torch.device("cpu") else: ngpu = "cuda:" + str(hparams.gpu - 1) print(ngpu) device = torch.device(ngpu) model = Model(hparams).to(device) print(hparams) print() # Model loading model_path = os.path.join( f"lightning_logs/version_" + hparams.test_check_num, "checkpoints/" ) ckpt = list(Path(model_path).glob("*.ckpt"))[0] print(ckpt) model = model.load_from_checkpoint(str(ckpt)) model.eval() model.to(device) mae_test = [] # Testing Set root = hparams.data_root test_list = hparams.test_list file_path = os.path.join(root, test_list) test_name = os.path.splitext(os.path.basename(test_list))[0] root_dir = os.path.join(root, "test", test_name) with open(file_path, "r") as fp: for line in fp.readlines(): # Data Reading data_path = line.strip() path = os.path.join(root_dir, data_path) if model.vec: _, test_data = model.read_vec_data() obs_index, heat_obs, pred_index, heat0, heat = test_data._loader(path) u_true = heat.squeeze().squeeze().numpy() heat_obs = (heat_obs - hparams.mean_layout) / hparams.std_layout heat0 = (heat0 - hparams.mean_heat) / hparams.std_heat heat = (heat - hparams.mean_heat) / hparams.std_heat obs_index, heat_obs, pred_index, heat0, heat = ( obs_index.to(device), heat_obs.to(device), pred_index.to(device), heat0.to(device), heat.to(device), ) heat_info = [obs_index, heat_obs, pred_index, heat0] if ( model.layout_model == "ConditionalNeuralProcess" or model.layout_model == "TransformerRecon" ): heat_info[1] = heat_info[1].transpose(1, 2) heat_info[3] = heat_info[3].transpose(2, 3) elif model.layout_model == "DenseDeepGCN": heat_obs = heat_obs.squeeze() pseudo_heat = torch.zeros_like(heat0[:, 0, :]).squeeze() inputs = ( torch.cat( ( torch.cat((heat_obs, pseudo_heat), 1).unsqueeze(-1), torch.cat((obs_index, pred_index[:, 0, ...]), 1), ), 2, ) .transpose(1, 2) .unsqueeze(-1) .unsqueeze(0) ) for i in range(hparams.div_num * hparams.div_num - 1): input_single = ( torch.cat( ( torch.cat((heat_obs, pseudo_heat), 1).unsqueeze(-1), torch.cat( (obs_index, pred_index[:, i + 1, ...]), 1 ), ), 2, ) .transpose(1, 2) .unsqueeze(-1) .unsqueeze(0) ) inputs = torch.cat((inputs, input_single), 0) heat_info = inputs else: data = sio.loadmat(path) u_true, u_obs = data["u"], data["u_obs"] u_obs[np.where(u_obs < TOL)] = hparams.mean_layout u_obs = ( torch.Tensor((u_obs - hparams.mean_layout) / hparams.std_layout) .unsqueeze(0) .unsqueeze(0) .to(device) ) heat = ( torch.Tensor((u_true - hparams.mean_heat) / hparams.std_heat) .unsqueeze(0) .unsqueeze(0) .to(device) ) heat_info = u_obs hs_F = sio.loadmat(path)["F"] # Plot u_obs and Real Temperature Field fig = plt.figure(figsize=(22.5, 5)) grid_x = np.linspace(0, 0.1, num=200) grid_y = np.linspace(0, 0.1, num=200) X, Y =
np.meshgrid(grid_x, grid_y)
numpy.meshgrid
# -*- coding: utf-8 -*- """ BT2407 実装用の各種LUTを作成する =============================== """ # import standard libraries import os # import third-party libraries import numpy as np from multiprocessing import Pool, cpu_count, Array import matplotlib.pyplot as plt from colour.models import BT709_COLOURSPACE, BT2020_COLOURSPACE from colour import Lab_to_XYZ, XYZ_to_RGB, RGB_to_XYZ, XYZ_to_Lab,\ Lab_to_LCHab, RGB_COLOURSPACES, RGB_to_RGB, LCHab_to_Lab,\ write_LUT, LUT3D import cv2 from scipy import interpolate # import my libraries import test_pattern_generator2 as tpg import color_space as cs import plot_utility as pu import transfer_functions as tf from bt2407_parameters import L_SAMPLE_NUM_MAX, H_SAMPLE_NUM_MAX,\ GAMUT_BOUNDARY_LUT_LUMINANCE_SAMPLE, GAMUT_BOUNDARY_LUT_HUE_SAMPLE,\ get_gamut_boundary_lut_name, get_l_cusp_name, get_focal_name,\ get_chroma_map_lut_name from bt2047_gamut_mapping import get_chroma_lightness_val_specfic_hue,\ calc_chroma_lightness_using_length_from_l_focal,\ calc_chroma_lightness_using_length_from_c_focal, calc_cusp_lut,\ calc_degree_from_cl_data_using_c_focal,\ calc_degree_from_cl_data_using_l_focal,\ calc_distance_from_c_focal, calc_distance_from_l_focal,\ eliminate_inner_gamut_data_c_focal, eliminate_inner_gamut_data_l_focal,\ interpolate_chroma_map_lut, merge_lightness_mapping,\ bt2407_gamut_mapping_for_rgb_linear from make_bt2047_luts import calc_value_from_hue_1dlut,\ calc_chroma_map_degree2, calc_l_cusp_specific_hue, calc_cusp_in_lc_plane,\ _calc_ab_coef_from_cl_point, solve_equation_for_intersection,\ calc_cusp_focal_specific_hue # information __author__ = '<NAME>' __copyright__ = 'Copyright (C) 2019 - <NAME>' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = '<NAME>' __email__ = 'toru.ver.11 at-sign gmail.com' __all__ = [] def lch_to_lab(lch): shape_bak = lch.shape aa = lch[..., 1] * np.cos(lch[..., 2]) bb = lch[..., 1] * np.sin(lch[..., 2]) return np.dstack((lch[..., 0], aa, bb)).reshape(shape_bak) def print_blog_param_sub( rgb_2020=np.array([1023, 0, 0]), text="angle_40"): rgb_2020_linear = (rgb_2020 / 1023) ** 2.4 lab_2020 = XYZ_to_Lab( RGB_to_XYZ( rgb_2020_linear, cs.D65, cs.D65, BT2020_COLOURSPACE.RGB_to_XYZ_matrix)) lch_2020 = Lab_to_LCHab(lab_2020) print(f"rgb_2020_{text}={rgb_2020}") print(f"lab_2020_{text}={lab_2020}") print(f"lch_2020_{text}={lch_2020}") def print_blog_param(): """ ブログ記載用のパラメータを吐く """ rgb_40_2020 = np.array([1001, 509, 321]) rgb_270_2020 = np.array([158, 421, 759]) print_blog_param_sub(rgb_40_2020, "40") print_blog_param_sub(rgb_270_2020, "270") def _make_debug_luminance_chroma_data_fixed_hue(cl_outer): dst_step = 31 degree = np.linspace(-np.pi/2, np.pi/2, dst_step) a1 = np.tan(degree) b1 = 50 * np.ones_like(a1) a2, b2 = _calc_ab_coef_from_cl_point(cl_outer) out_chroma, out_lightness = solve_equation_for_intersection( cl_outer, a1, b1, a2, b2, focal="L_Focal") # chroma = cl_outer[..., 0] # lightness = cl_outer[..., 1] # step = GAMUT_BOUNDARY_LUT_HUE_SAMPLE // dst_step # out_chroma = np.append(chroma[::step], chroma[-1]) # out_lightness = np.append(lightness[::step], lightness[-1]) return out_lightness, out_chroma def _check_chroma_map_lut_interpolation( hue_idx, hue, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709): """ interpolate_chroma_map_lut() の動作確認用のデバッグコード。 1. まずはLUT上の LC平面で確認 2. 次に補間が働く LC平面で確認 3. 今度は補間が働く ab平面で確認 """ print(hue_idx, np.rad2deg(hue)) # とりあえず L*C* 平面のポリゴン準備 cl_inner = get_chroma_lightness_val_specfic_hue( hue, get_gamut_boundary_lut_name(inner_color_space_name)) cl_outer = get_chroma_lightness_val_specfic_hue( hue, get_gamut_boundary_lut_name(outer_color_space_name)) # cusp 準備 lh_inner_lut = np.load( get_gamut_boundary_lut_name(inner_color_space_name)) inner_cusp = calc_cusp_in_lc_plane(hue, lh_inner_lut) lh_outer_lut = np.load( get_gamut_boundary_lut_name(outer_color_space_name)) outer_cusp = calc_cusp_in_lc_plane(hue, lh_outer_lut) # l_cusp, l_focal, c_focal 準備 l_cusp_lut = np.load( get_l_cusp_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name)) l_focal_lut = np.load( get_focal_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name, focal_type="Lfocal")) c_focal_lut = np.load( get_focal_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name, focal_type="Cfocal")) l_cusp = calc_value_from_hue_1dlut(hue, l_cusp_lut) l_focal = calc_value_from_hue_1dlut(hue, l_focal_lut) c_focal = calc_value_from_hue_1dlut(hue, c_focal_lut) # Chroma Mapping の Focalからの距離の LUT データ cmap_lut_c = np.load( get_chroma_map_lut_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name, focal_type="Cfocal")) cmap_lut_l = np.load( get_chroma_map_lut_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name, focal_type="Lfocal")) # st_degree, ed_degree を 1次元LUTの形で得る # st_degree_l[hue] = 30°, ed_degree_l[hue] = 120° 的な? inner_cusp_l_lut = calc_cusp_lut(lh_lut=lh_inner_lut) st_degree_l, ed_degree_l, st_degree_c, ed_degree_c =\ calc_chroma_map_degree2(l_focal_lut, c_focal_lut, inner_cusp_l_lut) # とりあえず検証用のデータを準備 # 一応、本番を想定して chroma-lightness から変換するように仕込む # hue-degree --> chroma-lightness --> hue_degree --> 補間的な? """ L_focal 基準データ """ lightness_l, chroma_l = _make_debug_luminance_chroma_data_fixed_hue( cl_outer) hue_array = np.ones(chroma_l.shape[0]) * hue cl_data_l = np.dstack((chroma_l, lightness_l))[0] test_degree_l = calc_degree_from_cl_data_using_l_focal( cl_data=cl_data_l, l_focal=calc_value_from_hue_1dlut(hue_array, l_focal_lut)) hd_data_l = np.dstack((hue_array, test_degree_l))[0] len_from_l_focal = calc_distance_from_l_focal( chroma_l, lightness_l, l_focal) """ C_focal 基準データ """ lightness_c, chroma_c = _make_debug_luminance_chroma_data_fixed_hue( cl_outer) hue_array = np.ones(chroma_l.shape[0]) * hue cl_data_c = np.dstack((chroma_c, lightness_c))[0] test_degree_c = calc_degree_from_cl_data_using_c_focal( cl_data=cl_data_c, c_focal=calc_value_from_hue_1dlut(hue_array, c_focal_lut)) hd_data_c = np.dstack((hue_array, test_degree_c))[0] len_from_c_focal = calc_distance_from_c_focal( chroma_c, lightness_c, c_focal) # まずは cmap_lut 値の Bilinear補間 cmap_value_l = interpolate_chroma_map_lut( cmap_hd_lut=cmap_lut_l, degree_min=st_degree_l, degree_max=ed_degree_l, data_hd=hd_data_l) cmap_value_c = interpolate_chroma_map_lut( cmap_hd_lut=cmap_lut_c, degree_min=st_degree_c, degree_max=ed_degree_c, data_hd=hd_data_c) # 除外データは除外 restore_idx_l = (len_from_l_focal <= cmap_value_l) cmap_value_l[restore_idx_l] = len_from_l_focal[restore_idx_l] restore_idx_c = (len_from_c_focal > cmap_value_c) cmap_value_c[restore_idx_c] = len_from_c_focal[restore_idx_c] # 補間して得られた cmap 値から CL平面上における座標を取得 icn_x_l, icn_y_l = calc_chroma_lightness_using_length_from_l_focal( distance=cmap_value_l, degree=test_degree_l, l_focal=l_focal) icn_x_c, icn_y_c = calc_chroma_lightness_using_length_from_c_focal( distance=cmap_value_c, degree=test_degree_c, c_focal=c_focal) _debug_plot_check_lightness_mapping_specific_hue( hue, cl_inner, cl_outer, l_cusp, inner_cusp, outer_cusp, l_cusp, l_focal, c_focal, x_val=chroma_l, y_val=lightness_l, map_x=icn_x_l, map_y=icn_y_l, focal_type="L_focal", h_idx=hue_idx, outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name) _debug_plot_check_lightness_mapping_specific_hue( hue, cl_inner, cl_outer, l_cusp, inner_cusp, outer_cusp, l_cusp, l_focal, c_focal, x_val=chroma_c, y_val=lightness_c, map_x=icn_x_c, map_y=icn_y_c, focal_type="C_focal", h_idx=hue_idx, outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name) def _check_lightness_mapping_specific_hue( hue_idx, hue, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709): """ interpolate_chroma_map_lut() の動作確認用のデバッグコード。 """ print(hue_idx, np.rad2deg(hue)) # とりあえず L*C* 平面のポリゴン準備 cl_inner = get_chroma_lightness_val_specfic_hue( hue, get_gamut_boundary_lut_name(inner_color_space_name)) cl_outer = get_chroma_lightness_val_specfic_hue( hue, get_gamut_boundary_lut_name(outer_color_space_name)) # cusp 準備 lh_inner_lut = np.load( get_gamut_boundary_lut_name(inner_color_space_name)) inner_cusp = calc_cusp_in_lc_plane(hue, lh_inner_lut) lh_outer_lut = np.load( get_gamut_boundary_lut_name(outer_color_space_name)) outer_cusp = calc_cusp_in_lc_plane(hue, lh_outer_lut) # l_cusp, l_focal, c_focal 準備 l_cusp_lut = np.load( get_l_cusp_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name)) l_focal_lut = np.load( get_focal_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name, focal_type="Lfocal")) c_focal_lut = np.load( get_focal_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name, focal_type="Cfocal")) l_cusp = calc_value_from_hue_1dlut(hue, l_cusp_lut) l_focal = calc_value_from_hue_1dlut(hue, l_focal_lut) c_focal = calc_value_from_hue_1dlut(hue, c_focal_lut) # Chroma Mapping の Focalからの距離の LUT データ cmap_lut_c = np.load( get_chroma_map_lut_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name, focal_type="Cfocal")) cmap_lut_l = np.load( get_chroma_map_lut_name( outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name, focal_type="Lfocal")) # st_degree, ed_degree を 1次元LUTの形で得る # st_degree_l[hue] = 30°, ed_degree_l[hue] = 120° 的な? inner_cusp_l_lut = calc_cusp_lut(lh_lut=lh_inner_lut) st_degree_l, ed_degree_l, st_degree_c, ed_degree_c =\ calc_chroma_map_degree2(l_focal_lut, c_focal_lut, inner_cusp_l_lut) # とりあえず検証用のデータを準備 # 一応、本番を想定して chroma-lightness から変換するように仕込む # hue-degree --> chroma-lightness --> hue_degree --> 補間的な? """ L_focal 基準データ """ lightness_l, chroma_l = _make_debug_luminance_chroma_data_fixed_hue( cl_outer) hue_array = np.ones(chroma_l.shape[0]) * hue cl_data_l = np.dstack((chroma_l, lightness_l))[0] test_degree_l = calc_degree_from_cl_data_using_l_focal( cl_data=cl_data_l, l_focal=calc_value_from_hue_1dlut(hue_array, l_focal_lut)) hd_data_l = np.dstack((hue_array, test_degree_l))[0] """ C_focal 基準データ """ lightness_c, chroma_c = _make_debug_luminance_chroma_data_fixed_hue( cl_outer) hue_array = np.ones(chroma_l.shape[0]) * hue cl_data_c = np.dstack((chroma_c, lightness_c))[0] test_degree_c = calc_degree_from_cl_data_using_c_focal( cl_data=cl_data_c, c_focal=calc_value_from_hue_1dlut(hue_array, c_focal_lut)) hd_data_c = np.dstack((hue_array, test_degree_c))[0] # まずは cmap_lut 値の Bilinear補間 cmap_value_l = interpolate_chroma_map_lut( cmap_hd_lut=cmap_lut_l, degree_min=st_degree_l, degree_max=ed_degree_l, data_hd=hd_data_l) cmap_value_c = interpolate_chroma_map_lut( cmap_hd_lut=cmap_lut_c, degree_min=st_degree_c, degree_max=ed_degree_c, data_hd=hd_data_c) # out of gamut ではないデータは処理をしないようにする eliminate_inner_gamut_data_l_focal( dst_distance=cmap_value_l, src_chroma=chroma_l, src_lightness=lightness_l, l_focal=l_focal) eliminate_inner_gamut_data_c_focal( dst_distance=cmap_value_c, src_chroma=chroma_c, src_lightness=lightness_c, c_focal=c_focal) # 補間して得られた cmap 値から CL平面上における座標を取得 icn_x_l, icn_y_l = calc_chroma_lightness_using_length_from_l_focal( distance=cmap_value_l, degree=test_degree_l, l_focal=l_focal) icn_x_c, icn_y_c = calc_chroma_lightness_using_length_from_c_focal( distance=cmap_value_c, degree=test_degree_c, c_focal=c_focal) # L_Focalベースと C_Focalベースの結果を統合 icn_x, icn_y = merge_lightness_mapping( hd_data_l=hd_data_l, st_degree_l=st_degree_l, chroma_map_l=icn_x_l, lightness_map_l=icn_y_l, chroma_map_c=icn_x_c, lightness_map_c=icn_y_c) _debug_plot_check_lightness_mapping_specific_hue( hue, cl_inner, cl_outer, l_cusp, inner_cusp, outer_cusp, l_cusp, l_focal, c_focal, x_val=chroma_l, y_val=lightness_l, map_x=icn_x, map_y=icn_y, focal_type="All", h_idx=hue_idx, outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name) def _debug_plot_check_lightness_mapping_specific_hue( hue, cl_inner, cl_outer, lcusp, inner_cusp, outer_cusp, l_cusp, l_focal, c_focal, x_val, y_val, map_x, map_y, focal_type, h_idx=0, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709): graph_title = f"HUE = {hue/2/np.pi*360:.1f}°, for {focal_type}" graph_title += f"={c_focal:.1f}" if focal_type == "C_focal" else "" fig1, ax1 = pu.plot_1_graph( fontsize=22, figsize=(16 * 0.9, 9 * 1.0), graph_title=graph_title, xlabel="Chroma", ylabel="Lightness", legend_size=17, xlim=[-10, 230], ylim=[-3, 103], xtick=[x * 20 for x in range(12)], ytick=[x * 10 for x in range(11)], linewidth=3, return_figure=True) ax1.patch.set_facecolor("#E0E0E0") in_color = pu.BLUE ou_color = pu.RED fo_color = "#808080" src_color = pu.GREEN dst_color = pu.PINK # gamut boundary ax1.plot( cl_inner[..., 0], cl_inner[..., 1], c=in_color, label="BT.709") ax1.plot(cl_outer[..., 0], cl_outer[..., 1], c=ou_color, label="BT.2020") # gamut cusp ax1.plot(inner_cusp[1], inner_cusp[0], 's', ms=10, mec='k', c=in_color, label="BT.709 Cusp") ax1.plot(outer_cusp[1], outer_cusp[0], 's', ms=10, mec='k', c=ou_color, label="BT.2020 Cusp") # l_cusp, l_focal, c_focal ax1.plot([0], [l_cusp], 'x', ms=12, mew=4, c=in_color, label="L_cusp") ax1.plot([0], [l_focal], 'x', ms=12, mew=4, c=ou_color, label="L_focal") ax1.plot([c_focal], [0], '*', ms=12, mew=3, c=ou_color, label="C_focal") ax1.plot([0, c_focal], [l_focal, 0], '--', c='k') # intersectionx ax1.plot(x_val, y_val, 'o', ms=9, c=src_color, label="src point") ax1.plot(map_x, map_y, 'o', ms=6, c=dst_color, label="dst point") for x, y in zip(x_val, y_val): if y >= (-l_focal * x / c_focal + l_focal): aa = (y - l_focal) / x bb = l_focal xx = 230 yy = aa * xx + bb ax1.plot([0, xx], [l_focal, yy], '--', c=fo_color, lw=1) else: aa = (y) / (x - c_focal) bb = y - aa * x xx = 0 yy = aa * xx + bb ax1.plot([0, c_focal], [yy, 0], '--', c=fo_color, lw=1) # annotation diff = ((map_x - x_val) ** 2 + (map_y - y_val) ** 2) ** 0.5 arrowprops = dict( facecolor='#333333', shrink=0.0, headwidth=8, headlength=10, width=1) for idx in range(len(map_x)): if diff[idx] > 0.01: st_pos = (x_val[idx], y_val[idx]) ed_pos = (map_x[idx], map_y[idx]) ax1.annotate( "", xy=ed_pos, xytext=st_pos, xycoords='data', textcoords='data', ha='left', va='bottom', arrowprops=arrowprops) graph_name = f"/work/overuse/2020/020_explain_BT2407/lightness_mapping_"\ + f"{outer_color_space_name}_to_{inner_color_space_name}_"\ + f"{focal_type}_{h_idx:04d}.png" plt.legend(loc='upper right') print(graph_name) # plt.savefig(graph_name, bbox_inches='tight', pad_inches=0.1) plt.savefig(graph_name) # オプション付けるとエラーになるので外した # plt.show() plt.close(fig1) def _check_upper_and_lower_mapping( hue_sample_num=10, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709): hue_list = np.deg2rad( np.linspace(0, 360, hue_sample_num, endpoint=False)) args = [] for idx, hue in enumerate(hue_list): # _check_chroma_map_lut_interpolation( # hue_idx=idx, hue=hue, # outer_color_space_name=cs.BT2020, # inner_color_space_name=cs.BT709) d = dict( hue_idx=idx, hue=hue, outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name) args.append(d) with Pool(cpu_count()) as pool: pool.map(thread_wrapper_check_chroma_map_lut_interpolation, args) def thread_wrapper_check_chroma_map_lut_interpolation(args): _check_chroma_map_lut_interpolation(**args) def _check_lightness_mapping_specific_hue_seq( hue_sample_num=16, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709): hue_list = np.deg2rad( np.linspace(0, 360, hue_sample_num, endpoint=False)) args = [] for idx, hue in enumerate(hue_list): # _check_lightness_mapping_specific_hue( # hue_idx=idx, hue=hue, # outer_color_space_name=cs.BT2020, # inner_color_space_name=cs.BT709) d = dict( hue_idx=idx, hue=hue, outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name) args.append(d) with Pool(cpu_count()) as pool: pool.map(thread_wrapper_check_lightness_mapping, args) def thread_wrapper_check_lightness_mapping(args): _check_lightness_mapping_specific_hue(**args) def _debug_plot_blog_mapping_after( src_rgb, dst_rgb, src_lch, dst_lch, chroma_min=-5, chroma_max=220, ll_min=0, ll_max=100, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709): """ ブログでの説明用にシンプルな Chroma Lightness平面をプロット 入力データもプロットするよん。 """ hue = np.deg2rad(dst_lch[2]) cl_inner = get_chroma_lightness_val_specfic_hue( hue=hue, lh_lut_name=get_gamut_boundary_lut_name(inner_color_space_name)) cl_outer =\ get_chroma_lightness_val_specfic_hue( hue=hue, lh_lut_name=get_gamut_boundary_lut_name(outer_color_space_name)) l_cusp, l_focal, c_focal = calc_cusp_focal_specific_hue( hue=hue, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709) lh_inner_lut = np.load( get_gamut_boundary_lut_name(inner_color_space_name)) inner_cusp = calc_cusp_in_lc_plane(hue, lh_inner_lut) lh_outer_lut = np.load( get_gamut_boundary_lut_name(outer_color_space_name)) outer_cusp = calc_cusp_in_lc_plane(hue, lh_outer_lut) fig, ax1 = pu.plot_1_graph( fontsize=20, figsize=(16 * 0.9, 9 * 1.0), graph_title=f"HUE = {hue/2/np.pi*360:.1f}°", graph_title_size=None, xlabel="Chroma", ylabel="Lightness", axis_label_size=None, legend_size=17, xlim=[chroma_min, chroma_max], ylim=[ll_min, ll_max], xtick=[20 * x for x in range(12)], ytick=[x * 10 for x in range(11)], xtick_size=None, ytick_size=None, linewidth=3, return_figure=True) ax1.patch.set_facecolor("#E0E0E0") in_color = "#909090" ou_color = "#000000" l_cups_line = "#333333" fo_color = "#333333" # gamut boundary ax1.plot( cl_inner[..., 0], cl_inner[..., 1], c=in_color, label=inner_color_space_name) ax1.plot( cl_outer[..., 0], cl_outer[..., 1], c=ou_color, label=outer_color_space_name) ax1.plot( src_lch[..., 1], src_lch[..., 0], 'o', c=src_rgb, ms=13, label="src") ax1.plot( dst_lch[..., 1], dst_lch[..., 0], 'o', c=dst_rgb, ms=13, label="dst") x = dst_lch[..., 1] y = dst_lch[..., 0] if y >= (-l_focal * x / c_focal + l_focal): aa = (y - l_focal) / x bb = l_focal xx = 230 yy = aa * xx + bb ax1.plot([0, xx], [l_focal, yy], '--', lw=1, c=fo_color) else: aa = (y) / (x - c_focal) bb = y - aa * x xx = 0 yy = aa * xx + bb ax1.plot([0, c_focal], [yy, 0], '--', lw=1, c=fo_color) # Cusp ax1.plot(inner_cusp[1], inner_cusp[0], 's', ms=10, mec='k', c=in_color, label=f"{inner_color_space_name} cusp", zorder=3) ax1.plot(outer_cusp[1], outer_cusp[0], 's', ms=10, mec='k', c=ou_color, label=f"{outer_color_space_name} cusp", zorder=3) # if inner_cusp[1] < outer_cusp[1]: # ax1.plot([0, outer_cusp[1]], [l_cusp, outer_cusp[0]], '--', lw=1, # c=l_cups_line) # else: # ax1.plot([0, inner_cusp[1]], [l_cusp, inner_cusp[0]], '--', lw=1, # c=l_cups_line) # l_cusp, l_focal, c_focal ax1.plot([0], [l_cusp], 'x', ms=12, mew=4, c=pu.BLUE, label="L_cusp", zorder=3) ax1.plot([0], [l_focal], 'x', ms=12, mew=4, c=pu.RED, label="L_focal", zorder=3) ax1.plot([c_focal], [0], '*', ms=12, mew=3, c=pu.RED, label="C_focal", zorder=3) ax1.plot( [0, c_focal], [l_focal, 0], '--', c='k', label="L_focal to C_focal") if c_focal > chroma_max: ax1.text(182, 0, f"C_focal = {c_focal:.1f}") # annotation fcolor = 0 fcolor = np.array([fcolor, fcolor, fcolor]) arrowprops = dict( facecolor=fcolor, shrink=0.0, headwidth=12, headlength=15, width=3, alpha=0.6) st_pos = (src_lch[1], src_lch[0]) ed_pos = (dst_lch[1], dst_lch[0]) ax1.annotate( "", xy=ed_pos, xytext=st_pos, xycoords='data', textcoords='data', ha='left', va='bottom', arrowprops=arrowprops) graph_name = f"/work/overuse/2020/020_explain_BT2407/"\ + f"simple_cl_plane_mapping_HUE_"\ + f"{hue/2/np.pi*360:.1f}.png" plt.legend(loc='upper right') plt.savefig(graph_name, bbox_inches='tight', pad_inches=0.1) # plt.show() plt.close(fig) def _debug_lightness_mapping_for_rgb( outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709): rgb_2020_gm24_1 = np.array([1001, 509, 321]) rgb_2020_gm24_2 = np.array([158, 421, 759]) rgb_2020_gm24 = np.array([rgb_2020_gm24_1, rgb_2020_gm24_2]) / 1023 rgb_2020_linear = rgb_2020_gm24 ** 2.4 rgb_709 = bt2407_gamut_mapping_for_rgb_linear( rgb_linear=rgb_2020_linear, outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name) rgb_709_gm24 = np.round((rgb_709 ** (1/2.4) * 1023)) rgb_709_gm24_on_2020 = RGB_to_RGB( rgb_709, RGB_COLOURSPACES[inner_color_space_name], RGB_COLOURSPACES[outer_color_space_name])\ ** (1/2.4) print(rgb_709_gm24_on_2020) lab_709 = XYZ_to_Lab( RGB_to_XYZ( rgb_709, cs.D65, cs.D65, RGB_COLOURSPACES[inner_color_space_name].RGB_to_XYZ_matrix)) lch_709 = Lab_to_LCHab(lab_709) lab_2020 = XYZ_to_Lab( RGB_to_XYZ( rgb_2020_linear, cs.D65, cs.D65, RGB_COLOURSPACES[outer_color_space_name].RGB_to_XYZ_matrix)) lch_2020 = Lab_to_LCHab(lab_2020) _debug_plot_blog_mapping_after( src_rgb=rgb_2020_gm24[0], dst_rgb=rgb_709_gm24_on_2020[0], src_lch=lch_2020[0], dst_lch=lch_709[0], chroma_min=-5, chroma_max=220, ll_min=-3, ll_max=103, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709) _debug_plot_blog_mapping_after( src_rgb=rgb_2020_gm24[1], dst_rgb=rgb_709_gm24_on_2020[1], src_lch=lch_2020[1], dst_lch=lch_709[1], chroma_min=-5, chroma_max=220, ll_min=-3, ll_max=103, outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709) print(f"src_lch={lch_2020}") print(f"dst_lch={lch_709}") print(f"src_lab={lab_2020}") print(f"dst_lab={lab_709}") print(f"src_rgb={rgb_2020_gm24}") print(f"dst_rgb={rgb_709_gm24}") print(f"dst_rgb={rgb_709_gm24_on_2020*255}") def _lch_to_rgb(lch, inner_color_space_name, outer_color_space_name): lab = LCHab_to_Lab(lch) xyz = Lab_to_XYZ(lab) rgb_2020 = XYZ_to_RGB( xyz, cs.D65, cs.D65, RGB_COLOURSPACES[outer_color_space_name].XYZ_to_RGB_matrix) rgb_709 = XYZ_to_RGB( xyz, cs.D65, cs.D65, RGB_COLOURSPACES[inner_color_space_name].XYZ_to_RGB_matrix) r_judge = (rgb_709[0] >= 0) & (rgb_709[0] <= 1) g_judge = (rgb_709[1] >= 0) & (rgb_709[1] <= 1) b_judge = (rgb_709[2] >= 0) & (rgb_709[2] <= 1) is_in_gamut = (r_judge & g_judge) & b_judge rgb = np.clip(rgb_2020, 0.0, 1.0) return rgb, is_in_gamut def make_cielab_tp_ctrl( outer_color_space_name=cs.BT2020, inner_color_space_name=cs.BT709, width=1920, height=1080, h_block_num=16*3, v_block_num=9*3): """ CIELABの横軸にHue、縦軸にChromaの テストパターンを作る。 """ lh_lut = np.load( get_gamut_boundary_lut_name(color_space_name=outer_color_space_name)) lightness_lut_sample, hue_lut_sample = lh_lut.shape cusp_buf = [] l_cusp_buf = [] hue_list = np.linspace(0, 2*np.pi, h_block_num, endpoint=False) for hue in hue_list: cusp_lc_temp = calc_cusp_in_lc_plane(hue, lh_lut) cusp_buf.append(cusp_lc_temp) l_cusp, l_focal, c_focal = calc_cusp_focal_specific_hue( hue=hue, outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name) l_cusp_buf.append(l_cusp) cusp_lc = np.array(cusp_buf) l_cusp = np.array(l_cusp_buf) cusp_chroma = cusp_lc[..., 1] cusp_lightness = cusp_lc[..., 0] block_width_list = tpg.equal_devision(width, h_block_num) block_height_list = tpg.equal_devision(height, v_block_num) h_buf = [] for h_idx in range(h_block_num): block_width = block_width_list[h_idx] hue = hue_list[h_idx] aa = (cusp_lightness[h_idx] - l_cusp[h_idx]) / (cusp_chroma[h_idx] - 0) bb = l_cusp[h_idx] v_buf = [] for v_idx in range(v_block_num): block_height = block_height_list[v_idx] cc = v_idx / (v_block_num - 1) * cusp_chroma[h_idx] ll = aa * cc + bb lch = np.dstack((ll, cc, np.rad2deg(hue)))[0][0] rgb, is_in_gamut = _lch_to_rgb( lch, outer_color_space_name=outer_color_space_name, inner_color_space_name=inner_color_space_name) temp_img = np.ones((block_height, block_width, 3))\ * rgb if not is_in_gamut: temp_img[:4, :4] = np.array([0.0, 0.0, 0.0]) v_buf.append(temp_img) # print(f"hue={np.rad2deg(hue)}, c={cc:.2f}, l={ll:.2f}") # print(f"hue={np.rad2deg(hue)}, rgb={rgb}, in={is_in_gamut}") h_buf.append(np.vstack(v_buf)) img = np.hstack(h_buf) fname = f"./figures/bt2020_tp_src_{width}x{height}.png" cv2.imwrite( fname, np.uint16(np.round((img[..., ::-1] ** (1/2.4)) * 0xFFFF))) def make_cielab_boundary_tp( color_space_name=cs.BT709, width=1920, height=1080, h_block_num=16, v_block_num=9): hue_list = np.linspace(0, 2*np.pi, h_block_num, endpoint=False) cusp_buf = [] lh_lut = np.load( get_gamut_boundary_lut_name(color_space_name=color_space_name)) lightness_lut_sample, hue_lut_sample = lh_lut.shape for hue in hue_list: cusp_lc_temp = calc_cusp_in_lc_plane(hue, lh_lut) cusp_buf.append(cusp_lc_temp) cusp_lc = np.array(cusp_buf) cusp_lightness_list = cusp_lc[..., 0] chroma_max = np.max(cusp_lc[..., 1]) block_width_list = tpg.equal_devision(width, h_block_num) block_height_list = tpg.equal_devision(height, v_block_num) h_buf = [] for h_idx in range(h_block_num): hue = hue_list[h_idx] block_width = block_width_list[h_idx] boundary = get_chroma_lightness_val_specfic_hue( hue, get_gamut_boundary_lut_name(color_space_name)) v_buf = [] cusp_lightness = cusp_lightness_list[h_idx] cx = boundary[boundary[..., 1] >= cusp_lightness][..., 0] ly = boundary[boundary[..., 1] >= cusp_lightness][..., 1] ll_func = interpolate.interp1d(cx, ly) for v_idx in range(v_block_num): block_height = block_height_list[v_idx] cc = v_idx / (v_block_num - 1) * chroma_max lower_ok =\ (boundary[..., 0] <= cc) & (boundary[..., 1] >= cusp_lightness) upper_ok =\ (boundary[..., 0] >= cc) & (boundary[..., 1] >= cusp_lightness) lower_st_idx = np.argmax(lower_ok) st_idx = lower_st_idx if np.sum(upper_ok == True) > 0: # ll = boundary[st_idx][1] ll = ll_func(cc) # cc = boundary[st_idx][0] lch = np.dstack((ll, cc, np.rad2deg(hue))) lab = LCHab_to_Lab(lch) xyz = Lab_to_XYZ(lab) rgb = XYZ_to_RGB( xyz, cs.D65, cs.D65, RGB_COLOURSPACES[color_space_name].XYZ_to_RGB_matrix) rgb =
np.clip(rgb, 0.0, 1.0)
numpy.clip
import itertools import copy import numpy as np import numpy.testing as npt import pytest import quara.objects.composite_system as csys import quara.objects.elemental_system as esys from quara.objects.matrix_basis import ( get_comp_basis, get_gell_mann_basis, get_normalized_pauli_basis, get_pauli_basis, convert_vec, ) from quara.objects.operators import tensor_product from quara.objects.povm import ( Povm, convert_var_index_to_povm_index, convert_povm_index_to_var_index, convert_var_to_povm, convert_vecs_to_var, calc_gradient_from_povm, get_x_povm, get_xx_povm, get_xy_povm, get_xz_povm, get_y_povm, get_yx_povm, get_yy_povm, get_yz_povm, get_z_povm, get_zx_povm, get_zy_povm, get_zz_povm, ) from quara.objects.state import get_x0_1q from quara.settings import Settings from quara.objects.composite_system_typical import generate_composite_system from quara.objects.qoperation_typical import generate_qoperation_object from quara.objects.operators import tensor_product class TestPovm: def test_validate_dtype_ng(self): p1 = np.array([1, 0, 0, 0], dtype=np.complex128) p2 = np.array([0, 0, 0, 1], dtype=np.complex128) vecs = [p1, p2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # entries of vecs are not real numbers with pytest.raises(ValueError): Povm(c_sys=c_sys, vecs=vecs) def test_validate_set_of_hermitian_matrices_ok(self): # Arrange p1 = np.array([1, 0, 0, 0], dtype=np.float64) p2 = np.array([0, 0, 0, 1], dtype=np.float64) vecs = [p1, p2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act povm = Povm(c_sys=c_sys, vecs=vecs) # Assert expected = [p1, p2] assert (povm[0] == expected[0]).all() assert (povm[1] == expected[1]).all() assert povm.composite_system is c_sys def test_validate_set_of_hermitian_matrices_ng(self): # Arrange p1 = np.array([1, 0, 0, 0], dtype=np.float64) p2 = np.array([0, 1, 0, 0], dtype=np.float64) vecs = [p1, p2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act & Assert with pytest.raises(ValueError): # ValueError: povm must be a set of Hermitian matrices _ = Povm(c_sys=c_sys, vecs=vecs) def test_validate_set_of_hermitian_matrices_not_physical_ok(self): # Arrange p1 = np.array([1, 0, 0, 0], dtype=np.float64) p2 = np.array([0, 1, 0, 0], dtype=np.float64) vecs = [p1, p2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act & Assert # Test that no exceptions are raised. _ = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) def test_validate_sum_is_identity_sum_ok(self): # Arrange p1 = np.array([1, 0, 0, 0], dtype=np.float64) p2 = np.array([0, 0, 0, 1], dtype=np.float64) vecs = [p1, p2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act povm = Povm(c_sys=c_sys, vecs=vecs) actual = povm.is_identity_sum() # Assert assert actual is True def test_validate_sum_is_identity_sum_ng(self): # Arrange p1 = np.array([1, 0, 0, 0], dtype=np.float64) p2 = np.array([0, 1, 0, 0], dtype=np.float64) vecs = [p1, p2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act & Assert with pytest.raises(ValueError): # ValueError: The sum of the elements of POVM must be an identity matrix. _ = Povm(c_sys=c_sys, vecs=vecs) def test_validate_sum_is_identity_sum_not_physical_ok(self): # Arrange p1 = np.array([1, 0, 0, 1], dtype=np.float64) p2 = np.array([1, 0, 0, 1], dtype=np.float64) vecs = [p1, p2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act & Assert # Test that no exceptions are raised. _ = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) def test_validate_is_positive_semidefinite_ok(self): # Arrange ps_1 = np.array([1, 0, 0, 0], dtype=np.float64) ps_2 = np.array([0, 0, 0, 1], dtype=np.float64) vecs = [ps_1, ps_2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act povm = Povm(c_sys=c_sys, vecs=vecs) actual = povm.is_positive_semidefinite() # Assert assert actual is True # Act actual = povm.is_ineq_constraint_satisfied() # Assert assert actual is True def test_validate_is_positive_semidefinite_ng(self): # Arrange ps = np.array([1, 0, 0, 2], dtype=np.float64) not_ps = np.array([[0, 0, 0, -1]], dtype=np.float64) vecs = [ps, not_ps] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act & Assert with pytest.raises(ValueError): _ = Povm(c_sys=c_sys, vecs=vecs) def test_validate_is_positive_semidefinite_not_physical_ok(self): # Arrange ps = np.array([1, 0, 0, 2], dtype=np.float64) not_ps = np.array([0, 0, 0, -1], dtype=np.float64) vecs = [ps, not_ps] e_sys = esys.ElementalSystem(1, get_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act & Assert # Test that no exceptions are raised. povm = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) actual = povm.is_positive_semidefinite() # Assert assert actual is False # Act actual = povm.is_ineq_constraint_satisfied() # Assert assert actual is False def test_calc_eigenvalues_all(self): # Arrange vec_1 = np.array([1, 0, 0, 0], dtype=np.float64) vec_2 = np.array([0, 0, 0, 1], dtype=np.float64) vecs = [vec_1, vec_2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act povm = Povm(c_sys=c_sys, vecs=vecs) actual = povm.calc_eigenvalues() # Assert expected = [ np.array([1, 0], dtype=np.float64), np.array([1, 0], dtype=np.float64), ] assert len(actual) == len(expected) npt.assert_almost_equal(actual[0], expected[0], decimal=15) npt.assert_almost_equal(actual[1], expected[1], decimal=15) def test_calc_eigenvalues_one(self): # Arrange vec_1 = np.array([1, 0, 0, 0], dtype=np.float64) vec_2 = np.array([0, 0, 0, 1], dtype=np.float64) vecs = [vec_1, vec_2] e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) # Act povm = Povm(c_sys=c_sys, vecs=vecs) actual = povm.calc_eigenvalues(0) # Assert expected = np.array([1, 0], dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) # Act povm = Povm(c_sys=c_sys, vecs=vecs) actual = povm.calc_eigenvalues(1) # Assert expected = np.array([1, 0], dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) # def test_validate_dim_ng(self): # # Arrange # test_root_dir = Path(os.path.dirname(__file__)).parent.parent # data_dir = test_root_dir / "data" # dim = 2 ** 2 # 2 qubits # num_state = 16 # num_povm = 9 # num_outcome = 4 # povms = s_io.load_povm_list( # data_dir / "tester_2qubit_povm.csv", # dim=dim, # num_povm=num_povm, # num_outcome=num_outcome, # ) # vecs = list(povms[0]) # 2qubit # e_sys = esys.ElementalSystem(1, get_pauli_basis()) # 1qubit # c_sys = csys.CompositeSystem([e_sys]) # # Act & Assert # with pytest.raises(ValueError): # _ = Povm(c_sys=c_sys, vecs=vecs) def test_convert_basis(self): # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) ps_1 = np.array([1, 0, 0, 0], dtype=np.float64) ps_2 = np.array([0, 0, 0, 1], dtype=np.float64) vecs = [ps_1, ps_2] povm = Povm(c_sys=c_sys, vecs=vecs) to_basis = get_normalized_pauli_basis() # Act actual = povm.convert_basis(to_basis) # Assert expected = [ 1 / np.sqrt(2) * np.array([1, 0, 0, 1], dtype=np.float64), 1 / np.sqrt(2) * np.array([1, 0, 0, -1], dtype=np.float64), ] assert len(actual) == len(expected) for i, a in enumerate(actual): assert np.all(a == expected[i]) def test_generate_mprocess(self): ### case: mode_backaction = 0 # Arrange c_sys_1q = generate_composite_system(mode="qubit", num=1, ids_esys=[0]) povm_z = generate_qoperation_object( mode="povm", object_name="povm", name="z", c_sys=c_sys_1q ) # Act actual = povm_z.generate_mprocess() # Assert expected = [ np.array([[0.5, 0, 0, 0.5], [0, 0, 0, 0], [0, 0, 0, 0], [0.5, 0, 0, 0.5]]), np.array( [[0.5, 0, 0, -0.5], [0, 0, 0, 0], [0, 0, 0, 0], [-0.5, 0, 0, 0.5]] ), ] for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) ### case: mode_backaction = 1 # Arrange c_sys_1q = generate_composite_system(mode="qubit", num=1, ids_esys=[0]) povm_z = generate_qoperation_object( mode="povm", object_name="povm", name="z", c_sys=c_sys_1q ) # Act actual = povm_z.generate_mprocess(mode_backaction=1) # Assert expected = [ np.array([[0.5, 0, 0, 0.5], [0, 0, 0, 0], [0, 0, 0, 0], [0.5, 0, 0, 0.5]]), np.array( [[0.5, 0, 0, -0.5], [0, 0, 0, 0], [0, 0, 0, 0], [-0.5, 0, 0, 0.5]] ), ] for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) ### case: mode_backaction = 2, post_selected_states = State state_z0 = generate_qoperation_object( mode="state", object_name="state", name="z0", c_sys=c_sys_1q ) # Act actual = povm_z.generate_mprocess( mode_backaction=2, post_selected_states=state_z0 ) # Assert expected = [ np.array([[0.5, 0, 0, 0.5], [0, 0, 0, 0], [0, 0, 0, 0], [0.5, 0, 0, 0.5]]), np.array( [[0.5, 0, 0, -0.5], [0, 0, 0, 0], [0, 0, 0, 0], [0.5, 0, 0, -0.5]] ), ] for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) ### case: mode_backaction = 3, post_selected_states = List[State] state_z0 = generate_qoperation_object( mode="state", object_name="state", name="z0", c_sys=c_sys_1q ) state_z1 = generate_qoperation_object( mode="state", object_name="state", name="z1", c_sys=c_sys_1q ) # Act actual = povm_z.generate_mprocess( mode_backaction=2, post_selected_states=[state_z0, state_z1] ) # Assert expected = [ np.array([[0.5, 0, 0, 0.5], [0, 0, 0, 0], [0, 0, 0, 0], [0.5, 0, 0, 0.5]]), np.array( [[0.5, 0, 0, -0.5], [0, 0, 0, 0], [0, 0, 0, 0], [-0.5, 0, 0, 0.5]] ), ] for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) def test_generate_mprocess_error(self): # Arrange c_sys_1q = generate_composite_system(mode="qubit", num=1, ids_esys=[0]) povm_z = generate_qoperation_object( mode="povm", object_name="povm", name="z", c_sys=c_sys_1q ) ### case: mode_backaction = 0 and post_selected_states is not None with pytest.raises(ValueError): povm_z.generate_mprocess(mode_backaction=0, post_selected_states="not None") ### case: mode_backaction = 1 and post_selected_states is not None with pytest.raises(ValueError): povm_z.generate_mprocess(mode_backaction=1, post_selected_states="not None") ### case: mode_backaction = 2 and post_selected_states is None with pytest.raises(ValueError): povm_z.generate_mprocess(mode_backaction=2, post_selected_states=None) ### case: mode_backaction = 3 with pytest.raises(ValueError): povm_z.generate_mprocess(mode_backaction=3) def test_measurements(self): # Case 1: # Arrange basis1 = get_comp_basis() e_sys1 = esys.ElementalSystem(1, basis1) c_sys1 = csys.CompositeSystem([e_sys1]) vecs1 = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm1 = Povm(c_sys1, vecs1, is_physicality_required=False) # Act actual = povm1.nums_local_outcomes # Assert expected = [2] assert len(actual) == len(expected) for a, e in zip(actual, expected): assert a == e assert povm1.num_outcomes == 2 # Case 2: # Act povm1._nums_local_outcomes = [1, 2] actual = povm1.nums_local_outcomes # Assert expected = [1, 2] assert len(actual) == len(expected) for a, e in zip(actual, expected): assert a == e assert povm1.num_outcomes == 2 def test_vec(self): # Case 1: # Arrange basis1 = get_comp_basis() e_sys1 = esys.ElementalSystem(1, basis1) c_sys1 = csys.CompositeSystem([e_sys1]) vecs1 = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm1 = Povm(c_sys1, vecs1, is_physicality_required=False) # Act actual0 = povm1.vec(0) actual1 = povm1.vec(1) actual2 = povm1.vec((0)) actual3 = povm1.vec((1)) # Assert assert np.all(actual0 == vecs1[0]) assert np.all(actual1 == vecs1[1]) assert np.all(actual2 == vecs1[0]) assert np.all(actual3 == vecs1[1]) # Case2: type of argument is tuple # Arrange basis2 = get_comp_basis() e_sys2 = esys.ElementalSystem(2, basis2) c_sys2 = csys.CompositeSystem([e_sys2]) vecs2 = [ np.array([23, 29, 31, 37], dtype=np.float64), np.array([41, 43, 47, 53], dtype=np.float64), ] povm2 = Povm(c_sys2, vecs2, is_physicality_required=False) povm12 = tensor_product(povm1, povm2) # Act actual = [ povm12.vec((0, 0)), povm12.vec((0, 1)), povm12.vec((1, 0)), povm12.vec((1, 1)), ] # Assert expected = [ np.kron(vec1, vec2) for vec1, vec2 in itertools.product(povm1.vecs, povm2.vecs) ] assert len(actual) == len(expected) for a, e in zip(actual, expected): assert np.all(a == e) # Case3: type of argument is int # Act actual = [ povm12.vec(0), povm12.vec(1), povm12.vec(2), povm12.vec(3), ] # Assert expected = [ np.kron(vec1, vec2) for vec1, vec2 in itertools.product(povm1.vecs, povm2.vecs) ] assert len(actual) == len(expected) for a, e in zip(actual, expected): assert np.all(a == e) def test_vec_unexpected(self): # Arrange basis1 = get_comp_basis() e_sys1 = esys.ElementalSystem(1, basis1) c_sys1 = csys.CompositeSystem([e_sys1]) vecs1 = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm1 = Povm(c_sys1, vecs1, is_physicality_required=False) # Case 1: # Act & Assert with pytest.raises(ValueError): # ValueError: length of tuple does not equal length of the list of measurements. _ = povm1.vec((0, 0)) # Case 2: # Act & Assert with pytest.raises(IndexError): # IndexError: specified index does not exist in the list of measurements. _ = povm1.vec(2) def test_vec_multi_dimensional(self): # Arrange c_sys_2q = generate_composite_system(mode="qubit", num=2, ids_esys=[0, 1]) c_sys_1q = generate_composite_system(mode="qubit", num=1, ids_esys=[2]) bell = generate_qoperation_object( mode="povm", object_name="povm", name="bell", c_sys=c_sys_2q ) z = generate_qoperation_object( mode="povm", object_name="povm", name="z", c_sys=c_sys_1q ) povm = tensor_product(bell, z) # Case 1: # Act actual = povm.vec((0, 0)) # Assert expected = povm.vecs[0] npt.assert_almost_equal(actual, expected, decimal=15) # Case 2: # Act actual = povm.vec((0, 1)) # Assert expected = povm.vecs[1] npt.assert_almost_equal(actual, expected, decimal=15) # Case 3: # Act actual = povm.vec((3, 1)) # Assert expected = povm.vecs[7] npt.assert_almost_equal(actual, expected, decimal=15) def test_md_index2serial_index(self): # Arrange c_sys_2q = generate_composite_system(mode="qubit", num=2, ids_esys=[0, 1]) c_sys_1q = generate_composite_system(mode="qubit", num=1, ids_esys=[2]) bell = generate_qoperation_object( mode="povm", object_name="povm", name="bell", c_sys=c_sys_2q ) z = generate_qoperation_object( mode="povm", object_name="povm", name="z", c_sys=c_sys_1q ) povm = tensor_product(bell, z) # Act & Assert assert povm._md_index2serial_index((0, 0)) == 0 assert povm._md_index2serial_index((0, 1)) == 1 assert povm._md_index2serial_index((1, 0)) == 2 assert povm._md_index2serial_index((1, 1)) == 3 assert povm._md_index2serial_index((2, 0)) == 4 assert povm._md_index2serial_index((2, 1)) == 5 assert povm._md_index2serial_index((3, 0)) == 6 assert povm._md_index2serial_index((3, 1)) == 7 def test_is_physical(self): e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) p1 = np.array([1, 0, 0, 0], dtype=np.float64) p2 = np.array([0, 0, 0, 1], dtype=np.float64) povm = Povm(c_sys=c_sys, vecs=[p1, p2]) assert povm.is_physical() == True p1 = np.array([1, 0, 0, 2], dtype=np.float64) p2 = np.array([0, 0, 0, -1], dtype=np.float64) povm = Povm(c_sys=c_sys, vecs=[p1, p2], is_physicality_required=False) assert povm.is_physical() == False p1 = np.array([1, 0, 0, 1], dtype=np.float64) p2 = np.array([1, 0, 0, 1], dtype=np.float64) povm = Povm(c_sys=c_sys, vecs=[p1, p2], is_physicality_required=False) assert povm.is_physical() == False def test_matrix(self): # Case 1: # Arrange basis1 = get_comp_basis() e_sys1 = esys.ElementalSystem(1, basis1) c_sys1 = csys.CompositeSystem([e_sys1]) vecs1 = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm1 = Povm(c_sys1, vecs1, is_physicality_required=False) # Act actual = povm1.matrix(0) # Assert expected = povm1.matrices() npt.assert_almost_equal(actual, expected[0], decimal=15) # Act actual = povm1.matrix(1) # Assert npt.assert_almost_equal(actual, expected[1], decimal=15) # Case2: # Arrange basis2 = get_comp_basis() e_sys2 = esys.ElementalSystem(2, basis2) c_sys2 = csys.CompositeSystem([e_sys2]) vecs2 = [ np.array([23, 29, 31, 37], dtype=np.float64), np.array([41, 43, 47, 53], dtype=np.float64), ] povm2 = Povm(c_sys2, vecs2, is_physicality_required=False) povm12 = tensor_product(povm1, povm2) # Act actual = povm12.matrix((0, 0)) # Assert expected = povm12.matrices() npt.assert_almost_equal(actual, expected[0], decimal=15) # Act actual = povm12.matrix((0, 1)) # Assert npt.assert_almost_equal(actual, expected[1], decimal=15) # Act actual = povm12.matrix((1, 0)) # Assert npt.assert_almost_equal(actual, expected[2], decimal=15) # Act actual = povm12.matrix((1, 1)) # Assert npt.assert_almost_equal(actual, expected[3], decimal=15) def test_matrix_unexpected(self): # Arrange basis1 = get_comp_basis() e_sys1 = esys.ElementalSystem(1, basis1) c_sys1 = csys.CompositeSystem([e_sys1]) vecs1 = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm1 = Povm(c_sys1, vecs1, is_physicality_required=False) # Act & Assert unexpected_type = [0] with pytest.raises(TypeError): # TypeError: The type of `key` must be int or str. _ = povm1.matrix(unexpected_type) def test_to_var(self): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] # default povm = Povm(c_sys, vecs, is_physicality_required=False) # Act actual = povm.to_var() # Assert expected = np.array([2, 3, 5, 7], dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) # Arrange vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm = Povm( c_sys, vecs, is_physicality_required=False, on_para_eq_constraint=True ) # Actual actual = povm.to_var() # Assert expected = np.array([2, 3, 5, 7], dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) # Arrange vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm = Povm( c_sys, vecs, is_physicality_required=False, on_para_eq_constraint=False ) # Actual actual = povm.to_var() # Assert expected = np.array([2, 3, 5, 7, 11, 13, 17, 19], dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) def test_generate_from_var(self): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) vecs = [ 1 / np.sqrt(2) * np.array([1, 1, 0, 0], dtype=np.float64), 1 / np.sqrt(2) * np.array([1, -1, 0, 0], dtype=np.float64), ] to_vecs = [ convert_vec(vec, get_normalized_pauli_basis(), c_sys.basis()).real.astype( np.float64 ) for vec in vecs ] init_is_physicality_required = False init_is_estimation_object = True init_on_para_eq_constraint = False init_on_algo_eq_constraint = True init_on_algo_ineq_constraint = False init_eps_proj_physical = 10 ** (-3) source_povm = Povm( c_sys, vecs=to_vecs, is_physicality_required=init_is_physicality_required, is_estimation_object=init_is_estimation_object, on_para_eq_constraint=init_on_para_eq_constraint, on_algo_eq_constraint=init_on_algo_eq_constraint, on_algo_ineq_constraint=init_on_algo_ineq_constraint, eps_proj_physical=init_eps_proj_physical, ) # Case 1: default var = np.array([2, 3, 5, 7, 11, 13, 17, 19], dtype=np.float64) # Act actual = source_povm.generate_from_var(var) # Assert expected = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] assert len(actual.vecs) == len(expected) for a, e in zip(actual.vecs, expected): npt.assert_almost_equal(a, e, decimal=15) assert actual._composite_system is c_sys assert actual.is_physicality_required is init_is_physicality_required assert actual.is_estimation_object is init_is_estimation_object assert actual.on_para_eq_constraint is init_on_para_eq_constraint assert actual.on_algo_eq_constraint is init_on_algo_eq_constraint assert actual.on_algo_ineq_constraint is init_on_algo_ineq_constraint assert actual.eps_proj_physical is init_eps_proj_physical # Case 2: with pytest.raises(ValueError): # ValueError: the POVM is not physically correct. _ = source_povm.generate_from_var(var, is_physicality_required=True) # Case 3: # Arrange # var = np.array([2, 3, 5, 7], dtype=np.float64) # source_is_estimation_object = False # source_on_para_eq_constraint = True # source_on_algo_eq_constraint = False # source_on_algo_ineq_constraint = True # source_eps_proj_physical = 10 ** (-2) # Act # actual = source_povm.generate_from_var( # var, # is_estimation_object=source_is_estimation_object, # on_para_eq_constraint=source_on_para_eq_constraint, # on_algo_eq_constraint=source_on_algo_eq_constraint, # on_algo_ineq_constraint=source_on_algo_ineq_constraint, # eps_proj_physical=source_eps_proj_physical, # ) # Assert # expected = [ # np.array([2, 3, 5, 7], dtype=np.float64), # np.array([-1, -3, -5, -6], dtype=np.float64), # ] # assert len(actual.vecs) == len(expected) # for a, e in zip(actual.vecs, expected): # npt.assert_almost_equal(a, e, decimal=15) # assert actual._composite_system is c_sys # assert actual.is_physicality_required is init_is_physicality_required # assert actual.is_estimation_object is source_is_estimation_object # assert actual.on_para_eq_constraint is source_on_para_eq_constraint # assert actual.on_algo_eq_constraint is source_on_algo_eq_constraint # assert actual.on_algo_ineq_constraint is source_on_algo_ineq_constraint # assert actual.eps_proj_physical == source_eps_proj_physical # Case 4: # Array e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) a0, a1, a2, a3 = 1, 1 / np.sqrt(2), 0, 1 / np.sqrt(2) m1 = (1 / np.sqrt(2)) * np.array([a0, a1, a2, a3]) m2 = (1 / np.sqrt(2)) * np.array([2 - a0, -a1, -a2, -a3]) source_is_estimation_object = False source_on_para_eq_constraint = True source_on_algo_eq_constraint = False source_on_algo_ineq_constraint = True source_eps_proj_physical = 10 ** (-2) source_povm = Povm( vecs=[m1, m2], c_sys=c_sys, is_estimation_object=source_is_estimation_object, on_para_eq_constraint=source_on_para_eq_constraint, on_algo_eq_constraint=source_on_algo_eq_constraint, on_algo_ineq_constraint=source_on_algo_ineq_constraint, eps_proj_physical=source_eps_proj_physical, ) var = source_povm.to_var() source_is_estimation_object = False source_on_para_eq_constraint = True source_on_algo_eq_constraint = False source_on_algo_ineq_constraint = True source_eps_proj_physical = 10 ** (-2) # Act actual = source_povm.generate_from_var( var, is_estimation_object=source_is_estimation_object, on_para_eq_constraint=source_on_para_eq_constraint, on_algo_eq_constraint=source_on_algo_eq_constraint, on_algo_ineq_constraint=source_on_algo_ineq_constraint, eps_proj_physical=source_eps_proj_physical, ) expected = source_povm.vecs assert len(actual.vecs) == len(expected) for a, e in zip(actual.vecs, expected): npt.assert_almost_equal(a, e, decimal=15) assert actual._composite_system is c_sys assert actual.is_physicality_required is True # default assert actual.is_estimation_object is source_is_estimation_object assert actual.on_para_eq_constraint is source_on_para_eq_constraint assert actual.on_algo_eq_constraint is source_on_algo_eq_constraint assert actual.on_algo_ineq_constraint is source_on_algo_ineq_constraint assert actual.eps_proj_physical == source_eps_proj_physical def test_set_zero(self): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) povm = get_x_povm(c_sys) old_povm = copy.copy(povm) # Act povm.set_zero() assert len(povm.vecs) == len(old_povm.vecs) for actual, old in zip(povm.vecs, old_povm.vecs): assert actual.size == old.size expected = np.zeros(old.size, dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) assert povm.dim == old_povm.dim assert povm.is_physicality_required == False assert povm.is_estimation_object == old_povm.is_estimation_object assert povm.on_para_eq_constraint == old_povm.on_para_eq_constraint assert povm.on_algo_eq_constraint == old_povm.on_algo_eq_constraint assert povm.on_algo_ineq_constraint == old_povm.on_algo_ineq_constraint assert povm.eps_proj_physical == old_povm.eps_proj_physical def test_generate_origin_obj(self): # generate_origin_obj() # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_1 = np.array([1, 2, 3, 4], dtype=np.float64) vec_2 = np.array([5, 6, 7, 8], dtype=np.float64) vecs = [vec_1, vec_2] povm = Povm( c_sys=c_sys, vecs=vecs, is_physicality_required=False, is_estimation_object=True, on_para_eq_constraint=False, on_algo_eq_constraint=True, on_algo_ineq_constraint=False, eps_proj_physical=0.2, ) # Act actual = povm.generate_origin_obj() expected_vecs = [ np.array([np.sqrt(2) / 2, 0, 0, 0], dtype=np.float64), np.array([np.sqrt(2) / 2, 0, 0, 0], dtype=np.float64), ] assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm.on_algo_ineq_constraint assert actual.eps_proj_physical == povm.eps_proj_physical def test_add(self): # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_11 = np.array([1, 2, 3, 4], dtype=np.float64) vec_12 = np.array([5, 6, 7, 8], dtype=np.float64) vecs = [vec_11, vec_12] povm_1 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) vec_21 = np.array([10, 20, 30, 40], dtype=np.float64) vec_22 = np.array([50, 60, 70, 80], dtype=np.float64) vecs = [vec_21, vec_22] povm_2 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act actual = povm_1 + povm_2 # Assert expected_vecs = [ np.array([11, 22, 33, 44], dtype=np.float64), np.array([55, 66, 77, 88], dtype=np.float64), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical def test_add_exception(self): # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_11 = np.array([1, 2, 3, 4], dtype=np.float64) vec_12 = np.array([5, 6, 7, 8], dtype=np.float64) vecs = [vec_11, vec_12] povm_1 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Case 1: # Arrange state = get_x0_1q(c_sys) # Act & Assert with pytest.raises(TypeError): _ = povm_1 + state # Case 2: # Arrange vec_21 = np.array([10, 20, 30, 40], dtype=np.float64) vec_22 = np.array([50, 60, 70, 80], dtype=np.float64) vecs = [vec_21, vec_22] povm_2 = Povm( c_sys=c_sys, vecs=vecs, is_physicality_required=False, on_para_eq_constraint=False, ) # Act & Assert with pytest.raises(ValueError): _ = povm_1 + povm_2 # Case 3: # Arrange vec_21 = np.array([10, 20, 30, 40], dtype=np.float64) vec_22 = np.array([50, 60, 70, 80], dtype=np.float64) vecs = [vec_21, vec_22, vec_21] povm_2 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act & Assert with pytest.raises(ValueError): _ = povm_1 + povm_2 # Case 4: # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_31 = np.array([10, 20, 30, 40], dtype=np.float64) vec_32 = np.array([50, 60, 70, 80], dtype=np.float64) vecs = [vec_31, vec_32] povm_3 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act & Assert with pytest.raises(ValueError): actual = povm_1 + povm_3 def test_sub(self): # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_11 = np.array([1, 2, 3, 4], dtype=np.float64) vec_12 = np.array([5, 6, 7, 8], dtype=np.float64) vecs = [vec_11, vec_12] povm_1 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) vec_21 = np.array([10, 20, 30, 40], dtype=np.float64) vec_22 = np.array([50, 60, 70, 80], dtype=np.float64) vecs = [vec_21, vec_22] povm_2 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act actual = povm_1 - povm_2 # Assert expected_vecs = [ np.array([-9, -18, -27, -36], dtype=np.float64), np.array([-45, -54, -63, -72], dtype=np.float64), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical def test_sub_exception(self): # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_11 = np.array([1, 2, 3, 4], dtype=np.float64) vec_12 = np.array([5, 6, 7, 8], dtype=np.float64) vecs = [vec_11, vec_12] povm_1 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Case 1: # Arrange state = get_x0_1q(c_sys) # Act & Assert with pytest.raises(TypeError): _ = povm_1 - state # Case 2: # Arrange vec_21 = np.array([10, 20, 30, 40], dtype=np.float64) vec_22 = np.array([50, 60, 70, 80], dtype=np.float64) vecs = [vec_21, vec_22] povm_2 = Povm( c_sys=c_sys, vecs=vecs, is_physicality_required=False, on_para_eq_constraint=False, ) # Act & Assert with pytest.raises(ValueError): _ = povm_1 - povm_2 # Case 3: # Arrange vec_21 = np.array([10, 20, 30, 40], dtype=np.float64) vec_22 = np.array([50, 60, 70, 80], dtype=np.float64) vecs = [vec_21, vec_22, vec_21] povm_2 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act & Assert with pytest.raises(ValueError): _ = povm_1 - povm_2 # Case 4: # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_31 = np.array([10, 20, 30, 40], dtype=np.float64) vec_32 = np.array([50, 60, 70, 80], dtype=np.float64) vecs = [vec_31, vec_32] povm_3 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act & Assert with pytest.raises(ValueError): actual = povm_1 - povm_3 def test_mul(self): # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_11 = np.array([1, 2, 3, 4], dtype=np.float64) vec_12 = np.array([5, 6, 7, 8], dtype=np.float64) vecs = [vec_11, vec_12] povm_1 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Case 1: # Act actual = povm_1 * 10 # Assert expected_vecs = [ np.array([10, 20, 30, 40], dtype=np.float64), np.array([50, 60, 70, 80], dtype=np.float64), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical # Case 2: # Act actual = povm_1 * 0.1 # Assert expected_vecs = [ np.array([0.1, 0.2, 0.3, 0.4], dtype=np.float64), np.array([0.5, 0.6, 0.7, 0.8], dtype=np.float64), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical # Case 3: Exception # Act & Assert with pytest.raises(TypeError): _ = povm_1 * povm_1 def test_rmul(self): # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_11 = np.array([1, 2, 3, 4], dtype=np.float64) vec_12 = np.array([5, 6, 7, 8], dtype=np.float64) vecs = [vec_11, vec_12] povm_1 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Case 1: # Act actual = 10 * povm_1 # Assert expected_vecs = [ np.array([10, 20, 30, 40], dtype=np.float64), np.array([50, 60, 70, 80], dtype=np.float64), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical # Case 2: # Act actual = 0.1 * povm_1 # Assert expected_vecs = [ np.array([0.1, 0.2, 0.3, 0.4], dtype=np.float64), np.array([0.5, 0.6, 0.7, 0.8], dtype=np.float64), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical # Case 3: Exception # Act & Assert with pytest.raises(TypeError): _ = povm_1 * povm_1 def test_truediv(self): # Arrange e_sys = esys.ElementalSystem(1, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) vec_11 = np.array([1, 2, 3, 4], dtype=np.float64) vec_12 = np.array([5, 6, 7, 8], dtype=np.float64) vecs = [vec_11, vec_12] povm_1 = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Case 1: # Act actual = povm_1 / 10 # Assert expected_vecs = [ np.array([0.1, 0.2, 0.3, 0.4], dtype=np.float64), np.array([0.5, 0.6, 0.7, 0.8], dtype=np.float64), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical # Case 2: # Act actual = povm_1 / 0.1 # Assert expected_vecs = [ np.array([10, 20, 30, 40], dtype=np.float64), np.array([50, 60, 70, 80], dtype=np.float64), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical # Case 4: # Act actual = povm_1 / 0 # Assert expected_vecs = [ np.array( [float("inf"), float("inf"), float("inf"), float("inf")], dtype=np.float64, ), np.array( [float("inf"), float("inf"), float("inf"), float("inf")], dtype=np.float64, ), ] assert type(actual) == Povm assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.is_physicality_required == False assert actual.is_estimation_object == False assert actual.on_para_eq_constraint == povm_1.on_para_eq_constraint assert actual.on_algo_eq_constraint == povm_1.on_algo_eq_constraint assert actual.on_algo_ineq_constraint == povm_1.on_algo_ineq_constraint assert actual.eps_proj_physical == povm_1.eps_proj_physical # Case 3: Exception # Act & Assert with pytest.raises(TypeError): _ = povm_1 / povm_1 # Case 4: Exception # Act & Assert with pytest.raises(TypeError): _ = 1 / povm_1 def test_calc_proj_eq_constraint(self): # Case 1: e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) povm = get_x_povm(c_sys) # Act actual = povm.calc_proj_eq_constraint() vec_1 = ( povm.vecs[0] - (1 / 2) * np.array([2 / np.sqrt(2), 0, 0, 0]) + np.array([np.sqrt(2) / 2, 0, 0, 0]) ) vec_2 = ( povm.vecs[1] - (1 / 2) * np.array([2 / np.sqrt(2), 0, 0, 0]) + np.array([np.sqrt(2) / 2, 0, 0, 0]) ) vecs = [vec_1, vec_2] expected_vecs = [vec_1, vec_2] assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) def test_calc_proj_eq_constraint_with_var(self): e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) povm = get_x_povm(c_sys) vec_1 = ( povm.vecs[0] - (1 / 2) * np.array([2 / np.sqrt(2), 0, 0, 0]) + np.array([np.sqrt(2) / 2, 0, 0, 0]) ) vec_2 = ( povm.vecs[1] - (1 / 2) * np.array([2 / np.sqrt(2), 0, 0, 0]) + np.array([np.sqrt(2) / 2, 0, 0, 0]) ) vecs = [vec_1, vec_2] # Case 1: default actual = povm.calc_proj_eq_constraint_with_var(c_sys, vec_1) expected = vec_1 npt.assert_almost_equal(actual, expected, decimal=15) # Case 2: on_para_eq_constraint=True actual = povm.calc_proj_eq_constraint_with_var( c_sys, vec_1, on_para_eq_constraint=True ) expected = vec_1 npt.assert_almost_equal(actual, expected, decimal=15) # Case 3: on_para_eq_constraint=False actual = povm.calc_proj_eq_constraint_with_var( c_sys, np.hstack(vecs), on_para_eq_constraint=False ) expected = np.hstack(vecs) npt.assert_almost_equal(actual, expected, decimal=15) def test_calc_proj_ineq_constraint(self): # Case 1: e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) povm = get_x_povm(c_sys) # Act actual = povm.calc_proj_ineq_constraint() vec_1 = np.array([1 / np.sqrt(2), 1 / np.sqrt(2), 0, 0]) vec_2 = np.array([1 / np.sqrt(2), -1 / np.sqrt(2), 0, 0]) vecs = [vec_1, vec_2] expected_vecs = [vec_1, vec_2] assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) def test_calc_proj_ineq_constraint_with_var(self): e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) povm = get_x_povm(c_sys) vec_1 = np.array([1 / np.sqrt(2), 1 / np.sqrt(2), 0, 0]) vec_2 = np.array([1 / np.sqrt(2), -1 / np.sqrt(2), 0, 0]) vecs = [vec_1, vec_2] # Case 1: default actual = povm.calc_proj_ineq_constraint_with_var(c_sys, vec_1) expected = vec_1 npt.assert_almost_equal(actual, expected, decimal=15) # Case 2: on_para_eq_constraint=True actual = povm.calc_proj_ineq_constraint_with_var( c_sys, vec_1, on_para_eq_constraint=True ) expected = vec_1 npt.assert_almost_equal(actual, expected, decimal=15) # Case 3: on_para_eq_constraint=False actual = povm.calc_proj_ineq_constraint_with_var( c_sys, np.hstack(vecs), on_para_eq_constraint=False ) expected = np.hstack(vecs) npt.assert_almost_equal(actual, expected, decimal=15) def test_calc_gradient(self): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) # Case 1: default # Arrange vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act actual = povm.calc_gradient(3) # Assert expected_vecs = [ np.array([0, 0, 0, 1], dtype=np.float64), np.array([0, 0, 0, 0], dtype=np.float64), ] assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.composite_system is povm.composite_system assert actual.is_physicality_required == False assert actual.is_estimation_object == True assert actual.on_para_eq_constraint == True assert actual.on_algo_eq_constraint == True assert actual.on_algo_ineq_constraint == True assert actual.eps_proj_physical == Settings.get_atol() / 10.0 # Case 2: # Arrange vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm = Povm( c_sys=c_sys, vecs=vecs, is_physicality_required=False, on_para_eq_constraint=False, ) # Act actual = povm.calc_gradient(7) # Assert expected_vecs = [ np.array([0, 0, 0, 0], dtype=np.float64), np.array([0, 0, 0, 1], dtype=np.float64), ] assert len(actual.vecs) == len(expected_vecs) for a, e in zip(actual.vecs, expected_vecs): npt.assert_almost_equal(a, e, decimal=15) assert actual.composite_system is povm.composite_system def test_to_stacked_vector(self): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] povm = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act actual = povm.to_stacked_vector() # Assert expected = np.array([2, 3, 5, 7, 11, 13, 17, 19]) npt.assert_almost_equal(actual, expected, decimal=15) def test_calc_proj_eq_constraint_unexpected(self): # Array e_sys = esys.ElementalSystem(0, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys]) m_1 = (1 / 2) * np.array([1, 0, 0, 1]) m_2 = (1 / 2) * np.array([1, 0, 0, 1]) vecs = [m_1, m_2] povm = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Act & Assert with pytest.raises(ValueError): _ = povm.calc_proj_eq_constraint() def test_calc_proj(self): # Array e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) # Case 1 # ">=": True "=I": True # Array m_1 = np.array([1 / np.sqrt(2), 0, 0, 0]) m_2 = np.array([1 / np.sqrt(2), 0, 0, 0]) vecs = [m_1, m_2] povm = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Make sure the prerequisites are met assert povm.is_positive_semidefinite() is True assert povm.is_identity_sum() is True # Act actual_ineq = povm.calc_proj_ineq_constraint() actual_eq = povm.calc_proj_eq_constraint() # Assert assert actual_ineq.is_positive_semidefinite() is True npt.assert_almost_equal(povm.vecs, actual_ineq.vecs, decimal=15) assert actual_eq.is_identity_sum() is True npt.assert_almost_equal(povm.vecs, actual_eq.vecs, decimal=15) # Case 2 # ">=": False "=I": True # Array m_1 = np.array([np.sqrt(2), 0.0, 0.0, np.sqrt(2)]) m_2 = np.array([0, 0.0, 0.0, -np.sqrt(2)]) vecs = [m_1, m_2] povm = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Make sure the prerequisites are met assert povm.is_positive_semidefinite() is False assert povm.is_identity_sum() is True # Act actual_ineq = povm.calc_proj_ineq_constraint() actual_eq = povm.calc_proj_eq_constraint() # Assert assert actual_ineq.is_positive_semidefinite() is True assert not np.allclose(povm.vecs, actual_ineq.vecs) assert actual_eq.is_identity_sum() is True npt.assert_almost_equal(povm.vecs, actual_eq.vecs, decimal=15) # Case 3 # ">=": True "=I": False # Array m_1 = np.array([np.sqrt(2), 0.0, 0.0, 1.0]) m_2 = np.array([np.sqrt(2), 0.0, 0.0, 1.0]) vecs = [m_1, m_2] povm = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Make sure the prerequisites are met assert povm.is_positive_semidefinite() is True assert povm.is_identity_sum() is False # Act actual_ineq = povm.calc_proj_ineq_constraint() actual_eq = povm.calc_proj_eq_constraint() # Assert assert actual_ineq.is_positive_semidefinite() is True npt.assert_almost_equal(povm.vecs, actual_ineq.vecs, decimal=15) assert actual_eq.is_identity_sum() is True assert not np.allclose(povm.vecs, actual_eq.vecs) # Case 4 # ">=": False "=I": False # Array m_1 = np.array([np.sqrt(2), 0.0, 0.0, 1.0]) m_2 = np.array([-np.sqrt(2), 0.0, 0.0, 1.0]) vecs = [m_1, m_2] povm = Povm(c_sys=c_sys, vecs=vecs, is_physicality_required=False) # Make sure the prerequisites are met assert povm.is_positive_semidefinite() is False assert povm.is_identity_sum() is False # Act actual_ineq = povm.calc_proj_ineq_constraint() actual_eq = povm.calc_proj_eq_constraint() # Assert assert actual_ineq.is_positive_semidefinite() is True assert not np.allclose(povm.vecs, actual_ineq.vecs) assert actual_eq.is_identity_sum() is True assert not np.allclose(povm.vecs, actual_eq.vecs) def test_convert_var_to_stacked_vector(self): e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) povm = get_z_povm(c_sys) # Case 1: default vecs = [ np.array([1, 0, 0, 1] / np.sqrt(2), dtype=np.float64), np.array([1, 0, 0, -1] / np.sqrt(2), dtype=np.float64), ] actual = povm.convert_var_to_stacked_vector(c_sys, vecs[0]) npt.assert_almost_equal(actual, np.hstack(vecs), decimal=15) # Case 2: on_para_eq_constraint=True vecs = [ np.array([1, 0, 0, 1] / np.sqrt(2), dtype=np.float64), np.array([1, 0, 0, -1] / np.sqrt(2), dtype=np.float64), ] actual = povm.convert_var_to_stacked_vector( c_sys, vecs[0], on_para_eq_constraint=True ) npt.assert_almost_equal(actual, np.hstack(vecs), decimal=15) # Case 3: on_para_eq_constraint=False vecs = [ np.array([1, 0, 0, 1] / np.sqrt(2), dtype=np.float64), np.array([1, 0, 0, -1] / np.sqrt(2), dtype=np.float64), ] actual = povm.convert_var_to_stacked_vector( c_sys, np.hstack(vecs), on_para_eq_constraint=False ) npt.assert_almost_equal(actual, np.hstack(vecs), decimal=15) def test_convert_stacked_vector_to_var(self): e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) povm = get_z_povm(c_sys) # Case 1: default vecs = [ np.array([1, 0, 0, 1] / np.sqrt(2), dtype=np.float64), np.array([1, 0, 0, -1] / np.sqrt(2), dtype=np.float64), ] actual = povm.convert_stacked_vector_to_var(c_sys, np.hstack(vecs)) expected = np.array([1, 0, 0, 1] / np.sqrt(2), dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) # Case 2: on_para_eq_constraint=True vecs = [ np.array([1, 0, 0, 1] / np.sqrt(2), dtype=np.float64), np.array([1, 0, 0, -1] / np.sqrt(2), dtype=np.float64), ] actual = povm.convert_stacked_vector_to_var( c_sys, np.hstack(vecs), on_para_eq_constraint=True ) expected = np.array([1, 0, 0, 1] / np.sqrt(2), dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) # Case 3: on_para_eq_constraint=False vecs = [ np.array([1, 0, 0, 1] / np.sqrt(2), dtype=np.float64), np.array([1, 0, 0, -1] / np.sqrt(2), dtype=np.float64), ] actual = povm.convert_stacked_vector_to_var( c_sys, np.hstack(vecs), on_para_eq_constraint=False ) expected = np.array([1, 0, 0, 1, 1, 0, 0, -1] / np.sqrt(2), dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) def test_convert_var_index_to_povm_index(): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] # default actual = convert_var_index_to_povm_index(c_sys, vecs, 3) assert actual == (0, 3) # on_para_eq_constraint=True actual = convert_var_index_to_povm_index(c_sys, vecs, 3, on_para_eq_constraint=True) assert actual == (0, 3) # on_para_eq_constraint=False actual = convert_var_index_to_povm_index( c_sys, vecs, 7, on_para_eq_constraint=False ) assert actual == (1, 3) def test_convert_povm_index_to_var_index(): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] # default actual = convert_povm_index_to_var_index(c_sys, vecs, (0, 3)) assert actual == 3 # on_para_eq_constraint=True actual = convert_povm_index_to_var_index( c_sys, vecs, (0, 3), on_para_eq_constraint=True ) assert actual == 3 # on_para_eq_constraint=False actual = convert_povm_index_to_var_index( c_sys, vecs, (1, 3), on_para_eq_constraint=False ) assert actual == 7 def test_convert_var_to_povm(): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) # Case 1: default # Arrange # vecs = np.array([2, 3, 5, 7], dtype=np.float64) # # Act # actual = convert_var_to_povm(c_sys, vecs, is_physicality_required=False) # # Assert # expected = [ # np.array([2, 3, 5, 7], dtype=np.float64), # np.array([-1, -3, -5, -6], dtype=np.float64), # ] # assert len(actual.vecs) == len(expected) # for a, e in zip(actual.vecs, expected): # npt.assert_almost_equal(a, e, decimal=15) # Case 2: on_para_eq_constraint=True # Arrange # vecs = np.array([2, 3, 5, 7], dtype=np.float64) # # Act # actual = convert_var_to_povm( # c_sys, vecs, on_para_eq_constraint=True, is_physicality_required=False # ) # # Assert # expected = [ # np.array([2, 3, 5, 7], dtype=np.float64), # np.array([-1, -3, -5, -6], dtype=np.float64), # ] # assert len(actual.vecs) == len(expected) # for a, e in zip(actual.vecs, expected): # npt.assert_almost_equal(a, e, decimal=15) # Case 3: on_para_eq_constraint=False # Arrange vecs = np.array([2, 3, 5, 7, 11, 13, 17, 19], dtype=np.float64) # Act actual = convert_var_to_povm( c_sys, vecs, on_para_eq_constraint=False, is_physicality_required=False ) # Assert expected = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] assert len(actual.vecs) == len(expected) for a, e in zip(actual.vecs, expected): npt.assert_almost_equal(a, e, decimal=15) # Case 4: e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) a0, a1, a2, a3 = 1, 1 / np.sqrt(2), 0, 1 / np.sqrt(2) m1 = (1 / np.sqrt(2)) * np.array([a0, a1, a2, a3]) m2 = (1 / np.sqrt(2)) * np.array([2 - a0, -a1, -a2, -a3]) true_object = Povm(vecs=[m1, m2], c_sys=c_sys) true_var = true_object.to_var() actual = convert_var_to_povm(c_sys, true_var, is_physicality_required=False) expected = true_object.vecs assert len(actual.vecs) == len(expected) for a, e in zip(actual.vecs, expected): npt.assert_almost_equal(a, e, decimal=15) def test_convert_vecs_to_var(): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) # Case 1: default vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] # Act actual = convert_vecs_to_var(c_sys, vecs) # Assert expected = np.array([2, 3, 5, 7], dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) # Case 2: on_para_eq_constraint=True vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] # Act actual = convert_vecs_to_var(c_sys, vecs, on_para_eq_constraint=True) # Assert expected = np.array([2, 3, 5, 7], dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) # Case 3: on_para_eq_constraint=False vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] # Act actual = convert_vecs_to_var(c_sys, vecs, on_para_eq_constraint=False) # Assert expected = np.array([2, 3, 5, 7, 11, 13, 17, 19], dtype=np.float64) npt.assert_almost_equal(actual, expected, decimal=15) def test_calc_gradient_from_povm(): # Arrange e_sys = esys.ElementalSystem(0, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys]) # default vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] actual = calc_gradient_from_povm(c_sys, vecs, 3) expected = [ np.array([0, 0, 0, 1], dtype=np.float64), np.array([0, 0, 0, 0], dtype=np.float64), ] assert len(actual.vecs) == len(expected) for a, e in zip(actual.vecs, expected): npt.assert_almost_equal(a, e, decimal=15) # on_para_eq_constraint=True vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] actual = calc_gradient_from_povm(c_sys, vecs, 3, on_para_eq_constraint=True) expected = [ np.array([0, 0, 0, 1], dtype=np.float64), np.array([0, 0, 0, 0], dtype=np.float64), ] assert len(actual.vecs) == len(expected) for a, e in zip(actual.vecs, expected): npt.assert_almost_equal(a, e, decimal=15) # on_para_eq_constraint=False vecs = [ np.array([2, 3, 5, 7], dtype=np.float64), np.array([11, 13, 17, 19], dtype=np.float64), ] actual = calc_gradient_from_povm(c_sys, vecs, 7, on_para_eq_constraint=False) expected = [ np.array([0, 0, 0, 0], dtype=np.float64), np.array([0, 0, 0, 1], dtype=np.float64), ] assert len(actual.vecs) == len(expected) for a, e in zip(actual.vecs, expected): npt.assert_almost_equal(a, e, decimal=15) def test_get_x_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_comp_basis()) c_sys1 = csys.CompositeSystem([e_sys1]) # Act actual = get_x_povm(c_sys1) # Assert expected = [ 1 / 2 * np.array([1, 1, 1, 1], dtype=np.float64), 1 / 2 * np.array([1, -1, -1, 1], dtype=np.float64), ] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual): npt.assert_almost_equal(a, expected[i], decimal=15) # Test that not 1qubit CompositeSystem e_sys2 = esys.ElementalSystem(2, get_comp_basis()) c_sys2 = csys.CompositeSystem([e_sys1, e_sys2]) with pytest.raises(ValueError): get_x_povm(c_sys2) # Test that not 2-dim CompositeSystem e_sys3 = esys.ElementalSystem(3, get_gell_mann_basis()) c_sys3 = csys.CompositeSystem([e_sys3]) with pytest.raises(ValueError): get_x_povm(c_sys3) def test_get_y_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_normalized_pauli_basis()) c_sys1 = csys.CompositeSystem([e_sys1]) # Act actual = get_y_povm(c_sys1) # Assert expected = [ 1 / np.sqrt(2) * np.array([1, 0, 1, 0], dtype=np.float64), 1 / np.sqrt(2) * np.array([1, 0, -1, 0], dtype=np.float64), ] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual): npt.assert_almost_equal(a, expected[i], decimal=15) # Test that not 1qubit CompositeSystem e_sys2 = esys.ElementalSystem(2, get_comp_basis()) c_sys2 = csys.CompositeSystem([e_sys1, e_sys2]) with pytest.raises(ValueError): get_y_povm(c_sys2) # Test that not 2-dim CompositeSystem e_sys3 = esys.ElementalSystem(3, get_gell_mann_basis()) c_sys3 = csys.CompositeSystem([e_sys3]) with pytest.raises(ValueError): get_y_povm(c_sys3) def test_get_z_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_comp_basis()) c_sys1 = csys.CompositeSystem([e_sys1]) # Act actual = get_z_povm(c_sys1) # Assert expected = [ np.array([1, 0, 0, 0], dtype=np.float64), np.array([0, 0, 0, 1], dtype=np.float64), ] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual): npt.assert_almost_equal(a, expected[i], decimal=15) # Test that not 1qubit CompositeSystem e_sys2 = esys.ElementalSystem(2, get_comp_basis()) c_sys2 = csys.CompositeSystem([e_sys1, e_sys2]) with pytest.raises(ValueError): get_z_povm(c_sys2) # Test that not 2-dim CompositeSystem e_sys3 = esys.ElementalSystem(3, get_gell_mann_basis()) c_sys3 = csys.CompositeSystem([e_sys3]) with pytest.raises(ValueError): get_z_povm(c_sys3) def test_get_xx_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_comp_basis()) e_sys2 = esys.ElementalSystem(2, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys1, e_sys2]) # Act actual = get_xx_povm(c_sys) # Assert vecs1 = [ 1 / 2 * np.array([1, 1, 1, 1], dtype=np.float64), 1 / 2 * np.array([1, -1, -1, 1], dtype=np.float64), ] vecs2 = [ 1 / 2 * np.array([1, 1, 1, 1], dtype=np.float64), 1 / 2 * np.array([1, -1, -1, 1], dtype=np.float64), ] expected = [np.kron(vec1, vec2) for vec1, vec2 in itertools.product(vecs1, vecs2)] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual): npt.assert_almost_equal(a, expected[i], decimal=15) def test_get_xy_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_comp_basis()) e_sys2 = esys.ElementalSystem(2, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys1, e_sys2]) # Act actual = get_xy_povm(c_sys) # Assert vecs1 = [ 1 / 2 * np.array([1, 1, 1, 1], dtype=np.float64), 1 / 2 * np.array([1, -1, -1, 1], dtype=np.float64), ] vecs2 = [ 1 / np.sqrt(2) * np.array([1, 0, 1, 0], dtype=np.float64), 1 / np.sqrt(2) * np.array([1, 0, -1, 0], dtype=np.float64), ] expected = [np.kron(vec1, vec2) for vec1, vec2 in itertools.product(vecs1, vecs2)] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual): npt.assert_almost_equal(a, expected[i], decimal=15) def test_get_xz_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_comp_basis()) e_sys2 = esys.ElementalSystem(2, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys1, e_sys2]) # Act actual = get_xz_povm(c_sys) # Assert vecs1 = [ 1 / 2 * np.array([1, 1, 1, 1], dtype=np.float64), 1 / 2 * np.array([1, -1, -1, 1], dtype=np.float64), ] vecs2 = [ np.array([1, 0, 0, 0], dtype=np.float64), np.array([0, 0, 0, 1], dtype=np.float64), ] expected = [np.kron(vec1, vec2) for vec1, vec2 in itertools.product(vecs1, vecs2)] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual): npt.assert_almost_equal(a, expected[i], decimal=15) def test_get_yx_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_normalized_pauli_basis()) e_sys2 = esys.ElementalSystem(2, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys1, e_sys2]) # Act actual = get_yx_povm(c_sys) # Assert vecs1 = [ 1 / np.sqrt(2) * np.array([1, 0, 1, 0], dtype=np.float64), 1 / np.sqrt(2) * np.array([1, 0, -1, 0], dtype=np.float64), ] vecs2 = [ 1 / 2 * np.array([1, 1, 1, 1], dtype=np.float64), 1 / 2 * np.array([1, -1, -1, 1], dtype=np.float64), ] expected = [np.kron(vec1, vec2) for vec1, vec2 in itertools.product(vecs1, vecs2)] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual): npt.assert_almost_equal(a, expected[i], decimal=15) def test_get_yy_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_normalized_pauli_basis()) e_sys2 = esys.ElementalSystem(2, get_normalized_pauli_basis()) c_sys = csys.CompositeSystem([e_sys1, e_sys2]) # Act actual = get_yy_povm(c_sys) # Assert vecs1 = [ 1 / np.sqrt(2) * np.array([1, 0, 1, 0], dtype=np.float64), 1 / np.sqrt(2) * np.array([1, 0, -1, 0], dtype=np.float64), ] vecs2 = [ 1 / np.sqrt(2) * np.array([1, 0, 1, 0], dtype=np.float64), 1 / np.sqrt(2) * np.array([1, 0, -1, 0], dtype=np.float64), ] expected = [np.kron(vec1, vec2) for vec1, vec2 in itertools.product(vecs1, vecs2)] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual): npt.assert_almost_equal(a, expected[i], decimal=15) def test_get_yz_povm(): # Arrange e_sys1 = esys.ElementalSystem(1, get_normalized_pauli_basis()) e_sys2 = esys.ElementalSystem(2, get_comp_basis()) c_sys = csys.CompositeSystem([e_sys1, e_sys2]) # Act actual = get_yz_povm(c_sys) # Assert vecs1 = [ 1 / np.sqrt(2) * np.array([1, 0, 1, 0], dtype=np.float64), 1 / np.sqrt(2) * np.array([1, 0, -1, 0], dtype=np.float64), ] vecs2 = [ np.array([1, 0, 0, 0], dtype=np.float64), np.array([0, 0, 0, 1], dtype=np.float64), ] expected = [np.kron(vec1, vec2) for vec1, vec2 in itertools.product(vecs1, vecs2)] assert len(actual.vecs) == len(expected) for i, a in enumerate(actual):
npt.assert_almost_equal(a, expected[i], decimal=15)
numpy.testing.assert_almost_equal
import itertools import numpy as np import matplotlib.pyplot as plt import scipy.stats import glob from astropy.io import fits import matplotlib as mpl import matplotlib.patches as mpatches from skimage import filters, segmentation, morphology from skimage.measure import label, regionprops from skimage.color import label2rgb from sklearn import cluster from sklearn.cluster import KMeans import multiprocessing as mp import warnings import os import pandas as pd from tqdm import tqdm def load_fits_data(filepath): """ Load data/header from .fits file :param filepath: :return: header, data """ try: with fits.open(filepath) as hdul: # Beamline 12 hdr = hdul[0].header data = hdul[2].data except IndexError: with fits.open(filepath) as hdul: # Cosmic try: hdr = hdul[0].header data = hdul[0].data except IndexError: print(hdul.info()) return data, hdr def load_all_data(folder_path, n_files=None): """ Load in all .fits files from a given directory :param folder_path: :return: data, hdr """ hdr = [] data = [] for ii, file in tqdm(enumerate(sorted(glob.glob(folder_path + '*.fits'))), desc='loading data'): if n_files is not None: if n_files <= ii: break tmp = load_fits_data(file) hdr.append(tmp[1]) data.append(tmp[0]) data = np.asarray(data) print(f'Loaded data shape: {data.shape}') return np.squeeze(data), hdr def filter_image_data(data, tol=0.000_000_005, min_size=10): """ Isolate speckles from image data. Most likely needs to already be of just an roi. TUNING PARAMETERS: segmentation.flood(..., tolerance), very finicky mophology.remove_small_objects(min_size) :param data: roi image :return: input image but non-speckle features are 0 """ erode = morphology.erosion(data) # remove small background noise sobel = filters.sobel(erode) # edge detection coords = np.unravel_index(np.argmin(data), data.shape) flood = np.invert(segmentation.flood(sobel, coords, tolerance=tol)) # fill to create mask for speckle only mask = morphology.remove_small_objects(flood, min_size=min_size) # clean up small mask bits return data * mask def label_image(img): """ label each section of the image :param img: :return: original image but labelled """ bool_img = morphology.closing( img.astype(bool)) # Connectivity is defined by having same value so need to convert to bool label_image = label(bool_img) return label_image def cluster_single_speckle_kmeans(img, speckle_size): """ cluster points using kmeans algorithm. includes both location and value of points :param img: roi img :param speckle_size: number of pixels in a speckle :return: kmeans clustering of points """ points = np.asarray(np.where(img)).T weights = img[
