prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ TODO: - [ ] Replace internal padded slice with kwarray.padded_slice """ from __future__ import absolute_import, division, print_function, unicode_literals import ubelt as ub import numpy as np import kwarray from distutils.version import LooseVersion try: import torch import torch.nn.functional as F TORCH_GRID_SAMPLE_HAS_ALIGN = LooseVersion(torch.__version__) >= LooseVersion('1.3.0') except Exception: torch = None F = None TORCH_GRID_SAMPLE_HAS_ALIGN = None def _coordinate_grid(dims, align_corners=False): """ Creates a homogenous coordinate system. Args: dims (Tuple[int*]): height / width or depth / height / width align_corners (bool): returns a grid where the left and right corners assigned to the extreme values and intermediate values are interpolated. Returns: Tensor[shape=(3, *DIMS)] References: https://github.com/ClementPinard/SfmLearner-Pytorch/blob/master/inverse_warp.py Example: >>> # xdoctest: +IGNORE_WHITESPACE >>> # xdoctest: +REQUIRES(module:torch) >>> _coordinate_grid((2, 2)) tensor([[[0., 1.], [0., 1.]], [[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) >>> _coordinate_grid((2, 2, 2)) >>> _coordinate_grid((2, 2), align_corners=True) tensor([[[0., 2.], [0., 2.]], [[0., 0.], [2., 2.]], [[1., 1.], [1., 1.]]]) """ if align_corners: def _corner_grid(d): return torch.linspace(0, d, d) _grid_fn = _corner_grid else: def _disc_grid(d): return torch.arange(0, d) _grid_fn = _disc_grid if len(dims) == 2: h, w = dims h_range = _grid_fn(h).view(h, 1).expand(h, w).float() # [H, W] w_range = _grid_fn(w).view(1, w).expand(h, w).float() # [H, W] ones = torch.ones(h, w) pixel_coords = torch.stack((w_range, h_range, ones), dim=0) # [3, H, W] elif len(dims) == 3: d, h, w = dims d_range = _grid_fn(d).view(d, 1, 1).expand(d, h, w).float() # [D, H, W] h_range = _grid_fn(h).view(1, h, 1).expand(d, h, w).float() # [D, H, W] w_range = _grid_fn(w).view(1, 1, w).expand(d, h, w).float() # [D, H, W] ones = torch.ones(d, h, w) pixel_coords = torch.stack((w_range, h_range, d_range, ones), dim=0) # [4, D, H, W] pass else: raise NotImplementedError('Can only work with 2d and 3d dims') return pixel_coords def warp_image(inputs, mat, **kw): raise AssertionError('do not use') # import kwarray # _impl = kwarray.ArrayAPI.coerce(inputs) # inputs = kwarray.atleast_nd(inputs, 3) # tensor = inputs.transpose(2, 0, 1) # return warp_tensor(tensor, mat, **kw) def warp_tensor(inputs, mat, output_dims, mode='bilinear', padding_mode='zeros', isinv=False, ishomog=None, align_corners=False, new_mode=False): r""" A pytorch implementation of warp affine that works similarly to cv2.warpAffine / cv2.warpPerspective. It is possible to use 3x3 transforms to warp 2D image data. It is also possible to use 4x4 transforms to warp 3D volumetric data. Args: inputs (Tensor[..., *DIMS]): tensor to warp. Up to 3 (determined by output_dims) of the trailing space-time dimensions are warped. Best practice is to use inputs with the shape in [B, C, *DIMS]. mat (Tensor): either a 3x3 / 4x4 single transformation matrix to apply to all inputs or Bx3x3 or Bx4x4 tensor that specifies a transformation matrix for each batch item. output_dims (Tuple[int*]): The output space-time dimensions. This can either be in the form (W,), (H, W), or (D, H, W). mode (str): Can be bilinear or nearest. See `torch.nn.functional.grid_sample` padding_mode (str): Can be zeros, border, or reflection. See `torch.nn.functional.grid_sample`. isinv (bool, default=False): Set to true if `mat` is the inverse transform ishomog (bool, default=None): Set to True if the matrix is non-affine align_corners (bool, default=False): Note the default of False does not work correctly with grid_sample in torch <= 1.2, but using align_corners=True isnt typically what you want either. We will be stuck with buggy functionality until torch 1.3 is released. However, using align_corners=0 does seem to reasonably correspond with opencv behavior. Notes: Also, it may be possible to speed up the code with `F.affine_grid` KNOWN ISSUE: There appears to some difference with cv2.warpAffine when rotation or shear are non-zero. I'm not sure what the cause is. It may just be floating point issues, but Im' not sure. TODO: - [ ] FIXME: see example in Mask.scale where this algo breaks when the matrix is `2x3` - [ ] Make this algo work when matrix ix 2x2 References: https://discuss.pytorch.org/t/affine-transformation-matrix-paramters-conversion/19522 https://github.com/pytorch/pytorch/issues/15386 Example: >>> # Create a relatively simple affine matrix >>> # xdoctest: +REQUIRES(module:torch) >>> import skimage >>> mat = torch.FloatTensor(skimage.transform.AffineTransform( >>> translation=[1, -1], scale=[.532, 2], >>> rotation=0, shear=0, >>> ).params) >>> # Create inputs and an output dimension >>> input_shape = [1, 1, 4, 5] >>> inputs = torch.arange(int(np.prod(input_shape))).reshape(*input_shape).float() >>> output_dims = (11, 7) >>> # Warp with our code >>> result1 = warp_tensor(inputs, mat, output_dims=output_dims, align_corners=0) >>> print('result1 =\n{}'.format(ub.repr2(result1.cpu().numpy()[0, 0], precision=2))) >>> # Warp with opencv >>> import cv2 >>> cv2_M = mat.cpu().numpy()[0:2] >>> src = inputs[0, 0].cpu().numpy() >>> dsize = tuple(output_dims[::-1]) >>> result2 = cv2.warpAffine(src, cv2_M, dsize=dsize, flags=cv2.INTER_LINEAR) >>> print('result2 =\n{}'.format(ub.repr2(result2, precision=2))) >>> # Ensure the results are the same (up to floating point errors) >>> assert np.all(np.isclose(result1[0, 0].cpu().numpy(), result2, atol=1e-2, rtol=1e-2)) Example: >>> # Create a relatively simple affine matrix >>> # xdoctest: +REQUIRES(module:torch) >>> import skimage >>> mat = torch.FloatTensor(skimage.transform.AffineTransform( >>> rotation=0.01, shear=0.1).params) >>> # Create inputs and an output dimension >>> input_shape = [1, 1, 4, 5] >>> inputs = torch.arange(int(np.prod(input_shape))).reshape(*input_shape).float() >>> output_dims = (11, 7) >>> # Warp with our code >>> result1 = warp_tensor(inputs, mat, output_dims=output_dims) >>> print('result1 =\n{}'.format(ub.repr2(result1.cpu().numpy()[0, 0], precision=2, supress_small=True))) >>> print('result1.shape = {}'.format(result1.shape)) >>> # Warp with opencv >>> import cv2 >>> cv2_M = mat.cpu().numpy()[0:2] >>> src = inputs[0, 0].cpu().numpy() >>> dsize = tuple(output_dims[::-1]) >>> result2 = cv2.warpAffine(src, cv2_M, dsize=dsize, flags=cv2.INTER_LINEAR) >>> print('result2 =\n{}'.format(ub.repr2(result2, precision=2))) >>> print('result2.shape = {}'.format(result2.shape)) >>> # Ensure the results are the same (up to floating point errors) >>> # NOTE: The floating point errors seem to be significant for rotation / shear >>> assert np.all(np.isclose(result1[0, 0].cpu().numpy(), result2, atol=1, rtol=1e-2)) Example: >>> # Create a random affine matrix >>> # xdoctest: +REQUIRES(module:torch) >>> import skimage >>> rng = np.random.RandomState(0) >>> mat = torch.FloatTensor(skimage.transform.AffineTransform( >>> translation=rng.randn(2), scale=1 + rng.randn(2), >>> rotation=rng.randn() / 10., shear=rng.randn() / 10., >>> ).params) >>> # Create inputs and an output dimension >>> input_shape = [1, 1, 5, 7] >>> inputs = torch.arange(int(np.prod(input_shape))).reshape(*input_shape).float() >>> output_dims = (3, 11) >>> # Warp with our code >>> result1 = warp_tensor(inputs, mat, output_dims=output_dims, align_corners=0) >>> print('result1 =\n{}'.format(ub.repr2(result1.cpu().numpy()[0, 0], precision=2))) >>> # Warp with opencv >>> import cv2 >>> cv2_M = mat.cpu().numpy()[0:2] >>> src = inputs[0, 0].cpu().numpy() >>> dsize = tuple(output_dims[::-1]) >>> result2 = cv2.warpAffine(src, cv2_M, dsize=dsize, flags=cv2.INTER_LINEAR) >>> print('result2 =\n{}'.format(ub.repr2(result2, precision=2))) >>> # Ensure the results are the same (up to floating point errors) >>> # NOTE: The errors seem to be significant for rotation / shear >>> assert np.all(np.isclose(result1[0, 0].cpu().numpy(), result2, atol=1, rtol=1e-2)) Example: >>> # Test 3D warping with identity >>> # xdoctest: +REQUIRES(module:torch) >>> mat = torch.eye(4) >>> input_dims = [2, 3, 3] >>> output_dims = (2, 3, 3) >>> input_shape = [1, 1] + input_dims >>> inputs = torch.arange(int(np.prod(input_shape))).reshape(*input_shape).float() >>> result = warp_tensor(inputs, mat, output_dims=output_dims) >>> print('result =\n{}'.format(ub.repr2(result.cpu().numpy()[0, 0], precision=2))) >>> assert torch.all(inputs == result) Example: >>> # Test 3D warping with scaling >>> # xdoctest: +REQUIRES(module:torch) >>> mat = torch.FloatTensor([ >>> [0.8, 0, 0, 0], >>> [ 0, 1.0, 0, 0], >>> [ 0, 0, 1.2, 0], >>> [ 0, 0, 0, 1], >>> ]) >>> input_dims = [2, 3, 3] >>> output_dims = (2, 3, 3) >>> input_shape = [1, 1] + input_dims >>> inputs = torch.arange(int(np.prod(input_shape))).reshape(*input_shape).float() >>> result = warp_tensor(inputs, mat, output_dims=output_dims, align_corners=0) >>> print('result =\n{}'.format(ub.repr2(result.cpu().numpy()[0, 0], precision=2))) result = np.array([[[ 0. , 1.25, 1. ], [ 3. , 4.25, 2.5 ], [ 6. , 7.25, 4. ]], ... [[ 7.5 , 8.75, 4.75], [10.5 , 11.75, 6.25], [13.5 , 14.75, 7.75]]], dtype=np.float32) Example: >>> # xdoctest: +REQUIRES(module:torch) >>> mat = torch.eye(3) >>> input_dims = [5, 7] >>> output_dims = (11, 7) >>> for n_prefix_dims in [0, 1, 2, 3, 4, 5]: >>> input_shape = [2] * n_prefix_dims + input_dims >>> inputs = torch.arange(int(np.prod(input_shape))).reshape(*input_shape).float() >>> result = warp_tensor(inputs, mat, output_dims=output_dims) >>> #print('result =\n{}'.format(ub.repr2(result.cpu().numpy(), precision=2))) >>> print(result.shape) Example: >>> # xdoctest: +REQUIRES(module:torch) >>> mat = torch.eye(4) >>> input_dims = [5, 5, 5] >>> output_dims = (6, 6, 6) >>> for n_prefix_dims in [0, 1, 2, 3, 4, 5]: >>> input_shape = [2] * n_prefix_dims + input_dims >>> inputs = torch.arange(int(np.prod(input_shape))).reshape(*input_shape).float() >>> result = warp_tensor(inputs, mat, output_dims=output_dims) >>> #print('result =\n{}'.format(ub.repr2(result.cpu().numpy(), precision=2))) >>> print(result.shape) Ignore: import xdev globals().update(xdev.get_func_kwargs(warp_tensor)) >>> # xdoctest: +REQUIRES(module:torch) >>> import cv2 >>> inputs = torch.arange(9).view(1, 1, 3, 3).float() + 2 >>> input_dims = inputs.shape[2:] >>> #output_dims = (6, 6) >>> def fmt(a): >>> return ub.repr2(a.numpy(), precision=2) >>> s = 2.5 >>> output_dims = tuple(np.round((np.array(input_dims) * s)).astype(int).tolist()) >>> mat = torch.FloatTensor([[s, 0, 0], [0, s, 0], [0, 0, 1]]) >>> inv = mat.inverse() >>> warp_tensor(inputs, mat, output_dims) >>> print('## INPUTS') >>> print(fmt(inputs)) >>> print('\nalign_corners=True') >>> print('----') >>> print('## warp_tensor, align_corners=True') >>> print(fmt(warp_tensor(inputs, inv, output_dims, isinv=True, align_corners=True))) >>> print('## interpolate, align_corners=True') >>> print(fmt(F.interpolate(inputs, output_dims, mode='bilinear', align_corners=True))) >>> print('\nalign_corners=False') >>> print('----') >>> print('## warp_tensor, align_corners=False, new_mode=False') >>> print(fmt(warp_tensor(inputs, inv, output_dims, isinv=True, align_corners=False))) >>> print('## warp_tensor, align_corners=False, new_mode=True') >>> print(fmt(warp_tensor(inputs, inv, output_dims, isinv=True, align_corners=False, new_mode=True))) >>> print('## interpolate, align_corners=False') >>> print(fmt(F.interpolate(inputs, output_dims, mode='bilinear', align_corners=False))) >>> print('## interpolate (scale), align_corners=False') >>> print(ub.repr2(F.interpolate(inputs, scale_factor=s, mode='bilinear', align_corners=False).numpy(), precision=2)) >>> cv2_M = mat.cpu().numpy()[0:2] >>> src = inputs[0, 0].cpu().numpy() >>> dsize = tuple(output_dims[::-1]) >>> print('\nOpen CV warp Result') >>> result2 = (cv2.warpAffine(src, cv2_M, dsize=dsize, flags=cv2.INTER_LINEAR)) >>> print('result2 =\n{}'.format(ub.repr2(result2, precision=2))) """ if mode == 'linear': mode = 'bilinear' output_dims = tuple(map(int, output_dims)) # Determine the number of space-time dimensions ndims = len(output_dims) # https://discuss.pytorch.org/t/affine-transformation-matrix-paramters-conversion/19522 input_dims = inputs.shape[-ndims:] prefix_dims = inputs.shape[:-ndims] # Normalize the inputs so they are in 4D or 5D standard form # I.e. either [B, C, H, W] or [B, C, D, H, W] # We need exactly two non-spacetime (prefix) dims if len(prefix_dims) < 2: # Create a dummy batch / channel dimension _part1 = [1] * (2 - len(prefix_dims)) _part2 = [-1] * len(inputs.shape) _input_expander = _part1 + _part2 inputs_ = inputs.expand(*_input_expander) elif len(prefix_dims) > 2: fake_b = np.prod(prefix_dims[:-1]) fake_c = prefix_dims[-1] # Consolodate leading dimensions into the batch dim inputs_ = inputs.view(fake_b, fake_c, *input_dims) else: inputs_ = inputs device = inputs.device input_size = torch.Tensor(np.array(input_dims[::-1]))[None, :, None] input_size = input_size.to(device) # [1, ndims, 1] if len(mat.shape) not in [2, 3]: raise ValueError('Invalid mat shape') if mat.shape[-1] not in [3, 4] or mat.shape[-1] not in [2, 3, 4]: # if tuple(mat.shape) != (2, 2): raise ValueError( 'mat must have shape: ' # '(..., 2, 2) or ' '(..., 2, 3) or (..., 3, 3)' ' or (..., 3, 4) or (..., 4, 4)' ) # Ensure that mat is a 3x3 matrix, and check if it is affine or projective if mat.shape[-2] != mat.shape[-1]: _homog_row = [0] * (mat.shape[-1] - 1) + [1] homog_row = torch.Tensor(_homog_row).to(mat.device) homog_row = homog_row.expand_as(mat[..., 0:1, :]) mat = torch.cat([homog_row, mat], dim=len(mat.shape) - 2) ishomog = False if ishomog is None: ishomog = False # set to true for non-affine if mat.shape[-2] == 3: if not torch.all(mat[-2] != torch.Tensor([0, 0, 1])): ishomog = True inv = mat if isinv else mat.inverse() if len(inv.shape) == 2: inv = inv[None, :] if inv.device != device: inv = inv.to(device) # Construct a homogenous coordinate system in the output frame where the # input is aligned with the top left corner. # X = ndims + 1 if ishomog else ndims X = ndims + 1 if not TORCH_GRID_SAMPLE_HAS_ALIGN: import warnings warnings.warn('cannot use new mode in warp_tensor when torch < 1.3') new_mode = False # NOTE: grid_sample in torch<1.3 does not support align_corners=False correctly unwarped_coords = _coordinate_grid(output_dims, align_corners=align_corners) # [X, *DIMS] unwarped_coords = unwarped_coords.to(device) unwarped_coords_ = unwarped_coords.view(1, X, -1) # [1, X, prod(DIMS)] warped_coords = inv.matmul(unwarped_coords_) if ishomog: # If we had a projective projective transform we unhomogenize warped_coords = warped_coords[:, 0:ndims] / warped_coords[:, ndims] else: # For affine we can simply discard the homogenous component warped_coords = warped_coords[:, 0:ndims] # Normalized the warped coordinates that align with the input to [-1, +1] # Anything outside of the input range is mapped outside of [-1, +1] if align_corners: grid_coords = warped_coords * (2.0 / (input_size)) # normalize from [0, 2] grid_coords -= 1.0 # normalize from [-1, +1] else: grid_coords = warped_coords * (2.0 / (input_size - 1.0)) # normalize from [0, 2] grid_coords -= 1.0 # normalize from [-1, +1] if new_mode: # HACK: For whatever reason the -1,+1 extremes doesn't point to the # extreme pixels, but applying this squish factor seems to help. # The idea seems to be that if the input dims are D x D the # ((D - 1) / D)-th value is what points to the middle of the bottom # right input pixel and not (+1, +1). # Need to figure out what's going on in a more principled way. input_dims_ = torch.FloatTensor(list(input_dims)) squish = ((input_dims_ - 1.0) / (input_dims_)) grid_coords = grid_coords * squish[None, :, None] if False: # Debug output coords print('### unwarped') print(unwarped_coords[0:2]) print('### warped') print(warped_coords.view(2, *output_dims)) print('### grid') print(grid_coords.view(2, *output_dims)) F.grid_sample(inputs_, torch.FloatTensor( [[[[-1.0, -1.0]]]]), mode='bilinear', align_corners=False) F.grid_sample(inputs_, torch.FloatTensor( [[[[-2 / 3, -2 / 3]]]]), mode='bilinear', align_corners=False) F.grid_sample(inputs_, torch.FloatTensor( [[[[0.0, 0.0]]]]), mode='bilinear', align_corners=False) F.grid_sample(inputs_, torch.FloatTensor( [[[[2 / 3, 2 / 3]]]]), mode='bilinear', align_corners=False) F.grid_sample(inputs_, torch.FloatTensor( [[[[1.0, 1.0]]]]), mode='bilinear', align_corners=False) F.grid_sample(inputs_[:, :, 0:2, 0:2], torch.FloatTensor( [[[[-1 / 2, -1 / 2]]]]), mode='bilinear', align_corners=False) inputs_ = torch.arange(16).view(1, 1, 4, 4).float() + 1 F.grid_sample(inputs_, torch.FloatTensor( [[[[-3 / 4, -3 / 4]]]]), mode='bilinear', align_corners=False) for f in np.linspace(0.5, 1.0, 10): print('f = {!r}'.format(f)) print(F.grid_sample(inputs_, torch.FloatTensor( [[[[f, f]]]]), mode='bilinear', align_corners=False)) # The warped coordinate [-1, -1] will references to the left-top pixel of # the input, analgously [+1, +1] references the right-bottom pixel of the # input. # Note: that -1, -1 refers to the center of the first pixel, not the edge. # See: # https://github.com/pytorch/pytorch/issues/20785 # https://github.com/pytorch/pytorch/pull/23923 # https://github.com/pytorch/pytorch/pull/24929 # https://user-images.githubusercontent.com/9757500/58150486-c5315900-7c34-11e9-9466-24f2bd431fa4.png # # Note: Was unable to quite figure out how to use F.affine_grid # gride_shape = torch.Size((B, C,) + tuple(output_dims)) # grid = F.affine_grid(inv[None, 0:2], gride_shape) # outputs = F.grid_sample(inputs, grid) # return outputs # Reshape to dimensions compatible with grid_sample grid_coords = grid_coords.transpose(1, 2) # swap space/coord dims _reshaper = [1] + list(output_dims) + [ndims] grid_coords = grid_coords.reshape(*_reshaper) # Unpack dims _expander = [inputs_.shape[0]] + list(output_dims) + [ndims] grid_coords = grid_coords.expand(*_expander) # grid_coords = grid_coords.to(device) # TODO: pass align_corners when supported in torch 1.3 # Note: enabling this breaks tests and backwards compat, so # verify there are no problems before enabling this. if new_mode and TORCH_GRID_SAMPLE_HAS_ALIGN: # the new grid sample allows you to set align_corners, but I don't # remember if the previous logic depends on the old behavior. outputs_ = F.grid_sample(inputs_, grid_coords, mode=mode, padding_mode=padding_mode, align_corners=bool(align_corners)) else: # The old grid sample always had align_corners=True outputs_ = F.grid_sample(inputs_, grid_coords, mode=mode, padding_mode=padding_mode, align_corners=True) # Unpack outputs to match original input shape final_dims = list(prefix_dims) + list(output_dims) outputs = outputs_.view(*final_dims) return outputs def subpixel_align(dst, src, index, interp_axes=None): """ Returns an aligned version of the source tensor and destination index. Used as the backend to implement other subpixel functions like: subpixel_accum, subpixel_maximum. """ if interp_axes is None: # Assume spatial dimensions are trailing interp_axes = len(dst.shape) + np.arange(-min(2, len(index)), 0) raw_subpixel_starts = np.array([0 if sl.start is None else sl.start for sl in index]) raw_subpixel_stops = np.array([dst.shape[i] if sl.stop is None else sl.stop for i, sl in enumerate(index)]) raw_extent = raw_subpixel_stops - raw_subpixel_starts if not ub.iterable(src): # Broadcast scalars impl = kwarray.ArrayAPI.impl(dst) shape = tuple(raw_extent.astype(int).tolist()) src = impl.full(shape, dtype=dst.dtype, fill_value=src) if not np.all(np.isclose(src.shape, raw_extent, atol=0.3)): raise ValueError( 'Got src.shape = {}, but the raw slice extent was {}'.format( tuple(src.shape), tuple(raw_extent))) if True: # check that all non interp slices are integral noninterp_axes = np.where(~kwarray.boolmask(interp_axes, len(dst.shape)))[0] for i in noninterp_axes: assert raw_subpixel_starts[i] % 1 == 0 assert raw_subpixel_stops[i] % 1 == 0 # Clip off any out of bounds subpixel_st, extra_padding = _rectify_slice( dst.shape, raw_subpixel_starts, raw_subpixel_stops) subpixel_starts = np.array([a[0] for a in subpixel_st]) subpixel_stops = np.array([a[1] for a in subpixel_st]) subpixel_pad_left = np.array([a[0] for a in extra_padding]) # subpixel_pad_right = np.array([a[1] for a in extra_padding]) # Any fractional start dimension will be a positive translate translation = np.zeros_like(subpixel_starts, dtype=float) translation += (subpixel_starts % 1) # Any value that is cutoff on the left is a negative translate translation -= subpixel_pad_left # Construct the slice in dst that will correspond to the aligned src aligned_index = tuple([ slice(s, t) for s, t in zip(np.floor(subpixel_starts).astype(int), np.ceil(subpixel_stops).astype(int))]) # Align the source coordinates with the destination coordinates output_shape = [sl.stop - sl.start for sl in aligned_index] translation_ = [translation[i] for i in interp_axes] aligned_src = subpixel_translate(src, translation_, output_shape=output_shape, interp_axes=interp_axes) return aligned_src, aligned_index def subpixel_set(dst, src, index, interp_axes=None): """ Add the source values array into the destination array at a particular subpixel index. Args: dst (ArrayLike): destination accumulation array src (ArrayLike): source array containing values to add index (Tuple[slice]): subpixel slice into dst that corresponds with src interp_axes (tuple): specify which axes should be spatially interpolated TODO: - [ ]: allow index to be a sequence indices Example: >>> import kwimage >>> dst = np.zeros(5) + .1 >>> src = np.ones(2) >>> index = [slice(1.5, 3.5)] >>> kwimage.util_warp.subpixel_set(dst, src, index) >>> print(ub.repr2(dst, precision=2, with_dtype=0)) np.array([0.1, 0.5, 1. , 0.5, 0.1]) """ aligned_src, aligned_index = subpixel_align(dst, src, index, interp_axes) # accumulate the newly aligned source array try: dst[aligned_index] = aligned_src except RuntimeError: try: print('dst.shape = {!r}'.format(dst.shape)) print('dst.dtype = {!r}'.format(dst.dtype)) print('dst.device = {!r}'.format(dst.device)) print('aligned_src.shape = {!r}'.format(aligned_src.shape)) print('aligned_src.dtype = {!r}'.format(aligned_src.dtype)) print('aligned_src.device = {!r}'.format(aligned_src.device)) print('src.shape = {!r}'.format(src.shape)) print('src.dtype = {!r}'.format(src.dtype)) print('src.device = {!r}'.format(src.device)) except Exception: print('unexpected numpy') raise return dst def subpixel_accum(dst, src, index, interp_axes=None): """ Add the source values array into the destination array at a particular subpixel index. Args: dst (ArrayLike): destination accumulation array src (ArrayLike): source array containing values to add index (Tuple[slice]): subpixel slice into dst that corresponds with src interp_axes (tuple): specify which axes should be spatially interpolated Notes: Inputs: +---+---+---+---+---+ dst.shape = (5,) +---+---+ src.shape = (2,) |=======| index = 1.5:3.5 Subpixel shift the source by -0.5. When the index is non-integral, pad the aligned src with an extra value to ensure all dst pixels that would be influenced by the smaller subpixel shape are influenced by the aligned src. Note that we are not scaling. +---+---+---+ aligned_src.shape = (3,) |===========| aligned_index = 1:4 Example: >>> dst = np.zeros(5) >>> src = np.ones(2) >>> index = [slice(1.5, 3.5)] >>> subpixel_accum(dst, src, index) >>> print(ub.repr2(dst, precision=2, with_dtype=0)) np.array([0. , 0.5, 1. , 0.5, 0. ]) Example: >>> dst = np.zeros((6, 6)) >>> src = np.ones((3, 3)) >>> index = (slice(1.5, 4.5), slice(1, 4)) >>> subpixel_accum(dst, src, index) >>> print(ub.repr2(dst, precision=2, with_dtype=0)) np.array([[0. , 0. , 0. , 0. , 0. , 0. ], [0. , 0.5, 0.5, 0.5, 0. , 0. ], [0. , 1. , 1. , 1. , 0. , 0. ], [0. , 1. , 1. , 1. , 0. , 0. ], [0. , 0.5, 0.5, 0.5, 0. , 0. ], [0. , 0. , 0. , 0. , 0. , 0. ]]) >>> # xdoctest: +REQUIRES(module:torch) >>> dst = torch.zeros((1, 3, 6, 6)) >>> src = torch.ones((1, 3, 3, 3)) >>> index = (slice(None), slice(None), slice(1.5, 4.5), slice(1.25, 4.25)) >>> subpixel_accum(dst, src, index) >>> print(ub.repr2(dst.numpy()[0, 0], precision=2, with_dtype=0)) np.array([[0. , 0. , 0. , 0. , 0. , 0. ], [0. , 0.38, 0.5 , 0.5 , 0.12, 0. ], [0. , 0.75, 1. , 1. , 0.25, 0. ], [0. , 0.75, 1. , 1. , 0.25, 0. ], [0. , 0.38, 0.5 , 0.5 , 0.12, 0. ], [0. , 0. , 0. , 0. , 0. , 0. ]]) Doctest: >>> # TODO: move to a unit test file >>> subpixel_accum(np.zeros(5), np.ones(2), [slice(1.5, 3.5)]).tolist() [0.0, 0.5, 1.0, 0.5, 0.0] >>> subpixel_accum(np.zeros(5), np.ones(2), [slice(0, 2)]).tolist() [1.0, 1.0, 0.0, 0.0, 0.0] >>> subpixel_accum(np.zeros(5), np.ones(3), [slice(.5, 3.5)]).tolist() [0.5, 1.0, 1.0, 0.5, 0.0] >>> subpixel_accum(np.zeros(5), np.ones(3), [slice(-1, 2)]).tolist() [1.0, 1.0, 0.0, 0.0, 0.0] >>> subpixel_accum(np.zeros(5), np.ones(3), [slice(-1.5, 1.5)]).tolist() [1.0, 0.5, 0.0, 0.0, 0.0] >>> subpixel_accum(np.zeros(5), np.ones(3), [slice(10, 13)]).tolist() [0.0, 0.0, 0.0, 0.0, 0.0] >>> subpixel_accum(np.zeros(5), np.ones(3), [slice(3.25, 6.25)]).tolist() [0.0, 0.0, 0.0, 0.75, 1.0] >>> subpixel_accum(np.zeros(5), np.ones(3), [slice(4.9, 7.9)]).tolist() [0.0, 0.0, 0.0, 0.0, 0.099...] >>> subpixel_accum(np.zeros(5), np.ones(9), [slice(-1.5, 7.5)]).tolist() [1.0, 1.0, 1.0, 1.0, 1.0] >>> subpixel_accum(np.zeros(5), np.ones(9), [slice(2.625, 11.625)]).tolist() [0.0, 0.0, 0.375, 1.0, 1.0] >>> subpixel_accum(np.zeros(5), 1, [slice(2.625, 11.625)]).tolist() [0.0, 0.0, 0.375, 1.0, 1.0] """ aligned_src, aligned_index = subpixel_align(dst, src, index, interp_axes) # accumulate the newly aligned source array try: dst[aligned_index] += aligned_src except RuntimeError: try: print('dst.shape = {!r}'.format(dst.shape)) print('dst.dtype = {!r}'.format(dst.dtype)) print('dst.device = {!r}'.format(dst.device)) print('aligned_src.shape = {!r}'.format(aligned_src.shape)) print('aligned_src.dtype = {!r}'.format(aligned_src.dtype)) print('aligned_src.device = {!r}'.format(aligned_src.device)) print('src.shape = {!r}'.format(src.shape)) print('src.dtype = {!r}'.format(src.dtype)) print('src.device = {!r}'.format(src.device)) except Exception: print('unexpected numpy') raise return dst def subpixel_maximum(dst, src, index, interp_axes=None): """ Take the max of the source values array into and the destination array at a particular subpixel index. Modifies the destination array. Args: dst (ArrayLike): destination array to index into src (ArrayLike): source array that agrees with the index index (Tuple[slice]): subpixel slice into dst that corresponds with src interp_axes (tuple): specify which axes should be spatially interpolated Example: >>> dst = np.array([0, 1.0, 1.0, 1.0, 0]) >>> src = np.array([2.0, 2.0]) >>> index = [slice(1.6, 3.6)] >>> subpixel_maximum(dst, src, index) >>> print(ub.repr2(dst, precision=2, with_dtype=0)) np.array([0. , 1. , 2. , 1.2, 0. ]) Example: >>> # xdoctest: +REQUIRES(module:torch) >>> dst = torch.zeros((1, 3, 5, 5)) + .5 >>> src = torch.ones((1, 3, 3, 3)) >>> index = (slice(None), slice(None), slice(1.4, 4.4), slice(1.25, 4.25)) >>> subpixel_maximum(dst, src, index) >>> print(ub.repr2(dst.numpy()[0, 0], precision=2, with_dtype=0)) np.array([[0.5 , 0.5 , 0.5 , 0.5 , 0.5 ], [0.5 , 0.5 , 0.6 , 0.6 , 0.5 ], [0.5 , 0.75, 1. , 1. , 0.5 ], [0.5 , 0.75, 1. , 1. , 0.5 ], [0.5 , 0.5 , 0.5 , 0.5 , 0.5 ]]) """ aligned_src, aligned_index = subpixel_align(dst, src, index, interp_axes) impl = kwarray.ArrayAPI.impl(dst) impl.maximum(dst[aligned_index], aligned_src, out=dst[aligned_index]) return dst def subpixel_minimum(dst, src, index, interp_axes=None): """ Take the min of the source values array into and the destination array at a particular subpixel index. Modifies the destination array. Args: dst (ArrayLike): destination array to index into src (ArrayLike): source array that agrees with the index index (Tuple[slice]): subpixel slice into dst that corresponds with src interp_axes (tuple): specify which axes should be spatially interpolated Example: >>> dst = np.array([0, 1.0, 1.0, 1.0, 0]) >>> src = np.array([2.0, 2.0]) >>> index = [slice(1.6, 3.6)] >>> subpixel_minimum(dst, src, index) >>> print(ub.repr2(dst, precision=2, with_dtype=0)) np.array([0. , 0.8, 1. , 1. , 0. ]) Example: >>> # xdoctest: +REQUIRES(module:torch) >>> dst = torch.zeros((1, 3, 5, 5)) + .5 >>> src = torch.ones((1, 3, 3, 3)) >>> index = (slice(None), slice(None), slice(1.4, 4.4), slice(1.25, 4.25)) >>> subpixel_minimum(dst, src, index) >>> print(ub.repr2(dst.numpy()[0, 0], precision=2, with_dtype=0)) np.array([[0.5 , 0.5 , 0.5 , 0.5 , 0.5 ], [0.5 , 0.45, 0.5 , 0.5 , 0.15], [0.5 , 0.5 , 0.5 , 0.5 , 0.25], [0.5 , 0.5 , 0.5 , 0.5 , 0.25], [0.5 , 0.3 , 0.4 , 0.4 , 0.1 ]]) """ aligned_src, aligned_index = subpixel_align(dst, src, index, interp_axes) impl = kwarray.ArrayAPI.impl(dst) impl.minimum(dst[aligned_index], aligned_src, out=dst[aligned_index]) return dst def subpixel_slice(inputs, index): """ Take a subpixel slice from a larger image. The returned output is left-aligned with the requested slice. Args: inputs (ArrayLike): data index (Tuple[slice]): a slice to subpixel accuracy Example: >>> # xdoctest: +REQUIRES(module:torch) >>> import kwimage >>> import torch >>> # say we have a (576, 576) input space >>> # and a (9, 9) output space downsampled by 64x >>> ospc_feats = np.tile(np.arange(9 * 9).reshape(1, 9, 9), (1024, 1, 1)) >>> inputs = torch.from_numpy(ospc_feats) >>> # We detected a box in the input space >>> ispc_bbox = kwimage.Boxes([[64, 65, 100, 120]], 'ltrb') >>> # Get coordinates in the output space >>> ospc_bbox = ispc_bbox.scale(1 / 64) >>> tl_x, tl_y, br_x, br_y = ospc_bbox.data[0] >>> # Convert the box to a slice >>> index = [slice(None), slice(tl_y, br_y), slice(tl_x, br_x)] >>> # Note: I'm not 100% sure this work right with non-intergral slices >>> outputs = kwimage.subpixel_slice(inputs, index) Example: >>> inputs = np.arange(5 * 5 * 3).reshape(5, 5, 3) >>> index = [slice(0, 3), slice(0, 3)] >>> outputs = subpixel_slice(inputs, index) >>> index = [slice(0.5, 3.5), slice(-0.5, 2.5)] >>> outputs = subpixel_slice(inputs, index) >>> inputs = np.arange(5 * 5).reshape(1, 5, 5).astype(float) >>> index = [slice(None), slice(3, 6), slice(3, 6)] >>> outputs = subpixel_slice(inputs, index) >>> print(outputs) [[[18. 19. 0.] [23. 24. 0.] [ 0. 0. 0.]]] >>> index = [slice(None), slice(3.5, 6.5), slice(2.5, 5.5)] >>> outputs = subpixel_slice(inputs, index) >>> print(outputs) [[[20. 21. 10.75] [11.25 11.75 6. ] [ 0. 0. 0. ]]] """ subpixel_starts = np.array( [0 if sl.start is None else sl.start for sl in index]) subpixel_stops = np.array( [inputs.shape[i] if sl.stop is None else sl.stop for i, sl in enumerate(index)]) is_fractional = ((subpixel_starts % 1) + (subpixel_stops % 1)) > 0 if not np.any(is_fractional): # If none of the slices are fractional just do the simple thing int_index = [slice(int(s), int(t)) for s, t in zip(subpixel_starts, subpixel_stops)] outputs, _ = _padded_slice(inputs, int_index) else: interp_axes = np.where(is_fractional)[0] shift = -subpixel_starts[interp_axes] output_shape = subpixel_stops - subpixel_starts if np.any(output_shape % 1 > 0): output_shape = np.ceil(output_shape) # raise ValueError('the slice length must be integral') output_shape = output_shape.astype(int) outputs = subpixel_translate(inputs, shift, interp_axes=interp_axes, output_shape=output_shape) return outputs def subpixel_translate(inputs, shift, interp_axes=None, output_shape=None): """ Translates an image by a subpixel shift value using bilinear interpolation Args: inputs (ArrayLike): data to translate shift (Sequence): amount to translate each dimension specified by `interp_axes`. Note: if inputs contains more than one "image" then all "images" are translated by the same amount. This function contains no mechanism for translating each image differently. Note that by default this is a y,x shift for 2 dimensions. interp_axes (Sequence, default=None): axes to perform interpolation on, if not specified the final `n` axes are interpolated, where `n=len(shift)` output_shape (tuple, default=None): if specified the output is returned with this shape, otherwise Notes: This function powers most other functions in this file. Speedups here can go a long way. Example: >>> inputs = np.arange(5) + 1 >>> print(inputs.tolist()) [1, 2, 3, 4, 5] >>> outputs = subpixel_translate(inputs, 1.5) >>> print(outputs.tolist()) [0.0, 0.5, 1.5, 2.5, 3.5] Example: >>> # xdoctest: +REQUIRES(module:torch) >>> inputs = torch.arange(9).view(1, 1, 3, 3).float() >>> print(inputs.long()) tensor([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]]]]) >>> outputs = subpixel_translate(inputs, (-.4, .5), output_shape=(1, 1, 2, 5)) >>> print(outputs) tensor([[[[0.6000, 1.7000, 2.7000, 1.6000, 0.0000], [2.1000, 4.7000, 5.7000, 3.1000, 0.0000]]]]) Ignore: >>> inputs = np.arange(5) >>> shift = -.6 >>> interp_axes = None >>> subpixel_translate(inputs, -.6) >>> subpixel_translate(inputs[None, None, None, :], -.6) >>> inputs = np.arange(25).reshape(5, 5) >>> shift = (-1.6, 2.3) >>> interp_axes = (0, 1) >>> subpixel_translate(inputs, shift, interp_axes, output_shape=(9, 9)) >>> subpixel_translate(inputs, shift, interp_axes, output_shape=(3, 4)) """ impl = kwarray.ArrayAPI.impl(inputs) if output_shape is None: output_shape = inputs.shape if interp_axes is None: shift = _ensure_arraylike(shift) interp_axes = np.arange(-len(shift), 0) else: interp_axes = _ensure_arraylike(interp_axes) shift = _ensure_arraylike(shift, len(interp_axes)) ndims = len(inputs.shape) # number of inputs dimensions interp_order = len(interp_axes) # number of interpolated dimensions output_dims = [output_shape[i] for i in interp_axes] # The negative shift defines the new start coordinate start = -shift # Sample values (using padded slice to deal with borders) # border_mode = 'zeros' # if border_mode == 'zeros': # padkw = dict(pad_mode='constant', constant_value=0) # if border_mode == 'edge': # padkw = dict(pad_mode='edge') padkw = {} if np.all(start % 1 == 0): # short circuit common simple cases where no interpolation is needed relevant_slice = [slice(None)] * ndims for i, x, d in zip(interp_axes, map(int, start), output_dims): relevant_slice[i] = slice(x, x + d) subpxl_vals, _ = _padded_slice(inputs, relevant_slice, **padkw) elif interp_order == 1: i, = interp_axes width, = output_dims x, = start # Get quantized pixel locations near subpixel pts x0 = int(np.floor(x)) x1 = x0 + 1 # Find linear weights wa = (x1 - x) wb = (x - x0) # Create a (potentially negative) slice containing the relvant area relevant_slice = [slice(None)] * ndims relevant_slice[i] = slice(x0, x1 + width) relevant, _ = _padded_slice(inputs, relevant_slice, **padkw) if impl.dtype_kind(relevant) != 'f': relevant = impl.astype(relevant, 'float32') # Take subslices of the relevant area sl_a = [slice(None)] * ndims sl_b = [slice(None)] * ndims # Sample values (using padded slice to deal with borders) sl_a[i] = slice(0, width) sl_b[i] = slice(1, width + 1) Ia = relevant[tuple(sl_a)] Ib = relevant[tuple(sl_b)] # Perform the linear interpolation subpxl_vals = (wa * Ia) + (wb * Ib) elif interp_order == 2: j, i = interp_axes height, width = output_dims y, x = start # Get quantized pixel locations near subpixel pts start0 = kwarray.ArrayAPI.ifloor(start) start1 = start0 + 1 alpha = start1 - start beta = start - start0 # Find bilinear weights wa = alpha[1] * alpha[0] wb = alpha[1] * beta[0] wc = beta[1] * alpha[0] wd = beta[1] * beta[0] # Create a (potentially negative) slice containing the relvant area relevant_slice = [slice(None)] * ndims y0, x0 = start0 y1, x1 = start1 relevant_slice[j] = slice(y0, y1 + height) relevant_slice[i] = slice(x0, x1 + width) relevant, _ = _padded_slice(inputs, relevant_slice, **padkw) if impl.dtype_kind(relevant) != 'f': relevant = impl.astype(relevant, 'float32') # Take subslices of the relevant area sl_a = [slice(None)] * ndims sl_b = [slice(None)] * ndims sl_c = [slice(None)] * ndims sl_d = [slice(None)] * ndims # Sample values (using padded slice to deal with borders) sl_a[j] = slice(0, height) sl_a[i] = slice(0, width) sl_b[j] = slice(1, height + 1) sl_b[i] = slice(0, width) sl_c[j] = slice(0, height) sl_c[i] = slice(1, width + 1) sl_d[j] = slice(1, height + 1) sl_d[i] = slice(1, width + 1) Ia = relevant[tuple(sl_a)] Ib = relevant[tuple(sl_b)] Ic = relevant[tuple(sl_c)] Id = relevant[tuple(sl_d)] # Perform the bilinear interpolation subpxl_vals = (wa * Ia) + (wb * Ib) + (wc * Ic) + (wd * Id) else: raise NotImplementedError('trilinear interpolation is not implemented') return subpxl_vals def _padded_slice(data, in_slice, ndim=None, pad_slice=None, pad_mode='constant', **padkw): """ Allows slices with out-of-bound coordinates. Any out of bounds coordinate will be sampled via padding. Note: Negative slices have a different meaning here then they usually do. Normally, they indicate a wrap-around or a reversed stride, but here they index into out-of-bounds space (which depends on the pad mode). For example a slice of -2:1 literally samples two pixels to the left of the data and one pixel from the data, so you get two padded values and one data value. Args: data (Sliceable[T]): data to slice into. Any channels must be the last dimension. in_slice (Tuple[slice, ...]): slice for each dimensions ndim (int): number of spatial dimensions pad_slice (List[int|Tuple]): additional padding of the slice Returns: Tuple[Sliceable, List] : data_sliced: subregion of the input data (possibly with padding, depending on if the original slice went out of bounds) st_dims : a list indicating the low and high space-time coordinate values of the returned data slice. Example: >>> data = np.arange(5) >>> in_slice = [slice(-2, 7)] >>> data_sliced, st_dims = _padded_slice(data, in_slice) >>> print(ub.repr2(data_sliced, with_dtype=False)) >>> print(st_dims) np.array([0, 0, 0, 1, 2, 3, 4, 0, 0]) [(-2, 7)] >>> data_sliced, st_dims = _padded_slice(data, in_slice, pad_slice=(3, 3)) >>> print(ub.repr2(data_sliced, with_dtype=False)) >>> print(st_dims) np.array([0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 0, 0]) [(-5, 10)] >>> data_sliced, st_dims = _padded_slice(data, slice(3, 4), pad_slice=[(1, 0)]) >>> print(ub.repr2(data_sliced, with_dtype=False)) >>> print(st_dims) np.array([2, 3]) [(2, 4)] """ # TODO: use kwarray instead if isinstance(in_slice, slice): in_slice = [in_slice] ndim = len(in_slice) data_dims = data.shape[:ndim] low_dims = [sl.start for sl in in_slice] high_dims = [sl.stop for sl in in_slice] data_slice, extra_padding = _rectify_slice(data_dims, low_dims, high_dims, pad_slice=pad_slice) in_slice_clipped = tuple(slice(*d) for d in data_slice) # Get the parts of the image that are in bounds data_clipped = data[in_slice_clipped] # Add any padding that is needed to behave like negative dims exist if sum(map(sum, extra_padding)) == 0: # The slice was completely in bounds data_sliced = data_clipped else: if len(data.shape) != len(extra_padding): extra_padding = extra_padding + [(0, 0)] impl = kwarray.ArrayAPI.impl(data_clipped) data_sliced = impl.pad(data_clipped, extra_padding, mode=pad_mode, **padkw) st_dims = data_slice[0:ndim] pad_dims = extra_padding[0:ndim] st_dims = [(s - pad[0], t + pad[1]) for (s, t), pad in zip(st_dims, pad_dims)] return data_sliced, st_dims def _ensure_arraylike(data, n=None): if not ub.iterable(data): if n is None: return np.array([data]) else: return np.array([data] * n) else: if n is None or len(data) == n: return np.array(data) elif len(data) == 1: return
np.repeat(data, n, axis=0)
numpy.repeat
import numpy as np import pytest import unittest from sdia_python.lab2.box_window import BoxWindow, UnitBoxWindow def test_raise_type_error_when_something_is_called(): with pytest.raises(TypeError): # call_something_that_raises_TypeError() raise TypeError() #checks the str function for the box_window @pytest.mark.parametrize( "bounds, expected", [ (np.array([[2.5, 2.5]]), "BoxWindow: [2.5, 2.5]"), (np.array([[0, 5], [0, 5]]), "BoxWindow: [0, 5] x [0, 5]"), ( np.array([[0, 5], [-1.45, 3.14], [-10, 10]]), "BoxWindow: [0, 5] x [-1.45, 3.14] x [-10, 10]", ), ], ) def test_box_string_representation(bounds, expected): assert str(BoxWindow(bounds)) == expected #checks if the indicator function is well defined for dimension=2 @pytest.fixture def box_2d_05(): return BoxWindow(np.array([[0, 5], [0, 5]])) @pytest.mark.parametrize( "point, expected", [ (np.array([0, 0]), True), (np.array([2.5, 2.5]), True), (np.array([-1, 5]), False), (np.array([10, 3]), False), ], ) def test_indicator_function_box_2d(box_2d_05, point, expected): is_in = box_2d_05.indicator_function(point) assert is_in == expected # ================================ # ==== WRITE YOUR TESTS BELOW ==== # ================================ # checks if the dimension of the window box is correct (d,2). @pytest.mark.parametrize( "bounds, expected", [ (np.array([[0, 5], [-1.45, 3.14], [-10, 10]]), (3, 2)), (np.array([[2.5, 2.5]]), (1, 2)), ], ) def test_init(bounds, expected): c = BoxWindow(bounds) assert c.bounds.shape == expected def test_bad_init(): with pytest.raises(ValueError): BoxWindow(np.array([[0, 5], [-1.45, 3.14], [10, -10]])).__init__() # checks the evaluation of the length of each bound is correct. @pytest.mark.parametrize( "bounds, expected", [ (np.array([[0, 5], [0, 5]]), np.array([5, 5])), (np.array([[2.5, 2.5]]), np.array([0])), (np.array([[0, 5], [-1.45, 3.14], [-10, 10]]), np.array([5, 4.59, 20])), ], ) def test_length(bounds, expected): c = BoxWindow(bounds) assert np.all(c.length() == expected) # checks if the len of the box window is correct. @pytest.mark.parametrize( "bounds, expected", [ (np.array([[0, 5], [0, 5]]), 10), (np.array([[2.5, 2.5]]), 0), (np.array([[0, 5], [-1.45, 3.14], [-10, 10]]), 29.59), ], ) def test_len(bounds, expected): c = BoxWindow(bounds) assert c.__len__() == expected # checks if for the box_2d, the points are in the box window @pytest.fixture def box_2d_05(): return BoxWindow(np.array([[0, 5], [0, 5]])) @pytest.mark.parametrize( "point, expected", [ (np.array([1, 1]), True), (np.array([2.5, 2.5]), True), (np.array([-1, 5]), False), (np.array([10, 3]), False), ], ) def test_contains(box_2d_05, point, expected): is_in = box_2d_05.__contains__(point) assert is_in == expected #error test def test_bad_contains(box_2d_05): with pytest.raises(ValueError): box_2d_05.__contains__(np.array([1, 1, 1])) # checks if the dimension of the box window is correct @pytest.mark.parametrize( "bounds, expected", [ (np.array([[0, 5], [0, 5]]), 2), (np.array([[2.5, 2.5]]), 1), (np.array([[0, 5], [-1.45, 3.14], [-10, 10]]), 3), ], ) def test_dimension(bounds, expected): c = BoxWindow(bounds) assert c.dimension() == expected # checks if the evaluation of the volume of the box is correct @pytest.mark.parametrize( "bounds, expected", [ (np.array([[0, 5], [0, 5]]), 25), (np.array([[2.5, 2.5]]), 0), (np.array([[0, 5], [-1.45, 3.14], [-10, 10]]), 459), ], ) def test_volume(bounds, expected): c = BoxWindow(bounds) assert c.volume() == expected # checks if the indicator function returns 1 if the point is in the box, 0 otherwise @pytest.fixture def box_2d_05(): return BoxWindow(np.array([[0, 5], [0, 5]])) @pytest.mark.parametrize( "point, expected", [ (np.array([1, 1]), 1), (np.array([2.5, 2.5]), 1), (np.array([-1, 5]), 0), (np.array([10, 3]), 0), ], ) def test_indicator_function(box_2d_05, point, expected): is_in = box_2d_05.indicator_function(point) assert is_in == expected # checks if the multiple indicator function returns 1 if all the points are in the box, 0 otherwise @pytest.fixture def box_2d_05(): return BoxWindow(np.array([[0, 5], [0, 5]])) @pytest.mark.parametrize( "point, expected", [ (np.array([[1, 1], [2, 0.5]]), 1), (np.array([2.5, 2.5]), 1), (np.array([[-1, 5], [33, 9], [0, 0]]), 0), (np.array([[10, 3], [1, 1]]), 0), ], ) def test_mutliple_indicator_function(box_2d_05, point, expected): is_in = box_2d_05.multiple_indicator_function(point) assert is_in == expected # checks if the point taken randomly is in the box @pytest.mark.parametrize( "bounds, expected", [ (
np.array([[0, 5], [0, 5]])
numpy.array
""" This module contains classes used for generating different types of analysis plots Scatter: This class contains a variety of scatter plot types, e.g. parity (predicted vs. true) plots Error: This class contains plotting methods used to better quantify the model errors and uncertainty quantification. Histogram: This class contains methods for constructing histograms of data distributions and visualization of model residuals. Line: This class contains methods for making line plots, e.g. for constructing learning curves of model performance vs. amount of data or number of features. """ import warnings import math import os import pandas as pd import numpy as np from collections import Iterable from math import log, ceil from scipy.stats import gaussian_kde, norm import scipy.stats as stats from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from mastml.metrics import Metrics from mastml.error_analysis import ErrorUtils import matplotlib from matplotlib import pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure, figaspect from matplotlib.font_manager import FontProperties from mpl_toolkits.axes_grid1.inset_locator import mark_inset from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1 import make_axes_locatable matplotlib.rc('font', size=18, family='sans-serif') # set all font to bigger matplotlib.rc('figure', autolayout=True) # turn on autolayout warnings.filterwarnings(action="ignore") # adding dpi as a constant global so it can be changed later DPI = 250 class Scatter(): """ Class to generate scatter plots, such as parity plots showing true vs. predicted data values Args: None Methods: plot_predicted_vs_true: method to plot a parity plot Args: y_true: (pd.Series), series of true y data y_pred: (pd.Series), series of predicted y data savepath: (str), string denoting the save path for the figure image data_type: (str), string denoting the data type (e.g. train, test, leaveout) x_label: (str), string denoting the true and predicted property name metrics_list: (list), list of strings of metric names to evaluate and include on the figure show_figure: (bool), whether or not to show the figure output (e.g. when using Jupyter notebook) Returns: None plot_best_worst_split: method to find the best and worst split in an evaluation set and plot them together Args: savepath: (str), string denoting the save path for the figure image data_type: (str), string denoting the data type (e.g. train, test, leaveout) x_label: (str), string denoting the true and predicted property name metrics_list: (list), list of strings of metric names to evaluate and include on the figure show_figure: (bool), whether or not to show the figure output (e.g. when using Jupyter notebook) Returns: None plot_best_worst_per_point: method to find all of the best and worst data points from an evaluation set and plot them together Args: savepath: (str), string denoting the save path for the figure image data_type: (str), string denoting the data type (e.g. train, test, leaveout) x_label: (str), string denoting the true and predicted property name metrics_list: (list), list of strings of metric names to evaluate and include on the figure show_figure: (bool), whether or not to show the figure output (e.g. when using Jupyter notebook) Returns: None plot_predicted_vs_true_bars: method to plot the average predicted value of each data point from an evaluation set with error bars denoting the standard deviation in predicted values Args: savepath: (str), string denoting the save path for the figure image data_type: (str), string denoting the data type (e.g. train, test, leaveout) x_label: (str), string denoting the true and predicted property name metrics_list: (list), list of strings of metric names to evaluate and include on the figure show_figure: (bool), whether or not to show the figure output (e.g. when using Jupyter notebook) Returns: None plot_metric_vs_group: method to plot the metric value for each group during e.g. a LeaveOneGroupOut data split Args: savepath: (str), string denoting the save path for the figure image data_type: (str), string denoting the data type (e.g. train, test, leaveout) show_figure: (bool), whether or not to show the figure output (e.g. when using Jupyter notebook) Returns: None """ @classmethod def plot_predicted_vs_true(cls, y_true, y_pred, savepath, data_type, x_label, metrics_list=None, show_figure=False): # Make the dataframe/array 1D if it isn't y_true = check_dimensions(y_true) y_pred = check_dimensions(y_pred) # Set image aspect ratio: fig, ax = make_fig_ax() # gather max and min maxx = max(np.nanmax(y_true), np.nanmax(y_pred)) minn = min(np.nanmin(y_true), np.nanmin(y_pred)) #maxx = max(y_true) #minn = min(y_true) #maxx = round(float(maxx), rounder(maxx - minn)) #minn = round(float(minn), rounder(maxx - minn)) _set_tick_labels(ax, maxx, minn) ax.scatter(y_true, y_pred, c='b', edgecolor='darkblue', zorder=2, s=100, alpha=0.7) # draw dashed horizontal line ax.plot([minn, maxx], [minn, maxx], 'k--', lw=2, zorder=1) ax.set_xlabel('True ' + x_label, fontsize=14) ax.set_ylabel('Predicted ' + x_label, fontsize=14) if metrics_list is None: # Use some default metric set metrics_list = ['r2_score', 'mean_absolute_error', 'root_mean_squared_error', 'rmse_over_stdev'] stats_dict = Metrics(metrics_list=metrics_list).evaluate(y_true=y_true, y_pred=y_pred) plot_stats(fig, stats_dict, x_align=0.65, y_align=0.90, fontsize=12) fig.savefig(os.path.join(savepath, 'parity_plot_'+str(data_type) + '.png'), dpi=DPI, bbox_inches='tight') if show_figure == True: plt.show() else: plt.close() return @classmethod def plot_best_worst_split(cls, savepath, data_type, x_label, metrics_list, show_figure=False): dirs = os.listdir(savepath) splitdirs = [d for d in dirs if 'split_' in d and '.png' not in d] stats_files_dict = dict() for splitdir in splitdirs: stats_files_dict[splitdir] = pd.read_excel(os.path.join(os.path.join(savepath, splitdir), data_type + '_stats_summary.xlsx'), engine='openpyxl').to_dict('records')[0] # Find best/worst splits based on RMSE value rmse_best = 10**20 rmse_worst = 0 for split, stats_dict in stats_files_dict.items(): if stats_dict['root_mean_squared_error'] < rmse_best: best_split = split rmse_best = stats_dict['root_mean_squared_error'] if stats_dict['root_mean_squared_error'] > rmse_worst: worst_split = split rmse_worst = stats_dict['root_mean_squared_error'] if data_type == 'test': y_true_best = pd.read_excel(os.path.join(os.path.join(savepath, best_split), 'y_test.xlsx'), engine='openpyxl') y_pred_best = pd.read_excel(os.path.join(os.path.join(savepath, best_split), 'y_pred.xlsx'), engine='openpyxl') y_true_worst = pd.read_excel(os.path.join(os.path.join(savepath, worst_split), 'y_test.xlsx'), engine='openpyxl') y_pred_worst = pd.read_excel(os.path.join(os.path.join(savepath, worst_split), 'y_pred.xlsx'), engine='openpyxl') elif data_type == 'train': y_true_best = pd.read_excel(os.path.join(os.path.join(savepath, best_split), 'y_train.xlsx'), engine='openpyxl') y_pred_best = pd.read_excel(os.path.join(os.path.join(savepath, best_split), 'y_pred_train.xlsx'), engine='openpyxl') y_true_worst = pd.read_excel(os.path.join(os.path.join(savepath, worst_split), 'y_train.xlsx'), engine='openpyxl') y_pred_worst = pd.read_excel(os.path.join(os.path.join(savepath, worst_split), 'y_pred_train.xlsx'), engine='openpyxl') # Make the dataframe/array 1D if it isn't y_true_best = check_dimensions(y_true_best) y_pred_best = check_dimensions(y_pred_best) y_true_worst = check_dimensions(y_true_worst) y_pred_worst = check_dimensions(y_pred_worst) # Set image aspect ratio: fig, ax = make_fig_ax() # gather max and min maxx = max(np.nanmax(y_true_best), np.nanmax(y_pred_best), np.nanmax(y_true_worst), np.nanmax(y_pred_worst)) minn = min(np.nanmin(y_true_best), np.nanmin(y_pred_best), np.nanmin(y_true_worst), np.nanmin(y_pred_worst)) #maxx = round(float(max1), rounder(max1 - min1)) #minn = round(float(min1), rounder(max1 - min1)) _set_tick_labels(ax, maxx, minn) ax.scatter(y_true_best, y_pred_best, c='b', edgecolor='darkblue', zorder=2, s=100, alpha=0.7, label='Best split') ax.scatter(y_true_worst, y_pred_worst, c='r', edgecolor='darkred', zorder=2, s=100, alpha=0.7, label='Worst split') ax.legend(loc='best') # draw dashed horizontal line ax.plot([minn, maxx], [minn, maxx], 'k--', lw=2, zorder=1) ax.set_xlabel('True ' + x_label, fontsize=14) ax.set_ylabel('Predicted ' + x_label, fontsize=14) stats_dict_best = Metrics(metrics_list=metrics_list).evaluate(y_true=y_true_best, y_pred=y_pred_best) stats_dict_worst = Metrics(metrics_list=metrics_list).evaluate(y_true=y_true_worst, y_pred=y_pred_worst) plot_stats(fig, stats_dict_best, x_align=0.65, y_align=0.90, font_dict={'fontsize': 12, 'color': 'blue'}) plot_stats(fig, stats_dict_worst, x_align=0.65, y_align=0.50, font_dict={'fontsize': 12, 'color': 'red'}) # Save data to excel file and image fig.savefig(os.path.join(savepath, 'parity_plot_best_worst_split_'+str(data_type)+'.png'), dpi=DPI, bbox_inches='tight') if show_figure == True: plt.show() else: plt.close() return #TODO: this method runs into issues when the y_true data have multiple instances where the y data have the same value, leading to size mismatch errors @classmethod def plot_best_worst_per_point(cls, savepath, data_type, x_label, metrics_list, show_figure=False): # Get lists of all ytrue and ypred for each split dirs = os.listdir(savepath) splitdirs = [d for d in dirs if 'split_' in d and '.png' not in d] y_true_list = list() y_pred_list = list() for splitdir in splitdirs: y_true_list.append(pd.read_excel(os.path.join(os.path.join(savepath, splitdir), 'y_'+str(data_type)+'.xlsx'), engine='openpyxl')) if data_type == 'test': y_pred_list.append(pd.read_excel(os.path.join(os.path.join(savepath, splitdir), 'y_pred.xlsx'), engine='openpyxl')) elif data_type == 'train': y_pred_list.append(pd.read_excel(os.path.join(os.path.join(savepath, splitdir), 'y_pred_train.xlsx'), engine='openpyxl')) all_y_true = list() all_y_pred = list() all_abs_residuals = list() for yt, y_pred in zip(y_true_list, y_pred_list): yt = np.array(check_dimensions(yt)) y_pred = np.array(check_dimensions(y_pred)) abs_residuals = abs(yt-y_pred) all_y_true.append(yt) all_y_pred.append(y_pred) all_abs_residuals.append(abs_residuals) all_y_true_flat = np.array([item for sublist in all_y_true for item in sublist]) all_y_pred_flat = np.array([item for sublist in all_y_pred for item in sublist]) all_residuals_flat = np.array([item for sublist in all_abs_residuals for item in sublist]) # TODO: this is the source of the issue, as y_true_unique can be smaller than y_true. A better way? y_true_unique = np.unique(all_y_true_flat) bests = list() worsts = list() for yt in y_true_unique: best = min(abs(all_y_pred_flat[np.where(all_y_true_flat == yt)] - all_y_true_flat[np.where(all_y_true_flat == yt)])) worst = max(abs(all_y_pred_flat[np.where(all_y_true_flat == yt)] - all_y_true_flat[np.where(all_y_true_flat == yt)])) bests.append(all_y_pred_flat[np.where(all_residuals_flat == best)]) worsts.append(all_y_pred_flat[np.where(all_residuals_flat == worst)]) bests = np.array([item for sublist in bests for item in sublist]) worsts = np.array([item for sublist in worsts for item in sublist]) stats_dict_best = Metrics(metrics_list=metrics_list).evaluate(y_true=y_true_unique, y_pred=bests) stats_dict_worst = Metrics(metrics_list=metrics_list).evaluate(y_true=y_true_unique, y_pred=worsts) fig, ax = make_fig_ax(x_align=0.65) # gather max and min maxx = max([max(y_true_unique), max(bests), max(worsts)]) minn = min([min(y_true_unique), min(bests), min(worsts)]) # draw dashed horizontal line ax.plot([minn, maxx], [minn, maxx], 'k--', lw=2, zorder=1) # set axis labels ax.set_xlabel('True '+x_label, fontsize=16) ax.set_ylabel('Predicted '+x_label, fontsize=16) # set tick labels #maxx = round(float(max1), rounder(max1-min1)) #minn = round(float(min1), rounder(max1-min1)) _set_tick_labels(ax, maxx, minn) ax.scatter(y_true_unique, bests, c='b', alpha=0.7, label='best all points', edgecolor='darkblue', zorder=2, s=100) ax.scatter(y_true_unique, worsts, c='r', alpha=0.7, label='worst all points', edgecolor='darkred', zorder=2, s=70) ax.legend(loc='best', fontsize=12) #plot_stats(fig, avg_stats, x_align=x_align, y_align=0.51, fontsize=10) plot_stats(fig, stats_dict_best, x_align=0.65, y_align=0.90, font_dict={'fontsize': 10, 'color': 'b'}) plot_stats(fig, stats_dict_worst, x_align=0.65, y_align=0.50, font_dict={'fontsize': 10, 'color': 'r'}) # Save data to excel file and image fig.savefig(os.path.join(savepath, 'parity_plot_best_worst_eachpoint_'+str(data_type)+'.png'), dpi=DPI, bbox_inches='tight') if show_figure == True: plt.show() else: plt.close() return @classmethod def plot_predicted_vs_true_bars(cls, savepath, x_label, data_type, metrics_list, show_figure=False): # Get lists of all ytrue and ypred for each split dirs = os.listdir(savepath) splitdirs = [d for d in dirs if 'split_' in d and '.png' not in d] y_true_list = list() y_pred_list = list() for splitdir in splitdirs: y_true_list.append(pd.read_excel(os.path.join(os.path.join(savepath, splitdir), 'y_'+str(data_type)+'.xlsx'), engine='openpyxl')) if data_type == 'test': y_pred_list.append(pd.read_excel(os.path.join(os.path.join(savepath, splitdir), 'y_pred.xlsx'), engine='openpyxl')) elif data_type == 'train': y_pred_list.append(pd.read_excel(os.path.join(os.path.join(savepath, splitdir), 'y_pred_train.xlsx'), engine='openpyxl')) elif data_type == 'leaveout': y_pred_list.append(pd.read_excel(os.path.join(os.path.join(savepath, splitdir), 'y_pred_leaveout.xlsx'), engine='openpyxl')) all_y_true = list() all_y_pred = list() for yt, y_pred in zip(y_true_list, y_pred_list): yt = np.array(check_dimensions(yt)) y_pred = np.array(check_dimensions(y_pred)) all_y_true.append(yt) all_y_pred.append(y_pred) df_all = pd.DataFrame({'all_y_true': np.array([item for sublist in all_y_true for item in sublist]), 'all_y_pred': np.array([item for sublist in all_y_pred for item in sublist])}) df_all_grouped = df_all.groupby(df_all['all_y_true'], sort=False) df_avg = df_all_grouped.mean() df_std = df_all_grouped.std() # make fig and ax, use x_align when placing text so things don't overlap x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) # gather max and min maxx = max(np.nanmax(df_avg.index.values.tolist()), np.nanmax(df_avg['all_y_pred'])) minn = min(np.nanmin(df_avg.index.values.tolist()), np.nanmin(df_avg['all_y_pred'])) # draw dashed horizontal line ax.plot([minn, maxx], [minn, maxx], 'k--', lw=2, zorder=1) # set axis labels ax.set_xlabel('True ' + x_label, fontsize=16) ax.set_ylabel('Predicted ' + x_label, fontsize=16) # set tick labels _set_tick_labels(ax, maxx, minn) ax.errorbar(df_avg.index.values.tolist(), df_avg['all_y_pred'], yerr=df_std['all_y_pred'], fmt='o', markerfacecolor='blue', markeredgecolor='black', markersize=10, alpha=0.7, capsize=3) stats_files_dict = dict() for splitdir in splitdirs: stats_files_dict[splitdir] = pd.read_excel(os.path.join(os.path.join(savepath, splitdir), data_type + '_stats_summary.xlsx'), engine='openpyxl').to_dict('records')[0] metrics_list = list(stats_files_dict[splitdir].keys()) avg_stats = dict() for metric in metrics_list: stats = list() for splitdir in splitdirs: stats.append(stats_files_dict[splitdir][metric]) avg_stats[metric] = (np.mean(stats), np.std(stats)) plot_stats(fig, avg_stats, x_align=x_align, y_align=0.90) fig.savefig(os.path.join(savepath, 'parity_plot_allsplits_average_'+str(data_type)+'.png'), dpi=DPI, bbox_inches='tight') df = pd.DataFrame({'y true': df_avg.index.values.tolist(), 'average predicted values': df_avg['all_y_pred'], 'error bar values': df_std['all_y_pred']}) df.to_excel(os.path.join(savepath, 'parity_plot_allsplits_average_'+str(data_type)+'.xlsx')) df_stats = pd.DataFrame().from_dict(avg_stats) df_stats.to_excel(os.path.join(savepath, str(data_type)+'_average_stdev_stats_summary.xlsx'), index=False) if show_figure == True: plt.show() else: plt.close() return @classmethod def plot_metric_vs_group(cls, savepath, data_type, show_figure): dirs = os.listdir(savepath) splitdirs = [d for d in dirs if 'split_' in d and '.png' not in d] stats_files_dict = dict() groups = list() for splitdir in splitdirs: with open(os.path.join(os.path.join(savepath, splitdir), 'test_group.txt'), 'r') as f: group = f.readlines()[0] groups.append(group) stats_files_dict[group] = pd.read_excel(os.path.join(os.path.join(savepath, splitdir), data_type + '_stats_summary.xlsx'), engine='openpyxl').to_dict('records')[0] metrics_list = list(stats_files_dict[group].keys()) for metric in metrics_list: stats = list() for group in groups: stats.append(stats_files_dict[group][metric]) avg_stats = {metric: (np.mean(stats), np.std(stats))} # make fig and ax, use x_align when placing text so things don't overlap x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) # do the actual plotting ax.scatter(groups, stats, c='blue', alpha=0.7, edgecolor='darkblue', zorder=2, s=100) # set axis labels ax.set_xlabel('Group', fontsize=14) ax.set_ylabel(metric, fontsize=14) ax.set_xticklabels(labels=groups, fontsize=14) plot_stats(fig, avg_stats, x_align=x_align, y_align=0.90) fig.savefig(os.path.join(savepath, str(metric)+'_value_per_group_'+str(data_type)+'.png'), dpi=DPI, bbox_inches='tight') if show_figure == True: plt.show() else: plt.close() return class Error(): """ Class to make plots related to model error assessment and uncertainty quantification Args: None Methods: plot_normalized_error: Method to plot the normalized residual errors of a model prediction Args: residuals: (pd.Series), series containing the true errors (model residuals) savepath: (str), string denoting the save path to save the figure to data_type: (str), string denoting the data type, e.g. train, test, leftout model_errors: (pd.Series), series containing the predicted model errors (optional, default None) show_figure: (bool), whether or not the generated figure is output to the notebook screen (default False) Returns: None plot_cumulative_normalized_error: Method to plot the cumulative normalized residual errors of a model prediction Args: residuals: (pd.Series), series containing the true errors (model residuals) savepath: (str), string denoting the save path to save the figure to data_type: (str), string denoting the data type, e.g. train, test, leftout model_errors: (pd.Series), series containing the predicted model errors (optional, default None) show_figure: (bool), whether or not the generated figure is output to the notebook screen (default False) Returns: None plot_rstat: Method for plotting the r-statistic distribution (true divided by predicted error) Args: savepath: (str), string denoting the save path to save the figure to data_type: (str), string denoting the data type, e.g. train, test, leftout residuals: (pd.Series), series containing the true errors (model residuals) model_errors: (pd.Series), series containing the predicted model errors show_figure: (bool), whether or not the generated figure is output to the notebook screen (default False) is_calibrated: (bool), whether or not the model errors have been recalibrated (default False) Returns: None plot_rstat_uncal_cal_overlay: Method for plotting the r-statistic distribution for two cases together: the as-obtained uncalibrated model errors and calibrated errors Args: savepath: (str), string denoting the save path to save the figure to data_type: (str), string denoting the data type, e.g. train, test, leftout residuals: (pd.Series), series containing the true errors (model residuals) model_errors: (pd.Series), series containing the predicted model errors model_errors_cal: (pd.Series), series containing the calibrated predicted model errors show_figure: (bool), whether or not the generated figure is output to the notebook screen (default False) Returns: None plot_real_vs_predicted_error: Sometimes called the RvE plot, or residual vs. error plot, this method plots the binned RMS residuals as a function of the binned model errors Args: savepath: (str), string denoting the save path to save the figure to model: (mastml.models object), a MAST-ML model object, e.g. SklearnModel or EnsembleModel data_type: (str), string denoting the data type, e.g. train, test, leftout model_errors: (pd.Series), series containing the predicted model errors residuals: (pd.Series), series containing the true errors (model residuals) dataset_stdev: (float), the standard deviation of the training dataset show_figure: (bool), whether or not the generated figure is output to the notebook screen (default False) is_calibrated: (bool), whether or not the model errors have been recalibrated (default False) well_sampled_fraction: (float), number denoting whether a bin qualifies as well-sampled or not. Default to 0.025 (2.5% of total samples). Only affects visuals, not fitting Returns: None plot_real_vs_predicted_error_uncal_cal_overlay: Method for making the residual vs. error plot for two cases together: using the as-obtained uncalibrated model errors and calibrated errors Args: savepath: (str), string denoting the save path to save the figure to model: (mastml.models object), a MAST-ML model object, e.g. SklearnModel or EnsembleModel data_type: (str), string denoting the data type, e.g. train, test, leftout model_errors: (pd.Series), series containing the predicted model errors model_errors_cal: (pd.Series), series containing the calibrated predicted model errors residuals: (pd.Series), series containing the true errors (model residuals) dataset_stdev: (float), the standard deviation of the training dataset show_figure: (bool), whether or not the generated figure is output to the notebook screen (default False) well_sampled_fraction: (float), number denoting whether a bin qualifies as well-sampled or not. Default to 0.025 (2.5% of total samples). Only affects visuals, not fitting Returns: None """ @classmethod def plot_normalized_error(cls, residuals, savepath, data_type, model_errors=None, show_figure=False): x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) mu = 0 sigma = 1 residuals[residuals == 0.0] = 10**-6 normalized_residuals = residuals / np.std(residuals) density_residuals = gaussian_kde(normalized_residuals) x = np.linspace(mu - 5 * sigma, mu + 5 * sigma, residuals.shape[0]) ax.plot(x, norm.pdf(x, mu, sigma), linewidth=4, color='blue', label="Analytical Gaussian") ax.plot(x, density_residuals(x), linewidth=4, color='green', label="Model Residuals") maxx = 5 minn = -5 if model_errors is not None: model_errors[model_errors == 0.0] = 0.0001 rstat = residuals / model_errors density_errors = gaussian_kde(rstat) maxy = max(max(density_residuals(x)), max(norm.pdf(x, mu, sigma)), max(density_errors(x))) miny = min(min(density_residuals(x)), min(norm.pdf(x, mu, sigma)), max(density_errors(x))) ax.plot(x, density_errors(x), linewidth=4, color='purple', label="Model Errors") # Save data to csv file data_dict = {"Plotted x values": x, "model_errors": model_errors, # "analytical gaussian (plotted y blue values)": norm.pdf(x, mu, sigma), "residuals": residuals, "model normalized residuals (plotted y green values)": density_residuals(x), "model errors (plotted y purple values)": density_errors(x)} pd.DataFrame(data_dict).to_excel(os.path.join(savepath, 'normalized_error_data_'+str(data_type)+'.xlsx')) else: # Save data to csv file data_dict = {"x values": x, # "analytical gaussian": norm.pdf(x, mu, sigma), "model normalized residuals (plotted y green values)": density_residuals(x)} pd.DataFrame(data_dict).to_excel(os.path.join(savepath, 'normalized_error_data_'+str(data_type)+'.xlsx')) maxy = max(max(density_residuals(x)), max(norm.pdf(x, mu, sigma))) miny = min(min(density_residuals(x)), min(norm.pdf(x, mu, sigma))) ax.legend(loc=0, fontsize=12, frameon=False) ax.set_xlabel(r"$\mathrm{x}/\mathit{\sigma}$", fontsize=18) ax.set_ylabel("Probability density", fontsize=18) _set_tick_labels_different(ax, maxx, minn, maxy, miny) fig.savefig(os.path.join(savepath, 'normalized_errors_'+str(data_type)+'.png'), dpi=DPI, bbox_inches='tight') if show_figure is True: plt.show() else: plt.close() return @classmethod def plot_cumulative_normalized_error(cls, residuals, savepath, data_type, model_errors=None, show_figure=False): x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) analytic_gau = np.random.normal(0, 1, 10000) analytic_gau = abs(analytic_gau) n_analytic = np.arange(1, len(analytic_gau) + 1) / np.float(len(analytic_gau)) X_analytic = np.sort(analytic_gau) residuals[residuals == 0.0] = 10 ** -6 normalized_residuals = abs((residuals) / np.std(residuals)) n_residuals = np.arange(1, len(normalized_residuals) + 1) / np.float(len(normalized_residuals)) X_residuals = np.sort(normalized_residuals) # r"$\mathrm{Predicted \/ Value}, \mathit{eV}$" ax.set_xlabel(r"$\mathrm{x}/\mathit{\sigma}$", fontsize=18) ax.set_ylabel("Fraction", fontsize=18) ax.step(X_residuals, n_residuals, linewidth=3, color='green', label="Model Residuals") ax.step(X_analytic, n_analytic, linewidth=3, color='blue', label="Analytical Gaussian") ax.set_xlim([0, 5]) if model_errors is not None: model_errors[model_errors == 0.0] = 0.0001 rstat = abs((residuals) / model_errors) n_errors = np.arange(1, len(rstat) + 1) / np.float(len(rstat)) X_errors = np.sort(rstat) ax.step(X_errors, n_errors, linewidth=3, color='purple', label="Model Errors") # Save data to csv file data_dict = { # "Analytical Gaussian values": analytic_gau, # "Analytical Gaussian (sorted, blue data)": X_analytic, "residuals": residuals, "normalized residuals": normalized_residuals, "Model Residuals (sorted, green data)": X_residuals, "Model error values (r value: (ytrue-ypred)/(model error avg))": rstat, "Model errors (sorted, purple values)": X_errors} # Save this way to avoid issue with different array sizes in data_dict df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in data_dict.items()])) df.to_excel(os.path.join(savepath, 'cumulative_normalized_errors_'+str(data_type)+'.xlsx'), index=False) else: # Save data to csv file data_dict = { # "x analytical": X_analytic, # "analytical gaussian": n_analytic, "Model Residuals (sorted, green data)": X_residuals, "model residuals": n_residuals} # Save this way to avoid issue with different array sizes in data_dict df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in data_dict.items()])) df.to_excel(os.path.join(savepath, 'cumulative_normalized_errors_'+str(data_type)+'.xlsx'), index=False) ax.legend(loc=0, fontsize=14, frameon=False) xlabels = np.linspace(2, 3, 3) ylabels = np.linspace(0.9, 1, 2) axin = zoomed_inset_axes(ax, 2.5, loc=7) axin.step(X_residuals, n_residuals, linewidth=3, color='green', label="Model Residuals") axin.step(X_analytic, n_analytic, linewidth=3, color='blue', label="Analytical Gaussian") if model_errors is not None: axin.step(X_errors, n_errors, linewidth=3, color='purple', label="Model Errors") axin.set_xticklabels(xlabels, fontsize=8, rotation=90) axin.set_yticklabels(ylabels, fontsize=8) axin.set_xlim([2, 3]) axin.set_ylim([0.9, 1]) maxx = 5 minn = 0 maxy = 1.1 miny = 0 _set_tick_labels_different(ax, maxx, minn, maxy, miny) mark_inset(ax, axin, loc1=1, loc2=2) fig.savefig(os.path.join(savepath, 'cumulative_normalized_errors_'+str(data_type)+'.png'), dpi=DPI, bbox_inches='tight') if show_figure is True: plt.show() else: plt.close() return @classmethod def plot_rstat(cls, savepath, data_type, residuals, model_errors, show_figure=False, is_calibrated=False): # Eliminate model errors with value 0, so that the ratios can be calculated zero_indices = [] for i in range(0, len(model_errors)): if model_errors[i] == 0: zero_indices.append(i) residuals = np.delete(residuals, zero_indices) model_errors = np.delete(model_errors, zero_indices) # make data for gaussian plot gaussian_x = np.linspace(-5, 5, 1000) # create plot x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) ax.set_xlabel('residuals / model error estimates') ax.set_ylabel('relative counts') ax.hist(residuals/model_errors, bins=30, color='blue', edgecolor='black', density=True) ax.plot(gaussian_x, stats.norm.pdf(gaussian_x, 0, 1), label='Gaussian mu: 0 std: 1', color='orange') ax.text(0.05, 0.9, 'mean = %.3f' % (np.mean(residuals / model_errors)), transform=ax.transAxes) ax.text(0.05, 0.85, 'std = %.3f' % (np.std(residuals / model_errors)), transform=ax.transAxes) if is_calibrated == False: calibrate = 'uncalibrated' if is_calibrated == True: calibrate = 'calibrated' fig.savefig(os.path.join(savepath, 'rstat_histogram_'+str(data_type)+'_'+calibrate+'.png'), dpi=DPI, bbox_inches='tight') if show_figure is True: plt.show() else: plt.close() return @classmethod def plot_rstat_uncal_cal_overlay(cls, savepath, data_type, residuals, model_errors, model_errors_cal, show_figure=False): # Eliminate model errors with value 0, so that the ratios can be calculated zero_indices = [] for i in range(0, len(model_errors)): if model_errors[i] == 0: zero_indices.append(i) residuals = np.delete(residuals, zero_indices) model_errors = np.delete(model_errors, zero_indices) model_errors_cal = np.delete(model_errors_cal, zero_indices) # make data for gaussian plot gaussian_x = np.linspace(-5, 5, 1000) # create plot x_align = 0.64 fig, ax = make_fig_ax(x_align=x_align) ax.set_xlabel('residuals / model error estimates') ax.set_ylabel('relative counts') ax.hist(residuals/model_errors, bins=30, color='gray', edgecolor='black', density=True, alpha=0.4) ax.hist(residuals/model_errors_cal, bins=30, color='blue', edgecolor='black', density=True, alpha=0.4) ax.plot(gaussian_x, stats.norm.pdf(gaussian_x, 0, 1), label='Gaussian mu: 0 std: 1', color='orange') ax.text(0.05, 0.9, 'mean = %.3f' % (np.mean(residuals / model_errors)), transform=ax.transAxes, fontdict={'fontsize': 10, 'color': 'gray'}) ax.text(0.05, 0.85, 'std = %.3f' % (np.std(residuals / model_errors)), transform=ax.transAxes, fontdict={'fontsize': 10, 'color': 'gray'}) ax.text(0.05, 0.8, 'mean = %.3f' % (np.mean(residuals / model_errors_cal)), transform=ax.transAxes, fontdict={'fontsize': 10, 'color': 'blue'}) ax.text(0.05, 0.75, 'std = %.3f' % (np.std(residuals / model_errors_cal)), transform=ax.transAxes, fontdict={'fontsize': 10, 'color': 'blue'}) fig.savefig(os.path.join(savepath, 'rstat_histogram_'+str(data_type)+'_uncal_cal_overlay.png'), dpi=DPI, bbox_inches='tight') if show_figure is True: plt.show() else: plt.close() return @classmethod def plot_real_vs_predicted_error(cls, savepath, model, data_type, model_errors, residuals, dataset_stdev, show_figure=False, is_calibrated=False, well_sampled_fraction=0.025): bin_values, rms_residual_values, num_values_per_bin, number_of_bins, ms_residual_values, var_sq_residual_values = ErrorUtils()._parse_error_data(model_errors=model_errors, residuals=residuals, dataset_stdev=dataset_stdev) model_name = model.model.__class__.__name__ if model_name == 'RandomForestRegressor': model_type = 'RF' elif model_name == 'GradientBoostingRegressor': model_type = 'GBR' elif model_name == 'ExtraTreesRegressor': model_type = 'ET' elif model_name == 'GaussianProcessRegressor': model_type = 'GPR' elif model_name == 'BaggingRegressor': model_type = 'BR' elif model_name == 'AdaBoostRegressor': model_type = 'ABR' if data_type not in ['train', 'test', 'leaveout']: print('Error: data_test_type must be one of "train", "test" or "leaveout"') exit() # Make RF error plot fig, ax = make_fig_ax(aspect_ratio=0.5, x_align=0.65) linear = LinearRegression(fit_intercept=True) # Fit just blue circle data # Find nan entries nans = np.argwhere(np.isnan(rms_residual_values)).tolist() # use nans (which are indices) to delete relevant parts of bin_values and # rms_residual_values as they can't be used to fit anyway bin_values_copy = np.empty_like(bin_values) bin_values_copy[:] = bin_values rms_residual_values_copy = np.empty_like(rms_residual_values) rms_residual_values_copy[:] = rms_residual_values bin_values_copy = np.delete(bin_values_copy, nans) rms_residual_values_copy = np.delete(rms_residual_values_copy, nans) num_values_per_bin_copy = np.array(num_values_per_bin)[np.array(num_values_per_bin) != 0] # Only examine the bins that are well-sampled, i.e. have number of data points in them above a given threshold well_sampled_number = round(well_sampled_fraction*np.sum(num_values_per_bin_copy)) rms_residual_values_wellsampled = rms_residual_values_copy[np.where(num_values_per_bin_copy > well_sampled_number)] bin_values_wellsampled = bin_values_copy[np.where(num_values_per_bin_copy > well_sampled_number)] num_values_per_bin_wellsampled = num_values_per_bin_copy[np.where(num_values_per_bin_copy > well_sampled_number)] rms_residual_values_poorlysampled = rms_residual_values_copy[np.where(num_values_per_bin_copy <= well_sampled_number)] bin_values_poorlysampled = bin_values_copy[np.where(num_values_per_bin_copy <= well_sampled_number)] num_values_per_bin_poorlysampled = num_values_per_bin_copy[np.where(num_values_per_bin_copy <= well_sampled_number)] yerr = list() for i, j, k in zip(var_sq_residual_values, num_values_per_bin, rms_residual_values): if j > 1: yerr.append(np.sqrt(i) / (2 * np.sqrt(j) * k)) else: yerr.append(1) yerr = np.array(yerr) yerr_wellsampled = yerr[np.where(num_values_per_bin > well_sampled_number)[0]] yerr_poorlysampled = yerr[np.where(num_values_per_bin <= well_sampled_number)[0]] ax.scatter(bin_values_wellsampled, rms_residual_values_wellsampled, s=80, color='blue', alpha=0.7) ax.scatter(bin_values_poorlysampled, rms_residual_values_poorlysampled, s=80, color='blue', alpha=0.7) ax.errorbar(bin_values_wellsampled, rms_residual_values_wellsampled, yerr=yerr_wellsampled, ecolor='blue', capsize=2, linewidth=0, elinewidth=1) ax.errorbar(bin_values_poorlysampled, rms_residual_values_poorlysampled, yerr=yerr_poorlysampled, ecolor='blue', capsize=2, linewidth=0, elinewidth=1) ax.set_xlabel(str(model_type) + ' model errors / dataset stdev', fontsize=12) ax.set_ylabel('RMS Absolute residuals\n / dataset stdev', fontsize=12) ax.tick_params(labelsize=10) if not rms_residual_values_copy.size: print("---WARNING: ALL ERRORS TOO LARGE FOR PLOTTING---") exit() else: # Fit the line to all data, including the poorly sampled data, and weight data points by number of samples per bin linear.fit(np.array(bin_values_copy).reshape(-1, 1), rms_residual_values_copy, sample_weight=num_values_per_bin_copy) yfit = linear.predict(np.array(bin_values_copy).reshape(-1, 1)) ax.plot(bin_values_copy, yfit, 'k--', linewidth=2) r2 = r2_score(rms_residual_values_copy, yfit, sample_weight=num_values_per_bin_copy) slope = linear.coef_ intercept = linear.intercept_ divider = make_axes_locatable(ax) axbarx = divider.append_axes("top", 1.2, pad=0.12, sharex=ax) axbarx.bar(x=bin_values, height=num_values_per_bin, width=bin_values[1]-bin_values[0], color='blue', edgecolor='black', alpha=0.7) axbarx.tick_params(labelsize=10, axis='y') axbarx.tick_params(labelsize=0, axis='x') axbarx.set_ylabel('Counts', fontsize=12) total_samples = sum(num_values_per_bin) axbarx.text(0.95, round(0.67 * max(num_values_per_bin)), 'Total counts = ' + str(total_samples), fontsize=12) xmax = max(max(bin_values_copy) + 0.05, 1.6) ymax = max(1.3, max(rms_residual_values)) ax.set_ylim(bottom=0, top=ymax) axbarx.set_ylim(bottom=0, top=round(max(num_values_per_bin) + 0.1*max(num_values_per_bin))) ax.set_xlim(left=0, right=xmax) ax.text(0.02, 0.9*ymax, 'R$^2$ = %3.2f ' % r2, fontdict={'fontsize': 10, 'color': 'k'}) ax.text(0.02, 0.8*ymax, 'slope = %3.2f ' % slope, fontdict={'fontsize': 10, 'color': 'k'}) ax.text(0.02, 0.7*ymax, 'intercept = %3.2f ' % intercept, fontdict={'fontsize': 10, 'color': 'k'}) # Plot y = x line as reference point maxx = max(xmax, ymax) ax.plot([0, maxx], [0, maxx], 'k--', lw=2, zorder=1, color='gray', alpha=0.5) if is_calibrated == False: calibrate = 'uncalibrated' if is_calibrated == True: calibrate = 'calibrated' fig.savefig(os.path.join(savepath, str(model_type) + '_residuals_vs_modelerror_' + str(data_type) + '_' + calibrate + '.png'), dpi=300, bbox_inches='tight') if show_figure is True: plt.show() else: plt.close() return @classmethod def plot_real_vs_predicted_error_uncal_cal_overlay(cls, savepath, model, data_type, model_errors, model_errors_cal, residuals, dataset_stdev, show_figure=False, well_sampled_fraction=0.025): bin_values_uncal, rms_residual_values_uncal, num_values_per_bin_uncal, number_of_bins_uncal, ms_residual_values_uncal, var_sq_residual_values_uncal = ErrorUtils()._parse_error_data(model_errors=model_errors, residuals=residuals, dataset_stdev=dataset_stdev) bin_values_cal, rms_residual_values_cal, num_values_per_bin_cal, number_of_bins_cal, ms_residual_values_cal, var_sq_residual_values_cal = ErrorUtils()._parse_error_data(model_errors=model_errors_cal, residuals=residuals, dataset_stdev=dataset_stdev) model_name = model.model.__class__.__name__ if model_name == 'RandomForestRegressor': model_type = 'RF' elif model_name == 'GradientBoostingRegressor': model_type = 'GBR' elif model_name == 'ExtraTreesRegressor': model_type = 'ET' elif model_name == 'GaussianProcessRegressor': model_type = 'GPR' elif model_name == 'BaggingRegressor': model_type = 'BR' elif model_name == 'AdaBoostRegressor': model_type = 'ABR' if data_type not in ['train', 'test', 'leaveout']: print('Error: data_test_type must be one of "train", "test" or "leaveout"') exit() # Make RF error plot fig, ax = make_fig_ax(aspect_ratio=0.5, x_align=0.65) linear_uncal = LinearRegression(fit_intercept=True) linear_cal = LinearRegression(fit_intercept=True) # Only examine the bins that are well-sampled, i.e. have number of data points in them above a given threshold well_sampled_number_uncal = round(well_sampled_fraction*np.sum(num_values_per_bin_uncal)) rms_residual_values_wellsampled_uncal = rms_residual_values_uncal[np.where(num_values_per_bin_uncal > well_sampled_number_uncal)[0]] bin_values_wellsampled_uncal = bin_values_uncal[np.where(num_values_per_bin_uncal > well_sampled_number_uncal)[0]] num_values_per_bin_wellsampled_uncal = num_values_per_bin_uncal[
np.where(num_values_per_bin_uncal > well_sampled_number_uncal)
numpy.where
""" Module file for handling of downscaling input regridded (possibly bias-corrected) forcing fields. Each input forcing product will loop through and determine if downscaling is needed, based off options specified by the user. """ import math import os import time import numpy as np from netCDF4 import Dataset from core import err_handler def run_downscaling(input_forcings, config_options, geo_meta_wrf_hydro, mpi_config): """ Top level module function that will downscale forcing variables for this particular input forcing product. :param geo_meta_wrf_hydro: :param mpi_config: :param input_forcings: :param config_options: :return: """ # Dictionary mapping to temperature downscaling. downscale_temperature = { 0: no_downscale, 1: simple_lapse, 2: param_lapse } downscale_temperature[input_forcings.t2dDownscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Dictionary mapping to pressure downscaling. downscale_pressure = { 0: no_downscale, 1: pressure_down_classic } downscale_pressure[input_forcings.psfcDownscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Dictionary mapping to shortwave radiation downscaling downscale_sw = { 0: no_downscale, 1: ncar_topo_adj } downscale_sw[input_forcings.swDowscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Dictionary mapping to specific humidity downscaling downscale_q2 = { 0: no_downscale, 1: q2_down_classic } downscale_q2[input_forcings.q2dDownscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) # Dictionary mapping to precipitation downscaling. downscale_precip = { 0: no_downscale, 1: nwm_monthly_PRISM_downscale #1: precip_mtn_mapper } downscale_precip[input_forcings.precipDownscaleOpt](input_forcings, config_options, geo_meta_wrf_hydro, mpi_config) err_handler.check_program_status(config_options, mpi_config) def no_downscale(input_forcings, ConfigOptions, GeoMetaWrfHydro, MpiConfig): """ Generic function for passing states through without any downscaling. :param input_forcings: :param ConfigOptions: :return: """ input_forcings.final_forcings = input_forcings.final_forcings def simple_lapse(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ Function that applies a single lapse rate adjustment to modeled 2-meter temperature by taking the difference of the native input elevation and the WRF-hydro elevation. :param inpute_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Applying simple lapse rate to temperature downscaling" err_handler.log_msg(ConfigOptions, MpiConfig) # Calculate the elevation difference. elevDiff = input_forcings.height - GeoMetaWrfHydro.height # Assign existing, un-downscaled temperatures to a temporary placeholder, which # will be used for specific humidity downscaling. if input_forcings.q2dDownscaleOpt > 0: input_forcings.t2dTmp[:,:] = input_forcings.final_forcings[4,:,:] # Apply single lapse rate value to the input 2-meter # temperature values. try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input forcings" err_handler.log_critical(ConfigOptions, MpiConfig) return try: input_forcings.final_forcings[4,:,:] = input_forcings.final_forcings[4,:,:] + \ (6.49/1000.0)*elevDiff except: ConfigOptions.errMsg = "Unable to apply lapse rate to input 2-meter temperatures." err_handler.log_critical(ConfigOptions, MpiConfig) return input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv # Reset for memory efficiency indNdv = None def param_lapse(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ Function that applies a apriori lapse rate adjustment to modeled 2-meter temperature by taking the difference of the native input elevation and the WRF-hydro elevation. It's assumed this lapse rate grid has already been regridded to the final output WRF-Hydro grid. :param inpute_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Applying aprior lapse rate grid to temperature downscaling" err_handler.log_msg(ConfigOptions, MpiConfig) # Calculate the elevation difference. elevDiff = input_forcings.height - GeoMetaWrfHydro.height if input_forcings.lapseGrid is None: #if not np.any(input_forcings.lapseGrid): # We have not read in our lapse rate file. Read it in, do extensive checks, # scatter the lapse rate grid out to individual processors, then apply the # lapse rate to the 2-meter temperature grid. if MpiConfig.rank == 0: while (True): # First ensure we have a parameter directory if input_forcings.paramDir == "NONE": ConfigOptions.errMsg = "User has specified spatial temperature lapse rate " \ "downscaling while no downscaling parameter directory " \ "exists." err_handler.log_critical(ConfigOptions, MpiConfig) break # Compose the path to the lapse rate grid file. lapsePath = input_forcings.paramDir + "/lapse_param.nc" if not os.path.isfile(lapsePath): ConfigOptions.errMsg = "Expected lapse rate parameter file: " + \ lapsePath + " does not exist." err_handler.log_critical(ConfigOptions, MpiConfig) break # Open the lapse rate file. Check for the expected variable, along with # the dimension size to make sure everything matches up. try: idTmp = Dataset(lapsePath,'r') except: ConfigOptions.errMsg = "Unable to open parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break if not 'lapse' in idTmp.variables.keys(): ConfigOptions.errMsg = "Expected 'lapse' variable not located in parameter " \ "file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break try: lapseTmp = idTmp.variables['lapse'][:,:] except: ConfigOptions.errMsg = "Unable to extracte 'lapse' variable from parameter: " \ "file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break # Check dimensions to ensure they match up to the output grid. if lapseTmp.shape[1] != GeoMetaWrfHydro.nx_global: ConfigOptions.errMsg = "X-Dimension size mismatch between output grid and lapse " \ "rate from parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break if lapseTmp.shape[0] != GeoMetaWrfHydro.ny_global: ConfigOptions.errMsg = "Y-Dimension size mismatch between output grid and lapse " \ "rate from parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break # Perform a quick search to ensure we don't have radical values. indTmp = np.where(lapseTmp < -10.0) if len(indTmp[0]) > 0: ConfigOptions.errMsg = "Found anomolous negative values in the lapse rate grid from " \ "parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break indTmp = np.where(lapseTmp > 100.0) if len(indTmp[0]) > 0: ConfigOptions.errMsg = "Found excessively high values in the lapse rate grid from " \ "parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break # Close the parameter lapse rate file. try: idTmp.close() except: ConfigOptions.errMsg = "Unable to close parameter file: " + lapsePath err_handler.log_critical(ConfigOptions, MpiConfig) break break else: lapseTmp = None err_handler.check_program_status(ConfigOptions, MpiConfig) # Scatter the lapse rate grid to the other processors. input_forcings.lapseGrid = MpiConfig.scatter_array(GeoMetaWrfHydro,lapseTmp,ConfigOptions) err_handler.check_program_status(ConfigOptions, MpiConfig) # Apply the local lapse rate grid to our local slab of 2-meter temperature data. temperature_grid_tmp = input_forcings.final_forcings[4, :, :] try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input " + \ input_forcings.productName + " regridded forcings." err_handler.log_critical(ConfigOptions, MpiConfig) return try: indValid = np.where(temperature_grid_tmp != ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform search for valid values on input " + \ input_forcings.productName + " regridded temperature forcings." err_handler.log_critical(ConfigOptions, MpiConfig) return try: temperature_grid_tmp[indValid] = temperature_grid_tmp[indValid] + \ ((input_forcings.lapseGrid[indValid]/1000.0) * elevDiff[indValid]) except: ConfigOptions.errMsg = "Unable to apply spatial lapse rate values to input " + \ input_forcings.productName + " regridded temperature forcings." err_handler.log_critical(ConfigOptions, MpiConfig) return input_forcings.final_forcings[4,:,:] = temperature_grid_tmp input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv # Reset for memory efficiency indTmp = None indNdv = None indValid = None elevDiff = None temperature_grid_tmp = None def pressure_down_classic(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ Generic function to downscale surface pressure to the WRF-Hydro domain. :param input_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Performing topographic adjustment to surface pressure." err_handler.log_msg(ConfigOptions, MpiConfig) # Calculate the elevation difference. elevDiff = input_forcings.height - GeoMetaWrfHydro.height # Assign existing, un-downscaled pressure values to a temporary placeholder, which # will be used for specific humidity downscaling. if input_forcings.q2dDownscaleOpt > 0: input_forcings.psfcTmp[:, :] = input_forcings.final_forcings[6, :, :] try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input forcings" err_handler.log_critical(ConfigOptions, MpiConfig) return try: input_forcings.final_forcings[6,:,:] = input_forcings.final_forcings[6,:,:] +\ (input_forcings.final_forcings[6,:,:]*elevDiff*9.8)/\ (input_forcings.final_forcings[4,:,:]*287.05) except: ConfigOptions.errMsg = "Unable to downscale surface pressure to input forcings." err_handler.log_critical(ConfigOptions, MpiConfig) return input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv # Reset for memory efficiency indNdv = None def q2_down_classic(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ NCAR function for downscaling 2-meter specific humidity using already downscaled 2-meter temperature, unadjusted surface pressure, and downscaled surface pressure. :param input_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Performing topographic adjustment to specific humidity." err_handler.log_msg(ConfigOptions, MpiConfig) # Establish where we have missing values. try: indNdv = np.where(input_forcings.final_forcings == ConfigOptions.globalNdv) except: ConfigOptions.errMsg = "Unable to perform NDV search on input forcings" err_handler.log_critical(ConfigOptions, MpiConfig) return # First calculate relative humidity given original surface pressure and 2-meter # temperature try: relHum = rel_hum(input_forcings,ConfigOptions) except: ConfigOptions.errMsg = "Unable to perform topographic downscaling of incoming " \ "specific humidity to relative humidity" err_handler.log_critical(ConfigOptions, MpiConfig) return # Downscale 2-meter specific humidity try: q2Tmp = mixhum_ptrh(input_forcings,relHum,2,ConfigOptions) except: ConfigOptions.errMsg = "Unable to perform topographic downscaling of " \ "incoming specific humidity" err_handler.log_critical(ConfigOptions, MpiConfig) return input_forcings.final_forcings[5,:,:] = q2Tmp input_forcings.final_forcings[indNdv] = ConfigOptions.globalNdv q2Tmp = None indNdv = None def nwm_monthly_PRISM_downscale(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ NCAR/OWP function for downscaling precipitation using monthly PRISM climatology in a mountain-mapper like fashion. :param input_forcings: :param ConfigOptions: :param GeoMetaWrfHydro: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Performing NWM Monthly PRISM Mountain Mapper " \ "Downscaling of Precipitation" err_handler.log_msg(ConfigOptions, MpiConfig) # Establish whether or not we need to read in new PRISM monthly climatology: # 1.) This is the first output timestep, and no grids have been initialized. # 2.) We have switched months from the last timestep. In this case, we need # to re-initialize the grids for the current month. initialize_flag = False if input_forcings.nwmPRISM_denGrid is None and input_forcings.nwmPRISM_numGrid is None: # We are on situation 1 - This is the first output step. initialize_flag = True # print('WE NEED TO READ IN PRISM GRIDS') if ConfigOptions.current_output_date.month != ConfigOptions.prev_output_date.month: # We are on situation #2 - The month has changed so we need to reinitialize the # PRISM grids. initialize_flag = True # print('MONTH CHANGE.... NEED TO READ IN NEW PRISM GRIDS.') if initialize_flag is True: while (True): # First reset the local PRISM grids to be safe. input_forcings.nwmPRISM_numGrid = None input_forcings.nwmPRISM_denGrid = None # Compose paths to the expected files. numeratorPath = input_forcings.paramDir + "/PRISM_Precip_Clim_" + \ ConfigOptions.current_output_date.strftime('%h') + '_NWM_Mtn_Mapper_Numer.nc' denominatorPath = input_forcings.paramDir + "/PRISM_Precip_Clim_" + \ ConfigOptions.current_output_date.strftime('%h') + '_NWM_Mtn_Mapper_Denom.nc' #print(numeratorPath) #print(denominatorPath) # Make sure files exist. if not os.path.isfile(numeratorPath): ConfigOptions.errMsg = "Expected parameter file: " + numeratorPath + \ " for mountain mapper downscaling of precipitation not found." err_handler.log_critical(ConfigOptions, MpiConfig) break if not os.path.isfile(denominatorPath): ConfigOptions.errMsg = "Expected parameter file: " + denominatorPath + \ " for mountain mapper downscaling of precipitation not found." err_handler.log_critical(ConfigOptions, MpiConfig) break if MpiConfig.rank == 0: # Open the NetCDF parameter files. Check to make sure expected dimension # sizes are in place, along with variable names, etc. try: idNum = Dataset(numeratorPath,'r') except: ConfigOptions.errMsg = "Unable to open parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break try: idDenom = Dataset(denominatorPath,'r') except: ConfigOptions.errMsg = "Unable to open parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break # Check to make sure expected names, dimension sizes are present. if 'x' not in idNum.variables.keys(): ConfigOptions.errMsg = "Expected 'x' variable not found in parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'x' not in idDenom.variables.keys(): ConfigOptions.errMsg = "Expected 'x' variable not found in parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'y' not in idNum.variables.keys(): ConfigOptions.errMsg = "Expected 'y' variable not found in parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'y' not in idDenom.variables.keys(): ConfigOptions.errMsg = "Expected 'y' variable not found in parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'Data' not in idNum.variables.keys(): ConfigOptions.errMsg = "Expected 'Data' variable not found in parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if 'Data' not in idDenom.variables.keys(): ConfigOptions.errMsg = "Expected 'Data' variable not found in parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break if idNum.variables['Data'].shape[0] != GeoMetaWrfHydro.ny_global: ConfigOptions.errMsg = "Input Y dimension for: " + numeratorPath + \ " does not match the output WRF-Hydro Y dimension size." err_handler.log_critical(ConfigOptions, MpiConfig) break if idDenom.variables['Data'].shape[0] != GeoMetaWrfHydro.ny_global: ConfigOptions.errMsg = "Input Y dimension for: " + denominatorPath + \ " does not match the output WRF-Hydro Y dimension size." err_handler.log_critical(ConfigOptions, MpiConfig) break if idNum.variables['Data'].shape[1] != GeoMetaWrfHydro.nx_global: ConfigOptions.errMsg = "Input X dimension for: " + numeratorPath + \ " does not match the output WRF-Hydro X dimension size." err_handler.log_critical(ConfigOptions, MpiConfig) break if idDenom.variables['Data'].shape[1] != GeoMetaWrfHydro.nx_global: ConfigOptions.errMsg = "Input X dimension for: " + denominatorPath + \ " does not match the output WRF-Hydro X dimension size." err_handler.log_critical(ConfigOptions, MpiConfig) break # Read in the PRISM grid on the output grid. Then scatter the array out to the processors. try: numDataTmp = idNum.variables['Data'][:,:] except: ConfigOptions.errMsg = "Unable to extract 'Data' from parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break try: denDataTmp = idDenom.variables['Data'][:,:] except: ConfigOptions.errMsg = "Unable to extract 'Data' from parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break # Close the parameter files. try: idNum.close() except: ConfigOptions.errMsg = "Unable to close parameter file: " + numeratorPath err_handler.log_critical(ConfigOptions, MpiConfig) break try: idDenom.close() except: ConfigOptions.errMsg = "Unable to close parameter file: " + denominatorPath err_handler.log_critical(ConfigOptions, MpiConfig) break else: numDataTmp = None denDataTmp = None break err_handler.check_program_status(ConfigOptions, MpiConfig) # Scatter the array out to the local processors input_forcings.nwmPRISM_numGrid = MpiConfig.scatter_array(GeoMetaWrfHydro, numDataTmp, ConfigOptions) err_handler.check_program_status(ConfigOptions, MpiConfig) input_forcings.nwmPRISM_denGrid = MpiConfig.scatter_array(GeoMetaWrfHydro, denDataTmp, ConfigOptions) err_handler.check_program_status(ConfigOptions, MpiConfig) # Create temporary grids from the local slabs of params/precip forcings. localRainRate = input_forcings.final_forcings[3,:,:] numLocal = input_forcings.nwmPRISM_numGrid[:,:] denLocal = input_forcings.nwmPRISM_denGrid[:,:] # Establish index of where we have valid data. try: indValid = np.where((localRainRate > 0.0) & (denLocal > 0.0) & (numLocal > 0.0)) except: ConfigOptions.errMsg = "Unable to run numpy search for valid values on precip and " \ "param grid in mountain mapper downscaling" err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Convert precipitation rate, which is mm/s to mm, which is needed to run the PRISM downscaling. try: localRainRate[indValid] = localRainRate[indValid]*3600.0 except: ConfigOptions.errMsg = "Unable to convert temporary precip rate from mm/s to mm." err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) try: localRainRate[indValid] = localRainRate[indValid] * numLocal[indValid] except: ConfigOptions.errMsg = "Unable to multiply precip by numerator in mountain mapper downscaling" err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) try: localRainRate[indValid] = localRainRate[indValid] / denLocal[indValid] except: ConfigOptions.errMsg = "Unable to divide precip by denominator in mountain mapper downscaling" err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Convert local precip back to a rate (mm/s) try: localRainRate[indValid] = localRainRate[indValid]/3600.0 except: ConfigOptions.errMsg = "Unable to convert temporary precip rate from mm to mm/s." err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) input_forcings.final_forcings[3, :, :] = localRainRate # Reset variables for memory efficiency idDenom = None idNum = None localRainRate = None numLocal = None denLocal = None def ncar_topo_adj(input_forcings,ConfigOptions,GeoMetaWrfHydro,MpiConfig): """ Topographic adjustment of incoming shortwave radiation fluxes, given input parameters. :param input_forcings: :param ConfigOptions: :return: """ if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Performing topographic adjustment to incoming " \ "shortwave radiation flux." err_handler.log_msg(ConfigOptions, MpiConfig) # Establish where we have missing values. try: indNdv =
np.where(input_forcings.final_forcings == ConfigOptions.globalNdv)
numpy.where
import pandas as pd import numpy as np from sklearn.metrics import * from sklearn.utils.multiclass import type_of_target from sklearn.utils import check_consistent_length, column_or_1d, assert_all_finite from sklearn.utils.extmath import stable_cumsum def calc_uncertainty_regection_curve(errors, uncertainty, group_by_uncertainty=True): n_objects = errors.shape[0] if group_by_uncertainty: data = pd.DataFrame(dict( errors=errors, uncertainty=uncertainty )) mean_errors = data.groupby("uncertainty").mean() mean_errors.rename(columns={"errors": "mean_errors"}, inplace=True) data = data.join(mean_errors, "uncertainty") data.drop("errors", axis=1, inplace=True) uncertainty_order = data["uncertainty"].argsort() errors = data["mean_errors"][uncertainty_order] else: uncertainty_order = uncertainty.argsort() errors = errors[uncertainty_order] error_rates = np.zeros(n_objects + 1) error_rates[:-1] = np.cumsum(errors)[::-1] / n_objects return error_rates assert np.allclose( calc_uncertainty_regection_curve(np.array([2, 1]), np.array([1, 0])).mean(), 2 / 3 ) assert np.allclose( calc_uncertainty_regection_curve(np.arange(5), np.array([0, 0, 2, 1, 1])).mean(), 0.8 ) debug_errors = np.random.rand(10) assert np.allclose( calc_uncertainty_regection_curve(debug_errors, np.zeros_like(debug_errors)).mean(), debug_errors.mean() / 2 ) def calc_aucs(errors, uncertainty): uncertainty_rejection_curve = calc_uncertainty_regection_curve(errors, uncertainty) uncertainty_rejection_auc = uncertainty_rejection_curve.mean() random_rejection_auc = uncertainty_rejection_curve[0] / 2 ideal_rejection_auc = calc_uncertainty_regection_curve(errors, errors).mean() rejection_ratio = (uncertainty_rejection_auc - random_rejection_auc) / ( ideal_rejection_auc - random_rejection_auc) * 100.0 return rejection_ratio, uncertainty_rejection_auc def prr_classification(labels, probs, measure, rev: bool): if rev: measure = -measure preds = np.argmax(probs, axis=1) errors = (labels != preds).astype("float32") return calc_aucs(errors, measure) def prr_regression(targets, preds, measure): preds = np.squeeze(preds) # Compute MSE errors errors = (preds - targets) ** 2 return calc_aucs(errors, measure) def ood_detect(domain_labels, in_measure, out_measure, mode='ROC', pos_label=1): scores = np.concatenate((in_measure, out_measure), axis=0) scores = np.asarray(scores) if pos_label != 1: scores *= -1.0 if mode == 'PR': precision, recall, thresholds = precision_recall_curve(domain_labels, scores) aupr = auc(recall, precision) return aupr elif mode == 'ROC': roc_auc = roc_auc_score(domain_labels, scores) return roc_auc def nll_regression(target, mu, var, epsilon=1e-8, raw=False): nll = (target - mu) ** 2 / (2.0 * var + epsilon) + np.log(var + epsilon) / 2.0 + np.log(2 * np.pi) / 2.0 if raw: return nll return np.mean(nll) def nll_class(target, probs, epsilon=1e-10): log_p = -np.log(probs + epsilon) return target * log_p[:, 1] + (1 - target) * log_p[:, 0] def ens_nll_regression(target, preds, epsilon=1e-8, raw=False): mu = preds[:, :, 0] var = preds[:, :, 1] nll = (target - mu) ** 2 / (2.0 * var + epsilon) + np.log(var + epsilon) / 2.0 + np.log(2 * np.pi) / 2.0 proba = np.exp(-1 * nll) if raw: return -1 * np.log(np.mean(proba, axis=0)) return np.mean(-1 * np.log(np.mean(proba, axis=0))) def calc_rmse(preds, target, raw=False): if raw: return (preds - target) ** 2 return np.sqrt(np.mean((preds - target) ** 2)) def ens_rmse(target, preds, epsilon=1e-8, raw=False): means = preds[:, :, 0] # mean values predicted by all models avg_mean = np.mean(means, axis=0) # average predicted mean value if raw: return calc_rmse(avg_mean, target, raw=True) return calc_rmse(avg_mean, target) def _check_pos_label_consistency(pos_label, y_true): # ensure binary classification if pos_label is not specified # classes.dtype.kind in ('O', 'U', 'S') is required to avoid # triggering a FutureWarning by calling np.array_equal(a, b) # when elements in the two arrays are not comparable. classes = np.unique(y_true) if (pos_label is None and ( classes.dtype.kind in 'OUS' or not (np.array_equal(classes, [0, 1]) or np.array_equal(classes, [-1, 1]) or np.array_equal(classes, [0]) or np.array_equal(classes, [-1]) or np.array_equal(classes, [1])))): classes_repr = ", ".join(repr(c) for c in classes) raise ValueError( f"y_true takes value in {{{classes_repr}}} and pos_label is not " f"specified: either make y_true take value in {{0, 1}} or " f"{{-1, 1}} or pass pos_label explicitly." ) elif pos_label is None: pos_label = 1.0 return pos_label def _binary_clf_curve_ret(y_true, y_score, pos_label=None, sample_weight=None): # Check to make sure y_true is valid y_type = type_of_target(y_true) if not (y_type == "binary" or (y_type == "multiclass" and pos_label is not None)): raise ValueError("{0} format is not supported".format(y_type)) check_consistent_length(y_true, y_score, sample_weight) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) assert_all_finite(y_true) assert_all_finite(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) pos_label = _check_pos_label_consistency(pos_label, y_true) # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. # distinct_value_indices = np.where(np.diff(y_score))[0] # threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = stable_cumsum(y_true * weight) # [threshold_idxs] if sample_weight is not None: # express fps as a cumsum to ensure fps is increasing even in # the presence of floating point errors fps = stable_cumsum((1 - y_true) * weight) # [threshold_idxs] else: fps = stable_cumsum((1 - y_true)) # [threshold_idxs] return fps, tps, y_score # [threshold_idxs] def _precision_recall_curve_retention(y_true, probas_pred, *, pos_label=None, sample_weight=None): fps, tps, thresholds = _binary_clf_curve_ret(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) precision[np.isnan(precision)] = 0 recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(-1, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] def _acceptable_error(errors, threshold): return np.asarray(errors <= threshold, dtype=np.float32) def _calc_fbeta_regection_curve(errors, uncertainty, threshold, beta=1.0, group_by_uncertainty=True, eps=1e-10): ae = _acceptable_error(errors, threshold) pr, rec, _ = _precision_recall_curve_retention(ae, -uncertainty) pr = np.asarray(pr) rec =
np.asarray(rec)
numpy.asarray
# -*- coding: utf-8 -*- """ Created on Fri Jun 5 11:56:32 2020 Some functions to do Logistic Regression and Neural Network Learning @author: <NAME> """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize plt.rc('text',usetex=True) plt.rc('font',family='Times New Roman') def sigmoid(z): '''sigmoid function, output between 0-1''' sigmoid = 1/(1+np.exp(-z)) return sigmoid def costfuncReg(theta,x,y,lam): '''Compute cost for Logistic Regression''' m = len(y) theta = theta.reshape(-1,1) J=np.zeros([len(theta),1]) z = x@theta J = -1/m*([email protected](sigmoid(z))+(1-y)[email protected](1-sigmoid(z)))+lam/2/m*theta.T[:,1:]@theta[1:,:] return J def gridReg(theta,x,y,lam): '''Compute gradient for Logistic Regression''' m = len(y) theta = theta.reshape(-1,1) grid=np.zeros([len(theta),1]) z = x@theta grid[0,:] = 1/m*(x.T@(sigmoid(z)-y))[0,:] grid[1:,:] = 1/m*(x.T@(sigmoid(z)-y))[1:,:] + lam/m*theta[1:,:] return grid.flatten() def onevsall(x, y, labels, lam): '''trains multiple logistic regression classifiers and returns all the classifiers in a matrix all_theta''' all_theta =
np.zeros([labels,x.shape[1]])
numpy.zeros
############################################################################## # # Copyright (c) 2003-2018 by The University of Queensland # http://www.uq.edu.au # # Primary Business: Queensland, Australia # Licensed under the Apache License, version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # # Development until 2012 by Earth Systems Science Computational Center (ESSCC) # Development 2012-2013 by School of Earth Sciences # Development from 2014 by Centre for Geoscience Computing (GeoComp) # ############################################################################## from __future__ import print_function, division __copyright__="""Copyright (c) 2003-2018 by The University of Queensland http://www.uq.edu.au Primary Business: Queensland, Australia""" __license__="""Licensed under the Apache License, version 2.0 http://www.apache.org/licenses/LICENSE-2.0""" __url__="https://launchpad.net/escript-finley" """ test for util operations for unary operations without tagged data :remark: use see `test_util` :var __author__: name of author :var __copyright__: copyrights :var __license__: licence agreement :var __url__: url entry point on documentation :var __version__: version :var __date__: date of the version """ __author__="<NAME>, <EMAIL>" import esys.escriptcore.utestselect as unittest import numpy from esys.escript import * from test_util_base import Test_util_base haveLapack = hasFeature('lapack') class Test_util_unary_with_tagged_data(Test_util_base): """ test for unary operations. only tagged data are tested. """ #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log10_taggedData_rank0(self): arg=Data(55.1652630602,self.functionspace) arg.setTaggedValue(1,10.5828519405) res=log10(arg) ref=Data(1.74166569349,self.functionspace) ref.setTaggedValue(1,1.02460272017) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log10_taggedData_rank1(self): arg=Data(numpy.array([72.282406932431243, 35.729324148665768]),self.functionspace) arg.setTaggedValue(1,numpy.array([23.804409029158563, 82.472345107833661])) res=log10(arg) ref=Data(numpy.array([1.8590326057050119, 1.5530248012211607]),self.functionspace) ref.setTaggedValue(1,numpy.array([1.3766574041024322, 1.916308343937587])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log10_taggedData_rank2(self): arg=Data(numpy.array([[51.453194171526192, 13.570707659190413, 60.521549437302234, 31.599538694833306, 14.891175253445139], [98.173449179193497, 5.0087678798438278, 52.481382734493792, 29.128158011918146, 98.064075237764598], [36.407550507350827, 89.884167676960288, 39.308304837547745, 75.538185852569995, 33.601340111371606], [63.889377928887228, 4.6186118848356488, 69.136277385337451, 2.6710200091532696, 63.918258275478514]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[3.7796743359003022, 13.180984629177244, 59.461828020927761, 20.406986279454642, 72.171015597628937], [1.9587215571356407, 17.280986015551932, 84.05693756007831, 45.547880329201142, 32.870521541704392], [26.737813837799116, 37.531132826532321, 51.180765330858762, 78.2056706013324, 52.489986316281318], [63.141114740929247, 23.684128984789403, 81.88613234855724, 36.918777925154153, 19.245705222936365]])) res=log10(arg) ref=Data(numpy.array([[1.7114123405757837, 1.1326024950044853, 1.7819100380467305, 1.4996807426262928, 1.1729289748471519], [1.9919940495580575, 0.69973090574844821, 1.7200052689371468, 1.464313021855508, 1.991509937212202], [1.5611914606717532, 1.9536832012319965, 1.5944843153649138, 1.8781665504719267, 1.5263565985615033], [1.8054286595616771, 0.66451146877260103, 1.8397059914266514, 0.4266771414217112, 1.8056249322687863]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.57745438179108843, 1.1199478535847189, 1.7742382564867842, 1.309778872484638, 1.8583628167754329], [0.29197270307270162, 1.2375685187503027, 1.9245735633402872, 1.6584681709302851, 1.516806594890489], [1.4271258951849872, 1.5743916732030367, 1.7091067758161855, 1.8932382443844189, 1.7200764595510651], [1.8003122449866822, 1.3744574176029094, 1.9132103589710923, 1.5672473166998622, 1.2843338296326507]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log10_taggedData_rank3(self): arg=Data(numpy.array([[[90.690037899671296, 23.785411821546496], [91.533710749831201, 35.110847145935921]], [[31.790987742717761, 80.73086172262245], [76.879402834581697, 85.744103669605451]], [[8.1269631331611549, 52.871037837294452], [9.1059277056430368, 62.81826904111756]], [[91.343888112038101, 42.790045009836057], [98.923113540366373, 76.508459842843422]], [[75.511345908209677, 53.05029465716877], [21.756665086458423, 84.34627478690912]], [[20.881744462723443, 21.498514780242811], [94.039541086706947, 63.040386118170531]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[49.039591873498914, 47.203472254904376], [13.39618662616329, 80.407751980277737]], [[94.740716086709412, 71.680553195598819], [22.063626045323556, 78.003840393051846]], [[32.738459746566498, 34.410070237534583], [90.599810283330726, 38.951280733947229]], [[97.583590849819274, 21.088714492740912], [60.799357198434329, 9.2997265651169414]], [[92.165943907973187, 12.913360305242884], [89.764291870306224, 11.704176719145334]], [[33.563051881776232, 10.411945777444954], [23.411376390403166, 48.768282109713994]]])) res=log10(arg) ref=Data(numpy.array([[[1.9575595833906394, 1.3763106752125882], [1.9615810688900812, 1.5454413081428469]], [[1.50230402160926, 1.9070395881750126], [1.885810001264896, 1.9332042647871273]], [[0.90992828964073624, 1.7232178355155006], [0.95932419800764912, 1.7980859652326844]], [[1.9606794936916605, 1.6313427433082643], [1.9952977770394453, 1.8837094594664194]], [[1.8780122111672353, 1.7246878004452211], [1.3375923264330749, 1.9260659064246666]], [[1.3197667768440355, 1.3324084578214161], [1.9733105010994656, 1.7996188645144506]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[1.6905468471583012, 1.6739739462120611], [1.1269811891924277, 1.9052979203898317]], [[1.9765366629687919, 1.855401348340298], [1.3436768880708625, 1.8921159850039784]], [[1.5150582432096382, 1.5366855590999351], [1.9571272882619251, 1.59052174202249]], [[1.9893767950999692, 1.3240501072063162], [1.7838989877160136, 0.96847017941343561]], [[1.964570475228363, 1.1110392687676565], [1.9531036091864897, 1.0683408704968049]], [[1.5258614442649203, 1.0175318977566594], [1.3694269472799274, 1.6881374575925516]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log10_taggedData_rank4(self): arg=Data(numpy.array([[[[90.916803177883821, 54.525338275396493, 13.364424356447465, 51.314413977784419], [80.231561588327807, 82.162456273997748, 8.3566662162590539, 94.730819165987], [77.473176646131762, 20.972609574388059, 74.896335161378119, 88.10387415596874]], [[11.595133878605829, 29.493110939671826, 31.490679142790391, 39.161104201178077], [32.61379799879397, 58.334287443171277, 88.246072805422187, 35.746693154753984], [88.031724708015759, 42.086782575753446, 76.30576562684233, 41.664454917294485]]], [[[73.805732338880929, 29.722157924518495, 11.979308129040467, 56.678829139293917], [6.1110346378486105, 61.420099159473246, 24.460988572874975, 9.9837108208795708], [29.304214355701266, 69.239538294798919, 43.726703031386528, 96.453481611027584]], [[83.748022272324235, 32.953465755838039, 34.11675054427031, 16.642877884588994], [64.574790966313543, 42.938611636354324, 46.810954363884647, 91.97971646326387], [96.485547539718311, 42.855584051837369, 73.227470310618529, 73.565844556183777]]], [[[88.201355962594207, 41.836289548798113, 69.197678273827108, 31.32522051118902], [44.933739003053383, 82.304262181531868, 46.662125485783939, 25.216812874514684], [37.715123702749331, 0.33654002188789439, 77.616411403471773, 19.152072401340583]], [[92.715182555824981, 51.479018971675195, 58.389552448640487, 11.079825716836668], [66.120381536086015, 54.696122559623113, 74.602124135737157, 46.764404847359458], [92.441508878592927, 49.13843332363826, 84.277334637691311, 61.375020008040991]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[62.928329908936867, 78.142232594489769, 23.694870846158736, 77.379623356172573], [11.343774294284144, 5.0141456599208922, 65.791042346980248, 72.904521530203226], [46.165649854154751, 46.031503262450066, 64.12361229840144, 51.813579296266198]], [[22.679300826571335, 62.977332064943198, 13.771125130940399, 59.844651806488763], [14.177003870203592, 30.872939480711043, 76.89257820864357, 21.359624412764553], [64.357528521726167, 45.754541308463061, 86.917154454162898, 62.525134832715636]]], [[[75.962390497323355, 70.145694672660483, 76.932538896196164, 61.719435975622567], [77.812655042655194, 15.285729007526603, 50.390239206343267, 62.704163646191077], [49.67778501460851, 46.415926037609047, 56.588556029575471, 27.934863117344474]], [[76.060984285811514, 81.295553924710816, 69.918265989518105, 83.458206572989525], [63.469111974419398, 69.954750106734039, 31.380947651740421, 19.198733624736676], [64.480248540295207, 13.727409292553201, 31.845984674993723, 65.803516596296177]]], [[[99.122756107881074, 86.808131124216828, 1.4321294301423275, 8.3438957972984138], [34.503440819741336, 35.67099265092223, 48.831668912254365, 14.139212054299726], [98.020513665211695, 25.954655701381547, 1.3758192696653002, 95.607029783574006]], [[49.7055983523964, 12.62977930442664, 26.742962982817151, 83.708869974268808], [40.504846807543508, 68.747127993174473, 99.752608339104768, 95.244092191429729], [53.238233591188212, 34.920347644790411, 10.5293904374393, 9.2580418923770118]]]])) res=log10(arg) ref=Data(numpy.array([[[[1.958644156632638, 1.7365983686236373, 1.1259502572038609, 1.7102393735278381], [1.9043452451825991, 1.9146734141614923, 0.92203305583094985, 1.9764912927969005], [1.8891513637839643, 1.3216524721079508, 1.8744605672571355, 1.9449950058872605]], [[1.0642757674116168, 1.4697205844431256, 1.4981820269365049, 1.5928549288337999], [1.5134013769682526, 1.7659238973023306, 1.9456953871829765, 1.5532358724009305], [1.9446392105900805, 1.6241457263418644, 1.8825573542762462, 1.6197657044633726]]], [[[1.8680900938889471, 1.4730803374132002, 1.0784317358816056, 1.7534208700934903], [0.78611474534376435, 1.7883105132528869, 1.3884740047472364, 0.99929199314012029], [1.4669300824636733, 1.8403541632373015, 1.640746733021623, 1.9843179086742269]], [[1.9229745598717729, 1.5179010966078323, 1.5329676600131747, 1.2212284266018456], [1.8100630090021725, 1.6328479979852315, 1.670347495447966, 1.9636920664836188], [1.9844622657395339, 1.6320074182054687, 1.8646740314178081, 1.8666762251564302]]], [[[1.9454752618046733, 1.6215531600863007, 1.8400915232171524, 1.4958941368555099], [1.652572558384511, 1.9154223260262504, 1.6689645172636371, 1.4016901956994581], [1.5765155365073076, -0.47296328136118848, 1.8899535592530265, 1.2822157748461316]], [[1.9671508577724528, 1.7116302620231869, 1.766335146430758, 1.0445329290917416], [1.8203353509269165, 1.7379565400327668, 1.8727511932541194, 1.6699154116173478], [1.9658670256463047, 1.6914213057918996, 1.9257107921182273, 1.787991646709524]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[1.7988462059099257, 1.8928858152534429, 1.3746543458291129, 1.8886266114703387], [1.0547575768197655, 0.70019694597262339, 1.8181667671078665, 1.8627544640480471], [1.6643189533177833, 1.6630551579903574, 1.8070179796377215, 1.7144435945053167]], [[1.355629661691661, 1.7991842584914508, 1.1389694245123259, 1.7770253444715181], [1.1515844579186774, 1.4895779815869408, 1.8858844230448231, 1.329593611797627], [1.808599357832434, 1.660434205884993, 1.9391054996884767, 1.7960546369405848]]], [[[1.8805986233038012, 1.8460010205206747, 1.886110065083187, 1.7904219485998918], [1.8910502341136941, 1.1842861559437698, 1.7023464199899885, 1.7972963795632348], [1.6961622236947298, 1.6666670194238626, 1.7527286121825749, 1.4461465476300437]], [[1.8811619412061271, 1.9100667945637591, 1.8445906490239146, 1.9214690479550947], [1.8025624219423253, 1.8448172095369506, 1.4966660544104895, 1.2832725829781746], [1.8094267027962698, 1.1375885826765326, 1.5030546817757668, 1.8182491033032764]]], [[[1.9961733690924155, 1.9385604064782116, 0.15598226954758712, 0.92136887176784188], [1.5378624067983235, 1.5523151950355665, 1.6887015673518488, 1.1504252079046915], [1.9913169740527836, 1.4142152721675985, 0.1385613878659461, 1.9804898262088639]], [[1.6964053061705062, 1.1013957616632397, 1.4272095231877091, 1.9227714792212125], [1.6075069939758382, 1.8372545596256498, 1.9989242604737723, 1.9788380467284004], [1.7262236374426407, 1.5430785586149354, 1.0224032299396042, 0.96651914162145247]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_wherePositive_taggedData_rank0(self): arg=Data(-77.2124777804,self.functionspace) arg.setTaggedValue(1,-76.5223591123) res=wherePositive(arg) ref=Data(0.0,self.functionspace) ref.setTaggedValue(1,0.0) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_wherePositive_taggedData_rank1(self): arg=Data(numpy.array([95.507404522977254, 85.699228977736311]),self.functionspace) arg.setTaggedValue(1,numpy.array([22.570768490261898, -91.124851922506281])) res=wherePositive(arg) ref=Data(numpy.array([1.0, 1.0]),self.functionspace) ref.setTaggedValue(1,numpy.array([1.0, 0.0])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_wherePositive_taggedData_rank2(self): arg=Data(numpy.array([[-76.258485344070493, -13.031569421642786, 56.331314317015853, 76.297860126066155, 88.130561052243763], [-6.1668191468469757, 54.331037054715466, -81.929096086646751, 11.266746882647325, 48.963064080280049], [60.302120288359191, -98.222376211103324, 24.902263686516406, 76.321693298041907, -15.612529577369273], [-89.36373926383007, -99.797095905565556, 55.669412249479365, 73.050408854136265, 58.641360635396893]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[84.521756116539905, -21.50523951337766, -71.758529828844189, -31.116527593639944, 73.480533241007663], [61.356497085608538, 87.01679183964643, 73.718163356212273, 65.825276106677222, -67.838266379557695], [94.900878893099161, 6.6085152597015195, -16.431260589637816, -60.728182658412621, -20.252278299611689], [16.99540909074102, -92.327824606679144, -84.194337061595093, -99.086577441520987, 1.4609814172980435]])) res=wherePositive(arg) ref=Data(numpy.array([[0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[1.0, 0.0, 0.0, 0.0, 1.0], [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 1.0]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_wherePositive_taggedData_rank3(self): arg=Data(numpy.array([[[80.508473585546227, -73.527464319061067], [-63.562066924370612, -27.980541518495002]], [[-41.335157425780203, -43.662467900732139], [19.157012696460683, -20.184083339906508]], [[35.870058595838856, 72.278036946039947], [75.339493834805268, -9.1707737241088836]], [[-68.38683588297539, -47.88605412318423], [-20.399875642984753, -29.241844531878812]], [[-67.76044429517556, 55.107326245665774], [59.476906111528308, 65.132080499441145]], [[39.011636203343926, 68.793212772548998], [-5.2117301620619116, -37.964739068093408]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-43.212061592928961, 66.640597663557344], [-43.214739911125989, 71.228530019395464]], [[86.72455453389685, 0.070521918497504998], [18.131949004592585, 67.642647170226724]], [[-20.485683043230935, -76.185964145658346], [1.5005108312435596, 24.688848573063282]], [[86.368146458112335, 12.287053770624041], [65.053528607732602, -40.176824870036555]], [[67.412368199122028, 93.02485737256805], [2.3354688446274565, -77.333138418682523]], [[68.799317717343797, 50.656492146642165], [-11.239017823949453, -0.61920809407223487]]])) res=wherePositive(arg) ref=Data(numpy.array([[[1.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [1.0, 0.0]], [[1.0, 1.0], [1.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [0.0, 0.0]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.0, 1.0], [0.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[0.0, 0.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 0.0]], [[1.0, 1.0], [1.0, 0.0]], [[1.0, 1.0], [0.0, 0.0]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_wherePositive_taggedData_rank4(self): arg=Data(numpy.array([[[[88.580956068056565, 14.00279382125251, 99.108011223826338, 45.511681652958828], [82.854668978990787, -71.320284703817521, -47.231688078520051, -87.449857804724985], [93.257616694753921, 52.060412772871643, 18.537844019590111, 53.497901549669848]], [[-46.91724689666372, -75.312992998386903, 24.379946633037505, 3.6136809288494618], [55.419075241203274, 64.655875544211057, 5.6929661553654682, -80.668713367017716], [9.6958327067133041, -69.61412534721569, -39.445219790469352, 87.567956888590658]]], [[[-73.321457711307843, 10.82305253374048, -40.400284930212905, -92.490874982007981], [-79.425928971727643, -75.222388693443605, 89.503284861115134, 83.502961391303643], [-88.448173270777147, -50.193426055655976, -70.923108466792598, -25.976738197547292]], [[-8.5488119421924864, -1.9838167877165915, -56.838230691876412, -35.192343099118673], [-14.387471763442306, -65.661449017261418, 75.22011478664038, -84.87320516882086], [98.450531686197365, -81.019483890591289, -94.982842703436916, -49.156850403858819]]], [[[75.118284154717031, -51.311615796136792, -89.182477325683962, 55.44041573353897], [-80.77776129565197, -34.097004704596088, 75.361574051712552, -16.248241864062635], [84.169901667127789, 74.398090927221261, 86.145123497406473, 88.071402053067715]], [[93.648624647556488, 1.6348597078223719, 6.0244027607641755, 19.383999786570769], [-41.76041050584827, 10.228798270020405, -47.174639917060254, -7.0250102695790275], [-48.870699185907625, -19.365332607009293, 51.663276846691986, -68.319951789687167]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[43.072392507789715, 25.44897255914222, -92.365292140693199, -72.28679201432702], [-35.283625661883562, 51.080784351734991, 94.294048609912153, -48.875639845246745], [54.267354274548921, -77.595839033594572, 13.255608540993677, -79.509755448949591]], [[76.273739615561396, -51.362336359893511, -85.195354636261797, -4.4124416020654849], [-97.854643345235729, -10.568395289402361, -79.904773298276851, -37.753686446232606], [64.250602682004057, -79.115735111510105, -32.503923559859047, 90.214123166503839]]], [[[39.304515721103343, 85.49840367909664, 60.966173887100808, 4.4734960523447711], [53.114809276601221, -14.423789459082229, -13.61152991089152, -96.486812903270419], [-52.378017052068572, -0.16685024940963444, 2.2217407671002007, 2.7128133952607953]], [[58.208300545381121, -23.46308457904766, -67.68416120310016, -35.150913017323049], [-18.407699905877124, 1.6451869874854879, -1.401899624666143, -87.412868064712512], [-65.336170807327917, 68.755684784091613, 85.913136752325443, 27.997231935596872]]], [[[-66.686788600040472, 6.9245385685220668, -75.689596750307246, -73.922470171071836], [-56.830071118701973, -87.957208168819264, 15.670539647819766, -25.0926801353923], [-9.3946841261667942, 81.217979881426032, 31.881116652908219, -94.330057102451676]], [[-13.101408221863963, 5.3815053309403993, -42.53780805955558, -33.796637768394746], [72.590706488145599, -33.171908847280093, 38.102432612245622, -71.169285857339815], [-54.513514454446252, -15.087111212827736, 68.23763859582499, -73.63388136632733]]]])) res=wherePositive(arg) ref=Data(numpy.array([[[[1.0, 1.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0]], [[0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 1.0, 0.0], [1.0, 0.0, 0.0, 1.0]]], [[[0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0]]], [[[1.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[1.0, 1.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0], [1.0, 0.0, 1.0, 0.0]], [[1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 1.0]]], [[[1.0, 1.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0]], [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 1.0, 1.0, 1.0]]], [[[0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 1.0, 1.0, 0.0]], [[0.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0], [0.0, 0.0, 1.0, 0.0]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNegative_taggedData_rank0(self): arg=Data(-19.2850342868,self.functionspace) arg.setTaggedValue(1,-31.7600922133) res=whereNegative(arg) ref=Data(1.0,self.functionspace) ref.setTaggedValue(1,1.0) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNegative_taggedData_rank1(self): arg=Data(numpy.array([-69.991852168228164, -51.135726516141467]),self.functionspace) arg.setTaggedValue(1,numpy.array([64.371955068626278, 56.155825493201263])) res=whereNegative(arg) ref=Data(numpy.array([1.0, 1.0]),self.functionspace) ref.setTaggedValue(1,numpy.array([0.0, 0.0])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNegative_taggedData_rank2(self): arg=Data(numpy.array([[48.844728607913282, -72.785354714899881, 53.3081372120038, 18.65599332913655, -46.488345451249288], [-82.483069621758148, -33.022373579278181, -62.408982644197899, -30.801150776046654, -3.1747181449523367], [68.051986644816708, -10.324492516248156, -35.538799676186628, -76.221649010357453, -10.365176815811154], [12.925649512488647, -69.48406607854993, -14.171821915240514, 66.552057082826508, -98.385243996883332]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[63.457797271160132, 61.751200439630537, 75.390084871615102, -50.818227552321105, 64.870767673506009], [-37.606099936006679, -75.587774814583128, -30.927974509536099, -95.537626302784801, 85.46249790652584], [-78.74170463945444, -96.246956122658901, 26.26558952019225, -96.296602166810459, 28.778665120929929], [13.299637195309444, 63.658102616485678, 86.796794951252622, 49.68308177081957, -86.280121323311391]])) res=whereNegative(arg) ref=Data(numpy.array([[0.0, 1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 1.0, 0.0, 1.0]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.0, 0.0, 0.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 1.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNegative_taggedData_rank3(self): arg=Data(numpy.array([[[69.353620509386616, -74.080076314847517], [-30.249703014852415, -95.672525613399003]], [[-8.5039415761560377, 60.253313051648774], [-13.801342152251323, 40.764779434191979]], [[-36.581197219625516, 75.047667541458054], [-77.793778451165309, -72.594277712095419]], [[-72.619314204148793, -14.806208252588647], [87.915581023315411, 95.105365322376201]], [[15.147306304672597, 14.666885700887903], [81.180471023319853, 85.165436080616928]], [[43.823915191016482, -49.98290658400564], [-72.588576349996117, 96.137982642309737]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-1.2728722356096398, -60.492198430412984], [24.24667632089907, 27.091663987424013]], [[-32.679381620480711, -97.47865445886741], [-56.075348674988426, 38.715773862053993]], [[16.009087713355214, -68.066576558113326], [25.559656695696759, -9.5774290533191078]], [[-52.544021441893761, 47.869839568114628], [-72.606586250159438, 18.849506685859737]], [[-73.113930006549779, 4.602906873284013], [-56.38605187693679, -27.367675802071062]], [[70.16996004059547, 60.366327688828079], [15.101213546349101, 72.59226569598178]]])) res=whereNegative(arg) ref=Data(numpy.array([[[0.0, 1.0], [1.0, 1.0]], [[1.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [1.0, 1.0]], [[1.0, 1.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 1.0], [1.0, 0.0]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[1.0, 1.0], [0.0, 0.0]], [[1.0, 1.0], [1.0, 0.0]], [[0.0, 1.0], [0.0, 1.0]], [[1.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [1.0, 1.0]], [[0.0, 0.0], [0.0, 0.0]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNegative_taggedData_rank4(self): arg=Data(numpy.array([[[[78.567215316552364, 73.624001898494328, 6.6089006903017093, -16.066074308908668], [4.6493463096686014, 90.440517625816341, -39.347037075742385, -33.297969929859519], [64.699949994741132, 29.115653652245214, 37.822018084896769, 40.128249957713678]], [[-55.450069727212096, 81.466719888892953, -14.393705514447504, 50.041870644315622], [-26.112384871019117, 91.0126228352174, -89.730765921875076, 49.059538764459973], [38.483838119837088, -96.69931018125024, 20.572376725250095, -19.453405707808002]]], [[[13.464674311866403, -63.957052627899927, 27.769891567982711, -33.550495063440906], [43.131655313012601, 4.7880717355257048, 11.709216606284343, -73.375330948322741], [24.471638138818889, -70.587099709547374, 42.297065361106633, -34.039431318624949]], [[21.857294994809905, -19.704682667449276, -86.108666845333829, -75.436492450552578], [87.94303965840291, 97.530458057774098, 25.97064557505557, -36.945527429857819], [90.911480668328323, 6.1671903724853223, 25.709485934911285, -21.355346056419705]]], [[[67.782998886788846, 70.917380141486149, 13.823579458254926, 18.402548374224679], [-15.060657679519679, 82.09963819729029, -31.92180428664399, -97.536671374116139], [37.669076925828392, -75.58771930699335, 45.895049803831114, 35.48815045691137]], [[12.714019161158106, -57.944653564941675, 62.430334339808155, -66.857496337271897], [-6.4429554795663648, -8.3994486590568158, -80.192945429058966, -93.438462560326158], [34.875330751872951, 69.588212740586386, -70.503265404744013, 35.080768936736405]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[89.523458495532452, 6.8140581760945906, 52.278561982811112, 1.9103504285077975], [-31.826956501731047, 58.297165172424911, 29.759024667767875, 0.92087730333993534], [28.957424646854918, 94.135111344573943, -32.433995320712384, 67.081234380844705]], [[11.644557903097066, 56.050511369559786, -11.185754045196305, -94.014631510042364], [-89.421458369162281, -27.806019206551923, 42.132488895560329, 37.020232240255524], [43.230885088291984, -83.189373937963836, -74.094138681022528, -14.531760465098415]]], [[[-26.981360981714403, 24.064730821609444, -21.105581216059704, -97.174757209589899], [33.300290491855606, 10.01590267931401, 51.489118545402135, -96.912506834915362], [47.653206939723475, 64.688747326811637, 94.943693671280016, 47.03846492475401]], [[-35.473632387755515, 72.503085095886973, 4.845984081191105, 64.852159504672017], [-19.964052254250646, 84.483169362896547, 73.78740822181058, 45.240727131786315], [-13.995221221821026, -34.521569172453638, 98.500596615631622, 66.324330733855049]]], [[[-16.964585323232882, 26.406760086703088, 20.25984200782429, -62.287754490513514], [-2.4701333556092777, -77.61548111631889, 86.671403323307715, 50.284535309177016], [-39.214050892482689, -36.902295671557624, 26.750130444414737, 91.76317471624742]], [[50.615056318343221, -90.898178535525375, 94.958720223937036, -93.80724680506188], [4.8266070012118405, 10.075720310299204, 42.099211642413536, 10.006938668548315], [55.032904164362009, 11.263981513981918, -63.130755368899848, 81.657868184177858]]]])) res=whereNegative(arg) ref=Data(numpy.array([[[[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]], [[1.0, 0.0, 1.0, 0.0], [1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0]]], [[[0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0]], [[0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0]]], [[[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0]], [[0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0]], [[0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0], [0.0, 1.0, 1.0, 1.0]]], [[[1.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0]], [[1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0]]], [[[1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0]], [[0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonNegative_taggedData_rank0(self): arg=Data(-78.1544615646,self.functionspace) arg.setTaggedValue(1,-78.4151851666) res=whereNonNegative(arg) ref=Data(0.0,self.functionspace) ref.setTaggedValue(1,0.0) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonNegative_taggedData_rank1(self): arg=Data(numpy.array([17.602013218893518, 29.547786128150307]),self.functionspace) arg.setTaggedValue(1,numpy.array([0.26203337714731845, 57.479799350895149])) res=whereNonNegative(arg) ref=Data(numpy.array([1.0, 1.0]),self.functionspace) ref.setTaggedValue(1,numpy.array([1.0, 1.0])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonNegative_taggedData_rank2(self): arg=Data(numpy.array([[-0.38327384036398371, -34.645139490102878, 65.429233454558641, 95.235253228502785, 29.097950082051085], [-43.855663256862009, 55.686325731330783, -67.824366444401477, 16.702344987904212, 22.218041380401374], [78.969508595512451, -60.305312026473089, -59.523292190062982, 74.808651981782504, 79.872897022513683], [63.606277951467064, -76.462470884188775, -72.691576180524351, -49.079190521880697, 45.394053081951711]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[-55.552381227989599, -54.271211889675719, -12.582403003252466, 8.5917236679262601, -22.455892824367908], [-16.776071759898258, -19.553013266124879, -21.813530512599172, 9.6881948240011582, 98.11892272389133], [-4.3416722922198403, 38.725023582219706, 1.4757500981863529, -39.708613920267013, -80.375084634623164], [-99.616497105650254, -57.007203450971453, 22.87724914844766, 83.97051539516184, 37.346070066579273]])) res=whereNonNegative(arg) ref=Data(numpy.array([[0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 0.0, 1.0]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0, 1.0]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonNegative_taggedData_rank3(self): arg=Data(numpy.array([[[-13.892573110308774, 43.478804863362512], [-36.040457512639264, -51.981819940572649]], [[-62.169201833468925, 57.986370401331953], [-4.1036429741114802, 48.023435568940073]], [[-80.645707040180412, -10.141695439237907], [-4.8056301100563417, 48.75486098147897]], [[-91.963242822660888, 88.059478204857612], [43.320911501208769, -22.30145015628095]], [[-86.786948436003428, 31.120205822215894], [34.433146395475489, 87.18740518030657]], [[-9.4220225035139435, -20.184163123649284], [-19.921535324926339, 25.857031424846014]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[41.114617505053531, 77.617269604848303], [-73.085362575419381, -7.1084361894678381]], [[43.213365294039818, 70.52545134609511], [99.082934876352368, -17.971939602273878]], [[33.829613730905436, 30.404114402478598], [-57.246747638382956, 34.541916089376258]], [[42.317171529871842, -54.768491746554183], [-23.879054879709557, -50.383761075240805]], [[-57.28165027876075, -45.225575620770144], [-31.710104697280144, -75.917892701858989]], [[19.07744929226061, -71.495870306203571], [-10.602129940209977, 68.760350259599107]]])) res=whereNonNegative(arg) ref=Data(numpy.array([[[0.0, 1.0], [0.0, 0.0]], [[0.0, 1.0], [0.0, 1.0]], [[0.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [1.0, 0.0]], [[0.0, 1.0], [1.0, 1.0]], [[0.0, 0.0], [0.0, 1.0]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[1.0, 1.0], [0.0, 0.0]], [[1.0, 1.0], [1.0, 0.0]], [[1.0, 1.0], [0.0, 1.0]], [[1.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[1.0, 0.0], [0.0, 1.0]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonNegative_taggedData_rank4(self): arg=Data(numpy.array([[[[31.064058622394185, -23.221839301023678, 68.763472697005085, 59.65832614821349], [-40.149807242440751, 55.03145271535027, -64.4959578656334, -2.1518498706666946], [55.404104858000437, 49.396652662387567, -49.624666695838648, -62.848812119970042]], [[-91.389556659029211, 72.332633311747458, -52.32546838722876, -38.634885477981307], [-71.603348675002792, -2.4791274164933697, 24.130510966659983, -5.0112124293864042], [-25.546226826848041, 27.236363562768304, -61.886267845384936, -60.880197873757623]]], [[[27.658384194987519, 84.510658257152215, -58.927887590834139, 49.108023674331434], [-70.267015166041148, -79.457401602686048, 56.127202277200126, 25.839278403805395], [26.875154742009613, 1.4487959347651866, -88.070139902975072, -38.510490284412093]], [[-47.959868897350646, -5.7819206338316036, -56.800386597248306, -55.237835036677076], [28.516757929967042, 90.778719180512979, 15.739130130788766, -74.040382579111679], [-71.111296754698344, 12.107778742152561, -79.104526891456999, -41.005699875297388]]], [[[18.567303332583634, -73.676314650547354, -97.749794073567415, 59.159591299795522], [29.97705193558275, 90.413624368349787, 24.306766472883965, -69.797371947362393], [-39.289453466471549, -40.65110745107021, -59.028684721855718, -20.270569577803272]], [[83.125187150431088, 27.563776588259614, -9.5176832989115212, -90.5959013499223], [-69.524801083902418, -31.838028445081164, 14.626332705121882, 38.303372039757761], [-9.2077846008452156, -84.558594581494532, -15.169395910120073, 39.522809676227837]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-69.876802801564537, -5.9375511403534773, 37.812297768315801, 17.556587568915376], [53.958312857432333, -19.376205062615014, -22.920706818379031, 68.341061958106707], [49.048432585399325, -25.760395137889574, -82.684148984451667, 70.938532287692567]], [[79.604355123625282, 28.576654650134685, 50.589177240580227, 31.904425649228699], [49.30738620973429, 22.581941862820869, 70.638562695750181, 65.557713647175206], [58.121816082877899, -69.657739078881974, 57.259334058428038, 37.031029061370617]]], [[[-57.067719073541355, -83.590170196214359, -87.889020994197423, 77.03678490031848], [23.421242774091994, -64.962452658702915, 43.744442519067377, 67.095949407897251], [-9.97401351270058, -84.15959986185959, 46.118179052522692, -52.922820472672541]], [[52.186352698780212, -8.0958035404479176, -33.331663389002927, -76.607138954123229], [-20.87488584894281, -63.126524249384097, 8.0428232453640902, 52.19000132579842], [-60.91173907515013, 18.081845081324616, -44.231668576405255, -37.550260961693603]]], [[[-27.309398591668639, -5.5219138202315321, -87.956648017701525, 10.89423659338236], [32.139714674893639, -17.347998935818666, -41.884445570079933, -22.512510804223936], [45.623599790055323, -34.102558427374177, 87.032277901218464, -25.231126136650801]], [[-82.687583433642246, 10.301272646701861, -80.557394277641677, 58.389873199971959], [61.375478497215084, 78.589623746356949, -90.675956160020263, -73.180287451090507], [-60.580572035442451, 60.154646880978504, 59.209979266176958, 79.32948990654927]]]])) res=whereNonNegative(arg) ref=Data(numpy.array([[[[1.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0]], [[0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 0.0]]], [[[1.0, 1.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0], [0.0, 1.0, 0.0, 0.0]]], [[[1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 1.0]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[0.0, 0.0, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 1.0]], [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 0.0, 1.0, 1.0]]], [[[0.0, 0.0, 0.0, 1.0], [1.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0]], [[1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0]], [[0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 0.0], [0.0, 1.0, 1.0, 1.0]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonPositive_taggedData_rank0(self): arg=Data(59.5300640359,self.functionspace) arg.setTaggedValue(1,-2.15432794908) res=whereNonPositive(arg) ref=Data(0.0,self.functionspace) ref.setTaggedValue(1,1.0) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonPositive_taggedData_rank1(self): arg=Data(numpy.array([-35.653771579383431, -57.809515571795679]),self.functionspace) arg.setTaggedValue(1,numpy.array([-58.726261256725685, -4.9867937639187971])) res=whereNonPositive(arg) ref=Data(numpy.array([1.0, 1.0]),self.functionspace) ref.setTaggedValue(1,numpy.array([1.0, 1.0])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonPositive_taggedData_rank2(self): arg=Data(numpy.array([[66.312754795349093, 82.034605718677227, -46.821806782974143, -87.117091329676626, 79.995435394657591], [23.928044089256971, 37.587150540719591, 8.7201565013642579, 16.527262198522521, 43.468010592942164], [-58.095116913299293, 29.439827568578721, -0.091616442994578051, -54.761434852877166, -11.808816784702444], [-69.299763869285897, -13.113050785108982, -5.1976088703165289, 21.099974177713761, 6.0733045244008679]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[73.896405389024125, -46.001844583629413, 98.809723817761267, 30.537291415620416, 40.574672076255666], [55.468937066548705, 11.801387698915406, 20.974309113460365, 77.660614559427415, 28.161039265035498], [70.623954948137481, -37.457034114261312, -40.898398662139201, 26.109057449542121, 10.398162551919015], [-63.730141883353532, 62.137449485782696, -90.96748737577029, -20.908383264888286, -70.74195335323418]])) res=whereNonPositive(arg) ref=Data(numpy.array([[0.0, 0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 0.0, 0.0]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0, 0.0], [1.0, 0.0, 1.0, 1.0, 1.0]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonPositive_taggedData_rank3(self): arg=Data(numpy.array([[[25.436500051631739, -52.748846289150244], [41.085054249733929, 37.28010897113333]], [[99.576478076717791, -9.9679696571838718], [-61.344641894951302, -3.7437435600148774]], [[-50.906089775590772, 64.943203676394404], [42.050588774194182, 63.118383844777753]], [[-35.778055648047726, -63.920957612224157], [15.37985889218254, -68.424348417967053]], [[-56.55550570286416, 42.304324718922885], [70.622324649491162, -12.596055870540511]], [[34.100758417960179, 8.1628573265152085], [-32.962482469141108, 81.284708270077232]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-43.479659251216304, 54.528183443358017], [-57.05484443799638, -63.991441300924265]], [[-26.9579882337963, 26.355076456251851], [-46.233015073952679, 36.53708746210657]], [[-24.786797130371284, 18.160754379725191], [34.747212955275302, 87.480335155520635]], [[28.625134809911913, -60.971379031499382], [-88.66690636480152, -2.9400365936678128]], [[-51.567858740292259, 4.1984826727889129], [-31.243781268304645, -95.989957539907223]], [[-17.551752211418361, -80.268436137583237], [75.208631120335241, 46.121751987400842]]])) res=whereNonPositive(arg) ref=Data(numpy.array([[[0.0, 1.0], [0.0, 0.0]], [[0.0, 1.0], [1.0, 1.0]], [[1.0, 0.0], [0.0, 0.0]], [[1.0, 1.0], [0.0, 1.0]], [[1.0, 0.0], [0.0, 1.0]], [[0.0, 0.0], [1.0, 0.0]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[1.0, 0.0], [1.0, 1.0]], [[1.0, 0.0], [1.0, 0.0]], [[1.0, 0.0], [0.0, 0.0]], [[0.0, 1.0], [1.0, 1.0]], [[1.0, 0.0], [1.0, 1.0]], [[1.0, 1.0], [0.0, 0.0]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonPositive_taggedData_rank4(self): arg=Data(numpy.array([[[[-97.589886785634022, 75.704136798826028, 72.570441980077703, 41.142807006068949], [52.186886198585341, -81.13583733115226, 19.645361321685243, 25.969196500252664], [90.98310621636935, 91.207424784752419, 32.52582221573229, -46.376838969725199]], [[-24.243208827988809, 20.526435158270147, 46.439239753806106, -33.65061411585431], [-50.041229640131604, -49.061380582231109, -39.874744210873516, -36.550968632191804], [32.736481368599613, -75.040028568765322, 46.201877528037613, 66.414419319197265]]], [[[2.5037656480006802, -29.171488642086899, 37.367016013632622, -70.265534203155468], [-5.0615104556033259, -75.110477824991989, 7.1287630039422965, -17.239036014080057], [-28.096242015816813, -7.528715826985021, -85.497229220965764, 22.546758335502105]], [[74.817640632876163, 40.267037402027995, 10.981140051252439, -15.739056364934243], [-11.202000266050078, 76.223681897029763, -17.41622944432541, -3.2765461050635594], [-25.659541213077148, 80.506749270081087, -1.000794733449311, 98.399202561993803]]], [[[-46.153348025882913, 64.301872580934884, 67.551433419371364, 86.776352830516998], [28.558361132430576, 78.958726721940224, -35.553376040555037, -17.553520543738372], [11.165619248232318, -97.969411066483929, 50.903682207966739, -10.289318584097984]], [[22.570215658384171, 75.89748134306177, -89.388639375388706, -54.6472406344094], [-33.869164257400811, 38.645420950299723, -3.8841219051897156, 28.668559253094486], [-82.413441576756185, -78.700513819287238, -75.50816982500163, -52.061106946967861]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[36.219375399209952, -17.824472494521174, 82.058503767107737, -71.379484930391683], [13.550225541993569, -67.628807348691709, 20.055125227804993, -29.234664858312229], [-18.292530127300381, -39.897170713739548, -39.328945564903783, 2.857031958593808]], [[49.335977298056065, 80.508916415103982, -18.493351689982831, 51.621759203569923], [33.973864190922626, -7.4031669533306257, 11.727041061390153, 64.639807865470686], [42.573651614588044, 41.852110298728377, -64.065734918246676, -6.9916640699874506]]], [[[41.50002565593519, 87.840585919409989, 2.0581894170644546, -3.9639341014441811], [8.7028087633685089, 69.156286173220167, -83.153991217442822, 14.406484280025737], [-34.420051853304614, 94.578630567732802, -48.230261021352902, 53.242310400679315]], [[-84.442282958911122, -99.822594295799561, -39.959520090517287, -90.546856339981431], [20.518433145652864, -98.471982254610907, 22.178227167774111, 71.388198500404911], [69.127077441526353, 43.428513943743894, -71.615864538073225, 20.113448559972809]]], [[[89.953272044597895, 43.16167804611743, 53.919371581222919, 1.3311125255161187], [-95.465237294020739, 67.804004576510494, -14.742900384283658, -27.263059934517742], [69.754390418730139, 79.35923926098971, -51.386888599874567, 51.913251831821356]], [[16.947530613873013, -39.040428548927153, -46.681825859807603, -77.418328228167098], [62.579502644870047, 54.635165987247035, 10.68424789801503, 66.321201110893043], [78.476241287880896, -29.449312093617081, -59.013155676678885, 6.6196016328634357]]]])) res=whereNonPositive(arg) ref=Data(numpy.array([[[[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]], [[1.0, 0.0, 0.0, 1.0], [1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0]]], [[[0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 0.0, 1.0], [1.0, 1.0, 1.0, 0.0]], [[0.0, 0.0, 0.0, 1.0], [1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0]]], [[[1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 0.0, 1.0]], [[0.0, 0.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[0.0, 1.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0], [1.0, 1.0, 1.0, 0.0]], [[0.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0]]], [[[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 1.0, 0.0]], [[1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0]]], [[[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0]], [[0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereZero_taggedData_rank0(self): arg=Data(-60.3073206028,self.functionspace) arg.setTaggedValue(1,-63.6162748199) res=whereZero(arg) ref=Data(0.0,self.functionspace) ref.setTaggedValue(1,0.0) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereZero_taggedData_rank1(self): arg=Data(numpy.array([57.478569368864356, 25.206882696210428]),self.functionspace) arg.setTaggedValue(1,numpy.array([26.231910549413783, -27.085991237832573])) res=whereZero(arg) ref=Data(numpy.array([0.0, 0.0]),self.functionspace) ref.setTaggedValue(1,numpy.array([0.0, 0.0])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereZero_taggedData_rank2(self): arg=Data(numpy.array([[23.125617746775646, -41.981698421134659, 88.634083806667888, 85.022668924224405, 35.388273276293091], [-85.767444923711466, 47.859030088870099, -69.395187041220851, 35.5734575739055, 24.859215630808464], [45.04844052116951, -95.695008500839691, -94.766369979921919, -29.956871512177429, -11.074586010585591], [-20.148312524898017, -79.433644676490502, -19.87738780106119, 58.95117313559922, 50.971789815159298]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[-81.469429807666714, 11.07859262128126, 33.849563441706891, 14.848734531164027, -42.320200232359248], [37.962288693888382, -43.238362945841821, -64.391556397361285, -7.8460700293939283, -20.730397433363208], [97.393519560018603, -94.167885954290782, 94.002103086540188, 51.422088904276251, 63.729022355064359], [95.391379833296668, 62.703543794846581, -70.921738135430985, 70.232187871319354, 86.806722655888649]])) res=whereZero(arg) ref=Data(numpy.array([[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereZero_taggedData_rank3(self): arg=Data(numpy.array([[[3.4027245130060919, -61.09284878347885], [-57.399713635858582, -71.643573213948272]], [[-11.523234389426221, -44.578343090400388], [83.731526181974061, -65.104529547136394]], [[-12.081015577295332, -4.172878078793758], [-89.292376152335635, -25.743293720522729]], [[53.199172477134539, 60.186513433215026], [67.767250940092424, 89.139480682860551]], [[17.059488076066813, 37.190593835102874], [-19.912772973905007, -65.497513416201755]], [[-25.360470411847373, 43.142714268731936], [21.199116504341944, 37.635585100309612]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-11.26010310706846, 34.128222291421537], [-68.434470407451215, 70.638428466633115]], [[-77.544908385112606, 29.23464957312018], [-3.0407974101420763, -31.841776259248377]], [[-4.4176903627463133, 37.991200497907613], [-9.6402073259949077, -9.0856737835734833]], [[26.730099650557975, -65.247161722597966], [-46.62552821590311, -56.733831760674391]], [[-36.874008752740004, -2.7797064670085092], [-64.175546396086474, -99.28541091199989]], [[-5.5337745528672997, -45.378676661048623], [-90.349005740211496, 97.078047761501324]]])) res=whereZero(arg) ref=Data(numpy.array([[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereZero_taggedData_rank4(self): arg=Data(numpy.array([[[[93.831260447485874, 7.7407513574382989, 78.739371854572369, -68.363475865430772], [72.824139460523099, 69.006620095233416, -67.000181405109601, 95.691658959713436], [-46.580816493258205, -19.62723037000471, 7.1964131702848562, -94.003505042058904]], [[85.06939733259054, -12.729485711394545, -95.590773804649672, 66.129455034149544], [52.5485700301343, 1.8469556361458359, 59.238187186745563, 0.89938435519005111], [50.763202555174757, 38.515989700998915, 14.509412952688436, 19.098524401100889]]], [[[15.441947994447844, -87.547935450574357, -15.093661946970599, -34.577822306130841], [47.655788884739167, -13.593073478163831, 73.901883902793401, 50.766658802389429], [93.106292386838589, -26.449736171409441, -32.523468497737113, -36.825111629796645]], [[-71.149835259772914, -77.966052917274098, -40.594142361637765, -93.497294871292127], [-37.049924286179639, -49.307577406565684, 68.805856372840026, -83.077598973248371], [-35.950769604858124, 53.444154742123146, -29.736934427716307, -0.43882835811794507]]], [[[-28.804291026424494, 36.420207954120713, 44.975880956788671, -18.160405554758484], [-15.015205668084675, -36.844405430803782, -55.648827533689385, -63.666847070332658], [-38.323848308813055, -86.094993931559884, -47.504890814498715, 75.386260617980327]], [[-49.43361721674431, -48.467520039782322, -13.393183500735859, 33.478259837688171], [-46.591630982573548, -15.732761279461855, 55.398884354877111, 42.656388373806152], [20.973563827725044, -83.810921836893868, 37.036944354976555, 95.055268401462797]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-72.44920515300953, -5.1325597489963855, -70.544555413458653, -21.868457284041369], [28.059209379223262, -97.012837923502218, 17.364646849616733, 69.883388876193692], [-88.768250111578212, -49.421061117246538, 33.314147890655022, -43.967461259845294]], [[35.724082924424522, 21.20468417199848, 5.277992247636206, 77.828098329437609], [83.375548593581215, 72.566063535932898, -39.58180677719443, 85.382749592078113], [72.093057622870248, -28.938840377791905, -22.476983470220873, -96.655105739800831]]], [[[-95.917035925462301, -0.3656737198951987, 78.260689518762831, -26.841902628320639], [69.925254995666364, 62.325571622342864, 47.660763937485541, 32.260139442261902], [-2.2726094824157173, 8.5002090466555558, -41.642153397299793, 33.220453104115677]], [[22.661303145423545, -52.489538131795044, -89.151747983141831, 18.242363722336137], [-25.178052459037687, -20.34523575497515, 25.391874579437612, -58.809820165710214], [-60.790728856888791, 37.195293760072531, -41.479538487050348, -21.114525244725101]]], [[[-49.820373222887085, -49.810943103539486, -24.582970051099622, -22.599787936123761], [76.777056975485948, -58.811863993488878, 77.842740611399165, 18.640966616664173], [-19.158614872609775, -72.976807090542167, -86.531194215051471, 48.429555859657114]], [[85.258816970664725, -15.780961333046449, 49.948813051783191, 53.155720106784031], [-85.9905021073629, -0.23998617994342908, 82.190464755424955, 63.007615196139739], [-23.037986153437245, -37.536769208240784, 75.375056084992167, -10.052811879961808]]]])) res=whereZero(arg) ref=Data(numpy.array([[[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]], [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonZero_taggedData_rank0(self): arg=Data(-1.9710533403,self.functionspace) arg.setTaggedValue(1,99.5842297151) res=whereNonZero(arg) ref=Data(1.0,self.functionspace) ref.setTaggedValue(1,1.0) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonZero_taggedData_rank1(self): arg=Data(numpy.array([-59.49925191560812, 86.042241301467669]),self.functionspace) arg.setTaggedValue(1,numpy.array([42.554874917129013, -64.6377412204602])) res=whereNonZero(arg) ref=Data(numpy.array([1.0, 1.0]),self.functionspace) ref.setTaggedValue(1,numpy.array([1.0, 1.0])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonZero_taggedData_rank2(self): arg=Data(numpy.array([[-6.8281814038072071, -59.600553597455487, -83.253618903284348, -55.555714436842266, -58.64125306605785], [-54.669636874026729, -40.668963536281467, 48.151126090125331, -82.810118365697718, -2.0625309958108886], [-50.145961443418784, 33.196540210116666, 18.939660902081542, -35.312472223501246, 45.025825447182569], [-91.787750952036063, -19.219817615082405, 30.739339723723532, 46.808225524785058, -53.347997111730059]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[-6.1766328777260071, 12.353983207929858, 87.643004443775652, 0.1054506713352481, -49.898039891751097], [-6.464367133652658, -99.376428379787214, 81.830552974282909, 3.3503835694606181, 99.424767953367194], [-23.667088793561319, 65.145198516233364, -10.00780177932495, -69.125279379621645, -70.19911439214637], [-56.661848212973823, -78.777508065420989, -44.257423096893753, 23.610690037963238, 52.764627315898679]])) res=whereNonZero(arg) ref=Data(numpy.array([[1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonZero_taggedData_rank3(self): arg=Data(numpy.array([[[-77.400629617637264, -7.8585991909028223], [79.37731461196492, -78.311221968888802]], [[-2.2871031341482109, 61.613282578413418], [14.239083629293276, -86.60455578579527]], [[32.648402678335373, 67.120663891666482], [-16.40250641841989, -45.441109646024543]], [[-88.814372300408252, 96.863741115845073], [-53.568931159701449, 61.772732453745817]], [[12.78118059732283, 61.665805717605537], [81.736967250564334, -79.838957222371846]], [[-45.746992316765287, -50.359908369594095], [67.084057007701773, -77.367125763337725]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[20.916835852467159, 98.359772976470907], [-65.641953951612976, 48.35339386982011]], [[72.394336553366969, 0.15850039108870817], [-37.64849616557904, -37.7540766591151]], [[4.7508355327704663, 31.008319102711397], [-54.917295021552114, -24.534459964429843]], [[19.525286161344553, 63.669539108570319], [-1.0431050089863732, -17.966268638209357]], [[-79.076564771286044, -45.063188127277719], [-57.520467509927364, -69.399848959156472]], [[74.966631181955592, -21.675113256460349], [47.3018877491821, -95.419016191439553]]])) res=whereNonZero(arg) ref=Data(numpy.array([[[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]], [[1.0, 1.0], [1.0, 1.0]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_whereNonZero_taggedData_rank4(self): arg=Data(numpy.array([[[[-56.530041249956064, -75.595773656477377, 57.930726925789344, -35.064711718518922], [89.927579325782204, -71.292052004298981, 74.426753570770302, 9.9254833972331795], [66.426699960830888, -79.419436482993362, 70.191990839107291, 25.664966939851837]], [[91.588972225813166, 75.24780363003768, 22.708376398136238, 79.829437424982274], [78.426467246737957, 34.311496583740819, -45.051218540773853, 21.126634987063937], [0.93545608150542137, -64.07783608516722, 50.0880392185164, 3.0383401979216416]]], [[[33.521385232890651, 65.495547288295967, -36.26432133678432, 43.817943477527393], [25.622359237391734, 46.879767530213655, 44.264770652047645, -82.611848465548164], [8.6931324018650855, 98.705476157468638, -69.064996470241397, -82.140570519506227]], [[50.341676972542217, -57.113225217844878, 23.496128915773994, -84.4500434098574], [-42.826308284507533, -40.068614099685277, -64.107129980786979, -64.752370052337284], [-68.77258294388686, -65.093744454055411, -2.0441147238691144, 38.710454571834248]]], [[[23.964849311323277, -9.8504539937835318, -24.01385095241659, -65.609734597116542], [-34.482955634964824, -55.357317162052141, -29.891659032054235, -59.722077669432629], [24.465604000129801, -3.1488488615906647, 90.185493485946637, -9.9469471059439201]], [[47.887647758738581, -18.650373829652906, -88.084195156027434, -50.216336238949744], [84.137883656735909, -12.149905093038768, 96.23351445652429, -70.450849093320912], [79.18622708472455, 93.448904090150648, 15.570836279018437, -91.458357264821544]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-12.894979773801623, 48.187305922131372, -22.228691774958477, 71.32250925591336], [88.198575928561297, -82.879750265641363, 6.0047803940490638, -75.104784095705114], [95.651210249923281, 99.227840476768279, 38.201888712638237, -85.338045871397298]], [[61.890764559936457, -99.084864794308373, 19.908026187604563, 76.48683075285868], [15.244819962785968, 81.134443755015496, 91.695315009752335, 53.656684202280047], [-13.910795126783682, 62.546356367686997, 57.939671348548501, -16.711735701291104]]], [[[-17.647299335238117, 75.459048312325109, -41.034997451013353, 22.776483937861556], [-97.792781150657731, -89.213116628864611, -36.170629374287323, 76.170885998109583], [51.302094246614928, 73.764119678021643, 2.9931334740095537, -6.7949120092559525]], [[-81.233259812949598, 86.178813783813297, -0.82062800096618105, 95.276937599720668], [25.56603608019212, -69.150407154520252, -97.002071851697821, -38.857149391397485], [86.964544699076953, -44.217066849378782, -92.21466310897317, -30.366338991012668]]], [[[66.127428481144136, 84.702864167161209, 53.320435341942385, 34.341339969042622], [75.475890485661608, 6.568751254456501, -32.661380753798539, 73.048056732159722], [8.3932556720025104, 86.553622630163773, -96.143353218643952, -12.061654127884765]], [[53.325736920559024, 24.80213757617615, -70.674103395487791, -11.797716418097565], [-39.44141732563584, -42.670437444648911, 79.49977026651581, 79.898615913406843], [-32.436244300917423, 63.389192944364225, 48.691557489453828, 91.496017284059604]]]])) res=whereNonZero(arg) ref=Data(numpy.array([[[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]], [[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]], [[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]], [[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]], [[[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sin_taggedData_rank0(self): arg=Data(-24.7105931613,self.functionspace) arg.setTaggedValue(1,-37.638505349) res=sin(arg) ref=Data(0.40972088744,self.functionspace) ref.setTaggedValue(1,0.0605693981609) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sin_taggedData_rank1(self): arg=Data(numpy.array([19.860974255803598, 48.899013130941427]),self.functionspace) arg.setTaggedValue(1,numpy.array([14.319017737469665, -59.326252904429587])) res=sin(arg) ref=Data(numpy.array([0.84758534887649317, -0.97919776342443343]),self.functionspace) ref.setTaggedValue(1,numpy.array([0.98351066065067827, -0.3560220138624291])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sin_taggedData_rank2(self): arg=Data(numpy.array([[37.890743553866486, -52.175642782800914, 61.917008025503975, -8.538416676807941, -94.304749798245496], [-17.787570828089727, -19.048274463511873, -8.2634570563295142, -56.253500812466228, 87.627404284894396], [-14.454217499387354, 73.713310630128319, -52.818033941567855, 90.807246316901796, 59.632923220807299], [2.3430650859352511, 56.726750975618302, -69.98474018040875, -30.128841460819984, 0.11683572211893534]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[-60.059131288860598, -78.931098378024842, -99.522738887570867, -9.6007074071729619, -66.250286193785655], [15.651568400631106, 57.654505938017678, -21.858524591969015, -92.849176312405305, -45.214082756051297], [-85.045751900057368, 10.170104148330267, 85.540180625403167, 34.743740334373229, 27.680023474288177], [72.313181060961483, -93.451973592336017, 68.715544032783157, -57.013152797460179, 69.395677045629242]])) res=sin(arg) ref=Data(numpy.array([[0.19046098975424755, -0.94296657311066345, -0.7924680880494267, -0.77477635663664268, -0.056939378452443026], [0.87332421967504115, -0.1974132538348578, -0.91732979816211846, 0.29089958624583467, -0.33083665313437571], [-0.95015908369497537, -0.99349574918962724, -0.55556403598677151, 0.29450799309098907, 0.057305786038470398], [0.71632946014175625, 0.17714342493014262, -0.76413661669322097, 0.96002319680218495, 0.11657009080686483]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.36056248350542847, 0.38137387117559401, 0.84588700623357704, 0.17502331279847, 0.2733177892111176], [0.056364979209719938, 0.89384032979663164, -0.13223553506078178, 0.98521137495670197, -0.94308411592712293], [0.22091275938263169, -0.67821155091384655, -0.65726119089937152, -0.18514670365491534, 0.5599375367095778], [-0.056519892938693105, 0.7144278132655969, -0.38895255454538685, -0.44796245325739548, 0.2769693862212248]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sin_taggedData_rank3(self): arg=Data(numpy.array([[[-55.804968616645148, 58.560992915206214], [42.652192703056301, -91.42882116095241]], [[39.310441995226739, 33.870993341596233], [80.401033234710297, 73.000828209637689]], [[5.7360515152169285, 82.330874482727353], [-75.426134234758621, 7.5453684113771118]], [[-19.895965390103115, -88.950469683568315], [31.355932404642459, 36.487846363447858]], [[67.666456279782437, 58.020389340319895], [-37.89476101041673, -42.399630457776482]], [[-23.830782444196501, 6.0849055767691738], [91.294861085921525, -52.847710860098182]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-18.125779887526264, -95.420123122001257], [-8.1568796731757516, 32.219735537825017]], [[26.245851241680057, 96.102520961925848], [14.02431043315147, -9.9572364002324321]], [[17.181359346351925, 47.963801042849468], [-95.527667200507665, -64.204019349910141]], [[-98.658267090216341, -7.0939733146426107], [-41.783037015039959, -46.517744129299096]], [[-57.202627940362859, 79.223818560607498], [-70.017222005175654, 23.987327490175844]], [[71.375583584624991, 89.788775552486129], [98.882752617270086, 21.455679838723768]]])) res=sin(arg) ref=Data(numpy.array([[[0.67701499649890673, 0.90409941974537544], [-0.97117328078000487, 0.31706594876811195]], [[0.99917861697072197, 0.63385392022976472], [-0.95812352836612924, -0.67738144661254696]], [[-0.52024157266400017, 0.60476080407034305], [-0.027906925031102141, 0.95275570243286156]], [[-0.8656310935760867, -0.83375573809919057], [-0.059958148294456545, -0.93606199112953326]], [[-0.99254113222478446, 0.99509611012034227], [-0.19440335819459723, 0.99992954803650558]], [[0.96408030914008547, -0.19698305893325982], [-0.18755672118757361, -0.53064744896026339]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.66221880833880609, -0.92166239454618104], [-0.95447604942411934, 0.72000463780845769]], [[0.89707725485516432, 0.95995773196345946], [0.9936384606300962, 0.50765297031738676]], [[-0.99526034460150747, -0.74458387237142676], [-0.95798362538691173, -0.98033782538997782]], [[0.95477283132130442, -0.72483027934968591], [0.80893159374577939, -0.56970402250150143]], [[-0.6083342836862955, -0.63189999754289639], [-0.78468240482370322, -0.9108809171944825]], [[0.77140583862359613, 0.96806942866170043], [-0.99700488005111876, 0.51024422262880564]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sin_taggedData_rank4(self): arg=Data(numpy.array([[[[95.057014858860498, -50.023546676067944, -19.520550887074563, -14.915416158905259], [-72.276262048791182, -57.778697211921127, -10.589425732964969, 25.789691603835237], [71.432158308304565, 83.59773672148529, 32.062292384526415, -22.527648292677569]], [[-39.074624167039062, 92.303231204531414, -1.4192851682411742, -68.883629510294497], [46.825962360174429, 85.58307574133471, 83.176640836526758, -93.888543574320394], [59.195891546840528, -43.884372920271829, 46.885208516026694, -24.330067940056807]]], [[[-85.391419005371418, -52.993590690134319, 41.1653245235631, 70.963880995127738], [-6.8099927112965162, 14.755258748362692, -77.400445539133742, -3.6276152651411877], [-88.775588041032492, 89.080955577757038, 0.97522108268380236, 11.904044693769748]], [[28.114564123404421, 17.406751514150216, -90.824155259332073, 66.590378374684491], [-23.314357242078572, 66.459924224373196, 1.190010463508969, -19.129294185825657], [12.759163310131783, 94.16098679455763, -80.470912052594556, -87.769040453881502]]], [[[-68.103901459227245, 96.524362598603318, -3.2834594710336376, -25.520289808877067], [56.393892750276962, 17.548302326605253, 15.721717465663659, 76.20380788007958], [-65.13810360798314, -4.9406764890286041, 65.373960553505867, -11.670204391287569]], [[54.171569268655503, 53.359368061868707, -46.012260984758143, -78.151318891542985], [20.615711960999178, 40.160242458140658, -80.640118059335776, -94.602105820605374], [58.356391780158305, -78.074396086921837, 69.50163735189372, -68.547938015025153]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[1.279534719127895, 77.967895548901566, 56.093855457217416, 55.241022797731574], [-99.18622666243968, -10.886097986772711, 44.708474069781573, -26.616286906326849], [-92.350922530980355, 54.858168650538886, 51.906834850649233, 77.865437338097109]], [[24.233171382130436, -49.713594059906626, 75.407909417958365, 86.691179170294532], [96.871157363423322, 23.148017134014822, -29.421912304159292, -58.976308318504977], [-5.4545343262298189, -89.036199846063681, -83.742519983327739, 35.372319522991887]]], [[[-95.511576008994936, -83.10806319229718, 63.825192259702391, 92.80910275607684], [44.426319323500707, 88.815074429332554, -18.021325932633019, -69.917789857742505], [-84.319087816871672, -30.317627038327316, -38.345827346198959, -81.91833965828738]], [[11.186751110650022, -54.257619696250828, 84.729270493118236, -8.0244377640246114], [77.805655721275429, -14.229050163525699, 32.671007471850089, -96.882778316793122], [-56.456065533953058, -25.01675593935984, 65.68053871510449, -14.266571167222295]]], [[[-39.965547886942353, 19.317802794261738, 80.566440631464729, 43.745566353754214], [28.366421988006579, 68.970448204763755, -64.475182800936267, 20.331319130101249], [-87.117125888478327, 91.992851667866603, 30.281916963531046, -39.27414258485895]], [[93.364522015716602, 78.717156004724472, 61.222491284093536, 86.104631528043967], [29.395392816847448, 16.532063410538484, 10.319065205651995, 10.917748038478663], [-92.263775558488874, 50.00911791017316, -6.6661922286034354, -51.536766809586055]]]])) res=sin(arg) ref=Data(numpy.array([[[[0.72375966950305115, 0.23958247784190015, -0.62176555507714748, -0.71214373694684574], [0.019629755360536964, -0.94249864392330207, 0.9186492389762253, 0.61070482468498899], [0.73418989352805997, 0.9408956015682427, 0.60228932671485913, 0.51113062555018463]], [[-0.98099259974089892, -0.93096397739276848, -0.98854412433116323, 0.22934906491349744], [0.29353958469160507, -0.68897514951619387, 0.99714636265035372, 0.35155913660386867], [0.47447618324952018, 0.097767803237166412, 0.23642150489763264, 0.71921602354647907]]], [[[0.53829894600069828, -0.4018025366804851, -0.31894868102661073, 0.96159352277239407], [-0.50277617521839357, 0.8149857013480003, -0.90837056606621547, 0.46711279434815001], [-0.7249719991634016, 0.89850915924785046, 0.82782593247756842, -0.61495265106171171]], [[0.15909090210144514, -0.99182021016560207, -0.27830764816239967, -0.57853598042401821], [0.96950642440138313, -0.46751584043254807, 0.92837285606475217, -0.27610409657055596], [0.19160059401890014, -0.086683885904533534, 0.93579131574343599, 0.19430985516438759]]], [[[0.84743598014352139, 0.76110153119788515, 0.14139142291111614, -0.37791993461054291], [-0.15415780695875661, -0.96389276338977681, -0.013753764053628931, 0.72123543134514545], [-0.74152608990617153, 0.97405537665333219, 0.56421749260196419, 0.78093804490852481]], [[-0.69217200421492153, 0.04768895464089825, -0.89642177035913229, -0.37879826270669459], [0.98097790580385125, 0.62915222544178329, 0.86305700540000696, -0.34695851228481017], [0.97206368588434766, -0.44879839287225581, 0.37704058161193998, 0.53718857715535373]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[0.9578823534926072, 0.54124816795457964, -0.43929370911716231, -0.96557502749159507], [0.97455749834004068, 0.99401345246169626, 0.66401590677623057, -0.99619607619697281], [0.94731148656605035, -0.99284417199371577, 0.99751195316042607, 0.62441237853622522]], [[-0.78305944951663353, 0.52429620121273146, 0.0096855803621312825, -0.95610712166060408], [0.49533020111560083, -0.9155481075478985, 0.91177208072521287, -0.65482579444370448], [0.73702027966623906, -0.8779702346494217, -0.88218472628424938, -0.72758863915572014]]], [[[-0.95324448144023388, -0.9896294977803074, 0.83785349282853971, -0.99128491043904499], [0.42957507779222781, 0.75159719546211767, 0.73673567820434016, -0.71927034677937474], [-0.48285656690859402, 0.89043473057109679, -0.60256841133763539, -0.23472014974367561]], [[-0.98178130166608535, 0.75163971078732728, 0.093593967784617274, -0.98550749523114423], [0.66996424044290459, -0.99578170573160452, 0.95057449576530817, -0.48520180467023327], [0.092469940703161432, 0.11572541384732027, 0.2887366377307638, -0.99163895037731464]]], [[[-0.7676438791646546, 0.45132255753166978, -0.89789686094785226, -0.23452586033429529], [-0.091958006320412053, -0.14408689254970225, -0.99737060586631121, 0.99603916939064607], [0.74960719408299126, -0.77496816002780011, -0.9061156382123059, -0.99999103487825647]], [[-0.77281036418314564, -0.17641158915267149, -0.99925644477650222, -0.95848189929893357], [-0.90056129662048501, -0.73393688041745886, -0.77976304128985197, -0.99697306576558797], [0.91583747858958031, -0.25356559568768045, -0.37371120994166129, -0.95548059670784435]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cos_taggedData_rank0(self): arg=Data(52.3923651613,self.functionspace) arg.setTaggedValue(1,92.6499316384) res=cos(arg) ref=Data(-0.527866301451,self.functionspace) ref.setTaggedValue(1,-0.0270483432209) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cos_taggedData_rank1(self): arg=Data(numpy.array([-74.897126998165533, 76.673400450800756]),self.functionspace) arg.setTaggedValue(1,numpy.array([99.065445380314515, -86.748306948983256])) res=cos(arg) ref=Data(numpy.array([0.87705625402072684, 0.29133259267605394]),self.functionspace) ref.setTaggedValue(1,numpy.array([0.10508243263067833, 0.34712991573165969])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cos_taggedData_rank2(self): arg=Data(numpy.array([[40.593544538866865, -8.8839015039393558, -49.468879573084436, -24.708042838510465, 20.413703995745891], [-79.108713409558405, -68.647136982462371, -80.858963259372672, -43.373193372132903, -19.507573187625411], [64.214585816318845, -78.826300537435486, 57.661889712775803, 95.493641862455291, -48.386749127960769], [67.334847000926004, -34.70671409523483, -36.873199353443709, 3.6386929918643176, 35.181153901083945]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[-30.787970015064928, 82.074060959202797, 25.479756845345577, 10.895119259966464, 63.74412167304564], [-60.035262414428935, 54.332578347635263, 18.293985264200202, -9.7571535510820695, -70.419305661969503], [-66.629926110044835, -43.57208065884415, 57.437026616340574, 20.73240225691022, -80.496461940478952], [19.883318148806438, -98.729450313914597, 73.172600335425471, -53.114967436072469, 41.781624603862156]])) res=cos(arg) ref=Data(numpy.array([[-0.96961115090719441, -0.85725773398423355, 0.69913962613000602, 0.91116305149951837, 0.0066482036132297587], [-0.84249563945044104, 0.8925167529418252, 0.68043098049226469, 0.82016110495020733, 0.79120632545455827], [0.18695697167168232, -0.95924330257900359, 0.44177331900046657, 0.3192463084776716, -0.3030933270774539], [-0.20786820316301155, -0.98889106925546555, 0.67788641598410604, -0.87896904245554386, -0.81176118995632829]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.80922972543055438, 0.92389756193357364, 0.9403918665642913, -0.10028616065108438, 0.6119531025181365], [-0.9410747774886985, -0.60143262098807782, 0.8495995978399381, -0.94526988131298229, 0.26338463011163266], [-0.79214526943475394, 0.91703450582859369, 0.63068646834096875, -0.30701028605243086, 0.3763461069696134], [0.5115898554852758, -0.22867682408200724, -0.60902205590663616, -0.95763905321643927, -0.5890447354610614]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cos_taggedData_rank3(self): arg=Data(numpy.array([[[-36.309518950317376, 0.93081070250144649], [31.019427711604664, -74.09863093545404]], [[-38.496677203305893, -85.824133574935331], [95.203836891504238, 22.838846451350705]], [[60.75609230931488, 6.003670139700219], [-31.49567872236139, -63.206983059929222]], [[-9.6812822737183666, 0.078728886948780996], [66.900652835446493, -94.869473621923703]], [[-6.6770163744116076, 22.876520146740972], [-55.737787303088737, 6.2425399184533319]], [[-81.429470177177521, -81.6116687923749], [-97.082967034525325, -67.37269287178016]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-76.097111647315714, 55.656786197463788], [11.140883121429439, 54.147885791873421]], [[-24.180524234728694, -45.703945118544723], [42.10979532559989, -22.79785029244421]], [[67.322737034238003, 18.304852118006011], [7.015704936158869, -94.401853589660817]], [[35.279952362677818, -7.8217175297602637], [-81.23891082515344, 54.069639284286751]], [[4.2395499199061106, -11.974337349322099], [-77.095389819359994, 26.711493864407473]], [[-66.565935528207518, 41.011773246282445], [-62.114425668075299, -64.456999774045073]]])) res=cos(arg) ref=Data(numpy.array([[[0.18021343448473101, 0.59718391060744369], [0.92241876797360978, 0.26789121482669265]], [[0.69845114643777229, -0.53934947535935607], [0.57674535988171327, -0.66171093596184249]], [[-0.48377631503826568, 0.96118931155712628], [0.99682147963778267, 0.93046000296873854]], [[-0.967282744906935, 0.99690248160545425], [-0.60007048402362761, 0.81289300751647198]], [[0.92344574856902162, -0.63300189293768494], [0.68886045878833047, 0.99917408990060674]], [[0.96843093014337922, 0.99756913767256539], [-0.95342403093885042, -0.17070899404470352]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.76555810931252977, 0.62794880060935965], [0.14479801574845574, -0.73792168383216183]], [[0.57987832415218665, -0.15028015665535041], [-0.29714910041836201, -0.69188358205701828]], [[-0.21969811854411034, 0.85528080687409014], [0.74349177468513394, 0.98815406589512933]], [[-0.75019910814961466, 0.032258506831785543], [0.90368477270236081, -0.78841749829099372]], [[-0.45541567307928488, 0.82980773284067688], [-0.12603373471688831, -0.0079562249516561077]], [[-0.82955287573817371, -0.9854033904934385], [0.75349957000523238, -0.054323621236985108]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cos_taggedData_rank4(self): arg=Data(numpy.array([[[[37.610264246462435, -85.560668463311075, 92.790982866326573, -21.753674410293172], [-23.164181244709354, 64.496397223384463, 69.277186049494105, 6.3927475799028457], [67.583896168477764, 36.111360823700437, 30.266912701944563, -54.963319263159384]], [[-58.145969583496672, -97.225443498755453, -56.934313916342269, 35.421162068171839], [65.866615855863898, -57.072034755161027, -95.488754117534285, 81.149953518095799], [-18.30949886526929, -89.680457620572071, -73.87886392983259, 81.259366551703209]]], [[[1.8677491996480029, 36.828382975770609, -80.40672114911041, -49.292595896369647], [-37.983864569797767, 35.583525872048824, -42.451157688857613, 33.755615612774108], [32.674252940671579, 90.058275023987306, -96.26155980692819, -90.500098763836021]], [[90.079955965660446, -70.687430685137031, -51.111371179982747, -74.109677346578138], [-32.896920002886091, 62.26499948195692, -59.833741060334056, 11.794198300820895], [43.437452546746755, 97.455115222231768, 87.354131572829402, 3.2818247457694412]]], [[[78.306182680183269, -64.892175839143391, -55.104588214315342, -96.744717049677931], [-38.337933398739985, -72.796076467431135, 60.379171901212146, -81.927733276050247], [63.885059436029167, -31.980639093805863, -57.261994523508044, 17.357515328643643]], [[77.429908518363192, 9.5882415367278355, 72.484182388500756, 63.089077313098954], [84.07047179403375, -21.092477779767819, 41.614178023999727, -98.204118862286279], [-71.275012546567766, 78.730240012789466, -11.573247145900382, 33.098945113087012]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-40.533710954365063, -21.161469670738327, -69.120302774135837, -14.38267699844107], [-91.158843533364944, -85.491074434980831, 87.152587959079909, -33.044835488961624], [-68.672525163755367, -1.8217843916724235, -33.6594071845862, -94.719797609019921]], [[5.7039466733317994, 69.091962753216535, 42.000508648719546, 63.142145355765422], [79.524244986771464, 62.133683756888729, -63.061242691543782, 51.048740976244147], [-88.653022332832293, -81.214225577010723, 35.550248226917518, 76.160743630564809]]], [[[-63.524226576744191, -56.896009941669014, 63.19522201987138, 66.388629592533931], [-56.646135485855687, 8.9406032636504307, 89.111063185551444, 12.201705041404125], [64.844923341968638, 93.705153189621086, 42.451679671109446, 55.611996897559266]], [[-50.4500969589295, -56.48304920853591, -43.397487648713806, 24.970484957830536], [10.247946263340424, 53.164372653170489, 20.567237785266812, 9.4104989925598801], [-56.157152366568909, 42.552761052044843, 56.078516299029076, 18.940543407164128]]], [[[-33.632224346804193, -69.405810068119834, 44.225943185591831, 95.213025790079087], [-38.509288601106675, -62.938695142627999, 82.460256045254965, -40.372955049612315], [71.091785922673608, -67.332900637102753, 99.968681344820283, 87.597127665814384]], [[-15.352405373769315, 13.607690117097107, -27.035258608117374, -88.065123343235953], [46.351984421658017, 40.175457656434133, 90.498104230403385, -29.926375524616702], [89.955509906700911, 75.738059235642481, 92.170833583735543, 28.373336853066405]]]])) res=cos(arg) ref=Data(numpy.array([[[[0.99605564800414159, -0.74003978479165422, 0.11375282452021319, -0.97193527337579688], [-0.38735756213150352, -0.09361056558100582, 0.98688284383678593, 0.99400405568827155], [0.039643724768732305, -0.016953880290015939, 0.40938737891293392, -0.014551661058647967]], [[-0.026502388661538694, -0.98659374258249288, 0.92655557103089836, -0.6496724166496719], [-0.99429911442146879, 0.86614127304686683, 0.32387445454567942, 0.86207036562540851], [0.85767934528605649, -0.14455871961558475, 0.051413892338749011, 0.91225420946081004]]], [[[-0.29260780746660703, 0.64426928163414932, 0.29180026978390428, 0.56291609637951678], [0.95973114604298926, -0.51823819807950822, 0.039646471705651949, -0.69533990552752001], [0.3074098932007972, -0.49938120217558235, -0.42863722843891311, -0.82188268941215192]], [[-0.51804635050563663, -0.0015959786891496938, 0.66306628166652848, 0.27851730967463495], [0.089682205138485488, 0.84359470875913611, -0.98972429938704287, 0.71639675290673688], [0.85520784080680545, -0.99783970980023062, 0.81938284847117593, -0.9901835826774219]]], [[[-0.9728315762339087, -0.47020799835491661, 0.12637793045273601, -0.79930700568503443], [0.80279896236009785, -0.85799367135344373, -0.77193843948759455, 0.96981526124126383], [0.49478722014669613, 0.84474246657231211, 0.75618918968201176, 0.078674345855532332]], [[-0.4447440791197817, -0.98666955220849251, -0.97422171127622192, 