np.where(img)
numpy.where
''' Implements the class-conditional HMM where the class label specifies one of C possible words, chosen from some vocabulary. If the class is a word of length T, it has a deterministic left-to-right state transition matrix A with T possible states.The t'th state should have an categorical emission distribution which generates t'th letter in lower case with probability p1, in upper case with probability p1, a blank character "-" with prob p2, and a random letter with prob p3. Author : <NAME> (@karalleyna) ''' import numpy as np import matplotlib.pyplot as plt from hmm_lib import HMMDiscrete class Word: ''' This class consists of components needed for a class-conditional Hidden Markov Model with categorical distribution Parameters ---------- word: str Class label representing a word p1: float The probability of the uppercase and lowercase letter included within a word for the current state p2: float The probability of the blank character p3: float The probability of the uppercase and lowercase letters except correct one L : int The number of letters used when constructing words type_ : str "all" : Includes both uppercase and lowercase letters "lower" : Includes only lowercase letters "upper" : Includes only uppercase letters ''' def __init__(self, word, p1, p2, p3, L, type_): self.word, self.T = word, len(word) self.p1, self.p2, self.p3 = p1, p2, p3 self.type_ = type_ self.L = 2 * L if self.type_ == 'all' else L self.init_state_dist = np.zeros((self.T + 1,)) self.init_state_dist[0] = 1 self.init_state_transition_matrix() self.init_emission_probs() def init_state_transition_matrix(self): assert self.T > 0 A = np.zeros((self.T + 1, self.T + 1)) # transition-probability matrix A[:-1, 1:] = np.eye(self.T) A[-1, 0] = 1 self.A = A def emission_prob_(self, letter): ascii_no = ord(letter.upper()) - 65 # 65 :ascii number of A idx = [ascii_no, ascii_no + self.L // 2] if self.type_ == 'all' else ascii_no emission_prob = np.full((1, self.L), self.p3) emission_prob[:, idx] = self.p1 return emission_prob def init_emission_probs(self): self.B = np.zeros((self.T, self.L)) # observation likelihoods for i in range(self.T): self.B[i] = self.emission_prob_(self.word[i]) self.B = np.c_[self.B, np.full((self.T, 1), self.p2), np.zeros((self.T, 1))] self.B = np.r_[self.B, np.zeros((1, self.L + 2))] self.B[-1, -1] = 1 def sample(self, n_word, random_states=None): ''' n_word: int The number of times sampled a word by HMMDiscrete random_states: List[int] The random states each of which is given to HMMDiscrete.sample as a parameter ''' random_states =
np.random.randint(0, 2 * n_word, n_word)
numpy.random.randint
"""This code is part of caerus and is not designed for usage of seperate parts.""" #-------------------------------------------------------------------------- # Name : caerus.py # Author : E.Taskesen # Contact : <EMAIL> # Date : May. 2020 #-------------------------------------------------------------------------- from caerus.utils.ones2idx import ones2region, idx2region import pandas as pd import numpy as np from tqdm import tqdm import warnings warnings.filterwarnings(action='ignore', message='Mean of empty slice') # %% utils def _check_input(X): # Convert to dataframe if isinstance(X, pd.DataFrame): raise Exception('[caerus] >Error: Input data must be of type numpy-array or list.') if 'numpy' in str(type(X)) or 'list' in str(type(X)): X = pd.Series(X) if X.shape[0]!=X.size: raise Exception('[caerus] >Error : Input dataframe can only be a 1D-vector.') # reset index X.reset_index(drop=True, inplace=True) return X # %% Aggregation of scores over the windows and intervals def _agg_scores(out, threshold=0): outagg=np.nansum(out>0, axis=1) # Normalize for the window size that is used. Towards the end smaller windows are only avaialbe which is otherwise unfair for the threshold usage. windowCorrectionFactor = np.ones_like(outagg)*out.shape[1] tmpvalue =
np.arange(1, out.shape[1])
numpy.arange
import numpy as np def one_step_lookahead(environment, state, V, discount_factor): """ helper function to calculate the value function """ #Creating a vector of dimensionally same size as the number of actions action_values=np.zeros(environment.nA) for action in range(environment.nA): for probability, next_state, reward, terminated in environment.P[state][action]: #policy action_values[action] += probability * (reward + discount_factor * V[next_state]) return action_values def policy_evaluation(policy, environment, discount_factor=1.0, theta=1e-9, max_iteration=1e9): """ evaluate a policy given a deterministic environment 1)policy : Matrix of size nS*nA. Each cell reprents the probability of taking an action in a particular state 2)Environment : openAI environment object 3)discount_factor: 4)theta: Convergence factor. If the change in value function for all states is below theta, we are done. 5)max_iteration: To avoid infinite looping. Returns: 1)V:The optimum value estimate for the given policy """ evaluation_iteration = 1 # to record the number of iteration V=np.zeros(environment.nS) for i in range(int(max_iteration)): delta = 0 #for early stopping for state in range(environment.nS): v=0 for action, action_probability in enumerate(policy[state]): for state_probability, next_state, reward, terminated in environment.P[state][action]: #print(state, next_state,state_probability) v+= action_probability * state_probability * (reward + discount_factor *V[next_state]) delta= max(delta, abs(V[state]-v)) #looks like a mistake here.Check V[state]=v evaluation_iteration +=1 if(delta < theta): print('Policy evaluated in %d iteration' % evaluation_iteration) return V def policy_iteration(environment, discount_factor=1.0, max_iteration=1e9): """ In this function, we would take a random policy and evaluate the optimum value function of the policy ,act greedily on the policy and work for the new better policy. """ policy=
np.ones((environment.nS, environment.nA))
numpy.ones
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from pyiron_base._tests import PyironTestCase from pyiron_continuum.mesh import ( RectMesh, callable_to_array, takes_scalar_field, takes_vector_field, has_default_accuracy ) import numpy as np import pyiron_continuum.mesh as mesh_mod class TestDecorators(PyironTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.mesh = RectMesh([1, 2, 3], [30, 20, 10]) @staticmethod def give_vector(mesh): return np.ones(mesh.shape) @staticmethod def give_scalar(mesh): return np.ones(mesh.divisions) def test_callable_to_array(self): scalar_field = self.give_scalar(self.mesh) @callable_to_array def method(mesh, callable_or_array, some_kwarg=1): return callable_or_array + some_kwarg self.assertTrue(np.allclose(scalar_field + 1, method(self.mesh, self.give_scalar)), msg="Accept functions") self.assertTrue(np.allclose(scalar_field + 1, method(self.mesh, scalar_field)), msg="Accept arrays") self.assertTrue(np.allclose(scalar_field + 2, method(self.mesh, self.give_scalar, some_kwarg=2)), msg="Pass kwargs") def test_takes_scalar_field(self): scalar_field = self.give_scalar(self.mesh) @takes_scalar_field def method(mesh, scalar_field, some_kwarg=1): return some_kwarg self.assertEqual(1, method(self.mesh, scalar_field), msg="Accept arrays") self.assertEqual(2, method(self.mesh, scalar_field, some_kwarg=2), msg="Pass kwargs") self.assertEqual(1, method(self.mesh, scalar_field.tolist()), msg="Should work with listlike stuff too") self.assertRaises(TypeError, method, self.mesh, np.ones(2)) # Reject the wrong shape self.assertRaises(TypeError, method, self.mesh, "not even numeric") # Duh def test_takes_vector_field(self): vector_field = self.give_vector(self.mesh) @takes_vector_field def method(mesh, vector_field, some_kwarg=1): return some_kwarg self.assertEqual(1, method(self.mesh, vector_field), msg="Accept arrays") self.assertEqual(2, method(self.mesh, vector_field, some_kwarg=2), msg="Pass kwargs") self.assertEqual(1, method(self.mesh, vector_field.tolist()), msg="Should work with listlike stuff too") self.assertRaises(TypeError, method, self.mesh, np.ones(2)) # Reject the wrong shape self.assertRaises(TypeError, method, self.mesh, "not even numeric") # Duh def test_has_default_accuracy(self): some_field = self.give_vector(self.mesh) @has_default_accuracy def method(mesh, field, accuracy=None, some_kwarg=1): return accuracy + some_kwarg mesh = RectMesh(1, 1, accuracy=2) self.assertEqual(3, method(mesh, some_field), 'Use mesh accuracy') self.assertEqual(0, method(mesh, some_field, accuracy=4, some_kwarg=-4), 'Use passed accuracy') self.assertRaises(ValueError, method, mesh, some_field, accuracy=1) # Even accuracy only self.assertRaises(ValueError, method, mesh, some_field, accuracy=0) # Positive accuracy only @has_default_accuracy def method(mesh, field, accuracy_not_a_kwarg=42): return None self.assertRaises(TypeError, method, mesh, some_field) # Methods need to define accuracy class TestRectMesh(PyironTestCase): @staticmethod def scalar_sines(mesh): L = mesh.lengths omega = (2 * np.pi / L).reshape(len(L), *[1] * mesh.dim) return np.prod(np.sin(omega * mesh.mesh), axis=0) def vector_sines(self, mesh): scalar = self.scalar_sines(mesh) return np.array(mesh.dim * [scalar]) @property def docstring_module(self): return mesh_mod def test_input(self): L = np.pi n = 2 mesh = RectMesh(L, n) self.assertTrue(np.allclose(mesh.bounds, [[0, L]]), msg='Expected float to be converted to (1,2) array.') self.assertTrue(np.all(mesh.divisions == [n]), msg='Expected int to be converted to (1,) array.') mesh = RectMesh([L, L], n) self.assertTrue(np.allclose(mesh.bounds, [[0, L], [0, L]]), msg='Expected 1D bounds to be interpreted as endpoints of 2D bounds.') self.assertTrue(np.all(mesh.divisions == [n, n]), msg='Expected divisions to be extended to match bounds.') mesh = RectMesh([[0, L], [L / 2, L]], [n, 2 * n]) self.assertTrue(np.allclose(mesh.bounds, [[0, L], [L / 2, L]]), msg='Expected float to be converted to (1,2) array.') self.assertTrue(np.all(mesh.divisions == [n, 2 * n]), msg='Expected divisions to be preserved.') bounds = np.array([1, 2, 3, 4]) self.assertAlmostEqual( bounds.prod(), RectMesh(bounds=bounds).volume, msg="Four dimensions should be ok, and hyper-volume should be a product of side lengths" ) self.assertRaises(ValueError, RectMesh, [[0, 1, 2]], 1) # Bounds can't exceed shape (n, 2) self.assertRaises(ValueError, RectMesh, [[1, 1 + 1e-12]]) # Bounds must enclose a space noticeably > 0 self.assertRaises(ValueError, RectMesh, 1, [1, 1]) # Divisions must be a single value or match bounds self.assertRaises(TypeError, RectMesh, 1, np.pi) # Only int-like divisions self.assertRaises(TypeError, RectMesh, 1, [[1]]) # Or lists of ints, but nothing else like lists of lists def test_construction(self): L = np.pi n = 2 mesh = RectMesh(L, n) self.assertTrue(np.allclose(mesh.mesh, [0, L / 2]), msg='1D should get simplified') self.assertAlmostEqual(mesh.steps, L / 2, msg='1D should get simplified') mesh.simplify_1d = False self.assertTrue(np.allclose(mesh.steps, [L / 2]), msg='1D should stay list-like') mesh = RectMesh([L, 2 * L], n) self.assertTrue( np.allclose( mesh.mesh, [ [ [0, 0], [L / 2, L / 2], ], [ [0, L], [0, L], ] ] ) ) self.assertTrue(
np.allclose(mesh.steps, [L / 2, L])
numpy.allclose
### # pySuStaIn: a Python implementation of the Subtype and Stage Inference (SuStaIn) algorithm # # If you use pySuStaIn, please cite the following core papers: # 1. The original SuStaIn paper: https://doi.org/10.1038/s41467-018-05892-0 # 2. The pySuStaIn software paper: https://doi.org/10.1101/2021.06.09.447713 # # Please also cite the corresponding progression pattern model you use: # 1. The piece-wise linear z-score model (i.e. ZscoreSustain): https://doi.org/10.1038/s41467-018-05892-0 # 2. The event-based model (i.e. MixtureSustain): https://doi.org/10.1016/j.neuroimage.2012.01.062 # with Gaussian mixture modeling (i.e. 'mixture_gmm'): https://doi.org/10.1093/brain/awu176 # or kernel density estimation (i.e. 'mixture_kde'): https://doi.org/10.1002/alz.12083 # 3. The model for discrete ordinal data (i.e. OrdinalSustain): TBD # # Thanks a lot for supporting this project. # # Authors: <NAME> (<EMAIL>) and <NAME> (<EMAIL>) # Contributors: <NAME> (<EMAIL>), <NAME> (<EMAIL>), <NAME> (<EMAIL>) ### from tqdm.auto import tqdm import numpy as np from matplotlib import pyplot as plt from pySuStaIn.AbstractSustain import AbstractSustainData from pySuStaIn.AbstractSustain import AbstractSustain #******************************************* #The data structure class for OrdinalSustain. It holds the score and negative likelihoods that get passed around and re-indexed in places. class OrdinalSustainData(AbstractSustainData): def __init__(self, prob_nl, prob_score, numStages): self.prob_nl = prob_nl self.prob_score = prob_score self.__numStages = numStages def getNumSamples(self): return self.prob_nl.shape[0] def getNumBiomarkers(self): return self.prob_nl.shape[1] def getNumStages(self): return self.__numStages def reindex(self, index): return OrdinalSustainData(self.prob_nl[index,], self.prob_score[index,], self.__numStages) #******************************************* #An implementation of the AbstractSustain class with multiple events for each biomarker based on deviations from normality, measured in z-scores. #There are a fixed number of thresholds for each biomarker, specified at initialization of the OrdinalSustain object. class OrdinalSustain(AbstractSustain): def __init__(self, prob_nl, prob_score, score_vals, biomarker_labels, N_startpoints, N_S_max, N_iterations_MCMC, output_folder, dataset_name, use_parallel_startpoints, seed=None): # The initializer for the scored events model implementation of AbstractSustain # Parameters: # prob_nl - probability of negative/normal class for all subjects across all biomarkers # dim: number of subjects x number of biomarkers # prob_score - probability of each score for all subjects across all biomarkers # dim: number of subjects x number of biomarkers x number of scores # score_vals - a matrix specifying the scores for each biomarker # dim: number of biomarkers x number of scores # biomarker_labels - the names of the biomarkers as a list of strings # N_startpoints - number of startpoints to use in maximum likelihood step of SuStaIn, typically 25 # N_S_max - maximum number of subtypes, should be 1 or more # N_iterations_MCMC - number of MCMC iterations, typically 1e5 or 1e6 but can be lower for debugging # output_folder - where to save pickle files, etc. # dataset_name - for naming pickle files # use_parallel_startpoints - boolean for whether or not to parallelize the maximum likelihood loop # seed - random number seed N = prob_nl.shape[1] # number of biomarkers assert (len(biomarker_labels) == N), "number of labels should match number of biomarkers" num_scores = score_vals.shape[1] IX_vals = np.array([[x for x in range(N)]] * num_scores).T stage_score = np.array([y for x in score_vals.T for y in x]) stage_score = stage_score.reshape(1,len(stage_score)) IX_select = stage_score>0 stage_score = stage_score[IX_select] stage_score = stage_score.reshape(1,len(stage_score)) num_scores = score_vals.shape[1] IX_vals = np.array([[x for x in range(N)]] * num_scores).T stage_biomarker_index = np.array([y for x in IX_vals.T for y in x]) stage_biomarker_index = stage_biomarker_index.reshape(1,len(stage_biomarker_index)) stage_biomarker_index = stage_biomarker_index[IX_select] stage_biomarker_index = stage_biomarker_index.reshape(1,len(stage_biomarker_index)) prob_score = prob_score.transpose(0,2,1) prob_score = prob_score.reshape(prob_score.shape[0],prob_score.shape[1]*prob_score.shape[2]) prob_score = prob_score[:,IX_select[0,:]] prob_score = prob_score.reshape(prob_nl.shape[0],stage_score.shape[1]) self.IX_select = IX_select self.stage_score = stage_score self.stage_biomarker_index = stage_biomarker_index self.biomarker_labels = biomarker_labels numStages = stage_score.shape[1] self.__sustainData = OrdinalSustainData(prob_nl, prob_score, numStages) super().__init__(self.__sustainData, N_startpoints, N_S_max, N_iterations_MCMC, output_folder, dataset_name, use_parallel_startpoints, seed) def _initialise_sequence(self, sustainData, rng): # Randomly initialises a linear z-score model ensuring that the biomarkers # are monotonically increasing # # # OUTPUTS: # S - a random linear z-score model under the condition that each biomarker # is monotonically increasing N = np.array(self.stage_score).shape[1] S = np.zeros(N) for i in range(N): IS_min_stage_score = np.array([False] * N) possible_biomarkers = np.unique(self.stage_biomarker_index) for j in range(len(possible_biomarkers)): IS_unselected = [False] * N for k in set(range(N)) - set(S[:i]): IS_unselected[k] = True this_biomarkers = np.array([(np.array(self.stage_biomarker_index)[0] == possible_biomarkers[j]).astype(int) + (np.array(IS_unselected) == 1).astype(int)]) == 2 if not np.any(this_biomarkers): this_min_stage_score = 0 else: this_min_stage_score = min(self.stage_score[this_biomarkers]) if (this_min_stage_score): temp = ((this_biomarkers.astype(int) + (self.stage_score == this_min_stage_score).astype(int)) == 2).T temp = temp.reshape(len(temp), ) IS_min_stage_score[temp] = True events = np.array(range(N)) possible_events = np.array(events[IS_min_stage_score]) this_index = np.ceil(rng.random() * ((len(possible_events)))) - 1 S[i] = possible_events[int(this_index)] S = S.reshape(1, len(S)) return S def _calculate_likelihood_stage(self, sustainData, S): ''' Computes the likelihood of a single scored event model Outputs: ======== p_perm_k - the probability of each subjects data at each stage of a particular subtype in the SuStaIn model ''' N = self.stage_score.shape[1] B = sustainData.prob_nl.shape[1] IS_normal = np.ones(B) IS_abnormal = np.zeros(B) index_reached = np.zeros(B,dtype=int) M = sustainData.prob_score.shape[0] p_perm_k = np.zeros((M,N+1)) p_perm_k[:,0] = 1/(N+1)*np.prod(sustainData.prob_nl,1) for j in range(N): index_justreached = int(S[j]) biomarker_justreached = int(self.stage_biomarker_index[:,index_justreached]) index_reached[biomarker_justreached] = index_justreached IS_normal[biomarker_justreached] = 0 IS_abnormal[biomarker_justreached] = 1 bool_IS_normal = IS_normal.astype(bool) bool_IS_abnormal = IS_abnormal.astype(bool) p_perm_k[:,j+1] = 1/(N+1)*np.multiply(np.prod(sustainData.prob_score[:,index_reached[bool_IS_abnormal]],1),np.prod(sustainData.prob_nl[:,bool_IS_normal],1)) return p_perm_k def _optimise_parameters(self, sustainData, S_init, f_init, rng): # Optimise the parameters of the SuStaIn model M = sustainData.getNumSamples() #data_local.shape[0] N_S = S_init.shape[0] N = self.stage_score.shape[1] S_opt = S_init.copy() # have to copy or changes will be passed to S_init f_opt = np.array(f_init).reshape(N_S, 1, 1) f_val_mat = np.tile(f_opt, (1, N + 1, M)) f_val_mat = np.transpose(f_val_mat, (2, 1, 0)) p_perm_k = np.zeros((M, N + 1, N_S)) for s in range(N_S): p_perm_k[:, :, s] = self._calculate_likelihood_stage(sustainData, S_opt[s]) p_perm_k_weighted = p_perm_k * f_val_mat #p_perm_k_norm = p_perm_k_weighted / np.tile(np.sum(np.sum(p_perm_k_weighted, 1), 1).reshape(M, 1, 1), (1, N + 1, N_S)) # the second summation axis is different to Matlab version # adding 1e-250 fixes divide by zero problem that happens rarely p_perm_k_norm = p_perm_k_weighted / np.sum(p_perm_k_weighted + 1e-250, axis=(1, 2), keepdims=True) f_opt = (np.squeeze(sum(sum(p_perm_k_norm))) / sum(sum(sum(p_perm_k_norm)))).reshape(N_S, 1, 1) f_val_mat = np.tile(f_opt, (1, N + 1, M)) f_val_mat = np.transpose(f_val_mat, (2, 1, 0)) order_seq = rng.permutation(N_S) # this will produce different random numbers to Matlab for s in order_seq: order_bio = rng.permutation(N) # this will produce different random numbers to Matlab for i in order_bio: current_sequence = S_opt[s] current_location = np.array([0] * len(current_sequence)) current_location[current_sequence.astype(int)] = np.arange(len(current_sequence)) selected_event = i move_event_from = current_location[selected_event] this_stage_score = self.stage_score[0, selected_event] selected_biomarker = self.stage_biomarker_index[0, selected_event] possible_scores_biomarker = self.stage_score[self.stage_biomarker_index == selected_biomarker] # slightly different conditional check to matlab version to protect python from calling min,max on an empty array min_filter = possible_scores_biomarker < this_stage_score max_filter = possible_scores_biomarker > this_stage_score events = np.array(range(N)) if np.any(min_filter): min_score_bound = max(possible_scores_biomarker[min_filter]) min_score_bound_event = events[((self.stage_score[0] == min_score_bound).astype(int) + (self.stage_biomarker_index[0] == selected_biomarker).astype(int)) == 2] move_event_to_lower_bound = current_location[min_score_bound_event] + 1 else: move_event_to_lower_bound = 0 if np.any(max_filter): max_score_bound = min(possible_scores_biomarker[max_filter]) max_score_bound_event = events[((self.stage_score[0] == max_score_bound).astype(int) + (self.stage_biomarker_index[0] == selected_biomarker).astype(int)) == 2] move_event_to_upper_bound = current_location[max_score_bound_event] else: move_event_to_upper_bound = N # FIXME: hack because python won't produce an array in range (N,N), while matlab will produce an array (N)... urgh if move_event_to_lower_bound == move_event_to_upper_bound: possible_positions = np.array([0]) else: possible_positions = np.arange(move_event_to_lower_bound, move_event_to_upper_bound) possible_sequences = np.zeros((len(possible_positions), N)) possible_likelihood = np.zeros((len(possible_positions), 1)) possible_p_perm_k = np.zeros((M, N + 1, len(possible_positions))) for index in range(len(possible_positions)): current_sequence = S_opt[s] #choose a position in the sequence to move an event to move_event_to = possible_positions[index] # move this event in its new position current_sequence = np.delete(current_sequence, move_event_from, 0) # this is different to the Matlab version, which call current_sequence(move_event_from) = [] new_sequence = np.concatenate([current_sequence[np.arange(move_event_to)], [selected_event], current_sequence[np.arange(move_event_to, N - 1)]]) possible_sequences[index, :] = new_sequence possible_p_perm_k[:, :, index] = self._calculate_likelihood_stage(sustainData, new_sequence) p_perm_k[:, :, s] = possible_p_perm_k[:, :, index] total_prob_stage = np.sum(p_perm_k * f_val_mat, 2) total_prob_subj = np.sum(total_prob_stage, 1) possible_likelihood[index] = sum(np.log(total_prob_subj + 1e-250)) possible_likelihood = possible_likelihood.reshape(possible_likelihood.shape[0]) max_likelihood = max(possible_likelihood) this_S = possible_sequences[possible_likelihood == max_likelihood, :] this_S = this_S[0, :] S_opt[s] = this_S this_p_perm_k = possible_p_perm_k[:, :, possible_likelihood == max_likelihood] p_perm_k[:, :, s] = this_p_perm_k[:, :, 0] S_opt[s] = this_S p_perm_k_weighted = p_perm_k * f_val_mat p_perm_k_norm = p_perm_k_weighted / np.tile(np.sum(np.sum(p_perm_k_weighted, 1), 1).reshape(M, 1, 1), (1, N + 1, N_S)) # the second summation axis is different to Matlab version f_opt = (np.squeeze(sum(sum(p_perm_k_norm))) / sum(sum(sum(p_perm_k_norm)))).reshape(N_S, 1, 1) f_val_mat = np.tile(f_opt, (1, N + 1, M)) f_val_mat =
np.transpose(f_val_mat, (2, 1, 0))
numpy.transpose
''' Author: <NAME> Date: Feb 8, 2008. Board class. Board data: 1=white, -1=black, 0=empty first dim is column , 2nd is row: pieces[1][7] is the square in column 2, at the opposite end of the board in row 8. Squares are stored and manipulated as (x,y) tuples. x is the column, y is the row. ''' import numpy as np class Board(): # list of all 6 directions on the board, as (x,y) offsets __directions = [(2,0),(-2,0),(1,1),(1,-1),(-1,1),(-1,-1)] # list of all entries of the matrix, which are actually spots on the board actBoard = [(2,3),(3,2),(3,4),(4,1),(4,3),(4,5),(5,2),(5,4),(6,1),(6,3),(6,5),(7,2),(7,4),(8,1),(8,3),(8,5),(9,2),(9,4),(10,3)] # list of all starting Points on the board startingPoints = [(0,3),(1,2),(1,4),(2,1),(2,5),(3,0),(3,6),(5,0),(5,6),(7,0),(7,6),(9,0),(9,6),(10,1),(10,5),(11,2),(11,4),(12,3)] # dictionary for the translation of the spot names into the entries of the matrix (as tuple) move_dict = {"a1": (9,0), "a2": (7,0), "a3": (5,0), "a4": (3,0), "b1": (10,1), "b2": (8,1), "b3": (6,1), "b4": (4,1), "b5": (2,1), "c1": (11,2), "c2": (9,2), "c5": (3,2), "c6": (1,2), "d1": (12,3), "d2": (10,3), "d6": (2,3), "d7": (0,3), "e1": (11,4), "e2": (9,4), "e5": (3,4), "e6": (1,4), "f1": (10,5), "f2": (8,5), "f3": (6,5), "f4": (4,5), "f5": (2,5), "g1": (9,6), "g2": (7,6), "g3": (5,6), "g4": (3,6)} def __init__(self, n): "Set up initial board configuration." self.n = n # Create the empty board array. self.pieces = [None]*self.n # rows: mini: 13, normal: 17 for i in range(self.n): self.pieces[i] = [0]*(int(self.n//(1.8))) # columns: mini: 13//1.8=7 normal: 17//1.8=9 #Set up reserve in board corner self.pieces[0][0] = 5 self.pieces[0][2] = 5 # Set up the initial 6 pieces. self.pieces[4][1] = 1 self.pieces[4][5] = 1 self.pieces[10][3] = 1 self.pieces[8][1] = -1 self.pieces[8][5] = -1 self.pieces[2][3] = -1 """ #Testfall Sym self.pieces[8][1] = 1 self.pieces[10][3] = 1 self.pieces[4][5] = 1 self.pieces[2][3] = -1 self.pieces[7][4] = -1 self.pieces[8][5] = -1 #Testfall A self.pieces[8][1] = -1 self.pieces[7][2] = -1 self.pieces[4][3] = -1 self.pieces[10][3] = 1 self.pieces[8][3] = 1 self.pieces[4][5] = 1 self.pieces[5][4] = 1 #Testfall B self.pieces[7][2] = 1 self.pieces[6][1] = 1 self.pieces[10][3] = 1 self.pieces[8][3] = -1 self.pieces[4][3] = -1 self.pieces[2][3] = -1 #Testfall C self.pieces[4][1] = 1 self.pieces[5][2] = -1 self.pieces[10][3] = 1 self.pieces[4][3] = -1 self.pieces[2][3] = -1 #Testfall D self.pieces[6][1] = -1 self.pieces[7][2] = -1 self.pieces[9][4] = 1 self.pieces[10][3] = -1 self.pieces[6][3] = -1 self.pieces[4][3] = -1 self.pieces[2][3] = 1 """ # add [][] indexer syntax to the Board def __getitem__(self, index): return self.pieces[index] def __setitem__(self, index, color): self.pieces[index] = color def get_actBoard(self): if self.n == 13: return self.actBoard else: pass # return actBoard + ext def get_startingPoints(self): if self.n == 13: return self.startingPoints else: pass # return actBoard + ext @staticmethod def translate_move(move): """Returns a tuple of the spot names as a tuple of the matrix """ try: move_new = (Board.move_dict[move[0]],Board.move_dict[move[1]]) return move_new except KeyError: 'Invalid Field' def get_legal_moves(self): """Returns all the legal moves """ moves = set() # stores the legal moves. # discover the possible moves for every starting point for start in self.startingPoints: newmoves = self.get_moves_for_dot(start)[1],[2] moves.update(newmoves) return list(moves) def get_legal_moves_binary(self): """Returns all the legal moves """ moves = [] # stores the legal moves. # discover the possible moves for every starting point for start in self.startingPoints: newmoves = self.get_moves_for_dot(start)[2] moves.extend(newmoves) return moves def get_all_moves(self): """Returns all the legal moves """ moves = [] # stores the legal moves. # discover the possible moves for every starting point for start in self.startingPoints: newmoves = self.get_moves_for_dot(start)[1] moves.extend(newmoves) return moves def get_moves_for_dot(self, dot): """Returns all the legal moves that use the given dot as a base. """ # search all possible directions. legal_moves = [] all_moves = [] all_moves_binary = [] for direction in self.__directions: target = tuple(
np.add(dot, direction)
numpy.add
import numpy as np import SimpleITK as sitk from scipy.interpolate import griddata from platipy.imaging.label.utils import vectorised_transform_index_to_physical_point def evaluate_distance_on_surface( reference_volume, test_volume, abs_distance=True, reference_as_distance_map=False ): """ Evaluates a distance map on a surface Input: reference_volume: binary volume SimpleITK image, or alternatively a distance map test_volume: binary volume SimpleITK image Output: theta, phi, values """ if reference_as_distance_map: reference_distance_map = reference_volume else: if abs_distance: reference_distance_map = sitk.Abs( sitk.SignedMaurerDistanceMap( reference_volume, squaredDistance=False, useImageSpacing=True ) ) else: reference_distance_map = sitk.SignedMaurerDistanceMap( reference_volume, squaredDistance=False, useImageSpacing=True ) test_surface = sitk.LabelContour(test_volume) distance_image = sitk.Multiply( reference_distance_map, sitk.Cast(test_surface, sitk.sitkFloat32) ) distance_array = sitk.GetArrayFromImage(distance_image) # Get centre of mass of reference volume reference_volume_array = sitk.GetArrayFromImage(reference_volume) reference_volume_locations = np.where(reference_volume_array == 1) com_index = reference_volume_locations.mean(axis=1) com_real = vectorised_transform_index_to_physical_point(reference_volume, com_index) # Calculate centre of mass in real coordinates test_surface_array = sitk.GetArrayFromImage(test_surface) test_surface_locations = np.where(test_surface_array == 1) test_surface_locations_array =
np.array(test_surface_locations)
numpy.array
import os import cv2 import time import numpy as np import imgaug as ia from imgaug import augmenters as iaa from yolo.detector import YOLO from compare.net.dtfd import dtfd hand = YOLO(weights='../weights/yolo.h5', threshold=0.5) fingertip = dtfd() fingertip.load_weights('weights/dtfd.h5') def classify(img): """ Fingertip detection """ global fingertip img = img / 255.0 img = np.expand_dims(img, axis=0) keys = fingertip.predict(img) keys = keys[0] return keys def flip_horizontal(img, keys): """ Flipping """ aug = iaa.Sequential([iaa.Fliplr(1.0)]) seq_det = aug.to_deterministic() keys = ia.KeypointsOnImage([ia.Keypoint(x=keys[0], y=keys[1]), ia.Keypoint(x=keys[2], y=keys[3]), ia.Keypoint(x=keys[4], y=keys[5]), ia.Keypoint(x=keys[6], y=keys[7])], shape=img.shape) image_aug = seq_det.augment_images([img])[0] keys_aug = seq_det.augment_keypoints([keys])[0] k = keys_aug.keypoints keys_aug = [k[0].x, k[0].y, k[1].x, k[1].y, k[2].x, k[2].y, k[3].x, k[3].y] return image_aug, keys_aug image_directory = '../../Dataset/Test/' label_directory = '../../Dataset/label/' image_files = os.listdir(image_directory) """ Ground truth label file for TI1K dataset """ file = open(label_directory + 'TI1K.txt') lines = file.readlines() file.close() """ Ground truth label file for SingleEight dataset """ file = open(label_directory + 'SingleEight.txt') ego_lines = file.readlines() file.close() total_error = np.zeros([1, 4]) avg_hand_detect_time = 0 avg_fingertip_detect_time = 0 avg_time = 0 count = 0 distance_error = [] height = 480 width = 640 for image_file in image_files: """ Generating ground truths labels """ image = cv2.imread(image_directory + image_file) image = cv2.resize(image, (width, height)) name = image_file[:-4] splits = name.split('_') gt = [] if 'TI1K' in splits: label = [] for line in lines: line = line.strip().split() if image_file == line[0]: label = line[1:] break label = [float(i) for i in label] x1 = label[0] * width y1 = label[1] * height x2 = label[2] * width y2 = label[3] * height xt = label[4] * width yt = label[5] * height xi = label[6] * width yi = label[7] * height gt = [x1, y1, x2, y2, xt, yt, xi, yi] image_flip, gt_flip = flip_horizontal(image, np.asarray(gt)) image_flip = image_flip.copy() """ [x1, y1, x2, y2, xt, yt, xi, yi] = gt_flip image_flip = cv2.rectangle(image_flip, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 4) image_flip = cv2.circle(image_flip, (int(xt), int(yt)), 14, (0, 0, 255), -1) image_flip = cv2.circle(image_flip, (int(xi), int(yi)), 14, (0, 255, 0), -1) cv2.imshow('Image', image_flip) cv2.waitKey(0) """ else: label = [] for line in ego_lines: line = line.strip().split() name = line[0].split('/')[3] if image_file == name: label = line[1:] break label = [float(i) for i in label] x1 = label[0] * width y1 = label[1] * height x2 = label[2] * width y2 = label[3] * height xt = label[4] * width yt = label[5] * height xi = label[8] * width yi = label[9] * height gt = [x1, y1, x2, y2, xt, yt, xi, yi] image_flip, gt_flip = flip_horizontal(image, np.asarray(gt)) image_flip = image_flip.copy() """ image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 4) image = cv2.circle(image, (xt, yt), 14, (0, 0, 255), -1) image = cv2.circle(image, (xi, yi), 14, (0, 255, 0), -1) cv2.imshow('', image) cv2.waitKey(0) """ tic1 = time.time() """ Predictions for the test images """ image = cv2.imread(image_directory + image_file) image = cv2.resize(image, (width, height)) tic2 = time.time() tl, br = hand.detect(image=image) toc2 = time.time() avg_hand_detect_time = avg_hand_detect_time + (toc2 - tic2) if tl and br is not None: # list to tuple tl = (tl[0], tl[1]) br = (br[0], br[1]) """ Fingertip detection """ xmin = int(tl[0]) ymin = int(tl[1]) xmax = int(br[0]) ymax = int(br[1]) ymin = ymin if ymin > 0 else 0 xmin = xmin if xmin > 0 else 0 cropped_image = image[ymin:ymax, xmin:xmax] cols, rows, _ = cropped_image.shape cropped_image = cv2.resize(cropped_image, (99, 99)) tic3 = time.time() position = classify(img=cropped_image) toc3 = time.time() avg_fingertip_detect_time = avg_fingertip_detect_time + (toc3 - tic3) for i in range(0, len(position), 2): position[i] = (position[i]) * rows position[i + 1] = (position[i + 1]) * cols for i in range(0, len(position), 2): position[i] = (position[i] + tl[0]) position[i + 1] = (position[i + 1] + tl[1]) pr = [tl[0], tl[1], br[0], br[1], position[0], position[1], position[2], position[3]] """ Drawing bounding box and fingertip """ image = cv2.rectangle(image, tl, br, (255, 0, 0), 4, 1) image = cv2.circle(image, (int(position[0]), int(position[1])), 10, (0, 0, 255), -1) image = cv2.circle(image, (int(position[2]), int(position[3])), 10, (0, 255, 0), -1) cv2.imwrite('output/' + image_file, image) # Calculating error for fingertips only gt =
np.asarray(gt[4:])
numpy.asarray
# tests.test_bestfit # Tests for the bestfit module. # # Author: <NAME> <<EMAIL>> # Created: Sun Jun 26 19:27:39 2016 -0400 # # Copyright (C) 2016 District Data Labs # For license information, see LICENSE.txt # # ID: test_bestfit.py [56236f3] <EMAIL> $ """ Tests for the bestfit module. """ ########################################################################## ## Imports ########################################################################## import pytest import numpy as np import matplotlib.pyplot as plt from tests.base import VisualTestCase from yellowbrick.bestfit import * from yellowbrick.anscombe import ANSCOMBE from yellowbrick.exceptions import YellowbrickValueError from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline ########################################################################## ## Best fit tests ########################################################################## class BestFitTests(VisualTestCase): def test_bad_estimator(self): """ Test that a bad estimator name raises a value error. """ fig, axe = plt.subplots() X, y = ANSCOMBE[1] with self.assertRaises(YellowbrickValueError): draw_best_fit(X, y, axe, 'pepper') def test_ensure_same_length(self): """ Ensure that vectors of different lengths raise """ fig, axe = plt.subplots() X = np.array([1, 2, 3, 5, 8, 10, 2]) y = np.array([1, 3, 6, 2]) with self.assertRaises(YellowbrickValueError): draw_best_fit(X, y, axe, 'linear') with self.assertRaises(YellowbrickValueError): draw_best_fit(X[:,np.newaxis], y, axe, 'linear') @pytest.mark.filterwarnings('ignore') def testdraw_best_fit(self): """ Test that drawing a best fit line works. """ fig, axe = plt.subplots() X, y = ANSCOMBE[0] self.assertEqual(axe, draw_best_fit(X, y, axe, 'linear')) self.assertEqual(axe, draw_best_fit(X, y, axe, 'quadratic')) ########################################################################## ## Estimator tests ########################################################################## class EstimatorTests(VisualTestCase): """ Test the estimator functions for best fit lines. """ def test_linear(self): """ Test the linear best fit estimator """ X, y = ANSCOMBE[0] X = np.array(X) y = np.array(y) X = X[:,np.newaxis] model = fit_linear(X, y) self.assertIsNotNone(model) self.assertIsInstance(model, LinearRegression) def test_quadratic(self): """ Test the quadratic best fit estimator """ X, y = ANSCOMBE[1] X = np.array(X) y = np.array(y) X = X[:,np.newaxis] model = fit_quadratic(X, y) self.assertIsNotNone(model) self.assertIsInstance(model, Pipeline) def test_select_best(self): """ Test the select best fit estimator """ X, y = ANSCOMBE[1] X =
np.array(X)
numpy.array
import numpy as np import pytest from autolens.data.array import mask from autolens.data.array import interpolation from autolens.model.galaxy import galaxy from autolens.model.profiles import mass_profiles @pytest.fixture(name='scheme') def make_scheme(): return interpolation.InterpolationScheme(shape=(3, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) @pytest.fixture(name='geometry') def make_geometry(): return interpolation.InterpolationGeometry(y_min=-1.0, y_max=1.0, x_min=-1.0, x_max=1.0, y_pixel_scale=1.0, x_pixel_scale=1.0) @pytest.fixture(name='galaxy_no_profiles', scope='function') def make_galaxy_no_profiles(): return galaxy.Galaxy() @pytest.fixture(name="galaxy_mass_sis") def make_galaxy_mass_sis(): sis = mass_profiles.SphericalIsothermal(einstein_radius=1.0) return galaxy.Galaxy(mass_profile=sis) class TestInterpolationScheme(object): class TestConstructor: def test__sets_up_attributes_correctly(self): image_coords = np.array([[-1.0, -6.0], [-1.0, 0.0], [-4.0, 2.0], [-0.0, -1.0], [0.0, 0.0], [0.0, 1.0], [3.0, -1.0], [1.0, 0.0], [1.0, 1.0]]) interp = interpolation.InterpolationScheme(shape=(3, 3), image_coords=image_coords, image_pixel_scale=1.0) assert interp.shape == (3, 3) assert interp.pixels == 9 assert (interp.image_coords == image_coords).all() assert interp.geometry.y_min == -6.0 assert interp.geometry.y_max == 2.0 assert interp.geometry.x_min == -4.0 assert interp.geometry.x_max == 3.0 assert interp.geometry.y_pixel_scale == 1.0 assert interp.geometry.x_pixel_scale == 1.0 assert interp.geometry.x_size == 7.0 assert interp.geometry.y_size == 8.0 assert interp.geometry.x_start == -4.5 assert interp.geometry.y_start == -6.5 class TestNeighbors: def test___3x3_grid_neighbors_all_correct(self): # |0|1|2| # |3|4|5| # |6|7|8| interp = interpolation.InterpolationScheme(shape=(3, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 3, 4])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 4, 5])).all() assert (interp.bottom_right_neighbors[2] == np.array([-1, 5, -1])).all() assert (interp.bottom_right_neighbors[3] == np.array([4, 6, 7])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 7, 8])).all() assert (interp.bottom_right_neighbors[5] == np.array([-1, 8, -1])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, -1, -1])).all() assert (interp.bottom_right_neighbors[7] == np.array([8, -1, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 3])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 3, 4])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 4, 5])).all() assert (interp.bottom_left_neighbors[3] == np.array([-1, -1, 6])).all() assert (interp.bottom_left_neighbors[4] == np.array([3, 6, 7])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 7, 8])).all() assert (interp.bottom_left_neighbors[6] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, -1, -1])).all() assert (interp.bottom_left_neighbors[8] == np.array([7, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[3] == np.array([0, 1, 4])).all() assert (interp.top_right_neighbors[4] == np.array([1, 2, 5])).all() assert (interp.top_right_neighbors[5] == np.array([2, -1, -1])).all() assert (interp.top_right_neighbors[6] == np.array([3, 4, 7])).all() assert (interp.top_right_neighbors[7] == np.array([4, 5, 8])).all() assert (interp.top_right_neighbors[8] == np.array([5, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[4] == np.array([0, 1, 3])).all() assert (interp.top_left_neighbors[5] == np.array([1, 2, 4])).all() assert (interp.top_left_neighbors[6] == np.array([-1, 3, -1])).all() assert (interp.top_left_neighbors[7] == np.array([3, 4, 6])).all() assert (interp.top_left_neighbors[8] == np.array([4, 5, 7])).all() def test___3x4_grid_neighbors_all_correct(self): # |0|1| 2| 3| # |4|5| 6| 7| # |8|9|10|11| interp = interpolation.InterpolationScheme(shape=(3, 4), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 4, 5])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 5, 6])).all() assert (interp.bottom_right_neighbors[2] == np.array([3, 6, 7])).all() assert (interp.bottom_right_neighbors[3] == np.array([-1, 7, -1])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 8, 9])).all() assert (interp.bottom_right_neighbors[5] == np.array([6, 9, 10])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 10, 11])).all() assert (interp.bottom_right_neighbors[7] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([9, -1, -1])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, -1, -1])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, -1, -1])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 4])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 4, 5])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 5, 6])).all() assert (interp.bottom_left_neighbors[3] == np.array([2, 6, 7])).all() assert (interp.bottom_left_neighbors[4] == np.array([-1, -1, 8])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 8, 9])).all() assert (interp.bottom_left_neighbors[6] == np.array([5, 9, 10])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 10, 11])).all() assert (interp.bottom_left_neighbors[8] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[9] == np.array([8, -1, -1])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, -1, -1])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, 3])).all() assert (interp.top_right_neighbors[3] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[4] == np.array([0, 1, 5])).all() assert (interp.top_right_neighbors[5] == np.array([1, 2, 6])).all() assert (interp.top_right_neighbors[6] == np.array([2, 3, 7])).all() assert (interp.top_right_neighbors[7] == np.array([3, -1, -1])).all() assert (interp.top_right_neighbors[8] == np.array([4, 5, 9])).all() assert (interp.top_right_neighbors[9] == np.array([5, 6, 10])).all() assert (interp.top_right_neighbors[10] == np.array([6, 7, 11])).all() assert (interp.top_right_neighbors[11] == np.array([7, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, -1, 2])).all() assert (interp.top_left_neighbors[4] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[5] == np.array([0, 1, 4])).all() assert (interp.top_left_neighbors[6] == np.array([1, 2, 5])).all() assert (interp.top_left_neighbors[7] == np.array([2, 3, 6])).all() assert (interp.top_left_neighbors[8] == np.array([-1, 4, -1])).all() assert (interp.top_left_neighbors[9] == np.array([4, 5, 8])).all() assert (interp.top_left_neighbors[10] == np.array([5, 6, 9])).all() assert (interp.top_left_neighbors[11] == np.array([6, 7, 10])).all() def test___4x3_grid_neighbors_all_correct(self): # |0| 1| 2| # |3| 4| 5| # |6| 7| 8| # |9|10|11| interp = interpolation.InterpolationScheme(shape=(4, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 3, 4])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 4, 5])).all() assert (interp.bottom_right_neighbors[2] == np.array([-1, 5, -1])).all() assert (interp.bottom_right_neighbors[3] == np.array([4, 6, 7])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 7, 8])).all() assert (interp.bottom_right_neighbors[5] == np.array([-1, 8, -1])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 9, 10])).all() assert (interp.bottom_right_neighbors[7] == np.array([8, 10, 11])).all() assert (interp.bottom_right_neighbors[8] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, -1, -1])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, -1, -1])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 3])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 3, 4])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 4, 5])).all() assert (interp.bottom_left_neighbors[3] == np.array([-1, -1, 6])).all() assert (interp.bottom_left_neighbors[4] == np.array([3, 6, 7])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 7, 8])).all() assert (interp.bottom_left_neighbors[6] == np.array([-1, -1, 9])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 9, 10])).all() assert (interp.bottom_left_neighbors[8] == np.array([7, 10, 11])).all() assert (interp.bottom_left_neighbors[9] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, -1, -1])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[3] == np.array([0, 1, 4])).all() assert (interp.top_right_neighbors[4] == np.array([1, 2, 5])).all() assert (interp.top_right_neighbors[5] == np.array([2, -1, -1])).all() assert (interp.top_right_neighbors[6] == np.array([3, 4, 7])).all() assert (interp.top_right_neighbors[7] == np.array([4, 5, 8])).all() assert (interp.top_right_neighbors[8] == np.array([5, -1, -1])).all() assert (interp.top_right_neighbors[9] == np.array([6, 7, 10])).all() assert (interp.top_right_neighbors[10] == np.array([7, 8, 11])).all() assert (interp.top_right_neighbors[11] == np.array([8, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[4] == np.array([0, 1, 3])).all() assert (interp.top_left_neighbors[5] == np.array([1, 2, 4])).all() assert (interp.top_left_neighbors[6] == np.array([-1, 3, -1])).all() assert (interp.top_left_neighbors[7] == np.array([3, 4, 6])).all() assert (interp.top_left_neighbors[8] == np.array([4, 5, 7])).all() assert (interp.top_left_neighbors[9] == np.array([-1, 6, -1])).all() assert (interp.top_left_neighbors[10] == np.array([6, 7, 9])).all() assert (interp.top_left_neighbors[11] == np.array([7, 8, 10])).all() def test___4x4_grid_neighbors_all_correct(self): # | 0| 1| 2| 3| # | 4| 5| 6| 7| # | 8| 9|10|11| # |12|13|14|15| interp = interpolation.InterpolationScheme(shape=(4, 4), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 4, 5])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 5, 6])).all() assert (interp.bottom_right_neighbors[2] == np.array([3, 6, 7])).all() assert (interp.bottom_right_neighbors[3] == np.array([-1, 7, -1])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 8, 9])).all() assert (interp.bottom_right_neighbors[5] == np.array([6, 9, 10])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 10, 11])).all() assert (interp.bottom_right_neighbors[7] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([9, 12, 13])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, 13, 14])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, 14, 15])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, 15, -1])).all() assert (interp.bottom_right_neighbors[12] == np.array([13, -1, -1])).all() assert (interp.bottom_right_neighbors[13] == np.array([14, -1, -1])).all() assert (interp.bottom_right_neighbors[14] == np.array([15, -1, -1])).all() assert (interp.bottom_right_neighbors[15] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 4])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 4, 5])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 5, 6])).all() assert (interp.bottom_left_neighbors[3] == np.array([2, 6, 7])).all() assert (interp.bottom_left_neighbors[4] == np.array([-1, -1, 8])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 8, 9])).all() assert (interp.bottom_left_neighbors[6] == np.array([5, 9, 10])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 10, 11])).all() assert (interp.bottom_left_neighbors[8] == np.array([-1, -1, 12])).all() assert (interp.bottom_left_neighbors[9] == np.array([8, 12, 13])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, 13, 14])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, 14, 15])).all() assert (interp.bottom_left_neighbors[12] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[13] == np.array([12, -1, -1])).all() assert (interp.bottom_left_neighbors[14] == np.array([13, -1, -1])).all() assert (interp.bottom_left_neighbors[15] == np.array([14, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, 3])).all() assert (interp.top_right_neighbors[3] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[4] == np.array([0, 1, 5])).all() assert (interp.top_right_neighbors[5] == np.array([1, 2, 6])).all() assert (interp.top_right_neighbors[6] == np.array([2, 3, 7])).all() assert (interp.top_right_neighbors[7] == np.array([3, -1, -1])).all() assert (interp.top_right_neighbors[8] == np.array([4, 5, 9])).all() assert (interp.top_right_neighbors[9] == np.array([5, 6, 10])).all() assert (interp.top_right_neighbors[10] == np.array([6, 7, 11])).all() assert (interp.top_right_neighbors[11] == np.array([7, -1, -1])).all() assert (interp.top_right_neighbors[12] == np.array([8, 9, 13])).all() assert (interp.top_right_neighbors[13] == np.array([9, 10, 14])).all() assert (interp.top_right_neighbors[14] == np.array([10, 11, 15])).all() assert (interp.top_right_neighbors[15] == np.array([11, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, -1, 2])).all() assert (interp.top_left_neighbors[4] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[5] == np.array([0, 1, 4])).all() assert (interp.top_left_neighbors[6] == np.array([1, 2, 5])).all() assert (interp.top_left_neighbors[7] == np.array([2, 3, 6])).all() assert (interp.top_left_neighbors[8] == np.array([-1, 4, -1])).all() assert (interp.top_left_neighbors[9] == np.array([4, 5, 8])).all() assert (interp.top_left_neighbors[10] == np.array([5, 6, 9])).all() assert (interp.top_left_neighbors[11] == np.array([6, 7, 10])).all() assert (interp.top_left_neighbors[12] == np.array([-1, 8, -1])).all() assert (interp.top_left_neighbors[13] == np.array([8, 9, 12])).all() assert (interp.top_left_neighbors[14] == np.array([9, 10, 13])).all() assert (interp.top_left_neighbors[15] == np.array([10, 11, 14])).all() class TestFromMask: def test__passes_mask_pixel_scale(self): msk = np.array([[True, True, True], [True, False, True], [True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(3, 3)) assert interp.image_pixel_scale == msk.pixel_scale def test__3x3_mask_with_1_pixel__3x3_interp_grid__image_coords_extend_beyond_mask(self): msk = np.array([[True, True, True], [True, False, True], [True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(3, 3)) assert interp.image_coords[0] == pytest.approx(np.array([-1.0, -1.0]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-1.0, 0.0]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-1.0, 1.0]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([0.0, -1.0]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([0.0, 0.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([0.0, 1.0]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([1.0, -1.0]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([1.0, 0.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([1.0, 1.0]), 1e-4) def test__same_as_above__change_pixel_scale(self): msk = np.array([[True, True, True], [True, False, True], [True, True, True]]) msk = mask.Mask(msk, pixel_scale=2.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(3, 3)) assert interp.image_coords[0] == pytest.approx(np.array([-2.0, -2.0]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-2.0, 0.0]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-2.0, 2.0]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([0.0, -2.0]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([0.0, 0.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([0.0, 2.0]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([2.0, -2.0]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([2.0, 0.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([2.0, 2.0]), 1e-4) def test__3x3_mask_with_1_pixel__4x4_interp_grid__image_coords_extend_beyond_mask(self): msk = np.array([[True, True, True], [True, False, True], [True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(4, 4)) assert interp.image_coords[0] == pytest.approx(np.array([-1.0, -1.0]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-1.0, -(1. / 3.)]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-1.0, (1. / 3.)]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([-1.0, 1.0]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([-(1. / 3.), -1.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([-(1. / 3.), -(1. / 3.)]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([-(1. / 3.), (1. / 3.)]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([-(1. / 3.), 1.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([(1. / 3.), -1.0]), 1e-4) assert interp.image_coords[9] == pytest.approx(np.array([(1. / 3.), -(1. / 3.)]), 1e-4) assert interp.image_coords[10] == pytest.approx(np.array([(1. / 3.), (1. / 3.)]), 1e-4) assert interp.image_coords[11] == pytest.approx(np.array([(1. / 3.), 1.0]), 1e-4) assert interp.image_coords[12] == pytest.approx(np.array([1.0, -1.0]), 1e-4) assert interp.image_coords[13] == pytest.approx(np.array([1.0, -(1. / 3.)]), 1e-4) assert interp.image_coords[14] == pytest.approx(np.array([1.0, (1. / 3.)]), 1e-4) assert interp.image_coords[15] == pytest.approx(np.array([1.0, 1.0]), 1e-4) def test__3x3_mask_with_1_pixel__3x4_interp_grid__image_coords_extend_beyond_mask(self): msk = np.array([[True, True, True], [True, False, True], [True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(3, 4)) assert interp.image_coords[0] == pytest.approx(np.array([-1.0, -1.0]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-1.0, -(1. / 3.)]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-1.0, (1. / 3.)]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([-1.0, 1.0]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([0.0, -1.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([0.0, -(1. / 3.)]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([0.0, (1. / 3.)]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([0.0, 1.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([1.0, -1.0]), 1e-4) assert interp.image_coords[9] == pytest.approx(np.array([1.0, -(1. / 3.)]), 1e-4) assert interp.image_coords[10] == pytest.approx(np.array([1.0, (1. / 3.)]), 1e-4) assert interp.image_coords[11] == pytest.approx(np.array([1.0, 1.0]), 1e-4) def test__3x3_mask_with_1_pixel__4x3_interp_grid__image_coords_extend_beyond_mask(self): msk = np.array([[True, True, True], [True, False, True], [True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(4, 3)) assert interp.image_coords[0] == pytest.approx(np.array([-1.0, -1.0]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-1.0, 0.0]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-1.0, 1.0]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([-(1. / 3.), -1.0]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([-(1. / 3.), 0.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([-(1. / 3.), 1.0]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([(1. / 3.), -1.0]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([(1. / 3.), 0.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([(1. / 3.), 1.0]), 1e-4) assert interp.image_coords[9] == pytest.approx(np.array([1.0, -1.0]), 1e-4) assert interp.image_coords[10] == pytest.approx(np.array([1.0, 0.0]), 1e-4) assert interp.image_coords[11] == pytest.approx(np.array([1.0, 1.0]), 1e-4) def test__4x4_mask_with_4_pixels__3x3_interp_grid__image_coords_extend_beyond_mask(self): msk = np.array([[True, True, True, True], [True, False, False, True], [True, False, False, True], [True, True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(3, 3)) assert interp.image_coords[0] == pytest.approx(np.array([-1.5, -1.5]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-1.5, 0.0]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-1.5, 1.5]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([0.0, -1.5]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([0.0, 0.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([0.0, 1.5]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([1.5, -1.5]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([1.5, 0.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([1.5, 1.5]), 1e-4) def test__3x4_mask_with_2_pixels__3x3_interp_grid__image_coords_extend_beyond_mask(self): msk = np.array([[True, True, True, True], [True, False, False, True], [True, True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(3, 3)) assert interp.image_coords[0] == pytest.approx(np.array([-1.5, -1.0]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-1.5, 0.0]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-1.5, 1.0]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([0.0, -1.0]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([0.0, 0.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([0.0, 1.0]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([1.5, -1.0]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([1.5, 0.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([1.5, 1.0]), 1e-4) def test__4x3_mask_with_4_pixels__3x3_interp_grid__image_coords_extend_beyond_mask(self): msk = np.array([[True, True, True], [True, False, True], [True, False, True], [True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(3, 3)) assert interp.image_coords[0] == pytest.approx(np.array([-1.0, -1.5]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-1.0, 0.0]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-1.0, 1.5]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([0.0, -1.5]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([0.0, 0.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([0.0, 1.5]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([1.0, -1.5]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([1.0, 0.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([1.0, 1.5]), 1e-4) def test__3x4_mask_with_2_pixels__3x4_interp_grid__image_coords_extend_beyond_mask(self): msk = np.array([[True, True, True, True], [True, False, False, True], [True, True, True, True]]) msk = mask.Mask(msk, pixel_scale=1.0) interp = interpolation.InterpolationScheme.from_mask(mask=msk, shape=(3, 4)) assert interp.image_coords[0] == pytest.approx(np.array([-1.5, -1.0]), 1e-4) assert interp.image_coords[1] == pytest.approx(np.array([-1.5, -(1. / 3.)]), 1e-4) assert interp.image_coords[2] == pytest.approx(np.array([-1.5, (1. / 3.)]), 1e-4) assert interp.image_coords[3] == pytest.approx(np.array([-1.5, 1.0]), 1e-4) assert interp.image_coords[4] == pytest.approx(np.array([0.0, -1.0]), 1e-4) assert interp.image_coords[5] == pytest.approx(np.array([0.0, -(1. / 3.)]), 1e-4) assert interp.image_coords[6] == pytest.approx(np.array([0.0, (1. / 3.)]), 1e-4) assert interp.image_coords[7] == pytest.approx(np.array([0.0, 1.0]), 1e-4) assert interp.image_coords[8] == pytest.approx(np.array([1.5, -1.0]), 1e-4) assert interp.image_coords[9] == pytest.approx(np.array([1.5, -(1. / 3.)]), 1e-4) assert interp.image_coords[10] == pytest.approx(np.array([1.5, (1. / 3.)]), 1e-4) assert interp.image_coords[11] == pytest.approx(
np.array([1.5, 1.0])
numpy.array
#---------------------------------------------------------------------------------------------------- ''' skmm.py This file contains the definition of related functions for kernal mean matching Coded by <NAME> Date: 2018-11-25 All Rights Reserved. ''' #---------------------------------------------------------------------------------------------------- import numpy as np import random import scipy.linalg as la from datetime import * from cala import * from kernel import * from nmse import * class skmm(object): def __init__(self, X, Y, cY, m, nSam, **kwargs): self.__X = X self.__Y = Y self.__cY = cY self.__m = m self.__nSam = nSam self.__mx = getMean(Y) self.__xDim, self.__xSam = np.shape(X) self.__yDim, self.__ySam = np.shape(Y) self.__cDim, self.__cSam = np.shape(cY) self.__xMean = getMean(X) self.__xStd = getStd(X, self.__xMean) self.__xBeta = getProb(X, self.__xMean, self.__xStd) self.__kw = getKWidth(X) self.__Kxx = xysK(X, X, 'Gaussian', self.__kw) self.__Kxy = xysK(X, Y, 'Gaussian', self.__kw) #self.__Kxx = xyK(X, X, 'Gaussian') #self.__Kxy = xyK(X, Y, 'Gaussian') #def updMean(self, X, mx, Y): def updMean(self, X, Y): xDim, xSam = np.shape(X) yDim, ySam = np.shape(Y) assert xDim == yDim, 'The dimensionality of X and Y are not identical !' mx = self.__mx n = xSam + ySam for i in range(xDim): mx[i] = mx[i] * xSam for j in range(ySam): mx[i] = mx[i] + Y[i][j] mx[i] = mx[i] / n self.__mx = mx return mx def updY(self, X, tX): xDim, xSam = np.shape(X) tDim, tSam = np.shape(Y) assert xDim == tDim, 'The dimensionality of X and tX are not identical !' n = xSam + tSam Y = np.column_stack((X, tX)) return Y def getAind(self, X, n): xDim, xSam = np.shape(X) tmk = xysK(X, X, 'Gaussian', self.__kw) # cannot replaced with self.__Kxy tm = np.sum(tmk, axis=0) assert len(tm) == xSam, 'The direction of operation may be incorrect !' idx = np.argsort(- tm) ix = idx[0:n] return ix def getBind(self, X, n, rn): xDim, xSam = np.shape(X) index = np.arange(xSam) random.shuffle(index) ind = index[0:rn] tX = X[:, ind] tmk = xysK(tX, X, 'Gaussian', self.__kw) tm = np.sum(tmk, axis=0) assert len(tm) == xSam, 'The direction of operation may be incorrect !' idx = np.argsort(- tm) ix = idx[0:n] return ix def getWeight(self, X, ind, mx): xDim, xSam = np.shape(X) #tDim, tSam = np.shape(tX) #assert xDim == tDim, 'The dimensionality of X and tX are not identical !' #mx = np.mean(X, axis=1) mx = self.__mx mw = np.zeros((xSam, 1)) for i in range(xSam): tmp = X[:, i] - mx tmp = tmp * tmp tmp = np.sum(tmp) tmp = np.exp(-tmp / self.__kw) mw[i, 0] = tmp tmw = mw[ind, 0] sw = np.sum(mw) stw = np.sum(tmw) weight = float(stw) / sw return weight # +++++ The kmm functions +++++ def setLayer(self, b, P, k): bDep, bRow, bCol = np.shape(b) pRow, pCol = np.shape(P) assert bRow == pRow, 'The dimensionality of b and P are not identical !' assert bCol == pCol, 'The dimensionality of b and P are not identical !' for i in range(pRow): for j in range(pCol): b[k, i, j] = P[i, j] return b def together(self, b): bDep, bRow, bCol = np.shape(b) assert bDep > 1, 'The depth of b is incorrect !' m = np.zeros((bRow, bCol)) for i in range(bRow): for j in range(bCol): for k in range(bDep): m[i, j] = m[i, j] + b[k, i, j] return m # +++++ global kmm +++++ def glokmm(self, X, Y, n): xDim, xSam = np.shape(X) yDim, ySam = np.shape(Y) assert xDim == yDim, 'The dimensionality of X and Y are not identical !' sKxx = xysK(X, X, 'Gaussian', self.__kw) #sKxx = self.__Kxy U, s, V = la.svd(sKxx) V = np.transpose(V) s, r = getRank(s) minv = ginv(U, V, s, r) minv = minv * 0.5 ind = self.getAind(Y, n) tY = Y[:, ind] tmk = xysK(X, tY, 'Gaussian', self.__kw) P = np.dot(minv, tmk) trs = float(n) / ySam P = P * trs weight = self.getWeight(Y, ind, self.__mx) P = P * weight return P, sKxx def iglokmm(self, X, Y, n): P, sKxx = self.glokmm(X, Y, n) sKxy = xysK(X, Y, 'Gaussian', self.__kw) #tmp = inmse(X, Y, P) tmp = nmser(P, sKxx, sKxy) return tmp #def tglokmm(self, m, nSam): def tglokmm(self): X = self.__X Y = self.__Y cY = self.__cY #yDim, ySam = np.shape(X) #cDim, cSam = np.shape(cY) #assert yDim == cDim, 'The dimensionality of Y and cY are not identical !' ySam = self.__ySam cSam = self.__cSam m = self.__m nSam = self.__nSam n = int(np.floor(cSam / nSam)) nmse = np.zeros((n, 1)) cost = np.zeros((n, 1)) tmy = Y for i in range(n): tY = cY[:, i*nSam:(i+1)*nSam] tmy = np.column_stack((tmy, tY)) oldtime = datetime.now() tmp = self.iglokmm(X, tmy, m) newtime = datetime.now() tmq = (newtime - oldtime).microseconds nmse[i] = tmp cost[i] = tmq ch = str(i) + '-th slice: ' + str(tmp) th = str(i) + '-th cost time:' + str(tmq) print(ch) print(th) print('-------------------------------------') return nmse, cost # +++++ skmm +++++ def skmm(self, X, Y, n, rn, mx): # skmm(X, Y, n, rn, k) xDim, xSam = np.shape(X) yDim, ySam = np.shape(Y) assert xDim == yDim, 'The dimensionality of X and Y are not identical !' #Kxx = xysK(X, X, 'Gaussian', self.__kw) #d = np.ones((xSam, 1)) * 0.0001 #d = np.diag(d[:, 0]) #tmp = self.__Kxx + d #minv = la.inv(tmp) U, s, V = la.svd(self.__Kxx) V = np.transpose(V) s, r = getRank(s) minv = ginv(U, V, s, r) minv = minv * 0.5 ind = self.getBind(Y, n, rn) tY = Y[:, ind] #tmk = xyK(X, tY, 'Gaussian') tmk = xysK(X, tY, 'Gaussian', self.__kw) P = np.dot(minv, tmk) trs = float(n) / ySam P = P * trs weight = self.getWeight(Y, ind, mx) P = P * weight return P def iskmm(self, X, Y, n, rn, times): # iskmm(X, Y, n, rn, k, times) xDim, xSam = np.shape(X) yDim, ySam = np.shape(Y) assert xDim == yDim, 'The dimensionality of X and Y are not identical !' b = np.zeros((times, xSam, n)) for i in range(times): ch = str(i) + '-th running' print(ch) P = self.skmm(X, Y, n, rn) self.setLayer(b, P, i) m = self.together(b) tmp = inmse(X, Y, m) return tmp # +++++ Temporal skmm +++++ def tskmm(self, X, Y, tY, n, rn, times): xDim, xSam = np.shape(X) yDim, ySam = np.shape(Y) assert xDim == yDim, 'The dimensionality of X and Y are not identical !' Y = np.column_stack((Y, tY)) b = np.zeros((times, xSam, n)) mx = self.updMean(Y, tY) for i in range(times): #ch = str(i) + '-th running' #print(ch) P = self.skmm(X, Y, n, rn, mx) self.setLayer(b, P, i) Kxy = xysK(X, Y, 'Gaussian', self.__kw) m = self.together(b) m = m / times tmp = nmser(m, self.__Kxx, Kxy) return tmp, Y def itskmm(self, im, rn, times): X = self.__X Y = self.__Y cY = self.__cY ySam = self.__ySam cSam = self.__cSam nSam = self.__nSam #yDim, ySam = np.shape(X) #cDim, cSam = np.shape(cY) #assert yDim == cDim, 'The dimensionality of Y and cY are not identical !' n = int(np.floor(cSam / nSam)) nmse = np.zeros((n, 1)) cost = np.zeros((n, 1)) for i in range(n): tY = cY[:, i*nSam:(i+1)*nSam] oldtime = datetime.now() tmp, Y = self.tskmm(X, Y, tY, im, rn, times) newtime = datetime.now() tmq = (newtime - oldtime).microseconds nmse[i] = tmp cost[i] = tmq ch = str(i) + '-th slice: ' + str(tmp) th = str(i) + '-th cost time:' + str(tmq) print(ch) print(th) return nmse, cost # +++++ temporal enskmm +++++ def senkmm(self, X, Y, k): xDim, xSam = np.shape(X) yDim, ySam = np.shape(Y) #U, s, V = la.svd(self.__Kxx) #V = np.transpose(V) #s, r = getRank(s) #minv = ginv(U, V, s, r) Kxx = xysK(X, X, 'Gaussian', self.__kw) d = np.ones((xSam, 1)) * 0.0001 d = np.diag(d[:, 0]) tmp = Kxx + d minv = la.inv(tmp) #U, s, V = la.svd(Kxx) #V = np.transpose(V) #s, r = getRank(s) #minv = ginv(U, V, s, r) minv = minv * 0.5 #ran = list(range(self.__ySam)) #random.shuffle(ran) #tY = Y[:, ran] Kxy = xysK(X, Y, 'Gaussian', self.__kw) num = int(np.floor(ySam / k)) P = np.zeros((self.__xSam, num)) for i in range(k): if i != k-1: start = i*num end = (i+1)*num else: start = i*num end = self.__ySam tmk = Kxy[:, start:end] tmp = np.dot(minv, tmk) d = end - start trs = float(d) / self.__ySam tmp = tmp * trs tmp = tmp * (float(1) / k) for ii in range(self.__xSam): for jj in range(d): P[ii, jj] = P[ii, jj] + tmp[ii, jj] return P, Kxx def ienkmm(self, X, Y, k): P, sKxx = self.senkmm(X, Y, k) sKxy = xysK(X, Y, 'Gaussian', self.__kw) #tmp = inmse(X, Y, P) tmp = nmser(P, sKxx, sKxy) return tmp def tenkmm(self, k): X = self.__X Y = self.__Y cY = self.__cY xSam = self.__xSam ySam = self.__ySam cSam = self.__cSam nSam = self.__nSam #U, s, V = la.svd(self.__Kxx) #V = np.transpose(V) #s, r = getRank(s) #minv = ginv(U, V, s, r) #d = np.ones((xSam, 1)) * 0.0001 #d = np.diag(d[:, 0]) #tmp = self.__Kxx + d #minv = la.inv(tmp) #minv = minv * 0.5 n = int(np.floor(cSam / nSam)) nmse = np.zeros((n, 1)) cost = np.zeros((n, 1)) tmy = Y for iter in range(n): tY = cY[:, iter*nSam:(iter+1)*nSam] tmy =
np.column_stack((tmy, tY))
numpy.column_stack
import os.path import torch import torchvision.transforms as transforms from PIL import Image import numpy as np import csv #from import getfeats_dlib_fromImg from APDrawingGAN.data.face_landmark import getfeats_dlib_fromImg from APDrawingGAN.data.base_dataset import BaseDataset, get_transform from APDrawingGAN.data.image_folder import make_dataset def getfeats(featpath): #print('getfeats0') trans_points = np.empty([5,2],dtype=np.int64) with open(featpath, 'r') as csvfile: reader = csv.reader(csvfile, delimiter=' ') for ind,row in enumerate(reader): trans_points[ind,:] = row return trans_points def getSoft(size,xb,yb,boundwidth=5.0): xarray = np.tile(np.arange(0,size[1]),(size[0],1)) yarray = np.tile(np.arange(0,size[0]),(size[1],1)).transpose() cxdists = [] cydists = [] for i in range(len(xb)): xba = np.tile(xb[i],(size[1],1)).transpose() yba = np.tile(yb[i],(size[0],1)) cxdists.append(np.abs(xarray-xba)) cydists.append(np.abs(yarray-yba)) xdist = np.minimum.reduce(cxdists) ydist = np.minimum.reduce(cydists) manhdist = np.minimum.reduce([xdist,ydist]) im = (manhdist+1) / (boundwidth+1) * 1.0 im[im>=1.0] = 1.0 return im class SingleDataset(BaseDataset): @staticmethod def modify_commandline_options(parser, is_train): return parser def initialize(self, opt, img_background=None): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot) self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.transform = get_transform(opt) self.A_path = opt.im_p self.img_background = opt.img_background def __getitem__(self, index): A_path = self.A_path#s[index] A_img = Image.open(A_path).convert('RGB') A = self.transform(A_img) #print(self.transform) #print('A0=',A.shape) if self.opt.which_direction == 'BtoA': input_nc = self.opt.output_nc output_nc = self.opt.input_nc else: input_nc = self.opt.input_nc output_nc = self.opt.output_nc if input_nc == 1: # RGB to gray tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114 A = tmp.unsqueeze(0) item = {'A': A, 'A_paths': A_path} #print('A1=',A.shape) if self.opt.use_local: regions = ['eyel','eyer','nose','mouth'] basen = os.path.basename(A_path)[:-4]+'.txt' featdir = self.opt.lm_dir featpath = os.path.join(featdir,basen) #feats = getfeats(featpath) feats = getfeats_dlib_fromImg(A_path) mouth_x = int((feats[3,0]+feats[4,0])/2.0) mouth_y = int((feats[3,1]+feats[4,1])/2.0) ratio = self.opt.fineSize / 256 EYE_H = self.opt.EYE_H * ratio EYE_W = self.opt.EYE_W * ratio NOSE_H = self.opt.NOSE_H * ratio NOSE_W = self.opt.NOSE_W * ratio MOUTH_H = self.opt.MOUTH_H * ratio MOUTH_W = self.opt.MOUTH_W * ratio center = torch.tensor([[feats[0,0],feats[0,1]-4*ratio],[feats[1,0],feats[1,1]-4*ratio],[feats[2,0],feats[2,1]-NOSE_H/2+16*ratio],[mouth_x,mouth_y]]) item['center'] = center rhs = [EYE_H,EYE_H,NOSE_H,MOUTH_H] rws = [EYE_W,EYE_W,NOSE_W,MOUTH_W] if self.opt.soft_border: soft_border_mask4 = [] for i in range(4): xb = [np.zeros(rhs[i]),
np.ones(rhs[i])
numpy.ones
######################################################################## # Project Name: Decentralised Deep Learning without Forgetting # Creators: <NAME> (<EMAIL>) # <NAME> (<EMAIL>) # <NAME> (<EMAIL>) # <NAME> (<EMAIL>) # Project Owners: <NAME> (<EMAIL>), # <NAME> (<EMAIL>) # December 2019 ######################################################################### import matplotlib.pyplot as plt import sklearn as sk import sklearn.linear_model import scipy.io as sio from PLN_Class import PLN from Admm import optimize_admm from LoadDataFromMat import importData import numpy as np from LwF_based_ADMM import LwF_based_ADMM_LS_Diff import copy # Compute the W_ls by solving a Least Squares Regularization problem def compute_Wls(X,T,lam): # the X are in n*p form, n sample, each sample has p dims. T is n*Q matrix, each sample is a row vector inv_matrix = np.linalg.inv(np.dot(X, X.T)+lam*np.eye(X.shape[0])) W_ls = np.dot(np.dot(T, X.T), inv_matrix).astype(np.float32) return W_ls def compute_ol(Y,T,mu, max_iterations): # Computes the Output matrix by calling the ADMM Algorithm function with given parameters ol = optimize_admm(T, Y, mu, max_iterations) return ol def compute_accuracy(predicted_lbl, true_lbl): # Computes a Classification Accuracy between true label acc = 100.*np.mean(np.argmax(predicted_lbl,axis=0)==np.argmax(true_lbl,axis=0)) return acc def compute_test_outputs(PLN_object_array, W_ls, num_layers, X_test): # Computes the network output for the first layer PLN_1 = PLN_object_array[0] W_initial_top = np.dot(np.dot(PLN_1.V_Q, W_ls), X_test) W_initial_bottom = PLN_1.normalization(
np.dot(PLN_1.R_l, X_test)
numpy.dot