0.96709984785995873], [-0.7299620834657633, -0.62265062060091214, -0.71548829876243725, -0.68605277637160145], [-0.55567766942870023, -0.98192413256230948, 0.54607588753058456, -0.11198684728536197]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[-0.9532464104225401, -0.67511267180012213, 0.99998614310380007, -0.24305111882757385], [-0.99861396263192814, -0.78501698113748208, 0.68804387880332429, -0.058079923319158462], [0.90367832948274707, -0.24836118666524837, -0.62308777688597838, 0.89065254831191276]], [[0.8368796543112903, 0.99973376956186366, -0.39951907575386714, 0.95224436545888613], [-0.55333911666953939, 0.76602026469360152, 0.97380536659847572, 0.70861811863632929], [0.77224567755776974, 0.89284034215998742, -0.54640627400327102, 0.72309766743732995]]], [[[0.76973301984773468, 0.94028075556243462, 0.93470472120159609, -0.91504217164360968], [0.99525378084999272, -0.8850594108800458, 0.4117079619272091, 0.93424308242332088], [-0.42799571611881249, 0.85635538858959426, 0.040168038134317727, 0.59247321999590674]], [[0.98300708870591891, 0.99784787493267124, 0.83381726388896149, 0.9868653057824498], [-0.67990129583749026, -0.97069204733006775, -0.14635792168284548, -0.9998980572655366], [0.92433186130108524, 0.14079090200582819, 0.89149968128133894, 0.99586349366046734]]], [[[-0.60159909873717321, 0.9580229239875917, 0.97046484832780555, 0.56921448509653549], [0.68937039860779081, 0.99429781336097167, 0.71172390998364865, -0.89258527400759391], [-0.39489284771819805, -0.20977165731745406, 0.84603990208711677, 0.93324045680470225]], [[-0.93745242426842468, 0.5050818721371243, -0.32567073631884641, 0.99495120989406094], [-0.71658296354855922, -0.78676444613630847, -0.82074485588505508, 0.081155964310960879], [-0.40786936285205416, 0.94280949490341759, -0.48481330596382211, -0.99510320754671833]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tan_taggedData_rank0(self): arg=Data(81.2949649872,self.functionspace) arg.setTaggedValue(1,12.3613553191) res=tan(arg) ref=Data(-0.406904128478,self.functionspace) ref.setTaggedValue(1,-0.207936773642) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tan_taggedData_rank1(self): arg=Data(numpy.array([-95.851047486395899, -87.804262570020512]),self.functionspace) arg.setTaggedValue(1,numpy.array([35.849126399037175, 13.927401673303507])) res=tan(arg) ref=Data(numpy.array([30.785362859177258, 0.16171984883073159]),self.functionspace) ref.setTaggedValue(1,numpy.array([3.4882512502950971, 4.6971057126849036])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tan_taggedData_rank2(self): arg=Data(numpy.array([[-6.2123974990845596, 78.448990575809376, -99.326922204393099, 34.466953331401896, 75.081637288912191], [43.152743095243096, -23.515299958653429, -45.139362755422809, 37.555578473020233, 83.674961808589416], [-20.329004079626117, -89.68698187313413, 63.797873117120815, -97.852830452441481, -20.352637389791738], [73.846890877324569, 34.650839207487195, 41.531549740281122, 42.117481567836307, -14.893287864506703]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[32.462416722884939, -48.149844207496905, -56.126695807148465, 60.69249745488338, -88.519356123058287], [-77.612992699512802, -82.951630694447118, 41.156303211277162, 76.793150351335555, -72.585387811636906], [91.644542807801855, 51.947395321575783, -56.950928573202873, 18.806113794978117, -2.4791441058101356], [13.946361780608797, -89.75004089425245, -7.8270132480697612, -75.115117512127185, -17.025098103456472]])) res=tan(arg) ref=Data(numpy.array([[0.07090628276813575, -0.091076341049522724, 2.6032644546506951, -0.090814285504178624, -0.32760519036327246], [-1.0924542795462242, -21.423000533021405, -2.2775209371153795, -0.14452724439561776, -2.2228009589039441], [-10.916660613554196, 6.5460789983613727, 1.4468186297845727, -0.49976325011584999, -14.745229039106976], [-51.371685347992141, 0.093591861362473022, 0.82675810400212302, 3.3025618500686895, 1.0603382585364733]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[1.7292248126420149, -1.6500818693323478, 0.44893985316262996, 1.5650975398719362, -0.61967622915013898], [1.3320242181202921, -3.2261605736834746, 0.32651185794691795, 5.6272845624900736, -0.3411363783892129], [0.59719690743737996, -8.962491127283629, -0.42546071042084166, -0.043469475465786209, 0.78003579386887978], [5.1771917698562682, 4.5869701687908737, -37.07146436191114, 0.29092035884983614, -3.8573430010424579]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tan_taggedData_rank3(self): arg=Data(numpy.array([[[-31.363348163296223, -63.428729589813429], [-96.507312106299665, 31.782542686119456]], [[-34.681083479682911, 94.077182149079221], [15.294827923512429, -2.7318887141934312]], [[40.882434195822839, -64.18724581426693], [11.572828840371855, 90.497867255100772]], [[-28.641061694503762, -87.171931801575766], [-11.020127312733962, -30.967479102653854]], [[-7.3186224758889296, -50.786266134306011], [27.048134010190211, 2.5490774473318112]], [[61.949209649501199, 85.202746332031268], [-96.092429938290053, -18.405433004645062]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-56.051822909334504, 24.794825821519993], [-0.67715445796852691, 83.973745178864789]], [[-67.137455945524025, -23.605845271936829], [-50.37296104694218, 61.52765962606091]], [[89.358776831997943, -14.338540458285891], [-29.266662560421409, -3.8651288601611213]], [[34.695285195870127, 90.166487346465175], [-10.666151183063903, 29.826418400042996]], [[35.897311083718819, -5.6908691923045893], [81.788877267557382, -28.486351983044273]], [[-10.244239444046215, 61.596990071263548], [9.0672269007921784, 5.6119735254265208]]])) res=tan(arg) ref=Data(numpy.array([[[0.052626876950351224, -0.67956116470517647], [1.2147515603304766, 0.38397534066424899]], [[-0.12419702009054982, -0.17227194869809437], [-0.43836392791494461, 0.43427926215657442]], [[0.041753938290720764, -4.5704240024751872], [-1.5355049455338108, -0.69642068661122147]], [[-0.38410347124596128, 1.0146352438416113], [40.719994162243026, 0.48114165299842049]], [[-1.6859462819034383, -0.57360288493474976], [-2.7861599010747122, -0.67320458364148295]], [[-1.2161965333027973, 0.39911670622190515], [3.5598363671486943, 0.47582704782624802]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.54221273929241065, -0.35139316545369953], [-0.80396583079821793, -1.1366271548317615]], [[-2.3211791986595185, 22.764215950312941], [-0.10789436233823439, -3.6616056049070829]], [[5.6030778046056575, 4.8985896068181933], [-1.5314392133091446, -0.88334381751181845]], [[0.13864424980142789, -1.3683712672276451], [-2.9249993656191324, 53.435949643775317]], [[4.2516444503647923, 0.6729153019338332], [0.10788392698491613, -0.2152531375981952]], [[-1.0705573488747255, -2.8639517816691598], [-0.37360951726234692, -0.79422844785382163]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tan_taggedData_rank4(self): arg=Data(numpy.array([[[[-97.656975158803732, 86.62989131986555, -77.554231481640841, 3.8669983308735141], [-46.038298726138535, 40.067291705031494, -98.270364197569336, -94.6969458479483], [87.514637704319199, -92.077863733525263, -3.2419643949078676, -63.397042107941658]], [[-78.795717243110204, -15.279620056917338, 80.460981482647753, 58.412764427127541], [78.818186435655377, 37.682189940374087, 44.849206889045604, 44.848625721891608], [-35.5574347957388, -12.199741839763533, 97.654780429841566, -80.88961765682032]]], [[[-22.652246910060853, -67.38886650009394, -23.477307930487527, -10.646755410960651], [28.156205936499333, 61.620904094908099, -68.627816293502761, 67.122379266164245], [-98.867312915684863, -67.45476737752476, -25.299310914293784, 37.934440895232058]], [[49.380808935348227, -39.408417085726846, -20.541815407391638, 83.649278193509474], [-87.485520624890597, 58.270434291856475, 94.943963892353963, -72.626165639298705], [76.160653617847743, -56.169631642306463, -99.798183422398054, -90.426229350215536]]], [[[88.117152264551066, 52.841153774969399, 66.022106559130634, 40.622509829181638], [-4.2428278873716465, -39.006278992668378, 25.439473540797223, 61.543987328178218], [-15.166974840542792, -90.535188054136981, 84.651661558032657, -16.693664047828548]], [[74.767862181117096, -78.437587118526309, -79.957730051825251, -82.440913401255031], [13.979534083611483, 37.832449897143647, -41.090148981970032, -8.6289016011243689], [41.053492503522762, 8.9183240359808309, -66.578380761411694, 66.20182099550621]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-65.426437737609433, -42.513342752929837, -61.194113194155307, -64.800952933449537], [-99.624865579613584, -3.2191662753780008, -52.527343047996354, -63.282633267519969], [39.453397429286866, -27.130144978241091, -56.965824807007913, 74.720174006700404]], [[-8.9359752895985025, -12.273022000155564, 79.215464783067716, 54.215640736250037], [-10.545731014079962, 39.462823926104164, 40.564010266889511, 92.013499250506641], [20.430731908343816, -93.73852236295572, 38.616446665550825, 16.303457902544551]]], [[[-8.6131335963080886, 91.666532748276779, 67.718239380865299, -24.067799387278825], [2.6235650197201892, 84.44637358608324, 55.396761917366206, 30.029168851594335], [3.7411742822091298, 7.2609312887790338, -64.032694520213113, 71.454721297104697]], [[63.195820999024335, 10.691306316136078, 70.801143686977696, 34.146817443572871], [-81.881989121896652, 39.550920228819763, 4.1371918628010178, 93.50590280236878], [97.927125099631667, 64.442557162542499, 81.251825689023093, -72.766391730318389]]], [[[-99.988258264364134, 6.3957796419498578, -83.783069257657814, -42.282613168159912], [36.226072219705117, 53.514293085963089, 55.242986060328917, 30.924108560738716], [48.213793181692523, 33.583178486196687, -17.776417123041654, -79.70940504468291]], [[-26.186562848112317, 35.053508602494276, -74.15973561349287, -8.998608974101586], [72.625731679153461, -45.763185712759238, 96.157419130429048, 82.60958774405006], [28.466122898236932, 13.661431663776554, -64.305636252969435, 78.126668760850237]]]])) res=tan(arg) ref=Data(numpy.array([[[[-0.27417913318913278, -4.1566210200104123, 1.5091093500762029, 0.88667753844569219], [1.8966516810504024, -0.97631203132464983, -1.2121104814243526, -0.48202716829016767], [-0.48300153499471354, -1.4644610945344889, -0.10071016976344437, -0.63420186225059838]], [[-0.26163711886038371, 0.45661727740971819, -2.7363785710173922, -3.3111423421076758], [0.2857904741045893, -0.016923518088534008, 1.1779198979973127, 1.1765333132126685], [-1.5571186702709128, 0.38398982640921775, 0.27182083255769302, 1.0128687939892587]]], [[[-0.77786631973260933, -6.3841435669149291, -11.786941762312257, -2.749590141226586], [-0.11868049092962783, -2.6579585972745292, 0.52982517743967028, 2.2281208753465154], [-10.738431613965821, -11.146506047949773, -0.16812749423430426, 0.23977164577867416]], [[-1.2212418866506991, 7.1735230424816061, 8.192421452643833, -2.3846593272264083], [0.51943402007653894, -6.5734237237147752, 0.83578647210017276, -0.38732785222465582], [0.95508720601143937, 0.39829550561729016, 0.89993916898678605, 0.80859125720920677]]], [[[0.15375262833206235, -0.63522917927167522, 0.048699277776481524, -0.22172457509128218], [-1.9707778487603462, -3.7049205779162753, 0.3167282752575496, -3.4396185005903077], [0.60077400519944801, 0.64237874378765658, -0.17303671645831173, -1.5094893398587974]], [[-0.72966855935529684, 0.10258684244697755, -6.4899256428743657, -0.94950861550679122], [6.2912235198952393, 0.13413392183447914, -0.25475027110751947, 1.0211790862248971], [0.21605885016652787, -0.55471233347047222, -0.69140625670162514, 0.23243020992993024]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[0.60899603533502777, 9.7851675904442956, -14.915637546865332, 2.3764544607985711], [1.2760657540936704, -0.077729601321507483, 1.2090043292697605, -0.48401767690643016], [-5.3886094617159346, 2.200117216306007, -0.44316694059504153, -0.80544075052469299]], [[0.53185115511734737, 0.30206325695557501, 0.80148938350550525, 1.047442535039711], [-2.0709860162340474, -5.1191444088641491, -0.28397859569936534, 1.2792587767882238], [-96.338809394137982, 0.55838397029774967, 1.3060273034426464, 0.67754301675915884]]], [[[1.0539199784527833, 0.62743135353607671, -5.6890981603187942, 1.8052864811134648], [-0.56994582002442928, -0.39550809900908157, -2.2459675092850895, -5.3721562872445512], [0.68352279680128936, 1.4837179824840887, -2.5785739645551788, -1.033580665481149]], [[0.38093975110296807, 3.1845224145186783, -8.6338809194109842, -0.43546576800373976], [-0.20331407344276023, -3.4643985918583193, 1.5424352550195062, -0.91653700413563366], [0.59637912459294451, -25.044476766299347, -0.45811677917613758, -0.55904458203375451]]], [[[0.60311480417088692, 0.11307256431662512, 1.7033508050940664, -7.7156847407432672], [-10.196871172372907, 0.1076307213120567, -3.6831649770066708, -0.53572561021033649], [1.9166401734031362, -1.4728710216778025, 1.8407229850668281, -2.3572817040493903]], [[-1.758855002901736, 0.54110631448591939, 2.8976606059699086, 0.45399233058581712], [0.38682887197477689, 4.6895764808665765, -2.8373957569747743, 1.3357904861442966], [0.19417566417476489, 1.9409854797509967, -10.275523383878257, -0.43837851346057438]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asin_taggedData_rank0(self): arg=Data(0.989657679547,self.functionspace) arg.setTaggedValue(1,-0.473489993439) res=asin(arg) ref=Data(1.42685052415,self.functionspace) ref.setTaggedValue(1,-0.49324888058) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asin_taggedData_rank1(self): arg=Data(numpy.array([-0.60614764750793948, -0.76269603799552499]),self.functionspace) arg.setTaggedValue(1,numpy.array([-0.074431252427650141, 0.46633079704255254])) res=asin(arg) ref=Data(numpy.array([-0.65120801803032125, -0.86747147905375954]),self.functionspace) ref.setTaggedValue(1,numpy.array([-0.074500149323603215, 0.48513840344368775])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asin_taggedData_rank2(self): arg=Data(numpy.array([[-0.38725529068582309, -0.035002566048380368, 0.29215359547572062, -0.74047728151511116, 0.86375088045015236], [-0.32624879922924277, 0.2147493204278017, 0.69593358057302734, -0.67043661608803573, -0.36870988653065229], [0.47510384739864087, -0.76918433519434637, -0.34537195722060143, 0.011183356922037646, -0.11541581215659935], [0.27260362912724068, 0.61437603398068741, -0.25663483045732682, -0.041872856264680069, -0.91618191033723884]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[0.41390194006847647, 0.47906669770750199, -0.65223346998753673, -0.15143835662945238, -0.33784007340735844], [-0.70843138277904028, -0.54438594011729147, 0.034207507853760921, -0.32612382903828285, 0.70186023759432148], [0.46194569999679191, 0.20862219804974647, 0.43258225592841981, 0.89408040795536747, -0.21133552002226552], [0.47668525800656281, -0.98272511924427908, 0.12392756171121211, -0.74247467351461138, -0.70926856758101375]])) res=asin(arg) ref=Data(numpy.array([[-0.39765272784734212, -0.035009717396994572, 0.29647790574666982, -0.8337802351353637, 1.0426662706606511], [-0.33233251116675155, 0.21643515475826403, 0.76971914249277162, -0.73479708883031969, -0.37762073948486119], [0.49508204578845194, -0.87756375238241691, -0.35263510222938133, 0.011183590047521475, -0.1156735991133048], [0.27609811766175707, 0.66159490472202953, -0.25953880511997846, -0.04188510212750262, -1.1584472025690309]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.42673623857902859, 0.49959114862575316, -0.71052717518368491, -0.1520232503062508, -0.3446210935366435], [-0.78727319189839995, -0.57565690165345518, 0.034214182708838151, -0.33220031031626085, 0.77800568719018426], [0.4801877492089463, 0.21016594677352965, 0.44735491475086192, 1.1063738876172791, -0.21294114010121065], [0.49688012059430242, -1.3846520382811431, 0.12424698835488085, -0.83675707078112471, -0.78846008349356012]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asin_taggedData_rank3(self): arg=Data(numpy.array([[[-0.27078670807121452, -0.6521353392582292], [-0.98935156671000035, 0.71924091352997421]], [[-0.596001253659459, 0.61191364730020958], [0.66651667689067051, 0.90368733535070822]], [[0.73399023574476341, 0.70767255658646566], [-0.13936321871982982, -0.62987342971179183]], [[-0.4948738057441634, 0.49128944743073721], [-0.88331247766967902, -0.86621949805759135]], [[0.14384806329256028, 0.095935576215879115], [-0.69504930628562311, -0.41646976607569797]], [[-0.39226444326380583, 0.2452138366202059], [-0.1518719139549316, 0.93521490540250141]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-0.22465455750635011, -0.64081370087964307], [0.6605109979083339, -0.54615750594210355]], [[0.56019147828484561, -0.67363253611107687], [-0.26666555499697531, 0.5822337693194235]], [[0.96028563934974787, -0.53648605635740176], [0.016439994710971462, 0.30498182045115629]], [[-0.27256730376760929, 0.25969816117226885], [-0.64645590181357815, -0.097098197456417124]], [[0.090976011478984375, 0.61837879336933055], [-0.69346965532985538, -0.27865603672245576]], [[-0.18099305537471033, -0.21217824413547803], [-0.24741889558471541, -0.10075712603260512]]])) res=asin(arg) ref=Data(numpy.array([[[-0.27421017834129852, -0.71039772542571444], [-1.4247320578861771, 0.80270911325546157]], [[-0.63851198939279763, 0.65847783965152196], [0.72952644193099725, 1.1283041433740428]], [[0.82417870001472116, 0.78619861108497946], [-0.13981832890670637, -0.68139024128778247]], [[-0.51768960196670843, 0.51356956389655972], [-1.0828819297210799, -1.0475858703421546]], [[0.1443488307389203, 0.096083348390609224], [-0.76848847834177259, -0.42955884388247545]], [[-0.4030920504517207, 0.2477402572487051], [-0.15246188107240444, 1.2088655180324399]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[-0.22658851752026385, -0.69555772267891613], [0.72149914702634521, -0.57777028882908332]], [[0.59461693452585995, -0.73911287993369601], [-0.26993164239658068, 0.62147348780168055]], [[1.2880241486013853, -0.56626768327750376], [0.016440735350003028, 0.30991934023703022]], [[-0.27606036257642469, 0.26270962685432236], [-0.7029299940282141, -0.097251423034157833]], [[0.091101977070680226, 0.66667810639918901], [-0.76629367807938997, -0.28239443270507703]], [[-0.1819960893458433, -0.21380341867513972], [-0.25001541559304535, -0.1009283906282767]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asin_taggedData_rank4(self): arg=Data(numpy.array([[[[0.17667641262684564, -0.20528415608852835, -0.86377896580752189, -0.5808064056077008], [-0.53575131452410674, -0.94973341635526076, -0.94934619991031122, -0.36012502776308042], [0.30866069414823993, -0.22625586744343318, 0.89172233386738275, 0.041379170795829534]], [[-0.74767149169546465, 0.50300329169060554, -0.77484404377979366, -0.8352964117129088], [-0.30013599718442951, -0.10886586640435891, 0.2730681338127674, -0.1615077727930434], [-0.41658644426176838, 0.87939475296716063, -0.86922788571063614, -0.69906009036185479]]], [[[0.12016629383182509, -0.70534585776132253, -0.87839274516803956, 0.2480882290553843], [0.31790318495990477, 0.03461698975366434, -0.027498912345320314, -0.66291073124981814], [0.50626012778834562, 0.77210638834559853, 0.32650848757464579, 0.9203611453694176]], [[-0.47360390489237758, 0.85676222423230053, -0.015787865739628981, -0.37070260942360855], [-0.72961058537924894, -0.14494860353517136, -0.52932600855417877, 0.88281683601885486], [-0.6909459206541444, 0.69160226630289623, -0.54290210856405896, 0.34524619417902236]]], [[[0.36542406478716893, -0.96793946499057182, 0.38442480479198515, -0.57435150997595197], [0.12545758270235607, 0.96934407264412958, -0.24044762690293819, -0.340989156148089], [-0.44460870104468952, 0.88803936519219207, 0.55053765965557822, -0.5546454459624317]], [[0.83841967081685675, 0.50019773286874503, 0.22967486065013221, 0.56354640088505747], [-0.65856710498790327, -0.90765207375799539, -0.58747426169848049, -0.53180638195873375], [-0.83276666060509819, -0.68616293259457728, -0.17418580748690327, -0.62859194512462024]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-0.45006916215173465, -0.92518399158900699, -0.04783796036863075, -0.19626369399103549], [0.09169070885520969, -0.87029170445041015, -0.0045652336502262081, -0.32329394607483464], [0.55866492213457741, -0.22397258908984941, 0.052303570015150402, -0.7530677681629222]], [[0.54997830254931301, 0.35346830466133805, -0.40403225037158907, -0.04482659680963097], [-0.11974859579133346, 0.94132610730205091, -0.66324538714156511, -0.22519453019335234], [-0.70728958122137842, 0.92386346743545333, -0.6458871899721651, -0.4609281078649099]]], [[[0.12930111020374491, -0.98520462255645291, -0.40152660242615856, 0.010632521180307775], [0.031150770980220788, 0.55887463503362822, -0.54295081925718014, 0.050402433196199858], [0.013662223054701439, 0.40718009215619322, -0.71883819418052053, -0.96296533562944775]], [[-0.1927124007905795, -0.68855068933515107, 0.6316010981181337, -0.041869003739051891], [-0.046326825303942165, 0.92598846850093763, -0.72356399590221465, 0.25634295052044487], [0.22051227192098355, 0.90166643600746443, -0.06859211365531892, -0.045149621190890721]]], [[[0.39410312014393267, -0.044987876742481614, 0.8979457783429603, 0.72166466731038081], [-0.83729280796152195, -0.97851172484586679, 0.17112070485897912, 0.2107396926071694], [-0.22810606176169324, -0.92777597337878248, 0.58581791765258862, -0.57511066270834021]], [[-0.30425553857922449, 0.63784070657640024, 0.76802042170834328, 0.56358714499635787], [0.76594910306777875, 0.85231338535685475, -0.94636186542722056, 0.77240089163366621], [0.31982221170560687, -0.32750948889637299, -0.034744253720429996, -0.50257821297680039]]]])) res=asin(arg) ref=Data(numpy.array([[[[0.17760871448276636, -0.20675403804646908, -1.0427220071893906, -0.61971896050972197], [-0.56539728309730153, -1.2523832523933589, -1.2511486870629975, -0.36840190993020011], [0.31378465192018662, -0.2282321452737586, 1.1011365828156379, 0.041390988386389355]], [[-0.84454869639849361, 0.52707016378896132, -0.8864683510196445, -0.98867169122207821], [-0.30483522099816734, -0.10908206377238625, 0.27658094036046738, -0.16221829359885875], [-0.42968718537947675, 1.0745894259046815, -1.0536384870903868, -0.7740822073469662]]], [[[0.12045738832689482, -0.78291093220064634, -1.072488853750152, 0.25070628836034903], [0.32351712207393363, 0.034623907281987255, -0.027502379259771104, -0.72469982402898492], [0.53084255928695823, 0.88214908246269863, 0.33260724413419246, 1.1690029652625629]], [[-0.4933782124574862, 1.0289582745627337, -0.015788521685103963, -0.3797654160853966], [-0.8177523437209665, -0.14546102725991955, -0.55780595912809805, 1.0818256899500005], [-0.76279673253995905, 0.76370505307109449, -0.57388899520112124, 0.35250109635513183]]], [[[0.37408833395292318, -1.3168934796373459, 0.39458466710266937, -0.61181174217240464], [0.12578904459759122, 1.3225470507143868, -0.24282698097084726, -0.34796891551730025], [-0.46073736173792446, 1.0930630422580974, 0.58300815127146821, -0.58793680336412102]], [[0.99437717008195303, 0.52382711290120032, 0.23174359978487752, 0.59867256987095474], [-0.71891304682557911, -1.137655796129406, -0.6279341788586954, -0.56073216019431915], [-0.98408642456901807, -0.75620114331540811, -0.17507887513122425, -0.67974142884518618]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[-0.46684278730023371, -1.1815201100750479, -0.047856225143968707, -0.19754604320899144], [0.091819674168062873, -1.0557942602491508, -0.0045652495079866228, -0.32920830092822206], [0.59277522179959163, -0.22588871606051758, 0.052327446914480526, -0.85271238565039864]], [[0.58233825824309027, 0.36127616478278501, -0.41592063812310764, -0.044841623005844253], [-0.12003665216187458, 1.2265382433727618, -0.72514689608315608, -0.22714269023447864], [-0.78565671511328383, 1.1780552671570363, -0.70218481885046757, -0.47904074383403694]]], [[[0.12966414087424233, -1.3985638911620022, -0.41318311251144624, 0.010632721525817797], [0.031155811146442221, 0.59302809425903769, -0.57394699929636273, 0.050423798063665655], [0.013662648113827933, 0.41936448841432711, -0.8021296351981142, -1.2977925042003347]], [[-0.19392561536532552, -0.75948862127879602, 0.68361662963146053, -0.041881246220352109], [-0.046343412238644396, 1.1836453452376237, -0.80895172981266905, 0.25923682302888701], [0.22233963948715654, 1.1236078001339596, -0.06864601410630812, -0.045164974774920652]]], [[[0.40509178676205976, -0.045003065808640254, 1.1150794983658745, 0.80620405929955008], [-0.99231290343135414, -1.3631154327855153, 0.17196703968158128, 0.2123315842232695], [-0.23013201668885772, -1.1884076378143387, 0.62588891338210939, -0.6127394135964227]], [[-0.30915681905645181, 0.69169133505319369, 0.87574435958173658, 0.59872189267169562], [0.87251631631408044, 1.0203925151294579, -1.2417837981042867, 0.88261263771725229], [0.32554183754839172, -0.33366648106510866, -0.034751247851029093, -0.52657840683397406]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acos_taggedData_rank0(self): arg=Data(-0.291587772644,self.functionspace) arg.setTaggedValue(1,0.0219832082111) res=acos(arg) ref=Data(1.86668265093,self.functionspace) ref.setTaggedValue(1,1.54881134759) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acos_taggedData_rank1(self): arg=Data(numpy.array([0.12826451971761799, 0.33491528109011126]),self.functionspace) arg.setTaggedValue(1,numpy.array([0.22031555171954387, 0.13047651014043127])) res=acos(arg) ref=Data(numpy.array([1.4421774808126324, 1.2292810095841651]),self.functionspace) ref.setTaggedValue(1,numpy.array([1.3486583675462354, 1.4399467435143751])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acos_taggedData_rank2(self): arg=Data(numpy.array([[-0.41152758157568659, 0.50648377704044156, 0.004765718148047382, -0.19506763365502267, 0.27315738992922611], [0.33882351517959264, -0.029041529921664644, 0.28655425515791988, -0.58345582451173839, -0.95744850153173044], [0.32067870881780935, -0.59696574288858684, 0.80001515403024226, 0.20766175365526407, -0.92537824876724606], [-0.62608849117550203, 0.49584899163835461, -0.91012458136569108, -0.28964137555570646, -0.019645711019819267]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[0.30161380606367949, 0.47771896537569658, -0.4069706892444982, 0.36563120333238408, 0.34635703099859194], [0.77283471581548135, 0.39085192259836066, -0.91464145652686901, -0.5785113219336232, -0.55834836602534121], [-0.89226447891919258, -0.005420603335181351, -0.23047363216965455, -0.31627282725938288, 0.24708083627782318], [-0.36674157132228213, 0.84284509604242497, -0.55735470644132779, 0.28132905259474161, -0.54756243112029979]])) res=acos(arg) ref=Data(numpy.array([[1.9949258434411383, 1.0396944084450979, 1.566030590606778, 1.7671227348451009, 1.2941226028750279], [1.2251301602101246, 1.5998419405884083, 1.2801680039289014, 2.1937737283320473, 2.8488240011834036], [1.2443503750305041, 2.2105099844323077, 0.64347585165092913, 1.3616123305271102, 2.7528286077860806], [2.2473230240603672, 1.0519841271516832, 2.7143809675072594, 1.8646484580550975, 1.5904433017575812]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[1.2644114932860036, 1.0727399259992247, 1.9899315573166447, 1.196485454770198, 1.2171113576324784], [0.68750036295992678, 1.1692393692469043, 2.7254164558807252, 2.1876987449669811, 2.1631899258148524], [2.6731322180353185, 1.5762169566759732, 1.8033607174166493, 1.8925943802877971, 1.3211298029884102], [1.9463004481873596, 0.56824804065117174, 2.1619926599703043, 1.2856175077339616, 2.1502446915093585]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acos_taggedData_rank3(self): arg=Data(numpy.array([[[-0.0018967734613412057, 0.59300273345453158], [-0.81381641137830263, 0.11977023446026669]], [[-0.037555176051128791, 0.021140469012053797], [0.19984949833653998, -0.11442177154206457]], [[0.34269780843852971, -0.29360044358101034], [0.53220357878081814, -0.36059448682460116]], [[-0.78355112918456538, -0.083700661501167062], [0.32350069086320987, -0.38066114197452472]], [[-0.97705826933358608, 0.40808141278379839], [-0.42109501987534292, 0.38704401675830336]], [[-0.38925229608360801, -0.94561123734124619], [0.38734879630697328, -0.84315118092500463]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[0.81502930234987203, 0.0050248424447604245], [-0.39601071676781818, 0.78146079161187321]], [[-0.40269237311187456, 0.59630968314412591], [0.43146464177692678, 0.28202596494731069]], [[-0.88345581362782388, -0.40846927031376268], [-0.65907710124008867, -0.51535297922329859]], [[0.3791891533095284, -0.1878703433573069], [-0.550755371929043, 0.00053164521361281913]], [[-0.67703943464546334, -0.71143279160208883], [0.1862121811026225, -0.84162834520638197]], [[-0.77834727203948528, -0.40520983099715968], [-0.82342473982088238, 0.50868059221882711]]])) res=acos(arg) ref=Data(numpy.array([[[1.5726931013935923, 0.93601340923207366], [2.5214858775304476, 1.4507378791003851]], [[1.6083603363688714, 1.5496542827850082], [1.3695920087141873, 1.6854692556999198]], [[1.2210092255140392, 1.8687874345506976], [1.009595077794389, 1.9397015089412193]], [[2.4711571166083619, 1.654595029389675], [1.2413695403820464, 1.9613074868225726]], [[2.9269767557006974, 1.1504447893795458], [2.0054485856592787, 1.1733727421774625]], [[1.970616056541908, 2.8102648289377887], [1.1730421776900686, 2.5739136323477916]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.61801656176645547, 1.5657714632044866], [1.9779646207779984, 0.67379274631597552]], [[1.9852526825543613, 0.93190017823864835], [1.1246806413386898, 1.2848911859657939]], [[2.6539841054134725, 1.9915727464827593], [2.2903872908337721, 2.1122158133671496]], [[1.1818764764700775, 1.7597897566840754], [2.1540652930004773, 1.5702646815562391]], [[2.3145286806652781, 2.3623312612316218], [1.3834908482456931, 2.5710876379804022]], [[2.4628254031317334, 1.9880046639617615], [2.5382167551116179, 1.0371447242973137]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acos_taggedData_rank4(self): arg=Data(numpy.array([[[[0.17419378414794906, 0.20877755349477622, -0.9560863974612771, -0.14865727072192525], [-0.17733095703209234, -0.075638384984418994, -0.95407857695419507, 0.6554653414860343], [-0.61341371635489927, -0.52092549325400384, 0.56479500388669734, 0.6212897490792797]], [[0.62874023072485619, 0.23625020456583901, -0.16020531855055364, 0.55591840537558723], [-0.79872077551867249, 0.04557168403173395, 0.3613949288270315, -0.95572639016521221], [0.79815227797346733, 0.17234806171331019, 0.26868955082890489, 0.98424717569008591]]], [[[-0.54543833436541767, 0.13415007696775616, 0.13534722231297658, -0.72252620207541485], [0.72328095946739612, -0.13862718470167823, 0.044552606563023067, -0.69905432254503375], [-0.085225036679073551, 0.98164131149719402, 0.76464095979981717, -0.86551052241781756]], [[0.62239954920343643, -0.70181949407386546, -0.8168814556558559, -0.13547995725989515], [0.82528036114158154, 0.87633827050160984, -0.080143289194266831, 0.83348769953227908], [0.32539673255685431, 0.93803075579628348, -0.27823622244460522, -0.39447875543393573]]], [[[-0.59356695628956446, 0.42068072139579571, -0.2966816048473806, -0.7687956041808558], [-0.71878760019674037, 0.97463077881539117, -0.31728131209986821, -0.73484475981245589], [-0.12727988625513686, -0.94231248176633886, -0.77734468240253696, -0.90444340163288839]], [[-0.18269489759149571, 0.29439735776753762, -0.27185087948144659, -0.62048852806225785], [-0.98053876278297158, -0.26218270695695034, -0.68261964802157793, -0.019759295107996899], [-0.089430250213055507, 0.74948889896974036, -0.75852786166420638, 0.35370400678788205]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-0.1619684522755932, -0.10284993380175211, 0.25821458903539396, -0.82364767575665576], [-0.36584913630709737, -0.72676741961971969, -0.97076126343096136, 0.91364000367151532], [-0.77168739033605294, 0.39113009993279912, 0.48535347425417696, -0.52215067436842233]], [[-0.84535167107707998, -0.87641054599151036, -0.4118154689589868, -0.72256509448603845], [-0.81670007180109772, -0.19694267578855462, -0.27574844635108997, 0.95030776906209558], [0.76565743374572093, 0.46912480629116415, 0.50374256986893307, 0.093162354426354455]]], [[[-0.73310899789237172, 0.2875723021943497, -0.81245888640465547, 0.58799309157190205], [-0.90714187533421775, -0.073098886394030282, 0.67818356310455719, 0.26455797708589723], [-0.66652933651616353, -0.23032652509234064, 0.22892282028568234, 0.44787613065694942]], [[-0.44317080986172785, 0.31925123670093725, -0.18287302844160769, 0.89497686805988264], [-0.30669668515287685, -0.75162807334334503, 0.61189143325364581, 0.053990654942066563], [-0.11090521653913066, -0.24677109143944231, -0.70304586767346078, 0.54736846949774476]]], [[[-0.59873211647357749, -0.31774376245292935, 0.43070766306328645, -0.016079803275450555], [0.5261614333552953, 0.6797542937501353, -0.68473148542300333, -0.41052525916288962], [0.68024025081334183, -0.40577339681915869, 0.4087295894868801, 0.61958252572202288]], [[-0.72011815326102413, -0.10455144248350179, 0.75334594465757676, -0.56149938171962099], [0.16913646946275085, -0.45034525250556334, -0.36739372725079256, -0.041181300029745849], [-0.64556849960251772, -0.040795848776974841, 0.85515343427832669, 0.6096018411341606]]]])) res=acos(arg) ref=Data(numpy.array([[[[1.3957093511629617, 1.360471526581287, 2.8441407383080222, 1.7200066442732735], [1.7490700866368647, 1.6465070213809823, 2.8373649283858922, 0.85599770843850642], [2.2311721630105854, 2.1187311401011293, 0.97061150484655345, 0.90040872753615897]], [[0.89086421992331588, 1.3322913334783058, 1.7316949814428857, 0.9813289023048628], [2.495962524203899, 1.5252088542888533, 1.2010328242314052, 2.8429148515570239], [0.64657435379029982, 1.3975834206961624, 1.2987640322677911, 0.1777321440297753]]], [[[2.1477083304186579, 1.4362405897686086, 1.4350324256625075, 2.3782457505851391], [0.76225455373160755, 1.7098714069908214, 1.5262289680482763, 2.3448704680068988], [1.6561248714124477, 0.19191216072142248, 0.70031230156130786, 2.616965031785782]], [[0.89899161244489156, 2.3487448168313412, 2.5267798820772609, 1.7066941968405251], [0.60009784920496412, 0.50258924678280592, 1.6510256575906948, 0.5854062256837147], [1.2393650626053583, 0.3538928296356465, 1.8527536586887519, 1.9762968634509979]]], [[[2.2062801487665875, 1.136600790119608, 1.8720122511782569, 2.4477519846112199], [2.3728531862116133, 0.22573089755729248, 1.8936576221249246, 2.3962340910120021], [1.6984224020679184, 2.8002691893334375, 2.4612300776159772, 2.7008694873643462]], [[1.7545231138284718, 1.2719714573571184, 1.8461121498570447, 2.2401618278670212], [2.9439834930659066, 1.8360796668105717, 2.3221377460874395, 1.5905569078982662], [1.6603462151776323, 0.72350662179783332, 2.4318473355004873, 1.2092681825027514]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[1.7334814462425481, 1.673828455510769, 1.3096226655494099, 2.5386097574192203], [1.9453413548263998, 2.3844003298346768, 2.8991783717530111, 0.41864650952806914], [2.4522863458860922, 1.1689371321766686, 1.0640289187834875, 2.1201670767225766]], [[2.5780194523086384, 2.6391534710101032, 1.9952417407117879, 2.3783020085117652], [2.526465489342848, 1.7690348671872353, 1.8501645764491155, 0.31657329697684766], [0.69873356468677461, 1.0824968212721804, 1.0428705855020852, 1.4774986804685288]]], [[[2.3936783941171464, 1.279105226241779, 2.5191536430590338, 0.94222086861618171], [2.7072381573266595, 1.6439604702314694, 0.82550822412311597, 1.3030507874849933], [2.3003397504688494, 1.8032095431448985, 1.3398253531931346, 1.1064078436784477]], [[2.0299290447557947, 1.2458570544086836, 1.7547042970540918, 0.46241697896834122], [1.8825168384735331, 2.4213232683150521, 0.91234657301380784, 1.5167794070081579], [1.6819301661171466, 1.8201432078142425, 2.3504678570451745, 0.99157974394862303]]], [[[2.2127135213118359, 1.8941453082545316, 1.125519574857567, 1.5868768230835029], [1.0167160158190489, 0.82336874945488769, 2.3250315257063354, 1.9938263516346553], [0.82270597341644369, 1.9886211901601889, 1.149734692650326, 0.90258559607088251]], [[2.3747689167871977, 1.6755391877344084, 0.71766104149909937, 2.1669930068530197], [1.4008428772515369, 2.0379483121019257, 1.9470015447043691, 1.6119892756074885], [2.2725637754510268, 1.6116035001525102, 0.54494956853218945, 0.91523810991933396]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atan_taggedData_rank0(self): arg=Data(-14.7254534244,self.functionspace) arg.setTaggedValue(1,-30.821724654) res=atan(arg) ref=Data(-1.50299080856,self.functionspace) ref.setTaggedValue(1,-1.53836305618) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atan_taggedData_rank1(self): arg=Data(numpy.array([79.645526314923757, 31.251712111300833]),self.functionspace) arg.setTaggedValue(1,numpy.array([17.802002898972049, -11.766456436013172])) res=atan(arg) ref=Data(numpy.array([1.5582413534867612, 1.5388089940682592]),self.functionspace) ref.setTaggedValue(1,numpy.array([1.5146818449820139, -1.4860127074426057])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atan_taggedData_rank2(self): arg=Data(numpy.array([[-51.014136430165856, -10.355356517133202, 28.251309295456821, 13.133655639607198, -4.4836594247888968], [67.588862677322936, -35.526211499854085, 57.141721412265554, 3.5594116807501166, 24.644697631626315], [-59.211703959261456, -72.046541293224493, -68.738506813922058, 36.183945043854038, 40.813283481240802], [-84.224967550292789, 2.382009962300117, -97.667999664168718, -17.641085801592737, -0.094387632167098445]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[71.722254489170183, -77.163739464663479, -62.935449615094207, 71.421618282216969, -92.086755719577582], [86.1279234487221, -75.927119138293932, -53.426711624869739, 78.243007256108257, -93.228905473462987], [51.146224478610861, 18.135315836848292, 25.055391871257115, -63.299860388548915, 43.155037911250076], [82.260960323640546, -59.034950659315768, 43.419415178367842, -96.721347394404589, 69.939661568517351]])) res=atan(arg) ref=Data(numpy.array([[-1.5511964273421315, -1.4745264598757113, 1.5354145091343874, 1.494802690678932, -1.3513557426844944], [1.5560020692406058, -1.542655526646358, 1.553297765207124, 1.2969112580541855, 1.5302418945935552], [-1.5539093791983924, -1.5569173012079685, -1.5562494664061093, 1.5431667932509703, 1.5462994014411897], [-1.5589239207380323, 1.1733268586785741, -1.5605579164505456, -1.5141710727583415, -0.094108820426104287]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[1.5568545563458982, -1.5578375973438927, -1.55490836758775, 1.5567958786717648, -1.5599374287193295], [1.5591862121193236, -1.5576265635211364, -1.5520812830291499, 1.5580163277677324, -1.5600704510968921], [1.5512470322905925, 1.5157110808099072, 1.5309059297790453, -1.5549998176728896, 1.5476282073492109], [1.5586404907725899, -1.5538588285718626, 1.5477692261183333, -1.5604577159532746, 1.5564992621352502]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atan_taggedData_rank3(self): arg=Data(numpy.array([[[-51.439521199073958, -42.19343667612452], [-57.017857592051982, 42.357194430644654]], [[-94.668069377568997, -97.267849956585323], [95.97751393208145, 72.083118529080309]], [[13.931243087317895, 48.314113039294057], [16.667854995256334, 7.2354641537036457]], [[-35.24080770006239, 6.1151782689095882], [7.2809362943481659, -47.744411262592919]], [[-20.3055738368638, 38.892625438958902], [13.233199681154034, -53.915986490531978]], [[-94.858405410928896, 99.82234948258116], [48.503882060032311, 30.917187302988793]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[91.878551047153621, -29.510183345226608], [-83.224925312144791, 83.845227550590039]], [[88.225493436926286, 11.532409624377109], [2.5458204819547916, -60.296569325231573]], [[54.038333175852074, -4.1384279748112789], [23.760565206323776, 21.555672180440922]], [[-33.836072987446173, -77.826802360528504], [42.386301929980959, -28.853499934767314]], [[-92.851208362115315, 51.187485401450829], [-17.065728694813885, 53.278176745218417]], [[-99.442133011258861, -62.662157473770883], [-58.469826126068639, 17.824111168192687]]])) res=atan(arg) ref=Data(numpy.array([[[-1.5513584698690774, -1.5471003942988308], [-1.5532597596608479, 1.5471919713913882]], [[-1.5602334958935613, -1.5605157996684915], [1.5603775966626152, 1.5569243429573056]], [[1.4991381283805512, 1.5501013957909033], [1.5108724340083037, 1.433458236465541]], [[-1.5424277452541746, 1.4087034902352189], [1.4343053177252822, -1.5498545289386529]], [[-1.5215885210143809, 1.5450901753003594], [1.4953721636022326, -1.5522510785229557]], [[-1.5602546889363347, 1.5607788652232746], [1.5501823406963127, 1.5384631301370586]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[1.559912823466391, -1.5369226810631742], [-1.5587812739091436, 1.5588701549951265]], [[1.5594622198376147, 1.4843005338925794], [1.1965116310113704, -1.554213155607542]], [[1.5522930567093209, -1.3337034661793217], [1.5287346084657718, 1.5244380631272727]], [[-1.5412506699602671, -1.5579479899433375], [1.547208174948046, -1.5361523528598342]], [[-1.5600268240968616, 1.5512627864671464], [-1.5122662848001094, 1.5520291193633591]], [[-1.5607405660888007, -1.5548390862365009], [-1.5536951554558593, 1.5147513012507214]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atan_taggedData_rank4(self): arg=Data(numpy.array([[[[-60.786516054960018, -97.443926672116945, -59.730786105649635, -60.552672183608202], [0.067178496327429116, 76.097886671263439, -10.611506241697001, 62.520570069561273], [98.734673799525353, 84.863778955168158, 38.252515267672806, -5.1350082880344985]], [[77.589460335333513, 84.577328211722374, 67.229876917205758, -27.884169005126182], [-55.428762309397705, -42.909045438315019, 5.4478832792561178, 98.719071343277363], [50.041890457414098, -61.217337389541605, -31.625752675276402, 68.601618873426759]]], [[[-25.801223779222397, -29.445798766093745, -44.798995576077047, -13.060782989795968], [-24.868508822871931, 54.456897228862431, -69.005823306352426, -38.013099364990332], [52.520288283056431, 75.090539051454812, 88.11571157196164, 29.940468771848515]], [[-69.126425092990985, 78.527356119425946, -53.114343044690806, 83.848543031621091], [-33.685382028364685, 20.306687112361828, 32.650151957007466, -81.059070647169236], [83.469680236467951, 97.861914954668038, -43.032363052419306, 45.804898833159399]]], [[[72.4991519048626, -92.751679859513942, 26.266552717005069, 26.556036707565454], [-65.853696462593632, 49.53468229171304, -4.1588537709789364, -98.080606358862553], [-75.680355306374167, 28.449553815517618, -86.195746809070101, -79.665759321116923]], [[-3.0262101017673757, -86.441575573369178, -58.423640738004678, 16.659518568604952], [61.02394512053786, -82.308850756533687, -63.48331127418183, 77.928338187268736], [13.711361913844101, -40.319664743955784, -20.625042794109746, -40.404672515921902]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[34.440676365049114, -8.928215565852156, 82.549857592202045, -23.402816990850781], [81.444943705518057, 24.836590977242707, 12.529228281117838, -30.233298854898962], [-27.744182872849407, 52.425228768719734, 61.267860951786759, -33.849170571356012]], [[-31.944123108883531, -77.558579126251928, -86.569996998801585, -22.877811832681274], [-68.796333830065777, 38.3887156141069, 55.836989989650135, -88.366850454930685], [30.300995863327671, 4.9007881921832848, -27.507754163421041, 76.045942075681637]]], [[[64.072551296634714, 74.888616072380785, -33.075348532233932, -32.445757899913886], [42.326950917626533, 85.004838459602013, -52.797797801406674, 61.710543752406068], [95.848068180331182, -60.15064788445914, 16.670945317241291, -65.666197079729741]], [[76.675531866034845, -46.804170258023724, -79.050686910748411, 20.250281649863666], [44.623682968710199, -23.035506964204686, -54.724272963446111, 40.878243061765005], [53.368726075681678, -99.662799699787371, -0.39118677248215761, 29.872163016238545]]], [[[23.227160380259122, -40.824445575015567, 9.9914772245777641, -70.767759555201451], [43.089621482280933, -84.683624327833257, -72.192063858769018, 55.872440414467803], [-58.127478581268498, 34.87567327109511, 10.580861885981534, -58.73857948325918]], [[77.723769033663018, -18.880641278910758, -80.850165897272433, -58.112001436928253], [53.595081958851097, 5.6247875895140282, -29.124774133157288, -98.409076696537625], [46.599025926989782, -63.970578322466842, -22.107674051037463, 45.27636423071533]]]])) res=atan(arg) ref=Data(numpy.array([[[[-1.554346793780754, -1.5605343748051601, -1.5540561053483741, -1.5542832800750914], [0.06707771134963493, 1.5576561137349634, -1.4768364848555173, 1.5548029547769511], [1.5606685188986997, 1.5590132818747466, 1.5446602078043219, -1.3784619450341296]], [[1.5579086919105407, 1.5589733781788726, 1.5559230843172502, -1.5349490465472442], [-1.5527571087994305, -1.5474954351984298, 1.3892596545420326, 1.560666918317682], [1.5508157282893953, -1.5544625378689159, -1.5391870576196998, 1.5562204436506224]]], [[[-1.53205786478674, -1.5368486716248135, -1.5484781040920352, -1.4943803282798005], [-1.5306064810252038, 1.5524352435915465, -1.5563058104960985, -1.5444956717247109], [1.5517583661301895, 1.5574798570707853, 1.5594481000782767, 1.5374091272945045]], [[-1.5563310879232202, 1.5580625993455297, -1.5519712446798413, 1.5588706265268419], [-1.5411185754107688, 1.5215912143863453, 1.540178169450183, -1.5584602703189787], [1.5588165018096578, 1.5605782026465265, -1.547562184377139, 1.5489680683305043]]], [[[1.5570039366370194, -1.5600152686245654, 1.5327434733828007, 1.5331578889109807], [-1.5556123173747718, 1.550611193130053, -1.3348250771073642, -1.5606009845295099], [-1.5575836270993995, 1.5356608560533649, -1.559195346750025, -1.5582445417846158]], [[-1.2516463284150974, -1.5592283355033394, -1.5536816391795429, 1.5108425198654833], [1.5544107833647154, -1.5586475628061378, -1.5550454580714337, 1.5579647286965086], [1.4979930117462867, -1.5459996168270638, -1.5223495175888366, -1.5460517655438717]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[1.541769047752825, -1.4592567339075215, 1.5586830280198429, -1.5280924056594469], [1.5585187106853997, 1.5305548882051436, 1.4911517816513042, -1.5377322682685537], [-1.5347683314855143, 1.5517238541043337, 1.5544760048742774, -1.5412620956961551]], [[-1.539501884061409, -1.5579035610577179, -1.5592454944007521, -1.527113658719671], [-1.5562616921013832, 1.544752894838392, 1.5528889663387913, -1.5594803490192568], [1.5378060847306976, 1.3695107286356141, -1.5344589427920325, 1.5576471391021702]]], [[[1.5551902865231184, 1.5574439559923015, -1.5405715366363946, -1.5399854101404904], [1.5471751118445947, 1.5590328331973433, -1.5518584072127872, 1.5545930587248358], [1.5603635268687615, -1.5541729333474901, 1.5108835156383955, -1.5555689685427048]], [[1.5577550959903859, -1.5494339594471369, -1.5581468900546853, 1.5214543797077005], [1.5483904520035858, -1.5274123226048211, -1.5525249334605411, 1.5463383139491345], [1.5520609537393462, -1.5607628293839917, -0.37288575485185699, 1.5373328409638529]]], [[[1.5277698519717662, -1.5463060966366591, 1.4710432191222749, -1.5566665386668717], [1.5475930473251533, -1.5589882171355174, -1.5569452745436581, 1.552900325927786], [-1.5535944562222297, 1.5421308993211618, 1.4765659635152497, -1.5537733852560058]], [[1.5579309596200162, -1.5178814663571647, -1.5584283990382004, -1.5535898757003221], [1.552140063159527, 1.3948501935545574, -1.5364747794967917, -1.5606350122506203], [1.5493399440355367, -1.5551654135988773, -1.5255939766631132, 1.5487133380455611]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sinh_taggedData_rank0(self): arg=Data(1.99198759591,self.functionspace) arg.setTaggedValue(1,2.30052765476) res=sinh(arg) ref=Data(3.59683227352,self.functionspace) ref.setTaggedValue(1,4.93962040641) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sinh_taggedData_rank1(self): arg=Data(numpy.array([3.7121592231366236, -4.5205237974298704]),self.functionspace) arg.setTaggedValue(1,numpy.array([0.30788026299313653, 2.5568342424834434])) res=sinh(arg) ref=Data(numpy.array([20.45884479360328, -45.93641525360411]),self.functionspace) ref.setTaggedValue(1,numpy.array([0.31276737629464152, 6.408690275759203])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sinh_taggedData_rank2(self): arg=Data(numpy.array([[-4.8144899441545528, 0.78267245526398277, -3.9902900754326529, 3.5628490203251033, 2.1183518970045636], [-2.5070220439451694, 2.22072356217594, -2.3873817066715231, -3.8412251092257801, -4.7972608158325922], [-3.1935509834404807, -4.3564582503990001, -2.9952608734330868, 2.2478968274432152, -3.5759483501851563], [-1.3426146737839293, 4.3069146426030791, -4.4619207942108039, -0.17652673360272075, -3.3503263854852361]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[-1.0103477084057824, -1.4588465915190465, 2.8809504601572611, 2.3288760653961047, 2.2303693881343687], [1.0183167542036395, 1.93447626412806, 3.7104269993832428, 4.3335802861769874, 4.3921380450277265], [-1.3774340986519782, 0.92228142402738822, -2.5941241432249171, -3.3237064911008796, 4.6346105466494585], [1.0666499877056488, -0.89076238705677468, 4.5302531678878104, 4.5060336794272828, 2.0384873019197407]])) res=sinh(arg) ref=Data(numpy.array([[-61.637901615656197, 0.86506368613794438, -27.026038642285407, 17.617581367615905, 4.0985943037096586], [-6.093415206821609, 4.5527324006135492, -5.3965433394599067, -23.280520435716621, -60.584890612216782], [-12.166901315420557, -38.983816886070187, -9.9702753219255733, 4.6810906645722357, -17.850249501178922], [-1.7839401011571518, 37.098846158833695, -43.321126637656903, -0.17744497495638895, -14.238482567850086]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[-1.1912317449878338, -2.0342457843344053, 8.8875657756020434, 5.0844955627700941, 4.5979066282350889], [1.2036641503921339, 3.3879593528934069, 20.423393864250595, 38.101777842909016, 40.400321013863852], [-1.8562452941244159, 1.0587053970421214, -6.6550738613616067, -13.863522278520332, 51.489045675912898], [1.2807348782797063, -1.0133220385263433, 46.385634798441771, 45.275432746886217, 3.7743794349039121]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sinh_taggedData_rank3(self): arg=Data(numpy.array([[[-1.6699752087038435, -0.2455134886023238], [-2.1687245044555992, -1.5692632008931549]], [[4.5726976745572561, -2.7279776977250503], [-2.2847357293147286, 2.6373859093927754]], [[-0.73793065293643068, 0.38302358868877739], [-3.6068322119333249, -2.7337954547102572]], [[-0.45348176104555638, -2.6490340460279951], [-4.3886113896165462, 1.8804425676698937]], [[-2.8375230103816538, 1.111346967580932], [4.1139208151096955, -0.49572589111884202]], [[-2.3299326190666081, -0.62551236912490715], [1.3632704432597551, -2.2917130664840233]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-2.0562165096337282, 0.35936888959956814], [-3.6372329621674284, -2.4786029292995906]], [[0.65206578693234096, 4.2616217865668187], [1.5056871818097299, -4.3212094251499877]], [[4.4704679225004966, -4.3597404599188021], [-0.87623360805733697, -4.4308201122339383]], [[-0.9558721806683721, 0.017485009222809822], [-0.5985209090958632, -3.281153953325652]], [[2.6733102681464143, 0.58838863251234308], [-3.4875728007909155, -2.8625086273204059]], [[-1.538276838516841, -4.4373864115838035], [-3.3984080066326641, -2.2757928405839403]]])) res=sinh(arg) ref=Data(numpy.array([[[-2.5618921853515806, -0.24798739704939532], [-4.3163983334752745, -2.2974547188559029]], [[48.39728795997064, -7.6182796518722613], [-4.8606444823509278, 6.9525358015487786]], [[-0.80675026447437204, 0.39245790554232302], [-18.410999897933262, -7.6631103274115127]], [[-0.4691851238549285, -7.0348268024411853], [-40.258050303704749, 3.2019416421082258]], [[-8.5074259309283864, 1.3546664880209558], [30.584901942778352, -0.51628045436067105]], [[-5.0899733579461612, -0.66710809345606392], [1.8265668432775661, -4.8953877347643511]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[-3.8442018204801496, 0.36715416750958968], [-18.98012788845724, -5.9203664863683336]], [[0.69926678187260138, 35.455407944451679], [2.1426925432268189, -37.633167256872468]], [[43.693083396997459, -39.11202224549578], [-0.99274414975503578, -41.99418680140694]], [[-1.1082307083479541, 0.017485900172098688], [-0.63490086709424287, -13.284436370815889]], [[7.2094126025166956, 0.62293131907508703], [-16.337945591940521, -8.7241305581397839]], [[-2.2209042584132921, -42.27091867492458], [-14.941504453786477, -4.816459660325112]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sinh_taggedData_rank4(self): arg=Data(numpy.array([[[[-3.261368733617156, -1.7097421056887061, 2.4770674176220533, 2.6184686144257991], [4.2685570141508649, 0.26471561412312994, 1.8677744659878321, 1.2974082786792565], [-3.1644599226939727, -0.98342184660922349, -1.5818484011953915, 1.7453818193010404]], [[-3.1409423348480905, -1.503135136465966, -4.1317701664086295, -2.6487331291018479], [-2.9344044174187998, -3.9794616897516244, -1.0636935004548986, 2.4681705131671574], [1.7248384820876259, -0.61623840444111444, -3.182398118986538, 1.8412600667009382]]], [[[-1.2967881315097731, -3.2351451577555101, 4.2939167700693446, 4.8638089405008476], [2.9825316536154167, 2.5020908411933496, -4.341334514919474, -4.8611901904936659], [2.5682832345839106, 3.1020556388946119, 4.0616444500999389, 0.58287106482411755]], [[-0.92122010658250453, 3.6178485248091157, 4.1247030396785007, -1.7719429245102813], [-4.2954747345288151, -2.1268789753154813, -2.0943498166080774, -3.5016915119012504], [4.0796282018855194, -0.70150021612442082, 3.9968340640276256, -2.8002455053291451]]], [[[2.7768169172372295, 3.5354672331727777, -4.9833519421308301, -2.7281177342220486], [-3.6388062639788132, -0.24005900416176473, -3.9369129849748861, -2.7620876149297002], [3.7327362822865435, 1.1752019535122198, -4.968172850646587, 0.45185628083386664]], [[0.78465593645643406, -4.8933212754874553, -3.887154034060468, -2.5322616232125039], [-1.0742963974782302, 3.3289574703031288, 1.1899668301054973, -2.9336209382110057], [-2.4653189902719017, 1.4461862760456876, 2.7436930808359143, 4.5571819794183686]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[2.1332145838014913, 1.2177971547397419, -1.9450668430632225, -3.8915509651360161], [0.34984554597693851, -3.5724187380684516, -0.36417739374160707, -1.4056767503527468], [3.6886009926451795, -2.3524969636932003, -4.5102454679585238, 4.3770785828462468]], [[2.4748540247021777, -3.1040806961176317, 4.3318809570689503, 4.7424354863417442], [4.4482502719559776, -3.5813275761400054, 1.6790719518347696, 3.3826258086123921], [0.41668209832613634, 3.5649415125773416, 1.6284709294696516, 0.46697670447318185]]], [[[2.4215260841968869, 4.4326478509045142, -4.4189346955673434, -3.159517367887986], [0.77984444249549512, 0.52106214096843129, 2.2959783381073375, 2.8620825221995148], [-0.83928142017985685, 2.3961087684562008, -1.5912632794131518, -2.6327788717179725]], [[3.9275031010752279, 0.31923128079452301, -2.2762341712323044, 2.3868873445961158], [4.1180987252889008, 0.58883415948539231, -3.5287883781020488, 2.7441939267749778], [4.0184160311880355, -4.6753857407642982, -0.90603684893730918, 1.3999807565920435]]], [[[3.9197722873955865, 0.8568499678692918, 3.7086105728287162, -0.21167328998860668], [-1.8846910022439625, 4.0109184386500658, -3.7641561030274531, -0.47027664746013542], [-1.5388852245439333, 2.3534855378811139, 4.2231499372068146, -3.2804922592029619]], [[-0.05624724006019477, -2.8226259374957232, 2.7214574181168203, -1.3648584776772541], [1.458452045981061, 4.3818228672288857, -1.779611092507988, -4.0543356587838], [-1.3735137487486937, 4.7330680902546227, 2.3550068942781071, -3.9075745779532935]]]])) res=sinh(arg) ref=Data(numpy.array([[[[-13.023440270699259, -2.6733116654343072, 5.9111539019062862, 6.8208952782641425], [35.7022516817728, 0.26781809379022642, 3.1597027400448123, 1.6932800751791159], [-11.816858393542429, -1.1497800913986027, -2.329171645463961, 2.7767549168418548]], [[-11.541203334322933, -2.1366650567825722, -31.136015622546896, -7.0326889417647314], [-9.3785671704044926, -26.734768755711737, -1.2759364890266949, 5.858048933103599], [2.7167063739913448, -0.65598843191103351, -12.031501841254393, 3.072929944227814]]], [[[-1.6920608694436352, -12.685352743257289, 36.619585226109336, 64.754431865133057], [9.8435290579275119, 6.0630393584281839, -38.398477943694964, -64.585057821227878], [6.4833728384402045, 11.099336246706669, 29.026252346926242, 0.61644023180207441]], [[-1.0571603791351021, 18.615241481692724, 30.916635699137355, -2.856134354291088], [-36.67670297233353, -4.1347179890900154, -3.998504686318193, -16.570684097163284], [29.553285005086391, -0.7604675809797572, 27.20359770161199, -8.1939446899377977]]], [[[8.0027790235537211, 17.140948545266145, -72.977985228256998, -7.6193557153388518], [-19.010054278242894, -0.24237135670329799, -25.620303855164558, -7.8848508059247102], [20.884691434092481, 1.4650201726547696, -71.878506579845961, 0.46739024222723913]], [[0.86768804011917233, -66.69419356195327, -24.375691040284792, -6.2512252509030963], [-1.2931970487315634, 13.936699944900679, 1.4913704109166104, -9.3711804841265494], [-5.841126728603502, 2.0057102769093333, 7.7399766017332157, 47.652005601622172]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[4.161752367783798, 1.541926632612777, -3.4255608402399025, -24.483195400361897], [0.3570257223960186, -17.787257314136472, -0.37228079161732119, -1.9165423642645187], [19.981928064707756, -5.2083266003894222, -45.466571941208194, 39.796285782641952]], [[5.8978987635397626, -11.121926851445268, 38.037063069187369, 57.352263445220188], [42.732776058437857, -17.946679307528704, 2.5870158831439984, 14.707018154821265], [0.42884487385080838, 17.654543955312313, 2.4499235521097709, 0.48413477435416613]]], [[[5.5871242630376541, 42.071033145542899, -41.497881296562845, -11.758388262639029], [0.86132781108094103, 0.54496286536137339, 4.9167436772901087, 8.7203896119493791], [-0.94134111336199311, 5.4446471750107008, -2.3531397442848156, -6.9202492513096638]], [[25.380166933590768, 0.32468104508626694, -4.8186311121891992, 5.3938307354249373], [30.71301849893301, 0.62345627965547068, -17.026653430917108, 7.7438863291025068], [27.797482713465271, -53.632308557373527, -1.0351868092899348, 1.9042601111874786]]], [[[25.184561827402003, 0.96561560781209588, 20.386285498772896, -0.21325752577179305], [-3.2162218030768943, 27.589713049238945, -21.552054166525547, -0.48780375093616124], [-2.2223864880448345, 5.21357200785015, 34.116735473841551, -13.275624175244463]], [[-0.05627690347203064, -8.3807569501370018, 7.5683418170849297, -1.8298760541851917], [2.0333516065142763, 39.985598858890903, -2.8794234783627348, -28.814753045485492], [-1.8479935964675063, 56.817448854328696, 5.2216543312111838, -24.87899171972731]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cosh_taggedData_rank0(self): arg=Data(-3.33964228765,self.functionspace) arg.setTaggedValue(1,4.45561542511) res=cosh(arg) ref=Data(14.1222419084,self.functionspace) ref.setTaggedValue(1,43.0603707159) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cosh_taggedData_rank1(self): arg=Data(numpy.array([-0.13877438581352841, -0.98259382848166865]),self.functionspace) arg.setTaggedValue(1,numpy.array([-4.3574558223327253, -1.677224337266833])) res=cosh(arg) ref=Data(numpy.array([1.0096446284726606, 1.5228576115054628]),self.functionspace) ref.setTaggedValue(1,numpy.array([39.035549183605326, 2.7687878265704762])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cosh_taggedData_rank2(self): arg=Data(numpy.array([[3.6339325575992536, 3.6003092610162302, 1.9584137399530954, 1.0694664510664698, -0.37917195236293022], [2.8785993252032664, -3.0900484176532297, 3.1752833068489892, -3.5111549864703031, 4.255322840622437], [2.0391630012792916, -4.3327016874450539, -2.6982102068084535, -3.0441546421582411, 4.214997939810214], [4.805038197601009, -3.2837195225291618, -2.531898818520947, -2.9915602053560839, 0.95310199737158996]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[0.23915076781097699, 3.7715468041843607, -4.3893406000801383, 3.9409596096136763, -4.4591106172531809], [-0.79570459044341924, -4.9855183758363273, -2.1377195897080261, -1.2985129868699143, 2.5687675010839595], [-0.72076603643646031, -1.2171966834491519, -0.70239230129778285, -4.1634325077059406, 0.14043642198635808], [-2.1962284423656131, -0.68365662414911732, -1.1633302866935447, 4.5948451769437177, -0.4700634110282973]])) res=cosh(arg) ref=Data(numpy.array([[18.943914275341193, 18.318434937398699, 3.6145783248028835, 1.6285079976630699, 1.0727510814321364], [8.9227760436425374, 11.011820915712233, 11.987690862915786, 16.758392401505439, 35.246877846320565], [3.9071562261311463, 38.081436864226781, 7.460224902554307, 10.5199571391222, 33.854399380223668], [61.066172085048954, 13.356147253406316, 6.3284367588194961, 9.983470747464299, 1.4896430948431345]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[1.0287330987029193, 21.735116828944143, 40.299835565663813, 25.743698163829791, 43.211097722447775], [1.3336324938705348, 73.143109653419216, 4.2990004786149294, 1.9683908914628332, 6.5631803398985999], [1.2711935565261079, 1.8368823113377528, 1.2569873598703747, 32.153690276380928, 1.0098774121609404], [4.5511305484919777, 1.2429382704244676, 1.756509148044366, 49.491457436632956, 1.1125291456069766]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cosh_taggedData_rank3(self): arg=Data(numpy.array([[[2.2594094214565343, -3.3290383685707656], [4.5122363492198989, 2.3616061614668551]], [[-0.78315440920111534, -4.9445078035481647], [-2.5870583922278079, 0.54336796085071803]], [[-2.2564960296248815, -1.0922215776887101], [1.7220877741473926, -1.2680128955602719]], [[-4.7968660202901106, 1.8820956661735808], [-0.55071124481399369, -2.392255525132474]], [[-1.9561751623976353, 3.6639866209171164], [1.6308692498233102, 1.3156981063393305]], [[0.93858824856890788, -0.37594139126048809], [3.0401317577773099, 3.3062633851984806]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[4.5082410257474734, 2.7799840957038571], [2.9998965498752392, 0.8376503607327983]], [[-3.0742571047141567, -2.6501688991516961], [4.8047153237939639, 3.6547840727268941]], [[1.4892709697169861, 3.1091178911469477], [0.84905211092721178, -4.0113192232287229]], [[0.57916069108996293, -3.8200016353254016], [-4.3902497028351064, 1.1074094810753987]], [[1.0867920869099219, -4.9751281118846391], [4.6498844446615237, -4.6057390252989627]], [[4.2083455246221426, -3.299687693396459], [-4.8051197517458437, -3.7372411259947755]]])) res=cosh(arg) ref=Data(numpy.array([[[4.8409217004581384, 13.973657885406432], [45.568176435498991, 5.3511222948482491]], [[1.3226633378307002, 70.204425514379224], [6.6829296515419099, 1.1512924649961667]], [[4.8271429171721767, 1.6581796951312628], [2.8874462830250218, 1.9175870101400594]], [[60.569229009714817, 3.3597619421386007], [1.1555129136535931, 5.5147803140711771]], [[3.606811684222702, 19.521103835073294], [2.6520362629520506, 1.9978195651943991]], [[1.4737748024949511, 1.0715021754303207], [10.477913216116429, 13.659820812115026]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[45.386523884584705, 8.090402041223733], [10.066625699236537, 1.371828409565327]], [[10.84001412211161, 7.1135343667655935], [61.046461244057511, 19.342519863210843]], [[2.3296994698881761, 11.222957817551869], [1.3826252214777885, 27.61888954682524]], [[1.1724542565995428, 22.813105331832602], [40.336477634532706, 1.6784609004147599]], [[1.6510224629867831, 72.387139007404855], [52.291231814415738, 50.03344721314393]], [[33.630031580706699, 13.57053373731201], [61.071151819778152, 21.002913453619939]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_cosh_taggedData_rank4(self): arg=Data(numpy.array([[[[-4.2974496482443385, -4.5141752496351151, 1.279224746016018, 3.6686464638653025], [1.5642465306660078, -3.6550169225724973, -4.783271042866363, 2.3639071234236022], [-4.8837760852087531, -0.92880494563806426, 1.1661108769933435, -2.869160403619524]], [[-3.4776906208283864, -0.40395614262695556, -1.5446529839825116, -2.7579904120989451], [1.8349405477146661, -3.8378201393977585, 1.3433045012858305, 4.3472141505175408], [0.7181640331745669, -0.41398944472294108, 4.6769407318346552, -4.8778258871553088]]], [[[-2.4849883440153242, 2.1345431108307942, -0.09067629606352412, -4.3150106990500738], [4.3118061338163951, 2.4975944032177999, 4.175128675721389, -0.7758441537477232], [-3.9713262603505806, -3.3159913471560118, -0.18233452053653032, -0.66293502941204352]], [[4.9788464217729853, 0.65529004311657868, 3.3675428303822663, -0.079349711831890879], [-1.8723533081093855, -3.0300430916460952, 0.51874134723845078, 4.5086381057403386], [2.9026067240258424, -3.6918617768589703, -4.0661575918193105, -3.5278224263153781]]], [[[0.0015231207730606044, -3.4671950612278115, -4.7151737408852421, 1.3355453672089359], [-3.611921752531714, 1.3179876222783404, 2.4802830245059315, 3.4904987636760065], [1.6663642593810604, 3.9457517334304164, 0.61643625583120443, 2.7089869134481699]], [[1.2885016388929635, -1.4828486104919558, 3.4244574147497708, -2.1274761147070054], [-4.9722256226904884, 2.1224822895404829, -3.3802787629574036, 4.6747109104337454], [3.8750910639279113, 4.8191435251217936, 2.4467943595773542, -0.015571286302071385]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[0.43479655428703889, -4.453019927481642, -0.57836799850371357, -2.1495952675388672], [-4.5343815245793015, 1.5310770099215967, 2.8984213237035359, 3.0780399132153011], [4.5122783435803022, 4.4843493252518059, 1.3586522171022919, -2.3081057748737344]], [[-1.1824987809769425, 2.4884096785953993, -4.5317815425489592, 0.67363953752730943], [-1.9843232485967732, -2.0085682378296066, -4.1607211508996613, -1.0505768606305352], [-4.4766448951046929, -1.0969734828880795, 2.5602234150431045, 1.6978621896143666]]], [[[4.3644036146205014, 1.5620129800850844, 4.5439913548426514, 2.3331518079278046], [-3.8887166881366895, 0.0069936039297040509, -0.20591644090240813, 4.4383248956821379], [-0.87172659086694004, 0.82903722202787833, 4.1864529892369333, -2.8022144333005317]], [[4.5115179717289795, -3.6483711729962587, 0.81876939622194733, 1.689971164217746], [-0.33458354116486344, 3.5336789816595413, -3.3644747866075297, -4.6902428060034644], [4.2804200141624467, -0.56490089533574483, 3.3489598815617807, -0.009823071629792679]]], [[[4.5748546036038853, -4.5647170547892832, -4.4595799485564624, -3.8442023386090449], [-2.5666480472200193, -3.9269313339727696, 2.6734901478379864, 0.8905586703061914], [3.0050076872803686, 4.9517454070040685, -4.3279279631812981, 0.42460718079153104]], [[4.3245850003831627, 4.445343421639647, 3.892492263981266, -2.5689296346773061], [2.0304529199152448, -0.93601555140498416, 4.4870935497851416, 1.9197064347913448], [-0.7708198383595688, 3.9685457595406746, -3.4935088288480665, 3.1260055792475629]]]])) res=cosh(arg) ref=Data(numpy.array([[[[36.762837994027265, 45.65659302281535, 1.9360527151951246, 19.612161951845756], [2.494159154100938, 19.347018267235629, 59.751475973278325, 5.3632322912433219], [66.0681102505865, 1.4632538079216522, 1.7605312973779623, 8.8394814942999496]], [[16.207862700025089, 1.0827058308402404, 2.4498655073561295, 7.9157713718384866], [3.2121923357012863, 23.222853177989286, 2.0463331206435584, 38.637931391546402], [1.2691557688218085, 1.0869245433467289, 53.72509313313838, 65.676204192935117]]], [[[6.0421534482658936, 4.2857410419310309, 1.0041139129568435, 37.413895144702927], [37.294234611722473, 6.1177528566639348, 32.53179123057128, 1.3163701272671944], [26.536848580189528, 13.79299490344593, 1.0166690434382355, 1.2279079665662052]], [[72.656772164263117, 1.2224961982676807, 14.520819069300805, 1.0031498405789798], [3.328672363997796, 10.37321902129923, 1.1375906033763266, 45.404545168785155], [9.1382310638755566, 20.072198262374123, 29.174768845073917, 17.039554903078329]]], [[[1.0000011599486689, 16.038965793559022, 55.818581090736359, 2.032541800778572], [18.532080317128734, 2.001784597279733, 6.0141820470909675, 16.416394943974005], [2.7409109645024752, 25.867268111398666, 1.1960900211712384, 7.5403307581926216]], [[1.9515154764366831, 2.3162337362313838, 15.369273332817901, 4.2563965180112602], [72.17736078389747, 4.2357887581890381, 14.706498851241967, 53.605449988802455], [24.103919322318855, 61.933518473582737, 5.8189143906114449, 1.0001212349281225]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[1.0960225692535404, 42.948782682946323, 1.171969429063197, 4.3489579207932341], [46.588305110529134, 2.4197279528705185, 9.1002935322558294, 10.880922619136969], [45.570089621262504, 44.315276977830948, 2.07397627472012, 5.0774044710830113]], [[1.7845141072786201, 6.0625759919859421, 46.467361591383025, 1.2356061898862878], [3.7057982822633435, 3.7934099749489825, 32.066670403577341, 1.6045180010307729], [43.975251828592121, 1.6644838293860444, 6.5079975829609102, 2.8226660571902742]]], [[[39.307615406934822, 2.4890619012612207, 47.038065761129225, 5.2036881533245731], [24.434315230816242, 1.0000244553476394, 1.021275808528771, 42.322434694633777], [1.4046322236615734, 1.363790576586579, 32.902111174866675, 8.2708891230076151]], [[45.535460921925825, 19.219040991386912, 1.3543407276740012, 2.8019246386266583], [1.0564971895349591, 17.139468791631344, 14.476442601019187, 54.444398838889946], [36.142312618675867, 1.1638449492852287, 14.254111851189526, 1.0000482467560752]]], [[[48.512120216524281, 48.022915117799073, 43.23137737168971, 23.371402546329659], [6.5494471264698602, 25.385352322226726, 7.2797329080762765, 1.4234584308282261], [10.117954823599094, 70.714328957337898, 37.900142492657835, 1.0915081670348838]], [[37.773699375110674, 42.620437709879383, 24.526665923553246, 6.5642321138931639], [3.8744058806768513, 1.4709944873492109, 44.437024098405821, 3.4828031871171841], [1.3120856335155002, 26.463217744961234, 16.465792043660247, 11.413343128307044]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tanh_taggedData_rank0(self): arg=Data(-2.6745098131,self.functionspace) arg.setTaggedValue(1,2.24999429988) res=tanh(arg) ref=Data(-0.990539348174,self.functionspace) ref.setTaggedValue(1,0.978025866982) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tanh_taggedData_rank1(self): arg=Data(numpy.array([4.0429210388498369, -4.553079746235924]),self.functionspace) arg.setTaggedValue(1,numpy.array([-4.0380504188786954, 4.5601616689616158])) res=tanh(arg) ref=Data(numpy.array([0.99938445513124963, -0.99977806439502981]),self.functionspace) ref.setTaggedValue(1,numpy.array([-0.99937843153347994, 0.99978118535812588])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tanh_taggedData_rank2(self): arg=Data(numpy.array([[0.94929715636828504, -1.1252080104850992, 3.0775450372379431, 0.39392537807042416, 4.6611413956493752], [-2.2781170875126575, 0.39864122049943695, 1.4807319239075429, 0.31907060217879479, 2.7340061400084306], [4.8281201559380023, 0.33278204427698199, -0.03019536420573754, 0.85159999608142201, -2.8485402708762573], [-4.0655536970027297, -2.3543586836588961, -3.0951504374238881, 3.9262504055167966, 4.7776251671833698]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[-2.7905907538531682, -1.9238988637436236, 2.4967949227313904, -0.98038029629172208, -0.53276288893683077], [3.1990612919316312, 4.2720182948609757, -3.544755273211091, -0.63684518647695842, -4.212099692504844], [4.4910646440702422, 3.6890101388015637, -4.5732677642340178, -3.0827917856459921, -4.8189743425755394], [1.5007530732396921, -1.3393262317293884, 3.1997937399572649, -0.11051581408317634, 0.6210324333144257]])) res=tanh(arg) ref=Data(numpy.array([[0.73946469369799694, -0.80937282834822533, 0.99576369263661357, 0.37473932010645611, 0.99982119683898318], [-0.97921520913008431, 0.37878573799455306, 0.90160502733343728, 0.30866631305972148, 0.99159623814157904], [0.99987195863139711, 0.32101834788909706, -0.030186190576096662, 0.69190442064171198, -0.99331095049135554], [-0.99941168874938979, -0.98212846610382587, -0.9959099611394906, 0.99922274519998722, 0.99985835320805616]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[-0.99249206904458975, -0.95823735370164276, 0.98652879793628578, -0.75323048485240829, -0.48749022343925108], [0.9966761738303791, 0.99961067033016027, -0.99833377855485317, -0.56274764873125716, -0.99956111435622053], [0.99974876146582037, 0.99875110702314973, -0.99978684584692601, -0.99580782119916667, -0.99986959514911722], [0.90528424625476578, -0.87151032140220963, 0.99668103125140428, -0.11006806410778014, 0.55184645934107424]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tanh_taggedData_rank3(self): arg=Data(numpy.array([[[3.9319419321492326, -4.6773949429983581], [-1.6957074074546696, -0.3229077445540991]], [[-1.8266060427348019, -1.730201856159189], [1.5347509785248175, 1.5800451406727483]], [[-3.9746856156268384, -3.378147662479086], [-4.700768864980577, -2.8259083525191455]], [[-4.7178549411356228, 2.3147937121451543], [-2.5287575330841805, -4.9759550410080289]], [[-1.9889442091701359, 2.0763858673555893], [-0.89324314818143424, 4.8435662338741032]], [[1.0855719509476556, 1.3980856479384425], [-3.3411855727218343, 1.1884422150953995]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[0.18007476897031971, 2.6390160533098843], [0.66061662665767606, 3.6870086302202214]], [[1.7676633929476484, -3.1629355019247907], [-2.2255792588360457, 2.7793800480694166]], [[3.7616232526774755, -3.5469102256069442], [3.3179169097905596, 3.7942072824756714]], [[-3.781196309444411, -1.8379556904559688], [-3.6304445504488481, 0.19089611625277758]], [[1.6588646948326788, -0.82644991727768691], [-1.3992808319709527, 1.1558232933098402]], [[-0.16027203890771524, -1.1043264438901468], [-4.4435817783439955, 0.75121698416917582]]])) res=tanh(arg) ref=Data(numpy.array([[[0.99923153918711738, -0.99982691525909118], [-0.93487029410812394, -0.31213374827028922]], [[-0.94949297086745355, -0.9390797830900246], [0.91123410731563181, 0.91860894220900358]], [[-0.99929448101174156, -0.99767564105310336], [-0.99983481973131216, -0.99300230526074806]], [[-0.99984036849946445, 0.98067105796147169], [-0.98735772705782232, -0.99990473142376457]], [[-0.96323809712209596, 0.96904507128497563], [-0.71299189138499997, 0.99987585339128593]], [[0.79525625932489785, 0.88493715428778319], [-0.99749752737187658, 0.83009511356467591]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.17815326499048401, 0.98984688185870251], [0.5787736291230885, 0.99874610080415804]], [[0.943352763565379, -0.99642757853354436], [-0.97693891859499782, 0.99232248276775581]], [[0.99891983292877162, -0.9983409384133336], [0.99737847288418935, 0.99898794619179809]], [[-0.99896127879588104, -0.95059853090699908], [-0.99859601991351088, 0.1886105895864382]], [[0.93006410027832387, -0.67856517259541438], [-0.88519609925054854, 0.81967404386980236]], [[-0.15891368471195128, -0.80204771283378307], [-0.99972373624583699, 0.63587442674619299]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_tanh_taggedData_rank4(self): arg=Data(numpy.array([[[[-4.3904786729676273, -1.3677399701000903, 1.2492768693436567, 1.6695091701042077], [-1.1627795517358663, 0.35660855309170714, -0.46129260277138862, -1.7611848739159894], [-3.7810577291663838, -2.0467897156040902, 1.1706919709615651, 3.7103119132055848]], [[-1.2077170353024047, -3.0220575428815022, 0.54424950738834799, -4.0974212221222857], [1.0870071905494978, -3.9509226719566701, 4.9383274385239844, -3.462350798012598], [1.106586239998987, -0.73756837828936561, -1.1154183434553619, -1.010742353319559]]], [[[4.2742091858943052, -4.4776532415095307, 0.78417239720070508, -2.9515811360954225], [0.26505756362717126, 0.20435778865898513, 4.0715597053665036, -0.5982678836059776], [2.3077118446636131, -0.87190481734862324, -3.4819139618408279, 3.2206093747921081]], [[-2.1956521025267159, 2.8685733283260415, -0.16719147893383024, 2.4042635129004015], [0.87519664955802856, -3.7014687212979061, 2.638378779605917, -0.83596449534645867], [2.3208311754025477, 3.8824298417061609, 2.4604804345754143, 3.5948332657865727]]], [[[-0.26749703618618348, -1.2826804689293789, -3.264731588047407, -1.7231794009474299], [1.3682684482114569, -2.0116005895625753, -3.1642117538144801, -3.5928937676969785], [-4.1224336582508689, 3.7918402890951022, 2.1360683781019247, -4.5145324695032318]], [[3.676700537089971, -1.3877142255602957, 2.3563702753938749, 4.6093296257172032], [-0.079417586476702162, -1.4360928554366206, 2.4988989289519861, -3.5116673714054611], [3.720863735327919, 0.38544618147401621, 1.7572959880964749, 3.4491478912053424]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-2.7769145726094999, 0.11945281953911202, -1.4067552037790296, 1.5589683509896632], [-2.7510965901641535, -1.0370837248525575, -0.28874003212379407, -0.98700887192113651], [3.1057519393572068, -1.4003943846167175, 0.70059038875906499, -0.36200211282703698]], [[4.6955874639656408, -0.66345419856759413, 1.7641256430203081, -1.9073904288166155], [4.4353606592905734, -0.36559209725971975, -4.9392722083184717, 4.9226038002143397], [3.836648384845299, 2.6929475146669537, 2.4329110513061476, 2.8445249965550436]]], [[[-0.89043276203920829, 4.3113456509537027, 1.778020452151754, 0.12369555701304868], [4.7844077059707608, 1.4489307402634841, -3.6503174739201869, -1.99283222133817], [-4.7433953583709343, 4.6096860898229437, 0.18591799454264546, 3.3160695299285372]], [[-4.624734823596115, 2.2410297338758411, -0.83950933296629859, -2.4824381853162203], [2.0752791842153231, -3.8967447836233173, 3.083827109819147, -2.2637401638383436], [0.55648965417526242, 4.7482343482895963, 3.3904464820695814, -2.9209716988816012]]], [[[-1.9149730632634174, -4.2971583535961386, -0.26052672348999018, -0.71626825945409145], [-1.1898289287067843, 4.7073960353737476, -1.1931947279614228, -1.5559762703348001], [2.1894866324076894, 1.391085552226893, 1.9956929272477284, -1.7691043597388703]], [[-3.0697918472745589, -3.5894138807767617, 0.38379736482434179, -0.72520622611928953], [-2.2696826972861492, -2.7804417698429775, -0.16059887652981075, 1.1741874888349084], [4.9025685475518319, 0.76347964182875927, 3.5862084201560478, -0.34438423874314417]]]])) res=tanh(arg) ref=Data(numpy.array([[[[-0.99969278532403616, -0.87817610848912808, 0.84808073894312919, 0.93148676159885946], [-0.8219436543648142, 0.3422232651605423, -0.4311371323644399, -0.94263519675608121], [-0.99896099101301683, -0.96718843060907411, 0.8244938727134159, 0.99880316564106586]], [[-0.83599336463688867, -0.99526766658497667, 0.49619794188256428, -0.99944800485077057], [0.79578320492270638, -0.9992601537435607, 0.99989728568405345, -0.99803553852335436], [0.80285236632034096, -0.6276737849707098, -0.80596936061049773, -0.7660688874136774]]], [[[0.99961237222589605, -0.99974193223298102, 0.65509503516962486, -0.99455328260935616], [0.25901992634275139, 0.20155971686626986, 0.99941871123847936, -0.53581588511280043], [0.98039804226660943, -0.70234062733546598, -0.99811084524004323, 0.99681615203384977]], [[-0.97553386909203443, 0.99357281253397534, -0.16565086856274386, 0.98381234887456548], [0.70400480322945558, -0.99878182267865834, 0.98983399879723288, -0.68366567252371069], [0.98090083462602384, 0.99915158173096452, 0.98552133873443648, 0.99849245594704916]]], [[[-0.26129428984398761, -0.85719744491289385, -0.99708467717848859, -0.93824473321643498], [0.87829697173019017, -0.96483807098709573, -0.99643666929946806, -0.99848660126662192], [-0.99947493196034642, 0.99898314622584328, 0.97248007751598686, -0.99976027967480008]], [[0.99871999858964711, -0.88266698117705134, 0.98219958347946346, 0.99980167654271335], [-0.07925104034615385, -0.892908449932727, 0.98658498639005543, -0.99821988625575575], [0.99882814391514707, 0.36742779628281924, 0.94220023134945963, 0.99798302738464895]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[-0.99228467821875421, 0.11888788724678255, -0.88680309929422041, 0.91525316568888726], [-0.99187748567038492, -0.77673384310464333, -0.28097472652808358, -0.7560840082512007], [0.99599559753350175, -0.88543686564725355, 0.6047423865273871, -0.3469763293343231]], [[0.99983309924459796, -0.58065757519364325, 0.9429620059078242, -0.95686570094178047], [0.99971915694545332, -0.35013016421316723, -0.99989747957363229, 0.99989400444715759], [0.99907026835111246, 0.99088029778882336, 0.98470685939018232, 0.99325719931769052]]], [[[-0.71160741539570893, 0.99964011430124544, 0.94448185426893583, 0.12306852263067239], [0.99986026155085483, 0.89548124193836365, -0.99865069097308279, -0.96351765578941984], [-0.99984831724864787, 0.99980181786870692, 0.18380508703408843, 0.99736878182221311]], [[-0.99980769321539753, 0.97763278263585041, -0.685549085155853, -0.98613910571125796], [0.96897754473209763, -0.9991755175591378, 0.99581647460748857, -0.97861537415463118], [0.5053682585729965, 0.99984977804083497, 0.99773205331379355, -0.99421041813147026]]], [[[-0.95750111372509072, -0.9996297583526631, -0.25478812887481112, -0.61459245431351639], [-0.83052580516350172, 0.99983699446428242, -0.83156705197266667, -0.91476618401113408], [0.97523406991146411, 0.88340949152279369, 0.9637220149745247, -0.94351117775814486]], [[-0.99569763330906691, -0.99847603966904497, 0.36600071186854327, -0.62012380533737677], [-0.97886535761949167, -0.99233870586149786, -0.15923225196341351, 0.82560995086101829], [0.99988967114712812, 0.64312197086910849, 0.99846624581148857, -0.33138582492983976]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asinh_taggedData_rank0(self): arg=Data(46.3645811357,self.functionspace) arg.setTaggedValue(1,98.4380067047) res=asinh(arg) ref=Data(4.52979928711,self.functionspace) ref.setTaggedValue(1,5.28259995573) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asinh_taggedData_rank1(self): arg=Data(numpy.array([-50.957589662824198, 43.941100766909756]),self.functionspace) arg.setTaggedValue(1,numpy.array([-31.858501623280745, 39.107585495989866])) res=asinh(arg) ref=Data(numpy.array([-4.6242371551287169, 4.4761267522983275]),self.functionspace) ref.setTaggedValue(1,numpy.array([-4.1546976770753421, 4.3596270535740214])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asinh_taggedData_rank2(self): arg=Data(numpy.array([[-20.169170810618326, -4.4530711308543118, -5.3065110218440452, -8.4088220772265316, -56.444316808490115], [-33.229801569473778, -44.603828873814734, 39.260385275691903, -60.813530866399979, -67.011560484373405], [63.34900773972393, 13.17996875841969, -84.621298599133738, -27.161422270695113, 78.248898320973581], [-98.098038498193404, 95.682616010306447, -58.113208847615525, -79.134026237356125, -29.391569621781727]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[17.836298714213882, -77.588227218715232, -61.26367562584587, 19.375142389965802, 89.334409995076243], [2.9065687663115227, 51.893692489828197, 11.895367000745495, -8.1024096735480953, 71.448735058484459], [-50.921060735037948, 40.334991542461438, -11.902046289316189, 56.33007303532878, -27.166995246623955], [-82.821608578095123, -91.599639663887103, 86.585921151704355, 48.186701674446084, -3.9531724905915979]])) res=asinh(arg) ref=Data(numpy.array([[-3.6979164153723203, -2.1991164930555258, -2.3708439269598305, -2.8259456306618453, -4.7264802495600335], [-4.1968206188493351, -4.4910925210264905, 4.3635253359028381, -4.8010270839542413, -4.898067997438317], [4.8418687142690242, 3.2732814095310392, -5.1313680826244967, -3.9952835475913395, 5.0530827588070446], [-5.2791405298139438, 5.2542111175109474, -4.7556141841594481, -5.0643300499069621, -4.0741443379636699]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[3.5751677238153401, -5.0446044112554631, -4.8084008830850919, 3.6578034038105751, 5.1855652488628774], [1.7884793917224828, 4.642437253245169, 3.1710583006908988, -2.7890952467104695, 4.9621763496592148], [-4.6235201866096052, 4.3905201792510207, -3.17161767446549, 4.724454508591605, -3.9954885674968175], [-5.109872625312927, -5.2106043127238761, 5.1543177540685887, 4.5683379150373344, -2.0832921903606496]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asinh_taggedData_rank3(self): arg=Data(numpy.array([[[-53.045516481019646, -34.703398617100873], [58.744179081028165, 45.73939652168292]], [[88.640179862797964, -15.929739850377061], [20.336500323486419, -26.009231077461465]], [[67.483452353018436, -83.415215077694313], [-43.73819066557256, 0.34649147770160482]], [[94.466567030758256, 57.78821000816265], [-93.07193931131404, -65.081452487206121]], [[-54.611456218841695, 17.51214150630156], [5.6853926345566492, 38.237862836031212]], [[1.5782708895186488, -79.609362925181571], [47.883885039412519, 99.778654373519828]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-81.045113203624751, 0.65914527304526871], [32.93544022845623, 58.747988317145939]], [[-12.311575835767854, -70.143366604591705], [-1.6980341384122681, -27.212534038212041]], [[55.458512265543362, -94.003044543229095], [-62.792580806533628, -27.521709794921676]], [[41.596851570120577, 44.487697223450283], [2.7831853943152538, -67.591557346139922]], [[47.14957401263112, -88.752613111599388], [91.038711972236257, 18.784281872602193]], [[66.890360146771712, -3.1392983005148949], [-98.753784215323947, -58.363920786326858]]])) res=asinh(arg) ref=Data(numpy.array([[[-4.6643863622180026, -4.2401923259759915], [4.7664116866516526, 4.5162266515773712]], [[5.17776424960676, -3.4623187168170242], [3.7061684380230009, -3.9519680523364986]], [[4.9050844901356578, -5.1170138356918358], [-4.4714994864581099, 0.33990819970999336]], [[5.24142117780635, 4.7500068099460622], [-5.2265487748261839, -4.868845799503112]], [[-4.6934746764153612, 3.5568558212420287], [2.4386934192694749, 4.3371443181086304]], [[1.2374103926768709, -5.0703183356413444], [4.5620352151292289, 5.2961265670636051]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[-5.0881911926886616, 0.61887608041426068], [4.1879268588038681, 4.7664765196432715]], [[-3.2053324091778697, -4.9437392306615724], [-1.2998232670923699, -3.997162286806859]], [[4.7088636688405723, -5.2365026413753837], [-4.8330475059782119, -4.008452214765553]], [[4.4213161140266797, 4.4884861572133286], [1.7475584270504236, -4.9066849811247062]], [[4.5465845923807562, -5.1790317883473698], [5.2044621654621297, 3.6268753961564348]], [[4.8962579135667461, -1.8615996019862997], [-5.2858025387415069, -4.7599184690473226]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_asinh_taggedData_rank4(self): arg=Data(numpy.array([[[[32.142378157394234, -7.8682084560468724, -32.972614582663724, 50.856847074540553], [72.329877464044415, 6.0619145811457571, 71.261710531993657, 70.2065904388474], [61.147646057937493, -26.137436099401938, 48.323697144662191, 29.857105568663485]], [[81.14862167131389, -28.070075464932472, 54.484029947945999, 53.274297598689998], [51.817829777738496, 55.524654561168546, 31.893469267783274, 98.108247444728335], [25.185957882420567, 56.589702849849886, 29.257428051768414, -49.316002216427599]]], [[[91.093502909783012, 30.593790782804035, -52.906781759597266, 37.807168034506248], [91.33559788100942, 46.479645801342286, 45.285940387630603, 17.009006113589351], [98.990499666054916, 20.732810397625983, -52.586859007443024, -97.39008994479434]], [[60.855541035297279, 43.563415593268758, -10.416755000859922, 19.761378421237396], [45.545393669751689, 34.038254695973365, 61.458790464133983, -93.805588539667809], [70.373745615324566, -69.821983987919253, -17.526059272214738, 99.463265178516878]]], [[[42.375759778528959, -71.513498720101126, 43.403494376930126, 11.702516371887256], [-68.02507709473943, -82.804863052600837, 17.935644233624799, -1.5560052642727271], [1.3086438337024902, 19.0159623777798, -43.415467037283427, -1.6840694232704436]], [[-76.523723879344232, 36.460220047753864, 74.414529475659975, -40.585507061813097], [61.18925351487826, 60.973990669294437, -56.486512227103702, -91.992194442103738], [-50.821095523487195, -8.7683370172323407, 99.212906160042508, -49.787947715823513]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[5.2104342432591579, -30.037610349220742, 89.76520642245714, 84.346276912645891], [-55.935949781763505, 3.6554505577462351, -69.732922792584205, -85.696618441581251], [34.087801962805088, -57.540358433913227, -66.932756076465267, -61.739307728871459]], [[-38.745454217109639, 47.2458765604907, -48.024451295756876, 98.938828051951276], [-18.113719915986181, 30.600562603733465, 62.13859672089356, 79.646004829972981], [62.93949402434626, 85.362178604516401, -79.088554588305286, -30.549957095115914]]], [[[-21.024971919379709, -46.9921546943443, -77.839828653838069, 30.940535083915421], [70.790958255553022, -44.895476702573319, -36.648852352895432, 12.929335827946304], [-6.9478133681051872, -62.232340492245108, -42.755472485742985, -56.420558326951522]], [[-32.044278205615356, 79.157959500980951, -76.393704765628769, -52.443645665174962], [16.265823630600167, -55.034754577520985, -47.645861374723552, -89.04121484500331], [94.688526939952055, -16.61551229436607, -99.980912127854069, -47.709640655711503]]], [[[2.1087843309750127, -46.754097185308829, -43.01720776980433, 85.276796349298849], [-4.6606838290411474, -81.34895135365592, -85.417222857880887, -96.332056825957508], [-79.83581002747087, 21.866282224322433, 68.064610754277766, -47.003477247839534]], [[-62.743770898030562, 72.147582177197421, 69.296613493157508, 28.171166780459345], [75.529397553659948, -35.058371858520204, -28.47809790522318, -75.017021702145499], [-37.177757115795629, 38.676084888663922, -63.72524923587919, 1.7494417076027844]]]])) res=asinh(arg) ref=Data(numpy.array([[[[4.1635644265624778, -2.7599915358235867, -4.1890544070007278, 4.6222585911216543], [4.9744322502971672, 2.5019077838324715, 4.9595555706500258, 4.9446400848058811], [4.806505402870445, -3.9568815433193461, 4.5711762859685958, 4.0898503596713338]], [[5.0894674517671321, -4.0281683959008951, 4.6911390175212615, 4.6686892479006827], [4.6409745686395487, 4.7100554093212761, 4.1557941279942145, 5.2792445878073861], [3.9198276751840293, 4.7290522782152147, 4.0695726016881411, -4.5914985748389192]]], [[[5.2050637903432921, 4.1142112460980922, -4.6617680124018888, 4.3258207506496307], [5.2077177590877843, 4.5322773741285998, 4.5062656785445956, 3.5277531738452392], [5.2881965746419173, 3.7254457616153438, -4.6557038316413522, -5.2718979969231512]], [[4.8017175551692963, 4.4674965942390115, -3.0388587872128419, 3.6775161997905594], [4.5119771682426055, 4.2208479181377072, 4.811580237341091, -5.234400023643297], [4.9470179186672389, -4.9391473745425918, -3.5576489640531608, 5.2929608319555426]]], [[[4.4398628679964025, -4.96308228583203, 4.4638198136319165, 3.1547715938291749], [-4.9130776200696218, -5.1096704317305806, 3.5807134591217551, -1.225433176641918], [1.0837103112235609, 3.6391165749315824, -4.4640955479804072, -1.2927150793063693]], [[-5.0307906787819405, 4.2895569942507352, 5.0028435354728717, -4.3967099542129784], [4.8071855230902134, 4.8036618081252804, -4.7272274114351864, -5.214880451554639], [-4.6215554958906369, -2.8675302639627946, 5.2904406860829596, -4.6010209599440053]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[2.3528942953432184, -4.0958744228371096, 5.1903756488916493, 5.1281129886870076], [-4.7174343552973603, 2.0075716195155695, -4.937871144778371, -5.1439945873654223], [4.22230186808053, -4.7457092677460411, -4.8968914542943383, -4.8161335672436891]], [[-4.3503271096734606, 4.5486245418147186, -4.5649658426227173, 5.2876744794258697], [-3.5905779156353059, 4.1144324497476124, 4.8225792420650633, 5.0707784647637046], [4.8353841364967165, 5.1400846170845353, -5.0637553150269641, -4.112778220940899]]], [[[-3.7394231192664891, -4.5432410388930284, -5.0478416752898454, 4.1254753641580617], [4.9529283477765169, -4.4976082378834796, -4.2947153739876791, 3.2541381655755188], [-2.6367133653925436, -4.8240865342451933, -4.448781110277845, -4.726059308101533]], [[-4.1605091983900415, 5.0646324196519528, -5.0290903098032347, -4.6529772433272774], [3.4831569454011433, -4.7011945976992884, -4.5570530599693662, -5.1822780622147535], [5.2437679039808112, -3.5043882377854798, -5.2981514782154209, -4.5583904818282788]]], [[[1.4912530895747718, -4.5381634201485017, -4.4548824695960123, 5.1390839500525125], [-2.2436246899234331, -5.0919328992003212, -5.1407291969411935, -5.2609752679328521], [-5.0731585525994474, 3.7786154625242512, 4.9136585515533389, -4.5434819009655412]], [[-4.8322699827017939, 4.9719089789160158, 4.9315952755712287, 4.0317610464510798], [5.0177129533122331, -4.2503649608354834, -4.0425905960208626, -5.0109066456916977], [-4.3090386599181487, 4.3485357163877962, -4.8477895988422537, 1.3256207429919689]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acosh_taggedData_rank0(self): arg=Data(49.9810509193,self.functionspace) arg.setTaggedValue(1,71.3408711101) res=acosh(arg) ref=Data(4.60469104168,self.functionspace) ref.setTaggedValue(1,4.96056744693) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acosh_taggedData_rank1(self): arg=Data(numpy.array([75.872128581964489, 31.270745005346555]),self.functionspace) arg.setTaggedValue(1,numpy.array([91.194940269901991, 60.292904573535402])) res=acosh(arg) ref=Data(numpy.array([5.0221531537701187, 4.1355744181179075]),self.functionspace) ref.setTaggedValue(1,numpy.array([5.2061165345882037, 4.7922928301529595])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acosh_taggedData_rank2(self): arg=Data(numpy.array([[13.716727126294922, 18.582048298979366, 7.5020529608606203, 37.240476559713919, 47.923636526032062], [23.137297999502238, 93.601586495900719, 44.214564115710346, 36.167402243946711, 46.702642863490553], [23.270622841679405, 9.2774257115223389, 59.291871515770787, 33.506154158989204, 38.271499005024928], [46.757553911983621, 6.8257457794847447, 22.981256925823288, 86.170385026518829, 23.420848755718815]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[15.948822919888016, 2.6658485927005215, 60.224282793904251, 44.876404405068655, 34.120337847111642], [62.222746267715351, 21.245738679003445, 45.817023654907636, 40.859047475717304, 58.128988691848726], [10.190092458920921, 48.417808389183413, 42.896938034834868, 70.93329041076818, 8.3231821063895897], [26.439411367064803, 15.072763430534389, 72.467415365655967, 32.34764058755561, 40.90238765596505]])) res=acosh(arg) ref=Data(numpy.array([[3.3104318336497132, 3.6146183386321131, 2.7038519866369914, 4.3103631168831464, 4.5626471481294111], [3.834125802828078, 5.2321659777026861, 4.4820735137429342, 4.2811142287291988, 4.5368332971619001], [3.839876941498396, 2.9178139584744245, 4.7755482825351914, 4.2046535493993629, 4.3376819221817646], [4.5380086345560136, 2.6084392106579743, 3.8273524505590331, 5.1494400678077143, 3.8463177083491402]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[3.4615479170038235, 1.6364755314613311, 4.7911538849173159, 4.4969351619322433, 4.2228259954588951], [4.8238032312056154, 3.7487492070394848, 4.5176837838527817, 4.4031256752655068, 4.7557376697168952], [3.0121467628386225, 4.5729082091092721, 4.4518117430828532, 4.9548373538850878, 2.8085633470967837], [3.9676451082613573, 3.4049343192673835, 4.9762365895508731, 4.1694492579956304, 4.4041861546123844]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acosh_taggedData_rank3(self): arg=Data(numpy.array([[[96.020179154808503, 91.79778167929949], [95.326949143229541, 45.421316747623791]], [[30.65219771657458, 74.770295168847696], [77.989358990586055, 11.574100860239977]], [[92.626717442077236, 3.1700861207519435], [81.107542243865836, 58.693576539606504]], [[19.827981381026582, 98.929766771654783], [93.210281085417222, 17.872534507474096]], [[15.212656462365901, 45.839114797078196], [67.995696601337741, 21.57180672061461]], [[88.431893439575802, 86.459272754032739], [93.400261681763538, 3.5041690372595453]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[25.302663405742905, 90.965425641453351], [31.884491697764958, 35.880019812296034]], [[87.641297339838275, 20.377144107642813], [80.276026842238238, 90.841319587541577]], [[14.097491687234964, 99.790641727293078], [14.181879052710332, 69.957347613100836]], [[81.947655870784715, 62.082411711815226], [8.6837333697858377, 15.244370873759896]], [[61.74742196011465, 29.437516030577598], [54.649929929545088, 40.35589353447758]], [[94.022187035702345, 83.335572962817793], [87.379860935581533, 36.951175898939482]]])) res=acosh(arg) ref=Data(numpy.array([[[5.2576784330296311, 5.212705644723707], [5.2504322211627388, 4.5090075081620471]], [[4.1155853549672061, 5.0075231423119817], [5.0496784696098871, 3.1400456206904903]], [[5.2216956660972746, 1.8210457157023874], [5.0888851315296018, 4.7654048945882801]], [[3.6796048228214242, 5.2875318075733615], [5.2279764321968374, 3.5756287593263258]], [[3.4141929052963755, 4.5181659425846679], [4.9125375214849907, 3.7639967265035321]], [[5.1753479006258116, 5.1527872028336335], [5.2300126684264212, 1.9260894616398991]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[3.9236661269309159, 5.2035964629627127], [4.1550209149744246, 4.2731335198543867]], [[5.1663669487865587, 3.7069584430952047], [5.0785794154217756, 5.202231127665808]], [[3.3378837578237039, 5.2961964832588198], [3.3438668793761139, 4.9409818305305739]], [[5.0991906511154443, 4.8215450339501285], [2.8512667866370323, 3.4162799784592983]], [[4.8161338295407301, 4.0751284773769649], [4.694011395692308, 4.3907310833319526]], [[5.2366496860798568, 5.11598668493777], [5.1633792680707424, 4.3025615032480333]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_acosh_taggedData_rank4(self): arg=Data(numpy.array([[[[46.496494307641363, 74.917094330056727, 39.893774938569727, 23.744943878587605], [1.9737426076200388, 56.13429325455833, 31.478338229941585, 76.686853948479268], [43.543067819658987, 81.289887895435285, 32.113423511300105, 5.213549323262523]], [[26.577313488763004, 82.755886663842674, 6.4828955638004224, 81.780421145322038], [84.79256558820957, 69.233222959376874, 73.836164807553629, 87.692408248293873], [37.136000517418708, 90.288377224446137, 62.614392713419683, 88.339987656018039]]], [[[61.202863958945962, 31.566286842895735, 7.1708278242804298, 98.950695215124099], [87.222678883207024, 86.95839324301987, 17.656917302211554, 54.991339984079993], [92.159416624775972, 31.425747720223157, 47.207404840689208, 79.815101091507159]], [[13.75432234393317, 36.005105956151937, 80.930354510392675, 17.903169928485063], [37.209969721856766, 68.392829385096988, 68.225744945843331, 25.131306602144075], [57.726340455843392, 45.183440336464102, 96.487976002311996, 74.482543907471182]]], [[[97.032639801911586, 59.169720141290711, 65.544382023430359, 27.350556781956005], [85.48226011720655, 8.7268878117714603, 49.450968175354753, 75.078362059466997], [47.954002472987767, 16.036826907987312, 99.975563170888265, 78.829796914932373]], [[39.21420494818117, 42.262998162260104, 73.751675519611155, 51.828252577302301], [60.148666432515796, 37.443825584849876, 97.665835616597235, 78.975812123743339], [6.9121385596705096, 34.189572613115473, 27.703168010672275, 50.045255814521546]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[76.45018571903698, 24.717910838106601, 78.98873320779046, 62.765160850734503], [61.239518935391644, 70.008902728343131, 78.300714796360708, 34.932147232071522], [37.022585726034904, 58.180738950315579, 27.287564890515544, 54.517546763840656]], [[15.093623698826033, 30.443962452205266, 89.802715985190773, 77.992879086297037], [37.816659621995385, 64.854538050781173, 81.326022233556586, 1.9993032471653205], [38.637332121131173, 32.158640232053635, 71.342867154253426, 5.2704550021018708]]], [[[60.437096462714948, 49.090407043277665, 78.184244621340568, 60.917754368590664], [42.949146499752899, 31.471629405983144, 36.886647249542328, 40.010907031786985], [9.581053748614563, 32.843241151168968, 75.216103702188008, 68.09522545374368]], [[82.504776175599545, 57.609847555036787, 95.669336674553534, 78.017033779006482], [40.298523228110923, 14.938993210257649, 31.561252137958434, 28.44443377692734], [24.326622031518038, 61.769365476509179, 50.466775790330708, 40.289781067050903]]], [[[13.88323115651615, 6.714972583508235, 97.860470433016005, 75.032728358835342], [11.04088136407165, 77.052563320907453, 97.427382444573666, 33.006120873883368], [1.7554298156787875, 51.058303561715107, 29.46416973203182, 94.334872484467382]], [[3.5895347426782043, 40.561254020265949, 67.84874109154778, 93.690445556218563], [25.256475539837954, 56.511124744109935, 3.5800990775641948, 63.00192152079822], [42.748122023741885, 80.763225726336117, 74.43049456512324, 31.553184442256732]]]])) res=acosh(arg) ref=Data(numpy.array([[[[4.5324084412759778, 5.0094847279060319, 4.3792103554802608, 3.8600731017873722], [1.3016637290797095, 4.7208147464351278, 4.1421944195445226, 5.0328349651237305], [4.4667658109698571, 5.0911309744336259, 4.1621787939300265, 2.3350809370517589]], [[3.9728510376447228, 5.109005824071593, 2.5563122244559442, 5.0971476629476182], [5.1333202761679582, 4.9305758676636238, 4.9949499704360436, 5.1669499996633848], [4.3075527147709547, 5.196125251025741, 4.8300785753238706, 5.1743080104110604]]], [[[4.8072744174301363, 4.1449858695233406, 2.658270592315148, 5.2877433445020525], [5.1615786939465957, 5.1585438835194486, 3.5634719544667166, 4.7002402176468125], [5.2166376113963704, 4.1405214877183933, 4.5475857430671622, 5.0728206578448036]], [[3.3131761972681315, 4.2766150387385435, 5.0866979727721846, 3.5773440805534538], [4.3095433003567933, 4.9183617154061148, 4.9159154531733078, 3.916865458190002], [4.7487857259228701, 4.50375535715325, 5.2625387259978202, 5.0036669013457349]]], [[[5.2681680417753087, 4.7734856928164495, 4.8758164840313665, 4.0015496982806926], [5.1414218364571465, 2.8562570863627581, 4.5940265687942565, 5.01163522143636], [4.5632807172725283, 3.4670614367497063, 5.29804795523276, 5.0603980061109874]], [[4.3620236184007943, 4.4369191414800992, 4.9938049295476628, 4.6409895153027874], [4.7898973432892191, 4.3158106467268684, 5.2746727815426553, 5.0622487258630153], [2.6211521330965311, 4.2248539437647477, 4.014368049013294, 4.6059750587364245]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[5.0297437651741488, 3.9002658632157274, 5.0624123337133149, 4.8324838701438377], [4.8078732275406084, 4.9417185850198733, 5.0536631335958884, 4.2463497717069103], [4.3044928897720416, 4.756627671189591, 3.9992423655604172, 4.6915856649381364]], [[3.4063203831311251, 4.1087650332057839, 5.1907313988379462, 5.0497236078916279], [4.325722057994339, 4.8652346239002213, 5.0915754213748823, 1.3165555330279051], [4.3471986353008933, 4.1635865170827602, 4.9605954282607705, 2.3461398613499078]]], [[[4.7946818261908994, 4.5867070641055383, 5.0521744319245858, 4.8026044713453375], [4.4530284006885319, 4.1419811640723054, 4.3008130131764508, 4.3821430718817362], [2.9502001551652342, 4.184661309810318, 5.0134683412122536, 4.9140003614485606]], [[5.1059666365457144, 4.7467653633473841, 5.2540177010556652, 5.0500332892131663], [4.3893080251791545, 3.3959998775424971, 4.1448262804214515, 4.0407905386517378], [3.8842957690757829, 4.8164891884239784, 4.6143642220081729, 4.3890909997782792]]], [[[3.3225293134567675, 2.5918958799586354, 5.276663767488472, 5.0110271683900773], [3.0926948705710546, 5.0375928992743964, 5.2722281468793524, 4.1896106435456426], [1.1625825203718756, 4.6260194561242551, 4.0760340229896617, 5.2399700114788725]], [[1.9511766454658923, 4.3958084665836674, 4.910373700880009, 5.2331149143207876], [3.9218376124513488, 4.7275064044247292, 1.9484357218467823, 4.8362494165490313], [4.4483356113795223, 5.0846305854377469, 5.0029677813756557, 4.1445704990230352]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atanh_taggedData_rank0(self): arg=Data(-0.320619038958,self.functionspace) arg.setTaggedValue(1,0.869122682798) res=atanh(arg) ref=Data(-0.332336921208,self.functionspace) ref.setTaggedValue(1,1.32948203584) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atanh_taggedData_rank1(self): arg=Data(numpy.array([-0.49724785679895611, 0.76485832136382981]),self.functionspace) arg.setTaggedValue(1,numpy.array([-0.71695223330373481, 0.98907589120670503])) res=atanh(arg) ref=Data(numpy.array([-0.5456433240595332, 1.0078187373348622]),self.functionspace) ref.setTaggedValue(1,numpy.array([-0.90134518516976136, 2.6022266354573262])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atanh_taggedData_rank2(self): arg=Data(numpy.array([[-0.41875373709407426, -0.031282543674564844, -0.37120980277072957, -0.33787277754808165, 0.9056835178923357], [0.10920509246927712, -0.9517935928864919, -0.38928920166887748, 0.51987390317679982, -0.38673372014824514], [0.84666821394639546, 0.70139465198953088, 0.65524269199234908, -0.76892126906681368, 0.53641715611532659], [0.8319590120911895, 0.54197223487670665, 0.96505599773867456, 0.18013767879594189, -0.23629819004673036]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[0.36214053363992749, -0.664498666560283, -0.18821662111337301, -0.16146935463873657, 0.6826053287306455], [0.94446504653387175, -0.33438894541106456, -0.024588916748005452, -0.85997299749442313, 0.7590303783132617], [-0.17183976558739666, -0.58358085652249014, 0.31083502908173499, 0.85373153758284226, -0.75382778617691071], [0.02157269345526025, -0.2087677756939843, -0.3645241397483423, 0.076955395055613884, 0.49258045667332828]])) res=atanh(arg) ref=Data(numpy.array([[-0.44617979391481238, -0.031292754010403323, -0.38982552275887766, -0.35168921785961199, 1.5029700335665168], [0.10964234311011919, -1.8505060400721478, -0.41096200383131098, 0.57616694042294059, -0.40795359483226379], [1.2442671095703073, 0.8700403910046729, 0.78443110215353462, -1.017683354133686, 0.59911167917750008], [1.1944666231886989, 0.60694387161398944, 2.0147645883194851, 0.18212498120425324, -0.24084972556636608]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.37934733814448002, -0.80082666251032752, -0.19048764725210868, -0.1628950195664004, 0.8339763214069672], [1.7778647815902611, -0.34776162471495142, -0.024593874154403211, -1.2932409850373054, 0.99392357017656985], [-0.17356179326165472, -0.66787580856210826, 0.32146948112818524, 1.2697561085057214, -0.98176231871677033], [0.021576040897969627, -0.21188262231678223, -0.38209346340171296, 0.077107850497316832, 0.53946179405081751]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atanh_taggedData_rank3(self): arg=Data(numpy.array([[[0.10445331614917319, 0.2730814888903883], [-0.60232593544217883, 0.96715501656915182]], [[-0.17016809723013615, -0.089807528529218916], [0.23654377024927897, 0.83272135685004955]], [[0.016551420278897, -0.38236850351537788], [-2.0657074242591555e-05, -0.40819212706994223]], [[-0.3729914622085253, 0.62722527860088206], [0.82747007179222232, 0.25145176276119274]], [[-0.73980019966402311, 0.96693217416513644], [0.90586640577652378, 0.21899534641151908]], [[0.19566248084568705, 0.47149584732702499], [-0.48621869468657664, -0.79464808240093432]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-0.12685419941171083, 0.86382397828941637], [0.55687203880422764, -0.43398285832464556]], [[-0.063925399703885222, 0.92085617372342865], [0.55098040379713153, 0.39890555903637726]], [[0.58521949389478389, -0.47732531221219043], [-0.52649872740584502, -0.05400171295475209]], [[-0.20264962628344207, 0.89825210951105694], [0.42220448045958414, -0.56965978536278339]], [[-0.1625462217423036, -0.45516235003933736], [-0.81533961227730445, -0.34509219866705487]], [[-0.13641943291083147, -0.020985590801264165], [0.89028940365120146, -0.60385493016714553]]])) res=atanh(arg) ref=Data(numpy.array([[[0.10483570163371808, 0.2801906138917637], [-0.69678941288133878, 2.0462723010157]], [[-0.1718397684110442, -0.090050148021531648], [0.24110984512183212, 1.1969481388179688]], [[0.01655293194521994, -0.40283080913531905], [-2.0657074245538708e-05, -0.43343996902678245]], [[-0.39189351498418051, 0.73682864354852906], [1.1800585483131474, 0.25696195979910064]], [[-0.95003787955311769, 2.0428347777140869], [1.5039885009533656, 0.22260060180307562]], [[0.19821835350061251, 0.51199204142601529], [-0.5310963428117158, -1.0839195243854924]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[-0.12754129113092447, 1.3082186161867242], [0.628287702104393, -0.46479335197476535]], [[-0.064012689955305346, 1.5946297532263998], [0.61978799882113045, 0.42234670222024745]], [[0.67036433965710951, -0.51951462581386376], [-0.58528868912562182, -0.054054297989210139]], [[-0.20549411284441793, 1.4630953537864373], [0.45037168207904948, -0.64701904247591646]], [[-0.16400091263674657, -0.49119244692959763], [-1.1427547236990911, -0.35986168723884399]], [[-0.13727527703665104, -0.020988672265444559], [1.4233196317293295, -0.69919242983311702]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_atanh_taggedData_rank4(self): arg=Data(numpy.array([[[[-0.47883527804935155, 0.31661906413420882, -0.5872020411014347, 0.43673454125507827], [0.88136900358406756, 0.94422263261031114, 0.2891277683997282, 0.33076405922761665], [-0.21998818991754054, 0.18048183712899557, -0.25041587475362848, -0.25214869329219225]], [[-0.84430089168638789, 0.76091050674122229, -0.020508996055177531, 0.29404167593808239], [0.68934167553083725, -0.95776231509069376, -0.88145154914219881, 0.77744088285490931], [0.78737460506857015, -0.4719906631589994, -0.76786773432549871, 0.56997395187593303]]], [[[-0.78365368219581333, 0.94733757009719777, 0.34808028723294027, -0.036308308933188926], [0.44280850580686337, -0.46404387448339723, -0.14428462443261891, 0.46397654196715088], [-0.72398981623771386, -0.71386141901887123, 0.11403708557516423, -0.53026185484339128]], [[0.68236920590850803, -0.24036690933114169, 0.24096702828664163, 0.98040177083805702], [0.094472694677199653, 0.6400010790928965, -0.047874513368018401, 0.52630540675289095], [-0.22171125448934548, 0.70527518354726904, -0.47501571993423464, -0.72243237090033174]]], [[[0.0082387877639482632, 0.68679756821273141, -0.25873096009920205, 0.20529892260052329], [-0.19243878258846681, 0.05455697263932402, 0.16135364518328221, -0.24061386219544423], [-0.34484162854240008, -0.67668499260554094, 0.40134472749143524, 0.50389744806479242]], [[0.20426635215593136, 0.3870127342101326, -0.75330067354803076, 0.71517180319260576], [-0.59636722535596642, 0.16902679259625208, 0.60854487911843269, 0.6080127077236932], [0.21358767561056036, 0.43831246429727311, 0.87978778079261621, 0.86710279990576811]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-0.55014926999716374, -0.59690189470907706, -0.67176566257807679, 0.60736951817123375], [0.8190301281645469, -0.55001881887120574, -0.6964571059396939, -0.16068048124821255], [0.23872416972055821, -0.44608459772892295, 0.59084321623347447, 0.42861986752160219]], [[0.80353157195060887, 0.012109217448764475, -0.59731241459393281, 0.93750011998591587], [0.3427576485459467, -0.72154456903205721, -0.81933208907246291, 0.80205913114622973], [0.035634874594440369, -0.97323376998325939, 0.67274012944959649, -0.34467983303558469]]], [[[-0.10479839282841275, -0.64423003763584374, -0.85763880950837013, 0.55412818085007887], [0.24284448011249649, -0.67346626588488845, -0.5046529367889272, -0.36718085565034209], [0.055975396650420395, 0.47512512598591927, -0.090812732728584811, -0.94658819925651927]], [[0.28524615600658376, -0.29676570986200579, -0.51954918876546308, 0.48518566577271982], [-0.86630407866681014, 0.5790670951452479, 0.42401975127206515, -0.92355038400324141], [-0.61578149445748631, -0.15303976680596276, 0.18150698656005404, -0.84959247418575401]]], [[[0.64224812282493415, 0.16779589620113322, -0.32146937769322403, -0.2795229445390589], [0.41598563468316607, 0.3894916483189903, -0.44123474668060192, 0.6000180351672102], [0.38205455307082259, -0.54806836352622523, 0.0088431283841204911, 0.88616403016408252]], [[0.064301128460620083, 0.2913061121724092, -0.17972507421612294, -0.49258468089632418], [0.77347160470842447, -0.032497425496647359, -0.58649359459086758, 0.23987952531047596], [-0.33256196883461886, 0.77464344490024484, -0.64400203692561186, -0.10111214352067044]]]])) res=atanh(arg) ref=Data(numpy.array([[[[-0.52147196294207276, 0.32788498573535435, -0.67338487643976419, 0.46818855662601327], [1.3818685896095428, 1.7756246583188797, 0.29761420443632619, 0.34368593107252376], [-0.22364369829230918, 0.1824807046839074, -0.25585646084994412, -0.25770606941434526]], [[-1.2359651061495662, 0.99837417850627852, -0.020511872271671897, 0.30298473846351426], [0.84670025891519385, -1.9181222970821421, -1.3822385567527231, 1.0388685705919063], [1.0644856064871606, -0.51262849467258542, -1.0151110548081639, 0.64748426157864258]]], [[[-1.0547693615321863, 1.8051580368562086, 0.36325771777197419, -0.036324276565210908], [0.47571893391859066, -0.50245268032031365, -0.1452985614521865, 0.50236687302329996], [-0.91597939071280587, -0.89501400057946223, 0.11453530898741597, -0.59050937260928005]], [[0.83353431857678084, -0.24516348409085417, 0.24580049937095722, 2.3078079021972875], [0.094755268528087466, 0.75817557241805289, -0.047911139382633972, 0.58502126565893153], [-0.22545511450504421, 0.87771983963299549, -0.51652780344410243, -0.91271406398924038]]], [[[0.0082389741813193099, 0.84186867590027514, -0.26474784084557118, 0.20825842151635696], [-0.19486851141497685, 0.054611198454615352, 0.16277621481062421, -0.24542559638535763], [-0.35957727095671943, -0.82297340064389157, 0.42525082339072229, 0.55451632638526749]], [[0.20718065376792391, 0.40828171962949339, -0.98054254816788611, 0.89769117554517319], [-0.68749017583866245, 0.17066466375457767, 0.70660718620863483, 0.70576246545920529], [0.21692751606572119, 0.47014004829152839, 1.3748277463307201, 1.3212836529188918]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[-0.61859534593457599, -0.68832037278553204, -0.81395391660559058, 0.70474268120208172], [1.1538640889775169, -0.61840829443535583, -0.86038718410040294, -0.16208513353159817], [0.24342074184310508, -0.47980146702787174, 0.67896053116777877, 0.45820470516013301]], [[1.1085001296138581, 0.012109809371730973, -0.68895835800676963, 1.7169945930949277], [0.35721394930077227, -0.9108595789817534, -1.1547820644444977, 1.104358453933548], [0.035649969677798599, -2.1501439822914454, 0.8157318952041559, -0.35939365030578813]]], [[[-0.10518459752972166, -0.76537157126945188, -1.2843470399300845, 0.62431925114105657], [0.24779464619772806, -0.81705954941654779, -0.55552944455890785, -0.38516072985708483], [0.056033968346053203, 0.51666909868942745, -0.091063618089528731, -1.7979008842415258]], [[0.29338366539773703, -0.30596920988869425, -0.57572206515026991, 0.52974437563961629], [-1.3180736740413761, 0.66105802771914668, 0.45258279622299263, -1.6126480031695198], [-0.71818130025412152, -0.15425163308315157, 0.18354057447044783, -1.2546860803299611]]], [[[0.76199086156420348, 0.16939783695662922, -0.33328497538680557, -0.28716450911655816], [0.44282777426673942, 0.41120063253722738, -0.47376302178526142, 0.69317536098519239], [0.40246314878330663, -0.61561614700266343, 0.0088433589085275318, 1.4037709403877687]], [[0.064389969528247493, 0.2999928969476674, -0.18169857147454585, -0.53946737159589209], [1.0289119803083038, -0.032508872740294195, -0.67230428425667288, 0.24464627841275868], [-0.34570605594566106, 1.0318354841886035, -0.76498190274334987, -0.10145885170923308]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_exp_taggedData_rank0(self): arg=Data(-0.749952155816,self.functionspace) arg.setTaggedValue(1,1.87435313957) res=exp(arg) ref=Data(0.472389153274,self.functionspace) ref.setTaggedValue(1,6.51660242443) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_exp_taggedData_rank1(self): arg=Data(numpy.array([3.7583213879690298, -4.0248042968760078]),self.functionspace) arg.setTaggedValue(1,numpy.array([-4.0326117793437213, 2.0857030228564621])) res=exp(arg) ref=Data(numpy.array([42.876392709074644, 0.017866920423330365]),self.functionspace) ref.setTaggedValue(1,numpy.array([0.017727967895924832, 8.050249001830192])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_exp_taggedData_rank2(self): arg=Data(numpy.array([[3.766157828602319, -4.5823946696429996, 0.66617764913528088, 3.1886036213038711, 3.2584512608104532], [-2.7859216252555252, -1.4135218651939963, 1.3112977143029916, 4.7018302511834644, 1.7097977950670256], [1.4508523744480133, 0.55253078019373714, -2.6877047949953683, -2.6846750320431956, 0.10904970548395898], [-1.8038527766057699, 0.13601142120047616, -3.0528315745434984, -2.9504614920251693, 4.9405838296608291]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[0.77557025230999699, -3.8554442789337271, -0.91546431588342969, -4.5959540113452011, -3.2190686796674086], [1.4523968377221514, 3.5863184621410138, -0.095093254500025814, -1.1206737181718895, -0.035904973775130244], [1.2975960427889675, -0.79138326811261184, 4.8737751190258649, 2.4737950526565182, 1.4934451722788324], [2.1259309043066335, 2.3309264909898095, 4.874579950755157, 3.0897776496287364, -3.5758573980747324]])) res=exp(arg) ref=Data(numpy.array([[43.213710976177346, 0.010230368587152355, 1.9467817978129194, 24.254535269112523, 26.009224428474024], [0.061672224151586852, 0.24328495576601736, 3.7109863889101957, 110.14858765860721, 5.5278436073622528], [4.2667498341569088, 1.737645055572572, 0.068036918977638014, 0.068243367300953484, 1.1152177814033668], [0.16466325379708055, 1.1456949787321744, 0.047225013744888564, 0.052315557164201748, 139.85187540287308]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[2.1718302653500525, 0.021164198413568151, 0.40033070302660334, 0.010092587743486195, 0.039992286551843337], [4.2733447640782849, 36.10092405638504, 0.90928813530390384, 0.32606004802823046, 0.96473196396405092], [3.6604864293964274, 0.45321744024910665, 130.81382367479199, 11.867398903728049, 4.4524084401639898], [8.3806954834885605, 10.287468365848504, 130.91914916968017, 21.972191907545891, 0.027991415696668204]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_exp_taggedData_rank3(self): arg=Data(numpy.array([[[-3.6030801562417594, -4.5294423627776723], [-1.557160197615659, -0.64085226193734268]], [[3.1534384970888407, -1.4188623741518338], [-0.32228628176517304, 0.50951392267301809]], [[-1.3476041299826225, -3.32599590280795], [2.0029626527776827, 0.17501479898352912]], [[0.027034969552835797, 3.5645457550243353], [4.1592609451144007, -2.4301462095345872]], [[-1.4609157602736733, -2.6511851511926929], [2.600171679270459, -0.70192657249718238]], [[-1.7778158632064134, -2.1404423164026731], [3.9519788369582631, -4.5989900094571379]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[-0.13931485388617304, -0.92433138388086356], [1.2828540748799355e-05, -4.8469702777681896]], [[-4.4080333086228478, -1.1631495098987896], [-2.2966600443214649, 0.064924432335386584]], [[2.916822038268009, 0.87499562050241675], [2.7965207298154517, 1.7350460169549091]], [[-1.4466065967927477, -2.5710156312892343], [-4.0840019104915717, 3.2422451755687174]], [[-4.3762443959870501, 1.2266604944000514], [-4.8494607331215622, -4.418190947910178]], [[-0.10058151287573036, 1.8710638004256079], [-3.2551884826265995, -2.0233995710584862]]])) res=exp(arg) ref=Data(numpy.array([[[0.027239690595102155, 0.010786689455490304], [0.21073366423825682, 0.5268432242253307]], [[23.416443683529156, 0.24198915348209477], [0.72449075214705883, 1.6644819313514767]], [[0.25986211125282049, 0.035936711454248524], [7.4109797665781239, 1.1912638459759448]], [[1.0274037299843257, 35.32340428052094], [64.024187721822358, 0.088023961699000022]], [[0.232023699324167, 0.070567530289168845], [13.466049678150117, 0.49562951719433684]], [[0.16900687858407906, 0.11760281386238031], [52.038240209413715, 0.010061993132243331]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.86995407691125259, 0.39679663502748053], [1.000012828623035, 0.0078521313242256845]], [[0.012179107337097306, 0.31250040622116754], [0.10059426364925389, 1.0670783847158629]], [[18.482457486951546, 2.3988647881215508], [16.387530820420302, 5.6691886766023503]], [[0.235367631750873, 0.076457852989352454], [0.0168399386970619, 25.59111383914971]], [[0.012572487351205171, 3.4098233771610715], [0.0078326002724350228, 0.012056022541700125]], [[0.90431139638593339, 6.4952023243694939], [0.038573549534221326, 0.13220525908750566]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_exp_taggedData_rank4(self): arg=Data(numpy.array([[[[-2.5238222687744738, -4.7456197569138041, 2.4673965431652034, -1.244247551702399], [3.9651636170231548, 4.0776910888432969, 0.33317305369197836, 3.6969964378853799], [3.9522407667631043, -1.0872449164824829, 1.6801184274785852, -2.8666709250314359]], [[4.2594562258901689, -4.889578615758472, -3.1308615369041681, 2.1392519037970645], [0.17641976501634815, -1.5746448211534414, -0.84524587352898095, 2.9243780446190479], [1.2842983675630162, 2.7926593166299227, -0.070666242007418667, -1.4855591873635543]]], [[[1.5763070240757084, -4.7399252089965671, -4.4330538755629174, 3.681196791537392], [-2.8156600221094874, -1.2778689800443024, 1.4019765504207253, 0.73514942949937634], [-1.1656020759259276, -3.7433522348482926, 1.4569591575424701, -0.53394250890947514]], [[2.3786113981284966, -0.87615865560504158, -0.41129136755905193, -4.7966371337088347], [-1.5388053274330717, 4.1842415750395165, -0.82823766333376536, 2.0074764920300883], [3.5655062419593779, -1.0807913303813055, 0.14992361631707851, 1.5118919445282142]]], [[[-3.3648564449762963, -3.078810214450729, 2.1446259920400266, 3.0442472934728944], [2.4303560614080606, 4.5022657497612339, -3.6084630275613758, -3.8599028815954508], [0.39985165592526428, -1.0962344443252938, -4.0342766535351613, 3.1574594571937133]], [[2.9382085600344032, -2.1075141636809769, -4.4790587859448125, 3.8831338833937394], [-0.88934483455337077, 3.2530676768122309, 1.1912487104888179, 1.5913330617778207], [2.5683829199460373, -4.8954076890133447, 4.5839373708486839, 3.8595928573139471]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[4.2648314236496532, 2.8364333726771429, -3.3447905621878982, -2.4414228825719086], [-4.0502262415385548, 4.1458941943236809, -2.6143141305910502, 4.2118330275753131], [1.6496044974526356, -2.7777414297140846, -3.9663660028469661, 0.045758605819602671]], [[0.58717311654154702, -2.7605066566946723, 4.603529134451751, -3.9524884858165077], [-4.6202718129902269, -0.85933524206832246, 4.3247077827126894, 0.33279730693200626], [-3.2409615827119742, -3.8063217097324467, 0.39137752345011467, -3.5665802016338057]]], [[[4.8607266697872795, -4.969367327992023, -0.98962871483763237, -1.7804206030760605], [1.3076035022144179, 3.1626720342784047, -2.1039601570953614, -2.4314893070462995], [4.668111404954228, -4.7790518839956428, 4.6299993091851555, -1.8861309215463971]], [[-1.960385423872796, -2.2347760247542316, 0.41911304951970063, -1.8633640886195613], [-0.73179718793669579, 2.9290999688245485, -1.9420212454055177, -0.38085093142676385], [-4.7675775804253231, -2.0447338138388274, -0.49968774313595965, -1.1945768914876465]]], [[[-3.29590409812511, -3.0251482714096891, -3.3217228493760187, -3.7250915734222811], [2.257355212448271, 4.8692559789410161, 2.8160941264843631, 0.47498556914010859], [-4.8594977762105271, -3.6563196957128827, -1.0925704610547982, 0.88273087888402202]], [[2.9052807354938324, -0.41588815824257974, -4.0638914834502842, -4.1298152285808962], [2.188339245387195, 1.1100247395792611, -0.48625551670779821, 3.2114719610297282], [4.7983149598282502, -0.5953446380306362, 4.6452284950547842, 2.2952676397007332]]]])) res=exp(arg) ref=Data(numpy.array([[[[0.080152655505830658, 0.0086896748505372011, 11.791707653037269, 0.28815765031031876], [52.728896028898035, 59.009065747752359, 1.3953887547525055, 40.326000631888107], [52.051872360771483, 0.33714407542267766, 5.3661914380144706, 0.056887996095747358]], [[70.771489285571263, 0.0075245925517613936, 0.043680148977066881, 8.4930816096222337], [1.1929387075019384, 0.2070810904436986, 0.4294517544102977, 18.622639996115122], [3.6121326784506551, 16.324373808965724, 0.93177282686446505, 0.22637571883571311]]], [[[4.8370596417137266, 0.0087392997820314143, 0.011878159805614893, 39.693870945779999], [0.059865193346532772, 0.27863043525547398, 4.0632232005962257, 2.0857936483198323], [0.31173491743100945, 0.023674607118095742, 4.2928856716344859, 0.58628895778987566]], [[10.789909567861674, 0.41637929986988848, 0.66279378685620638, 0.0082574691747315451], [0.21463736969557601, 65.643696214852767, 0.43681842951266009, 7.4445073500822074], [35.357348247592512, 0.3393268996880992, 1.1617455009391346, 4.5353032245954843]]], [[[0.034566978025192006, 0.04601397085108954, 8.5388470432411587, 20.994222765561766], [11.362927259672304, 90.221318825839518, 0.027093456777850244, 0.021070045712901889], [1.4916034107005398, 0.33412689121892897, 0.017698477615323543, 23.510789823294036]], [[18.881990043978675, 0.12153971907203348, 0.011344085344041271, 48.576208955970465], [0.41092488836655877, 25.869577820936623, 3.2911883839679281, 4.910290287640346], [13.044713030863051, 0.007480858738198164, 97.899101410590205, 47.446030131719859]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[71.152924262038169, 17.054828714195565, 0.035267600753315483, 0.087036919996353851], [0.01741843342050033, 63.174086562400987, 0.073217989457584703, 67.480119432792065], [5.2049208605842301, 0.062178784059445436, 0.018942143909195415, 1.0468216837923499]], [[1.7988959516791232, 0.063259709283642204, 99.836029425246196, 0.019206846291659703], [0.0098501183071684206, 0.4234434761873957, 75.543434536535472, 1.3948645404410878], [0.039126253875001821, 0.022229796402444147, 1.4790167715431195, 0.028252305852203917]]], [[[129.11799417067959, 0.0069475421600283986, 0.37171467754869364, 0.16856723245965202], [3.697302509270763, 23.633661588632254, 0.12197244052600395, 0.087905816293231603], [106.49642376925129, 0.0084039631233603397, 102.51399329228067, 0.15165744973159559]], [[0.14080414118396287, 0.10701609612551928, 1.520612249558166, 0.15514981373760095], [0.48104368685579674, 18.71078262832426, 0.14341378217821199, 0.68327973756414706], [0.0085009481008868799, 0.12941463377750104, 0.60672008264714627, 0.30283205790085627]]], [[[0.037034547042194353, 0.048550622067129998, 0.036090599494215864, 0.024110892408788401], [9.5577774186815603, 130.22399145161907, 16.711450221512699, 1.6079909926256291], [0.0077543773461377754, 0.025827390686055354, 0.33535337208917088, 2.417492579588719]], [[18.270372074237216, 0.65975405441116064, 0.017182025280169905, 0.016085850753487244], [8.9203862336155364, 3.0344334641142736, 0.6149246637123601, 24.815586931080908], [121.30583999301004, 0.55137250918361824, 104.08714646666205, 9.9270925408500208]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sqrt_taggedData_rank0(self): arg=Data(66.1187077838,self.functionspace) arg.setTaggedValue(1,79.3562796516) res=sqrt(arg) ref=Data(8.1313410815,self.functionspace) ref.setTaggedValue(1,8.90821416736) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sqrt_taggedData_rank1(self): arg=Data(numpy.array([26.950944903716938, 22.036031901881039]),self.functionspace) arg.setTaggedValue(1,numpy.array([79.659180592587674, 98.693397510457103])) res=sqrt(arg) ref=Data(numpy.array([5.191429947877265, 4.6942552020401527]),self.functionspace) ref.setTaggedValue(1,numpy.array([8.9251991906392583, 9.9344550686213839])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sqrt_taggedData_rank2(self): arg=Data(numpy.array([[83.203409742087729, 20.459876166893444, 41.094599447534264, 43.257432617853716, 84.805361343651796], [80.986686844056138, 49.344401691041469, 57.262902954007956, 32.781817377127261, 20.98870933921323], [41.864732471259813, 72.898239703170674, 97.169858294017487, 72.127581542658106, 69.84393540957619], [7.2057070639609844, 12.014479889224537, 12.730936911149628, 79.860562402939749, 72.136801812195543]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[81.711392673450959, 87.088569596996351, 67.659203023768697, 62.902795439904644, 36.572517618275612], [54.411575073623894, 80.455555320083377, 9.8079978674290373, 54.140158144982514, 36.141067802738704], [32.839293835627899, 69.388569353812997, 63.803860822764101, 51.68690733801651, 54.337516161355843], [82.133256868736865, 57.914763460609464, 6.2550368291751957, 50.321505083945027, 50.092735399229653]])) res=sqrt(arg) ref=Data(numpy.array([[9.1215903077307594, 4.5232594626987126, 6.4105069571395257, 6.5770382861781878, 9.2089826443343785], [8.9992603498318751, 7.0245570458955964, 7.5672255783746767, 5.7255407934209375, 4.5813436172386401], [6.470296165652683, 8.5380465976223547, 9.8574772783921496, 8.4927958613555585, 8.3572684179447165], [2.6843448109289136, 3.4661909770271655, 3.568043849387172, 8.9364737118697857, 8.4933386728774423]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[9.0394354178483383, 9.3321256740892835, 8.2255214438823696, 7.9311282576884761, 6.0475216095749182], [7.3764202072295131, 8.969702075324653, 3.1317723204966605, 7.3579996021325327, 6.0117441564606446], [5.7305578991602468, 8.3299801532664528, 7.9877318947723888, 7.1893607044031747, 7.3713985214039166], [9.0627400309584552, 7.6101749953998734, 2.5010071629595938, 7.0937652261648063, 7.0776221571393352]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sqrt_taggedData_rank3(self): arg=Data(numpy.array([[[24.58711525153694, 26.513450628905794], [25.894046225897309, 76.099882908832683]], [[96.86666740650108, 98.675082396336464], [53.846636874764542, 14.27238078898271]], [[97.63850940329813, 90.151928905789063], [71.648695201571115, 74.209156956430576]], [[14.632460270663838, 46.13289266526926], [49.330643833957971, 72.03527701414572]], [[47.999222087494871, 33.838367468886382], [75.127786968398865, 4.3599320763477758]], [[46.943202068363867, 80.275429008214473], [82.397086218544985, 62.859283550169593]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[28.930635932458532, 33.388573112772498], [16.88000592657939, 68.038470757620274]], [[54.548353448446811, 81.081327110376535], [1.6631949481682415, 75.743741576440513]], [[28.384086636568604, 37.299784516494626], [4.5145476012025636, 68.176274025525743]], [[41.635212589459222, 64.391054127502827], [30.992011628576464, 19.448152032617305]], [[3.2357282019044789, 10.803298318703028], [99.439413034365714, 70.801579823071009]], [[38.608472990519523, 38.359870069009858], [89.941281924017275, 47.089103130495459]]])) res=sqrt(arg) ref=Data(numpy.array([[[4.9585396289166574, 5.1491213453273552], [5.0886192848254339, 8.7235246837979812]], [[9.8420865372389947, 9.9335332282293418], [7.338026769831556, 3.7778804625057569]], [[9.8812200361745877, 9.494836960463779], [8.4645552276283897, 8.614473690042276]], [[3.8252398971389803, 6.7921198947949426], [7.0235777089712599, 8.487359837673063]], [[6.9281470890487649, 5.8170755082675676], [8.667628681963647, 2.0880450369538908]], [[6.8515109332441311, 8.9596556300013273], [9.0772840772196268, 7.9283846747095712]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[5.3787206594559764, 5.7782846168021615], [4.1085284380881912, 8.2485435537202729]], [[7.3856857128127791, 9.0045170392629359], [1.2896491570067581, 8.7030880482987474]], [[5.3276717838628729, 6.1073549525547168], [2.1247464792776016, 8.2568925162875733]], [[6.4525353613489962, 8.0244036617995995], [5.5670469396778453, 4.4100058993857711]], [[1.7988129980363381, 3.2868371299325174], [9.9719312590072402, 8.4143674642287287]], [[6.2135716774267218, 6.1935345376456779], [9.4837377612425193, 6.8621500370143069]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sqrt_taggedData_rank4(self): arg=Data(numpy.array([[[[42.370128850225534, 64.183097608646705, 84.366078659801104, 16.515641051464272], [73.785291697946164, 87.312657572269515, 69.428277252879781, 92.656721478953287], [69.698296458864249, 23.393048019403704, 88.109689395116419, 42.032468891247021]], [[2.6375163201099578, 59.041525354643206, 20.356627995608768, 11.897333150828965], [37.925080098983869, 59.075116440382075, 56.144969467546872, 64.519772619227496], [20.071418547844651, 38.634724148514344, 80.718254953798279, 50.41857305264454]]], [[[59.576738600481768, 23.930830924167143, 18.360753569890573, 20.231150076534181], [98.25922486474947, 68.178149570093638, 13.776804530518866, 51.945871290407467], [35.14832429151236, 67.415812532502684, 12.757339586205628, 44.063833075360989]], [[6.7443440383699587, 84.841224148387312, 29.790278716866581, 78.659203162433926], [62.669492083963888, 49.131163942783786, 57.031266775264292, 23.536235325724508], [66.812957309291249, 93.23023188694566, 72.378130120625073, 76.741950163200173]]], [[[54.340441189118657, 38.923007006981855, 8.4805132822780038, 81.769308743472948], [10.431711506617603, 89.283700349417444, 11.054894136992893, 69.501130141011274], [59.878072146242665, 16.353174235971739, 33.911661927785339, 43.933788186658099]], [[95.155663331834987, 40.374769085669357, 76.504062733443291, 24.269622789956216], [19.066641354097424, 16.216531435944937, 2.9090938643160769, 36.193423650217412], [85.035802964632353, 33.758549347144886, 22.607096658902456, 59.29059546236266]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[45.461195758665305, 48.232713963030115, 20.574896465244645, 77.042123378126419], [29.408402377656021, 89.644199991043934, 37.626983926343691, 54.665500847799954], [55.279852765647405, 9.8770030737031362, 84.692626914039323, 74.569785022600129]], [[86.480614059580262, 39.44670516230191, 33.913192480299656, 91.064507717285494], [82.514056419443719, 79.033061042943729, 21.205161548235484, 63.447931595442171], [70.771892050057431, 85.179849589202817, 2.2976273736104913, 54.100290092830974]]], [[[44.920675505591753, 79.571083257406727, 70.036069047171736, 89.378823845420271], [36.90881183703241, 11.022173065677999, 70.62518800399917, 26.439709298221533], [94.630299128155968, 22.253654455466215, 73.180687011483016, 62.69738947991646]], [[25.809044438683465, 63.915976605926396, 7.8198717354648863, 86.721732417437238], [75.044351249076755, 84.229123933895082, 21.901578729424983, 6.8349416985481879], [37.271119471339006, 64.583431723199155, 27.275670855550583, 49.995981801746105]]], [[[0.17259469145601952, 9.252449088483786, 21.995295729482201, 34.634327605762955], [36.564437853430213, 36.464875685420154, 23.468662561443722, 63.709619389652808], [77.299728799249792, 35.131812814366654, 52.447111388935163, 59.193503430356337]], [[28.172021648921582, 6.9193925888337438, 33.521086135909869, 32.466778283077545], [80.781854588010745, 60.326859582936031, 60.965229409096004, 2.4499363952717865], [91.552398032123989, 20.523937743647728, 27.819367237334685, 53.113877776584353]]]])) res=sqrt(arg) ref=Data(numpy.array([[[[6.5092341216325549, 8.011435427477819, 9.1851009063483406, 4.063944026615558], [8.5898365349956549, 9.3441242271423981, 8.3323632453752143, 9.6258361444060174], [8.3485505603586212, 4.8366360230436714, 9.3866761633240774, 6.4832452437993595]], [[1.624043201429678, 7.6838483427670026, 4.5118319999318199, 3.4492510999967756], [6.1583341983838347, 7.6860338563125046, 7.4929946928812692, 8.0324200972824809], [4.4801136757725972, 6.2156837233336084, 8.9843338625519849, 7.1006037104350881]]], [[[7.7185969321167285, 4.8919148525058302, 4.284944990299242, 4.4979050764254884], [9.9125791227485021, 8.25700608998768, 3.7117118059621581, 7.2073484229921521], [5.9286022207188402, 8.2107132779377139, 3.5717418140461423, 6.638059435961762]], [[2.5969874929175072, 9.2109296028352805, 5.4580471523124992, 8.8690023769550272], [7.9164065133091723, 7.009362591761378, 7.5519048441611272, 4.8514158063110306], [8.1739193358688862, 9.6555803495670656, 8.5075337272693243, 8.7602482934674963]]], [[[7.3715969225886635, 6.2388305800832464, 2.912132085307602, 9.0426383729237418], [3.2298160174563511, 9.4490052571377827, 3.3248900939719634, 8.3367337813445417], [7.7380922808042722, 4.0439058144288849, 5.8233720409901117, 6.6282567984846592]], [[9.7547764367941809, 6.3541143431377876, 8.7466600901969027, 4.9264208904595446], [4.3665365398788802, 4.026975469995433, 1.7056065971718322, 6.0160970446143409], [9.2214859412478827, 5.8102107833662009, 4.754692067726622, 7.7000386662901024]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[6.7424918063476582, 6.944977607093497, 4.5359559593590237, 8.777364261446964], [5.4229514452607832, 9.4680621032523824, 6.1340837886634452, 7.3936121650922395], [7.4350422168033052, 3.1427699683087109, 9.2028597139171548, 8.6353798424041628]], [[9.2994953658561634, 6.280661204228573, 5.8235034541330579, 9.5427725382765729], [9.0837248097596905, 8.8900540517447766, 4.6049062474968459, 7.9654209929822395], [8.4126031672757176, 9.2292930167593461, 1.5157926552172269, 7.3552899394130602]]], [[[6.7022888258856579, 8.9202625105658591, 8.368755525594695, 9.4540374362184689], [6.0752622854517488, 3.3199658229683626, 8.4038793425417033, 5.1419557853234732], [9.7278106030162803, 4.7173779216283078, 8.5545711179160246, 7.9181683159627552]], [[5.0802602727304693, 7.9947468131221262, 2.7964033570758149, 9.3124503981195641], [8.6628142799598766, 9.17764261310578, 4.6799122565946663, 2.6143721423217827], [6.1050077372054989, 8.0363817556907513, 5.2226114976657589, 7.0707836766334538]]], [[[0.41544517262331926, 3.0417838661686312, 4.6899142560906375, 5.8850936785885537], [6.0468535498579934, 6.0386153781657725, 4.8444465691597554, 7.9818305788617696], [8.79202643303862, 5.9272095301555394, 7.2420377925646839, 7.6937314373687578]], [[5.3077322510580336, 2.6304738335200644, 5.7897397295482866, 5.6979626431802401], [8.9878726397302025, 7.7670367311437394, 7.8080233996252861, 1.5652272663328437], [9.5683017318709176, 4.5303352793858123, 5.2744068137881328, 7.2879268503864907]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log_taggedData_rank0(self): arg=Data(36.4809356241,self.functionspace) arg.setTaggedValue(1,80.0302228229) res=log(arg) ref=Data(3.59678981247,self.functionspace) ref.setTaggedValue(1,4.38240434862) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log_taggedData_rank1(self): arg=Data(numpy.array([46.59425457123556, 68.172569815688405]),self.functionspace) arg.setTaggedValue(1,numpy.array([65.427006436370618, 86.065200529495556])) res=log(arg) ref=Data(numpy.array([3.8414772410677034, 4.2220422818284451]),self.functionspace) ref.setTaggedValue(1,numpy.array([4.1809351156780332, 4.455105154698046])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log_taggedData_rank2(self): arg=Data(numpy.array([[39.075877450675698, 97.653545876008806, 47.988417825860637, 53.932052577242985, 60.380431949040442], [93.350133391903867, 38.347348519622287, 60.437021565597611, 2.0425923742169343, 77.266159584750397], [47.678248212978616, 91.262336639629311, 11.671719403634887, 49.71988614105117, 77.648453231227109], [49.229327831457574, 82.102378053363054, 49.729354379527422, 35.684271737364277, 43.531040542575127]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[53.427459984069628, 13.93063057392779, 1.342075620281171, 69.536438982499547, 11.21650951883837], [1.9134484258021096, 36.756806175549656, 52.373018075302362, 61.699751656220478, 12.632621993377159], [45.322161925956458, 91.126460370251877, 6.6306875352383692, 83.584252908685002, 78.274345299988568], [46.494546030822839, 91.712856654908848, 31.115030158406128, 82.946055505457963, 98.493589852718884]])) res=log(arg) ref=Data(numpy.array([[3.6655053316069397, 4.5814259687577241, 3.8709596864969273, 3.9877249686516278, 4.1006650780961058], [4.5363572989305121, 3.6466853864301547, 4.101601856997652, 0.71421977278415627, 4.3472560794647173], [3.8644752815825361, 4.5137381793751707, 2.4571687708042789, 3.9064049766368951, 4.352191629643908], [3.8964895400400414, 4.4079669813660951, 3.9065953901273409, 3.5747100241263499, 3.7734742593119375]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[3.9783248457056453, 2.6340900540986794, 0.29421738590469837, 4.2418509170789935, 2.4173867571169083], [0.64890707271250014, 3.6043234105668351, 3.9583915364819653, 4.1222799058825039, 2.5362825152421582], [3.8137961385956465, 4.5122482162114013, 1.8917084994605029, 4.4258551400119392, 4.3602199030764179], [3.8393350160546169, 4.5186625728689567, 3.4376909872768944, 4.4181904628289717, 4.5899914684230305]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log_taggedData_rank3(self): arg=Data(numpy.array([[[21.699512716247472, 1.5282092621897898], [70.128490130107167, 99.241953232244768]], [[78.501878729278019, 4.9314024598766171], [28.820316178767477, 1.3050055568589718]], [[77.79872786306737, 49.006304087499473], [6.0837158518704957, 61.062626053957885]], [[54.00367327313819, 52.290800103947532], [28.218888543563132, 55.69049695930471]], [[70.540276579110611, 10.438534795340397], [41.668397105605507, 16.209971253412206]], [[47.267330103680038, 54.403296082231499], [38.961522648812213, 76.555371480099396]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[51.938496576912861, 83.925735699153535], [1.6169120969879085, 6.9041394256440052]], [[88.150381953863842, 98.403414431124375], [61.500668372426269, 88.227022389639899]], [[97.467337646036611, 69.782208819109613], [29.536218217059314, 56.802080857103853]], [[61.217789432766921, 4.925020459063683], [6.0472249368221469, 12.935582213769482]], [[62.146044807251613, 55.471641138480706], [81.292189922751476, 63.742035945518467]], [[4.0955522013947023, 30.661458256155598], [17.597603579662788, 9.30923552928299]]])) res=log(arg) ref=Data(numpy.array([[[3.0772898048218194, 0.42409663306219014], [4.2503291327306743, 4.5975608405348396]], [[4.3631225573590209, 1.5956234222193697], [3.3610805613220047, 0.26620729889507122]], [[4.354125079676205, 3.8919489446822295], [1.8056156691430751, 4.1118999941440908]], [[3.9890520678274091, 3.9568204493632884], [3.3399915602331363, 4.0198095212339595]], [[4.2561838456835561, 2.345504227331265], [3.7297429783063549, 2.7856265623599672]], [[3.8558193613754197, 3.996424741773315], [3.6625745603723487, 4.3380142892056002]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[3.9500602604347153, 4.4299323089778522], [0.48051821732876043, 1.9321211484850926]], [[4.4790442418335141, 4.5890755029594903], [4.1190480425977469, 4.4799132923888827]], [[4.5795173233770798, 4.245379089300493], [3.3856172464655256, 4.039572959864234]], [[4.1144378242858997, 1.5943284287400294], [1.7995994786846001, 2.5599818253532565]], [[4.1294871764666654, 4.0158719196846624], [4.3980499470284302, 4.1548442498897815]], [[1.4099015559293309, 3.423006434483387], [2.8677627325270256, 2.2310069750585604]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_log_taggedData_rank4(self): arg=Data(numpy.array([[[[31.101305125560753, 98.170407256844626, 89.495246884407379, 99.98908850739052], [2.4049273930600767, 36.880499975611961, 16.353617842398464, 58.781248047924151], [72.016717419675047, 88.390811768491815, 58.246083798359486, 66.583340970007129]], [[20.465803140117011, 24.0036287870054, 88.198587567358629, 48.083853917268023], [32.183002238023384, 52.361813109969468, 91.165656746391832, 24.096203766223894], [34.219537794626028, 27.966364691635807, 48.391457442108091, 21.127135955159684]]], [[[92.173901880553899, 84.090306966759115, 68.663513749469857, 28.930103696589871], [76.193472611006214, 23.122185422458525, 52.911657222861116, 25.431379093778077], [48.1123157662987, 63.084679424916168, 88.227262797374976, 25.223940757757774]], [[77.883594744394102, 4.766542541594764, 67.914391833582812, 44.354444036844214], [43.449846921835778, 24.389274109879604, 52.005422364971146, 90.067558807201308], [16.219814551493748, 93.953208312531657, 89.304393662856739, 57.450106876298889]]], [[[83.17121819234076, 3.0876023794315675, 13.178062484577275, 32.720549483090331], [28.923086723062763, 48.413131454470019, 19.329222518853427, 49.531895870836308], [61.750663719317927, 25.293283597003178, 14.112470421243229, 93.044089674063756]], [[64.150504828677711, 10.388481675167892, 60.095156109859765, 94.542246846329334], [14.28716150453554, 22.491472839959545, 37.072742949787475, 56.544755150434312], [47.953455399965009, 6.8295119322974971, 81.092486719769227, 88.957569057433133]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[3.3654654280794065, 31.448597851056814, 25.912141884195076, 97.838879435572466], [61.609361018170169, 23.411945067093868, 77.425261409500308, 49.641325811406979], [1.5957777077323345, 94.738957291578956, 26.540677293555149, 14.644250966443629]], [[94.393421059841273, 44.913143788307792, 48.37457688577048, 24.936916903319691], [27.135697963907795, 7.1178102866629755, 82.53709971518164, 27.34969678954003], [84.534447098035358, 70.271477764969092, 91.498492500534539, 98.035238969369871]]], [[[23.350304037279159, 73.165148854851068, 20.805692503306975, 70.60969981889366], [76.636921854602633, 99.536056139752134, 36.05432002833745, 68.437860465731404], [97.395060152216843, 83.220325374523995, 84.216569453631237, 41.096858608280385]], [[7.3882123001998607, 0.26399485183249632, 58.100940249092623, 11.539242598340968], [83.194333821216958, 65.589029104330493, 18.19752451210422, 29.394627656416741], [53.733171964816421, 57.534725114847042, 65.718206728755177, 8.3980661515725163]]], [[[22.27274452496971, 27.206143810199485, 94.515538865049535, 5.403807179524474], [69.179637950013159, 84.701966892623375, 79.155529928216239, 94.704415753621575], [11.066488989252838, 7.6878341916531605, 69.879561161866874, 42.170520250872158]], [[69.119995601366483, 97.630776657501471, 97.832335448609641, 60.475862682733805], [43.772437615973402, 26.522975367447277, 67.711453522387615, 83.932152243212755], [72.510806999393893, 10.554199212907934, 45.076886402670027, 87.39127569037376]]]])) res=log(arg) ref=Data(numpy.array([[[[3.4372497837567777, 4.58670481818156, 4.4941855164337712, 4.6050610651085302], [0.87751971310618737, 3.6076829554189502, 2.7944491476300444, 4.073822893292145], [4.2768982784493446, 4.4817680249710827, 4.0646768592562585, 4.1984544106717419]], [[3.0187553537439253, 3.1782050183770179, 4.4795909489089949, 3.8729464433637721], [3.4714384323655101, 3.9581775682108784, 4.5126782553964633, 3.1820543080153221], [3.5327967614945712, 3.3310025270698476, 3.8793232990147835, 3.0505582784353522]]], [[[4.5236770306297025, 4.4318913042931216, 4.2292179627974305, 3.3648827033780897], [4.3332757977505798, 3.1407925645297952, 3.9686236779689277, 3.2359838089418784], [3.8735381893751741, 4.1444779417295763, 4.4799160172616155, 3.227793573594179]], [[4.3552153369168716, 1.5616212080338248, 4.2182479684170557, 3.7922129074975159], [3.771607328617411, 3.1941434499923838, 3.9513479893944825, 4.5005600421442526], [2.7862336152984626, 4.5427968744252256, 4.4920506878239275, 4.0509168646289595]]], [[[4.4209013527895706, 1.1273948607343995, 2.5785535140631213, 3.4880033050865178], [3.3646401247575981, 3.8797710879671699, 2.9616180709345326, 3.9026168230902107], [4.1231047239413003, 3.2305388900157679, 2.6470588335475065, 4.5330734633284591]], [[4.1612319605346206, 2.340697661147535, 4.0959292411193209, 4.5490467911745931], [2.6593613371192286, 3.1131362524867643, 3.6128820082150246, 4.0350324511420927], [3.8702308612975078, 1.9212532116292804, 4.3955903146568103, 4.4881595038860205]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[1.2135662679688048, 3.4483543987203631, 3.2547116574713217, 4.5833220382836135], [4.1208138235747116, 3.1532463650693905, 4.3493131021467581, 3.9048236685092923], [0.46736120845767137, 4.5511252914352394, 3.2786785483054603, 2.6840478329453119]], [[4.5474713785601448, 3.8047304866159513, 3.8789744047643144, 3.2163493120536915], [3.3008501290901413, 1.9626001341145185, 4.4132478857761619, 3.3087054425008704], [4.4371591092581104, 4.2523659947961194, 4.5163224967417603, 4.5853269953568034]]], [[[3.1506100048986219, 4.2927191990513212, 3.0352266273078725, 4.2571675262643494], [4.3390789691634684, 4.6005199517870539, 3.5850266909019495, 4.2259261870761291], [4.578775492239302, 4.4214916133587838, 4.4333916887485154, 3.7159316856924915]], [[1.9998857977389439, -1.3318256766604444, 4.062181847015947, 2.445753626199946], [4.4211792423976677, 4.1834084427007436, 2.9012855690133099, 3.3808119248720274], [3.9840305382637378, 4.0523886805608198, 4.1853760062592782, 2.1280014592936731]]], [[[3.1033637123365332, 3.303442823170931, 4.5487642534165529, 1.6871037383963188], [4.2367065700465449, 4.4391388232611524, 4.3714146503200348, 4.5507606279710613], [2.4039215319374505, 2.0396391042727164, 4.2467732053644385, 3.7417214046724601]], [[4.2358440608581605, 4.5811927783170869, 4.5832551507041686, 4.1022443215077606], [3.779004341129665, 3.278011352367117, 4.2152553461462992, 4.4300087610783878], [4.2837356128125892, 2.3565238103888038, 3.8083696185225007, 4.4703954572028213]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sign_taggedData_rank0(self): arg=Data(-27.6238811345,self.functionspace) arg.setTaggedValue(1,-26.6188411821) res=sign(arg) ref=Data(-1.0,self.functionspace) ref.setTaggedValue(1,-1.0) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sign_taggedData_rank1(self): arg=Data(numpy.array([65.988765188781628, 43.633425826032123]),self.functionspace) arg.setTaggedValue(1,numpy.array([-43.177017978677057, 18.498142369576271])) res=sign(arg) ref=Data(numpy.array([1.0, 1.0]),self.functionspace) ref.setTaggedValue(1,numpy.array([-1.0, 1.0])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sign_taggedData_rank2(self): arg=Data(numpy.array([[-78.167710802301741, -55.033204362154265, 37.991255141785302, 50.222020893267029, 95.714640431707807], [-81.178579764161256, 21.860275678254681, 91.336894263942668, 37.932598260023099, -87.965842239718057], [63.15669717506313, 80.395599270502714, 58.958976516236106, -19.250836112072108, -48.102635913480874], [-98.409552362349558, 29.763756955023496, -70.007046431425664, 16.56379790064571, -41.607232959589481]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[74.159820400094588, -19.916385054691645, 15.40425479416308, -45.475971811633698, -27.911268074280457], [-29.786605106833306, -82.877167864945875, -84.972063657379977, -96.028192775161585, -91.132164399088751], [58.162335820187224, -36.266848654009443, -72.489996854551606, 7.6308625158186771, 25.612300558077663], [93.912536630409363, 0.74947614971907228, 11.966503685953754, -88.781531775281678, -95.942997369506429]])) res=sign(arg) ref=Data(numpy.array([[-1.0, -1.0, 1.0, 1.0, 1.0], [-1.0, 1.0, 1.0, 1.0, -1.0], [1.0, 1.0, 1.0, -1.0, -1.0], [-1.0, 1.0, -1.0, 1.0, -1.0]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[1.0, -1.0, 1.0, -1.0, -1.0], [-1.0, -1.0, -1.0, -1.0, -1.0], [1.0, -1.0, -1.0, 1.0, 1.0], [1.0, 1.0, 1.0, -1.0, -1.0]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sign_taggedData_rank3(self): arg=Data(numpy.array([[[40.659064171526694, -30.296135196623325], [65.135534658139875, -3.189213180563371]], [[-16.553351525146027, -61.720967726757102], [76.972713494862035, 99.275215333914559]], [[47.475762989245681, -97.393738249661268], [29.171397306032645, -63.642498879346746]], [[-65.809714821242551, 25.104527515218038], [-25.908107285024215, -16.761112108721733]], [[-91.771675890562236, -30.217560827961364], [57.01823721886862, 13.089158046532233]], [[-9.2038411577464814, -51.536713875708799], [24.738016649301201, -43.097223742291945]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[75.518086628986168, 5.7702731728101782], [-42.11765774528169, -9.9313715009520962]], [[-33.56415502329628, 12.290219019430509], [-71.076843320533584, -48.936347244622212]], [[-29.458297241970527, -0.79873463559410141], [56.480807815607648, 77.468899350274796]], [[-15.657215310960197, -97.911217676078493], [97.233823754667782, 28.179624489186494]], [[-38.154815907369802, -2.8953583985458664], [-94.411611022922287, -89.520621976287586]], [[20.02986172489021, 45.555499658943972], [-92.298172881010984, 50.848484074958037]]])) res=sign(arg) ref=Data(numpy.array([[[1.0, -1.0], [1.0, -1.0]], [[-1.0, -1.0], [1.0, 1.0]], [[1.0, -1.0], [1.0, -1.0]], [[-1.0, 1.0], [-1.0, -1.0]], [[-1.0, -1.0], [1.0, 1.0]], [[-1.0, -1.0], [1.0, -1.0]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[1.0, 1.0], [-1.0, -1.0]], [[-1.0, 1.0], [-1.0, -1.0]], [[-1.0, -1.0], [1.0, 1.0]], [[-1.0, -1.0], [1.0, 1.0]], [[-1.0, -1.0], [-1.0, -1.0]], [[1.0, 1.0], [-1.0, 1.0]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sign_taggedData_rank4(self): arg=Data(numpy.array([[[[48.404617181522724, 27.642908048648465, -32.063735049783858, -25.287287320564673], [35.529509315351362, 20.52958828294021, 50.132503108908566, 21.961444483043181], [-30.536862467175467, -73.366944239336476, -1.9104283260391099, -40.116305423450392]], [[-3.2592728125080583, -66.978916413183839, 51.039430417752982, 34.318446063538232], [-10.778480760564307, 34.381886410487425, -96.662586157020499, 23.49291212424454], [33.936269866253809, 6.0438240456580417, 53.991390973572862, 34.843592016698238]]], [[[-52.275180577618798, 15.674362624980304, 46.042809742277655, 38.412209266363305], [66.461375379834692, 45.821627659544617, 58.528372762759147, -77.609658246727861], [-91.311967332091655, 62.061963370741864, -42.381631148565965, -19.376230129856737]], [[-82.817924353598301, -94.396836339797801, -80.332788125711602, -53.122903800926544], [58.309151553617909, -63.690512047675661, 12.750432515234706, 88.616992933489428], [-76.463210395801909, -88.55862414809792, -53.122216991054394, 94.306145635218115]]], [[[31.191484321029691, 33.483202066627882, -68.553556516172563, -30.761725450809905], [39.954033622863392, 31.391308803793095, 7.0924416508365056, 82.108147705338354], [28.677362945828122, 76.875499532889648, -98.899773427430574, 63.640543048776806]], [[48.003219667446018, 32.816178561644875, -47.97394425834738, 64.03620964542236], [22.449712578557794, 72.880134481879196, -66.599797223033192, -95.855372244240456], [-5.2195963768147777, 53.688991692833952, -4.6935389526849463, -20.020330663766899]]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[[-63.279749648503802, -91.258116713624531, -34.456755905701655, -68.15939250069377], [-42.719644685839995, -50.608567888041001, 86.926567471745585, 85.713364201437258], [-28.138127931660478, -48.833678656434088, 92.324131209205206, 46.337966629590767]], [[42.90425842608937, 64.851867297440293, -44.286214357511192, -83.350387738656664], [81.716073201887639, -81.864272503868293, 92.45506396473931, 57.706464829259602], [-91.437108351660243, 53.053916668830283, 71.118625640502444, -27.194756979681543]]], [[[48.738615887994285, -2.8909177216855966, -26.101711802319798, 12.384670566250364], [-59.707938829568683, 7.1712734206349751, 13.096740235902374, 13.95432941544199], [67.638350545270868, -69.038896120399571, -52.761020748111505, -34.828120061695998]], [[-40.401312312884819, -58.575266259290814, -5.6760646716001304, 92.205219596258189], [87.355330242760971, 40.300165196433568, -55.950410136680517, 33.57412513030539], [-99.413320460986569, 85.272736206140081, -8.649704146529686, -72.352005495304866]]], [[[76.119465279689791, 42.566334567806138, -50.386490732119427, 71.20528114907242], [61.744996594644761, 22.082948637093295, 78.339113397478116, -49.481789958643674], [-96.910012358949714, 21.340439990309633, 92.448839100352387, -11.980830731257086]], [[48.862626595701954, 89.576908309497242, -24.930909752705006, -56.400828022332483], [70.708156511024811, -52.976842818709493, 96.644726353542865, 68.041659790587545], [96.085623722167952, 49.460250235353953, 48.149498918497216, 57.854757467958734]]]])) res=sign(arg) ref=Data(numpy.array([[[[1.0, 1.0, -1.0, -1.0], [1.0, 1.0, 1.0, 1.0], [-1.0, -1.0, -1.0, -1.0]], [[-1.0, -1.0, 1.0, 1.0], [-1.0, 1.0, -1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]], [[[-1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, -1.0], [-1.0, 1.0, -1.0, -1.0]], [[-1.0, -1.0, -1.0, -1.0], [1.0, -1.0, 1.0, 1.0], [-1.0, -1.0, -1.0, 1.0]]], [[[1.0, 1.0, -1.0, -1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, -1.0, 1.0]], [[1.0, 1.0, -1.0, 1.0], [1.0, 1.0, -1.0, -1.0], [-1.0, 1.0, -1.0, -1.0]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[-1.0, -1.0, -1.0, -1.0], [-1.0, -1.0, 1.0, 1.0], [-1.0, -1.0, 1.0, 1.0]], [[1.0, 1.0, -1.0, -1.0], [1.0, -1.0, 1.0, 1.0], [-1.0, 1.0, 1.0, -1.0]]], [[[1.0, -1.0, -1.0, 1.0], [-1.0, 1.0, 1.0, 1.0], [1.0, -1.0, -1.0, -1.0]], [[-1.0, -1.0, -1.0, 1.0], [1.0, 1.0, -1.0, 1.0], [-1.0, 1.0, -1.0, -1.0]]], [[[1.0, 1.0, -1.0, 1.0], [1.0, 1.0, 1.0, -1.0], [-1.0, 1.0, 1.0, -1.0]], [[1.0, 1.0, -1.0, -1.0], [1.0, -1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]]]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_abs_taggedData_rank0(self): arg=Data(-14.3673757927,self.functionspace) arg.setTaggedValue(1,-91.0616949648) res=abs(arg) ref=Data(14.3673757927,self.functionspace) ref.setTaggedValue(1,91.0616949648) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_abs_taggedData_rank1(self): arg=Data(numpy.array([-81.821732775420642, -68.22226512766818]),self.functionspace) arg.setTaggedValue(1,numpy.array([21.333617426834195, 10.209481057564346])) res=abs(arg) ref=Data(numpy.array([81.821732775420642, 68.22226512766818]),self.functionspace) ref.setTaggedValue(1,numpy.array([21.333617426834195, 10.209481057564346])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_abs_taggedData_rank2(self): arg=Data(numpy.array([[-35.703961827623615, 94.271132011685381, -77.391701661321079, -48.396751261576078, -89.628632351273765], [49.30062196572834, -45.716685546575796, -91.97360399287524, -46.086717554689407, 94.50160817876062], [23.260490557882292, -46.121623208221905, 64.433592032582311, 18.144341652350775, -44.21085548471779], [-61.083601852216219, 85.575046878129143, 52.75009956117529, 97.008285145570085, 56.751065315172809]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[-51.972473313741155, -55.497035445328713, 62.267323877673789, 18.670956133573171, 13.711215778429931], [-48.087336536814519, -76.786375607585896, 37.410127192208563, 87.684260266087875, -26.905076717599144], [16.189496788130981, 87.750429072332139, -36.767204229576599, -71.524650024934132, 81.291275301664541], [7.3770859265969762, -24.93630589052367, 61.708601944027265, 89.294133020898926, -2.7788897536858315]])) res=abs(arg) ref=Data(numpy.array([[35.703961827623615, 94.271132011685381, 77.391701661321079, 48.396751261576078, 89.628632351273765], [49.30062196572834, 45.716685546575796, 91.97360399287524, 46.086717554689407, 94.50160817876062], [23.260490557882292, 46.121623208221905, 64.433592032582311, 18.144341652350775, 44.21085548471779], [61.083601852216219, 85.575046878129143, 52.75009956117529, 97.008285145570085, 56.751065315172809]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[51.972473313741155, 55.497035445328713, 62.267323877673789, 18.670956133573171, 13.711215778429931], [48.087336536814519, 76.786375607585896, 37.410127192208563, 87.684260266087875, 26.905076717599144], [16.189496788130981, 87.750429072332139, 36.767204229576599, 71.524650024934132, 81.291275301664541], [7.3770859265969762, 24.93630589052367, 61.708601944027265, 89.294133020898926, 2.7788897536858315]])) self.assertTrue(isinstance(res,Data),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(res-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_abs_taggedData_rank3(self): arg=Data(numpy.array([[[-73.879162728531952, 53.891922757125315], [-30.709972491596574, -49.27453562582631]], [[99.200427899109769, -0.10455889631015225], [24.929977391825204, -25.196431617614095]], [[99.69470286180362, 49.629118870818502], [-18.286571682827372, -99.882333404908422]], [[94.596602624460871, -48.944752738316531], [-86.357256849018469, 94.554119229106021]], [[37.481086962966259, 84.979891468391372], [64.015940250013614, -48.600306234165757]], [[-1.3540803820464049, 43.87503589064076], [24.242456069744136, 86.552268702416399]]]),self.functionspace) arg.setTaggedValue(1,numpy.array([[[37.413937980923265, -0.28411691206147793], [33.044360612769196, -66.03355173059704]], [[37.536911848971073, 0.023208526118992268], [-26.527789666862972, -33.2402194708271]], [[55.327425103705878, -84.395066891225468], [45.013227563401301, -95.875031468356525]], [[64.760193848108571, -73.302359966808424], [54.095816937340203, 37.527678340113113]], [[-76.71381733348575, -39.352383403035063], [80.080299993848996, 0.010359221408108965]], [[-96.050890564474372, -42.823985894886071], [3.4476034725966258, -36.523928707662435]]])) res=abs(arg) ref=Data(
numpy.array([[[73.879162728531952, 53.891922757125315], [30.709972491596574, 49.27453562582631]], [[99.200427899109769, 0.10455889631015225], [24.929977391825204, 25.196431617614095]], [[99.69470286180362, 49.629118870818502], [18.286571682827372, 99.882333404908422]], [[94.596602624460871, 48.944752738316531], [86.357256849018469, 94.554119229106021]], [[37.481086962966259, 84.979891468391372], [64.015940250013614, 48.600306234165757]], [[1.3540803820464049, 43.87503589064076], [24.242456069744136, 86.552268702416399]]])
numpy.array
#!/usr/bin/env python ###################################################### ## Edits ROMS masks using a GUI ## Nov 2014 ## <EMAIL> ###################################################### import os import wx from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wxagg import NavigationToolbar2WxAgg as Navbar from matplotlib.backends.backend_wx import NavigationToolbar2Wx from matplotlib.figure import Figure import numpy as np import matplotlib.pyplot as plt from matplotlib.path import Path import scipy.io as sp import netCDF4 as nc from mpl_toolkits.basemap import Basemap # TO-DO LIST: ==================================================== # - improve point selection based in find_lower_left_node # - create better icons for mask/unmask area # - resolve untoggle/toggle between mask/unmask functions # - add support to other models (POM, SWAN, WW3) # - move matplotlib toolbar to the lower part # - add a wx.TaskBarIcon to show up on the unity launcher # - display local depth of the pixel we are looking at # - transform mask/unmask and mask_area and unmask_area in the same # function, and figure out how to decide wether to mask or unmask # ================================================================ # NICE TIP TO DEBUG THIS PROGRAM: ================================ # - comment out app.MainLoop at the last line of this script # - ipython --gui=wx # - run pyeditmask.py # - trigger the events and check out the objects in the shell # ================================================================ global currentDirectory currentDirectory = os.getcwd() PROJECT_DIR = os.path.abspath(os.path.dirname(__file__)) DEFAULT_VMIN = 0 DEFAULT_VMAX=1.5 DEFAULT_CMAP = plt.cm.BrBG DEFAULT_DEPTH_FOR_LAND = -50 # ROMS related objects --------------------------------------------- class RomsGrid(object): """ Stores and manipulates netcdf ROMS grid file information """ def __init__(self,filename): self.filename = filename self.ncfile = nc.Dataset(filename, mode='r+') self.lonr = self.ncfile.variables['lon_rho'][:] self.latr = self.ncfile.variables['lat_rho'][:] self.lonu = self.ncfile.variables['lon_u'][:] self.latu = self.ncfile.variables['lat_u'][:] self.lonv = self.ncfile.variables['lon_v'][:] self.latv = self.ncfile.variables['lat_v'][:] self.lonvert = self.ncfile.variables['lon_vert'][:] self.latvert = self.ncfile.variables['lat_vert'][:] self.h = self.ncfile.variables['h'][:] self.maskr = self.ncfile.variables['mask_rho'][:] self.masku = self.ncfile.variables['mask_u'][:] self.maskv = self.ncfile.variables['mask_v'][:] def uvp_mask(rfield): Mp, Lp = rfield.shape M = Mp - 1 L = Lp - 1 vfield = rfield[0:M,:] * rfield[1:Mp,:] ufield = rfield[:,0:L] * rfield[:,1:Lp] pfield = ufield[0:M,:] * ufield[1:Mp,:] return ufield, vfield, pfield # ------------------------------------------------------------------- class App(wx.App): def OnInit(self): self.frame = Interface("PyEditMask 0.1.0", size=(1024,800)) self.frame.Show() return True class Interface(wx.Frame): def __init__(self, title=wx.EmptyString, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.DEFAULT_FRAME_STYLE, *args, **kwargs): wx.Frame.__init__(self, None, -1, "PyEditMask 0.1.0", pos=pos, size=size, style=style, *args, **kwargs) # Initializing toolbar self.toolbar = MainToolBar(self) # BASIC LAYOUT OF THE NESTED SIZERS ====================== panel1 = wx.Panel(self, wx.ID_ANY, style=wx.SUNKEN_BORDER) mplpanel = wx.Panel(self, wx.ID_ANY, style=wx.SUNKEN_BORDER) mplpanel.SetBackgroundColour("WHITE") # BOX 1 is the main sizer box1 = wx.BoxSizer(wx.HORIZONTAL) box1.Add(panel1, 1, wx.EXPAND) box1.Add(mplpanel, 15, wx.EXPAND) # BOX 2 is the inner sizer of the left big control panel box2 = wx.BoxSizer(wx.VERTICAL) # BOX 3 is the sizer of the right big parent panel(panel1), the one that will # serve as base for two child panels which will hold # the two matplotlib canvas's box3 = wx.BoxSizer(wx.VERTICAL) # panel 1 content ======================================== main_label = wx.StaticText(panel1, label=" ") box2.Add(main_label, proportion=0, flag=wx.CENTER) # set_land = wx.Button(panel1, label="Set Land", style=wx.ID_CANCEL) # box2.Add(set_land, proportion=0, flag=wx.CENTER) # set_land.Bind(wx.EVT_BUTTON, self.onSetLand) # set_water = wx.Button(panel1, label="Set Water", style=wx.ID_CANCEL) # box2.Add(set_water, proportion=0, flag=wx.CENTER) # set_water.Bind(wx.EVT_BUTTON, self.onSetWater) # mplpanel content ======================================== self.mplpanel = SimpleMPLCanvas(mplpanel) box3.Add(self.mplpanel.canvas, 1, flag=wx.CENTER) # FINAL LAYOUT CONFIGURATIONS ============================ self.SetAutoLayout(True) panel1.SetSizer(box2) # panel2.SetSizer(box4) mplpanel.SetSizer(box3) self.SetSizer(box1) self.InitMenu() self.Layout() self.Centre() # self.ShowModal() def InitMenu(self): menubar = wx.MenuBar() fileMenu = wx.Menu() fileMenu.Append(wx.ID_OPEN, u'&Open ROMS grid file') fileMenu.Append(wx.ID_OPEN, u'&Open coastline file') fileMenu.Append(wx.ID_OPEN, u'&Open bathymetry file') fileMenu.Append(wx.ID_SAVE, '&Save grid') fileMenu.AppendSeparator() qmi = wx.MenuItem(fileMenu, wx.ID_EXIT, '&Quit\tCtrl+W') opf = wx.MenuItem(fileMenu, wx.ID_OPEN, '&Open\tCtrl+O') opc = wx.MenuItem(fileMenu, wx.ID_OPEN, '&Open\tCtrl+O+C') opb = wx.MenuItem(fileMenu, wx.ID_OPEN, '&Open\tCtrl+O+B') svf = wx.MenuItem(fileMenu, wx.ID_SAVE, '&Save\tCtrl+S') fileMenu.AppendItem(qmi) # fileMenu.AppendItem(svf) self.Bind(wx.EVT_MENU, self.OnQuit, qmi) self.Bind(wx.EVT_MENU, self.toolbar.OnLoadGrid, opf) self.Bind(wx.EVT_MENU, self.toolbar.OnLoadCoastline, opc) self.Bind(wx.EVT_MENU, self.toolbar.OnLoadBathymetry, opb) self.Bind(wx.EVT_MENU, self.toolbar.OnSaveGrid, svf) menubar.Append(fileMenu, u'&PyEditMask') self.SetMenuBar(menubar) def OnQuit(self, e): """Fecha o programa""" self.Close() self.Destroy() def OnCloseWindow(self, e): self.Destroy() class SimpleMPLCanvas(object): """docstring for SimpleMPLCanvas""" def __init__(self, parent): super(SimpleMPLCanvas, self).__init__() self.parent = parent self.plot_properties() self.make_navbar() def make_navbar(self): self.navbar = Navbar(self.canvas) self.navbar.SetPosition(wx.Point(0,0)) # this is not working !! def plot_properties(self): # Create matplotlib figure self.fig = Figure(facecolor='w', figsize=(12,8)) self.canvas = FigureCanvas(self.parent, -1, self.fig) self.ax = self.fig.add_subplot(111) # tit = self.ax1.set_title("ROMS mask_rho", fontsize=12, fontweight='bold') # tit.set_position([0.9, 1.05]) class MainToolBar(object): def __init__(self, parent): self.currentDirectory = os.getcwd() self.parent = parent self.toolbar = parent.CreateToolBar(style=1, winid=1, name="Toolbar") self.tools_params ={ 'load_grid': (load_bitmap('grid.png'), u"Load grid", "Load ocean_grd.nc ROMS grid netcdf file"), 'load_coastline': (load_bitmap('coast.png'), u"Load coastline", "Load *.mat coastline file [lon / lat poligons]"), 'load_bathymetry': (load_bitmap('bathy.png'), u"Load bathy", "Load ocean_grd.nc ROMS bathy netcdf file"), 'save_grid': (load_bitmap('save.png'), u"Apply and save", "Save changes to ocean_grd.nc ROMS grid netcdf file"), 'set_land': (load_bitmap('land.png'), u"Set land", "Set grid point to land"), 'set_land_area': (load_bitmap('land_area.png'), u"Set land area", "Set poligon area to land"), 'set_water': (load_bitmap('water.png'), u"Set water", "Set grid point to water"), 'set_water_area': (load_bitmap('water_area.png'), u"Set water area", "Set poligon area to water"), 'settings': (load_bitmap('settings.png'), u"PyEditMask settings", "PyEditMask configurations"), 'quit': (load_bitmap('exit.png'), u"Quit", "Quit PyEditMask"), } self.createTool(self.toolbar, self.tools_params['load_grid'], self.OnLoadGrid) self.createTool(self.toolbar, self.tools_params['load_coastline'], self.OnLoadCoastline) self.createTool(self.toolbar, self.tools_params['load_bathymetry'], self.OnLoadBathymetry) self.createTool(self.toolbar, self.tools_params['save_grid'], self.OnSaveGrid) self.toolbar.AddSeparator() self.mask_tool = self.createTool(self.toolbar, self.tools_params['set_land'], self.OnSetLand, isToggle=True) self.mask_area_tool = self.createTool(self.toolbar, self.tools_params['set_land_area'], self.OnSetLandArea, isToggle=True) self.unmask_tool = self.createTool(self.toolbar, self.tools_params['set_water'], self.OnSetWater, isToggle=True) self.unmask_area_tool = self.createTool(self.toolbar, self.tools_params['set_water_area'], self.OnSetWaterArea, isToggle=True) self.toolbar.AddSeparator() self.createTool(self.toolbar, self.tools_params['settings'], self.OnSettings) self.createTool(self.toolbar, self.tools_params['quit'], self.parent.OnQuit) self.toolbar.Realize() def createTool(self, parent, params, evt, isToggle=False): tool = parent.AddTool(wx.NewId(), bitmap=params[0], shortHelpString=params[1], longHelpString=params[2], isToggle=isToggle) self.parent.Bind(wx.EVT_TOOL, evt, id=tool.GetId()) return tool def OnLoadGrid(self, evt): openFileDialog = wx.FileDialog(self.parent, "Open grid netcdf file [*.nc]", "/static/hindcast/roms", " ", "netcdf files (*.nc)|*.nc", wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) if openFileDialog.ShowModal() == wx.ID_CANCEL: return # the user changed idea... filename = openFileDialog.GetPath() grd = RomsGrid(filename) mplpanel = app.frame.mplpanel ax = mplpanel.ax self.pcolor = ax.pcolormesh(grd.lonvert, grd.latvert, grd.maskr, vmin=DEFAULT_VMIN, vmax=DEFAULT_VMAX, cmap=DEFAULT_CMAP) ax.plot(grd.lonvert, grd.latvert, 'k', alpha=0.2) ax.plot(grd.lonvert.transpose(), grd.latvert.transpose(), 'k', alpha=0.2) ax.set_xlim([grd.lonvert.min(), grd.lonvert.max()]) ax.set_ylim([grd.latvert.min(), grd.latvert.max()]) ax.set_aspect('equal') mplpanel.canvas.draw() self.grd = grd self.grd.hmin = grd.ncfile.variables['h'][:].min() def OnLoadCoastline(self, evt): mplpanel = app.frame.mplpanel ax = mplpanel.ax try: m = Basemap( resolution='f', projection='cyl', llcrnrlon=self.grd.lonvert.min(), urcrnrlon=self.grd.lonvert.max(), llcrnrlat=self.grd.latvert.min(), urcrnrlat=self.grd.latvert.max() ) coasts = m.drawcoastlines(zorder=100, linewidth=0.0) coasts_paths = coasts.get_paths() for ipoly in xrange(len(coasts_paths)): r = coasts_paths[ipoly] # Convert into lon/lat vertices polygon_vertices = [ (vertex[0],vertex[1]) for (vertex,code) in r.iter_segments(simplify=False) ] px = [polygon_vertices[i][0] for i in xrange(len(polygon_vertices))] py = [polygon_vertices[i][1] for i in xrange(len(polygon_vertices))] ax.plot(px, py, '-', linewidth=1.5, color='lightgray') except AttributeError: # just in case a grid was not loaded before ax.set_xlim([np.nanmin(self.grd.lonvert), np.nanmax(self.grd.lonvert)]) ax.set_ylim([
np.nanmin(self.grd.latvert)
numpy.nanmin
import numpy as np import matplotlib.pyplot as plt def gaussian(x, mu, sig): return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))) c = 342 # speed of sound lx = 342/2 # length in meters t = 2 # time in seconds # TIME Fs_t = 2000 # samples/second time is dependent of space # SPACE Fs_x = 2 # samples/meter num_div_x = int(lx*Fs_x) # divisions of all the space # Simulation steps in Time num_div_t = int(Fs_t*t) delta_t = t / num_div_t t_axis = np.arange(0, t, delta_t) # number of divisions in x axis delta_x = lx / num_div_x x_axis = np.arange(0, lx, delta_x) # force signal t_values = np.arange(0, num_div_t, 1) x_values = np.arange(0, num_div_x, 1) x_n = np.zeros([num_div_t, num_div_x]) k_x = 40 # x_n[:, 0] = np.cos((np.pi * k_x / num_div_x) * x_values) k_t = 1 / ((2 * lx) / (k_x*c)) A = 100 # pos_x = int(num_div_x/2) pos_x = 0 # x_n[:, pos_x] = A * np.sin((2*np.pi * k_t / Fs_t) * t_values) offset = 30 x_n[:, pos_x] = A*gaussian(t_values, 38 + offset, 9) - A*gaussian(t_values, 74 + offset, 9) # x_n[:, pos_x + 100] = gaussian(t_values, 5, 1) - gaussian(t_values, 10, 1) # plt.figure() # plt.imshow(x_n, cmap='hot') plt.figure() plt.plot(x_n[:, pos_x]) print("num_div_t %i " % num_div_t) print("num_div_x %i " % num_div_x) print("delta t: %f" % delta_t) print("CFL Condition %f" % (delta_x/((3**0.5)*c))) # Init Simulation time-stepping scheme---- p_n_minus1 = np.zeros(shape=[num_div_x, 1]) p_n = np.zeros(shape=[num_div_x, 1]) p_n_plus1 = np.zeros(shape=[num_div_x, 1]) k_matrix = np.zeros(shape=[num_div_x, num_div_x]) fdtd_kernel_2 =
np.array([1, -2, 1])
numpy.array
#!/usr/bin/env python """ Program to play a given wav audio file and print scaled amplitude values to a data file in real time. <NAME>, 8/14/16 see License file for license details Tested on Python version 2.7.12, Ubuntu 16.04.1 LTS """ import sys import wave import logging as log import numpy import pyaudio try: import mute_alsa #not essential, just to mute some error messages except: pass log.basicConfig(format="%(levelname)s: %(message)s") ## file names FILENAME = "chopin.wav" #audio file DATA_FILENAME = "light_amp.dat" #file to write amp data to #number of audio samples to process at each time CHUNKSIZE = 1024 #scaling parameters OFFSET = 3000 GAIN = 12 #filter parameter FILTER_WEIGHT = 0.5 #constants related to amplitude MAX_AMP = 65535 MIN_AMP = 1 HALF_AMP = 32768 def filter(ar, a_old): """ scales, filters, and clamps raw amplitude values """ a = (ar-OFFSET)*GAIN #scaling a = FILTER_WEIGHT*a_old + (1-FILTER_WEIGHT)*a #filter a = max(min(int(a), MAX_AMP), MIN_AMP) #clamp a_old = a #last value return a, a_old def write_to_file(a): """ write amplitude to data file """ try: f = open(DATA_FILENAME, 'w') f.write(str(a)) f.close() except: log.error("Data file I/O error.") sys.exit(2) # open wav file try: wf = wave.open(FILENAME, 'rb') except: log.error("Unable to open wav file: %s ... Quitting!" % FILENAME) sys.exit(1) # open and set up audio stream p = pyaudio.PyAudio() stream = p.open(format = p.get_format_from_width(wf.getsampwidth()), channels = wf.getnchannels(), rate = wf.getframerate(), output = True) # read the first chunk data = wf.readframes(CHUNKSIZE) amp_old = HALF_AMP # keep reading the file and writing the amp from it to file while data != '': stream.write(data) #play the sound npdata = numpy.fromstring(data, dtype=numpy.int16) #read it as array raw_amp = int(
numpy.max(npdata)
numpy.max
""" Test core functionality of normaliser objects """ import numpy import sys import unittest sys.path.append("..") from nPYc.utilities.normalisation._nullNormaliser import NullNormaliser from nPYc.utilities.normalisation._totalAreaNormaliser import TotalAreaNormaliser from nPYc.utilities.normalisation._probabilisticQuotientNormaliser import ProbabilisticQuotientNormaliser class test_utilities_normalisation(unittest.TestCase): """ Test class for the normalisation objects. Contains tests covering the basic functionality of individual objects and their interaction and usage inside the nPYc Dataset objects. """ def setUp(self): # Simulate some data self.noSamp = numpy.random.randint(5, high=50, size=None) self.noFeat = numpy.random.randint(60, high=200, size=None) self.X = numpy.random.randn(self.noSamp, self.noFeat) # Object test def test_nullNormaliser(self): """ Check that the NullNormaliser works """ # Check if output data = input data (its not supposed to do anything) numpy.testing.assert_array_equal(self.X, NullNormaliser().normalise(self.X), err_msg="Null Normaliser not working as expected") self.assertEqual(1, NullNormaliser().normalisation_coefficients) def test_nullNormaliser_eq_(self): """ Check that the NullNormaliser equality testing works """ with self.subTest(): norm = NullNormaliser() norm2 = NullNormaliser() self.assertEqual(norm, norm2) pqn = ProbabilisticQuotientNormaliser() tanorm = TotalAreaNormaliser(keepMagnitude=False) tanorm2 = TotalAreaNormaliser(keepMagnitude=True) notEqualList = [1, True, 'str', 1.1, list(), dict(), tanorm, tanorm2, pqn] norm = NullNormaliser() for comparison in notEqualList: with self.subTest(msg=comparison): self.assertNotEqual(norm, comparison) class test_utilities_totalAreaNormaliser(unittest.TestCase): def setUp(self): # Simulate some data self.noSamp = numpy.random.randint(5, high=50, size=None) self.noFeat = numpy.random.randint(60, high=200, size=None) self.X =
numpy.random.randn(self.noSamp, self.noFeat)
numpy.random.randn
from warnings import catch_warnings from warnings import filterwarnings from warnings import warn import numpy as np from numpy import empty from numpy import vstack from pydmd import DMD from pydmd import DMDBase from sklearn.base import BaseEstimator from sklearn.metrics import r2_score from sklearn.pipeline import Pipeline from sklearn.utils.validation import check_is_fitted from .common import validate_input from .observables import Identity from .observables import TimeDelay from .regression import BaseRegressor from .regression import DMDc from .regression import DMDRegressor class Koopman(BaseEstimator): """ Discrete-Time Koopman class. Parameters ---------- observables: observables object, optional \ (default :class:`pykoopman.observables.Identity`) Map(s) to apply to raw measurement data before estimating the Koopman operator. Must extend :class:`pykoopman.observables.BaseObservables`. The default option, :class:`pykoopman.observables.Identity` leaves the input untouched. regressor: regressor object, optional (default ``DMD``) The regressor used to learn the Koopman operator from the observables. ``regressor`` can either extend the :class:`pykoopman.regression.BaseRegressor`, or ``pydmd.DMDBase``. In the latter case, the pydmd object must have both a ``fit`` and a ``predict`` method. quiet: booolean, optional (default False) Whether or not warnings should be silenced during fitting. Attributes ---------- model: sklearn.pipeline.Pipeline Internal representation of the forward model. Applies the observables and the regressor. n_input_features_: int Number of input features before computing observables. n_output_features_: int Number of output features after computing observables. n_control_features_: int Number of control features used as input to the system. time: dictionary Time vector properties. """ def __init__(self, observables=None, regressor=None, quiet=False): if observables is None: observables = Identity() if regressor is None: regressor = DMD(svd_rank=2) if isinstance(regressor, DMDBase): regressor = DMDRegressor(regressor) elif not isinstance(regressor, (BaseRegressor)): raise TypeError("Regressor must be from valid class") self.observables = observables self.regressor = regressor self.quiet = quiet def fit(self, x, u=None, dt=1): """ Fit the Koopman model by learning an approximate Koopman operator. Parameters ---------- x: numpy.ndarray, shape (n_samples, n_features) Measurement data to be fit. Each row should correspond to an example and each column a feature. It is assumed that examples are equi-spaced in time (i.e. a uniform timestep is assumed). u: numpy.ndarray, shape (n_samples, n_control_features) Control/actuation/external parameter data. Each row should correspond to one sample and each column a control variable or feature. The control variable may be amplitude of an actuator or an external, time-varying parameter. It is assumed that samples are equi-spaced in time (i.e. a uniform timestep is assumed) and correspond to the samples in x. dt: float, (default=1) Time step between samples Returns ------- self: returns a fit ``Koopman`` instance """ x = validate_input(x) if u is None: self.n_control_features_ = 0 elif not isinstance(self.regressor, DMDc): raise ValueError( "Control input u was passed, but self.regressor is not DMDc" ) steps = [ ("observables", self.observables), ("regressor", self.regressor), ] self.model = Pipeline(steps) action = "ignore" if self.quiet else "default" with catch_warnings(): filterwarnings(action, category=UserWarning) if u is None: self.model.fit(x) else: self.model.fit(x, u) self.n_input_features_ = self.model.steps[0][1].n_input_features_ self.n_output_features_ = self.model.steps[0][1].n_output_features_ if hasattr(self.model.steps[1][1], "n_control_features_"): self.n_control_features_ = self.model.steps[1][1].n_control_features_ self.time = dict( [ ("tstart", 0), ("tend", dt * (self.model.steps[1][1].n_samples_ - 1)), ("dt", dt), ] ) return self def predict(self, x, u=None): """ Predict the state one timestep in the future. Parameters ---------- x: numpy.ndarray, shape (n_samples, n_input_features) Current state. u: numpy.ndarray, shape (n_samples, n_control_features), \ optional (default None) Time series of external actuation/control. Returns ------- y: numpy.ndarray, shape (n_samples, n_input_features) Predicted state one timestep in the future. """ check_is_fitted(self, "n_output_features_") return self.observables.inverse(self._step(x, u)) def simulate(self, x0, u=None, n_steps=1): """ Simulate an initial state forward in time with the learned Koopman model. Parameters ---------- x0: numpy.ndarray, shape (n_input_features,) or \ (n_consumed_samples + 1, n_input_features) Initial state from which to simulate. If using :code:`TimeDelay` observables, ``x0`` should contain enough examples to compute all required time delays, i.e. ``n_consumed_samples + 1``. u: numpy.ndarray, shape (n_samples, n_control_features), \ optional (default None) Time series of external actuation/control. n_steps: int, optional (default 1) Number of forward steps to be simulated. Returns ------- y: numpy.ndarray, shape (n_steps, n_input_features) Simulated states. Note that ``y[0, :]`` is one timestep ahead of ``x0``. """ check_is_fitted(self, "n_output_features_") # Could have an option to only return the end state and not all # intermediate states to save memory. y = empty((n_steps, self.n_input_features_), dtype=self.koopman_matrix.dtype) if u is None: y[0] = self.predict(x0) elif u is not None: y[0] = self.predict(x0, u[0]) if isinstance(self.observables, TimeDelay): n_consumed_samples = self.observables.n_consumed_samples for k in range(n_consumed_samples): y[k + 1] = self.predict(vstack((x0[k + 1 :], y[: k + 1]))) for k in range(n_consumed_samples, n_steps - 1): y[k + 1] = self.predict(y[k - n_consumed_samples : k + 1]) else: if u is None: for k in range(n_steps - 1): y[k + 1] = self.predict(y[k]) else: for k in range(n_steps - 1): y[k + 1] = self.predict(y[k], u[k + 1]) return y def score(self, x, y=None, cast_as_real=True, metric=r2_score, **metric_kws): """ Score the model prediction for the next timestep. Parameters ---------- x: numpy.ndarray, shape (n_samples, n_input_features) State measurements. Each row should correspond to the system state at some point in time. If ``y`` is not passed, then it is assumed that the examples are equi-spaced in time and are given in sequential order. If ``y`` is passed, then this assumption need not hold. y: numpy.ndarray, shape (n_samples, n_input_features), optional \ (default None) State measurements one timestep in the future. Each row of this array should give the corresponding row in x advanced forward in time by one timestep. If None, the rows of ``x`` are used to construct ``y``. cast_as_real: bool, optional (default True) Whether to take the real part of predictions when computing the score. Many Scikit-learn metrics do not support complex numbers. metric: callable, optional (default ``r2_score``) The metric function used to score the model predictions. metric_kws: dict, optional Optional parameters to pass to the metric function. Returns ------- score: float Metric function value for the model predictions at the next timestep. """ check_is_fitted(self, "n_output_features_") x = validate_input(x) if isinstance(self.observables, TimeDelay): n_consumed_samples = self.observables.n_consumed_samples # User may pass in too-large if y is not None and len(y) == len(x): warn( f"The first {n_consumed_samples} entries of y were ignored because " "TimeDelay obesrvables were used." ) y = y[n_consumed_samples:] else: n_consumed_samples = 0 if y is None: if cast_as_real: return metric( x[n_consumed_samples + 1 :].real, self.predict(x[:-1]).real, **metric_kws, ) else: return metric( x[n_consumed_samples + 1 :], self.predict(x[:-1]), **metric_kws ) else: if cast_as_real: return metric(y.real, self.predict(x).real, **metric_kws) else: return metric(y, self.predict(x), **metric_kws) def get_feature_names(self, input_features=None): """ Get the names of the individual features constituting the observables. Parameters ---------- input_features: list of string, length n_input_features, \ optional (default None) String names for input features, if available. By default, the names "x0", "x1", ... ,"xn_input_features" are used. Returns ------- output_feature_names: list of string, length n_ouput_features Output feature names. """ check_is_fitted(self, "n_input_features_") return self.observables.get_feature_names(input_features=input_features) def _step(self, x, u=None): """ Map x one timestep forward in the space of observables. Parameters ---------- x: numpy.ndarray, shape (n_samples, n_input_features) State vectors to be stepped forward. u: numpy.ndarray, shape (n_samples, n_control_features), \ optional (default None) Time series of external actuation/control. Returns ------- X': numpy.ndarray, shape (n_samples, self.n_output_features_) Observables one timestep after x. """ check_is_fitted(self, "n_output_features_") if u is None or self.n_control_features_ == 0: if self.n_control_features_ > 0: # TODO: replace with u = 0 as default raise TypeError( "Model was fit using control variables, so u is required" ) elif u is not None: warn( "Control variables u were ignored because control variables were" " not used when the model was fit" ) return self.model.predict(X=x) else: if not isinstance(self.regressor, DMDc): raise ValueError( "Control input u was passed, but self.regressor is not DMDc" ) return self.model.predict(X=x, u=u) @property def koopman_matrix(self): """ The Koopman matrix K satisfying g(X') = g(X) * K where g denotes the observables map and X' denotes x advanced one timestep. """ check_is_fitted(self, "n_output_features_") return self.model.steps[-1][1].coef_ @property def state_transition_matrix(self): """ The state transition matrix A satisfies x' = Ax + Bu. # TODO: consider whether we want to match sklearn and have A and B satisfy # x' = xA + uB instead """ check_is_fitted(self, "model") if not isinstance(self.regressor, DMDc): raise ValueError( "self.regressor is not DMDc, so object has no " "state_transition_matrix" ) return self.model.steps[-1][1].state_matrix_ @property def control_matrix(self): """ The control matrix (or vector) B satisfies x' = Ax + Bu. """ check_is_fitted(self, "model") if not isinstance(self.regressor, DMDc): raise ValueError( "self.regressor is not DMDc, so object has no control_matrix" ) return self.model.steps[-1][1].control_matrix_ @property def projection_matrix(self): """ The control matrix (or vector) B satisfies x' = Ax + Bu. """ check_is_fitted(self, "model") if not isinstance(self.regressor, DMDc): raise ValueError( "self.regressor is not DMDc, so object has no projection_matrix" ) return self.model.steps[-1][1].projection_matrix_ @property def projection_matrix_output(self): """ The control matrix (or vector) B satisfies x' = Ax + Bu. """ check_is_fitted(self, "model") if not isinstance(self.regressor, DMDc): raise ValueError( "self.regressor is not DMDc, so object has no " "projection_matrix_output" ) return self.model.steps[-1][1].projection_matrix_output_ @property def modes(self): """ Koopman modes """ check_is_fitted(self, "model") return self.model.steps[-1][1].modes_ @property def eigenvalues(self): """ Discrete-time Koopman eigenvalues obtained from spectral decomposition of the Koopman matrix """ check_is_fitted(self, "model") return self.model.steps[-1][1].eigenvalues_ @property def frequencies(self): """ Oscillation frequencies of Koopman modes/eigenvectors """ check_is_fitted(self, "model") dt = self.time["dt"] return np.imag(np.log(self.eigenvalues) / dt) / (2 * np.pi) # return self.model.steps[-1][1].frequencies_ @property def eigenvalues_continuous(self): """ Continuous-time Koopman eigenvalues obtained from spectral decomposition of the Koopman matrix """ check_is_fitted(self, "model") dt = self.time["dt"] return