import sys import warnings import itertools import platform import pytest from decimal import Decimal import numpy as np from numpy.core import umath from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_equal, assert_raises, assert_raises_regex, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_warns, HAS_REFCOUNT ) class TestResize(object): def test_copies(self): A = np.array([[1, 2], [3, 4]]) Ar1 = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) assert_equal(np.resize(A, (2, 4)), Ar1) Ar2 = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) assert_equal(np.resize(A, (4, 2)), Ar2) Ar3 = np.array([[1, 2, 3], [4, 1, 2], [3, 4, 1], [2, 3, 4]]) assert_equal(np.resize(A, (4, 3)), Ar3) def test_zeroresize(self): A = np.array([[1, 2], [3, 4]]) Ar = np.resize(A, (0,)) assert_array_equal(Ar, np.array([])) assert_equal(A.dtype, Ar.dtype) Ar = np.resize(A, (0, 2)) assert_equal(Ar.shape, (0, 2)) Ar = np.resize(A, (2, 0)) assert_equal(Ar.shape, (2, 0)) def test_reshape_from_zero(self): # See also gh-6740 A = np.zeros(0, dtype=[('a', np.float32)]) Ar = np.resize(A, (2, 1)) assert_array_equal(Ar, np.zeros((2, 1), Ar.dtype)) assert_equal(A.dtype, Ar.dtype) class TestNonarrayArgs(object): # check that non-array arguments to functions wrap them in arrays def test_choose(self): choices = [[0, 1, 2], [3, 4, 5], [5, 6, 7]] tgt = [5, 1, 5] a = [2, 0, 1] out = np.choose(a, choices) assert_equal(out, tgt) def test_clip(self): arr = [-1, 5, 2, 3, 10, -4, -9] out = np.clip(arr, 2, 7) tgt = [2, 5, 2, 3, 7, 2, 2] assert_equal(out, tgt) def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt) def test_count_nonzero(self): arr = [[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]] tgt = np.array([2, 3]) out = np.count_nonzero(arr, axis=1) assert_equal(out, tgt) def test_cumproduct(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.all(np.cumproduct(A) == np.array([1, 2, 6, 24, 120, 720]))) def test_diagonal(self): a = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] out = np.diagonal(a) tgt = [0, 5, 10] assert_equal(out, tgt) def test_mean(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.mean(A) == 3.5) assert_(np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5]))) assert_(np.all(np.mean(A, 1) == np.array([2., 5.]))) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.mean([]))) assert_(w[0].category is RuntimeWarning) def test_ptp(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.ptp(a, axis=0), 15.0) def test_prod(self): arr = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] tgt = [24, 1890, 600] assert_equal(np.prod(arr, axis=-1), tgt) def test_ravel(self): a = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tgt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] assert_equal(np.ravel(a), tgt) def test_repeat(self): a = [1, 2, 3] tgt = [1, 1, 2, 2, 3, 3] out = np.repeat(a, 2) assert_equal(out, tgt) def test_reshape(self): arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] assert_equal(np.reshape(arr, (2, 6)), tgt) def test_round(self): arr = [1.56, 72.54, 6.35, 3.25] tgt = [1.6, 72.5, 6.4, 3.2] assert_equal(np.around(arr, decimals=1), tgt) def test_searchsorted(self): arr = [-8, -5, -1, 3, 6, 10] out = np.searchsorted(arr, 0) assert_equal(out, 3) def test_size(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.size(A) == 6) assert_(np.size(A, 0) == 2) assert_(np.size(A, 1) == 3) def test_squeeze(self): A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]] assert_equal(np.squeeze(A).shape, (3, 3)) assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3)) assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3)) def test_std(self): A = [[1, 2, 3], [4, 5, 6]] assert_almost_equal(np.std(A), 1.707825127659933) assert_almost_equal(np.std(A, 0), np.array([1.5, 1.5, 1.5])) assert_almost_equal(np.std(A, 1), np.array([0.81649658, 0.81649658])) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.std([]))) assert_(w[0].category is RuntimeWarning) def test_swapaxes(self): tgt = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]] a = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] out = np.swapaxes(a, 0, 2) assert_equal(out, tgt) def test_sum(self): m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] tgt = [[6], [15], [24]] out = np.sum(m, axis=1, keepdims=True) assert_equal(tgt, out) def test_take(self): tgt = [2, 3, 5] indices = [1, 2, 4] a = [1, 2, 3, 4, 5] out = np.take(a, indices) assert_equal(out, tgt) def test_trace(self): c = [[1, 2], [3, 4], [5, 6]] assert_equal(np.trace(c), 5) def test_transpose(self): arr = [[1, 2], [3, 4], [5, 6]] tgt = [[1, 3, 5], [2, 4, 6]] assert_equal(np.transpose(arr, (1, 0)), tgt) def test_var(self): A = [[1, 2, 3], [4, 5, 6]] assert_almost_equal(np.var(A), 2.9166666666666665) assert_almost_equal(np.var(A, 0), np.array([2.25, 2.25, 2.25])) assert_almost_equal(np.var(A, 1), np.array([0.66666667, 0.66666667])) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.var([]))) assert_(w[0].category is RuntimeWarning) B = np.array([None, 0]) B[0] = 1j assert_almost_equal(np.var(B), 0.25) class TestIsscalar(object): def test_isscalar(self): assert_(np.isscalar(3.1)) assert_(np.isscalar(np.int16(12345))) assert_(np.isscalar(False)) assert_(np.isscalar('numpy')) assert_(not np.isscalar([3.1])) assert_(not np.isscalar(None)) # PEP 3141 from fractions import Fraction assert_(np.isscalar(Fraction(5, 17))) from numbers import Number assert_(np.isscalar(Number())) class TestBoolScalar(object): def test_logical(self): f = np.False_ t = np.True_ s = "xyz" assert_((t and s) is s) assert_((f and s) is f) def test_bitwise_or(self): f = np.False_ t = np.True_ assert_((t | t) is t) assert_((f | t) is t) assert_((t | f) is t) assert_((f | f) is f) def test_bitwise_and(self): f = np.False_ t = np.True_ assert_((t & t) is t) assert_((f & t) is f) assert_((t & f) is f) assert_((f & f) is f) def test_bitwise_xor(self): f = np.False_ t = np.True_ assert_((t ^ t) is f) assert_((f ^ t) is t) assert_((t ^ f) is t) assert_((f ^ f) is f) class TestBoolArray(object): def setup(self): # offset for simd tests self.t = np.array([True] * 41, dtype=bool)[1::] self.f = np.array([False] * 41, dtype=bool)[1::] self.o = np.array([False] * 42, dtype=bool)[2::] self.nm = self.f.copy() self.im = self.t.copy() self.nm[3] = True self.nm[-2] = True self.im[3] = False self.im[-2] = False def test_all_any(self): assert_(self.t.all()) assert_(self.t.any()) assert_(not self.f.all()) assert_(not self.f.any()) assert_(self.nm.any()) assert_(self.im.any()) assert_(not self.nm.all()) assert_(not self.im.all()) # check bad element in all positions for i in range(256 - 7): d = np.array([False] * 256, dtype=bool)[7::] d[i] = True assert_(np.any(d)) e = np.array([True] * 256, dtype=bool)[7::] e[i] = False assert_(not np.all(e)) assert_array_equal(e, ~d) # big array test for blocked libc loops for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: d = np.array([False] * 100043, dtype=bool) d[i] = True assert_(np.any(d), msg="%r" % i) e = np.array([True] * 100043, dtype=bool) e[i] = False assert_(not np.all(e), msg="%r" % i) def test_logical_not_abs(self): assert_array_equal(~self.t, self.f) assert_array_equal(np.abs(~self.t), self.f) assert_array_equal(np.abs(~self.f), self.t) assert_array_equal(np.abs(self.f), self.f) assert_array_equal(~np.abs(self.f), self.t) assert_array_equal(~np.abs(self.t), self.f) assert_array_equal(np.abs(~self.nm), self.im) np.logical_not(self.t, out=self.o) assert_array_equal(self.o, self.f) np.abs(self.t, out=self.o) assert_array_equal(self.o, self.t) def test_logical_and_or_xor(self): assert_array_equal(self.t | self.t, self.t) assert_array_equal(self.f | self.f, self.f) assert_array_equal(self.t | self.f, self.t) assert_array_equal(self.f | self.t, self.t) np.logical_or(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t & self.t, self.t) assert_array_equal(self.f & self.f, self.f) assert_array_equal(self.t & self.f, self.f) assert_array_equal(self.f & self.t, self.f) np.logical_and(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t ^ self.t, self.f) assert_array_equal(self.f ^ self.f, self.f) assert_array_equal(self.t ^ self.f, self.t) assert_array_equal(self.f ^ self.t, self.t) np.logical_xor(self.t, self.t, out=self.o) assert_array_equal(self.o, self.f) assert_array_equal(self.nm & self.t, self.nm) assert_array_equal(self.im & self.f, False) assert_array_equal(self.nm & True, self.nm) assert_array_equal(self.im & False, self.f) assert_array_equal(self.nm | self.t, self.t) assert_array_equal(self.im | self.f, self.im) assert_array_equal(self.nm | True, self.t) assert_array_equal(self.im | False, self.im) assert_array_equal(self.nm ^ self.t, self.im) assert_array_equal(self.im ^ self.f, self.im) assert_array_equal(self.nm ^ True, self.im) assert_array_equal(self.im ^ False, self.im) class TestBoolCmp(object): def setup(self): self.f = np.ones(256, dtype=np.float32) self.ef = np.ones(self.f.size, dtype=bool) self.d = np.ones(128, dtype=np.float64) self.ed = np.ones(self.d.size, dtype=bool) # generate values for all permutation of 256bit simd vectors s = 0 for i in range(32): self.f[s:s+8] = [i & 2**x for x in range(8)] self.ef[s:s+8] = [(i & 2**x) != 0 for x in range(8)] s += 8 s = 0 for i in range(16): self.d[s:s+4] = [i & 2**x for x in range(4)] self.ed[s:s+4] = [(i & 2**x) != 0 for x in range(4)] s += 4 self.nf = self.f.copy() self.nd = self.d.copy() self.nf[self.ef] = np.nan self.nd[self.ed] = np.nan self.inff = self.f.copy() self.infd = self.d.copy() self.inff[::3][self.ef[::3]] = np.inf self.infd[::3][self.ed[::3]] = np.inf self.inff[1::3][self.ef[1::3]] = -np.inf self.infd[1::3][self.ed[1::3]] = -np.inf self.inff[2::3][self.ef[2::3]] = np.nan self.infd[2::3][self.ed[2::3]] = np.nan self.efnonan = self.ef.copy() self.efnonan[2::3] = False self.ednonan = self.ed.copy() self.ednonan[2::3] = False self.signf = self.f.copy() self.signd = self.d.copy() self.signf[self.ef] *= -1. self.signd[self.ed] *= -1. self.signf[1::6][self.ef[1::6]] = -np.inf self.signd[1::6][self.ed[1::6]] = -np.inf self.signf[3::6][self.ef[3::6]] = -np.nan self.signd[3::6][self.ed[3::6]] = -np.nan self.signf[4::6][self.ef[4::6]] = -0. self.signd[4::6][self.ed[4::6]] = -0. def test_float(self): # offset for alignment test for i in range(4): assert_array_equal(self.f[i:] > 0, self.ef[i:]) assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:]) assert_array_equal(self.f[i:] == 0, ~self.ef[i:]) assert_array_equal(-self.f[i:] < 0, self.ef[i:]) assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:]) r = self.f[i:] != 0 assert_array_equal(r, self.ef[i:]) r2 = self.f[i:] != np.zeros_like(self.f[i:]) r3 = 0 != self.f[i:] assert_array_equal(r, r2) assert_array_equal(r, r3) # check bool == 0x1 assert_array_equal(r.view(np.int8), r.astype(np.int8)) assert_array_equal(r2.view(np.int8), r2.astype(np.int8)) assert_array_equal(r3.view(np.int8), r3.astype(np.int8)) # isnan on amd64 takes the same code path assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:]) assert_array_equal(np.isfinite(self.nf[i:]), ~self.ef[i:]) assert_array_equal(np.isfinite(self.inff[i:]), ~self.ef[i:]) assert_array_equal(np.isinf(self.inff[i:]), self.efnonan[i:]) assert_array_equal(np.signbit(self.signf[i:]), self.ef[i:]) def test_double(self): # offset for alignment test for i in range(2): assert_array_equal(self.d[i:] > 0, self.ed[i:]) assert_array_equal(self.d[i:] - 1 >= 0, self.ed[i:]) assert_array_equal(self.d[i:] == 0, ~self.ed[i:]) assert_array_equal(-self.d[i:] < 0, self.ed[i:]) assert_array_equal(-self.d[i:] + 1 <= 0, self.ed[i:]) r = self.d[i:] != 0 assert_array_equal(r, self.ed[i:]) r2 = self.d[i:] != np.zeros_like(self.d[i:]) r3 = 0 != self.d[i:] assert_array_equal(r, r2) assert_array_equal(r, r3) # check bool == 0x1 assert_array_equal(r.view(np.int8), r.astype(np.int8)) assert_array_equal(r2.view(np.int8), r2.astype(np.int8)) assert_array_equal(r3.view(np.int8), r3.astype(np.int8)) # isnan on amd64 takes the same code path assert_array_equal(np.isnan(self.nd[i:]), self.ed[i:]) assert_array_equal(np.isfinite(self.nd[i:]), ~self.ed[i:]) assert_array_equal(np.isfinite(self.infd[i:]), ~self.ed[i:]) assert_array_equal(np.isinf(self.infd[i:]), self.ednonan[i:]) assert_array_equal(np.signbit(self.signd[i:]), self.ed[i:]) class TestSeterr(object): def test_default(self): err = np.geterr() assert_equal(err, dict(divide='warn', invalid='warn', over='warn', under='ignore') ) def test_set(self): with np.errstate(): err = np.seterr() old = np.seterr(divide='print') assert_(err == old) new = np.seterr() assert_(new['divide'] == 'print') np.seterr(over='raise') assert_(np.geterr()['over'] == 'raise') assert_(new['divide'] == 'print') np.seterr(**old) assert_(np.geterr() == old) @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.") def test_divide_err(self): with np.errstate(divide='raise'): with assert_raises(FloatingPointError): np.array([1.]) / np.array([0.]) np.seterr(divide='ignore') np.array([1.]) / np.array([0.]) def test_errobj(self): olderrobj = np.geterrobj() self.called = 0 try: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(divide='warn'): np.seterrobj([20000, 1, None]) np.array([1.]) / np.array([0.]) assert_equal(len(w), 1) def log_err(*args): self.called += 1 extobj_err = args assert_(len(extobj_err) == 2) assert_("divide" in extobj_err[0]) with np.errstate(divide='ignore'): np.seterrobj([20000, 3, log_err]) np.array([1.]) / np.array([0.]) assert_equal(self.called, 1) np.seterrobj(olderrobj) with np.errstate(divide='ignore'): np.divide(1., 0., extobj=[20000, 3, log_err]) assert_equal(self.called, 2) finally: np.seterrobj(olderrobj) del self.called def test_errobj_noerrmask(self): # errmask = 0 has a special code path for the default olderrobj = np.geterrobj() try: # set errobj to something non default np.seterrobj([umath.UFUNC_BUFSIZE_DEFAULT, umath.ERR_DEFAULT + 1, None]) # call a ufunc np.isnan(np.array([6])) # same with the default, lots of times to get rid of possible # pre-existing stack in the code for i in range(10000): np.seterrobj([umath.UFUNC_BUFSIZE_DEFAULT, umath.ERR_DEFAULT, None]) np.isnan(np.array([6])) finally: np.seterrobj(olderrobj) class TestFloatExceptions(object): def assert_raises_fpe(self, fpeerr, flop, x, y): ftype = type(x) try: flop(x, y) assert_(False, "Type %s did not raise fpe error '%s'." % (ftype, fpeerr)) except FloatingPointError as exc: assert_(str(exc).find(fpeerr) >= 0, "Type %s raised wrong fpe error '%s'." % (ftype, exc)) def assert_op_raises_fpe(self, fpeerr, flop, sc1, sc2): # Check that fpe exception is raised. # # Given a floating operation `flop` and two scalar values, check that # the operation raises the floating point exception specified by # `fpeerr`. Tests all variants with 0-d array scalars as well. self.assert_raises_fpe(fpeerr, flop, sc1, sc2) self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2) self.assert_raises_fpe(fpeerr, flop, sc1, sc2[()]) self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2[()]) def test_floating_exceptions(self): # Test basic arithmetic function errors with np.errstate(all='raise'): # Test for all real and complex float types for typecode in np.typecodes['AllFloat']: ftype = np.obj2sctype(typecode) if np.dtype(ftype).kind == 'f': # Get some extreme values for the type fi = np.finfo(ftype) ft_tiny = fi.tiny ft_max = fi.max ft_eps = fi.eps underflow = 'underflow' divbyzero = 'divide by zero' else: # 'c', complex, corresponding real dtype rtype = type(ftype(0).real) fi = np.finfo(rtype) ft_tiny = ftype(fi.tiny) ft_max = ftype(fi.max) ft_eps = ftype(fi.eps) # The complex types raise different exceptions underflow = '' divbyzero = '' overflow = 'overflow' invalid = 'invalid' self.assert_raises_fpe(underflow, lambda a, b: a/b, ft_tiny, ft_max) self.assert_raises_fpe(underflow, lambda a, b: a*b, ft_tiny, ft_tiny) self.assert_raises_fpe(overflow, lambda a, b: a*b, ft_max, ftype(2)) self.assert_raises_fpe(overflow, lambda a, b: a/b, ft_max, ftype(0.5)) self.assert_raises_fpe(overflow, lambda a, b: a+b, ft_max, ft_max*ft_eps) self.assert_raises_fpe(overflow, lambda a, b: a-b, -ft_max, ft_max*ft_eps) self.assert_raises_fpe(overflow, np.power, ftype(2), ftype(2**fi.nexp)) self.assert_raises_fpe(divbyzero, lambda a, b: a/b, ftype(1), ftype(0)) self.assert_raises_fpe(invalid, lambda a, b: a/b, ftype(np.inf), ftype(np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a/b, ftype(0), ftype(0)) self.assert_raises_fpe(invalid, lambda a, b: a-b, ftype(np.inf), ftype(np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a+b, ftype(np.inf), ftype(-np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a*b, ftype(0), ftype(np.inf)) def test_warnings(self): # test warning code path with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(all="warn"): np.divide(1, 0.) assert_equal(len(w), 1) assert_("divide by zero" in str(w[0].message)) np.array(1e300) * np.array(1e300) assert_equal(len(w), 2) assert_("overflow" in str(w[-1].message)) np.array(np.inf) - np.array(np.inf) assert_equal(len(w), 3) assert_("invalid value" in str(w[-1].message)) np.array(1e-300) * np.array(1e-300) assert_equal(len(w), 4) assert_("underflow" in str(w[-1].message)) class TestTypes(object): def check_promotion_cases(self, promote_func): # tests that the scalars get coerced correctly. b = np.bool_(0) i8, i16, i32, i64 = np.int8(0), np.int16(0), np.int32(0), np.int64(0) u8, u16, u32, u64 = np.uint8(0), np.uint16(0), np.uint32(0), np.uint64(0) f32, f64, fld = np.float32(0), np.float64(0), np.longdouble(0) c64, c128, cld = np.complex64(0), np.complex128(0), np.clongdouble(0) # coercion within the same kind assert_equal(promote_func(i8, i16), np.dtype(np.int16)) assert_equal(promote_func(i32, i8), np.dtype(np.int32)) assert_equal(promote_func(i16, i64), np.dtype(np.int64)) assert_equal(promote_func(u8, u32), np.dtype(np.uint32)) assert_equal(promote_func(f32, f64), np.dtype(np.float64)) assert_equal(promote_func(fld, f32), np.dtype(np.longdouble)) assert_equal(promote_func(f64, fld), np.dtype(np.longdouble)) assert_equal(promote_func(c128, c64), np.dtype(np.complex128)) assert_equal(promote_func(cld, c128), np.dtype(np.clongdouble)) assert_equal(promote_func(c64, fld), np.dtype(np.clongdouble)) # coercion between kinds assert_equal(promote_func(b, i32), np.dtype(np.int32)) assert_equal(promote_func(b, u8), np.dtype(np.uint8)) assert_equal(promote_func(i8, u8), np.dtype(np.int16)) assert_equal(promote_func(u8, i32), np.dtype(np.int32)) assert_equal(promote_func(i64, u32), np.dtype(np.int64)) assert_equal(promote_func(u64, i32), np.dtype(np.float64)) assert_equal(promote_func(i32, f32), np.dtype(np.float64)) assert_equal(promote_func(i64, f32), np.dtype(np.float64)) assert_equal(promote_func(f32, i16), np.dtype(np.float32)) assert_equal(promote_func(f32, u32), np.dtype(np.float64)) assert_equal(promote_func(f32, c64), np.dtype(np.complex64)) assert_equal(promote_func(c128, f32), np.dtype(np.complex128)) assert_equal(promote_func(cld, f64), np.dtype(np.clongdouble)) # coercion between scalars and 1-D arrays assert_equal(promote_func(np.array([b]), i8), np.dtype(np.int8)) assert_equal(promote_func(np.array([b]), u8), np.dtype(np.uint8)) assert_equal(promote_func(np.array([b]), i32), np.dtype(np.int32)) assert_equal(promote_func(np.array([b]), u32), np.dtype(np.uint32)) assert_equal(promote_func(np.array([i8]), i64), np.dtype(np.int8)) assert_equal(promote_func(u64, np.array([i32])), np.dtype(np.int32)) assert_equal(promote_func(i64, np.array([u32])), np.dtype(np.uint32)) assert_equal(promote_func(np.int32(-1), np.array([u64])), np.dtype(np.float64)) assert_equal(promote_func(f64, np.array([f32])), np.dtype(np.float32)) assert_equal(promote_func(fld, np.array([f32])), np.dtype(np.float32)) assert_equal(promote_func(np.array([f64]), fld), np.dtype(np.float64)) assert_equal(promote_func(fld, np.array([c64])), np.dtype(np.complex64)) assert_equal(promote_func(c64, np.array([f64])), np.dtype(np.complex128)) assert_equal(promote_func(np.complex64(3j), np.array([f64])), np.dtype(np.complex128)) # coercion between scalars and 1-D arrays, where # the scalar has greater kind than the array assert_equal(promote_func(np.array([b]), f64), np.dtype(np.float64)) assert_equal(promote_func(np.array([b]), i64), np.dtype(np.int64)) assert_equal(promote_func(np.array([b]), u64), np.dtype(np.uint64)) assert_equal(promote_func(np.array([i8]), f64), np.dtype(np.float64)) assert_equal(promote_func(np.array([u16]), f64), np.dtype(np.float64)) # uint and int are treated as the same "kind" for # the purposes of array-scalar promotion. assert_equal(promote_func(np.array([u16]), i32), np.dtype(np.uint16)) # float and complex are treated as the same "kind" for # the purposes of array-scalar promotion, so that you can do # (0j + float32array) to get a complex64 array instead of # a complex128 array. assert_equal(promote_func(np.array([f32]), c128), np.dtype(np.complex64)) def test_coercion(self): def res_type(a, b): return np.add(a, b).dtype self.check_promotion_cases(res_type) # Use-case: float/complex scalar * bool/int8 array # shouldn't narrow the float/complex type for a in [np.array([True, False]), np.array([-3, 12], dtype=np.int8)]: b = 1.234 * a assert_equal(b.dtype, np.dtype('f8'), "array type %s" % a.dtype) b = np.longdouble(1.234) * a assert_equal(b.dtype, np.dtype(np.longdouble), "array type %s" % a.dtype) b = np.float64(1.234) * a assert_equal(b.dtype, np.dtype('f8'), "array type %s" % a.dtype) b = np.float32(1.234) * a assert_equal(b.dtype, np.dtype('f4'), "array type %s" % a.dtype) b = np.float16(1.234) * a assert_equal(b.dtype, np.dtype('f2'), "array type %s" % a.dtype) b = 1.234j * a assert_equal(b.dtype, np.dtype('c16'), "array type %s" % a.dtype) b = np.clongdouble(1.234j) * a assert_equal(b.dtype, np.dtype(np.clongdouble), "array type %s" % a.dtype) b = np.complex128(1.234j) * a assert_equal(b.dtype, np.dtype('c16'), "array type %s" % a.dtype) b = np.complex64(1.234j) * a assert_equal(b.dtype, np.dtype('c8'), "array type %s" % a.dtype) # The following use-case is problematic, and to resolve its # tricky side-effects requires more changes. # # Use-case: (1-t)*a, where 't' is a boolean array and 'a' is # a float32, shouldn't promote to float64 # # a = np.array([1.0, 1.5], dtype=np.float32) # t = np.array([True, False]) # b = t*a # assert_equal(b, [1.0, 0.0]) # assert_equal(b.dtype, np.dtype('f4')) # b = (1-t)*a # assert_equal(b, [0.0, 1.5]) # assert_equal(b.dtype, np.dtype('f4')) # # Probably ~t (bitwise negation) is more proper to use here, # but this is arguably less intuitive to understand at a glance, and # would fail if 't' is actually an integer array instead of boolean: # # b = (~t)*a # assert_equal(b, [0.0, 1.5]) # assert_equal(b.dtype, np.dtype('f4')) def test_result_type(self): self.check_promotion_cases(np.result_type) assert_(np.result_type(None) == np.dtype(None)) def test_promote_types_endian(self): # promote_types should always return native-endian types assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8')) assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8')) assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21')) assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21')) assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21')) assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21')) assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8')) assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8')) assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8')) assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8')) assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8')) assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8')) assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8')) assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8')) assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8')) assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8')) def test_promote_types_strings(self): assert_equal(np.promote_types('bool', 'S'), np.dtype('S5')) assert_equal(np.promote_types('b', 'S'), np.dtype('S4')) assert_equal(np.promote_types('u1', 'S'), np.dtype('S3')) assert_equal(np.promote_types('u2', 'S'), np.dtype('S5')) assert_equal(np.promote_types('u4', 'S'), np.dtype('S10')) assert_equal(np.promote_types('u8', 'S'), np.dtype('S20')) assert_equal(np.promote_types('i1', 'S'), np.dtype('S4')) assert_equal(np.promote_types('i2', 'S'), np.dtype('S6')) assert_equal(np.promote_types('i4', 'S'), np.dtype('S11')) assert_equal(np.promote_types('i8', 'S'), np.dtype('S21')) assert_equal(np.promote_types('bool', 'U'), np.dtype('U5')) assert_equal(np.promote_types('b', 'U'), np.dtype('U4')) assert_equal(np.promote_types('u1', 'U'), np.dtype('U3')) assert_equal(np.promote_types('u2', 'U'), np.dtype('U5')) assert_equal(np.promote_types('u4', 'U'), np.dtype('U10')) assert_equal(np.promote_types('u8', 'U'), np.dtype('U20')) assert_equal(np.promote_types('i1', 'U'), np.dtype('U4')) assert_equal(np.promote_types('i2', 'U'), np.dtype('U6')) assert_equal(np.promote_types('i4', 'U'), np.dtype('U11')) assert_equal(np.promote_types('i8', 'U'), np.dtype('U21')) assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5')) assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('b', 'S1'), np.dtype('S4')) assert_equal(
np.promote_types('b', 'S30')
numpy.promote_types
#!/usr/bin/env python # encoding: utf-8 # # test_map.py # # @Author: <NAME> <andrews> # @Date: 2017-07-02 13:08:00 # @Last modified by: andrews # @Last modified time: 2018-03-01 11:03:79 from copy import deepcopy import numpy as np from astropy import units as u import matplotlib import pytest from marvin import config from marvin.core.exceptions import MarvinError from marvin.tools.maps import Maps from marvin.tools.quantities import Map, EnhancedMap from marvin.tests import marvin_test_if from marvin.utils.datamodel.dap import datamodel from marvin.utils.datamodel.dap.plotting import get_default_plot_params from marvin.utils.general.maskbit import Maskbit value1 = np.array([[16.35, 0.8], [0, -10.]]) value2 = np.array([[591., 1e-8], [4., 10]]) value_prod12 = np.array([[9.66285000e+03, 8e-9], [0, -100]]) ivar1 = np.array([[4, 1], [6.97789734e+36, 1e8]]) ivar2 = np.array([[10, 1e-8], [5.76744385e+36, 0]]) ivar_sum12 = np.array([[2.85714286e+00, 9.99999990e-09], [3.15759543e+36, 0]]) ivar_prod12 = np.array([[1.10616234e-05, 1.56250000e-08], [0, 0.]]) ivar_pow_2 = np.array([[5.23472002e-08, 9.53674316e-01], [0, 25]]) ivar_pow_05 = np.array([[3.66072168e-03, 7.81250000e+00], [0, 0]]) ivar_pow_0 = np.array([[0, 0], [0, 0]]) ivar_pow_m1 = np.array([[4, 1.], [0, 1e+08]]) ivar_pow_m2 = np.array([[2.67322500e+02, 1.6e-01], [0, 2.5e+09]]) ivar_pow_m05 = np.array([[0.97859327, 5], [0, 0]]) u_flux = u.erg / u.cm**2 / u.s / u.def_unit('spaxel') u_flux2 = u_flux * u_flux def _get_maps_kwargs(galaxy, data_origin): if data_origin == 'file': maps_kwargs = dict(filename=galaxy.mapspath) else: maps_kwargs = dict(plateifu=galaxy.plateifu, release=galaxy.release, bintype=galaxy.bintype, template_kin=galaxy.template, mode='local' if data_origin == 'db' else 'remote') return maps_kwargs @pytest.fixture(scope='function', params=[('emline_gflux', 'ha_6564'), ('emline_gvel', 'oiii_5008'), ('stellar_vel', None), ('stellar_sigma', None)]) def map_(request, galaxy, data_origin): maps = Maps(**_get_maps_kwargs(galaxy, data_origin)) map_ = maps.getMap(property_name=request.param[0], channel=request.param[1]) map_.data_origin = data_origin return map_ class TestMap(object): def test_map(self, map_, galaxy): assert map_.getMaps().release == galaxy.release assert tuple(map_.shape) == tuple(galaxy.shape) assert map_.value.shape == tuple(galaxy.shape) assert map_.ivar.shape == tuple(galaxy.shape) assert map_.mask.shape == tuple(galaxy.shape) assert (map_.masked.data == map_.value).all() assert (map_.masked.mask == map_.mask.astype(bool)).all() assert map_.snr == pytest.approx(np.abs(map_.value * np.sqrt(map_.ivar))) assert datamodel[map_.getMaps()._dapver][map_.datamodel.full()].unit == map_.unit def test_plot(self, map_): fig, ax = map_.plot() assert isinstance(fig, matplotlib.figure.Figure) assert isinstance(ax, matplotlib.axes._subplots.Subplot) assert 'Make single panel map or one panel of multi-panel map plot.' in map_.plot.__doc__ @marvin_test_if(mark='skip', map_={'data_origin': ['db']}) def test_save_and_restore(self, temp_scratch, map_): fout = temp_scratch.join('test_map.mpf') map_.save(str(fout)) assert fout.check() is True map_restored = Map.restore(str(fout), delete=True) assert tuple(map_.shape) == tuple(map_restored.shape) @pytest.mark.parametrize('property_name, channel', [('emline_gflux', 'ha_6564'), ('stellar_vel', None)]) def test_deepcopy(self, galaxy, property_name, channel): maps = Maps(plateifu=galaxy.plateifu) map1 = maps.getMap(property_name=property_name, channel=channel) map2 = deepcopy(map1) for attr in vars(map1): if not attr.startswith('_'): value = getattr(map1, attr) value2 = getattr(map2, attr) if isinstance(value, np.ndarray): assert np.isclose(value, value2).all() elif isinstance(value, np.ma.core.MaskedArray): assert (np.isclose(value.data, value2.data).all() and (value.mask == value2.mask).all()) elif isinstance(value, Maskbit) or isinstance(value[0], Maskbit): if isinstance(value, Maskbit): value = [value] value2 = [value2] for mb, mb2 in zip(value, value2): for it in ['bits', 'description', 'labels', 'mask', 'name']: assert getattr(mb, it) == getattr(mb2, it) assert (mb.schema == mb2.schema).all().all() elif isinstance(value, Maps): pass else: assert value == value2, attr def test_getMap_invalid_property(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) with pytest.raises(ValueError) as ee: maps.getMap(property_name='mythical_property') assert 'Your input value is too ambiguous.' in str(ee.value) def test_getMap_invalid_channel(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) with pytest.raises(ValueError) as ee: maps.getMap(property_name='emline_gflux', channel='mythical_channel') assert 'Your input value is too ambiguous.' in str(ee.value) @marvin_test_if(mark='include', maps={'plateifu': '8485-1901', 'release': 'MPL-6', 'mode': 'local', 'data_origin': 'file'}) def test_quatities_reorder(self, maps): """Asserts the unit survives a quantity reorder (issue #374).""" ha = maps['emline_gflux_ha'] assert ha is not None assert ha.unit is not None reordered_ha = np.moveaxis(ha, 0, -1) assert reordered_ha.unit is not None class TestMapArith(object): def test_add_constant(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] ha10 = ha + 10. assert ha10.value == pytest.approx(ha.value + 10.) assert ha10.ivar == pytest.approx(ha.ivar) assert ha10.mask == pytest.approx(ha.mask) def test_subtract_constant(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] ha10 = ha - 10. assert ha10.value == pytest.approx(ha.value - 10.) assert ha10.ivar == pytest.approx(ha.ivar) assert ha10.mask == pytest.approx(ha.mask) def test_multiply_constant(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] ha10 = ha * 10. assert ha10.value == pytest.approx(ha.value * 10.) assert ha10.ivar == pytest.approx(ha.ivar / 10.**2) assert ha10.mask == pytest.approx(ha.mask) def test_divide_constant(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] ha10 = ha / 10. assert ha10.value == pytest.approx(ha.value / 10.) assert ha10.ivar == pytest.approx(ha.ivar * 10.**2) assert ha10.mask == pytest.approx(ha.mask) @pytest.mark.parametrize('ivar1, ivar2, expected', [(ivar1, ivar2, ivar_sum12)]) def test_add_ivar(self, ivar1, ivar2, expected): assert Map._add_ivar(ivar1, ivar2) == pytest.approx(expected) @pytest.mark.parametrize('ivar1, ivar2, value1, value2, value_prod12, expected', [(ivar1, ivar2, value1, value2, value_prod12, ivar_prod12)]) def test_mul_ivar(self, ivar1, ivar2, value1, value2, value_prod12, expected): ivar = Map._mul_ivar(ivar1, ivar2, value1, value2, value_prod12) ivar[
np.isnan(ivar)
numpy.isnan
#!/usr/bin/env python2 from logging import raiseExceptions from sys import path import os import rospy import cv2 import numpy as np import imutils import argparse import itertools import tf2_ros as tf2 import tf2_geometry_msgs import tf from collections import defaultdict from std_msgs.msg import String from sensor_msgs.msg import Image from sensor_msgs.msg import CameraInfo from geometry_msgs.msg import Pose, PoseArray, TransformStamped, PoseStamped from cv_bridge import CvBridge, CvBridgeError import cv2.aruco as aruco import utils # Names of each possible ArUco tag OpenCV supports ARUCO_DICT = { "DICT_4X4_50": aruco.DICT_4X4_50, "DICT_4X4_100": aruco.DICT_4X4_100, "DICT_4X4_250": aruco.DICT_4X4_250, "DICT_4X4_1000": aruco.DICT_4X4_1000, "DICT_5X5_50": aruco.DICT_5X5_50, "DICT_5X5_100": aruco.DICT_5X5_100, "DICT_5X5_250": aruco.DICT_5X5_250, "DICT_5X5_1000": aruco.DICT_5X5_1000, "DICT_6X6_50": aruco.DICT_6X6_50, "DICT_6X6_100": aruco.DICT_6X6_100, "DICT_6X6_250": aruco.DICT_6X6_250, "DICT_6X6_1000": aruco.DICT_6X6_1000, "DICT_7X7_50": aruco.DICT_7X7_50, "DICT_7X7_100": aruco.DICT_7X7_100, "DICT_7X7_250": aruco.DICT_7X7_250, "DICT_7X7_1000": aruco.DICT_7X7_1000, "DICT_ARUCO_ORIGINAL": aruco.DICT_ARUCO_ORIGINAL, "DICT_APRILTAG_16h5": aruco.DICT_APRILTAG_16h5, "DICT_APRILTAG_25h9": aruco.DICT_APRILTAG_25h9, "DICT_APRILTAG_36h10": aruco.DICT_APRILTAG_36h10, "DICT_APRILTAG_36h11": aruco.DICT_APRILTAG_36h11 } class ImageConverter(object): def __init__(self, **kwargs): """ Object for detecting and tracking ArUco markers. ---------- Args: Keyword Args: marker_type {string}: The type of ArUco marker to detect. marker_size {float}: The size of the ArUco marker in m. marker_transform_file {string}: The file containing the transformation matrixes between markers and desired pose. aruco_update_rate {float}: The rate at which the ArUco markers are updated. aruco_object_id {string}: The name of the object. A TF frame with that name will be broadcasted. save_dir {string}: The directory where the marker_transform_file will be saved after callibration. camera_img_topic {string}: The topic where the camera image is published. camera_info_topic {string}: The topic where the camera info is published. camera_frame_id {string}: The frame id of the camera. """ self.bridge = CvBridge() # Settings self.marker_type = kwargs["aruco_type"] self.marker_size = kwargs["aruco_length"] self.marker_transform_file = kwargs["aruco_transforms"] self.aruco_update_rate = kwargs["aruco_update_rate"] self.aruco_object_id = kwargs["aruco_obj_id"] self.camera_img_topic = kwargs["camera_img_topic"] self.camera_info_topic = kwargs["camera_info_topic"] self.camera_frame_id = kwargs["camera_frame_id"] #--- Used when finding transforms between markers ----# self.marker_transforms_list = [] # Transformations between markers self.marker_id_list = [] # Ids of markers self.marker_updates_list = [] #-----------------------------------------------------# #---- Markers detected at each camera frame ----# self.marker_pose_list = PoseArray() # Poses of markers in camera frame self.detected_ids = [] # Coresponding detected ids #----------------------------------------------# #---- Used at prediction time ----# self.obj_transform = Pose() if not self.marker_transform_file is None: try: self.marker_transforms = self.load_marker_transform(self.marker_transform_file) except: ValueError("Invalid marker transform file") #--------------------------------# # ROS Publisher self.aruco_pub = rospy.Publisher("aruco_img", Image, queue_size=10) self.tf_brodcaster = tf2.TransformBroadcaster() self.tf_static_brodcaster = tf2.StaticTransformBroadcaster() self.tf_buffer = tf2.Buffer() self.tf_listener = tf2.TransformListener(self.tf_buffer) # ROS Subscriber self.image_sub = rospy.Subscriber( self.camera_img_topic, Image, self.img_cb) self.info_sub = rospy.Subscriber( self.camera_info_topic, CameraInfo, self.info_cb) def load_marker_transform(self, marker_transform_file): """ Loads the marker transforms from a file. ---------- Args: marker_transform_file {string}: The file containing the marker transforms. ---------- Returns: dict: A dictionary containing the marker transforms. """ load_unformated = np.load(marker_transform_file, allow_pickle=True) mk_transform = load_unformated['mk_tf_dict'][()] rospy.loginfo(" TF between markers successfully loaded from file.") return mk_transform def camera_base_tf(self): camera_mtx = np.array([[ 0.02158261, -0.99200359, -0.12435061, 0.08366512], [-0.99954531, -0.01879069, -0.0235814, 0.53404021], [ 0.0210562, 0.12480302, -0.99195809, 1.27082266], [ 0., 0., 0., 1.]]) camera_tf = TransformStamped() assert (isinstance(camera_tf, TransformStamped)) camera_tf.header.stamp = rospy.Time.now() camera_tf.header.frame_id = "irb120_base" camera_tf.child_frame_id = self.camera_frame_id camera_pose = utils.matrix_to_pose(camera_mtx) camera_tf.transform.translation = camera_pose.position camera_tf.transform.rotation = camera_pose.orientation self.tf_static_brodcaster.sendTransform(camera_tf) def img_cb(self, msg): # Callback function for image msg """ Callback when a new image is received. ---------- Args: msg {Image}: The image message. ---------- self.markers_img: An image with drawn markers. self.marker_pose_list {PoseArray}: A list of poses of the markers in the camera frame. self.detected_ids {list}: A corresponding list to self.marker_pose_list, containing the detected ids. """ try: self.color_msg = msg self.color_img = self.bridge.imgmsg_to_cv2(self.color_msg,"bgr8") except CvBridgeError as e: print(e) markers_img, marker_pose_list, id_list = self.detect_aruco(self.color_img) self.merkers_img = markers_img self.marker_pose_list = marker_pose_list self.detected_ids = id_list def info_cb(self, msg): """ Callback for the camera information. ---------- Args: msg {CameraInfo}: The camera information message. ---------- self.K {numpy.array}: The camera matrix. self.D {numpy.array}: The distortion coefficients. """ self.K = np.reshape(msg.K,(3,3)) # Camera matrix self.D = np.array(msg.D) # Distortion matrix. 5 for IntelRealsense, 8 for AzureKinect def detect_aruco(self, img, broadcast_markers_tf=False): """ Given an RDB image detect aruco markers. ---------- Args: img -- RBG image ---------- Returns: image_with_aruco -- image with aruco markers marker_pose_list {PoseArray} -- list of poses of the detected markers id_list {list} -- list of detected ids """ # Create parameters for marker detection aruco_dict = aruco.Dictionary_get(ARUCO_DICT[self.marker_type]) parameters = aruco.DetectorParameters_create() parameters.minCornerDistanceRate = 0.02 parameters.minMarkerDistanceRate = 0.05 parameters.adaptiveThreshWinSizeMax = 2 parameters.adaptiveThreshWinSizeMax = 30 parameters.perspectiveRemovePixelPerCell = 4 parameters.perspectiveRemoveIgnoredMarginPerCell = 0.15 parameters.maxErroneousBitsInBorderRate = 0.4 parameters.errorCorrectionRate = 1. parameters.cornerRefinementMethod = aruco.CORNER_REFINE_CONTOUR # Detect aruco markers corners, ids, rejected = aruco.detectMarkers(img, aruco_dict, parameters = parameters) output_img = img.copy() output_img = aruco.drawDetectedMarkers( img, rejected, borderColor=(100, 0, 240)) marker_pose_list = PoseArray() id_list = [] if len(corners) > 0: markerLength = self.marker_size cameraMatrix = self.K distCoeffs = self.D output_img = img.copy() # For numerous markers: for i, marker_id in enumerate(ids): # Draw bounding box on the marker img = aruco.drawDetectedMarkers(img, [corners[i]], marker_id) rvec,tvec,_ = aruco.estimatePoseSingleMarkers([corners[i]],markerLength, cameraMatrix, distCoeffs) output_img = aruco.drawAxis(img, cameraMatrix, distCoeffs, rvec, tvec, 0.05) # Convert its pose to Pose.msg format in order to publish marker_pose = self.make_pose(rvec, tvec) if broadcast_markers_tf == True: tf_marker = TransformStamped() tf_marker.header.stamp = rospy.Time.now() tf_marker.header.frame_id = self.camera_frame_id tf_marker.child_frame_id = "marker_{}".format(marker_id) tf_marker.transform.translation = marker_pose.position tf_marker.transform.rotation = marker_pose.orientation self.tf_brodcaster.sendTransform(tf_marker) marker_pose_list.poses.append(marker_pose) id_list.append(int(marker_id)) else: output_img = img out_img = Image() out_img = self.bridge.cv2_to_imgmsg(output_img, "bgr8") self.aruco_pub.publish(out_img) return output_img, marker_pose_list, id_list def make_pose(self, rvec, tvec): """ Given a rotation vector and a translation vector, returns a Pose. ---------- Args: id {int} -- id of the marker rvec {np.array} -- rotation vector of the marker tvec {np.array} -- translation vector of the marker ---------- Returns: Pose -- Pose of the marker """ marker_pose = Pose() tvec = np.squeeze(tvec) rvec = np.squeeze(rvec) r_mat =
np.eye(3)
numpy.eye
import re import pickle as pickle from collections import namedtuple import numpy as np import skimage.transform from scipy.fftpack import fftn, ifftn from skimage.feature import peak_local_max, canny from skimage.transform import hough_circle import skimage.draw from configuration import config import utils import skimage.exposure, skimage.filters def read_labels(file_path): id2labels = {} train_csv = open(file_path) lines = train_csv.readlines() i = 0 for item in lines: if i == 0: i = 1 continue id, systole, diastole = item.replace('\n', '').split(',') id2labels[int(id)] = [float(systole), float(diastole)] return id2labels def read_slice(path): return pickle.load(open(path))['data'] def read_fft_slice(path): d = pickle.load(open(path))['data'] ff1 = fftn(d) fh = np.absolute(ifftn(ff1[1, :, :])) fh[fh < 0.1 * np.max(fh)] = 0.0 d = 1. * fh / np.max(fh) d = np.expand_dims(d, axis=0) return d def read_metadata(path): d = pickle.load(open(path))['metadata'][0] metadata = {k: d[k] for k in ['PixelSpacing', 'ImageOrientationPatient', 'ImagePositionPatient', 'SliceLocation', 'PatientSex', 'PatientAge', 'Rows', 'Columns']} metadata['PixelSpacing'] = np.float32(metadata['PixelSpacing']) metadata['ImageOrientationPatient'] = np.float32(metadata['ImageOrientationPatient']) metadata['SliceLocation'] = np.float32(metadata['SliceLocation']) metadata['ImagePositionPatient'] =
np.float32(metadata['ImagePositionPatient'])
numpy.float32
import pandas as pd import numpy as np from joblib import dump, load from sklearn import metrics import time def model_save (model, model_name): file_name = model_name+'.joblib' dump(model, file_name) def model_load (model_name): file_name = model_name+'.joblib' return load(file_name) def plot_confidence_interval_for_data (model, X): """ Pass 10 - 15 datapoints for better visualization. This function plots the confidence interval of predictive value for the provided datapoints Parameters: ----------- model : model that is built X : datapoints for evaluation Returns: -------- Plot """ preds = np.stack([t.predict(X) for t in model.estimators_], axis=1) preds_ds = pd.DataFrame() preds_ds['mean'] = preds.mean(axis=1) preds_ds['std'] = preds.std(axis=1) fig = plt.figure(figsize=(15,6)) my_xticks = ['datapoint ' + str(i+1) for i in list(preds_ds.index)] plt.errorbar(x = preds_ds.index, y=preds_ds['mean'], yerr=preds_ds['std'], fmt='o', color='blue', ecolor='lightblue', capsize=3) plt.title('Confidence Interval for the predicted value') plt.xticks(preds_ds.index, my_xticks) for i in list(preds_ds.index): m, std = round(preds_ds['mean'][i],1), round(preds_ds['std'][i],2) s=f' pred={m} \n std dev= {std}' plt.text(x = i, y=preds_ds['mean'][i], s=s ) plt.show() def plot_confidence_interval_for_variable (model, X, y, variable): """ This function plots the confidence interval of predictive value for the provided variable Parameters: ----------- model : model that is built X : datapoints y : actual value variable : variable for evaluation Returns: -------- Plot """ preds = np.stack([t.predict(X) for t in model.estimators_], axis=1) X_ds_new = X.copy() X_ds_new['actual'] = y X_ds_new['pred'] = np.mean(preds, axis=1) X_ds_new['pred_std'] =
np.std(preds, axis=1)
numpy.std
# Copyright (c) 2019 Horizon Robotics. All Rights Reserved. """ A demonstration of Q learning for simple_navigation environment It is the same as train_simple_navigation.py but implemented in tensorflow 2.0 """ import gym import os import random import social_bot import logging import matplotlib.pyplot as plt import numpy as np import psutil import PIL from social_bot.util.replay_buffer import PrioritizedReplayBuffer, ReplayBuffer from collections import deque, namedtuple import time import tensorflow as tf import tensorflow.keras as keras import tensorflow.keras.layers as layers import tensorflow.keras.models as models class Options(object): """ The class for all the settings """ max_steps = int(1e8) learning_rate = 5e-4 history_length = 2 replay_buffer_size = 500000 discount_factor = 0.99 resized_image_size = (84, 84) # use nstep reward for updating Q values nstep_reward = 10 # update model every so many steps learn_freq = 4 # starts to update model after so many steps learn_start = 8000 batch_size = 64 # update Q value target net every so many steps target_net_update_freq = 40000 # exploration linearly decreases from exploration_start to exploration_end # in the first exploration_steps steps exploration_steps = 500000 exploration_start = 0.9 exploration_end = 0.01 # function for converting action to feature # argument _ is for self, because f_action_feature is treated as a class method f_action_feature = lambda _, action: (0.5 * (action // 5) - 1, 0.5 * (action % 5) - 1) f_action_to_control = lambda _, action: (0.05 * (action // 5) - 0.1, 0.05 * (action % 5) - 0.1) action_stand_still = 12 action_discretize_levels = 5 # If greater than 0, we calculate the exponential moving average of discounted reward. # And use it as baseline for q values. ema_reward_alpha = 1. - 1e-5 # f_action_feature = lambda _, action: (0.4 * (action // 6) - 1, 0.4 * (action % 6) - 1) # f_action_to_control = lambda _, action: (0.04 * (action // 6), 0.04 * (action % 6)) # action_stand_still = 0 # action_discretize_levels = 6 # Prioritized Experience Replay: https://arxiv.org/pdf/1511.05952.pdf use_prioritized_replay = False prioritized_replay_eps = 1e-6 prioritized_replay_alpha = 0.5 prioritized_replay_beta0 = 0.3 # Gamma is for a new term which gives higher priority to experiences near reward. # It scales the priority from above by (1+d)**(-gamma), where d is how many steps in # the future a non-zero rewad will be encountered. It is gamma linearly decreases # from gamma0 to 0 towards the end of the training. prioritized_replay_gamma0 = 0.3 log_freq = 1000 save_freq = 100000 model_dir = '/tmp/train_simple_navigation/ema_r_10step' show_param_stats_freq = 10000 def main(options): """ The entrance of the program Args: options (Options): options """ for attr in dir(options): if not attr.startswith('__'): logging.info(" %s=%s" % (attr, options.__getattribute__(attr))) env = gym.make("SocialBot-SimpleNavigation-v0") assert isinstance(env.action_space, gym.spaces.Box) assert isinstance(env.observation_space, gym.spaces.Box) image_shape = env.observation_space.shape agent = QAgent( image_shape=(image_shape[2], ) + options.resized_image_size, num_actions=options.action_discretize_levels**2, options=options) episode_rewards = deque(maxlen=options.log_freq) steps = deque(maxlen=options.log_freq) end_q_values = deque(maxlen=options.log_freq) total_steps = 0 episodes = 0 t0 = time.time() proc = psutil.Process(os.getpid()) obs = env.reset() agent.start_new_episode() episode_reward = 0. episode_steps = 0 reward = 0 period_reward = 0 logging.info(" mem=%dM" % (proc.memory_info().rss // 1e6)) while total_steps < options.max_steps: obs = PIL.Image.fromarray(obs).resize(options.resized_image_size, PIL.Image.ANTIALIAS) obs = np.transpose(obs, [2, 0, 1]) action, q = agent.act(obs, reward) control = options.f_action_to_control(action) new_obs, reward, done, _ = env.step(control) agent.learn(obs, action, reward, done) obs = new_obs episode_reward += reward period_reward += reward episode_steps += 1 total_steps += 1 if done: episodes += 1 episode_rewards.append(episode_reward) steps.append(episode_steps) end_q_values.append(q) reward = 0 episode_reward = 0. episode_steps = 0 obs = env.reset() agent.start_new_episode() if total_steps % options.log_freq == 0 and len(steps) > 0 and len( episode_rewards) > 0: logging.info( " episodes=%s" % episodes + " total_steps=%s" % total_steps + " fps=%.2f" % (options.log_freq / (time.time() - t0)) + " mem=%dM" % (proc.memory_info().rss // 1e6) + " r_per_step=%.3g" % (period_reward / options.log_freq) + " r_per_episode=%.3g" % (sum(episode_rewards) / len(episode_rewards)) + " avg_steps=%.3g" % (sum(steps) / len(steps)) + " avg_end_q=%.3g" % (sum(end_q_values) / len(steps)) + " max_end_q=%.3g" % max(end_q_values) + " min_end_q=%.3g" % min(end_q_values) + agent.get_stats()) period_reward = 0 agent.reset_stats() steps.clear() episode_rewards.clear() end_q_values.clear() t0 = time.time() if episodes % options.save_freq == 0: agent.save_model(options.model_dir + '/agent.model') Experience = namedtuple( "Experience", field_names=["state", "action", "reward", "done", "reward_dist"]) def select(mat, indices): sel = tf.concat([ tf.reshape(tf.range(mat.shape[0], dtype=tf.int64), (-1, 1)), tf.reshape(tf.cast(indices, dtype=tf.int64), (-1, 1)) ], axis=1) return tf.gather_nd(mat, sel) class QAgent(object): """ A simple Q learning agent for discrete action space """ def __init__(self, image_shape, num_actions, options): num_image_channels = image_shape[0] num_input_channels = num_image_channels * (options.history_length + 1) if options.f_action_feature is not None: num_input_channels += len( (options.f_action_feature)(0)) * options.history_length self._num_actions = num_actions self._options = options input_shape = image_shape[1:] + (num_input_channels, ) self._acting_net = Network("acting_net", input_shape, num_actions) self._target_net = Network("target_net", input_shape, num_actions) self._optimizer = tf.keras.optimizers.Adam(lr=options.learning_rate) self._huber_loss = tf.keras.losses.Huber() self._episode_steps = 0 self._total_steps = 0 C = PrioritizedReplayBuffer if options.use_prioritized_replay else ReplayBuffer self._replay_buffer = C( options.replay_buffer_size, options.history_length, future_length=options.nstep_reward) self._history = deque(maxlen=options.history_length) self.reset_stats() self._ema_r = 0. self._ema_c = 0. def calc_ema_reward(self): r = self._ema_r f = 1. # factor for correcting uncounted future reward f -= self._options.discount_factor * self._ema_c # factor for correcting limitted steps f -= self._options.ema_reward_alpha**self._total_steps return r / f def act(self, obs, reward): """ Calcuate the action for the current step Args: obs (np.array): observation for the current step reward (float): reward received for the previous step Returns: int: action id """ eps = self.get_exploration_rate() if len(self._history) > 0: self._history[-1] = self._history[-1]._replace(reward=reward) if self._episode_steps < self._options.history_length: action = self._options.action_stand_still q = 0 else: input = self._make_input(obs, self._history) q_values = self._acting_net.calc_q_values(input) q_values = q_values.numpy().reshape(-1) if random.random() < eps: action = random.randint(0, self._num_actions - 1) else: action = np.argmax(q_values) q = q_values[action] if self._options.ema_reward_alpha > 0: q += self.calc_ema_reward() self._sum_act_q += q self._num_act_q += 1 self._total_steps += 1 self._episode_steps += 1 self._history.append( Experience(obs, action, reward=0, done=False, reward_dist=0)) return action, q def get_exploration_rate(self): p = min(1., float(self._total_steps) / self._options.exploration_steps) eps = (1 - p) * self._options.exploration_start \ + p * self._options.exploration_end return eps def start_new_episode(self): self._episode_steps = 0 self._history.clear() self._ema_c = 0. def save_model(self, path): self._acting_net.save_weights(path) def _get_prioritized_replay_beta(self): p = min(1., float(self._total_steps) / self._options.max_steps) return (1 - p) * self._options.prioritized_replay_beta0 + p def _get_prioritized_replay_gamma(self): p = min(1., float(self._total_steps) / self._options.max_steps) return (1 - p) * self._options.prioritized_replay_gamma0 def _update_reward_dist(self): i = len(self._replay_buffer) - 2 d = 1 indices = [] priorities = [] initial_priority = self._replay_buffer.initial_priority gamma = self._get_prioritized_replay_gamma() while i >= 0: e = self._replay_buffer[i] if e.reward != 0: break self._replay_buffer[i] = e._replace(reward_dist=d) indices.append(i) priorities.append(initial_priority * (1 + d)**(-gamma)) d += 1 i -= 1 self._replay_buffer.update_priority(indices, priorities) @tf.function def _tf_learn(self, inputs, actions, rewards, next_inputs, dones, is_weights, ema_reward): # Double Q Learning: https://arxiv.org/pdf/1509.06461.pdf qs_next = self._acting_net.calc_q_values(next_inputs) qs_target = self._target_net.calc_q_values(next_inputs) a = tf.argmax(qs_next, axis=1) q_target = select(qs_target, a) q_target = tf.reshape(q_target, (-1, 1)) + ema_reward q_target = rewards + (self._options.discount_factor**self._options. nstep_reward) * q_target * (1 - dones) with tf.GradientTape() as tape: qs = self._acting_net.calc_q_values(inputs) q = tf.reshape(select(qs, actions), (-1, 1)) + ema_reward td_error = q - q_target loss = self._huber_loss(q, q_target, sample_weight=is_weights) grads = tape.gradient(loss, self._acting_net.trainable_variables) self._optimizer.apply_gradients( zip(grads, self._acting_net.trainable_variables)) return td_error, q, q_target, loss def learn(self, obs, action, reward, done): """ Perform one stap of learning Args: obs (np.array): The observation action (int): Action taken at this step reward (float): Reward received for this step done (bool): Whether reached the end of an episode """ self._ema_c = self._options.ema_reward_alpha * ( self._options.discount_factor * self._ema_c - 1) + 1 self._ema_r = self._options.ema_reward_alpha * self._ema_r + self._ema_c * reward e = Experience(obs, action, reward, done, reward_dist=0) self._replay_buffer.add_experience(e) if reward != 0: self._update_reward_dist() options = self._options if self._total_steps <= options.learn_start: return if self._total_steps % options.learn_freq != 0: return data = self._get_samples(options.batch_size) with tf.device('/device:GPU:0'): inputs, actions, rewards, next_inputs, dones, reward_dist, is_weights = map( tf.convert_to_tensor, data[:-1]) indices = data[-1] ema_reward = 0.0 if options.ema_reward_alpha > 0: ema_reward = self.calc_ema_reward() ema_reward = tf.constant(ema_reward) is_weights = is_weights**self._get_prioritized_replay_beta() batch_size = options.batch_size td_error, q, q_target, loss = self._tf_learn(inputs, actions, rewards, next_inputs, dones, is_weights, ema_reward) # minimize the loss priorities = abs(td_error.numpy()).reshape(-1) priorities = (priorities + options.prioritized_replay_eps )**options.prioritized_replay_alpha gamma = self._get_prioritized_replay_gamma() reward_dist = np.reshape(reward_dist, -1) priorities = priorities * (1 + reward_dist)**(-gamma) self._replay_buffer.update_priority(indices, priorities) self._sum_is_weights += np.sum(is_weights) self._sum_loss += loss self._sum_q += np.mean(q) self._sum_q_weighted += np.sum(q * is_weights) self._sum_q_target += np.mean(q_target) self._sum_q_target_weighted += np.sum(q_target * is_weights) self._sum_r +=
np.mean(rewards)
numpy.mean
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm #import moorpy.MoorSolve as msolve from moorpy.helpers import CatenaryError, dsolve2 def catenary(XF, ZF, L, EA, W, CB=0, HF0=0, VF0=0, Tol=0.000001, nNodes=20, MaxIter=100, plots=0): ''' The quasi-static mooring line solver. Adapted from catenary subroutine in FAST v7 by <NAME>. Note: this version is updated Oct 7 2020 to use the dsolve solver. Parameters ---------- XF : float Horizontal distance from end 1 to end 2 [m] ZF : float Vertical distance from end 1 to end 2 [m] (positive up) L : float Unstretched length of line [m] EA : float Extensional stiffness of line [N] W : float Weight of line in fluid per unit length [N/m] CB : float, optional If positive, coefficient of seabed static friction drag. If negative, no seabed contact and the value is the distance down from end A to the seabed in m\ NOTE: friction (CV > 0) should only be applied when end A of the line is at an anchor, otherwise assumptions are violated. HF0 : float, optional Horizontal fairlead tension. If zero or not provided, a guess will be calculated. VF0 : float, optional Vertical fairlead tension. If zero or not provided, a guess will be calculated. Tol : float, optional Convergence tolerance within Newton-Raphson iteration specified as an absolute displacement error nNodes : int, optional Number of nodes to describe the line MaxIter: int, optional Maximum number of iterations to try before resetting to default ICs and then trying again plots : int, optional 1: plot output, 0: don't Returns ------- : tuple (end 1 horizontal tension, end 1 vertical tension, end 2 horizontal tension, end 2 vertical tension, info dictionary) [N] (positive up) ''' # make info dict to contain any additional outputs info = dict(error=False) info['call'] = f"catenary({XF}, {ZF}, {L}, {EA}, {W}, CB={CB}, HF0={HF0}, VF0={VF0}, Tol={Tol}, MaxIter={MaxIter}, plots=1)" # make some arrays if needed for plotting each node if plots > 0: s = np.linspace(0,L,nNodes) # Unstretched arc distance along line from anchor to each node where the line position and tension can be output (meters) Xs= np.zeros(nNodes) # Horizontal locations of each line node relative to the anchor (meters) Zs= np.zeros(nNodes) # Vertical locations of each line node relative to the anchor (meters) Te= np.zeros(nNodes) # Effective line tensions at each node (N) # flip line in the solver if it is buoyant if W < 0: W = -W ZF = -ZF CB = -10000. # <<< TODO: set this to the distance to sea surface <<< flipFlag = True else: flipFlag = False # reverse line in the solver if end A is above end B if ZF < 0: ZF = -ZF reverseFlag = True else: reverseFlag = False # ensure the input variables are realistic if XF <= 0.0: raise CatenaryError("XF is zero or negative!") if L <= 0.0: raise CatenaryError("L is zero or negative!") if EA <= 0.0: raise CatenaryError("EA is zero or negative!") # Solve for the horizontal and vertical forces at the fairlead (HF, VF) and at the anchor (HA, VA) # There are many "ProfileTypes" of a mooring line and each must be analyzed separately (1-3 are consistent with FAST v7) # ProfileType=0: Entire line is on seabed # ProfileType=1: No portion of the line rests on the seabed # ProfileType=2: A portion of the line rests on the seabed and the anchor tension is nonzero # ProfileType=3: A portion of the line must rest on the seabed and the anchor tension is zero # ProfileType=4: The line is negatively buoyant, seabed interaction is enabled, and the line # is longer than a full L between end points (including stretching) i.e. it is horizontal # along the seabed from the anchor, then vertical to the fairlaed. Computes the maximum # stretched length of the line with seabed interaction beyond which the line would have to # double-back on itself; the line forms an "L" between the anchor and fairlead. Then it # models it as bunched up on the seabed (instead of throwing an error) EA_W = EA/W # calculate what line length would be hanging it it were fully slack, vertical if CB < 0: # free floating (potentially U shaped case) LHanging1 = np.sqrt(2.0*( -CB)*EA_W + EA_W*EA_W) - EA_W # unstretched hanging length at end A LHanging2 = np.sqrt(2.0*(ZF-CB)*EA_W + EA_W*EA_W) - EA_W # unstretched hanging length at end B LHanging = LHanging1+LHanging2 else: # at least one end on seabed LHanging = np.sqrt(2.0*ZF*EA_W + EA_W*EA_W) - EA_W # unstretched length of line hanging vertically to seabed # calculate a vertical stiffness estimate for an end lifting off the seabed def dV_dZ_s(z0, H): # height off seabed to evaluate at (infinite if 0), horizontal tension #return W*(z0*W/H + 1)/np.sqrt( (z0*W/H + 1)**2 - 1) # inelastic apprxoimation return W # returning a fully slack line approximation, # because a large value here risks adding a bad cross coupling term in the system stiffness matrix # ProfileType 0 case - entirely along seabed if ZF==0.0 and CB >= 0.0 and W > 0: ProfileType = 0 if CB==0 or XF <= L: # case 1: no friction, or zero tension HF = np.max([0, (XF/L - 1.0)*EA]) HA = 1.0*HF elif 0.5*L + EA/CB/W*(1-XF/L) <= 0: # case 2: seabed friction but tension at anchor (xB estimate < 0) HF = (XF/L -1.0)*EA + 0.5*CB*W*L HA = np.max([0.0, HF - CB*W*L]) else: # case 3: seabed friction and zero anchor tension HF = np.sqrt(2*EA*CB*W*(XF-L)) HA = 0.0 VF = 0.0 VA = 0.0 if HF > 0: # if taut dHF_dXF = EA/L # approximation <<< what about friction? <<<<<<<< #dVF_dZF = W + HF/L # vertical stiffness <<< approximation a dVF_dZF = dV_dZ_s(Tol, HF) # vertical stiffness <<< approximation b else: # if slack dHF_dXF = 0.0 dVF_dZF = W # vertical stiffness info["HF"] = HF # solution to be used to start next call (these are the solved variables, may be for anchor if line is reversed) info["VF"] = 0.0 info["stiffnessB"] = np.array([[ dHF_dXF, 0.0], [0.0, dVF_dZF]]) info["stiffnessA"] = np.array([[ dHF_dXF, 0.0], [0.0, dVF_dZF]]) info["stiffnessAB"] = np.array([[-dHF_dXF, 0.0], [0.0, 0.0]]) info["LBot"] = L info['ProfileType'] = 0 info['Zextreme'] = 0 if plots > 0: if CB > 0 and XF > L: xB = L - HF/W/CB # location of point at which line tension reaches zero else: xB = 0.0 # z values remain zero in this case if CB==0 or XF <= L: # case 1: no friction, or zero tension Xs = XF/L*s # X values uniformly distributed Te = Te + np.max([0, (XF/L - 1.0)*EA]) # uniform tension elif xB <= 0: # case 2: seabed friction but tension at anchor Xs = s*(1+CB*W/EA*(0.5*s-xB)) Te = HF + CB*W*(s-L) else: # case 3: seabed friction and zero anchor tension for I in range(nNodes): if s[I] <= xB: # if this node is in the zero tension range Xs[I] = s[I]; # x is unstretched, z and Te remain zero else: # the tension is nonzero Xs[I] = s[I] + CB*W/EA*(s[I] - xB)**2 Te[I] = HF - CB*W*(L-s[I]) # ProfileType 4 case - fully slack elif (W > 0.0) and (L >= XF + LHanging): if CB >= 0.0: ProfileType = 4 # this is a special case that requires no iteration HF = 0.0 VF = W*LHanging HA = 0.0 VA = 0.0 dVF_dZF = W / np.sqrt(2.0*ZF/EA_W + 1.0) # vertical stiffness info["HF"] = HF # solution to be used to start next call (these are the solved variables, may be for anchor if line is reversed) info["VF"] = VF info["stiffnessB"] = np.array([[0.0, 0.0], [0.0, dVF_dZF]]) info["stiffnessA"] = np.array([[0.0, 0.0], [0.0, W]]) info["stiffnessAB"] = np.array([[0.0, 0.0], [0.0, 0.0]]) info["LBot"] = L - LHanging info['ProfileType'] = 4 info['Zextreme'] = 0 if plots > 0: for I in range(nNodes): if s[I] > L-LHanging: # this node is on the suspended/hanging portion of the line Xs[I] = XF Zs[I] = ZF - ( L-s[I] + 0.5*W/EA*(L-s[I])**2 ) # <<<< double check this Te[I] = W*(L-s[I]) else: # this node is on the seabed Xs[I] = np.min([s[I], XF]) Zs[I] = 0.0 Te[I] = 0.0 else: # U shaped ProfileType = 5 HF = 0.0 VF = W*LHanging2 HA = 0.0 VA = -W*LHanging1 dVF_dZF = W / np.sqrt(2.0*ZF/EA_W + 1.0) # vertical stiffness info["HF"] = HF # solution to be used to start next call (these are the solved variables, may be for anchor if line is reversed) info["VF"] = VF info["stiffnessB"] = np.array([[0.0, 0.0], [0.0, W / np.sqrt(2.0*(ZF-CB)/EA_W + 1.0)]]) info["stiffnessA"] = np.array([[0.0, 0.0], [0.0, W / np.sqrt(2.0*( -CB)/EA_W + 1.0)]]) info["stiffnessAB"] = np.array([[0.0, 0.0], [0.0, 0.0]]) info["LBot"] = L - LHanging info['ProfileType'] = 5 info['Zextreme'] = CB if plots > 0: for I in range(nNodes): if s[I] < LHanging1: # the 1st suspended/hanging portion of the line Xs[I] = 0.0 Zs[I] = -s[I] - W/EA*(LHanging1*s[I] - 0.5*s[I]**2 ) Te[I] = W*s[I] elif s[I] <= L-LHanging2: # the middle portion of the line, slack along the seabed Xs[I] = (s[I]-LHanging1)*XF/(L-LHanging1-LHanging2) Zs[I] = CB Te[I] = 0.0 else: # the 2nd suspended/hanging portion of the line Lms = L - s[I] # distance from end B Xs[I] = XF Zs[I] = ZF - Lms - W/EA*(LHanging2*Lms - 0.5*Lms**2 ) Te[I] = W*Lms # Use an iterable solver function to solve for the forces on the line else: # Initialize some commonly used terms that don't depend on the iteration: WL = W *L WEA = W *EA L_EA = L /EA CB_EA = CB/EA #MaxIter = 50 #int(1.0/Tol) # Smaller tolerances may take more iterations, so choose a maximum inversely proportional to the tolerance # more initialization I = 1 # Initialize iteration counter FirstIter = 1 # 1 means first attempt (can be retried), 0 means it's alread been retried, -1 triggers a retry # make HF and VF initial guesses if either was provided as zero <<<<<<<<<<<< why does it matter if VF0 is zero?? if HF0 <= 0 or VF0 <= 0: XF2 = XF*XF; ZF2 = ZF*ZF; if ( L <= np.sqrt( XF2 + ZF2 ) ): # if the current mooring line is taut Lamda0 = 0.2 else: # The current mooring line must be slack and not vertical Lamda0 = np.sqrt( 3.0*( ( L*L - ZF2 )/XF2 - 1.0 ) ) HF = np.max([ abs( 0.5*W* XF/ Lamda0 ), Tol ]); # ! As above, set the lower limit of the guess value of HF to the tolerance VF = 0.5*W*( ZF/np.tanh(Lamda0) + L ) else: HF = 1.0*HF0 VF = 1.0*VF0 # >>> note, the above Tol uses should be adjusted now that I've changed it to be absolute and distance <<< # make sure required values are non-zero HF = np.max([ HF, Tol ]) XF = np.max([ XF, Tol ]) ZF = np.max([ ZF, Tol ]) # some initial values just for printing before they're filled in EXF=0 EZF=0 # Solve the analytical, static equilibrium equations for a catenary (or taut) mooring line with seabed interaction: X0 = [HF, VF] Ytarget = [0,0] args = dict(cat=[XF, ZF, L, EA, W, CB, WL, WEA, L_EA, CB_EA], step=[0.15,1.0,1.5]) # call the master solver function #X, Y, info2 = msolve.dsolve(eval_func_cat, X0, Ytarget=Ytarget, step_func=step_func_cat, args=args, tol=Tol, maxIter=MaxIter, a_max=1.2) X, Y, info2 = dsolve2(eval_func_cat, X0, Ytarget=Ytarget, step_func=step_func_cat, args=args, ytol=Tol, stepfac=1, maxIter=MaxIter, a_max=1.2) # retry if it failed if info2['iter'] >= MaxIter-1 or info2['oths']['error']==True or np.linalg.norm(info2['err']) > 10*Tol: # ! Perhaps we failed to converge because our initial guess was too far off. # (This could happen, for example, while linearizing a model via large # pertubations in the DOFs.) Instead, use starting values documented in: # Peyrot, <NAME>. and <NAME>., "Analysis Of Cable Structures," # Computers & Structures, Vol. 10, 1979, pp. 805-813: # NOTE: We don't need to check if the current mooring line is exactly # vertical (i.e., we don't need to check if XF == 0.0), because XF is # limited by the tolerance above. */ if info2['iter'] >= MaxIter-1 and XF/ZF < 0.001: # if it's nearly vertical, keep iterating from the last point HF = X[0] VF = X[1] else: # otherwise try starting from some good initial guesses if ( L <= np.sqrt( XF**2 + ZF**2 ) ): # if the current mooring line is taut Lamda0 = 0.2 else: # The current mooring line must be slack and not vertical Lamda0 = np.sqrt( 3.0*( ( L*L - ZF**2 )/XF**2 - 1.0 ) ) HF = np.max([ abs( 0.5*W* XF/ Lamda0 ), Tol ]) # As above, set the lower limit of the guess value of HF to the tolerance VF = 0.5*W*( ZF/np.tanh(Lamda0) + L ) X0 = [HF, VF] Ytarget = [0,0] args = dict(cat=[XF, ZF, L, EA, W, CB, WL, WEA, L_EA, CB_EA], step=[0.1,0.8,1.5]) # step: alpha_min, alpha0, alphaR # call the master solver function #X, Y, info3 = msolve.dsolve(eval_func_cat, X0, Ytarget=Ytarget, step_func=step_func_cat, args=args, tol=Tol, maxIter=MaxIter, a_max=1.1) #, dX_last=info2['dX']) X, Y, info3 = dsolve2(eval_func_cat, X0, Ytarget=Ytarget, step_func=step_func_cat, args=args, ytol=Tol, stepfac=1, maxIter=MaxIter, a_max=1.2) # retry if it failed if info3['iter'] >= MaxIter-1 or info3['oths']['error']==True: X0 = X Ytarget = [0,0] args = dict(cat=[XF, ZF, L, EA, W, CB, WL, WEA, L_EA, CB_EA], step=[0.1,1.0,2.0]) # call the master solver function #X, Y, info4 = msolve.dsolve(eval_func_cat, X0, Ytarget=Ytarget, step_func=step_func_cat, args=args, tol=Tol, maxIter=10*MaxIter, a_max=1.15) #, dX_last=info3['dX']) X, Y, info4 = dsolve2(eval_func_cat, X0, Ytarget=Ytarget, step_func=step_func_cat, args=args, ytol=Tol, stepfac=1, maxIter=MaxIter, a_max=1.2) # check if it failed if info4['iter'] >= 10*MaxIter-1 or info4['oths']['error']==True: print("catenary solve failed on all 3 attempts.") print(f"catenary({XF}, {ZF}, {L}, {EA}, {W}, CB={CB}, HF0={HF0}, VF0={VF0}, Tol={Tol}, MaxIter={MaxIter}, plots=1)") print("First attempt's iterations are as follows:") for i in range(info2['iter']+1): print(f" Iteration {i}: HF={info2['Xs'][i,0]: 8.4e}, VF={info2['Xs'][i,1]: 8.4e}, EX={info2['Es'][i,0]: 6.2e}, EZ={info2['Es'][i,1]: 6.2e}") print("Second attempt's iterations are as follows:") for i in range(info3['iter']+1): print(f" Iteration {i}: HF={info3['Xs'][i,0]: 8.4e}, VF={info3['Xs'][i,1]: 8.4e}, EX={info3['Es'][i,0]: 6.2e}, EZ={info3['Es'][i,1]: 6.2e}") print("Last attempt's iterations are as follows:") for i in range(info4['iter']+1): print(f" Iteration {i}: HF={info4['Xs'][i,0]: 8.4e}, VF={info4['Xs'][i,1]: 8.4e}, EX={info4['Es'][i,0]: 6.2e}, EZ={info4['Es'][i,1]: 6.2e}") ''' # plot solve performance fig, ax = plt.subplots(4,1, sharex=True) ax[0].plot(np.hstack([info2['Xs'][:,0], info3['Xs'][:,0], info4['Xs'][:,0]])) ax[1].plot(np.hstack([info2['Xs'][:,1], info3['Xs'][:,1], info4['Xs'][:,1]])) ax[2].plot(np.hstack([info2['Es'][:,0], info3['Es'][:,0], info4['Es'][:,0]])) ax[3].plot(np.hstack([info2['Es'][:,1], info3['Es'][:,1], info4['Es'][:,1]])) ax[0].set_ylabel("HF") ax[1].set_ylabel("VF") ax[2].set_ylabel("X err") ax[3].set_ylabel("Z err") # plot solve path plt.figure() #c = np.hypot(info2['Es'][:,0], info2['Es'][:,1]) c = np.arange(info2['iter']+1) c = cm.jet((c-np.min(c))/(np.max(c)-np.min(c))) for i in np.arange(info2['iter']): plt.plot(info2['Xs'][i:i+2,0], info2['Xs'][i:i+2,1],":", c=c[i]) plt.plot(info2['Xs'][0,0], info2['Xs'][0,1],"o") c = np.arange(info3['iter']+1) c = cm.jet((c-np.min(c))/(np.max(c)-np.min(c))) for i in np.arange(info3['iter']): plt.plot(info3['Xs'][i:i+2,0], info3['Xs'][i:i+2,1], c=c[i]) plt.plot(info3['Xs'][0,0], info3['Xs'][0,1],"*") c = np.arange(info4['iter']+1) c = cm.jet((c-np.min(c))/(np.max(c)-np.min(c))) for i in np.arange(info4['iter']): plt.plot(info4['Xs'][i:i+2,0], info4['Xs'][i:i+2,1], c=c[i]) plt.plot(info4['Xs'][0,0], info4['Xs'][0,1],"*") plt.title("catenary solve path for troubleshooting") plt.show() #breakpoint() ''' raise CatenaryError("catenary solver failed.") else: # if the solve was successful, info.update(info4['oths']) # copy info from last solve into existing info dictionary info['catenary'] = info4 else: # if the solve was successful, info.update(info3['oths']) # copy info from last solve into existing info dictionary info['catenary'] = info3 else: # if the solve was successful, info.update(info2['oths']) # copy info from last solve into existing info dictionary info['catenary'] = info2 # check for errors ( WOULD SOME NOT ALREADY HAVE BEEN CAUGHT AND RAISED ALREADY?) if info['error']==True: #breakpoint() # >>>> what about errors for which we can first plot the line profile?? <<<< raise CatenaryError("Error in catenary computations: "+info['message']) #if info['Zextreme'] < CB: # info["warning"] = "Line is suspended from both ends but hits the seabed (this isn't allowed in MoorPy)" ProfileType = info['ProfileType'] HF = X[0] VF = X[1] HA = info['HA'] VA = info['VA'] # --- now that the iterative solve is over, check some things on the results, handle plotting, etc. --- # compute the Zextreme value - for a freely suspended line, if necessary, check to ensure the line doesn't droop and hit the seabed if info['ProfileType']==1 and CB < 0 and VF-WL < 0.0: # only need to do this if the line is slack (has zero slope somewhere) VFMinWL = VF - WL; LBot = L - VF/W; # unstretched length of line resting on seabed (Jonkman's PhD eqn 2-38), LMinVFOVrW HF_W = HF/W; HF_WEA = HF/WEA VF_WEA = VF/WEA VF_HF = VF/HF VFMinWL_HF = VFMinWL/HF VF_HF2 = VF_HF *VF_HF VFMinWL_HF2 = VFMinWL_HF*VFMinWL_HF SQRT1VF_HF2 = np.sqrt( 1.0 + VF_HF2 ) SQRT1VFMinWL_HF2 = np.sqrt( 1.0 + VFMinWL_HF2 ) # this is indicated by the anchor force having a positive value, meaning it's helping hold up the line info["Sextreme"] = L-VF/W # arc length where slope is zero info["Zextreme"] = (1 - SQRT1VFMinWL_HF2)*HF_W - 0.5* VFMinWL**2/WEA # max or min line elevation (where slope=0) info["Xextreme"] = ( -np.log(VFMinWL_HF + SQRT1VFMinWL_HF2))*HF_W + HF*info["Sextreme"]/EA else: info["Sextreme"] = 0.0 info["Zextreme"] = 0.0 info["Xextreme"] = 0.0 # handle special case of a U-shaped line that has seabed contact (using 2 new catenary solves) if info['ProfileType']==1 and info["Zextreme"] < CB: # we will solve this as two separate lines to form the U shape info['ProfileType'] = 'U' ProfileType = 'U' X1_0 = info['Xextreme'] # define fake anchor point as lowest point of line (if the seabed wasn't there) X2_0 = XF - X1_0 L1 = info['Sextreme'] L2 = L-L1 Z1 = CB # negative of height from seabed to original 'anchor' end [m] Z2 = -Z1 + ZF # height from seabed to fairlead end # set up a 1D solve for the correct choice of the anchor point so that horizontal tensions balance def eval_func_U(X, args): info = dict(error=False) X1 = X[0] X2 = XF-X1 # note: reducing tolerances for these sub-calls <<< how much is good? <<< (fAH1, fAV1, fBH1, fBV1, info1) = catenary(X1, Z1, L1, EA, W, CB=0, Tol=0.5*Tol, MaxIter=MaxIter) (fAH2, fAV2, fBH2, fBV2, info2) = catenary(X2, Z2, L2, EA, W, CB=0, Tol=0.5*Tol, MaxIter=MaxIter) Himbalance = fBH2 - fBH1 K1 = info1['stiffnessA'] # note: this refers to the upper end of this half of the line (since it is called with Z<0) K2 = info2["stiffnessB"] info['dH_dX'] = K1[0,0] + K2[0,0] # horizontal stiffness on connection point on seabed between two line portions #print(f" X1 = {X1}, H1 = {fBH1}, H2 = {fBH2}, err={Himbalance}, dH/dX = {info['dH_dX']}")\ #breakpoint() return np.array([Himbalance]), info, False # returns Y value, misc dict, and stop flag def step_func_U(X, args, Y, info, Ytarget, err, tols, iter, maxIter): dX = - err[0] / info['dH_dX'] #print(f" Step is {dX}") return np.array([dX]) # returns dX (step to make) # call this to solve for line shapes that balance the horizontal tension in the line X, Y, infoU = dsolve2(eval_func_U, [X1_0], step_func=step_func_U, ytol=0.25*Tol, stepfac=1, maxIter=20, a_max=1.2, display=0) X1 = X[0] X2 = XF-X1 # call one more time to get final values (fAH1, fAV1, fBH1, fBV1, info1) = catenary(X1, Z1, L1, EA, W, CB=0, Tol=0.5*Tol, MaxIter=MaxIter, plots=plots) (fAH2, fAV2, fBH2, fBV2, info2) = catenary(X2, Z2, L2, EA, W, CB=0, Tol=0.5*Tol, MaxIter=MaxIter, plots=plots) if plots > 0 or (info1['error'] and info2['error']): s = np.hstack([ info1["s" ] , info2["s" ]+L1 ]) Xs = np.hstack([ info1["X" ] , info2["X" ]+X1 ]) Zs = np.hstack([ info1["Z" ] , info2["Z" ]+Z1 ]) Te = np.hstack([ info1["Te"] , info2["Te"] ]) # re-reverse line distributed data back to normal if applicable ''' if reverseFlag: info['s'] = L - info['s' ][::-1] info['X'] = XF - info['X' ][::-1] info['Z'] = info['Z' ][::-1] - ZF # remember ZF still has a flipped sign right now info['Te'] = info['Te'][::-1] ''' if flipFlag: raise Exception("flipFlag connot be True for the case of a U shaped line with seabed contact. Something must be wrong.") # get stiffnesses (check sign of A!) K1 = info1['stiffnessA'] # note: this refers to the upper end of this half of the line (since it is called with Z<0) K2 = info2['stiffnessB'] dH_dX = 1./(1./K1[0,0] + 1./K2[0,0]) # = K1[0,0]*K2[0,0]/(K1[0,0] + K2[0,0]) Kmid = K1[0,0] + K2[0,0] # horizontal stiffness on connection point on seabed between two line portions dxdH = 1.0/Kmid #= 1/(K1[0,0] + K2[0,0]) info['stiffnessA'] = np.array([[ dH_dX , K1[0,1] *K2[0,0]*dxdH ], [K1[1,0] *K2[0,0]*dxdH, K1[1,1] -K1[1,0]*dxdH*K1[0,1]]]) info['stiffnessB'] = np.array([[ dH_dX , K2[0,1] *K1[0,0]*dxdH ], [K2[1,0] *K1[0,0]*dxdH, K2[1,1] -K2[1,0]*dxdH*K2[0,1]]]) info['stiffnessAB']= np.array([[-K1[0,0] *K2[0,0]*dxdH, -K1[0,1] *K2[0,0]*dxdH ], # this is the lower-left submatrix, A motions, B reaction forces [-K1[0,0] *dxdH*K2[1,0], -K1[0,1] *dxdH*K2[1,0] ]]) # xA zA xB zB info['K'] = np.array([[ K1[0,0] *K2[0,0]*dxdH, K1[0,1] *K2[0,0]*dxdH , -K2[0,0] *K1[0,0]*dxdH, -K2[0,1] *K1[0,0]*dxdH ], # HA [ K1[1,0] *K2[0,0]*dxdH, K1[1,1] -K1[1,0]*dxdH*K1[0,1], -K2[0,0] *dxdH*K1[1,0], -K2[0,1] *dxdH*K1[1,0] ], # VA [ -K1[0,0] *K2[0,0]*dxdH, -K1[0,1] *K2[0,0]*dxdH , K2[0,0] *K1[0,0]*dxdH, K2[0,1] *K1[0,0]*dxdH ], # HB [ -K1[0,0] *dxdH*K2[1,0], -K1[0,1] *dxdH*K2[1,0] , K2[1,0] *K1[0,0]*dxdH, K2[1,1] -K2[1,0]*dxdH*K2[0,1] ]]) # VB ''' \frac{ \pderiv{H_A}{x_A}\pderiv{H_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &\frac{ \pderiv{H_A}{z_A}\pderiv{H_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &-\frac{\pderiv{H_A}{x_A}\pderiv{H_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &-\frac{\pderiv{H_A}{x_A}\pderiv{H_B}{z_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} \\ \frac{ \pderiv{V_A}{x_A}\pderiv{H_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &\pderiv{V_A}{z_A} - \frac{ \pderiv{H_A}{z_A}\pderiv{V_A}{x_A}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &-\frac{\pderiv{V_A}{x_A}\pderiv{H_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &-\frac{\pderiv{V_A}{x_A}\pderiv{H_B}{z_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} \\ -\frac{ \pderiv{H_A}{x_A}\pderiv{H_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &-\frac{\pderiv{H_A}{z_A}\pderiv{H_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &\frac{ \pderiv{H_A}{x_A}\pderiv{H_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &\frac{ \pderiv{H_A}{x_A}\pderiv{H_B}{z_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} \\ -\frac{ \pderiv{H_A}{x_A}\pderiv{V_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &-\frac{\pderiv{H_A}{z_A}\pderiv{V_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &\frac{ \pderiv{H_A}{x_A}\pderiv{V_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} &\pderiv{V_B}{z_B} - \frac{ \pderiv{H_B}{z_B}\pderiv{V_B}{x_B}}{\pderiv{H_A}{x_A}+\pderiv{H_B}{x_B}} for a normal line \pderiv{H_B}{x_B} &? & -\pderiv{H_B}{x_B} & \pderiv{H_B}{z_B}\\ # HA ? & ? & 0 & 0 \\ # VA -\pderiv{H_B}{x_B}+ & 0ish & \pderiv{H_B}{x_B} & \pderiv{H_B}{z_B}\\ # HB -\pderiv{V_B}{x_B}+ & 0ish & \pderiv{V_B}{x_B} & \pderiv{V_B}{z_B} # VB # sorted K = np.array([[ dH_dX, K1[0,1] *K2[0,0]*dxdH , -dH_dX, -K2[0,1] *K1[0,0]*dxdH ], # HA [ K1[1,0] *K2[0,0]*dxdH, K1[1,1] -K1[1,0]*dxdH*K1[0,1], -K2[0,0] *dxdH*K1[1,0], -K2[0,1] *dxdH*K1[1,0] ], # VA [ -dH_dX, -K1[0,1] *K2[0,0]*dxdH , dH_dX, K2[0,1] *K1[0,0]*dxdH ], # HB [ -K1[0,0] *dxdH*K2[1,0], -K1[0,1] *dxdH*K2[1,0] , K2[1,0] *K1[0,0]*dxdH, K2[1,1] -K2[1,0]*dxdH*K2[0,1] ]]) # VB ''' info['LBot'] = info1['LBot'] + info2['LBot'] # not very useful outputs for this case: info["Sextreme"] = L1 - info1['LBot'] info["Zextreme"] = CB info["Xextreme"] = X1 - info1['LBot'] #FxA = fAH1 #FzA = fAV1 #FxB = fBH2 #FzB = fBV2 HA = fAH1 VA = fAV1 HF = -fBH2 VF = -fBV2 if plots > 3: plt.plot(Xs, Zs) plt.show() # the normal case else: # do plotting-related calculations if needed (plots=1: show plots; plots=2: just return values) if plots > 0 or info['error']==True: # calculate some commonly used terms that depend on HF and VF: AGAIN VFMinWL = VF - WL; LBot = L - VF/W; # unstretched length of line resting on seabed (Jonkman's PhD eqn 2-38), LMinVFOVrW HF_W = HF/W; #HF_WEA = HF/WEA #VF_WEA = VF/WEA VF_HF = VF/HF VFMinWL_HF = VFMinWL/HF VF_HF2 = VF_HF *VF_HF #VFMinWL_HF2 = VFMinWL_HF*VFMinWL_HF #SQRT1VF_HF2 = np.sqrt( 1.0 + VF_HF2 ) SQRT1VFMinWL_HF2 = np.sqrt( 1.0 + VFMinWL_HF**2 ) for I in range(nNodes): # calculate some values for the current node Ws = W *s[I] VFMinWLs = VFMinWL + Ws # = VF - W*(L-s[I]) VFMinWLs_HF = VFMinWLs/HF s_EA = s[I] /EA SQRT1VFMinWLs_HF2 = np.sqrt( 1.0 + VFMinWLs_HF*VFMinWLs_HF ) # No portion of the line rests on the seabed if ProfileType==1: Xs[I] = ( np.log( VFMinWLs_HF + SQRT1VFMinWLs_HF2 ) - np.log( VFMinWL_HF + SQRT1VFMinWL_HF2 ) )*HF_W + s_EA* HF; Zs[I] = ( SQRT1VFMinWLs_HF2 - SQRT1VFMinWL_HF2 )*HF_W + s_EA*( VFMinWL + 0.5*Ws ); Te[I] = np.sqrt( HF*HF + VFMinWLs*VFMinWLs ); # A portion of the line must rest on the seabed and the anchor tension is zero elif ProfileType in [2,3]: if CB > 0: xB = LBot - HF_W/CB # location of point at which line tension reaches zero else: xB = 0.0 xBlim = max(xB, 0.0) if s[I] <= xB: # (aka Lbot - s > HF/(CB*W) ) if this node rests on the seabed and the tension is zero Xs[I] = s[I]; Zs[I] = 0.0; Te[I] = 0.0; elif( s[I] <= LBot ): # // .TRUE. if this node rests on the seabed and the tension is nonzero Xs[I] = s[I] + 0.5*CB*W/EA * (s[I]*s[I] - 2.0*xB*s[I] + xB*xBlim) Zs[I] = 0.0; Te[I] = HF + CB*VFMinWLs; else: # // LBot < s <= L ! This node must be above the seabed Xs[I] = LBot + HF_W*np.log( VFMinWLs_HF + SQRT1VFMinWLs_HF2 ) + HF*s_EA + 0.5*CB*W/EA *(-LBot*LBot + xB*xBlim); Zs[I] = ( -1.0 + SQRT1VFMinWLs_HF2)*HF_W + s_EA*(VFMinWL + 0.5*Ws ) + 0.5* VFMinWL*VFMinWL/WEA; Te[I] = np.sqrt( HF*HF + VFMinWLs*VFMinWLs ); if plots > 0: # re-reverse line distributed data back to normal if applicable if reverseFlag: s = L - s [::-1] Xs= XF - Xs[::-1] Zs= Zs[::-1] - ZF # remember ZF still has a flipped sign right now Te= Te[::-1] if flipFlag: Zs = -Zs # flip calculated line Z coordinates (hopefully this is right) # save data to info dict info["X" ] = Xs info["Z" ] = Zs info["s" ] = s info["Te"] = Te if plots==2 or info['error']==True: # also show the profile plot plt.figure() plt.plot(Xs,Zs) # get A and AB stiffness matrices for catenary profiles here based on fairlead (B) stiffness matrix if ProfileType == 1: info['stiffnessA'] = np.array(info['stiffnessB']) info['stiffnessAB'] = -info['stiffnessB'] elif ProfileType in [2,3]: if CB == 0.0: info['stiffnessA'] = np.array([[info['stiffnessB'][0,0], 0], [0, dV_dZ_s(Tol, HF)]]) # vertical term is very approximate info['stiffnessAB'] = np.array([[-info['stiffnessB'][0,0], 0], [0, 0]]) # note: A and AB stiffnesses for this case only valid if zero friction else: info['stiffnessA'] =
np.ones([2,2])
numpy.ones