np.log(self.eigenvalues)
numpy.log
import io import numpy as np import torch from PIL import Image from pkg_resources import resource_filename from torchvision import transforms from . import data_loader from . import u2net class BackgroundRemover: """ Creates a u2-net based background remover object. """ def __init__(self, small: bool = False): """ Keyword arguments: :param small: True to use smaller model """ big_model_path = resource_filename('bgrm', 'resources/u2net.pth') small_model_path = resource_filename('bgrm', 'resources/u2netp.pth') self.model_path = small_model_path if small else big_model_path self.net = u2net.U2NETP() if small else u2net.U2NET() try: if torch.cuda.is_available(): self.net.load_state_dict(torch.load(self.model_path)) self.net.to(torch.device("cuda")) else: self.net.load_state_dict( torch.load( self.model_path, map_location="cpu", ) ) except FileNotFoundError: raise FileNotFoundError( "Make sure models are stored in resources." ) self.net.eval() @staticmethod def norm_pred(d): ma = torch.max(d) mi = torch.min(d) dn = (d - mi) / (ma - mi) return dn @staticmethod def preprocess(image): label_3 = np.zeros(image.shape) label = np.zeros(label_3.shape[0:2]) if 3 == len(label_3.shape): label = label_3[:, :, 0] elif 2 == len(label_3.shape): label = label_3 if 3 == len(image.shape) and 2 == len(label.shape): label = label[:, :, np.newaxis] elif 2 == len(image.shape) and 2 == len(label.shape): image = image[:, :, np.newaxis] label = label[:, :, np.newaxis] transform = transforms.Compose( [data_loader.RescaleT(320), data_loader.ToTensorLab(flag=0)] ) sample = transform({"imidx": np.array([0]), "image": image, "label": label}) return sample def predict(self, item): sample = self.preprocess(item) with torch.no_grad(): if torch.cuda.is_available(): inputs_test = torch.cuda.FloatTensor( sample["image"].unsqueeze(0).cuda().float() ) else: inputs_test = torch.FloatTensor(sample["image"].unsqueeze(0).float()) d1, d2, d3, d4, d5, d6, d7 = self.net(inputs_test) pred = d1[:, 0, :, :] prediction = self.norm_pred(pred).squeeze() predict_np = prediction.cpu().detach().numpy() img = Image.fromarray(predict_np * 255).convert("RGB") del d1, d2, d3, d4, d5, d6, d7, pred, prediction, predict_np, inputs_test, sample return img @staticmethod def naive_cutout(img, mask): empty = Image.new("RGBA", img.size, "white") cutout = Image.composite(img, empty, mask.resize(img.size, Image.LANCZOS)) return cutout def remove(self, data): img = Image.open(io.BytesIO(data)).convert("RGB") mask = self.predict(
np.array(img)
numpy.array
import numpy as np import pandas as pd import ast import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation #------------------------------------------------------------------------------ N = len(pd.read_csv("../../data/case_1_spatial.csv")) step_count = len(pd.read_csv("../../data/case_1_temporal.csv")) print(N, step_count) #------------------------------------------------------------------------------ e = np.empty(shape=(step_count, N), dtype=float) f = np.empty(shape=(step_count, N), dtype=float) t = np.empty(shape=(step_count, N), dtype=float) tr =
np.empty(shape=(step_count, N), dtype=float)
numpy.empty
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import import numpy as np #np.set_printoptions(threshold=np.nan) import os, shutil import glob import platform from utils import read, compute_voxelgrid_and_sceneflow, generate_numpy, PlyFile, create_dir from config import Config ################################################################################## system = platform.system() cfg = Config(system=system) print("Config init from ", cfg.dataset_path) ################################################################################## # generate = input("Generate numpy files? ") # if generate == "Y" or generate == "y": # generate = True # elif generate == "F" or generate == "f": # generate = False # # print(generate) generate = True if generate: if cfg.dataset == 'FlyingThings3D': data_folder_split = "TRAIN" letter = "A" data_folders = [] elif cfg.dataset == 'Driving': focallength = "15mm_focallength" direction = "scene_forwards" speed = "slow" cam = "left" ## Get the "number" folders under the "letter" folder set above ## Since it's the same distribution for every feature (disparity, optical_clow, ...) ## we can just check one for nubmer in os.listdir(os.path.join(cfg.dataset_path, "frames_cleanpass", data_folder_split, letter)): data_folders.append(os.path.join(data_folder_split, letter, nubmer)) max_n_frames = -1 n_frames = 0 for data_folder in data_folders: print(data_folder) ## Get PATHS of the COLOR frames color_frame_paths = [] if cfg.dataset == 'FlyingThings3D': for data_folder in data_folders: files = glob.glob(os.path.join(cfg.dataset_path, "frames_cleanpass", data_folder, "left", "*")) elif cfg.dataset == 'Driving': files = glob.glob(os.path.join(cfg.dataset_path, "frames_cleanpass", focallength, direction, speed, cam, "*")) for color_frame_path in sorted(files): if n_frames == max_n_frames: break color_frame_paths.append(color_frame_path.replace('\\', '/')) n_frames += 1 ## Get PATHS of the OPTICAL FLOW frames n_frames = 0 of_frame_paths = [] if cfg.dataset == 'FlyingThings3D': files = glob.glob(os.path.join(cfg.dataset_path, "optical_flow", data_folder, cfg.into, "left", "*")) elif cfg.dataset == 'Driving': files = glob.glob(os.path.join(cfg.dataset_path, "optical_flow", "15mm_focallength", "scene_forwards", "slow", cfg.into, "left", "*")) for of_frame_path in sorted(files): if n_frames == max_n_frames: break of_frame_paths.append(of_frame_path.replace('\\', '/')) n_frames += 1 ## Get PATHS of the DISPARITY frames n_frames = 0 disp_frame_paths = [] if cfg.dataset == 'FlyingThings3D': files = glob.glob(os.path.join(cfg.dataset_path, "disparity", data_folder, "left", "*")) elif cfg.dataset == 'Driving': files = glob.glob(os.path.join(cfg.dataset_path, "disparity", "15mm_focallength", "scene_forwards", "slow", "left", "*")) for disp_frame_path in sorted(files): if n_frames == max_n_frames: break disp_frame_paths.append(disp_frame_path.replace('\\', '/')) n_frames += 1 # Get PATHS of the DISPARITY CHANGE frames n_frames = 0 dispChange_frame_paths = [] if cfg.dataset == 'FlyingThings3D': files = glob.glob(os.path.join(cfg.dataset_path, "disparity_change", data_folder, cfg.into, "left", "*")) elif cfg.dataset == 'Driving': files = glob.glob(os.path.join(cfg.dataset_path, "disparity_change", "15mm_focallength", "scene_forwards", "slow", cfg.into,"left", "*")) for dipsChange_frame_path in sorted(files): if n_frames == max_n_frames: break dispChange_frame_paths.append(dipsChange_frame_path.replace('\\', '/')) n_frames += 1 assert len(color_frame_paths) == len(of_frame_paths) == len(disp_frame_paths) == len(dispChange_frame_paths) # print(len(color_frame_paths), len(of_frame_paths), len(disp_frame_paths), len(dispChange_frame_paths)) if len(color_frame_paths) == 0: raise Exception("No files were loaded!") ################################################################################## # Get the color frames color_frames = [] for color_frame_path in color_frame_paths: print(color_frame_path) color_frames.append(read(color_frame_path)) # Get the optical flow frames of_frames = [] for of_frame_path in of_frame_paths: of_frame = read(of_frame_path) of_frames.append(of_frame) # Get the depth frames disp_frames = [] depth_frames = [] for disp_frame_path in disp_frame_paths: disp_frame = read(disp_frame_path) disp_frames.append(disp_frame) depth_frame = cfg.baseline * cfg.fx / disp_frame depth_frames.append(depth_frame) # Get the depth change frames dispChange_frames = [] depthChange_frames = [] for i, dispChange_frame_path in enumerate(dispChange_frame_paths): dispChange_frame = read(dispChange_frame_path) dispChange_frames.append(dispChange_frame) depthChange_frame = ((cfg.baseline * cfg.fx / (disp_frames[i] + dispChange_frame)) - (cfg.baseline * cfg.fx / disp_frames[i])) depthChange_frames.append(depthChange_frame) assert len(color_frames) == len(of_frames) == len(depth_frames) == len(depthChange_frames) if len(color_frames) == 0: raise Exception("Could not read files!") # plt.imshow(disp_frames[1]) # plt.colorbar() # plt.show() # plt.imshow(dispChange_frames[1]) # plt.colorbar() # plt.show() # plt.imshow(depthChange_frames[1]) # plt.colorbar() # plt.scatter(325, 270) # plt.show() # # print(depthChange_frames[1][400][400]) # print(depthChange_frames[1][280][320]) ################################################################################## ################################################################################## ## Generate numpy arrays from raw data and store it vg_dir = os.path.join("data", cfg.dataset, str(cfg.n_voxels), "voxelgrids") sf_vg_dir = os.path.join("data", cfg.dataset, str(cfg.n_voxels), "sceneflows_vg") create_dir(vg_dir) create_dir(sf_vg_dir) for i in range(len(disp_frame_paths)): print(i, "- Processing", disp_frame_paths[i]) # Generate point cloud ( [colors, coordinates, sceneflow] ) as panda's DataFrame pointcloud_data = compute_voxelgrid_and_sceneflow(color_frames[i], of_frames[i], depth_frames[i], depthChange_frames[i], compute_sceneflow=True, plot=False) ## Store as numpy array generate_numpy(vg_dir, sf_vg_dir, color_frame_paths[i], pointcloud_data) else: ### Read numpy files and work with them ### ## First, get the voxelgrids and sceneflow paths dataset = cfg.dataset vg_dir = os.path.join(cfg.val_dir, "voxelgrids") sf_vg_dir = os.path.join(cfg.val_dir, "sceneflows_vg") voxelgrid_paths = [] for path in sorted(glob.glob(vg_dir + "/*")): voxelgrid_paths.append(path.replace('\\', '/')) sceneflow_vg_paths = [] for path in sorted(glob.glob(sf_vg_dir + "/*")): sceneflow_vg_paths.append(path.replace('\\', '/')) ######################################################## ## Read one voxelgrid voxelgrid = np.load(voxelgrid_paths[0]) voxel_vertices = np.argwhere(voxelgrid) ## Read the corresponding sceneflow voxelgrid groundtruth sceneflow = np.load(sceneflow_vg_paths[0]) sf_vg_vertices = sceneflow[
np.where(voxelgrid == 1)
numpy.where
# -*- coding: utf-8 -*- import os import timeit from contextlib import contextmanager import numpy as np from scipy.io import wavfile from scipy import linalg, fftpack, signal import librosa from librosa import feature as acoustic_feature from path import FSDD_PATH def read_audio_files(): """ Return ------ sample_rate : int outputs : dictionary (mapping name -> audio_raw_data) """ all_files = [os.path.join(FSDD_PATH, i) for i in os.listdir(FSDD_PATH) if '.wav' == i[-4:]] assert len(all_files) > 0, "Cannot find .wav file at path: %s" % FSDD_PATH outputs = {} sample_rate = [] print('======== Reading Audio Files ========') print('Found: %d audio files' % len(all_files)) for i, path in enumerate(all_files): name = os.path.basename(path).replace('.wav', '') rate, data = wavfile.read(path) # store results sample_rate.append(rate) outputs[name] = data # logging if (i + 1) % 500 == 0: print("Loaded %d files ..." % len(outputs)) assert len(set(sample_rate)) == 1, "Found multiple sample rate: %s" % str(set(sample_rate)) return sample_rate[0], outputs def extract_acoustic_features(data, sample_rate=8000, n_fft=512, hop_length=0.005, win_length=0.025, n_mels=40, n_mfcc=20, fmin=64.0, fmax=None): """ data : array (n_samples,) sample_rate : int n_fft : int hop_length : float (in second) win_length : flaot (in second) """ get_pow_spec = True get_mel_spec = True get_mfcc = True # ====== check arguments ====== # data = pre_emphasis(data) win_length = int(win_length * sample_rate) hop_length = int(hop_length * sample_rate) if fmax is None: fmax = sample_rate // 2 results = [] # ====== extract features ====== # s = librosa.stft(data.astype('float32'), n_fft=n_fft, hop_length=hop_length, win_length=win_length) mag_spec = np.abs(s) if get_pow_spec: pow_spec = librosa.amplitude_to_db(mag_spec) results.append(pow_spec) if get_mel_spec or get_mfcc: mel_spec = acoustic_feature.melspectrogram(sr=sample_rate, S=mag_spec, n_mels=n_mels, fmin=fmin, fmax=fmax) results.append(mel_spec) if get_mfcc: mfcc = acoustic_feature.mfcc(sr=sample_rate, S=mel_spec, n_mfcc=n_mfcc) mfcc = rastafilt(mfcc.T).T results.append(mfcc) # ====== return results ====== # # normalizing features results = [cmvn(i) for i in results] # all the features are shape [feat_dim, time_dim] # deep network require order [time_dim, feat_dim] # so we transpose everythign return tuple([i.astype('float32').T for i in results]) # =========================================================================== # Others # =========================================================================== def one_hot(y, nb_classes=None, dtype='float32'): '''Convert class vector (integers from 0 to nb_classes) to binary class matrix, for use with categorical_crossentropy Note ---- if any class index in y is smaller than 0, then all of its one-hot values is 0. ''' if 'int' not in str(y.dtype): y = y.astype('int32') if nb_classes is None: nb_classes = np.max(y) + 1 else: nb_classes = int(nb_classes) return np.eye(nb_classes, dtype=dtype)[y] def cmvn(frames): m = np.mean(frames, axis=1, keepdims=True) s = np.std(frames, axis=1, keepdims=True) frames = frames - m frames = frames / s return frames def pre_emphasis(s, coeff=0.97): """Pre-emphasis of an audio signal. Parameters ---------- s: np.ndarray the input vector of signal to pre emphasize coeff: float (0, 1) coefficience that defines the pre-emphasis filter. """ if s.ndim == 1: return np.append(s[0], s[1:] - coeff * s[:-1]) else: return s - np.c_[s[:, :1], s[:, :-1]] * coeff def stack_frames(X, frame_length, step_length=1, keep_length=True, make_contigous=True): """ Parameters ---------- X: numpy.ndarray 2D arrray frame_length: int number of frames will be stacked into 1 sample. step_length: {int, None} number of shift frame, if None, its value equal to `frame_length // 2` keep_length: bool if True, padding zeros to begin and end of `X` to make the output array has the same length as original array. make_contigous: bool if True, use `numpy.ascontiguousarray` to ensure input `X` is contiguous. Example ------- >>> X = [[ 0 1] ... [ 2 3] ... [ 4 5] ... [ 6 7] ... [ 8 9] ... [10 11] ... [12 13] ... [14 15] ... [16 17] ... [18 19]] >>> frame_length = 5 >>> step_length = 2 >>> stack_frames(X, frame_length, step_length) >>> [[ 0 1 2 3 4 5 6 7 8 9] ... [ 4 5 6 7 8 9 10 11 12 13] ... [ 8 9 10 11 12 13 14 15 16 17]] """ if keep_length: if step_length != 1: raise ValueError("`keepdims` is only supported when `step_length` = 1.") add_frames = (int(np.ceil(frame_length / 2)) - 1) * 2 + \ (1 if frame_length % 2 == 0 else 0) right = add_frames // 2 left = add_frames - right X = np.pad(X, pad_width=((left, right),) + ((0, 0),) * (X.ndim - 1), mode='constant') # ====== check input ====== # assert X.ndim == 2, "Only support 2D matrix for stacking frames." if not X.flags['C_CONTIGUOUS']: if make_contigous: X = np.ascontiguousarray(X) else: raise ValueError('Input buffer must be contiguous.') # ====== stacking ====== # frame_length = int(frame_length) if step_length is None: step_length = frame_length // 2 shape = (1 + (X.shape[0] - frame_length) // step_length, frame_length * X.shape[1]) strides = (X.strides[0] * step_length, X.strides[1]) return np.lib.stride_tricks.as_strided(X, shape=shape, strides=strides) def rastafilt(x): """ Based on rastafile.m by <NAME> rows of x = critical bands, cols of x = frame same for y but after filtering default filter is single pole at 0.94 The filter is applied on frequency axis Parameters ---------- x: [t, f] time x frequency """ x = x.T # lazy style to reuse the code from [f, t] libraries ndim, nobs = x.shape numer = np.arange(-2, 3) # careful with division here (float point suggested by <NAME>) numer = -numer /
np.sum(numer * numer)
numpy.sum
# encoding:utf-8 import numpy as np import codecs import re import os import pandas as pd import collections from operator import itemgetter from itertools import chain from functools import reduce import random import gensim.models.word2vec as word2vec import platform if platform.system() == 'Windows': import pickle else: import cPickle as pickle def build_pre_train_emb_matrix(emb_vec_file, vocab_file): embedding = [] temp_emb = dict() question_vec_file = codecs.open(emb_vec_file, 'r', 'utf-8') for index, line in enumerate(question_vec_file.readlines()): if index != 0: key = line.strip().split(' ')[0] vector = list(line.strip().split(' ')[1:]) temp_emb[key] = vector question_vec_file.close() vocab_word = list(chain.from_iterable(pd.DataFrame( pd.read_csv(vocab_file, encoding='utf_8_sig'), columns=['word']).values)) count = 0 for i, item in enumerate(vocab_word): if item in temp_emb: vec = temp_emb[item] embedding.append(vec) count += 1 else: print("new word.", item, "idx ", i, " initialized as <unk>") vec = temp_emb['\0'] embedding.append(vec) del temp_emb return np.array(embedding, np.float32) def get_keyword_num_log_tfidf(sentence_length, input_type="question"): # for q: keyword_num = min(10 * ln(x), x) # for a: keyword_num = min(x[logx] / lg(2x), x) """ :param sentence_length: numpy.int32, sequence_length of inputs :param input_type: question or answer :return: the same shape and type with sentence_length, the keyword_num for attention_layer and representation_layer """ sentence_length = np.array(sentence_length, np.int32) if input_type == "question": keyword_num = np.minimum( np.int32(10 * np.log(sentence_length)), sentence_length) elif input_type == "answer": keyword_num = np.minimum( np.int32(sentence_length * np.int32(np.log10(sentence_length)) / np.log10(2.0 * sentence_length)), sentence_length) else: keyword_num = sentence_length if 0 in keyword_num: keyword_num = np.where(keyword_num > 0, keyword_num, np.ones_like(sentence_length)) return keyword_num class TrainingDatasetLoader(object): def __init__(self, num_answer_for_per_question, batch_size, train_file): # self.num_answer_for_per_question = num_answer_for_per_question self.question_batch_size = batch_size * num_answer_for_per_question // 8 self.train_file = train_file self.question = [] self.question_length = [] self.answer = [] self.answer_length = [] self.pointer = 0 self.create_batches() def create_batches(self): question_input = codecs.open(self.train_file, 'r', 'utf-8') question_data = question_input.readlines() for index_q, line_q in enumerate(question_data): line_str = line_q.strip().split('\t') line_int = [int(x) for x in line_str[0].split()] self.question.append(line_int) self.question_length.append(len(line_int)) for i in range(1, 6): answer_i_str = line_str[i].split() answer_i_int = [int(x) for x in answer_i_str] self.answer.append(answer_i_int) self.answer_length.append(len(answer_i_int)) del question_data question_input.close() self.num_batch = len(self.question_length) // self.question_batch_size self.question = self.question[: self.num_batch * self.question_batch_size] self.question_length = self.question_length[: self.num_batch * self.question_batch_size] self.answer = self.answer[: self.num_batch * 5 * self.question_batch_size] self.answer_length = self.answer_length[: self.num_batch * 5 * self.question_batch_size] self.point = list(range(self.num_batch)) random.shuffle(self.point) def next_batch(self): question_batch_length_before_tile = self.question_length[ self.point[self.pointer] * self.question_batch_size: (self.point[self.pointer] + 1) * self.question_batch_size] max_question_batch_length = max(question_batch_length_before_tile) question_batch_before_tile = self.question[ self.point[self.pointer] * self.question_batch_size: (self.point[self.pointer] + 1) * self.question_batch_size] for idx_q, q in enumerate(question_batch_before_tile): if len(q) < max_question_batch_length: question_batch_before_tile[idx_q] = q + [0] * (max_question_batch_length - len(q)) question_batch = [] question_batch_length = [] for question_before_tile in question_batch_before_tile: for _ in range(8): question_batch.append(question_before_tile) for question_length_before_tile in question_batch_length_before_tile: for _ in range(8): question_batch_length.append(question_length_before_tile) del question_batch_before_tile del question_batch_length_before_tile answer_batch_length_before_tile = self.answer_length[ self.point[self.pointer] * 5 * self.question_batch_size: (self.point[self.pointer] + 1) * 5 * self.question_batch_size] max_answer_batch_length = max(answer_batch_length_before_tile) answer_batch_before_tile = self.answer[self.point[self.pointer] * 5 * self.question_batch_size: (self.point[self.pointer] + 1) * 5 * self.question_batch_size] for idx_a, a in enumerate(answer_batch_before_tile): if len(a) < max_answer_batch_length: answer_batch_before_tile[idx_a] = a + [0] * (max_answer_batch_length - len(a)) answer_batch = [] answer_batch_length = [] for i in range(self.question_batch_size): for j in range(4): answer_batch.append(answer_batch_before_tile[(5*i+4)]) answer_batch_length.append(answer_batch_length_before_tile[(5*i+4)]) answer_batch.append(answer_batch_before_tile[(5*i+j)]) answer_batch_length.append(answer_batch_length_before_tile[(5*i+j)]) question_keyword_num = get_keyword_num_log_tfidf(question_batch_length, "question") answer_keyword_num = get_keyword_num_log_tfidf(answer_batch_length, "answer") self.pointer = (self.pointer + 1) % self.num_batch if self.pointer == 0: random.shuffle(self.point) print('data shuffle. point: ', self.point[:5]) return np.array(question_batch, np.int32),
np.array(question_batch_length, np.int32)
numpy.array
"""Utility functions for computing feature association statistics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import sys; sys.path.append('../..') import src.msc.utils as utils np.warnings.filterwarnings('ignore') def log_odds(word, outcome_variable, dataset, config): """Computes log-odds between a word and each level of a categorical outcome. Log-odds = log pi - log (1 - pi) Where pi = the probability of `word` occurring in examples belonging to level i of the `outcome_variable`. Args: word: string, the word we are interested in. outcome_variable: string, the name of the outcome variable we are interested in. This MUST be a categorical variable. dataset: src.data.dataset.Dataset object, the dataset we are computing over. config: a configuration object. Returns: out: dict(string => float), a mapping from categorical level names to the log-odds between `word` and that particular level. """ # Get a binary matrix where the rows are bag-of-words representations of each # input sequence and the columns are individual words. all_word_occurences = dataset.np_data[config.train_suffix][ dataset.input_varname()].toarray() # Pull out the column that corresponds to the `word` of interest. # This is a 0/1 vector where a 1 at index i means the word occurred in example # i. selected_word_occurances = all_word_occurences[:, dataset.features[word]] out = {} one_hots = dataset.np_data[config.train_suffix][outcome_variable].toarray() for level_name, level_id in dataset.class_to_id_map[outcome_variable].items(): # Get a 0/1 vector where a 1 at index i means example i belongs to the # current class. level_mask = one_hots[:, level_id] # Get probability (num within-class occurances / total occurances). prob_occurrence = np.sum(selected_word_occurances * level_mask) / np.sum(selected_word_occurances)\ # If the word doesn't occur in the data at all, then we will be dividing # by zero at line 49. Instead of keeping the nan we say that the word # isn't informative at all (i.e. that it has a probability of 0.5). if np.isnan(prob_occurrence): prob_occurrence = 0.5 if not prob_occurrence: prob_occurrence += 1e-3 elif prob_occurrence == 1: prob_occurrence -= 1e-3 out[level_name] = math.log(prob_occurrence) - math.log(1 - prob_occurrence) return out def cramers_v(feature, text, targets, possible_labels): """Computes the association strength between a word and a categorical outcome. See: https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V Args: feature: string, the word which is to be computed for. text: list(list(string)), the provided corpus. targets: list(string), labels for each sequence in `text`. possible_labels: list(string), the set of possible elements in `labels`. Returns: V: int, the chisq statistic for a single feature, given some text and target info (Y) and possible_labels (possible values for Y). """ num_rows = 2 num_cols = len(possible_labels) obs = np.zeros((num_rows, num_cols)) for description, target in zip(text, targets): if feature in description: obs[1, possible_labels.index(target)] += 1 else: obs[0, possible_labels.index(target)] += 1 row_totals = np.sum(obs, axis=1) col_totals = np.sum(obs, axis=0) n = np.sum(obs) expected =
np.outer(row_totals, col_totals)
numpy.outer
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os.path import numpy as np import abel from scipy.linalg import inv from scipy import dot ############################################################################### # # Dasch two-point, three_point, and onion-peeling deconvolution # as described in Applied Optics 31, 1146 (1992), page 1147-8 sect. B & C. # https://www.osapublishing.org/ao/abstract.cfm?uri=ao-31-8-1146 # see also discussion in PR #155 https://github.com/PyAbel/PyAbel/pull/155 # # 2016-03-25 <NAME> - one line Abel transform # 2016-03-24 <NAME> - Python code framework # 2015-12-29 <NAME> - original three_point code and # highlighting the Dasch paper,see issue #61 # https://github.com/PyAbel/PyAbel/issues/61 # ############################################################################### _dasch_parameter_docstring = \ """dasch_method deconvolution C. J. Dasch Applied Optics 31, 1146 (1992). http://dx.doi.org/10.1364/AO.31.001146 Parameters ---------- IM : 1D or 2D numpy array right-side half-image (or quadrant) basis_dir: str path to the directory for saving / loading the "dasch_method" operator matrix. If None, the operator matrix will not be saved to disk. dr : float sampling size (=1 for pixel images), used for Jacobian scaling. The resulting inverse transform is simply scaled by 1/dr. direction: str only the `direction="inverse"` transform is currently implemented Returns ------- inv_IM: 1D or 2D numpy array the "dasch_method" inverse Abel transformed half-image """ def two_point_transform(IM, basis_dir='.', dr=1, direction="inverse"): return _dasch_transform(IM, basis_dir=basis_dir, dr=dr, direction=direction, method="two_point") def three_point_transform(IM, basis_dir='.', dr=1, direction="inverse"): return _dasch_transform(IM, basis_dir=basis_dir, dr=dr, direction=direction, method="three_point") def onion_peeling_transform(IM, basis_dir='.', dr=1, direction="inverse"): return _dasch_transform(IM, basis_dir=basis_dir, dr=dr, direction=direction, method="onion_peeling") two_point_transform.__doc__ =\ _dasch_parameter_docstring.replace("dasch_method", "two-point") three_point_transform.__doc__ =\ _dasch_parameter_docstring.replace("dasch_method", "three-point") onion_peeling_transform.__doc__ =\ _dasch_parameter_docstring.replace("dasch_method", "onion-peeling") def _dasch_transform(IM, basis_dir='.', dr=1, direction="inverse", method="three_point"): if direction != 'inverse': raise ValueError('Forward "two_point" transform not implemented') # make sure that the data has 2D shape IM =
np.atleast_2d(IM)
numpy.atleast_2d
import matplotlib.patches as patches from scipy import signal import numpy as np from . import fcc5 def SegmentacionPaisaje(x, resiz, s, fs, ax1, en): featuresAudio = [] [u, v] = s.shape band_1=1/u band_2=1 p = 1 for j in range(0,p): mfband = s[np.int(np.round(band_1*u)):np.int(np.round(band_2*u)),:] mfband = signal.medfilt2d(mfband, 5) selband = mfband D = np.std(mfband,1) L = 10 ##Filtro de media movil coefs = np.ones(L)/float(L) D = np.convolve(D, coefs, mode='same') D = np.convolve(D, coefs, mode='same') Y = -D+np.max(D) locsY = signal.find_peaks_cwt(Y,np.arange(1,20)) peaksY = Y[locsY] locsD = signal.find_peaks_cwt(D,np.arange(1,20)) peaksD = D[locsD] indx = [] for x in range(0,len(peaksY)): indloc = np.where(locsD<locsY[x])[0] if len(indloc) == 0: firstpeak = np.max(D); else: firstpeak = peaksD[indloc[-1]] indloc = np.where(locsD>locsY[x])[0] if len(indloc) == 0: secondpeak = np.max(D) else: secondpeak = peaksD[indloc[0]] if firstpeak<secondpeak: if (D[locsY[x]]-np.min(D))>(0.6*(firstpeak-np.min(D))): indx.append(x) else: if (D[locsY[x]]-np.min(D))>(0.6*(secondpeak-np.min(D))): indx.append(x) peaksY = np.delete(peaksY, indx) if len(peaksY) == 0: puntos = D>np.mean(D) dpuntos = np.diff(puntos, axis=0) else: thres = [] indices = np.where((peaksY>np.mean(peaksY)))[0] peaksY = np.delete(peaksY, indices) peaksY.sort() num_peaks = len(peaksY) for r in range(0,num_peaks): thres.append(Y<peaksY[r]) thres = np.array(thres) for r in range(1,thres.shape[0]): dthres = np.diff(thres[r,:], axis=0) bandthres = np.where(abs(dthres))[0] if dthres[bandthres[0]] == -1: #Si la primera derivada es -1, agregue el cero al indice bandthres = np.concatenate(([1],bandthres)) if dthres[bandthres[-1]] == 1: #Si la ultima derivada es 1, agregue el último numero de la banda bandthres = np.concatenate((bandthres, [len(D)])) for g in range(0,np.int(np.array(bandthres).shape[0]/2)): if sum((thres[r,bandthres[2*g]:bandthres[2*g+1]]) & (thres[r-1,bandthres[2*g]:bandthres[2*g+1]]))>0: #Hay puntos de la banda superior thres[r,bandthres[2*g]:bandthres[2*g+1]] = thres[r-1,bandthres[2*g]:bandthres[2*g+1]] #Prima la banda superior puntos = np.matrix(thres[-1,:]).T dpuntos = np.diff(puntos, axis=0) indband = np.where(np.abs(dpuntos))[0] #Hace las veces de find() if dpuntos[indband[0]] == -1:#Si la primera derivada es -1, agregue el cero al indice indband = np.concatenate(([1],indband)) if dpuntos[indband[-1]] == 1: #Si la ultima derivada es 1, agregue el último numero de la banda indband = np.concatenate((indband, [len(D)])) ind = [] for h in range(0,np.int(np.size(indband,axis=0)/2)): if indband[2*h] == indband[2*h+1]: ind.append(2*h) ind.append(2*h+1) indband = np.delete(indband, ind) for g in range(0,np.int(np.size(indband,axis=0)/2)): fband = mfband[indband[2*g]:indband[2*g+1],:] D = np.sum(fband, axis=0) L = 40 ##Filtro de media movil coefs = np.ones(L)/float(L) D =
np.convolve(D, coefs, mode='same')
numpy.convolve
from collections import OrderedDict import periodictable as pdtb import lmfit as lm r_e = pdtb.constants.electron_radius * 1e10 # classical electron radius, in A N_A = pdtb.constants.avogadro_number # Avogadro number, unitless k_B = 1.38065e-23 # Boltzman constant, in J/K import numpy as np import scipy.stats as stat import fit_ref as mfit import flu_geometry_routines as gm def penetrate(beta, delta, alpha, k0): alpha[alpha == np.inf] = 0 alpha = alpha.astype(complex) beta_top, beta_bot = beta delta_top, delta_bot = delta alpha_c = np.sqrt(2 * (delta_bot - delta_top)) trans = 4 * np.abs(alpha / (alpha + np.sqrt(alpha ** 2 - alpha_c ** 2))) ** 2 penetration_coeff = 2 * k0 * np.imag(np.sqrt(alpha ** 2 - alpha_c ** 2 + beta_bot * 2j)) return 1/penetration_coeff, trans def update_flu_parameters(p, *args): assert type(p) is OrderedDict # *args have to be at least fitting parameters flu_par = args[0] # update the fitting parameter whatsoever p['hisc'] = flu_par['hisc'].value # scale factor for the top phase, unitless. p['losc'] = flu_par['losc'].value # scale factor for the bottom phase, unitless. p['bg'] = flu_par['bg'].value # background intensity, unitless. p['tC'] = flu_par['upbk'].value # ion concentration of the top phase, in M. p['bC'] = flu_par['lobk'].value # ion concentration of the bottom phase, in M. p['sC'] = flu_par['surd'].value # ion surface number density, in A^-2. p['qoff'] = flu_par['qoff'].value # q off set for the data p['doff'] = flu_par['soff'].value * 1e7 # det range offset for the measurement p['l2off'] = flu_par['loff'].value * 1e7 # l2 offset for the measurement p['curv'] = flu_par['curv'].value * 1e10 # the curvature of the interface, in A. if p['curv'] == 0: p['curv'] = 10000 * 1e10 if len(args) == 1: return p # if the *args is tuple (flu_par, sys_par, flu_elements), do the following try: sys_par = args[1] flu_elements = args[2] except IndexError: print("update_flu_parameters takes 3 extra arguments!") # parameterize beam profile width = sys_par['width'] * 1e7 # width or FWHM of the beam, in A beam_profile = sys_par['beam'] steps = 500 if beam_profile == 'Uniform': beam_size = width weights = np.ones(steps + 1) elif beam_profile == 'Gaussian': stdev = width / 2.355 # FWHM of the beam, i.e. 2.355 sigma beam_size = 2 * (3 * stdev) # keep the beam up to +/-3 standard deviation, or 99.73% of intensity. rays =
np.linspace(-beam_size / 2, beam_size / 2, steps + 1)
numpy.linspace
import sys import numpy as np import h5py import cv2 from tqdm import tqdm #### # list of utility functions # 0. I/O util # 1. binary pred -> instance seg # 2. instance seg + pred heatmap -> instance score # 3. instance seg -> bbox # 4. instance seg + gt seg + instance score -> sorted match result # 0. I/O def seg2im(seg): # seg -> 3-channel image if seg.max()>255: return np.stack([seg//65536, seg//256, seg%256],axis=2).astype(np.uint8) else: return seg.astype(np.uint8) def im2seg(im): # image -> seg if im.ndim==2: return im else: return im[:,:,0].astype(np.uint32)*65536+im[:,:,1].astype(np.uint32)*256+im[:,:,2].astype(np.uint32) def heatmap_by_channel(im, channel=-1): # image to heatmap if channel != -1: heatmap = im[channel] else: heatmap = im.mean(axis=0) return heatmap def readh5(path, vol=''): # do the first key fid = h5py.File(path, 'r') if vol == '': if sys.version[0]=='3': vol = list(fid)[0] else: # python 2 vol = fid.keys()[0] return np.array(fid[vol]).squeeze() # 1. binary pred -> instance seg def seg_bbox2d(seg,do_count=False, uid=None): sz = seg.shape assert len(sz)==2 if uid is None: uid = np.unique(seg) uid = uid[uid>0] um = uid.max() out = np.zeros((1+int(um),5+do_count),dtype=np.uint32) out[:,0] = np.arange(out.shape[0]) out[:,1] = sz[0] out[:,3] = sz[1] # for each row rids = np.where((seg>0).sum(axis=1)>0)[0] for rid in rids: sid = np.unique(seg[rid]) sid = sid[(sid>0)*(sid<=um)] out[sid,1] = np.minimum(out[sid,1],rid) out[sid,2] = np.maximum(out[sid,2],rid) cids = np.where((seg>0).sum(axis=0)>0)[0] for cid in cids: sid = np.unique(seg[:,cid]) sid = sid[(sid>0)*(sid<=um)] out[sid,3] = np.minimum(out[sid,3],cid) out[sid,4] = np.maximum(out[sid,4],cid) if do_count: ui,uc = np.unique(seg,return_counts=True) out[ui,-1]=uc return out[uid] def getSegType(mid): m_type = np.uint64 if mid<2**8: m_type = np.uint8 elif mid<2**16: m_type = np.uint16 elif mid<2**32: m_type = np.uint32 return m_type def label_chunk(get_chunk, numC, rr=1, m_type=np.uint64): # need to implement get_chunk function # INPUT: chunk_id # OUTPUT: 3d chunk # label chunks or slices sz = get_chunk(0).shape numD = len(sz) mid = 0 seg = [None]*numC for zi in range(numC): print('%d/%d [%d], '%(zi,numC,mid)), sys.stdout.flush() # as split as possible _, seg_c = cv2.connectedComponents(get_chunk(zi)>0, connectivity=4).astype(m_type) if numD==2: seg_c = seg_c[np.newaxis] if zi == 0: # first seg, relabel seg index print('_%d_'%0) slice_b = seg_c[-1] seg[zi] = seg_c[:,::rr,::rr] # save a low-res one mid += seg[zi].max() rlA = np.arange(mid+1,dtype=m_type) else: # link to previous slice slice_t = seg_c[0] _, slices = cv2.connectedComponents(np.stack([slice_b>0, slice_t>0],axis=0), connectivity=4).astype(m_type) # create mapping for seg cur lc = np.unique(seg_c);lc=lc[lc>0] rl_c = np.zeros(int(lc.max())+1, dtype=int) # merge curr seg # for 1 pre seg id -> slices id -> cur seg ids l0_p = np.unique(slice_b*(slices[0]>0)) bbs = seg_bbox2d(slice_b, uid=l0_p)[:,1:] print('_%d_'%len(l0_p)) for i,l in enumerate(l0_p): bb = bbs[i] sid = np.unique(slices[0,bb[0]:bb[1]+1,bb[2]:bb[3]+1]*(slice_b[bb[0]:bb[1]+1,bb[2]:bb[3]+1]==l)) sid = sid[sid>0] # multiple ids if len(sid)==1: cid = np.unique(slice_t*(slices[1]==sid)) else: cid = np.unique(slice_t*np.in1d(slices[1].reshape(-1),sid).reshape(sz[-2:])) rl_c[cid[cid>0]] = l # new id new_num = np.where(rl_c==0)[0][1:] # except the first one new_id = np.arange(mid+1,mid+1+len(new_num),dtype=m_type) rl_c[new_num] = new_id slice_b = rl_c[seg_c[-1]] # save a high-res seg[zi] = rl_c[seg_c[:,::rr,::rr]] mid += len(new_num) # update global id rlA = np.hstack([rlA,new_id]) # merge prev seg # for 1 cur seg id -> slices id -> prev seg ids l1_c = np.unique(slice_t*(slices[1]>0)) for l in l1_c: sid = np.unique(slices[1]*(slice_t==l)) sid = sid[sid>0] pid = np.unique(slice_b*np.in1d(slices[0].reshape(-1),sid).reshape(sz[-2:])) pid = pid[pid>0] # get all previous m-to-1 labels pid_p = np.where(np.in1d(rlA,rlA[pid]))[0] if len(pid_p)>1: rlA[pid_p] = pid.max() # memory reduction: each seg m2_type = getSegType(seg[zi].max()) seg[zi] = seg[zi].astype(m2_type) # memory reduction: final output m2_type = getSegType(rlA.max()) rlA = rlA.astype(m2_type) print('output type:',m2_type) return rlA[np.vstack(seg)] # 2. heatmap + seg -> detection score def heatmap_to_score(seg, heatmap, channel=-1, do_avg=True): # 3D vol version if heatmap.ndim>seg.ndim: heatmap = heatmap_by_channel(heatmap, channel) seg_id, seg_count = np.unique(seg, return_counts=True) seg_view = seg.ravel() seg_len = int(seg_id.max())+1 # relabel bincount(minlen = max_len) with ids score = np.bincount(seg_view.astype(int), weights=heatmap.ravel(), minlength=seg_len)[seg_id.astype(int)] if do_avg: score = score/seg_count if score.max()>1: # assume 0-255 score = score/255. return seg_id, score, seg_count def heatmap_to_score_tile(seg_tiles, heatmap_tiles, max_id=-1, channel=-1): if max_id == -1:# rough estimate of the largest seg id max_id = max(100, 2*im2seg(cv2.imread(seg_tiles[-1])).max()) count = np.zeros((max_id+1,2)) # num_voxel, sum_score for z in range(len(seg_tiles)): # 3D vol version seg = im2seg(cv2.imread(seg_tiles[z])) heatmap = cv2.imread(heatmap_tiles[z]) t_id, t_score, t_count = heatmap_to_score(seg, heatmap, channel=-1, do_avg=False) # in case of wrong max_id input if t_id[-1]>max_id: out = np.vstack([out,np.zeros((max_id,2))]) max_id *= 2 count[t_id,0] += t_count count[t_id,1] += t_score pred_id = np.where(out[:,0]>0)[0] score = count[pred_id,1]/count[pred_id,0] if score.max()>1: # assume 0-255 score = score/255. out = np.vstack([pred_id, score]).T return out # 3. instance seg -> bbox def seg_bbox3d(seg,do_count=False, uid=None): """returns bounding box of segments""" sz = seg.shape assert len(sz)==3 if uid is None: uid = np.unique(seg) uid = uid[uid>0] um = int(uid.max()) out = np.zeros((1+um,7+do_count),dtype=np.uint32) out[:,0] = np.arange(out.shape[0]) out[:,1], out[:,3], out[:,5] = sz[0], sz[1], sz[2] # for each slice zids = np.where((seg>0).sum(axis=1).sum(axis=1)>0)[0] for zid in tqdm(zids): sid = np.unique(seg[zid]) sid = sid[(sid>0)*(sid<=um)] out[sid,1] = np.minimum(out[sid,1],zid) out[sid,2] = np.maximum(out[sid,2],zid) # for each row rids = np.where((seg>0).sum(axis=0).sum(axis=1)>0)[0] for rid in rids: sid = np.unique(seg[:,rid]) sid = sid[(sid>0)*(sid<=um)] out[sid,3] = np.minimum(out[sid,3],rid) out[sid,4] = np.maximum(out[sid,4],rid) # for each col cids = np.where((seg>0).sum(axis=0).sum(axis=0)>0)[0] for cid in cids: sid = np.unique(seg[:,:,cid]) sid = sid[(sid>0)*(sid<=um)] out[sid,5] = np.minimum(out[sid,5],cid) out[sid,6] = np.maximum(out[sid,6],cid) if do_count: ui,uc = np.unique(seg,return_counts=True) out[ui[ui<=um],-1]=uc[ui<=um] return out[uid] def seg_bbox3d_tile(seg_tiles, do_count=False, max_id=-1): """returns bounding box of segments""" if max_id == -1: max_id = max(100, 2*im2seg(cv2.imread(seg_tiles[-1])).max()) sz = cv2.imread(seg_tiles[0]).shape out =
np.zeros((max_id+1, 7+do_count),dtype=np.uint32)
numpy.zeros
# pylint: disable=E1101 import torch import torch.nn as nn from torch.utils.data import DataLoader, TensorDataset from sklearn.metrics import average_precision_score, confusion_matrix import numpy as np from physionet import PhysioNet, get_data_min_max, variable_time_collate_fn2 from sklearn import model_selection from sklearn import metrics from sklearn.metrics import precision_score, recall_score, f1_score from person_activity import PersonActivity def one_hot(y_): # Function to encode output labels from number indexes # e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]] y_ = y_.reshape(len(y_)) y_ = [int(x) for x in y_] n_values = np.max(y_) + 1 return np.eye(n_values)[np.array(y_, dtype=np.int32)] def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def log_normal_pdf(x, mean, logvar, mask): const = torch.from_numpy(np.array([2. * np.pi])).float().to(x.device) const = torch.log(const) return -.5 * (const + logvar + (x - mean) ** 2. / torch.exp(logvar)) * mask def normal_kl(mu1, lv1, mu2, lv2): v1 = torch.exp(lv1) v2 = torch.exp(lv2) lstd1 = lv1 / 2. lstd2 = lv2 / 2. kl = lstd2 - lstd1 + ((v1 + (mu1 - mu2) ** 2.) / (2. * v2)) - .5 return kl def mean_squared_error(orig, pred, mask): error = (orig - pred) ** 2 error = error * mask return error.sum() / mask.sum() def normalize_masked_data(data, mask, att_min, att_max): # we don't want to divide by zero att_max[att_max == 0.] = 1. if (att_max != 0.).all(): data_norm = (data - att_min) / att_max else: raise Exception("Zero!") if torch.isnan(data_norm).any(): raise Exception("nans!") # set masked out elements back to zero data_norm[mask == 0] = 0 return data_norm, att_min, att_max def evaluate(dim, rec, dec, test_loader, args, num_sample=10, device="cuda"): mse, test_n = 0.0, 0.0 with torch.no_grad(): for test_batch in test_loader: test_batch = test_batch.to(device) observed_data, observed_mask, observed_tp = ( test_batch[:, :, :dim], test_batch[:, :, dim: 2 * dim], test_batch[:, :, -1], ) if args.sample_tp and args.sample_tp < 1: subsampled_data, subsampled_tp, subsampled_mask = subsample_timepoints( observed_data.clone(), observed_tp.clone(), observed_mask.clone(), args.sample_tp) else: subsampled_data, subsampled_tp, subsampled_mask = \ observed_data, observed_tp, observed_mask out = rec(torch.cat((subsampled_data, subsampled_mask), 2), subsampled_tp) qz0_mean, qz0_logvar = ( out[:, :, : args.latent_dim], out[:, :, args.latent_dim:], ) epsilon = torch.randn( num_sample, qz0_mean.shape[0], qz0_mean.shape[1], qz0_mean.shape[2] ).to(device) z0 = epsilon * torch.exp(0.5 * qz0_logvar) + qz0_mean z0 = z0.view(-1, qz0_mean.shape[1], qz0_mean.shape[2]) batch, seqlen = observed_tp.size() time_steps = ( observed_tp[None, :, :].repeat(num_sample, 1, 1).view(-1, seqlen) ) pred_x = dec(z0, time_steps) pred_x = pred_x.view(num_sample, -1, pred_x.shape[1], pred_x.shape[2]) pred_x = pred_x.mean(0) mse += mean_squared_error(observed_data, pred_x, observed_mask) * batch test_n += batch return mse / test_n def compute_losses(dim, dec_train_batch, qz0_mean, qz0_logvar, pred_x, args, device): observed_data, observed_mask \ = dec_train_batch[:, :, :dim], dec_train_batch[:, :, dim:2*dim] noise_std = args.std noise_std_ = torch.zeros(pred_x.size()).to(device) + noise_std noise_logvar = 2. * torch.log(noise_std_).to(device) logpx = log_normal_pdf(observed_data, pred_x, noise_logvar, observed_mask).sum(-1).sum(-1) pz0_mean = pz0_logvar = torch.zeros(qz0_mean.size()).to(device) analytic_kl = normal_kl(qz0_mean, qz0_logvar, pz0_mean, pz0_logvar).sum(-1).sum(-1) if args.norm: logpx /= observed_mask.sum(-1).sum(-1) analytic_kl /= observed_mask.sum(-1).sum(-1) return logpx, analytic_kl def evaluate_classifier(model, test_loader, dec=None, args=None, classifier=None, dim=41, device='cuda', reconst=False, num_sample=1, dataset='P12'): pred = [] true = [] test_loss = 0 for test_batch, label in test_loader: test_batch, label = test_batch.to(device), label.to(device) batch_len = test_batch.shape[0] observed_data, observed_mask, observed_tp \ = test_batch[:, :, :dim], test_batch[:, :, dim:2*dim], test_batch[:, :, -1] with torch.no_grad(): out = model( torch.cat((observed_data, observed_mask), 2), observed_tp) if reconst: qz0_mean, qz0_logvar = out[:, :, :args.latent_dim], out[:, :, args.latent_dim:] epsilon = torch.randn( num_sample, qz0_mean.shape[0], qz0_mean.shape[1], qz0_mean.shape[2]).to(device) z0 = epsilon * torch.exp(.5 * qz0_logvar) + qz0_mean z0 = z0.view(-1, qz0_mean.shape[1], qz0_mean.shape[2]) if args.classify_pertp: pred_x = dec(z0, observed_tp[None, :, :].repeat( num_sample, 1, 1).view(-1, observed_tp.shape[1])) out = classifier(pred_x) else: out = classifier(z0) if args.classify_pertp: N = label.size(-1) out = out.view(-1, N) label = label.view(-1, N) _, label = label.max(-1) test_loss += nn.CrossEntropyLoss()(out, label.long()).item() * batch_len * 50. else: label = label.unsqueeze(0).repeat_interleave( num_sample, 0).view(-1) test_loss += nn.CrossEntropyLoss()(out, label).item() * batch_len * num_sample pred.append(out.cpu().numpy()) true.append(label.cpu().numpy()) pred = np.concatenate(pred, 0) true = np.concatenate(true, 0) acc = np.mean(pred.argmax(1) == true) if dataset == 'P12' or dataset == 'P19' or dataset == 'eICU': auc = metrics.roc_auc_score(true, pred[:, 1]) if not args.classify_pertp else 0. aupr = average_precision_score(true, pred[:, 1]) if not args.classify_pertp else 0. return test_loss / pred.shape[0], acc, auc, aupr, None, None, None elif dataset == 'PAM': auc = metrics.roc_auc_score(one_hot(true), pred) if not args.classify_pertp else 0. aupr = average_precision_score(one_hot(true), pred) if not args.classify_pertp else 0. precision = precision_score(true, pred.argmax(1), average='macro', ) if not args.classify_pertp else 0. recall = recall_score(true, pred.argmax(1), average='macro', ) if not args.classify_pertp else 0. F1 = 2 * (precision * recall) / (precision + recall) if not args.classify_pertp else 0. return test_loss/pred.shape[0], acc, auc, aupr, precision, recall, F1 def random_sample(idx_0, idx_1, batch_size): """ Returns a balanced sample by randomly sampling without replacement. :param idx_0: indices of negative samples :param idx_1: indices of positive samples :param batch_size: batch size :return: indices of balanced batch of negative and positive samples """ idx0_batch = np.random.choice(idx_0, size=int(batch_size / 2), replace=False) idx1_batch = np.random.choice(idx_1, size=int(batch_size / 2), replace=False) idx = np.concatenate([idx0_batch, idx1_batch], axis=0) return idx def preprocess_P19(PT_dict, arr_outcomes, labels_ts): total = [] for i, patient in enumerate(PT_dict): length = patient['length'] record_id = patient['id'] tt = torch.squeeze(torch.tensor(patient['time'][:length]), 1) vals = torch.tensor(patient['arr'][:length, :], dtype=torch.float32) m = np.zeros(shape=patient['arr'][:length, :].shape) m[patient['arr'][:length, :].nonzero()] = 1 mask = torch.tensor(m, dtype=torch.float32) outcome = torch.tensor(arr_outcomes[i][0], dtype=torch.float32) total.append((record_id, tt, vals, mask, outcome)) ''' # calculate and save P19 statistics - age, gender, density scores (can be used for all algorithms) idx_under_65 = [] idx_over_65 = [] idx_male = [] idx_female = [] for i in range(len(PT_dict)): if total[i][0] == PT_dict[i]['id']: age, gender, _, _, _, _ = PT_dict[i]['extended_static'] if age > 0: if age < 65: idx_under_65.append(i) else: idx_over_65.append(i) if gender == 0: idx_female.append(i) if gender == 1: idx_male.append(i) np.save('P19_idx_under_65.npy', np.array(idx_under_65), allow_pickle=True) np.save('P19_idx_over_65.npy', np.array(idx_over_65), allow_pickle=True) np.save('P19_idx_male.npy', np.array(idx_male), allow_pickle=True) np.save('P19_idx_female.npy', np.array(idx_female), allow_pickle=True) # save density scores X_features = np.array([d['arr'] for d in PT_dict]) counts = np.count_nonzero(X_features, axis=(0, 1)) ascending_indices = np.argsort(counts) density_scores = counts / (X_features.shape[0] * 60) res = [[ind, density_scores[ind], labels_ts[:-1][ind]] for ind in ascending_indices] np.save('P19_density_scores.npy', res, allow_pickle=True) ''' return total def preprocess_eICU(PT_dict, arr_outcomes, labels_ts): total = [] for i, patient in enumerate(PT_dict): record_id = str(i) tt = torch.squeeze(torch.tensor(patient['time']), 1) vals = torch.tensor(patient['arr'], dtype=torch.float32) m = np.zeros(shape=patient['arr'].shape) m[patient['arr'].nonzero()] = 1 mask = torch.tensor(m, dtype=torch.float32) outcome = torch.tensor(arr_outcomes[i], dtype=torch.float32) total.append((record_id, tt, vals, mask, outcome)) ''' # calculate and save P19 statistics - gender, density scores (can be used for all algorithms) idx_male = [] idx_female = [] for i in range(len(PT_dict)): if total[i][0] == str(i): vec = PT_dict[i]['extended_static'] if vec[-3] > 0: idx_female.append(i) if vec[-4] > 0: idx_male.append(i) print('\nOnly 1.329/36.443 samples have gender data available.\n') np.save('eICU_idx_male.npy', np.array(idx_male), allow_pickle=True) np.save('eICU_idx_female.npy', np.array(idx_female), allow_pickle=True) # save density scores X_features = np.array([d['arr'] for d in PT_dict]) counts = np.count_nonzero(X_features, axis=(0, 1)) ascending_indices = np.argsort(counts) density_scores = counts / (X_features.shape[0] * 300) res = [[ind, density_scores[ind], labels_ts[ind]] for ind in ascending_indices] np.save('eICU_density_scores.npy', res, allow_pickle=True) ''' return total def preprocess_PAM(PT_dict, arr_outcomes): length = 600 total = [] for i, patient in enumerate(PT_dict): record_id = str(i) tt = torch.tensor(list(range(length))) vals = torch.tensor(patient, dtype=torch.float32) m = np.zeros(shape=patient.shape) m[patient.nonzero()] = 1 mask = torch.tensor(m, dtype=torch.float32) outcome = torch.tensor(arr_outcomes[i][0], dtype=torch.float32) total.append((record_id, tt, vals, mask, outcome)) return total def random_sample_8(ytrain, B, replace=False): """ Returns a balanced sample of tensors by randomly sampling without replacement. """ idx0_batch = np.random.choice(np.where(ytrain == 0)[0], size=int(B / 8), replace=replace) idx1_batch = np.random.choice(np.where(ytrain == 1)[0], size=int(B / 8), replace=replace) idx2_batch = np.random.choice(np.where(ytrain == 2)[0], size=int(B / 8), replace=replace) idx3_batch = np.random.choice(np.where(ytrain == 3)[0], size=int(B / 8), replace=replace) idx4_batch = np.random.choice(np.where(ytrain == 4)[0], size=int(B / 8), replace=replace) idx5_batch = np.random.choice(np.where(ytrain == 5)[0], size=int(B / 8), replace=replace) idx6_batch = np.random.choice(np.where(ytrain == 6)[0], size=int(B / 8), replace=replace) idx7_batch = np.random.choice(np.where(ytrain == 7)[0], size=int(B / 8), replace=replace) idx = np.concatenate([idx0_batch, idx1_batch, idx2_batch, idx3_batch, idx4_batch, idx5_batch, idx6_batch, idx7_batch], axis=0) return idx def get_data(args, dataset, device, q, upsampling_batch, split_type, feature_removal_level, missing_ratio, flag=1, reverse=False, predictive_label='mortality'): if dataset == 'P12': train_dataset_obj_1 = PhysioNet('data/physionet', train=True, quantization=q, download=True, n_samples=12000, device=device, set_letter='a') train_dataset_obj_2 = PhysioNet('data/physionet', train=True, quantization=q, download=True, n_samples=12000, device=device, set_letter='b') train_dataset_obj_3 = PhysioNet('data/physionet', train=True, quantization=q, download=True, n_samples=12000, device=device, set_letter='c') dataset_1 = train_dataset_obj_1[:len(train_dataset_obj_1)] dataset_2 = train_dataset_obj_2[:len(train_dataset_obj_2)] dataset_3 = train_dataset_obj_3[:len(train_dataset_obj_3)] total_dataset = dataset_1 + dataset_2 + dataset_3 if predictive_label == 'LoS': los_outcomes = np.load('../saved/LoS_y1_out.npy', allow_pickle=True) for i, tpl in enumerate(total_dataset): a, b, c, d, _ = tpl los_label = los_outcomes[i][0] los_label = torch.tensor(los_label, dtype=torch.float32) total_dataset[i] = (a, b, c, d, los_label) ''' # calculate and save statistics idx_under_65 = [] idx_over_65 = [] idx_male = [] idx_female = [] P_list = np.load('P_list.npy', allow_pickle=True) for i in range(len(P_list)): if total_dataset[i][0] == P_list[i]['id']: age, gender, _, _, _ = P_list[i]['static'] if age > 0: if age < 65: idx_under_65.append(i) else: idx_over_65.append(i) if gender == 0: idx_female.append(i) if gender == 1: idx_male.append(i) np.save('mtand_idx_under_65.npy', np.array(idx_under_65), allow_pickle=True) np.save('mtand_idx_over_65.npy', np.array(idx_over_65), allow_pickle=True) np.save('mtand_idx_male.npy', np.array(idx_male), allow_pickle=True) np.save('mtand_idx_female.npy', np.array(idx_female), allow_pickle=True) ''' elif dataset == 'P19': PT_dict = np.load('../../../P19data/processed_data/PT_dict_list_6.npy', allow_pickle=True) labels_ts = np.load('../../../P19data/processed_data/labels_ts.npy', allow_pickle=True) labels_demogr = np.load('../../../P19data/processed_data/labels_demogr.npy', allow_pickle=True) arr_outcomes = np.load('../../../P19data/processed_data/arr_outcomes_6.npy', allow_pickle=True) total_dataset = preprocess_P19(PT_dict, arr_outcomes, labels_ts) elif dataset == 'eICU': PT_dict = np.load('../../../eICUdata/processed_data/PTdict_list.npy', allow_pickle=True) labels_ts = np.load('../../../eICUdata/processed_data/eICU_ts_vars.npy', allow_pickle=True) labels_demogr = np.load('../../../eICUdata/processed_data/eICU_static_vars.npy', allow_pickle=True) arr_outcomes = np.load('../../../eICUdata/processed_data/arr_outcomes.npy', allow_pickle=True) total_dataset = preprocess_eICU(PT_dict, arr_outcomes, labels_ts) elif dataset == 'PAM': PT_dict = np.load('../../../PAMdata/processed_data/PTdict_list.npy', allow_pickle=True) arr_outcomes = np.load('../../../PAMdata/processed_data/arr_outcomes.npy', allow_pickle=True) total_dataset = preprocess_PAM(PT_dict, arr_outcomes) print('len(total_dataset):', len(total_dataset)) if split_type == 'random': # Shuffle and split train_data, test_data = model_selection.train_test_split(total_dataset, train_size=0.9, # 80% train, 10% validation, 10% test shuffle=True) elif split_type == 'age' or split_type == 'gender': if dataset == 'P12': prefix = 'mtand' elif dataset == 'P19': prefix = 'P19' elif dataset == 'eICU': # possible only with split_type == 'gender' prefix = 'eICU' if split_type == 'age': if dataset == 'eICU': print('\nCombination of eICU dataset and age split is not possible.\n') if reverse == False: idx_train = np.load('%s_idx_under_65.npy' % prefix, allow_pickle=True) idx_vt = np.load('%s_idx_over_65.npy' % prefix, allow_pickle=True) else: idx_train = np.load('%s_idx_over_65.npy' % prefix, allow_pickle=True) idx_vt = np.load('%s_idx_under_65.npy' % prefix, allow_pickle=True) elif split_type == 'gender': if reverse == False: idx_train = np.load('%s_idx_male.npy' % prefix, allow_pickle=True) idx_vt = np.load('%s_idx_female.npy' % prefix, allow_pickle=True) else: idx_train = np.load('%s_idx_female.npy' % prefix, allow_pickle=True) idx_vt = np.load('%s_idx_male.npy' % prefix, allow_pickle=True) np.random.shuffle(idx_train) np.random.shuffle(idx_vt) train_data = [total_dataset[i] for i in idx_train] test_data = [total_dataset[i] for i in idx_vt] record_id, tt, vals, mask, labels = train_data[0] input_dim = vals.size(-1) data_min, data_max = get_data_min_max(total_dataset, device) batch_size = 128 if flag: if args.classif: if split_type == 'random': train_data, val_data = model_selection.train_test_split(train_data, train_size=0.8889, shuffle=True) # 80% train, 10% validation, 10% test elif split_type == 'age' or split_type == 'gender': val_data, test_data = model_selection.train_test_split(test_data, train_size=0.5, shuffle=False) if dataset == 'P12': num_all_features = 36 elif dataset == 'P19': num_all_features = 34 elif dataset == 'eICU': num_all_features = 14 elif dataset == 'PAM': num_all_features = 17 num_missing_features = round(missing_ratio * num_all_features) if feature_removal_level == 'sample': for i, tpl in enumerate(val_data): idx = np.random.choice(num_all_features, num_missing_features, replace=False) _, _, values, _, _ = tpl tpl = list(tpl) values[:, idx] = torch.zeros(values.shape[0], num_missing_features) tpl[2] = values val_data[i] = tuple(tpl) for i, tpl in enumerate(test_data): idx = np.random.choice(num_all_features, num_missing_features, replace=False) _, _, values, _, _ = tpl tpl = list(tpl) values[:, idx] = torch.zeros(values.shape[0], num_missing_features) tpl[2] = values test_data[i] = tuple(tpl) elif feature_removal_level == 'set': if dataset == 'P12': dict_params = train_dataset_obj_1.params_dict density_scores_names = np.load('../saved/IG_density_scores_P12.npy', allow_pickle=True)[:, 1] idx = [dict_params[name] for name in density_scores_names[:num_missing_features]] elif dataset == 'P19': labels_ts = np.load('../../../P19data/processed_data/labels_ts.npy', allow_pickle=True) dict_params = {label: i for i, label in enumerate(labels_ts[:-1])} density_scores_names = np.load('../saved/IG_density_scores_P19.npy', allow_pickle=True)[:, 1] idx = [dict_params[name] for name in density_scores_names[:num_missing_features]] elif dataset == 'eICU': labels_ts = np.load('../../../eICUdata/processed_data/eICU_ts_vars.npy', allow_pickle=True) dict_params = {label: i for i, label in enumerate(labels_ts)} density_scores_names = np.load('../saved/IG_density_scores_eICU.npy', allow_pickle=True)[:, 1] idx = [dict_params[name] for name in density_scores_names[:num_missing_features]] elif dataset == 'PAM': density_scores_indices = np.load('../saved/IG_density_scores_PAM.npy', allow_pickle=True)[:, 0] idx = list(map(int, density_scores_indices[:num_missing_features])) for i, tpl in enumerate(val_data): _, _, values, _, _ = tpl tpl = list(tpl) values[:, idx] = torch.zeros(values.shape[0], num_missing_features) tpl[2] = values val_data[i] = tuple(tpl) for i, tpl in enumerate(test_data): _, _, values, _, _ = tpl tpl = list(tpl) values[:, idx] = torch.zeros(values.shape[0], num_missing_features) tpl[2] = values test_data[i] = tuple(tpl) if upsampling_batch: train_data_upsamled = [] true_labels = np.array(list(map(lambda x: float(x[7]), np.array(train_data)[:, 4]))) if dataset == 'P12' or dataset == 'P19' or dataset == 'eICU': # 2 classes idx_0 = np.where(true_labels == 0)[0] idx_1 = np.where(true_labels == 1)[0] for _ in range(len(true_labels) // batch_size): indices = random_sample(idx_0, idx_1, batch_size) for i in indices: train_data_upsamled.append(train_data[i]) elif dataset == 'PAM': # 8 classes for b in range(len(true_labels) // batch_size): indices = random_sample_8(true_labels, batch_size) for i in indices: train_data_upsamled.append(train_data[i]) train_data = train_data_upsamled test_data_combined = variable_time_collate_fn(test_data, device, classify=args.classif, data_min=data_min, data_max=data_max) train_data_combined = variable_time_collate_fn(train_data, device, classify=args.classif, data_min=data_min, data_max=data_max) val_data_combined = variable_time_collate_fn( val_data, device, classify=args.classif, data_min=data_min, data_max=data_max) print(train_data_combined[1].sum( ), val_data_combined[1].sum(), test_data_combined[1].sum()) print(train_data_combined[0].size(), train_data_combined[1].size(), val_data_combined[0].size(), val_data_combined[1].size(), test_data_combined[0].size(), test_data_combined[1].size()) train_data_combined = TensorDataset( train_data_combined[0], train_data_combined[1].long().squeeze()) val_data_combined = TensorDataset( val_data_combined[0], val_data_combined[1].long().squeeze()) test_data_combined = TensorDataset( test_data_combined[0], test_data_combined[1].long().squeeze()) else: train_data_combined = variable_time_collate_fn( train_data, device, classify=args.classif, data_min=data_min, data_max=data_max) train_dataloader = DataLoader( train_data_combined, batch_size=batch_size, shuffle=False) test_dataloader = DataLoader( test_data_combined, batch_size=batch_size, shuffle=False) else: train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=False, collate_fn=lambda batch: variable_time_collate_fn2(batch, args, device, data_type="train", data_min=data_min, data_max=data_max)) test_dataloader = DataLoader(test_data, batch_size=batch_size, shuffle=False, collate_fn=lambda batch: variable_time_collate_fn2(batch, args, device, data_type="test", data_min=data_min, data_max=data_max)) data_objects = {"dataset_obj": {}, "train_dataloader": train_dataloader, "test_dataloader": test_dataloader, "input_dim": input_dim, "n_train_batches": len(train_dataloader), "n_test_batches": len(test_dataloader), "attr": {}, # optional "classif_per_tp": False, # optional "n_labels": 1} # optional if args.classif: val_dataloader = DataLoader( val_data_combined, batch_size=batch_size, shuffle=False) data_objects["val_dataloader"] = val_dataloader return data_objects def variable_time_collate_fn(batch, device=torch.device("cpu"), classify=False, activity=False, data_min=None, data_max=None): """ Expects a batch of time series data in the form of (record_id, tt, vals, mask, labels) where - record_id is a patient id - tt is a 1-dimensional tensor containing T time values of observations. - vals is a (T, D) tensor containing observed values for D variables. - mask is a (T, D) tensor containing 1 where values were observed and 0 otherwise. - labels is a list of labels for the current patient, if labels are available. Otherwise None. Returns: combined_tt: The union of all time observations. combined_vals: (M, T, D) tensor containing the observed values. combined_mask: (M, T, D) tensor containing 1 where values were observed and 0 otherwise. """ D = batch[0][2].shape[1] # number of labels N = batch[0][-1].shape[1] if activity else 1 len_tt = [ex[1].size(0) for ex in batch] maxlen = np.max(len_tt) enc_combined_tt = torch.zeros([len(batch), maxlen]).to(device) enc_combined_vals = torch.zeros([len(batch), maxlen, D]).to(device) enc_combined_mask = torch.zeros([len(batch), maxlen, D]).to(device) if classify: if activity: combined_labels = torch.zeros([len(batch), maxlen, N]).to(device) else: combined_labels = torch.zeros([len(batch), N]).to(device) for b, (record_id, tt, vals, mask, labels) in enumerate(batch): currlen = tt.size(0) enc_combined_tt[b, :currlen] = tt.to(device) enc_combined_vals[b, :currlen] = vals.to(device) enc_combined_mask[b, :currlen] = mask.to(device) if classify: if activity: combined_labels[b, :currlen] = labels.to(device) else: if labels is not None: combined_labels[b] = labels.to(device) if not activity: enc_combined_vals, _, _ = normalize_masked_data(enc_combined_vals, enc_combined_mask, att_min=data_min, att_max=data_max) if torch.max(enc_combined_tt) != 0.: enc_combined_tt = enc_combined_tt / torch.max(enc_combined_tt) combined_data = torch.cat( (enc_combined_vals, enc_combined_mask, enc_combined_tt.unsqueeze(-1)), 2) if classify: return combined_data, combined_labels else: return combined_data def get_activity_data(args, device): n_samples = min(10000, args.n) dataset_obj = PersonActivity('data/PersonActivity', download=True, n_samples=n_samples, device=device) print(dataset_obj) train_data, test_data = model_selection.train_test_split(dataset_obj, train_size=0.8, random_state=42, shuffle=True) record_id, tt, vals, mask, labels = train_data[0] input_dim = vals.size(-1) batch_size = min(min(len(dataset_obj), args.batch_size), args.n) test_data_combined = variable_time_collate_fn(test_data, device, classify=args.classif, activity=True) train_data, val_data = model_selection.train_test_split(train_data, train_size=0.8, random_state=11, shuffle=True) train_data_combined = variable_time_collate_fn( train_data, device, classify=args.classif, activity=True) val_data_combined = variable_time_collate_fn( val_data, device, classify=args.classif, activity=True) print(train_data_combined[1].sum( ), val_data_combined[1].sum(), test_data_combined[1].sum()) print(train_data_combined[0].size(), train_data_combined[1].size(), val_data_combined[0].size(), val_data_combined[1].size(), test_data_combined[0].size(), test_data_combined[1].size()) train_data_combined = TensorDataset( train_data_combined[0], train_data_combined[1].long()) val_data_combined = TensorDataset( val_data_combined[0], val_data_combined[1].long()) test_data_combined = TensorDataset( test_data_combined[0], test_data_combined[1].long()) train_dataloader = DataLoader( train_data_combined, batch_size=batch_size, shuffle=False) test_dataloader = DataLoader( test_data_combined, batch_size=batch_size, shuffle=False) val_dataloader = DataLoader( val_data_combined, batch_size=batch_size, shuffle=False) data_objects = {"train_dataloader": train_dataloader, "test_dataloader": test_dataloader, "val_dataloader": val_dataloader, "input_dim": input_dim, "n_train_batches": len(train_dataloader), "n_test_batches": len(test_dataloader), "classif_per_tp": False, # optional "n_labels": 1} # optional return data_objects def irregularly_sampled_data_gen(n=10, length=20, seed=0): np.random.seed(seed) obs_values, ground_truth, obs_times = [], [], [] for i in range(n): t1 = np.sort(np.random.uniform(low=0.0, high=1.0, size=length)) t2 = np.sort(np.random.uniform(low=0.0, high=1.0, size=length)) t3 = np.sort(np.random.uniform(low=0.0, high=1.0, size=length)) a = 10 * np.random.randn() b = 10 * np.random.rand() f1 = .8 * np.sin(20*(t1+a) + np.sin(20*(t1+a))) + \ 0.01 * np.random.randn() f2 = -.5 * np.sin(20*(t2+a + 20) + np.sin(20*(t2+a + 20)) ) + 0.01 * np.random.randn() f3 = np.sin(12*(t3+b)) + 0.01 * np.random.randn() obs_times.append(np.stack((t1, t2, t3), axis=0)) obs_values.append(np.stack((f1, f2, f3), axis=0)) t = np.linspace(0, 1, 100) fg1 = .8 * np.sin(20*(t+a) + np.sin(20*(t+a))) fg2 = -.5 * np.sin(20*(t+a + 20) + np.sin(20*(t+a + 20))) fg3 = np.sin(12*(t+b)) ground_truth.append(np.stack((fg1, fg2, fg3), axis=0)) return obs_values, ground_truth, obs_times def sine_wave_data_gen(args, seed=0): np.random.seed(seed) obs_values, ground_truth, obs_times = [], [], [] for _ in range(args.n): t = np.sort(np.random.choice(np.linspace( 0, 1., 101), size=args.length, replace=True)) b = 10 * np.random.rand() f = np.sin(12*(t+b)) + 0.1 * np.random.randn() obs_times.append(t) obs_values.append(f) tc = np.linspace(0, 1, 100) fg = np.sin(12*(tc + b)) ground_truth.append(fg) obs_values = np.array(obs_values) obs_times = np.array(obs_times) ground_truth = np.array(ground_truth) print(obs_values.shape, obs_times.shape, ground_truth.shape) mask = np.ones_like(obs_values) combined_data = np.concatenate((np.expand_dims(obs_values, axis=2), np.expand_dims( mask, axis=2),
np.expand_dims(obs_times, axis=2)
numpy.expand_dims
import os import argparse import random import glob import itertools import time import pandas as pd import numpy as np import soundfile as sf import pyloudnorm as pyln import warnings from tqdm import tqdm from codetiming import Timer import multiprocessing from loky import get_reusable_executor # Global parameters EPS = 1e-10 # secures log and division MAX_AMP = 0.9 # max amplitude in sources and mixture RATE = 24000 # JVS has all the sources at 24KHz MIN_LOUDNESS = -33 # loudness randomized between this min and max MAX_LOUDNESS = -25 n_cpu = multiprocessing.cpu_count() random.seed(673) # sum([ord(ch) for ch in 'jvsmix']) def main(args): if args.multiproc: create_jvsmix_metadata_multiproc(args.jvs_dir, args.jvs_md_file, args.md_dir, args.jsut_name_file, args.n_src) else: create_jvsmix_metadata(args.jvs_dir, args.jvs_md_file, args.md_dir, args.jsut_name_file, args.n_src) @Timer(name='decorator') def create_jvsmix_metadata(jvs_dir, jvs_md_file, md_dir, jsut_name_file, n_src): dataset = f'jvs{n_src}mix' os.makedirs(os.path.join(md_dir, dataset), exist_ok=True) jvs_md = pd.read_csv(jvs_md_file, engine='python') jsut_name = pd.read_csv(jsut_name_file, header=None, engine='python') jsut_name = jsut_name.set_index(0).to_dict()[1] # Generate speaker combinations speaker_combs = make_combs(jvs_md, n_src) # Create and save empty dataframes as CSVs mixture_md_cols = ['mixture_id'] mixture_info_cols = ['mixture_id'] for i in range(n_src): mixture_md_cols.append(f'source_{i + 1}_path') mixture_md_cols.append(f'source_{i + 1}_gain') mixture_info_cols.append(f'speaker_{i + 1}_id') mixture_info_cols.append(f'speaker_{i + 1}_gender') mixture_md = pd.DataFrame(columns=mixture_md_cols) mixture_info = pd.DataFrame(columns=mixture_info_cols) # Create metadata for each subset with all speakers for subset in ['non-parallel', 'parallel']: print('--- Subset:', subset) clip_counter = 0 save_path = os.path.join(md_dir, dataset, dataset+'_'+subset) mixture_md.to_csv(save_path+'.csv', index=None) mixture_info.to_csv(save_path+'_info.csv', index=None) for comb in tqdm(speaker_combs, total=len(speaker_combs)): sources_info, sources_list_max = read_sources( comb, jvs_md, jvs_dir, jsut_name, n_src, subset) # Compute original loudness and normalized sources loudness, _, sources_list_norm = set_loudness(sources_list_max) # Create mixture mixtures = mix(sources_list_norm) # Check for clipping and renormalize if needed renormalize_loudness, did_clip = check_for_clipping( mixtures, sources_list_norm) # Keep track of number of clippings done # clip_counter += sum([int(i) for i in did_clip]) # Compute gain gains_list = compute_gain(loudness, renormalize_loudness) # Add all the info to dataframe mix_md_df, mix_info_df = get_dfs(sources_info, gains_list, n_src) # Save interim results to file mix_md_df.to_csv(save_path+'.csv', index=None, header=None, mode='a') mix_info_df.to_csv(save_path+'_info.csv', index=None, header=None, mode='a') # print(f'Among {len(mixture_md)} mixtures, {clip_counter} clipped.') @Timer(name='decorator') def create_jvsmix_metadata_multiproc(jvs_dir, jvs_md_file, md_dir, jsut_name_file, n_src): def do_multiproc(arg_list): comb = arg_list[0] jvs_md = arg_list[1] jvs_dir = arg_list[2] jsut_name = arg_list[3] n_src = arg_list[4] subset = arg_list[5] save_path = arg_list[6] save_id = arg_list[7] sources_info, sources_list_max = read_sources(comb, jvs_md, jvs_dir, jsut_name, n_src, subset) # Compute original loudness and normalized sources loudness, _, sources_list_norm = set_loudness(sources_list_max) # Create mixture mixtures = mix(sources_list_norm) # Check for clipping and renormalize if needed renormalize_loudness, did_clip = check_for_clipping( mixtures, sources_list_norm) # Keep track of number of clippings done # clip_counter += sum([int(i) for i in did_clip]) # Compute gain gains_list = compute_gain(loudness, renormalize_loudness) # Add all the info to dataframe tmp_mix_md_df, tmp_mix_info_df = get_dfs(sources_info, gains_list, n_src) # Save interim results to file tmp_mix_md_df.to_csv( os.path.join(save_path, f'{os.getpid()}_{save_id}.csv'), index=None, header=None) tmp_mix_info_df.to_csv( os.path.join(save_path, f'{os.getpid()}_{save_id}_info.csv'), index=None, header=None) dataset = f'jvs{n_src}mix' os.makedirs(os.path.join(md_dir, dataset), exist_ok=True) jvs_md = pd.read_csv(jvs_md_file, engine='python') jsut_name = pd.read_csv(jsut_name_file, header=None, engine='python') jsut_name = jsut_name.set_index(0).to_dict()[1] # Generate speaker combinations speaker_combs = make_combs(jvs_md, n_src) # Create and save empty dataframes as CSVs mixture_md_cols = ['mixture_id'] mixture_info_cols = ['mixture_id'] for i in range(n_src): mixture_md_cols.append(f'source_{i + 1}_path') mixture_md_cols.append(f'source_{i + 1}_gain') mixture_info_cols.append(f'speaker_{i + 1}_id') mixture_info_cols.append(f'speaker_{i + 1}_gender') mixture_md = pd.DataFrame(columns=mixture_md_cols) mixture_info = pd.DataFrame(columns=mixture_info_cols) # Create 'tmp' directory for multiprocess results os.makedirs(os.path.join(md_dir, dataset, 'tmp'), exist_ok=True) # Create metadata for each subset with all speakers for subset in ['non-parallel', 'parallel']: print('--- Subset:', subset) clip_counter = 0 save_path = os.path.join(md_dir, dataset, dataset+'_'+subset) mixture_md.to_csv(save_path+'.csv', index=None) mixture_info.to_csv(save_path+'_info.csv', index=None) subargs = [jvs_md, jvs_dir, jsut_name, n_src, subset, os.path.join(os.path.split(save_path)[0], 'tmp')] arg_list = [] for i, comb in enumerate(speaker_combs): arg_list.append([comb]+subargs+[i]) executor = get_reusable_executor(max_workers=int(n_cpu*0.75), timeout=5) with tqdm(total=len(arg_list)) as pbar: for i, _ in enumerate(executor.map(do_multiproc, arg_list)): pbar.update() time.sleep(1) # Consolidate results from multiple processes saved inside 'tmp' print('Consolidating results...') tmp_csvs = glob.glob(os.path.join( os.path.split(save_path)[0], 'tmp', '*.csv')) for tc in tqdm(tmp_csvs, total=len(tmp_csvs)): tmp_df = pd.read_csv(tc, header=None) if 'info' in tc: tmp_df.to_csv(save_path+'_info.csv', index=None, header=None, mode='a') else: tmp_df.to_csv(save_path+'.csv', index=None, header=None, mode='a') os.system('rm -rf ' + os.path.join(os.path.split(save_path)[0], 'tmp')) def make_combs(jvs_md, n_src): speakers = list(set(jvs_md['speaker_id'])) # As number of speakers are less, we are making all possible speaker # pairs instead of randomly sampling them speaker_combs = list(itertools.combinations(speakers, n_src)) return speaker_combs def read_sources(comb, jvs_md, jvs_dir, jsut_name, n_src, subset): subdfs = [jvs_md[ (jvs_md['speaker_id']==comb[i]) & (jvs_md['subset']==subset) ] for i in range(n_src)] # Get sources info speaker_id_list = comb gender_list = [subdfs[i].iloc[0]['gender'] for i in range(n_src)] # Each speaker has multiple utterances length_list = [list(subdfs[i]['length']) for i in range(n_src)] lengths = list(itertools.product(*length_list)) path_list = [list(subdfs[i]['path']) for i in range(n_src)] paths = list(itertools.product(*path_list)) # Randomly select 50 mixtures for each speaker combination indices_to_keep = random.choices(list(range(len(paths))), k=50) lengths = [lengths[i] for i in indices_to_keep] paths = [paths[i] for i in indices_to_keep] # Generate mixture ids mixture_ids = [] max_lengths = [] for pc, leng in zip(paths, lengths): mixture_ids.append('-'.join([speaker_id_list[i] + '_' + jsut_name[os.path.split(pc[i])[1].replace('.wav','')] for i in range(n_src)])) max_lengths.append(max(leng)) assert(len(lengths) == len(paths) == len(mixture_ids) == len(max_lengths)) # print(f'\tTotal {len(mixture_ids)} combinations generated.') # Read the source and compute info sources_list = [] for j in range(len(paths)): sltmp = [] # Randomly pad the smaller audio to the start, end or equally padway = random.randint(0, 2) for i in range(n_src): s, _ = sf.read(os.path.join(jvs_dir, paths[j][i]), dtype='float32') padlen = max_lengths[j] - len(s) if padway == 0: # pad start sltmp.append(np.pad(s, (padlen, 0), mode='constant')) elif padway == 1: # pad equally sltmp.append( np.pad(s, (padlen//2, padlen-(padlen//2)), mode='constant')) elif padway == 2: # pad end sltmp.append(np.pad(s, (0, padlen), mode='constant')) sources_list.append(sltmp) sources_info = {'mixture_ids': mixture_ids, 'speaker_id_list': speaker_id_list, 'gender_list': gender_list, 'paths': paths} return sources_info, sources_list def set_loudness(sources_list): loudness_list = [] meter = pyln.Meter(RATE) target_loudness_list = [] sources_list_norm = [] for srcs in sources_list: src_list_norm = [] trg_loudness_list = [] loudness = [] for i in range(len(srcs)): # Initialize loudness loudness.append(meter.integrated_loudness(srcs[i])) # Pick a random loudness target_loudness = random.uniform(MIN_LOUDNESS, MAX_LOUDNESS) # Normalize source to target loudness with warnings.catch_warnings(): warnings.simplefilter('ignore') src = pyln.normalize.loudness(srcs[i], loudness[i], target_loudness) if np.max(np.abs(src)) >= 1: src = srcs[i] * MAX_AMP / np.max(np.abs(srcs[i])) target_loudness = meter.integrated_loudness(src) # Save tmp results src_list_norm.append(src) trg_loudness_list.append(target_loudness) # Save final results sources_list_norm.append(src_list_norm) target_loudness_list.append(trg_loudness_list) loudness_list.append(loudness) return loudness_list, target_loudness_list, sources_list_norm def mix(source_list_norm): mixtures = [] for srcs in source_list_norm: mixture_max =
np.zeros_like(srcs[0])
numpy.zeros_like
import scipy.ndimage as scnd import scipy.optimize as sio import numpy as np import numba import warnings import stemtool as st @numba.jit def fit_nbed_disks(corr_image, disk_size, positions, diff_spots): warnings.filterwarnings("ignore") positions = np.asarray(positions, dtype=np.float64) diff_spots = np.asarray(diff_spots, dtype=np.float64) fitted_disk_list = np.zeros_like(positions) disk_locations = np.zeros_like(positions) for ii in range(int(np.shape(positions)[0])): posx = positions[ii, 0] posy = positions[ii, 1] par = st.util.fit_gaussian2D_mask(corr_image, posx, posy, disk_size) fitted_disk_list[ii, 0] = par[0] fitted_disk_list[ii, 1] = par[1] disk_locations = np.copy(fitted_disk_list) disk_locations[:, 1] = 0 - disk_locations[:, 1] center = disk_locations[ np.logical_and((diff_spots[:, 0] == 0), (diff_spots[:, 1] == 0)), : ] cx = center[0, 0] cy = center[0, 1] disk_locations[:, 0:2] = disk_locations[:, 0:2] - np.asarray( (cx, cy), dtype=np.float64 ) lcbed, _, _, _ = np.linalg.lstsq(diff_spots, disk_locations, rcond=None) cy = (-1) * cy return fitted_disk_list, np.asarray((cx, cy), dtype=np.float64), lcbed def sobel_filter(image, med_filter=50): ls_image, _ = st.util.sobel(st.util.image_logarizer(image)) ls_image[ls_image > (med_filter * np.median(ls_image))] = med_filter * np.median( ls_image ) ls_image[ls_image < (np.median(ls_image) / med_filter)] = ( np.median(ls_image) / med_filter ) return ls_image @numba.jit def strain_and_disk(data4D, disk_size, pixel_list_xy, disk_list, ROI=1, med_factor=50): warnings.filterwarnings("ignore") if np.size(ROI) < 2: ROI = np.ones((data4D.shape[2], data4D.shape[3]), dtype=bool) # Calculate needed values scan_size = np.asarray(data4D.shape)[2:4] sy, sx = np.mgrid[0 : scan_size[0], 0 : scan_size[1]] scan_positions = (np.asarray((np.ravel(sy), np.ravel(sx)))).astype(int) cbed_size = np.asarray(data4D.shape)[0:2] yy, xx = np.mgrid[0 : cbed_size[0], 0 : cbed_size[1]] center_disk = ( st.util.make_circle(cbed_size, cbed_size[1] / 2, cbed_size[0] / 2, disk_size) ).astype(np.float64) i_matrix = (np.eye(2)).astype(np.float64) sobel_center_disk, _ = st.util.sobel(center_disk) # Initialize matrices e_xx = np.zeros(scan_size, dtype=np.float64) e_xy = np.zeros(scan_size, dtype=np.float64) e_th = np.zeros(scan_size, dtype=np.float64) e_yy = np.zeros(scan_size, dtype=np.float64) disk_x = np.zeros(scan_size, dtype=np.float64) disk_y = np.zeros(scan_size, dtype=np.float64) COM_x = np.zeros(scan_size, dtype=np.float64) COM_y = np.zeros(scan_size, dtype=np.float64) # Calculate for mean CBED if no reference mean_cbed = np.mean(data4D, axis=(-1, -2), dtype=np.float64) mean_ls_cbed, _ = st.util.sobel(st.util.image_logarizer(mean_cbed)) mean_ls_cbed[ mean_ls_cbed > med_factor * np.median(mean_ls_cbed) ] = med_factor * np.median(mean_ls_cbed) mean_ls_cbed[mean_ls_cbed < np.median(mean_ls_cbed) / med_factor] = ( np.median(mean_ls_cbed) / med_factor ) mean_lsc = st.util.cross_corr_unpadded(mean_ls_cbed, sobel_center_disk) _, mean_center, mean_axes = fit_nbed_disks( mean_lsc, disk_size, pixel_list_xy, disk_list ) axes_lengths = ((mean_axes[:, 0] ** 2) + (mean_axes[:, 1] ** 2)) ** 0.5 beam_r = axes_lengths[1] inverse_axes = np.linalg.inv(mean_axes) for pp in range(np.size(sy)): ii = scan_positions[0, pp] jj = scan_positions[1, pp] pattern = data4D[:, :, ii, jj] pattern_ls, _ = st.util.sobel(st.util.image_logarizer(pattern)) pattern_ls[pattern_ls > med_factor * np.median(pattern_ls)] = np.median( pattern_ls ) pattern_lsc = st.util.cross_corr_unpadded(pattern_ls, sobel_center_disk) _, pattern_center, pattern_axes = fit_nbed_disks( pattern_lsc, disk_size, pixel_list_xy, disk_list ) pcirc = ( (((yy - pattern_center[1]) ** 2) + ((xx - pattern_center[0]) ** 2)) ** 0.5 ) <= beam_r pattern_x = np.sum(pattern[pcirc] * xx[pcirc]) / np.sum(pattern[pcirc]) pattern_y = np.sum(pattern[pcirc] * yy[pcirc]) / np.sum(pattern[pcirc]) t_pattern = np.matmul(pattern_axes, inverse_axes) s_pattern = t_pattern - i_matrix e_xx[ii, jj] = -s_pattern[0, 0] e_xy[ii, jj] = -(s_pattern[0, 1] + s_pattern[1, 0]) e_th[ii, jj] = -(s_pattern[0, 1] - s_pattern[1, 0]) e_yy[ii, jj] = -s_pattern[1, 1] disk_x[ii, jj] = pattern_center[0] - mean_center[0] disk_y[ii, jj] = pattern_center[1] - mean_center[1] COM_x[ii, jj] = pattern_x - mean_center[0] COM_y[ii, jj] = pattern_y - mean_center[1] return e_xx, e_xy, e_th, e_yy, disk_x, disk_y, COM_x, COM_y @numba.jit def dpc_central_disk(data4D, disk_size, position, ROI=1, med_val=20): """ DPC routine on only the central disk Parameters ---------- data4D: ndarray The 4 dimensional dataset that will be analyzed The first two dimensions are the Fourier space diffraction dimensions and the last two dimensions are the real space scanning dimensions disk_size: float Size of the central disk position: ndarray X and Y positions This is the initial guess that will be refined ROI: ndarray The region of interest for the scanning region that will be analyzed. If no ROI is given then the entire scanned area will be analyzed med_val: float Sometimes some pixels are either too bright in the diifraction patterns due to stray muons or are zero due to dead detector pixels. This removes the effect of such pixels before Sobel filtering Returns ------- p_cen: ndarray P positions of the central disk q_cen: ndarray Q positions of the central disk p_com: ndarray P positions of the center of mass of the central disk q_com: ndarray Q positions of the center of mass of the central disk Notes ----- This is when we want to perform DPC without bothering about the higher order disks. The ROI of the 4D dataset is calculated, and the central disk is fitted in each ROI point, and then a disk is calculated centered on the edge fitted center and then the COM inside that disk is also calculated. :Authors: <NAME> <<EMAIL>> """ warnings.filterwarnings("ignore") if np.size(ROI) < 2: ROI = np.ones((data4D.shape[2], data4D.shape[3]), dtype=bool) yy, xx = np.mgrid[0 : data4D.shape[2], 0 : data4D.shape[3]] data4D_ROI = data4D[:, :, yy[ROI], xx[ROI]] pp, qq = np.mgrid[0 : data4D.shape[0], 0 : data4D.shape[1]] no_points = np.sum(ROI) fitted_pos = np.zeros((2, no_points), dtype=np.float64) fitted_com = np.zeros((2, no_points), dtype=np.float64) pos_p = position[0] pos_q = position[1] corr_disk = st.util.make_circle( np.asarray(data4D.shape[0:2]), pos_p, pos_q, disk_size ) sobel_corr_disk, _ = st.util.sobel(corr_disk) p_cen = np.zeros((data4D.shape[2], data4D.shape[3]), dtype=np.float64) q_cen = np.zeros((data4D.shape[2], data4D.shape[3]), dtype=np.float64) p_com = np.zeros((data4D.shape[2], data4D.shape[3]), dtype=np.float64) q_com = np.zeros((data4D.shape[2], data4D.shape[3]), dtype=np.float64) for ii in numba.prange(int(no_points)): cbed_image = data4D_ROI[:, :, ii] slm_image, _ = st.util.sobel( scnd.gaussian_filter(st.util.image_logarizer(cbed_image), 3) ) slm_image[slm_image > med_val * np.median(slm_image)] = med_val * np.median( slm_image ) slm_image[slm_image < np.median(slm_image) / med_val] = ( np.median(slm_image) / med_val ) corr_image = st.util.cross_corr(slm_image, sobel_corr_disk, hybridizer=0.25) fitted_disk_list = st.util.fit_gaussian2D_mask( corr_image, pos_p, pos_q, disk_size ) fitted_center = fitted_disk_list[0:2] + ( np.asarray((pos_p, pos_q)) - 0.5 * (np.flip(np.asarray(np.shape(cbed_image)))) ) fitted_pos[0:2, ii] = fitted_center fitted_circle = st.util.make_circle( np.asarray(cbed_image.shape), fitted_center[0], fitted_center[1], disk_size ) fitted_circle = fitted_circle.astype(bool) image_sum =
np.sum(cbed_image[fitted_circle])
numpy.sum
import os from utils.common_utils import * from skimage.restoration import denoise_nl_means from skimage.metrics import structural_similarity from skimage.metrics import peak_signal_noise_ratio as compare_psnr def get_noisy_image(img_np, sigma): """Adds Gaussian noise to an image. Args: img_np: image, np.array with values from 0 to 1 sigma: std of the noise """ img_noisy_np = np.clip(img_np + np.random.normal(scale=sigma, size=img_np.shape), 0, 1).astype(np.float32) img_noisy_pil = np_to_pil(img_noisy_np) return img_noisy_pil, img_noisy_np def non_local_means(noisy_np_img, sigma, fast_mode=True): """ get a numpy noisy image returns a denoised numpy image using Non-Local-Means """ sigma = sigma / 255. h = 0.6 * sigma if fast_mode else 0.8 * sigma patch_kw = dict(h=h, # Cut-off distance, a higher h results in a smoother image sigma=sigma, # sigma provided fast_mode=fast_mode, # If True, a fast version is used. If False, the original version is used. patch_size=5, # 5x5 patches (Size of patches used for denoising.) patch_distance=6, # 13x13 search area multichannel=False) denoised_img = [] n_channels = noisy_np_img.shape[0] for c in range(n_channels): denoise_fast = denoise_nl_means(noisy_np_img[c, :, :], **patch_kw) denoised_img += [denoise_fast] return np.array(denoised_img, dtype=np.float32) def compare_ssim(a, b): if a.shape[0] == 3: a = np.mean(a, axis=0) b = np.mean(b, axis=0) elif a.shape[2] == 3: a = np.mean(a, axis=2) b = np.mean(b, axis=2) else: a,b = a[0], b[0] return structural_similarity(a,b) import math import cv2 # ---------- # PSNR # ---------- def calculate_psnr(img1, img2, border=0): # img1 and img2 have range [0, 255] img1 = np.squeeze(img1) img2 = np.squeeze(img2) if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') h, w = img1.shape[:2] img1 = img1[border:h-border, border:w-border] img2 = img2[border:h-border, border:w-border] img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) mse = np.mean((img1 - img2)**2) if mse == 0: return float('inf') return 20 * math.log10(255.0 / math.sqrt(mse)) # ---------- # SSIM # ---------- def calculate_ssim(img1, img2, border=0): '''calculate SSIM the same outputs as MATLAB's img1, img2: [0, 255] ''' img1 = np.squeeze(img1) img2 = np.squeeze(img2) if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') h, w = img1.shape[:2] img1 = img1[border:h-border, border:w-border] img2 = img2[border:h-border, border:w-border] if img1.ndim == 2: return ssim(img1, img2) elif img1.ndim == 3: if img1.shape[0] == 3: ssims = [] for i in range(3): ssims.append(ssim(img1[i], img2[i])) return np.array(ssims).mean() elif img1.shape[0] == 1: return ssim(np.squeeze(img1), np.squeeze(img2)) else: raise ValueError('Wrong input image dimensions.') def ssim(img1, img2): C1 = (0.01 * 255)**2 C2 = (0.03 * 255)**2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1**2 mu2_sq = mu2**2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() from .PerceptualSimilarity import PerceptualLoss def get_lpips(device="cuda"): return PerceptualLoss(model='net-lin', net='alex', use_gpu=(device == 'cuda')) def calculate_lpips(img1_, img2_, LPIPS= None, device="cuda", color= "BGR"): if img1_.shape[0] < 3: make_color = lambda x: cv2.cvtColor(x, cv2.COLOR_GRAY2BGR) img1 = make_color(img1_[0].astype(np.uint8)) img2 = make_color(img2_.astype(np.uint8)) else: img1 = img1_.transpose([1,2,0]).astype(np.uint8) img2 = img2_.transpose([1,2,0]).astype(np.uint8) if LPIPS is None: LPIPS = PerceptualLoss(model='net-lin', net='alex', use_gpu=(device == 'cuda')) if color == "BGR": img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB) img1 = torch.tensor(img1.transpose([2,0,1])) / 255.0 img2 = torch.tensor(img2.transpose([2,0,1])) / 255.0 if device == "cuda": img1 = img1.cuda() img2 = img2.cuda() return LPIPS(img1, img2, normalize=True).item() if __name__ == "__main__": import numpy as np img1 =
np.random.rand(255,255)
numpy.random.rand
# This file is part of pyfesom # ################################################################################ # # Original matlab/python code by <NAME>, <NAME> and <NAME>. # # Contributers: <NAME>, <NAME> # # Modifications: # ################################################################################ import numpy as np import math as mt import matplotlib as mpl def scalar_r2g(al, be, ga, rlon, rlat): ''' Converts rotated coordinates to geographical coordinates. Parameters ---------- al : float alpha Euler angle be : float beta Euler angle ga : float gamma Euler angle rlon : array 1d array of longitudes in rotated coordinates rlat : array 1d araay of latitudes in rotated coordinates Returns ------- lon : array 1d array of longitudes in geographical coordinates lat : array 1d array of latitudes in geographical coordinates ''' rad=mt.pi/180 al=al*rad be=be*rad ga=ga*rad rotate_matrix=np.zeros(shape=(3,3)) rotate_matrix[0,0]=np.cos(ga)*np.cos(al)-np.sin(ga)*np.cos(be)*np.sin(al) rotate_matrix[0,1]=np.cos(ga)*np.sin(al)+np.sin(ga)*np.cos(be)*np.cos(al) rotate_matrix[0,2]=np.sin(ga)*np.sin(be) rotate_matrix[1,0]=-np.sin(ga)*np.cos(al)-np.cos(ga)*np.cos(be)*np.sin(al) rotate_matrix[1,1]=-np.sin(ga)*np.sin(al)+np.cos(ga)*np.cos(be)*np.cos(al) rotate_matrix[1,2]=np.cos(ga)*np.sin(be) rotate_matrix[2,0]=np.sin(be)*np.sin(al) rotate_matrix[2,1]=-np.sin(be)*np.cos(al) rotate_matrix[2,2]=np.cos(be) rotate_matrix=np.linalg.pinv(rotate_matrix) rlat=rlat*rad rlon=rlon*rad #Rotated Cartesian coordinates: xr=np.cos(rlat)*np.cos(rlon) yr=np.cos(rlat)*np.sin(rlon) zr=np.sin(rlat) #Geographical Cartesian coordinates: xg=rotate_matrix[0,0]*xr + rotate_matrix[0,1]*yr + rotate_matrix[0,2]*zr yg=rotate_matrix[1,0]*xr + rotate_matrix[1,1]*yr + rotate_matrix[1,2]*zr zg=rotate_matrix[2,0]*xr + rotate_matrix[2,1]*yr + rotate_matrix[2,2]*zr #Geographical coordinates: lat = np.arcsin(zg) lon= np.arctan2(yg, xg) a = np.where((np.abs(xg)+np.abs(yg))==0) if a: lon[a]=0 lat = lat/rad lon = lon/rad return (lon,lat) def scalar_g2r(al, be, ga, lon, lat): ''' Converts geographical coordinates to rotated coordinates. Parameters ---------- al : float alpha Euler angle be : float beta Euler angle ga : float gamma Euler angle lon : array 1d array of longitudes in geographical coordinates lat : array 1d array of latitudes in geographical coordinates Returns ------- rlon : array 1d array of longitudes in rotated coordinates rlat : array 1d araay of latitudes in rotated coordinates ''' rad=mt.pi/180 al=al*rad be=be*rad ga=ga*rad rotate_matrix=np.zeros(shape=(3,3)) rotate_matrix[0,0]=np.cos(ga)*np.cos(al)-np.sin(ga)*np.cos(be)*np.sin(al) rotate_matrix[0,1]=np.cos(ga)*np.sin(al)+np.sin(ga)*np.cos(be)*np.cos(al); rotate_matrix[0,2]=np.sin(ga)*np.sin(be) rotate_matrix[1,0]=-np.sin(ga)*np.cos(al)-np.cos(ga)*np.cos(be)*np.sin(al); rotate_matrix[1,1]=-np.sin(ga)*np.sin(al)+np.cos(ga)*np.cos(be)*np.cos(al); rotate_matrix[1,2]=np.cos(ga)*np.sin(be); rotate_matrix[2,0]=np.sin(be)*np.sin(al); rotate_matrix[2,1]=-np.sin(be)*np.cos(al); rotate_matrix[2,2]=np.cos(be); lat=lat*rad; lon=lon*rad; # geographical Cartesian coordinates: xr=np.cos(lat)*np.cos(lon); yr=np.cos(lat)*np.sin(lon); zr=np.sin(lat); # rotated Cartesian coordinates: xg=rotate_matrix[0,0]*xr + rotate_matrix[0,1]*yr + rotate_matrix[0,2]*zr; yg=rotate_matrix[1,0]*xr + rotate_matrix[1,1]*yr + rotate_matrix[1,2]*zr; zg=rotate_matrix[2,0]*xr + rotate_matrix[2,1]*yr + rotate_matrix[2,2]*zr; # rotated coordinates: rlat=np.arcsin(zg) rlon=np.arctan2(yg, xg) a = np.where((np.abs(xg)+np.abs(yg))==0) if a: lon[a]=0 rlat = rlat/rad rlon = rlon/rad return (rlon, rlat) def vec_rotate_r2g(al, be, ga, lon, lat, urot, vrot, flag): ''' Rotate vectors from rotated coordinates to geographical coordinates. Parameters ---------- al : float alpha Euler angle be : float beta Euler angle ga : float gamma Euler angle lon : array 1d array of longitudes in rotated or geographical coordinates (see flag parameter) lat : array 1d array of latitudes in rotated or geographical coordinates (see flag parameter) urot : array 1d array of u component of the vector in rotated coordinates vrot : array 1d array of v component of the vector in rotated coordinates flag : 1 or 0 flag=1 - lon,lat are in geographical coordinate flag=0 - lon,lat are in rotated coordinate Returns ------- u : array 1d array of u component of the vector in geographical coordinates v : array 1d array of v component of the vector in geographical coordinates ''' # first get another coordinate if (flag==1): (rlon,rlat)=scalar_g2r(al, be, ga, lon, lat) else: rlon=lon rlat=lat (lon,lat)=scalar_r2g(al, be, ga, rlon, rlat) # then proceed... rad=mt.pi/180 al=al*rad be=be*rad ga=ga*rad rotate_matrix=np.zeros(shape=(3,3)) rotate_matrix[0,0]=np.cos(ga)*np.cos(al)-np.sin(ga)*np.cos(be)*np.sin(al) rotate_matrix[0,1]=np.cos(ga)*np.sin(al)+np.sin(ga)*np.cos(be)*np.cos(al) rotate_matrix[0,2]=np.sin(ga)*np.sin(be) rotate_matrix[1,0]=-np.sin(ga)*np.cos(al)-np.cos(ga)*np.cos(be)*np.sin(al) rotate_matrix[1,1]=-np.sin(ga)*np.sin(al)+np.cos(ga)*np.cos(be)*np.cos(al) rotate_matrix[1,2]=np.cos(ga)*np.sin(be) rotate_matrix[2,0]=np.sin(be)*np.sin(al) rotate_matrix[2,1]=-np.sin(be)*np.cos(al) rotate_matrix[2,2]=np.cos(be) rotate_matrix=np.linalg.pinv(rotate_matrix) rlat=rlat*rad rlon=rlon*rad lat=lat*rad lon=lon*rad # vector in rotated Cartesian txg=-vrot*np.sin(rlat)*np.cos(rlon)-urot*np.sin(rlon) tyg=-vrot*np.sin(rlat)*np.sin(rlon)+urot*np.cos(rlon) tzg=vrot*np.cos(rlat) # vector in geo Cartesian txr=rotate_matrix[0,0]*txg + rotate_matrix[0,1]*tyg + rotate_matrix[0,2]*tzg tyr=rotate_matrix[1,0]*txg + rotate_matrix[1,1]*tyg + rotate_matrix[1,2]*tzg tzr=rotate_matrix[2,0]*txg + rotate_matrix[2,1]*tyg + rotate_matrix[2,2]*tzg # vector in geo coordinate v=-np.sin(lat)*np.cos(lon)*txr - np.sin(lat)*np.sin(lon)*tyr + np.cos(lat)*tzr u=-
np.sin(lon)
numpy.sin
import roslib import sys import rospy import cv2 import math import imutils import statistics import numpy as np from std_msgs.msg import String from sensor_msgs.msg import Image from std_msgs.msg import Float64MultiArray, Float64 from cv_bridge import CvBridge, CvBridgeError from scipy.spatial import distance as dist class image_converter: # Defines publisher and subscriber def __init__(self): # initialize the node named image_processing rospy.init_node('image_processing', anonymous=True) # initialize a publisher to send images from camera1 to a topic named image_topic1 self.image_pub1 = rospy.Publisher("image_topic1", Image, queue_size=1) self.image_pub2 = rospy.Publisher("image_topic2", Image, queue_size=1) #Initialize a publisher to send joints angular posiion toa topic called joints_pos self.joints_pub=rospy.Publisher("joints_pos",Float64MultiArray,queue_size=10) #initialize a publisher for the robot end effector self.vision_end_effector_pub=rospy.Publisher("vision_end_effector",Float64MultiArray,queue_size=10) self.fk_end_effector_pub = rospy.Publisher("fk_end_effector", Float64MultiArray, queue_size=10) self.actual_target_trajectory_pub = rospy.Publisher("actual_target_trajectory", Float64MultiArray,queue_size=10) self.vision_target_trajectory_pub = rospy.Publisher("vision_target_trajectory", Float64MultiArray,queue_size=10) #initialize a publisher for the four angles self.robot_joint1_pub = rospy.Publisher("/robot/joint1_position_controller/command", Float64, queue_size=10) self.robot_joint2_pub = rospy.Publisher("/robot/joint2_position_controller/command", Float64, queue_size=10) self.robot_joint3_pub = rospy.Publisher("/robot/joint3_position_controller/command", Float64, queue_size=10) self.robot_joint4_pub = rospy.Publisher("/robot/joint4_position_controller/command", Float64, queue_size=10) #Initialize the publisher for t target self.target_x_pub = rospy.Publisher("/target/x_position_controller/command", Float64, queue_size=10) self.target_y_pub = rospy.Publisher("/target/y_position_controller/command", Float64, queue_size=10) self.target_z_pub = rospy.Publisher("/target/z_position_controller/command", Float64, queue_size=10) # initialize a subscriber to recieve messages rom a topic named /robot/camera1/image_raw and use callback function to recieve data self.image_sub1 = rospy.Subscriber("/camera1/robot/image_raw", Image, self.callback1) self.image_sub2 = rospy.Subscriber("/camera2/robot/image_raw", Image, self.callback2) #initialize a publisher to send desired trajectory self.time_trajectory = rospy.get_time() #initialize variables self.red = np.array([0.0, 0.0, 0.0, 0.0], dtype='float64') self.green = np.array([0.0, 0.0, 0.0, 0.0], dtype='float64') self.p2m = np.array([0.0], dtype='float64') self.joint1 = np.array([0.0], dtype='float64') self.joint2 = np.array([0.0], dtype='float64') self.joint3 = np.array([0.0], dtype='float64') self.joint4 = np.array([0.0], dtype='float64') # initialize errors self.time_previous_step = np.array([rospy.get_time()], dtype='float64') self.time_previous_step2 = np.array([rospy.get_time()], dtype='float64') # initialize error and derivative of error for trajectory tracking self.error = np.array([0.0, 0.0,0.0], dtype='float64') self.error_d = np.array([0.0, 0.0,0.0], dtype='float64') # initialize the bridge between openCV and ROS self.bridge = CvBridge() # Recieve data from camera 1, process it, and publish def callback1(self, data): # Recieve the image try: self.image1 = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) def callback2(self, data): # Recieve the image try: self.image2 = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) #Blob detection starts here------------------------------------------------------- #Same to 2_1_joint_estimation.py def detect_red(self,image1, image2): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([0, 200, 0]) higher_red1 = np.array([0, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([0, 200, 0]) higher_red2 = np.array([0, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_blue(self,image1, image2): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([70, 0, 0]) higher_red1 = np.array([255, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([70, 0, 0]) higher_red2 = np.array([255, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_green(self,image1, image2): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([55, 0, 0]) higher_red1 = np.array([100, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([55, 0, 0]) higher_red2 = np.array([100, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_yellow(self,image1, image2): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 =
np.array([16, 244, 0])
numpy.array
""" A module for analysis tools dealing with uncertainties or error analysis in spectra. """ import numpy as np from ..spectra import SpectralRegion from ..manipulation import extract_region __all__ = ['snr', 'snr_derived'] def snr(spectrum, region=None): """ Calculate the mean S/N of the spectrum based on the flux and uncertainty in the spectrum. This will be calculated over the regions, if they are specified. Parameters ---------- spectrum : `~specutils.spectra.spectrum1d.Spectrum1D` The spectrum object overwhich the equivalent width will be calculated. region: `~specutils.utils.SpectralRegion` or list of `~specutils.utils.SpectralRegion` Region within the spectrum to calculate the SNR. Returns ------- snr : `~astropy.units.Quantity` or list (based on region input) Signal to noise ratio of the spectrum or within the regions Notes ----- The spectrum will need to have the uncertainty defined in order for the SNR to be calculated. If the goal is instead signal to noise *per pixel*, this should be computed directly as ``spectrum.flux / spectrum.uncertainty``. """ if not hasattr(spectrum, 'uncertainty') or spectrum.uncertainty is None: raise Exception("Spectrum1D currently requires the uncertainty be defined.") # No region, therefore whole spectrum. if region is None: return _snr_single_region(spectrum) # Single region elif isinstance(region, SpectralRegion): return _snr_single_region(spectrum, region=region) # List of regions elif isinstance(region, list): return [_snr_single_region(spectrum, region=reg) for reg in region] def _snr_single_region(spectrum, region=None): """ Calculate the mean S/N of the spectrum based on the flux and uncertainty in the spectrum. Parameters ---------- spectrum : `~specutils.spectra.spectrum1d.Spectrum1D` The spectrum object overwhich the equivalent width will be calculated. region: `~specutils.utils.SpectralRegion` Region within the spectrum to calculate the SNR. Returns ------- snr : `~astropy.units.Quantity` or list (based on region input) Signal to noise ratio of the spectrum or within the regions Notes ----- This is a helper function for the above `snr()` method. """ if region is not None: calc_spectrum = extract_region(spectrum, region) else: calc_spectrum = spectrum if hasattr(spectrum, 'mask') and spectrum.mask is not None: flux = calc_spectrum.flux[~spectrum.mask] uncertainty = calc_spectrum.uncertainty.quantity[~spectrum.mask] else: flux = calc_spectrum.flux uncertainty = calc_spectrum.uncertainty.quantity # the axis=-1 will enable this to run on single-dispersion, single-flux # and single-dispersion, multiple-flux return
np.mean(flux / uncertainty, axis=-1)
numpy.mean
import numpy as np from matplotlib import pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.model_selection import LeaveOneOut from sklearn import linear_model, datasets, metrics from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import pandas as pd import seaborn as sn from sklearn.linear_model import LogisticRegressionCV from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import make_scorer class TrainValTestModel: # create object storing path of data def __init__(self, X_train, X_val, X_test, y_train, y_val, y_test, model_name, cross_val=False): # X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=.2, random_state=0) self.scaler = StandardScaler() self.scaler.fit(X_train) self.X_train = self.scaler.transform(X_train) self.X_val = self.scaler.transform(X_val) self.X_test = self.scaler.transform(X_test) self.y_train = y_train self.y_val = y_val self.y_test = y_test self.model_name = model_name if cross_val == True: best_params = self.tuning_hyperparameter() self.best_params = best_params self.clf = RandomForestClassifier(bootstrap=best_params['bootstrap'], max_depth=best_params['max_depth'], max_features=best_params['max_features'], min_samples_leaf=best_params['min_samples_leaf'], min_samples_split=best_params['min_samples_split'], n_estimators=best_params['n_estimators']) self.clf.fit(self.X_train, self.y_train) else: self.clf = self.get_model(model_name, self.X_train, self.y_train) self.fpr, self.tpr, self.thrshd_roc = self.get_fpr_tpr() # bulid model def get_model(self, model_name, X_train, y_train): # logistic regression if model_name == 'LR': clf = LogisticRegression(solver='lbfgs') # random forest elif model_name == 'RF': clf = RandomForestClassifier(max_depth=2, random_state=0) # C-Support Vector Classification elif model_name == 'GB': clf = clf = GradientBoostingClassifier(random_state=0) clf.fit(X_train, y_train) return clf def tuning_hyperparameter(self): n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)] max_features = ['auto', 'sqrt'] max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] max_depth.append(None) min_samples_split = [2, 5, 10] min_samples_leaf = [1, 2, 4] bootstrap = [True, False] # Create the random grid random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} def my_scorer(clf, X, y_true): y_pred_proba = clf.predict_proba(X) y_pred = np.where(y_pred_proba > 0.5, 1, 0) error = np.sum(np.logical_and(y_pred != y_true, y_pred == 1)) / np.count_nonzero(y_true == 0) return error def fp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 1] score = make_scorer(fp) rf = RandomForestClassifier() rf_random = RandomizedSearchCV(estimator=rf, param_distributions=random_grid, scoring=score, n_iter=100, cv=4, verbose=2, random_state=42, n_jobs=-1) # Fit the random search model rf_random.fit(self.X_train, self.y_train) return rf_random.best_params_ def get_fpr_tpr(self): prob_on_val = self.clf.predict_proba(self.X_val)[:,1] fpr, tpr, thrshd_roc = metrics.roc_curve(self.y_val, prob_on_val, pos_label=1) return fpr, tpr, thrshd_roc # see the metrics of model def get_metrics(self, thresh=None): if thresh == None: p = 0.5 else: p = thresh pred_proba_df = pd.DataFrame(self.clf.predict_proba(self.X_test)[:,1]) y_pred = pred_proba_df.applymap(lambda x: 1 if x>p else 0).to_numpy().reshape((pred_proba_df.shape[0])) print("%s:\n%s\n" % (self.model_name, metrics.classification_report(self.y_test, y_pred))) # get the indices of important features def get_important_feature(self): # logistic regression if self.model_name == 'LR': importance = self.clf.coef_[0] # random forest elif self.model_name == 'RF': importance = self.clf.feature_importances_ # gradient boosting elif self.model_name == 'GB': importance = self.clf.feature_importances_ return importance # false-positive rate def test_false_positive(self): # choose threshold pred_proba_df = pd.DataFrame(self.clf.predict_proba(self.X_test)[:,1]) threshold_list = [0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,.7,.75,.8,.85,.9, .95,.99] for i in threshold_list: print ('\n******** For i = {} ******'.format(i)) y_test_pred = pred_proba_df.applymap(lambda x: 1 if x>i else 0).to_numpy().reshape( (pred_proba_df.shape[0])) dataset = {'y_Actual': self.y_test, 'y_Predicted': y_test_pred } df = pd.DataFrame(dataset, columns=['y_Actual','y_Predicted']) confusion_matrix = pd.crosstab(df['y_Actual'], df['y_Predicted'], rownames= ['Actual'], colnames=['Predicted']) plt.show() sn.heatmap(confusion_matrix, annot=True) # get the index of false-positive image def false_positive_index(self, clf, X_test, y_test, threshold): pred_proba_df = pd.DataFrame(clf.predict_proba(X_test)[:,1]) y_test_pred = pred_proba_df.applymap(lambda x: 1 if x>threshold else 0).to_numpy().reshape( (pred_proba_df.shape[0])) false_positives = np.logical_and(y_test != y_test_pred, y_test_pred == 1) return np.arange(len(y_test))[false_positives] # get the index of false-negtive image def false_negtive_index(self, clf, X_test, y_test, threshold): pred_proba_df = pd.DataFrame(clf.predict_proba(X_test)[:,1]) y_test_pred = pred_proba_df.applymap(lambda x: 1 if x>threshold else 0).to_numpy().reshape( (pred_proba_df.shape[0])) false_negtives = np.logical_and(y_test != y_test_pred, y_test_pred == 0) return np.arange(len(y_test))[false_negtives] class LeaveOneOutModel: # create object storing path of data def __init__(self, X_train, X_test, y_train, y_test, model_name): self.scaler = StandardScaler() self.scaler.fit(X_train) self.X_train = self.scaler.transform(X_train) self.X_test = self.scaler.transform(X_test) self.y_train = y_train self.y_test = y_test self.model_name = model_name self.bst_thresh, self._y_prob, self.fpr, self.tpr, self.thrshd_roc = self.leave_one_out_cv_v1(self.X_train, self.y_train, self.model_name) self.clf = self.get_model(model_name, self.X_train, self.y_train) def leave_one_out_cv_v0(self, X, y, model_name): # choose threshold threshold_list = np.arange(0.01, 1, 0.01) score =
np.zeros(threshold_list.shape)
numpy.zeros
#%% import sys import os os.chdir(os.path.dirname(os.getcwd())) # make directory one step up the current directory sys.path.append('/Users/mwinding/repos/maggot_models') from pymaid_creds import url, name, password, token import pymaid rm = pymaid.CatmaidInstance(url, token, name, password) import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 # font settings plt.rcParams['font.size'] = 5 plt.rcParams['font.family'] = 'arial' from src.data import load_metagraph from src.visualization import CLASS_COLOR_DICT, adjplot from src.traverse import Cascade, to_transmission_matrix from src.traverse import TraverseDispatcher from src.visualization import matrixplot import connectome_tools.cascade_analysis as casc import connectome_tools.celltype as ct import connectome_tools.process_matrix as pm adj_ad = pm.Promat.pull_adj(type_adj='ad', subgraph='brain') #%% # pull sensory annotations and then pull associated skids order = ['olfactory', 'gustatory-external', 'gustatory-pharyngeal', 'enteric', 'thermo-warm', 'thermo-cold', 'visual', 'noci', 'mechano-Ch', 'mechano-II/III', 'proprio', 'respiratory'] sens = [ct.Celltype(name, ct.Celltype_Analyzer.get_skids_from_meta_annotation(f'mw {name}')) for name in order] input_skids_list = [x.get_skids() for x in sens] input_skids = ct.Celltype_Analyzer.get_skids_from_meta_meta_annotation('mw brain sensory modalities') output_names = pymaid.get_annotated('mw brain outputs').name output_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain outputs').name)) output_skids = [val for sublist in output_skids_list for val in sublist] #%% # cascades from each sensory modality import pickle p = 0.05 max_hops = 10 n_init = 1000 simultaneous = True adj=adj_ad ''' input_hit_hist_list = casc.Cascade_Analyzer.run_cascades_parallel(source_skids_list=input_skids_list, source_names = order, stop_skids=output_skids, adj=adj_ad, p=p, max_hops=max_hops, n_init=n_init, simultaneous=simultaneous) pickle.dump(input_hit_hist_list, open('data/cascades/sensory-modality-cascades_1000-n_init.p', 'wb')) ''' input_hit_hist_list = pickle.load(open('data/cascades/sensory-modality-cascades_1000-n_init.p', 'rb')) # %% # plot sensory cascades raw fig, axs = plt.subplots(len(input_hit_hist_list), 1, figsize=(10, 20)) fig.tight_layout(pad=2.0) for i, hit_hist in enumerate(input_hit_hist_list): ax = axs[i] sns.heatmap(hit_hist.skid_hit_hist, ax=ax) ax.set_xlabel(hit_hist.get_name()) plt.savefig('cascades/plots/sensory_modality_signals.pdf', format='pdf', bbox_inches='tight') os.system('say "code executed"') # %% # how close are descending neurons to sensory? # load output types dVNC = pymaid.get_skids_by_annotation('mw dVNC') dSEZ = pymaid.get_skids_by_annotation('mw dSEZ') RGN = pymaid.get_skids_by_annotation('mw RGN') # generate Cascade_Analyzer objects containing name of pathway and the hit_hist to each output type dVNC_hits = [casc.Cascade_Analyzer(f'{hit_hist.get_name()}-dVNC', hit_hist.skid_hit_hist.loc[dVNC, :]) for hit_hist in input_hit_hist_list] dSEZ_hits = [casc.Cascade_Analyzer(f'{hit_hist.get_name()}-dSEZ', hit_hist.skid_hit_hist.loc[dSEZ, :]) for hit_hist in input_hit_hist_list] RGN_hits = [casc.Cascade_Analyzer(f'{hit_hist.get_name()}-RGN', hit_hist.skid_hit_hist.loc[RGN, :]) for hit_hist in input_hit_hist_list] dVNC_hits = [casc.Cascade_Analyzer([hit_hist.get_name(), 'dVNC'], hit_hist.skid_hit_hist.loc[dVNC, :]) for hit_hist in input_hit_hist_list] dSEZ_hits = [casc.Cascade_Analyzer([hit_hist.get_name(), 'dSEZ'], hit_hist.skid_hit_hist.loc[dSEZ, :]) for hit_hist in input_hit_hist_list] RGN_hits = [casc.Cascade_Analyzer([hit_hist.get_name(), 'RGN'], hit_hist.skid_hit_hist.loc[RGN, :]) for hit_hist in input_hit_hist_list] # max possible hits that all output neuron types could receive max_dVNC_hits = len(dVNC_hits[0].skid_hit_hist.index)*n_init max_dSEZ_hits = len(dVNC_hits[0].skid_hit_hist.index)*n_init max_RGN_hits = len(dVNC_hits[0].skid_hit_hist.index)*n_init # organize data so that each sens -> dVNC, dSEZ, RGN is intercalated sens_output_data = list(zip(dVNC_hits, dSEZ_hits, RGN_hits)) sens_output_data = [x for sublist in sens_output_data for x in sublist] sens_output_df = pd.DataFrame([x.skid_hit_hist.sum(axis=0) for x in sens_output_data]) # set up multiindex sens_output_df['source']=[x.get_name()[0] for x in sens_output_data] sens_output_df['target']=[x.get_name()[1] for x in sens_output_data] sens_output_df = sens_output_df.set_index(['source', 'target']) # normalize by max possible input to each output type (num neurons * n_init) sens_output_df_plot = sens_output_df.copy() sens_output_df_plot.loc[(slice(None), 'dVNC'), :] = sens_output_df_plot.loc[(slice(None), 'dVNC'), :]/max_dVNC_hits sens_output_df_plot.loc[(slice(None), 'dSEZ'), :] = sens_output_df_plot.loc[(slice(None), 'dSEZ'), :]/max_dSEZ_hits sens_output_df_plot.loc[(slice(None), 'RGN'), :] = sens_output_df_plot.loc[(slice(None), 'RGN'), :]/max_RGN_hits import cmasher as cmr fig, ax = plt.subplots(1, 1, figsize=(1.5, 2)) fig.tight_layout(pad=3.0) vmax = 0.35 cmap = cmr.torch sns.heatmap(sens_output_df_plot, ax = ax, cmap = cmap, vmax=vmax) ax.set_title('Signal to brain outputs') ax.set(xlim = (0, 11)) plt.savefig('cascades/plots/sensory_modality_signals_to_output.pdf', format='pdf', bbox_inches='tight') # determine mean/median hop distance from sens -> output def counts_to_list(count_list): expanded_counts = [] for i, count in enumerate(count_list): expanded = np.repeat(i, count) expanded_counts.append(expanded) return([x for sublist in expanded_counts for x in sublist]) all_sens_output_dist = [] for row in sens_output_df.iterrows(): list_hits = counts_to_list(row[1]) all_sens_output_dist.append([row[0][0], row[0][1], np.mean(list_hits), np.median(list_hits)]) all_sens_output_dist = pd.DataFrame(all_sens_output_dist, columns = ['source', 'target', 'mean_hop', 'median_hop']) # %% # plotting visits by modality to each descending to VNC neuron pair # supplemental figure dVNC_hits_summed = [pd.DataFrame(x.skid_hit_hist.iloc[:, 0:8].sum(axis=1), columns=[x.get_name()[0]]) for x in dVNC_hits] dVNC_hits_summed = pd.concat(dVNC_hits_summed, axis=1) dVNC_hits_pairwise = pm.Promat.convert_df_to_pairwise(dVNC_hits_summed) dSEZ_hits_summed = [pd.DataFrame(x.skid_hit_hist.iloc[:, 0:8].sum(axis=1), columns=[x.get_name()[0]]) for x in dSEZ_hits] dSEZ_hits_summed = pd.concat(dSEZ_hits_summed, axis=1) dSEZ_hits_pairwise = pm.Promat.convert_df_to_pairwise(dSEZ_hits_summed) RGN_hits_summed = [pd.DataFrame(x.skid_hit_hist.iloc[:, 0:8].sum(axis=1), columns=[x.get_name()[0]]) for x in RGN_hits] RGN_hits_summed = pd.concat(RGN_hits_summed, axis=1) RGN_hits_pairwise = pm.Promat.convert_df_to_pairwise(RGN_hits_summed) fig, axs = plt.subplots( 3, 1, figsize=(8, 8) ) fig.tight_layout(pad=3.0) ax = axs[0] ax.get_xaxis().set_visible(False) ax.set_title('Signal to Individual VNC Descending Neurons') sns.heatmap(dVNC_hits_pairwise.T, ax = ax) ax = axs[1] ax.get_xaxis().set_visible(False) ax.set_title('Signal to Individual SEZ Descending Neurons') sns.heatmap(dSEZ_hits_pairwise.T, ax = ax) ax = axs[2] ax.set_xlabel('Individual Ring Gland Neurons') ax.get_xaxis().set_visible(False) ax.set_title('Signal to Individual Ring Gland Neurons') sns.heatmap(RGN_hits_pairwise.T, ax = ax) plt.savefig('cascades/plots/signal_to_individual_outputs.pdf', format='pdf', bbox_inches='tight') #%% # alternative clustermap plot of descending neurons # supplemental figure plot vmax = n_init fig = sns.clustermap(dVNC_hits_pairwise.T, row_cluster = False, figsize = (8, 4), vmax=vmax) ax = fig.ax_heatmap ax.set_xlabel('Individual dVNCs') ax.set_xticks([]) fig.savefig('cascades/plots/signal_to_individual_dVNCs.pdf', format='pdf', bbox_inches='tight') fig = sns.clustermap(dSEZ_hits_pairwise.T, row_cluster = False, figsize = (8, 4), vmax=vmax) ax = fig.ax_heatmap ax.set_xlabel('Individual dSEZs') ax.set_xticks([]) fig.savefig('cascades/plots/signal_to_individual_dSEZs.pdf', format='pdf', bbox_inches='tight') fig = sns.clustermap(RGN_hits_pairwise.T, row_cluster = False, figsize = (8, 4), vmax=vmax) ax = fig.ax_heatmap ax.set_xlabel('Individual RG neurons') ax.set_xticks([]) fig.savefig('cascades/plots/signal_to_individual_RGs.pdf', format='pdf', bbox_inches='tight') # %% # distribution summary of signal to output neurons dVNC_dist = (dVNC_hits_pairwise.groupby('pair_id').sum()>=n_init).sum(axis=1) dSEZ_dist = (dSEZ_hits_pairwise.groupby('pair_id').sum()>=n_init).sum(axis=1) RGN_dist = (RGN_hits_pairwise.groupby('pair_id').sum()>=n_init).sum(axis=1) dist_data = pd.DataFrame(list(zip(dVNC_dist.values, ['dVNC']*len(dVNC_dist))) + list(zip(dSEZ_dist.values, ['dSEZ']*len(dSEZ_dist))) + list(zip(RGN_dist.values, ['RGN']*len(RGN_dist))), columns = ['combinations', 'type']) fig, ax = plt.subplots(1,1, figsize=(4,4)) sns.stripplot(data = dist_data, y = 'combinations', x='type', s=1, ax=ax) fig.savefig('cascades/plots/signal_to_outputs_dist.pdf', format='pdf', bbox_inches='tight') fig, ax = plt.subplots(1,1, figsize=(4,4)) sns.histplot(data = dVNC_dist-0.5, ax=ax, bins=len(sens)) fig.savefig('cascades/plots/signal_to_dVNC_dist.pdf', format='pdf', bbox_inches='tight') fig, ax = plt.subplots(1,1, figsize=(4,4)) sns.histplot(data = dSEZ_dist-0.5, ax=ax, bins=len(sens)) fig.savefig('cascades/plots/signal_to_dSEZ_dist.pdf', format='pdf', bbox_inches='tight') fig, ax = plt.subplots(1,1, figsize=(4,4)) sns.histplot(data = RGN_dist-0.5, ax=ax, bins=len(sens)) fig.savefig('cascades/plots/signal_to_RGN_dist.pdf', format='pdf', bbox_inches='tight') # %% # parallel coordinates plots from pandas.plotting import parallel_coordinates linewidth = 0.75 alpha = 0.8 very_low_color = '#D7DF23' low_color = '#C2DD26' med_color = '#8DC63F' high_color = '#00A651' data = dVNC_hits_pairwise.groupby('pair_id').sum() very_low = (dVNC_dist<=1) low = (dVNC_dist>1) & (dVNC_dist<4) med = (dVNC_dist>=4) & (dVNC_dist<8) high = dVNC_dist>=8 data['type'] = [0]*len(data.index) data.loc[high, 'type'] = ['high']*len(data.loc[high, 'type']) data.loc[med, 'type'] = ['med']*len(data.loc[med, 'type']) data.loc[low, 'type'] = ['low']*len(data.loc[low, 'type']) data.loc[very_low, 'type'] = ['very_low']*len(data.loc[very_low, 'type']) data = data.sort_values(by='type') fig, ax = plt.subplots(1,1, figsize=(4,4)) parallel_coordinates(data, class_column='type', color = [high_color, med_color, low_color, very_low_color], alpha=alpha, linewidth=linewidth) fig.savefig('cascades/plots/signal-to-dVNC_parallel-coordinates.pdf', format='pdf', bbox_inches='tight') data = dSEZ_hits_pairwise.groupby('pair_id').sum() very_low = (dSEZ_dist<=1) low = (dSEZ_dist>1) & (dSEZ_dist<4) med = (dSEZ_dist>=4) & (dSEZ_dist<8) high = dSEZ_dist>=8 data['type'] = [0]*len(data.index) data.loc[high, 'type'] = ['high']*len(data.loc[high, 'type']) data.loc[med, 'type'] = ['med']*len(data.loc[med, 'type']) data.loc[low, 'type'] = ['low']*len(data.loc[low, 'type']) data.loc[very_low, 'type'] = ['very_low']*len(data.loc[very_low, 'type']) data = data.sort_values(by='type') fig, ax = plt.subplots(1,1, figsize=(4,4)) parallel_coordinates(data, class_column='type', color = [high_color, low_color, med_color, very_low_color], alpha=alpha, linewidth=linewidth) fig.savefig('cascades/plots/signal-to-dSEZ_parallel-coordinates.pdf', format='pdf', bbox_inches='tight') data = RGN_hits_pairwise.groupby('pair_id').sum() very_low = (RGN_dist<=1) low = (RGN_dist>1) & (RGN_dist<4) med = (RGN_dist>=4) & (RGN_dist<8) high = RGN_dist>=8 data['type'] = [0]*len(data.index) data.loc[high, 'type'] = ['high']*len(data.loc[high, 'type']) data.loc[med, 'type'] = ['med']*len(data.loc[med, 'type']) data.loc[low, 'type'] = ['low']*len(data.loc[low, 'type']) data.loc[very_low, 'type'] = ['very_low']*len(data.loc[very_low, 'type']) data = data.sort_values(by='type') fig, ax = plt.subplots(1,1, figsize=(4,4)) parallel_coordinates(data, class_column='type', color = [high_color, low_color, very_low_color, med_color], alpha=alpha, linewidth=linewidth) fig.savefig('cascades/plots/signal-to-RGN_parallel-coordinates.pdf', format='pdf', bbox_inches='tight') # %% # PCA of descending input from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA data = dVNC_hits_pairwise.groupby('pair_id').sum() data['type'] = ['dVNC']*len(data) data2 = dSEZ_hits_pairwise.groupby('pair_id').sum() data2['type'] = ['dSEZ']*len(data2) data3 = RGN_hits_pairwise.groupby('pair_id').sum() data3['type'] = ['RGN']*len(data3) data = pd.concat([data, data2, data3]) x = data.drop(columns='type').values x = StandardScaler().fit_transform(x) pca = PCA(n_components=2) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data = principalComponents , columns = ['pc1', 'pc2'], index=data.index) principalDf['type'] = data['type'] ylim = (-2.25, 2.25) xlim = (-5, 6) size = 3 alpha = 0.75 # plot dVNC PCA plot_data = principalDf[principalDf.type=='dVNC'] low = (dVNC_dist<4) med = (dVNC_dist>=4) & (dVNC_dist<10) high = dVNC_dist>=10 plot_data.loc[high, 'type'] = ['high']*len(plot_data.loc[high, 'type']) plot_data.loc[med, 'type'] = ['med']*len(plot_data.loc[med, 'type']) plot_data.loc[low, 'type'] = ['low']*len(plot_data.loc[low, 'type']) fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.scatterplot(data = plot_data, x='pc1', y='pc2', hue='type', hue_order = ['high', 'med', 'low'], s=size, linewidth=0, alpha=alpha, ax=ax) ax.set(xlim=xlim, ylim=ylim) fig.savefig('cascades/plots/signal-to-dVNC_PCA.pdf', format='pdf', bbox_inches='tight') # plot dSEZ PCA plot_data = principalDf[principalDf.type=='dSEZ'] low = (dSEZ_dist<4) med = (dSEZ_dist>=4) & (dSEZ_dist<10) high = dSEZ_dist>=10 plot_data.loc[high, 'type'] = ['high']*len(plot_data.loc[high, 'type']) plot_data.loc[med, 'type'] = ['med']*len(plot_data.loc[med, 'type']) plot_data.loc[low, 'type'] = ['low']*len(plot_data.loc[low, 'type']) fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.scatterplot(data = plot_data, x='pc1', y='pc2', hue='type', hue_order = ['high', 'med', 'low'], s=size, linewidth=0, alpha=alpha, ax=ax) ax.set(xlim=xlim, ylim=ylim) fig.savefig('cascades/plots/signal-to-dSEZ_PCA.pdf', format='pdf', bbox_inches='tight') # plot RGN PCA plot_data = principalDf[principalDf.type=='RGN'] low = (RGN_dist<4) med = (RGN_dist>=4) & (RGN_dist<10) high = RGN_dist>=10 plot_data.loc[high, 'type'] = ['high']*len(plot_data.loc[high, 'type']) plot_data.loc[med, 'type'] = ['med']*len(plot_data.loc[med, 'type']) plot_data.loc[low, 'type'] = ['low']*len(plot_data.loc[low, 'type']) fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.scatterplot(data = plot_data, x='pc1', y='pc2', hue='type', hue_order = ['high', 'med', 'low'], s=size, linewidth=0, alpha=alpha, ax=ax) ax.set(xlim=xlim, ylim=ylim) fig.savefig('cascades/plots/signal-to-RGN_PCA.pdf', format='pdf', bbox_inches='tight') # %% # bar plot of high, med, low categories for each type of output integration_data = [['dVNC', 'high', sum(dVNC_dist>=10)], ['dVNC', 'med', sum((dVNC_dist>=4) & (dVNC_dist<10))], ['dVNC', 'low', sum(dVNC_dist<4)], ['dSEZ', 'high', sum(dSEZ_dist>=10)], ['dSEZ', 'med', sum((dSEZ_dist>=4) & (dSEZ_dist<10))], ['dSEZ', 'low', sum(dSEZ_dist<4)], ['RGN', 'high', sum(RGN_dist>=10)], ['RGN', 'med', sum((RGN_dist>=4) & (RGN_dist<10))], ['RGN', 'low', sum(RGN_dist<4)]] integration_data = pd.DataFrame(integration_data, columns = ['class', 'type', 'count']) fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.barplot(data = integration_data, x='class', y='count', hue='type', hue_order = ['high', 'med', 'low'], ax=ax) fig.savefig('cascades/plots/signal-integration-counts_dVNCs.pdf', format='pdf', bbox_inches='tight') # %% ########## # **** Note Well: REALLY old code below, deprecated or never used in paper **** ########## # %% # num of descendings at each level # this assumes that thresholding per node is useful; it might not be threshold = 50 num_dVNC_dsSens = pd.DataFrame(([np.array(dVNC_ORN_hit>threshold).sum(axis = 0), np.array(dVNC_AN_hit>threshold).sum(axis = 0), np.array(dVNC_MN_hit>threshold).sum(axis = 0), np.array(dVNC_A00c_hit>threshold).sum(axis = 0), np.array(dVNC_vtd_hit>threshold).sum(axis = 0), np.array(dVNC_thermo_hit>threshold).sum(axis = 0), np.array(dVNC_photo_hit>threshold).sum(axis = 0)]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) num_dSEZ_dsSens = pd.DataFrame(([np.array(dSEZ_ORN_hit>threshold).sum(axis = 0), np.array(dSEZ_AN_hit>threshold).sum(axis = 0), np.array(dSEZ_MN_hit>threshold).sum(axis = 0), np.array(dSEZ_A00c_hit>threshold).sum(axis = 0), np.array(dSEZ_vtd_hit>threshold).sum(axis = 0), np.array(dSEZ_thermo_hit>threshold).sum(axis = 0), np.array(dSEZ_photo_hit>threshold).sum(axis = 0)]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) num_RG_dsSens = pd.DataFrame(([np.array(RG_ORN_hit>threshold).sum(axis = 0), np.array(RG_AN_hit>threshold).sum(axis = 0), np.array(RG_MN_hit>threshold).sum(axis = 0), np.array(RG_A00c_hit>threshold).sum(axis = 0), np.array(RG_vtd_hit>threshold).sum(axis = 0), np.array(RG_thermo_hit>threshold).sum(axis = 0), np.array(RG_photo_hit>threshold).sum(axis = 0)]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) fig, axs = plt.subplots( 3, 1, figsize=(8, 8) ) fig.tight_layout(pad=3.0) vmax = 50 cmap = cmr.heat ax = axs[0] ax.set_title('Number of VNC Descending Neurons downstream of Sensory Signal') sns.heatmap(num_dVNC_dsSens, ax = ax, vmax = vmax, rasterized=True, cmap = cmap) ax.set(xlim = (0, 13)) ax = axs[1] ax.set_title('Number of SEZ Descending Neurons downstream of Sensory Signal') sns.heatmap(num_dSEZ_dsSens, ax = ax, vmax = vmax, rasterized=True, cmap = cmap) ax.set(xlim = (0, 13)) ax = axs[2] ax.set_title('Number of Ring Gland Neurons downstream of Sensory Signal') sns.heatmap(num_RG_dsSens, ax = ax, vmax = vmax, rasterized=True, cmap = cmap) ax.set_xlabel('Hops from sensory') ax.set(xlim = (0, 13)) plt.savefig('cascades/plots/number_outputs_ds_each_sensory_modality.pdf', format='pdf', bbox_inches='tight') # %% # When modality are each outputs associated with? dVNC_hits = pd.DataFrame(([ dVNC_skids, dVNC_ORN_hit.sum(axis = 1), dVNC_AN_hit.sum(axis = 1), dVNC_MN_hit.sum(axis = 1), dVNC_thermo_hit.sum(axis = 1), dVNC_photo_hit.sum(axis = 1), dVNC_A00c_hit.sum(axis = 1), dVNC_vtd_hit.sum(axis = 1)]), index = ['dVNC_skid', 'ORN', 'AN', 'MN', 'thermo', 'photo', 'A00c', 'vtd']) dVNC_hits = dVNC_hits.T dSEZ_hits = pd.DataFrame(([ dSEZ_skids, dSEZ_ORN_hit.sum(axis = 1), dSEZ_AN_hit.sum(axis = 1), dSEZ_MN_hit.sum(axis = 1), dSEZ_thermo_hit.sum(axis = 1), dSEZ_photo_hit.sum(axis = 1), dSEZ_A00c_hit.sum(axis = 1), dSEZ_vtd_hit.sum(axis = 1)]), index = ['dSEZ_skid', 'ORN', 'AN', 'MN', 'thermo', 'photo', 'A00c', 'vtd']) dSEZ_hits = dSEZ_hits.T RG_hits = pd.DataFrame(([ RG_skids, RG_ORN_hit.sum(axis = 1), RG_AN_hit.sum(axis = 1), RG_MN_hit.sum(axis = 1), RG_thermo_hit.sum(axis = 1), RG_photo_hit.sum(axis = 1), RG_A00c_hit.sum(axis = 1), RG_vtd_hit.sum(axis = 1)]), index = ['RG_skid', 'ORN', 'AN', 'MN', 'thermo', 'photo', 'A00c', 'vtd']) RG_hits = RG_hits.T # %% # sensory characterization of each layer of each sensory modality import plotly.express as px from pandas.plotting import parallel_coordinates # replacement if I want to use this later #sensory_profiles = [hit_hist.skid_hit_hist.sum(axis=1).values for hit_hist in input_hit_hist_list] #sensory_profiles = pd.DataFrame(sensory_profiles, index=[hit_hist.get_name() for hit_hist in input_hit_hist_list], columns = input_hit_hist_list[0].skid_hit_hist.index) sensory_profile = pd.DataFrame(([ORN_hit_hist.sum(axis = 1), AN_hit_hist.sum(axis = 1), MN_hit_hist.sum(axis = 1), A00c_hit_hist.sum(axis = 1), vtd_hit_hist.sum(axis = 1), thermo_hit_hist.sum(axis = 1), photo_hit_hist.sum(axis = 1)]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile0 = pd.DataFrame(([ORN_hit_hist[:, 0], AN_hit_hist[:, 0], MN_hit_hist[:, 0], A00c_hit_hist[:, 0], vtd_hit_hist[:, 0], thermo_hit_hist[:, 0], photo_hit_hist[:, 0]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile1 = pd.DataFrame(([ORN_hit_hist[:, 1], AN_hit_hist[:, 1], MN_hit_hist[:, 1], A00c_hit_hist[:, 1], vtd_hit_hist[:, 1], thermo_hit_hist[:, 1], photo_hit_hist[:, 1]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile2 = pd.DataFrame(([ORN_hit_hist[:, 2], AN_hit_hist[:, 2], MN_hit_hist[:, 2], A00c_hit_hist[:, 2], vtd_hit_hist[:, 2], thermo_hit_hist[:, 2], photo_hit_hist[:, 2]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile3 = pd.DataFrame(([ORN_hit_hist[:, 3], AN_hit_hist[:, 3], MN_hit_hist[:, 3], A00c_hit_hist[:, 3], vtd_hit_hist[:, 3], thermo_hit_hist[:, 3], photo_hit_hist[:, 3]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile4 = pd.DataFrame(([ORN_hit_hist[:, 4], AN_hit_hist[:, 4], MN_hit_hist[:, 4], A00c_hit_hist[:, 4], vtd_hit_hist[:, 4], thermo_hit_hist[:, 4], photo_hit_hist[:, 4]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile5 = pd.DataFrame(([ORN_hit_hist[:, 5], AN_hit_hist[:, 5], MN_hit_hist[:, 5], A00c_hit_hist[:, 5], vtd_hit_hist[:, 5], thermo_hit_hist[:, 5], photo_hit_hist[:, 5]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile6 = pd.DataFrame(([ORN_hit_hist[:, 6], AN_hit_hist[:, 6], MN_hit_hist[:, 6], A00c_hit_hist[:, 6], vtd_hit_hist[:, 6], thermo_hit_hist[:, 6], photo_hit_hist[:, 6]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile7 = pd.DataFrame(([ORN_hit_hist[:, 7], AN_hit_hist[:, 7], MN_hit_hist[:, 7], A00c_hit_hist[:, 7], vtd_hit_hist[:, 7], thermo_hit_hist[:, 7], photo_hit_hist[:, 7]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile8 = pd.DataFrame(([ORN_hit_hist[:, 8], AN_hit_hist[:, 8], MN_hit_hist[:, 8], A00c_hit_hist[:, 8], vtd_hit_hist[:, 8], thermo_hit_hist[:, 8], photo_hit_hist[:, 8]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile = sensory_profile.T sensory_profile0 = sensory_profile0.T sensory_profile1 = sensory_profile1.T sensory_profile2 = sensory_profile2.T sensory_profile3 = sensory_profile3.T sensory_profile4 = sensory_profile4.T sensory_profile5 = sensory_profile5.T sensory_profile6 = sensory_profile6.T sensory_profile7 = sensory_profile7.T sensory_profile8 = sensory_profile8.T #%% # multisensory elements per layer (apples to apples) threshold = 25 ORN0_indices = np.where(ORN_hit_hist[:, 0]>threshold)[0] ORN1_indices = np.where(ORN_hit_hist[:, 1]>threshold)[0] ORN2_indices = np.where(ORN_hit_hist[:, 2]>threshold)[0] ORN3_indices = np.where(ORN_hit_hist[:, 3]>threshold)[0] ORN4_indices = np.where(ORN_hit_hist[:, 4]>threshold)[0] ORN5_indices = np.where(ORN_hit_hist[:, 5]>threshold)[0] ORN6_indices = np.where(ORN_hit_hist[:, 6]>threshold)[0] ORN7_indices = np.where(ORN_hit_hist[:, 7]>threshold)[0] ORN8_indices = np.where(ORN_hit_hist[:, 8]>threshold)[0] AN0_indices = np.where(AN_hit_hist[:, 0]>threshold)[0] AN1_indices = np.where(AN_hit_hist[:, 1]>threshold)[0] AN2_indices = np.where(AN_hit_hist[:, 2]>threshold)[0] AN3_indices = np.where(AN_hit_hist[:, 3]>threshold)[0] AN4_indices = np.where(AN_hit_hist[:, 4]>threshold)[0] AN5_indices = np.where(AN_hit_hist[:, 5]>threshold)[0] AN6_indices = np.where(AN_hit_hist[:, 6]>threshold)[0] AN7_indices = np.where(AN_hit_hist[:, 7]>threshold)[0] AN8_indices = np.where(AN_hit_hist[:, 8]>threshold)[0] MN0_indices = np.where(MN_hit_hist[:, 0]>threshold)[0] MN1_indices = np.where(MN_hit_hist[:, 1]>threshold)[0] MN2_indices = np.where(MN_hit_hist[:, 2]>threshold)[0] MN3_indices = np.where(MN_hit_hist[:, 3]>threshold)[0] MN4_indices = np.where(MN_hit_hist[:, 4]>threshold)[0] MN5_indices = np.where(MN_hit_hist[:, 5]>threshold)[0] MN6_indices = np.where(MN_hit_hist[:, 6]>threshold)[0] MN7_indices = np.where(MN_hit_hist[:, 7]>threshold)[0] MN8_indices = np.where(MN_hit_hist[:, 8]>threshold)[0] A00c0_indices = np.where(A00c_hit_hist[:, 0]>threshold)[0] A00c1_indices = np.where(A00c_hit_hist[:, 1]>threshold)[0] A00c2_indices = np.where(A00c_hit_hist[:, 2]>threshold)[0] A00c3_indices = np.where(A00c_hit_hist[:, 3]>threshold)[0] A00c4_indices = np.where(A00c_hit_hist[:, 4]>threshold)[0] A00c5_indices = np.where(A00c_hit_hist[:, 5]>threshold)[0] A00c6_indices = np.where(A00c_hit_hist[:, 6]>threshold)[0] A00c7_indices = np.where(A00c_hit_hist[:, 7]>threshold)[0] A00c8_indices = np.where(A00c_hit_hist[:, 8]>threshold)[0] vtd0_indices = np.where(vtd_hit_hist[:, 0]>threshold)[0] vtd1_indices = np.where(vtd_hit_hist[:, 1]>threshold)[0] vtd2_indices = np.where(vtd_hit_hist[:, 2]>threshold)[0] vtd3_indices = np.where(vtd_hit_hist[:, 3]>threshold)[0] vtd4_indices = np.where(vtd_hit_hist[:, 4]>threshold)[0] vtd5_indices = np.where(vtd_hit_hist[:, 5]>threshold)[0] vtd6_indices = np.where(vtd_hit_hist[:, 6]>threshold)[0] vtd7_indices = np.where(vtd_hit_hist[:, 7]>threshold)[0] vtd8_indices = np.where(vtd_hit_hist[:, 8]>threshold)[0] thermo0_indices = np.where(thermo_hit_hist[:, 0]>threshold)[0] thermo1_indices = np.where(thermo_hit_hist[:, 1]>threshold)[0] thermo2_indices = np.where(thermo_hit_hist[:, 2]>threshold)[0] thermo3_indices = np.where(thermo_hit_hist[:, 3]>threshold)[0] thermo4_indices = np.where(thermo_hit_hist[:, 4]>threshold)[0] thermo5_indices = np.where(thermo_hit_hist[:, 5]>threshold)[0] thermo6_indices = np.where(thermo_hit_hist[:, 6]>threshold)[0] thermo7_indices = np.where(thermo_hit_hist[:, 7]>threshold)[0] thermo8_indices = np.where(thermo_hit_hist[:, 8]>threshold)[0] photo0_indices = np.where(photo_hit_hist[:, 0]>threshold)[0] photo1_indices = np.where(photo_hit_hist[:, 1]>threshold)[0] photo2_indices = np.where(photo_hit_hist[:, 2]>threshold)[0] photo3_indices = np.where(photo_hit_hist[:, 3]>threshold)[0] photo4_indices = np.where(photo_hit_hist[:, 4]>threshold)[0] photo5_indices = np.where(photo_hit_hist[:, 5]>threshold)[0] photo6_indices = np.where(photo_hit_hist[:, 6]>threshold)[0] photo7_indices = np.where(photo_hit_hist[:, 7]>threshold)[0] photo8_indices = np.where(photo_hit_hist[:, 8]>threshold)[0] ORN_profile = pd.DataFrame([np.array(sensory_profile0.iloc[ORN0_indices, :].sum(axis=0)/len(ORN0_indices)), np.array(sensory_profile1.iloc[ORN1_indices, :].sum(axis=0)/len(ORN1_indices)), np.array(sensory_profile2.iloc[ORN2_indices, :].sum(axis=0)/len(ORN2_indices)), np.array(sensory_profile3.iloc[ORN3_indices, :].sum(axis=0)/len(ORN3_indices)), np.array(sensory_profile4.iloc[ORN4_indices, :].sum(axis=0)/len(ORN4_indices)), np.array(sensory_profile5.iloc[ORN5_indices, :].sum(axis=0)/len(ORN5_indices)), np.array(sensory_profile6.iloc[ORN6_indices, :].sum(axis=0)/len(ORN6_indices)), np.array(sensory_profile7.iloc[ORN7_indices, :].sum(axis=0)/len(ORN7_indices)), np.array(sensory_profile8.iloc[ORN8_indices, :].sum(axis=0)/len(ORN8_indices))], index = ['ORN0', 'ORN1', 'ORN2', 'ORN3', 'ORN4', 'ORN5', 'ORN6', 'ORN7', 'ORN8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) AN_profile = pd.DataFrame([np.array(sensory_profile0.iloc[AN0_indices, :].sum(axis=0)/len(AN0_indices)), np.array(sensory_profile1.iloc[AN1_indices, :].sum(axis=0)/len(AN1_indices)), np.array(sensory_profile2.iloc[AN2_indices, :].sum(axis=0)/len(AN2_indices)), np.array(sensory_profile3.iloc[AN3_indices, :].sum(axis=0)/len(AN3_indices)), np.array(sensory_profile4.iloc[AN4_indices, :].sum(axis=0)/len(AN4_indices)), np.array(sensory_profile5.iloc[AN5_indices, :].sum(axis=0)/len(AN5_indices)), np.array(sensory_profile6.iloc[AN6_indices, :].sum(axis=0)/len(AN6_indices)), np.array(sensory_profile7.iloc[AN7_indices, :].sum(axis=0)/len(AN7_indices)), np.array(sensory_profile8.iloc[AN8_indices, :].sum(axis=0)/len(AN8_indices))], index = ['AN0', 'AN1', 'AN2', 'AN3', 'AN4', 'AN5', 'AN6', 'AN7', 'AN8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) MN_profile = pd.DataFrame([np.array(sensory_profile0.iloc[MN0_indices, :].sum(axis=0)/len(MN0_indices)), np.array(sensory_profile1.iloc[MN1_indices, :].sum(axis=0)/len(MN1_indices)), np.array(sensory_profile2.iloc[MN2_indices, :].sum(axis=0)/len(MN2_indices)), np.array(sensory_profile3.iloc[MN3_indices, :].sum(axis=0)/len(MN3_indices)), np.array(sensory_profile4.iloc[MN4_indices, :].sum(axis=0)/len(MN4_indices)), np.array(sensory_profile5.iloc[MN5_indices, :].sum(axis=0)/len(MN5_indices)), np.array(sensory_profile6.iloc[MN6_indices, :].sum(axis=0)/len(MN6_indices)), np.array(sensory_profile7.iloc[MN7_indices, :].sum(axis=0)/len(MN7_indices)), np.array(sensory_profile8.iloc[MN8_indices, :].sum(axis=0)/len(MN8_indices))], index = ['MN0', 'MN1', 'MN2', 'MN3', 'MN4', 'MN5', 'MN6', 'MN7', 'MN8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) A00c_profile = pd.DataFrame([np.array(sensory_profile0.iloc[A00c0_indices, :].sum(axis=0)/len(A00c0_indices)), np.array(sensory_profile1.iloc[A00c1_indices, :].sum(axis=0)/len(A00c1_indices)), np.array(sensory_profile2.iloc[A00c2_indices, :].sum(axis=0)/len(A00c2_indices)), np.array(sensory_profile3.iloc[A00c3_indices, :].sum(axis=0)/len(A00c3_indices)), np.array(sensory_profile4.iloc[A00c4_indices, :].sum(axis=0)/len(A00c4_indices)), np.array(sensory_profile5.iloc[A00c5_indices, :].sum(axis=0)/len(A00c5_indices)), np.array(sensory_profile6.iloc[A00c6_indices, :].sum(axis=0)/len(A00c6_indices)), np.array(sensory_profile7.iloc[A00c7_indices, :].sum(axis=0)/len(A00c7_indices)), np.array(sensory_profile8.iloc[A00c8_indices, :].sum(axis=0)/len(A00c8_indices))], index = ['A00c0', 'A00c1', 'A00c2', 'A00c3', 'A00c4', 'A00c5', 'A00c6', 'A00c7', 'A00c8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) vtd_profile = pd.DataFrame([np.array(sensory_profile0.iloc[vtd0_indices, :].sum(axis=0)/len(vtd0_indices)), np.array(sensory_profile1.iloc[vtd1_indices, :].sum(axis=0)/len(vtd1_indices)), np.array(sensory_profile2.iloc[vtd2_indices, :].sum(axis=0)/len(vtd2_indices)), np.array(sensory_profile3.iloc[vtd3_indices, :].sum(axis=0)/len(vtd3_indices)), np.array(sensory_profile4.iloc[vtd4_indices, :].sum(axis=0)/len(vtd4_indices)), np.array(sensory_profile5.iloc[vtd5_indices, :].sum(axis=0)/len(vtd5_indices)), np.array(sensory_profile6.iloc[vtd6_indices, :].sum(axis=0)/len(vtd6_indices)), np.array(sensory_profile7.iloc[vtd7_indices, :].sum(axis=0)/len(vtd7_indices)), np.array(sensory_profile8.iloc[vtd8_indices, :].sum(axis=0)/len(vtd8_indices))], index = ['vtd0', 'vtd1', 'vtd2', 'vtd3', 'vtd4', 'vtd5', 'vtd6', 'vtd7', 'vtd8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) thermo_profile = pd.DataFrame([np.array(sensory_profile0.iloc[thermo0_indices, :].sum(axis=0)/len(thermo0_indices)), np.array(sensory_profile1.iloc[thermo1_indices, :].sum(axis=0)/len(thermo1_indices)), np.array(sensory_profile2.iloc[thermo2_indices, :].sum(axis=0)/len(thermo2_indices)), np.array(sensory_profile3.iloc[thermo3_indices, :].sum(axis=0)/len(thermo3_indices)), np.array(sensory_profile4.iloc[thermo4_indices, :].sum(axis=0)/len(thermo4_indices)), np.array(sensory_profile5.iloc[thermo5_indices, :].sum(axis=0)/len(thermo5_indices)), np.array(sensory_profile6.iloc[thermo6_indices, :].sum(axis=0)/len(thermo6_indices)), np.array(sensory_profile7.iloc[thermo7_indices, :].sum(axis=0)/len(thermo7_indices)), np.array(sensory_profile8.iloc[thermo8_indices, :].sum(axis=0)/len(thermo8_indices))], index = ['thermo0', 'thermo1', 'thermo2', 'thermo3', 'thermo4', 'thermo5', 'thermo6', 'thermo7', 'thermo8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) photo_profile = pd.DataFrame([np.array(sensory_profile0.iloc[photo0_indices, :].sum(axis=0)/len(photo0_indices)), np.array(sensory_profile1.iloc[photo1_indices, :].sum(axis=0)/len(photo1_indices)), np.array(sensory_profile2.iloc[photo2_indices, :].sum(axis=0)/len(photo2_indices)), np.array(sensory_profile3.iloc[photo3_indices, :].sum(axis=0)/len(photo3_indices)), np.array(sensory_profile4.iloc[photo4_indices, :].sum(axis=0)/len(photo4_indices)), np.array(sensory_profile5.iloc[photo5_indices, :].sum(axis=0)/len(photo5_indices)), np.array(sensory_profile6.iloc[photo6_indices, :].sum(axis=0)/len(photo3_indices)), np.array(sensory_profile7.iloc[photo7_indices, :].sum(axis=0)/len(photo4_indices)), np.array(sensory_profile8.iloc[photo8_indices, :].sum(axis=0)/len(photo5_indices))], index = ['photo0', 'photo1', 'photo2', 'photo3', 'photo4', 'photo5', 'photo6', 'photo7', 'photo8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) # %% # plotting multisensory elements per layer x_axis_labels = [0,1,2,3,4,5,6] x_label = 'Hops from Sensory' fig, axs = plt.subplots( 4, 2, figsize=(5, 8) ) fig.tight_layout(pad=2.5) #cbar_ax = axs.add_axes([3, 7, .1, .75]) ax = axs[0, 0] ax.set_title('Signal from ORN') ax.set(xticks=[0, 1, 2, 3, 4, 5]) sns.heatmap(ORN_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[1, 0] ax.set_title('Signal from AN') sns.heatmap(AN_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[2, 0] ax.set_title('Signal from MN') sns.heatmap(MN_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[3, 0] ax.set_title('Signal from A00c') sns.heatmap(A00c_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax.set_xlabel(x_label) ax = axs[0, 1] ax.set_title('Signal from vtd') sns.heatmap(vtd_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[1, 1] ax.set_title('Signal from thermo') sns.heatmap(thermo_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[2, 1] ax.set_title('Signal from photo') sns.heatmap(photo_profile.T.iloc[:,0:7], ax = ax, cbar_ax = axs[3, 1], xticklabels = x_axis_labels, rasterized=True) ax.set_xlabel(x_label) ax = axs[3, 1] ax.set_xlabel('Number of Visits\nfrom Sensory Signal') #ax.axis("off") plt.savefig('cascades/plots/sensory_integration_per_hop.pdf', format='pdf', bbox_inches='tight') # %% # parallel coordinate plot of different sensory layer integration fig, axs = plt.subplots( 6, 7, figsize=(30, 30), sharey = True ) fig.tight_layout(pad=2.5) threshold = 25 alpha = 0.10 #fig.tight_layout(pad=3.0) sensory_profile0_parallel = sensory_profile0 sensory_profile0_parallel['class'] = np.zeros(len(sensory_profile0_parallel)) sensory_profile1_parallel = sensory_profile1 sensory_profile1_parallel['class'] = np.zeros(len(sensory_profile1_parallel)) sensory_profile2_parallel = sensory_profile2 sensory_profile2_parallel['class'] = np.zeros(len(sensory_profile2_parallel)) sensory_profile3_parallel = sensory_profile3 sensory_profile3_parallel['class'] = np.zeros(len(sensory_profile3_parallel)) sensory_profile4_parallel = sensory_profile4 sensory_profile4_parallel['class'] = np.zeros(len(sensory_profile4_parallel)) sensory_profile5_parallel = sensory_profile5 sensory_profile5_parallel['class'] = np.zeros(len(sensory_profile5_parallel)) column = 0 color = 'blue' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(ORN_hit_hist[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(ORN_hit_hist[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(ORN_hit_hist[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[np.where(ORN_hit_hist[:, 3]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[4, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile4_parallel.iloc[np.where(ORN_hit_hist[:, 4]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[5, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile5_parallel.iloc[np.where(ORN_hit_hist[:, 5]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) modality_list = AN_hit_hist column = 1 color = 'orange' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(modality_list[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(modality_list[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(modality_list[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[np.where(modality_list[:, 3]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[4, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile4_parallel.iloc[np.where(modality_list[:, 4]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[5, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile5_parallel.iloc[np.where(modality_list[:, 5]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) modality_list = MN_hit_hist column = 2 color = 'green' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(modality_list[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(modality_list[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(modality_list[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[
np.where(modality_list[:, 3]>threshold)
numpy.where
#!/usr/bin/env python2 # ----------------------------------------------------------------------------- # @author: # <NAME>, Jun 23rd, 2017 # ----------------------------------------------------------------------------- import graph_util.init_path as init_path from util import logger import graph_util.mujoco_parser as mujoco_parser import numpy as np _BASE_DIR = init_path.get_base_dir() def map_output(transfer_env, i_value, added_constant, gnn_option_list): ''' @brief: i_value could be the logstd (1, num_action), policy_output/w (64, num_action), policy_output/b (1, num_action) ''' assert len(gnn_option_list) == 4 i_value = np.transpose(i_value) # make the num_action to the front ienv, oenv = [env + '-v1' for env in transfer_env.split('2')] ienv_info = mujoco_parser.parse_mujoco_graph( ienv, gnn_node_option=gnn_option_list[0], root_connection_option=gnn_option_list[1], gnn_output_option=gnn_option_list[2], gnn_embedding_option=gnn_option_list[3] ) oenv_info = mujoco_parser.parse_mujoco_graph( oenv, gnn_node_option=gnn_option_list[0], root_connection_option=gnn_option_list[1], gnn_output_option=gnn_option_list[2], gnn_embedding_option=gnn_option_list[3] ) if len(i_value.shape) > 1: o_value = np.zeros([len(oenv_info['output_list']), i_value.shape[1]]) else: # the b matrix o_value = np.zeros([len(oenv_info['output_list'])]) assert len(i_value) == len(ienv_info['output_list']) ienv_node_name_list = [node['name'] for node in ienv_info['tree']] for output_id, output_node_id in enumerate(oenv_info['output_list']): # get the name of the joint node_name = oenv_info['tree'][output_node_id]['name'] # if the node is alreay in the input environment? if node_name in ienv_node_name_list: if ienv_node_name_list.index(node_name) not in \ ienv_info['output_list']: logger.warning('Missing joint: {}'.format(node_name)) continue o_value[output_id] = i_value[ ienv_info['output_list'].index( ienv_node_name_list.index(node_name) ) ] else: # the name format: "@type_@name_@number", e.g.: joint_leg_1 assert len(node_name.split('_')) == 3 # find all the repetitive node and calculate the average repetitive_struct_node_list = [ ienv_node_name_list.index(name) for name in ienv_node_name_list if node_name.split('_')[1] == name.split('_')[1] ] num_reptitive_nodes = float(len(repetitive_struct_node_list)) assert len(repetitive_struct_node_list) >= 1 for i_node_id in repetitive_struct_node_list: o_value[output_id] += i_value[ ienv_info['output_list'].index(i_node_id) ] / num_reptitive_nodes return np.transpose(o_value) + added_constant def map_input(transfer_env, i_value, added_constant, gnn_option_list): assert len(gnn_option_list) == 4 ienv, oenv = [env + '-v1' for env in transfer_env.split('2')] ienv_info = mujoco_parser.parse_mujoco_graph( ienv, gnn_node_option=gnn_option_list[0], root_connection_option=gnn_option_list[1], gnn_output_option=gnn_option_list[2], gnn_embedding_option=gnn_option_list[3] ) oenv_info = mujoco_parser.parse_mujoco_graph( oenv, gnn_node_option=gnn_option_list[0], root_connection_option=gnn_option_list[1], gnn_output_option=gnn_option_list[2], gnn_embedding_option=gnn_option_list[3] ) o_value = np.zeros([oenv_info['debug_info']['ob_size'], i_value.shape[1]]) assert len(i_value) == ienv_info['debug_info']['ob_size'] ienv_node_name_list = [node['name'] for node in ienv_info['tree']] for output_id, output_node_id in oenv_info['input_dict'].iteritems(): # get the name of the joint node_name = oenv_info['tree'][output_id]['name'] # if the node is alreay in the input environment? if node_name in ienv_node_name_list: o_value[output_node_id] = i_value[ ienv_info['input_dict'][ ienv_node_name_list.index(node_name) ] ] else: continue return o_value def map_transfer_env_running_mean(ienv, oenv, running_mean_info, observation_size, gnn_node_option, root_connection_option, gnn_output_option, gnn_embedding_option): # parse the mujoco information ienv_info = mujoco_parser.parse_mujoco_graph( ienv, gnn_node_option=gnn_node_option, root_connection_option=root_connection_option, gnn_output_option=gnn_output_option, gnn_embedding_option=gnn_embedding_option ) oenv_info = mujoco_parser.parse_mujoco_graph( oenv, gnn_node_option=gnn_node_option, root_connection_option=root_connection_option, gnn_output_option=gnn_output_option, gnn_embedding_option=gnn_embedding_option ) i_running_mean_info = running_mean_info # we start the running mean by cutting the mean to 0.1 start_coeff = 1 o_running_mean_info = { 'step': i_running_mean_info['step'] * start_coeff, 'mean': np.zeros([observation_size]), 'variance': np.zeros([observation_size]), 'square_sum':
np.zeros([observation_size])
numpy.zeros
#!/usr/bin/python3 import functools import multiprocessing import random import unittest import numpy as np import scipy.special import helper.basis import helper.grid import tests.misc class Test45SpatAdaptiveUP(tests.misc.CustomTestCase): @staticmethod def createDataHermiteHierarchization(p): n, d, b = 4, 1, 0 bases = [helper.basis.HierarchicalWeaklyFundamentalSpline(p, nu=nu) for nu in range((p+1)//2)] grid = helper.grid.RegularSparseBoundary(n, d, b) X, L, I = grid.generate() X, L, I = X.flatten(), L.flatten(), I.flatten() K = np.column_stack((L, I)) f = (lambda X: 0.3 + np.sin(2.3*np.pi*(X-0.2))) fX = f(X) return bases, n, X, L, I, K, fX def hermiteHierarchizationCallback(self, fl, y, l, K, bases): p = bases[0].p nodalIl = helper.grid.getNodalIndices(l) Kl = np.array([self.findLevelIndex(K, l, i) for i in nodalIl]) Xl = helper.grid.getCoordinates(l, nodalIl) for q in range((p+1)//2): Yl = np.zeros_like(Xl) for lp in range(l+1): hierIlp = helper.grid.getHierarchicalIndices(lp) for ip in hierIlp: Yl += (y[self.findLevelIndex(K, lp, ip)] * bases[q].evaluate(lp, ip, Xl)) self.assertAlmostEqual(Yl, fl[l][Kl,q]) @staticmethod def findLevelIndex(K, l, i): lp, ip = helper.grid.convertNodalToHierarchical(l, i) return (np.where((K == (lp, ip)).all(axis=1))[0][0]) @staticmethod def dividedDifference(data): # data in the form # [(a, f(a), df(a), ...), (b, f(b), df(b), ...), ...] if len(data) == 1: return data[0][-1] / scipy.special.factorial(len(data[0]) - 2) else: dataLeft = list(data) if len(dataLeft[-1]) > 2: dataLeft[-1] = dataLeft[-1][:-1] else: del dataLeft[-1] dataRight = list(data) if len(dataRight[0]) > 2: dataRight[0] = dataRight[0][:-1] else: del dataRight[0] return ((Test45SpatAdaptiveUP.dividedDifference(dataRight) - Test45SpatAdaptiveUP.dividedDifference(dataLeft)) / (data[-1][0] - data[0][0])) @staticmethod def hermiteInterpolation1D(xx, data, nu=0): # data in the form # [(a, f(a), df(a), ...), (b, f(b), df(b), ...), ...] yy = np.zeros((len(xx), nu+1)) xProduct = [1] + (nu * [0]) curXData = [] curData = [] for dataPoint in data: x = dataPoint[0] curData.append([x]) for k in range(1, len(dataPoint)): curData[-1].append(dataPoint[k]) coeff = Test45SpatAdaptiveUP.dividedDifference(curData) for q in range(nu, -1, -1): yy[:,q] += coeff * xProduct[q] xProduct[q] = (xProduct[q] * (xx - x) + q * (xProduct[q-1] if q > 0 else 0)) return yy @staticmethod def hermiteHierarchization1D(u, n, K, bases, testCallback=None): N = u.shape[0] p = bases[0].p y = np.zeros((N,)) fl = np.zeros((n+1, N, (p+1)//2)) k0 = Test45SpatAdaptiveUP.findLevelIndex(K, 0, 0) k1 = Test45SpatAdaptiveUP.findLevelIndex(K, 0, 1) for i in range(2): k = (k0 if i == 0 else k1) y[k] = u[k] fl[0][k][0] = u[k] if p > 1: fl[0][k][1] = (u[k1] - u[k0]) for l in range(1, n+1): nodalIl = helper.grid.getNodalIndices(l) Kl = np.array([Test45SpatAdaptiveUP.findLevelIndex(K, l, i) for i in nodalIl]) Xl = helper.grid.getCoordinates(l, nodalIl) hierIl = np.array(helper.grid.getHierarchicalIndices(l)) flm1 = np.zeros((len(nodalIl), (p+1)//2)) evenIl = [i for i in nodalIl if i not in hierIl] flm1[evenIl] = fl[l-1][Kl[evenIl]] for i in hierIl: data = [np.hstack((Xl[i-1], flm1[i-1])), np.hstack((Xl[i+1], flm1[i+1]))] flm1[i] = Test45SpatAdaptiveUP.hermiteInterpolation1D( [Xl[i]], data, nu=(p-1)//2) rl = np.zeros_like(nodalIl, dtype=float) rl[hierIl] = u[Kl[hierIl]] - flm1[hierIl][:,0] A = np.zeros((len(hierIl), len(hierIl))) for i in hierIl: A[:,(i-1)//2] = bases[0].evaluate(l, i, Xl[hierIl]) b = rl[hierIl] yl = np.linalg.solve(A, b) y[Kl[hierIl]] = yl for q in range((p+1)//2): rl = np.zeros_like(nodalIl, dtype=float) for i in hierIl: rl += y[Kl[i]] * bases[q].evaluate(l, i, Xl) for i in nodalIl: fl[l][Kl[i]][q] = flm1[i][q] + rl[i] if testCallback is not None: testCallback(fl, y, l, K, bases) return y @staticmethod def iterativeRefinement(u, y0, Linv, Lp): r = u - Linv(y0) y = np.array(y0) for m in range(1000): if np.max(np.abs(r)) < 1e-10: break y += Lp(r) r -= Linv(Lp(r)) return y, r @staticmethod def getChain(l1, i1, l2, i2, T): chain = [(np.array(l1), np.array(i1))] for t in T: lNext, iNext = chain[-1] lNext, iNext = np.array(lNext), np.array(iNext) lNext[t], iNext[t] = l2[t], i2[t] chain.append((lNext, iNext)) if np.all(chain[-1][0] == l2) and np.all(chain[-1][1] == i2): return chain else: return None def testLemmaIterativeRefinementEquivalent(self): # tested in testPropIterativeRefinementSufficient pass def testPropIterativeRefinementSufficient(self): tol = {"rtol" : 1e-3, "atol" : 1e-8} for p in [1, 3, 5, 7]: basisLin1D = helper.basis.HierarchicalBSpline(1) basis1D = helper.basis.HierarchicalBSpline(p) for d in range(1, 5): f = tests.misc.getObjectiveFunction(d) basisLin = (helper.basis.TensorProduct(basisLin1D, d) if d > 1 else basisLin1D) basis = (helper.basis.TensorProduct(basis1D, d) if d > 1 else basis1D) with self.subTest(p=p, d=d): X, L, I = tests.misc.generateSpatiallyAdaptiveSparseGrid( d, 500) fX = f(X) A = tests.misc.computeInterpolationMatrix(basis, X, L, I) aX = np.linalg.solve(A, fX) ALin = tests.misc.computeInterpolationMatrix(basisLin, X, L, I) ALinInv = np.linalg.inv(ALin) Linv = (lambda x: np.dot(A, x)) Lp = (lambda x: np.dot(ALinInv, x)) u = fX y0 = 2 * np.random.random((X.shape[0],)) - 1 y, r = self.iterativeRefinement(u, y0, Linv, Lp) if np.max(np.abs(r)) < 1e-10: self.assertAlmostEqual(y, aX, **tol) else: self.assertNotAlmostEqual(y, aX, **tol) N = X.shape[0] m = 100 power = np.linalg.matrix_power(np.eye(N) - np.dot(A, ALinInv), m) powerNormRoot = np.power(np.linalg.norm(power), 1/m) if powerNormRoot < 1: self.assertAlmostEqual(y, aX, **tol) def testLemmaDualityUnidirectionalPrinciple(self): n, b = 4, 0 hierarchical = True bases = tests.misc.getExampleHierarchicalBases() for basisName, d, basis in bases: f = tests.misc.getObjectiveFunction(d) modified = ("Modified" in basisName) if "ClenshawCurtis" in basisName: distribution = "clenshawCurtis" else: distribution = "uniform" with self.subTest(basis=basisName, d=d): #X, L, I = tests.misc.generateSpatiallyAdaptiveSparseGrid( # d, 500) grid = (helper.grid.RegularSparse(n, d) if modified else helper.grid.RegularSparseBoundary(n, d, b)) X, L, I = grid.generate() if distribution != "uniform": X = helper.grid.getCoordinates(L, I, distribution=distribution) fX = f(X) u = np.array(fX) K = tests.misc.convertToContinuous(L, I) T = np.arange(d) np.random.shuffle(T) L1D = functools.partial(tests.misc.hierarchize1D, basis, distribution, hierarchical) bases1D = (basis.basis1D if d > 1 else [basis]) y = tests.misc.unidirectionalPrinciple(u, K, T, L1D) TRev = T[::-1] LInv1D = functools.partial(tests.misc.hierarchize1D, basis, distribution, hierarchical, mode="dehierarchize") u2 = tests.misc.unidirectionalPrinciple(y, K, TRev, LInv1D) if d == 1: X, L, I = X.flatten(), L.flatten(), I.flatten() A = tests.misc.computeInterpolationMatrix(basis, X, L, I) aX = np.linalg.solve(A, fX) fX2 =
np.dot(A, y)
numpy.dot
import scipy, numpy, typing, numbers from tequila.objective import Objective from tequila.objective.objective import assign_variable, Variable, format_variable_dictionary, format_variable_list from .optimizer_base import Optimizer from ._containers import _EvalContainer, _GradContainer, _HessContainer, _QngContainer from collections import namedtuple from tequila.utils.exceptions import TequilaException from tequila.circuit.noise import NoiseModel from tequila.tools.qng import get_qng_combos class TequilaScipyException(TequilaException): """ """ pass SciPyReturnType = namedtuple('SciPyReturnType', 'energy angles history scipy_output') class OptimizerSciPy(Optimizer): """ """ gradient_free_methods = ['NELDER-MEAD', 'COBYLA', 'POWELL', 'SLSQP'] gradient_based_methods = ['L-BFGS-B', 'BFGS', 'CG', 'TNC'] hessian_based_methods = ["TRUST-KRYLOV", "NEWTON-CG", "DOGLEG", "TRUST-NCG", "TRUST-EXACT", "TRUST-CONSTR"] @classmethod def available_methods(cls): """:return: All tested available methods""" return cls.gradient_free_methods + cls.gradient_based_methods + cls.hessian_based_methods def __init__(self, method: str = "L-BFGS-B", tol: numbers.Real = None, method_options=None, method_bounds=None, method_constraints=None, silent: bool = True, **kwargs): """ Optimize a circuit to minimize a given objective using scipy See the Optimizer class for all other parameters to initialize :param method: The scipy method passed as string :param use_gradient: do gradient based optimization :param tol: See scipy documentation for the method you picked :param method_options: See scipy documentation for the method you picked :param method_bounds: See scipy documentation for the method you picked :param method_constraints: See scipy documentation for the method you picked :param silent: if False the optimizer print out all evaluated energies :param use_gradient: select if gradients shall be used. Can be done automatically for most methods """ super().__init__(**kwargs) if hasattr(method, "upper"): self.method = method.upper() else: self.method = method self.tol = tol self.method_options = method_options if method_bounds is not None: method_bounds = {assign_variable(k): v for k, v in method_bounds.items()} self.method_bounds = method_bounds self.silent = silent if method_options is None: self.method_options = {'maxiter': self.maxiter} else: self.method_options = method_options if 'maxiter' not in method_options: self.method_options['maxiter'] = self.maxiter self.method_options['disp'] = not silent if method_constraints is None: self.method_constraints = () else: self.method_constraints = method_constraints def __call__(self, objective: Objective, variables: typing.List[Variable] = None, initial_values: typing.Dict[Variable, numbers.Real] = None, gradient: typing.Dict[Variable, Objective] = None, hessian: typing.Dict[typing.Tuple[Variable, Variable], Objective] = None, reset_history: bool = True, *args, **kwargs) -> SciPyReturnType: """ Optimizes with scipy and gives back the optimized angles Get the optimized energies over the history :param objective: The tequila Objective to minimize :param initial_values: initial values for the objective :param return_scipy_output: chose if the full scipy output shall be returned :param reset_history: reset the history before optimization starts (has no effect if self.save_history is False) :return: tuple of optimized energy ,optimized angles and scipy output """ infostring = "{:15} : {}\n".format("Method", self.method) infostring += "{:15} : {} expectationvalues\n".format("Objective", objective.count_expectationvalues()) if gradient is not None: infostring += "{:15} : {}\n".format("grad instr", gradient) if hessian is not None: infostring += "{:15} : {}\n".format("hess_instr", hessian) if self.save_history and reset_history: self.reset_history() active_angles, passive_angles, variables = self.initialize_variables(objective, initial_values, variables) # Transform the initial value directory into (ordered) arrays param_keys, param_values = zip(*active_angles.items()) param_values =
numpy.array(param_values)
numpy.array
# This code is a part of XMM: Generate and Analyse (XGA), a module designed for the XMM Cluster Survey (XCS). # Last modified by <NAME> (<EMAIL>) 25/02/2021, 13:52. Copyright (c) <NAME> import numpy as np from astropy.units import Quantity from ...models.misc import power_law from ...products.relation import ScalingRelation # These are from the classic M-T relation paper published by Arnaud, as R-T relations are a byproduct of M-T relations arnaud_r200 = ScalingRelation(np.array([0.57, 1674]), np.array([0.02, 23]), power_law, Quantity(5, 'keV'), Quantity(1, 'kpc'), r"T$_{\rm{x}}$", "E(z)R$_{200}$", relation_author='Arnaud et al.', relation_year='2005', relation_doi='10.1051/0004-6361:20052856', relation_name=r'R$_{200}$-Temperature', x_lims=Quantity([1, 12], 'keV')) arnaud_r500 = ScalingRelation(np.array([0.57, 1104]), np.array([0.02, 13]), power_law, Quantity(5, 'keV'), Quantity(1, 'kpc'), r"T$_{\rm{x}}$", "E(z)R$_{500}$", relation_author='Arnaud et al.', relation_year='2005', relation_doi='10.1051/0004-6361:20052856', relation_name=r'R$_{500}$-Temperature', x_lims=Quantity([1, 12], 'keV')) arnaud_r2500 = ScalingRelation(np.array([0.56, 491]),
np.array([0.02, 4])
numpy.array
#### Import needed libraries import sys import os import h5py import importlib import numpy as np import torch import NNtools import shutil import time import scipy.spatial as spat from scipy.ndimage import affine_transform import copy from skimage.color import rgb2gray from skimage.transform import warp from skimage.registration import optical_flow_tvl1, optical_flow_ilk import scipy.ndimage as sim import targeted_augmentation_objects torch.autograd.set_detect_anomaly(True) #### This is the grammar to parse the command line parameters sys.path.append("src/neural_network_scripts/models") st=time.time() #assert len(sys.argv)==3 ## Don't change logfn=sys.argv[2]#MB :the address of the log file dataset_path=sys.argv[1]#MB: I think a copy of the whole data set is in this path dataset_name=os.path.split(dataset_path)[1].split(".")[0]#MB first split pathname into a pair.component [1] has no slash props=dataset_name.split("_") NetName=props[-2] print("NetName: "+NetName) runname=props[-1] print("runname: "+runname) identifier="net/"+NetName+"_"+runname GetTrain = int(sys.argv[5])#train on previous training set or not print("GetTrain:"+str(GetTrain)) #### These are the run options ######################################################################## #Run status deformInput=int(sys.argv[3])#determines whether to generate the deformed frames or not if deformInput==1: deformation_trick=True else: deformation_trick=False adiabatic_trick=False verbose=True requeue=False if requeue: usenet="net" skiptrain=False #Run detail channel_num=2 ##directory handling reusedirec="data/data_temp/zmdir" #neural network training parameters batch_size=1 #determines what augmentation method is used and when that is stopped and replaced by affine transformations aug_dict={0:"aff_cut",50:"aff"} num_epochs=int(sys.argv[4])#number of epochs ep_augoff=30 lr=0.003 patience=8 num_workers=8 print_iou_every=10 if deformation_trick: num_additional=int(sys.argv[8])#number of deformed frames you are generating deformation_num_epochs=2 deformation_augdict={0:"aff_cut"} if adiabatic_trick: tnum="all" k_by_func=True if k_by_func: def k_func(): k=list(np.linspace(3,25,150).astype(np.int16)) while np.sum(k)<T: k.append(25) return np.array(k) else: k=6#number or numbers to feed in at once, can be array or int short_memory=4 #nearby memory to train in num_random_memory=10 #randomly added memory num_random_memory_train=5 #randomly added memory from original training data(potential overlap with above) #dset size will be k*short_memory+num_random_memory+num_random_memory_train except for edge cases def adiabatic_epoch_func(iters):#function giving epochs for adiabatic trick min_adia_epochs=7 return max(100//iters,min_adia_epochs) adiabatic_ep_augoff=2 lr_adia=0.0003 patience_adia=2 ######################################################################## ####Check the dependencies dependencies=["W","H","D","C","T","N_neurons"] h5=h5py.File(dataset_path,"r+") for dep in dependencies: if dep not in h5.attrs.keys(): h5.close() assert False, "Dependency "+dep+" not in attributes" T=h5.attrs["T"] if "oldT" in h5.attrs.keys(): origfrNum = h5.attrs["oldT"] else: origfrNum = h5.attrs["T"] C,W,H,D=h5.attrs["C"],h5.attrs["W"],h5.attrs["H"],h5.attrs["D"]#x,y,z ordering channel_num=min(channel_num,C) shape=(channel_num,W,H,D)#x,y,z ordering gridpts=np.moveaxis(np.array(np.meshgrid(np.arange(W),np.arange(H),np.arange(D),indexing="ij")),0,3) grid=gridpts.reshape(-1,3) #### Extra parameters for adiabatic_trick if adiabatic_trick: if k_by_func: k=k_func() elif type(k)==int: nums=(T//k+1) k=np.full(nums,k) assert np.sum(k)>=T def get_lineup_def(): ts=np.arange(T) ds=np.min(np.abs(ts[:,None]-np.array(traininds)[None,:]),axis=1) return np.argsort(ds) def get_pts(i): pts,_=NNtools.get_pts_iou(NNtools.pack(h5,identifier,i,gridpts,num_classes,thres=thres)) pts=pts.astype(np.float32) return pts def updatemask(i,pts): key=identifier+"/"+str(i)+"/pts" if key in h5.keys(): del h5[key] dset=h5.create_dataset(key,(num_classes,3),dtype="f4") dset[...]=pts fr=np.array(h5[str(i)+"/frame"]) mask=NNtools.get_mask(fr[0],pts,num_classes,grid,thres=thres,distthres=distthres).astype(np.int16) h5[identifier+"/"+str(i)+"/predmask"][...]=mask #### logging file function, this is the runtime log def write_log(txt,end="\n"): with open(logfn,"w") as f: f.write(txt+end) logform="Prepare={:04.4f} Train={:04.4f} Predict={:04.4f} GetPoints={:04.4f}" write_log(logform.format(0.,0.,0.,0.)) #### saving backup function def repack():# MB: closes current h5 and opens a new one global h5 h5.close() NNtools.repack(dataset_path) h5=h5py.File(dataset_path,"r+") def save_backup():#MB: closes, saves and opens the file in readable format again global h5 h5.close() shutil.copyfile(dataset_path,dataset_path+"_backup") h5=h5py.File(dataset_path,"r+") #### Handle run related parameters write_log(logform.format(0.,0.,0.,0.)) if requeue: assert identifier in h5.keys(), "requeue requested but identifier not present" log=h5[identifier].attrs["log"] else: if identifier in h5.keys(): del h5[identifier] h5.create_group(identifier) log="" h5[identifier].attrs["log"]=log if reusedirec is not None:#MB: use the dir of masks and frames for training if it already exists datadir=reusedirec else: datadir=os.path.join("data","data_temp",dataset_name) #### The computation loop is all in a try except to delete the data if verbose: print("Preparing...") try: num_classes=h5.attrs["N_neurons"]+1 ####Unpack for fast, multiprocessed loading, unless already unpacked #MB: if not already done, this part saves all the frames and all the masks (which are less than the number of frames.) DeforemeFrames = int(sys.argv[6])#whether or not add the deformed frames? if reusedirec is None or not os.path.exists(reusedirec): # TODO: is this correct? os.mkdir(datadir) os.mkdir(os.path.join(datadir,"frames")) os.mkdir(os.path.join(datadir,"highs")) os.mkdir(os.path.join(datadir,"masks")) Ntot=0 Nans=0 print("unpacking frames")#MB check for i in range(T):# I think this unpacks all the segmented/mask frames -MB write_log(logform.format(min(i/T,0.8),0.,0.,0.)) fr=np.array(h5[str(i)+"/frame"]).astype(np.int16) # TODO: access to dataset with methods? np.save(os.path.join(datadir,"frames","frame_"+str(i)+".npy"),fr) Ntot+=1 if str(i)+"/high" in h5.keys(): np.save(os.path.join(datadir,"highs","high_"+str(i)+".npy"),np.array(h5[str(i)+"/high"]).astype(np.int16)) else: np.save(os.path.join(datadir,"highs","high_"+str(i)+".npy"),np.full((1,W,H),255).astype(np.int16)) if GetTrain == 0: if str(i)+"/mask" in h5.keys(): np.save(os.path.join(datadir,"masks","mask_"+str(i)+".npy"),np.array(h5[str(i)+"/mask"]).astype(np.int16)) Nans+=1 if GetTrain == 1: k = 0#index of the dataset you want to copy, usually 0 for the first datasset NNname = list(h5['net'].keys())#the new network is NNname[0] so use NNname[1] to access previous networks training set traininds = h5['net'][NNname[k]].attrs['traininds']#train indices are saved as an attribute of the first dataset(run w/O deformation) for j in traininds:#placing the training frames and masks in the deformation folder np.save(os.path.join(datadir,"masks","mask_"+str(j)+".npy"),np.array(h5[str(j)+"/mask"]).astype(np.int16)) Nans+=1 if DeforemeFrames == 1: num_added_frames = int(sys.argv[7]) if num_added_frames==0: for l in range(origfrNum,T):#to add the deformed frames np.save(os.path.join(datadir,"masks","mask_"+str(l)+".npy"),np.array(h5[str(l)+"/mask"]).astype(np.int16)) Nans+=1 else: for l in range(origfrNum,origfrNum+num_added_frames):#to add the deformed frames np.save(os.path.join(datadir,"masks","mask_"+str(l)+".npy"),np.array(h5[str(l)+"/mask"]).astype(np.int16)) Nans+=1 tnum="all" vnum=0 assert Nans>0, "At least one mask is needed" allset=NNtools.TrainDataset(datadir,shape) ''' MB added the following section to get the right total number of cells as categories''' U =set() #MB added for i in allset.indlist : U=U.union(set(np.unique(h5[str(i)+"/mask"]))) num_classes = len(U)#MB added #### Initialize the network #### device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') log+="device= "+str(device)+"\n" NetMod = importlib.import_module(NetName) net=NetMod.Net(n_channels=shape[0],num_classes=num_classes) if requeue: net.load_state_dict(NNtools.load_from_h5(h5[identifier+"/"+usenet])) #MB: dictionary of h5[identifier] items where the values are converted to torch tensors. log+="weight load Successful\n" if verbose: print("weight load Successful\n") net.to(device=device) n_params=sum([p.numel() for p in net.parameters()]) log+="Total number of parameters:"+str(n_params)+"\n" allset=NNtools.TrainDataset(datadir,shape) ''' MB: added the following section to get the right total number of cells as categories''' print("Total number of cells in the segmented frames") print(num_classes) print(U) totnum=len(allset) print("number of annotated frames: ") print(totnum) if True:#GetTrain == 0 : ''' MB: partition the dataset from scratch to training set and validation set ''' if GetTrain == 0: tnum = int(sys.argv[7]) vnum = int(sys.argv[8]) if tnum=="all" or vnum==0: traindataloader= torch.utils.data.DataLoader(allset, batch_size=batch_size,shuffle=True, num_workers=num_workers,pin_memory=True) traininds=allset.indlist tnum=len(allset) vnum=0 else: if totnum==(tnum+vnum): tset,vset=torch.utils.data.random_split(allset,[tnum,vnum]) else: tset,vset,_=torch.utils.data.random_split(allset,[tnum,vnum,totnum-tnum-vnum]) traindataloader= torch.utils.data.DataLoader(tset, batch_size=batch_size,shuffle=True, num_workers=num_workers,pin_memory=True) valdataloader=torch.utils.data.DataLoader(vset,batch_size=batch_size,shuffle=True,num_workers=num_workers,pin_memory=True) traininds=allset.indlist[tset.indices] h5[identifier].attrs["traininds"]=traininds if GetTrain == 0: if vnum>0: h5[identifier].attrs["Validinds"]=allset.indlist[vset.indices]# MB added else: h5[identifier].attrs["Validinds"]=[] Ut =set() #MB added for i in traininds : Ut=Ut.union(set(np.unique(h5[str(i)+"/mask"]))) current_classes = len(Ut)#MB added print("existing classes in the training set are:") print(Ut) #### requeue should match training indices if requeue and not adiabatic_trick: assert all(np.array(h5[identifier].attrs["traininds"])==traininds),"traininds not matching" #### save training indices log+="Training with: trainset: "+str(tnum)+" valset: "+str(vnum)+"\n" num_trains=len(traindataloader) digits=len(str(num_trains))#for pretty print if vnum>0: num_vals=len(valdataloader) digits_v=len(str(num_vals)) #define the iou function (intersection over union) '''This is a measure of how good the object detection task is performed. iou = (the intersection of area of neuron i in ground truth and predicted mask)/ (union of i's areain GT and predicted mask) ''' def get_ious(preds,mask,skip=False): if skip: return np.full(num_classes,np.nan) maskgot=torch.argmax(preds,dim=1) ioubins=np.zeros(num_classes) for i in range(num_classes): thismask=(mask==i)#MB: area of the neuron i in ground truth(GT) mask if torch.sum(thismask).item()==0:#MB: the case when neuron i is absent in GT ioubins[i]=np.nan continue thismaskgot=(maskgot==i)#MB: area of the neuron i in predicted mask intersection=torch.sum(thismask&thismaskgot).item() union=torch.sum(thismask|thismaskgot).item() ioubins[i]=intersection/union return ioubins #define the criterion function def selective_ce(pred_raw,target_mask): existing=torch.unique(target_mask) with torch.no_grad(): trf=torch.zeros(num_classes).to(device=device,dtype=torch.long) trf[existing]=torch.arange(0,len(existing)).to(device=device,dtype=torch.long) mask=trf[target_mask] mask.requires_grad=False return torch.nn.CrossEntropyLoss()(pred_raw[:,existing],mask) criterion=selective_ce #send to device and load the weights if requeue optimizer=torch.optim.Adam(net.parameters(),lr=lr) scheduler=torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,mode="min",factor=0.3,patience=patience,min_lr=5e-5) #copy the log if we are on requeue h5[identifier].attrs["log"]=log if requeue: loss_iou=np.array(h5[identifier]["loss_iou"]) inds=list(loss_iou[:,0]) losses=list(loss_iou[:,1]) iouss=[ious for ious in loss_iou[:,2:]] else: losses=[] iouss=[] inds=[] #measure time log+="Header Time"+str(time.time()-st)+" s \n" log+="Starting Training\n\n" #if int(sys.argv[3])==1: # skiptrain=True if skiptrain: print("Skipping Training") elif adiabatic_trick: if verbose: print("Starting Train") ts=[] st=time.time() eplosses=[] gc=0#global count #typical neural network training script for epoch in range(num_epochs): ts.append(time.time()-st) if epoch==ep_augoff: text="augment is now:"+allset.change_augment("aff") log+=text if verbose: print(text) log+="Epoch: "+str(epoch)+" lr: "+str(optimizer.param_groups[0]['lr'])+"\n" if verbose: print("Epoch: "+str(epoch)+" lr: "+str(optimizer.param_groups[0]['lr'])) net.train() eploss=0 count=0 for i,(fr,mask) in enumerate(traindataloader): fr = fr.to(device=device, dtype=torch.float32) mask= mask.to(device=device, dtype=torch.long) preds=net(fr) loss=criterion(preds,mask) optimizer.zero_grad() loss.backward() optimizer.step() eploss+=loss.item() count+=1 losses.append(loss.item()) ious=get_ious(preds,mask,((gc%print_iou_every)!=0)) iouss.append(ious) inds.append(0) if verbose: print(" train"+str(i+1).zfill(digits)+"/"+str(num_trains)+" loss: "+str(loss.item())+" nanmeaniou: "+str("nan" if np.all(np.isnan(ious)) else np.nanmean(ious))) log+=" train"+str(i+1).zfill(digits)+"/"+str(num_trains)+" loss: "+str(loss.item())+" nanmeaniou: "+str("nan" if np.all(np.isnan(ious)) else np.nanmean(ious))+"\n" gc+=1 eploss=eploss/count if allset.augment=="aff": scheduler.step(eploss)#step scheduler by epoch loss log+="Epoch Loss: "+str(eploss)+"\n"+"\n" eplosses.append(eploss) #save net in h5 if "net" in h5[identifier].keys(): del h5[identifier]["net"] h5.create_group(identifier+"/net") NNtools.save_into_h5(h5[identifier+"/net"],net.state_dict()) #save loss and iou if "loss_iou" in h5[identifier].keys(): del h5[identifier]["loss_iou"] dset=h5[identifier].create_dataset("loss_iou",(len(losses),2+len(ious)),dtype="f4",compression="gzip") dset[...]=np.concatenate((np.array(inds)[:,None],np.array(losses)[:,None],np.array(iouss)),axis=1).astype(np.float32) log+="Results saved."+"\n"+"\n" h5[identifier].attrs["log"]=log #CRITICAL, emergency break if os.path.exists("STOP"): break #save net in h5 if "basenet" in h5[identifier].keys(): del h5[identifier]["basenet"] h5.create_group(identifier+"/basenet") NNtools.save_into_h5(h5[identifier+"/basenet"],net.state_dict()) repack() save_backup()#make h5 backup #now call lineup of the frames if "lineup" in h5.keys(): lineup=np.array(h5["lineup"]) else:#if non existing, make the default lineup lineup=get_lineup_def() dset=h5.create_dataset("lineup",shape=(T,),dtype="i2") dset[...]=np.array(lineup).astype(np.int16) assert all((np.sort(np.array(traininds))==np.sort(lineup[:len(traininds)]))), "The first lineup elements should be traininds" repack() save_backup()#make h5 backup evalset=NNtools.EvalDataset(datadir,shape)#we need the evalutation set for aligned indices for all frames lineup=list(lineup)[len(traininds):]#traininds should be at the begining added=[list(traininds)]#traininds are already added c=0 while True: # regen optimizers optimizer=torch.optim.Adam(net.parameters(),lr=lr_adia) scheduler=torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,mode="min",factor=0.3,patience=patience_adia,min_lr=5e-5) #add mask ichilds=[] breaker=False #pop k[c] elemets from lineup k_one=k[c] for _ in range(k_one): if len(lineup)==0: break ichilds.append(lineup.pop(0)) added.append(ichilds) if verbose: print(len(lineup)," left") #make predictions net.eval() for ichild in ichilds: with torch.no_grad(): fr,mask=evalset[ichild] fr=fr.unsqueeze(0).to(device=device, dtype=torch.float32) pred=net(fr) predmask=torch.argmax(pred[0],dim=0).cpu().detach().numpy().astype(np.int16) del fr,pred if identifier+"/"+str(ichild)+"/predmask" in h5.keys(): del h5[identifier+"/"+str(ichild)+"/predmask"] h5[identifier].create_dataset(str(ichild)+"/predmask",(predmask.shape),dtype="i2",compression="gzip") h5[identifier][str(ichild)+"/predmask"][...]=predmask #This re-masks the data ptschild=get_pts(ichild) updatemask(ichild,ptschild) np.save(os.path.join(datadir,"masks","mask_"+str(ichild)+".npy"),np.array(h5[identifier+"/"+str(ichild)+"/predmask"]).astype(np.int16)) #update dataset allset=NNtools.TrainDataset(datadir,shape) # break if we are done: case if np.cumsum(k) exactly ends at lT if len(allset)==T: break # training phase #all available training indices t_inds_all=[el for els in added for el in els] #those in memory t_inds_memory=[el for els in added[-short_memory:] for el in els]#last in memory t_inds_memory_dict=dict(zip(t_inds_memory,[True for _ in range(len(t_inds_memory))])) #those not in memory buff=[] for t in t_inds_all: if t not in t_inds_memory_dict.keys(): buff.append(t) #get epochs ad_epochs=adiabatic_epoch_func(len(t_inds_memory)) for epoch in range(ad_epochs): ts.append(time.time()-st) # random select random memory t_inds_random_memory=list(np.random.choice(buff,min(num_random_memory,len(buff)),replace=False)) # random select random memory train t_inds_random_memory_train=list(np.random.choice(traininds,min(num_random_memory_train,len(traininds)),replace=False)) #all tinds tinds=[*t_inds_memory,*t_inds_random_memory,*t_inds_random_memory_train] tset=torch.utils.data.Subset(allset,allset.real_ind_to_dset_ind(tinds)) traindataloader= torch.utils.data.DataLoader(tset, batch_size=batch_size,shuffle=True, num_workers=num_workers,pin_memory=True) num_trains=len(traindataloader) if epoch==adiabatic_ep_augoff: text="augment is now:"+allset.change_augment("aff") log+=text if verbose: print(text) log+="Epoch: "+str(epoch)+" lr: "+str(optimizer.param_groups[0]['lr'])+"\n" if verbose: print("Epoch: "+str(epoch)+"/"+str(ad_epochs)+" lr: "+str(optimizer.param_groups[0]['lr'])) net.train() eploss=0 count=0 for i,(fr,mask) in enumerate(traindataloader): fr = fr.to(device=device, dtype=torch.float32) mask= mask.to(device=device, dtype=torch.long) preds=net(fr) loss=criterion(preds,mask) optimizer.zero_grad() loss.backward() optimizer.step() eploss+=loss.item() count+=1 losses.append(loss.item()) ious=get_ious(preds,mask,((gc%print_iou_every)!=0)) iouss.append(ious) inds.append(0) if verbose: print(" train"+str(i+1).zfill(digits)+"/"+str(num_trains)+" loss: "+str(loss.item())+" nanmeaniou: "+str("nan" if np.all(np.isnan(ious)) else np.nanmean(ious))) log+=" train"+str(i+1).zfill(digits)+"/"+str(num_trains)+" loss: "+str(loss.item())+" nanmeaniou: "+str("nan" if np.all(np.isnan(ious)) else np.nanmean(ious))+"\n" gc+=1 eploss=eploss/count if allset.augment=="aff": scheduler.step(eploss) log+="Epoch Loss: "+str(eploss)+"\n"+"\n" eplosses.append(eploss) #save net in h5 if "net" in h5[identifier].keys(): del h5[identifier]["net"] h5.create_group(identifier+"/net") NNtools.save_into_h5(h5[identifier+"/net"],net.state_dict()) #save loss and iou if "loss_iou" in h5[identifier].keys(): del h5[identifier]["loss_iou"] dset=h5[identifier].create_dataset("loss_iou",(len(losses),2+len(ious)),dtype="f4",compression="gzip") dset[...]=np.concatenate((np.array(inds)[:,None],np.array(losses)[:,None],np.array(iouss)),axis=1).astype(np.float32) log+="Results saved."+"\n"+"\n" h5[identifier].attrs["log"]=log #CRITICAL if os.path.exists("STOP"): break if os.path.exists("STOP"): break c+=1 if c%20==0: repack() save_backup()#save backup, harvard rc cluster else:# not defTrick:#usual neural network train if verbose: print("Starting Train") ts=[] st=time.time() eplosses=[] gc=0#global count #typical neural network training script if not int(sys.argv[3]): for epoch in range(num_epochs): ts.append(time.time()-st) if epoch in aug_dict.keys(): text="augment is now:"+allset.change_augment(aug_dict[epoch]) log+=text if verbose: print(text) log+="Epoch: "+str(epoch)+" lr: "+str(optimizer.param_groups[0]['lr'])+"\n" if verbose: print("Epoch: "+str(epoch)+" lr: "+str(optimizer.param_groups[0]['lr'])) net.train() eploss=0 count=0 for i,(fr,mask) in enumerate(traindataloader): fr = fr.to(device=device, dtype=torch.float32) mask= mask.to(device=device, dtype=torch.long) preds=net(fr) loss=criterion(preds,mask) optimizer.zero_grad() loss.backward() optimizer.step() eploss+=loss.item() count+=1 losses.append(loss.item()) ious=get_ious(preds,mask,((gc%print_iou_every)!=0)) iouss.append(ious) inds.append(0) if verbose: print(" train"+str(i+1).zfill(digits)+"/"+str(num_trains)+" loss: "+str(loss.item())+" nanmeaniou: "+str("nan" if np.all(np.isnan(ious)) else np.nanmean(ious))) log+=" train"+str(i+1).zfill(digits)+"/"+str(num_trains)+" loss: "+str(loss.item())+" nanmeaniou: "+str("nan" if np.all(np.isnan(ious)) else np.nanmean(ious))+"\n" gc+=1 eploss=eploss/count if allset.augment=="aff": scheduler.step(eploss)#step scheduler by epoch loss log+="Epoch Loss: "+str(eploss)+"\n"+"\n" eplosses.append(eploss) if vnum>0: net.eval() log+="Validation:"+"\n" eploss=0 count=0 for i,(fr,mask) in enumerate(valdataloader): fr = fr.to(device=device, dtype=torch.float32) mask= mask.to(device=device, dtype=torch.long) with torch.no_grad(): preds=net(fr) loss=criterion(preds,mask) losses.append(loss.item()) eploss+=loss.item() count+=1 ious=get_ious(preds,mask,False) iouss.append(ious) inds.append(1) if verbose: print(" val"+str(i+1).zfill(digits_v)+"/"+str(num_vals)+" loss: "+str(loss.item())+" nanmeaniou: "+str(np.nanmean(ious))) log+=" val"+str(i+1).zfill(digits_v)+"/"+str(num_vals)+" loss: "+str(loss.item())+" nanmeaniou: "+str(np.nanmean(ious))+"\n" eploss=eploss/count log+="Mean Validation Loss: "+str(eploss)+"\n"+"\n" eplosses.append(eploss) #save net in h5 if "net" in h5[identifier].keys(): del h5[identifier]["net"] h5.create_group(identifier+"/net") NNtools.save_into_h5(h5[identifier+"/net"],net.state_dict()) #save loss and iou if "loss_iou" in h5[identifier].keys(): del h5[identifier]["loss_iou"] dset=h5[identifier].create_dataset("loss_iou",(len(losses),2+len(ious)),dtype="f4",compression="gzip") dset[...]=np.concatenate((np.array(inds)[:,None],np.array(losses)[:,None],np.array(iouss)),axis=1).astype(np.float32) log+="Results saved."+"\n"+"\n" h5[identifier].attrs["log"]=log #CRITICAL, emergency break if os.path.exists("STOP"): break #log write_log(logform.format(1.,(epoch+1)/num_epochs,0.,0.)) write_log(logform.format(1.,1.,0.,0.)) ts=np.array(ts).astype(np.float32) if "ts" in h5[identifier].keys(): del h5[identifier]["ts"] dset=h5[identifier].create_dataset("ts",ts.shape,dtype="f4") dset[...]=ts if verbose: print("Training Successful\n") log+="Training Successful\n\n" ''' MB: adding the new deformation technique for augmentation ''' if deformation_trick: import cv2 def noisy(noise_typ,image): if noise_typ == "gauss": row,col,ch= image.shape mean = 0 var = 0.001 sigma = var**0.005 gauss =
np.random.normal(mean,sigma,(row,col,ch))