from .. import select from .. import utils from .._lazyload import matplotlib as mpl from . import colors from .tools import create_colormap from .tools import create_normalize from .tools import generate_colorbar from .tools import generate_legend from .tools import label_axis from .utils import _get_figure from .utils import _in_ipynb from .utils import _is_color_array from .utils import _with_default from .utils import parse_fontsize from .utils import show from .utils import temp_fontsize import numbers import numpy as np import pandas as pd import warnings plt = mpl.pyplot def _squeeze_array(x): x = utils.toarray([x]).squeeze() try: len(x) except TypeError: x = x[None] return x class _ScatterParams(object): def __init__( self, x, y, z=None, c=None, mask=None, discrete=None, cmap=None, cmap_scale=None, vmin=None, vmax=None, s=None, legend=None, colorbar=None, xlabel=None, ylabel=None, zlabel=None, label_prefix=None, shuffle=True, ): self._x = x self._y = y self._z = z if z is not None else None self._c = c self._mask = mask self._discrete = discrete self._cmap = cmap self._cmap_scale = cmap_scale self._vmin_set = vmin self._vmax_set = vmax self._s = s self._legend = legend self._colorbar = colorbar self._labels = None self._c_discrete = None self._label_prefix = label_prefix self._xlabel = xlabel self._ylabel = ylabel self._zlabel = zlabel self.shuffle = shuffle self.check_size() self.check_c() self.check_mask() self.check_s() self.check_discrete() self.check_legend() self.check_cmap() self.check_cmap_scale() self.check_vmin_vmax() @property def x_array(self): return _squeeze_array(self._x) @property def y_array(self): return _squeeze_array(self._y) @property def z_array(self): return _squeeze_array(self._z) if self._z is not None else None @property def size(self): try: return self._size except AttributeError: self._size = len(self.x_array) return self._size @property def plot_idx(self): try: return self._plot_idx except AttributeError: self._plot_idx = np.arange(self.size) if self._mask is not None: self._plot_idx = self._plot_idx[self._mask] if self.shuffle: self._plot_idx = np.random.permutation(self._plot_idx) return self._plot_idx @property def x(self): return self.x_array[self.plot_idx] @property def y(self): return self.y_array[self.plot_idx] @property def z(self): return self.z_array[self.plot_idx] if self._z is not None else None @property def data(self): if self.z is not None: return [self.x, self.y, self.z] else: return [self.x, self.y] @property def _data(self): if self._z is not None: return [self.x_array, self.y_array, self.z_array] else: return [self.x_array, self.y_array] @property def s(self): if self._s is not None: if isinstance(self._s, numbers.Number): return self._s else: return self._s[self.plot_idx] else: return 200 / np.sqrt(self.size) def constant_c(self): """Check if ``c`` is constant. Returns ------- c : ``str`` or ``None`` Either None or a single matplotlib color """ if self._c is None or isinstance(self._c, str): return True elif hasattr(self._c, "__len__") and len(self._c) == self.size: # technically if self.size == 3 or 4 then this could be # interpreted as a single color-like return False else: return mpl.colors.is_color_like(self._c) def array_c(self): """Check if ``c`` is an array of matplotlib colors.""" try: return self._array_c except AttributeError: self._array_c = (not self.constant_c()) and _is_color_array(self._c) return self._array_c @property def _c_masked(self): if self.constant_c() or self._mask is None: return self._c else: return self._c[self._mask] @property def c_unique(self): """Get unique values in c to avoid recomputing every time.""" try: return self._c_unique except AttributeError: self._c_unique = np.unique(self._c_masked) return self._c_unique @property def n_c_unique(self): """Get the number of unique values in `c`.""" try: return self._n_c_unique except AttributeError: self._n_c_unique = len(self.c_unique) return self._n_c_unique @property def discrete(self): """Check if the color array is discrete. If not provided: * If c is constant or an array, return None * If cmap is a dict, return True * If c has 20 or less unique values, return True * Otherwise, return False """ if self._discrete is not None: return self._discrete else: if self.constant_c() or self.array_c(): return None else: if isinstance(self._cmap, dict) or not np.all( [isinstance(x, numbers.Number) for x in self._c_masked] ): # cmap dictionary or non-numeric values force discrete return True else: # guess based on number of unique elements if self.n_c_unique > 20: return False else: # are the unique elements integer-like? return np.allclose(self.c_unique % 1, 0, atol=1e-4) @property def c_discrete(self): """Discretize ``c``. If c is discrete then this converts it to integers from 0 to `n_c_unique` """ if self._c_discrete is None: if isinstance(self._cmap, dict): self._labels = np.array( [k for k in self._cmap.keys() if k in self.c_unique] ) self._c_discrete = np.zeros_like(self._c, dtype=int) for i, label in enumerate(self._labels): self._c_discrete[self._c == label] = i else: self._c_discrete = np.zeros_like(self._c, dtype=int) self._c_discrete[self._mask], self._labels = pd.factorize( self._c_masked, sort=True ) return self._c_discrete @property def c(self): if self.constant_c(): return self._c elif self.array_c() or not self.discrete: return self._c[self.plot_idx] else: # discrete c return self.c_discrete[self.plot_idx] @property def labels(self): """Get labels associated with each integer c, if c is discrete.""" if self.constant_c() or self.array_c(): return None elif self.discrete: # make sure this exists self.c_discrete return self._labels else: return None @property def legend(self): if self._legend is not None: return self._legend else: if self.constant_c() or self.array_c(): return False else: return True def list_cmap(self): """Check if the colormap is a list.""" return hasattr(self._cmap, "__len__") and not isinstance( self._cmap, (str, dict) ) def process_string_cmap(self, cmap): """Subset a discrete colormap based on the number of colors if necessary.""" cmap = mpl.cm.get_cmap(cmap) if self.discrete and cmap.N <= 20 and self.n_c_unique <= cmap.N: return mpl.colors.ListedColormap(cmap.colors[: self.n_c_unique]) else: return cmap @property def cmap(self): if self._cmap is not None: if isinstance(self._cmap, dict): return mpl.colors.ListedColormap( [mpl.colors.to_rgba(self._cmap[label]) for label in self.labels] ) elif self.list_cmap(): return create_colormap(self._cmap) elif isinstance(self._cmap, str): return self.process_string_cmap(self._cmap) else: return self._cmap else: if self.constant_c() or self.array_c(): return None elif self.discrete: return colors.tab(n=self.n_c_unique) else: return self.process_string_cmap("inferno") @property def cmap_scale(self): if self._cmap_scale is not None: return self._cmap_scale else: if self.discrete or not self.legend: return None else: return "linear" @property def _use_norm(self): return self.cmap_scale is not None and self.cmap_scale != "linear" @property def _vmin(self): if self._vmin_set is not None: return self._vmin_set else: if self.constant_c() or self.array_c() or self.discrete: return None else: return np.nanmin(self.c) @property def vmin(self): if self._use_norm: return None else: return self._vmin @property def _vmax(self): if self._vmax_set is not None: return self._vmax_set else: if self.constant_c() or self.array_c() or self.discrete: return None else: return np.nanmax(self.c) @property def vmax(self): if self._use_norm: return None else: return self._vmax @property def norm(self): if self._use_norm: return create_normalize(self._vmin, self._vmax, scale=self.cmap_scale) else: return None @property def extend(self): if self.legend and not self.discrete: # migrate this to _ScatterParams extend_min = np.min(self.c) < self._vmin extend_max = np.max(self.c) > self._vmax if extend_min: return "both" if extend_max else "min" else: return "max" if extend_max else "neither" else: return None @property def subplot_kw(self): if self.z is not None: return {"projection": "3d"} else: return {} def check_vmin_vmax(self): if self.constant_c(): if self._vmin_set is not None or self._vmax_set is not None: warnings.warn( "Cannot set `vmin` or `vmax` with constant `c={}`. " "Setting `vmin = vmax = None`.".format(self.c), UserWarning, ) self._vmin_set = None self._vmax_set = None elif self.discrete: if self._vmin_set is not None or self._vmax_set is not None: warnings.warn( "Cannot set `vmin` or `vmax` with discrete data. " "Setting to `None`.", UserWarning, ) self._vmin_set = None self._vmax_set = None def check_legend(self): # legend and colorbar are synonyms if self._colorbar is not None: if self._legend is not None and self._legend != self._colorbar: raise ValueError( "Received conflicting values for synonyms " "`legend={}` and `colorbar={}`".format(self._legend, self._colorbar) ) else: self._legend = self._colorbar if self._legend: if self.array_c(): warnings.warn( "`c` is a color array and cannot be used to create a " "legend. To interpret these values as labels instead, " "provide a `cmap` dictionary with label-color pairs.", UserWarning, ) self._legend = False elif self.constant_c(): warnings.warn( "Cannot create a legend with constant `c={}`".format(self.c), UserWarning, ) self._legend = False def check_size(self): # check data shape for d in self._data: if len(d) != self.size: raise ValueError( "Expected all axes of data to have the same length" ". Got {}".format([len(d) for d in self._data]) ) def check_c(self): if not self.constant_c(): self._c = _squeeze_array(self._c) if not len(self._c) == self.size: raise ValueError( "Expected c of length {} or 1. Got {}".format( self.size, len(self._c) ) ) def check_mask(self): if self._mask is not None: self._mask = _squeeze_array(self._mask) if not len(self._mask) == self.size: raise ValueError( "Expected mask of length {}. Got {}".format( self.size, len(self._mask) ) ) def check_s(self): if self._s is not None and not isinstance(self._s, numbers.Number): self._s = _squeeze_array(self._s) if not len(self._s) == self.size: raise ValueError( "Expected s of length {} or 1. Got {}".format( self.size, len(self._s) ) ) def check_discrete(self): if self._discrete is False: if not np.all([isinstance(x, numbers.Number) for x in self._c]): raise ValueError("Cannot treat non-numeric data as continuous.") def check_cmap(self): if isinstance(self._cmap, dict): # dictionary cmap if self.constant_c() or self.array_c(): raise ValueError( "Expected list-like `c` with dictionary cmap." " Got {}".format(type(self._c)) ) elif not self.discrete: raise ValueError("Cannot use dictionary cmap with " "continuous data.") elif np.any([color not in self._cmap for color in np.unique(self._c)]): missing = set(np.unique(self._c).tolist()).difference(self._cmap.keys()) raise ValueError( "Dictionary cmap requires a color " "for every unique entry in `c`. " "Missing colors for [{}]".format( ", ".join([str(color) for color in missing]) ) ) elif self.list_cmap(): if self.constant_c() or self.array_c(): raise ValueError( "Expected list-like `c` with list cmap. " "Got {}".format(type(self._c)) ) def check_cmap_scale(self): if self._cmap_scale is not None and self._cmap_scale != "linear": if self.array_c(): warnings.warn( "Cannot use non-linear `cmap_scale` with " "`c` as a color array.", UserWarning, ) self._cmap_scale = "linear" elif self.constant_c(): warnings.warn( "Cannot use non-linear `cmap_scale` with constant " "`c={}`.".format(self._c), UserWarning, ) self._cmap_scale = "linear" elif self.discrete: warnings.warn( "Cannot use non-linear `cmap_scale` with discrete data.", UserWarning, ) self._cmap_scale = "linear" def _label(self, label, values, idx): if label is False: return None elif label is not None: return label elif self._label_prefix is not None: return self._label_prefix + str(idx) elif label is not False and isinstance(values, pd.Series): return values.name else: return None @property def xlabel(self): return self._label(self._xlabel, self._x, "1") @property def ylabel(self): return self._label(self._ylabel, self._y, "2") @property def zlabel(self): if self._z is None: return None else: return self._label(self._zlabel, self._z, "3") @utils._with_pkg(pkg="matplotlib", min_version=3) def scatter( x, y, z=None, c=None, cmap=None, cmap_scale="linear", s=None, mask=None, discrete=None, ax=None, legend=None, colorbar=None, shuffle=True, figsize=None, ticks=True, xticks=None, yticks=None, zticks=None, ticklabels=True, xticklabels=None, yticklabels=None, zticklabels=None, label_prefix=None, xlabel=None, ylabel=None, zlabel=None, title=None, fontsize=None, legend_title=None, legend_loc="best", legend_anchor=None, legend_ncol=None, vmin=None, vmax=None, elev=None, azim=None, filename=None, dpi=None, **plot_kwargs, ): """Create a scatter plot. Builds upon `matplotlib.pyplot.scatter` with nice defaults and handles categorical colors / legends better. For easy access, use `scatter2d` or `scatter3d`. Parameters ---------- x : list-like data for x axis y : list-like data for y axis z : list-like, optional (default: None) data for z axis c : list-like or None, optional (default: None) Color vector. Can be a single color value (RGB, RGBA, or named matplotlib colors), an array of these of length n_samples, or a list of discrete or continuous values of any data type. If `c` is not a single or list of matplotlib colors, the values in `c` will be used to populate the legend / colorbar with colors from `cmap` cmap : `matplotlib` colormap, str, dict or None, optional (default: None) matplotlib colormap. If None, uses `tab20` for discrete data and `inferno` for continuous data. If a dictionary, expects one key for every unique value in `c`, where values are valid matplotlib colors (hsv, rbg, rgba, or named colors) cmap_scale : {'linear', 'log', 'symlog', 'sqrt'} or `matplotlib.colors.Normalize`, optional (default: 'linear') Colormap normalization scale. For advanced use, see <https://matplotlib.org/users/colormapnorms.html> s : float, optional (default: None) Point size. If `None`, set to 200 / sqrt(n_samples) mask : list-like, optional (default: None) boolean mask to hide data points discrete : bool or None, optional (default: None) If True, the legend is categorical. If False, the legend is a colorbar. If None, discreteness is detected automatically. Data containing non-numeric `c` is always discrete, and numeric data with 20 or less unique values is discrete. ax : `matplotlib.Axes` or None, optional (default: None) axis on which to plot. If None, an axis is created legend : bool, optional (default: None) States whether or not to create a legend. If data is continuous, the legend is a colorbar. If `None`, a legend is created where possible colorbar : bool, optional (default: None) Synonym for `legend` shuffle : bool, optional (default: True) If True. shuffles the order of points on the plot. figsize : tuple, optional (default: None) Tuple of floats for creation of new `matplotlib` figure. Only used if `ax` is None. ticks : True, False, or list-like (default: True) If True, keeps default axis ticks. If False, removes axis ticks. If a list, sets custom axis ticks {x,y,z}ticks : True, False, or list-like (default: None) If set, overrides `ticks` ticklabels : True, False, or list-like (default: True) If True, keeps default axis tick labels. If False, removes axis tick labels. If a list, sets custom axis tick labels {x,y,z}ticklabels : True, False, or list-like (default: None) If set, overrides `ticklabels` label_prefix : str or None (default: None) Prefix for all axis labels. Axes will be labelled `label_prefix`1, `label_prefix`2, etc. Can be overriden by setting `xlabel`, `ylabel`, and `zlabel`. {x,y,z}label : str, None or False (default : None) Axis labels. Overrides the automatic label given by label_prefix. If None and label_prefix is None, no label is set unless the data is a pandas Series, in which case the series name is used. Override this behavior with `{x,y,z}label=False` title : str or None (default: None) axis title. If None, no title is set. fontsize : float or None (default: None) Base font size. legend_title : str (default: None) title for the colorbar of legend legend_loc : int or string or pair of floats, default: 'best' Matplotlib legend location. Only used for discrete data. See <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html> for details. legend_anchor : `BboxBase`, 2-tuple, or 4-tuple Box that is used to position the legend in conjunction with loc. See <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html> for details. legend_ncol : `int` or `None`, optimal (default: None) Number of columns to show in the legend. If None, defaults to a maximum of entries per column. vmin, vmax : float, optional (default: None) Range of values to use as the range for the colormap. Only used if data is continuous elev : int, optional (default: None) Elevation angle of viewpoint from horizontal for 3D plots, in degrees azim : int, optional (default: None) Azimuth angle in x-y plane of viewpoint for 3D plots, in degrees filename : str or None (default: None) file to which the output is saved dpi : int or None, optional (default: None) The resolution in dots per inch. If None it will default to the value savefig.dpi in the matplotlibrc file. If 'figure' it will set the dpi to be the value of the figure. Only used if filename is not None. **plot_kwargs : keyword arguments Extra arguments passed to `matplotlib.pyplot.scatter`. Returns ------- ax : `matplotlib.Axes` axis on which plot was drawn Examples -------- >>> import scprep >>> import numpy as np >>> import matplotlib.pyplot as plt >>> data = np.random.normal(0, 1, [200, 3]) >>> # Continuous color vector >>> colors = data[:, 0] >>> scprep.plot.scatter(x=data[:, 0], y=data[:, 1], c=colors) >>> # Discrete color vector with custom colormap >>> colors = np.random.choice(['a','b'], data.shape[0], replace=True) >>> data[colors == 'a'] += 5 >>> scprep.plot.scatter(x=data[:, 0], y=data[:, 1], z=data[:, 2], ... c=colors, cmap={'a' : [1,0,0,1], 'b' : 'xkcd:sky blue'}) """ with temp_fontsize(fontsize): params = _ScatterParams( x, y, z, c=c, mask=mask, discrete=discrete, cmap=cmap, cmap_scale=cmap_scale, vmin=vmin, vmax=vmax, s=s, legend=legend, colorbar=colorbar, xlabel=xlabel, ylabel=ylabel, zlabel=zlabel, label_prefix=label_prefix, shuffle=shuffle, ) fig, ax, show_fig = _get_figure(ax, figsize, subplot_kw=params.subplot_kw) # plot! sc = ax.scatter( *(params.data), c=params.c, cmap=params.cmap, norm=params.norm, s=params.s, vmin=params.vmin, vmax=params.vmax, **plot_kwargs, ) # label axes label_axis( ax.xaxis, _with_default(xticks, ticks), _with_default(xticklabels, ticklabels), params.xlabel, ) label_axis( ax.yaxis, _with_default(yticks, ticks), _with_default(yticklabels, ticklabels), params.ylabel, ) if z is not None: label_axis( ax.zaxis, _with_default(zticks, ticks), _with_default(zticklabels, ticklabels), params.zlabel, ) if title is not None: ax.set_title(title, fontsize=parse_fontsize(None, "xx-large")) # generate legend if params.legend: if params.discrete: generate_legend( { params.labels[i]: sc.cmap(sc.norm(i)) for i in range(len(params.labels)) }, ax=ax, loc=legend_loc, bbox_to_anchor=legend_anchor, title=legend_title, ncol=legend_ncol, ) else: generate_colorbar( params.cmap, ax=ax, vmin=params.vmin, vmax=params.vmax, title=legend_title, extend=params.extend, scale=sc.norm, ) # set viewpoint if z is not None: ax.view_init(elev=elev, azim=azim) # save and show if show_fig: show(fig) if filename is not None: fig.savefig(filename, dpi=dpi) return ax @utils._with_pkg(pkg="matplotlib", min_version=3) def scatter2d( data, c=None, cmap=None, cmap_scale="linear", s=None, mask=None, discrete=None, ax=None, legend=None, colorbar=None, shuffle=True, figsize=None, ticks=True, xticks=None, yticks=None, ticklabels=True, xticklabels=None, yticklabels=None, label_prefix=None, xlabel=None, ylabel=None, title=None, fontsize=None, legend_title=None, legend_loc="best", legend_anchor=None, legend_ncol=None, filename=None, dpi=None, **plot_kwargs, ): """Create a 2D scatter plot. Builds upon `matplotlib.pyplot.scatter` with nice defaults and handles categorical colors / legends better. Parameters ---------- data : array-like, shape=[n_samples, n_features] Input data. Only the first two components will be used. c : list-like or None, optional (default: None) Color vector. Can be a single color value (RGB, RGBA, or named matplotlib colors), an array of these of length n_samples, or a list of discrete or continuous values of any data type. If `c` is not a single or list of matplotlib colors, the values in `c` will be used to populate the legend / colorbar with colors from `cmap` cmap : `matplotlib` colormap, str, dict, list or None, optional (default: None) matplotlib colormap. If None, uses `tab20` for discrete data and `inferno` for continuous data. If a list, expects one color for every unique value in `c`, otherwise interpolates between given colors for continuous data. If a dictionary, expects one key for every unique value in `c`, where values are valid matplotlib colors (hsv, rbg, rgba, or named colors) cmap_scale : {'linear', 'log', 'symlog', 'sqrt'} or `matplotlib.colors.Normalize`, optional (default: 'linear') Colormap normalization scale. For advanced use, see <https://matplotlib.org/users/colormapnorms.html> s : float, optional (default: None) Point size. If `None`, set to 200 / sqrt(n_samples) mask : list-like, optional (default: None) boolean mask to hide data points discrete : bool or None, optional (default: None) If True, the legend is categorical. If False, the legend is a colorbar. If None, discreteness is detected automatically. Data containing non-numeric `c` is always discrete, and numeric data with 20 or less unique values is discrete. ax : `matplotlib.Axes` or None, optional (default: None) axis on which to plot. If None, an axis is created legend : bool, optional (default: None) States whether or not to create a legend. If data is continuous, the legend is a colorbar. If `None`, a legend is created where possible. colorbar : bool, optional (default: None) Synonym for `legend` shuffle : bool, optional (default: True) If True. shuffles the order of points on the plot. figsize : tuple, optional (default: None) Tuple of floats for creation of new `matplotlib` figure. Only used if `ax` is None. ticks : True, False, or list-like (default: True) If True, keeps default axis ticks. If False, removes axis ticks. If a list, sets custom axis ticks {x,y}ticks : True, False, or list-like (default: None) If set, overrides `ticks` ticklabels : True, False, or list-like (default: True) If True, keeps default axis tick labels. If False, removes axis tick labels. If a list, sets custom axis tick labels {x,y}ticklabels : True, False, or list-like (default: None) If set, overrides `ticklabels` label_prefix : str or None (default: None) Prefix for all axis labels. Axes will be labelled `label_prefix`1, `label_prefix`2, etc. Can be overriden by setting `xlabel`, `ylabel`, and `zlabel`. {x,y}label : str or None (default : None) Axis labels. Overrides the automatic label given by label_prefix. If None and label_prefix is None, no label is set unless the data is a pandas Series, in which case the series name is used. Override this behavior with `{x,y,z}label=False` title : str or None (default: None) axis title. If None, no title is set. fontsize : float or None (default: None) Base font size. legend_title : str (default: None) title for the colorbar of legend legend_loc : int or string or pair of floats, default: 'best' Matplotlib legend location. Only used for discrete data. See <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html> for details. legend_anchor : `BboxBase`, 2-tuple, or 4-tuple Box that is used to position the legend in conjunction with loc. See <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html> for details. legend_ncol : `int` or `None`, optimal (default: None) Number of columns to show in the legend. If None, defaults to a maximum of entries per column. vmin, vmax : float, optional (default: None) Range of values to use as the range for the colormap. Only used if data is continuous filename : str or None (default: None) file to which the output is saved dpi : int or None, optional (default: None) The resolution in dots per inch. If None it will default to the value savefig.dpi in the matplotlibrc file. If 'figure' it will set the dpi to be the value of the figure. Only used if filename is not None. **plot_kwargs : keyword arguments Extra arguments passed to `matplotlib.pyplot.scatter`. Returns ------- ax : `matplotlib.Axes` axis on which plot was drawn Examples -------- >>> import scprep >>> import numpy as np >>> import matplotlib.pyplot as plt >>> data = np.random.normal(0, 1, [200, 2]) >>> # Continuous color vector >>> colors = data[:, 0] >>> scprep.plot.scatter2d(data, c=colors) >>> # Discrete color vector with custom colormap >>> colors = np.random.choice(['a','b'], data.shape[0], replace=True) >>> data[colors == 'a'] += 10 >>> scprep.plot.scatter2d( data, c=colors, cmap={'a' : [1,0,0,1], 'b' : 'xkcd:sky blue'} ) """ if isinstance(data, list): data = utils.toarray(data) if isinstance(data, np.ndarray): data =
np.atleast_2d(data)
numpy.atleast_2d
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from mindspore import ops, nn, ParameterTuple, context, set_seed from mindspore.train import DatasetHelper, connect_network_with_dataset import mindspore.dataset as ds context.set_context(mode=context.GRAPH_MODE, device_target="GPU") set_seed(2) def _exec_preprocess(network, is_train, dataset, dataset_sink_mode, epoch_num, sink_size): if dataset_sink_mode and not is_train: dataset.__loop_size__ = 1 dataset_helper = DatasetHelper( dataset, dataset_sink_mode, sink_size, epoch_num) if dataset_sink_mode: network = connect_network_with_dataset(network, dataset_helper) return dataset_helper, network def dynamic_shape_sink_process(network, dataset, is_train=True): dataset_sink_mode = True sink_size = 1 epoch_num = 1 dataset_helper, network = _exec_preprocess( network, is_train, dataset, dataset_sink_mode, epoch_num, sink_size) network.set_train(is_train) for inputs in dataset_helper: outputs = network(*inputs) return outputs def fixed_shape_process(network, dataset, is_train=True): network.set_train(is_train) for inputs in dataset.create_tuple_iterator(): outputs = network(*inputs) return outputs def dataset_generator(data_list): for data in data_list: yield data def get_columns(tensor_num): columns = [] for i in range(tensor_num): columns.append("data" + str(i)) return columns def compare(output, expect): if isinstance(output, (tuple, list)): assert isinstance(expect, (tuple, list)) for output_, expect_ in zip(output, expect): if not compare(output_, expect_): return False else: if not np.allclose(output.asnumpy(), expect.asnumpy(), rtol=1.0e-4, atol=1.0e-4): return False return True class GradNetWrtX(nn.Cell): def __init__(self, net): super(GradNetWrtX, self).__init__() self.net = net self.grad_op = ops.GradOperation( get_all=True, get_by_list=True, sens_param=True) self.params = ParameterTuple(net.trainable_params()) def construct(self, *inputs): gradient_function = self.grad_op(self.net, self.params) return gradient_function(*inputs) class ConcatNet(nn.Cell): def __init__(self, axis): super(ConcatNet, self).__init__() self.op = ops.Concat(axis) def construct(self, x1, x2): return self.op((x1, x2)) def dynamic_concat_run(is_grad): axis = 1 dtype = np.float32 data_list = [] for i in [2, 64]: data = [] data.append(np.random.rand(i, 16).astype(dtype)) data.append(np.random.rand(i, 32).astype(dtype)) if is_grad: data.append(np.random.rand(i, 48).astype(dtype)) data_list.append(tuple(data)) column_names = get_columns(len(data_list[0])) dataset = ds.GeneratorDataset(data_list, column_names, shuffle=False) dynamic_columns = {column_names[0]: [ None, 16], column_names[1]: [None, 32]} if is_grad: dynamic_columns[column_names[-1]] = [None, 48] dataset.set_dynamic_columns(columns=dynamic_columns) net = ConcatNet(axis) if is_grad: net = GradNetWrtX(net) output = dynamic_shape_sink_process(net, dataset) output_cmp = fixed_shape_process(net, dataset) assert compare(output, output_cmp) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_concat_forward(): """ Feature: Test Concat. Description: The shape of inputs is dynamic. Expectation: Assert that results are consistent with fixed shape. """ dynamic_concat_run(False) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_concat_backward(): """ Feature: Test backward of Concat. Description: The shape of inputs is dynamic. Expectation: Assert that results are consistent with fixed shape. """ dynamic_concat_run(True) class BatchNormNet(nn.Cell): def __init__(self, c): super(BatchNormNet, self).__init__() self.bn = nn.BatchNorm1d(c) def construct(self, input_data): x = self.bn(input_data) return x @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_bachnorm(): """ Feature: Test BatchNorm and its backward. Description: The shape of inputs is dynamic. Expectation: Assert that results are consistent with fixed shape. """ c = 256 dtype = np.float32 data_list = [] for i in [2, 64]: data = [] data.append(
np.random.rand(i, c)
numpy.random.rand
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te from tvm import autotvm from tvm import topi import tvm.topi.testing import numpy as np from tvm.topi.util import get_const_tuple from tvm.topi.nn.util import get_pad_tuple from tvm.contrib.pickle_memoize import memoize import tvm.testing _depthwise_conv2d_nchw_implement = { "generic": [(topi.nn.depthwise_conv2d_nchw, topi.generic.schedule_depthwise_conv2d_nchw)], "arm_cpu": [ (topi.arm_cpu.depthwise_conv2d_nchw, topi.arm_cpu.schedule_depthwise_conv2d_nchw), ( topi.arm_cpu.depthwise_conv2d_nchw_spatial_pack, topi.arm_cpu.schedule_depthwise_conv2d_nchw_spatial_pack, ), ], "gpu": [(topi.cuda.depthwise_conv2d_nchw, topi.cuda.schedule_depthwise_conv2d_nchw)], "mali": [(topi.mali.depthwise_conv2d_nchw, topi.mali.schedule_depthwise_conv2d_nchw)], "bifrost": [(topi.nn.depthwise_conv2d_nchw, topi.bifrost.schedule_depthwise_conv2d_nchw)], "intel_graphics": [ ( topi.intel_graphics.depthwise_conv2d_nchw, topi.intel_graphics.schedule_depthwise_conv2d_nchw, ) ], } _depthwise_conv2d_nhwc_implement = { "generic": (topi.nn.depthwise_conv2d_nhwc, topi.generic.schedule_depthwise_conv2d_nhwc), "arm_cpu": ( topi.arm_cpu.compute_depthwise_conv2d_nhwc, topi.arm_cpu.schedule_depthwise_conv2d_nhwc, ), "gpu": (topi.nn.depthwise_conv2d_nhwc, topi.cuda.schedule_depthwise_conv2d_nhwc), } def depthwise_conv2d_with_workload_nchw( batch, in_channel, in_height, channel_multiplier, filter_height, stride, padding, dilation=1 ): in_width = in_height filter_channel = in_channel filter_width = filter_height stride_h = stride_w = stride if dilation == 1: # here we transform the padding argument from 'str' to 'tuple' , # because we need this to match the "workload" tuple to the records in TopHub pad_h, pad_w, _, _ = get_pad_tuple(padding, (filter_height, filter_width)) padding_args = (pad_h, pad_w) else: padding_args = padding # placeholder Input = te.placeholder((batch, in_channel, in_height, in_width), name="Input") Filter = te.placeholder( (filter_channel, channel_multiplier, filter_height, filter_width), name="Filter" ) Scale = te.placeholder((in_channel * channel_multiplier,), name="Scale") Shift = te.placeholder((in_channel * channel_multiplier,), name="Shift") dtype = "float32" def check_device(device, ctx): print("Running on target: %s" % device) impl_list = tvm.topi.testing.dispatch(device, _depthwise_conv2d_nchw_implement)[:] if device == "llvm" and channel_multiplier == 1 and dilation == 1: impl_list.append( (topi.x86.depthwise_conv2d_nchw, topi.x86.schedule_depthwise_conv2d_nchw) ) for fcompute, fschedule in impl_list: with tvm.target.Target(device): # declare DepthwiseConv2d = fcompute( Input, Filter, (stride_h, stride_w), padding_args, dilation, dtype ) ScaleShift = topi.nn.scale_shift_nchw(DepthwiseConv2d, Scale, Shift) Relu = topi.nn.relu(ScaleShift) # schedule s1 = fschedule(DepthwiseConv2d) s2 = fschedule(ScaleShift) s3 = fschedule(Relu) # build the kernels f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device) f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift], device) f3 = tvm.build(s3, [Input, Filter, Scale, Shift, Relu], device) # Prepare pod type for test data closure input_shape = get_const_tuple(Input.shape) filter_shape = get_const_tuple(Filter.shape) scale_shape = get_const_tuple(Scale.shape) shift_shape = get_const_tuple(Shift.shape) scale_shift_shape = get_const_tuple(ScaleShift.shape) # Use memoize, pickle the test data for next time use. @memoize("topi.tests.test_topi_depthwise_conv2d.nchw") def get_ref_data(): input_np = np.random.uniform(size=input_shape).astype(dtype) filter_np = np.random.uniform(size=filter_shape).astype(dtype) dilated_filter_np = tvm.topi.testing.dilate_python( filter_np, (1, 1, dilation, dilation) ) scale_np = np.random.uniform(size=scale_shape).astype(dtype) shift_np = np.random.uniform(size=shift_shape).astype(dtype) # correctness with scipy depthwise_conv2d_scipy = tvm.topi.testing.depthwise_conv2d_python_nchw( input_np, dilated_filter_np, stride, padding ) scale_shift_scipy = np.zeros(shape=scale_shift_shape) for c in range(in_channel * channel_multiplier): scale_shift_scipy[:, c, :, :] = ( depthwise_conv2d_scipy[:, c, :, :] * scale_np[c] + shift_np[c] ) relu_scipy = np.maximum(scale_shift_scipy, 0) return ( input_np, filter_np, scale_np, shift_np, depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy, ) # Get the test data ( input_np, filter_np, scale_np, shift_np, depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy, ) = get_ref_data() input_tvm = tvm.nd.array(input_np, ctx) filter_tvm = tvm.nd.array(filter_np, ctx) scale_tvm = tvm.nd.array(scale_np, ctx) shift_tvm = tvm.nd.array(shift_np, ctx) depthwise_conv2d_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape), dtype=DepthwiseConv2d.dtype), ctx, ) scale_shift_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(ScaleShift.shape), dtype=ScaleShift.dtype), ctx ) relu_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype), ctx ) # launch kernel 1 (depthwise_conv2d) timer_1 = f1.time_evaluator(f1.entry_name, ctx, number=1) tcost_1 = timer_1(input_tvm, filter_tvm, depthwise_conv2d_tvm).mean # launch kernel 2 (depthwise_conv2d + scale_shift) timer_2 = f2.time_evaluator(f2.entry_name, ctx, number=1) tcost_2 = timer_2(input_tvm, filter_tvm, scale_tvm, shift_tvm, scale_shift_tvm).mean # launch kernel 3 (depthwise_conv2d + scale_shift + relu) timer_3 = f3.time_evaluator(f3.entry_name, ctx, number=1) tcost_3 = timer_3(input_tvm, filter_tvm, scale_tvm, shift_tvm, relu_tvm).mean tvm.testing.assert_allclose( depthwise_conv2d_tvm.asnumpy(), depthwise_conv2d_scipy, rtol=1e-5 ) tvm.testing.assert_allclose(scale_shift_tvm.asnumpy(), scale_shift_scipy, rtol=1e-5) tvm.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5) for device, ctx in tvm.testing.enabled_targets(): with autotvm.tophub.context(device): # load tophub pre-tuned parameters check_device(device, ctx) def depthwise_conv2d_with_workload_nhwc( batch, in_channel, in_height, channel_multiplier, filter_height, stride_h, padding, dilation=1 ): in_width = in_height filter_channel = in_channel filter_width = filter_height stride_w = stride_h if dilation == 1: # here we transform the padding argument from 'str' to 'tuple' , # because we need this to match the "workload" tuple to the records in TopHub pad_h, pad_w, _, _ = get_pad_tuple(padding, (filter_height, filter_width)) padding_args = (pad_h, pad_w) else: padding_args = padding # placeholder Input = te.placeholder((batch, in_height, in_width, in_channel), name="Input") Filter = te.placeholder( (filter_height, filter_width, filter_channel, channel_multiplier), name="Filter" ) Scale = te.placeholder((in_channel * channel_multiplier,), name="Scale") Shift = te.placeholder((in_channel * channel_multiplier,), name="Shift") dtype = "float32" def check_device(device, ctx): print("Running on target: %s" % device) fcompute, fschedule = tvm.topi.testing.dispatch(device, _depthwise_conv2d_nhwc_implement) with tvm.target.Target(device): # declare DepthwiseConv2d = fcompute( Input, Filter, (stride_h, stride_w), padding_args, dilation, dtype ) ScaleShift = topi.nn.scale_shift_nhwc(DepthwiseConv2d, Scale, Shift) Relu = topi.nn.relu(ScaleShift) # schedule s1 = fschedule(DepthwiseConv2d) s2 = fschedule(ScaleShift) s3 = fschedule(Relu) # build the kernels f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device) f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift], device) f3 = tvm.build(s3, [Input, Filter, Scale, Shift, Relu], device) # Prepare pod type for test data closure input_shape = get_const_tuple(Input.shape) filter_shape = get_const_tuple(Filter.shape) scale_shape = get_const_tuple(Scale.shape) shift_shape = get_const_tuple(Shift.shape) scale_shift_shape = get_const_tuple(ScaleShift.shape) # Use memoize, pickle the test data for next time use. @memoize("topi.tests.test_topi_depthwise_conv2d.nhwc.v2") def get_ref_data(): input_np = np.random.uniform(size=input_shape).astype(dtype) filter_np = np.random.uniform(size=filter_shape).astype(dtype) dilated_filter_np = tvm.topi.testing.dilate_python( filter_np, (dilation, dilation, 1, 1) ) scale_np = np.random.uniform(size=scale_shape).astype(dtype) shift_np = np.random.uniform(size=shift_shape).astype(dtype) # correctness with scipy depthwise_conv2d_scipy = tvm.topi.testing.depthwise_conv2d_python_nhwc( input_np, dilated_filter_np, stride=[stride_h, stride_w], padding=padding ) scale_shift_scipy = np.zeros(shape=scale_shift_shape) for c in range(in_channel * channel_multiplier): scale_shift_scipy[:, :, :, c] = ( depthwise_conv2d_scipy[:, :, :, c] * scale_np[c] + shift_np[c] ) relu_scipy = np.maximum(scale_shift_scipy, 0) return ( input_np, filter_np, scale_np, shift_np, depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy, ) # Get the test data ( input_np, filter_np, scale_np, shift_np, depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy, ) = get_ref_data() # prepare data input_tvm = tvm.nd.array(input_np, ctx) filter_tvm = tvm.nd.array(filter_np, ctx) scale_tvm = tvm.nd.array(scale_np, ctx) shift_tvm = tvm.nd.array(shift_np, ctx) depthwise_conv2d_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape), dtype=DepthwiseConv2d.dtype), ctx ) scale_shift_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(ScaleShift.shape), dtype=ScaleShift.dtype), ctx ) relu_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype), ctx) # launch kernel 1 (depthwise_conv2d) timer_1 = f1.time_evaluator(f1.entry_name, ctx, number=1) tcost_1 = timer_1(input_tvm, filter_tvm, depthwise_conv2d_tvm).mean # launch kernel 2 (depthwise_conv2d + scale_shift) timer_2 = f2.time_evaluator(f2.entry_name, ctx, number=1) tcost_2 = timer_2(input_tvm, filter_tvm, scale_tvm, shift_tvm, scale_shift_tvm).mean # launch kernel 3 (depthwise_conv2d + scale_shift + relu) timer_3 = f3.time_evaluator(f3.entry_name, ctx, number=1) tcost_3 = timer_3(input_tvm, filter_tvm, scale_tvm, shift_tvm, relu_tvm).mean relu_scipy = np.maximum(scale_shift_scipy, 0) tvm.testing.assert_allclose( depthwise_conv2d_tvm.asnumpy(), depthwise_conv2d_scipy, rtol=1e-5 ) tvm.testing.assert_allclose(scale_shift_tvm.asnumpy(), scale_shift_scipy, rtol=1e-5) tvm.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5) for device, ctx in tvm.testing.enabled_targets(): with autotvm.tophub.context(device): # load tophub pre-tuned parameters check_device(device, ctx) def _transform_data(data, bn): # NCHW -> NCHW[x]c batch_size, channel, height, width = data.shape data = np.reshape(data, (batch_size, channel // bn, bn, height, width)) data =
np.transpose(data, (0, 1, 3, 4, 2))
numpy.transpose
# coding: utf-8 import numpy as np from time import time import sys def find_primes(maxN): x1 = np.arange(maxN + 1, dtype=np.int64) b1 = np.zeros(np.shape(x1), dtype=np.bool) b1[x1 > 1] = True maxN2 = np.int64(maxN**(0.5) + 1) for n in range(2, maxN2 + 1): b1[2*n::n] = False return x1[b1] def prime_factors(N): pNums = find_primes(N//2 + 1) pExps = np.zeros(
np.shape(pNums)
numpy.shape
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest class TestFillConstantOp1(OpTest): def setUp(self): '''Test fill_constant op with specified value ''' self.op_type = "fill_constant" self.inputs = {} self.attrs = {'shape': [123, 92], 'value': 3.8} self.outputs = {'Out':
np.full((123, 92), 3.8)
numpy.full
'''This module provides the figures for the accompanying Jupyter notebook''' import matplotlib.pyplot as plt, numpy as np, pandas as pd from IPython.display import display from scipy.interpolate import lagrange, interp1d, Akima1DInterpolator, CubicSpline, PchipInterpolator, CubicHermiteSpline def figure1(): plt.figure(figsize=(6.0, 9.0)) xi = np.arange(0, 10, 2) + np.random.random(5) * 2.0 yi = 1.5 + np.cos(xi) - np.cos(np.pi * xi) / 4.0 x = np.linspace(0, 10, 51) y = 1.5 + np.cos(x) - np.cos(np.pi * x) / 4.0 plt.subplot(4, 2, (1, 4)) plt.axhline(0.0, color='k', lw=0.5) plt.plot(x, y, ':k', xi, yi, 'ok') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('original') plt.xticks([], []) for figure, kind in enumerate(('zero', 'linear', 'quadratic', 'cubic')): plt.subplot(4, 2, figure + 5) plt.axhline(0.0, color='k', lw=0.5) spline = interp1d(xi, yi, kind=kind) for i in range(4): x = np.linspace(xi[i], xi[i + 1], 51) plt.plot(x, spline(x), ':') if figure > 1: plt.xlabel('$x$') else: plt.xticks([], []) if figure % 2 == 0: plt.ylabel('$y$') plt.plot(xi, yi, 'ok') plt.title(kind + ' spline') return 'Types of splines' def figure2(): xi = np.array([-5.0, -4.0, -3.0, 3.0, 4.0, 5.0]) yi = np.array([1.0, 1.0, 2.0, -1.0, 1.0, 1.0]) spline = Akima1DInterpolator(xi, yi) x = np.linspace(-5.5, 5.5, 111) y = spline(x) plt.axhline(0., color='k', lw=.5); plt.axvline(0., color='k', lw=.5) plt.plot(x, y, '-') plt.plot(xi, yi, 'ok') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('Akima1DInterpolator') def figure3(): xi = np.array([-5.0, -4.0, -3.0, 3.0, 4.0, 5.0]) yi = np.array([1.0, 1.0, 2.0, -1.0, 1.0, 1.0]) x = np.linspace(-5.5, 5.5, 111) plt.axhline(0., color='k', lw=.5); plt.axvline(0., color='k', lw=.5) for bc_type in ('not-a-knot', 'periodic', 'clamped', 'natural'): spline = CubicSpline(xi, yi, bc_type=bc_type) y = spline(x) plt.plot(x, y, '-', label=bc_type) plt.plot(xi, yi, 'ok') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('CubicSpline') plt.legend() def figure4(): xi = np.array([-5.0, -4.0, -3.0, 3.0, 4.0, 5.0]) yi = np.array([1.0, 1.0, 2.0, -1.0, 1.0, 1.0]) spline = PchipInterpolator(xi, yi) x = np.linspace(-5.5, 5.5, 111) y = spline(x) plt.axhline(0., color='k', lw=.5); plt.axvline(0., color='k', lw=.5) plt.plot(x, y, '-') plt.plot(xi, yi, 'ok') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('PchipInterpolator') def figure5(): xi = np.array([-5.0, -4.0, -3.0, 3.0, 4.0, 5.0]) yi = np.array([1.0, 1.0, 2.0, -1.0, 1.0, 1.0]) dyi = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) spline = CubicHermiteSpline(xi, yi, dyi) x = np.linspace(-5.5, 5.5, 111) y = spline(x) plt.axhline(0., color='k', lw=.5); plt.axvline(0., color='k', lw=.5) plt.plot(x, y, '-') plt.plot(xi, yi, 'ok') plt.plot(xi[np.newaxis, :] + np.array([[-.25], [.25]]), yi[np.newaxis, :] + np.array([[-.25], [.25]]), '-k') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('CubicHermiteSpline') def figure6(): xi = np.arange(0, 10, 2) + np.random.random(5) * 2.0 yi = 1.5 + np.cos(xi) - np.cos(np.pi * xi) / 4.0 spline = interp1d(xi, yi, kind='nearest', fill_value='extrapolate') x = np.linspace(0, 10, 201) y = 1.5 + np.cos(x) - np.cos(np.pi * x) / 4.0 plt.axhline(0.0, color='k', lw=0.5) plt.plot(x, y, ':k') plt.plot(x, spline(x), '-') plt.plot(xi, yi, 'ok') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('Nearest-neighbor spline') def figure7(): from scipy.interpolate import interp1d xi, yi = np.array([0.0, 1.0, 2.0, 3.0]), np.array([0.0, 0.5, 2.0, 0.5]) spline = interp1d(xi, yi, kind='nearest', fill_value='extrapolate') x = np.linspace(-0.2, 3.2, 103) plt.axhline(0.0, color='k', lw=0.5); plt.axvline(0.0, color='k', lw=0.5) plt.plot(xi, yi, 'ok') plt.plot(x, spline(x), ':k') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('Example') plt.grid(True); plt.ylim(-3.0, 3.0) def figure8(): xi = np.arange(0, 10, 2) + np.random.random(5) * 2.0 yi = 1.5 + np.cos(xi) - np.cos(np.pi * xi) / 4.0 spline = interp1d(xi, yi, kind='linear', fill_value='extrapolate') x = np.linspace(0, 10, 201) y = 1.5 + np.cos(x) - np.cos(np.pi * x) / 4.0 plt.axhline(0.0, color='k', lw=0.5) plt.plot(x, y, ':k') plt.plot(x, spline(x), '-') plt.plot(xi, yi, 'ok') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('Linear spline') def figure9(): xi = np.array([3.0, 7.0]) yi = 1.5 + np.cos(xi) - np.cos(np.pi * xi) / 4.0 x = np.linspace(0, 10, 201) y = 1.5 + np.cos(x) - np.cos(np.pi * x) / 4.0 plt.axhline(0.0, color='k', lw=0.5) plt.plot(x, y, ':k') plt.plot([0.0, 10.0], [yi[0], yi[0]], '-', label='$q_i(x)$') plt.plot([0.0, 10.0], [yi[1], yi[1]], '-', label='$q_{i+1}(x)$') plt.plot(xi, yi, 'ok') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('Weighted averaging') plt.legend() def figure10(): xi = np.array([3.0, 7.0]) yi = 1.5 + np.cos(xi) - np.cos(np.pi * xi) / 4.0 x = np.linspace(0, 10, 201) y = 1.5 + np.cos(x) - np.cos(np.pi * x) / 4.0 plt.figure(figsize=(6.0, 6.0)) plt.subplot(3, 1, (1, 2)) plt.axhline(0.0, color='k', lw=0.5) plt.plot(x, y, ':k') plt.plot([0.0, 10.0], [yi[0], yi[0]], '-', label='$q_i(x)$') plt.plot([0.0, 10.0], [yi[1], yi[1]], '-', label='$q_{i+1}(x)$') plt.plot(xi, yi, 'ok') plt.ylabel('$y$') plt.title('Weighted averaging') plt.legend(); plt.xticks([], []) plt.subplot(3, 1, 3) plt.plot([0.0, xi[0], xi[1], 10.0], [1.0, 1.0, 0.0, 0.0], '-', label='$w_i(x)$') plt.plot([0.0, xi[0], xi[1], 10.0], [0.0, 0.0, 1.0, 1.0], '-', label='$1-w_i(x)$') plt.xlabel('$x$'); plt.ylabel('$w$') plt.legend() return 'Weighted averaging' def figure11(): xi = np.array([3.0, 7.0]) yi = 1.5 + np.cos(xi) - np.cos(np.pi * xi) / 4.0 spline = interp1d(xi, yi, kind='linear') x = np.linspace(0, 10, 201) y = 1.5 + np.cos(x) - np.cos(np.pi * x) / 4.0 plt.figure(figsize=(6.0, 6.0)) plt.subplot(3, 1, (1, 2)) plt.axhline(0.0, color='k', lw=0.5) plt.plot(x, y, ':k') plt.plot([0.0, 10.0], [yi[0], yi[0]], '-', label='$q_i(x)$') plt.plot([0.0, 10.0], [yi[1], yi[1]], '-', label='$q_{i+1}(x)$') plt.plot(xi, yi, '--', label='$p_i(x)$') plt.plot(xi, yi, 'ok') plt.ylabel('$y$') plt.title('Weighted averaging') plt.legend(); plt.xticks([], []) plt.subplot(3, 1, 3) plt.plot([0.0, xi[0], xi[1], 10.0], [1.0, 1.0, 0.0, 0.0], '-', label='$w_i(x)$') plt.plot([0.0, xi[0], xi[1], 10.0], [0.0, 0.0, 1.0, 1.0], '-', label='$w_{i+1}(x)$') plt.xlabel('$x$'); plt.ylabel('$w$') plt.legend() return 'Weighted averaging' def figure12(): xi, yi = np.array([0.0, 1.0, 2.0, 3.0]), np.array([0.0, 0.5, 2.0, 0.5]) spline = interp1d(xi, yi, kind='linear', fill_value='extrapolate') x = np.linspace(-0.2, 3.2, 103) plt.axhline(0.0, color='k', lw=0.5); plt.axvline(0.0, color='k', lw=0.5) plt.plot(xi, yi, 'ok') plt.plot(x, spline(x), ':k') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('Example') plt.grid(True); plt.ylim(-3.0, 3.0) def figure13(): xi = np.arange(1, 9, 2) + np.random.random(4) * 2.0 yi = 1.5 + np.cos(xi) - np.cos(np.pi * xi) / 4.0 x = np.linspace(0, 10, 201) y = 1.5 + np.cos(x) - np.cos(np.pi * x) / 4.0 p1 = lagrange(xi[:-1], yi[:-1])(x) p2 = lagrange(xi[1:], yi[1:])(x) plt.figure(figsize=(6.0, 6.0)) plt.subplot(3, 1, (1, 2)) plt.axhline(0.0, color='k', lw=0.5) plt.plot(x, y, ':k') plt.plot(x, p1, '-', label='$q_i(x)$') plt.plot(x, p2, '-', label='$q_{i+1}(x)$') plt.plot(xi, yi, 'ok') plt.xlabel('$x$'); plt.ylabel('$y$') plt.title('Weighted averaging') plt.legend(); plt.xticks([], []); plt.ylim((-0.3, 3.0)) plt.subplot(3, 1, 3) plt.plot([0.0, xi[1], xi[2], 10.0], [1.0, 1.0, 0.0, 0.0], '-', label='$w_i(x)$') plt.plot([0.0, xi[1], xi[2], 10.0], [0.0, 0.0, 1.0, 1.0], '-', label='$1-w_i(x)$') plt.xlabel('$x$'); plt.ylabel('$w$') plt.legend() return 'Weighted averaging' def figure14(): xi = np.arange(1, 9, 2) + np.random.random(4) * 2.0 yi = 1.5 + np.cos(xi) - np.cos(np.pi * xi) / 4.0 x =
np.linspace(0, 10, 201)
numpy.linspace
# -*- coding: utf-8 -*- # # Authors: Swolf <<EMAIL>> # Date: 2021/9/18 # License: MIT License """ SSCOR. """ from typing import Optional, List, Tuple from functools import partial import numpy as np from scipy.linalg import eigh, cholesky, inv from numpy import ndarray from sklearn.base import BaseEstimator, TransformerMixin from joblib import Parallel, delayed from .base import robust_pattern, FilterBank def sscor_kernel(X: ndarray, y: Optional[ndarray] = None, n_jobs: Optional[int] = None) -> Tuple[ndarray, ndarray, ndarray]: """The kernel part in SSCOR algorithm based on paper[1]_., [2]_. Modified from https://github.com/mnakanishi/TRCA-SSVEP/blob/master/src/train_sscor.m Parameters ---------- X : ndarray EEG data assuming removing mean, shape (n_trials, n_channels, n_samples) y : ndarray labels, shape (n_trials, ), not used here n_jobs: int, optional the number of jobs to use, default None Returns ------- W: ndarray filters, shape (n_channels, n_filters) D: ndarray eigenvalues in descending order A: ndarray spatial patterns, shape (n_channels, n_filters) References ---------- .. [1] <NAME>, <NAME>. Designing a sum of squared correlations framework for enhancing SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 2044-2050. .. [2] <NAME>, <NAME>. Correction to “Designing a Sum of Squared Correlations Framework for Enhancing SSVEP Based BCIs”[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(4): 1044-1045. """ X = np.copy(X) X = np.reshape(X, (-1, *X.shape[-2:])) X = X - np.mean(X, axis=-1, keepdims=True) mean_X = np.mean(X, axis=0) K1 = cholesky(mean_X@mean_X.T) # upper-triangular X=K.T@K iK1 = inv(K1) xC = [email protected](X, axes=(0, 2, 1)) C = [email protected](X, axes=(0, 2, 1)) def target(iK1, xCi, Ci): Ki = cholesky(Ci) Gi = iK1.T@xCi@inv(Ki) return Gi.T@Gi target = partial(target, iK1) G_T_G = np.sum(Parallel(n_jobs=n_jobs)(delayed(target)(xCi, Ci) for xCi, Ci in zip(xC, C)), axis=0) D, W = eigh(G_T_G) ind = np.argsort(D)[::-1] D, W = D[ind], W[:, ind] W = iK1@W A = robust_pattern(W, G_T_G, W.T@G_T_G@W) return W, D, A def sscor_feature(W: ndarray, X: ndarray, n_components: int = 1) -> ndarray: """Return sscor features. Modified from https://github.com/mnakanishi/TRCA-SSVEP/blob/master/src/test_sscor.m Parameters ---------- W : ndarray spatial filters from csp_kernel, shape (n_channels, n_filters) X : ndarray eeg data, shape (n_trials, n_channels, n_samples) n_components : int, optional the first k components to use, usually even number, by default 1 Returns ------- ndarray features of shape (n_trials, n_components, n_samples) Raises ------ ValueError n_components should less than half of the number of channels """ W, X = np.copy(W), np.copy(X) max_components = W.shape[1] if n_components > max_components: raise ValueError("n_components should less than the number of channels") X = np.reshape(X, (-1, *X.shape[-2:])) X = X - np.mean(X, axis=-1, keepdims=True) features =
np.matmul(W[:, :n_components].T, X)
numpy.matmul
# -*- coding: utf-8 -*- # Based on the work of <NAME>, 2009-2011 (<EMAIL>) # Department of Biomedical Engineering and Computational Science # Aalto University School of Science import copy import numpy as np import matplotlib as mpl from matplotlib.pyplot import text from matplotlib.patches import Rectangle from matplotlib.colors import ColorConverter class AlluvialDiagram: def __init__(self, ax, module_sizes_list, ribbon_size_matrix_list, module_label_matrix=None, module_colors_list=None, ribbon_bglim=20, threshold=0.0, rainbow=False): """ Plot an alluvial diagram to the ax given as parameter. Parameters ---------- ax : a matplotlib.axes object module_sizes_list : 2D list a 2D list, ``module_sizes_list[i][j]'' is the size of module j in time i ribbon_size_matrix_list : 3D list a 3D list, which describes how the groups change element with time, ``ribbon_size_matrix_list[i][j][k]``, should correspond to the flow from module_sizes_list[i][j] to module_sizes_list[i+1][k], each flow is a tuple, first element is the outflow and second element is the inflow module_label_matrix : 2D list, optional labels for each module module_colors_list : iterable, optional colors for the first (left) modules (defaulting to gray) ribbon_bglim : float, optional if ribbon contains less than this number of nodes (or other 'mass') it is drawn on the background to avoid visual clutter """ self.ax = ax self.ribbon_size_matrix_list = ribbon_size_matrix_list self.module_sizes_list = module_sizes_list self.module_label_matrix = module_label_matrix self.module_colors_list = module_colors_list self.ribbon_bglim = ribbon_bglim self.threshold = threshold self.rainbow = rainbow def setting_parameters(self,): self.ax.set_xlim([0, 2]) self.ax.set_ylim([-0.05, 1]) self.ax.set_xticks([]) self.ax.set_yticks([]) for loc, spine in self.ax.spines.items(): spine.set_color('none') # don't draw spine if self.module_colors_list is None: self.module_colors_list = [["gray"] * len(module_sizes) for module_sizes in self.module_sizes_list] assert len(self.module_sizes_list) == len(self.module_colors_list) for sizes, colors in zip(self.module_sizes_list, self.module_colors_list): assert len(sizes) == len(colors) max_n_modules = np.max([len(sizes) for sizes in self.module_sizes_list]) module_size_sum = np.max([np.sum(sizes) for sizes in self.module_sizes_list]) self.vertical_pad_btw_modules = 0.010 # percent of self.vertical_pad_up_and_below = 0.00 self.horizontal_pad_lr = 0.0 self.individual_node_size = (1 - 2 * self.vertical_pad_up_and_below - self.vertical_pad_btw_modules * (max_n_modules - 1)) / module_size_sum self.module_width = (1 - 2 * self.horizontal_pad_lr) / (len(self.ribbon_size_matrix_list) + 1) # should be in range [0,0.5-horizontal_pad_lr blank_width = (1 - 2 * self.horizontal_pad_lr) / len(self.ribbon_size_matrix_list) self.mw = self.module_width self.bw = blank_width # mwnsf: module width non shaded fraction #(to be able to differ from fully shaded to non-shaded) self.mwnsf = 0.1 # plot first modules def plot_blocks(self,): iteration_list = [ [module_sizes, module_colors] for module_sizes, module_colors in zip(self.module_sizes_list, self.module_colors_list) ] # for storing the start y coordinates self.module_y_starts_list = [[] for _ in range(len(self.module_sizes_list))] self.module_heights_list = [[] for _ in range(len(self.module_sizes_list))] # plot modules for i, iteration_data in enumerate(iteration_list): module_sizes, module_colors = iteration_data module_y_starts = self.module_y_starts_list[i] module_heights = self.module_heights_list[i] current_y = self.vertical_pad_up_and_below rect_x_start = self.horizontal_pad_lr + i * (self.mw + self.bw) for j in range(len(module_sizes)): module_size = module_sizes[j] color = module_colors[j] module_y_starts.append(current_y) module_height = self.individual_node_size * module_size module_heights.append(module_height) rect = Rectangle((rect_x_start, current_y), self.module_width, module_height, fc=color, ec="0.85") self.ax.add_patch(rect) if self.module_label_matrix is not None: text(rect_x_start, current_y, self.module_label_matrix[i][j], fontsize=7) current_y += module_height + self.vertical_pad_btw_modules def plot_ribbons(self,): module_y_ends_list = copy.deepcopy(self.module_y_starts_list) curvature_param = 0.6 # plot ribbons in order of biggest modules first? zorder = 0 for t in range(len(self.ribbon_size_matrix_list)): for i in range(len(self.ribbon_size_matrix_list[t])): for j in range(len(self.ribbon_size_matrix_list[t][i])): ribbon_size = self.ribbon_size_matrix_list[t][i][j] if (ribbon_size[0] == 0.0) | (ribbon_size[1] == 0.0): continue ystart1 = self.module_y_starts_list[t][i] yend1 = ystart1 + ribbon_size[0] * self.module_heights_list[t][i] self.module_y_starts_list[t][i] = yend1 ystart2 = module_y_ends_list[t + 1][j] yend2 = ystart2 + ribbon_size[1] * self.module_heights_list[t+1][j] module_y_ends_list[t + 1][j] = yend2 # the points needed for the bezier bezier_verts1 = [ (self.horizontal_pad_lr + t * (self.mw + self.bw) + self.module_width, ystart1), # P0 (self.horizontal_pad_lr + t * (self.mw + self.bw) + self.module_width + curvature_param * self.bw, ystart1), # P1 (self.horizontal_pad_lr + (t + 1) * (self.mw + self.bw) - curvature_param * self.bw, ystart2), # P2 (self.horizontal_pad_lr + (t + 1) * (self.mw + self.bw), ystart2), # P3 ] bezier_verts2 = [ (self.horizontal_pad_lr + t * (self.mw + self.bw) + self.module_width, yend1), # P0 (self.horizontal_pad_lr + t * (self.mw + self.bw) + self.module_width + curvature_param * self.bw, yend1), # P1 (self.horizontal_pad_lr + (t + 1) * (self.mw + self.bw) - curvature_param * self.bw, yend2), # P2 (self.horizontal_pad_lr + (t + 1) * (self.mw + self.bw), yend2), # P3 ] if max(ribbon_size) < self.ribbon_bglim: use_zorder = -10000 - j else: use_zorder = zorder if (ribbon_size[0] > self.threshold) & (ribbon_size[1] > self.threshold): _plot_ribbon_using_bezier(self.ax, use_zorder, bezier_verts1, bezier_verts2,) def _plot_ribbon_using_bezier(ax, zorder, points1, points2, color1="gray", color2="gray", lw=1): """ Draw ribbon for alluvial diagram (see plot_alluvial) Parameters ---------- ax : a matplotlib.axes object zorder : float the zorder for the ribbon points1 : iterable of float tuples the points, which determine the first line of the Bezier ribbon points2 : iterable of float tuples the points, which determine the second line of the Bezier ribbon color1 : a matplotlib compliant color definition color for the left side of the ribbon color1 : a matplotlib compliant color definition color for the right side of the ribbon lw : float linewidth for the bezier borders """ cc = ColorConverter() color1 = np.array(cc.to_rgba(color1)) color2 = np.array(cc.to_rgba(color2)) tRange = np.linspace(0, 1, 100) xpointsList = [] ypointsList = [] for points in [points1, points2]: points = np.array(points) p1 = points[0] p2 = points[1] p3 = points[2] p4 = points[3] allPoints = (p1[:, np.newaxis] * (1 - tRange) ** 3 + p2[:, np.newaxis] * (3 * (1 - tRange) ** 2 * tRange) + p3[:, np.newaxis] * (3 * (1 - tRange) * tRange ** 2) + p4[:, np.newaxis] * tRange ** 3) xpoints = allPoints[0] xpointsList.append(xpoints) ypoints = allPoints[1] ypointsList.append(ypoints) ax.plot(xpoints, ypoints, "0.85", lw=lw, zorder=zorder + 0.5) xpoints = xpointsList[0] if (mpl.colors.colorConverter.to_rgba_array(color1) == mpl.colors.colorConverter.to_rgba_array(color2)).all(): ax.fill_between(xpoints, ypointsList[0], ypointsList[1], lw=lw, facecolor=color1, edgecolor=color1, zorder=zorder) else: for i in range(len(tRange) - 1): #mean = (tRange[i]+tRange[i+1])*0.5 xnow =
np.mean(xpoints[i:i + 2])
numpy.mean
#!/usr/bin/python import rosbag import rospy import yaml import numpy as np from tf.transformations import euler_from_quaternion topic_type_dict = {} msg_types = ['nav_msgs/Odometry', 'sensor_msgs/Imu', 'geometry_msgs/PoseStamped', 'quadrotor_msgs/PositionCommand', 'quadrotor_msgs/TRPYCommand', 'quadrotor_msgs/SO3Command', 'sensor_msgs/Range', 'geometry_msgs/PoseWithCovarianceStamped'] var_types = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'acc_x', 'acc_y', 'acc_z', 'roll', 'pitch', 'yaw', 'ang_vel_x', 'ang_vel_y', 'ang_vel_z'] def read_bag(bagfile): global inbag inbag = rosbag.Bag(bagfile, 'r') return read_topic_type() def read_topic_type(): info_dict = yaml.load(inbag._get_yaml_info()) for x in info_dict['topics']: topic_type_dict[x['topic']] = x['type'] return topic_type_dict def read_msg(topics): data = {} if len(topics) > 0: for topic, msg, type in inbag.read_messages(): if topics.count(topic): if topic_type_dict[topic] == 'nav_msgs/Odometry': data = update_odometry(data, topic, msg) elif topic_type_dict[topic] == 'sensor_msgs/Imu': data = update_imu(data, topic, msg) elif topic_type_dict[topic] == 'geometry_msgs/PoseStamped': data = update_pose(data, topic, msg.pose, msg.header) elif topic_type_dict[topic] == 'quadrotor_msgs/PositionCommand': data = update_pose_cmd(data, topic, msg) elif topic_type_dict[topic] == 'geometry_msgs/PoseWithCovarianceStamped': data = update_pose(data, topic, msg.pose.pose, msg.header) return data def update_odometry(data, topic, msg): quat = [msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z, msg.pose.pose.orientation.w] [r, p, y] = euler_from_quaternion(quat) if topic in data: data[topic]['x'] = np.append(data[topic]['x'], msg.pose.pose.position.x) data[topic]['y'] = np.append(data[topic]['y'], msg.pose.pose.position.y) data[topic]['z'] = np.append(data[topic]['z'], msg.pose.pose.position.z) data[topic]['vx'] = np.append(data[topic]['vx'], msg.twist.twist.linear.x) data[topic]['vy'] = np.append(data[topic]['vy'], msg.twist.twist.linear.y) data[topic]['vz'] = np.append(data[topic]['vz'], msg.twist.twist.linear.z) data[topic]['roll'] = np.append(data[topic]['roll'], r) data[topic]['pitch'] = np.append(data[topic]['pitch'], p) data[topic]['yaw'] = np.append(data[topic]['yaw'], y) data[topic]['ang_vel_x'] = np.append(data[topic]['ang_vel_x'], msg.twist.twist.angular.x) data[topic]['ang_vel_y'] = np.append(data[topic]['ang_vel_y'], msg.twist.twist.angular.y) data[topic]['ang_vel_z'] = np.append(data[topic]['ang_vel_z'], msg.twist.twist.angular.z) data[topic]['t'] = np.append(data[topic]['t'], msg.header.stamp.to_sec()) else: data[topic] = {} data[topic]['x'] = np.array([msg.pose.pose.position.x]) data[topic]['y'] = np.array([msg.pose.pose.position.y]) data[topic]['z'] = np.array([msg.pose.pose.position.z]) data[topic]['vx'] = np.array([msg.twist.twist.linear.x]) data[topic]['vy'] = np.array([msg.twist.twist.linear.y]) data[topic]['vz'] = np.array([msg.twist.twist.linear.z]) data[topic]['ang_vel_x'] = np.array([msg.twist.twist.angular.x]) data[topic]['ang_vel_y'] = np.array([msg.twist.twist.angular.y]) data[topic]['ang_vel_z'] = np.array([msg.twist.twist.angular.z]) data[topic]['roll'] = np.array([r]) data[topic]['pitch'] = np.array([p]) data[topic]['yaw'] = np.array([y]) data[topic]['t'] = np.array([msg.header.stamp.to_sec()]) return data def update_pose(data, topic, msg, header): quat = [msg.orientation.x, msg.orientation.y, msg.orientation.z, msg.orientation.w] [r, p, y] = euler_from_quaternion(quat) if topic in data: data[topic]['x'] = np.append(data[topic]['x'], msg.position.x) data[topic]['y'] = np.append(data[topic]['y'], msg.position.y) data[topic]['z'] = np.append(data[topic]['z'], msg.position.z) data[topic]['roll'] = np.append(data[topic]['roll'], r) data[topic]['pitch'] = np.append(data[topic]['pitch'], p) data[topic]['yaw'] = np.append(data[topic]['yaw'], y) data[topic]['t'] = np.append(data[topic]['t'], header.stamp.to_sec()) else: data[topic] = {} data[topic]['x'] = np.array([msg.position.x]) data[topic]['y'] = np.array([msg.position.y]) data[topic]['z'] = np.array([msg.position.z]) data[topic]['roll'] = np.array([r]) data[topic]['pitch'] = np.array([p]) data[topic]['yaw'] = np.array([y]) data[topic]['t'] = np.array([header.stamp.to_sec()]) return data def update_imu(data, topic, msg): quat = [msg.orientation.x, msg.orientation.y, msg.orientation.z, msg.orientation.w] [r, p, y] = euler_from_quaternion(quat) if topic in data: data[topic]['acc_x'] = np.append(data[topic]['acc_x'], msg.linear_acceleration.x) data[topic]['acc_y'] = np.append(data[topic]['acc_y'], msg.linear_acceleration.y) data[topic]['acc_z'] = np.append(data[topic]['acc_z'], msg.linear_acceleration.z) data[topic]['ang_vel_x'] = np.append(data[topic]['ang_vel_x'], msg.angular_velocity.x) data[topic]['ang_vel_y'] = np.append(data[topic]['ang_vel_y'], msg.angular_velocity.y) data[topic]['ang_vel_z'] = np.append(data[topic]['ang_vel_z'], msg.angular_velocity.z) data[topic]['roll'] = np.append(data[topic]['roll'], r) data[topic]['pitch'] = np.append(data[topic]['pitch'], p) data[topic]['yaw'] = np.append(data[topic]['yaw'], y) data[topic]['t'] = np.append(data[topic]['t'], msg.header.stamp.to_sec()) else: data[topic] = {} data[topic]['acc_x'] = np.array([msg.linear_acceleration.x]) data[topic]['acc_y'] = np.array([msg.linear_acceleration.y]) data[topic]['acc_z'] = np.array([msg.linear_acceleration.z]) data[topic]['ang_vel_x'] = np.array([msg.angular_velocity.x]) data[topic]['ang_vel_y'] = np.array([msg.angular_velocity.y]) data[topic]['ang_vel_z'] = np.array([msg.angular_velocity.z]) data[topic]['roll'] = np.array([r]) data[topic]['pitch'] = np.array([p]) data[topic]['yaw'] = np.array([y]) data[topic]['t'] = np.array([msg.header.stamp.to_sec()]) return data def update_pose_cmd(data, topic, msg): if topic in data: data[topic]['x'] = np.append(data[topic]['x'], msg.position.x) data[topic]['y'] = np.append(data[topic]['y'], msg.position.y) data[topic]['z'] = np.append(data[topic]['z'], msg.position.z) data[topic]['vx'] = np.append(data[topic]['vx'], msg.velocity.x) data[topic]['vy'] = np.append(data[topic]['vy'], msg.velocity.y) data[topic]['vz'] = np.append(data[topic]['vz'], msg.velocity.z) data[topic]['acc_x'] = np.append(data[topic]['acc_x'], msg.acceleration.x) data[topic]['acc_y'] = np.append(data[topic]['acc_y'], msg.acceleration.y) data[topic]['acc_z'] = np.append(data[topic]['acc_z'], msg.acceleration.z) data[topic]['yaw'] = np.append(data[topic]['yaw'], msg.yaw) data[topic]['t'] = np.append(data[topic]['t'], msg.header.stamp.to_sec()) else: data[topic] = {} data[topic]['x'] = np.array([msg.position.x]) data[topic]['y'] = np.array([msg.position.y]) data[topic]['z'] = np.array([msg.position.z]) data[topic]['vx'] = np.array([msg.velocity.x]) data[topic]['vy'] = np.array([msg.velocity.y]) data[topic]['vz'] = np.array([msg.velocity.z]) data[topic]['acc_x'] = np.array([msg.acceleration.x]) data[topic]['acc_y'] = np.array([msg.acceleration.y]) data[topic]['acc_z'] = np.array([msg.acceleration.z]) data[topic]['yaw'] = np.array([msg.yaw]) data[topic]['t'] = np.array([msg.header.stamp.to_sec()]) return data def update_trpy_cmd(data, topic, msg): if topic in data: data[topic]['roll'] =
np.append(data[topic]['roll'], msg.roll)
numpy.append
"""Create constant and point scatterer models.""" import numpy as np import scipy.special import scipy.integrate from scipy.ndimage.interpolation import shift from smii.modeling.propagators.propagators import (Scalar1D, Scalar2D) from smii.modeling.wavelets.wavelets import ricker from smii.modeling.forward_model import forward_model from smii.inversion.fwi import costjac def direct_1d(x, x_s, dx, dt, c, f): """Use the 1D Green's function to determine the wavefield at a given location and time due to the given source. """ r = np.abs(x - x_s) t_shift = (r/c) / dt + 1 u = dx * dt * c / 2 * np.cumsum(shift(f, t_shift)) return u def direct_2d(x, t, x_s, dx, dt, c, f): """Use the 2D Green's function to determine the wavefield at a given location and time due to the given source. """ r = np.linalg.norm(x - x_s) t_max = np.maximum(0, int((t - r/c) / dt)) tmtp = t - np.arange(t_max) * dt summation = np.sum(f[:t_max] / np.sqrt(c**2 * tmtp**2 - r**2)) u = dx**2 * dt * c / 2 / np.pi * summation return u def direct_2d2(x, x_s, dx, dt, c, f): """Use the 2D Green's function to determine the wavefield at a given location and time due to the given source. """ r = np.linalg.norm(x - x_s) nt = len(f) def func(tp, t): return f[int(tp / dt)] / np.sqrt(c**2 * (t - tp)**2 - r**2) u = np.zeros_like(f) t_max = int(r/c / dt) for t_idx in range(t_max): t = t_idx * dt u[t_idx] = scipy.integrate.quad(func, 0, t, (t+dt))[0] u *= dx**2 * dt * c / 2 / np.pi return u def direct_2d_approx(x, x_s, dx, dt, c, f): """Same as direct_2d, but using an approximation to calculate the result for the whole time range of the source. """ r = np.linalg.norm(x - x_s) nt = len(f) w = np.fft.rfftfreq(nt, dt) fw = np.fft.rfft(f) G = 1j / 4 * scipy.special.hankel1(0, -2 * np.pi * w * r / c) G[0] = 0 s = G * fw * dx**2 u = np.fft.irfft(s, nt) return u def direct_3d(x, x_s, dx, dt, c, f): """Use the 3D Green's function to determine the wavefield at a given location and time due to the given source. """ r = np.linalg.norm(x - x_s) t_shift = (r/c) / dt + 1 u = dx**3 * dt / 4 / np.pi / r * shift(f, t_shift) return u def scattered_1d(x, x_s, x_p, dx, dt, c, dc, f): u_p = direct_1d(x_p, x_s, dx, dt, c, f) du_pdt2 = np.gradient(np.gradient(u_p)) / dt**2 u = 2 * dc / c**3 * direct_1d(x, x_p, dx, dt, c, du_pdt2) return u def scattered_2d(x, x_s, x_p, dx, dt, c, dc, f): u_p = direct_2d_approx(x_p, x_s, dx, dt, c, f) du_pdt2 = np.gradient(np.gradient(u_p)) / dt**2 u = 2 * dc / c**3 * direct_2d_approx(x, x_p, dx, dt, c, du_pdt2) return u def scattered_3d(x, x_s, x_p, dx, dt, c, dc, f): u_p = direct_3d(x_p, x_s, dx, dt, c, f) du_sdt2 = np.gradient(np.gradient(u_p)) / dt**2 u = 2 * dc / c**3 * direct_3d(x, x_p, dx, dt, c, du_pdt2) return u def grad_1d(nx, x_r, x_s, x_p, dx, dt, c, dc, f): d = -scattered_1d(x_r, x_s, x_p, dx, dt, c, dc, f)[::-1] grad = np.zeros(nx, np.float32) for x_idx in range(nx): x = x_idx*dx u_r = direct_1d(x, x_r, dx, dt, c, d)[::-1] u_0 = direct_1d(x, x_s, dx, dt, c, f) du_0dt2 = np.gradient(np.gradient(u_0)) / dt**2 grad[x_idx] = 2 * dt / c**3 * np.sum(u_r * du_0dt2) return grad def grad_2d(nx, x_r, x_s, x_p, dx, dt, c, dc, f): d = -scattered_2d(x_r, x_s, x_p, dx, dt, c, dc, f)[::-1] grad = np.zeros(nx, np.float32) for z_idx in range(nx[0]): for x_idx in range(nx[1]): x = np.array([z_idx*dx, x_idx*dx]) u_r = direct_2d_approx(x, x_r, dx, dt, c, d)[::-1] u_0 = direct_2d_approx(x, x_s, dx, dt, c, f) du_0dt2 = np.gradient(np.gradient(u_0)) / dt**2 grad[z_idx, x_idx] = 2 * dt / c**3 * np.sum(u_r * du_0dt2) return grad def grad_1d_fd(model_true, model_init, x_r, x_s, dx, dt, dc, f, propagator=None, prop_kwargs=None): x_r_idx, x_s_idx = (np.array([x_r, x_s]) / dx).astype(np.int) source, receiver_locations = _make_source_receiver(x_s_idx, x_r_idx, f) if propagator is None: propagator = Scalar1D if prop_kwargs is None: prop_kwargs = {} prop = propagator(model_true, dx, dt, source, **prop_kwargs) true_data, _ = forward_model(prop, receiver_locations) receiver = {} receiver['amplitude'] = true_data.receivers receiver['locations'] = receiver_locations dataset = [(source, receiver)] init_cost, fwi_grad = costjac(model_init, dataset, dx, dt, propagator, model_init.shape, compute_grad=True, prop_kwargs=prop_kwargs) nx = len(model_true) true_grad = np.zeros(nx, np.float32) for x_idx in range(nx): tmp_model = model_init.copy() tmp_model[x_idx] += dc new_cost, _ = costjac(tmp_model, dataset, dx, dt, propagator, model_init.shape, compute_grad=False, prop_kwargs=prop_kwargs) true_grad[x_idx] = (new_cost - init_cost) / dc return fwi_grad, true_grad def grad_2d_fd(model_true, model_init, x_r, x_s, dx, dt, dc, f, propagator=None, prop_kwargs=None): x_r_idx, x_s_idx = (np.array([x_r, x_s]) / dx).astype(np.int) source, receiver_locations = _make_source_receiver(x_s_idx, x_r_idx, f) if propagator is None: propagator = Scalar2D if prop_kwargs is None: prop_kwargs = {} prop = propagator(model_true, dx, dt, source, **prop_kwargs) true_data, _ = forward_model(propagator, receiver_locations) receiver = {} receiver['amplitude'] = true_data.receivers receiver['locations'] = receiver_locations dataset = [(source, receiver)] init_cost, fwi_grad = costjac(model_init, dataset, dx, dt, propagator, model_init.shape, compute_grad=True, prop_kwargs=prop_kwargs) true_grad = np.zeros_like(model_true) for z_idx in range(model_true.shape[0]): for x_idx in range(model_true.shape[1]): tmp_model = model_init.copy() tmp_model[z_idx, x_idx] += dc new_cost, _ = costjac(tmp_model, dataset, dx, dt, propagator, model_init.shape, compute_grad=False, prop_kwargs=prop_kwargs) true_grad[z_idx, x_idx] = (new_cost - init_cost) / dc return fwi_grad, true_grad def _make_source_receiver(x_s_idx, x_r_idx, f): source = {} source['amplitude'] = f.reshape(1, 1, -1) source['locations'] = x_s_idx.reshape(1, 1, -1) receiver_locations = x_r_idx.reshape(1, 1, -1) return source, receiver_locations def _set_coords(x, dx): x_m =
np.array(x)
numpy.array
import random import numpy as np from scipy.sparse import csc_matrix, lil_matrix def binary_search(array, x): """ Binary search :param array: array: Must be sorted :param x: value to search :return: position where it is found, -1 if not found """ lower = 0 upper = len(array) while lower < upper: # use < instead of <= mid = lower + (upper - lower) // 2 # // is the integer division val = array[mid] if x == val: return mid elif x > val: if lower == mid: break lower = mid elif x < val: upper = mid return -1 def slice(A: csc_matrix, rows, cols): """ CSC matrix sub-matrix view Only works if rows is sorted :param A: CSC matrix to get the view from :param rows: array of selected rows: must be sorted! to use the binary search :param cols: array of columns: should be sorted :return: """ n_rows = len(rows) n_cols = len(cols) n = 0 p = 0 new_val = np.empty(A.nnz) new_row_ind = np.empty(A.nnz) new_col_ptr = np.empty(n_cols + 1) new_col_ptr[p] = 0 for j in cols: # sliced columns for k in range(A.indptr[j], A.indptr[j + 1]): # columns from A found_idx = binary_search(rows, A.indices[k]) # look for the row index of A in the rows vector if found_idx > -1: new_val[n] = A.data[k] new_row_ind[n] = found_idx n += 1 p += 1 new_col_ptr[p] = n new_col_ptr[p] = n new_val = np.resize(new_val, n) new_row_ind = np.resize(new_row_ind, n) return csc_matrix((new_val, new_row_ind, new_col_ptr), shape=(n_rows, n_cols)) def csc_sub_matrix(Am, Annz, Ap, Ai, Ax, rows, cols): """ CSC matrix sub-matrix slice Works for sorted and unsorted versions of "rows", but "rows" cannot contain duplicates :param Am: number of rows :param Annz: number of non-zero entries :param Ap: Column pointers :param Ai: Row indices :param Ax: Data :param rows: array of selected rows: must be sorted! to use the binary search :param cols: array of columns: should be sorted :return: new_val, new_row_ind, new_col_ptr, n_rows, n_cols """ n_rows = len(rows) n_cols = len(cols) nnz = 0 p = 0 new_val = np.empty(Annz) new_row_ind = np.empty(Annz) new_col_ptr = np.empty(n_cols + 1) new_col_ptr[p] = 0 # generate lookup -> index lookup lookup = np.zeros(Am, dtype=int) lookup[rows] = np.arange(len(rows), dtype=int) for j in cols: # sliced columns for k in range(Ap[j], Ap[j + 1]): # columns from A # row index translation to the "rows" space i = Ai[k] ii = lookup[i] if rows[ii] == i: # entry found new_val[nnz] = Ax[k] new_row_ind[nnz] = ii nnz += 1 p += 1 new_col_ptr[p] = nnz new_col_ptr[p] = nnz new_val = np.resize(new_val, nnz) new_row_ind = np.resize(new_row_ind, nnz) return new_val, new_row_ind, new_col_ptr, n_rows, n_cols def slice2(A: csc_matrix, rows, cols): """ CSC matrix sub-matrix view Works for unsorted versions of rows, but rows cannot contain repetitions :param A: CSC matrix to get the view from :param rows: array of selected rows: must be sorted! to use the binary search :param cols: array of columns: should be sorted :return: """ new_val, new_row_ind, new_col_ptr, n_rows, n_cols = csc_sub_matrix(Am=A.shape[0], Annz=A.nnz, Ap=A.indptr, Ai=A.indices, Ax=A.data, rows=rows, cols=cols) return csc_matrix((new_val, new_row_ind, new_col_ptr), shape=(n_rows, n_cols)) def slice_r(A: csc_matrix, rows): """ CSC matrix sub-matrix view :param A: CSC matrix to get the view from :param rows: array of selected rows: must be sorted! to use the binary search :return: """ n_rows = len(rows) n_cols = A.shape[1] n = 0 p = 0 new_val = np.empty(A.nnz) new_row_ind = np.empty(A.nnz) new_col_ptr = np.empty(n_cols + 1) new_col_ptr[p] = 0 for j in range(n_cols): # sliced columns for k in range(A.indptr[j], A.indptr[j + 1]): # columns from A found_idx = binary_search(rows, A.indices[k]) # look for the row index of A in the rows vector if found_idx > -1: new_val[n] = A.data[k] new_row_ind[n] = found_idx n += 1 p += 1 new_col_ptr[p] = n new_col_ptr[p] = n new_val = np.resize(new_val, n) new_row_ind = np.resize(new_row_ind, n) return csc_matrix((new_val, new_row_ind, new_col_ptr), shape=(n_rows, n_cols)) def slice_c(A: csc_matrix, cols): """ CSC matrix sub-matrix view :param A: CSC matrix to get the view from :param cols: array of columns: should be sorted :return: """ n_rows = A.shape[0] n_cols = len(cols) n = 0 p = 0 new_val = np.empty(A.nnz) new_row_ind = np.empty(A.nnz) new_col_ptr = np.empty(n_cols + 1) new_col_ptr[p] = 0 for j in cols: # sliced columns st = A.indptr[j] nd = A.indptr[j + 1] for k in range(st, nd): # columns from A new_val[n] = A.data[k] new_row_ind[n] = A.indices[k] n += 1 p += 1 new_col_ptr[p] = n new_col_ptr[p] = n new_val = np.resize(new_val, n) new_row_ind = np.resize(new_row_ind, n) return csc_matrix((new_val, new_row_ind, new_col_ptr), shape=(n_rows, n_cols)) def _minor_index_fancy(A, idx): """ Rows of a CSC matrix :param A: :param idx: :return: """ """Index along the minor axis where idx is an array of ints. """ idx_dtype = A.indices.dtype idx = np.asarray(idx, dtype=idx_dtype).ravel() M, N = A._swap(A.shape) k = len(idx) new_shape = A._swap((M, k)) if k == 0: return A.__class__(new_shape) # pass 1: count idx entries and compute new indptr col_offsets = np.zeros(N, dtype=idx_dtype) res_indptr = np.empty_like(A.indptr) csr_column_index1(k, idx, M, N, A.indptr, A.indices, col_offsets, res_indptr) # pass 2: copy indices/data for selected idxs col_order =
np.argsort(idx)
numpy.argsort
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import torch.nn as nn import torch from torch.utils.data import DataLoader import torch.utils.data as data import pandas as pd import numpy as np import matplotlib.pyplot as plt class BusDataset(data.Dataset): def __init__(self, bus, train): if train: self.df = pd.read_csv(f'Data/proov_001/proov_001_merged_data.csv', sep=';') self.df2 = pd.read_csv(f'Data/proov_003/proov_003_merged_data.csv', sep=';') self.df = self.df.append(self.df2, ignore_index=True) else: self.df = pd.read_csv(f'Data/proov_002/proov_002_merged_data.csv', sep=';') self.df['timestamp_in'] = self.df['Unnamed: 0'] del self.df['Unnamed: 0'] self.df['timestamp_in'] = pd.to_datetime(self.df['timestamp_in'], format='%Y-%m-%d %H:%M:%S') self.df['timestamp_in'] = self.df.timestamp_in.values.astype(np.float64) // 10 ** 9 self.df['timestamp_exit'] = pd.to_datetime(self.df['timestamp_exit'], format='%Y-%m-%d %H:%M:%S') self.df['timestamp_exit'] = self.df.timestamp_exit.values.astype(np.float64) // 10 ** 9 self.df = self.process_data(self.df) self.cmf = pd.DataFrame() self.cmf['pos'] = self.df['cmf_pos'] self.cmf['neg'] = self.df['cmf_neg'] del self.df['cmf_pos'] del self.df['cmf_neg'] self.data_size = self.df.shape[0] def process_data(self, df): df.dropna(inplace=True) df = df.drop(['gps_point_entry', 'gps_point_exit', 'timestamp_in', 'timestamp_exit'], axis=1).astype(np.float) return df def __getitem__(self, item): inputs = torch.tensor(self.df.iloc[item].values).type(torch.FloatTensor) pos_targets = torch.tensor(self.cmf['pos'].iloc[item]).type(torch.FloatTensor) neg_targets = torch.tensor(self.cmf['neg'].iloc[item]).type(torch.FloatTensor) return inputs, pos_targets, neg_targets def __len__(self): return self.data_size @property def input_size(self): return self.df.shape[1] class LSTM(nn.Module): def __init__(self, batch_size, input_size, output_size, dropout, lstm_num_hidden=256, lstm_num_layers=2, device='cuda'): super(LSTM, self).__init__() # Initialization of LSTM self.lstm = nn.LSTM( input_size=input_size, hidden_size=lstm_num_hidden, num_layers=lstm_num_layers, bidirectional=False, batch_first=False, dropout=dropout ) self.linear = nn.Linear(lstm_num_hidden, output_size, bias=True) def forward(self, x, hc=None): """Forward pass of LSTM""" out, (h, c) = self.lstm(x, hc) out = self.linear(out) return out, (h, c) def make_plots(pos_pred, pos_train, neg_pred, neg_train, pos_test, neg_test): pos_targets, pos_out = pos_pred plt.subplot(2, 2, 1) plt.plot(pos_targets, color='r', label='Targets') plt.plot(pos_out, color='b', label='Predictions') plt.xlabel('Datapoint from 2017') plt.ylabel('CMF score') plt.title("Positive cmf targets vs the predicted positive cmf") plt.legend() pos_loss, pos_acc = pos_train plt.subplot(2, 2, 2) plt.plot(pos_loss, color='r', label='Loss') plt.plot(pos_acc, color='b', label='Accuracy') plt.xlabel('Iteration number') plt.ylabel('Loss and accuracy (in percentages) score') plt.title("Loss and accuracy of the trained positive model") plt.legend() neg_targets, neg_out = neg_pred plt.subplot(2, 2, 3) plt.plot(neg_targets, color='r', label='Targets') plt.plot(neg_out, color='b', label='Predictions') plt.xlabel('Datapoint from 2017') plt.ylabel('CMF score') plt.title("Negative cmf targets vs the predicted negative cmf") plt.legend() neg_loss, neg_acc = neg_train plt.subplot(2, 2, 4) plt.plot(neg_loss, color='r', label='Loss') plt.plot(neg_acc, color='b', label='Accuracy') plt.xlabel('Iteration number') plt.ylabel('Loss and accuracy (in percentages) score') plt.title("Loss and accuracy of the trained negative model") plt.legend() plt.show() plt.subplot(2,1,1) pred_pos, target_pos = pos_test pred_pos = np.array(pred_pos).ravel() target_pos = target_pos.numpy() plt.plot(target_pos, color='b', label='target') plt.plot(pred_pos, color='r', label='prediction') plt.xlabel('Datapoint from 2017') plt.ylabel('CMF score') plt.title("Prediction vs target test set of positive cmf") plt.legend() plt.subplot(2, 1, 2) pred_neg, target_neg = neg_test pred_neg = np.array(pred_neg).ravel() target_neg = target_neg.numpy() plt.plot(target_neg, color='b', label='target') plt.plot(pred_neg, color='r', label='prediction') plt.xlabel('Datapoint from 2017') plt.ylabel('CMF score') plt.title("Prediction vs target test set of negative cmf") plt.legend() plt.show() def accuracy(predictions, target, batch_size, tolerance): prediction = predictions.detach().numpy()[0].T target = target.numpy() diff_array = np.abs(prediction - target) return ((diff_array <= tolerance).sum()/batch_size) * 100 def get_baseline(pos_pred, neg_pred): df = pd.read_csv(f'Data/proov_002/proov_002_merged_data.csv', sep=';') df['timestamp_in'] = df['Unnamed: 0'] del df['Unnamed: 0'] df['timestamp_in'] = pd.to_datetime(df['timestamp_in'], format='%Y-%m-%d %H:%M:%S') df['timestamp_exit'] = pd.to_datetime(df['timestamp_exit'], format='%Y-%m-%d %H:%M:%S') df.dropna(inplace=True) cmf = pd.DataFrame() cmf['pos'] = df['cmf_pos'] cmf['neg'] = df['cmf_neg'] cmf['timestamp'] = df['timestamp_in'] cmf = cmf.set_index('timestamp') davg = cmf.resample('D').mean().fillna(method='ffill') davg['pos'] = davg['pos'].shift(1) davg['neg'] = davg['neg'].shift(1) davg = davg.fillna(method='bfill') cmf.index = cmf.index.normalize() total = [] for index, row in davg.iterrows(): if index in cmf.index: daily_values_pos = cmf.get_value(index, 'pos') daily_values_neg = cmf.get_value(index, 'neg') if not hasattr(daily_values_neg, "__iter__"): daily_values_neg = [daily_values_neg] daily_values_pos = [daily_values_pos] for i, _ in enumerate(daily_values_pos): total.append([daily_values_pos[i], daily_values_neg[i], row['pos'], row['neg']]) else: continue array = np.array(total) diffs_pos = np.abs(array[:, 0] - array[:, 2]) diffs_neg = np.abs(array[:, 1] - array[:, 3]) len_pos = len(
np.where(diffs_pos < 0.5)
numpy.where
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "<NAME>" at 08:04, 21/09/2020 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieu1995 % # -------------------------------------------------------------------------------------------------------% from numpy import zeros, array, log, abs, exp, sqrt, pi, round, sin, cos, arccos, remainder, arcsin, int, arctan, imag, log10 from scipy.optimize import fminbound from opfunu.cec.cec2020 import constant # Industrial Chemical Processes def p1(x): # Heat Exchanger Network Design (case 1) out = constant.benchmark_function(1) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] fx = 35 * x[0] ** 0.6 + 35 * x[1] ** 0.6 gx = 0 hx = zeros(h) hx[0] = 200 * x[0] * x[3] - x[2] hx[1] = 200 * x[1] * x[5] - x[4] hx[2] = x[2] - 1000 * (x[6] - 100) hx[3] = x[4] - 10000 * (300 - x[6]) hx[4] = x[2] - 10000 * (600 - x[7]) hx[5] = x[4] - 10000 * (900 - x[8]) hx[6] = x[3] * log(abs(x[7] - 100) + 1e-8) - x[3] * log((600 - x[6]) + 1e-8) - x[7] + x[6] + 500 hx[7] = x[5] * log(abs(x[8] - x[6]) + 1e-8) - x[5] * log(600) - x[8] + x[6] + 600 return fx, gx, hx def p2(x): # Heat Exchanger Network Design (case 1) out = constant.benchmark_function(2) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] fx = (x[0] / (120 * x[3])) ** 0.6 + (x[1] / (80 * x[4])) ** 0.6 + (x[2] / (40 * x[5])) * 0.6 gx = 0 hx = zeros(h) hx[0] = x[0] - 1e4 * (x[6] - 100) hx[1] = x[1] - 1e4 * (x[7] - x[6]) hx[2] = x[2] - 1e4 * (500 - x[7]) hx[3] = x[0] - 1e4 * (300 - x[8]) hx[4] = x[1] - 1e4 * (400 - x[9]) hx[5] = x[2] - 1e-4 * (600 - x[10]) hx[6] = x[3] * log(abs(x[8] - 100) + 1e-8) - x[3] * log(300 - x[6] + 1e-8) - x[8] - x[6] + 400 hx[7] = x[4] * log(abs(x[9] - x[6]) + 1e-8) - x[4] * log(abs(400 - x[7]) + 1e-8) - x[9] + x[6] - x[7] + 400 hx[8] = x[5] * log(abs(x[10] - x[7]) + 1e-8) - x[5] * log(100) - x[10] + x[7] + 100 return fx, gx, hx def p3(x): # Optimal Operation of Alkylation Unit out = constant.benchmark_function(3) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] fx = -1.715 * x[0] - 0.035 * x[0] * x[5] - 4.0565 * x[2] - 10.0 * x[1] + 0.063 * x[2] * x[4] hx = 0 gx = zeros(g) gx[0] = 0.0059553571 * x[5] ** 2 * x[0] + 0.88392857 * x[2] - 0.1175625 * x[5] * x[0] - x[0] gx[1] = 1.1088 * x[0] + 0.1303533 * x[0] * x[5] - 0.0066033 * x[0] * x[5] ** 2 - x[2] gx[2] = 6.66173269 * x[5] ** 2 + 172.39878 * x[4] - 56.596669 * x[3] - 191.20592 * x[5] - 10000 gx[3] = 1.08702 * x[5] + 0.32175 * x[3] - 0.03762 * x[5] ** 2 - x[4] + 56.85075 gx[4] = 0.006198 * x[6] * x[3] * x[2] + 2462.3121 * x[1] - 25.125634 * x[1] * x[3] - x[2] * x[3] gx[5] = 161.18996 * x[2] * x[3] + 5000.0 * x[1] * x[3] - 489510.0 * x[1] - x[2] * x[3] * x[6] gx[6] = 0.33 * x[6] - x[4] + 44.333333 gx[7] = 0.022556 * x[4] - 0.007595 * x[6] - 1.0 gx[8] = 0.00061 * x[2] - 0.0005 * x[0] - 1.0 gx[9] = 0.819672 * x[0] - x[2] + 0.819672 gx[10] = 24500.0 * x[1] - 250.0 * x[1] * x[3] - x[2] * x[3] gx[11] = 1020.4082 * x[3] * x[1] + 1.2244898 * x[2] * x[3] - 100000 * x[1] gx[12] = 6.25 * x[0] * x[5] + 6.25 * x[0] - 7.625 * x[2] - 100000 gx[13] = 1.22 * x[2] - x[5] * x[0] - x[0] + 1.0 return fx, gx, hx def p4(x): # Reactor Network Design (RND) out = constant.benchmark_function(4) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] hx = zeros(h) k1 = 0.09755988 k2 = 0.99 * k1 k3 = 0.0391908 k4 = 0.9 * k3 fx = -x[3] hx[0] = x[0] + k1 * x[1] * x[4] - 1 hx[1] = x[1] - x[0] + k2 * x[1] * x[5] hx[2] = x[2] + x[0] + k3 * x[2] * x[4] - 1 hx[3] = x[3] - x[2] + x[1] - x[0] + k4 * x[3] * x[5] gx = x[4] ** 0.5 + x[5] ** 0.5 - 4 return fx, gx, hx def p5(x): # Haverly's Pooling Problem out = constant.benchmark_function(5) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] fx = -(9 * x[0] + 15 * x[1] - 6 * x[2] - 16 * x[3] - 10 * (x[4] + x[5])) gx = zeros(g) hx = zeros(h) gx[0] = x[8] * x[6] + 2 * x[4] - 2.5 * x[0] gx[1] = x[8] * x[7] + 2 * x[5] - 1.5 * x[1] hx[0] = x[6] + x[7] - x[2] - x[3] hx[1] = x[0] - x[6] - x[4] hx[2] = x[1] - x[7] - x[5] hx[3] = x[8] * x[6] + x[8] * x[7] - 3 * x[2] - x[3] return fx, gx, hx def p6(x): # Blending-Pooling-Separation problem out = constant.benchmark_function(6) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] fx = 0.9979 + 0.00432 * x[4] + 0.01517 * x[12] gx = 0 hx = zeros(h) hx[0] = x[0] + x[1] + x[2] + x[3] - 300 hx[1] = x[5] - x[6] - x[7] hx[2] = x[8] - x[9] - x[10] - x[11] hx[3] = x[13] - x[14] - x[15] - x[16] hx[4] = x[17] - x[18] - x[19] hx[5] = x[4] * x[20] - x[5] * x[21] - x[8] * x[22] hx[6] = x[4] * x[23] - x[5] * x[24] - x[8] * x[25] hx[7] = x[4] * x[26] - x[5] * x[27] - x[8] * x[28] hx[8] = x[12] * x[29] - x[13] * x[30] - x[17] * x[31] hx[9] = x[12] * x[32] - x[13] * x[33] - x[17] * x[34] hx[10] = x[12] * x[35] - x[13] * x[36] - x[17] * x[37] hx[11] = 1 / 3 * x[0] + x[14] * x[30] - x[4] * x[20] hx[12] = 1 / 3 * x[0] + x[14] * x[33] - x[4] * x[23] hx[13] = 1 / 3 * x[0] + x[14] * x[36] - x[4] * x[26] hx[14] = 1 / 3 * x[1] + x[9] * x[22] - x[12] * x[29] hx[15] = 1 / 3 * x[1] + x[9] * x[25] - x[12] * x[32] hx[16] = 1 / 3 * x[1] + x[9] * x[28] - x[12] * x[35] hx[17] = 1 / 3 * x[2] + x[6] * x[21] + x[10] * x[22] + x[15] * x[30] + x[18] * x[31] - 30 hx[18] = 1 / 3 * x[2] + x[6] * x[24] + x[10] * x[25] + x[15] * x[33] + x[18] * x[34] - 50 hx[19] = 1 / 3 * x[2] + x[6] * x[27] + x[10] * x[28] + x[15] * x[36] + x[18] * x[37] - 30 hx[20] = x[20] + x[23] + x[26] - 1 hx[21] = x[21] + x[24] + x[27] - 1 hx[22] = x[22] + x[25] + x[28] - 1 hx[23] = x[29] + x[32] + x[35] - 1 hx[24] = x[30] + x[33] + x[36] - 1 hx[25] = x[31] + x[34] + x[37] - 1 hx[26] = x[24] hx[27] = x[27] hx[28] = x[22] hx[29] = x[36] hx[30] = x[31] hx[31] = x[34] return fx, gx, hx def p7(x): # Propane, Isobutane, n-Butane Nonsharp Separation out = constant.benchmark_function(7) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] c = array([[0.23947, 0.75835], [-0.0139904, -0.0661588], [0.0093514, 0.0338147], [0.0077308, 0.0373349], [-0.0005719, 0.0016371], [0.0042656, 0.0288996]]) fx = c[0, 0] + (c[1, 0] + c[2, 0] * x[23] + c[3, 0] * x[27] + c[4, 0] * x[32] + c[5, 0] * x[33]) * x[4] \ + c[0, 1] + (c[1, 1] + c[2, 1] * x[25] + c[3, 1] * x[30] + c[4, 1] * x[37] + c[5, 1] * x[38]) * x[12] gx = 0 hx = zeros(h) hx[0] = x[0] + x[1] + x[2] + x[3] - 300 hx[1] = x[5] - x[6] - x[7] hx[2] = x[8] - x[9] - x[10] - x[11] hx[3] = x[13] - x[14] - x[15] - x[16] hx[4] = x[17] - x[18] - x[19] hx[5] = x[5] * x[20] - x[23] * x[24] hx[6] = x[13] * x[21] - x[25] * x[26] hx[7] = x[8] * x[22] - x[27] * x[28] hx[8] = x[17] * x[29] - x[30] * x[31] hx[9] = x[24] - x[4] * x[32] hx[10] = x[28] - x[4] * x[33] hx[11] = x[34] - x[4] * x[35] hx[12] = x[36] - x[12] * x[37] hx[13] = x[26] - x[12] * x[38] hx[14] = x[31] - x[12] * x[39] hx[15] = x[24] - x[5] * x[20] - x[8] * x[40] hx[16] = x[28] - x[5] * x[41] - x[8] * x[22] hx[17] = x[34] - x[5] * x[42] - x[8] * x[43] hx[18] = x[36] - x[13] * x[44] - x[17] * x[45] hx[19] = x[26] - x[13] * x[21] - x[17] * x[46] hx[20] = x[31] - x[13] * x[47] - x[17] * x[29] hx[21] = 1 / 3 * x[0] + x[14] * x[44] - x[24] hx[22] = 1 / 3 * x[0] + x[14] * x[21] - x[28] hx[23] = 1 / 3 * x[0] + x[14] * x[47] - x[34] hx[24] = 1 / 3 * x[1] + x[9] * x[40] - x[36] hx[25] = 1 / 3 * x[1] + x[9] * x[22] - x[26] hx[26] = 1 / 3 * x[1] + x[9] * x[43] - x[31] hx[27] = x[32] + x[33] + x[35] - 1 hx[28] = x[20] + x[41] + x[42] - 1 hx[29] = x[40] + x[22] + x[43] - 1 hx[30] = x[37] + x[38] + x[39] - 1 hx[31] = x[44] + x[21] + x[47] - 1 hx[32] = x[45] + x[46] + x[29] - 1 hx[33] = x[42] hx[34] = x[45] hx[35] = 1 / 3 * x[2] + x[6] * x[20] + x[10] * x[40] + x[15] * x[44] + x[18] * x[45] - 30 hx[36] = 1 / 3 * x[2] + x[6] * x[41] + x[10] * x[22] + x[15] * x[21] + x[18] * x[46] - 50 hx[37] = 1 / 3 * x[2] + x[6] * x[42] + x[10] * x[43] + x[15] * x[47] + x[18] * x[29] - 30 return fx, gx, hx def p8(x): # Process synthesis problem out = constant.benchmark_function(8) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] x[1] = round(x[1]) fx = 2 * x[0] + x[1] hx = 0 gx = zeros(g) gx[0] = 1.25 - x[0] ** 2 - x[1] gx[1] = x[0] + x[1] - 1.6 return fx, gx, hx def p9(x): # Process synthesis and design problem out = constant.benchmark_function(9) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] x[2] = round(x[2]) fx = -x[2] + 2 * x[0] + x[1] hx = x[0] - 2 * exp(-x[1]) gx = -x[0] + x[1] + x[2] return fx, gx, hx def p10(x): # Process flow sheeting problem out = constant.benchmark_function(10) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] gx = zeros(g) x[2] = round(x[2]) fx = -0.7 * x[2] + 5 * (x[0] - 0.5) ** 2 + 0.8 gx[0] = -exp(x[0] - 0.2) - x[1] gx[1] = x[1] + 1.1 * x[2] + 1 gx[2] = x[0] - x[2] - 0.2 hx = 0 return fx, gx, hx def p11(x): # Two-reactor Problem out = constant.benchmark_function(11) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] x1 = x[0] x2 = x[1] v1 = x[2] v2 = x[3] y1 = round(x[4]) y2 = round(x[5]) x_ = x[6] z1 = 0.9 * (1 - exp(-0.5 * v1)) * x1 z2 = 0.8 * (1 - exp(-0.4 * v2)) * x2 fx = 7.5 * y1 + 5.5 * y2 + 7 * v1 + 6 * v2 + 5 * x_ hx = zeros(h) gx = zeros(g) hx[0] = y1 + y2 - 1 hx[1] = z1 + z2 - 10 hx[2] = x1 + x2 - x_ hx[3] = z1 * y1 + z2 * y2 - 10 gx[0] = v1 - 10 * y1 gx[1] = v2 - 10 * y2 gx[2] = x1 - 20 * y1 gx[3] = x2 - 20 * y2 return fx, gx, hx def p12(x): # Process synthesis problem out = constant.benchmark_function(12) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] x1 = x[0] x2 = x[1] x3 = x[2] y1 = round(x[3]) y2 = round(x[4]) y3 = round(x[5]) y4 = round(x[6]) fx = (y1 - 1) ** 2 + (y2 - 1) ** 2 + (y3 - 1) ** 2 - log(y4 + 1) + (x1 - 1) ** 22 + (x2 - 2) ** 2 + (x3 - 3) ** 2 gx = zeros(g) gx[0] = x1 + x2 + x3 + y1 + y2 + y3 - 5 gx[1] = y3 ** 2 + x1 ** 2 + x2 ** 2 + x3 ** 2 - 5.5 gx[2] = x1 + y1 - 1.2 gx[3] = x2 + y2 - 1.8 gx[4] = x3 + y3 - 2.5 gx[5] = x1 + y4 - 1.2 gx[6] = y2 ** 2 + x2 ** 2 - 1.64 gx[7] = y3 ** 2 + x3 ** 2 - 4.25 gx[8] = y2 ** 2 + x3 ** 2 - 4.64 hx = 0 return fx, gx, hx def p13(x): # Process design Problem out = constant.benchmark_function(13) D, g, h, xmin, xmax = out["D"], out["g"], out["h"], out["xmin"], out["xmax"] x1 = x[0] x2 = x[1] x3 = x[2] y1 = round(x[3]) y2 = round(x[4]) fx = -5.357854 * x1 ** 2 - 0.835689 * y1 * x3 - 37.29329 * y1 + 40792.141 a = [85.334407, 0.0056858, 0.0006262, 0.0022053, 80.51249, 0.0071317, 0.0029955, 0.0021813, 9.300961, 0.0047026, 0.0012547, 0.0019085] gx =
zeros(g)
numpy.zeros
# Copyright (c) Facebook, Inc. and its affiliates # Copyright (c) MTRF authors import collections import numpy as np import os from typing import Any, Dict, Optional, NewType, Sequence, Union, Tuple from pathlib import Path import pickle from r3l import PROJECT_PATH, RESET_STATES_PATH from r3l.r3l_envs.inhand_env.base import ObjectType from r3l.r3l_envs.inhand_env.reposition import SawyerDhandInHandObjectRepositionFixed from r3l.robot.default_configs import FLIPUP_SAWYER_ROBOT_CONFIG, ARM_QPOS_PALMDOWN, MOCAP_EULER_PALMUP, MOCAP_EULER_PALMDOWN from r3l.utils.circle_math import circle_distance from r3l.utils.quatmath import quat2euler, euler2quat, mat2quat class SawyerDhandInHandObjectFlipUpFixed(SawyerDhandInHandObjectRepositionFixed): DEFAULT_REWARD_KEYS_AND_WEIGHTS = { "sawyer_to_target_x_circle_distance_reward": 5.0, "sawyer_to_target_z_circle_distance_reward": 5.0, # NOTE: This xyz reward is needed to make sure the flip up policy # settles at a reasonable height "object_to_target_xyz_distance_reward": 2.0, "small_bonus": 1.0, "big_bonus": 1.0, "drop_penalty": 1.0, } def __init__( self, reward_keys_and_weights: dict = DEFAULT_REWARD_KEYS_AND_WEIGHTS, **kwargs ): if kwargs.get("object_type", None) == ObjectType.Valve3: reset_policy_dirs = [ # (Path(PROJECT_PATH) # / "r3l/r3l_agents/softlearning/SawyerDhandInHandValve3PickupFixed-v0/pickup_raised_valve") ] reset_state_pkl_path = None # TODO elif kwargs.get("object_type", None) in ( ObjectType.Dodecahedron, ObjectType.DodecahedronBasket, ObjectType.DodecahedronBulb): reset_policy_dirs = [( Path(PROJECT_PATH) / "r3l/r3l_agents/softlearning/SawyerDhandInHandDodecahedronPickupFixed-v0/pickup_trained_with_resets" )] reset_state_pkl_path = str(Path(RESET_STATES_PATH) / "dodecahedron/picked_up.pkl") else: print("Object type doesn't have a reset policy") reset_policy_dirs = [] reset_state_pkl_path = None env_params = dict( task_name="Flip Up", sawyer_config=FLIPUP_SAWYER_ROBOT_CONFIG, reward_keys_and_weights=reward_keys_and_weights, # Set a default init and target init_xyz_range_params={ "type": "DiscreteRange", "values": [
np.array([0.72, 0.15, 0.75])
numpy.array
#!/usr/bin/env python3 import numpy as np import math import matplotlib.pyplot as plt import matplotlib import warnings ### The following tool sorts the output spikes from the Spike simulator (1D arrays) into 2D .csv files suitable for analysis by the Russo algorithm ### #For details on the Russo algorithm, please see the publication "Cell assemblies at multiple time scales with arbitrary lag constellations", Russo and Durstewitz, 2017 #Spike is a simulator written in C++/CUDA for spiking neural networks, more information on which can be found here: https://sites.google.com/view/spike-simulator/home #This code assumes the user is analyzing neural networks wherein each layer is a 2D lattice, and multiple layers are present (see for example the network used in the paper #"The Emergence of Polychronization and Feature Binding in a Spiking Neural Network Model of the Primate Ventral Visual System", Eguchi et al, 2018) #The Russo algorithm requires a 2D array where rows represent neuron IDs, and each neurons nth spike is indicated by the column #Each array entry specifies the time (in seconds) at which the spike occurred; empty entries are required to be filled with a NaN identifier #As the Russo algorithm does not accept neurons that never spike (i.e. empty rows), the following code adds a single spike at a random time-point for such neurons; #This latter functionality can be removed with the add_Russo_random_spike parameter below #The user must provide (below) parameters that were used in generating the Spike neural network simulation #Specify the number of neurons in each excitatory layer and each inhibitory layer, the number of layers, layer of interest, and the number of stimuli #If using the 'binary network' architecture, _dim should specify the total size of each layer, and not the individual streams #max_plot_time determines how many ms of data should be plotted here #random_test_to_screen prints to screen additional tests that require visual inspection by the user #shuffle_Boolean randomly shuffles the neuron ids locations, so that their firing rates remain the same, but any fixed temporal relationships are broken params = {'extracted_layer' : 1, 'max_plot_time' : 0.4, 'excit_dim' : 5*5*2, 'number_of_presentations' : 50, 'duration_of_presentations' : 0.2, 'inhib_dim' : None, 'num_stimuli' : 2, 'add_Russo_random_spike' : True, 'manual_test_to_screen' : False, 'plot_Boolean' : True, 'save_output_Boolean' : True, 'shuffle_Boolean' : True} #Loop through each stimulus def main(params): test_suite(params) for jj in range(params['num_stimuli']): (spike_ids, spike_times) = load_spikes(jj) #NB that neurons IDs begin at 1 if params['shuffle_Boolean'] == True: spike_ids = shuffle_spikes(params, spike_ids, spike_times) extracted_mask = extract_mask(params, spike_ids) (extracted_ids, extracted_times) = extract_spikes(spike_ids, spike_times, extracted_mask) max_spikes = np.max(np.bincount(extracted_ids)) #Find the number of spikes assoc. with the max-spiking neuron Russo_array = initialize_Russo(params, max_spikes) Russo_array = populate_Russo(params, extracted_ids, extracted_times, Russo_array) if params['plot_Boolean'] == True: #The plot function will generate a RunTime warning due to a NaN comparison; however, the expected output of this code is correct, so the warning is not displayed with warnings.catch_warnings(): warnings.simplefilter("ignore") plot_Russo(params, Russo_array, jj) if params['save_output_Boolean'] == True: if params['shuffle_Boolean'] == True: np.savetxt("./Processing_Data/shuffled_posttraining_stim" + str(jj+1) + "_layer" + str(params['extracted_layer']) + "_Russo.csv", Russo_array, delimiter=',') else: np.savetxt("./Processing_Data/posttraining_stim" + str(jj+1) + "_layer" + str(params['extracted_layer']) + "_Russo.csv", Russo_array, delimiter=',') return None #Load spike ids and times def load_spikes(stimuli_iter): spike_ids = np.genfromtxt('./Processing_Data/output_spikes_posttraining_stim' + str(stimuli_iter+1) +'SpikeIDs.txt') spike_times = np.genfromtxt('./Processing_Data/output_spikes_posttraining_stim' + str(stimuli_iter+1) +'SpikeTimes.txt') return (spike_ids, spike_times) #Within each stimulus presentation, shuffle the association between spike IDs and their spike times, so that spikes still occur at different times, but with different neurons #This maintains each neuron's firing rate, but breaks any temporal associations between a particular neuron and a particular spike time def shuffle_spikes(params, spike_ids, spike_times): shuffled_ids = [] #Iterate through all time-windows; note the addition of 1, as the last presentation is still associated with a window for ii in range(params['number_of_presentations']+1): #Find the indices of spikes in the given window of interest, and use these indices to extract the neuron IDs that spiked in the window temp_IDs = spike_ids[np.where((ii*params['duration_of_presentations'] < spike_times) & (spike_times <= (ii+1)*params['duration_of_presentations']))] #Shuffle those IDs and append them np.random.shuffle(temp_IDs) shuffled_ids.extend(temp_IDs) assert len(shuffled_ids) == len(spike_ids), "Size of spike ID array not preserved after shuffling." return np.asarray(shuffled_ids) #Return extraction mask defining the spikes of interest def extract_mask(params, spike_ids): #Return an array of indeces for the neurons in the layer of interest extracted_mask = np.where((params['excit_dim']*(params['extracted_layer']-1) < spike_ids) & (spike_ids <= params['extracted_layer']*params['excit_dim'])) return extracted_mask #Extract and format spike ids and times of interest def extract_spikes(spike_ids, spike_times, extracted_mask): extracted_ids = np.take(spike_ids, extracted_mask) #An array of spike IDs, restricted to the layer of interest extracted_times = np.take(spike_times, extracted_mask) #An array of spike times, restricted to the layer of interest extracted_ids = np.reshape(extracted_ids, len(extracted_ids[0])) #Re-shape the array into a column array extracted_ids = extracted_ids.astype(int) #Convert from Spike simulator's output (float) return (extracted_ids, extracted_times) #Initialize a NaN array with rows = number of unique neurons in the layer, and columns = number of spikes of the maximally active neuron def initialize_Russo(params, max_spikes): Russo_array = np.zeros([params['excit_dim'], max_spikes]) Russo_array[:, :] = np.nan return Russo_array #Iterate through each neuron of interest, inserting its spikes into the Russo-suitable array; if a neuron never spikes, insert a single random spike def populate_Russo(params, extracted_ids, extracted_times, Russo_array): for ii in range(0, params['excit_dim']): #Extract a binary mask containing the indeces of when the neuron of interest has fired temp_mask = np.where(extracted_ids == (params['excit_dim']*(params['extracted_layer'] - 1) + ii + 1)) #Use the mask to identify all the spike times associated with that neuron, and assign it to Russo_array Russo_array[ii, 0:(np.size(np.take(extracted_times, temp_mask)))] = np.take(extracted_times, temp_mask) if ((math.isnan(Russo_array[ii, 0]) == 1) and (params['add_Russo_random_spike'] == 1)): #If the first element is NaN, the entire row is (i.e. the neuron never spiked) Russo_array[ii, 0] = np.random.random()*np.max(extracted_times) #Assigns the neuron a single spike, the time of which is sampled from a continuous uniform distribution return(Russo_array) def plot_Russo(params, Russo_array, stimuli_iter): plt.figure(stimuli_iter) warnings.warn("NaN_Comparison", RuntimeWarning) for ii in range(0, params['excit_dim']): #Plot each neuron's spikes in turn; note the y-valuess are multiplied by (ii+1), so that the y-axis labels correspond to the neuron index (original simulation, beginning at 1), and not the Russo_array index (which begins at 0) plt.scatter(Russo_array[ii,(Russo_array[ii, :]<params['max_plot_time'])], np.ones(len(Russo_array[ii,(Russo_array[ii, :]<params['max_plot_time'])]))*(ii+1), c='k', marker='.') plt.show() ### Testing Functions ### #Unit test for extract_mask function (extracting first layer) def test_extract_mask_FirstLayer(): test_params = {'extracted_layer' : 1, 'excit_dim' : 5} test_spike_ids = np.array([4, 9, 1, 3, 9, 2, 10, 7, 5, 6, 2, 8, 1, 1]) exp = np.array([0, 2, 3, 5, 8, 10, 12, 13]) exp = np.reshape(exp, [1, len(exp)]) obs = extract_mask(test_params, test_spike_ids) assert np.all(obs == exp) #Unit test for extract_mask function (extracting higher layers) def test_extract_mask_HigherLayer(): test_params = {'extracted_layer' : 2, 'excit_dim' : 5} test_spike_ids = np.array([4, 9, 1, 3, 9, 2, 10, 7, 5, 6, 2, 8, 1, 1]) exp = np.array([1, 4, 6, 7, 9, 11]) exp = np.reshape(exp, [1, len(exp)]) obs = extract_mask(test_params, test_spike_ids) assert np.all(obs == exp) #Unit test for extract_spikes function def test_extract_spikes(): test_spike_ids = np.array([4, 9, 1, 3, 9, 2, 10, 7]) test_spike_times = np.array([0.04, 0.06, 0.9, 1.2, 1.8, 4.0, 5.9, 10.2]) test_extracted_mask = np.array([0, 2, 3, 5]) test_extracted_mask = np.reshape(test_extracted_mask, [1, len(test_extracted_mask)]) exp_ids = ([4, 1, 3, 2]) exp_times = ([0.04, 0.9, 1.2, 4.0]) (obs_ids, obs_times) = extract_spikes(test_spike_ids, test_spike_times, test_extracted_mask) assert (np.all(exp_ids == obs_ids) and np.all(exp_times == obs_times)) #Unit test for populate Russo function when first layer is of interest def test_populate_Russo_FirstLayer(params): test_params = {'extracted_layer' : 1, 'excit_dim' : 5, 'add_Russo_random_spike' : params['add_Russo_random_spike']} test_extracted_ids =
np.array([5, 1, 1, 3, 1, 2])
numpy.array
"""Handling of individual transducers and their directivities. This module contains classes describing how individual transducer elements radiate sound, e.g. waveforms and directivities. This is also where the various spatial properties, e.g. derivatives, are implemented. Most calculations in this module are fully vectorized, so the models can calculate sound fields for any number of source positions and receiver positions at once. .. autosummary:: :nosignatures: TransducerModel PointSource PlaneWaveTransducer CircularPiston CircularRing TransducerReflector """ import numpy as np import logging from scipy.special import j0, j1 from scipy.special import spherical_jn, spherical_yn, sph_harm from .materials import air from . import utils logger = logging.getLogger(__name__) class TransducerModel: """Base class for ultrasonic single frequency transducers. Parameters ---------- freq : float, default 40 kHz The resonant frequency of the transducer. p0 : float, default 6 Pa The sound pressure created at maximum amplitude at 1m distance, in Pa. Note: This is not an rms value! medium : Material The medium in which the array is operating. physical_size : float, default 10e-3 The physical dimentions of the transducer. Mainly used for visualization and some geometrical assumptions. Attributes ---------- k : float Wavenumber in the medium. wavelength : float Wavelength in the medium. omega : float Angular frequency. freq : float Wave frequency. """ _repr_fmt_spec = '{:%cls(freq=%freq, p0=%p0, medium=%mediumfull, physical_size=%physical_size)}' _str_fmt_spec = '{:%cls(freq=%freq, p0=%p0, medium=%medium)}' def __init__(self, freq=40e3, p0=6, medium=air, physical_size=10e-3): self.medium = medium self.freq = freq self.p0 = p0 self.physical_size = physical_size # The murata transducers are measured to 85 dB SPL at 1 V at 1 m, which corresponds to ~6 Pa at 20 V # The datasheet specifies 120 dB SPL @ 0.3 m, which corresponds to ~6 Pa @ 1 m def __format__(self, fmt_spec): return fmt_spec.replace('%cls', self.__class__.__name__).replace('%freq', str(self.freq)).replace('%p0', str(self.p0)).replace('%mediumfull', repr(self.medium)).replace('%medium', str(self.medium)).replace('%physical_size', str(self.physical_size)) def __str__(self): return self._str_fmt_spec.format(self) def __repr__(self): return self._repr_fmt_spec.format(self) def _repr_pretty_(self, p, cycle): p.text(str(self)) def __eq__(self, other): return ( type(self) == type(other) and np.allclose(self.p0, other.p0) and np.allclose(self.omega, other.omega) and np.allclose(self.k, other.k) and self.medium == other.medium and self.physical_size == other.physical_size ) @property def k(self): return self.omega / self.medium.c @k.setter def k(self, value): self._omega = value * self.medium.c @property def omega(self): return self._omega @omega.setter def omega(self, value): self._omega = value @property def freq(self): return self.omega / 2 / np.pi @freq.setter def freq(self, value): self.omega = value * 2 * np.pi @property def wavelength(self): return 2 * np.pi / self.k @wavelength.setter def wavelength(self, value): self.k = 2 * np.pi / value def pressure(self, source_positions, source_normals, receiver_positions, **kwargs): """Calculate the complex sound pressure from the transducer. Parameters ---------- source_positions : numpy.ndarray The location of the transducer, as a (3, ...) shape array. source_normals : numpy.ndarray The look direction of the transducer, as a (3, ...) shape array. receiver_positions : numpy.ndarray The location(s) at which to evaluate the radiation, shape (3, ...). The first dimension must have length 3 and represent the coordinates of the points. Returns ------- out : numpy.ndarray The pressure at the locations, shape `source_positions.shape[1:] + receiver_positions.shape[1:]`. """ return self.pressure_derivs(source_positions=source_positions, source_normals=source_normals, receiver_positions=receiver_positions, orders=0, **kwargs)[0] def pressure_derivs(self, source_positions, source_normals, receiver_positions, orders=3, **kwargs): """Calculate the spatial derivatives of the greens function. Calculates Cartesian spatial derivatives of the pressure Green's function. Should be implemented by concrete subclasses. Parameters ---------- source_positions : numpy.ndarray The location of the transducer, as a (3, ...) shape array. source_normals : numpy.ndarray The look direction of the transducer, as a (3, ...) shape array. receiver_positions : numpy.ndarray The location(s) at which to evaluate the radiation, shape (3, ...). The first dimension must have length 3 and represent the coordinates of the points. orders : int How many orders of derivatives to calculate. Currently three orders are supported. Returns ------- derivatives : numpy.ndarray Array with the calculated derivatives. Has the shape `(M,) + source_positions.shape[1:] + receiver_positions.shape[1:]`. where `M` is the number of spatial derivatives, see `num_spatial_derivatives` and `spatial_derivative_order`. """ raise NotImplementedError('Transducer model of type `{}` has not implemented cartesian pressure derivatives'.format(self.__class__.__name__)) class PointSource(TransducerModel): r"""Point source transducers. A point source is in this context defines as a spherically spreading wave, optionally with a directivity. On its own this class defines a monopole, but subclasses are free to change the directivity to other shapes. The spherical spreading is defined as .. math:: G(r) = {e^{ikr} \over r} where :math:`r` is the distance from the source, and :math:`k` is the wavenumber of the wave. """ def directivity(self, source_positions, source_normals, receiver_positions): """Evaluate transducer directivity. Subclasses will preferably implement this to create new directivity models. Default implementation is omnidirectional sources. Parameters ---------- source_positions : numpy.ndarray The location of the transducer, as a (3, ...) shape array. source_normals : numpy.ndarray The look direction of the transducer, as a (3, ...) shape array. receiver_positions : numpy.ndarray The location(s) at which to evaluate the radiation, shape (3, ...). The first dimension must have length 3 and represent the coordinates of the points. Returns ------- out : numpy.ndarray The amplitude (and phase) of the directivity, shape `source_positions.shape[1:] + receiver_positions.shape[1:]`. """ return np.ones(np.asarray(source_positions).shape[1:2] + np.asarray(receiver_positions).shape[1:]) def pressure_derivs(self, source_positions, source_normals, receiver_positions, orders=3, **kwargs): """Calculate the spatial derivatives of the greens function. This is the combination of the derivative of the spherical spreading, and the derivatives of the directivity, including source strength. Parameters ---------- source_positions : numpy.ndarray The location of the transducer, as a (3, ...) shape array. source_normals : numpy.ndarray The look direction of the transducer, as a (3, ...) shape array. receiver_positions : numpy.ndarray The location(s) at which to evaluate the radiation, shape (3, ...). The first dimension must have length 3 and represent the coordinates of the points. orders : int How many orders of derivatives to calculate. Currently three orders are supported. Returns ------- derivatives : numpy.ndarray Array with the calculated derivatives. Has the `(M,) + source_positions.shape[1:] + receiver_positions.shape[1:]`. where `M` is the number of spatial derivatives, see `num_spatial_derivatives` and `spatial_derivative_order`. """ receiver_positions = np.asarray(receiver_positions) if receiver_positions.shape[0] != 3: raise ValueError('Incorrect shape of positions') wavefront_derivatives = self.wavefront_derivatives(source_positions, receiver_positions, orders) if type(self) == PointSource: return wavefront_derivatives * self.p0 directivity_derivatives = self.directivity_derivatives(source_positions, source_normals, receiver_positions, orders) derivatives = np.empty(wavefront_derivatives.shape, dtype=np.complex128) derivatives[0] = wavefront_derivatives[0] * directivity_derivatives[0] if orders > 0: derivatives[1] = wavefront_derivatives[0] * directivity_derivatives[1] + directivity_derivatives[0] * wavefront_derivatives[1] derivatives[2] = wavefront_derivatives[0] * directivity_derivatives[2] + directivity_derivatives[0] * wavefront_derivatives[2] derivatives[3] = wavefront_derivatives[0] * directivity_derivatives[3] + directivity_derivatives[0] * wavefront_derivatives[3] if orders > 1: derivatives[4] = wavefront_derivatives[0] * directivity_derivatives[4] + directivity_derivatives[0] * wavefront_derivatives[4] + 2 * directivity_derivatives[1] * wavefront_derivatives[1] derivatives[5] = wavefront_derivatives[0] * directivity_derivatives[5] + directivity_derivatives[0] * wavefront_derivatives[5] + 2 * directivity_derivatives[2] * wavefront_derivatives[2] derivatives[6] = wavefront_derivatives[0] * directivity_derivatives[6] + directivity_derivatives[0] * wavefront_derivatives[6] + 2 * directivity_derivatives[3] * wavefront_derivatives[3] derivatives[7] = wavefront_derivatives[0] * directivity_derivatives[7] + directivity_derivatives[0] * wavefront_derivatives[7] + wavefront_derivatives[1] * directivity_derivatives[2] + directivity_derivatives[1] * wavefront_derivatives[2] derivatives[8] = wavefront_derivatives[0] * directivity_derivatives[8] + directivity_derivatives[0] * wavefront_derivatives[8] + wavefront_derivatives[1] * directivity_derivatives[3] + directivity_derivatives[1] * wavefront_derivatives[3] derivatives[9] = wavefront_derivatives[0] * directivity_derivatives[9] + directivity_derivatives[0] * wavefront_derivatives[9] + wavefront_derivatives[2] * directivity_derivatives[3] + directivity_derivatives[2] * wavefront_derivatives[3] if orders > 2: derivatives[10] = wavefront_derivatives[0] * directivity_derivatives[10] + directivity_derivatives[0] * wavefront_derivatives[10] + 3 * (directivity_derivatives[4] * wavefront_derivatives[1] + wavefront_derivatives[4] * directivity_derivatives[1]) derivatives[11] = wavefront_derivatives[0] * directivity_derivatives[11] + directivity_derivatives[0] * wavefront_derivatives[11] + 3 * (directivity_derivatives[5] * wavefront_derivatives[2] + wavefront_derivatives[5] * directivity_derivatives[2]) derivatives[12] = wavefront_derivatives[0] * directivity_derivatives[12] + directivity_derivatives[0] * wavefront_derivatives[12] + 3 * (directivity_derivatives[6] * wavefront_derivatives[3] + wavefront_derivatives[6] * directivity_derivatives[3]) derivatives[13] = wavefront_derivatives[0] * directivity_derivatives[13] + directivity_derivatives[0] * wavefront_derivatives[13] + wavefront_derivatives[2] * directivity_derivatives[4] + directivity_derivatives[2] * wavefront_derivatives[4] + 2 * (wavefront_derivatives[1] * directivity_derivatives[7] + directivity_derivatives[1] * wavefront_derivatives[7]) derivatives[14] = wavefront_derivatives[0] * directivity_derivatives[14] + directivity_derivatives[0] * wavefront_derivatives[14] + wavefront_derivatives[3] * directivity_derivatives[4] + directivity_derivatives[3] * wavefront_derivatives[4] + 2 * (wavefront_derivatives[1] * directivity_derivatives[8] + directivity_derivatives[1] * wavefront_derivatives[8]) derivatives[15] = wavefront_derivatives[0] * directivity_derivatives[15] + directivity_derivatives[0] * wavefront_derivatives[15] + wavefront_derivatives[1] * directivity_derivatives[5] + directivity_derivatives[1] * wavefront_derivatives[5] + 2 * (wavefront_derivatives[2] * directivity_derivatives[7] + directivity_derivatives[2] * wavefront_derivatives[7]) derivatives[16] = wavefront_derivatives[0] * directivity_derivatives[16] + directivity_derivatives[0] * wavefront_derivatives[16] + wavefront_derivatives[3] * directivity_derivatives[5] + directivity_derivatives[3] * wavefront_derivatives[5] + 2 * (wavefront_derivatives[2] * directivity_derivatives[9] + directivity_derivatives[2] * wavefront_derivatives[9]) derivatives[17] = wavefront_derivatives[0] * directivity_derivatives[17] + directivity_derivatives[0] * wavefront_derivatives[17] + wavefront_derivatives[1] * directivity_derivatives[6] + directivity_derivatives[1] * wavefront_derivatives[6] + 2 * (wavefront_derivatives[3] * directivity_derivatives[8] + directivity_derivatives[3] * wavefront_derivatives[8]) derivatives[18] = wavefront_derivatives[0] * directivity_derivatives[18] + directivity_derivatives[0] * wavefront_derivatives[18] + wavefront_derivatives[2] * directivity_derivatives[6] + directivity_derivatives[2] * wavefront_derivatives[6] + 2 * (wavefront_derivatives[3] * directivity_derivatives[9] + directivity_derivatives[3] * wavefront_derivatives[9]) derivatives[19] = wavefront_derivatives[0] * directivity_derivatives[19] + wavefront_derivatives[19] * directivity_derivatives[0] + wavefront_derivatives[1] * directivity_derivatives[9] + wavefront_derivatives[2] * directivity_derivatives[8] + wavefront_derivatives[3] * directivity_derivatives[7] + directivity_derivatives[1] * wavefront_derivatives[9] + directivity_derivatives[2] * wavefront_derivatives[8] + directivity_derivatives[3] * wavefront_derivatives[7] derivatives *= self.p0 return derivatives def wavefront_derivatives(self, source_positions, receiver_positions, orders=3): """Calculate the spatial derivatives of the spherical spreading. Parameters ---------- source_positions : numpy.ndarray The location of the transducer, as a (3, ...) shape array. receiver_positions : numpy.ndarray The location(s) at which to evaluate the radiation, shape (3, ...). The first dimension must have length 3 and represent the coordinates of the points. orders : int How many orders of derivatives to calculate. Currently three orders are supported. Returns ------- derivatives : ndarray Array with the calculated derivatives. Has the shape `(M,) + source_positions.shape[1:] + receiver_positions.shape[1:]`. where `M` is the number of spatial derivatives, see `num_spatial_derivatives` and `spatial_derivative_order`. """ source_positions = np.asarray(source_positions) receiver_positions = np.asarray(receiver_positions) if receiver_positions.shape[0] != 3: raise ValueError('Incorrect shape of positions') diff = receiver_positions.reshape((3,) + (1,) * (source_positions.ndim - 1) + receiver_positions.shape[1:]) - source_positions.reshape(source_positions.shape[:2] + (receiver_positions.ndim - 1) * (1,)) r = np.sum(diff**2, axis=0)**0.5 kr = self.k * r jkr = 1j * kr phase = np.exp(jkr) derivatives = np.empty((utils.num_pressure_derivs[orders],) + r.shape, dtype=np.complex128) derivatives[0] = phase / r if orders > 0: coeff = (jkr - 1) * phase / r**3 derivatives[1] = diff[0] * coeff derivatives[2] = diff[1] * coeff derivatives[3] = diff[2] * coeff if orders > 1: coeff = (3 - kr**2 - 3 * jkr) * phase / r**5 const = (jkr - 1) * phase / r**3 derivatives[4] = diff[0]**2 * coeff + const derivatives[5] = diff[1]**2 * coeff + const derivatives[6] = diff[2]**2 * coeff + const derivatives[7] = diff[0] * diff[1] * coeff derivatives[8] = diff[0] * diff[2] * coeff derivatives[9] = diff[1] * diff[2] * coeff if orders > 2: const = (3 - 3 * jkr - kr**2) * phase / r**5 coeff = (-15 + 15 * jkr + 6 * kr**2 - 1j * kr**3) * phase / r**7 derivatives[10] = diff[0] * (3 * const + diff[0]**2 * coeff) derivatives[11] = diff[1] * (3 * const + diff[1]**2 * coeff) derivatives[12] = diff[2] * (3 * const + diff[2]**2 * coeff) derivatives[13] = diff[1] * (const + diff[0]**2 * coeff) derivatives[14] = diff[2] * (const + diff[0]**2 * coeff) derivatives[15] = diff[0] * (const + diff[1]**2 * coeff) derivatives[16] = diff[2] * (const + diff[1]**2 * coeff) derivatives[17] = diff[0] * (const + diff[2]**2 * coeff) derivatives[18] = diff[1] * (const + diff[2]**2 * coeff) derivatives[19] = diff[0] * diff[1] * diff[2] * coeff return derivatives def directivity_derivatives(self, source_positions, source_normals, receiver_positions, orders=3): """Calculate the spatial derivatives of the directivity. The default implementation uses finite difference stencils to evaluate the derivatives. In principle this means that customized directivity models does not need to implement their own derivatives, but can do so for speed and precision benefits. Parameters ---------- source_positions : numpy.ndarray The location of the transducer, as a (3, ...) shape array. source_normals : numpy.ndarray The look direction of the transducer, as a (3, ...) shape array. receiver_positions : numpy.ndarray The location(s) at which to evaluate the radiation, shape (3, ...). The first dimension must have length 3 and represent the coordinates of the points. orders : int How many orders of derivatives to calculate. Currently three orders are supported. Returns ------- derivatives : numpy.ndarray Array with the calculated derivatives. Has the shape `(M,) + source_positions.shape[1:] + receiver_positions.shape[1:]`. where `M` is the number of spatial derivatives, see `num_spatial_derivatives` and `spatial_derivative_order`. """ source_positions = np.asarray(source_positions) source_normals = np.asarray(source_normals) receiver_positions = np.asarray(receiver_positions) if receiver_positions.shape[0] != 3: raise ValueError('Incorrect shape of positions') finite_difference_coefficients = {'': (np.array([[0, 0, 0]]).T, np.array([1]))} if orders > 0: finite_difference_coefficients['x'] = (np.array([[1, 0, 0], [-1, 0, 0]]).T, np.array([0.5, -0.5])) finite_difference_coefficients['y'] = (np.array([[0, 1, 0], [0, -1, 0]]).T, np.array([0.5, -0.5])) finite_difference_coefficients['z'] = (np.array([[0, 0, 1], [0, 0, -1]]).T, np.array([0.5, -0.5])) if orders > 1: finite_difference_coefficients['xx'] = (np.array([[1, 0, 0], [0, 0, 0], [-1, 0, 0]]).T, np.array([1, -2, 1])) # Alt -- (np.array([[2, 0, 0], [0, 0, 0], [-2, 0, 0]]), [0.25, -0.5, 0.25]) finite_difference_coefficients['yy'] = (np.array([[0, 1, 0], [0, 0, 0], [0, -1, 0]]).T, np.array([1, -2, 1])) # Alt-- (np.array([[0, 2, 0], [0, 0, 0], [0, -2, 0]]), [0.25, -0.5, 0.25]) finite_difference_coefficients['zz'] = (np.array([[0, 0, 1], [0, 0, 0], [0, 0, -1]]).T, np.array([1, -2, 1])) # Alt -- (np.array([[0, 0, 2], [0, 0, 0], [0, 0, -2]]), [0.25, -0.5, 0.25]) finite_difference_coefficients['xy'] = (
np.array([[1, 1, 0], [-1, -1, 0], [1, -1, 0], [-1, 1, 0]])
numpy.array
# -- coding: utf-8 -- # Copyright 2018 <NAME> <<EMAIL>> import scipy.optimize as opt """ Provides some useful mathematical functions which are not present in numpy. """ import numpy as np def prod(x): p = 1 for k in x: p *= k return p def perm(x): """ permutation with repetition of n factors x = [n1,n2,n3,...nk] n = n1+n2+...+nk return n!/(n1!*n2*...*nk!) """ n = sum(x) num = list(range(2,n+1)) denom = list(range(2,x[0]+1)) for k in x[1:]: denom += list(range(2,k+1)) for x in num: if x in denom: num.remove(x) denom.remove(x) return prod(num)/prod(denom) def closest_arg(array, value): return np.argmin(np.abs(array-value)) def strictly_positify(x): """ Make the result strictly positive by setting the minimum value to the lower allowed float value """ return np.fmax(x, np.finfo(x.dtype).eps) def positify(x): """ Set to zero all negative values """ return np.fmax(0, x) def clip01(x): """ clip data x between 0 and 1 """ return np.fmax(np.fmin(x, 1), 0) def fact(x): """ Return the factors of an integer as a list. Warning: This function is not a factorial! """ if x < 0 or type(x) is not int: raise ValueError("input must be a positive integer") if x < 2: return x f = [] i = 2 while True: while x % i == 0: f.append(i) x /= i i += 1 if x == 1: return f def moving_average(x, N): assert len(x) > N c = np.cumsum(x) return (c[N:]-c[:-N])/N def butter_lowpass(cutOff, fs, order=5): import scipy.signal nyq = 0.5 * fs normalCutoff = cutOff / nyq b, a = scipy.signal.butter(order, normalCutoff, btype='low', analog=True) return b, a def butter_lowpass_filter(data, cutOff, fs, order=4): import scipy.signal b, a = butter_lowpass(cutOff, fs, order=order) y = scipy.signal.lfilter(b, a, data) return y def Gauss(x, x0, s, amp=None, **kargs): if 'A' in kargs: from warnings import warn warn("Parameter A is deprecated. Please use amp in order to set the amplitude!") amp = kargs.pop('A') elif 'Amp' in kargs: from warnings import warn warn("Parameter Amp is deprecated. Please use amp in order to set the amplitude!") amp = kargs.pop('Amp') R = np.exp(-(x-x0)**2/(2*s**2)) if amp is None: R /= (s*np.sqrt(2*np.pi)) else: R *= amp R[s==0] = (x[s==0]==x0)*1.0 return R def Lorentz(x, x0, gamma, amp=None, **kargs): if 'A' in kargs: from warnings import warn warn("Parameter A is deprecated. Please use amp in order to set the amplitude!") Amp = kargs['A'] elif 'Amp' in kargs: from warnings import warn warn("Parameter Amp is deprecated. Please use amp in order to set the amplitude!") amp = kargs.pop('Amp') R = 1/((x-x0)**2+(.5*gamma)**2) if amp is None: return .5*gamma*R/np.pi return amp*R*(.5*gamma)**2 def CDF(x,mu,sig, amp=1, lg=0, **kargs): if 'Amp' in kargs: from warnings import warn warn("Parameter Amp is deprecated. Please use amp in order to set the amplitude!") amp = kargs.pop('Amp') from scipy.special import erf g = sig*np.sqrt(2*np.log(2)) return amp*lg*(.5+
np.arctan2(x-mu,g)
numpy.arctan2
# model.distributions.py # copyright 2021 <NAME> import numpy as np import pymc3 as pm from scipy import stats, special import theano.tensor as tt from pymc3.distributions.dist_math import bound, logpow, alltrue_elemwise from pymc3.distributions.continuous import assert_negative_support, PositiveContinuous from pymc3.distributions.distribution import draw_values, generate_samples from pymc3.theanof import floatX RANDOM_SEED = 42 rng = np.random.default_rng(seed=RANDOM_SEED) # NOTE hack to clip values away from {0, 1} for invcdfs # Whilst value = {0, 1} is theoretically allowed, is seems to cause a # numeric compuational issue somewhere in tt.erfcinv which throws infs. # This screws up the downstream, so clip slightly away from {0, 1} CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS = 1e-15 #1e-18 too small def boundzero_numpy(vals, *conditions): """ Bound natural unit distribution params, return 0 for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return np.where(alltrue_elemwise(conditions), vals, 0.) def boundzero_theano(vals, *conditions): """ Bound natural unit distribution params, return 0 for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return tt.switch(alltrue_elemwise(conditions), vals, 0.) def boundlog_numpy(vals, *conditions): """ Bound log unit distribution params, return -inf for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return np.where(alltrue_elemwise(conditions), vals, -np.inf) def logpow_numpy(x, m): """ Copy from pymc3 Safe calc log(x**m) since m*log(x) will fail when m, x = 0. """ return np.where(x == 0, np.where(m == 0, 0.0, -np.inf), m * np.log(x)) class Gamma(pm.Gamma): """Inherit the pymc class, add cdf and invcdf """ def __init__(self): raise NotImplementedError( """Consider that InvCDF is hard to calculate: even scipy uses C functions Recommend use different dist in practice""") class GammaNumpy(): """Gamma PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations used in pymc3 custom distributions Helpful to compare these to scipy to confirm my correct implementation Ref: https://en.wikipedia.org/wiki/Gamma_distribution Params: x > 0, u in [0, 1], a (shape) > 0, b (rate) > 0 """ def __init__(self): self.name = 'Gamma' self.notation = {'notation': r'x \sim Gamma(\alpha, \beta)'} self.dist_natural = { 'pdf': r'f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{- \beta x}', 'cdf': r'F(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)', 'invcdf': r'F^{-1}(u \mid \alpha, \beta) = '} self.dist_log = { 'logpdf': r'\log f(x \mid \alpha, \beta) = -\log \Gamma(\alpha) + \log \beta^{\alpha} + \log x^{\alpha-1} - \beta x', 'logcdf': r'\log F(x \mid \alpha, \beta) = -\log \Gamma(\alpha) + \log \gamma(\alpha, \beta x)', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, \beta) = '} self.conditions = { 'parameters': r'\alpha > 0 \, \text{(shape)}, \; \beta > 0 \, \text{(rate)}', 'support': r'x \in (0, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r'\frac{\alpha}{\beta}', 'mode': r'\frac{\alpha - 1}{\beta}, \; \text{for} \alpha \geq 1', 'variance': r'\frac{\alpha}{\beta^{2}}' } def pdf(self, x, a, b): """Gamma PDF compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2595 """ fn = (1 / special.gamma(a)) * np.power(b, a) * np.power(x, a-1) * np.exp(-b * x) return boundzero_numpy(fn, a > 0, b > 0, x >= 0) def cdf(self, x, a, b): """Gamma CDF: where $\gamma(a, bx)$ is lower incomplete gamma function [0, lim) compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2602 """ # fn = (1 / special.gamma(a)) * special.gammainc(a, b * x) fn = special.gammainc(a, b * x) return boundzero_numpy(fn, a > 0, b > 0, x >= 0) def invcdf(self, u, a, b): """Gamma Inverse CDF aka PPF: compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2608 see sc.gammainc() """ raise NotImplementedError('TODO gamma inverse CDF') def logpdf(self, x, a, b): """Gamma log PDF compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2599 """ fn = -special.gammaln(a) + logpow_numpy(b, a) + logpow_numpy(x, a-1) - b * x return boundlog_numpy(fn, a > 0, b > 0, x > 0) def logcdf(self, x, a, b): """Gamma log CDF: where $\gamma(a, bx)$ is lower incomplete gamma function [0, lim) compare to https://github.com/pymc-devs/pymc3/blob/41a25d561b3aa40c75039955bf071b9632064a66/pymc3/distributions/continuous.py#L2614 """ return boundlog_numpy((-special.gammaln(a)) + special.gammainc(a, b * x), a > 0, b > 0, x > 0) def loginvcdf(self, u, a, b): """Gamma log Inverse CDF aka log PPF: see sc.gammaincinv() """ raise NotImplementedError('TODO gamma log inverse CDF') class Gumbel(pm.Gumbel): """Inherit the pymc class, add cdf, logcdf and invcdf, loginvcdf Also clobber logp (!) """ def __init__(self, *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) def logp(self, value): """ JS patch refactored code to align with other distributions Calculate log-probability of Gumbel distribution at specified value. z = (x - mu) / b pdf = (1 / b) * exp(-z - exp(-z)) logpdf = -log(b) - z - exp(-z) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ mu = self.mu beta = self.beta z = (value - mu) / beta logp = -tt.log(beta) - z - tt.exp(-z) return bound(logp, beta > 0) def logcdf(self, value): """ JS patch refactored code to align with other distributions cdf = exp(-exp(-(X - mu) / b)) logcdf = -exp(-(X-mu)/b) Compute the log of the cumulative distribution function for Gumbel distribution at the specified value. Parameters ---------- value: numeric Value(s) for which log CDF is calculated. If the log CDF for multiple values are desired the values must be provided in a numpy array or theano tensor. Returns ------- TensorVariable """ beta = self.beta mu = self.mu logcdf = -tt.exp(-(value - mu)/beta) return bound(logcdf, beta > 0) def loginvcdf(self, value): """ JS new function invcdf = mu - b * log(-log(u)) loginvcdf = log(mu) + log(1 - (b * log(-log(u))/mu)) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ beta = self.beta mu = self.mu loginvcdf = tt.log(mu) + tt.log(1 - (beta * tt.log(-tt.log(value))/mu)) return bound(loginvcdf, beta > 0) class InverseWeibull(PositiveContinuous): r""" Inverse Weibull log-likelihood, the reciprocal of the Weibull distribution, also known as the Fréchet distribution, a special case of the generalized extreme value distribution. See scipy for reference https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html https://github.com/scipy/scipy/blob/v1.6.0/scipy/stats/_continuous_distns.py The pdf of this distribution is .. math:: f(x \mid \alpha, s, m) = \frac{\alpha }{s}} \; \left({\frac{x-m}{s}}\right)^{{-1-\alpha }}\;e^{{-({\frac{x-m}{s}})^{{-\alpha }}} .. plot:: import matplotlib.pyplot as plt import numpy as np import scipy.stats as st plt.style.use('seaborn-darkgrid') x = np.linspace(0, 3, 500) alphas = [1., 2., 3., 3.] betas = [1., 1., 1., .5] for a, b in zip(alphas, betas): pdf = st.invgamma.pdf(x, a, scale=b) plt.plot(x, pdf, label=r'$\alpha$ = {}, $\beta$ = {}'.format(a, b)) plt.xlabel('x', fontsize=12) plt.ylabel('f(x)', fontsize=12) plt.legend(loc=1) plt.show() ======== ====================================================== Support :math:`x \in (-\infty, \infty)` Mean :math:`{\begin{cases}\ m+s\Gamma \left(1-{\frac {1}{\alpha }}\right)&{\text{for }}\alpha >1\\\ \infty &{\text{otherwise}}\end{cases}}` Variance :math:`{\begin{cases}\ s^{2}\left(\Gamma \left(1-{\frac {2}{\alpha }}\right)-\left(\Gamma \left(1-{\frac{1}{\alpha }}\right)\right)^{2}\right)&{\text{for }}\alpha >2\\\ \infty &{\text{otherwise}}\end{cases}}` ======== ====================================================== Parameters ---------- alpha: float Shape parameter (alpha > 0). s: float Scale parameter (s > 0), default = 1 ## m: float ## Location parameter (mu in (-inf, inf)), default = 0 """ def __init__(self, alpha=None, s=1., *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) self.alpha = alpha = tt.as_tensor_variable(floatX(alpha)) self.s = s = tt.as_tensor_variable(floatX(s)) self.mode = s * tt.power(alpha / (1. + alpha), 1. / alpha) assert_negative_support(alpha, "alpha", "InverseWeibull") assert_negative_support(s, "s", "InverseWeibull") def _distr_parameters_for_repr(self): return ["alpha", 's'] def random(self, point=None, size=None): """ Draw random values from InverseWeibull PDF distribution. Parameters ---------- point: dict, optional Dict of variable values on which random values are to be conditioned (uses default point if not specified). size: int, optional Desired size of random sample (returns one sample if not specified). Returns ------- array """ alpha, s = draw_values([self.alpha, self.s], point=point, size=size) return generate_samples(stats.invweibull.rvs, c=alpha, scale=s, loc=0., dist_shape=self.shape, size=size) def logp(self, value): """ Calculate log-probability of InverseWeibull distribution at specified value. pdf: https://www.wolframalpha.com/input/?i=%28a%2Fs%29+*+%28x%2Fs%29**%28-1-a%29+*+exp%28-%28x%2Fs%29**-a%29 alt form according to WA: a e^(-(s/x)^a) s^a x^(-1 - a) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ alpha = self.alpha s = self.s return bound( ( tt.log(alpha) - tt.log(s) + logpow(s / value, 1. + alpha) - tt.power(s / value, alpha) # this term grossly dominates if alpha >> 2 ), value > 0., alpha > 0., s > 0. ) def cdf(self, value): """InverseWeibull CDF""" alpha = self.alpha s = self.s fn = tt.exp(-tt.power(value / s, -alpha)) return boundzero_theano(fn, alpha > 0, s > 0, value > 0) def logcdf(self, value): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ alpha = self.alpha s = self.s fn = -tt.power(value / s, -alpha) return bound(fn, alpha > 0, s > 0, value > 0) def invcdf(self, value): """InverseWeibull Inverse CDF aka PPF""" alpha = self.alpha s = self.s value = tt.clip(value, CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS, 1-CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS) fn = s * tt.power(-tt.log(value), -1. / alpha) return boundzero_theano(fn, alpha > 0, s > 0, value >= 0, value <= 1) def loginvcdf(self, value): """InverseWeibull log Inverse CDF aka log PPF ref: ? manually calced and confirmed vs scipy """ alpha = self.alpha s = self.s fn = tt.log(s) - (1./ alpha ) * tt.log(-tt.log(value)) return bound(fn, alpha > 0, s > 0, value >= 0, value <= 1) class InverseWeibullNumpy(): """Inverse Weibull PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations potentially used if needed in pymc3 custom distributions Helpful to compare these to scipy to confirm my correct implementation NOTE: I'm lazy and have set m=0 throughout: this suits my usecase anyhow Ref: https://en.wikipedia.org/wiki/Fréchet_distribution Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html?highlight=inverse%20weibull Params: alpha (shape) > 0, s (scale) > 0, m (location of minimum) = 0 Support: x > 0, u in [0, 1] """ def __init__(self): self.name = 'InverseWeibull' self.notation = {'notation': r'x \sim InverseWeibull(\alpha, s, m=0)'} self.dist_natural = { 'pdf': r"""f(x \mid \alpha, s, m=0) = \frac{\alpha}{s} \; \left( \frac{x}{s} \right)^{-1-\alpha} \; \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)""", 'cdf': r'F(x \mid \alpha, s, m=0) = \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)', 'invcdf': r"""F^{-1}(u \mid \alpha, s, m=0) = s \log(u)^{-\frac{1}{\alpha}}"""} self.dist_log = { 'logpdf': r"""\log f(x \mid \alpha, s, m=0) = \log{\alpha} - (1+\alpha)\log{x} + \alpha \log{s} - \left( \frac{x}{s} \right)^{-\alpha}""", 'logcdf': r'\log F(x \mid \alpha, s, m=0) = - \left( \frac{x}{s} \right)^{-\alpha}', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, s, m=0) = \log(s) - \frac{1}{\alpha} * \log(-\log(u))'} self.conditions = { 'parameters': r"""\alpha > 0 \, \text{(shape)}, \; s > 0 \, \text{(scale, default } s=1 \text{)}, \; m \in (-\infty, \infty) \, \text{(location of minimum, default } m=0 \text{)}""", 'support': r'x \in (m, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r""" \begin{cases} m + s \Gamma \left( 1 - \frac{1}{\alpha} \right) & \text{for } \alpha > 1 \\ \infty & \text{otherwise} \\ \end{cases}""", 'mode': r'm + s \left( \frac{\alpha}{1+\alpha} \right)^{1/\alpha}', 'variance': r""" \begin{cases} s^{2} \left( \Gamma \left( 1-\frac{2}{\alpha} \right) - \left( \Gamma \left( 1-\frac{1}{\alpha} \right) \right)^{2} \right) & \text{for } \alpha > 2 \\ \infty & \text{otherwise} \end{cases}""" } def pdf(self, x, a, s): """InverseWeibull PDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3919 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( (a/s) * np.power(x/s, -1.-a) * np.exp(-np.power(x/s, -a)) ) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def cdf(self, x, a, s): """InverseWeibull CDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3926 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.exp(-np.power(x/s, -a)) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def invcdf(self, u, a, s): """InverseWeibull Inverse CDF aka PPF: ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3930 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = s * np.power(-np.log(u), -1./a) return boundzero_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) def logpdf(self, x, a, s): """InverseWeibull log PDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( np.log(a) - np.log(s) + logpow_numpy(x/s, -1.-a) - np.power(x/s, -a) # this term grossly dominates if a >> 2 ) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def logcdf(self, x, a, s): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = -np.power(x/s, -a) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def loginvcdf(self, u, a, s): """InverseWeibull log Inverse CDF aka log PPF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.log(s) - (1./a) * np.log(-np.log(u)) return boundlog_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) class ZeroInflatedInverseWeibull(PositiveContinuous): r""" ZeroInflatedInvserseWeibull log-likelihood WIP! Mixture model to allow for observations dominated by zeros such as sev also see + McElreath 2014, http://xcelab.net/rmpubs/Mcelreath%20Koster%202014.pdf, https://github.com/rmcelreath/mcelreath-koster-human-nature-2014 + Jones 2013, https://royalsocietypublishing.org/doi/10.1098/rspb.2013.1210 + https://stackoverflow.com/questions/42409761/pymc3-nuts-has-difficulty-sampling-from-a-hierarchical-zero-inflated-gamma-mode The pmf of this distribution is .. math:: f(x \mid \psi, \alpha, s) = \left\{ \begin{array}{l} (1 - \psi), & \text{if } x = 0 \\ \psi \, \text{InverseWeibull}(\alpha, s), & \text{if } x > 0 \end{array} \right. ======== ========================== Support :math:`x \in \mathbb{N}_0` Mean :math:`\psi \, \text{InverseWeibull}(\mu, \sigma)` Variance :math: TODO ======== ========================== Parameters ---------- psi: float Expected proportion of InverseWeibull variates (0 <= psi <= 1) alpha: float s: float """ def __init__(self, psi, alpha, s, *args, **kwargs): super().__init__(*args, defaults=("mode",), **kwargs) self.psi = psi = tt.as_tensor_variable(floatX(psi)) self.alpha = alpha = tt.as_tensor_variable(floatX(alpha)) self.s = s = tt.as_tensor_variable(floatX(s)) self.invweibull = InverseWeibull.dist(alpha=alpha, s=s) # TODO #self.mean = self.psi * self.invweibull.mean self.mode = self.psi * self.invweibull.mode assert_negative_support(alpha, "alpha", "ZeroInflatedInverseWeibull") assert_negative_support(s, "s", "ZeroInflatedInverseWeibull") # def _random(self, psi, size=None): # """Note by definition any rvs_ from invweibull that are zero will # correctly remain zero, covering the case x = 0""" # rvs_ = self.invweibull.random(size=size) # return rvs_ * psi def _random(self, psi, size=None): """Inputs are numpy arrays""" rvs_ = self.invweibull.random(size=size) pi = stats.binom(n=np.repeat([1], len(psi)), p=psi).rvs(len(psi)) return rvs_ * pi def random(self, point=None, size=None): """ Draw random values from ZeroInflatedInverseWeibull PDF distribution. Parameters ---------- point: dict, optional Dict of variable values on which random values are to be conditioned (uses default point if not specified). size: int, optional Desired size of random sample (returns one sample if not specified). Returns ------- array """ psi, alpha, s = draw_values([self.psi, self.alpha, self.s], point=point, size=size) return generate_samples(self._random, psi, dist_shape=self.shape, size=size) def logp(self, value): """LogPDF""" psi = self.psi logp_ = tt.switch(tt.neq(value, 0), # or use tt.gt(value, 0), dunno which faster tt.log(psi) + self.invweibull.logp(value), tt.log1p(-psi)) return bound(logp_, value >=0, psi > 0, psi < 1) def cdf(self, value): """CDF""" psi = self.psi cdf_ = (1. - psi) * 1 + psi * self.invweibull.cdf(value) return boundzero_theano(cdf_, value >=0, psi > 0, psi < 1) def invcdf(self, value): """InvCDF aka PPF""" psi = self.psi invcdf_ = self.invweibull.invcdf((value + psi - 1) / psi) return boundzero_theano(invcdf_, value>=0, value<=1, psi > 0, psi < 1) class ZeroInflatedInverseWeibullNumpy(): """Zero-inflated Inverse Weibull PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations potentially used if needed in pymc3 custom distributions Helpful to compare these ? seems rare NOTE: I'm lazy and have set m=0 throughout: this suits my usecase anyhow Ref: https://en.wikipedia.org/wiki/Fréchet_distribution Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html?highlight=inverse%20weibull Params: 0 < psi < 1 (prop invweibull), alpha (shape) > 0, s (scale) > 0, m (location of minimum) = 0 Support: x > 0, u in [0, 1] """ def __init__(self): self.name = 'InverseWeibull' self.notation = {'notation': r'x \sim InverseWeibull(\alpha, s, m=0)'} self.dist_natural = { 'pdf': r"""f(x \mid \alpha, s, m=0) = \frac{\alpha}{s} \; \left( \frac{x}{s} \right)^{-1-\alpha} \; \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)""", 'cdf': r'F(x \mid \alpha, s, m=0) = \exp \left( -\left( \frac{x}{s} \right)^{-\alpha} \right)', 'invcdf': r"""F^{-1}(u \mid \alpha, s, m=0) = s \log(u)^{-\frac{1}{\alpha}}"""} self.dist_log = { 'logpdf': r"""\log f(x \mid \alpha, s, m=0) = \log{\alpha} - (1+\alpha)\log{x} + \alpha \log{s} - \left( \frac{x}{s} \right)^{-\alpha}""", 'logcdf': r'\log F(x \mid \alpha, s, m=0) = - \left( \frac{x}{s} \right)^{-\alpha}', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, s, m=0) = \log(s) - \frac{1}{\alpha} * \log(-\log(u))'} self.conditions = { 'parameters': r"""\alpha > 0 \, \text{(shape)}, \; s > 0 \, \text{(scale, default } s=1 \text{)}, \; m \in (-\infty, \infty) \, \text{(location of minimum, default } m=0 \text{)}""", 'support': r'x \in (m, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r""" \begin{cases} m + s \Gamma \left( 1 - \frac{1}{\alpha} \right) & \text{for } \alpha > 1 \\ \infty & \text{otherwise} \\ \end{cases}""", 'mode': r'm + s \left( \frac{\alpha}{1+\alpha} \right)^{1/\alpha}', 'variance': r""" \begin{cases} s^{2} \left( \Gamma \left( 1-\frac{2}{\alpha} \right) - \left( \Gamma \left( 1-\frac{1}{\alpha} \right) \right)^{2} \right) & \text{for } \alpha > 2 \\ \infty & \text{otherwise} \end{cases}""" } def pdf(self, x, a, s): """InverseWeibull PDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3919 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( (a/s) * np.power(x/s, -1.-a) * np.exp(-np.power(x/s, -a)) ) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def cdf(self, x, a, s): """InverseWeibull CDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3926 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.exp(-np.power(x/s, -a)) return boundzero_numpy(fn, a > 0, s > 0, x > 0) def invcdf(self, u, a, s): """InverseWeibull Inverse CDF aka PPF: ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L3930 """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = s * np.power(-np.log(u), -1./a) return boundzero_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) def logpdf(self, x, a, s): """InverseWeibull log PDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = ( np.log(a) - np.log(s) + logpow_numpy(x/s, -1.-a) - np.power(x/s, -a) # this term grossly dominates if a >> 2 ) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def logcdf(self, x, a, s): """InverseWeibull log CDF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = -np.power(x/s, -a) return boundlog_numpy(fn, a > 0, s > 0, x >= 0) def loginvcdf(self, u, a, s): """InverseWeibull log Inverse CDF aka log PPF ref: ? manually calced and confirmed vs scipy """ a = np.array(a).astype(np.float) #, casting='no') s = np.array(s).astype(np.float) #, casting='no') fn = np.log(s) - (1./a) * np.log(-np.log(u)) return boundlog_numpy(fn, a > 0, s > 0, u >= 0, u <= 1) class Kumaraswamy(pm.Kumaraswamy): """Inherit the pymc class, add cdf, logcdf and invcdf, loginvcdf""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def logcdf(self, value): """ JS new function cdf = 1 - (1 - X**a)**b logcdf = log(1) + log(1 - ((1 - X**a)**b / 1)) = log(1 - (1 - X**a)**b) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ a = self.a b = self.b logcdf = tt.log(1 - (1 - value ** a) ** b) return bound(logcdf, value >= 0, value <= 1, a > 0, b > 0) def loginvcdf(self, value): """ JS new function invcdf = (1 - (1-u) ** (1/b)) ** (1/a) loginvcdf = (1/a) * np.log(1 - (1-u)**(1/b)) Parameters ---------- value: numeric Value(s) for which log-probability is calculated. If the log probabilities for multiple values are desired the values must be provided in a numpy array or theano tensor Returns ------- TensorVariable """ a = self.a b = self.b loginvcdf = (1/a) * tt.log(1 - (1-value)**(1/b)) return bound(loginvcdf, value >= 0, value <= 1, a > 0, b > 0) class Lognormal(pm.Lognormal): """ Inherit the pymc class, add cdf and invcdf """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def cdf(self, value): """Lognormal CDF""" mu = self.mu sigma = self.sigma z = (tt.log(value) - mu) / sigma fn = .5 * tt.erfc( -z / tt.sqrt(2.)) # convenience alt use pymc3's invprobit: # fn = pm.math.invprobit(z) return boundzero_theano(fn, sigma > 0, value > 0) def invcdf(self, value): """Lognormal Inverse CDF aka PPF""" mu = self.mu sigma = self.sigma # value = tt.clip(value, CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS, 1-CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS) fn = tt.exp(mu - sigma * tt.sqrt(2) * tt.erfcinv(2 * value)) return boundzero_theano(fn, sigma > 0, value >= 0, value <= 1) class LognormalNumpy(): """Lognormal PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations potentially used if needed in pymc3 custom distributions Helpful to compare these to scipy to confirm my correct implementation Ref: https://en.wikipedia.org/wiki/Log-normal_distribution Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html?highlight=lognorm#scipy.stats.lognorm Params: mu (location) > 0, sigma (variance) > 0 Support: x > 0, u in [0, 1], """ def __init__(self): self.name = 'Lognormal' self.notation = {'notation': r'x \sim Lognormal(\mu, \sigma)'} self.dist_natural = { 'pdf': r"""f(x \mid \mu, \sigma) = \frac{1}{x \sigma \sqrt{2 \pi}} \exp \left( -{ \frac{(\log{x} - \mu)^{2}}{2 \sigma^{2}}} \right) = \frac{1}{x \sigma \sqrt{2 \pi}} \exp - \left(\frac{\log{x}-\mu}{\sigma \sqrt{2}} \right)^{2}""", 'cdf': r"""F(x \mid \mu, \sigma) = \frac{1}{2} \left[ 1 + \text{erf} \left(\frac{\log{x}-\mu}{\sigma \sqrt{2}} \right) \right] = \frac{1}{2} \text{erfc} \left( \frac{-\log{x} -\mu}{\sigma \sqrt{2}} \right)""", 'invcdf': r"""F^{-1}(u \mid \mu, \sigma) = \exp \left( \mu + \sigma * \text{normal_invcdf}(u) \right) = \exp \left( \mu - \sigma \sqrt{2} \text{erfcinv}(2u) \right)"""} self.dist_log = { 'logpdf': r'\log f(x \mid \mu, \sigma) = - \frac{1}{2 \sigma^2} \log{(x-\mu)^{2}} + \frac{1}{2} \log{\frac{1}{2 \pi \sigma^{2}}} -\log{x}', 'logcdf': r'\log F(x \mid \mu, \sigma) = \log \left[\frac{1}{2} \text{erfc} \left( \frac{\log{(x)} -\mu}{\sigma \sqrt{2}} \right) \right]', 'loginvcdf': r'\log F^{-1}(u \mid \mu, \sigma) = \mu - \sigma \sqrt{2} \text{erfcinv}(2u)'} self.conditions = { 'parameters': r'\mu \in (-\infty, \infty) \, \text{(location)}, \; \sigma > 0 \, \text{(std. dev.)}', 'support': r'x \in (0, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r'\exp \left( \mu +\frac{\sigma^{2}}{2} \right)', 'median': r'\exp ( \mu )', 'mode': r'\exp ( \mu - \sigma^{2} )', 'variance': r'[\exp (\sigma^{2}) - 1] \exp (2 \mu + \sigma^{2})' } def pdf(self, x, mu, sigma): """Lognormal PDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L5050 """ mu = np.array(mu).astype(np.float) #, casting='no') sigma = np.array(sigma).astype(np.float) #, casting='no') fn = ((1 / (x * sigma * np.sqrt(2 * np.pi))) * np.exp( -np.power( (np.log(x) - mu) / (sigma * np.sqrt(2)), 2) )) return boundzero_numpy(fn, sigma > 0, x > 0) def cdf(self, x, mu, sigma): """Lognormal CDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L5057 """ mu = np.array(mu).astype(np.float) #, casting='no') sigma = np.array(sigma).astype(np.float) #, casting='no') z = (np.log(x) - mu) / sigma fn = .5 * special.erfc( -z / np.sqrt(2)) return boundzero_numpy(fn, sigma > 0, x > 0) def invcdf(self, u, mu, sigma): """Lognormal Inverse CDF aka PPF: ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L5063 """ mu = np.array(mu).astype(np.float) #, casting='no') sigma = np.array(sigma).astype(np.float) #, casting='no') # u = np.maximum(np.minimum(u, 1-CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS), CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS) fn = np.exp(mu - sigma * np.sqrt(2) * special.erfcinv(2 * u)) return boundzero_numpy(fn, sigma > 0, u >= 0, u <= 1) def logpdf(self, x, mu, sigma): """Lognormal log PDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L5054 ref: https://github.com/pymc-devs/pymc3/blob/41a25d561b3aa40c75039955bf071b9632064a66/pymc3/distributions/continuous.py#L1887 """ mu = np.array(mu).astype(np.float) #, casting='no') sigma = np.array(sigma).astype(np.float) #, casting='no') fn = - np.power(np.log(x)-mu,2) / (2 * np.power(sigma, 2)) + .5 * np.log(1 / (2 * np.pi * np.power(sigma, 2))) - np.log(x) return boundlog_numpy(fn, sigma > 0, x > 0) def logcdf(self, x, mu, sigma): """Lognormal log CDF ref: https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L5060 ref: https://github.com/pymc-devs/pymc3/blob/41a25d561b3aa40c75039955bf071b9632064a66/pymc3/distributions/continuous.py#L1913 """ mu = np.array(mu).astype(np.float) #, casting='no') sigma = np.array(sigma).astype(np.float) #, casting='no') fn = np.log(self.cdf(x, mu, sigma)) return boundlog_numpy(fn, sigma > 0, x > 0) def loginvcdf(self, u, mu, sigma): """Lognormal log Inverse CDF aka log PPF ref: ? """ mu = np.array(mu).astype(np.float) #, casting='no') sigma =
np.array(sigma)
numpy.array
import numpy as np from model.model_geometry import node_distance from model.constant_variables import ( D_rate_literature, a_eta, b_eta, eta_0, c_eta, T_fus, g, rho_i, pl1, pl2, ) def settling_vel(T, nz, coord, phi, SetVel, v_opt, viscosity): """ computes settling velocity, its spatial derivative and vertical stress Arguments ------------- T temperature [K] nz number of computational nodes [-] z mesh coordinates of computational nodes in the snowpack [m] phi ice volume fraction [-] SetVel settling active: 'Y'; settling inactive: 'N' Returns -------------- v settling velocity for each computational node in the snowpack v_dz spatial derivative of the settling velocity sigma vertical stress at each computational node in the snowpack """ dz = node_distance(coord, nz) if SetVel == "N": v = np.zeros(nz) # [m s-1] v_dz = np.zeros(nz) # [s-1] sigma = sigma_cont_croc(dz, phi, nz, v_opt) # [Pa m-2] elif SetVel == "Y": D_coeff = np.zeros(nz) # Deformation rate coefficient [s-1] if v_opt == "continuous": # many computational nodes approx. continuous eta = choose_viscosity(T, phi, viscosity, dz, nz) sigma = sigma_cont_croc(dz, phi, nz, v_opt) (v, v_dz) = velocity(sigma, eta, dz, nz, viscosity) elif v_opt == "layer_based": # 2 layer case with 3 computational nodes # mimicks layer based scheme # only works with model geometry geom= layer_based0.5m_2Layer' if nz != 3: raise IndexError( "For layer_based velocity only 3 computational nodes are allowed" ) eta = choose_viscosity(T, phi, viscosity, dz, nz) sigma = sigma_cont_croc(dz, phi, nz, v_opt) (v, v_dz) = velocity(sigma, eta, dz, nz, viscosity) elif v_opt == "polynom": # linearly increasing with snow height sigma = sigma_cont_croc(dz, phi, nz, v_opt) D_coeff = -np.ones(nz) * D_rate_literature # deformation rate coefficient D_rate = D_coeff # [1/s] Deformation rate v = D_rate * coord # [m/s] settlement velocity v_dz = D_rate elif v_opt == "const": # spatially constant settling velocity v = -np.ones(nz) * D_rate_literature v_dz = np.zeros(nz) sigma = sigma_cont_croc(dz, phi, nz, v_opt) elif v_opt == "phi_dependent": # as found in firn models v = np.zeros(nz) # [m s-1] sigma = sigma_cont_croc(dz, phi, nz, v_opt) phi_max = (0.4 - 0.9) / coord[-1] * coord + 0.9 # 0.25 restrict = 1 - phi / phi_max D_coeff = -np.ones(nz) * D_rate_literature D_rate = D_coeff * restrict # deformationrate v_dz = D_rate.copy() D_rate[0] = 0 # Deformation rate at bottom = 0 v[1:] = np.cumsum(D_rate[:-1] * dz[:]) # local settling velocity v[0] = 0 else: raise ValueError("Input for settling velocity v_opt not available") else: raise ValueError("Either N or Y allowed as input for SetVel") return v, v_dz, sigma def choose_viscosity(T, phi, viscosity, dz, nz): """ computes snow viscosity for snow based on a viscosity method (see Readme) """ T_const = 263 phi_const = 0.1125 eta = np.zeros_like(T) restrict = ( np.exp(pl1 * phi - pl2) + 1 ) # power law to restrict ice volume growth to <0.95 if viscosity == "eta_constant_n1": # constant viscosity for linear stress strain relation, Glen's flow law n=1 etatest1 = ( eta_0 * rho_i * phi_const / c_eta * np.exp(a_eta * (T_fus - T_const) + b_eta * rho_i * phi_const) ) # apply power law to restrict ice volume growth tp <0.95 eta = etatest1 * restrict elif viscosity == "eta_phi": # visocosity controllfed by ice volume fraction eta = ( eta_0 * rho_i * phi / c_eta * np.exp(a_eta * (T_fus - T_const) + b_eta * rho_i * phi) ) elif viscosity == "eta_T": # visocosity controlled by temperature eta = ( eta_0 * rho_i * phi_const / c_eta * np.exp(a_eta * (T_fus - T) + b_eta * rho_i * phi_const) ) elif ( viscosity == "eta_phiT" ): # visocosity controlled by ice volume fraction and temperature eta = ( eta_0 * rho_i * phi / c_eta * np.exp(a_eta * (T_fus - T) + b_eta * rho_i * phi) ) elif viscosity == "eta_constant_n3": # non-linear stress strain rate relation, Glens flow law n=3 rho_eff = np.ones(nz) rho_eff[0] = 150 x1 = 0.5 nz1 = int(x1 * nz) nz2 = nz for i in range(nz1 - 1): rho_eff[i] = 150 rho_eff[nz1 - 1] = 131.25 rho_eff[nz1] = 112.5 rho_eff[nz1 + 1] = 93.75 rho_eff[nz1 + 2 : nz2] = 75 sigma = np.zeros(nz) sigma_Dz = np.zeros(nz) sigma_Dz[:-1] = g * phi[:-1] * rho_i * dz[:] sigma_Dz[ -1 ] = 0 # no stress at heighest node, interface with atmosphere, no overburdened snow mass sigma =
np.cumsum(sigma_Dz[::-1])
numpy.cumsum
""" Created on Mon Aug 25 13:17:03 2014 @author: anthony """ import time from multiprocessing import Pool import matplotlib.pyplot as plt import numpy as np import scipy.interpolate as interp from .cp_tools import cp_loglikelihood from .cp_tools import cp_loglikelihood_proj from .cp_tools import cp_model from .cp_tools import mas2rad from .cp_tools import project_cps from .cp_tools import rad2mas def phase_binary_flux(u, v, wavel, p, return_cvis=False): """Calculate the phases observed by an array on a binary star ---------------------------------------------------------------- p: 3-component vector (+2 optional), the binary "parameters": - p[0] = sep (mas) - p[1] = PA (deg) E of N. - p[2] = flux (primary is assumed to be 1) optional: - p[2:] = contrast ratio for several wavelengths that we want to calculate the cps over - u,v: baseline coordinates (meters) - wavel: wavelength (meters) ----------------------------------------------------------------""" p = np.array(p) # relative locations th = (p[1] + 90.0) * np.pi / 180.0 ddec = mas2rad(p[0] * np.sin(th)) dra = -mas2rad(p[0] * np.cos(th)) # decompose into two "luminosities" # but first, a little trick so this works whether # p is a single value or a list of contrasts spec = p[2:] if len(spec) == 1: spec = spec[0] l2 = spec l1 = 1 - l2 # phase-factor output_shape = list(u.shape) output_shape[-1] =
np.size(wavel)
numpy.size
# Distributed under the MIT License. # See LICENSE.txt for details. import numpy as np def dg_package_data_u(u, flux_u, velocity_field, normal_covector, mesh_velocity, normal_dot_mesh_velocity): return u def dg_package_data_normal_dot_flux_u(u, flux_u, velocity_field, normal_covector, mesh_velocity, normal_dot_mesh_velocity): return np.einsum("i,i", flux_u, normal_covector) def dg_package_data_abs_char_speed(u, flux_u, velocity_field, normal_covector, mesh_velocity, normal_dot_mesh_velocity): normal_dot_velocity =
np.einsum("i,i", velocity_field, normal_covector)
numpy.einsum
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import operator import re from copy import copy as copy_obj from numbers import Integral from typing import Type, Sequence import numpy as np import pandas as pd from pandas._libs import lib from pandas.api.indexers import check_array_indexer from pandas.api.types import ( pandas_dtype, is_scalar, is_array_like, is_string_dtype, is_list_like, ) from pandas.api.extensions import ( ExtensionArray, ExtensionDtype, register_extension_dtype, ) from pandas.arrays import StringArray as StringArrayBase from pandas.core import ops from pandas.core.algorithms import take from pandas.compat import set_function_name try: from pandas._libs.arrays import NDArrayBacked except ImportError: NDArrayBacked = None try: import pyarrow as pa pa_null = pa.NULL except ImportError: # pragma: no cover pa = None pa_null = None from ..config import options from ..core import is_kernel_mode from ..lib.version import parse as parse_version from ..utils import tokenize _use_bool_any_all = parse_version(pd.__version__) >= parse_version("1.3.0") class ArrowDtype(ExtensionDtype): @property def arrow_type(self): # pragma: no cover raise NotImplementedError def __from_arrow__(self, array): return self.construct_array_type()(array) @register_extension_dtype class ArrowStringDtype(ArrowDtype): """ Extension dtype for arrow string data. .. warning:: ArrowStringDtype is considered experimental. The implementation and parts of the API may change without warning. In particular, ArrowStringDtype.na_value may change to no longer be ``numpy.nan``. Attributes ---------- None Methods ------- None Examples -------- >>> import mars.dataframe as md >>> md.ArrowStringDtype() ArrowStringDtype """ type = str kind = "U" name = "Arrow[string]" na_value = pa_null @classmethod def construct_from_string(cls, string): if string == cls.name: return cls() else: raise TypeError(f"Cannot construct a '{cls}' from '{string}'") @classmethod def construct_array_type(cls) -> "Type[ArrowStringArray]": return ArrowStringArray @property def arrow_type(self): return pa.string() @register_extension_dtype class ArrowStringDtypeAlias(ArrowStringDtype): name = "arrow_string" # register an alias name for compatibility class ArrowListDtypeType(type): """ the type of ArrowListDtype, this metaclass determines subclass ability """ pass class ArrowListDtype(ArrowDtype): _metadata = ("_value_type",) def __init__(self, dtype): if isinstance(dtype, type(self)): dtype = dtype.value_type if pa and isinstance(dtype, pa.DataType): dtype = dtype.to_pandas_dtype() dtype = pandas_dtype(dtype) if is_string_dtype(dtype) and not isinstance(dtype, ArrowStringDtype): # convert string dtype to arrow string dtype dtype = ArrowStringDtype() self._value_type = dtype @property def value_type(self): return self._value_type @property def kind(self): return "O" @property def type(self): return ArrowListDtypeType @property def name(self): return f"Arrow[List[{self.value_type.name}]]" @property def arrow_type(self): if isinstance(self._value_type, ArrowDtype): arrow_subdtype = self._value_type.arrow_type else: arrow_subdtype = pa.from_numpy_dtype(self._value_type) return pa.list_(arrow_subdtype) def __repr__(self) -> str: return self.name @classmethod def construct_array_type(cls) -> "Type[ArrowListArray]": return ArrowListArray @classmethod def construct_from_string(cls, string): msg = f"Cannot construct a 'ArrowListDtype' from '{string}'" xpr = re.compile(r"Arrow\[List\[(?P<value_type>[^,]*)\]\]$") m = xpr.match(string) if m: value_type = m.groupdict()["value_type"] return ArrowListDtype(value_type) else: raise TypeError(msg) @classmethod def is_dtype(cls, dtype) -> bool: dtype = getattr(dtype, "dtype", dtype) if isinstance(dtype, str): try: cls.construct_from_string(dtype) except TypeError: return False else: return True else: return isinstance(dtype, cls) def __hash__(self): return super().__hash__() def __eq__(self, other): if not isinstance(other, ArrowListDtype): return False value_type = self._value_type other_value_type = other._value_type try: return value_type == other_value_type except TypeError: # cannot compare numpy dtype and extension dtype return other_value_type == value_type class ArrowArray(ExtensionArray): _arrow_type = None def __init__(self, values, dtype: ArrowDtype = None, copy=False): pandas_only = self._pandas_only() if pa is not None and not pandas_only: self._init_by_arrow(values, dtype=dtype, copy=copy) elif not is_kernel_mode(): # not in kernel mode, allow to use numpy handle data # just for infer dtypes purpose self._init_by_numpy(values, dtype=dtype, copy=copy) else: raise ImportError( "Cannot create ArrowArray " "when `pyarrow` not installed" ) # for test purpose self._force_use_pandas = pandas_only def _init_by_arrow(self, values, dtype: ArrowDtype = None, copy=False): if isinstance(values, (pd.Index, pd.Series)): # for pandas Index and Series, # convert to PandasArray values = values.array if isinstance(values, type(self)): arrow_array = values._arrow_array elif isinstance(values, ExtensionArray): # if come from pandas object like index, # convert to pandas StringArray first, # validation will be done in construct arrow_array = pa.chunked_array([pa.array(values, from_pandas=True)]) elif isinstance(values, pa.ChunkedArray): arrow_array = values elif isinstance(values, pa.Array): arrow_array = pa.chunked_array([values]) else: arrow_array = pa.chunked_array([pa.array(values, type=dtype.arrow_type)]) if copy: arrow_array = copy_obj(arrow_array) self._use_arrow = True self._arrow_array = arrow_array if NDArrayBacked is not None and isinstance(self, NDArrayBacked): NDArrayBacked.__init__(self, np.array([]), dtype) else: self._dtype = dtype def _init_by_numpy(self, values, dtype: ArrowDtype = None, copy=False): self._use_arrow = False ndarray =
np.array(values, copy=copy)
numpy.array