numpy.random.normal
import numpy as np class DataSampler(object): """DataSampler samples the conditional vector and corresponding data for CTGAN.""" def __init__(self, data, output_info, log_frequency): self._data = data def is_discrete_column(column_info): return (len(column_info) == 1 and column_info[0].activation_fn == "softmax") n_discrete_columns = sum( [1 for column_info in output_info if is_discrete_column(column_info)]) self._discrete_column_matrix_st = np.zeros( n_discrete_columns, dtype="int32") # Store the row id for each category in each discrete column. # For example _rid_by_cat_cols[a][b] is a list of all rows with the # a-th discrete column equal value b. self._rid_by_cat_cols = [] # Compute _rid_by_cat_cols st = 0 for column_info in output_info: if is_discrete_column(column_info): span_info = column_info[0] ed = st + span_info.dim rid_by_cat = [] for j in range(span_info.dim): rid_by_cat.append(np.nonzero(data[:, st + j])[0]) self._rid_by_cat_cols.append(rid_by_cat) st = ed else: st += sum([span_info.dim for span_info in column_info]) assert st == data.shape[1] # Prepare an interval matrix for efficiently sample conditional vector max_category = max( [column_info[0].dim for column_info in output_info if is_discrete_column(column_info)], default=0) self._discrete_column_cond_st = np.zeros(n_discrete_columns, dtype='int32') self._discrete_column_n_category = np.zeros( n_discrete_columns, dtype='int32') self._discrete_column_category_prob = np.zeros( (n_discrete_columns, max_category)) self._n_discrete_columns = n_discrete_columns self._n_categories = sum( [column_info[0].dim for column_info in output_info if is_discrete_column(column_info)]) st = 0 current_id = 0 current_cond_st = 0 for column_info in output_info: if is_discrete_column(column_info): span_info = column_info[0] ed = st + span_info.dim category_freq = np.sum(data[:, st:ed], axis=0) if log_frequency: category_freq = np.log(category_freq + 1) category_prob = category_freq / np.sum(category_freq) self._discrete_column_category_prob[current_id, :span_info.dim] = ( category_prob) self._discrete_column_cond_st[current_id] = current_cond_st self._discrete_column_n_category[current_id] = span_info.dim current_cond_st += span_info.dim current_id += 1 st = ed else: st += sum([span_info.dim for span_info in column_info]) def _random_choice_prob_index(self, discrete_column_id): probs = self._discrete_column_category_prob[discrete_column_id] r = np.expand_dims(np.random.rand(probs.shape[0]), axis=1) return (probs.cumsum(axis=1) > r).argmax(axis=1) def sample_condvec(self, batch): """Generate the conditional vector for training. Returns: cond (batch x #categories): The conditional vector. mask (batch x #discrete columns): A one-hot vector indicating the selected discrete column. discrete column id (batch): Integer representation of mask. category_id_in_col (batch): Selected category in the selected discrete column. """ if self._n_discrete_columns == 0: return None batch = batch discrete_column_id = np.random.choice( np.arange(self._n_discrete_columns), batch) cond = np.zeros((batch, self._n_categories), dtype='float32') mask = np.zeros((batch, self._n_discrete_columns), dtype='float32') mask[np.arange(batch), discrete_column_id] = 1 category_id_in_col = self._random_choice_prob_index(discrete_column_id) category_id = (self._discrete_column_cond_st[discrete_column_id] + category_id_in_col) cond[np.arange(batch), category_id] = 1 return cond, mask, discrete_column_id, category_id_in_col def sample_original_condvec(self, batch): """Generate the conditional vector for generation use original frequency.""" if self._n_discrete_columns == 0: return None cond = np.zeros((batch, self._n_categories), dtype='float32') for i in range(batch): row_idx = np.random.randint(0, len(self._data)) col_idx =
np.random.randint(0, self._n_discrete_columns)
numpy.random.randint
""" Kernel topic model with Gibbs Sampler ===================================== Reference: Hennig et al., 2012 & Murphy's MLPP book Ch. 27 """ import numpy as np from sklearn.gaussian_process import GaussianProcessRegressor as GPR from sklearn.gaussian_process.kernels import RBF from tqdm import tqdm, trange np.random.seed(1) # Words W = np.array([0, 1, 2, 3, 4]) # D := document words X = np.array([ [0, 0, 1, 2, 2], [0, 0, 1, 1, 1], [0, 1, 2, 2, 2], [4, 4, 4, 4, 4], [3, 3, 4, 4, 4], [3, 4, 4, 4, 4] ]) N_D = X.shape[0] # num of docs N_W = W.shape[0] # num of words N_K = 2 # num of topics N_F = 3 # num of features # Document features Phi = np.random.randn(N_D, N_F) # Dirichlet priors alpha = 1 beta = 1 # k independent GP priors ls = 1 # length-scale for RBF kernel tau = 1 # Observation noise variance kernel = RBF([ls]*N_F) GPRs = [] for k in range(N_K): GPR_k = GPR(kernel=kernel, alpha=tau) GPR_k = GPR_k.fit(Phi, np.zeros(N_D)) GPRs.append(GPR_k) # ------------------------------------------------------------------------------------- # Laplace bridge # ------------------------------------------------------------------------------------- def gauss2dir(mu, Sigma): K = len(mu) Sigma_diag = np.diag(Sigma) alpha = 1/Sigma_diag * (1 - 2/K + np.exp(mu)/K**2 * np.sum(np.exp(-mu))) return alpha def dir2gauss(alpha): K = len(alpha) mu =
np.log(alpha)
numpy.log
# coding=UTF-8 from manimlib.imports import * import numpy as np numbers = [21, 99, 49, 11, 66, 5, 78, 86] class Sort(Scene): def construct(self): # 显示文字 text1 = Text("归并排序\n\n采用分治法\n先二分成无数个子序列\n再对每个子序列排序\n最后合并为有序序列", color=WHITE, font="黑体") text1.scale(1.5) text1.move_to(np.array([0.0, 0.0, 0.0])) self.play(ShowCreation(text1)) self.wait(2) self.play(Uncreate(text1)) # 1级 group1 = VGroup() for i in range(8): group1.add(Square(side_length=1)) if i > 0: group1[i].next_to(group1[i-1], RIGHT, 0) group1.move_to(np.array([0.0, 3.0, 0.0])) self.play(FadeIn(group1)) # 数字 elements = [] for i in range(len(numbers)): elements.append(Integer(numbers[i])) elements[i].move_to(np.array([-3.5 + i * 1.0, 3.0, 0.0])) self.play(ShowCreation(elements[i])) # 2级 arrow1to2_1 = Arrow(start=np.array([-0.5, 2.5, 0.0]), end=np.array([-3.0, 1.5, 0.0])) arrow1to2_2 = Arrow(start=np.array([0.5, 2.5, 0.0]), end=np.array([3.0, 1.5, 0.0])) self.play(ShowCreation(arrow1to2_1)) self.play(ShowCreation(arrow1to2_2)) group2_1 = VGroup() for i in range(4): group2_1.add(Square(side_length=1)) if i > 0: group2_1[i].next_to(group2_1[i-1], RIGHT, 0) group2_1.move_to(
np.array([-2.0, 3.0, 0.0])
numpy.array
# Simply to take quick glance at the Mandelbrodt set project # (animated plot with varying n_max) from __future__ import print_function import math as ma import matplotlib.animation as manim import matplotlib.cm as cm import matplotlib.colors as col import matplotlib.pyplot as plt import matplotlib.ticker as tick import numpy as np from matplotlib.gridspec import GridSpec import paramplots as prp import utils as u fractal_mode = 'Mandelbrodt' # fractal_mode = 'Julia' # julia_C = -0.7 + 0.27015j julia_C = -0.8j # julia_C = 1.0 - (1.0+ma.sqrt(5.0))/2.0 # julia_C = -0.7269+0.1889j N_points = 512 # resolution of the image fixed_n_max = 6e1 # color_map = cm.jet temp_jet = cm.jet(np.linspace(0, 1, 256)) # color_map.set_under('black') # color_map.set_over('white') temp_black = cm.Greys(np.linspace(1, 1, 1)) colors =
np.vstack((temp_black, temp_jet))
numpy.vstack
import logging from glob import glob from pathlib import Path import cv2 import numpy as np from imgaug import augmenters as iaa from imgaug.augmentables import BoundingBox, BoundingBoxesOnImage, Keypoint, KeypointsOnImage from omegaconf.listconfig import ListConfig from PIL import Image from pycocotools.coco import COCO from torch.utils import data from utils.helper import instantiate_augmenters from utils.image import draw_umich_gaussian as draw_gaussian from utils.image import gaussian_radius from utils.box import get_annotation_with_angle, rotate_bbox cv2.setNumThreads(0) log = logging.getLogger(__name__) class Dataset(data.Dataset): def __init__( self, image_folder, annotation_file, input_size=(512, 512), target_domain_glob=None, num_classes=80, num_keypoints=0, rotated_boxes=False, mean=(0.40789654, 0.44719302, 0.47026115), std=(0.28863828, 0.27408164, 0.27809835), augmentation=None, augment_target_domain=False, max_detections=150, down_ratio=4): self.image_folder = Path(image_folder) self.coco = COCO(annotation_file) self.images = self.coco.getImgIds() self.use_rotated_boxes = rotated_boxes self.max_detections = max_detections self.down_ratio = down_ratio self.input_size = input_size self.mean = np.array(mean, dtype=np.float32).reshape(1, 1, 3) self.std = np.array(std, dtype=np.float32).reshape(1, 1, 3) self.augmentation = augmentation self.num_classes = num_classes self.num_keypoints = num_keypoints self.string_id_mapping = {} self.augment_target_domain = augment_target_domain self.cat_mapping = {v: i for i, v in enumerate(range(1, num_classes + 1))} self.classes = {y: self.coco.cats[x] if x in self.coco.cats else '' for x, y in self.cat_mapping.items()} assert len(input_size) == 2 if isinstance(target_domain_glob, str): self.target_domain_files = glob(target_domain_glob) elif isinstance(target_domain_glob, (list, ListConfig)): self.target_domain_files = [] for pattern in target_domain_glob: self.target_domain_files.extend(glob(pattern)) else: self.target_domain_files = [] if self.augmentation: augmentation_methods = instantiate_augmenters(augmentation) self.augmentation = iaa.Sequential(augmentation_methods) self.resize = iaa.Resize((self.input_size[0], self.input_size[1])) self.resize_out = iaa.Resize( (self.input_size[0] // down_ratio, self.input_size[1] // down_ratio)) log.info( f"found {len(self.target_domain_files)} samples for target domain") super().__init__() def __len__(self): return len(self.images) def __getitem__(self, index): img_id = self.images[index] file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name'] img_path = self.image_folder / file_name ann_ids = self.coco.getAnnIds(imgIds=[img_id]) anns = self.coco.loadAnns(ids=ann_ids) num_objs = min(len(anns), self.max_detections) img = np.array(Image.open(img_path).convert("RGB")) if self.use_rotated_boxes: ret = self.__get_rotated_coco(img, anns, num_objs) else: ret = self.__get_default_coco(img, anns, num_objs) if isinstance(img_id, str): mapped_id = self.string_id_mapping.get( img_id, 1 + len(self.string_id_mapping)) self.string_id_mapping[img_id] = mapped_id img_id = mapped_id ret['id'] = img_id if len(self.target_domain_files): target_domain_img = np.array(Image.open( np.random.choice(self.target_domain_files)).convert("RGB")) if self.augmentation is not None and self.augment_target_domain: target_domain_img = self.augmentation(image=target_domain_img) target_domain_img = self.resize(image=target_domain_img) target_domain_img = np.array( target_domain_img, dtype=np.float32) / 255.0 target_domain_img = (target_domain_img - self.mean) / self.std target_domain_img = target_domain_img.transpose(2, 0, 1) ret['target_domain_input'] = target_domain_img return ret def __get_default_coco(self, img, anns, num_objs): boxes = [] if self.num_keypoints > 0: kpts = [] for k in range(num_objs): ann = anns[k] bbox = self._coco_box_to_bbox(ann['bbox']) boxes.append(BoundingBox(*bbox)) if self.num_keypoints > 0: if 'keypoints' not in ann: ann['keypoints'] = np.zeros((3 * self.num_keypoints,)) kpt = [ Keypoint(*x) for x in np.array(ann['keypoints']).reshape(-1, 3) [:, : 2]] kpts.extend(kpt) bbs = BoundingBoxesOnImage(boxes, shape=img.shape) if self.num_keypoints > 0: kpts = KeypointsOnImage(kpts, shape=img.shape) if self.augmentation is not None: if self.num_keypoints > 0: img_aug, bbs_aug, kpts_aug = self.augmentation( image=img, bounding_boxes=bbs, keypoints=kpts) else: img_aug, bbs_aug = self.augmentation( image=img, bounding_boxes=bbs) else: if self.num_keypoints > 0: kpts_aug = kpts.copy() img_aug, bbs_aug = np.copy(img), bbs.copy() if self.num_keypoints > 0: img_aug, bbs_aug, kpts_aug = self.resize( image=img_aug, bounding_boxes=bbs_aug, keypoints=kpts_aug) else: img_aug, bbs_aug = self.resize( image=img_aug, bounding_boxes=bbs_aug) img = (img_aug.astype(np.float32) / 255.) inp = (img - self.mean) / self.std inp = inp.transpose(2, 0, 1) output_h = self.input_size[1] // self.down_ratio output_w = self.input_size[0] // self.down_ratio num_classes = self.num_classes hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32) wh = np.zeros((self.max_detections, 2), dtype=np.float32) reg = np.zeros((self.max_detections, 2), dtype=np.float32) ind = np.zeros((self.max_detections), dtype=np.int64) reg_mask = np.zeros((self.max_detections), dtype=np.uint8) gt_det = np.zeros((self.max_detections, num_classes), dtype=np.float32) gt_areas = np.zeros((self.max_detections), dtype=np.float32) if self.num_keypoints > 0: kp = np.zeros( (self.max_detections, self.num_keypoints * 2), dtype=np.float32) gt_kp = np.zeros( (self.max_detections, self.num_keypoints, 2), dtype=np.float32) kp_reg_mask = np.zeros( (self.max_detections, self.num_keypoints * 2), dtype=np.uint8) bbs_aug, kpts_aug = self.resize_out( bounding_boxes=bbs_aug, keypoints=kpts_aug) else: bbs_aug = self.resize_out(bounding_boxes=bbs_aug) for k in range(num_objs): ann = anns[k] bbox_aug = bbs_aug[k].clip_out_of_image((output_w, output_h)) bbox = np.array([bbox_aug.x1, bbox_aug.y1, bbox_aug.x2, bbox_aug.y2]) cls_id = int(self.cat_mapping[ann['category_id']]) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1) bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] if h > 0 and w > 0: radius = gaussian_radius((np.ceil(h), np.ceil(w))) radius = max(0, int(radius)) ct = np.array( [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) ct_int = ct.astype(np.int32) draw_gaussian(hm[cls_id], ct_int, radius) wh[k] = 1. * w, 1. * h ind[k] = ct_int[1] * output_w + ct_int[0] reg[k] = ct - ct_int reg_mask[k] = 1 gt_det[k] = ([ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2, 1, cls_id]) if self.num_keypoints > 0: valid = np.array(ann["keypoints"]).reshape(-1, 3)[:, -1] for i, p in enumerate( kpts_aug[k * self.num_keypoints: k * self.num_keypoints + self.num_keypoints]): kp[k][i * 2] = p.x - ct_int[0] kp[k][i * 2 + 1] = p.y - ct_int[1] is_valid = valid[i] == 2 and not p.is_out_of_image( (output_w, output_w)) kp_reg_mask[k, i * 2] = int(is_valid) kp_reg_mask[k, i * 2 + 1] = int(is_valid) gt_kp[k][i] = p.x, p.y if "area" not in ann: gt_areas[k] = w * h else: gt_areas[k] = ann["area"] del bbs del bbs_aug del img_aug gt_det =
np.array(gt_det, dtype=np.float32)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 6 14:40:17 2020 @author: lukepinkel """ import numpy as np import scipy as sp def fo_fc_fd(f, x, eps=None, args=()): if eps is None: eps = (np.finfo(float).eps)**(1.0/3.0) n = len(np.asarray(x)) g, h = np.zeros(n), np.zeros(n) for i in range(n): h[i] = eps g[i] = (f(x+h, *args) - f(x, *args)) / eps h[i] = 0 return g def so_fc_fd(f, x, eps=None, args=()): if eps is None: eps = (np.finfo(float).eps)**(1.0/3.0) n = len(np.asarray(x)) H, hi, hj = np.zeros((n, n)), np.zeros(n), np.zeros(n) eps2 = eps**2 for i in range(n): hi[i] = eps for j in range(i+1): hj[j] = eps H[i, j] = (f(x+hi+hj, *args) - f(x+hi, *args) - f(x+hj, *args) + f(x, *args)) / eps2 H[j, i] = H[i, j] hj[j] = 0 hi[i] = 0 return H def so_gc_fd(g, x, eps=None, args=()): if eps is None: eps = (np.finfo(float).eps)**(1.0/3.0) n = len(np.asarray(x)) H, h = np.zeros((n, n)), np.zeros(n) gx, gxh = np.zeros((n, n)), np.zeros((n, n)) for i in range(n): h[i] = eps gx[i] = g(x, *args) gxh[i] = g(x+h, *args) h[i] = 0 for i in range(n): for j in range(i+1): H[i, j] = ((gxh[i, j] - gx[i, j]) + (gxh[j, i] - gx[j, i])) / (2 * eps) H[j, i] = H[i, j] return H def fo_fc_cd(f, x, eps=None, args=()): if eps is None: eps = (np.finfo(float).eps)**(1.0/3.0) n = len(np.asarray(x)) g, h = np.zeros(n), np.zeros(n) for i in range(n): h[i] = eps g[i] = (f(x+h, *args) - f(x - h, *args)) / (2 * eps) h[i] = 0 return g def so_fc_cd(f, x, eps=None, args=()): p = len(np.asarray(x)) if eps is None: eps = (np.finfo(float).eps)**(1./3.) H = np.zeros((p, p)) ei = np.zeros(p) ej = np.zeros(p) for i in range(p): for j in range(i+1): ei[i], ej[j] = eps, eps if i==j: dn = -f(x+2*ei, *args)+16*f(x+ei, *args)\ -30*f(x, *args)+16*f(x-ei, *args)-f(x-2*ei, *args) nm = 12*eps**2 H[i, j] = dn/nm else: dn = f(x+ei+ej, *args)-f(x+ei-ej, *args)-f(x-ei+ej, *args)+f(x-ei-ej, *args) nm = 4*eps*eps H[i, j] = dn/nm H[j, i] = dn/nm ei[i], ej[j] = 0.0, 0.0 return H def so_gc_cd(g, x, eps=None, args=()): if eps is None: eps = (np.finfo(float).eps)**(1./3.) n = len(np.asarray(x)) H, h = np.zeros((n, n)), np.zeros(n) gxp, gxn = np.zeros((n, n)), np.zeros((n, n)) for i in range(n): h[i] = eps gxp[i] = g(x+h, *args) gxn[i] = g(x-h, *args) h[i] = 0 for i in range(n): for j in range(i+1): H[i, j] = ((gxp[i, j] - gxn[i, j] + gxp[j, i] - gxn[j, i])) / (4 * eps) H[j, i] = H[i, j] return H def fd_coefficients(points, order): A = np.zeros((len(points), len(points))) A[0] = 1 for i in range(len(points)): A[i] = np.asarray(points)**(i) b = np.zeros(len(points)) b[order] = sp.special.factorial(order) c = np.linalg.inv(A).dot(b) return c def finite_diff(f, x, epsilon=None, order=1, points=None): if points is None: points = np.arange(-4, 5) if epsilon is None: epsilon = (np.finfo(float).eps)**(1./3.) coefs = fd_coefficients(points, order) df = 0.0 for c, p in list(zip(coefs, points)): df+=c*f(x+epsilon*p) df = df / (epsilon**order) return df def grad_approx(f, x, eps=1e-4, tol=None, d=1e-4, nr=6, v=2): tol = np.finfo(float).eps**(1/3) if tol is None else tol h = np.abs(d * x) + eps * (np.abs(x) < tol) n = len(x) u = np.zeros_like(h) A = np.zeros((nr, n)) for i in range(nr): for j in range(n): u[j] = h[j] A[i, j] = (f(x + u) - f(x - u)) / (2.0 * h[j]) u[j] = 0.0 h /= v for i in range(nr-1): t = 4**(i+1) A = (A[1:(nr-i)]*t - A[:(nr-i-1)]) / (t-1.0) return A def jac_approx(f, x, eps=1e-4, tol=None, d=1e-4, nr=6, v=2): tol = np.finfo(float).eps**(1/3) if tol is None else tol h = np.abs(d * x) + eps * (np.abs(x) < tol) n = len(x) p = len(f(x)) u = np.zeros_like(h) A = np.zeros((nr, n, p)) for i in range(nr): for j in range(n): u[j] = h[j] A[i, j] = (f(x + u) - f(x - u)) / (2.0 * h[j]) u[j] = 0.0 h /= v for i in range(nr-1): t = 4**(i+1) A = (A[1:(nr-i)]*t - A[:(nr-i-1)]) / (t-1.0) return A def _hess_approx(f, x, a_eps=1e-4, r_eps=1e-4, xtol=None, nr=6, s=2): xtol = np.finfo(np.float).eps**(1/3) if xtol is None else xtol d = np.abs(r_eps * x) + a_eps * (np.abs(x) < xtol) y = f(x) u = np.zeros_like(d) v = np.zeros_like(d) nx, ny = len(x), len(y) D = np.zeros((ny, int(nx * (nx + 3) // 2))) Da = np.zeros((ny, nr)) Hd =
np.zeros((ny, nx))
numpy.zeros
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2014, Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. # ----------------------------------------------------------------------------- import numpy as np from . import gl from .globject import GLObject from .wrappers import _check_conversion from ..util import logger GL_SAMPLER_3D = 35679 def glTexImage3D(target, level, internalformat, format, type, pixels): # Import from PyOpenGL try: import OpenGL.GL as _gl except ImportError: raise ImportError('PyOpenGL is required for 3D texture support') border = 0 if isinstance(pixels, (tuple, list)): depth, height, width = pixels pixels = None else: depth, height, width = pixels.shape[:3] _gl.glTexImage3D(target, level, internalformat, width, height, depth, border, format, type, pixels) def glTexSubImage3D(target, level, xoffset, yoffset, zoffset, format, type, pixels): # Import from PyOpenGL try: import OpenGL.GL as _gl except ImportError: raise ImportError('PyOpenGL is required for 3D texture support') depth, height, width = pixels.shape[:3] _gl.glTexSubImage3D(target, level, xoffset, yoffset, zoffset, width, height, depth, format, type, pixels) def _check_texture_format(value): valid_dict = {'luminance': gl.GL_LUMINANCE, 'alpha': gl.GL_ALPHA, 'luminance_alpha': gl.GL_LUMINANCE_ALPHA, 'rgb': gl.GL_RGB, 'rgba': gl.GL_RGBA} return _check_conversion(value, valid_dict) # ----------------------------------------------------------- Texture class --- class Texture(GLObject): """ A Texture is used to represent a topological set of scalar values. Parameters ---------- target : GLEnum gl.GL_TEXTURE2D gl.GL_TEXTURE_CUBE_MAP data : ndarray Texture data (optional) shape : tuple of integers Texture shape (optional) dtype : dtype Texture data type (optional) base : Texture Base texture of this texture offset : tuple of integers Offset of this texture relative to base texture store : bool Specify whether this object stores a reference to the data, allowing the data to be updated regardless of striding. Note that modifying the data after passing it here might result in undesired behavior, unless a copy is given. Default True. resizeable : bool Indicates whether texture can be resized """ _formats = { 1: gl.GL_LUMINANCE, # or ALPHA, 2: gl.GL_LUMINANCE_ALPHA, 3: gl.GL_RGB, 4: gl.GL_RGBA } _types = { np.dtype(np.int8): gl.GL_BYTE, np.dtype(np.uint8): gl.GL_UNSIGNED_BYTE, np.dtype(np.int16): gl.GL_SHORT, np.dtype(np.uint16): gl.GL_UNSIGNED_SHORT, np.dtype(np.int32): gl.GL_INT, np.dtype(np.uint32): gl.GL_UNSIGNED_INT, # np.dtype(np.float16) : gl.GL_HALF_FLOAT, np.dtype(np.float32): gl.GL_FLOAT, # np.dtype(np.float64) : gl.GL_DOUBLE } def __init__(self, data=None, shape=None, dtype=None, base=None, target=None, offset=None, store=True, resizeable=True): GLObject.__init__(self) self._data = None self._base = base self._store = store self._copy = False # flag to indicate that a copy is made self._target = target self._offset = offset self._pending_data = [] self._resizeable = resizeable self._valid = True self._views = [] # Extra stages that are handled in _activate() self._need_resize = False self._need_parameterization = True self._interpolation = gl.GL_NEAREST self._wrapping = gl.GL_CLAMP_TO_EDGE # Do we have data to build texture upon ? if data is not None: self._need_resize = True # Handle dtype if dtype is not None: data = np.array(data, dtype=dtype, copy=False) else: data = np.array(data, copy=False) self._dtype = data.dtype # Handle shape data = self._normalize_shape(data) if shape is not None: raise ValueError('Texture needs data or shape, nor both.') self._shape = data.shape # Handle storage if self._store: if not data.flags["C_CONTIGUOUS"]: logger.warning("Copying discontiguous data as CPU storage") self._copy = True data = data.copy() self._data = data # Set data self.set_data(data, copy=False) elif dtype is not None: if shape is not None: self._need_resize = True shape = shape or () self._shape = self._normalize_shape(shape) self._dtype = dtype if self._store: self._data =
np.zeros(self._shape, dtype=self._dtype)
numpy.zeros
#!/usr/bin/env python3 # command line program import argparse # deepcopy import copy # file import os.path # numpy import numpy as np import scipy as sp import scipy.integrate import scipy.linalg import scipy.interpolate # internal modules import libpost # tmp plot import matplotlib.pyplot as plt # nu: 0.000185 # epsilon: 0.103 # kolmogorov length scale: 0.0028 # kolmogorov time scale: 0.0424 # batchelor scale: (nu D^2 / epsilon)^(1/4) # batchelor (scale < kolmogorov length) eq (D < nu) # D < 1.85e-4 sc = 1e0 D = 1.85e-4 / sc s0 = 1e0 * 0.0028 # initial thickness dA0 = (1e0 * 0.0028)**2 # initial surface c_nb = 100 c_array = np.linspace(0.0, 1.0, num=c_nb) C_nb = c_nb C_array = np.linspace(0.0, 1.0, num=C_nb) rho_nb = c_nb log_rho_array = np.linspace(-np.log(10), np.log(10000), num=rho_nb) #process_times = [0.0, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128] process_times = [0.002, 0.004, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 1.024, 1.536, 2.048, 4.096, 8.192] # step 0.002 def parse(): parser = argparse.ArgumentParser(description='Computes statistics of the lagrangian gradients matrix (computed along particle trajectories)') return parser.parse_args() def dL_dt(foperator, L, t): return np.matmul(foperator(t), L.reshape((3,3), order='C')).flatten(order='C') def F(a): return np.log((4.0/a + 1) + np.sqrt((4.0/a + 1)**2 - 1.0)) - 1.6/np.sqrt(a + 1.4) def P(rho, mu_pp, mu_p, mu): # init result result = np.zeros((rho.size, mu.size)) # broadcast rho = np.broadcast_to(rho.reshape((-1, 1)), result.shape) mu_pp = np.broadcast_to(mu_pp, result.shape) mu_p = np.broadcast_to(mu_p, result.shape) mu = np.broadcast_to(mu, result.shape) #mask mask_eq_2o37 = (np.power(rho, 2) > mu_p) & (np.power(rho, 2) < mu) mask_eq_2o38 = (np.power(rho, 2) > mu_pp) & (np.power(rho, 2) < mu_p) # compute result[mask_eq_2o37] = rho[mask_eq_2o37] / (np.pi * np.sqrt(mu[mask_eq_2o37] - np.power(rho[mask_eq_2o37], 2)) * np.sqrt(mu_p[mask_eq_2o37] - mu_pp[mask_eq_2o37])) * F(2 * (np.power(rho[mask_eq_2o37], 2) - mu_p[mask_eq_2o37]) * (mu[mask_eq_2o37] - mu_pp[mask_eq_2o37]) / ((mu[mask_eq_2o37] - np.power(rho[mask_eq_2o37], 2)) * (mu_p[mask_eq_2o37] - mu_pp[mask_eq_2o37]))) result[mask_eq_2o38] = rho[mask_eq_2o38] / (np.pi * np.sqrt(mu[mask_eq_2o38] - mu_p[mask_eq_2o38]) * np.sqrt(np.power(rho[mask_eq_2o38], 2) - mu_pp[mask_eq_2o38])) * F(2 * (mu_p[mask_eq_2o38] - np.power(rho[mask_eq_2o38], 2)) * (mu[mask_eq_2o38] - mu_pp[mask_eq_2o38]) / ((np.power(rho[mask_eq_2o38], 2) - mu_pp[mask_eq_2o38]) * (mu[mask_eq_2o38] - mu_p[mask_eq_2o38]))) # return return result def Q(C, eta_pp, eta_p, eta): # init result result = np.zeros((C.size, eta.size)) # broadcast C = np.broadcast_to(C.reshape((-1, 1)), result.shape) eta_pp = np.broadcast_to(eta_pp, result.shape) eta_p = np.broadcast_to(eta_p, result.shape) eta = np.broadcast_to(eta, result.shape) #mask mask_eq_2o43 = (np.power(C, -2) > eta_pp) & (np.power(C, -2) < eta_p) mask_eq_2o44 = (np.power(C, -2) > eta_p) & (np.power(C, -2) < eta) # compute result[mask_eq_2o43] = dA0 * s0 / (np.pi * np.power(C[mask_eq_2o43], 4) * np.sqrt(eta[mask_eq_2o43] - eta_p[mask_eq_2o43]) * np.sqrt(np.power(C[mask_eq_2o43], -2) - eta_pp[mask_eq_2o43])) * F(2 * (eta_p[mask_eq_2o43] - np.power(C[mask_eq_2o43], -2)) * (eta[mask_eq_2o43] - eta_pp[mask_eq_2o43]) / ((np.power(C[mask_eq_2o43], -2) - eta_pp[mask_eq_2o43]) * (eta[mask_eq_2o43] - eta_p[mask_eq_2o43]))) result[mask_eq_2o44] = dA0 * s0 / (np.pi * np.power(C[mask_eq_2o44], 4) * np.sqrt(eta[mask_eq_2o44] - np.power(C[mask_eq_2o44], -2)) * np.sqrt(eta_p[mask_eq_2o44] - eta_pp[mask_eq_2o44])) * F(2 * (np.power(C[mask_eq_2o44], -2) - eta_p[mask_eq_2o44]) * (eta[mask_eq_2o44] - eta_pp[mask_eq_2o44]) / ((eta[mask_eq_2o44] -
np.power(C[mask_eq_2o44], -2)
numpy.power
import types import numpy as np import sklearn import torch from sklearn.linear_model import RANSACRegressor from utils.iou3d_nms import iou3d_nms_utils from utils import kitti_util def cart2hom(pts_3d): n = pts_3d.shape[0] pts_3d_hom = np.hstack((pts_3d, np.ones((n, 1), dtype=np.float32))) return pts_3d_hom def transform_points(pts_3d_ref, Tr): pts_3d_ref = cart2hom(pts_3d_ref) # nx4 return np.dot(pts_3d_ref, np.transpose(Tr)).reshape(-1, 4)[:, 0:3] def load_velo_scan(velo_filename): scan = np.fromfile(velo_filename, dtype=np.float32) scan = scan.reshape((-1, 4)) return scan def load_plane(plane_filename): with open(plane_filename, 'r') as f: lines = f.readlines() lines = [float(i) for i in lines[3].split()] plane = np.asarray(lines) # Ensure normal is always facing up, this is in the rectified camera coordinate if plane[1] > 0: plane = -plane norm = np.linalg.norm(plane[0:3]) plane = plane / norm return plane def estimate_plane(origin_ptc, max_hs=-1.5, it=1, ptc_range=((-20, 70), (-20, 20))): mask = (origin_ptc[:, 2] < max_hs) & \ (origin_ptc[:, 0] > ptc_range[0][0]) & \ (origin_ptc[:, 0] < ptc_range[0][1]) & \ (origin_ptc[:, 1] > ptc_range[1][0]) & \ (origin_ptc[:, 1] < ptc_range[1][1]) for _ in range(it): ptc = origin_ptc[mask] reg = RANSACRegressor().fit(ptc[:, [0, 1]], ptc[:, 2]) w = np.zeros(3) w[0] = reg.estimator_.coef_[0] w[1] = reg.estimator_.coef_[1] w[2] = -1.0 h = reg.estimator_.intercept_ norm = np.linalg.norm(w) w /= norm h = h / norm result = np.array((w[0], w[1], w[2], h)) result *= -1 mask = np.logical_not(above_plane( origin_ptc[:, :3], result, offset=0.2)) return result def above_plane(ptc, plane, offset=0.05, only_range=((-30, 30), (-30, 30))): mask = distance_to_plane(ptc, plane, directional=True) < offset if only_range is not None: range_mask = (ptc[:, 0] < only_range[0][1]) * (ptc[:, 0] > only_range[0][0]) * \ (ptc[:, 1] < only_range[1][1]) * (ptc[:, 1] > only_range[1][0]) mask *= range_mask return np.logical_not(mask) def distance_to_plane(ptc, plane, directional=False): d = ptc @ plane[:3] + plane[3] if not directional: d = np.abs(d) d /= np.sqrt((plane[:3]**2).sum()) return d import numpy as np from scipy.spatial import ConvexHull def minimum_bounding_rectangle(points): """ Find the smallest bounding rectangle for a set of points. Returns a set of points representing the corners of the bounding box. https://stackoverflow.com/questions/13542855/algorithm-to-find-the-minimum-area-rectangle-for-given-points-in-order-to-comput :param points: an nx2 matrix of coordinates :rval: an nx2 matrix of coordinates """ from scipy.ndimage.interpolation import rotate pi2 = np.pi/2. # get the convex hull for the points hull_points = points[ConvexHull(points).vertices] # calculate edge angles edges = np.zeros((len(hull_points)-1, 2)) edges = hull_points[1:] - hull_points[:-1] angles = np.zeros((len(edges))) angles = np.arctan2(edges[:, 1], edges[:, 0]) angles = np.abs(np.mod(angles, pi2)) angles = np.unique(angles) # find rotation matrices rotations = np.vstack([ np.cos(angles), np.cos(angles-pi2), np.cos(angles+pi2), np.cos(angles)]).T rotations = rotations.reshape((-1, 2, 2)) # apply rotations to the hull rot_points = np.dot(rotations, hull_points.T) # find the bounding points min_x = np.nanmin(rot_points[:, 0], axis=1) max_x = np.nanmax(rot_points[:, 0], axis=1) min_y = np.nanmin(rot_points[:, 1], axis=1) max_y = np.nanmax(rot_points[:, 1], axis=1) # find the box with the best area areas = (max_x - min_x) * (max_y - min_y) best_idx = np.argmin(areas) # return the best box x1 = max_x[best_idx] x2 = min_x[best_idx] y1 = max_y[best_idx] y2 = min_y[best_idx] r = rotations[best_idx] rval = np.zeros((4, 2)) rval[0] = np.dot([x1, y2], r) rval[1] = np.dot([x2, y2], r) rval[2] = np.dot([x2, y1], r) rval[3] = np.dot([x1, y1], r) return rval, angles[best_idx], areas[best_idx] def PCA_rectangle(cluster_ptc): components = sklearn.decomposition.PCA( n_components=2).fit(cluster_ptc).components_ on_component_ptc = cluster_ptc @ components.T min_x, max_x = on_component_ptc[:, 0].min(), on_component_ptc[:, 0].max() min_y, max_y = on_component_ptc[:, 1].min(), on_component_ptc[:, 1].max() area = (max_x - min_x) * (max_y - min_y) rval = np.array([ [max_x, min_y], [min_x, min_y], [min_x, max_y], [max_x, max_y], ]) rval = rval @ components angle = np.arctan2(components[0, 1], components[0, 0]) return rval, angle, area def closeness_rectangle(cluster_ptc, delta=0.1, d0=1e-2): max_beta = -float('inf') choose_angle = None for angle in np.arange(0, 90+delta, delta): angle = angle / 180. * np.pi components = np.array([ [np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)] ]) projection = cluster_ptc @ components.T min_x, max_x = projection[:,0].min(), projection[:,0].max() min_y, max_y = projection[:,1].min(), projection[:,1].max() Dx = np.vstack((projection[:, 0] - min_x, max_x - projection[:, 0])).min(axis=0) Dy = np.vstack((projection[:, 1] - min_y, max_y - projection[:, 1])).min(axis=0) beta = np.vstack((Dx, Dy)).min(axis=0) beta = np.maximum(beta, d0) beta = 1 / beta beta = beta.sum() if beta > max_beta: max_beta = beta choose_angle = angle angle = choose_angle components = np.array([ [np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)] ]) projection = cluster_ptc @ components.T min_x, max_x = projection[:, 0].min(), projection[:, 0].max() min_y, max_y = projection[:, 1].min(), projection[:, 1].max() if (max_x - min_x) < (max_y - min_y): angle = choose_angle + np.pi / 2 components = np.array([ [np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)] ]) projection = cluster_ptc @ components.T min_x, max_x = projection[:, 0].min(), projection[:, 0].max() min_y, max_y = projection[:, 1].min(), projection[:, 1].max() area = (max_x - min_x) * (max_y - min_y) rval = np.array([ [max_x, min_y], [min_x, min_y], [min_x, max_y], [max_x, max_y], ]) rval = rval @ components return rval, angle, area def variance_rectangle(cluster_ptc, delta=0.1): max_var = -float('inf') choose_angle = None for angle in np.arange(0, 90+delta, delta): angle = angle / 180. * np.pi components = np.array([ [np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)] ]) projection = cluster_ptc @ components.T min_x, max_x = projection[:, 0].min(), projection[:, 0].max() min_y, max_y = projection[:, 1].min(), projection[:, 1].max() Dx = np.vstack((projection[:, 0] - min_x, max_x - projection[:, 0])).min(axis=0) Dy = np.vstack((projection[:, 1] - min_y, max_y - projection[:, 1])).min(axis=0) Ex = Dx[Dx < Dy] Ey = Dy[Dy < Dx] var = 0 if (Dx < Dy).sum() > 0: var += -np.var(Ex) if (Dy < Dx).sum() > 0: var += -np.var(Ey) # print(angle, var) if var > max_var: max_var = var choose_angle = angle # print(choose_angle, max_var) angle = choose_angle components = np.array([ [np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)] ]) projection = cluster_ptc @ components.T min_x, max_x = projection[:, 0].min(), projection[:, 0].max() min_y, max_y = projection[:, 1].min(), projection[:, 1].max() if (max_x - min_x) < (max_y - min_y): angle = choose_angle + np.pi / 2 components = np.array([ [np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)] ]) projection = cluster_ptc @ components.T min_x, max_x = projection[:, 0].min(), projection[:, 0].max() min_y, max_y = projection[:, 1].min(), projection[:, 1].max() area = (max_x - min_x) * (max_y - min_y) rval = np.array([ [max_x, min_y], [min_x, min_y], [min_x, max_y], [max_x, max_y], ]) rval = rval @ components return rval, angle, area def get_lowest_point_rect(ptc, xz_center, l, w, ry): ptc_xz = ptc[:, [0, 2]] - xz_center rot = np.array([ [np.cos(ry), -np.sin(ry)], [np.sin(ry), np.cos(ry)] ]) ptc_xz = ptc_xz @ rot.T mask = (ptc_xz[:, 0] > -l/2) & \ (ptc_xz[:, 0] < l/2) & \ (ptc_xz[:, 1] > -w/2) & \ (ptc_xz[:, 1] < w/2) ys = ptc[mask, 1] return ys.max() def get_obj(ptc, full_ptc, fit_method='min_zx_area_fit'): if fit_method == 'min_zx_area_fit': corners, ry, area = minimum_bounding_rectangle(ptc[:, [0, 2]]) elif fit_method == 'PCA': corners, ry, area = PCA_rectangle(ptc[:, [0, 2]]) elif fit_method == 'variance_to_edge': corners, ry, area = variance_rectangle(ptc[:, [0, 2]]) elif fit_method == 'closeness_to_edge': corners, ry, area = closeness_rectangle(ptc[:, [0, 2]]) else: raise NotImplementedError(fit_method) ry *= -1 l = np.linalg.norm(corners[0] - corners[1]) w = np.linalg.norm(corners[0] - corners[-1]) c = (corners[0] + corners[2]) / 2 # bottom = ptc[:, 1].max() bottom = get_lowest_point_rect(full_ptc, c, l, w, ry) h = bottom - ptc[:, 1].min() obj = types.SimpleNamespace() obj.t = np.array([c[0], bottom, c[1]]) obj.l = l obj.w = w obj.h = h obj.ry = ry obj.volume = area * h return obj def objs_nms(objs, use_score_rank=False, nms_threshold=0.1): # generate box array boxes = np.array( [[obj.t[0], obj.t[2], 0, obj.l, obj.w, obj.h, -obj.ry] for obj in objs]) boxes = torch.from_numpy(boxes).float().cuda() overlaps_bev = iou3d_nms_utils.boxes_iou_bev( boxes.contiguous(), boxes.contiguous()) overlaps_bev = overlaps_bev.cpu().numpy() mask = np.ones(overlaps_bev.shape[0], dtype=bool) if use_score_rank: scores = [obj.score for obj in objs] order = np.argsort(scores)[::-1] else: bbox_area = np.diag(overlaps_bev) order = bbox_area.argsort()[::-1] for idx in order: if not mask[idx]: continue mask[overlaps_bev[idx] > nms_threshold] = False mask[idx] = True objs_nmsed = [objs[i] for i in range(len(objs)) if mask[i]] return objs_nmsed def objs2label(objs, calib, obj_type="Dynamic", with_score=False): label_strings = [] for obj in objs: alpha = -
np.arctan2(obj.t[0], obj.t[2])
numpy.arctan2
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import pytest import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.neural_network import flexible_shape_utils from coremltools.models.utils import macos_version, is_macos np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: # check if shape has 0 valued dimension if np.prod(np_preds.shape) == 0 and np.prod(coreml_preds.shape) == 0: return True return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) try: prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) finally: # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(not is_macos() or macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) self.assertEquals(len(input_dim), builder._get_rank('output')) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) for output_ in output_names: self.assertEqual(len(input_dim), builder._get_rank(output_)) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_scale(name='scale', W=W, b=None, has_bias=False, input_name='data', output_name='output', shape_scale=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': W * x} self._test_model(builder.spec, input, expected) def test_bias_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name='bias', b=45, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + 45} self._test_model(builder.spec, input, expected) def test_bias_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected) def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_load_constant(name='load_constant', output_name='bias', constant_value=b, shape=[1, 2, 2]) builder.add_elementwise(name='add', input_names=['data', 'bias'], output_name='output', mode='ADD') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, model_precision) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_load_constant_half_precision(self): self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION) def test_min(self): input_dim = (1, 2, 2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name='min', input_names=['data_0', 'data_1'], output_name='output', mode='MIN') x1 = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) x2 = np.reshape(np.arange(2, 6, dtype=np.float32), (1, 2, 2)) input = {'data_0': x1, 'data_1': x2} expected = {'output': np.minimum(x1, x2)} self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_conv_same_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='conv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='same', groups=1, W=W, b=None, has_bias=False, input_name='data', output_name='output', same_padding_asymmetry_mode='TOP_LEFT_HEAVY') x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 8, 8)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_deconv_valid_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='deconv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=1, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_non_unit_groups(self): input_dim = (16, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) W = np.random.rand(3, 3, 16, 5) builder.add_convolution(name='deconv', kernel_channels=16, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=4, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_linear_activation(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected) def test_padding_constant(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) builder.add_padding(name='pad', left=1, right=0, top=2, bottom=0, value=-1, input_name='data', output_name='output') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape( np.array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 1, 2, 3], [-1, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_padding_replication(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_padding(name='pad', left=1, top=2, input_name='data', output_name='output', padding_type='replication') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape(np.array([[1, 1, 2, 3], [1, 1, 2, 3], [1, 1, 2, 3], [4, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_reshape_target_shape_3(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_reshape_target_shape_4(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (1, 10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (1, 10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_bias_matrix_cpu(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_linear_activation_cpu(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=True) @unittest.skipIf(not is_macos() or macos_version() < LAYERS_10_15_MACOS_VERSION, 'macOS 10.15+ required. Skipping tests.') class NewLayersSimpleTest(CorrectnessTest): def test_shape_flexibility_range(self): input_features = [('data', datatypes.Array(*(3,4)))] builder = neural_network.NeuralNetworkBuilder(input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name='data', lower_bounds=[1,1], upper_bounds=[-1,5]) shapes = [(3,4), (1,5), (60,5), (22,4), (5,3)] for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration(self, rank=4): default_shape = tuple(np.random.randint(1, 15, size=rank)) input_features = [('data', datatypes.Array(*default_shape))] builder = neural_network.NeuralNetworkBuilder( input_features=input_features, output_features=[('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec shapes = [tuple(np.random.randint(1, 15, size=rank)), tuple(np.random.randint(1, 15, size=rank))] flexible_shape_utils.add_multiarray_ndshape_enumeration( spec, feature_name='data', enumerated_shapes=shapes) shapes.append(default_shape) for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration_rank3(self): self.test_shape_flexibility_enumeration(rank=3) def test_shape_flexibility_enumeration_rank2(self): self.test_shape_flexibility_enumeration(rank=2) def test_transpose_cpu(self): for rank in range(1, 6): axes = np.random.permutation(rank) axes = [axis - rank if np.random.choice([True, False]) else axis for axis in axes] input_shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_transpose(name='TransposeND', axes=axes, input_name='data', output_name='output') x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.transpose(x, axes)} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_dynamic_weight_conv(self): input_dim = (1, 3, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (4, 3, 3, 3) output_dim = (1, 4, 14, 14) kernel_channels = input_dim[0] output_channels, kernel_channels, height, width = weight_dim input_features = [ ('input', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='two_input_conv_layer', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, input_name=['input', 'weight'], output_name='output') # Assigning everything to ones should cover the execution path # and engine failures, but is not a complete check on numerics. input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'input': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected, useCPUOnly=True) self._test_model(builder.spec, feed_dict, expected, useCPUOnly=False) @pytest.mark.xfail def test_dynamic_weight_deconv(self): # Expect to fail in Core ML 3 input_dim = (1, 1, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (1, 1, 3, 3) output_dim = (1, 1, 18, 18) output_channels, kernel_channels, height, width = weight_dim input_features = [ ('data', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='deconv', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, is_deconv=True, input_name=['data', 'weight'], output_name='output') input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'data': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected) def test_batched_mat_mul_cpu(self, cpu_only=True): a_shapes = [(10,), (4, 10), (10,), (10,), (2, 3), (1, 3, 4), (1, 3, 1, 2, 3), (2, 3, 1, 3, 4)] b_shapes = [(10,), (10,), (10, 3), (2, 10, 3), (3, 4), (3, 2, 4, 5), (1, 4, 3, 2), (2, 1, 2, 4, 5)] out_shapes = [(1, 1), (4, 1), (1, 3), (2, 1, 3), (2, 4), (3, 2, 3, 5), (1, 3, 4, 2, 2), (2, 3, 2, 3, 5)] for a_shape, b_shape, outShape in zip(a_shapes, b_shapes, out_shapes): input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['A', 'B'], output_name='output', transpose_a=False, transpose_b=False) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input_ = {'A': a, 'B': b} expected = {'output': np.array(np.matmul(a, b))} shape_dict = {'output': outShape} self._test_model(builder.spec, input_, expected, useCPUOnly=cpu_only, output_name_shape_dict=shape_dict) self.assertEqual(len(outShape), builder._get_rank('output')) def test_batched_mat_mul_gpu(self): self.test_batched_mat_mul_cpu(cpu_only=False) def test_batched_mat_mul_with_transposes_cpu(self, cpu_only=True): for transpose_a, transpose_b in itertools.product([True, False], [True, False]): a_shape = (3, 4) b_shape = (4, 5) a_shape = a_shape[::-1] if transpose_a else a_shape b_shape = b_shape[::-1] if transpose_b else b_shape input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_batched_mat_mul( name='BatchedMatMul', input_names=['A', 'B'], output_name='output', transpose_a=transpose_a, transpose_b=transpose_b ) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) inputs = {'A': a, 'B': b} a = a.T if transpose_a else a b = b.T if transpose_b else b expected = {'output': np.matmul(a, b)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_batched_mat_mul_with_transposes_gpu(self): self.test_batched_mat_mul_with_transposes_cpu(cpu_only=False) def test_batched_mat_mul_single_input_cpu(self, model_precision=_MLMODEL_FULL_PRECISION, cpu_only=True): X1 = 11 X2 = 23 W = np.random.rand(X1, X2) bias = np.random.rand(X2) input_shapes = [(X1,), (5, X1), (2, 3, X1), (4, 1, X1), (12, 5, 8, X1), (2, 3, 1, 5, X1)] for input_shape in input_shapes: x = np.random.rand(*input_shape) np_out = np.matmul(x, W) + bias expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['data'], output_name='output', weight_matrix_rows=X1, weight_matrix_columns=X2, W=W, bias=bias) inputs = {'data': x} self._test_model( builder.spec, inputs, expected, model_precision=model_precision, useCPUOnly=cpu_only) def test_batched_mat_mul_single_input_half_precision_cpu(self): self.test_batched_mat_mul_single_input_cpu( model_precision=_MLMODEL_HALF_PRECISION, cpu_only=True) def test_batched_mat_mul_single_input_gpu(self): self.test_batched_mat_mul_single_input_cpu(model_precision=_MLMODEL_FULL_PRECISION, cpu_only=False) def test_embedding_nd_cpu( self, model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=True): vocab_size = 10 embedding_size = 19 W = np.random.rand(embedding_size, vocab_size) input_shapes = [(5, 1), (2, 3, 1), (4, 1, 1), (12, 5, 8, 1), (2, 3, 1, 5, 1)] for input_shape in input_shapes: x = np.random.randint(vocab_size, size=input_shape) np_out = np.take(np.transpose(W), np.squeeze(x, axis=-1), axis=0) expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_embedding_nd(name='embedding_nd', input_name='data', output_name='output', vocab_size=vocab_size, embedding_size=embedding_size, W=W) input = {'data': x.astype(np.float32)} self._test_model( builder.spec, input, expected, model_precision=model_precision, useCPUOnly=use_cpu_only) def test_embedding_nd_half_precision_cpu(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=True) def test_embedding_nd_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=False) def test_embedding_nd_half_precision_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=False) def test_softmax_nan_bug_cpu(self): input_shape = [2,2] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] for axis in [0,1]: builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.array([[0.5, 0.5],[1e8, 1e8]]) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_softmax_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.random.rand(*input_shape) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_softmax_nd_gpu(self): self.test_softmax_nd_cpu(cpu_only=False) def test_concat_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_inputs = np.random.choice(range(2, 5)) output_shape = np.random.randint(low=2, high=5, size=rank) output_shape[axis] = 0 input_shapes = [] input_features = [] input_names = [] for _ in range(n_inputs): input_shapes.append(np.copy(output_shape)) input_shapes[-1][axis] = np.random.choice(range(2, 8)) output_shape[axis] += input_shapes[-1][axis] for i, input_dim in enumerate(input_shapes): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append((input_name, datatypes.Array(*input_dim))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) builder.add_concat_nd(name='concat_nd', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for input_dim in input_shapes: input_tensors.append(np.random.rand(*input_dim)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.concatenate(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_concat_nd_gpu(self): self.test_concat_nd_cpu(cpu_only=False) def test_fill_like_cpu(self, cpu_only=True): for rank in range(1, 6): target_shape = np.random.randint(low=2, high=6, size=rank) value = float(np.random.rand()) input_features = [('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_like(name='fill_like', input_name='tensor', output_name='output', value=value) tensor = np.random.rand(*target_shape) input = {'tensor': tensor} expected = {'output': np.zeros(target_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_fill_like_gpu(self): self.test_fill_like_cpu(cpu_only=False) def test_fill_static_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] value = float(np.random.rand()) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_static(name='fill_static', output_name='tmp', output_shape=list(shape), value=value) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.random.rand(*shape) input = {'data': data} expected = {'output': data + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(shape), builder._get_rank('output')) def test_fill_static_gpu(self): self.test_fill_static_cpu(cpu_only=False) def test_fill_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) value = float(np.random.rand()) input_features = [('shape', datatypes.Array(len(input_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_dynamic(name='fill_dynamic', input_name='shape', output_name='output', value=value) input = {'shape': np.array(input_shape, dtype='float')} expected = {'output': np.zeros(input_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(builder._get_rank('output'), -1) def test_fill_dynamic_gpu(self): self.test_fill_dynamic_cpu(cpu_only=False) def test_broadcast_to_like_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape)), ('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_like(name='broadcast_to_like', input_names=['data', 'tensor'], output_name='output') data = np.random.rand(*input_shape) tensor = np.random.rand(*target_shape) inputs = {'data': data, 'tensor': tensor} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_broadcast_to_like_gpu(self): self.test_broadcast_to_like_cpu(cpu_only=False) def test_broadcast_to_static_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_static(name='broadcast_to_static', input_name='data', output_name='output', output_shape=list(target_shape)) data = np.random.rand(*input_shape) input = {'data': data} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(target_rank, builder._get_rank('output')) def test_broadcast_to_static_gpu(self): self.test_broadcast_to_static_cpu(cpu_only=False) def test_broadcast_to_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic', input_names=['data', 'shape'], output_name='output') data = np.random.rand(*input_shape) inputs = {'data': data, 'shape': np.array(target_shape, dtype='float')} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(builder._get_rank('output'), -1) def test_broadcast_to_dynamic_gpu(self): self.test_broadcast_to_dynamic_cpu(cpu_only=False) # Test Rank being set to unknown when one of the input rank is unknown # For max rank case def test_unknown_rank(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('x', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic', input_names=['x', 'shape'], output_name='y') condition = np.random.randint(0, 2, input_shape).astype(np.float32) builder.add_load_constant_nd(name='load_constant_condition', output_name='condition', constant_value=condition, shape=input_shape) builder.add_where_broadcastable(name='where', input_names=['condition', 'x', 'y'], output_name='output') self.assertEqual(builder._get_rank('output'), -1) def test_trigonometry_cpu(self, cpu_only=True): ops = ['sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh'] for op in ops: for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) x = np.random.rand(*shape) if op == 'sin': builder.add_sin(name=op, input_name='data', output_name='output') expected = {'output': np.sin(x)} elif op == 'cos': builder.add_cos(name=op, input_name='data', output_name='output') expected = {'output': np.cos(x)} elif op == 'tan': builder.add_tan(name=op, input_name='data', output_name='output') expected = {'output': np.tan(x)} elif op == 'asin': builder.add_asin(name=op, input_name='data', output_name='output') expected = {'output': np.arcsin(x)} elif op == 'acos': builder.add_acos(name=op, input_name='data', output_name='output') expected = {'output': np.arccos(x)} elif op == 'atan': builder.add_atan(name=op, input_name='data', output_name='output') expected = {'output': np.arctan(x)} elif op == 'sinh': builder.add_sinh(name=op, input_name='data', output_name='output') expected = {'output': np.sinh(x)} elif op == 'cosh': builder.add_cosh(name=op, input_name='data', output_name='output') expected = {'output': np.cosh(x)} elif op == 'tanh': builder.add_tanh(name=op, input_name='data', output_name='output') expected = {'output': np.tanh(x)} elif op == 'asinh': builder.add_asinh(name=op, input_name='data', output_name='output') expected = {'output': np.arcsinh(x)} elif op == 'acosh': x = np.random.choice([10, np.e, 1], tuple(shape)).astype(np.float32) builder.add_acosh(name=op, input_name='data', output_name='output') expected = {'output': np.arccosh(x)} elif op == 'atanh': builder.add_atanh(name=op, input_name='data', output_name='output') expected = {'output': np.arctanh(x)} self._test_model(builder.spec, {'data': x}, expected, useCPUOnly=cpu_only) def test_trigonometry_gpu(self): self.test_trigonometry_cpu(cpu_only=False) def test_exp2_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_exp2(name='exp2', input_name='data', output_name='output') x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.exp2(x)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_exp2_gpu(self): self.test_exp2_cpu(cpu_only=False) def test_elementwise_binary_cpu(self, cpu_only=True): input_names = ['A', 'B'] test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal', 'less_equal', 'logical_and', 'logical_or', 'logical_xor', 'add', 'subtract', 'multiply', 'divide', 'power', 'maximum', 'minimum', 'floor_divide', 'mod'] for test_case in test_cases: for _ in range(10): rank_a = np.random.randint(low=1, high=6) rank_b = np.random.randint(low=1, high=6) rank_out = max(rank_a, rank_b) shape_a = np.random.randint(low=2, high=8, size=rank_a) shape_b = np.random.randint(low=2, high=8, size=rank_b) for i in range(-1, -rank_out - 1, -1): dims = [] if -i <= rank_a: dims.append(shape_a[i]) if -i <= rank_b: dims.append(shape_b[i]) dim = np.random.choice(dims) if -i <= rank_a: shape_a[i] = np.random.choice([1, dim]) if -i <= rank_b: shape_b[i] = np.random.choice([1, dim]) input_shapes = [shape_a, shape_b] input_features = [('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1]))] builder = neural_network.NeuralNetworkBuilder(input_features, [ ('output', None)], disable_rank5_shape_mapping=True) func = getattr(np, test_case) if test_case == 'greater': builder.add_greater_than(test_case, input_names=input_names, output_name='output') elif test_case == 'less': builder.add_less_than(test_case, input_names=input_names, output_name='output') elif test_case == 'equal': builder.add_equal(test_case, input_names=input_names, output_name='output') elif test_case == 'not_equal': builder.add_not_equal(test_case, input_names=input_names, output_name='output') elif test_case == 'greater_equal': builder.add_greater_than(test_case, input_names=input_names, output_name='output', use_greater_than_equal=True) elif test_case == 'less_equal': builder.add_less_than(test_case, input_names=input_names, output_name='output', use_less_than_equal=True) elif test_case == 'logical_and': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='AND') elif test_case == 'logical_or': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='OR') elif test_case == 'logical_xor': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='XOR') elif test_case == 'add': builder.add_add_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'subtract': builder.add_subtract_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'multiply': builder.add_multiply_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'divide': builder.add_divide_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'power': builder.add_pow_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'maximum': builder.add_max_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'minimum': builder.add_min_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'floor_divide': builder.add_floor_div_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'mod': builder.add_mod_broadcastable(test_case, input_names=input_names, output_name='output') a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input = {'A': a, 'B': b} expected = {'output': func(a, b, dtype=np.float32)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_elementwise_binary_gpu(self): self.test_elementwise_binary_cpu(cpu_only=False) def test_elementwise_boolean_unary_cpu(self, cpu_only=True): input_names = ['input'] shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3), (2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)] test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal', 'less_equal'] for test_case in test_cases: for shape in shapes: input_features = [('input', datatypes.Array(*shape))] b = np.random.rand() builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) func = getattr(np, test_case) if test_case == 'greater': builder.add_greater_than(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'less': builder.add_less_than(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'equal': builder.add_equal(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'not_equal': builder.add_not_equal(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'greater_equal': builder.add_greater_than(test_case, input_names=input_names, output_name='output', use_greater_than_equal=True, alpha=b) elif test_case == 'less_equal': builder.add_less_than(test_case, input_names=input_names, output_name='output', use_less_than_equal=True, alpha=b) a = np.random.rand(*shape) input = {'input': a} expected = {'output': func(a, b, dtype=np.float32)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_elementwise_boolean_unary_gpu(self): self.test_elementwise_boolean_unary_cpu(cpu_only=False) def test_logical_not_cpu(self, cpu_only=True): input_names = ['input'] shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3), (2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)] for shape in shapes: input_features = [('input', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_logical('logical_not', input_names=input_names, output_name='output', mode='NOT') a = np.random.rand(*shape) input = {'input': a} expected = {'output': np.logical_not(a)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_logical_not_gpu(self): self.test_logical_not_cpu(cpu_only=False) def test_stack_cpu(self, cpu_only=True): for input_rank in range(1, 5): for axis in range(-input_rank - 1, input_rank + 1): n_inputs = np.random.choice(range(2, 5)) input_shape = np.random.randint(low=2, high=5, size=input_rank) input_features = [] input_names = [] for i in range(n_inputs): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append( (input_name, datatypes.Array(*input_shape))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_stack(name='stack', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for _ in range(n_inputs): input_tensors.append(np.random.rand(*input_shape)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.stack(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(input_rank + 1, builder._get_rank('output')) def test_stack_gpu(self): self.test_stack_cpu(cpu_only=False) def test_ceil_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_ceil(name='ceil', input_name='data', output_name='output') x = np.random.rand(*shape) inputs = {'data': x} expected = {'output': np.ceil(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_ceil_gpu(self): self.test_ceil_cpu(cpu_only=False) def test_floor_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_floor(name='floor', input_name='data', output_name='output') x = np.random.rand(*shape) inputs = {'data': x} expected = {'output': np.floor(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_floor_gpu(self): self.test_floor_cpu(cpu_only=False) def test_round_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_round(name='round', input_name='data', output_name='output') x = np.float32(np.random.rand(*shape) * np.random.randint(low=-100, high=101)) inputs = {'data': x} expected = {'output': np.around(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_round_gpu(self): self.test_round_cpu(cpu_only=False) def test_sign_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_sign(name='sign', input_name='data', output_name='output') x = np.random.choice([-np.random.rand(1), 0.0, np.random.rand(1)], tuple(shape)).astype(np.float32) inputs = {'data': x} expected = {'output': np.sign(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_sign_gpu(self): self.test_sign_cpu(cpu_only=False) def test_clip_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] x = np.random.rand(*shape) min_value = np.percentile(x, 25) max_value = np.percentile(x, 75) input = {'data': x} builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_clip(name='clip', input_name='data', output_name='output', min_value=min_value, max_value=max_value) expected = {'output': np.clip(x, min_value, max_value)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_clip_gpu(self): self.test_clip_cpu(cpu_only=False) def test_split_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_outputs = np.random.choice(range(2, 4)) input_shape = np.random.randint(low=2, high=5, size=rank) input_shape[axis] = 0 output_shapes = [] output_features = [] output_names = [] almost_equal = random.choice([True, False]) remainder = np.random.choice( range(1, n_outputs)) if almost_equal else 0 value = np.random.choice(range(2, 5)) for k in range(n_outputs): output_shapes.append(np.copy(input_shape)) output_shapes[-1][ axis] = value + 1 if k < remainder else value input_shape[axis] += output_shapes[-1][axis] for i in range(n_outputs): output_name = 'output_%s' % str(i) output_names.append(output_name) output_features.append( (output_name, None)) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_split_nd(name='split_nd', input_name='data', output_names=output_names, axis=axis, num_splits=n_outputs) x = np.random.rand(*input_shape) input = {'data': x} expected = dict( zip( output_names, np.array_split(x, n_outputs, axis=axis) if almost_equal else np.split(x, n_outputs, axis=axis) ) ) # Explicitly trying to compare against both versions of numpy split self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) for output_ in output_names: self.assertEqual(rank, builder._get_rank(output_)) def test_split_nd_gpu(self): self.test_split_nd_cpu(cpu_only=False) def test_split_nd_with_split_sizes_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_outputs = np.random.choice(range(2, 4)) input_shape = np.random.randint(low=2, high=5, size=rank) input_shape[axis] = 0 output_shapes, output_features, output_names = [], [], [] sections, split_sizes = [], [] for _ in range(n_outputs): output_shapes.append(np.copy(input_shape)) output_shapes[-1][axis] = np.random.choice(range(2, 5)) input_shape[axis] += output_shapes[-1][axis] sections.append(input_shape[axis]) split_sizes.append(output_shapes[-1][axis]) sections.pop() for i in range(n_outputs): output_name = 'output_%s' % str(i) output_names.append(output_name) output_features.append( (output_name, None)) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_split_nd(name='split_nd', input_name='data', output_names=output_names, axis=axis, split_sizes=split_sizes) x = np.random.rand(*input_shape) input = {'data': x} expected = dict( zip(output_names, np.split(x, sections, axis=axis))) self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) for output_ in output_names: self.assertEqual(rank, builder._get_rank(output_)) def test_split_nd_with_split_sizes_gpu(self): self.test_split_nd_with_split_sizes_cpu(cpu_only=False) def test_slice_static_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(200): input_shape = np.array([5 for _ in range(rank)]) objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], [] for dim in range(rank): stride = random.choice([-3, -1, 1, 2]) begin_mask = random.choice([True, False]) end_mask = random.choice([True, False]) length = 0 while length <= 0: begin_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) end_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) obj = slice(None if begin_mask else begin_id, None if end_mask else end_id, stride) length = np.arange(input_shape[dim])[(obj,)].shape[0] objs.append(obj), strides.append(stride), begin_masks.append( begin_mask) end_masks.append(end_mask), begin_ids.append( begin_id), end_ids.append(end_id) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_slice_static('slice_static', 'data', 'output', begin_ids=begin_ids, end_ids=end_ids, strides=strides, begin_masks=begin_masks, end_masks=end_masks) x = np.random.rand(*input_shape) inputs = {'data': x} expected = {'output': x[tuple(objs)]} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_slice_static_gpu(self): self.test_slice_static_cpu(cpu_only=False) def test_slice_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.array([5 for _ in range(rank)]) objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], [] for dim in range(rank): stride = random.choice([-3, -1, 1, 2]) begin_mask = random.choice([True, False]) end_mask = random.choice([True, False]) length = 0 while length <= 0: begin_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) end_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) obj = slice(None if begin_mask else begin_id, None if end_mask else end_id, stride) length = np.arange(input_shape[dim])[(obj,)].shape[0] objs.append(obj), strides.append(stride), begin_masks.append( begin_mask) end_masks.append(end_mask), begin_ids.append( begin_id), end_ids.append(end_id) # test different number of inputs, from 2 inputs up to 6 inputs # when num_inputs == 2, begin_ids are inputs, rest are read from parameters # when num_inputs == 6, all read from inputs, none are read from parameters for num_inputs in [2, 3, 4, 5, 6]: x = np.random.rand(*input_shape) input_features = [('data', datatypes.Array(*input_shape))] input_names = ['data'] inputs = dict() inputs['data'] = x if num_inputs == 2: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids)))] input_names = ['data', 'begin_ids'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) elif num_inputs == 3: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids)))] input_names = ['data', 'begin_ids', 'end_ids'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) elif num_inputs == 4: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) elif num_inputs == 5: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides))), ('begin_masks', datatypes.Array(len(begin_masks)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides', 'begin_masks'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) inputs['begin_masks'] = np.array(begin_masks, dtype=np.int32) elif num_inputs == 6: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides))), ('begin_masks', datatypes.Array(len(begin_masks))), ('end_masks', datatypes.Array(len(end_masks)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides', 'begin_masks', 'end_masks'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) inputs['begin_masks'] = np.array(begin_masks, dtype=np.int32) inputs['end_masks'] = np.array(end_masks, dtype=np.int32) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) if num_inputs == 2: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', end_ids=end_ids, strides=strides, begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 3: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', strides=strides, begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 4: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 5: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', end_masks=end_masks) elif num_inputs == 6: builder.add_slice_dynamic('slice_dynamic', input_names, 'output') expected = {'output': x[tuple(objs)]} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_slice_dynamic_gpu(self): self.test_slice_dynamic_cpu(cpu_only=False) def test_tile_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=5, size=rank) for rep_rank in range(1,rank+1): reps = list(np.random.randint(low=1, high=9, size=rep_rank)) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_tile('Tile', 'data', 'output', reps) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.tile(x, reps)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_tile_gpu(self): self.test_tile_cpu(cpu_only=False) def test_sliding_windows_cpu(self, cpu_only=True): def numpy_sliding_windows(a, np_axis, np_size, np_step): n = (a.shape[np_axis] - np_size) // np_step + 1 shape = list(a.shape) shape[np_axis] = n if np_axis < 0: np_axis += len(shape) shape.insert(np_axis + 1, np_size) strides = list(a.strides) effstride = strides[np_axis] * np_step strides.insert(np_axis, effstride) return np.lib.stride_tricks.as_strided(a, shape, strides) for rank in range(1, 5): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) output_shape = list(input_shape) window_size = np.random.randint(low=1, high=input_shape[axis]) length = 0 while length <= 0: step = np.random.randint(low=1, high=input_shape[axis]) length = (input_shape[axis] - window_size) // step + 1 output_shape[axis] = length pos_axis = axis if axis >= 0 else axis + rank output_shape.insert(pos_axis + 1, window_size) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_sliding_windows('sliding_windows', input_name='data', output_name='output', axis=axis, window_size=window_size, step=step) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': numpy_sliding_windows(x, axis, window_size, step)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(rank+1, builder._get_rank('output')) def test_sliding_windows_gpu(self): self.test_sliding_windows_cpu(cpu_only=False) def test_range_static_cpu(self, cpu_only=True): params = [(-10.4, 23, 12.2), (0, 1000, 1), (50.5, 90.5, 1.5), (5, 8, 2), (5, 8, 98), (5, 8, 1.5), (10, 5, -0.6), (24, -65, -2)] for param in params: start, end, step = param input_features = [('multiplicative_input', datatypes.Array(1))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_range_static('range_static', 'output_range', end=end, start=start, step=step) builder.add_multiply_broadcastable( name='multiply_broadcastable', input_names=['multiplicative_input', 'output_range'], output_name='output') # save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) inputs = dict() inputs['multiplicative_input'] = np.ones((1,), dtype=np.float64) expected = {'output': np.arange(start, end, step)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(1, builder._get_rank('output')) def test_range_static_gpu(self): self.test_range_static_cpu(cpu_only=False) def test_range_dynamic_cpu(self, cpu_only=True): params = [(-10.4, 23, 12.2), (0, 1000, 1), (50.5, 90.5, 1.5), (5, 8, 2), (5, 8, 98), (5, 8, 1.5), (10, 5, -0.6), (24, -65, -2)] # input size == 1: end is input, start and step are read from parameters # input size == 2: end, start are inputs, step is read from parameters # input size == 3: start, end, step are all inputs, none of the parameters are used. for num_inputs in [1, 2, 3]: for param in params: inputs = dict() start, end, step = param if num_inputs == 1: input_features = [('end', datatypes.Array(1))] elif num_inputs == 2: input_features = [('end', datatypes.Array(1)), ('start', datatypes.Array(1))] elif num_inputs == 3: input_features = [('end', datatypes.Array(1)), ('start', datatypes.Array(1)), ('step', datatypes.Array(1))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) if num_inputs == 1: inputs['end'] = end * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end'], start=start, step=step) elif num_inputs == 2: inputs['end'] = end * np.ones((1,), dtype=np.float64) inputs['start'] = start * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end', 'start'], step=step) elif num_inputs == 3: inputs['end'] = end * np.ones((1,), dtype=np.float64) inputs['start'] = start * np.ones((1,), dtype=np.float64) inputs['step'] = step * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end', 'start', 'step']) expected = {'output': np.arange(start, end, step)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(1, builder._get_rank('output')) def test_range_dynamic_gpu(self): self.test_range_dynamic_cpu(cpu_only=False) def test_linear_activation_different_ranks_cpu(self, cpu_only=True): for input_dim in [(10, 15), (10, 15, 2, 3), (10, 2, 4, 15, 1, 4), (6,)]: input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_linear_activation_different_ranks_gpu(self): self.test_linear_activation_different_ranks_cpu(cpu_only=False) def test_topk_cpu(self, cpu_only=True): test_input_shapes = [(9,), (8, 6), (9, 8, 10), (5, 9, 7, 9), (12, 8, 6, 6, 7)] K = [3, 5] axes = [[0], [0, 1], [1, 2], [0, 3, 1], [1, 3, 4]] for ii, input_shape in enumerate(test_input_shapes): for k in K: for n_inputs in [1, 2]: for bottom_k_flag in [False, True]: for axis in axes[ii]: for negative_axis in [False, True]: if negative_axis: axis = axis - len(input_shape) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('values', None), ('indices', None)] input_names = ['data'] output_names = ['values', 'indices'] if n_inputs == 2: input_names.append('k_in') input_features.append(('k_in', datatypes.Array(1))) builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_topk('topk', input_names, output_names, axis=axis, use_bottom_k=bottom_k_flag) else: builder.add_topk('topk', input_names, output_names, k=k, axis=axis, use_bottom_k=bottom_k_flag) data = np.random.randint(low=0, high=int(np.prod(input_shape)), size=input_shape) data = data.astype(np.float32) input = {'data': data} if n_inputs == 2: input['k_in'] = k * np.ones([1], dtype=np.float32) # numpy reference values if bottom_k_flag: ref_indices = np.argsort(data, axis=axis) else: ref_indices = np.argsort(-data, axis=axis) slc = [slice(None)] * len(input_shape) slc[axis] = slice(0, k) ref_indices = ref_indices[tuple(slc)] ref_values = np.take_along_axis(data, ref_indices, axis=axis) expected = {'values': ref_values, 'indices': ref_indices} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_topk_gpu(self): self.test_topk_cpu(cpu_only=False) def test_const_pad_cpu(self, cpu_only=True): def get_reference(data, pads, value): with tf.Graph().as_default(), tf.Session() as sess: x = tf.placeholder(tf.float32, shape=data.shape) p = tf.placeholder(tf.int32, shape=pads.shape) y = tf.pad(x, p, mode='CONSTANT', constant_values=value) return sess.run(y, feed_dict={x: data, p: pads}) value = 34.0 shapes = [(3,), (4, 5), (2, 4, 5), (12, 6, 3, 5, 7), (1, 24, 2, 4, 8)] ctr = 0 for shape in shapes: rank = len(shape) for force_zeros_in_end in [0, 2, 6]: for max_pad_value in range(1, 6): for n_inputs in [1, 2]: pads = np.random.randint(low=0, high=max_pad_value, size=(rank, 2)) if force_zeros_in_end > 2 * rank: continue # pads = np.reshape(np.array([1,1,1,0,0,1]), (rank, 2)) if force_zeros_in_end != 0: pads[-force_zeros_in_end:] = 0 data = np.random.rand(*shape) reference = get_reference(data, pads, value) ctr += 1 input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] input_names = ['data'] if n_inputs == 2: input_names.append('pads') input_features.append(('pads', datatypes.Array(2*rank,))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_constant_pad('pad', input_names, 'output', value=value) else: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_amounts=pads.flatten()) input = {'data': data} if n_inputs == 2: input['pads'] = pads.flatten().astype(np.float) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_const_pad_gpu(self): self.test_const_pad_cpu(cpu_only=False) def test_const_pad_mode2_cpu(self, cpu_only=True): def get_reference(data, output_shape, value, left_pad=False): with tf.Graph().as_default(), tf.Session() as sess: x = tf.placeholder(tf.float32, shape=data.shape) p = tf.placeholder(tf.int32, shape=(len(output_shape), 2)) y = tf.pad(x, p, mode='CONSTANT', constant_values=value) pads = np.zeros((len(output_shape), 2)) if left_pad: pads[:, 0] = np.array(output_shape) - np.array(data.shape) else: pads[:, 1] = np.array(output_shape) - np.array(data.shape) return sess.run(y, feed_dict={x: data, p: pads}) value = 34.0 shapes = [(3,), (4, 5), (2, 4, 5), (12, 6, 3, 5, 7), (1, 24, 2, 4, 8)] out_shapes = [(5,), (4, 8), (2, 4, 10), (20, 6, 7, 10, 7), (5, 24, 10, 4, 10)] ctr = 0 for ii, shape in enumerate(shapes): rank = len(shape) for left_pad in [True, False]: for n_inputs in [1, 2]: data = np.random.rand(*shape) reference = get_reference(data, out_shapes[ii], value, left_pad) pads = np.zeros((rank, 2)) tmp = np.zeros((rank)) for i in range(rank): if out_shapes[ii][i] == shape[i]: tmp[i] = 0 else: tmp[i] = out_shapes[ii][i] if left_pad: pads[:, 0] = tmp else: pads[:, 1] = tmp ctr += 1 input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] input_names = ['data'] if n_inputs == 2: input_names.append('pads') input_features.append(('pads', datatypes.Array(2*rank,))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_to_given_output_size_mode=True) else: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_amounts=pads.flatten(), pad_to_given_output_size_mode=True) input = {'data': data} if n_inputs == 2: input['pads'] = pads.flatten().astype(np.float) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_const_pad_mode2_gpu(self): self.test_const_pad_mode2_cpu(cpu_only=False) def test_nms_cpu(self, cpu_only=True): def _compute_iou_matrix(boxes): # input is (N,4), in order [center_w, center_h, width, height] assert len(boxes.shape) == 2 assert boxes.shape[1] == 4 boxes = boxes.astype(np.float) center_w, center_h, width, height = np.split(boxes, 4, axis=1) # outs are all (N,1) top = center_h + 0.5 * height bottom = center_h - 0.5 * height left = center_w - 0.5 * width right = center_w + 0.5 * width area = width * height hB = np.minimum(top, np.transpose(top)) wB = np.minimum(right, np.transpose(right)) hA = np.maximum(bottom, np.transpose(bottom)) wA = np.maximum(left, np.transpose(left)) intersection_area = np.maximum(0, hB - hA) * np.maximum(0, wB - wA) union_area = area + np.transpose(area) - intersection_area iou = intersection_area / union_area return iou def _nms_TF(boxes, scores, iou_threshold, score_threshold, per_class_suppression, M): # boxes is (B,N,4), in order [center_w, center_h, width, height] # scores is (B,N,C) # output shapes: (B,M,4), (B,M,C), (B,M), (B,) ''' this is implementation of CoreML's NMS layer ''' B, N, C = scores.shape iou_threshold = iou_threshold.astype(np.float32) score_threshold = score_threshold.astype(np.float32) # convert box ids to TF style center_w, center_h, width, height = np.split(boxes, 4, axis=-1) # outs are all (B,N,1) y1 = center_h - 0.5 * height y2 = center_h + 0.5 * height x1 = center_w - 0.5 * width x2 = center_w + 0.5 * width boxes_tf = np.concatenate((y1, x1, y2, x2), axis=-1) # (B,N,4) out1 = np.zeros((B, M, 4)) out2 = np.zeros((B, M, C)) out3 = -1 * np.ones((B, M)) out4 = np.zeros((B,)) for b in range(B): box_coord_matrix = boxes_tf[b, :, :] # (N,4) score_vector = np.max(scores[b, :, :], axis=-1) # (N,) if not per_class_suppression: # this is the simple case as TF directly supports it with tf.Graph().as_default(), tf.Session() as sess: box_coord_matrix_pl = tf.placeholder(tf.float32, shape=box_coord_matrix.shape) score_vector_pl = tf.placeholder(tf.float32, shape=score_vector.shape) ids_g = tf.image.non_max_suppression(box_coord_matrix_pl, score_vector_pl, max_output_size=M, iou_threshold=iou_threshold, score_threshold=score_threshold) ids = sess.run(ids_g, feed_dict={box_coord_matrix_pl: box_coord_matrix, score_vector_pl: score_vector}) else: # this is slightly complicated as TF does not directly support it class_ids = np.argmax(scores[b, :, :], axis=-1) # (N,) sorted_score_ids = np.argsort(-score_vector) box_coord_matrix2 = np.take(box_coord_matrix, sorted_score_ids, axis=0) score_vector2 = np.take(score_vector, sorted_score_ids) class_ids = np.take(class_ids, sorted_score_ids) classes_seen = dict() ids_intermediate = np.array([], dtype=np.int) for n in range(N): if class_ids[n] in classes_seen: continue c = class_ids[n] classes_seen[c] = True current_class_ids = np.where(class_ids == c)[0] if len(current_class_ids) > 0: feed_in1 = np.take(box_coord_matrix2, current_class_ids, axis=0) feed_in2 = np.take(score_vector2, current_class_ids) with tf.Graph().as_default(), tf.Session() as sess: box_coord_matrix_pl = tf.placeholder(tf.float32, shape=feed_in1.shape) score_vector_pl = tf.placeholder(tf.float32, shape=feed_in2.shape) cur_ids_g = tf.image.non_max_suppression(box_coord_matrix_pl, score_vector_pl, max_output_size=M, iou_threshold=iou_threshold, score_threshold=score_threshold) cur_ids = sess.run(cur_ids_g, feed_dict={box_coord_matrix_pl: feed_in1, score_vector_pl: feed_in2}) from_sort_ids = np.take(current_class_ids, cur_ids) ids_intermediate = np.append(ids_intermediate, from_sort_ids) ids_intermediate.sort() ids = np.take(sorted_score_ids, ids_intermediate) xx = len(ids) if xx == 0: ids = np.array([np.argmax(score_vector)]) xx = 1 if xx > M: ids = ids[:M] xx = len(ids) out1[b, :xx, :] = np.take(boxes[b, :, :], ids, axis=0) out2[b, :xx, :] = np.take(scores[b, :, :], ids, axis=0) out3[b, :xx] = ids out4[b] = xx return out1, out2, out3, out4 iou_threshold_percentile = [0, 30, 80, 100] score_threshold_percentile_arr = [0, 40, 100] N_M_pairs_to_test = [[100, 48], [100, 112]] # N : boxes in, M: max boxes out number_of_test = 0 for N_M in N_M_pairs_to_test: for B in [1, 5]: for C in [1, 7]: N, M = N_M boxes = np.random.rand(B, N, 4) scores = np.random.rand(B, N, C) iou_matrix = _compute_iou_matrix(boxes[0, :, :]) # (N,N) iou_matrix = iou_matrix[~np.eye(iou_matrix.shape[0], dtype=bool)].reshape(iou_matrix.shape[0], -1) for per_class_suppression in [False, True]: for iou_thresh in iou_threshold_percentile: for score_thresh in score_threshold_percentile_arr: for is_dynamic in [False, True]: if score_thresh == 0: score_threshold = np.min(scores) - 1 elif score_thresh == 100: score_threshold = np.max(scores) + 1 else: score_threshold = np.percentile(scores, score_thresh) + .01 if iou_thresh == 0: iou_threshold = np.maximum(np.min(iou_matrix) - .01, 0.0) else: iou_threshold = np.percentile(iou_matrix, iou_thresh) + .01 number_of_test += 1 tf_boxes, tf_scores, tf_ids, tf_num_boxes = _nms_TF(boxes, scores, iou_threshold, score_threshold, per_class_suppression, M) expected = dict() expected['selected_boxes'] = tf_boxes expected['selected_scores'] = tf_scores expected['selected_box_ids'] = tf_ids expected['number_of_boxes'] = tf_num_boxes # define CoreML model input_features = [('boxes', datatypes.Array(B,N,4)), ('scores', datatypes.Array(B,N,C))] output_features = [('selected_boxes', None), ('selected_scores', None), ('selected_box_ids', None), ('number_of_boxes', None)] input_names = ['boxes', 'scores'] if is_dynamic: input_names.extend(['iou_threshold', 'score_threshold', 'max_boxes']) input_features.append(('iou_threshold', datatypes.Array(1, ))) input_features.append(('score_threshold', datatypes.Array(1, ))) input_features.append(('max_boxes', datatypes.Array(1, ))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) input_dict = dict() input_dict['boxes'] = boxes input_dict['scores'] = scores if is_dynamic: builder.add_nms('nms', input_names, ['selected_boxes', 'selected_scores', 'selected_box_ids','number_of_boxes'], per_class_suppression=per_class_suppression) input_dict['iou_threshold'] = iou_threshold * np.ones([1], dtype=np.float) input_dict['score_threshold'] = score_threshold * np.ones([1], dtype=np.float) input_dict['max_boxes'] = M * np.ones([1], dtype=np.float) else: builder.add_nms('nms', input_names, ['selected_boxes', 'selected_scores', 'selected_box_ids','number_of_boxes'], iou_threshold=iou_threshold, score_threshold=score_threshold, max_boxes=M, per_class_suppression=per_class_suppression) self._test_model(builder.spec, input_dict, expected, useCPUOnly=cpu_only) def test_nms_gpu(self): self.test_nms_cpu(cpu_only=False) def test_rank_preserving_reshape(self): input_shapes = [(20, 10), (20, 10, 5), (10, 3, 5)] target_shapes = [(5, -1), (0, 2, 25), (25, 0, -1)] output_shapes = [(5, 40), (20, 2, 25), (25, 3, 2)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_rank_preserving_reshape( name='rank_preserving_reshape', input_name='data', output_name='output', output_shape=target_shapes[i]) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_expand_dims(self): input_shapes = [(10, 5), (10, 5), (10, 5), (10, 5), (10,)] axes = [(0, 1), (0, 2), (2, 0), (-2, -1), (1, 0, -2)] output_shapes = [(1, 1, 10, 5), (1, 10, 1, 5), (1, 10, 1, 5), (10, 5, 1, 1), (1, 1, 1, 10)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_expand_dims( name='expand_dims', input_name='data', output_name='output', axes=axes[i] ) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_squeeze(self): input_shapes = [(1, 1, 10, 5), (1, 10, 1, 5), (10, 5, 1, 1), (10, 5, 1, 1), (1,), (10, 5, 1, 1), (3, 1, 7)] axes = [(0, 1), (0, 2), (-2, -1), (-1, -2), (0,), (3, -2), (1,)] output_shapes = [(10, 5), (10, 5), (10, 5), (10, 5), (1,), (10, 5), (3, 7)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_squeeze(name='squeeze_layer', input_name='data', output_name='output', axes=list(axes[i])) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_squeeze_all(self): input_shapes = [ (1, 1, 10, 5), (1, 10, 1, 5), (10, 5, 1, 1), (10, 5, 1, 1), (1,), (10, 5, 1, 1), (3, 1, 7), (3,), (5, 6) ] for input_shape in input_shapes: input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_squeeze(name='squeeze_layer', input_name='data', output_name='output', squeeze_all=True) x = np.random.rand(*input_shape) input = {'data': x} reference = np.squeeze(x) if not reference.shape: reference = np.reshape(reference, (1,)) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(-1, builder._get_rank('output')) def test_argmax_argmin(self): test_input_shapes = [(9,), (8, 6), (9, 8, 10), (5, 9, 7, 9), (12, 8, 6, 6, 7)] # (1+2+3+4+5) * 2^3 = 120 test cases for input_shape in test_input_shapes: for negative_axis in [False, True]: for mode in ['argmax', 'argmin']: for keep_dims in [True, False]: for axis in np.arange(len(input_shape)): if negative_axis: axis_val = axis - len(input_shape) else: axis_val = axis input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) x = np.random.rand(*input_shape) if mode == 'argmax': builder.add_argmax('argmax', 'data', 'output', axis=axis_val, keepdims=keep_dims) np_out = np.argmax(x, axis=axis_val) else: builder.add_argmin('argmin', 'data', 'output', axis=axis_val, keepdims=keep_dims) np_out = np.argmin(x, axis=axis_val) if keep_dims: np_out = np.expand_dims(np_out, axis=axis_val) elif len(input_shape) == 1: np_out = np.expand_dims(np_out, axis=axis_val) input = {'data': x} expected = {'output': np_out} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(np_out.shape), builder._get_rank('output')) def test_get_shape(self): dims = [1, 2, 3, 4, 5] for rank in range(1, len(dims) + 1): input_shape = dims[:rank] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_get_shape(name='get_shape_layer', input_name='data', output_name='output') feed = {'data': np.random.rand(*input_shape)} expected = {'output': np.array(input_shape)} self._test_model(builder.spec, feed, expected, useCPUOnly=True) self.assertEqual(1, builder._get_rank('output')) def test_load_constant_nd(self): dims = [2, 3, 4, 5, 6] for rank in range(1, len(dims) + 1): input_shape = dims[:rank] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_load_constant_nd('load_const_nd_layer', 'tmp', constant_value=np.ones(input_shape), shape=input_shape) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') feed = {'data': np.random.rand(*input_shape)} expected = {'output': feed['data'] + 1} self._test_model(builder.spec, feed, expected, useCPUOnly=True) self.assertEqual(rank, builder._get_rank('output')) @unittest.skip('fix') def test_simple_array_alloc_scatter(self): alloc_shape = [2, 3, 4] value_shape = [1, 3, 4] input_features = [('alloc_shape', datatypes.Array(len(alloc_shape))), ('value', datatypes.Array(*value_shape)), ('index', datatypes.Array(1))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_fill_dynamic(name='fill_dynamic_layer', input_name='alloc_shape', output_name='array', value=np.float(0.0)) # CoreML input order: container (array), indices, slices (value) builder.add_scatter(name='scatter_layer', input_names=['array', 'index', 'value'], output_name='output') value = np.random.rand(*value_shape).astype('float') feed = {'alloc_shape': np.array(alloc_shape, dtype='float'), 'value': value, 'index': np.array([1], dtype='float')} ref = np.zeros(alloc_shape) ref[1, :, :] = value expected = {'output': ref} self._test_model(builder.spec, feed, expected, useCPUOnly=True) def test_erf_activation_cpu(self, cpu_only=True): input_features = [('data', datatypes.Array(10, 45))] output_features = [('output', datatypes.Array(10, 