""" This module contains the `PostProcessor` class. It contains all advanced postprocessing functionalities that require Python 3.x packages like NumPy and Matplotlib. """ from __future__ import absolute_import # noreorder import math import os import time import warnings from pyaedt.generic.general_methods import is_ironpython from pyaedt.generic.general_methods import pyaedt_function_handler from pyaedt.generic.plot import ModelPlotter from pyaedt.modules.PostProcessor import PostProcessor as Post if not is_ironpython: try: import numpy as np except ImportError: warnings.warn( "The NumPy module is required to run some functionalities of PostProcess.\n" "Install with \n\npip install numpy\n\nRequires CPython." ) try: from IPython.display import Image ipython_available = True except ImportError: warnings.warn( "The Ipython module is required to run some functionalities of PostProcess.\n" "Install with \n\npip install ipython\n\nRequires CPython." ) try: import matplotlib.pyplot as plt except ImportError: warnings.warn( "The Matplotlib module is required to run some functionalities of PostProcess.\n" "Install with \n\npip install matplotlib\n\nRequires CPython." ) except: pass class PostProcessor(Post): """Contains advanced postprocessing functionalities that require Python 3.x packages like NumPy and Matplotlib. Parameters ---------- app : Inherited parent object. Examples -------- Basic usage demonstrated with an HFSS, Maxwell, or any other design: >>> from pyaedt import Hfss >>> aedtapp = Hfss() >>> post = aedtapp.post """ def __init__(self, app): Post.__init__(self, app) @pyaedt_function_handler() def nb_display(self, show_axis=True, show_grid=True, show_ruler=True): """Show the Jupyter Notebook display. .. note:: .assign_curvature_extraction Jupyter Notebook is not supported by IronPython. Parameters ---------- show_axis : bool, optional Whether to show the axes. The default is ``True``. show_grid : bool, optional Whether to show the grid. The default is ``True``. show_ruler : bool, optional Whether to show the ruler. The default is ``True``. Returns ------- :class:`IPython.core.display.Image` Jupyter notebook image. """ file_name = self.export_model_picture(show_axis=show_axis, show_grid=show_grid, show_ruler=show_ruler) return Image(file_name, width=500) @pyaedt_function_handler() def get_efields_data(self, setup_sweep_name="", ff_setup="Infinite Sphere1", freq="All"): """Compute Etheta and EPhi. .. warning:: This method requires NumPy to be installed on your machine. Parameters ---------- setup_sweep_name : str, optional Name of the setup for computing the report. The default is ``""``, in which case the nominal adaptive is applied. ff_setup : str, optional Far field setup. The default is ``"Infinite Sphere1"``. freq : str, optional The default is ``"All"``. Returns ------- np.ndarray numpy array containing ``[theta_range, phi_range, Etheta, Ephi]``. """ if not setup_sweep_name: setup_sweep_name = self._app.nominal_adaptive results_dict = {} all_sources = self.post_osolution.GetAllSources() # assuming only 1 mode all_sources_with_modes = [s + ":1" for s in all_sources] for n, source in enumerate(all_sources_with_modes): edit_sources_ctxt = [["IncludePortPostProcessing:=", False, "SpecifySystemPower:=", False]] for m, each in enumerate(all_sources_with_modes): if n == m: # set only 1 source to 1W, all the rest to 0 mag = 1 else: mag = 0 phase = 0 edit_sources_ctxt.append( ["Name:=", "{}".format(each), "Magnitude:=", "{}W".format(mag), "Phase:=", "{}deg".format(phase)] ) self.post_osolution.EditSources(edit_sources_ctxt) ctxt = ["Context:=", ff_setup] sweeps = ["Theta:=", ["All"], "Phi:=", ["All"], "Freq:=", [freq]] trace_name = "rETheta" solnData = self.get_far_field_data( setup_sweep_name=setup_sweep_name, domain=ff_setup, expression=trace_name ) data = solnData.nominal_variation theta_vals = np.degrees(np.array(data.GetSweepValues("Theta"))) phi_vals = np.degrees(np.array(data.GetSweepValues("Phi"))) # phi is outer loop theta_unique = np.unique(theta_vals) phi_unique = np.unique(phi_vals) theta_range = np.linspace(np.min(theta_vals), np.max(theta_vals), np.size(theta_unique)) phi_range = np.linspace(np.min(phi_vals), np.max(phi_vals), np.size(phi_unique)) real_theta = np.array(data.GetRealDataValues(trace_name)) imag_theta = np.array(data.GetImagDataValues(trace_name)) trace_name = "rEPhi" solnData = self.get_far_field_data( setup_sweep_name=setup_sweep_name, domain=ff_setup, expression=trace_name ) data = solnData.nominal_variation real_phi = np.array(data.GetRealDataValues(trace_name)) imag_phi = np.array(data.GetImagDataValues(trace_name)) Etheta = np.vectorize(complex)(real_theta, imag_theta) Ephi = np.vectorize(complex)(real_phi, imag_phi) source_name_without_mode = source.replace(":1", "") results_dict[source_name_without_mode] = [theta_range, phi_range, Etheta, Ephi] return results_dict @pyaedt_function_handler() def ff_sum_with_delta_phase(self, ff_data, xphase=0, yphase=0): """Generate a far field sum with a delta phase. Parameters ---------- ff_data : xphase : float, optional Phase in the X-axis direction. The default is ``0``. yphase : float, optional Phase in the Y-axis direction. The default is ``0``. Returns ------- bool ``True`` when successful, ``False`` when failed. """ array_size = [4, 4] loc_offset = 2 rETheta = ff_data[2] rEPhi = ff_data[3] weight = np.zeros((array_size[0], array_size[0])) mag = np.ones((array_size[0], array_size[0])) for m in range(array_size[0]): for n in range(array_size[1]): mag = mag[m][n] ang = np.radians(xphase * m) + np.radians(yphase * n) weight[m][n] = np.sqrt(mag) * np.exp(1 * ang) return True @pyaedt_function_handler() def plot_model_obj( self, objects=None, show=True, export_path=None, plot_as_separate_objects=True, plot_air_objects=False, force_opacity_value=None, clean_files=False, ): """Plot the model or a substet of objects. Parameters ---------- objects : list, optional Optional list of objects to plot. If `None` all objects will be exported. show : bool, optional Show the plot after generation or simply return the generated Class for more customization before plot. export_path : str, optional If available, an image is saved to file. If `None` no image will be saved. plot_as_separate_objects : bool, optional Plot each object separately. It may require more time to export from AEDT. plot_air_objects : bool, optional Plot also air and vacuum objects. force_opacity_value : float, optional Opacity value between 0 and 1 to be applied to all model. If `None` aedt opacity will be applied to each object. clean_files : bool, optional Clean created files after plot. Cache is mainteined into the model object returned. Returns ------- :class:`pyaedt.generic.plot.ModelPlotter` Model Object. """ assert self._app._aedt_version >= "2021.2", self.logger.error("Object is supported from AEDT 2021 R2.") files = self.export_model_obj( obj_list=objects, export_as_single_objects=plot_as_separate_objects, air_objects=plot_air_objects, ) if not files: self.logger.warning("No Objects exported. Try other options or include Air objects.") return False model = ModelPlotter() for file in files: if force_opacity_value: model.add_object(file[0], file[1], force_opacity_value, self.modeler.model_units) else: model.add_object(file[0], file[1], file[2], self.modeler.model_units) if not show: model.off_screen = True if export_path: model.plot(export_path) elif show: model.plot() if clean_files: model.clean_cache_and_files(clean_cache=False) return model @pyaedt_function_handler() def plot_field_from_fieldplot( self, plotname, project_path="", meshplot=False, imageformat="jpg", view="isometric", plot_label="Temperature", plot_folder=None, show=True, scale_min=None, scale_max=None, ): """Export a field plot to an image file (JPG or PNG) using Python Plotly. .. note:: The Plotly module rebuilds the mesh and the overlap fields on the mesh. Parameters ---------- plotname : str Name of the field plot to export. project_path : str, optional Path for saving the image file. The default is ``""``. meshplot : bool, optional Whether to create and plot the mesh over the fields. The default is ``False``. imageformat : str, optional Format of the image file. Options are ``"jpg"``, ``"png"``, ``"svg"``, and ``"webp"``. The default is ``"jpg"``. view : str, optional View to export. Options are ``isometric``, ``top``, ``front``, ``left``, ``all``.. The default is ``"iso"``. If ``"all"``, all views are exported. plot_label : str, optional Type of the plot. The default is ``"Temperature"``. plot_folder : str, optional Plot folder to update before exporting the field. The default is ``None``, in which case all plot folders are updated. show : bool, optional Export Image without plotting on UI. scale_min : float, optional Fix the Scale Minimum value. scale_max : float, optional Fix the Scale Maximum value. Returns ------- :class:`pyaedt.generic.plot.ModelPlotter` Model Object. """ if not plot_folder: self.ofieldsreporter.UpdateAllFieldsPlots() else: self.ofieldsreporter.UpdateQuantityFieldsPlots(plot_folder) start = time.time() file_to_add = self.export_field_plot(plotname, self._app.working_directory) models = None if not file_to_add: return False else: if self._app._aedt_version >= "2021.2": models = self.export_model_obj(export_as_single_objects=True, air_objects=False) model = ModelPlotter() model.off_screen = not show if file_to_add: model.add_field_from_file(file_to_add, coordinate_units=self.modeler.model_units, show_edges=meshplot) if plot_label: model.fields[0].label = plot_label if models: for m in models: model.add_object(m[0], m[1], m[2]) model.view = view if scale_min and scale_max: model.range_min = scale_min model.range_max = scale_max if show or project_path: model.plot(os.path.join(project_path, self._app.project_name + "." + imageformat)) model.clean_cache_and_files(clean_cache=False) return model @pyaedt_function_handler() def animate_fields_from_aedtplt( self, plotname, plot_folder=None, meshplot=False, variation_variable="Phi", variation_list=["0deg"], project_path="", export_gif=False, show=True, ): """Generate a field plot to an image file (JPG or PNG) using PyVista. .. note:: The PyVista module rebuilds the mesh and the overlap fields on the mesh. Parameters ---------- plotname : str Name of the plot or the name of the object. plot_folder : str, optional Name of the folder in which the plot resides. The default is ``None``. variation_variable : str, optional Variable to vary. The default is ``"Phi"``. variation_list : list, optional List of variation values with units. The default is ``["0deg"]``. project_path : str, optional Path for the export. The default is ``""`` which export file in working_directory. meshplot : bool, optional The default is ``False``. Valid from Version 2021.2. export_gif : bool, optional The default is ``False``. show=False, show : bool, optional Generate the animation without showing an interactive plot. The default is ``True``. Returns ------- :class:`pyaedt.generic.plot.ModelPlotter` Model Object. """ if not plot_folder: self.ofieldsreporter.UpdateAllFieldsPlots() else: self.ofieldsreporter.UpdateQuantityFieldsPlots(plot_folder) models_to_add = [] if meshplot: if self._app._aedt_version >= "2021.2": models_to_add = self.export_model_obj(export_as_single_objects=True, air_objects=False) fields_to_add = [] if not project_path: project_path = self._app.working_directory for el in variation_list: self._app._odesign.ChangeProperty( [ "NAME:AllTabs", [ "NAME:FieldsPostProcessorTab", ["NAME:PropServers", "FieldsReporter:" + plotname], ["NAME:ChangedProps", ["NAME:" + variation_variable, "Value:=", el]], ], ] ) fields_to_add.append( self.export_field_plot(plotname, project_path, plotname + variation_variable + str(el)) ) model = ModelPlotter() model.off_screen = not show if models_to_add: for m in models_to_add: model.add_object(m[0], cad_color=m[1], opacity=m[2]) if fields_to_add: model.add_frames_from_file(fields_to_add) if export_gif: model.gif_file = os.path.join(self._app.working_directory, self._app.project_name + ".gif") if show or export_gif: model.animate() model.clean_cache_and_files(clean_cache=False) return model @pyaedt_function_handler() def animate_fields_from_aedtplt_2( self, quantityname, object_list, plottype, meshplot=False, setup_name=None, intrinsic_dict={}, variation_variable="Phi", variation_list=["0deg"], project_path="", export_gif=False, show=True, zoom=None, ): """Generate a field plot to an animated gif file using PyVista. .. note:: The PyVista module rebuilds the mesh and the overlap fields on the mesh. This method creates the plot and exports it. It is an alternative to the method :func:`animate_fields_from_aedtplt`, which uses an existing plot. Parameters ---------- quantityname : str Name of the plot or the name of the object. object_list : list, optional Name of the ``folderplot`` folder. plottype : str Type of the plot. Options are ``"Surface"``, ``"Volume"``, and ``"CutPlane"``. meshplot : bool, optional The default is ``False``. setup_name : str, optional Name of the setup (sweep) to use for the export. The default is ``None``. intrinsic_dict : dict, optional Intrinsic dictionary that is needed for the export. The default is ``{}``. variation_variable : str, optional Variable to vary. The default is ``"Phi"``. variation_list : list, option List of variation values with units. The default is ``["0deg"]``. project_path : str, optional Path for the export. The default is ``""`` which export file in working_directory. export_gif : bool, optional Whether to export to a GIF file. The default is ``False``, in which case the plot is exported to a JPG file. show : bool, optional Generate the animation without showing an interactive plot. The default is ``True``. zoom : float, optional Zoom factor. Returns ------- :class:`pyaedt.generic.plot.ModelPlotter` Model Object. """ if not project_path: project_path = self._app.working_directory models_to_add = [] if meshplot: if self._app._aedt_version >= "2021.2": models_to_add = self.export_model_obj(export_as_single_objects=True, air_objects=False) v = 0 fields_to_add = [] for el in variation_list: intrinsic_dict[variation_variable] = el if plottype == "Surface": plotf = self.create_fieldplot_surface(object_list, quantityname, setup_name, intrinsic_dict) elif plottype == "Volume": plotf = self.create_fieldplot_volume(object_list, quantityname, setup_name, intrinsic_dict) else: plotf = self.create_fieldplot_cutplane(object_list, quantityname, setup_name, intrinsic_dict) if plotf: file_to_add = self.export_field_plot(plotf.name, project_path, plotf.name + str(v)) if file_to_add: fields_to_add.append(file_to_add) plotf.delete() v += 1 model = ModelPlotter() model.off_screen = not show if models_to_add: for m in models_to_add: model.add_object(m[0], cad_color=m[1], opacity=m[2]) if fields_to_add: model.add_frames_from_file(fields_to_add) if export_gif: model.gif_file = os.path.join(self._app.working_directory, self._app.project_name + ".gif") if zoom: model.zoom = zoom if show or export_gif: model.animate() model.clean_cache_and_files(clean_cache=False) return model @pyaedt_function_handler() def far_field_plot(self, ff_data, x=0, y=0, qty="rETotal", dB=True, array_size=[4, 4]): """Generate a far field plot. Parameters ---------- ff_data : x : float, optional The default is ``0``. y : float, optional The default is ``0``. qty : str, optional The default is ``"rETotal"``. dB : bool, optional The default is ``True``. array_size : list List for the array size. The default is ``[4, 4]``. Returns ------- bool ``True`` when successful, ``False`` when failed. """ loc_offset = 2 # if array index is not starting at [1,1] xphase = float(y) yphase = float(x) array_shape = (array_size[0], array_size[1]) weight = np.zeros(array_shape, dtype=complex) mag = np.ones(array_shape, dtype="object") port_names_arranged = np.chararray(array_shape) all_ports = ff_data.keys() w_dict = {} # calculate weights based off of progressive phase shift port_name = [] for m in range(array_shape[0]): for n in range(array_shape[1]): mag_val = mag[m][n] ang = np.radians(xphase * m) + np.radians(yphase * n) weight[m][n] = np.sqrt(mag_val) * np.exp(1j * ang) current_index_str = "[" + str(m + 1 + loc_offset) + "," + str(n + 1 + loc_offset) + "]" port_name = [y for y in all_ports if current_index_str in y] w_dict[port_name[0]] = weight[m][n] length_of_ff_data = len(ff_data[port_name[0]][2]) array_shape = (len(w_dict), length_of_ff_data) rEtheta_fields = np.zeros(array_shape, dtype=complex) rEphi_fields = np.zeros(array_shape, dtype=complex) w = np.zeros((1, array_shape[0]), dtype=complex) # create port mapping Ntheta = 0 Nphi = 0 for n, port in enumerate(ff_data.keys()): re_theta = ff_data[port][2] re_phi = ff_data[port][3] re_theta = re_theta * w_dict[port] w[0][n] = w_dict[port] re_phi = re_phi * w_dict[port] rEtheta_fields[n] = re_theta rEphi_fields[n] = re_phi theta_range = ff_data[port][0] phi_range = ff_data[port][1] theta = [int(np.min(theta_range)), int(
np.max(theta_range)
numpy.max
import os,warnings warnings.filterwarnings("ignore") import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import tensorflow.contrib.slim as slim import scipy.io as sio from sklearn.utils import shuffle from util import gpusession,nzr,print_n_txt,remove_file_if_exists import matplotlib.pyplot as plt class mlp_reg_class(object): def __init__(self,_name='mlp_reg',_x_dim=1,_y_dim=1,_h_dims=[64, 64],_actv=tf.nn.tanh,_bn=slim.batch_norm, _l2_reg_coef=1e-5,_GPU_ID=0,_L1_LOSS=False,_ROBUST_LOSS=False,_LEAKY_ROBUST_LOSS=False,_VERBOSE=True): self.name = _name self.x_dim = _x_dim self.y_dim = _y_dim self.h_dims = _h_dims self.actv = _actv self.bn = _bn self.l2_reg_coef = _l2_reg_coef self.GPU_ID = _GPU_ID self.L1_LOSS = _L1_LOSS self.ROBUST_LOSS = _ROBUST_LOSS self.LEAKY_ROBUST_LOSS = _LEAKY_ROBUST_LOSS self.VERBOSE = _VERBOSE if _GPU_ID < 0: # with CPU only (no GPU) # Build model self.build_model() # Build graph self.build_graph() # Check params self.check_params() else: # with GPU with tf.device('/device:GPU:%d' % (self.GPU_ID)): # Build model self.build_model() # Build graph self.build_graph() # Check params self.check_params() def build_model(self): self.x = tf.placeholder(dtype=tf.float32,shape=[None,self.x_dim]) # Input [N x xdim] self.y = tf.placeholder(dtype=tf.float32,shape=[None,self.y_dim]) # Output [N x ydim] self.kp = tf.placeholder(dtype=tf.float32,shape=[]) # Keep probability self.lr = tf.placeholder(dtype=tf.float32,shape=[]) # Learning rate self.is_training = tf.placeholder(dtype=tf.bool,shape=[]) # Training flag self.fully_init = tf.random_normal_initializer(stddev=0.01) self.bias_init = tf.constant_initializer(0.) self.bn_init = {'beta': tf.constant_initializer(0.), 'gamma': tf.random_normal_initializer(1., 0.01)} self.bn_params = {'is_training':self.is_training,'decay':0.9,'epsilon':1e-5, 'param_initializers':self.bn_init,'updates_collections':None} # Build graph with tf.variable_scope(self.name,reuse=False) as scope: with slim.arg_scope([slim.fully_connected] ,activation_fn=self.actv ,weights_initializer=self.fully_init ,biases_initializer=self.bias_init ,normalizer_fn=self.bn,normalizer_params=self.bn_params ,weights_regularizer=None): _net = self.x # Input [N x xdim] for h_idx in range(len(self.h_dims)): # Loop over hidden layers _h_dim = self.h_dims[h_idx] _net = slim.fully_connected(_net,_h_dim,scope='lin'+str(h_idx)) _net = slim.dropout(_net,keep_prob=self.kp,is_training=self.is_training ,scope='dr'+str(h_idx)) self.feat = _net # Feature [N x Q] self.out = slim.fully_connected(self.feat,self.y_dim,activation_fn=None ,scope='out') # [N x D] def build_graph(self): # fitting loss if self.L1_LOSS: # L1 loss self._loss_fit = tf.reduce_sum(tf.abs(self.out-self.y),axis=1) # [N x 1] self.loss_fit = tf.reduce_mean(self._loss_fit) # [1] elif self.ROBUST_LOSS: # Tukey biweight loss USE_MAD = False self.residuals = self.out-self.y # [N x 1] if USE_MAD: median = tf.contrib.distributions.percentile(self.residuals, 50.0) temp = tf.abs(self.residuals-median) mad = tf.contrib.distributions.percentile(temp, 50.0) b = 1.4826 # 1.4826 self.r_mad = self.residuals/b/mad else: self.r_mad = self.residuals c = 1 # 4.6851 self.condition = tf.less(tf.abs(self.r_mad),c) self._loss_fit = tf.where(self.condition, c*c/6*(1-tf.pow((1-tf.pow(self.r_mad/c,2)),3)), c*c/6*tf.ones_like(self.r_mad)) # [N x 1] self.loss_fit = tf.reduce_mean(self._loss_fit) # [1] elif self.LEAKY_ROBUST_LOSS: # Leakey Tukey biweight loss USE_MAD = False self.residuals = self.out-self.y # [N x 1] if USE_MAD: median = tf.contrib.distributions.percentile(self.residuals, 50.0) temp = tf.abs(self.residuals-median) mad = tf.contrib.distributions.percentile(temp, 50.0) b = 1.4826 # 1.4826 self.r_mad = self.residuals/b/mad else: self.r_mad = self.residuals c = 1 # 4.6851 self.condition = tf.less(tf.abs(self.r_mad),c) leaky_rate = 0.1 # 0.1 self._loss_fit = tf.where(self.condition, c*c/6*(1-tf.pow((1-tf.pow(self.r_mad/c,2)),3)), leaky_rate*(tf.abs(self.r_mad)-c) + c*c/6) # [N x 1] self.loss_fit = tf.reduce_mean(self._loss_fit) # [1] else: # ordinary L2 loss self._loss_fit = tf.reduce_sum(tf.pow(self.out-self.y,2),axis=1) # [N x 1] self.loss_fit = tf.reduce_mean(self._loss_fit) # [1] # Weight decay _t_vars = tf.trainable_variables() self.c_vars = [var for var in _t_vars if '%s/'%(self.name) in var.name] self.l2_reg = self.l2_reg_coef*tf.reduce_sum(tf.stack([tf.nn.l2_loss(v) for v in self.c_vars])) # [1] self.loss_total = self.loss_fit + self.l2_reg # [1] # Optimizer USE_ADAM = False if USE_ADAM: self.optm = tf.train.AdamOptimizer(learning_rate=self.lr,beta1=0.9,beta2=0.999 ,epsilon=1e-8).minimize(self.loss_total) else: self.optm = tf.train.MomentumOptimizer(learning_rate=self.lr ,momentum=0.5).minimize(self.loss_total) def check_params(self): _g_vars = tf.global_variables() self.g_vars = [var for var in _g_vars if '%s/'%(self.name) in var.name] if self.VERBOSE: print ("==== Global Variables ====") for i in range(len(self.g_vars)): w_name = self.g_vars[i].name w_shape = self.g_vars[i].get_shape().as_list() if self.VERBOSE: print (" [%02d] Name:[%s] Shape:[%s]" % (i,w_name,w_shape)) def sampler(self,_sess,_x): outVal = _sess.run(self.out,feed_dict={self.x:_x,self.kp:1.0,self.is_training:False}) return outVal def save2npz(self,_sess,_save_name=None): """ Save name """ if _save_name==None: _save_name='net/net_%s.npz'%(self.name) """ Get global variables """ self.g_wnames,self.g_wvals,self.g_wshapes = [],[],[] for i in range(len(self.g_vars)): curr_wname = self.g_vars[i].name curr_wvar = [v for v in tf.global_variables() if v.name==curr_wname][0] curr_wval = _sess.run(curr_wvar) curr_wval_sqz = curr_wval.squeeze() self.g_wnames.append(curr_wname) self.g_wvals.append(curr_wval_sqz) self.g_wshapes.append(curr_wval.shape) """ Save """ np.savez(_save_name,g_wnames=self.g_wnames,g_wvals=self.g_wvals,g_wshapes=self.g_wshapes) if self.VERBOSE: print ("[%s] saved. Size is [%.4f]MB" % (_save_name,os.path.getsize(_save_name)/1000./1000.)) def restore_from_npz(self,_sess,_loadname=None): if _loadname==None: _loadname='net/net_%s_final.npz'%(self.name) l = np.load(_loadname) g_wnames = l['g_wnames'] g_wvals = l['g_wvals'] g_wshapes = l['g_wshapes'] for widx,wname in enumerate(g_wnames): curr_wvar = [v for v in tf.global_variables() if v.name==wname][0] _sess.run(tf.assign(curr_wvar,g_wvals[widx].reshape(g_wshapes[widx]))) if self.VERBOSE: print ("Weight restored from [%s] Size is [%.4f]MB" % (_loadname,os.path.getsize(_loadname)/1000./1000.)) def save2mat_from_npz(self,_x_train='',_y_train='',_save_name=None,_npz_path=None): # Save weights to mat file so that MATLAB can use it. if _npz_path == None: _npz_path = 'net/net_%s.npz'%(self.name) l = np.load(_npz_path) g_wnames = l['g_wnames'] g_wvals = l['g_wvals'] g_wshapes = l['g_wshapes'] D = {} for w_idx,w_name in enumerate(g_wnames): curr_name = w_name.replace(':0','') curr_name = curr_name.replace(self.name+'/','') curr_name = curr_name.replace('/','_') curr_val = g_wvals[w_idx].reshape(g_wshapes[w_idx]) D[curr_name] = curr_val # Save train data if _x_train!='': D['x_train'] = _x_train if _y_train!='': D['y_train'] = _y_train # Save dictionary D to the mat file if _save_name == None: _save_name = 'net/net_%s.mat'%(self.name) sio.savemat(_save_name,D) if self.VERBOSE: print ("[%s] saved. Size is [%.4f]MB" % (_save_name,os.path.getsize(_save_name)/1000./1000.)) def train(self,_sess,_x_train,_y_train,_lr=1e-3,_batch_size=512,_max_epoch=1e4,_kp=1.0, _LR_SCHEDULE=True,_PRINT_EVERY=20,_PLOT_EVERY=20, _SAVE_TXT=True,_SAVE_BEST_NET=True,_SAVE_FINAL=True,_REMOVE_PREVS=True, _x_dim4plot=0,_x_name4plot=None): self.x_dim4plot = _x_dim4plot self.x_name4plot = _x_name4plot # Remove existing files if _REMOVE_PREVS: remove_file_if_exists('net/net_%s_best.npz'%(self.name),_VERBOSE=self.VERBOSE) remove_file_if_exists('net/net_%s_best.mat'%(self.name),_VERBOSE=self.VERBOSE) remove_file_if_exists('net/net_%s_final.npz'%(self.name),_VERBOSE=self.VERBOSE) remove_file_if_exists('net/net_%s_final.mat'%(self.name),_VERBOSE=self.VERBOSE) remove_file_if_exists('res/res_%s.txt'%(self.name),_VERBOSE=self.VERBOSE) # Reference training data x_train,y_train = _x_train,_y_train if len(np.shape(y_train)) == 1: # if y is a vector y_train = np.reshape(y_train,newshape=[-1,1]) # make it rank two self.nzr_x,self.nzr_y = nzr(x_train),nzr(y_train) # get normalizer # Iterate if _PRINT_EVERY == 0: print_period = 0 else: print_period = _max_epoch//_PRINT_EVERY if _PLOT_EVERY == 0: plot_period = 0 else: plot_period = _max_epoch//_PLOT_EVERY max_iter = max(x_train.shape[0]//_batch_size, 1) best_loss_val = np.inf if _SAVE_TXT: txt_name = ('res/res_%s.txt'%(self.name));f = open(txt_name,'w') # Open txt file print_n_txt(_f=f,_chars='Text: '+txt_name,_DO_PRINT=self.VERBOSE) for epoch in range((int)(_max_epoch)+1): # For every epoch x_train,y_train = shuffle(x_train,y_train) nzd_x_train,nzd_y_train = self.nzr_x.get_nzdval(x_train),self.nzr_y.get_nzdval(y_train) for iter in range(max_iter): # For every iteration start,end = iter*_batch_size,(iter+1)*_batch_size if _LR_SCHEDULE: if epoch < 0.5*_max_epoch: lr_use = _lr elif epoch < 0.75*_max_epoch: lr_use = _lr/5. else: lr_use = _lr/10. else: lr_use = _lr feeds = {self.x:nzd_x_train[start:end,:],self.y:nzd_y_train[start:end,:] ,self.kp:_kp,self.lr:lr_use,self.is_training:True} # Optimize _sess.run(self.optm,feeds) # Track the Best result BEST_FLAG = False check_period = _max_epoch//100 if (epoch % check_period)==0: # Feed total dataset feeds = {self.x:nzd_x_train,self.y:nzd_y_train,self.kp:1.0,self.is_training:False} opers = [self.loss_total,self.loss_fit,self.l2_reg] loss_val,loss_fit,l2_reg = _sess.run(opers,feeds) if (loss_val < best_loss_val) & (epoch >= 3): best_loss_val = loss_val BEST_FLAG = True if _SAVE_BEST_NET: # Save the current best model if self.VERBOSE: print ("Epoch:[%d] saving current network (best loss:[%.3f])"%(epoch,best_loss_val)) self.save2npz(_sess,_save_name='net/net_%s_best.npz'%(self.name)) self.save2mat_from_npz(_x_train=x_train,_y_train=y_train, _save_name='net/net_%s_best.mat'%(self.name), _npz_path='net/net_%s_best.npz'%(self.name)) # Print current result if (print_period!=0) and ((epoch%print_period)==0 or (epoch==(_max_epoch-1))): # Print feeds = {self.x:nzd_x_train,self.y:nzd_y_train,self.kp:1.0,self.is_training:False} opers = [self.loss_total,self.loss_fit,self.l2_reg] loss_val,loss_fit,l2_reg = _sess.run(opers,feeds) if _SAVE_TXT: str_temp = ("[%d/%d] loss:%.3f(fit:%.3f+l2:%.3f) bestLoss:%.3f" %(epoch,_max_epoch,loss_val,loss_fit,l2_reg,best_loss_val)) print_n_txt(_f=f,_chars=str_temp,_DO_PRINT=self.VERBOSE) else: if self.VERBOSE | True : print ("[%d/%d] loss:%.3f(fit:%.3f+l2:%.3f) bestLoss:%.3f" %(epoch,_max_epoch,loss_val,loss_fit,l2_reg,best_loss_val)) # Plot current result if (plot_period!=0) and ((epoch%plot_period)==0 or (epoch==(_max_epoch-1))): # Plot # Get loss vals feeds = {self.x:nzd_x_train,self.y:nzd_y_train,self.kp:1.0,self.is_training:False} opers = [self.loss_total,self.loss_fit,self.l2_reg] loss_val,loss_fit,l2_reg = _sess.run(opers,feeds) # Output nzd_y_test = self.sampler(_sess=_sess,_x=nzd_x_train) y_pred = self.nzr_y.get_orgval(nzd_y_test)[:,0] # Plot one dimensions of both input and output x_plot,y_plot = x_train[:,self.x_dim4plot],y_train[:,0] # Traning data plt.figure(figsize=(8,4)) # plt.axis([np.min(x_plot),np.max(x_plot),np.min(y_plot)-0.1,np.max(y_plot)+0.1]) h_tr,=plt.plot(x_plot,y_plot,'k.') # Plot training data h_pr,=plt.plot(x_plot,y_pred,'b.') # Plot prediction plt.title("[%d/%d] name:[%s] loss_val:[%.3e]"%(epoch,_max_epoch,self.name,loss_val),fontsize=13); plt.legend([h_tr,h_pr],['Train data','Predictions'],fontsize=13,loc='upper left') if self.x_name4plot != None: plt.xlabel(self.x_name4plot,fontsize=13) plt.show() # Save final results if _SAVE_FINAL: self.save2npz(_sess,_save_name='net/net_%s_final.npz'%(self.name)) self.save2mat_from_npz(_x_train=x_train,_y_train=y_train, _save_name='net/net_%s_final.mat'%(self.name), _npz_path='net/net_%s_final.npz'%(self.name)) if self.VERBOSE: print ("Train done.") def test(self,_sess,_x_train,_y_train,_x_test=None,_y_test=None, _title_str4data=None,_title_str4test=None, _PLOT_TRAIN=False,_PLOT_TEST=False,_SAVE_FIG=False, _x_dim4plot=0,_x_name4plot=None): self.x_dim4plot = _x_dim4plot self.x_name4plot = _x_name4plot self.nzr_x,self.nzr_y = nzr(_x_train),nzr(_y_train) # get normalizer # Get normalizer if len(np.shape(_y_train)) == 1: # if y is a vector _y_train = np.reshape(_y_train,newshape=[-1,1]) # make it rank two self.nzr_x,self.nzr_y = nzr(_x_train),nzr(_y_train) # get normalizer self.nzr_x,self.nzr_y = nzr(_x_train),nzr(y_train) # get normalizer self.nzr_x.mu, self.nzr_x.std = 0,1 self.nzr_y.mu, self.nzr_y.std = 0,1 else: self.nzr_x,self.nzr_y = nzr(_x_train),nzr(_y_train) # get normalizer # Plot train data and predictions if _PLOT_TRAIN: if len(np.shape(_y_train)) == 1: # if y is a vector _y_train = np.reshape(_y_train,newshape=[-1,1]) # make it rank two x_train4plot,y_train4plot = _x_train[:,self.x_dim4plot],_y_train[:,0] # traning data nzd_y_pred = self.sampler(_sess=_sess,_x=self.nzr_x.get_nzdval(_x_train)) y_pred_train = self.nzr_y.get_orgval(nzd_y_pred)[:,0] plt.figure(figsize=(8,4)) plt.axis([np.min(x_train4plot),np.max(x_train4plot),np.min(y_train4plot)-0.1,np.max(y_train4plot)+0.1]) h_tr,=plt.plot(x_train4plot,y_train4plot,'k.') # plot train data h_pr,=plt.plot(x_train4plot,y_pred_train,'b.') # plot prediction for train data plt.legend([h_tr,h_pr],['Train data','Train predictions'],fontsize=13,loc='upper left') if self.x_name4plot != None: plt.xlabel(self.x_name4plot,fontsize=13) plt.ylabel('Output',fontsize=13) if _title_str4data != None: plt.title(_title_str4data,fontsize=15); if _SAVE_FIG: plt.savefig('fig/fig_%s_data.png'%(self.name)) plt.show() # Plot test data and predictions if len(np.shape(_y_train)) == 1: # if y is a vector _y_train = np.reshape(_y_train,newshape=[-1,1]) # make it rank two if len(np.shape(_y_test)) == 1: # if y is a vector _y_test = np.reshape(_y_test,newshape=[-1,1]) # make it rank two x_data4plot,y_data4plot = _x_train[:,self.x_dim4plot],_y_train[:,0] # traning data x_test4plot,y_test4plot = _x_test[:,self.x_dim4plot],_y_test[:,0] # test data nzd_y_test = self.sampler(_sess=_sess,_x=self.nzr_x.get_nzdval(_x_test)) y_pred_test = self.nzr_y.get_orgval(nzd_y_test)[:,0] if _PLOT_TEST: fig = plt.figure(figsize=(8,4)) plt.axis([
np.min(x_data4plot)
numpy.min
# ====================================================================== # Author: TrungNT # ====================================================================== from __future__ import print_function, division from .. import logger from ..trainer import _data, _task, trainer from ..dataset import dataset from ..model import model from .. import tensor import unittest import os from collections import defaultdict import numpy as np import h5py # =========================================================================== # Main Tests # =========================================================================== def model_func(): import lasagne l = lasagne.layers.InputLayer(shape=(None, 10)) l = lasagne.layers.DenseLayer(l, num_units=64) l = lasagne.layers.DenseLayer(l, num_units=3, nonlinearity=lasagne.nonlinearities.linear) return l class ModelTest(unittest.TestCase): def setUp(self): logger.set_enable(False) f = h5py.File('tmp.h5', 'w') f['X_train'] = np.random.rand(1024, 10) f['y_train'] = np.random.rand(1024, 3) f['X_test'] = np.random.rand(512, 10) f['y_test'] = np.random.rand(512, 3) f['X_valid'] = np.random.rand(512, 10) f['y_valid'] = np.random.rand(512, 3) def tearDown(self): logger.set_enable(True) if os.path.exists('tmp.h5'): os.remove('tmp.h5') def test_data(self): ds = dataset('tmp.h5', 'r') d = _data() d.set(['X_train', 'y_train', ds['X_valid'], ds['y_valid'], np.random.rand(1024, 13)]) self.assertEqual(len(d._batches), 3) d.set_dataset(ds) self.assertEqual(len(d._batches), 5) it = d.create_iter(32, 0., 1., shuffle=True, seed=13, mode=0) count = defaultdict(int) for a, b, c, d, e in it: count['a'] += a.shape[0] count['b'] += b.shape[0] count['c'] += c.shape[0] count['d'] += d.shape[0] count['e'] += e.shape[0] self.assertEqual(count.values(), [512] * 5) self.assertEqual(a.shape[1], 10) self.assertEqual(b.shape[1], 3) self.assertEqual(e.shape[1], 13) def test_task(self): ds = dataset('tmp.h5', 'r') global niter niter = 0 def task_func(*X): global nargs, niter nargs = len(X) niter += 1 t = _task('task', task_func, _data(ds).set(['X_train', ds['y_train']]), epoch=2, p=1., seed=13) t.set_iter(128, 0., 1., shuffle=True, mode=0) run_it = t.run_iter() while run_it.next() is not None: pass self.assertEqual(nargs, 2) self.assertEqual(niter, 16) t._epoch = float('inf') # infinite run niter = 0 run_it = t.run_iter() for i in xrange(1000): run_it.next() self.assertEqual(niter, 1000) def test_training(self): import lasagne # ====== create model ====== # m = model() m.set_model(model_func) f_cost = m.create_cost( lambda y_pred, y_true: tensor.mean(tensor.square(y_pred - y_true), axis=-1)) f_update = m.create_updates( lambda y_pred, y_true: tensor.mean(tensor.square(y_pred - y_true), axis=-1), lasagne.updates.rmsprop) # ====== create trainer ====== # global i, j, k i, j, k = 0, 0, 0 def train_func(*X): global i i += 1 # print('Train', i) def valid_func(*X): global j j += 1 # print('Valid', j) def test_func(*X): global k k += 1 flag = True def task_start_end(trainer): self.assertEqual( trainer.task == 'train' or trainer.task == 'test' or trainer.task == 'realtrain' or trainer.task == 'realtest', True) def batch_start(trainer): global flag # print(trainer.task, trainer.iter) if trainer.task == 'train' and train.iter == 100 and flag: trainer.restart() flag = False elif trainer.task == 'test' and train.iter == 50: trainer.stop() train = trainer() train.set_callback( batch_start=batch_start, task_start=task_start_end, task_end=task_start_end) train.add_data('valid', ['X_valid', 'y_valid']) train.add_data('test', ['X_test', 'y_test']) train.add_task('train', train_func, ['X_train', 'y_train'], 'tmp.h5', epoch=2, seed=13) train.add_subtask(valid_func, 'valid', freq=0.58) train.add_subtask(test_func, 'test', single_run=True, epoch=-1, p=0.1) train.add_task('test', test_func, 'test') while not train.step(): pass self.assertEqual(train.run(), True) self.assertEqual(train.step(), True) self.assertEqual(i, 16) # 2 epochs, 8 iter each self.assertEqual(j, 12) # 3 epochs, 4 iter each self.assertEqual(k, 4) # 10% activated # ====== Main training ====== # def batch_end(trainer): pass def epoch_end(trainer): if trainer.task == 'realtrain_subtask[0]': print('Valid:', np.mean(trainer.output)) elif trainer.task == 'realtrain': print('Train:',
np.mean(trainer.output)
numpy.mean
# (c) 2012 Massachusetts Institute of Technology. All Rights Reserved # Code written by: <NAME> (<EMAIL>) """ This is a basic toolbox to perform high-resolution analysis of a Hi-C data. By high resolution we meen that there are more than 10000-20000 bins per genome - otherwise, binnedData is easily capable of the analysis. It can perform basic filtering (poor coverage regions), and iterative correction at any resolution. The main advantage of this class is that it supports both in memory and HDD storage, and for HDD storage it supports both sparse and dense matrix logic. In fact, sparse logic with HDF5-based storage in memory is already good (default settings). .. note:: This class loads data, saved by saveByChromosomeHeatmap method of fragmentHiC. It is not designed to load heatmaps saved by "saveHeatmap" class, because those can fit in memory, and should be analyzed by a more powerful binnedData class. Class structure --------------- Class defaultMatrix implements a wrapper around a 2D numpy.array matrix. This class defines methods that will be applied to a Hi-C map between two chromosomes. This class should serve as a template and backup for other Hi-C map storage classes which will be inhereted from this class. Class h5dictMatrix implements a subclass of a defaultMatrix, where the matrix is in fact stored on the HDD. It leaves all other methods intact, as all other methods use only self.setData() and self.getData(). Therefore overriding getter and setter is enough to move matrix storage from memory to an h5dict. Use defaultMatrix when the speed is critical, if you're working with cis data only. Class h5dictSparseMatrix implements a subclass of defaultMatrix, where all the methods were overwrridden to operate in a sparse logic. It stores a Hi-C map as three arrays: X coordinate, Y coordinate and Value. Therefore, for sparse matrices all overriden methods will be much faster than default, as they will bypass calling self.getData and creating a huge matrix in memory. It is suggested to use h5dictMatrix for cis maps and h5dictSparseMatrix for trans (between-chromosomal) maps. Class HiResHiC allows to load a by-chromosome Hi-C map, with either cis only, or cis and trans matrices. It then allows to do an iterative correction of the map, and allows for some other filtering. Unlike binnedData, it does not support multiple datasets at once, or complicated filtering, or PCA. It will support by- chromosome domain finder from cis reads at some point as we converge on the ideal algorithm to do this. On my machine with 32GB RAM it was successfully used to perform IC of a human Hi-C at 10kb resolution. It took it 20 minutes to load the data, 4 mins to remove poor bins, and couple hours to perform IC, about 10 minutes per pass. I also note that the data was in fact stored in memory for doing that, and it never used more than 16GB of RAM... in fact, creating this dataset used more, but this will be optimized later. """ from mirnylib.genome import Genome import numpy as np import warnings from mirnylib.h5dict import h5dict from mirnylib import numutils from mirnylib.systemutils import setExceptionHook from scipy.stats.stats import spearmanr from hiclib import hicShared setExceptionHook() class defaultMatrix(object): """ This is a template object which stores matrix in memory. Alternatively, matrix can be stored in an h5dict, either normally or in a sparse mode. All the methods should be first implemented here using getData() and setData() Then they shold be translated to sparse subclasses of this class. """ def __init__(self, data=None, dictToSave=None, key=""): """ Initializes the object that stores the Hi-C matrix. Parameters ---------- data : 2D matrix in any format Hi-C matrix between two chromosomes dictToSave : dict, h5dict or any other dict-like structure Dict to store actual data. Should be h5dict for high resolution analysis. Is not needed for defaultMatrix, will be used by it's subclasses only. key : str or anything A key, unique for each pair of chromosomes, used to identify dataset in the dictToSave. Is provided by HiResHiC. """ self._h5dict = dictToSave self._key = repr(key) if data is not None: self.setData(data) def getData(self): "Returns a matrix in a dense format (NxM array)" return self.data.copy() def setData(self, data): """Accepts the matrix to store. Here, just puts it in RAM. For further subclasses this will need to convert the matrix to the sparse form. """ data = np.asarray(data, dtype=np.float64) assert len(data.shape) == 2 self.data = data def getSumX(self): "returns sum of all values along the first (0) axis, i.e. sum of all rows" return np.sum(self.getData(), axis=0) def getSumY(self): "returns sum of all values along the second (1) axis, i.e. sum of all columns" return np.sum(self.getData(), axis=1) def getSums(self): "returns getSumX and getSumY without calling getData() twice" data = self.getData() sumX = np.sum(data, axis=0) sumY = np.sum(data, axis=1) return (sumX, sumY) def clearRows(self, rows): """Sets to 0 certain rows and columns Parameters ---------- rows : tuple of two arrays (rows, columns) Two arrays which hold indices of rows and colums to be removed """ rowsX, rowsY = rows data = self.getData() data[rowsX, :] = 0 data[:, rowsY] = 0 self.setData(data) def divideByVectorX(self, vectorX): """ Divides each row by correspoinding value from vectorX """ vectorX[vectorX == 0] = 1 data = self.getData() data /= vectorX[None, :] self.setData(data) def divideByVectorY(self, vectorY): """ Divides each column by correspoinding value from vectorY """ vectorY[vectorY == 0] = 1 data = self.getData() data /= vectorY[:, None] self.setData(data) def divideByVectors(self, vectors): """ Divides each row and column by correspoinding value from vectors[0] and vectors[1] Does it without calling getData twice! """ vecX = vectors[0] vecY = vectors[1] vecX[vecX == 0] = 1 vecY[vecY == 0] = 1 data = self.getData() assert data.shape[1] == len(vecX) assert data.shape[0] == len(vecY) data /= vecX[None, :] data /= vecY[:, None] self.setData(data) @property def shape(self): """Returns shape of the data. Should be overridden in subclasses not to load the data every time! """ return self.getData().shape class h5dictMatrix(defaultMatrix): """ Changes the storage from memory to h5dict, keeping the matrix in the dense (regular) format. Just overrides getData, setData and shape to use h5dict. """ def getData(self): data = self._h5dict[self._key] return data def setData(self, data): data = np.asarray(data, dtype=np.float64) self.savedShape = data.shape self._h5dict[self._key] = data @property def shape(self): return self.savedShape class h5dictSparseMatrix(defaultMatrix): """ Changes the storage from memory to h5dict, and changes matrix to sparse. All methods from defaultMatrix are overridden here! """ def __init__(self, data=None, dictToSave=None, key=""): self._h5dict = dictToSave self._key = repr(key) self._keyx = self._key + "x" self._keyy = self._key + "y" self._keyv = self._key + "v" if data is not None: self.setData(data) @property def _X(self): return self._h5dict[self._keyx] @_X.setter def _X(self, data): self._h5dict[self._keyx] = data @property def _Y(self): return self._h5dict[self._keyy] @_Y.setter def _Y(self, data): self._h5dict[self._keyy] = data @property def _V(self): return self._h5dict[self._keyv] @_V.setter def _V(self, data): self._h5dict[self._keyv] = data @property def shape(self): return self.savedShape def getData(self): data = np.zeros(self.savedShape) data[self._X, self._Y] = self._V return data def setData(self, data): x, y = np.nonzero(data) self.savedShape = data.shape values = data[x, y] values = np.asarray(values, np.float64) self._X = x self._Y = y self._V = values def getSumX(self): return np.bincount(self._Y, weights=self._V, minlength=self.shape[1]) def getSumY(self): return np.bincount(self._X, weights=self._V, minlength=self.shape[0]) def getSums(self): X, Y, V = self._X, self._Y, self._V s1 = np.bincount(Y, weights=V, minlength=self.shape[1]) s2 = np.bincount(X, weights=V, minlength=self.shape[0]) return (s1, s2) def divideByVectorX(self, vecX): vecX[vecX == 0] = 1 self._V = self._V / vecX[self._Y] def divideByVectorY(self, vecY): vecY[vecY == 0] = 1 self._V = self._V / self.vecX[self._X] def divideByVectors(self, vecs): vecX = vecs[0] vecY = vecs[1] V = self._V V /= vecX[self._Y] V /= vecY[self._X] self._V = V def clearRows(self, rows): rowsX, rowsY = rows indexX =
np.ones(self.shape[0], bool)
numpy.ones
import numpy as np import scipy.linalg as splinalg from numba import vectorize, guvectorize, float32, float64 NUMBA_COMPILATION_TARGET = 'parallel' def invsqrt(x): """Convenience function to compute the inverse square root of a scalar or a square matrix.""" if hasattr(x, 'shape'): return np.linalg.inv(splinalg.sqrtm(x)) return 1. / np.sqrt(x) def bilinear_interpolate(im, x, y): im =
np.atleast_3d(im)
numpy.atleast_3d
import numpy as np import matplotlib.pyplot as plt from mayavi import mlab # Produce some nice data. n_mer, n_long = 6, 11 pi = np.pi dphi = pi/1000.0 phi = np.arange(0.0, 2*pi + 0.5*dphi, dphi, 'd') mu = phi*n_mer x = np.cos(mu)*(1+np.cos(n_long*mu/n_mer)*0.5) y = np.sin(mu)*(1+np.cos(n_long*mu/n_mer)*0.5) z = np.sin(n_long*mu/n_mer)*0.5 # View it. l = mlab.quiver3d(x, y, z, x, y, z, colormap='Spectral') mlab.axes() # Now animate the data. @mlab.animate def anim(): ms = l.mlab_source for i in range(100): x =
np.cos(mu)
numpy.cos
# -*- coding: utf-8 -*- """ Created on Tue Aug 25 14:06:09 2020 @author: u6265553 """ '''This script generates the inverse transformation function required for moving lens shift-scale calibration to align the synthetic images generated by Blender to a reference image to obtain fully in-focus image applying image stacking. This script calculates the shift and scaling required to align the images and generate required transformaton functions.''' import glob import numpy as np import cv2 from skimage import restoration from scipy.signal import convolve2d as conv2 from scipy import misc, optimize, special from matplotlib import pylab as plt pixelsize=4e-6 #focal length of the lens in meter f_lens=65e-3 #focal length of the lens in pixel f_lens_pixel=f_lens/pixelsize forward_translation=-0.021 backward_translation=0.019 average_camera_distance=0.15 max_camera_distnace=average_camera_distance+backward_translation f_camera=average_camera_distance*f_lens/(average_camera_distance-f_lens) #focal length of the camera in pixel f_camera_pixel=f_camera/pixelsize num_of_img=64 #linear displacement of the camera del_d=(backward_translation-forward_translation)/num_of_img #in meter del_d_pixel=del_d/pixelsize #in pixel d_pixel=max_camera_distnace/pixelsize d_list=np.zeros([num_of_img]) for i in range(num_of_img): d_list[i]=d_pixel-i*del_d_pixel d_ref_pixel=d_list[63] scaling=np.zeros([num_of_img]) shift_x=np.zeros([num_of_img]) shift_y=
np.zeros([num_of_img])
numpy.zeros
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import shutil import sys import os import xml import cv2 import math import random import matplotlib.pyplot as plot from scipy import misc import argparse from time import sleep gender_content = ('male', 'female') glasses_content = ('wearing glasses', 'not wearing glasses') sampleTextSetFile = ["training.txt", "testing.txt"] root_dir = "../../../dataset/facedata/mtfl/" margin = 32 labelDir = 'label' cropImgdir = 'cropImg' if not os.path.isdir(root_dir+ cropImgdir): os.mkdir(root_dir+ cropImgdir) def extractTrainLabfile(split_file): mainSetFile = open(root_dir+ "ImageSets/Main/" +str(split_file.split("/")[-1]), "w") print(mainSetFile) with open(split_file, 'r') as label_file: while True: img_file_info = label_file.readline().split(' ') if len(img_file_info) <= 2: break img_filename = img_file_info[0] img_filename = img_filename.replace('\\', '/') img_file =root_dir+ "JPEGImages/" + img_filename source_img = cv2.imread(img_file) assert source_img.shape[2]==3 fullImg = os.path.abspath(img_file) + '\n' if 1: print("##################################") print("imgfile path: ", img_file) print("imgfile_name: ", img_filename) print ("anno img file: ", "annoImage/"+str(img_file.split("/")[-1])) xmin = int(img_file_info[1]) xmax = int(img_file_info[2]) ymin = int(img_file_info[3]) ymax = int(img_file_info[4]) x1 = float(img_file_info[5]) y1 = float(img_file_info[6]) x2 = float(img_file_info[7]) y2 = float(img_file_info[8]) x3 = float(img_file_info[9]) y3 = float(img_file_info[10]) x4 = float(img_file_info[11]) y4 = float(img_file_info[12]) x5 = float(img_file_info[13]) y5 = float(img_file_info[14]) if len(img_file_info) == 19: gender = img_file_info[15] glass = img_file_info[17] elif len(img_file_info) == 17: gender = img_file_info[15] glass = img_file_info[16] x =[x1, x2, x3, x4, x5] x_arrary = np.array(x) x_max = x_arrary[np.argmax(x_arrary)] x_min = x_arrary[np.argmin(x_arrary)] y =[y1, y2, y3, y4, y5] y_arrary = np.array(y) y_max = y_arrary[np.argmax(y_arrary)] y_min = y_arrary[np.argmin(y_arrary)] img = cv2.cvtColor(source_img, cv2.COLOR_BGR2RGB) img_size = np.asarray(img.shape)[0:2] bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(xmin-margin/2, 0) bb[1] = np.maximum(ymin-margin/2, 0) bb[2] = np.minimum(xmax + margin/2, img_size[1]) bb[3] = np.minimum(ymax + margin/2, img_size[0]) cropped = img[bb[1]:bb[3],bb[0]:bb[2],:] cropped = cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR) cv2.imwrite(root_dir+"annoImage/"+str(img_file.split("/")[-1]), cropped) x11 = x1 - bb[0] x22 = x2 - bb[0] x33 = x3 - bb[0] x44 = x4 - bb[0] x55 = x5 - bb[0] y11 = y1 - bb[1] y22 = y2 - bb[1] y33 = y3 - bb[1] y44 = y4 - bb[1] y55 = y5 - bb[1] x_a = [x11, x22, x33, x44, x55] x_crop = np.array(x_a).astype(np.int32) y_a = [y11, y22, y33, y44, y55] y_crop =
np.array(y_a)
numpy.array
import os import nibabel as nib import numpy as np import torch import utils.common_utils as common_utils import utils.data_utils as du import torch.nn.functional as F import shot_batch_sampler as SB def dice_score_binary(vol_output, ground_truth, no_samples=10, phase='train'): ground_truth = ground_truth.type(torch.FloatTensor) vol_output = vol_output.type(torch.FloatTensor) if phase == 'train': samples = np.random.choice(len(vol_output), no_samples) vol_output, ground_truth = vol_output[samples], ground_truth[samples] inter = 2 * torch.sum(torch.mul(ground_truth, vol_output)) union = torch.sum(ground_truth) + torch.sum(vol_output) + 0.0001 return torch.div(inter, union) def dice_confusion_matrix(vol_output, ground_truth, num_classes, no_samples=10, mode='train'): dice_cm = torch.zeros(num_classes, num_classes) if mode == 'train': samples = np.random.choice(len(vol_output), no_samples) vol_output, ground_truth = vol_output[samples], ground_truth[samples] for i in range(num_classes): GT = (ground_truth == i).float() for j in range(num_classes): Pred = (vol_output == j).float() inter = torch.sum(torch.mul(GT, Pred)) union = torch.sum(GT) + torch.sum(Pred) + 0.0001 dice_cm[i, j] = 2 * torch.div(inter, union) avg_dice = torch.mean(torch.diagflat(dice_cm)) return avg_dice, dice_cm def get_range(volume): batch, _, _ = volume.size() slice_with_class = torch.sum(volume.view(batch, -1), dim=1) > 10 index = slice_with_class[:-1] - slice_with_class[1:] > 0 seq = torch.Tensor(range(batch - 1)) range_index = seq[index].type(torch.LongTensor) return range_index def dice_score_perclass(vol_output, ground_truth, num_classes, no_samples=10, mode='train'): dice_perclass = torch.zeros(num_classes) if mode == 'train': samples = np.random.choice(len(vol_output), no_samples) vol_output, ground_truth = vol_output[samples], ground_truth[samples] for i in range(num_classes): GT = (ground_truth == i).float() Pred = (vol_output == i).float() inter = torch.sum(torch.mul(GT, Pred)) union = torch.sum(GT) + torch.sum(Pred) + 0.0001 dice_perclass[i] = (2 * torch.div(inter, union)) return dice_perclass def binarize_label(volume, groud_truth, class_label): groud_truth = (groud_truth == class_label).type(torch.FloatTensor) batch, _, _ = groud_truth.size() slice_with_class = torch.sum(groud_truth.view(batch, -1), dim=1) > 10 index = slice_with_class[:-1] - slice_with_class[1:] > 0 seq = torch.Tensor(range(batch - 1)) range_index = seq[index].type(torch.LongTensor) groud_truth = groud_truth[slice_with_class] volume = volume[slice_with_class] condition_input = torch.cat((volume, groud_truth.unsqueeze(1)), dim=1) return condition_input, range_index.cpu().numpy() def evaluate_dice_score(model_path, num_classes, query_labels, data_dir, query_txt_file, support_txt_file, remap_config, orientation, prediction_path, device=0, logWriter=None, mode='eval', fold=None): print("**Starting evaluation. Please check tensorboard for plots if a logWriter is provided in arguments**") print("Loading model => " + model_path) batch_size = 20 Num_support = 10 with open(query_txt_file) as file_handle: volumes_query = file_handle.read().splitlines() # with open(support_txt_file) as file_handle: # volumes_support = file_handle.read().splitlines() model = torch.load(model_path) cuda_available = torch.cuda.is_available() if cuda_available: torch.cuda.empty_cache() model.cuda(device) model.eval() common_utils.create_if_not(prediction_path) print("Evaluating now... " + fold) query_file_paths = du.load_file_paths(data_dir, data_dir, query_txt_file) support_file_paths = du.load_file_paths(data_dir, data_dir, support_txt_file) with torch.no_grad(): all_query_dice_score_list = [] for query_label in query_labels: volume_dice_score_list = [] # Loading support support_volume, support_labelmap, _, _ = du.load_and_preprocess(support_file_paths[0], orientation=orientation, remap_config=remap_config) support_volume = support_volume if len(support_volume.shape) == 4 else support_volume[:, np.newaxis, :, :] support_volume, support_labelmap = torch.tensor(support_volume).type(torch.FloatTensor), \ torch.tensor(support_labelmap).type(torch.LongTensor) support_volume, range_index = binarize_label(support_volume, support_labelmap, query_label) # slice_gap_support = int(np.ceil(len(support_volume) / Num_support)) # # support_slice_indexes = [i for i in range(0, len(support_volume), slice_gap_support)] # # if len(support_slice_indexes) < Num_support: # support_slice_indexes.append(len(support_volume) - 1) for vol_idx, file_path in enumerate(query_file_paths): query_volume, query_labelmap, _, _ = du.load_and_preprocess(file_path, orientation=orientation, remap_config=remap_config) query_volume = query_volume if len(query_volume.shape) == 4 else query_volume[:, np.newaxis, :, :] query_volume, query_labelmap = torch.tensor(query_volume).type(torch.FloatTensor), \ torch.tensor(query_labelmap).type(torch.LongTensor) query_labelmap = query_labelmap == query_label range_query = get_range(query_labelmap) query_volume = query_volume[range_query[0]: range_query[1] + 1] query_labelmap = query_labelmap[range_query[0]: range_query[1] + 1] dice_per_slice = [] vol_output = [] for i, query_slice in enumerate(query_volume): query_batch_x = query_slice.unsqueeze(0) max_dice = -1.0 max_output = None for j in range(0, len(support_volume), 10): support_slice = support_volume[j] support_batch_x = support_slice.unsqueeze(0) if cuda_available: query_batch_x = query_batch_x.cuda(device) support_batch_x = support_batch_x.cuda(device) weights = model.conditioner(support_batch_x) out = model.segmentor(query_batch_x, weights) _, batch_output = torch.max(F.softmax(out, dim=1), dim=1) slice_dice_score = dice_score_binary(batch_output, query_labelmap[i].cuda(device), phase=mode) dice_per_slice.append(slice_dice_score.item()) if slice_dice_score.item() >= max_dice: max_dice = slice_dice_score.item() max_output = batch_output # dice_per_slice.append(max_dice) vol_output.append(max_output) vol_output = torch.cat(vol_output) volume_dice_score = dice_score_binary(vol_output, query_labelmap.cuda(device), phase=mode) volume_dice_score_list.append(volume_dice_score) print(volume_dice_score) dice_score_arr = np.asarray(volume_dice_score_list) avg_dice_score = np.median(dice_score_arr) print('Query Label -> ' + str(query_label) + ' ' + str(avg_dice_score)) all_query_dice_score_list.append(avg_dice_score) print("DONE") return np.mean(all_query_dice_score_list) def evaluate_dice_score_2view(model1_path, model2_path, num_classes, query_labels, data_dir, query_txt_file, support_txt_file, remap_config, orientation1, prediction_path, device=0, logWriter=None, mode='eval', fold=None): print("**Starting evaluation. Please check tensorboard for plots if a logWriter is provided in arguments**") print("Loading model => " + model1_path + " and " + model2_path) batch_size = 10 with open(query_txt_file) as file_handle: volumes_query = file_handle.read().splitlines() # with open(support_txt_file) as file_handle: # volumes_support = file_handle.read().splitlines() model1 = torch.load(model1_path) model2 = torch.load(model2_path) cuda_available = torch.cuda.is_available() if cuda_available: torch.cuda.empty_cache() model1.cuda(device) model2.cuda(device) model1.eval() model2.eval() common_utils.create_if_not(prediction_path) print("Evaluating now... " + fold) query_file_paths = du.load_file_paths(data_dir, data_dir, query_txt_file) support_file_paths = du.load_file_paths(data_dir, data_dir, support_txt_file) with torch.no_grad(): all_query_dice_score_list = [] for query_label in query_labels: volume_dice_score_list = [] for vol_idx, file_path in enumerate(support_file_paths): # Loading support support_volume1, support_labelmap1, _, _ = du.load_and_preprocess(file_path, orientation=orientation1, remap_config=remap_config) support_volume2, support_labelmap2 = support_volume1.transpose((1, 2, 0)), support_labelmap1.transpose( (1, 2, 0)) support_volume1 = support_volume1 if len(support_volume1.shape) == 4 else support_volume1[:, np.newaxis, :, :] support_volume2 = support_volume2 if len(support_volume2.shape) == 4 else support_volume2[:, np.newaxis, :, :] support_volume1, support_labelmap1 = torch.tensor(support_volume1).type( torch.FloatTensor), torch.tensor( support_labelmap1).type(torch.LongTensor) support_volume2, support_labelmap2 = torch.tensor(support_volume2).type( torch.FloatTensor), torch.tensor( support_labelmap2).type(torch.LongTensor) support_volume1 = binarize_label(support_volume1, support_labelmap1, query_label) support_volume2 = binarize_label(support_volume2, support_labelmap2, query_label) for vol_idx, file_path in enumerate(query_file_paths): query_volume1, query_labelmap1, _, _ = du.load_and_preprocess(file_path, orientation=orientation1, remap_config=remap_config) query_volume2, query_labelmap2 = query_volume1.transpose((1, 2, 0)), query_labelmap1.transpose( (1, 2, 0)) query_volume1 = query_volume1 if len(query_volume1.shape) == 4 else query_volume1[:, np.newaxis, :, :] query_volume2 = query_volume2 if len(query_volume2.shape) == 4 else query_volume2[:, np.newaxis, :, :] query_volume1, query_labelmap1 = torch.tensor(query_volume1).type(torch.FloatTensor), torch.tensor( query_labelmap1).type(torch.LongTensor) query_volume2, query_labelmap2 = torch.tensor(query_volume2).type(torch.FloatTensor), torch.tensor( query_labelmap2).type(torch.LongTensor) query_labelmap1 = query_labelmap1 == query_label query_labelmap2 = query_labelmap2 == query_label # Evaluate for orientation 1 support_batch_x = [] k = 2 volume_prediction1 = [] for i in range(0, len(query_volume1), batch_size): query_batch_x = query_volume1[i: i + batch_size] if k % 2 == 0: support_batch_x = support_volume1[i: i + batch_size] sz = query_batch_x.size() support_batch_x = support_batch_x[batch_size - 1].repeat(sz[0], 1, 1, 1) k += 1 if cuda_available: query_batch_x = query_batch_x.cuda(device) support_batch_x = support_batch_x.cuda(device) weights = model1.conditioner(support_batch_x) out = model1.segmentor(query_batch_x, weights) # _, batch_output = torch.max(F.softmax(out, dim=1), dim=1) volume_prediction1.append(out) # Evaluate for orientation 2 support_batch_x = [] k = 2 volume_prediction2 = [] for i in range(0, len(query_volume2), batch_size): query_batch_x = query_volume2[i: i + batch_size] if k % 2 == 0: support_batch_x = support_volume2[i: i + batch_size] sz = query_batch_x.size() support_batch_x = support_batch_x[batch_size - 1].repeat(sz[0], 1, 1, 1) k += 1 if cuda_available: query_batch_x = query_batch_x.cuda(device) support_batch_x = support_batch_x.cuda(device) weights = model2.conditioner(support_batch_x) out = model2.segmentor(query_batch_x, weights) volume_prediction2.append(out) volume_prediction1 = torch.cat(volume_prediction1) volume_prediction2 = torch.cat(volume_prediction2) volume_prediction = 0.5 * volume_prediction1 + 0.5 * volume_prediction2.permute(3, 1, 0, 2) _, batch_output = torch.max(F.softmax(volume_prediction, dim=1), dim=1) volume_dice_score = dice_score_binary(batch_output, query_labelmap1.cuda(device), phase=mode) batch_output = (batch_output.cpu().numpy()).astype('float32') nifti_img = nib.MGHImage(np.squeeze(batch_output),
np.eye(4)
numpy.eye
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Nov 27 2019 @author: changyuchang """ import numpy as np from functools import partial def no_selection(community_function): """ Direct well-to-well transfer without selection """ n_wells = len(community_function) return np.eye(n_wells) # Make selection algorithms with similar names, using partial functions ## Select top n% def temp_select_top(community_function, p): n_wells = len(community_function) sorted_community_function = np.sort(community_function) cut_off = sorted_community_function[int(np.floor(len(community_function)*(1-p)))] winner_index = np.where(community_function >= cut_off)[0][::-1] transfer_matrix = np.zeros((n_wells,n_wells)) t_new = range(n_wells) # New wells t_old = list(winner_index) * (int(np.ceil(1/p) + 1)) # Old wells for i in range(n_wells): transfer_matrix[t_new[i], t_old[i]] = 1 return transfer_matrix for i in [10, 15, 16, 20, 25, 28, 30, 33, 40, 50, 60]: globals()['select_top%spercent' %i] = partial(temp_select_top, p = i/100) ## Select top n% control def temp_select_top_control(community_function, p): n_wells = len(community_function) randomized_community_function = community_function.copy() np.random.shuffle(randomized_community_function) sorted_community_function = np.sort(randomized_community_function) cut_off = sorted_community_function[int(np.floor(len(randomized_community_function)*(1-p)))] winner_index = np.where(randomized_community_function >= cut_off)[0][::-1] transfer_matrix = np.zeros((n_wells,n_wells)) t_new = range(n_wells) # New wells t_old = list(winner_index) * (int(np.ceil(1/p)+1)) # Old wells for i in range(n_wells): transfer_matrix[t_new[i], t_old[i]] = 1 return transfer_matrix for i in [10, 15, 16, 20, 25, 28, 30, 33, 40, 50, 60]: globals()['select_top%spercent_control' %i] = partial(temp_select_top_control, p = i/100) ## Pooling def temp_pool_top(community_function, p): n_wells = len(community_function) sorted_community_function = np.sort(community_function) cut_off = sorted_community_function[int(np.floor(len(community_function)*(1-p)))] winner_index = np.where(community_function >= cut_off)[0][::-1] transfer_matrix = np.zeros((n_wells,n_wells)) transfer_matrix[:, list(winner_index)] = 1 return transfer_matrix for i in [10, 15, 16, 20, 25, 28, 30, 33, 40, 50, 60]: globals()['pool_top%spercent' %i] = partial(temp_pool_top, p = i/100) ## Pooling control def temp_pool_top_control(community_function, p): n_wells = len(community_function) randomized_community_function = community_function.copy() np.random.shuffle(randomized_community_function) sorted_community_function = np.sort(randomized_community_function) cut_off = sorted_community_function[int(np.floor(len(randomized_community_function)*(1-p)))] winner_index = np.where(randomized_community_function >= cut_off)[0][::-1] transfer_matrix = np.zeros((n_wells,n_wells)) transfer_matrix[:, winner_index] = 1 return transfer_matrix for i in [10, 15, 16, 20, 25, 28, 30, 33, 40, 50, 60]: globals()['pool_top%spercent_control' %i] = partial(temp_pool_top_control, p = i/100) # Sub-lineage algorithms def Arora2019(community_function, n_rep = 3): """ Arora2019 Sub-divide wells of plate into lines where each 'line' consists of n_rep communities' Each round the highest function member of the line is used to colonize the next three triplicate wells of that line """ n_wells = len(community_function) n_lines = int(np.ceil(n_wells/n_rep)) #Number of lines transfer_matrix =
np.zeros((n_wells,n_wells))
numpy.zeros
import threading import time import numpy as np import open3d as o3d import transforms3d from t3d import t3d import os from pathlib import Path from PIL import Image, ImageFont, ImageDraw from matplotlib import font_manager LOCK = threading.Lock() OPENCV_2_OPENGL = np.array( [ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1], ] ) def get_font(): font = font_manager.findfont(font_manager.FontProperties(family=['sans-serif'])) return font def text_3d(text, pos, font, camera_pose=None, density=10): """ Generate a 3D text point cloud used for visualization. :param text: content of the text :param pos: 3D xyz position of the text upper left corner :param direction: 3D normalized direction of where the text faces :param degree: in plane rotation of text :param font: Name of the font - change it according to your system :param font_size: size of the font :return: o3d.geoemtry.PointCloud object """ font_dim = font.getsize(text) img = Image.new('RGB', font_dim, color=(255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 0), text, font=font, fill=(0, 0, 0)) img = np.asarray(img) img_mask = img[:, :, 0] < 128 indices = np.indices([*img.shape[0:2], 1])[:, img_mask, 0].reshape(3, -1).T pcd = o3d.geometry.PointCloud() pcd.colors = o3d.utility.Vector3dVector(img[img_mask, :].astype(float) / 255.0) pcd.points = o3d.utility.Vector3dVector(indices / 100.0 / density) pos = t3d.apply_T(OPENCV_2_OPENGL, np.array([pos]))[0] if camera_pose is not None: tf = np.matmul(np.linalg.inv(camera_pose[:3, :3]), transforms3d.euler.euler2mat(*np.radians([0, 0, 90]))) tf = np.matmul(tf, transforms3d.euler.euler2mat(*np.radians([180, 0, 0]))) pcd.rotate(tf) pcd.translate(pos) return pcd def draw_camera(pose): height = 0.15 width = 0.2 depth = 0.2 points = np.array( [ [0, 0, 0], [-width, height, depth], [width, height, depth], [width, -height, depth], [-width, -height, depth], ] ).reshape(-1, 3) lines = np.array( [ [0, 1], [1, 2], [2, 3], [3, 4], [4, 1], [0, 1], [0, 2], [0, 3], [0, 4], ] ) line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(points) line_set.lines = o3d.utility.Vector2iVector(lines) line_set.paint_uniform_color([0, 0, 0]) line_set.transform(np.matmul(pose, OPENCV_2_OPENGL)) return line_set def o3d_frame(transform=np.identity(4), colour=None): frame_mesh = o3d.geometry.TriangleMesh.create_coordinate_frame() if colour is not None: frame_mesh.paint_uniform_color(colour) frame_mesh.transform(transform) frame_mesh.transform(OPENCV_2_OPENGL) return frame_mesh def optical_frame(transform, pose_2_cam=np.identity(4)): return o3d_frame(np.matmul(transform, pose_2_cam)) def o3d_pointcloud(points, colour=(1, 0, 0)): pointcloud_marker = o3d.geometry.PointCloud() if points is not None: pointcloud_marker.points = o3d.utility.Vector3dVector( t3d.apply_T(OPENCV_2_OPENGL, points) ) pointcloud_marker.paint_uniform_color(colour) return pointcloud_marker def draw_trajectory(trajectory): line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector( t3d.apply_T(OPENCV_2_OPENGL, trajectory[:, 1:4]) ) indices = np.arange(len(trajectory)) line_set.lines = o3d.utility.Vector2iVector( [(a, b) for a, b in zip(indices, indices[1:])] ) return line_set class Visualiser: def __init__(self, vo_function, *args, **kwargs): """Tool for visualising frames/poses and pointclouds Args: vo_function: main function to run the vo algorithm *args: arguments to pass to vo_function """ self.running = True self.vis = o3d.visualization.Visualizer() self.vis.create_window() self.frames = dict() self.frame_markers = dict() self.text = dict() self.pointclouds = dict() self.pointcloud_markers = dict() self.vis.add_geometry(o3d_frame()) self.font = ImageFont.truetype(get_font(), 18 * 10) # threading.Thread(target=vo_function, args=[*args, self]).start() kwargs["visualiser"] = self threading.Thread(target=vo_function, args=args, kwargs=kwargs).start() def add_frame(self, id_, pose, colour): """Adds a frame to be visualised Args: id_: ID of the frame so it can be looked up/modified later pose: pose of the frame colour: colour of the frame specified as (r, g, b) [0-1] """ self.frames[id_] = pose self.text[id_] = text_3d(id_, pose[:3, 3] + np.array([0.1, 0.1, 0.1]), self.font) self.vis.add_geometry(self.text[id_]) self.frame_markers[id_] = o3d_frame(pose, colour) self.vis.add_geometry(self.frame_markers[id_]) def add_pointcloud(self, id_, points, colour): self.pointclouds[id_] = points self.pointcloud_markers[id_] = (o3d_pointcloud(points, colour), colour) self.vis.add_geometry(self.pointcloud_markers[id_][0]) def update_frame(self, id_, pose): """Update the pose of the frame. Should be used within the vo function. Args: id_: id of the frame to update pose: pose to set the frame to """ self.frames[id_] = pose def _update_frame_markers(self): """Updates the visualisation so the markers reflect the poses specified by update_frame(). Should be called from within visualiser.run """ for id_, pose in self.frames.items(): if id_ in self.frame_markers: self.frame_markers[id_].vertices = optical_frame(pose).vertices self.vis.update_geometry(self.frame_markers[id_]) new_text = text_3d(id_, pose[:3, 3] + np.array([0.1, 0.1, 0.1]), self.font, self._camera_view_pose()) self.text[id_].points = new_text.points self.vis.update_geometry(self.text[id_]) def set_start_view(self, zoom=4): """Sets the direction of the camera/viewport""" view_ctl = self.vis.get_view_control() view_ctl.set_up([1, 0, 0]) view_ctl.set_front([0, 0, -1]) view_ctl.set_lookat([1, 0, 0]) view_ctl.set_zoom(zoom) view_ctl.set_constant_z_far(20) def _update_pointcloud_marker(self): """Updates the markers for the point clouds. Should be called from visualiser.run. Should be called after the markers have been added. """ for id_, points in self.pointclouds.items(): if id_ in self.pointcloud_markers: self.pointcloud_markers[id_][0].points = o3d_pointcloud(self.pointclouds[id_]).points self.pointcloud_markers[id_][0].paint_uniform_color(self.pointcloud_markers[id_][1]) self.vis.update_geometry(self.pointcloud_markers[id_][0]) def _camera_view_pose(self): return self.vis.get_view_control().convert_to_pinhole_camera_parameters().extrinsic def run(self): """Start the visualiser""" while self.running: self._update_frame_markers() self._update_pointcloud_marker() self.vis.update_renderer() self.vis.poll_events() time.sleep(0.05) self.vis.destroy_window() def stop(self): """Stop the visualiser""" self.running = False def run(visualiser): """Example run function""" T_wc = np.identity(4) T_wc[:3, 3] =
np.array([1, 1.5, 2])
numpy.array
## IMPORTS ## import logging # Logging: provides a set of convenience functions for simple logging usage import time # Time: provides various time-related functions import numpy as np # NumPy: the fundamental package for scientific computing with Python import cv2 # OpenCV: usage ranges from interactive art, to mines inspection, stitching maps on the web or through advanced robotics from sklearn.cluster import MiniBatchKMeans # scikit-learn: Simple and efficient tools for data mining and data analysis ## CLASSES ## class DataExtractor: # __init__ # -------- # Initializes an instance of PhotoExtractor def __init__(self, aMinThresh, aMaxThresh, bMinThresh, bMaxThresh): # Creates logger self.logger = logging.getLogger("DataExtractor") # Stores variables self.aMinThresh = aMinThresh self.aMaxThresh = aMaxThresh self.bMinThresh = bMinThresh self.bMaxThresh = bMaxThresh # extract # -------- # Starts the extraction on the chosen frame def extract(self, frame): self.logger.info("started ...") start = time.time() # Background Extraction self.logger.info("starting background extraction ...") processedFrame = self.backgroundExtraction(frame) self.logger.info("background extraction ended") # Sample Detection and Data Extraction self.logger.info("starting sample detection ...") data = self.sampleDetection(processedFrame) self.logger.info("sample detection ended") end = time.time() self.logger.info("ended, took {}s".format(end - start)) return data def checkMaskResult(self, frame): # Converting frame to Lab and splitting it frameLab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB) _, a, b = cv2.split(frameLab) # Formatting the components that are being used, a and b, and removing 0s a = a.flatten() b = b.flatten() # Extract min and max from components aMin = np.amin(a) aMax = np.amax(a) bMin = np.amin(b) bMax = np.amax(b) # Verify if the extracted data is ok according to the threshold values if aMin >= self.aMinThresh and aMax <= self.aMaxThresh and bMin >= self.bMinThresh and bMax <= self.bMaxThresh: return False else: return True def backgroundExtraction(self, frame): # Storing frame dimensions width = len(frame[0]) height = len(frame) # Converts frame to L*a*b* color space frameLab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB) # Splits frame into L*, a* and b*, but stores only sample b* _, _, frameB = cv2.split(frameLab) # Reshaping frame b* into a list of pixels reshapedFrame = frameB.reshape((frameB.shape[0] * frameB.shape[1], 1)) # Creating K-Means object clt = MiniBatchKMeans(n_clusters = 2, random_state = 5) # Calculating K-Means self.logger.info("starting k-means clustering ...") clt.fit(reshapedFrame) self.logger.info("k-means clustering ended") labels = clt.labels_ # Turning K-Means results into a mask mask = np.uint8(labels).reshape((height, width)) # Noise removal self.logger.info("starting noise removal ...") kernel = np.ones((3,3), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations = 3) self.logger.info("noise removal ended") # Applying mask to original image kMeansFrame = cv2.bitwise_and(frame, frame, mask = mask) # Verifying if the mask needs inversal if self.checkMaskResult(kMeansFrame) == True: # Inverting mask and applying to original image mask = 1 - mask kMeansFrame = cv2.bitwise_and(frame, frame, mask = mask) return kMeansFrame def sampleDetection(self, frame): # Storing frame dimensions width = len(frame[0]) height = len(frame) # Creates gray frame grayFrame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Finding its contours self.logger.info("starting contour finding ...") im2, contours, hierarchy = cv2.findContours(grayFrame.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) self.logger.info("contour finding ended") # For each contour, store its area contourAreas = [] for contour in contours: contourAreas.append( cv2.contourArea(contour) ) contourAreas =
np.array(contourAreas)
numpy.array
#!/usr/bin/python3 """ Program Name: enf_analysis.py Created By: <NAME> Description: Program designed to extract ENF traces from audio files. """ # Import Required Libraries import librosa import librosa.display import matplotlib.pyplot as plt import numpy as np import scipy from scipy.io import wavfile import scipy.signal from datetime import datetime import time import tqdm # Global Variables enf_freq = 50 low_freq = enf_freq - 1 high_freq = enf_freq + 1 def fir_bandpass(data, fs, lowpass, highpass, usr = 1, dsr = 1): """ Function Name: fir_bandpass Description: Make an FIR bandpass filter using the firwin and upfirdn functions from scipy.signal. Input(s): data - data to filter. fs - sampling rate. lowpass - low frequency cutoff. highpass - high frequency cutoff. usr - upsample rate for upfirdn (optional. default = 1). dsr - downsample rate for upfirdn (optional. default = 1). Return(s): y - filtered data. """ y = np.array([]) nyq = fs / 2 h_nyq = nyq if (h_nyq % 2) == 0: h_nyq += 1 h_low = lowpass / (nyq * 1.0) h_high = highpass / (nyq * 1.0) h = scipy.signal.firwin(fs+1, [h_low, h_high], pass_zero=False) y = scipy.signal.upfirdn(h,data) return y def butter_bandpass(lowcut, highcut, nyq, order=None): """ Function Name: butter_bandpass Description: Function to setup butterworth bandpass filter and return the proper coefficients. Input(s): lowcut - low cutoff frequency highcut - high cutoff frequency nyq - nyquist rate (sample_rate / 2) order - filter order (optional. default = 2) Return(s): b , a - filter coefficients """ # Check If Optional Arg Is None if order is None: order = 2 # Set Bandpass Frequencies low = lowcut / nyq high = highcut / nyq # Determine Coefficients For Filter Setup b, a = scipy.signal.butter(order, [low, high], btype='band') return b, a def butter_bandpass_filter(data, lowcut, highcut, nyq, order=None): """ Function Name: butter_bandpass_filter Description: Function to setup and filter data using a butterworth bandpass filter. Input(s): data - data to filter lowcut - low cutoff frequency highcut - high cutoff frequency nyq - nyquist rate (sample_rate / 2) order - order of filter (optional. default = 2) Return(s): y - filtered data """ # Check If Optional Arg Is None if order is None: order = 2 # Get Coefficients And Filter Signal b, a = butter_bandpass(lowcut, highcut, nyq, order=order) y = scipy.signal.lfilter(b, a, data) # Return Filtered Data return y # Main Function def main(): global enf_freq, low_freq, high_freq showFirst = False # Set Filename For Analysis filename = "pc.wav" #filename = "RR.wav" print("-"*50) fname_inp = input("[] Please Enter Filename [default = pc.wav]: ") if not(fname_inp == ""): filename = fname_inp enf_inp = input("[] Please Input ENF Frequency [default = 50]: ") if not(enf_inp == ""): enf_freq = int(enf_inp) harmonic = 1 upsample_order = 5 dnsample_order = 5 harmonic_inp = input("[] Please Enter Desired Harmonic [default = 1]: ") if not(harmonic_inp == ""): harmonic = int(harmonic_inp) showFirst_inp = input("[] Show First STFT Window (y/n)? ") showFirst_inp = showFirst_inp.lower() if (showFirst_inp == "y"): showFirst = True elif ((showFirst_inp == "n") or (showFirst_inp == "")): showFirst = False else: print(f"[!] Incorrect Input {showFirst_inp}. Defaulting to False") showFirst = False print("-"*50) print(f"[+] Beginning Analysis [{filename}]") try: # Get Data & Sample Rate From File sr, data = wavfile.read(filename) data, sr = librosa.load(filename, sr=sr) except Exception as e: print("[!] Something Went Wrong Reading Audio File <{filename}> ... Exiting") return # Set Nyquist Rate (Sample Rate / 2) nyq = int(sr / 2.0) # Determine Time-Length And Set Axis For Plotting time_len = (len(data) / (sr * 1.0)) x_ax = np.linspace(0, time_len, len(data)) # set frame size to .2 seconds if time_len >= 1: f_size = int((len(data) / time_len) * 0.2) else: f_size = int(len(data) / 50) # Take FFT Of Data fft_data = np.fft.fft(data) fft_data = abs(fft_data * np.conj(fft_data)) x_ax_fft = np.linspace(0, sr, len(fft_data)) # Only Take 1st Half Of FFT Data To Avoid Mirroring fft_data = fft_data[:nyq] x_ax_fft = x_ax_fft[:nyq] # Plot Unfiltered Data & FFT Of Data plt.figure() plt.subplot(211) plt.title(f"Raw Data: {filename}") plt.ylabel("Amplitude") plt.xlabel("Time") plt.plot(x_ax,data) plt.subplot(212) plt.title(f"FFT Of {filename}") plt.ylabel("Magnitude") plt.xlabel("Frequency (Hz)") plt.plot(x_ax_fft,fft_data) plt.tight_layout() plt.show() # Filter Data Using Bandpass With Low = 49 and High = 51 (or harmonic -- the multiplier) filt_data = butter_bandpass_filter(np.append(data,np.zeros(data.size * 9)), low_freq*harmonic, high_freq*harmonic, nyq, order=2) # Take FFT Of Filtered Data fft_filt_data = np.fft.fft(filt_data) fft_filt_data = abs(fft_filt_data * np.conj(fft_filt_data)) x_ax_fft_f = np.linspace(0, sr, len(fft_filt_data)) # Only Take 1st Half Of FFT To Prevent Mirroring fft_filt_data = fft_filt_data[:nyq] f_filtd_freq =
np.fft.fftfreq(fft_filt_data.size, d = 2./sr)
numpy.fft.fftfreq
import numpy as np from matplotlib.patches import Polygon from feastruct.post.post import ScalarResult class BoundaryCondition: """Parent class for supports and loads. Provides an init method for the creation of boundary conditions. :cvar node: The node object at which the boundary condition acts :vartype node: :class:`~feastruct.fea.node.Node` :cvar float val: The value of the boundary condition :cvar int dof: The degree of freedom about which the boundary condition acts """ def __init__(self, node, val, dof): """Inits the BoundaryCondition class. :param node: The node object at which the boundary condition acts :type node: :class:`~feastruct.fea.node.Node` :param float val: The value of the boundary condition :param int dof: The degree of freedom about which the boundary condition acts """ # assign the node object, value and dof of the boundary condition self.node = node self.val = val self.dof = dof def get_gdof(self): """Returns the global degree of freedom number for the boundary condition. :returns: Global degree of freedom number :rtype: int """ return self.node.dofs[self.dof].global_dof_num class NodalSupport(BoundaryCondition): """Class for a dirichlet boundary condition acting at a node. Provides methods for the FEA solver and post-processing. :cvar node: The node object at which the boundary condition acts :vartype node: :class:`~feastruct.fea.node.Node` :cvar float val: The value of the boundary condition :cvar int dof: The degree of freedom about which the boundary condition acts :cvar reactions: A list of reaction objects :vartype reactions: list[:class:`~feastruct.post.post.ScalarResult`] """ def __init__(self, node, val, dof): """inits the NodalSupport class. :param node: The node object at which the boundary condition acts :type node: :class:`~feastruct.fea.node.Node` :param float val: The value of the boundary condition :param int dof: The degree of freedom about which the boundary condition acts """ # initialise the parent class super().__init__(node, val, dof) # initialise the nodal reaction results self.reactions = [] def apply_support(self, K, f_ext): """Applies the nodal support. The stiffness matrix and external force vector are modified to apply the dirichlet boundary condition to enforce the displacement at the chosen degree of freedom to be equal to the specified value. :param K: Global stiffness matrix of size *(N x N)* :type K: :class:`numpy.ndarray` :param f_ext: Global external force vector of size *N* :type f_ext: :class:`numpy.ndarray` """ # get gdof number for the support gdof = self.node.dofs[self.dof].global_dof_num # modify stiffness matrix and f_ext K[gdof, :] = 0 K[gdof, gdof] = 1 f_ext[gdof] = self.val def get_reaction(self, analysis_case): """Gets the reaction force result corresponding to analysis_case. :param analysis_case: Analysis case :type analysis_case: :class:`~feastruct.fea.cases.AnalysisCase` :returns: Reaction force at the node :rtype: float """ # loop through reactions for reaction in self.reactions: if reaction.analysis_case == analysis_case: return reaction.result def save_reaction(self, f, analysis_case): """Saves the reaction force corresponding to analysis_case. :param float f: Reaction force at the node :param analysis_case: Analysis case :type analysis_case: :class:`~feastruct.fea.cases.AnalysisCase` """ # check to see if there is already a reaction for the current analysis_case for reaction in self.reactions: if reaction.analysis_case == analysis_case: reaction.result = f return # if there isn't already a reaction for the current analysis_case self.reactions.append(ScalarResult(result=f, analysis_case=analysis_case)) def plot_support(self, ax, small, get_support_angle, analysis_case, deformed, def_scale): """Plots a graphical representation of the nodal support. Based on the type of support at the node, a graphical representation of the support type is generated and plotted. Possible support types include rollers, hinges, rotation restraints, fixed rollers and fully fixed supports. The angle of the connecting elements is considered in order to produce the most visually appealing representation. The support location is displaced if a deformed plot is desired. Note that some of the methods used to plot the supports are taken from <NAME>'s code plotGeom.m. :param ax: Axes object on which to plot :type ax: :class:`matplotlib.axes.Axes` :param float small: A dimension used to scale the support :param get_support_angle: A function that returns the support angle and the number of connected elements :type get_support_angle: :func:`feastruct.post.post.PostProcessor.get_support_angle` :param analysis_case: Analysis case :type analysis_case: :class:`~feastruct.fea.cases.AnalysisCase` :param bool deformed: Represents whether or not the node locations are deformed based on the results of analysis_case :param float def_scale: Value used to scale deformations """ fixity = analysis_case.freedom_case.get_nodal_fixities(node=self.node) if fixity not in ([1, 1, 0], [0, 1, 0]): (angle, num_el) = get_support_angle(self.node) if fixity == [1, 0, 0]: # ploy a y-roller angle = round(angle / 180) * 180 self.plot_xysupport(ax, angle, True, num_el == 1, small, analysis_case, deformed, def_scale) elif fixity == [0, 1, 0]: (angle, num_el) = get_support_angle(self.node, 1) # plot an x-roller if np.mod(angle + 1, 180) < 2: # prefer support below angle = 90 else: angle = round((angle + 90) / 180) * 180 - 90 self.plot_xysupport(ax, angle, True, num_el == 1, small, analysis_case, deformed, def_scale) elif fixity == [1, 1, 0]: # plot a hinge (angle, num_el) = get_support_angle(self.node, 1) self.plot_xysupport(ax, angle, False, num_el == 1, small, analysis_case, deformed, def_scale) elif fixity == [0, 0, 1]: ax.plot(self.node.x, self.node.y, 'kx', markersize=8) else: # plot a support with moment fixity if fixity == [1, 1, 1]: # plot a fixed support s = np.sin(angle * np.pi / 180) c = np.cos(angle * np.pi / 180) rot_mat = np.array([[c, -s], [s, c]]) line = np.array([[0, 0], [-1, 1]]) * small rect = np.array([[-0.6, -0.6, 0, 0], [-1, 1, 1, -1]]) * small ec = 'none' elif fixity == [1, 0, 1]: # plot y-roller block angle = round(angle / 180) * 180 s = np.sin(angle * np.pi / 180) c = np.cos(angle * np.pi / 180) rot_mat = np.array([[c, -s], [s, c]]) line = np.array([[-0.85, -0.85], [-1, 1]]) * small rect = np.array([[-0.6, -0.6, 0, 0], [-1, 1, 1, -1]]) * small ec = 'k' elif fixity == [0, 1, 1]: # plot x-roller block angle = round((angle + 90) / 180) * 180 - 90 s = np.sin(angle * np.pi / 180) c = np.cos(angle * np.pi / 180) rot_mat = np.array([[c, -s], [s, c]]) line = np.array([[-0.85, -0.85], [-1, 1]]) * small rect = np.array([[-0.6, -0.6, 0, 0], [-1, 1, 1, -1]]) * small ec = 'k' rot_line = np.matmul(rot_mat, line) rot_rect = np.matmul(rot_mat, rect) # add coordinates of node if deformed: # get displacement of node for current analysis case u = [0, 0] u[0] = self.node.dofs[0].get_displacement(analysis_case) u[1] = self.node.dofs[1].get_displacement(analysis_case) rot_line[0, :] += self.node.x + u[0] * def_scale rot_line[1, :] += self.node.y + u[1] * def_scale rot_rect[0, :] += self.node.x + u[0] * def_scale rot_rect[1, :] += self.node.y + u[1] * def_scale else: rot_line[0, :] += self.node.x rot_line[1, :] += self.node.y rot_rect[0, :] += self.node.x rot_rect[1, :] += self.node.y ax.plot(rot_line[0, :], rot_line[1, :], 'k-', linewidth=1) ax.add_patch(Polygon(np.transpose(rot_rect), facecolor=(0.7, 0.7, 0.7), edgecolor=ec)) def plot_imposed_disp(self, ax, max_disp, small, get_support_angle, analysis_case, deformed, def_scale): """Plots a graphical representation of an imposed translation. :param ax: Axes object on which to plot :type ax: :class:`matplotlib.axes.Axes` :param float max_disp: Maximum imposed displacement in the analysis case :param float small: A dimension used to scale the support :param get_support_angle: A function that returns the support angle and the number of connected elements :type get_support_angle: :func:`feastruct.post.post.PostProcessor.get_support_angle` :param analysis_case: Analysis case :type analysis_case: :class:`~feastruct.fea.cases.AnalysisCase` :param bool deformed: Represents whether or not the node locations are deformed based on the results of case id :param float def_scale: Value used to scale deformations """ val = self.val / max_disp offset = 0.5 * small lf = abs(val) * 1.5 * small # arrow length lh = 0.6 * small # arrow head length wh = 0.6 * small # arrow head width sp = 0.15 * small # half spacing between double line lf = max(lf, lh * 1.5) (angle, num_el) = get_support_angle(self.node) s = np.sin(angle * np.pi / 180) c = np.cos(angle * np.pi / 180) n = np.array([c, s]) inward = (n[self.dof] == 0 or np.sign(n[self.dof]) == np.sign(val)) to_rotate = (self.dof) * 90 + (n[self.dof] >= 0) * 180 sr =
np.sin(to_rotate * np.pi / 180)
numpy.sin
import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors from print_helper import conductance_to_value_exp, build_string, build_string_gen import seaborn as sns from matplotlib import lines import matplotlib.gridspec as gridspec import prinzdb from print_helper import get_summ_stat_name, get_summ_stat_name_text, get_synapse_name, get_summ_stat_name_asterisk, scale_to_experimental import sys sys.path.append("../visualization") import viz from copy import deepcopy import matplotlib.ticker import matplotlib.patheffects as pe def vis_sample(m, s, sample, hyperparams, t_on=None, t_off=None, with_ss=True, with_params=True, mem_dimensions=None,mode2=None, voltage_trace=None, time_len=None, fontscale=1.0, linescale=1.0, offset=0.0, test_idx=None, case=None, title=None, date_today=None, counter=0, offset_labels=0.0, legend=True, multiplier_cond_shift = 0.0, vis_legend=True, scale_bar=True, ss_names=True, param_names=True, save_fig=False): """ Function of Kaan, modified by Michael. Used for plotting fig 5b Prinz. :param m: generator object, from m = netio.create_simulators(params)[0] :param s: summstat object, from s = netio.create_summstats(params) :param sample: membrane/synaptic conductances :param t_on: :param t_off: :param with_ss: bool, True if bars for summary stats are wanted :param with_params: bool, True if bars for parameters are wanted :return: figure object """ font_size = 15.0 if voltage_trace is None: data = m.gen_single(sample) else: data = voltage_trace Vx = data['data'] params = data['params'] stats = s.calc([data])[0] stats_nan = deepcopy(stats) stats[np.isnan(stats)] = 0.0 if hyperparams.include_plateau: stats = stats[:-4] stats = scale_to_experimental(stats) bar_scaling_factors = [1.0, 10, 100, 10, 100, 1, 10000, 10000] bar_scaling_factors = np.reshape(np.tile(bar_scaling_factors, 3), (3, 8)) bar_vals = bar_scaling_factors[np.asarray(hyperparams.use_membrane)] if mem_dimensions is not None: params_trunc = params[mem_dimensions].tolist() params_trunc += params[-7:].tolist() bar_vals = bar_vals[mem_dimensions] params = np.asarray(params_trunc) if with_params and with_ss: fig = plt.figure(figsize=(11.3, 6)) gs = gridspec.GridSpec(2, 3, width_ratios=[len(stats), len(params[:-7]), len(params[-7:])], wspace=0.25, height_ratios=[0.7, 0.3]) axV = plt.subplot(gs[0, :]) axss = plt.subplot(gs[1, 0]) axmemparams = plt.subplot(gs[1, 1]) axsynparams = plt.subplot(gs[1, 2]) elif with_params: fig = plt.figure(figsize=(6, 7.5)) gs = gridspec.GridSpec(2, 2, width_ratios=[len(params[:-7]), len(params[-7:])], hspace=0.1, wspace=0.38, height_ratios=[0.65, 0.35]) axV = plt.subplot(gs[0, :]) axmemparams = plt.subplot(gs[1, 0]) axsynparams = plt.subplot(gs[1, 1]) elif with_ss: fig, (axV, axss) = plt.subplots(2, figsize=(14, 6)) else: fig, axV = plt.subplots(1, figsize=(14, 3)) cols = ['#034e7b', '#0570b0', '#3690c0'] #cols = ['k', 'k', 'k'] current_col = 0 scale_bar_breadth = 1000.0 scale_bar_voltage_breadth = 50.0 if time_len is not None: m.t = m.t * len(m.t) / time_len scale_bar_breadth = scale_bar_breadth * len(m.t) / time_len for j in range(len(prinzdb.neutypes)): if time_len is not None: axV.plot(m.t[10000+offset:10000+offset+time_len], Vx[j, 10000+offset:10000+offset+time_len] + 120.0 * (2 - j), label=prinzdb.neutypes[j], lw=0.75, c='k', rasterized=True) else: axV.plot(m.t, Vx[j] + 120.0 * (2 - j), label=prinzdb.neutypes[j], lw=0.75, c='k') current_col += 1 if scale_bar: if mode2 == 'small': axV.plot(10860 + np.arange(scale_bar_breadth), 318 * np.ones_like(np.arange(scale_bar_breadth)), lw=1.0, color='k', zorder=5, rasterized=True) axV.text(10905, 324, '1 sec', fontsize=font_size) import matplotlib.patches as patches rect = patches.Rectangle((11890, 234), 2000, 100, linewidth=1, facecolor='w', zorder=3) axV.add_patch(rect) axV.plot(13490 * np.ones_like(
np.arange(scale_bar_voltage_breadth)
numpy.arange
#!usr/bin/env python import numpy as np from sklearn.model_selection import LeaveOneGroupOut class kfold_wrapper(object): """ K-Fold Wrapper """ def __init__(self, estimator, est_fun, n_folds=None, fold_method=None, val_size=0.2): """ Parameters ---------- :param estimator: class Class of Estimator, must have Sklearn API :param est_fun: str Function of Estimator, If 'class', the estimator is treated as a classifier. If 'reg', the estimator is treated as a regressor. :param n_folds: int (default=None) Number of folds. If n_folds=1 or None, means no K-Fold :param fold_method: str (default=None) Method to Fold. If 'None', group cross_folds will be adopted. If 'group', the same method as 'None'. If 'sequence', serial n_folds will be adopted, and param val_size will be useful. :param val_size: float (default=0.2) the ratio of valication in member of serial n_folds, and the length of valicaiton is rounded off. """ setattr(self, 'estimator', estimator) setattr(self, 'est_fun', est_fun) if n_folds is None: setattr(self, 'n_folds', 1) else: setattr(self, 'n_folds', int(n_folds)) if fold_method is None: setattr(self, 'fold_method', 'group') else: setattr(self, 'fold_method', fold_method) setattr(self, 'val_size', val_size) setattr(self, 'cv_pred_prob', None) def _data_group_foldindx(self, X, y): assert 2 <= len(X.shape) <= 3, "X.shape should be n x k or n x n2 x k" assert len(X.shape) == len(y.shape) + 1 n_stratify = X.shape[0] fold_len = int(
np.divide(n_stratify, self.n_folds)
numpy.divide
""" Module stentPoints2d Implements functions to detect points on a stent in 2D slices sampled orthogonal to the stent's centerline. """ import os, sys, time import numpy as np import visvis as vv from points import Point, Pointset, Aarray #import subpixel deprecated module, use interp instead from stentseg import gaussfun ## Point detection # HU (if a pixel next to the candidate is this low, its probably a streak) th_streHU = 0.0; def detect_points(slice, th_gc=2000, th_minHU=300, sigma=1.6): """ Detect points Detects points on a stent in the given slice. Slice should be a numpy array. - The Gaussian Curvature should be above a threshold (needle detection) (th_gc) - An absolute (weak) threshold is used based on the Houndsfield units (th_minHU) - Streak artifacts are suppressed - sigma is the used scale at which the GC is calculated. """ # Make sure that the slice is a float if slice.dtype not in [np.float32, np.float64]: slice = slice.astype(np.float32) # Create slice to supress streak artifacts # Where streak artifacts are present, the image is inverted, anywhere else # its zero. By also calculating derivatives on this image and than adding # it, the threshold will never be reached where the streak artifacts are. sliceStreak = th_streHU - slice sliceStreak[sliceStreak<0] = 0 # Create new point set to store points pp = Pointset(2) # Calculate Gaussian curvature if True: Lxx = gaussfun.gfilter(slice, sigma, [0,2]) Ltmp = gaussfun.gfilter(sliceStreak, sigma, [0,2]) Lxx = Lxx+2*Ltmp Lxx[Lxx>0]=0; Lyy = gaussfun.gfilter(slice, sigma, [2,0]) Ltmp = gaussfun.gfilter(sliceStreak, sigma, [2,0]) Lyy = Lyy+2*Ltmp Lyy[Lyy>0]=0; Lgc = Lxx * Lyy # Make a smoothed version slice_smoothed = gaussfun.gfilter(slice, 0.5, 0) # Make a selection of candidate pixels Iy,Ix = np.where( (slice > th_minHU) & (Lgc > th_gc) ) # Mask to detect clashes clashMask = np.zeros(slice.shape, dtype=np.bool) # Detect local maxima for x,y in zip(Ix,Iy): if x==0 or y==0 or x==slice.shape[1]-1 or y==slice.shape[0]-1: continue # Select patch patch1 = slice[y-1:y+2,x-1:x+2] patch2 = slice_smoothed[y-1:y+2,x-1:x+2] if slice[y,x] == patch1.max():# and slice_smoothed[y,x] == patch2.max(): # Found local max (allowing shared max) # Not if next to another found point if clashMask[y,x]: continue # Not a streak artifact if patch2.min() <= th_streHU: continue # Subpixel #dx,dy = subpixel.fitLQ2_5(patch1) # Store pp.append( x, y ) clashMask[y-1:y+2,x-1:x+2] = 1 # Express points in world coordinates and return if isinstance(slice, Aarray): ori = [i for i in reversed(slice.origin)] sam = [i for i in reversed(slice.sampling)] pp *= Point(sam) pp += Point(ori) return pp def detect_points2(slice, y_x, spacing, width=10): """ Alternative version of detect_points, which uses a reference point. Used for measurements on our phantom. """ # create slice as double (makes a copy) slice = slice.astype(np.float64) # create new point set to store points pp = Pointset(2) th_minHU = 300 refy, refx = y_x refy -= spacing # because we start with incrementing it while 1: # next refy += spacing if refy > slice.shape[0]: break # get patch y1, y2 = refy - spacing//4, refy + spacing//4 x1, x2 = refx - width//2, refx + width//2 if y1<0: y1=0 patch = slice[y1:y2+1, x1:x2+1] # detect Iy, Ix = np.where( (patch == patch.max()) & (patch > th_minHU) ) try: Ix = Ix[0] Iy = Iy[0] except IndexError: continue # if no points found... y, x = y1+Iy, x1+Ix if y<=0 or y>=slice.shape[0]-1: continue # get subpixel and store patch2 = slice[y-1:y+2,x-1:x+2] dx,dy = subpixel.fitLQ2_5(patch2) pp.append( x+dx, y+dy ) return pp ## Clustering eps = 0.00000001 def chopstick_criteria(c, p1, p2, pp, param=0.25): ## Calculate intrinsic properties # 1 means point one (if relative measure, relative to c). 2 idem # plural means the point set, relative to c. # plural and 1 means for all points, relative to point 1. # Calculate vectors vec1 = c - p1 vec2 = c - p2 vecs = c - pp # Calculate angles ang12 = abs( float(vec1.angle(vec2)) ) angs1 = np.abs( vec1.angle(vecs) ) angs2 = np.abs( vec2.angle(vecs) ) # Calculate distance dist1 = float( vec1.norm() ) dist2 = float( vec2.norm() ) dists = vecs.norm() dist12 = p1.distance(p2) + eps #dists1 = p1.distance(pp) #dists2 = p2.distance(pp) # Get the point between two points p12 = (p1+p2) * 0.5 ## Criterion 1: focus # Find subset of points that is on the proper side of the centre. # For this we get the angle between the line p1-c, to p-c. We need to # check the angle p1-p3, to see if the result should me smaller or larger # than zero. The result is a kind of FAN from the centre, spanned by # the two points. M1 = (angs1 < ang12) * (angs2 < ang12) ## Criterion 2: ellipse # There are two things to be determined. The point p3, (p4 in the paper) # and the ellipsepoints on the lines p1-p3 and p2-p3. # Note the change in behaviour when d<0: # - the ellipsepoints are both in p3 # - the point p3 is moved differently. # Get distance vector d = p12.distance(c) f = 1 - np.exp(-d/dist12) if f < eps: f = eps f = float(f) # Get normal to line p1-p2 n = (p1-p2).normal() # Flip normal if its in the direction of the center if (p12 + n*d).distance(c) < d: n = -1 * n # Go from p12, a bit in the direction of the normal p3 = p12 ratio = param # 0.25 if d>0: d3 = ratio*d/f else: d3 = ratio*dist12-d p3 = p12 + n*d3 # Ellipse points e1 = f*p1 + (1-f)*p3 e2 = f*p2 + (1-f)*p3 # Ellipse. Make sure the length of the string is a bit too short so # that p1 and p2 themselves will not be included. d1 = e1.distance(pp) + e2.distance(pp) d = e1.distance(p1) + p1.distance(e2) M2 = d1 < d*0.99 return M1, M2 def add_angles(ang1, ang2): """ add_angles(ang1, ang2) Add two angles, returning a result that's always between -pi and pi. Each angle can be a scalar or a numpy array. """ # Get pi and subtract angles pi = np.pi dang = ang1 + ang2 if isinstance(dang, np.ndarray): # Limit, wrap around while True: I, = np.where(dang < -pi) if len(I): dang[I] += 2*pi else: break while True: I, = np.where(dang > pi) if len(I): dang[I] -= 2*pi else: break else: while dang < -pi: dang += 2*pi while dang > pi: dang -= 2*pi # Done return dang def subtract_angles(ang1, ang2): """ subtract_angles(ang1, ang2) Subtract two angles, returning a result that's always between -pi and pi. Each angle can be a scalar or a numpy array. """ # Get pi and subtract angles pi = np.pi dang = ang1 -ang2 if isinstance(dang, np.ndarray): # Limit, wrap around while True: I, = np.where(dang < -pi) if len(I): dang[I] += 2*pi else: break while True: I, = np.where(dang > pi) if len(I): dang[I] -= 2*pi else: break else: while dang < -pi: dang += 2*pi while dang > pi: dang -= 2*pi # Done return dang def fit_cirlce(pp, warnIfIllDefined=True): """ fit_cirlce(pp, warnIfIllDefined=True) Calculate the circle (x - c.x)**2 + (y - x.y)**2 = c.r**2 From the set of points pp. Returns a point instance with an added attribute "r" specifying the radius. In case the three points are on a line, the algorithm will fail, and return 0 for x,y and r. This waring can be suppressed. The solution is a Least Squares fit. The method as describes in [1] is called Modified Least Squares (MLS) and poses a closed form solution which is very robust. [1] <NAME> and <NAME> 2000 A Few Methods for Fitting Circles to Data IEEE Transactions on Instrumentation and Measurement """ # Init error point ce = Point(0,0) ce.r = 0.0 def cov(a, b): n = len(a) Ex = a.sum() / n Ey = b.sum() / n return ( (a-Ex)*(b-Ey) ).sum() / (n-1) # Get x and y elements X = pp[:,0] Y = pp[:,1] # In the paper there is a factor n*(n-1) in all equations below. However, # this factor is removed by devision in the equations in the following cell A = cov(X,X) B = cov(X,Y) C = cov(Y,Y) D = 0.5 * ( cov(X,Y**2) + cov(X,X**2) ) E = 0.5 * ( cov(Y,X**2) + cov(Y,Y**2) ) # Calculate denumerator denum = A*C - B*B if denum==0: if warnIfIllDefined: print("Warning: can not fit a circle to the given points.") return ce # Calculate point c = Point( (D*C-B*E)/denum, (A*E-B*D)/denum ) # Calculate radius c.r = c.distance(pp).sum() / len(pp) # Done return c def sample_circle(c, N=32): """ sample_circle(c, N=32) Sample a circle represented by point c (having attribute "r") using N datapoints. Returns a pointset. """ # Get radius r = 1.0 if hasattr(c, 'r'): r = c.r # Sample N points, but add one to close the loop d = 2*np.pi / N a = np.linspace(0,2*np.pi, N+1) # Prepare array pp = np.empty((len(a), 2), dtype=np.float32) # Apply polar coordinates pp[:,0] =
np.cos(a)
numpy.cos
#!/usr/bin/env python import abc import numpy as np #third party imports from .dataset import DataSet from .geodict import GeoDict class Grid(DataSet): """ An abstract class to represent lat/lon gridded datasets. Grids are assumed to be pixel-registered - that is, grid coordinates represent the value at the *center* of the cells. """ @abc.abstractmethod #should be a classmethod when instantiated def getFileGeoDict(filename): """ Abstract method to return the bounding box, resolution, and shape of a file in whatever Grid format. :param filename: The path to the filename of whatever grid format this is being implemented in. :returns: A geodict specifying the bounding box, resolution, and shape of the data in a file. """ raise NotImplementedError @abc.abstractmethod #should be a classmethod when instantiated def getBoundsWithin(filename,geodict): """ Abstract method to return a geodict for this file that is guaranteed to be inside the input geodict defined, without resampling. :param filename: The name of the file whose resolution/extent should be used. :param geodict: The geodict which is used as the base for finding the bounds for this file guaranteed to be inside of this geodict. :raises NotImplementedError: Always in base class """ raise NotImplementedError @classmethod def _getPadding(cls,geodict,paddict,padvalue): #get pad left columns - go outside specified bounds if not exact edge pxmin,pxmax,pymin,pymax = (paddict.xmin,paddict.xmax,paddict.ymin,paddict.ymax) gxmin,gxmax,gymin,gymax = (geodict.xmin,geodict.xmax,geodict.ymin,geodict.ymax) dx,dy = (geodict.dx,geodict.dy) ny,nx = (geodict.ny,geodict.nx) padleftcols = int(np.ceil((gxmin - pxmin)/dx)) padrightcols = int(np.ceil((pxmax - gxmax)/dx)) padbottomrows = int(np.ceil((gymin - pymin)/dy)) padtoprows = int(np.ceil((pymax - gymax)/dy)) #if any of these are negative, set them to zero if padleftcols < 0: padleftcols = 0 if padrightcols < 0: padrightcols = 0 if padbottomrows < 0: padbottomrows = 0 if padtoprows < 0: padtoprows = 0 leftpad = np.ones((ny,padleftcols))*padvalue rightpad = np.ones((ny,padrightcols))*padvalue nx += padrightcols + padleftcols bottompad =
np.ones((padbottomrows,nx))
numpy.ones
#!/usr/bin/env python # stdlib modules import sys import os.path import pickle # third party modules import numpy as np # local imports from shakelib.station import StationList homedir = os.path.dirname(os.path.abspath(__file__)) # where is this script? shakedir = os.path.abspath(os.path.join(homedir, '..', '..')) sys.path.insert(0, shakedir) # # Set SAVE to True to write new versions of the output to disk, # set it to False to actually run the tests. # SAVE = False def test_station(): homedir = os.path.dirname(os.path.abspath(__file__)) # # First test the Calexico data on its own # event = 'Calexico' datadir = os.path.abspath(os.path.join(homedir, 'station_data')) datadir = os.path.abspath(os.path.join(datadir, event, 'input')) inputfile = os.path.join(datadir, 'stationlist_dat.xml') dyfifile = os.path.join(datadir, 'ciim3_dat.xml') xmlfiles = [inputfile, dyfifile] stations = StationList.loadFromXML(xmlfiles, ":memory:") df1 = stations.getStationDictionary(instrumented=True) df2 = stations.getStationDictionary(instrumented=False) ppath = os.path.abspath(os.path.join(datadir, '..', 'database', 'test1.pickle')) if SAVE: ldf = [df1, df2] with open(ppath, 'wb') as f: pickle.dump(ldf, f, pickle.HIGHEST_PROTOCOL) else: with open(ppath, 'rb') as f: ldf = pickle.load(f) saved_df1 = ldf[0] saved_df2 = ldf[1] compare_dataframes(saved_df1, df1) compare_dataframes(saved_df2, df2) # # Should at least hit this code # imtlist = stations.getIMTtypes() assert 'PGA' in imtlist assert 'PGV' in imtlist # # Add the Northridge data to the Calexico data to test # addData() # event = 'northridge' datadir = os.path.abspath(os.path.join(homedir, 'station_data')) datadir = os.path.abspath(os.path.join(datadir, event, 'input')) inputfile = os.path.join(datadir, 'hist_dat.xml') dyfifile = os.path.join(datadir, 'dyfi_dat.xml') xmlfiles = [inputfile, dyfifile] stations = stations.addData(xmlfiles) df1 = stations.getStationDictionary(instrumented=True) df2 = stations.getStationDictionary(instrumented=False) ppath = os.path.abspath(os.path.join(datadir, '..', 'database', 'test2.pickle')) if SAVE: ldf = [df1, df2] with open(ppath, 'wb') as f: pickle.dump(ldf, f, pickle.HIGHEST_PROTOCOL) else: with open(ppath, 'rb') as f: ldf = pickle.load(f) saved_df1 = ldf[0] saved_df2 = ldf[1] compare_dataframes(saved_df1, df1) compare_dataframes(saved_df2, df2) def test_station2(): # # Test the wenchuan data # homedir = os.path.dirname(os.path.abspath(__file__)) event = 'wenchuan' datadir = os.path.abspath(os.path.join(homedir, 'station_data')) datadir = os.path.abspath(os.path.join(datadir, event, 'input')) inputfile = os.path.join(datadir, 'stationlist.xml') xmlfiles = [inputfile] stations = StationList.loadFromXML(xmlfiles, ":memory:") df1 = stations.getStationDictionary(instrumented=True) df2 = stations.getStationDictionary(instrumented=False) ppath = os.path.abspath(os.path.join(datadir, '..', 'database', 'test3.pickle')) if SAVE: ldf = [df1, df2] with open(ppath, 'wb') as f: pickle.dump(ldf, f, pickle.HIGHEST_PROTOCOL) else: with open(ppath, 'rb') as f: ldf = pickle.load(f) saved_df1 = ldf[0] saved_df2 = ldf[1] compare_dataframes(saved_df1, df1) compare_dataframes(saved_df2, df2) # # Dump the database to SQL and then restore it to a new # StationList object. Compare dataframes. # sql = stations.dumpToSQL() stations2 = StationList.loadFromSQL(sql) df1 = stations2.getStationDictionary(instrumented=True) df2 = stations2.getStationDictionary(instrumented=False) compare_dataframes(saved_df1, df1) compare_dataframes(saved_df2, df2) def test_station3(): # # Exercise the geojson code. Can't really compare it to anything # because the ordering is scrambled by the hashes in the XML # parsing stage. Once (if) we institute a loadFromJSON() method, we # can do a comparison. # homedir = os.path.dirname(os.path.abspath(__file__)) event = 'wenchuan' datadir = os.path.abspath(os.path.join(homedir, 'station_data')) datadir = os.path.abspath(os.path.join(datadir, event, 'input')) inputfile = os.path.join(datadir, 'stationlist.xml') xmlfiles = [inputfile] stations = StationList.loadFromXML(xmlfiles, ":memory:") myjson = stations.getGeoJson() # noqa def test_station4(): homedir = os.path.dirname(os.path.abspath(__file__)) event = 'northridge' datadir = os.path.abspath(os.path.join(homedir, 'station_data')) datadir = os.path.abspath(os.path.join(datadir, event, 'input')) dyfifile = os.path.join(datadir, 'dyfi_dat.xml') xmlfiles = [dyfifile] stations = StationList.loadFromXML(xmlfiles, ":memory:") df1 = stations.getStationDictionary(instrumented=True) # noqa df2 = stations.getStationDictionary(instrumented=False) # noqa assert df1 is None def test_station5(): homedir = os.path.dirname(os.path.abspath(__file__)) event = 'Calexico' datadir = os.path.abspath(os.path.join(homedir, 'station_data')) datadir = os.path.abspath(os.path.join(datadir, event, 'input')) inputfile = os.path.join(datadir, 'stationlist_dat.xml') dyfifile = os.path.join(datadir, 'ciim3_dat.xml') xmlfiles = [inputfile, dyfifile] stations1 = StationList.loadFromXML(xmlfiles, ":memory:") # # Load the data more than once to exercise the code that handles # repeated entries. # xmlfiles = [inputfile, inputfile, dyfifile, dyfifile] stations2 = StationList.loadFromXML(xmlfiles, ":memory:") df1 = stations1.getStationDictionary(instrumented=True) df2 = stations2.getStationDictionary(instrumented=True) compare_dataframes(df1, df2) def compare_dataframes(df1, df2): assert sorted(list(df1.keys())) == sorted(list(df2.keys())) idx1 =
np.argsort(df1['id'])
numpy.argsort
# -*- coding: UTF-8 -*- """ Created by louis at 2021/9/13 Description: """ import os import gc import glob import torch from torch import nn import torch.nn.functional as F import torch.optim as optim import numpy as np import pandas as pd import time from itertools import islice from torch.utils.data import Dataset, DataLoader from multiprocessing import Pool from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import train_test_split from torch.utils.tensorboard import SummaryWriter from tqdm.auto import tqdm import logging import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (2048, rlimit[1])) datefmt = '%Y-%m-%d %H:%M:%S' logging.basicConfig(filename='pytorch-baseline.log', filemode='w', format='%(asctime)s - %(levelname)s - %(message)s', datefmt=datefmt, level=logging.DEBUG) # import tqdm tqdm.pandas() import warnings from multiprocessing import cpu_count def get_path_dict(f, v): f_dict = {} for i in tqdm(v): fpath = f'{f}/stock_id={i}' flist = glob.glob(os.path.join(fpath, '*.parquet')) if len(flist) > 0: f_dict[i] = flist[0] return f_dict # train_idx, valid_idx = train_test_split(train_ds['row_id'], shuffle=True, test_size=0.1, random_state=SEED) # ds: train.csv里面的数据 f_dict:是 book_train.parquet 里面的数据 def process_optiver_ds(ds, f_dict, skip_cols, t_dict): x = [] y = [] full_seconds_in_bucket = {'seconds_in_bucket': np.arange(600)} full_seconds_in_bucket = pd.DataFrame(full_seconds_in_bucket) for stock_id, stock_fnmame in tqdm(f_dict.items()): trade_train_ = t_dict.get(stock_id) trade_train_ = pd.read_parquet(trade_train_) optiver_ds = pd.read_parquet(stock_fnmame) time_ids = optiver_ds['time_id'].unique() for time_id in time_ids: optiver_ds_ = optiver_ds[optiver_ds['time_id'] == time_id] optiver_ds_ = pd.merge(full_seconds_in_bucket, optiver_ds_, how='left', on='seconds_in_bucket') optiver_ds_ = pd.merge(optiver_ds_, trade_train_[trade_train_['time_id'] == time_id], how='left', on='seconds_in_bucket') # optiver_ds_.drop(skip_cols) optiver_ds_.drop(['time_id_x', 'time_id_y'], axis=1) optiver_ds_ = np.nan_to_num(optiver_ds_) row_id = str(stock_id) + '-' + time_id.astype(str) r = ds[ds['row_id'] == row_id]['target'] x.append(optiver_ds_) y.append(r) return x, y def chunks(data, SIZE=10000): it = iter(data) for i in range(0, len(data), SIZE): yield {k: data[k] for k in islice(it, SIZE)} def process_book_train_chunk(chunk_ds): return process_optiver_ds(train_ds, chunk_ds, book_skip_columns, trade_train_dict) def process_book_test_chunk(chunk_ds): return process_optiver_ds(test_ds, chunk_ds, book_skip_columns, trade_test_dict) ''' # 将样本分成4块,每块里面有28条数据 book_train_chunks = [i for i in chunks(book_train_dict, int(len(book_train_dict) / NTHREADS))] # trade_train_chunks = [i for i in chunks(trade_train_dict, int(len(trade_train_dict) / NTHREADS))] z = 1 if len(book_test_dict) < NTHREADS else NTHREADS book_test_chunks = [i for i in chunks(book_test_dict, int(len(book_test_dict) / z))] # trade_test_chunks = [i for i in chunks(trade_test_dict, int(len(trade_test_dict) / z))] pool = Pool(NTHREADS) # 创建进程池,最大进程数为 NTHREADS r = pool.map(process_book_train_chunk, book_train_chunks) pool.close() a1, a2 = zip(*r) pool = Pool(NTHREADS) # 创建进程池,最大进程数为 NTHREADS r = pool.map(process_book_test_chunk, book_test_chunks) pool.close() t_a1, t_a2 = zip(*r) np_train = a1 np_target = a2''' # Scaler # transformers = [] # for i in tqdm(range(np_train.shape[1])): # a = np.nan_to_num(np_train[train_idx]) # b = np.nan_to_num(np_train[valid_idx]) # # transformer = StandardScaler() # StandardScaler is very useful! # np_train[train_idx] = transformer.fit_transform(a) # np_train[valid_idx] = transformer.transform(b) # transformers.append(transformer) # Save Scalers for the inference stage class LSTMModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.1): super(LSTMModel, self).__init__() # self.drop = nn.Dropout(dropout) # self.encoder = nn.Embedding(ntoken, ninp) self.rnn = nn.LSTM(ninp + input_features_num, nhid + input_features_num, nlayers, dropout=dropout, batch_first=True, bidirectional=True) self.regress_rnn = nn.Sequential( nn.BatchNorm1d(2 * nhid + 2 * input_features_num), nn.Linear(2 * nhid + 2 * input_features_num, 1), nn.Sigmoid() ) self.decoder = nn.Sequential( nn.BatchNorm1d(3 * nhid + 2 * input_features_num), nn.Linear(3 * nhid + 2 * input_features_num, nhid + input_features_num), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(nhid + input_features_num), nn.Linear(nhid + input_features_num, ntoken), nn.ReLU(), nn.Dropout(0.1), nn.BatchNorm1d(ntoken), nn.Linear(ntoken, 1), nn.Sigmoid() ) self.self_attention = nn.Sequential( nn.Linear(3 * nhid + 2 * input_features_num, 10 * (nhid + input_features_num)), nn.ReLU(), nn.Dropout(0.2), nn.Linear(10 * (nhid + input_features_num), 10 * (nhid + input_features_num)), nn.ReLU(), nn.Dropout(0.2), nn.Linear(10 * (nhid + input_features_num), 3 * nhid + 2 * input_features_num), nn.Softmax(dim=1) ) # self.decoder_1 = nn.Linear(nhid, ntoken) # self.decoder_2 = nn.Linear(ntoken, 1) self.conv1d_relu_stack = nn.Sequential( nn.Conv1d(in_channels=600, out_channels=1200, kernel_size=3), nn.Dropout(0.1), nn.ReLU(), # 9 nn.Conv1d(in_channels=1200, out_channels=1200, kernel_size=3), nn.Dropout(0.2), nn.ReLU(), # 7 nn.Conv1d(in_channels=1200, out_channels=1200, kernel_size=3), nn.Dropout(0.2), nn.ReLU(), # 5 nn.Conv1d(in_channels=1200, out_channels=600, kernel_size=3), nn.Dropout(0.1), nn.ReLU(), # 3 nn.Conv1d(in_channels=600, out_channels=nhid, kernel_size=3), nn.ReLU(), # 1 ) self.regress_conv = nn.Sequential( nn.BatchNorm1d(nhid), nn.Linear(nhid, 1), nn.Sigmoid() ) self.linear_relu_stack = nn.Sequential( nn.Linear(input_features_num, ntoken), nn.Dropout(0.1), nn.ReLU(), nn.Linear(ntoken, ninp), nn.Dropout(0.2), nn.ReLU(), nn.Linear(ninp, ninp), nn.Dropout(0.2), nn.ReLU(), ) self.ninp = ninp self.nhid = nhid self.nlayers = nlayers def forward(self, input): # emb = self.drop(self.encoder(input)) cov_logits = self.conv1d_relu_stack(input) cov_logits = cov_logits.view(cov_logits.shape[0], cov_logits.shape[1]) regress_conv_out = self.regress_conv(cov_logits) logits = self.linear_relu_stack(input) logits = torch.cat((logits, input), 2) # logits = logits.view(1, len(logits), -1) output, hidden = self.rnn(logits) output = output[:, -1, :] regress_rnn_out = self.regress_rnn(output) new_logits = torch.cat((cov_logits, output), 1) # attention_output = self.self_attention(new_logits) # output = self.drop(output) new_logits = torch.mul(new_logits, self.self_attention(new_logits)) # decoded_out = self.decoder(new_logits) decoded_out = self.decoder(new_logits) # decoded_2 = self.decoder_2(decoded_1) return regress_conv_out, regress_rnn_out, decoded_out def init_hidden(self, bsz): weight = next(self.parameters()) return (weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid)) # dataloader = DataLoader(transformed_dataset, batch_size=4, # shuffle=True, num_workers=0) def rmspe(y_pred,y_true): rms = np.sqrt(np.mean(np.square((y_true - y_pred) / y_true))) return rms def RMSPELoss(y_pred, y_true): return torch.sqrt(torch.mean(((y_true - y_pred) / y_true) ** 2)).clone() def do_process(optiver_ds, full_seconds_in_bucket, trade__, time_id): optiver_ds_ = optiver_ds[optiver_ds['time_id'] == time_id] if optiver_ds_.size == 0: return None optiver_ds_ = pd.merge(full_seconds_in_bucket, optiver_ds_, how='left', on='seconds_in_bucket') optiver_ds_ = pd.merge(optiver_ds_, trade__[trade__['time_id'] == time_id], how='left', on='seconds_in_bucket') # optiver_ds_.drop(skip_cols) optiver_ds_ = optiver_ds_.drop(['time_id_x', 'time_id_y', 'seconds_in_bucket'], axis=1) optiver_ds_ = np.nan_to_num(optiver_ds_) # TODO 将每一列进行标准化 for i in range(optiver_ds_.shape[1]): if np.sum(optiver_ds_[:, i]) != 0 and np.std(optiver_ds_[:, i]) != 0: optiver_ds_[:, i] = (optiver_ds_[:, i] -
np.mean(optiver_ds_[:, i])
numpy.mean
import os import warnings from collections import OrderedDict import numpy as np import astropy.units as u from astropy.utils.exceptions import AstropyWarning, AstropyUserWarning from . import utils __all__ = ["TemplateError", "Template", "Redden", "ModifiedBlackBody", "read_templates_file", "load_phoenix_stars", "bspline_templates", "gaussian_templates"] class TemplateError(object): def __init__(self, file='templates/TEMPLATE_ERROR.eazy_v1.0', arrays=None, filter_wavelengths=[5500.], scale=1.): """ Template error function with spline interpolation at arbitrary redshift. Parameters ---------- file : str File containing the template error function definition (columns of wavelength in Angstroms and the TEF). arrays : optional, (wave, TEF) Set from arrays rather than reading from ``file``. filter_wavelengths : list List of filter pivot wavelengths (observed-frame Angstroms). scale : float Scale factor multiplied to TEF array, e.g., the ``TEMP_ERR_A2`` parameter. Attributes ---------- te_x, te_y : arrays The input wavelength and TEF arrays. min_wavelength, min_wavelength : float Min/max of the wavelengths in ``te_x``. clip_lo, clip_hi : float Extrapolation limits to use if redshifted filters fall outside defined ``te_x`` array """ self.file = file if arrays is None: self.te_x, self.te_y = np.loadtxt(file, unpack=True) else: self.te_x, self.te_y = arrays self.scale = scale self.filter_wavelengths = filter_wavelengths self._set_limits() self._init_spline() def _set_limits(self): """ Limits to control extrapolation """ nonzero = self.te_y > 0 self.min_wavelength = self.te_x[nonzero].min() self.max_wavelength = self.te_x[nonzero].max() self.clip_lo = self.te_y[nonzero][0] self.clip_hi = self.te_y[nonzero][-1] def _init_spline(self): """ Initialize the CubicSpline interpolator """ from scipy import interpolate self._spline = interpolate.CubicSpline(self.te_x, self.te_y) def interpolate(self, filter_wavelength=5500., z=1.): """ ``filter_wavelength`` is observed wavelength of photometric filters. But these sample the *rest* wavelength of the template error function at lam/(1+z) """ return self._spline(filter_wavelength/(1+z))*self.scale def __call__(self, z, limits=None): """ Interpolate TEF arrays at a specific redshift Parameters ---------- z : float Redshift limits : None, (float, float) Extrapolation limits. If not specified, get from ``clip_lo`` and ``clip_hi`` attributes. """ lcz = np.atleast_1d(self.filter_wavelengths)/(1+z) tef_z = self._spline(np.atleast_1d(self.filter_wavelengths)/(1+z)) if limits is None: limits = [self.clip_lo, self.clip_hi] clip_lo = (lcz < self.min_wavelength) tef_z[clip_lo] = limits[0] clip_hi = (lcz > self.max_wavelength) tef_z[clip_hi] = limits[1] return tef_z*self.scale class Redden(object): def __init__(self, model=None, Av=0., **kwargs): """ Wrapper function for `dust_attenuation` and `dust_extinction` reddening laws .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from eazy.templates import Redden fig, ax = plt.subplots(1,1,figsize=(6,4)) wave = np.arange(1200, 2.e4) for model in ['calzetti00', 'mw', 'smc', 'reddy15']: redfunc = Redden(model=model, Av=1.0) ax.plot(wave, redfunc(wave), label=model) ax.plot(wave, wave*0+10**(-0.4), color='k', label=r'$A_\lambda = 1$', linestyle=':') ax.legend() ax.loglog() ax.set_xticks([2000, 5000, 1.e4]) ax.set_xticklabels([0.2, 0.5, 1.0]) ax.grid() ax.set_xlabel('wavelength, microns') ax.set_ylabel('Attenuation / extinction (Av=1 mag)') fig.tight_layout(pad=0.5) Parameters ---------- model : `extinction`/`attenuation` object or str Allowable string arguments: - 'smc': `dust_extinction.averages.G03_SMCBar` - 'lmc': `dust_extinction.averages.G03_LMCAvg` - 'mw','f99': `dust_extinction.parameter_averages.F99` - 'calzetti00', 'c00': `dust_attenuation.averages.C00` - 'wg00': `dust_attenuation.radiative_transfer.WG00` - 'kc13': Calzetti with modified slope and dust bump from Kriek & Conroy (2013) - 'reddy15': Reddy et al. (2015) Av : float Selective extinction/attenuation (passed as `tau_V` for ``WG00``) """ allowed = ['smc', 'lmc', 'mw', 'f99', 'c00', 'calzetti00', 'wg00', 'kc13','reddy15','zafar15'] if isinstance(model, str): self.model_name = model if model in ['smc']: from dust_extinction.averages import G03_SMCBar self.model = G03_SMCBar() elif model in ['lmc']: from dust_extinction.averages import G03_LMCAvg self.model = G03_LMCAvg() elif model in ['mw','f99']: from dust_extinction.parameter_averages import F99 self.model = F99() elif model in ['calzetti00', 'c00']: from dust_attenuation.averages import C00 self.model = C00(Av=Av) elif model.lower() in ['kc13']: from eazy.sps import KC13 self.model = KC13(Av=Av, **kwargs) elif model.lower() in ['reddy15']: from eazy.sps import Reddy15 self.model = Reddy15(Av=Av, **kwargs) elif model.lower() in ['zafar15']: from eazy.sps import Zafar15 self.model = Zafar15(Av=Av) elif model in ['wg00']: from dust_attenuation.radiative_transfer import WG00 if 'tau_V' in kwargs: self.model = WG00(**kwargs) else: self.model = WG00(tau_V=Av, **kwargs) else: msg = "Requested model ('{model}') not in {allowed}." raise IOError(msg.format(model=model, allowed=allowed)) else: self.model = model self.model_name = 'Unknown' for k in ['Av', 'tau_V']: if hasattr(model, k): Av = getattr(model, k) break self.Av = Av @property def ebv(self): """ E(B-V) for models that have ``Rv`` """ if hasattr(self.model, 'Rv'): return self.Av/self.model.Rv else: print('Warning: Rv not defined for model: ' + self.__repr__()) return 0. def __repr__(self): msg = '<Redden {0}, Av/tau_V={1}>' return msg.format(self.model.__repr__(), self.Av) def __call__(self, wave, left=0, right=1., **kwargs): """ Return reddening factor. Parameters ---------- wave : array (NW) Wavelength array. If has no units, assume `~astropy.units.Angstrom`. left, right : float Extrapolation at short/long wavelengths Returns ------- ext : array (NW) Extinction / attenuation as a function of wavelength """ if not hasattr(wave, 'unit'): xu = wave*u.Angstrom else: if wave.unit is None: xu.unit = u.Angstrom else: xu = wave if 'Av' in kwargs: self.Av = kwargs['Av'] if 'tau_V' in kwargs: self.Av = kwargs['tau_V'] for k in kwargs: if hasattr(self.model, k): setattr(self.model, k, kwargs[k]) ext = np.atleast_1d(np.ones_like(xu.value)) if hasattr(self.model, 'x_range'): if hasattr(self.model, 'extinguish'): # dust_extinction has x_range in 1/micron xblue = (1./xu.to(u.micron)).value > self.model.x_range[1] xred = (1./xu.to(u.micron)).value < self.model.x_range[0] else: # dust_attenuation has x_range in micron xblue = (xu.to(u.micron)).value < self.model.x_range[0] xred = (xu.to(u.micron)).value > self.model.x_range[1] ext[xblue] = left ext[xred] = right xr = (~xblue) & (~xred) else: xr = np.isfinite(wave) if (self.model is None) | (self.Av <= 0): # Don't do anything pass elif hasattr(self.model, 'extinguish'): # extinction ext[xr] = self.model.extinguish(xu[xr], Av=self.Av) elif hasattr(self.model, 'attenuate'): # attenuation if hasattr(self.model, 'tau_V'): # WG00 self.model.tau_V = self.Av else: self.model.Av = self.Av ext[xr] = self.model.attenuate(xu[xr]) else: msg = ('Dust model must have either `attenuate` or `extinguish`' + ' method.') raise IOError(msg) if hasattr(wave, '__len__'): return ext elif ext.size == 1: return ext[0] else: return ext def read_templates_file(templates_file=None, as_dict=False, **kwargs): """ Read templates listed in ``templates_file``. Parameters ---------- templates_file : str Filename of the ascii file containing the templates list. Has format like .. code:: 1 templates/fsps_full/tweak_fsps_QSF_12_v3_001.dat 1.0 2 templates/fsps_full/tweak_fsps_QSF_12_v3_002.dat 1.0 ... N {path} {scale} where ``scale`` is the factor needed to scale the template wavelength array to units of Angstroms. as_dict : bool Return dictionary rather than a list (e.g., for `grizli`). kwargs : dict Extra keyword arguments are passed to `~eazy.templates.Template` with ``file`` and ``to_angstrom`` keywords set automatically. Returns ------- templates : list List of `eazy.templates.Template` objects (`dict` if ``as_dict``) """ lines = open(templates_file).readlines() templates = [] for line in lines: if line.strip().startswith('#'): continue lspl = line.split() template_file = lspl[1] if len(lspl) > 2: to_angstrom = float(lspl[2]) else: to_angstrom = 1. templ = Template(file=template_file, to_angstrom=to_angstrom, **kwargs) templates.append(templ) if as_dict: tdict = OrderedDict() for t in templates: tdict[t.name] = t return tdict else: return templates class Template(): def __init__(self, file=None, name=None, arrays=None, sp=None, meta={}, to_angstrom=1., velocity_smooth=0, norm_filter=None, resample_wave=None, fits_column='flux', redfunc=Redden(), redshifts=[0], verbose=True, flux_unit=(u.L_sun/u.Angstrom), **kwargs): """ Template object. Can optionally specify a 2D flux array with the first dimension indicating the template for the nearest redshift in the corresponding ``redshifts`` list. See When integrating the filter fluxes with ``integrate_filter``, the template index with the redshift nearest to the specified redshift will be used. Parameters ---------- file : str Filename of ascii or FITS template arrays : (array, array) Tuple of ``wave``, ``flux`` arrays. Here ``flux`` assumed to have units f-lambda. sp : object Object with ``wave``, ``flux`` attributes, e.g., from ``prospector``. Here ``flux`` is assumed to have units of f-nu. to_angstrom : float Scale factor such that ``wave * to_angstrom`` has units of `astropy.units.Angstrom` velocity_smooth : float Velocity smooothing in km/s, applied if > 0 resample_wave : array Grid to resample the template wavelengths read from the input fits_column : str Column name of the flux column if arrays read from a ``file`` redfunc : `eazy.templates.Redden` Object to apply additional reddening. redshifts : array-like Redshift grid for redshift-dependent templates flux_unit : `astropy.units.core.Unit` Units of ``flux`` array. Attributes ---------- wave : array wavelength in `astropy.units.Angstrom`, dimensions ``[NWAVE]``. flux : array Flux density f-lambda, can have redshift dependence, dimensions ``[NZ, NWAVE]``. name : str Label name meta : dict Metadata redfunc : `eazy.templates.Redden`, optional Object for applying dust reddening. """ import copy from astropy.table import Table import astropy.units as u self.wave = None self.flux = None self.flux_unit = flux_unit self.name = 'None' self.meta = copy.deepcopy(meta) self.velocity_smooth = velocity_smooth if name is None: if file is not None: self.name = os.path.basename(file) else: self.name = name self.orig_table = None if sp is not None: # Prospector self.wave = np.cast[float](sp.wave) self.flux = np.cast[float](sp.flux) # already fnu self.flux *= utils.CLIGHT*1.e10 / self.wave**2 elif file is not None: # Read from a file if file.split('.')[-1] in ['fits','csv','ecsv']: tab = Table.read(file) self.wave = tab['wave'].data.astype(float) if fits_column not in tab.colnames: msg = (f"'{fits_column}' not in {file}; " + f"available columns are {tab.colnames}.") raise ValueError(msg) self.flux = tab[fits_column].data.astype(float) self.orig_table = tab if hasattr(tab[fits_column], 'unit'): if tab[fits_column].unit is not None: self.flux_unit = tab[fits_column].unit # Transpose because FITS tables stored like NWAVE, NZ if self.flux.ndim == 2: self.flux = self.flux.T for k in tab.meta: self.meta[k] = tab.meta[k] else: _arr = np.loadtxt(file, unpack=True) self.wave, self.flux = _arr[0], _arr[1] elif arrays is not None: self.wave, self.flux = arrays[0]*1., arrays[1]*1. if arrays[0].shape[0] != np.atleast_2d(arrays[1]).shape[1]: raise ValueError("Array dimensions don't match: "+ f'arrays[0]: {arrays[0].shape}, '+ f'arrays[1]: {arrays[1].shape}, ') if hasattr(self.flux, 'unit'): self.flux_unit = self.flux.unit if hasattr(self.flux, 'value'): self.flux = self.flux.value #self.set_fnu() else: raise TypeError('Must specify either `sp`, `file` or `arrays`') if self.flux.ndim == 1: # For redshift dependence self.flux = np.atleast_2d(self.flux) self.redshifts = np.zeros(1) self.NZ, self.NWAVE = self.flux.shape else: self.NZ, self.NWAVE = self.flux.shape if 'NZ' in self.meta: redshifts = [self.meta[f'Z{j}'] for j in range(self.meta['NZ'])] if len(redshifts) != self.NZ: msg = (f'redshifts ({len(redshifts)})' f' doesn\'t match flux dimension ({self.NZ})!') raise ValueError(msg) self.redshifts = np.array(redshifts) # if verbose: # print(f'Redshift dependent! (NZ={self.NZ})') # Handle optional units if hasattr(self.wave, 'unit'): if self.wave.unit is not None: self.wave = self.wave.to(u.Angstrom).value else: self.wave = self.wave.data else: self.wave *= to_angstrom flam_unit = u.erg/u.second/u.cm**2/u.Angstrom if hasattr(self.flux, 'unit'): if self.flux.unit is not None: equiv = u.equivalencies.spectral_density(self.wave*u.Angstrom) flam = self.flux.to(flam_unit, equivalencies=equiv) self.flux = flam.value else: self.flux = self.flux.data # Smoothing if velocity_smooth > 0: self.smooth_velocity(velocity_smooth, in_place=True) # Resampling self.resample(resample_wave, in_place=True) #self.set_fnu() # Reddening function self.redfunc = redfunc _red = self.redden # test to break at init if fails def __repr__(self): if self.name is None: return self.__class__ else: return '{0}: {1}'.format(self.__class__, self.name) def absorbed_energy(self, i=0): diff = self.flux[i,:]*(1-self.redden)*(self.redden > 0) absorbed = np.trapz(diff, self.wave) return absorbed # if self.NZ == 1: # return absorbed[0] # else: # return absorbed @property def redden(self): """ Return multiplicative scaling from `self.redfunc`, which is expected to return attenuation in magnitudes. """ if self.redfunc is not None: red = self.redfunc(self.wave*u.Angstrom) else: red = 1. return red @property def shape(self): """ Shape of flux attribute """ return self.flux.shape def flux_flam(self, iz=0, z=None, redshift_type='nearest'): """ Get redshift-dependent template in units of f-lambda Parameters ---------- iz : int Index of template to retrieve z : float, None If specified, get the redshift index with `~eazy.templates.Template.zindex`. redshift_type : 'nearest', 'interp' See `~eazy.templates.Template.zindex`. Returns ------- flam : array Template flux density in units of f-lambda, including any reddening specified in the ``redden`` attribute. """ if z is not None: if redshift_type == 'interp': iz, frac = self.zindex(z=z, redshift_type=redshift_type) if frac == 1: flam = self.flux[iz,:] else: flam = frac*self.flux[iz,:] flam += (1-frac)*self.flux[iz+1,:] else: iz = self.zindex(z=z, redshift_type=redshift_type) flam = self.flux[iz,:] else: flam = self.flux[iz,:] return flam * self.redden def flux_fnu(self, iz=0, z=None, redshift_type='nearest'): """ Get redshift-dependent template in units of f-nu Parameters ---------- iz : int Index of template to retrieve z : float, None If specified, get the redshift index with `~eazy.templates.Template.zindex`. redshift_type : str See `~eazy.templates.Template.zindex`. Returns ------- fnu : array Template flux density in units of f-nu, including any reddening specified in the ``redden`` attribute. """ flam = self.flux_flam(iz=iz, z=z, redshift_type=redshift_type) return (flam * self.wave**2 / (utils.CLIGHT*1.e10)) def set_fnu(self): """ Deprecated. ``flux_fnu`` is now a more cmoplicated function. """ print('Deprecated. ``flux_fnu`` is now a function.') pass def smooth_velocity(self, velocity_smooth, in_place=True, raise_error=False): """ Smooth template in velocity using ``astro-prospector`` Parameters ---------- velocity_smooth: float Velocity smoothing *sigma*, in km/s. in_place : bool Set internal ``flux`` array to the smoothed array. If False, then return a new `~eazy.templates.Template` object. raise_error : bool If ``from prospect.utils.smoothing import smooth_vel`` fails, raise an exception or die quietly. """ try: from prospect.utils.smoothing import smooth_vel except: if raise_error: raise ImportError("Couldn't import `prospect.utils.smoothing") else: return None if velocity_smooth <= 0: if in_place: return True else: return self sm_flux = np.array([smooth_vel(self.wave, self.flux[i,:], self.wave, velocity_smooth) for i in range(self.NZ)]) sm_flux[~np.isfinite(sm_flux)] = 0. if in_place: self.flux_orig = self.flux*1 self.velocity_smooth = velocity_smooth self.flux = sm_flux return True else: return Template(arrays=(self.wave, sm_flux), name=self.name, meta=self.meta, redshifts=self.redshifts) def to_observed_frame(self, z=0, scalar=1., extra_sigma=0, lsf_func='Bacon', to_air=True, wavelengths=None, smoothspec_kwargs={'fftsmooth':False}, include_igm=True, clip_wavelengths=[4500,9400]): """ Smooth and resample to observed-frame wavelengths, including an optional Line Spread Function (LSF) Note that the smoothing is performed with `prospect.utils.smoothing.smoothspec <https://prospect.readthedocs.io/en/latest/api/utils_api.html>`_, which doesn't integrate precisely over "pixels" for spectral resolutions that are similar to or less than the target smoothing factor. Parameters ---------- z : float Target redshift. Note that only the wavelength array is shifted by ``(1+z)``. The flux densities optionally include IGM absorption (and dust from the ``redfunc`` attribute) but don't include the ``fl_obs = fl_rest / (1+z)`` scaling. scalar : float, array Scalar value or array with same dimensions as ``wave`` and ``flux`` attributes extra_sigma : float Extra velocity dispersion (sigma, km/s) to add in quadrature with the MUSE LSF lsf_func : 'Bacon', function Line Spread Function (LSF). If ``'Bacon'``, then use the "UDF-10" MUSE LSF from `Bacon et al. 2017 <https://ui.adsabs.harvard.edu/abs/2017A%26A...608A...1B>`_ (Eq. 8). Can also be a ``function`` that takes an argument of wavelength in Angstroms and returns the LSF sigma, in Angstroms. If neither of these, then only `extra_sigma` will be applied. to_air : bool Apply vacuum-to-air conversion with `mpdaf.obj.vactoair <https://mpdaf.readthedocs.io/en/latest/api/mpdaf.obj.vactoair.html>`_ wavelengths : array, None Optional wavelength grid (observed frame) of the target output (e.g., MUSE) spectrum smoothspec_kwargs : dict Extra keyword arguments to pass to the Prospector smoothing function `prospect.utils.smoothing.smoothspec <https://prospect.readthedocs.io/en/latest/api/utils_api.html>`_. When testing with very high resolution templates around a specific wavelength, ``smoothspec_kwargs = {'fftsmooth':True}`` did not always work as expected, so be careful with this option (which is much faster). include_igm : bool Include IGM absorption at indicated redshift clip_wavelengths : [float, float] Trim the full observed-frame wavelength array before convolving. The defaults bracket the nominal MUSE range. Returns ------- tobs : `~eazy.template.Template` Smoothed and resampled `~eazy.template.Template` object """ from astropy.stats import gaussian_sigma_to_fwhm from prospect.utils.smoothing import smoothspec wobs = self.wave*(1+z) if include_igm: igmz = self.igm_absorption(z, pow=include_igm) else: igmz = 1. if to_air: try: from mpdaf.obj import vactoair wobs = vactoair(wobs) except ImportError: msg = ("`to_air` requested but `from mpdaf.obj import " + "vactoair` failed") warnings.warn(msg, AstropyUserWarning) if clip_wavelengths is not None: clip = wobs >= clip_wavelengths[0] clip &= wobs <= clip_wavelengths[1] if clip.sum() == 0: raise ValueError('No template wavelengths found in the '+ f'clipping range {clip_wavelengths} '+ 'Angstroms') else: clip = wobs > 0 if lsf_func in ['Bacon']: # UDF-10 LSF from Bacon et al. 2017 bacon_lsf_fwhm = lambda w: 5.866e-8 * w**2 - 9.187e-4*w + 6.04 sig_ang = bacon_lsf_fwhm(wobs[clip]) / gaussian_sigma_to_fwhm lsf_sigma = sig_ang/wobs[clip]*3.e5 lsf_func_name = 'MUSE-LSF' elif hasattr(lsf_func, '__call__'): lsf_sigma = lsf_func(wobs[clip])/wobs[clip]*3.e5 lsf_func_name = 'user' else: lsf_sigma = 0. lsf_func_name = None # Quadrature sum of LSF and extra velocities vel_sigma = np.sqrt(lsf_sigma**2 + extra_sigma**2) # In Angstroms smooth_lambda = vel_sigma / 3.e5 * wobs[clip] # Do the smoothing flux_smooth = smoothspec(wobs[clip], (self.flux_flam(z=z)*igmz*scalar)[clip], resolution=smooth_lambda, smoothtype='lsf', **smoothspec_kwargs) newname = self.name + f' z={z:.3f}' if lsf_func_name is not None: newname += ' + ' + lsf_func_name if extra_sigma > 0: newname += ' + {extra_sigma:.1f} km/s' tobs = Template(arrays=(wobs[clip], flux_smooth), name=newname, resample_wave=wavelengths, redshifts=[z]) return tobs def resample(self, new_wave, z=0, in_place=True, return_array=False, interp_func=None): """ Resample the template to a new wavelength grid Parameters ---------- new_wave : array New wavelength array, can have units. z : float Redshift internal wavelength before resampling. (z=0 yields no shift). in_place : bool Set internal ``wave`` and ``flux`` arrays to the resampled values return_array : bool Return the resampled ``flux`` array if true, else return a new `~eazy.templates.Template` object. interp_func : None Interpolation function. If nothing specified, tries to use `grizli.utils_c.interp.interp_conserve_c` and falls back to `eazy.utils.interp_conserve`. """ import astropy.units as u breakme = False if isinstance(new_wave, str): if new_wave == 'None': breakme = True elif not os.path.exists(new_wave): msg = 'WARNING: new_wave={0} could not be found' print(msg.format(new_wave)) breakme = True else: new_wave = np.loadtxt(new_wave) elif new_wave is None: breakme = True if breakme: if in_place: return False else: return self if hasattr(new_wave, 'unit'): new_wave = new_wave.to(u.Angstrom).value if interp_func is None: try: from grizli.utils_c import interp interp_func = interp.interp_conserve_c except: interp_func = utils.interp_conserve new_flux = [interp_func(new_wave, self.wave*(1+z), self.flux[i,:]) for i in range(self.NZ)] new_flux = np.array(new_flux) if in_place: self.wave = new_wave*1 self.flux = new_flux return True else: if return_array: return new_flux else: return Template(arrays=(new_wave, new_flux), name=self.name, meta=self.meta, redshifts=self.redshifts) def zindex(self, z=0., redshift_type='nearest'): """ Get the redshift index of a multi-dimensional template array Parameters ---------- z : float Redshift to retrieve redshift_type : 'nearest', 'interp', 'floor' Interpolation type: - 'nearest': nearest step in the template redshift grid - 'interp': Returns index below ``z`` and interpolation fraction - 'floor': last index where redshift grid < ``z``. Returns ------- iz : int Array index, i.e, ``self.flux[iz,:]`` frac : float, optional Fraction for interpolation, if ``redshift_type == 'interp'``. """ zint = np.interp(z, self.redshifts, np.arange(self.NZ), left=0, right=self.NZ-1) if redshift_type == 'nearest': iz =
np.round(zint)
numpy.round
from itertools import product import pytest import numpy as np from numpy.linalg import norm from numpy.testing import (assert_allclose, assert_array_less, assert_equal) from sklearn.linear_model import ( enet_path, ElasticNet as sk_ElasticNet, ElasticNetCV as sk_ElasticNetCV) from celer import Lasso, ElasticNet, celer_path, ElasticNetCV from celer.utils.testing import build_dataset def test_raise_errors_l1_ratio(): with np.testing.assert_raises(ValueError): ElasticNet(l1_ratio=5.) with np.testing.assert_raises(NotImplementedError): ElasticNet(l1_ratio=0.) with np.testing.assert_raises(NotImplementedError): X, y = build_dataset(n_samples=30, n_features=50) y = np.sign(y) celer_path(X, y, 'logreg', l1_ratio=0.5) @pytest.mark.parametrize("sparse_X", (True, False)) def test_ElasticNet_Lasso_equivalence(sparse_X): n_samples, n_features = 50, 100 X, y = build_dataset(n_samples, n_features, sparse_X=sparse_X) alpha_max = norm(X.T@y, ord=np.inf) / n_samples alpha = alpha_max / 100. coef_lasso = Lasso(alpha=alpha).fit(X, y).coef_ coef_enet = ElasticNet(alpha=alpha, l1_ratio=1.0).fit(X, y).coef_
assert_allclose(coef_lasso, coef_enet)
numpy.testing.assert_allclose
from __future__ import division, print_function if __name__ == '__main__': import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import os import pdb import argparse import re import datetime import sys import numpy as np from scipy.stats import sigmaclip from scipy.ndimage.filters import median_filter import fitsio from astropy.io import fits as fits_astropy from astropy.table import Table, vstack from astropy import units from astropy.coordinates import SkyCoord from photutils import (CircularAperture, CircularAnnulus, aperture_photometry, DAOStarFinder) # Sphinx build would crash try: from astrometry.util.file import trymakedirs from astrometry.util.starutil_numpy import hmsstring2ra, dmsstring2dec from astrometry.util.util import wcs_pv2sip_hdr from astrometry.util.ttime import Time from astrometry.util.fits import fits_table, merge_tables from astrometry.libkd.spherematch import match_radec from astrometry.libkd.spherematch import match_xy from tractor.splinesky import SplineSky import legacypipe from legacypipe.ps1cat import ps1cat from legacypipe.gaiacat import GaiaCatalog from legacypipe.survey import radec_at_mjd, get_git_version from legacypipe.image import validate_procdate_plver except ImportError: #pass raise CAMERAS=['decam','mosaic','90prime','megaprime'] def ptime(text,t0): tnow=Time() print('TIMING:%s ' % text,tnow-t0) return tnow def read_lines(fn): fin=open(fn,'r') lines=fin.readlines() fin.close() if len(lines) < 1: raise ValueError('lines not read properly from %s' % fn) return np.array( list(np.char.strip(lines)) ) def dobash(cmd): print('UNIX cmd: %s' % cmd) if os.system(cmd): raise ValueError def astropy_to_astrometry_table(t): T = fits_table() for c in t.colnames: T.set(c, t[c]) return T def _ccds_table(camera='decam'): '''Initialize the CCDs table. Description and Units at: https://github.com/legacysurvey/legacyzpts/blob/master/DESCRIPTION_OF_OUTPUTS.md ''' max_camera_length = max([len(c) for c in CAMERAS]) cols = [ ('err_message', 'S30'), ('image_filename', 'S120'), ('image_hdu', '>i2'), ('camera', 'S%i' % max_camera_length), ('expnum', '>i8'), ('plver', 'S8'), ('procdate', 'S19'), ('plprocid', 'S7'), ('ccdname', 'S5'), ('ccdnum', '>i2'), ('expid', 'S17'), ('object', 'S35'), ('propid', 'S10'), ('filter', 'S1'), ('exptime', '>f4'), ('date_obs', 'S26'), ('mjd_obs', '>f8'), ('ut', 'S15'), ('ha', 'S13'), ('airmass', '>f4'), ('fwhm', '>f4'), ('fwhm_cp', '>f4'), ('gain', '>f4'), ('width', '>i2'), ('height', '>i2'), ('ra_bore', '>f8'), ('dec_bore', '>f8'), ('crpix1', '>f4'), ('crpix2', '>f4'), ('crval1', '>f8'), ('crval2', '>f8'), ('cd1_1', '>f4'), ('cd1_2', '>f4'), ('cd2_1', '>f4'), ('cd2_2', '>f4'), ('pixscale', 'f4'), ('zptavg', '>f4'), ('yshift', 'bool'), # -- CCD-level quantities -- ('ra', '>f8'), ('dec', '>f8'), ('skymag', '>f4'), ('skycounts', '>f4'), ('skyrms', '>f4'), ('sig1', '>f4'), ('nmatch_photom', '>i2'), ('nmatch_astrom', '>i2'), ('goodps1', '>i2'), ('goodps1_wbadpix5', '>i2'), ('phoff', '>f4'), ('phrms', '>f4'), ('zpt', '>f4'), ('zpt_wbadpix5', '>f4'), ('transp', '>f4'), ('raoff', '>f4'), ('decoff', '>f4'), ('rarms', '>f4'), ('decrms', '>f4'), ('rastddev', '>f4'), ('decstddev', '>f4') ] ccds = Table(np.zeros(1, dtype=cols)) return ccds def _stars_table(nstars=1): '''Initialize the stars table. Description and Units at: https://github.com/legacysurvey/legacyzpts/blob/master/DESCRIPTION_OF_OUTPUTS.md ''' cols = [('image_filename', 'S100'),('image_hdu', '>i2'), ('expid', 'S16'), ('filter', 'S1'),('nmatch', '>i2'), ('x', 'f4'), ('y', 'f4'), ('expnum', '>i8'), ('plver', 'S8'), ('procdate', 'S19'), ('plprocid', 'S7'), ('gain', 'f4'), ('ra', 'f8'), ('dec', 'f8'), ('apmag', 'f4'),('apflux', 'f4'),('apskyflux', 'f4'),('apskyflux_perpix', 'f4'), ('radiff', 'f8'), ('decdiff', 'f8'), ('ps1_mag', 'f4'), ('gaia_g','f8'),('ps1_g','f8'),('ps1_r','f8'),('ps1_i','f8'),('ps1_z','f8'), ('exptime', '>f4')] stars = Table(np.zeros(nstars, dtype=cols)) return stars def get_pixscale(camera='decam'): return {'decam':0.262, 'mosaic':0.262, '90prime':0.470, 'megaprime':0.185}[camera] def cols_for_survey_table(which='all'): """Return list of -survey.fits table colums Args: which: all, numeric, nonzero_diff (numeric and expect non-zero diff with reference when compute it) """ assert(which in ['all','numeric','nonzero_diff']) martins_keys = ['airmass', 'ccdskymag'] gods_keys = ['plver', 'procdate', 'plprocid'] if which == 'all': need_arjuns_keys= ['ra','dec','ra_bore','dec_bore', 'image_filename','image_hdu','expnum','ccdname','object', 'filter','exptime','camera','width','height','propid', 'mjd_obs','ccdnmatch', 'fwhm','zpt','ccdzpt','ccdraoff','ccddecoff', 'ccdrarms', 'ccddecrms', 'ccdskycounts', 'ccdphrms', 'cd1_1','cd2_2','cd1_2','cd2_1', 'crval1','crval2','crpix1','crpix2'] dustins_keys= ['skyrms', 'sig1', 'yshift'] elif which == 'numeric': need_arjuns_keys= ['ra','dec','ra_bore','dec_bore', 'expnum', 'exptime','width','height', 'mjd_obs','ccdnmatch', 'fwhm','zpt','ccdzpt','ccdraoff','ccddecoff', 'cd1_1','cd2_2','cd1_2','cd2_1', 'crval1','crval2','crpix1','crpix2'] dustins_keys= ['skyrms'] elif which == 'nonzero_diff': need_arjuns_keys= ['ra','dec','ccdnmatch', 'fwhm','zpt','ccdzpt','ccdraoff','ccddecoff'] dustins_keys= ['skyrms'] return need_arjuns_keys + dustins_keys + martins_keys + gods_keys def create_survey_table(T, surveyfn, camera=None, psf=False, bad_expid=None): """input _ccds_table fn output a table formatted for legacypipe/runbrick """ assert(camera in CAMERAS) need_keys = cols_for_survey_table(which='all') # Rename rename_keys= [('zpt','ccdzpt'), ('zptavg','zpt'), ('raoff','ccdraoff'), ('decoff','ccddecoff'), ('skycounts', 'ccdskycounts'), ('skymag', 'ccdskymag'), ('rarms', 'ccdrarms'), ('decrms', 'ccddecrms'), ('phrms', 'ccdphrms'), ('nmatch_photom','ccdnmatch')] for old,new in rename_keys: T.rename(old,new) # Delete del_keys= list( set(T.get_columns()).difference(set(need_keys)) ) for key in del_keys: T.delete_column(key) # precision T.width = T.width.astype(np.int16) T.height = T.height.astype(np.int16) T.cd1_1 = T.cd1_1.astype(np.float32) T.cd1_2 = T.cd1_2.astype(np.float32) T.cd2_1 = T.cd2_1.astype(np.float32) T.cd2_2 = T.cd2_2.astype(np.float32) if psf: from legacyzpts.psfzpt_cuts import add_psfzpt_cuts add_psfzpt_cuts(T, camera, bad_expid) writeto_via_temp(surveyfn, T) print('Wrote %s' % surveyfn) def create_annotated_table(leg_fn, ann_fn, camera, survey, psf=False): from legacypipe.annotate_ccds import annotate, init_annotations T = fits_table(leg_fn) T = survey.cleanup_ccds_table(T) init_annotations(T) annotate(T, survey, mzls=(camera == 'mosaic'), bass=(camera == '90prime'), normalizePsf=psf, carryOn=True) writeto_via_temp(ann_fn, T) print('Wrote %s' % ann_fn) def cols_for_converted_star_table(star_table=None, which=None): assert(star_table in ['photom','astrom']) assert(which in ['all','numeric','nonzero_diff']) # which if which == 'all': need_arjuns_keys= ['filename','expnum','extname', 'ccd_x','ccd_y','ccd_ra','ccd_dec', 'ccd_mag','ccd_sky', 'raoff','decoff', 'magoff', 'nmatch', 'gmag','ps1_g','ps1_r','ps1_i','ps1_z'] # If want it in star- table, add it here extra_keys= ['image_hdu','filter','ccdname'] elif which == 'numeric': need_arjuns_keys= ['expnum', 'ccd_x','ccd_y','ccd_ra','ccd_dec', 'ccd_mag','ccd_sky', 'raoff','decoff', 'magoff', 'nmatch', 'gmag','ps1_g','ps1_r','ps1_i','ps1_z'] extra_keys= [] elif which == 'nonzero_diff': need_arjuns_keys= ['ccd_x','ccd_y','ccd_ra','ccd_dec', 'ccd_mag','ccd_sky', 'raoff','decoff', 'magoff', 'nmatch'] extra_keys= [] # star_table if star_table == 'photom': for key in ['raoff','decoff']: need_arjuns_keys.remove(key) elif star_table == 'astrom': for key in ['magoff']: need_arjuns_keys.remove(key) # Done return need_arjuns_keys + extra_keys def getrms(x): return np.sqrt( np.mean( np.power(x,2) ) ) def get_bitmask_fn(imgfn): if 'ooi' in imgfn: fn= imgfn.replace('ooi','ood') elif 'oki' in imgfn: fn= imgfn.replace('oki','ood') else: raise ValueError('bad imgfn? no ooi or oki: %s' % imgfn) return fn def get_weight_fn(imgfn): if 'ooi' in imgfn: fn= imgfn.replace('ooi','oow') elif 'oki' in imgfn: fn= imgfn.replace('oki','oow') else: raise ValueError('bad imgfn? no ooi or oki: %s' % imgfn) return fn class Measurer(object): """Main image processing functions for all cameras. Args: aprad: Aperture photometry radius in arcsec skyrad_inner,skyrad_outer: sky annulus in arcsec det_thresh: minimum S/N for matched filter match_radius: arcsec matching to gaia/ps1 sn_min,sn_max: if not None then then {min,max} S/N will be enforced from aperture photoemtry, where S/N = apflux/sqrt(skyflux) aper_sky_sub: do aperture sky subtraction instead of splinesky """ def __init__(self, fn, image_dir='images', aprad=3.5, skyrad_inner=7.0, skyrad_outer=10.0, det_thresh=8., match_radius=3., sn_min=None, sn_max=None, aper_sky_sub=False, calibrate=False, quiet=False, **kwargs): # Set extra kwargs self.ps1_pattern= kwargs['ps1_pattern'] self.zptsfile= kwargs.get('zptsfile') self.prefix= kwargs.get('prefix') self.verboseplots= kwargs.get('verboseplots') self.fn = os.path.join(image_dir, fn) self.fn_base = fn self.debug= kwargs.get('debug') self.outdir= kwargs.get('outdir') self.calibdir = kwargs.get('calibdir') self.aper_sky_sub = aper_sky_sub self.calibrate = calibrate self.aprad = aprad self.skyrad = (skyrad_inner, skyrad_outer) self.det_thresh = det_thresh # [S/N] self.match_radius = match_radius self.sn_min = sn_min self.sn_max = sn_max # Tractor fitting of final star sample (when not doing --psf fitting) self.stampradius= 4. # [arcsec] Should be a bit bigger than radius=3.5'' aperture self.tractor_nstars= 30 # Tractorize at most this many stars, saves CPU time # Set the nominal detection FWHM (in pixels) and detection threshold. # Read the primary header and the header for this extension. self.nominal_fwhm = 5.0 # [pixels] try: self.primhdr = read_primary_header(self.fn) except ValueError: # astropy can handle it tmp= fits_astropy.open(self.fn) self.primhdr= tmp[0].header tmp.close() del tmp # CP WCS succeed? self.goodWcs=True if not ('WCSCAL' in self.primhdr.keys() and 'success' in self.primhdr['WCSCAL'].strip().lower()): self.goodWcs=False # Camera-agnostic primary header cards try: self.propid = self.primhdr['PROPID'] except KeyError: self.propid = self.primhdr.get('DTPROPID') self.exptime = self.primhdr['EXPTIME'] self.date_obs = self.primhdr['DATE-OBS'] self.mjd_obs = self.primhdr['MJD-OBS'] # Add more attributes. for key, attrkey in zip(['AIRMASS','HA', 'DATE', 'PLVER', 'PLPROCID'], ['AIRMASS','HA', 'PROCDATE', 'PLVER', 'PLPROCID']): val = self.primhdr[key] if type(val) == str: val = val.strip() if len(val) == 0: raise ValueError('Empty header card: %s' % key) setattr(self, attrkey.lower(), val) self.expnum = self.get_expnum(self.primhdr) if not quiet: print('CP Header: EXPNUM = ',self.expnum) print('CP Header: PROCDATE = ',self.procdate) print('CP Header: PLVER = ',self.plver) print('CP Header: PLPROCID = ',self.plprocid) self.obj = self.primhdr['OBJECT'] def get_good_image_subregion(self): ''' Returns x0,x1,y0,y1 of the good region of this chip, or None if no cut should be applied to that edge; returns (None,None,None,None) if the whole chip is good. This cut is applied in addition to any masking in the mask or invvar map. ''' return None,None,None,None def get_expnum(self, primhdr): return self.primhdr['EXPNUM'] def zeropoint(self, band): return self.zp0[band] def extinction(self, band): return self.k_ext[band] def set_hdu(self,ext): self.ext = ext.strip() self.ccdname= ext.strip() self.expid = '{:08d}-{}'.format(self.expnum, self.ccdname) hdulist= fitsio.FITS(self.fn) self.image_hdu= hdulist[ext].get_extnum() #NOT ccdnum in header! # use header self.hdr = fitsio.read_header(self.fn, ext=ext) # Sanity check assert(self.ccdname.upper() == self.hdr['EXTNAME'].strip().upper()) self.ccdnum = np.int(self.hdr.get('CCDNUM', 0)) self.gain= self.get_gain(self.hdr) # WCS self.wcs = self.get_wcs() # Pixscale is assumed CONSTANT! per camera # From CP Header hdrVal={} # values we want for ccd_col in ['width','height','fwhm_cp']: # Possible keys in hdr for these values for key in self.cp_header_keys[ccd_col]: if key in self.hdr.keys(): hdrVal[ccd_col]= self.hdr[key] break for ccd_col in ['width','height','fwhm_cp']: if ccd_col in hdrVal.keys(): #print('CP Header: %s = ' % ccd_col,hdrVal[ccd_col]) setattr(self, ccd_col, hdrVal[ccd_col]) else: warning='Could not find %s, keys not in cp header: %s' % \ (ccd_col,self.cp_header_keys[ccd_col]) if ccd_col == 'fwhm_cp': print('WARNING: %s' % warning) self.fwhm_cp = np.nan else: raise KeyError(warning) x0,x1,y0,y1 = self.get_good_image_subregion() if x0 is None and x1 is None and y0 is None and y1 is None: slc = None else: x0 = x0 or 0 x1 = x1 or self.width y0 = y0 or 0 y1 = y1 or self.height slc = slice(y0,y1),slice(x0,x1) self.slc = slc def read_bitmask(self): dqfn= get_bitmask_fn(self.fn) if self.slc is not None: mask = fitsio.FITS(dqfn)[self.ext][self.slc] else: mask = fitsio.read(dqfn, ext=self.ext) mask = self.remap_bitmask(mask) return mask def remap_bitmask(self, mask): return mask def read_weight(self, clip=True, clipThresh=0.1, scale=True, bitmask=None): fn = get_weight_fn(self.fn) if self.slc is not None: wt = fitsio.FITS(fn)[self.ext][self.slc] else: wt = fitsio.read(fn, ext=self.ext) if scale: wt = self.scale_weight(wt) if bitmask is not None: # Set all masked pixels to have weight zero. # bitmask value 1 = bad wt[bitmask > 0] = 0. if clip and np.sum(wt > 0) > 0: # Additionally clamp near-zero (incl negative!) weight to zero, # which arise due to fpack. if clipThresh > 0.: thresh = clipThresh * np.median(wt[wt > 0]) else: thresh = 0. wt[wt < thresh] = 0 assert(np.all(wt >= 0.)) assert(np.all(np.isfinite(wt))) return wt def read_image(self): '''Read the image and header; scale the image.''' f = fitsio.FITS(self.fn)[self.ext] if self.slc is not None: img = f[self.slc] else: img = f.read() hdr = f.read_header() img = self.scale_image(img) return img, hdr def scale_image(self, img): return img def scale_weight(self, img): return img def remap_invvar(self, invvar, primhdr, img, dq): # By default, *do not* remap return invvar # A function that can be called by a subclasser's remap_invvar() method def remap_invvar_shotnoise(self, invvar, primhdr, img, dq): # # All three cameras scale the image and weight to units of electrons. # (actually, not DECam any more! But DECamMeasurer doesn't use this # function.) # print('Remapping weight map for', self.fn) const_sky = primhdr['SKYADU'] # e/s, Recommended sky level keyword from Frank expt = primhdr['EXPTIME'] # s with np.errstate(divide='ignore'): var_SR = 1./invvar # e**2 print('median img:', np.median(img), 'vs sky estimate * exptime', const_sky*expt) var_Astro = np.abs(img - const_sky * expt) # img in electrons; Poisson process so variance = mean wt = 1./(var_SR + var_Astro) # 1/(e**2) # Zero out NaNs and masked pixels wt[np.isfinite(wt) == False] = 0. wt[dq != 0] = 0. return wt def create_zero_one_mask(self,bitmask,good=[]): """Return zero_one_mask array given a bad pixel map and good pix values bitmask: ood image good: list of values to treat as good in the bitmask """ # 0 == good, 1 == bad zero_one_mask= bitmask.copy() for val in good: zero_one_mask[zero_one_mask == val]= 0 zero_one_mask[zero_one_mask > 0]= 1 return zero_one_mask def get_zero_one_mask(self,bitmask,good=[]): """Convert bitmask into a zero and ones mask, 1 = bad, 0 = good bitmask: ood image good: (optional) list of values to treat as good in the bitmask default is to use appropiate values for the camera """ # Defaults if len(good) == 0: if self.camera == 'decam': # 7 = transient good=[7] elif self.camera == 'mosaic': # 5 is truly a cosmic ray good=[] elif self.camera == '90prime': # 5 can be really bad for a good image because these are subtracted # and interpolated stats good= [] return self.create_zero_one_mask(bitmask,good=good) def sensible_sigmaclip(self, arr, nsigma = 4.0): '''sigmaclip returns unclipped pixels, lo,hi, where lo,hi are the mean(goodpix) +- nsigma * sigma ''' goodpix, lo, hi = sigmaclip(arr, low=nsigma, high=nsigma) meanval = np.mean(goodpix) sigma = (meanval - lo) / nsigma return meanval, sigma def get_sky_and_sigma(self, img, nsigma=3): '''returns 2d sky image and sky rms''' splinesky= False if splinesky: skyobj = SplineSky.BlantonMethod(img, None, 256) skyimg = np.zeros_like(img) skyobj.addTo(skyimg) mnsky, skystd = self.sensible_sigmaclip(img - skyimg,nsigma=nsigma) skymed= np.median(skyimg) else: #sky, sig1 = self.sensible_sigmaclip(img[1500:2500, 500:1000]) if self.camera in ['decam', 'megaprime']: slc=[slice(1500,2500),slice(500,1500)] elif self.camera in ['mosaic','90prime']: slc=[slice(500,1500),slice(500,1500)] else: raise RuntimeError('unknown camera %s' % self.camera) clip_vals,_,_ = sigmaclip(img[tuple(slc)],low=nsigma,high=nsigma) skymed= np.median(clip_vals) skystd= np.std(clip_vals) skyimg= np.zeros(img.shape) + skymed # MAD gives 10% larger value # sig1= 1.4826 * np.median(np.abs(clip_vals)) return skyimg, skymed, skystd def remove_sky_gradients(self, img): # Ugly removal of sky gradients by subtracting median in first x and then y H,W = img.shape meds = np.array([np.median(img[:,i]) for i in range(W)]) meds = median_filter(meds, size=5) img -= meds[np.newaxis,:] meds = np.array([np.median(img[i,:]) for i in range(H)]) meds = median_filter(meds, size=5) img -= meds[:,np.newaxis] def match_ps1_stars(self, px, py, fullx, fully, radius, stars): #print('Matching', len(px), 'PS1 and', len(fullx), 'detected stars with radius', radius) I,J,d = match_xy(px, py, fullx, fully, radius) #print(len(I), 'matches') dx = px[I] - fullx[J] dy = py[I] - fully[J] return I,J,dx,dy def fitstars(self, img, ierr, xstar, ystar, fluxstar): '''Fit each star using a Tractor model.''' import tractor H, W = img.shape fwhms = [] radius_pix = self.stampradius / self.pixscale for ii, (xi, yi, fluxi) in enumerate(zip(xstar, ystar, fluxstar)): #print('Fitting source', i, 'of', len(Jf)) ix = int(np.round(xi)) iy = int(np.round(yi)) xlo = int( max(0, ix-radius_pix) ) xhi = int( min(W, ix+radius_pix+1) ) ylo = int( max(0, iy-radius_pix) ) yhi = int( min(H, iy+radius_pix+1) ) xx, yy = np.meshgrid(np.arange(xlo, xhi), np.arange(ylo, yhi)) r2 = (xx - xi)**2 + (yy - yi)**2 keep = (r2 < radius_pix**2) pix = img[ylo:yhi, xlo:xhi].copy() ie = ierr[ylo:yhi, xlo:xhi].copy() #print('fitting source at', ix,iy) #print('number of active pixels:', np.sum(ie > 0), 'shape', ie.shape) psf = tractor.NCircularGaussianPSF([4.0], [1.0]) tim = tractor.Image(data=pix, inverr=ie, psf=psf) src = tractor.PointSource(tractor.PixPos(xi-xlo, yi-ylo), tractor.Flux(fluxi)) tr = tractor.Tractor([tim], [src]) #print('Posterior before prior:', tr.getLogProb()) src.pos.addGaussianPrior('x', 0.0, 1.0) #print('Posterior after prior:', tr.getLogProb()) tim.freezeAllBut('psf') psf.freezeAllBut('sigmas') # print('Optimizing params:') # tr.printThawedParams() #print('Parameter step sizes:', tr.getStepSizes()) optargs = dict(priors=False, shared_params=False) for step in range(50): dlnp, x, alpha = tr.optimize(**optargs) #print('dlnp', dlnp) #print('src', src) #print('psf', psf) if dlnp == 0: break # Now fit only the PSF size tr.freezeParam('catalog') # print('Optimizing params:') # tr.printThawedParams() for step in range(50): dlnp, x, alpha = tr.optimize(**optargs) #print('dlnp', dlnp) #print('src', src) #print('psf', psf) if dlnp == 0: break fwhms.append(2.35 * psf.sigmas[0]) # [pixels] #model = tr.getModelImage(0) return np.array(fwhms) def isolated_radec(self,ra,dec,nn=2,minsep=1./3600): '''return indices of ra,dec for which the ra,dec points are AT LEAST a distance minsep away from their nearest neighbor point''' cat1 = SkyCoord(ra=ra*units.degree, dec=dec*units.degree) cat2 = SkyCoord(ra=ra*units.degree, dec=dec*units.degree) idx, d2d, d3d = cat1.match_to_catalog_3d(cat2,nthneighbor=nn) b= np.array(d2d) >= minsep return b def get_ps1_cuts(self,ps1): """Returns bool of PS1 sources to keep ps1: catalogue with ps1 data """ gicolor= ps1.median[:,0] - ps1.median[:,2] return ((ps1.nmag_ok[:, 0] > 0) & (ps1.nmag_ok[:, 1] > 0) & (ps1.nmag_ok[:, 2] > 0) & (gicolor > 0.4) & (gicolor < 2.7)) def return_on_error(self,err_message='', ccds=None, stars_photom=None, stars_astrom=None): """Sets ccds table err message, zpt to nan, and returns appropriately for self.run() Args: err_message: length <= 30 ccds, stars_photom, stars_astrom: (optional) tables partially filled by run() """ assert(len(err_message) > 0 & len(err_message) <= 30) if ccds is None: ccds= _ccds_table(self.camera) ccds['image_filename'] = self.fn_base ccds['err_message']= err_message ccds['zpt']= np.nan return ccds, stars_photom, stars_astrom def run(self, ext=None, save_xy=False, psfex=False, splinesky=False, survey=None): """Computes statistics for 1 CCD Args: ext: ccdname save_xy: save daophot x,y and x,y after various cuts to dict and save to json Returns: ccds, stars_photom, stars_astrom """ self.set_hdu(ext) # t0= Time() t0= ptime('Measuring CCD=%s from image=%s' % (self.ccdname,self.fn),t0) # Initialize ccds = _ccds_table(self.camera) # FIXME -- could clean up paths here?? ccds['image_filename'] = self.fn_base ccds['image_hdu'] = self.image_hdu ccds['ccdnum'] = self.ccdnum ccds['camera'] = self.camera ccds['expnum'] = self.expnum ccds['plver'] = self.plver ccds['procdate'] = self.procdate ccds['plprocid'] = self.plprocid ccds['ccdname'] = self.ccdname ccds['expid'] = self.expid ccds['object'] = self.obj ccds['propid'] = self.propid ccds['filter'] = self.band ccds['exptime'] = self.exptime ccds['date_obs'] = self.date_obs ccds['mjd_obs'] = self.mjd_obs ccds['ut'] = self.ut ccds['ra_bore'] = self.ra_bore ccds['dec_bore'] = self.dec_bore ccds['ha'] = self.ha ccds['airmass'] = self.airmass ccds['gain'] = self.gain ccds['pixscale'] = self.pixscale ccds['yshift'] = 'YSHIFT' in self.primhdr ccds['width'] = self.width ccds['height'] = self.height ccds['fwhm_cp'] = self.fwhm_cp hdr_fwhm = self.fwhm_cp notneeded_cols= ['avsky'] for ccd_col in ['avsky', 'crpix1', 'crpix2', 'crval1', 'crval2', 'cd1_1','cd1_2', 'cd2_1', 'cd2_2']: if ccd_col.upper() in self.hdr.keys(): #print('CP Header: %s = ' % ccd_col,self.hdr[ccd_col]) ccds[ccd_col]= self.hdr[ccd_col] else: if ccd_col in notneeded_cols: ccds[ccd_col]= np.nan else: raise KeyError('Could not find %s, keys not in cp header:' \ % ccd_col,ccd_col) exptime = ccds['exptime'].data[0] airmass = ccds['airmass'].data[0] print('Band {}, Exptime {}, Airmass {}'.format(self.band, exptime, airmass)) # WCS: 1-indexed so pixel pixelxy2radec(1,1) corresponds to img[0,0] H = ccds['height'].data[0] W = ccds['width'].data[0] print('Image size:', W,H) ccdra, ccddec = self.wcs.pixelxy2radec((W+1) / 2.0, (H+1) / 2.0) ccds['ra'] = ccdra # [degree] ccds['dec'] = ccddec # [degree] t0= ptime('header-info',t0) if not self.goodWcs: print('WCS Failed on CCD {}'.format(self.ccdname)) return self.return_on_error(err_message='WCS Failed', ccds=ccds) if self.exptime == 0: print('Exptime = 0 on CCD {}'.format(self.ccdname)) return self.return_on_error(err_message='Exptime = 0', ccds=ccds) self.bitmask = self.read_bitmask() weight = self.read_weight(bitmask=self.bitmask, scale=False) if np.all(weight == 0): txt = 'All weight-map pixels are zero on CCD {}'.format(self.ccdname) print(txt) return self.return_on_error(txt,ccds=ccds) # bizarro image CP20151119/k4m_151120_040715_oow_zd_v1.fits.fz if np.all(np.logical_or(weight == 0, weight == 1)): txt = 'All weight-map pixels are zero or one' print(txt) return self.return_on_error(txt,ccds=ccds) weight = self.scale_weight(weight) if psfex: # Quick check for PsfEx file psf = self.get_psfex_model() if psf.psfex.sampling == 0.: print('PsfEx model has SAMPLING=0') nacc = psf.header.get('ACCEPTED') print('PsfEx model number of stars accepted:', nacc) return self.return_on_error(err_message='Bad PSF model', ccds=ccds) self.img,hdr = self.read_image() # Per-pixel error -- weight is 1/sig*2, scaled by scale_weight() medweight = np.median(weight[(weight > 0) * (self.bitmask == 0)]) # Undo the weight scaling to get sig1 back into native image units wscale = self.scale_weight(1.) ccds['sig1'] = 1. / np.sqrt(medweight / wscale) self.invvar = self.remap_invvar(weight, self.primhdr, self.img, self.bitmask) t0= ptime('read image',t0) # Measure the sky brightness and (sky) noise level. zp0 = self.zeropoint(self.band) #print('Computing the sky background.') sky_img, skymed, skyrms = self.get_sky_and_sigma(self.img) img_sub_sky= self.img - sky_img # Bunch of sky estimates # Median of absolute deviation (MAD), std dev = 1.4826 * MAD print('sky from median of image= %.2f' % skymed) skybr = zp0 - 2.5*np.log10(skymed / self.pixscale / self.pixscale / exptime) print('Sky brightness: {:.3f} mag/arcsec^2 (assuming nominal zeropoint)'.format(skybr)) ccds['skyrms'] = skyrms / exptime # e/sec ccds['skycounts'] = skymed / exptime # [electron/pix] ccds['skymag'] = skybr # [mag/arcsec^2] t0= ptime('measure-sky',t0) # Load PS1 & Gaia catalogues # We will only used detected sources that have PS1 or Gaia matches # So cut to this super set immediately ps1 = None try: ps1 = ps1cat(ccdwcs=self.wcs, pattern= self.ps1_pattern).get_stars(magrange=None) except OSError: print('No PS1 stars found for this image -- outside the PS1 footprint, or in the Galactic plane?') if ps1 is not None and len(ps1) == 0: ps1 = None # PS1 cuts if ps1 is not None and len(ps1): ps1.cut( self.get_ps1_cuts(ps1) ) if len(ps1) == 0: ps1 = None else: # Convert to Legacy Survey mags ps1.legacy_survey_mag = self.ps1_to_observed(ps1) print(len(ps1), 'PS1 stars') gaia = GaiaCatalog().get_catalog_in_wcs(self.wcs) assert(gaia is not None) assert(len(gaia) > 0) gaia = GaiaCatalog.catalog_nantozero(gaia) assert(gaia is not None) print(len(gaia), 'Gaia stars') # Move Gaia stars to the epoch of this image. gaia.ra_orig = gaia.ra.copy() gaia.dec_orig = gaia.dec.copy() ra,dec = radec_at_mjd(gaia.ra, gaia.dec, gaia.ref_epoch.astype(float), gaia.pmra, gaia.pmdec, gaia.parallax, self.mjd_obs) gaia.ra = ra gaia.dec = dec if not psfex: ccds,photom,astrom = self.run_apphot(ccds, ps1, gaia, skyrms, hdr_fwhm, sky_img, ext=ext, save_xy=save_xy) # yuck! photom = astropy_to_astrometry_table(photom) astrom = astropy_to_astrometry_table(astrom) return ccds,photom,astrom return self.run_psfphot(ccds, ps1, gaia, zp0, exptime, airmass, sky_img, splinesky, survey) def run_apphot(self, ccds, ps1, gaia, skyrms, hdr_fwhm, sky_img, ext=None, save_xy=False): t0= Time() img_sub_sky = self.img - sky_img # badpix5 test, all good PS1 if self.camera in ['90prime','mosaic']: _, ps1_x, ps1_y = self.wcs.radec2pixelxy(ps1.ra_ok,ps1.dec_ok) ps1_x-= 1. ps1_y-= 1. ap_for_ps1 = CircularAperture((ps1_x, ps1_y), 5.) # special mask, only gt 0 where badpix eq 5 img_mask_5= np.zeros(self.bitmask.shape, dtype=self.bitmask.dtype) img_mask_5[self.bitmask == 5]= 1 phot_for_mask_5 = aperture_photometry(img_mask_5, ap_for_ps1) flux_for_mask_5 = phot_for_mask_5['aperture_sum'] ccds['goodps1']= len(ps1) ccds['goodps1_wbadpix5']= len(ps1[flux_for_mask_5.data > 0]) # Detect stars on the image. # 10 sigma, sharpness, roundness all same as IDL zeropoints (also the defaults) # Exclude_border=True removes the stars with centroid on or out of ccd edge # Good, but we want to remove with aperture touching ccd edge too print('det_thresh = %d' % self.det_thresh) #threshold=self.det_thresh * stddev_mad, dao = DAOStarFinder(fwhm= hdr_fwhm, threshold=self.det_thresh * skyrms, sharplo=0.2, sharphi=1.0, roundlo=-1.0, roundhi=1.0, exclude_border=False) obj= dao(self.img) if len(obj) < self.minstar: dao.threshold /= 2. obj= dao(self.img) if len(obj) < self.minstar: return self.return_on_error('dao found < %d sources' % self.minstar,ccds=ccds) t0= ptime('detect-stars',t0) # We for sure know that sources near edge could be bad edge_sep = 1. + self.skyrad[1] edge_sep_px = edge_sep/self.pixscale ht,wid = self.img.shape away_from_edge= ( (obj['xcentroid'] > edge_sep_px) & (obj['xcentroid'] < wid - edge_sep_px) & (obj['ycentroid'] > edge_sep_px) & (obj['ycentroid'] < ht - edge_sep_px)) obj= obj[away_from_edge] objra, objdec = self.wcs.pixelxy2radec(obj['xcentroid']+1, obj['ycentroid']+1) nobj = len(obj) print('{} sources detected with detection threshold {}-sigma minus edge sources'.format(nobj, self.det_thresh)) ccds['nstarfind']= nobj if nobj < self.minstar: return self.return_on_error('after edge cuts < %d sources' % self.minstar,ccds=ccds) if save_xy: # Arrays of length number of all daophot found sources all_xy= fits_table() all_xy.set('x', obj['xcentroid'].data) all_xy.set('y', obj['ycentroid'].data) all_xy.set('ra', objra) all_xy.set('dec', objdec) all_xy.writeto('%s_%s_all_xy.fits' % (os.path.basename(self.fn).replace('.fits','').replace('.fz',''), ext)) # Matching matched= {} # Photometry matched['photom_obj'], matched['photom_ref'], _ = \ match_radec(objra, objdec, ps1.ra_ok, ps1.dec_ok, self.match_radius/3600.0, nearest=True) t0= ptime('matching-for-photometer',t0) if len(matched['photom_obj']) < self.minstar: return self.return_on_error('photom matched < %d sources' % self.minstar,ccds=ccds) stars_photom,err= self.do_Photometry(obj[matched['photom_obj']], ps1[matched['photom_ref']], ccds=ccds, save_xy=save_xy) if len(err) > 0: return self.return_on_error(err,ccds=ccds, stars_photom=stars_photom) t0= ptime('photutils-photometry',t0) # Astrometry matched['astrom_obj'], matched['astrom_ref'], _ = \ match_radec(objra, objdec, gaia.ra, gaia.dec, self.match_radius/3600.0, nearest=True) t0= ptime('matching-for-astrometry',t0) # Use gaia if len(matched['astrom_obj']) < self.minstar: return self.return_on_error('astrom gaia matched < %d sources' % self.minstar,ccds=ccds,stars_photom=stars_photom) stars_astrom,err= self.do_Astrometry( obj[matched['astrom_obj']], ref_ra= gaia.ra[matched['astrom_ref']], ref_dec= gaia.dec[matched['astrom_ref']], ccds=ccds) if len(err) > 0: return self.return_on_error(err,ccds=ccds, stars_photom=stars_photom, stars_astrom=stars_astrom) t0= ptime('did-astrometry',t0) # FWHM # Tractor on specific SN sources ap = CircularAperture((stars_photom['x'], stars_photom['y']), self.aprad / self.pixscale) skyphot = aperture_photometry(sky_img, ap) skyflux = skyphot['aperture_sum'].data star_SN= stars_photom['apflux'].data / np.sqrt(stars_photom['apflux'].data + skyflux) t0= ptime('photutils-photometry-SN',t0) # Brightest N stars sn_cut= ((star_SN >= 10.) & (star_SN <= 100.)) if len(star_SN[sn_cut]) < 10.: sn_cut= star_SN >= 10. if len(star_SN[sn_cut]) < 10.: sn_cut= np.ones(len(star_SN),bool) i_low_hi= np.argsort(star_SN)[sn_cut] # brightest stars in sample, at most self.tractor_nstars sample=dict(x= stars_photom['x'][i_low_hi][-self.tractor_nstars:], y= stars_photom['y'][i_low_hi][-self.tractor_nstars:], apflux= stars_photom['apflux'][i_low_hi][-self.tractor_nstars:], sn= star_SN[i_low_hi][-self.tractor_nstars:]) #ivar = np.zeros_like(img) + 1.0/sig1**2 # Hack! To avoid 1/0 and sqrt(<0) just considering Poisson Stats due to sky ierr = 1.0/np.sqrt(sky_img) fwhms = self.fitstars(img_sub_sky, ierr, sample['x'], sample['y'], sample['apflux']) ccds['fwhm'] = np.median(fwhms) # fwhms= 2.35 * psf.sigmas print('FWHM med=%f, std=%f, std_med=%f' % (np.median(fwhms),np.std(fwhms),np.std(fwhms)/len(sample['x']))) #ccds['seeing'] = self.pixscale * np.median(fwhms) t0= ptime('Tractor fit FWHM to %d/%d stars' % (len(sample['x']),len(stars_photom)), t0) # RESULTS print("RESULTS %s" % ext) print('Photometry: %d stars' % ccds['nmatch_photom']) print('Offset (mag) =%.4f, rms=0.4%f' % (ccds['phoff'],ccds['phrms'])) print('Zeropoint %.4f' % (ccds['zpt'],)) print('Transparency %.4f' % (ccds['transp'],)) print('Astrometry: %d stars' % ccds['nmatch_astrom']) print('Offsets (arcsec) RA=%.6f, Dec=%.6f' % (ccds['raoff'], ccds['decoff'])) t0= ptime('all-computations-for-this-ccd',t0) # Plots for comparing to Arjuns zeropoints*.ps if self.verboseplots: self.make_plots(stars,dmag,ccds['zpt'],ccds['transp']) t0= ptime('made-plots',t0) return ccds, stars_photom, stars_astrom def run_psfphot(self, ccds, ps1, gaia, zp0, exptime, airmass, sky_img, splinesky, survey): t0= Time() # Now put Gaia stars into the image and re-fit their centroids # and fluxes using the tractor with the PsfEx PSF model. # assume that the CP WCS has gotten us to within a few pixels # of the right answer. Find Gaia stars, initialize Tractor # sources there, optimize them and see how much they want to # move. psf = self.get_psfex_model() # Just keep the CP FWHM measurement!! ccds['fwhm'] = ccds['fwhm_cp'] #ccds['fwhm'] = psf.fwhm if splinesky: sky = self.get_splinesky() print('Instantiating and subtracting sky model') skymod = np.zeros_like(self.img) sky.addTo(skymod) # Apply the same transformation that was applied to the image... skymod = self.scale_image(skymod) #print('Old sky_img: avg', np.mean(sky_img), 'min/max', np.min(sky_img), np.max(sky_img)) #print('Skymod: avg', np.mean(skymod), 'min/max', skymod.min(), skymod.max()) fit_img = self.img - skymod else: fit_img = self.img - sky_img with np.errstate(invalid='ignore'): # sqrt(0.) can trigger complaints; https://github.com/numpy/numpy/issues/11448 ierr = np.sqrt(self.invvar) # Gaia ra,dec = radec_at_mjd(gaia.ra, gaia.dec, gaia.ref_epoch.astype(float), gaia.pmra, gaia.pmdec, gaia.parallax, self.mjd_obs) gaia.rename('source_id', 'gaia_sourceid') gaia.ra_now = ra gaia.dec_now = dec gaia.rename('ra', 'ra_gaia') gaia.rename('dec', 'dec_gaia') for b in ['g', 'bp', 'rp']: mag = gaia.get('phot_%s_mean_mag' % b) sn = gaia.get('phot_%s_mean_flux_over_error' % b) magerr = np.abs(2.5/np.log(10.) * 1./np.maximum(1., sn)) gaia.set('phot_%s_mean_mag_error' % b, magerr) # FIXME -- NaNs? gaia.flux0 = np.ones(len(gaia), np.float32) # we set 'astrom' and omit 'photom'; it will get filled in with zeros. gaia.astrom = np.ones(len(gaia), bool) refs = [gaia] if ps1 is not None: # PS1 for photometry # Initial flux estimate, from nominal zeropoint ps1.flux0 = (10.**((zp0 - ps1.legacy_survey_mag) / 2.5) * exptime).astype(np.float32) # we don't have/use proper motions for PS1 stars ps1.rename('ra_ok', 'ra_now') ps1.rename('dec_ok', 'dec_now') ps1.ra_ps1 = ps1.ra_now.copy() ps1.dec_ps1 = ps1.dec_now.copy() ps1.ps1_objid = ps1.obj_id for band in 'grizY': i = ps1cat.ps1band.get(band, None) if i is None: print('No band', band, 'in PS1 catalog') continue ps1.set('ps1_'+band.lower(), ps1.median[:,i].astype(np.float32)) # we set 'photom' and omit 'astrom'; it will get filled in with zeros. ps1.photom = np.ones (len(ps1), bool) # Match PS1 to Gaia stars within 1". I,J,d = match_radec(gaia.ra_gaia, gaia.dec_gaia, ps1.ra_ps1, ps1.dec_ps1, 1./3600., nearest=True) print(len(I), 'of', len(gaia), 'Gaia and', len(ps1), 'PS1 stars matched') # Merged = PS1 + unmatched Gaia if len(I): # Merge columns for the matched stars for c in gaia.get_columns(): G = gaia.get(c) # If column exists in both (eg, ra_now, dec_now), override # the PS1 value with the Gaia value; except for "photom". if c in ps1.get_columns(): X = ps1.get(c) else: X = np.zeros(len(ps1), G.dtype) X[J] = G[I] ps1.set(c, X) # unmatched Gaia stars unmatched = np.ones(len(gaia), bool) unmatched[I] = False gaia.cut(unmatched) del unmatched refs.append(ps1) if len(refs) == 1: refs = refs[0] else: refs = merge_tables(refs, columns='fillzero') cols = [('ra_gaia', np.double), ('dec_gaia', np.double), ('gaia_sourceid', np.int64), ('phot_g_mean_mag', np.float32), ('phot_g_mean_mag_error', np.float32), ('phot_bp_mean_mag', np.float32), ('phot_bp_mean_mag_error', np.float32), ('phot_rp_mean_mag', np.float32), ('phot_rp_mean_mag_error', np.float32), ('ra_ps1', np.double), ('dec_ps1', np.double), ('ps1_objid', np.int64), ('ps1_g', np.float32), ('ps1_r', np.float32), ('ps1_i', np.float32), ('ps1_z', np.float32), ('ps1_y', np.float32), ('ra_now', np.double), ('dec_now', np.double), ('flux0', np.float32), ('legacy_survey_mag', np.float32), ('astrom', bool), ('photom', bool), ] refcols = refs.get_columns() for c,dt in cols: if not c in refcols: refs.set(c, np.zeros(len(refs), dt)) refcols = refs.get_columns() wantcols = dict(cols) for c in refcols: if not c in wantcols: refs.delete_column(c) continue # dt = wantcols[c] # rdt = refs.get(c).dtype # if rdt != dt: # print('Warning: column', c, 'has type', rdt, 'not', dt) # print('(Cleaned) reference stars:') # refs.about() if False: from astrometry.util.plotutils import PlotSequence ps = PlotSequence('astromfit') plt.clf() plt.hist((fit_img * ierr).ravel(), range=(-5,5), bins=100) plt.xlabel('Image pixel S/N') ps.savefig() # Run tractor fitting on the ref stars, using the PsfEx model. phot = self.tractor_fit_sources(refs.ra_now, refs.dec_now, refs.flux0, fit_img, ierr, psf) print('Got photometry results for', len(phot), 'reference stars') if len(phot) == 0: return self.return_on_error('No photometry available',ccds=ccds) # Cut to ref stars that were photometered refs.cut(phot.iref) phot.delete_column('iref') refs.delete_column('flux0') phot.raoff = (refs.ra_now - phot.ra_fit ) * 3600. * np.cos(np.deg2rad(refs.dec_now)) phot.decoff = (refs.dec_now - phot.dec_fit) * 3600. dra = phot.raoff [refs.astrom] ddec = phot.decoff[refs.astrom] nastrom = len(dra) raoff = np.median(dra) decoff = np.median(ddec) rastd = np.std(dra) decstd = np.std(ddec) ra_clip, _, _ = sigmaclip(dra, low=3., high=3.) rarms = getrms(ra_clip) dec_clip, _, _ = sigmaclip(ddec, low=3., high=3.) decrms = getrms(dec_clip) print('RA, Dec offsets (arcsec): %.4f, %.4f' % (raoff, decoff)) print('RA, Dec stddev (arcsec): %.4f, %.4f' % (rastd, decstd)) print('RA, Dec RMS (arcsec): %.4f, %.4f' % (rarms, decrms)) ok, = np.nonzero(phot.flux > 0) phot.instpsfmag = np.zeros(len(phot), np.float32) phot.instpsfmag[ok] = -2.5*np.log10(phot.flux[ok] / exptime) # Uncertainty on psfmag phot.dpsfmag = np.zeros(len(phot), np.float32) phot.dpsfmag[ok] = np.abs((-2.5 / np.log(10.)) * phot.dflux[ok] / phot.flux[ok]) H,W = self.bitmask.shape phot.bitmask = self.bitmask[np.clip(phot.y1, 0, H-1).astype(int), np.clip(phot.x1, 0, W-1).astype(int)] phot.psfmag = np.zeros(len(phot), np.float32) dmag = (refs.legacy_survey_mag - phot.instpsfmag)[refs.photom] if len(dmag): dmag = dmag[np.isfinite(dmag)] print('Zeropoint: using', len(dmag), 'good stars') dmag, _, _ = sigmaclip(dmag, low=2.5, high=2.5) nphotom = len(dmag) print('Zeropoint: using', nphotom, 'stars after sigma-clipping') zptstd = np.std(dmag) zptmed = np.median(dmag) dzpt = zptmed - zp0 kext = self.extinction(self.band) transp = 10.**(-0.4 * (-dzpt - kext * (airmass - 1.0))) print('Number of stars used for zeropoint median %d' % nphotom) print('Zeropoint %.4f' % zptmed) print('Offset from nominal: %.4f' % dzpt) print('Scatter: %.4f' % zptstd) print('Transparency %.4f' % transp) ok = (phot.instpsfmag != 0) phot.psfmag[ok] = phot.instpsfmag[ok] + zptmed else: nphotom = 0 dzpt = 0. zptmed = 0. zptstd = 0. transp = 0. for c in ['x0','y0','x1','y1','flux','raoff','decoff', 'psfmag', 'dflux','dx','dy']: phot.set(c, phot.get(c).astype(np.float32)) phot.rename('x0', 'x_ref') phot.rename('y0', 'y_ref') phot.rename('x1', 'x_fit') phot.rename('y1', 'y_fit') phot.add_columns_from(refs) # Save CCD-level information in the per-star table. phot.ccd_raoff = np.zeros(len(phot), np.float32) + raoff phot.ccd_decoff = np.zeros(len(phot), np.float32) + decoff phot.ccd_phoff = np.zeros(len(phot), np.float32) + dzpt phot.ccd_zpt = np.zeros(len(phot), np.float32) + zptmed phot.expnum = np.zeros(len(phot), np.int64) + self.expnum phot.ccdname = np.array([self.ccdname] * len(phot)) phot.filter = np.array([self.band] * len(phot)) # ugh, pad ccdname to 3 characters for DECam if self.camera == 'decam' and len(self.ccdname) < 3: phot.ccdname = phot.ccdname.astype('S3') phot.exptime = np.zeros(len(phot), np.float32) + self.exptime phot.gain = np.zeros(len(phot), np.float32) + self.gain phot.airmass = np.zeros(len(phot), np.float32) + airmass import photutils apertures_arcsec_diam = [6, 7, 8] for arcsec_diam in apertures_arcsec_diam: ap = photutils.CircularAperture(np.vstack((phot.x_fit, phot.y_fit)).T, arcsec_diam / 2. / self.pixscale) with np.errstate(divide='ignore'): err = 1./ierr apphot = photutils.aperture_photometry(fit_img, ap, error=err, mask=(ierr==0)) phot.set('apflux_%i' % arcsec_diam, apphot.field('aperture_sum').data.astype(np.float32)) phot.set('apflux_%i_err' % arcsec_diam, apphot.field('aperture_sum_err').data.astype(np.float32)) # Add to the zeropoints table ccds['raoff'] = raoff ccds['decoff'] = decoff ccds['rastddev'] = rastd ccds['decstddev'] = decstd ccds['rarms'] = rarms ccds['decrms'] = decrms ccds['phoff'] = dzpt ccds['phrms'] = zptstd ccds['zpt'] = zptmed ccds['transp'] = transp ccds['nmatch_photom'] = nphotom ccds['nmatch_astrom'] = nastrom # .ra,.dec = Gaia else PS1 phot.ra = phot.ra_gaia phot.dec = phot.dec_gaia I, = np.nonzero(phot.ra == 0) phot.ra [I] = phot.ra_ps1 [I] phot.dec[I] = phot.dec_ps1[I] stars_astrom = phot # Create subset table for Eddie's ubercal stars_photom = phot.copy() cols = ['ra', 'dec', 'flux', 'dflux', 'chi2', 'fracmasked', 'instpsfmag', 'dpsfmag', 'bitmask', 'x_fit', 'y_fit', 'gaia_sourceid', 'ra_gaia', 'dec_gaia', 'phot_g_mean_mag', 'phot_bp_mean_mag', 'phot_rp_mean_mag', 'phot_g_mean_mag_error', 'phot_bp_mean_mag_error', 'phot_rp_mean_mag_error', 'ps1_objid', 'ra_ps1', 'dec_ps1', 'ps1_g', 'ps1_r', 'ps1_i', 'ps1_z', 'ps1_y', 'legacy_survey_mag', 'expnum', 'ccdname', 'exptime', 'gain', 'airmass', 'filter', 'apflux_6', 'apflux_7', 'apflux_8', 'apflux_6_err', 'apflux_7_err', 'apflux_8_err', 'ra_now', 'dec_now', 'ra_fit', 'dec_fit', 'x_ref', 'y_ref' ] for c in stars_photom.get_columns(): if not c in cols: stars_photom.delete_column(c) t0= ptime('all-computations-for-this-ccd',t0) # Plots for comparing to Arjuns zeropoints*.ps if self.verboseplots: self.make_plots(stars,dmag,ccds['zpt'],ccds['transp']) t0= ptime('made-plots',t0) return ccds, stars_photom, stars_astrom def ps1_to_observed(self, ps1): colorterm = self.colorterm_ps1_to_observed(ps1.median, self.band) ps1band = ps1cat.ps1band[self.band] return ps1.median[:, ps1band] + np.clip(colorterm, -1., +1.) def get_splinesky_merged_filename(self): expstr = '%08i' % self.expnum fn = os.path.join(self.calibdir, self.camera, 'splinesky-merged', expstr[:5], '%s-%s.fits' % (self.camera, expstr)) return fn def get_splinesky_unmerged_filename(self): expstr = '%08i' % self.expnum return os.path.join(self.calibdir, self.camera, 'splinesky', expstr[:5], expstr, '%s-%s-%s.fits' % (self.camera, expstr, self.ext)) def get_splinesky(self): # Find splinesky model file and read it import tractor from tractor.utils import get_class_from_name # Look for merged file fn = self.get_splinesky_merged_filename() #print('Looking for file', fn) if os.path.exists(fn): print('Reading splinesky-merged {}'.format(fn)) T = fits_table(fn) if validate_procdate_plver(fn, 'table', self.expnum, self.plver, self.procdate, self.plprocid, data=T): I, = np.nonzero((T.expnum == self.expnum) * np.array([c.strip() == self.ext for c in T.ccdname])) if len(I) == 1: Ti = T[I[0]] # Remove any padding h,w = Ti.gridh, Ti.gridw Ti.gridvals = Ti.gridvals[:h, :w] Ti.xgrid = Ti.xgrid[:w] Ti.ygrid = Ti.ygrid[:h] skyclass = Ti.skyclass.strip() clazz = get_class_from_name(skyclass) fromfits = getattr(clazz, 'from_fits_row') sky = fromfits(Ti) return sky # Look for single-CCD file fn = self.get_splinesky_unmerged_filename() #print('Reading file', fn) if not os.path.exists(fn): return None print('Reading splinesky {}'.format(fn)) hdr = read_primary_header(fn) if not validate_procdate_plver(fn, 'primaryheader', self.expnum, self.plver, self.procdate, self.plprocid, data=hdr): return None try: skyclass = hdr['SKY'] except NameError: raise NameError('SKY not in header: skyfn={}'.format(fn)) clazz = get_class_from_name(skyclass) if getattr(clazz, 'from_fits', None) is not None: fromfits = getattr(clazz, 'from_fits') sky = fromfits(fn, hdr) else: fromfits = getattr(clazz, 'fromFitsHeader') sky = fromfits(hdr, prefix='SKY_') return sky def tractor_fit_sources(self, ref_ra, ref_dec, ref_flux, img, ierr, psf, normalize_psf=True): import tractor plots = False #plot_this = np.hypot(x - 118, y - 1276) < 5 plot_this = False if plots: from astrometry.util.plotutils import PlotSequence ps = PlotSequence('astromfit') print('Fitting positions & fluxes of %i stars' % len(ref_ra)) cal = fits_table() # These x0,y0,x1,y1 are zero-indexed coords. cal.x0 = [] cal.y0 = [] cal.x1 = [] cal.y1 = [] cal.flux = [] cal.dx = [] cal.dy = [] cal.dflux = [] cal.psfsum = [] cal.iref = [] cal.chi2 = [] cal.fracmasked = [] for istar in range(len(ref_ra)): ok,x,y = self.wcs.radec2pixelxy(ref_ra[istar], ref_dec[istar]) x -= 1 y -= 1 # Fitting radius R = 10 H,W = img.shape xlo = int(x - R) ylo = int(y - R) if xlo < 0 or ylo < 0: continue xhi = xlo + R*2 yhi = ylo + R*2 if xhi >= W or yhi >= H: continue subimg = img[ylo:yhi+1, xlo:xhi+1] # FIXME -- check that ierr is correct subie = ierr[ylo:yhi+1, xlo:xhi+1] subpsf = psf.constantPsfAt(x, y) psfsum = np.sum(subpsf.img) if normalize_psf: # print('Normalizing PsfEx model with sum:', s) subpsf.img /= psfsum if np.all(subie == 0): #print('Inverse-variance map is all zero') continue #print('PSF model:', subpsf) #print('PSF image sum:', subpsf.img.sum()) tim = tractor.Image(data=subimg, inverr=subie, psf=subpsf) flux0 = ref_flux[istar] #print('Zp0', zp0, 'mag', ref.mag[istar], 'flux', flux0) x0 = x - xlo y0 = y - ylo src = tractor.PointSource(tractor.PixPos(x0, y0), tractor.Flux(flux0)) tr = tractor.Tractor([tim], [src]) tr.freezeParam('images') optargs = dict(priors=False, shared_params=False) # The initial flux estimate doesn't seem to work too well, # so just for plotting's sake, fit flux first src.freezeParam('pos') tr.optimize(**optargs) src.thawParam('pos') #print('Optimizing position of Gaia star', istar) if plots and plot_this: plt.clf() plt.subplot(2,2,1) plt.imshow(subimg, interpolation='nearest', origin='lower') plt.colorbar() plt.subplot(2,2,2) mod = tr.getModelImage(0) plt.imshow(mod, interpolation='nearest', origin='lower') plt.colorbar() plt.subplot(2,2,3) plt.imshow((subimg - mod) * subie, interpolation='nearest', origin='lower') plt.colorbar() plt.suptitle('Before') ps.savefig() #print('Initial flux', flux0) for step in range(50): dlnp, x, alpha = tr.optimize(**optargs) #print('delta position', src.pos.x - x0, src.pos.y - y0, # 'flux', src.brightness, 'dlnp', dlnp) if dlnp == 0: break #print('Getting variance estimate: thawed params:') #tr.printThawedParams() variance = tr.optimize(variance=True, just_variance=True, **optargs) # Yuck -- if inverse-variance is all zero, weird-shaped result... if len(variance) == 4 and variance[3] is None: print('No variance estimate available') continue mod = tr.getModelImage(0) chi = (subimg - mod) * subie psfimg = mod / mod.sum() # profile-weighted chi-squared cal.chi2.append(np.sum(chi**2 * psfimg)) # profile-weighted fraction of masked pixels #cal.fracmasked.append(np.sum(psfimg * (ierr == 0))) cal.fracmasked.append(np.sum(psfimg * (subie == 0))) cal.psfsum.append(psfsum) cal.x0.append(x0 + xlo) cal.y0.append(y0 + ylo) cal.x1.append(src.pos.x + xlo) cal.y1.append(src.pos.y + ylo) cal.flux.append(src.brightness.getValue()) cal.iref.append(istar) std = np.sqrt(variance) cal.dx.append(std[0]) cal.dy.append(std[1]) cal.dflux.append(std[2]) if plots and plot_this: plt.clf() plt.subplot(2,2,1) plt.imshow(subimg, interpolation='nearest', origin='lower') plt.colorbar() plt.subplot(2,2,2) mod = tr.getModelImage(0) plt.imshow(mod, interpolation='nearest', origin='lower') plt.colorbar() plt.subplot(2,2,3) plt.imshow((subimg - mod) * subie, interpolation='nearest', origin='lower') plt.colorbar() plt.suptitle('After') ps.savefig() cal.to_np_arrays() cal.ra_fit,cal.dec_fit = self.wcs.pixelxy2radec(cal.x1 + 1, cal.y1 + 1) return cal def get_psfex_merged_filename(self): expstr = '%08i' % self.expnum fn = os.path.join(self.calibdir, self.camera, 'psfex-merged', expstr[:5], '%s-%s.fits' % (self.camera, expstr)) return fn def get_psfex_model(self): import tractor # Look for merged PsfEx file fn = self.get_psfex_merged_filename() expstr = '%08i' % self.expnum #print('Looking for PsfEx file', fn) if os.path.exists(fn): print('Reading psfex-merged {}'.format(fn)) T = fits_table(fn) if validate_procdate_plver(fn, 'table', self.expnum, self.plver, self.procdate, self.plprocid, data=T): I, = np.nonzero((T.expnum == self.expnum) * np.array([c.strip() == self.ext for c in T.ccdname])) if len(I) == 1: Ti = T[I[0]] # Remove any padding degree = Ti.poldeg1 # number of terms in polynomial ne = (degree + 1) * (degree + 2) // 2 Ti.psf_mask = Ti.psf_mask[:ne, :Ti.psfaxis1, :Ti.psfaxis2] psfex = tractor.PsfExModel(Ti=Ti) psf = tractor.PixelizedPsfEx(None, psfex=psfex) psf.fwhm = Ti.psf_fwhm psf.header = {} return psf # Look for single-CCD PsfEx file fn = os.path.join(self.calibdir, self.camera, 'psfex', expstr[:5], expstr, '%s-%s-%s.fits' % (self.camera, expstr, self.ext)) #print('Reading PsfEx file', fn) if not os.path.exists(fn): return None print('Reading psfex {}'.format(fn)) hdr = read_primary_header(fn) if not validate_procdate_plver(fn, 'primaryheader', self.expnum, self.plver, self.procdate, self.plprocid, data=hdr): return None hdr = fitsio.read_header(fn, ext=1) psf = tractor.PixelizedPsfEx(fn) psf.header = hdr psf.fwhm = hdr['PSF_FWHM'] return psf def do_Photometry(self, obj,ps1, ccds, save_xy=False): """Measure zeropoint relative to PS1 Args: obj: ps1-matched sources detected with dao phot ps1: ps1 source matched to obj ccds: partially filled _ccds_table save_xy: if True save a fits table containing ps1_mag and apmag for matches sources and associated photometric cuts Returns: stars_photom: fits table for stars err_message: '' if okay, 'some error text' otherwise, this will end up being stored in ccds['err_message'] """ print('Photometry on %s stars' % len(ps1)) objra, objdec = self.wcs.pixelxy2radec(obj['xcentroid']+1, obj['ycentroid']+1) cuts,phot= self.get_photometric_cuts(obj,cuts_only=False) assert(len(phot['apflux']) == len(obj)) final_cut= ((cuts['good_flux_and_mag']) & (cuts['no_badpix_in_ap_0']) & (cuts['is_iso'])) if len(obj[final_cut]) == 0: return _stars_table(),'photometry failed, no stars after cuts' # Stars table ccds['nmatch_photom'] = len(obj[final_cut]) print('Photometry %s stars after obj cuts' % ccds['nmatch_photom']) stars_photom = _stars_table(nstars=ccds['nmatch_photom']) stars_photom['apmag'] = phot['apmags'][final_cut] stars_photom['ps1_mag'] = ps1.legacy_survey_mag[final_cut] if save_xy: # Save ps1_mag and apmag for every matched source all_stars=fits_table() all_stars.set('apmag', phot['apmags'].data) all_stars.set('ps1_mag', ps1.legacy_survey_mag) all_stars.set('match_x', obj['xcentroid'].data) all_stars.set('match_y', obj['ycentroid'].data) all_stars.set('match_ra', objra) all_stars.set('match_dec', objdec) # Then bool cuts for the above arrays for key in cuts.keys(): all_stars.set(key, cuts[key]) # Avoid memoryview write error for col in all_stars.get_columns(): all_stars.set(col,np.array(all_stars.get(col))) all_stars.writeto('%s_%s_all_stars.fits' % (os.path.basename(self.fn).replace('.fits','').replace('.fz',''), self.ccdname)) # Add additional info stars_photom['nmatch']= ccds['nmatch_photom'] self.add_ccd_info_to_stars_table(stars_photom, ccds) star_kwargs= {"keep": final_cut, "obj":obj, "objra":objra, "objdec":objdec, "apflux":phot['apflux'], "apskyflux":phot['apskyflux'], "apskyflux_perpix":phot['apskyflux_perpix']} self.add_obj_info_to_stars_table(stars_photom,**star_kwargs) for ps1_band,ps1_iband in zip(['g','r','i','z'],[0,1,2,3]): stars_photom['ps1_%s' % ps1_band]= ps1.median[final_cut, ps1_iband] # Zeropoint stars_photom['dmagall'] = stars_photom['ps1_mag'] - stars_photom['apmag'] dmag, _, _ = sigmaclip(stars_photom['dmagall'], low=2.5, high=2.5) dmagmed =
np.median(dmag)
numpy.median
import tensorflow as tf import numpy as np import os, datetime, itertools, shutil, gym, sys from tf_rl.common.visualise import plot_Q_values from tf_rl.common.wrappers import MyWrapper, CartPole_Pixel, wrap_deepmind, make_atari """ TF basic Utility functions """ def eager_setup(): """ it eables an eager execution in tensorflow with config that allows us to flexibly access to a GPU from multiple python scripts :return: """ config = tf.compat.v1.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) config.gpu_options.allow_growth = True tf.compat.v1.enable_eager_execution(config=config) tf.compat.v1.enable_resource_variables() """ Common Utility functions """ def get_alg_name(): """Returns the name of the algorithm. We assume that the directory architecutre for that algo looks like below - Atari: `examples/algo_name/algo_name_eager.py` - Cartpole: `examples/algo_name/algo_name_eager_cartpole.py` * where algo_name must be uppercase/capital letters!! """ alg_name = sys.argv[0].rsplit("/")[-1].rsplit(".")[0].replace("_eager", "") return alg_name def invoke_agent_env(params, alg): """Returns the wrapped env and string name of agent, then Use `eval(agent)` to activate it from main script """ if params.mode == "Atari": env = wrap_deepmind(make_atari("{}NoFrameskip-v4".format(params.env_name, skip_frame_k=params.skip_frame_k)), skip_frame_k=params.skip_frame_k) if params.debug_flg: agent = "{}_debug".format(alg) else: agent = "{}".format(alg) else: agent = "{}".format(alg) if params.mode == "CartPole": env = MyWrapper(gym.make("CartPole-v0")) elif params.mode == "CartPole-p": env = CartPole_Pixel(gym.make("CartPole-v0")) return agent, env def create_log_model_directory(params, alg): """ Create a directory for log/model this is compatible with Google colab and can connect to MyDrive through the authorisation step :param params: :return: """ if params.mode in ["Atari", "atari", "MuJoCo", "mujoco"]: second_name = params.env_name else: second_name = params.mode now = datetime.datetime.now() if params.google_colab: # mount the MyDrive on google drive and create the log directory for saving model and logging using tensorboard params.log_dir, params.model_dir, params.log_dir_colab, params.model_dir_colab = _setup_on_colab(alg, params.mode) else: if params.debug_flg: params.log_dir = "../../logs/logs/" + now.strftime("%Y%m%d-%H%M%S") + "-{}_{}_debug/".format(alg, second_name) params.model_dir = "../../logs/models/" + now.strftime("%Y%m%d-%H%M%S") + "-{}_{}_debug/".format(alg, second_name) else: params.log_dir = "../../logs/logs/" + now.strftime("%Y%m%d-%H%M%S") + "-{}_{}/".format(alg, second_name) params.model_dir = "../../logs/models/" + now.strftime("%Y%m%d-%H%M%S") + "-{}_{}/".format(alg, second_name) return params def create_loss_func(loss_name="mse"): if loss_name == "huber": loss_fn = tf.compat.v1.losses.huber_loss elif loss_name == "mse": loss_fn = tf.compat.v1.losses.mean_squared_error else: assert False, "Choose the loss_fn from either huber or mse" return loss_fn def get_ready(params): """ Print out the content of params :param params: :return: """ for key, item in vars(params).items(): print(key, " : ", item) def create_checkpoint(model, optimizer, model_dir): """ Create a checkpoint for managing a model :param model: :param optimizer: :param model_dir: :return: """ checkpoint_dir = model_dir check_point = tf.train.Checkpoint(optimizer=optimizer, model=model, optimizer_step=tf.compat.v1.train.get_or_create_global_step()) manager = tf.train.CheckpointManager(check_point, checkpoint_dir, max_to_keep=3) # try re-loading the previous training progress! try: print("Try loading the previous training progress") check_point.restore(manager.latest_checkpoint) assert tf.compat.v1.train.get_global_step().numpy() != 0 print("===================================================\n") print("Restored the model from {}".format(checkpoint_dir)) print("Currently we are on time-step: {}".format(tf.compat.v1.train.get_global_step().numpy())) print("\n===================================================") except: print("===================================================\n") print("Previous Training files are not found in Directory: {}".format(checkpoint_dir)) print("\n===================================================") return manager def _setup_on_colab(alg_name, env_name): """ Mount MyDrive to current instance through authentication of Google account Then use it as a backup of training related files :param env_name: :return: """ # mount your drive on google colab from google.colab import drive drive.mount("/content/gdrive") log_dir = "/content/TF_RL/logs/logs/{}/{}".format(alg_name, env_name) model_dir = "/content/TF_RL/logs/models/{}/{}".format(alg_name, env_name) log_dir_colab = "/content/gdrive/My Drive/logs/logs/{}/{}".format(alg_name, env_name) model_dir_colab = "/content/gdrive/My Drive/logs/models/{}/{}".format(alg_name, env_name) # create the logs directory under the root dir if not os.path.isdir(log_dir): os.makedirs(log_dir) if not os.path.isdir(model_dir): os.makedirs(model_dir) # if the previous directory existed in My Drive, then we would continue training on top of the previous training if os.path.isdir(log_dir_colab): print("=== {} IS FOUND ===".format(log_dir_colab)) copy_dir(log_dir_colab, log_dir, verbose=True) else: print("=== {} IS NOT FOUND ===".format(log_dir_colab)) os.makedirs(log_dir_colab) print("=== FINISHED CREATING THE DIRECTORY ===") if os.path.isdir(model_dir_colab): print("=== {} IS FOUND ===".format(model_dir_colab)) copy_dir(model_dir_colab, model_dir, verbose=True) else: print("=== {} IS NOT FOUND ===".format(model_dir_colab)) os.makedirs(model_dir_colab) print("=== FINISHED CREATING THE DIRECTORY ===") return log_dir, model_dir, log_dir_colab, model_dir_colab class AnnealingSchedule: """ Scheduling the gradually decreasing value, e.g., epsilon or beta params """ def __init__(self, start=1.0, end=0.1, decay_steps=500, decay_type="linear"): self.start = start self.end = end self.decay_steps = decay_steps self.annealed_value = np.linspace(start, end, decay_steps) self.decay_type = decay_type def old_get_value(self, timestep): """ Deprecated :param timestep: :return: """ if self.decay_type == "linear": return self.annealed_value[min(timestep, self.decay_steps) - 1] # don't use this!! elif self.decay_type == "curved": if timestep < self.decay_steps: return self.start * 0.9 ** (timestep / self.decay_steps) else: return self.end def get_value(self): timestep = tf.train.get_or_create_global_step() # we are maintaining the global-step in train.py so it is accessible if self.decay_type == "linear": return self.annealed_value[min(timestep.numpy(), self.decay_steps) - 1] # don't use this!! elif self.decay_type == "curved": if timestep.numpy() < self.decay_steps: return self.start * 0.9 ** (timestep.numpy() / self.decay_steps) else: return self.end def copy_dir(src, dst, symlinks=False, ignore=None, verbose=False): """ copy the all contents in `src` directory to `dst` directory Usage: ```python delete_files("./bb/") ``` """ for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if verbose: print("From:{}, To: {}".format(s, d)) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) def delete_files(folder, verbose=False): """ delete the all contents in `folder` directory Usage: ```python copy_dir("./aa/", "./bb/") ``` """ for the_file in os.listdir(folder): file_path = os.path.join(folder, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) if verbose: print("{} has been deleted".format(file_path)) except Exception as e: print(e) class RunningMeanStd: """ Running Mean and Standard Deviation for normalising the observation! This is mainly used in MuJoCo experiments, e.g. DDPG! Formula: - Normalisation: y = (x-mean)/std """ def __init__(self, shape, clip_range=5, epsilon=1e-2): self.size = shape self.epsilon = epsilon self.clip_range = clip_range self._sum = 0.0 self._sumsq = np.ones(self.size, np.float32) * epsilon self._count = np.ones(self.size, np.float32) * epsilon self.mean = self._sum / self._count self.std = np.sqrt(np.maximum(self._sumsq / self._count - np.square(self.mean), np.square(self.epsilon))) def update(self, x): """ update the mean and std by given input :param x: can be observation, reward, or action!! :return: """ x = x.reshape(-1, self.size) self._sum = x.sum(axis=0) self._sumsq = np.square(x).sum(axis=0) self._count = np.array([len(x)], dtype='float64') self.mean = self._sum / self._count self.std = np.sqrt(np.maximum(self._sumsq / self._count - np.square(self.mean), np.square(self.epsilon))) def normalise(self, x): """ Using well-maintained mean and std, we normalise the input followed by update them. :param x: :return: """ result = np.clip((x - self.mean) / self.std, -self.clip_range, self.clip_range) return result def test(sess, agent, env, params): xmax = agent.num_action ymax = 3 print("\n ===== TEST STARTS: {0} Episodes ===== \n".format(params.test_episodes)) for i in range(params.test_episodes): state = env.reset() for t in itertools.count(): env.render() q_values = sess.run(agent.pred, feed_dict={agent.state: state.reshape(params.state_reshape)})[0] action = np.argmax(q_values) plot_Q_values(q_values, xmax=xmax, ymax=ymax) obs, reward, done, _ = env.step(action) state = obs if done: print("Episode finished after {} timesteps".format(t + 1)) break return class logger: def __init__(self, params): self.params = params self.prev_update_step = 0 def logging(self, time_step, current_episode, exec_time, reward_buffer, loss, epsilon, cnt_action): """ Logging function :param time_step: :param max_steps: :param current_episode: :param exec_time: :param reward: :param loss: :param cnt_action: :return: """ cnt_actions = dict((x, cnt_action.count(x)) for x in set(cnt_action)) episode_steps = time_step - self.prev_update_step # remaing_time_step/exec_time_for_one_step remaining_time = str(datetime.timedelta( seconds=(self.params.num_frames - time_step) * exec_time / (episode_steps))) print( "{0}/{1}: Ep: {2}({3:.1f} fps), Remaining: {4}, (R) {5} Ep => [MEAN: {6:.3f}, MAX: {7:.3f}], (last ep) Loss: {8:.3f}, Eps: {9:.3f}, Act: {10}".format( time_step, self.params.num_frames, current_episode, episode_steps / exec_time, remaining_time, self.params.reward_buffer_ep, np.mean(reward_buffer), np.max(reward_buffer), loss, epsilon, cnt_actions )) self.prev_update_step = time_step """ Algorithm Specific Utility functions """ class her_sampler: # borrow from: https://github.com/TianhongDai/hindsight-experience-replay/blob/master/her.py def __init__(self, replay_strategy, replay_k, reward_func=None): self.replay_strategy = replay_strategy self.replay_k = replay_k if self.replay_strategy == 'future': self.future_p = 1 - (1. / (1 + replay_k)) else: self.future_p = 0 self.reward_func = reward_func def sample_her_transitions(self, episode_batch, batch_size_in_transitions): T = episode_batch['actions'].shape[1] rollout_batch_size = episode_batch['actions'].shape[0] batch_size = batch_size_in_transitions # select which rollouts and which timesteps to be used episode_idxs = np.random.randint(0, rollout_batch_size, batch_size) t_samples = np.random.randint(T, size=batch_size) transitions = {key: episode_batch[key][episode_idxs, t_samples].copy() for key in episode_batch.keys()} # her idx her_indexes = np.where(np.random.uniform(size=batch_size) < self.future_p) future_offset = np.random.uniform(size=batch_size) * (T - t_samples) future_offset = future_offset.astype(int) future_t = (t_samples + 1 + future_offset)[her_indexes] # replace go with achieved goal future_ag = episode_batch['ag'][episode_idxs[her_indexes], future_t] transitions['g'][her_indexes] = future_ag # to get the params to re-compute reward transitions['r'] = np.expand_dims(self.reward_func(transitions['ag_next'], transitions['g'], None), 1) transitions = {k: transitions[k].reshape(batch_size, *transitions[k].shape[1:]) for k in transitions.keys()} return transitions def action_postprocessing(action, params): action += params.noise_eps * params.max_action * np.random.randn(*action.shape) action = np.clip(action, -params.max_action, params.max_action) # random actions... random_actions = np.random.uniform(low=-params.max_action, high=params.max_action, size=params.num_action) # choose if use the random actions action += np.random.binomial(1, params.random_eps, 1)[0] * (random_actions - action) return action def state_unpacker(state): """ Given the dictionary of state, it unpacks and returns processed items as numpy.ndarray Sample input: {'observation': array([ 1.34193265e+00, 7.49100375e-01, 5.34722720e-01, 1.30179339e+00, 8.86399624e-01, 4.24702091e-01, -4.01392554e-02, 1.37299250e-01, -1.10020629e-01, 2.91834773e-06, -4.72661656e-08, -3.85214084e-07, 5.92637053e-07, 1.12208536e-13, -7.74656889e-06, -7.65027248e-08, 4.92570535e-05, 1.88857148e-07, -2.90549459e-07, -1.18156686e-18, 7.73934983e-06, 7.18103404e-08, -2.42928780e-06, 4.93607091e-07, 1.70999820e-07]), 'achieved_goal': array([1.30179339, 0.88639962, 0.42470209]), 'desired_goal': array([1.4018907 , 0.62021174, 0.4429846 ])} :param state: :return: """ obs = np.array(state["observation"]) achieved_goal = np.array(state["achieved_goal"]) desired_goal = np.array(state["desired_goal"]) remaining_goal = simple_goal_subtract(desired_goal, achieved_goal) return obs, achieved_goal, desired_goal, remaining_goal def simple_goal_subtract(goal, achieved_goal): """ We subtract the achieved goal from the desired one to see how much we are still far from the desired position """ assert goal.shape == achieved_goal.shape return goal - achieved_goal ALIVE_BONUS = 1.0 def get_distance(env_name): """ This returns the distance according to the implementation of env For instance, halfcheetah and humanoid have the different way to return the distance so that we need to deal with them accordingly. :return: func to calculate the distance(float) """ obj_name = env_name.split("-")[0] if not obj_name.find("Ant") == -1: def func(action, reward, info): # https://github.com/openai/gym/blob/master/gym/envs/mujoco/ant.py#L14 distance = info["reward_forward"] return distance elif not obj_name.find("HalfCheetah") == -1: def func(action, reward, info): # https://github.com/openai/gym/blob/master/gym/envs/mujoco/half_cheetah.py distance = info["reward_run"] return distance elif not obj_name.find("Hopper") == -1: def func(action, reward, info): # https://github.com/openai/gym/blob/master/gym/envs/mujoco/hopper.py#L15 distance = (reward - ALIVE_BONUS) + 1e-3 * np.square(action).sum() return distance elif not obj_name.find("Humanoid") == -1: def func(action, reward, info): # https://github.com/openai/gym/blob/master/gym/envs/mujoco/humanoid.py#L30 distance = info["reward_linvel"] / 1.25 return distance elif not obj_name.find("Swimmer") == -1: def func(action, reward, info): # https://github.com/openai/gym/blob/master/gym/envs/mujoco/swimmer.py#L15 distance = info["reward_fwd"] return distance elif not obj_name.find("Walker2d") == -1: def func(action, reward, info): # https://github.com/openai/gym/blob/master/gym/envs/mujoco/walker2d.py#L16 -> original version distance = (reward - ALIVE_BONUS) + 1e-3 * np.square(action).sum() # https://github.com/openai/gym/blob/master/gym/envs/mujoco/walker2d_v3.py#L90 -> version 3.0 # distance = info["x_velocity"] return distance elif not obj_name.find("Centipede") == -1: def func(action, reward, info): distance = info["reward_forward"] return distance else: assert False, "This env: {} is not supported yet.".format(env_name) return func """ TODO: I think I will remove this. # Copyright 2018 The Dopamine Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ===== Tracker is A class for storing iteration-specific metrics. ==== """ class Tracker(object): """A class for storing iteration-specific metrics. The internal format is as follows: we maintain a mapping from keys to lists. Each list contains all the values corresponding to the given key. For example, self.data_lists['train_episode_returns'] might contain the per-episode returns achieved during this iteration. Attributes: data_lists: dict mapping each metric_name (str) to a list of said metric across episodes. """ def __init__(self): self.data_lists = {} def append(self, data_pairs): """Add the given values to their corresponding key-indexed lists. Args: data_pairs: A dictionary of key-value pairs to be recorded. """ for key, value in data_pairs.items(): if key not in self.data_lists: self.data_lists[key] = [] self.data_lists[key].append(value) """ Update methods """ def sync_main_target(sess, target, source): """ Synchronise the models from <NAME>'s excellent RL repo https://github.com/dennybritz/reinforcement-learning/blob/master/DQN/Double%20DQN%20Solution.ipynb :param main: :param target: :return: """ source_params = [t for t in tf.trainable_variables() if t.name.startswith(source.scope)] source_params = sorted(source_params, key=lambda v: v.name) target_params = [t for t in tf.trainable_variables() if t.name.startswith(target.scope)] target_params = sorted(target_params, key=lambda v: v.name) update_ops = [] for target_w, source_w in zip(target_params, source_params): op = target_w.assign(source_w) update_ops.append(op) sess.run(update_ops) def soft_target_model_update(sess, target, source, tau=1e-2): """ Soft update model parameters. target = tau * source + (1 - tau) * target :param main: :param target: :param tau: :return: """ source_params = [t for t in tf.trainable_variables() if t.name.startswith(source.scope)] source_params = sorted(source_params, key=lambda v: v.name) target_params = [t for t in tf.trainable_variables() if t.name.startswith(target.scope)] target_params = sorted(target_params, key=lambda v: v.name) update_ops = [] for target_w, source_w in zip(target_params, source_params): # target = tau * source + (1 - tau) * target op = target_w.assign(tau * source_w + (1 - tau) * target_w) update_ops.append(op) sess.run(update_ops) @tf.contrib.eager.defun(autograph=False) def soft_target_model_update_eager(target, source, tau=1e-2): """ Soft update model parameters. target = tau * source + (1 - tau) * target :param main: :param target: :param tau: :return: """ for param, target_param in zip(source.weights, target.weights): target_param.assign(tau * param + (1 - tau) * target_param) """ Gradient Clipping """ def gradient_clip_fn(flag=None): """ given a flag, create the clipping function and returns it as a function currently it supports: - by_value - norm - None :param flag: :return: """ if flag == "": def _func(grads): return grads elif flag == "by_value": def _func(grads): grads = [ClipIfNotNone(grad, -1., 1.) for grad in grads] return grads elif flag == "norm": def _func(grads): grads, _ = tf.clip_by_global_norm(grads, 10.0) return grads else: assert False, "Choose the gradient clipping function from by_value, norm, or nothing!" return _func def ClipIfNotNone(grad, _min, _max): """ Reference: https://stackoverflow.com/a/39295309 :param grad: :return: """ if grad is None: return grad return tf.clip_by_value(grad, _min, _max) """ Test Methods """ def eval_Agent(agent, env, n_trial=1): """ Evaluate the trained agent! :return: """ all_rewards = list() print("=== Evaluation Mode ===") for ep in range(n_trial): state = env.reset() done = False episode_reward = 0 while not done: # epsilon-greedy for evaluation using a fixed epsilon of 0.05(Nature does this!) if np.random.uniform() < 0.05: action = np.random.randint(agent.num_action) else: action = np.argmax(agent.predict(state)) next_state, reward, done, _ = env.step(action) state = next_state episode_reward += reward all_rewards.append(episode_reward) tf.contrib.summary.scalar("Evaluation Score", episode_reward, step=agent.index_timestep) print("| Ep: {}/{} | Score: {} |".format(ep + 1, n_trial, episode_reward)) # if this is running on Google Colab, we would store the log/models to mounted MyDrive if agent.params.google_colab: delete_files(agent.params.model_dir_colab) delete_files(agent.params.log_dir_colab) copy_dir(agent.params.log_dir, agent.params.log_dir_colab) copy_dir(agent.params.model_dir, agent.params.model_dir_colab) if n_trial > 2: print("=== Evaluation Result ===") all_rewards = np.array([all_rewards]) print("| Max: {} | Min: {} | STD: {} | MEAN: {} |".format(
np.max(all_rewards)
numpy.max
#!/usr/bin/env python u""" fit.py Written by <NAME> (05/2021) Utilities for calculating average fits from ATL03 Geolocated Photon Data PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html scipy: Scientific Tools for Python https://docs.scipy.org/doc/ scikit-learn: Machine Learning in Python http://scikit-learn.org/stable/index.html https://github.com/scikit-learn/scikit-learn UPDATE HISTORY: Written 05/2021 """ import operator import itertools import numpy as np import scipy.stats import scipy.signal import scipy.optimize import sklearn.neighbors # PURPOSE: compress complete list of valid indices into a set of ranges def compress_list(i,n): """ Compress complete list of valid indices into a set of ranges Arguments --------- i: indices to compress n: largest gap between indices to accept for range """ for a,b in itertools.groupby(enumerate(i), lambda v: ((v[1]-v[0])//n)*n): group = list(map(operator.itemgetter(1),b)) yield (group[0], group[-1]) # PURPOSE: centers the transmit-echo-path histogram reported by ATL03 # using an iterative edit to distinguish between signal and noise def extract_tep_histogram(tep_hist_time,tep_hist,tep_range_prim): """ Centers the transmit-echo-path histogram reported by ATL03 using an iterative edit to distinguish between signal and noise """ # ATL03 recommends subset between 15-30 ns to avoid secondary # using primary histogram range values from ATL03 tep attributes i, = np.nonzero((tep_hist_time >= tep_range_prim[0]) & (tep_hist_time < tep_range_prim[1])) t_tx = np.copy(tep_hist_time[i]) n_tx = len(t_tx) # noise samples of tep_hist (first 5ns and last 10 ns) ns,ne = (tep_range_prim[0]+5e-9,tep_range_prim[1]-10e-9) noise, = np.nonzero((t_tx <= ns) | (t_tx >= ne)) noise_p1 = [] # signal samples of tep_hist signal = sorted(set(np.arange(n_tx)) - set(noise)) # number of iterations n_iter = 0 while (set(noise) != set(noise_p1)) & (n_iter < 10): # value of noise in tep histogram tep_noise_value = np.sqrt(np.sum(tep_hist[i][noise]**2)/n_tx) p_tx = np.abs(np.copy(tep_hist[i]) - tep_noise_value) # calculate centroid of tep_hist t0_tx = np.sum(t_tx[signal]*p_tx[signal])/np.sum(p_tx[signal]) # calculate cumulative distribution function TX_cpdf = np.cumsum(p_tx[signal]/np.sum(p_tx[signal])) # linearly interpolate to 16th and 84th percentile for RDE TX16,TX84 = np.interp([0.16,0.84],TX_cpdf,t_tx[signal]-t0_tx) # calculate width of transmitted pulse (RDE) W_TX = 0.5*(TX84 - TX16) # recalculate noise noise_p1 = np.copy(noise) ns,ne = (t0_tx-6.0*W_TX,t0_tx+6.0*W_TX) noise, = np.nonzero((t_tx <= ns) | (t_tx >= ne)) signal = sorted(set(np.arange(n_tx)) - set(noise)) # add 1 to counter n_iter += 1 # valid primary TEP return has full-width at half max < 3 ns mx = np.argmax(p_tx[signal]) halfmax = np.max(p_tx[signal])/2.0 H1 = np.interp(halfmax,p_tx[signal][:mx],t_tx[signal][:mx]) H2 = np.interp(halfmax,p_tx[signal][:mx:-1],t_tx[signal][:mx:-1]) FWHM = H2 - H1 # return values return (t_tx[signal]-t0_tx,p_tx[signal],W_TX,FWHM,ns,ne) # PURPOSE: calculate the interquartile range (Pritchard et al, 2009) and # robust dispersion estimator (Smith et al, 2017) of the model residuals def filter_elevation(r0): """ Calculates the interquartile range (Pritchard et al, 2009) and robust dispersion estimator (Smith et al, 2017) of the model residuals Arguments --------- r0: height residuals """ # calculate percentiles for IQR and RDE # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles # median: 50th percentile Q1,Q3,P16,P84,MEDIAN = np.percentile(r0,[25,75,16,84,50]) # calculate interquartile range IQR = Q3 - Q1 # calculate robust dispersion estimator (RDE) RDE = P84 - P16 # IQR pass: residual-(median value) is within 75% of IQR # RDE pass: residual-(median value) is within 50% of P84-P16 return (0.75*IQR,0.5*RDE,MEDIAN) # PURPOSE: try fitting a surface to the signal photons with progressively # less confidence if no valid surface is found def try_surface_fit(x, y, z, confidence_mask, dist_along, SURF_TYPE='linear', ITERATE=25, CONFIDENCE=[4,3,2,1,0]): """ Try fitting a surface to the signal photons with progressively less confidence if no valid surface is found """ # try with progressively less confidence for i,conf in enumerate(CONFIDENCE): ind, = np.nonzero(confidence_mask >= conf) centroid = dict(x=dist_along, y=np.mean(y[ind])) try: surf = reduce_surface_fit(x[ind], y[ind], z[ind], centroid, ind, SURF_TYPE=SURF_TYPE, ITERATE=ITERATE) except (ValueError, np.linalg.linalg.LinAlgError): pass else: return (i+1,surf,centroid) # if still no values found: return infinite values # will need to attempt a backup algorithm surf = dict(error=np.full(1,np.inf)) centroid = None return (None,surf,centroid) # PURPOSE: iteratively fit a polynomial surface to the elevation data to # reduce to within a valid window def reduce_surface_fit(x, y, z, centroid, ind, SURF_TYPE='linear', ITERATE=25): """ Iteratively fit a polynomial surface to the elevation data to reduce to within a valid surface window """ # calculate x and y relative to centroid point rel_x = x - centroid['x'] # Constant Term Z0 = np.ones_like((z)) if (SURF_TYPE == 'linear'):# linear fit SURFMAT = np.transpose([Z0,rel_x]) elif (SURF_TYPE == 'quadratic'):# quadratic fit SURFMAT = np.transpose([Z0,rel_x,rel_x**2]) # number of points for fit and number of terms in fit n_max,n_terms = np.shape(SURFMAT) # run only if number of points is above number of terms FLAG1 = ((n_max - n_terms) > 10) # maximum allowable window size H_win_max = 20.0 # minimum allowable window size H_win_min = 3.0 # set initial window to the full z range window = z.max() - z.min() window_p1 = np.copy(window) # initial indices for reducing to window filt = np.arange(n_max) filt_p1 = np.copy(filt) filt_p2 = np.copy(filt_p1) if FLAG1: # save initial indices for fitting all photons for confidence level indices = ind.copy() # run fit program for polynomial type fit = fit_surface(x, y, z, centroid, SURF_TYPE=SURF_TYPE) # number of iterations performed n_iter = 1 # save beta coefficients beta_mat = np.copy(fit['beta']) error_mat = np.copy(fit['error']) # residuals of model fit resid = z - np.dot(SURFMAT,beta_mat) # standard deviation of the residuals resid_std = np.std(resid) # save MSE and DOF for error analysis MSE = np.copy(fit['MSE']) DOF = np.copy(fit['DOF']) # Root mean square error RMSE = np.sqrt(fit['MSE']) # Normalized root mean square error NRMSE = RMSE/(np.max(z)-np.min(z)) # IQR pass: residual-(median value) is within 75% of IQR # RDE pass: residual-(median value) is within 50% of P84-P16 IQR,RDE,MEDIAN = filter_elevation(resid) # checking if any residuals are outside of the window window = np.max([H_win_min,6.0*RDE,0.5*window_p1]) filt, = np.nonzero(np.abs(resid-MEDIAN) <= (window/2.0)) # save iteration of window window_p1 = np.copy(window) # run only if number of points is above number of terms n_rem = np.count_nonzero(np.abs(resid-MEDIAN) <= (window/2.0)) FLAG1 = ((n_rem - n_terms) > 10) # maximum number of iterations to prevent infinite loops FLAG2 = (n_iter <= ITERATE) # compare indices over two iterations to prevent false stoppages FLAG3 = (set(filt) != set(filt_p1)) | (set(filt_p1) != set(filt_p2)) # iterate until there are no additional removed photons while FLAG1 & FLAG2 & FLAG3: # fit selected photons for window x_filt,y_filt,z_filt,indices = (x[filt],y[filt],z[filt],ind[filt]) # run fit program for polynomial type fit = fit_surface(x_filt,y_filt,z_filt,centroid,SURF_TYPE=SURF_TYPE) # add to number of iterations performed n_iter += 1 # save model coefficients beta_mat = np.copy(fit['beta']) error_mat = np.copy(fit['error']) # save MSE and DOF for error analysis MSE = np.copy(fit['MSE']) DOF = np.copy(fit['DOF']) # Root mean square error RMSE = np.sqrt(fit['MSE']) # Normalized root mean square error NRMSE = RMSE/(np.max(z_filt)-np.min(z_filt)) # save number of points n_max = len(z_filt) # residuals of model fit resid = z - np.dot(SURFMAT,beta_mat) # standard deviation of the residuals resid_std = np.std(resid) # IQR pass: residual-(median value) is within 75% of IQR # RDE pass: residual-(median value) is within 50% of P84-P16 IQR,RDE,MEDIAN = filter_elevation(resid) # checking if any residuals are outside of the window window = np.max([H_win_min,6.0*RDE,0.5*window_p1]) # filter out using median statistics and refit filt_p2 = np.copy(filt_p1) filt_p1 = np.copy(filt) filt, = np.nonzero(np.abs(resid-MEDIAN) <= (window/2.0)) # save iteration of window window_p1 = np.copy(window) # run only if number of points is above number of terms n_rem = np.count_nonzero(np.abs(resid-MEDIAN) <= (window/2.0)) FLAG1 = ((n_rem - n_terms) > 10) # maximum number of iterations to prevent infinite loops FLAG2 = (n_iter <= ITERATE) # compare indices over two iterations to prevent false stoppages FLAG3 = (set(filt) != set(filt_p1)) | (set(filt_p1) != set(filt_p2)) # return reduced model fit FLAG3 = (set(filt) == set(filt_p1)) if FLAG1 & FLAG3 & (window <= H_win_max): return {'beta':beta_mat, 'error':error_mat, 'MSE':MSE, 'NRMSE':NRMSE, 'DOF':DOF, 'count':n_max, 'indices':indices, 'iterations':n_iter, 'window':window, 'RDE':RDE} else: raise ValueError('No valid data points found') # PURPOSE: fit a polynomial surface to the elevation data def fit_surface(x, y, z, centroid, SURF_TYPE='linear'): """ Fit a polynomial surface to the elevation data """ # calculate x and y relative to centroid point rel_x = x - centroid['x'] # Constant Term Z0 = np.ones_like((z)) # Surface design matrix if (SURF_TYPE == 'linear'):# linear fit SURFMAT = np.transpose([Z0,rel_x]) elif (SURF_TYPE == 'quadratic'):# quadratic fit SURFMAT = np.transpose([Z0,rel_x,rel_x**2]) # number of points for fit and number of terms in fit n_max,n_terms = np.shape(SURFMAT) # Standard Least-Squares fitting (the [0] denotes coefficients output) beta_mat = np.linalg.lstsq(SURFMAT,z,rcond=-1)[0] # modelled surface elevation model = np.dot(SURFMAT,beta_mat) # residual of fit res = z - model # nu = Degrees of Freedom = number of measurements-number of parameters nu = n_max - n_terms # Mean square error # MSE = (1/nu)*sum((Y-X*B)**2) MSE = np.dot(np.transpose(z - model),(z - model))/nu # elevation surface error analysis Hinv = np.linalg.inv(np.dot(np.transpose(SURFMAT),SURFMAT)) # Taking the diagonal components of the cov matrix hdiag = np.diag(Hinv) # Default is 95% confidence interval alpha = 1.0 - (0.95) # Student T-Distribution with D.O.F. nu # t.ppf parallels tinv in matlab tstar = scipy.stats.t.ppf(1.0-(alpha/2.0),nu) # beta_err = t(nu,1-alpha/2)*standard error std_error = np.sqrt(MSE*hdiag) model_error = np.dot(SURFMAT,tstar*std_error) return {'beta':beta_mat, 'error':tstar*std_error, 'model':model, 'model_error': model_error, 'residuals':res, 'MSE':MSE, 'DOF':nu} # PURPOSE: try fitting a function to the signal photon histograms # with progressively less confidence if no valid fit is found def try_histogram_fit(x, y, z, confidence_mask, dist_along, dt, FIT_TYPE='gaussian', ITERATE=25, BACKGROUND=0, CONFIDENCE=[2,1,0]): """ Try fitting a function to the signal photon histograms with progressively less confidence if no valid fit is found """ # try with progressively less confidence for i,conf in enumerate(CONFIDENCE): ind, = np.nonzero(confidence_mask >= conf) centroid = dict(x=dist_along, y=np.mean(y[ind])) try: surf = reduce_histogram_fit(x[ind], y[ind], z[ind], ind, dt, FIT_TYPE=FIT_TYPE, ITERATE=ITERATE, PEAKS=2, BACKGROUND=BACKGROUND) except (ValueError, RuntimeError, SyntaxError): pass else: return (i+1,surf,centroid) # if still no values found: return infinite values # will need to attempt a backup algorithm surf = dict(error=np.full(1,np.inf)) centroid = None return (None,surf,centroid) # PURPOSE: iteratively use decomposition fitting to the elevation data to # reduce to within a valid window def reduce_histogram_fit(x, y, z, ind, dt, FIT_TYPE='gaussian', ITERATE=25, PEAKS=2, BACKGROUND=0): """ Iteratively use decomposition fitting to the elevation data to reduce to within a valid surface window """ # speed of light c = 299792458.0 # use same delta time as calculating first photon bias # so that the residuals will be the same dz = dt*c # number of background photons in each bin N_BG = dz*BACKGROUND # create a histogram of the heights zmin,zmax = (z.min(),z.max()) z_full = np.arange(zmin,zmax+dz,dz) nz = len(z_full) # maximum allowable window size H_win_max = 20.0 # minimum allowable window size H_win_min = 3.0 # set initial window to the full z range window = zmax - zmin window_p1 = np.copy(window) # number of data points n_max = len(z) # number of terms in fit if (FIT_TYPE == 'gaussian'):# gaussian fit n_terms = 3 elif (FIT_TYPE == 'general'):# generalized gaussian fit n_terms = 4 # run only if number of histogram points is above number of terms FLAG1 = ((nz - n_terms) > 10) # using kernel density functions from scikit-learn neighbors # gaussian kernels will reflect more accurate distributions of the data # with less sensitivity to sampling width than histograms (tophat kernels) kde = sklearn.neighbors.KernelDensity(bandwidth=dz,kernel='gaussian') kde.fit(z[:,None]) # kde score_samples outputs are normalized log density functions hist = np.exp(kde.score_samples(z_full[:,None]) + np.log(n_max*dz)) # smooth histogram before determining differentials gw = scipy.signal.gaussian(nz,4) hist_smooth = scipy.signal.convolve(hist, gw/gw.sum(), mode='same') # First differentials to find zero crossings # histogram 1st differential dhist = np.zeros((nz)) # forward differentiation for starting point dhist[0] = hist_smooth[1] - hist_smooth[0] # backward differentiation for end point dhist[-1] = hist_smooth[-1] - hist_smooth[-2] # centered differentiation for all others dhist[1:-1] = (hist_smooth[2:] - hist_smooth[0:-2])/2.0 # find positive peaks above amplitude threshold (percent of max) # by calculating the histogram differentials # signal amplitude threshold greater than 10% of max or 5.5xbackground rate AmpThreshold = 0.10 HistThreshold = np.max([5.5*N_BG, AmpThreshold*np.max(hist_smooth)]) n_peaks = np.count_nonzero((np.sign(dhist[0:-1]) >= 0) & (np.sign(dhist[1:]) < 0) & ((hist_smooth[0:-1] > HistThreshold) | (hist_smooth[1:] > HistThreshold))) n_peaks = np.min([n_peaks,PEAKS]) peak_index, = np.nonzero((np.sign(dhist[0:-1]) >= 0) & (np.sign(dhist[1:]) < 0) & ((hist_smooth[0:-1] > HistThreshold) | (hist_smooth[1:] > HistThreshold))) # initial indices for reducing to window filt = np.arange(n_max) filt_p1 = np.copy(filt) filt_p2 = np.copy(filt_p1) if FLAG1 and (n_peaks > 0): # save initial indices for fitting all photons for confidence level indices = ind.copy() # sort peak index by amplitude of peaks (descending from max to min) # and truncate to a finite number of peaks sorted_peaks = np.argsort(hist[peak_index])[::-1] peak_index = peak_index[sorted_peaks][:n_peaks] # amplitude of the maximum peak max_amp = hist[peak_index][0] # cumulative probability distribution function of initial histogram hist_cpdf = np.cumsum(hist/np.sum(hist)) # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles Q1,Q3,P16,P84 = np.interp([0.25,0.75,0.16,0.84],hist_cpdf,z_full) # create priors list priors = [] lower_bound = [] upper_bound = [] for i,p in enumerate(peak_index): if (FIT_TYPE == 'gaussian'): # Fit Gaussian functions to photon event histogram # a*: amplitude of waveform # r*: range from differential index # w*: width as 0.75*IQR priors.append([hist[p],z_full[p],0.75*(Q3-Q1)]) # bounds of each parameter # amplitude: 0 to histogram max+5.5xbackground rate # range: zmin to zmax # width: sz to half width of z lower_bound.extend([0,zmin,dz]) upper_bound.extend([max_amp+5.5*N_BG,zmax,(zmax-zmin)/2.0]) elif (FIT_TYPE == 'general'): # Fit Generalized Gaussian functions to photon event histogram # a*: amplitude of waveform # r*: range from differential index # w*: width as 0.75*IQR # p*: shape parameter = gaussian sqrt(2) priors.append([hist[p],z_full[p],0.75*(Q3-Q1),np.sqrt(2)]) # bounds of each parameter # amplitude: 0 to histogram max+5.5xbackground rate # range: zmin to zmax # width: sz to half width of z # shape: positive lower_bound.extend([0,zmin,dz,0]) upper_bound.extend([max_amp+5.5*N_BG,zmax,(zmax-zmin)/2.0,np.inf]) # run optimized curve fit with Levenberg-Marquardt algorithm fit = fit_histogram(z_full,hist,priors,lower_bound,upper_bound, FIT_TYPE=FIT_TYPE) # number of iterations performed n_iter = 1 # height fits and height fit errors height = fit['height'].copy() amplitude = fit['amplitude'].copy() height_errors = fit['error'].copy() # minimum and maximum heights min_peak = np.min(fit['height']) max_peak = np.max(fit['height']) # save MSE and DOF for error analysis MSE = np.copy(fit['MSE']) DOF = np.copy(fit['DOF']) # Root mean square error RMSE = np.sqrt(fit['MSE']) # Normalized root mean square error NRMSE = RMSE/(zmax-zmin) # histogram fit model = np.copy(fit['model']) # histogram fit residuals resid = np.copy(fit['residuals']) # cumulative probability distribution function of initial histogram cpdf = np.cumsum(fit['residuals']/np.sum(fit['residuals'])) # interpolate residuals to percentiles of interest for statistics Q1,Q3,MEDIAN,P16,P84 = np.interp([0.25,0.75,0.5,0.16,0.84],cpdf,z_full) # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles IQR = 0.75*(Q3-Q1) RDE = 0.50*(P84-P16) # checking if any residuals are outside of the window window = np.max([H_win_min,6.0*RDE,0.5*window_p1]) filt, = np.nonzero((z > (min_peak-window/2.0)) & (z < (max_peak+window/2.0))) # run only if number of points is above number of terms n_rem = np.count_nonzero((z > (min_peak-window/2.0)) & (z < (max_peak+window/2.0))) nz = (np.max(z[filt])-np.min(z[filt]))//dz + 1 FLAG1 = ((nz - n_terms) > 10) & ((n_rem - n_terms) > 10) # maximum number of iterations to prevent infinite loops FLAG2 = (n_iter <= ITERATE) # compare indices over two iterations to prevent false stoppages FLAG3 = (set(filt) != set(filt_p1)) | (set(filt_p1) != set(filt_p2)) # iterate until there are no additional removed photons while FLAG1 & FLAG2 & FLAG3: # fit selected photons for window x_filt,y_filt,z_filt,indices = (x[filt],y[filt],z[filt],ind[filt]) zmin,zmax = (z_filt.min(),z_filt.max()) z_full = np.arange(zmin,zmax+dz,dz) nz = len(z_full) # using kernel density functions from scikit-learn neighbors # gaussian kernels will reflect more accurate distributions of the data # with less sensitivity to sampling width than histograms (tophat kernels) kde = sklearn.neighbors.KernelDensity(bandwidth=dz,kernel='gaussian') kde.fit(z_filt[:,None]) # kde score_samples outputs are normalized log density functions hist = np.exp(kde.score_samples(z_full[:,None]) + np.log(nz*dz)) # smooth histogram before determining differentials gw = scipy.signal.gaussian(nz,4) hist_smooth = scipy.signal.convolve(hist, gw/gw.sum(), mode='same') # First differentials to find zero crossings # histogram 1st differential dhist = np.zeros((nz)) # forward differentiation for starting point dhist[0] = hist_smooth[1] - hist_smooth[0] # backward differentiation for end point dhist[-1] = hist_smooth[-1] - hist_smooth[-2] # centered differentiation for all others dhist[1:-1] = (hist_smooth[2:] - hist_smooth[0:-2])/2.0 # find positive peaks above amplitude threshold (percent of max) # by calculating the histogram differentials # signal amplitude threshold greater than 10% of max or 5.5xbackground rate HistThreshold = np.max([5.5*N_BG, AmpThreshold*np.max(hist_smooth)]) n_peaks = np.count_nonzero((np.sign(dhist[0:-1]) >= 0) & (np.sign(dhist[1:]) < 0) & ((hist_smooth[0:-1] > HistThreshold) | (hist_smooth[1:] > HistThreshold))) n_peaks = np.min([n_peaks,PEAKS]) peak_index, = np.nonzero((np.sign(dhist[0:-1]) >= 0) & (np.sign(dhist[1:]) < 0) & ((hist_smooth[0:-1] > HistThreshold) | (hist_smooth[1:] > HistThreshold))) # sort peak index by amplitude of peaks (descending from max to min) # and truncate to a finite number of peaks sorted_peaks = np.argsort(hist[peak_index])[::-1] peak_index = peak_index[sorted_peaks][:n_peaks] # amplitude of the maximum peak max_amp = hist[peak_index][0] # cumulative probability distribution function of initial histogram hist_cpdf = np.cumsum(hist/np.sum(hist)) # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles Q1,Q3,P16,P84 = np.interp([0.25,0.75,0.16,0.84],hist_cpdf,z_full) # create priors list priors = [] lower_bound = [] upper_bound = [] for i,p in enumerate(peak_index): if (FIT_TYPE == 'gaussian'): # Fit Gaussian functions to photon event histogram # a*: amplitude of waveform # r*: range from differential index # w*: width as 0.75*IQR priors.append([hist[p],z_full[p],0.75*(Q3-Q1)]) # bounds of each parameter # amplitude: 0 to histogram max+5.5xbackground rate # range: zmin to zmax # width: sz to half width of z lower_bound.extend([0,zmin,dz]) upper_bound.extend([max_amp+5.5*N_BG,zmax,(zmax-zmin)/2.0]) elif (FIT_TYPE == 'general'): # Fit Generalized Gaussian functions to photon event histogram # a*: amplitude of waveform # r*: range from differential index # w*: width as 0.75*IQR # p*: shape parameter = gaussian sqrt(2) priors.append([hist[p],z_full[p],0.75*(Q3-Q1),np.sqrt(2)]) # bounds of each parameter # amplitude: 0 to histogram max+5.5xbackground rate # range: zmin to zmax # width: sz to half width of z # shape: positive lower_bound.extend([0,zmin,dz,0]) upper_bound.extend([max_amp+5.5*N_BG,zmax,(zmax-zmin)/2.0,np.inf]) # run optimized curve fit with Levenberg-Marquardt algorithm fit = fit_histogram(z_full,hist,priors,lower_bound,upper_bound, FIT_TYPE=FIT_TYPE) # add to number of iterations performed n_iter += 1 # height fits and height fit errors height = fit['height'].copy() amplitude = fit['amplitude'].copy() height_errors = fit['error'].copy() # minimum and maximum heights min_peak = np.min(fit['height']) max_peak = np.max(fit['height']) # save MSE and DOF for error analysis MSE = np.copy(fit['MSE']) DOF = np.copy(fit['DOF']) # Root mean square error RMSE = np.sqrt(fit['MSE']) # Normalized root mean square error NRMSE = RMSE/(zmax-zmin) # histogram fit model = np.copy(fit['model']) # histogram fit residuals resid = np.copy(fit['residuals']) # cumulative probability distribution function of initial histogram cpdf = np.cumsum(resid/np.sum(resid)) # interpolate residuals to percentiles of interest for statistics Q1,Q3,MEDIAN,P16,P84 = np.interp([0.25,0.75,0.5,0.16,0.84],cpdf,z_full) # IQR: first and third quartiles (25th and 75th percentiles) # RDE: 16th and 84th percentiles IQR = 0.75*(Q3-Q1) RDE = 0.50*(P84-P16) # checking if any residuals are outside of the window window = np.max([H_win_min,6.0*RDE,0.5*window_p1]) # filter out using median statistics and refit filt_p2 = np.copy(filt_p1) filt_p1 = np.copy(filt) filt, = np.nonzero((z > (min_peak-window/2.0)) & (z < (max_peak+window/2.0))) # save iteration of window window_p1 = np.copy(window) # run only if number of points is above number of terms n_rem = np.count_nonzero((z > (min_peak-window/2.0)) & (z < (max_peak+window/2.0))) nz = (np.max(z[filt])-np.min(z[filt]))//dz + 1 FLAG1 = ((nz - n_terms) > 10) & ((n_rem - n_terms) > 10) # maximum number of iterations to prevent infinite loops FLAG2 = (n_iter <= ITERATE) # compare indices over two iterations to prevent false stoppages FLAG3 = (set(filt) != set(filt_p1)) | (set(filt_p1) != set(filt_p2)) # return reduced model fit FLAG3 = (set(filt) == set(filt_p1)) if FLAG1 & FLAG3 & (window <= H_win_max) & (n_peaks > 0): # calculate time with respect to mean of fit heights t_full = -2*(z_full-np.mean(height))/c # return values return {'height':height, 'error':height_errors, 'amplitude':amplitude, 'MSE':MSE, 'NRMSE':NRMSE, 'residuals':resid, 'time': t_full, 'model':model, 'DOF':DOF, 'count':n_max, 'indices':indices, 'iterations':n_iter, 'window':window, 'RDE':RDE, 'peaks':n_peaks} else: raise ValueError('No valid fit found') # PURPOSE: optimially fit a function to the photon event histogram # with Levenberg-Marquardt algorithm def fit_histogram(z, hist, priors, lower_bound, upper_bound, FIT_TYPE=None): """ Optimially fit a function to the photon event histogram with Levenberg-Marquardt algorithm """ # create lists for the initial parameters # parameters, and functions for each maximum plist = [] flist = [] n_peaks = len(priors) # function formatting string and parameter list for each fit type if (FIT_TYPE == 'gaussian'): # summation of gaussian functions with: # peak amplitudes a* # peak ranges r* (mean) # peak widths w* (standard deviation) # Gaussian function formatting string and parameters function = 'a{0:d}*np.exp(-(x-r{0:d})**2.0/(2*w{0:d}**2))' parameters = 'a{0:d}, r{0:d}, w{0:d}' elif (FIT_TYPE == 'general'): # summation of generalized gaussian functions with: # peak amplitudes a* # peak ranges r* (mean) # peak widths w* (standard deviation) # shape parameter p* (gaussian=sqrt(2)) # Generalized Gaussian function formatting string and parameters function = 'a{0:d}*np.exp(-np.abs(x-r{0:d})**(p{0:d}**2.0)/(2*w{0:d}**2))' parameters = 'a{0:d}, r{0:d}, w{0:d}, p{0:d}' # fit decomposition functions to photon event histograms for n,p in enumerate(priors): # parameter list for peak n plist.append(parameters.format(n)) # function definition list for peak n flist.append(function.format(n)) # initial parameters for iteration n p0 = np.concatenate((priors),axis=0) # variables for iteration n lambda_parameters = ', '.join([p for p in plist]) # full function for iteration n lambda_function = ' + '.join([f for f in flist]) # tuple for parameter bounds (lower and upper) bounds = (lower_bound, upper_bound) # create lambda function for iteration n # lambda functions are inline definitions # with the parameters, variables and function definition fsum = eval('lambda x, {0}: {1}'.format(lambda_parameters, lambda_function)) # optimized curve fit with Levenberg-Marquardt algorithm # with the initial guess parameters p0 and parameter bounds popt, pcov = scipy.optimize.curve_fit(fsum,z,hist,p0=p0,bounds=bounds) # modelled histogram fit model = fsum(z, *popt) # 1 standard deviation errors in parameters perr = np.sqrt(np.diag(pcov)) # number of points for fit and number of terms in fit n_max = len(hist) n_terms = len(p0) # extract function outputs if (FIT_TYPE == 'gaussian'): # Gaussian function outputs n = np.arange(n_peaks)*3 peak_amplitude = popt[n] peak_height = popt[n+1] peak_height_error = perr[n+1] peak_stdev = popt[n+2] elif (FIT_TYPE == 'general'): # Generalized Gaussian function outputs n = np.arange(n_peaks)*4 peak_amplitude = popt[n] peak_height = popt[n+1] peak_height_error = perr[n+1] peak_stdev = popt[n+2] # residual of fit res = hist - model # nu = Degrees of Freedom = number of measurements-number of parameters nu = n_max - n_terms # Mean square error # MSE = (1/nu)*sum((Y-X*B)**2) MSE = np.dot(np.transpose(hist - model),(hist - model))/nu # Default is 95% confidence interval alpha = 1.0 - (0.95) # Student T-Distribution with D.O.F. nu # t.ppf parallels tinv in matlab tstar = scipy.stats.t.ppf(1.0-(alpha/2.0),nu) return {'height':peak_height, 'amplitude':peak_amplitude, 'error':tstar*peak_height_error, 'stdev': peak_stdev, 'model':model, 'residuals':np.abs(res), 'MSE':MSE, 'DOF':nu} # PURPOSE: calculate delta_time, latitude and longitude of the segment center def fit_geolocation(var, distance_along_X, X_atc): """ Calculate the average of photon event variables by fitting with respect to the center of the along-track coordinates """ # calculate x relative to centroid point rel_x = distance_along_X - X_atc # design matrix XMAT = np.transpose([np.ones_like((distance_along_X)),rel_x]) # Standard Least-Squares fitting (the [0] denotes coefficients output) beta_mat = np.linalg.lstsq(XMAT,var,rcond=-1)[0] # return the fitted geolocation return beta_mat[0] # PURPOSE: calculate the average value from two segments def segment_mean(var, **kwargs): """ Calculate the average value from two segments with possible invalid values """ # verify that data is masked array if not isinstance(var, np.ma.MaskedArray): var = np.ma.array(var) # set default keyword arguments kwargs.setdefault('fill_value',var.fill_value) # verify mask is set for fill values or nan points var.mask = ((var.data == var.fill_value) | np.isnan(var.data)) # update and replace fill values var.data[var.mask] = var.fill_value # calculate segment means ave = np.ma.mean([var[0:-1],var[1:]],axis=0) # update and replace fill values ave.fill_value = kwargs['fill_value'] ave.data[ave.mask] = ave.fill_value return ave # PURPOSE: estimate mean and median first photon bias corrections def calc_first_photon_bias(temporal_residuals,n_pulses,n_pixels,dead_time,dt, METHOD='direct',ITERATE=20): """ Estimate mean and median first photon bias corrections """ # create a histogram of the temporal residuals t_full = np.arange(temporal_residuals.min(),temporal_residuals.max()+dt,dt) nt = len(t_full) # number of input photon events cnt = len(temporal_residuals) # using kernel density functions from scikit-learn neighbors # gaussian kernels will reflect more accurate distributions of the data # with less sensitivity to sampling width than histograms (tophat kernels) kde = sklearn.neighbors.KernelDensity(bandwidth=dt,kernel='gaussian') kde.fit(temporal_residuals[:,None]) # kde score_samples outputs are normalized log density functions hist = np.exp(kde.score_samples(t_full[:,None]) + np.log(cnt*dt)) N0_full = hist/(n_pulses*n_pixels) # centroid of initial histogram hist_centroid = np.sum(t_full*hist)/np.sum(hist) # cumulative probability distribution function of initial histogram hist_cpdf = np.cumsum(hist/
np.sum(hist)
numpy.sum
from collections import defaultdict import numpy as np import pandas as pd import pytorch_lightning as pl import torch from sklearn.metrics import f1_score from torch.optim import AdamW from torch.optim.lr_scheduler import StepLR from tqdm import tqdm from transformers import SqueezeBertForTokenClassification from scripts.split_sentences import split_sentence from utils import f1_semeval class LitModule(pl.LightningModule): def __init__(self, model, tokenizer, freeze, lr, *args, **kwargs): super().__init__(*args, **kwargs) self.model = model self.tokenizer = tokenizer self.learning_rate = lr if freeze > 0: for name, param in self.model.base_model.embeddings.named_parameters(): if 'classifier' not in name: param.requires_grad = False encoder = self.model.base_model.encoder encoder_layers = encoder.layers \ if isinstance(self.model, SqueezeBertForTokenClassification) \ else encoder.layer layers_size = len(encoder_layers) freeze_layers = int(layers_size * freeze) print(f'Freeze {freeze_layers}/{layers_size}') for name, param in encoder_layers[:freeze_layers].named_parameters(): if 'classifier' not in name: param.requires_grad = False train_params = sum([np.prod(p.size()) for p in filter(lambda p: p.requires_grad, self.model.parameters())]) all_params = sum([np.prod(p.size()) for p in self.model.parameters()]) print(f'Train {train_params / all_params:.4%} params') def forward(self, *args, **kwargs): pred = self.model(*args, **kwargs) return pred def training_step(self, batch, batch_nb): outputs = self( batch['input_ids'], token_type_ids=None, attention_mask=batch['attention_mask'], labels=batch['labels'] ) loss = outputs.loss self.log('train_loss', loss.item(), logger=True, on_step=False, on_epoch=True) return {'loss': loss} def validation_step(self, batch, batch_nb): outputs = self( batch['input_ids'], token_type_ids=None, attention_mask=batch['attention_mask'], labels=batch['labels'] ) loss = outputs.loss self.log('val_loss', loss.item(), logger=True, on_step=False, on_epoch=True) logits = outputs.logits.detach().cpu().numpy() y_pred = np.argmax(logits, axis=-1).astype(int) y_true = batch['labels'].to('cpu').numpy().astype(int) no_pad_id = batch['attention_mask'].to('cpu').numpy().astype('bool') f1_avg = list() for i in range(len(y_true)): y_pred_no_pad = y_pred[i][no_pad_id[i]] y_true_no_pad = y_true[i][no_pad_id[i]] f1 = f1_score(y_true_no_pad, y_pred_no_pad) f1_avg.append(f1) self.log('f1', np.mean(np.array(f1_avg)), prog_bar=True, logger=True, on_step=False, on_epoch=True) pad_span = batch['pad_span'].to('cpu').numpy().astype(int) offset_mapping = batch['offset_mapping'].to('cpu').numpy().astype(int) sentence_id = batch['sentence_id'].to('cpu').numpy().astype(int) sentence_offset = batch['offset'].to('cpu').numpy().astype(int) f1_semeval_avg = list() result_spans = defaultdict(lambda: defaultdict(list)) for i in range(len(y_true)): true_spans = list(set(pad_span[i]) - {-1}) # remove padding predicted_offsets = offset_mapping[i][y_pred[i].astype(bool)] predicted_spans = [i for offset in predicted_offsets for i in range(offset[0], offset[1])] f1 = f1_semeval(predicted_spans, true_spans) f1_semeval_avg.append(f1) result_spans[sentence_id[i]]['true'].extend(list(np.array(true_spans) + sentence_offset[i])) result_spans[sentence_id[i]]['pred'].extend(list(np.array(predicted_spans) + sentence_offset[i])) self.log('f1_spans', np.mean(np.array(f1_semeval_avg)), prog_bar=True, logger=True, on_step=False, on_epoch=True) return result_spans def validation_epoch_end(self, outs): """ :param outs: list of results_span, where result_spans[sentence_id] = { 'y_true': [spans], # eg [1,2,3,4] 'y_pred': [spans] } """ result_spans = defaultdict(lambda: defaultdict(list)) for out in outs: for sentence_id in out: result_spans[sentence_id]['true'].extend(out[sentence_id]['true']) result_spans[sentence_id]['pred'].extend(out[sentence_id]['pred']) f1_semeval_avg = np.array([f1_semeval(result_spans[sentence_id]['true'], result_spans[sentence_id]['pred']) for sentence_id in result_spans]) self.log('f1_spans_sentence', np.mean(f1_semeval_avg), prog_bar=True, logger=True) def predict_dataframe(self, df, sentence_length): self.model.eval() self.model.cuda() result = pd.DataFrame({'spans': pd.Series(np.zeros(len(df))).values}) for i, row in tqdm(df.iterrows(), total=len(df)): texts, offsets, _ = split_sentence(self.tokenizer, row['text'], max_sentence_length=sentence_length) predicted_spans = list() for text, offset in zip(texts, offsets): encoded = self.tokenizer(text, add_special_tokens=True, padding='max_length', truncation=True, return_offsets_mapping=True, max_length=sentence_length) item = {k: torch.tensor(v).unsqueeze(0).long().cuda() for k, v in encoded.items()} output = self(item['input_ids'], token_type_ids=None, attention_mask=item['attention_mask']) logits = output.logits.detach().cpu().numpy() y_pred = np.argmax(logits, axis=-1).squeeze().astype(int) predicted_offsets = np.array(encoded['offset_mapping'])[y_pred.astype(bool)] spans = [i for offset in predicted_offsets for i in range(offset[0], offset[1])] predicted_spans.extend(list(
np.array(spans)
numpy.array