45))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_erf(name='erf', input_name='data', output_name='output') x = np.random.rand(10, 45) input = {'data': x} expected = { 'output': np.asarray([math.erf(i) for i in x.flatten().tolist()]).reshape(10, 45) } self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_erf_activation_gpu(self): self.test_erf_activation_cpu(cpu_only=False) def test_gelu_activation(self): for mode in ['EXACT', 'TANH_APPROXIMATION', 'SIGMOID_APPROXIMATION']: for rank in range(1, 6): shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_gelu(name='gelu', input_name='data', output_name='output', mode=mode) x = np.random.rand(*shape) input = {'data': x} exact = np.asarray([0.5 * i * (1.0 + math.erf(i / math.sqrt(2))) for i in x.flatten().tolist()]).reshape(*shape) expected = {'output': exact} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_lower_triangular_cpu(self, cpu_only=True): for rank in range(2, 6): for k in range(-3, 4): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_lower_triangular('tril', 'data', 'output', k=k) x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.tril(x, k=k)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_lower_triangular_gpu(self): self.test_lower_triangular_cpu(cpu_only=False) def test_upper_triangular_cpu(self, cpu_only=True): for rank in range(2, 6): for k in range(-3, 4): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_upper_triangular('triu', 'data', 'output', k=k) x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.triu(x, k=k)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_upper_triangular_gpu(self): self.test_upper_triangular_cpu(cpu_only=False) def test_where_broadcastable_cpu(self, cpu_only=True): for _ in range(150): rank_cond = np.random.randint(low=1, high=6) rank_true = np.random.randint(low=1, high=6) rank_false = np.random.randint(low=1, high=6) rank_out = max(rank_cond, rank_true, rank_false) shape_cond = np.random.randint(low=2, high=8, size=rank_cond) shape_true = np.random.randint(low=2, high=8, size=rank_true) shape_false = np.random.randint(low=2, high=8, size=rank_false) for i in range(-1, -rank_out - 1, -1): dims = [] if -i <= rank_cond: dims.append(shape_cond[i]) if -i <= rank_true: dims.append(shape_true[i]) if -i <= rank_false: dims.append(shape_false[i]) dim = np.random.choice(dims) if -i <= rank_cond: shape_cond[i] = np.random.choice([1, dim]) if -i <= rank_true: shape_true[i] = np.random.choice([1, dim]) if -i <= rank_false: shape_false[i] = np.random.choice([1, dim]) input_features = [ ('cond', datatypes.Array(*shape_cond)), ('true', datatypes.Array(*shape_true)), ('false', datatypes.Array(*shape_false)) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_where_broadcastable('if_broadcastable', input_names=['cond', 'true', 'false'], output_name='output') cond = np.random.choice([1.0, 0.0], size=shape_cond) true = np.random.rand(*shape_true) false = np.random.rand(*shape_false) input = {'cond': cond, 'true': true, 'false': false} expected = {'output': np.where(cond, true, false)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(expected['output'].shape), builder._get_rank('output')) def test_where_broadcastable_gpu(self): self.test_where_broadcastable_cpu(cpu_only=False) def test_random_normal_like_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(5, -1, -1): if rank > 0: low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) else: # one extra test to test more moments shape = np.array([10, 10, 10, 10, 10000]) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_like(name='random_normal_like', input_name='tensor', output_name='output', mean=mean, stddev=stddev, seed=seed) inputs = {'tensor': np.random.rand(*shape)} expected = {'output': np.random.normal(mean, stddev, shape)} if rank > 0: CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) else: # one extra test to test more moments CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=6) def test_random_normal_like_gpu(self): self.test_random_normal_like_cpu(cpu_only=False) def test_random_normal_static_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_static(name='random_normal_static', output_name='tmp', output_shape=list(shape), mean=mean, stddev=stddev, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.normal(mean, stddev, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_normal_static_gpu(self): self.test_random_normal_static_cpu(cpu_only=False) def test_random_normal_dynamic_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_dynamic(name='random_normal_dynamic', input_names=['shape'], output_name='output', mean=mean, stddev=stddev, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.normal(mean, stddev, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_random_normal_dynamic_gpu(self): self.test_random_normal_dynamic_cpu(cpu_only=False) def test_random_uniform_like_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_like(name='random_uniform_like', input_name='tensor', output_name='output', minval=minval, maxval=maxval, seed=seed) tensor = np.random.rand(*shape) inputs = {'tensor': tensor} expected = {'output': np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_uniform_like_gpu(self): self.test_random_uniform_like_cpu(cpu_only=False) def test_random_uniform_static_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_static(name='random_uniform_static', output_name='tmp', output_shape=list(shape), minval=minval, maxval=maxval, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_uniform_static_gpu(self): self.test_random_uniform_static_cpu(cpu_only=False) def test_random_uniform_dynamic_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_dynamic(name='random_uniform_dynamic', input_names=['shape'], output_name='output', minval=minval, maxval=maxval, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_random_uniform_dynamic_gpu(self): self.test_random_uniform_dynamic_cpu(cpu_only=False) def test_random_bernoulli_like_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_like(name='random_bernoulli_like', input_name='tensor', output_name='output', prob=prob, seed=seed) tensor = np.random.rand(*shape) inputs = {'tensor': tensor} expected = {'output': np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_like_gpu(self): self.test_random_bernoulli_like_cpu(cpu_only=False) def test_random_bernoulli_static_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_static(name='random_bernoulli_static', output_name='tmp', output_shape=list(shape), prob=prob, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_static_gpu(self): self.test_random_bernoulli_static_cpu(cpu_only=False) def test_random_bernoulli_dynamic_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_dynamic(name='random_bernoulli_dynamic', input_names=['shape'], output_name='output', prob=prob, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_dynamic_gpu(self): self.test_random_bernoulli_dynamic_cpu(cpu_only=False) def test_categorical_distribution_cpu_shapes(self): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) num_samples = np.random.randint(low=10, high=1000) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name='data', output_name='output', num_samples=num_samples) x = np.random.randint(low=0, high=20, size=shape).astype(np.float32) inputs = {'data': x} shape[-1] = num_samples expected = {'output': np.random.rand(*shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=True, validate_shapes_only=True) def test_categorical_distribution_cpu_logits(self): def softmax(data): e_data = np.exp(data - np.max(data)) return e_data / e_data.sum() num_samples, num_class = 50000, 10 input_name, output_name = 'data', 'output' shapes = [(2, num_class), (2, 1, num_class), (1, 2, num_class), (2, 1, 1, num_class), (1, 2, 1, num_class), (1, 1, 2, num_class), (2, 1, 1, 1, num_class), (1, 2, 1, 1, num_class), (1, 1, 2, 1, num_class), (1, 1, 1, 2, num_class)] for shape in shapes: input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name=input_name, output_name=output_name, num_samples=num_samples, is_logits=True, seed=42) x = np.random.rand(*shape) inputs = {input_name: x} model = builder.spec if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=True) prediction = model.predict(inputs, useCPUOnly=True) # validate each distribution separately logits = x.reshape(2, num_class) probs = [softmax(logits[0]), softmax(logits[1])] ref0 = np.random.multinomial(num_samples, probs[0]) ref1 = np.random.multinomial(num_samples, probs[1]) pre0 = prediction[output_name].reshape(2, num_samples)[0] pre1 = prediction[output_name].reshape(2, num_samples)[1] expected = {output_name: np.stack((pre0, pre1))} # convert to bincount and validate probabilities pre0 = np.bincount(np.array(pre0).astype(np.int), minlength=num_class) pre1 = np.bincount(np.array(pre1).astype(np.int), minlength=num_class) assert np.allclose(np.true_divide(pre0, num_samples), probs[0], atol=1e-2) assert np.allclose(np.true_divide(pre0, num_samples), np.true_divide(ref0, num_samples), atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), probs[1], atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), np.true_divide(ref1, num_samples), atol=1e-2) self._test_model(model, inputs, expected, useCPUOnly=True, output_name_shape_dict={'output': prediction['output'].shape}) def test_categorical_distribution_cpu_probs(self): def softmax(data): e_data = np.exp(data - np.max(data)) return e_data / e_data.sum() num_samples, num_class = 50000, 10 input_name, output_name = 'data', 'output' shapes = [(2, num_class), (2, 1, num_class), (1, 2, num_class), (2, 1, 1, num_class), (1, 2, 1, num_class), (1, 1, 2, num_class), (2, 1, 1, 1, num_class), (1, 2, 1, 1, num_class), (1, 1, 2, 1, num_class), (1, 1, 1, 2, num_class)] for shape in shapes: input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name=input_name, output_name=output_name, num_samples=num_samples, is_logits=False, seed=42) x = np.random.rand(*shape) probs = x.reshape(2, num_class) probs[0], probs[1] = softmax(probs[0]), softmax(probs[1]) inputs = {input_name: np.reshape(probs, shape)} model = builder.spec if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=True) prediction = model.predict(inputs, useCPUOnly=True) # validate each distribution separately probs = probs.reshape(2, num_class) ref0 = np.random.multinomial(num_samples, probs[0]) ref1 = np.random.multinomial(num_samples, probs[1]) pre0 = prediction[output_name].reshape(2, num_samples)[0] pre1 = prediction[output_name].reshape(2, num_samples)[1] expected = {output_name: np.stack((pre0, pre1))} # convert to bincount and validate probabilities pre0 = np.bincount(np.array(pre0).astype(np.int), minlength=num_class) pre1 = np.bincount(np.array(pre1).astype(np.int), minlength=num_class) assert np.allclose(np.true_divide(pre0, num_samples), probs[0], atol=1e-2) assert np.allclose(np.true_divide(pre0, num_samples), np.true_divide(ref0, num_samples), atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), probs[1], atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), np.true_divide(ref1, num_samples), atol=1e-2) self._test_model(model, inputs, expected, useCPUOnly=True, output_name_shape_dict={'output': prediction['output'].shape}) def test_reverse_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) reverse_dim = [np.random.choice([True, False]) for _ in range(rank)] axes = [i for i in range(rank) if reverse_dim[i] == True] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_reverse('reverse', 'data', 'output', reverse_dim) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.flip(x, axis=axes)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reverse_gpu(self): self.test_reverse_cpu(cpu_only=False) def test_matrix_band_part_cpu(self, cpu_only=True): for rank in range(2, 6): for _ in range(20): num_lower = np.random.randint(low=-7, high=8) num_upper = np.random.randint(low=-7, high=8) shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_matrix_band_part('matrix_band_part', 'data', 'output', num_lower=num_lower, num_upper=num_upper) x = np.random.rand(*shape) input = {'data': x} rows, cols = shape[-2:] band = np.ones((rows, cols)) for m in range(rows): for n in range(cols): band[m, n] = (num_lower < 0 or (m - n) <= num_lower) and (num_upper < 0 or (n - m) <= num_upper) expected = {'output': np.multiply(band, x)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_matrix_band_part_gpu(self): self.test_matrix_band_part_cpu(cpu_only=False) def test_flatten_to_2d_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank + 1): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_flatten_to_2d('flatten_to_2d', 'data', 'output', axis=axis) x = np.random.rand(*shape) np_axis = axis + rank if axis < 0 else axis pl, pr = 1, 1 for i in range(0, np_axis): pl *= shape[i] for i in range(np_axis, len(shape)): pr *= shape[i] new_shape = [pl, pr] ref = x.reshape(new_shape) input = {'data': x} expected = {'output': ref} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(2, builder._get_rank('output')) def test_flatten_to_2d_gpu(self): self.test_flatten_to_2d_cpu(cpu_only=False) def test_reshape_like_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = n // np.prod(target_shape) np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape)), ('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_like(name='reshape_like', input_names=['data', 'tensor'], output_name='output') data = np.random.rand(*input_shape) tensor = np.random.rand(*target_shape) inputs = {'data': data, 'tensor': tensor} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(target_rank, builder._get_rank('output')) def test_reshape_like_gpu(self): self.test_reshape_like_cpu(cpu_only=False) def test_reshape_static_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = -1 np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_static(name='reshape_static', input_name='data', output_name='output', output_shape=target_shape) data = np.random.rand(*input_shape) inputs = {'data': data} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(len(target_shape), builder._get_rank('output')) def test_reshape_static_gpu(self): self.test_reshape_static_cpu(cpu_only=False) def test_reshape_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = -1 np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_dynamic(name='reshape_dynamic', input_names=['data', 'shape'], output_name='output') data = np.random.rand(*input_shape) inputs = {'data': data, 'shape': np.array(target_shape, dtype='float')} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_reshape_dynamic_gpu(self): self.test_reshape_dynamic_cpu(cpu_only=False) def test_reduce_sum_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_sum('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.add.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) expected_rank = len(expected['output'].shape) if expected_rank == 0: expected_rank = 1 self.assertEqual(expected_rank, builder._get_rank('output')) def test_reduce_sum_gpu(self): self.test_reduce_sum_cpu(cpu_only=False) def test_reduce_prod_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_prod('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.multiply.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) expected_rank = len(expected['output'].shape) if expected_rank == 0: expected_rank = 1 self.assertEqual(expected_rank, builder._get_rank('output')) def test_reduce_prod_gpu(self): self.test_reduce_prod_cpu(cpu_only=False) def test_reduce_mean_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_mean('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.mean(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_mean_gpu(self): self.test_reduce_mean_cpu(cpu_only=False) def test_reduce_max_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_max('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.maximum.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_max_gpu(self): self.test_reduce_max_cpu(cpu_only=False) def test_reduce_min_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_min('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.minimum.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_min_gpu(self): self.test_reduce_min_cpu(cpu_only=False) def test_reduce_l2_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_l2('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.sqrt(np.sum(np.square(x), axis=axes, keepdims=keep_dims))} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_l2_gpu(self): self.test_reduce_l2_cpu(cpu_only=False) def test_reduce_l1_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_l1('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.sum(np.abs(x), axis=axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_l1_gpu(self): self.test_reduce_l1_cpu(cpu_only=False) def test_reduce_sumsquare_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_sumsquare('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.sum(np.square(x), axis=axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_sumsquare_gpu(self): self.test_reduce_sumsquare_cpu(cpu_only=False) def test_reduce_logsum_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_logsum('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.log(np.sum(x, axis=axes, keepdims=keep_dims))} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_logsum_gpu(self): self.test_reduce_logsum_cpu(cpu_only=False) def test_reduce_logsumexp_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_logsumexp('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.log(np.sum(np.exp(x), axis=axes, keepdims=keep_dims))} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_logsumexp_gpu(self): self.test_reduce_logsumexp_cpu(cpu_only=False) def test_reverse_sequence_cpu(self, cpu_only=True): for rank in range(2, 6): for i in range(20): input_shape = np.random.randint(low=2, high=6, size=rank) seq_axis = np.random.randint(low=-rank, high=rank) batch_axis = np.random.randint(low=-rank, high=rank) pos_batch_axis = batch_axis if batch_axis >= 0 else rank + batch_axis pos_seq_axis = seq_axis if seq_axis >= 0 else rank + seq_axis while pos_batch_axis >= pos_seq_axis: seq_axis = np.random.randint(low=-rank, high=rank) batch_axis = np.random.randint(low=-rank, high=rank) pos_batch_axis = batch_axis if batch_axis >= 0 else rank + batch_axis pos_seq_axis = seq_axis if seq_axis >= 0 else rank + seq_axis input_features = [('data', datatypes.Array(*input_shape)), ('lengths', datatypes.Array(input_shape[batch_axis]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reverse_sequence('reverse_sequence', ['data', 'lengths'], 'output', batch_axis=batch_axis, seq_axis=seq_axis) data = np.random.rand(*input_shape) lengths = np.random.randint(low=0, high=input_shape[seq_axis], size=input_shape[batch_axis]) input = {'data': data, 'lengths': lengths.astype(np.float32)} with tf.Graph().as_default(), tf.Session() as sess: tf_op = tf.reverse_sequence(input=data, seq_lengths=lengths, seq_axis=pos_seq_axis, batch_axis=pos_batch_axis) expected = {'output': sess.run(tf_op)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reverse_sequence_gpu(self): self.test_reverse_sequence_cpu(cpu_only=False) def test_where_nonzero_cpu(self, cpu_only=True): for rank in range(1, 6): for i in range(10): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_where_nonzero('multi_indices', 'data', 'output') x = np.random.randint(low=0, high=3, size=shape) input = {'data': x.astype(np.float)} expected = {'output': np.transpose(np.nonzero(x)).astype(np.float)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_where_nonzero_gpu(self): self.test_where_nonzero_cpu(cpu_only=False) def test_gather_cpu(self, cpu_only=True): for rankParams, rankIndices in [(i, j) for i in range(1, 6) for j in range(1, 6)]: for axis in range(-rankParams, rankParams): shapeParams = np.random.randint(low=2, high=5, size=rankParams) shapeIndices = np.random.randint(low=2, high=5, size=rankIndices) input_shapes = [shapeParams, shapeIndices] posAxis = axis if axis >= 0 else axis + rankParams output_shape = list(shapeParams[:posAxis]) + list( shapeIndices) + list(shapeParams[posAxis + 1:]) if len(output_shape) > 5: continue input_names = ['params', 'indices'] input_features = [ ('params', datatypes.Array(*input_shapes[0])), ('indices', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_gather(name='gather', input_names=input_names, output_name='output', axis=axis) a = np.random.rand(*input_shapes[0]) b = np.random.randint(-shapeParams[axis], shapeParams[axis], size=shapeIndices) input = {'params': a, 'indices': b.astype(np.float)} expected = {'output': np.take(a, b, axis=axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(expected['output'].shape), builder._get_rank('output')) def test_gather_gpu(self): self.test_gather_cpu(cpu_only=False) def test_gather_along_axis_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): for _ in range(5): params_shape = np.random.randint(low=2, high=8, size=rank) indices_shape = np.copy(params_shape) indices_shape[axis] = np.random.randint(low=1, high=8) input_features = [('params', datatypes.Array(*params_shape)), ('indices', datatypes.Array(*indices_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_gather_along_axis('gather_along_axis', ['params', 'indices'], 'output', axis=axis) a = np.random.rand(*params_shape) b = np.random.randint(-params_shape[axis], params_shape[axis], size=indices_shape) input = {'params': a, 'indices': b.astype(np.float)} expected = {'output': np.take_along_axis(a, b, axis=axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(expected['output'].shape), builder._get_rank('output')) def test_gather_along_axis_gpu(self): self.test_gather_along_axis_cpu(cpu_only=False) def test_gather_nd_cpu(self, cpu_only=True): for params_rank, indices_rank in [(i, j) for i in range(1, 6) for j in range(1, 6)]: params_shape = np.random.randint(low=2, high=8, size=params_rank) indices_shape = np.random.randint(low=2, high=8, size=indices_rank) indices_shape[-1] = np.random.randint(low=1, high=params_rank + 1) for _ in range(5): input_features = [('params', datatypes.Array(*params_shape)), ('indices', datatypes.Array(*indices_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) output_shape = list(indices_shape[:-1]) + list(params_shape[indices_shape[-1]:]) if len(output_shape) > 5: continue builder.add_gather_nd('gather_nd', ['params', 'indices'], 'output') a = np.random.rand(*params_shape) indices_list = [] for i in range(indices_shape[-1]): indices_list.append(np.random.randint(0, params_shape[i], size=indices_shape[:-1])) indices = np.stack(indices_list, axis=-1) input = {'params': a, 'indices': indices.astype(np.float)} with tf.Graph().as_default(), tf.Session() as sess: tf_op = tf.gather_nd(a, indices) expected = {'output': sess.run(tf_op)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_gather_nd_gpu(self): self.test_gather_nd_cpu(cpu_only=False) def test_scatter_cpu(self, cpu_only=True): for ref_rank, indices_rank in [(i, j) for i in range(1, 6) for j in range(1, 6)]: for accumulate_mode in ["UPDATE", "ADD", "SUB", "MUL", "DIV", "MAX", "MIN"]: for _ in range(5): ref_shape = np.random.randint(low=2, high=8, size=ref_rank) indices_shape = np.random.randint(low=2, high=8, size=indices_rank) updates_shape = list(indices_shape) + list(ref_shape[1:]) input_features = [('ref', datatypes.Array(*ref_shape)), ('indices', datatypes.Array(*indices_shape)), ('updates', datatypes.Array(*updates_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) if len(updates_shape) > 5: continue builder.add_scatter('scatter', ['ref', 'indices', 'updates'], 'output', axis=0, mode=accumulate_mode) ref = np.random.rand(*ref_shape) updates = np.random.rand(*updates_shape) indices = np.random.randint(0, ref_shape[0], size=indices_shape) input = {'ref': ref, 'indices': indices.astype(np.float), 'updates': updates} with tf.Graph().as_default(), tf.Session() as sess: tf_output = tf.Variable(ref) sess.run(tf.global_variables_initializer()) if accumulate_mode == "UPDATE": sess.run(tf.scatter_update(tf_output, indices, updates)) if accumulate_mode == "ADD": sess.run(tf.scatter_add(tf_output, indices, updates)) if accumulate_mode == "SUB": sess.run(tf.scatter_sub(tf_output, indices, updates)) if accumulate_mode == "MUL": sess.run(tf.scatter_mul(tf_output, indices, updates)) if accumulate_mode == "DIV": sess.run(tf.scatter_div(tf_output, indices, updates)) if accumulate_mode == "MAX": sess.run(tf.scatter_max(tf_output, indices, updates)) if accumulate_mode == "MIN": sess.run(tf.scatter_min(tf_output, indices, updates)) expected = {'output': sess.run(tf_output)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_scatter_gpu(self): self.test_scatter_cpu(cpu_only=False) def test_gather_scatter_multiple_axis_cpu(self, cpu_only=True): for params_rank, indices_rank in [(i, j) for i in range(1, 6) for j in range(1, 6)]: for axis in range(-params_rank, params_rank): for _ in range(5): params_shape = np.random.randint(low=2, high=8, size=params_rank) indices_shape = np.random.randint(low=2, high=8, size=indices_rank) pos_axis = axis if axis >= 0 else axis + params_rank output_shape = list(params_shape[:pos_axis]) + list(indices_shape) + list( params_shape[pos_axis + 1:]) if len(output_shape) > 5: continue input_features = [('params', datatypes.Array(*params_shape)), ('indices', datatypes.Array(*indices_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_gather('gather', ['params', 'indices'], 'updates', axis=axis) builder.add_scatter('scatter', ['params', 'indices', 'updates'], 'output', axis=axis, mode='UPDATE') a = np.random.rand(*params_shape) b = np.random.randint(-params_shape[axis], params_shape[axis], size=indices_shape) input = {'params': a, 'indices': b.astype(np.float)} expected = {'output': a} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_gather_scatter_multiple_axis_gpu(self): self.test_gather_scatter_multiple_axis_cpu(cpu_only=False) def test_scatter_along_axis_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): for id in range(5): ref_shape = np.random.randint(low=2, high=8, size=rank) indices_shape = np.copy(ref_shape) indices_shape[axis] = np.random.randint(low=1, high=8) updates_shape = indices_shape input_features = [('ref', datatypes.Array(*ref_shape)), ('indices', datatypes.Array(*indices_shape)), ('updates', datatypes.Array(*updates_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_scatter_along_axis('scatter_along_axis', ['ref', 'indices', 'updates'], 'output', axis=axis, mode="UPDATE") ref = np.random.rand(*ref_shape) updates =
np.random.rand(*updates_shape)
numpy.random.rand
from itertools import count import numpy as np from sklearn import datasets from src.io import npy_events_tools from src.io import psee_loader import tqdm import os from numpy.lib import recfunctions as rfn import h5py import pickle import torch import time import math import argparse def taf_cuda(x, y, t, p, shape, volume_bins, past_volume): tick = time.time() H, W = shape t_star = t.float()[:,None,None] adder = torch.stack([torch.arange(2),torch.arange(2)],dim = 1).to(x.device)[None,:,:] #1, 2, 2 adder = (1 - torch.abs(adder-t_star)) * torch.stack([p,1 - p],dim=1)[:,None,:] #n, 2, 2 adder = torch.where(adder>=0,adder,torch.zeros_like(adder)).view(adder.shape[0], 4) #n, 4 img = torch.zeros((H * W, 4)).float().to(x.device) img.index_add_(0, x + W * y, adder) img = img.view(H * W, 2, 2, 1) #img: hw, 2, 2, 1 torch.cuda.synchronize() generate_volume_time = time.time() - tick #print("generate_volume_time",time.time() - tick) tick = time.time() forward = (img[:,-1]==0)[:,None] #forward: hw, 1, 2, 1 if not (past_volume is None): img_old_ecd = past_volume #img_ecd: hw, 2, 2, 2 img_old_ecd[:,-1,:,0] = torch.where(img_old_ecd[:,-1,:,1] == 0,img_old_ecd[:,-1,:,0] + img[:,0,:,0],img_old_ecd[:,-1,:,0]) img_ecd = torch.cat([img_old_ecd,torch.cat([img[:,1:],torch.zeros_like(img[:,1:])],dim=3)],dim=1) for i in range(1,img_ecd.shape[1])[::-1]: img_ecd[:,i-1,:,1] = img_ecd[:,i-1,:,1] - 1 img_ecd[:,i:i+1] = torch.where(forward, img_ecd[:,i-1:i],img_ecd[:,i:i+1]) img_ecd[:,:1] = torch.where(forward, torch.cat([torch.zeros_like(forward).float(),torch.zeros_like(forward).float() -1e6],dim=3), img_ecd[:,:1]) else: ecd = torch.where(forward, torch.zeros_like(forward).float() -1e6, torch.zeros_like(forward).float()) #ecd: hw, 1, 2, 1 img_ecd = torch.cat([img, torch.cat([ecd,ecd],dim=1)],dim=3) #img_ecd: hw, 2, 2, 2 if img_ecd.shape[1] > volume_bins: img_ecd = img_ecd[:,1:] torch.cuda.synchronize() generate_encode_time = time.time() - tick #print("generate encode",time.time() - tick) img_ecd_viewed = img_ecd.view((H, W, img_ecd.shape[1] * 2, 2)).permute(2, 0, 1, 3) return img_ecd_viewed, img_ecd, generate_volume_time, generate_encode_time def generate_taf_cuda(events, shape, past_volume = None, volume_bins=5): x, y, t, p, z = events.unbind(-1) x, y, p = x.long(), y.long(), p.long() histogram_ecd, past_volume, generate_volume_time, generate_encode_time = taf_cuda(x, y, t, p, shape, volume_bins, past_volume) return histogram_ecd, past_volume, generate_volume_time, generate_encode_time def denseToSparse(dense_tensor): """ Converts a dense tensor to a sparse vector. :param dense_tensor: BatchSize x SpatialDimension_1 x SpatialDimension_2 x ... x FeatureDimension :return locations: NumberOfActive x (SumSpatialDimensions + 1). The + 1 includes the batch index :return features: NumberOfActive x FeatureDimension """ non_zero_indices = np.nonzero(dense_tensor) features = dense_tensor[non_zero_indices[0],non_zero_indices[1],non_zero_indices[2],non_zero_indices[3]] return np.stack(non_zero_indices), features if __name__ == '__main__': parser = argparse.ArgumentParser( description='visualize one or several event files along with their boxes') parser.add_argument('-rank', type=int) args = parser.parse_args() rank = args.rank raw_dir = "/datassd4t/lbd/Large_Automotive_Detection_Dataset" target_dir1 = "/datassd4t/lbd/Large_Automotive_Detection_Dataset_sampling" target_dir2 = "/datassd4t/lbd/Large_taf" min_event_count = 50000000 # min_event_count = 800000 shape = [720,1280] target_shape = [512, 640] events_window_abin = 10000 event_volume_bins = 5 events_window = events_window_abin * event_volume_bins rh = target_shape[0] / shape[0] rw = target_shape[1] / shape[1] #raw_dir = "/data/lbd/ATIS_Automotive_Detection_Dataset/detection_dataset_duration_60s_ratio_1.0" #target_dir = "/data/lbd/ATIS_taf" #raw_dir = "/data/Large_Automotive_Detection_Dataset_sampling" #target_dir = "/data/Large_taf" total_volume_time = [] total_taf_time = [] for mode in ["train"]: file_dir = os.path.join(raw_dir, mode) if not os.path.exists(file_dir): os.makedirs(file_dir) root = file_dir target_root1 = os.path.join(target_dir1, mode) target_root2 = os.path.join(target_dir2, mode) #h5 = h5py.File(raw_dir + '/ATIS_taf_'+mode+'.h5', 'w') try: files = os.listdir(file_dir) except Exception: continue # Remove duplicates (.npy and .dat) #files = files[int(len(files)/3):] files = [time_seq_name[:-7] for time_seq_name in files if time_seq_name[-3:] == 'dat'] files = files[int(len(files)/4 * rank):int(len(files)/4 * (rank+1))] pbar = tqdm.tqdm(total=len(files), unit='File', unit_scale=True) for i_file, file_name in enumerate(files): event_file = os.path.join(root, file_name + '_td.dat') bbox_file = os.path.join(root, file_name + '_bbox.npy') new_bbox_file = os.path.join(target_root1, file_name + '_bbox.npy') # if os.path.exists(volume_save_path): # continue #h5 = h5py.File(volume_save_path, "w") #f_bbox = open(new_bbox_file, "rb") f_bbox = open(bbox_file, "rb") start, v_type, ev_size, size, dtype = npy_events_tools.parse_header(f_bbox) dat_bbox = np.fromfile(f_bbox, dtype=v_type, count=-1) f_bbox.close() unique_ts, unique_indices = np.unique(dat_bbox['t'], return_index=True) sampled_bboxes = [] time_upperbound = -1e16 for bbox_count,unique_time in enumerate(unique_ts): if unique_time <= 500000: continue if (unique_time - time_upperbound < 1000000): continue end_time = int(unique_time) sampled_bboxes.append(dat_bbox[dat_bbox['t']==unique_time]) time_upperbound = end_time sampled_bboxes = np.concatenate(sampled_bboxes) mmp = np.lib.format.open_memmap(new_bbox_file, "w+", dtype, sampled_bboxes.shape) mmp[:] = sampled_bboxes[:] mmp.flush() #f_event = psee_loader.PSEELoader(new_event_file) f_bbox = open(new_bbox_file, "rb") start, v_type, ev_size, size, dtype = npy_events_tools.parse_header(f_bbox) dat_bbox = np.fromfile(f_bbox, dtype=v_type, count=-1) f_bbox.close() unique_ts, unique_indices =
np.unique(dat_bbox['t'], return_index=True)
numpy.unique
import abc from typing import Union from operator import itemgetter import numpy as np from python_polar_coding.polar_codes import pcc, utils from . import encoder class BasePolarCodec(metaclass=abc.ABCMeta): """Basic codec for Polar code. Includes code construction. Defines the basic workflow for encoding and decoding. Supports creation of a polar code from custom mask. """ encoder_class = encoder.Encoder decoder_class = None BHATTACHARYYA = 'bhattacharyya' GAUSSIAN = 'gaussian' MONTE_CARLO = 'monte carlo' PCC_METHODS = { BHATTACHARYYA: pcc.bhattacharyya_bounds, } def __init__(self, N: int, K: int, design_snr: float = 0.0, is_systematic: bool = True, mask: Union[str, None] = None, pcc_method: str = BHATTACHARYYA): assert K < N, (f'Cannot create Polar code with N = {N}, K = {K}.' f'\nN must be bigger than K.') self.N = N self.K = K self.n = int(
np.log2(N)
numpy.log2
import torch.nn as nn import torch # pytorch 0.4.0! fft import numpy as np import cv2 def complex_mul(x, z): out_real = x[..., 0] * z[..., 0] - x[..., 1] * z[..., 1] out_imag = x[..., 0] * z[..., 1] + x[..., 1] * z[..., 0] return torch.stack((out_real, out_imag), -1) def complex_mulconj(x, z): out_real = x[..., 0] * z[..., 0] + x[..., 1] * z[..., 1] out_imag = x[..., 1] * z[..., 0] - x[..., 0] * z[..., 1] return torch.stack((out_real, out_imag), -1) class DCFNetFeature(nn.Module): def __init__(self): super(DCFNetFeature, self).__init__() self.feature = nn.Sequential( nn.Conv2d(3, 32, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 32, 3, padding=1), nn.LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=1), ) def forward(self, x): return self.feature(x) class DCFNet(nn.Module): def __init__(self, config=None): super(DCFNet, self).__init__() self.feature = DCFNetFeature() self.model_alphaf = [] self.model_xf = [] self.config = config def forward(self, x): x = self.feature(x) * self.config.cos_window xf = torch.rfft(x, signal_ndim=2) kxzf = torch.sum(complex_mulconj(xf, self.model_zf), dim=1, keepdim=True) response = torch.irfft(complex_mul(kxzf, self.model_alphaf), signal_ndim=2) # r_max = torch.max(response) # cv2.imshow('response', response[0, 0].data.cpu().numpy()) # cv2.waitKey(0) return response def update(self, z, lr=1.): z = self.feature(z) * self.config.cos_window zf = torch.rfft(z, signal_ndim=2) kzzf = torch.sum(torch.sum(zf ** 2, dim=4, keepdim=True), dim=1, keepdim=True) alphaf = self.config.yf / (kzzf + self.config.lambda0) if lr > 0.99: self.model_alphaf = alphaf self.model_zf = zf else: self.model_alphaf = (1 - lr) * self.model_alphaf.data + lr * alphaf.data self.model_zf = (1 - lr) * self.model_zf.data + lr * zf.data def load_param(self, path='param.pth'): checkpoint = torch.load(path) if 'state_dict' in checkpoint.keys(): # from training result state_dict = checkpoint['state_dict'] if 'module' in state_dict.keys()[0]: # train with nn.DataParallel from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v self.load_state_dict(new_state_dict) else: self.load_state_dict(state_dict) else: self.feature.load_state_dict(checkpoint) if __name__ == '__main__': # network test net = DCFNetFeature() net.eval() for idx, m in enumerate(net.modules()): print(idx, '->', m) for name, param in net.named_parameters(): if 'bias' in name or 'weight' in name: print(param.size()) from scipy import io import numpy as np p = io.loadmat('net_param.mat') x = p['res'][0][0][:,:,::-1].copy() x_out = p['res'][0][-1] from collections import OrderedDict pth_state_dict = OrderedDict() match_dict = dict() match_dict['feature.0.weight'] = 'conv1_w' match_dict['feature.0.bias'] = 'conv1_b' match_dict['feature.2.weight'] = 'conv2_w' match_dict['feature.2.bias'] = 'conv2_b' for var_name in net.state_dict().keys(): # print var_name key_in_model = match_dict[var_name] param_in_model = var_name.rsplit('.', 1)[1] if 'weight' in var_name: pth_state_dict[var_name] = torch.Tensor(np.transpose(p[key_in_model],(3,2,0,1))) elif 'bias' in var_name: pth_state_dict[var_name] = torch.Tensor(np.squeeze(p[key_in_model])) if var_name == 'feature.0.weight': weight = pth_state_dict[var_name].data.numpy() weight = weight[:, ::-1, :, :].copy() # cv2 bgr input pth_state_dict[var_name] = torch.Tensor(weight) torch.save(pth_state_dict, 'param.pth') net.load_state_dict(torch.load('param.pth')) x_t = torch.Tensor(np.expand_dims(np.transpose(x,(2,0,1)), axis=0)) x_pred = net(x_t).data.numpy() pred_error = np.sum(np.abs(
np.transpose(x_pred,(0,2,3,1))
numpy.transpose
from kapteyn import maputils import numpy from service import * fignum = 21 fig = plt.figure(figsize=figsize) frame = fig.add_axes(plotbox) theta_a = -45 t1 = -20.0; t2 = -70.0 eta = abs(t1-t2)/2.0 title = r"""Conic equal area projection (COE) with: $\theta_a=-45^\circ$, $\theta_1=-20^\circ$ and $\theta_2=-70^\circ$. (Cal. fig.25)""" header = {'NAXIS' : 2, 'NAXIS1': 100, 'NAXIS2': 80, 'CTYPE1' : 'RA---COE', 'CRVAL1' : 0.0, 'CRPIX1' : 50, 'CUNIT1' : 'deg', 'CDELT1' : -4.0, 'CTYPE2' : 'DEC--COE', 'CRVAL2' : theta_a, 'CRPIX2' : 40, 'CUNIT2' : 'deg', 'CDELT2' : 4.0, 'PV2_1' : theta_a, 'PV2_2' : eta } X = cylrange() Y =
numpy.arange(-90,91,30.0)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 6 11:54:28 2021 @author: ccamargo """ import sys sys.path.append("/Users/ccamargo/Documents/py_scripts/") import utils_unc as unc import utils_SL as sl import utils_SLE_v2 as sle import pandas as pd import xarray as xr import numpy as np import cmocean as cm from cmcrameri import cm as cmf import matplotlib.pyplot as plt # %% # open masks: # ANT path='/Volumes/LaCie_NIOZ/data/barystatic/masks/rignot_basins/ANT_Basins_IMBIE2_v1.6/' ds=xr.open_dataset(path+'final_mask.nc') ds lon=np.array(ds.lon) lon=sl.from_180_to_360(lon) ds = ds.assign_coords(lon=lon) ds = ds.sortby('lon') lon=np.array(ds.lon) lat=np.array(ds.lat) # plot_ant(ds.lon,ds.lat,ds.mask,cmin=0,cmax=19,title='Rignot Drainage Basins',cmap='tab20') mask=np.array(ds.mask) codes=np.unique(mask[np.isfinite(mask)]) maskant_basins=np.array(ds.mask) #% % maskant_regions = np.array(maskant_basins) wais=(1,2,9,14,18) for i in wais: maskant_regions[np.where(maskant_basins==i)]=1 eais=(3,4,5,6,7,8,10,11,12,13) for i in eais: maskant_regions[np.where(maskant_basins==i)]=2 ap=(15,16,17) for i in ap: maskant_regions[np.where(maskant_basins==i)]=3 # plot_ant(ds.lon,ds.lat,maskant_regions,cmin=0,cmax=3, # title='Rignot Drainage Basins per Region',cmap='tab10') maskant = np.array(mask) maskant[np.isfinite(mask)]=1 # plot_ant(ds.lon,ds.lat,maskant,cmin=0,cmax=1,title='AIS mask') ngrid = np.array(maskant) ngrid=np.hstack(ngrid) j=0 for i in range(len(ngrid)): if np.isfinite(ngrid[i]): ngrid[i]=j j=j+1 ngrid_ant=ngrid.reshape(maskant.shape) #%% GRE mask ds=xr.open_dataset('/Volumes/LaCie_NIOZ/data/barystatic/masks/barystatic_mask2.nc') maskgre_basins=np.array(ds.gre) lat=np.array(ds.lat);lon=np.array(ds.lon) dimlat=len(lat);dimlon=len(lon) # unc.plot_gre(lon,lat,maskgre_basins,cmin=0,cmax=8, # cmap='tab10',title='Rinot/Mouginot GIS mask') # We want only the dynamic regions NW (0), CW(2) and SE (6) maskgre_dyn=np.copy(maskgre_basins) for i in [1,3,4,5]: # print(i) maskgre_dyn[np.where(maskgre_basins==i)]=10 maskgre_dyn[maskgre_dyn!=10]=0 maskgre_dyn[maskgre_dyn==10]=1 maskgre_dyn[np.isnan(maskgre_basins)]=np.nan # unc.plot_gre(lon,lat,maskgre_dyn,cmin=0,cmax=1,cmap='tab10',title='Dynamic GIS mask') maskgre=np.array(maskgre_basins) maskgre[np.isfinite(maskgre)]=1 # unc.plot_gre(lon,lat,maskgre,title='GIS mask') ngrid = np.array(maskgre) ngrid=np.hstack(ngrid) j=0 for i in range(len(ngrid)): if np.isfinite(ngrid[i]): ngrid[i]=j j=j+1 ngrid_gre=ngrid.reshape(maskgre.shape) #%% GLaciers mask # ds=xr.open_dataset('/Volumes/LaCie_NIOZ/data/barystatic/masks/barystatic_mask2.nc') maskgla_rgi=np.array(ds.gla) lat=
np.array(ds.lat)
numpy.array
# -*- coding: utf-8 -*- """ Time Domain Fit =============== Equations to fit the frequency shift transient in the time domain are developed here. """ from __future__ import division, print_function import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import h5py import sklearn from scipy import linalg, signal, optimize import lockin # Switch to kpfm module at some point import phasekick2 as pk2 # Switch to kpfm module at some point import phasekick as pk import tqdm import sigutils import munch def avg_xt(tr, xr): tr_cent = (tr - tr.mean()) * 1e6 # Use µs units here A = np.c_[tr_cent ** 2, tr_cent, np.ones_like(tr_cent)] val, err, __, ___ = linalg.lstsq(A, xr) return val[-1], np.sqrt(err / (xr.size - 3)) / np.sqrt(xr.size) def record_fit(f, xdata, ydata, p0=None, bounds=(-np.inf, np.inf), name=''): fit_data = munch.Munch() fit_data.p0 = p0 fit_data.popt, fit_data.pcov = optimize.curve_fit(f, xdata, ydata, p0=p0, bounds=bounds) fit_data.x = f(xdata, *fit_data.popt) fit_data.resid = ydata - fit_data.x fit_data.name = name return fit_data def _remove_harmonics(b, popt, x_har, N_harmonics=5): b.t_zeroed = b.t_ms - b.t_ms[0] b.A = harN(b.t_zeroed, popt[2], N_harmonics, np.exp(-b.t_zeroed * popt[3])) b.x_no_overtones = b.x - np.dot(b.A, x_har) b.resid = b.x_no_overtones - damped_sine(b.t_zeroed, *popt) def remove_harmonics(b, bdamp): _remove_harmonics(b, bdamp.fit.popt, bdamp.x_har, bdamp.N_harmonics) # def avg_trig_xt(tr, xr): # tr_cent = (tr - tr.mean()) * 1e6 # Use µs units here # A = np.c_[np.cos(0.062*2*np.pi*tr_cent), # np.sin(0.062*2*np.pi*tr_cent), # np.ones_like(tr_cent)] # val, err, __, ___ = linalg.lstsq(A, xr) # return (val[0] + val[-1]), np.sqrt(err / (xr.size - 3)) / np.sqrt(xr.size) def damped_sine(t, X, Y, f, k, x0): """Sine wave with variable phase (X, Y), frequency f, damping rate k, and DC offset x0.""" return np.exp(-k * t) * (X * np.cos(2*np.pi*f*t) + Y * np.sin(2*np.pi*f*t)) + x0 def _damped_sine_exp_A(t, X, Y, f, k, x0, df, k_tau, k1): return np.where(t > 0, np.exp(-k1 * t), np.exp(-k * t)) def _damped_sine_exp_phi(t, X, Y, f, k, x0, df, k_tau, k1): return np.where(t > 0, 2*np.pi*(f - df * np.expm1(-k_tau*t)) * t, 2*np.pi*f*t ) def damped_sine_exp(t, X, Y, f, k, x0, df, k_tau, k1): phi = _damped_sine_exp_phi(t, X, Y, f, k, x0, df, k_tau, k1) A = _damped_sine_exp_A(t, X, Y, f, k, x0, df, k_tau, k1) return A * (X * np.cos(phi) + Y*np.sin(phi)) + x0 def harN(t, f, N, A=1): """Generate harmonics of a given frequency for least squares fitting.""" cols = [] for i in xrange(2, N+1): cols.extend([A*np.cos(t*2*np.pi*f*i), A*np.sin(t*2*np.pi*f*i)]) return np.c_[cols].T def harNphi(phi, N, A=1): """Generate harmonics of a given frequency for least squares fitting.""" cols = [] for i in xrange(2, N+1): cols.extend([A*np.cos(phi*i), A*np.sin(phi*i)]) return np.c_[cols].T def fit_damped_sine_eliminate_harmonics(t, x, p0, N_harmonics=5): b = munch.Munch() # Copy input parameters b.t = t b.t_zeroed = b.t - b.t[0] b.x = x b.N_harmonics = N_harmonics b.fit0 = record_fit(damped_sine, b.t_zeroed, x, p0=p0, name='initial fit') b.A = harN(b.t_zeroed, b.fit0.popt[2], N_harmonics, A=np.exp(-t * b.fit0.popt[3])) b.Afit = linalg.lstsq(b.A, b.fit0.resid) b.x_har = b.Afit[0] b.x_no_overtones = b.x - np.dot(b.A, b.x_har) b.fit = record_fit(damped_sine, b.t_zeroed, b.x_no_overtones, p0=p0, name='final fit') return b def signal_average_list(gr_list, ti, tf): """Utility function to signal average a group from an HDF5 file.""" b = munch.Munch() xs = [] ts = [] for ds in tqdm.tqdm(gr_list): t = pk.gr2t(ds) t1 = ds.attrs['Abrupt BNC565 CantClk.t1 [s]'] t0 = -t1 - ds["half periods [s]"][0] m = (t > ti) & (t < tf) ts.append(t[m]) x = ds['cantilever-nm'][:] xs.append(x[m]) ts = np.array(ts) b.t = np.mean(ts, axis=0) x_array = np.array(xs) b.x = np.mean(x_array, axis=0) m2 = b.t < 0.0 b.x = b.x - b.x[m2].mean() b.t_ms = b.t * 1e3 b.t_us = b.t * 1e6 b.t5 = b.t[500:] b.x5 = b.x[500:] b.t5ms = b.t5*1e3 b.t5us = b.t5*1e6 try: b.li = lockin.LockIn(b.t, b.x, 1e6) b.li.lock2() b.li.phase(tf=0) b.li.name='data' except TypeError: print("TypeError") return b def signal_average_gr(gr, ti, tf): """Utility function to signal average a group from an HDF5 file.""" b = munch.Munch() xs = [] ts = [] for ds in tqdm.tqdm(gr.values()): t = pk.gr2t(ds) t1 = ds.attrs['Abrupt BNC565 CantClk.t1 [s]'] t0 = -t1 - ds["half periods [s]"][0] m = (t > ti) & (t < tf) ts.append(t[m]) x = ds['cantilever-nm'][:] xs.append(x[m]) ts = np.array(ts) b.t = np.mean(ts, axis=0) x_array = np.array(xs) b.x = np.mean(x_array, axis=0) m2 = b.t < 0.0 b.x = b.x - b.x[m2].mean() b.t_ms = b.t * 1e3 b.t_us = b.t * 1e6 b.t5 = b.t[500:] b.x5 = b.x[500:] b.t5ms = b.t5*1e3 b.t5us = b.t5*1e6 try: b.li = lockin.LockIn(b.t, b.x, 1e6) b.li.lock2() b.li.phase(tf=0) b.li.name='data' except TypeError: print("TypeError") return b def signal_average_parab_list(gr_list, ti, tf, invert=True, align_voltage=False): """Utility function to signal average a group from an HDF5 file.""" b = munch.Munch() xs = [] ts = [] if invert: scale = -1 else: scale = 1 for ds in tqdm.tqdm(gr_list): # Move the zero in time to the initial voltage pulse x = ds['cantilever-nm'][:] dt = ds['dt [s]'].value if align_voltage: t1 = ds.attrs['Abrupt BNC565 CantClk.t1 [s]'] t0 = -t1 - ds["half periods [s]"][0] t = np.arange(x.size)*dt + t0 else: t = pk.gr2t(ds) m = (t > ti) & (t < tf) ts.append(t[m]) x = ds['cantilever-nm'][:] xs.append(scale * x[m]) ts = np.array(ts) b.t = np.mean(ts, axis=0) xs = np.array(xs) # Do proper signal averaging, fitting data to a parabola at each point x_err = np.zeros(xs.shape[1]) x_bf = np.zeros(xs.shape[1]) for i, (tr, xr) in tqdm.tqdm(enumerate(zip(ts.T, xs.T))): x, err = avg_xt(tr, xr) x_err[i] = err x_bf[i] = x b.x = x_bf b.x_err = x_err m2 = b.t < 0.0 b.x0neg = b.x[m2].mean() b.x = b.x - b.x0neg b.t_ms = b.t * 1e3 b.t_us = b.t * 1e6 b.t5 = b.t[500:] b.x5 = b.x[500:] b.t5ms = b.t5*1e3 b.t5us = b.t5*1e6 try: b.li = lockin.LockIn(b.t, b.x, 1e6) b.li.lock2() b.li.phase(tf=0) b.li.name='data' except TypeError: print("TypeError") return b def signal_average_gr_parab(gr, ti, tf, invert=True, align_voltage=False): """Utility function to signal average a group from an HDF5 file.""" return signal_average_parab_list(gr.values(), ti, tf, invert=invert, align_voltage=align_voltage) def pk_phase(f_i, df, f_f, tau, t0, tp): return lambda t: 2 * np.pi * np.where(t <= t0, f_i * (t-t0), np.where(t < tp, f_i*(t-t0)+ pk.phase_step(t-t0, tau, df), f_i*(tp-t0)+ pk.phase_step(tp-t0, tau, df) + f_f*(t-tp))) def pk_freq(f_i, df, f_f, tau, t0, tp): return lambda t: np.where(t <= t0, f_i, np.where(t < tp, f_i - df *np.expm1(-(t-t0)/tau), f_f) ) def osc(phi, amp, X0, Y0): return (X0 * np.cos(phi) + Y0 * np.sin(phi)) * amp def osc_phase(t, phase, A, X0, Y0): return osc(phase(t), A(t), X0, Y0) def osc_freq(t, freq, A, X0, Y0): dt = np.r_[0, np.diff(t)] phi = np.cumsum(freq(t) * dt) return osc(phi, A(t), X0, Y0) def getA(ki, km, kf, ti, tf): def A(t): t_ = t - ti Af = np.exp(-km*(tf-ti)) return np.where(t <= ti, np.exp(-ki * t_), np.where(t < tf, np.exp(-km * t_), Af * np.exp(-(t-tf)*kf))) return A def get_xDCt(phaset, ft, A, tau, xDC0, dx_light, t0, tp): delta = (ft(tp) / ft(t0))**2 r = 1 - delta omega_tau = (2*np.pi*ft(t0)*tau) omega_tau2 = omega_tau**2 omega_bar = (phaset(tp) - phaset(t0)) / (tp - t0) xeq = lambda t: np.where(t <= t0, xDC0, np.where(t < tp, xDC0-dx_light*np.expm1(-(t-t0)/tau),0)) xresp = lambda t: np.where(t <= t0, xDC0, np.where(t < tp, r*( xDC0 + dx_light - dx_light * omega_tau2 / (1+omega_tau2) * np.exp(-(t-t0)/tau) ) + delta*xDC0*np.cos(omega_bar*(t-t0)) - dx_light * r /(1+omega_tau2) * ( np.cos(omega_bar * (t-t0)) + omega_tau*np.sin(omega_bar * (t-t0)) ),np.nan)) xDC = lambda t: (xresp(t) - xeq(t)) * A(t)/A(t0) + xeq(t) return xDC def fit(f, xdata, ydata, p0=None, bounds=(-np.inf, np.inf), tfit=None, name=''): fit_data = munch.Munch() fit_data.popt, fit_data.pcov = optimize.curve_fit(f, xdata, ydata, p0=p0, bounds=bounds) fit_data.x = f(xdata, *fit_data.popt) fit_data.resid = ydata - fit_data.x if tfit is None: tfit = xdata fs = 1.0/np.mean(np.diff(tfit)) li = lockin.LockIn(tfit, fit_data.x, fs) li.lock2() li.phase(tf=0) fit_data.li = li fit_data.name = name fit_data.li.name = name return fit_data def workup_signal_averaged_force_data(b, ti_phase=-0.02, tf_phase=-0.001, T = 0.005): fs = 1.0/np.mean(np.gradient(b.t)) li = lockin.LockIn(b.t5, b.x5, fs=fs) li.f0_est = 65900 li.lock2(fp=500, fc=2000) li.phase(ti=ti_phase, tf=tf_phase,adjust_f0=False) m = pk.masklh(li.t, ti_phase, tf_phase) mb = np.polyfit(li.t[m]-li.t[m][0], np.unwrap(li.phi[m]), 1) li.lock2(fp=500, fc=2000, f0=li.f0 + mb[0] / (2*np.pi)) li.phase(ti=ti_phase/2, tf=tf_phase, adjust_f0=False) t = li('t') X = li('X') Y = li('Y') Npts = li.fir.size//8 mask = pk.masklh(t, -T, T) mR = pk.masklh(t, 0, T) mL = pk.masklh(t, -T, 0) t_L = t[mL][:-Npts] X_L = X[mL][:-Npts] Y_L = Y[mL][:-Npts] t_R = t[mR][Npts:] X_R = X[mR][Npts:] Y_R = Y[mR][Npts:] X_mb_L = np.polyfit(t_L, X_L, 1) Y_mb_L = np.polyfit(t_L, Y_L, 1) X_mb_R = np.polyfit(t_R, X_R, 1) Y_mb_R = np.polyfit(t_R, Y_R, 1) dX = np.polyval(X_mb_R, 0) - np.polyval(X_mb_L, 0) dY = np.polyval(Y_mb_R, 0) - np.polyval(Y_mb_L, 0) dA = (dX**2 + dY**2)**0.5 return dA def make_col(f, t, div): t_div = t.reshape(-1, div) col = np.zeros((t.size, t_div.shape[0])) for i, tt in enumerate(t_div): col[i*div:(i*div+div), i] = f(tt) return col def make_L(col, initial=1000.0): N = col.shape[1] L = np.zeros((N, N)) for j in xrange(N): for k in xrange(N): if k == 0: L[j,k] = initial elif j >= k: L[j,k] = 1.0 return L class WorkupForceEFM(object): def __init__(self, fm, fc, Nm, Nc): self.fm = fm self.fc = fc self.Nm = Nm self.Nc = Nc def __repr__(self): return "WorkupForceEFM(fm={},fc={},Nm={},Nc={})".format(self.fm, self.fc, self.Nm, self.Nc) def __call__(self, t, x): fm = self.fm fc = self.fc Nm = self.Nm Nc = self.Nc Npts_per_column = [Nm, Nm, Nm, Nm, Nc, Nc, Nc] cols = [make_col(lambda t: np.cos(2*np.pi*fm*t), t, Nm), make_col(lambda t: np.sin(2*np.pi*fm*t), t, Nm), make_col(lambda t: np.cos(4*np.pi*fm*t), t, Nm), make_col(lambda t: np.sin(4*np.pi*fm*t), t, Nm), make_col(lambda t: np.cos(2*np.pi*fc*t), t, Nc), make_col(lambda t:
np.sin(2*np.pi*fc*t)
numpy.sin
# ---------------------------------------------------------------------------- # Title: Scientific Visualisation - Python & Matplotlib # Author: <NAME> # License: BSD # ---------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure(figsize=(8, 4), dpi=100) frames = 500 n = 8 X, Y, L = [], [], [] for row in range(n // 2): T2 = np.linspace(0, row * 2 * np.pi, frames) if row > 0 else np.zeros(frames) for col in range(n): T1 =
np.linspace(0, col * 2 * np.pi, frames)
numpy.linspace
from more_itertools import split_at, distinct_combinations import numpy as np np.core.arrayprint._line_width = 160 from collections import Counter def convert(row): return [1 if c == "#" else 0 for c in row] def to_sig(row): return row.dot(2**np.arange(row.size)[::-1]) signatures = {} signatures_f = {} all_sigs = Counter() class Tile: def __init__(self, tile_id, bitmap, ori): self.tile_id = tile_id self.bitmap = bitmap self.ori = ori def choices(self): yield self.bitmap yield np.rot90(self.bitmap) yield np.rot90(self.bitmap, 2) yield np.rot90(self.bitmap, 3) yield np.fliplr(self.bitmap) yield np.rot90(np.fliplr(self.bitmap)) yield np.rot90(np.fliplr(self.bitmap), 2) yield np.rot90(np.fliplr(self.bitmap), 3) def __repr__(self): return '% 4s(%d)' % (self.tile_id, self.ori) from collections import Counter all_sigs = Counter() tiles = {} for grp in split_at(map(str.rstrip, open("d20.txt")), lambda e: e == ""): tile_id = int(grp[0][-5:-1]) bitmap = np.array([convert(row) for row in grp[1:]]) tiles[tile_id] = Tile(tile_id, bitmap, 0) corners = [ (3539, 0), # top left (2693, 2), # top right (1549, 0), # bottom right (3709, 0), # bottom left ] UP, RIGHT = 0, 1 def compatible(a1, a2, dir): if dir == RIGHT: return np.all(a1[:, -1] == a2[:, 0]) elif dir == UP: return np.all(a1[-1, :] == a2[0, :]) def find_compatible(left_tile, dir=RIGHT): for tile in tiles.values(): if tile.tile_id == left_tile.tile_id: continue for j, choice in enumerate(tile.choices()): if compatible(left_tile.bitmap, choice, dir=dir): # print(f'{left_tile.tile_id} {left_tile.bitmap[:, -1]} compatible with {tile.tile_id} {choice[:, 0]}') yield choice, tile.tile_id, j # return None, -1 solution = np.empty((12, 12), dtype=np.object) solution[0, 0] = tiles[3539] solution[-1, 0] = tiles[3709] # solution[0, -1] = tiles[2693].rotate(2) # solution[-1, -1] = tiles[1549] disallowed = {3539, 3709} i = 1 for i in range(1, 12): for tile in tiles.values(): if tile.tile_id in disallowed: continue compats = list(find_compatible(solution[0, i-1])) if compats: found_compatible, tile_id, j = compats[0] solution[0, i] = Tile(tile_id, found_compatible, j) disallowed.add(tile_id) break for j in range(1, 12): for i in range(0, 12): for tile in tiles.values(): if tile.tile_id in disallowed: continue compats = list(find_compatible(solution[j-1, i], dir=UP)) if compats: found_compatible, tile_id, k = compats[0] solution[j, i] = Tile(tile_id, found_compatible, k) disallowed.add(tile_id) break print(np.array2string(solution, max_line_width=np.inf)) solution_matrix = np.stack((e.bitmap for e in solution.ravel())) # (144, 10, 10) unframed = solution_matrix[:, 1:-1, 1:-1].reshape((12, 12, 8, 8)) print(unframed.shape) # (12, 12, 8, 8) image =
np.zeros((96, 96), dtype=np.int)
numpy.zeros
import os import numpy as np from ctrm.environment import Instance, ObstacleBox, ObstacleSphere from ctrm.planner import PrioritizedPlanning from ctrm.roadmap import ( get_timed_roadamaps_SPARS_2d_common, get_timed_roadmaps_grid_common, get_timed_roadmaps_random_common, ) from ctrm.viz import plot_trm_onestep, simple_plot_2d def test_plot_2d(): ins = Instance( 2, [np.array([0, 0]),
np.array([1, 0])
numpy.array
import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import torch.optim as optim from modules.models import MeanField, DynamicModel from modules.training_tools import variational_update from modules.networks import InferenceNet from modules.dynamics import VolterraTransition from modules.distributions import NormalDistribution from modules.emissions import SingleCoordinateEmission # Simulation parameters num_iterations = 3000 batch_size = 200 # Model T = 100 dt = 0.5 sigma = np.sqrt(dt)*0.5 initial_sigma = 3. initial_mean = 0. d_x = 2 #Number of latent variables d_eps = 10 dist = NormalDistribution() lk_sigma = 3. #transition_model = lambda x,m: x # transition_model = VolterraTransition(dt=dt) # Likelihood observation_gain = 1. emission_model = SingleCoordinateEmission(k=0, gain=observation_gain) emission_dist = NormalDistribution(scale=lk_sigma) ### Prior model ### prior_model = DynamicModel(sigma=sigma, initial_sigma=initial_sigma, distribution=dist, d_x=d_x, transition=transition_model, emission=emission_model, emission_distribution=emission_dist, observation_gain=observation_gain, T=T, initial_mean=initial_mean) ### Cascading flow ### print("Train cascading flows") inference_net = InferenceNet(in_size=T, out_size=T*d_x, n_hidden=T, out_shape=(T,d_x), eps=0.1) variational_model = MeanField(T,d_x, inference_net=inference_net) loss_list = [] params_list = [inference_net.parameters()] params = [] for p in params_list: params += p optimizer = optim.Adam(params, lr=0.001) # generate ground truth #X_true, Y, mu = prior_model.sample_observations(batch_size) #data = Y.view((batch_size,1,T)) # generate ground truth #X_true, Y, mu = prior_model.sample_observations(1) #data = Y[0, :].view((1, T)) for itr in tqdm(range(num_iterations)): # generate ground truth X_true, Y, mu = prior_model.sample_observations(batch_size) data = Y #[0, :].view((1, T)) # Variational update loss = variational_update(prior_model, variational_model, data, optimizer, batch_size, amortized=True) # Loss loss_list.append(float(loss.detach().numpy())) ## Plot results ## plt.plot(loss_list) plt.show() # generate ground truth M = 100 for _ in range(4): #X_true, Y, mu = prior_model.sample_observations(1) #data = Y.view((1,1,T)).repeat((M,1,1)) #data = Y.view((1, 1, T)).repeat((M, 1, 1)) # generate ground truth X_true, Y, mu = prior_model.sample_observations(1) data = Y[0, :].view((1,T)).repeat((M, 1)) X, _, _, _, _ = variational_model.sample_timeseries(M, data) x = X.detach().numpy()[:,0,:] x_tr = X_true.detach().numpy()[0,0,:] #y = data.detach().numpy()[:, 0, :] #t_range = np.tile(np.linspace(0.,T*dt, T), (M,1)) plt.plot(np.transpose(x), alpha=0.5) plt.plot(
np.transpose(x_tr)
numpy.transpose
import numpy as np from math import ceil def deriveSizeFromScale(img_shape, scale): output_shape = [] for k in range(2): output_shape.append(int(ceil(scale[k] * img_shape[k]))) return output_shape def deriveScaleFromSize(img_shape_in, img_shape_out): scale = [] for k in range(2): scale.append(1.0 * img_shape_out[k] / img_shape_in[k]) return scale def cubic(x): x = np.array(x).astype(np.float64) absx = np.absolute(x) absx2 = np.multiply(absx, absx) absx3 = np.multiply(absx2, absx) f = np.multiply(1.5*absx3 - 2.5*absx2 + 1, absx <= 1) + np.multiply(-0.5*absx3 + 2.5*absx2 - 4*absx + 2, (1 < absx) & (absx <= 2)) return f def contributions(in_length, out_length, scale, kernel, k_width): if scale < 1: h = lambda x: scale * kernel(scale * x) kernel_width = 1.0 * k_width / scale else: h = kernel kernel_width = k_width x = np.arange(1, out_length+1).astype(np.float64) u = x / scale + 0.5 * (1 - 1 / scale) left = np.floor(u - kernel_width / 2) P = int(ceil(kernel_width)) + 2 ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0 indices = ind.astype(np.int32) weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0 weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1)) aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32) indices = aux[np.mod(indices, aux.size)] ind2store = np.nonzero(np.any(weights, axis=0)) weights = weights[:, ind2store] indices = indices[:, ind2store] return weights, indices def imresizemex(inimg, weights, indices, dim): in_shape = inimg.shape w_shape = weights.shape out_shape = list(in_shape) out_shape[dim] = w_shape[0] outimg = np.zeros(out_shape) if dim == 0: for i_img in range(in_shape[1]): for i_w in range(w_shape[0]): w = weights[i_w, :] ind = indices[i_w, :] im_slice = inimg[ind, i_img].astype(np.float64) outimg[i_w, i_img] = np.sum(np.multiply(
np.squeeze(im_slice, axis=0)
numpy.squeeze
from numba import njit, boolean, int64, float64 from numba.experimental import jitclass import numpy as np from .utils import isin @jitclass([ ('value', float64[:]), ('sign', float64[:]), ('size', int64) ]) class signed: def __init__(self, value, sign=None): """ If sign is None, init from value in 'linear' space, possibly negative. Else, init from value in log-space. """ if sign is None: self.value = np.log(np.absolute(value)) self.sign =
np.sign(value)
numpy.sign
import numpy as np import pytest from dnnv.nn.graph import OperationGraph from dnnv.nn import operations from dnnv.properties.expressions import Network from dnnv.verifiers.common.reductions.iopolytope import * from dnnv.verifiers.common.reductions.iopolytope import Variable def setup_function(): Variable._count = 0 def test_init_merge(): input_op_0 = operations.Input((1, 5), np.dtype(np.float32)) add_op_0 = operations.Add(input_op_0, 1) op_graph_0 = OperationGraph([add_op_0]) N0 = Network("N0").concretize(op_graph_0) input_op_1 = operations.Input((1, 5), np.dtype(np.float32)) sub_op_1 = operations.Sub(input_op_1, 1) op_graph_1 = OperationGraph([sub_op_1]) N1 = Network("N1").concretize(op_graph_1) input_constraint = HalfspacePolytope() output_constraint = HalfspacePolytope() prop = IOPolytopeProperty([N0, N1], input_constraint, output_constraint) assert len(prop.op_graph.output_operations) == 2 assert isinstance(prop.op_graph.output_operations[0], operations.Add) assert isinstance(prop.op_graph.output_operations[1], operations.Sub) assert len(prop.op_graph.input_details) == 1 def test_str(): input_op = operations.Input((1, 5), np.dtype(np.float32)) add_op = operations.Add(input_op, 1) op_graph = OperationGraph([add_op]) N = Network("N").concretize(op_graph) vi = Variable((1, 5)) input_constraint = HalfspacePolytope(vi) input_constraint.update_constraint([vi], np.array([(0, 1)]), np.array([1.0]), 5.0) vo = Variable((1, 5)) output_constraint = HalfspacePolytope(vo) output_constraint.update_constraint([vo], np.array([(0, 0)]), np.array([2.0]), 12.0) prop = IOPolytopeProperty([N], input_constraint, output_constraint) assert str(prop) == ( "Property:\n" " Networks:\n" " [Network('N')]\n" " Input Constraint:\n" " 1.0 * x_0[(0, 1)] <= 5.0\n" " Output Constraint:\n" " 2.0 * x_1[(0, 0)] <= 12.0" ) def test_validate_counter_example_true(): input_op = operations.Input((1, 2), np.dtype(np.float32)) matmul_op = operations.MatMul(input_op, np.array([[1.0], [1.0]], dtype=np.float32)) add_op = operations.Add(matmul_op, 1) op_graph = OperationGraph([add_op]) N = Network("N").concretize(op_graph) vi = Variable((1, 2)) input_constraint = HalfspacePolytope(vi) variables = [vi, vi] indices = np.array([(0, 0), (0, 1)]) coeffs = np.array([1.0, 1.0]) b = np.array(2) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([-1.0, -1.0]) b = np.array(2) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([1.0, -1.0]) b = np.array(4) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([-1.0, 1.0]) b = np.array(11) input_constraint.update_constraint(variables, indices, coeffs, b) vo = Variable((1, 1)) output_constraint = HalfspacePolytope(vo) variables = [vo] indices = np.array([(0, 0)]) coeffs = np.array([1.0]) b = np.array(2) output_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([-1.0]) b = np.array(1) output_constraint.update_constraint(variables, indices, coeffs, b) prop = IOPolytopeProperty([N], input_constraint, output_constraint) x = np.array([[0.0, 0.0]]).astype(np.float32) assert prop.validate_counter_example(x)[0] x = np.array([[0.5, 0.5]]).astype(np.float32) assert prop.validate_counter_example(x)[0] x = np.array([[-1.0, 0.0]]).astype(np.float32) assert prop.validate_counter_example(x)[0] def test_validate_counter_example_false(): input_op = operations.Input((1, 2), np.dtype(np.float32)) matmul_op = operations.MatMul(input_op, np.array([[1.0], [1.0]], dtype=np.float32)) add_op = operations.Add(matmul_op, 1) op_graph = OperationGraph([add_op]) N = Network("N").concretize(op_graph) vi = Variable((1, 2)) input_constraint = HalfspacePolytope(vi) variables = [vi, vi] indices = np.array([(0, 0), (0, 1)]) coeffs = np.array([1.0, 1.0]) b = np.array(2) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([-1.0, -1.0]) b = np.array(2) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([1.0, -1.0]) b = np.array(4) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([-1.0, 1.0]) b = np.array(11) input_constraint.update_constraint(variables, indices, coeffs, b) vo = Variable((1, 1)) output_constraint = HalfspacePolytope(vo) variables = [vo] indices = np.array([(0, 0)]) coeffs = np.array([1.0]) b = np.array(1) output_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([-1.0]) b = np.array(1) output_constraint.update_constraint(variables, indices, coeffs, b) prop = IOPolytopeProperty([N], input_constraint, output_constraint) x = np.array([[0.0, 110.0]]).astype(np.float32) assert not prop.validate_counter_example(x)[0] x = np.array([[1.0, 0.5]]).astype(np.float32) assert not prop.validate_counter_example(x)[0] def test_suffixed_op_graph(): input_op = operations.Input((1, 2), np.dtype(np.float32)) matmul_op = operations.MatMul(input_op, np.array([[1.0], [1.0]], dtype=np.float32)) add_op = operations.Add(matmul_op, 1) relu_op = operations.Relu(add_op) op_graph = OperationGraph([relu_op]) N = Network("N").concretize(op_graph) vi = Variable((1, 2)) input_constraint = HalfspacePolytope(vi) variables = [vi, vi] indices = np.array([(0, 0), (0, 1)]) coeffs = np.array([1.0, 1.0]) b = np.array(2) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([-1.0, -1.0]) b = np.array(2) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs = np.array([1.0, -1.0]) b = np.array(4) input_constraint.update_constraint(variables, indices, coeffs, b) coeffs =
np.array([-1.0, 1.0])
numpy.array
import numpy as np from numpy.lib.npyio import save import vtk from vtk.util.numpy_support import vtk_to_numpy from vtk.util.numpy_support import numpy_to_vtk import matplotlib.tri as mtri import os import sys from scipy.interpolate import griddata from scipy.ndimage.filters import gaussian_filter from scipy.ndimage.filters import rank_filter import matplotlib.pyplot as plt from shapely.geometry import LineString import math import matplotlib.ticker as ticker import matplotlib.colors as colors plt.style.use('seaborn-bright') #plt.style.use('dark_background') positions_columns = {'time': 0, 'rank': 1, "posx": 2, "posy": 3, "radius": 4, "S0": 5, "S1": 6, "velx": 7, "vely": 8, "angle": 9, "total_int": 10,\ "neighbours": 11, "growth_rate": 12} outdir = '/scratch/ws/1/haja565a-workspace2/master_thesis/output' savedir = "/scratch/ws//1/haja565a-workspace2/DeformationField/" expName = sys.argv[1] totalCells = int(sys.argv[2]) time = float(sys.argv[3]) ranks = list(range(0,totalCells)) print("saving" + expName) saveVTK = False dt = 0.005 if not os.path.exists(savedir+expName): os.makedirs(savedir+expName) interpolation_steps = 1000 domain_size = 100 x = np.linspace(0, domain_size,interpolation_steps) xx, yy = np.meshgrid(x,x) cx, cy = xx-50, yy-50 angpos = np.arctan2(cy,cx) #angular posiiton of the pixel positions_columns = {'time': 0, 'rank': 1, "posx": 2, "posy": 3, "radius": 4, "S0": 5, "S1": 6, "velx": 7, "vely": 8, "angle": 9, "total_int": 10,\ "neighbours": 11, "confine_int": 12, "growth_rate": 13} #ageplot = False #if(ageplot): age =
np.load("/scratch/ws//1/haja565a-workspace2/quant/" + expName + "/age.npy")
numpy.load
""" Tests for fast version of ARMA innovations algorithm """ import numpy as np import pytest from numpy.testing import assert_equal, assert_allclose from statsmodels.tsa.arima_process import arma_acovf from statsmodels.tsa.innovations import _arma_innovations, arma_innovations from statsmodels.tsa.statespace.sarimax import SARIMAX def test_brockwell_davis_ex533(): # See <NAME> Davis (2009) - Time Series Theory and Methods # Example 5.3.3: ARMA(1, 1) process, p.g. 177 nobs = 10 ar_params = np.array([0.2]) ma_params = np.array([0.4]) sigma2 = 8.92 p = len(ar_params) q = len(ma_params) m = max(p, q) ar = np.r_[1, -ar_params] ma = np.r_[1, ma_params] # First, get the autocovariance of the process arma_process_acovf = arma_acovf(ar, ma, nobs=nobs, sigma2=sigma2) unconditional_variance = ( sigma2 * (1 + 2 * ar_params[0] * ma_params[0] + ma_params[0]**2) / (1 - ar_params[0]**2)) assert_allclose(arma_process_acovf[0], unconditional_variance) # Next, get the autocovariance of the transformed process # Note: as required by {{prefix}}arma_transformed_acovf, we first divide # through by sigma^2 arma_process_acovf /= sigma2 unconditional_variance /= sigma2 out = np.array(_arma_innovations.darma_transformed_acovf_fast( ar, ma, arma_process_acovf)) acovf = np.array(out[0]) acovf2 = np.array(out[1]) # `acovf` is an m^2 x m^2 matrix, where m = max(p, q) # but it is only valid for the autocovariances of the first m observations # (this means in particular that the block `acovf[m:, m:]` should *not* be # used) # `acovf2` then contains the (time invariant) autocovariance terms for # the observations m + 1, ..., nobs - since the autocovariance is the same # for these terms, to save space we do not construct the autocovariance # matrix as we did for the first m terms. Thus `acovf2[0]` is the variance, # `acovf2[1]` is the first autocovariance, etc. # Test the autocovariance function for observations m + 1, ..., nobs # (it is time invariant here) assert_equal(acovf2.shape, (nobs - m,)) assert_allclose(acovf2[0], 1 + ma_params[0]**2) assert_allclose(acovf2[1], ma_params[0]) assert_allclose(acovf2[2:], 0) # Test the autocovariance function for observations 1, ..., m # (it is time varying here) assert_equal(acovf.shape, (m * 2, m * 2)) # (we need to check `acovf[:m * 2, :m]`, i.e. `acovf[:2, :1])` ix = np.diag_indices_from(acovf) ix_lower = (ix[0][:-1] + 1, ix[1][:-1]) # acovf[ix] is the diagonal, and we want to check the first m # elements of the diagonal assert_allclose(acovf[ix][:m], unconditional_variance) # acovf[ix_lower] is the first lower off-diagonal assert_allclose(acovf[ix_lower][:m], ma_params[0]) # Now, check that we compute the moving average coefficients and the # associated variances correctly out = _arma_innovations.darma_innovations_algo_fast( nobs, ar_params, ma_params, acovf, acovf2) theta = np.array(out[0]) v = np.array(out[1]) # Test v (see eq. 5.3.13) desired_v = np.zeros(nobs) desired_v[0] = unconditional_variance for i in range(1, nobs): desired_v[i] = 1 + (1 - 1 / desired_v[i - 1]) * ma_params[0]**2 assert_allclose(v, desired_v) # Test theta (see eq. 5.3.13) # Note that they will have shape (nobs, m + 1) here, not (nobs, nobs - 1) # as in the original (non-fast) version assert_equal(theta.shape, (nobs, m + 1)) desired_theta = np.zeros(nobs) for i in range(1, nobs): desired_theta[i] = ma_params[0] / desired_v[i - 1] assert_allclose(theta[:, 0], desired_theta) assert_allclose(theta[:, 1:], 0) # Test against Table 5.3.1 endog = np.array([ -1.1, 0.514, 0.116, -0.845, 0.872, -0.467, -0.977, -1.699, -1.228, -1.093]) u = _arma_innovations.darma_innovations_filter(endog, ar_params, ma_params, theta) # Note: Table 5.3.1 has \hat X_n+1 = -0.5340 for n = 1, but this seems to # be a typo, since equation 5.3.12 gives the form of the prediction # equation as \hat X_n+1 = \phi X_n + \theta_n1 (X_n - \hat X_n) # Then for n = 1 we have: # \hat X_n+1 = 0.2 (-1.1) + (0.2909) (-1.1 - 0) = -0.5399 # And for n = 2 if we use what we have computed, then we get: # \hat X_n+1 = 0.2 (0.514) + (0.3833) (0.514 - (-0.54)) = 0.5068 # as desired, whereas if we used the book's number for n=1 we would get: # \hat X_n+1 = 0.2 (0.514) + (0.3833) (0.514 - (-0.534)) = 0.5045 # which is not what Table 5.3.1 shows. desired_hat = np.array([ 0, -0.540, 0.5068, -0.1321, -0.4539, 0.7046, -0.5620, -0.3614, -0.8748, -0.3869]) desired_u = endog - desired_hat assert_allclose(u, desired_u, atol=1e-4) def test_brockwell_davis_ex534(): # See Brockwell and Davis (2009) - Time Series Theory and Methods # Example 5.3.4: ARMA(1, 1) process, p.g. 178 nobs = 10 ar_params = np.array([1, -0.24]) ma_params = np.array([0.4, 0.2, 0.1]) sigma2 = 1 p = len(ar_params) q = len(ma_params) m = max(p, q) ar = np.r_[1, -ar_params] ma = np.r_[1, ma_params] # First, get the autocovariance of the process arma_process_acovf = arma_acovf(ar, ma, nobs=nobs, sigma2=sigma2) assert_allclose(arma_process_acovf[:3], [7.17133, 6.44139, 5.06027], atol=1e-5) # Next, get the autocovariance of the transformed process out = np.array(_arma_innovations.darma_transformed_acovf_fast( ar, ma, arma_process_acovf)) acovf = np.array(out[0]) acovf2 = np.array(out[1]) # See test_brockwell_davis_ex533 for details on acovf vs acovf2 # Test acovf assert_equal(acovf.shape, (m * 2, m * 2)) ix = np.diag_indices_from(acovf) ix_lower1 = (ix[0][:-1] + 1, ix[1][:-1]) ix_lower2 = (ix[0][:-2] + 2, ix[1][:-2]) ix_lower3 = (ix[0][:-3] + 3, ix[1][:-3]) ix_lower4 = (ix[0][:-4] + 4, ix[1][:-4]) assert_allclose(acovf[ix][:m], 7.17133, atol=1e-5) desired = [6.44139, 6.44139, 0.816] assert_allclose(acovf[ix_lower1][:m], desired, atol=1e-5) assert_allclose(acovf[ix_lower2][0], 5.06027, atol=1e-5) assert_allclose(acovf[ix_lower2][1:m], 0.34, atol=1e-5) assert_allclose(acovf[ix_lower3][:m], 0.1, atol=1e-5) assert_allclose(acovf[ix_lower4][:m], 0, atol=1e-5) # Test acovf2 assert_equal(acovf2.shape, (nobs - m,)) assert_allclose(acovf2[:4], [1.21, 0.5, 0.24, 0.1]) assert_allclose(acovf2[4:], 0) # Test innovations algorithm output out = _arma_innovations.darma_innovations_algo_fast( nobs, ar_params, ma_params, acovf, acovf2) theta = np.array(out[0]) v = np.array(out[1]) # Test v (see Table 5.3.2) desired_v = [7.1713, 1.3856, 1.0057, 1.0019, 1.0016, 1.0005, 1.0000, 1.0000, 1.0000, 1.0000] assert_allclose(v, desired_v, atol=1e-4) # Test theta (see Table 5.3.2) assert_equal(theta.shape, (nobs, m + 1)) desired_theta = np.array([ [0, 0.8982, 1.3685, 0.4008, 0.3998, 0.3992, 0.4000, 0.4000, 0.4000, 0.4000], [0, 0, 0.7056, 0.1806, 0.2020, 0.1995, 0.1997, 0.2000, 0.2000, 0.2000], [0, 0, 0, 0.0139, 0.0722, 0.0994, 0.0998, 0.0998, 0.0999, 0.1]]).T assert_allclose(theta[:, :m], desired_theta, atol=1e-4) assert_allclose(theta[:, m:], 0) # Test innovations filter output endog = np.array([1.704, 0.527, 1.041, 0.942, 0.555, -1.002, -0.585, 0.010, -0.638, 0.525]) u = _arma_innovations.darma_innovations_filter(endog, ar_params, ma_params, theta) desired_hat = np.array([ 0, 1.5305, -0.1710, 1.2428, 0.7443, 0.3138, -1.7293, -0.1688, 0.3193, -0.8731]) desired_u = endog - desired_hat assert_allclose(u, desired_u, atol=1e-4) @pytest.mark.parametrize("ar_params,ma_params,sigma2", [ (np.array([]), np.array([]), 1), (np.array([0.]), np.array([0.]), 1), (np.array([0.9]), np.array([]), 1), (np.array([]), np.array([0.9]), 1), (np.array([0.2, -0.4, 0.1, 0.1]), np.array([0.5, 0.1]), 1.123), (np.array([0.5, 0.1]), np.array([0.2, -0.4, 0.1, 0.1]), 1.123), ]) def test_innovations_algo_filter_kalman_filter(ar_params, ma_params, sigma2): # Test the innovations algorithm and filter against the Kalman filter # for exact likelihood evaluation of an ARMA process ar = np.r_[1, -ar_params] ma = np.r_[1, ma_params] endog = np.random.normal(size=10) nobs = len(endog) # Innovations algorithm approach arma_process_acovf = arma_acovf(ar, ma, nobs=nobs, sigma2=sigma2) acovf, acovf2 = np.array(_arma_innovations.darma_transformed_acovf_fast( ar, ma, arma_process_acovf / sigma2)) theta, r = _arma_innovations.darma_innovations_algo_fast( nobs, ar_params, ma_params, acovf, acovf2) u = _arma_innovations.darma_innovations_filter(endog, ar_params, ma_params, theta) v = np.array(r) * sigma2 u = np.array(u) llf_obs = -0.5 * u**2 / v - 0.5 * np.log(2 * np.pi * v) # Kalman filter apparoach mod = SARIMAX(endog, order=(len(ar_params), 0, len(ma_params))) res = mod.filter(np.r_[ar_params, ma_params, sigma2]) # Test that the two approaches are identical assert_allclose(u, res.forecasts_error[0]) # assert_allclose(theta[1:, 0], res.filter_results.kalman_gain[0, 0, :-1]) assert_allclose(llf_obs, res.llf_obs) # Get llf_obs directly llf_obs2 = _arma_innovations.darma_loglikeobs_fast( endog, ar_params, ma_params, sigma2) assert_allclose(llf_obs2, res.llf_obs) @pytest.mark.parametrize("ar_params,ma_params,sigma2", [ (np.array([]), np.array([]), 1), (np.array([0.]), np.array([0.]), 1), (np.array([0.9]), np.array([]), 1), (np.array([]), np.array([0.9]), 1), (np.array([0.2, -0.4, 0.1, 0.1]), np.array([0.5, 0.1]), 1.123), (np.array([0.5, 0.1]), np.array([0.2, -0.4, 0.1, 0.1]), 1.123), ]) def test_innovations_algo_direct_filter_kalman_filter(ar_params, ma_params, sigma2): # Test the innovations algorithm and filter against the Kalman filter # for exact likelihood evaluation of an ARMA process, using the direct # function. endog = np.random.normal(size=10) # Innovations algorithm approach u, r = arma_innovations.arma_innovations(endog, ar_params, ma_params, sigma2) v = np.array(r) * sigma2 u = np.array(u) llf_obs = -0.5 * u**2 / v - 0.5 * np.log(2 * np.pi * v) # Kalman filter apparoach mod = SARIMAX(endog, order=(len(ar_params), 0, len(ma_params))) res = mod.filter(np.r_[ar_params, ma_params, sigma2]) # Test that the two approaches are identical assert_allclose(u, res.forecasts_error[0]) # assert_allclose(theta[1:, 0], res.filter_results.kalman_gain[0, 0, :-1]) assert_allclose(llf_obs, res.llf_obs) # Get llf_obs directly llf_obs2 = _arma_innovations.darma_loglikeobs_fast( endog, ar_params, ma_params, sigma2) assert_allclose(llf_obs2, res.llf_obs) @pytest.mark.parametrize("ar_params,diff,ma_params,sigma2", [ (np.array([]), 1, np.array([]), 1), (np.array([0.]), 1, np.array([0.]), 1), (np.array([0.9]), 1, np.array([]), 1), (np.array([]), 1,
np.array([0.9])
numpy.array
# -*- coding: utf-8 -*- from PIL import Image import matplotlib.pyplot as plt import numpy as np import torch import torch.optim as optim from torchvision import transforms, models def model(): # get the "features" portion of VGG19 (we will not need the "classifier" portion) vgg = models.vgg19(pretrained=True).features # freeze all VGG parameters since we're only optimizing the target image for param in vgg.parameters(): param.requires_grad_(False) return vgg def load_image(img_path, max_size=400, shape=None): ''' Load in and transform an image, making sure the image is <= 400 pixels in the x-y dims.''' image = Image.open(img_path).convert('RGB') # large images will slow down processing if max(image.size) > max_size: size = max_size else: size = max(image.size) if shape is not None: size = shape in_transform = transforms.Compose([ transforms.Resize(size), transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) # discard the transparent, alpha channel (that's the :3) and add the batch dimension image = in_transform(image)[:3,:,:].unsqueeze(0) return image # helper function for un-normalizing an image # and converting it from a Tensor image to a NumPy image for display def im_convert(tensor): """ Display a tensor as an image. """ image = tensor.to("cpu").clone().detach() image = image.numpy().squeeze() image = image.transpose(1,2,0) image = image *
np.array((0.229, 0.224, 0.225))
numpy.array
""" Copyright (c) 2018, <NAME>, <NAME>, <NAME> https://github.com/spagliarini Mnemosyne team, Inria, Bordeaux, France https://team.inria.fr/mnemosyne/fr/ Distributed under the BSD-2-Clause License PLOT: comparison between different normalizations (Fig. 4) """ import os import numpy as np import matplotlib.pyplot as plt csfont = {'fontname':'Times New Roman'} os.chdir('C://Users//Mnemosyne//Documents//Python Scripts//InverseModelBirdsong//results//IMsimple_model//AllNormalizations//NormalizedAN') #or NormalizedMN #load distance files err_wn=np.load('Distance_simple.npy') err_2avrg=np.load('Distance_2avrg.npy') err_2norm=np.load('Distance_2norm.npy') err_3avrg=np.load('Distance_3avrg.npy') err_3norm=np.load('Distance_3norm.npy') err_4avrg=np.load('Distance_4avrg.npy') err_4norm=np.load('Distance_4norm.npy') err_5avrg=np.load('Distance_5avrg.npy') err_5norm=np.load('Distance_5norm.npy') #definition of the end_time end_time=err_wn.shape[1] #smooth average distance over all the simulations mean_err_wn=
np.zeros((end_time,1))
numpy.zeros
def kmeans(data, k): import numpy as np if isinstance(k,int): if isinstance(data,np.ndarray): if data.shape[1]==2: if data.shape[0]>=k: centers=np.random.rand(k,2) while True: distance=sq_euc(data,centers) index=np.argmin(distance,1)+1 results=
np.zeros((k,2))
numpy.zeros
#!/usr/bin/python3.6 # -*- coding: utf-8 -*- """ Created on Sun Oct 03 21:05:00 2021 @author: iv """ import sys import os import pandas as pd import numpy as np from textblob import TextBlob import re from textblob.sentiments import NaiveBayesAnalyzer from googletrans import Translator import unicodedata ### SYSTEM DATA ### if '__file__' in locals(): if locals()['__file__'] == '<input>': wd = os.path.split(os.path.realpath(__file__))[0] wd += '/' sys.path.append(wd) os.chdir(wd) del locals()['__file__'] else: wd = os.path.dirname(__file__) wd += '/' sys.path.append(wd) os.chdir(wd) else: wd = os.path.abspath("./Documents/Repositorio_Iv/CryptoRRSS") wd += '/' sys.path.append(wd) def get_name(x): result = x['screen_name'] return result def sent_analisys(x): blob_object = TextBlob(x, analyzer=NaiveBayesAnalyzer()) analysis = blob_object.sentiment analysis = '$'.join([str(x) for x in analysis]) return analysis def filtertext(x, excel_file): df_palabras = pd.read_excel(wd + excel_file) df_palabras = df_palabras.fillna(0) lista_words = list(df_palabras['PALABRAS'].values) + \ list(df_palabras['hastag'].values) + \ list(df_palabras['arroba'].values) # lista_words = list(filter((0).__ne__, lista_words)) #Tambien nos valdria lista_words = [x for x in lista_words if x != 0] result = [] for word in lista_words: tag = bool(re.search(word, x.lower())) result.append(tag) return max(result) def translate_en(x, lang='en'): translator = Translator() result = translator.translate(x, dest=lang).text return result def cleantext(x): result = unicodedata.normalize('NFD', x).encode("utf8").decode("ascii", "ignore") result = re.sub('[%+\\\+\(+\)+&+\n+\r+./]', ' ', result) result = re.sub(' +', ' ', result) result = result.strip() return result # userid_list = ('CriptoNoticias', 'bit2me', 'MundoCrypto_ES', 'Tesla', # 'cryptocom', 'elonmusk', 'nayibbukele', 'Cointelegraph', 'crypto', 'CoinMarketCap', # 'ForbesCrypto', 'CryptoBoomNews', 'BTCTN', 'solana', 'CoinbasePro', 'coingecko', 'CoinDesk', # 'blockchain', 'healthy_pockets', 'wallstwolverine' # ) userid_list = ('CriptoNoticias', 'coingecko', 'CoinDesk', 'blockchain', 'MundoCrypto_ES', 'bit2me', 'healthy_pockets', 'wallstwolverine', 'elonmusk', 'cryptocom', 'CryptoBoomNews', 'Cointelegraph', 'crypto', 'CoinMarketCap' ) def json_sentiment(api, userid_list=userid_list, count_twits=3): twits_df = pd.DataFrame() for userid in userid_list: tweets = api.user_timeline(screen_name=userid, # 200 is the maximum allowed count count=count_twits, include_rts=False, # Necessary to keep full_text # otherwise only the first 140 words are extracted tweet_mode='extended' ) tweets_1 = [x._json for x in tweets] twits_df_1 = pd.DataFrame(tweets_1) twits_df = pd.concat([twits_df, twits_df_1]) twits_df['full_text'] = np.vectorize(cleantext)(twits_df['full_text']) twits_df['has_keys'] =
np.vectorize(filtertext)
numpy.vectorize
''' validate survey simulations using CMX data. updates ------- * 5/19/2020: created script and test to compare which wavelength range I should use for the exposure time correction factor ''' import os import h5py import fitsio import numpy as np import astropy.units as u # -- feasibgs -- from feasibgs import util as UT from feasibgs import catalogs as Cat from feasibgs import forwardmodel as FM # -- desihub -- import desispec.io # -- plotting -- import matplotlib as mpl import matplotlib.pyplot as plt if 'NERSC_HOST' not in os.environ: mpl.rcParams['text.usetex'] = True mpl.rcParams['font.family'] = 'serif' mpl.rcParams['axes.linewidth'] = 1.5 mpl.rcParams['axes.xmargin'] = 1 mpl.rcParams['xtick.labelsize'] = 'x-large' mpl.rcParams['xtick.major.size'] = 5 mpl.rcParams['xtick.major.width'] = 1.5 mpl.rcParams['ytick.labelsize'] = 'x-large' mpl.rcParams['ytick.major.size'] = 5 mpl.rcParams['ytick.major.width'] = 1.5 mpl.rcParams['legend.frameon'] = False dir = '/global/cscratch1/sd/chahah/feasibgs/cmx/survey_sims/' def validate_spectral_pipeline(): ''' validate the spectral pipeline by 1. constructing spectra from fiber acceptance fraction scaled smoothed CMX spectra with CMX sky surface brightness 2. compare noise levels to CMX observations ''' from scipy.signal import medfilt import desisim.simexp import specsim.instrument from desitarget.cmx import cmx_targetmask np.random.seed(0) tileid = 70502 date = 20200225 expid = 52113 ispec = 0 dir_gfa = '/global/cfs/cdirs/desi/users/ameisner/GFA/conditions' dir_redux = "/global/cfs/cdirs/desi/spectro/redux/daily" dir_coadd = '/global/cfs/cdirs/desi/users/chahah/bgs_exp_coadd/' # get sky surface brightness by correcting for the throughput on the CMX # sky data f_sky = lambda band: os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'sky-%s%i-%s.fits' % (band, ispec, str(expid).zfill(8))) sky_b = desispec.io.read_sky(f_sky('b')) sky_r = desispec.io.read_sky(f_sky('r')) sky_z = desispec.io.read_sky(f_sky('z')) wave, sky_electrons = bs_coadd( [sky_b.wave, sky_r.wave, sky_z.wave], [sky_b.flux, sky_r.flux, sky_z.flux]) # exposure time _frame = desispec.io.read_frame(f_sky('b').replace('sky-', 'frame-')) exptime = _frame.meta['EXPTIME'] print('exp.time = %.fs' % exptime) # get which are good fibers from coadd file f_coadd = os.path.join(dir_coadd, 'coadd-%i-%i-%i-%s.fits' % (tileid, date, ispec, str(expid).zfill(8))) coadd = fitsio.read(f_coadd) is_good = (coadd['FIBERSTATUS'] == 0) is_sky = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SKY')) != 0 good_sky = is_good & is_sky # get throughput for the cameras config = desisim.simexp._specsim_config_for_wave(wave, dwave_out=0.8, specsim_config_file='desi') instrument = specsim.instrument.initialize(config, True) throughput = np.amax([instrument.cameras[0].throughput, instrument.cameras[1].throughput, instrument.cameras[2].throughput], axis=0) desi_fiber_area = 1.862089 # fiber area # calculate sky brightness sky_bright = np.median(sky_electrons[good_sky,:], axis=0) / throughput / instrument.photons_per_bin / exptime * 1e17 # get fiber acceptance fraction and airmass gfa = fitsio.read(os.path.join(dir_gfa, 'offline_all_guide_ccds_thru_20200315.fits')) isexp = (gfa['EXPID'] == expid) fibloss = gfa['TRANSPARENCY'][isexp] * gfa['FIBER_FRACFLUX'][isexp] fibloss = np.median(fibloss[~np.isnan(fibloss)]) print('fiber loss = (TRANSP) x (FFRAC) = %f' % fibloss) airmass = np.median(gfa['AIRMASS'][isexp]) print('airmass = %.2f' % airmass) # select BGS spectra coadd_wave = fitsio.read(f_coadd, ext=2) coadd_flux = fitsio.read(f_coadd, ext=3) coadd_ivar = fitsio.read(f_coadd, ext=4) is_BGS = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SV0_BGS')) != 0 gal_cut = is_BGS & (np.sum(coadd_flux, axis=1) != 0) igals = np.random.choice(np.arange(len(gal_cut))[gal_cut], size=5, replace=False) igals = np.arange(len(coadd['FIBER']))[coadd['FIBER'] == 143] for igal in igals: # source flux is the smoothed CMX spetra source_flux = np.clip(np.interp(wave, coadd_wave, medfilt(coadd_flux[igal,:], 101)), 0, None) # simulate the exposures using the spectral simulation pipeline fdesi = FM.fakeDESIspec() bgs = fdesi.simExposure( wave, np.atleast_2d(source_flux * fibloss), # scale by fiber acceptance fraction exptime=exptime, airmass=airmass, Isky=[wave, sky_bright], dwave_out=0.8, filename=None) # barebone specsim pipeline for comparison from specsim.simulator import Simulator desi = Simulator(config, num_fibers=1) desi.observation.exposure_time = exptime * u.s desi.atmosphere._surface_brightness_dict[desi.atmosphere.condition] = \ np.interp(desi.atmosphere._wavelength, wave, sky_bright) * \ desi.atmosphere.surface_brightness.unit desi.atmosphere._extinct_emission = False desi.atmosphere._moon = None desi.atmosphere.airmass = airmass # high airmass desi.simulate(source_fluxes=np.atleast_2d(source_flux) * 1e-17 * desi.simulated['source_flux'].unit, fiber_acceptance_fraction=np.tile(fibloss, np.atleast_2d(source_flux).shape)) random_state = np.random.RandomState(0) desi.generate_random_noise(random_state, use_poisson=True) scale=1e17 waves, fluxes, ivars, ivars_electron = [], [], [], [] for table in desi.camera_output: _wave = table['wavelength'].astype(float) _flux = (table['observed_flux']+table['random_noise_electrons']*table['flux_calibration']).T.astype(float) _flux = _flux * scale _ivar = table['flux_inverse_variance'].T.astype(float) _ivar = _ivar / scale**2 waves.append(_wave) fluxes.append(_flux[0]) ivars.append(_ivar[0]) fig = plt.figure(figsize=(15,10)) sub = fig.add_subplot(211) sub.plot(coadd_wave, coadd_flux[igal,:] * fibloss, c='C0', lw=1, label='(coadd flux) x (fib.loss)') for i_b, band in enumerate(['b', 'r', 'z']): lbl = None if band == 'b': lbl = 'spectral sim.' sub.plot(bgs.wave[band], bgs.flux[band][0], c='C1', lw=1, label=lbl) sub.plot(waves[i_b], fluxes[i_b] *fibloss, c='C2', lw=1, ls=':') sub.plot(wave, source_flux * fibloss, c='k', lw=1, ls='--', label='source flux') sub.legend(loc='upper right', frameon=True, fontsize=20) sub.set_xlim(3600, 9800) sub.set_ylabel('flux [$10^{-17} erg/s/cm^2/A$]', fontsize=25) sub.set_ylim(-1., 5.) sub = fig.add_subplot(212) sub.plot(coadd_wave, coadd_ivar[igal,:] * fibloss**-2, c='C0', lw=1, label=r'(coadd ivar) / (fib.loss$)^2$') for i_b, band in enumerate(['b', 'r', 'z']): sub.plot(bgs.wave[band], bgs.ivar[band][0], c='C1', lw=1) sub.plot(waves[i_b], ivars[i_b] * fibloss**-2, c='C2', lw=1, ls=':') sub.legend(loc='upper right', frameon=True, fontsize=20) sub.set_xlabel('wavelength [$A$]', fontsize=20) sub.set_xlim(3600, 9800) sub.set_ylabel('ivar', fontsize=25) sub.set_ylim(0., None) fig.savefig(os.path.join(dir, 'valid.spectral_pipeline.exp%i.%i.png' % (expid, igal)), bbox_inches='tight') return None def validate_spectral_pipeline_GAMA_source(): ''' compare the fiber flux scaled source spectra from spectral simulations pipeline to fiber loss corrected cframes CMX data for overlapping GAMA G12 galaxies. ''' import glob from scipy.signal import medfilt from scipy.interpolate import interp1d from desitarget.cmx import cmx_targetmask from pydl.pydlutils.spheregroup import spherematch np.random.seed(0) tileid = 70502 #[66014, 70502] #66014 is with low transparency date = 20200225 expids = [52112]#, 52113, 52114, 52115, 52116] # terrible FWHM #tileid = 66014 # low transparency #date = 20200314 #expids = [55432] dir_gfa = '/global/cfs/cdirs/desi/users/ameisner/GFA/conditions' dir_redux = "/global/cfs/cdirs/desi/spectro/redux/daily" dir_coadd = '/global/cfs/cdirs/desi/users/chahah/bgs_exp_coadd/' # read in GAMA + Legacy catalo g cata = Cat.GamaLegacy() g12 = cata.Read('g12', dr_gama=3, dr_legacy=7) g12_ra = g12['legacy-photo']['ra'] g12_dec = g12['legacy-photo']['dec'] Ng12 = len(g12_ra) # match GAMA galaxies to templates bgs3 = FM.BGStree() template_match = bgs3._GamaLegacy(g12) hasmatch = (template_match != -999) # ra/dec cut for GAMA so we only keep ones near the tile cut_gama = ((g12_ra > 174.0) & (g12_ra < 186.0) & (g12_dec > -3.0) & (g12_dec < 2.0) & hasmatch) g12_ra = g12_ra[cut_gama] g12_dec = g12_dec[cut_gama] g12_z = g12['gama-spec']['z'][cut_gama] g12_rfib = UT.flux2mag(g12['legacy-photo']['fiberflux_r'])[cut_gama] g12_rmag_gama = g12['gama-photo']['r_model'][cut_gama] # r-band magnitude from GAMA (SDSS) photometry print('%i galaxies in GAMA G12 + Legacy' % len(g12_ra)) # match coadd objects to G12+legacy catalog based on RA and Dec for expid in expids: print('--- %i ---' % expid) # get fiber acceptance fraction for exposure from GFA gfa = fitsio.read(os.path.join(dir_gfa, 'offline_all_guide_ccds_thru_20200315.fits')) isexp = (gfa['EXPID'] == expid) fwhm = gfa['FWHM_ASEC'][isexp] print(' (FWHM) = %f' % np.median(fwhm[~np.isnan(fwhm)])) transp = gfa['TRANSPARENCY'][isexp] transp = np.median(transp[~np.isnan(transp)]) print(' (TRANSP) = %f' % transp) fibloss = gfa['TRANSPARENCY'][isexp] * gfa['FIBER_FRACFLUX'][isexp] fibloss = np.median(fibloss[~np.isnan(fibloss)]) print(' fiber loss = (TRANSP) x (FFRAC) = %f' % fibloss) # spectrographs available for the exposure ispecs = np.sort([int(os.path.basename(fframe).split('-')[1].replace('z', '')) for fframe in glob.glob(os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'frame-z*.fits'))]) match_gama, coadd_fluxes = [], [] for ispec in ispecs: # select BGS galaxies from the coadds f_coadd = os.path.join(dir_coadd, 'coadd-%i-%i-%i-%s.fits' % (tileid, date, ispec, str(expid).zfill(8))) coadd = fitsio.read(f_coadd) coadd_wave = fitsio.read(f_coadd, ext=2) coadd_flux = fitsio.read(f_coadd, ext=3) is_BGS = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SV0_BGS')) != 0 gal_cut = is_BGS & (np.sum(coadd_flux, axis=1) != 0) # select ones that are in GAMA by matching RA and Dec match = spherematch(g12_ra, g12_dec, coadd['TARGET_RA'][gal_cut], coadd['TARGET_DEC'][gal_cut], 0.000277778) m_gama = match[0] m_coadd = match[1] match_gama.append(m_gama) coadd_fluxes.append(coadd_flux[gal_cut,:][m_coadd]) match_gama = np.concatenate(match_gama) coadd_fluxes = np.concatenate(coadd_fluxes, axis=0) print(' %i matches to G12' % len(match_gama)) # generate spectra for the following overlapping galaxies gama_samp = np.arange(Ng12)[cut_gama][match_gama] s_bgs = FM.BGSsourceSpectra(wavemin=1500.0, wavemax=15000) emline_flux = s_bgs.EmissionLineFlux(g12, index=gama_samp, dr_gama=3, silent=True) # emission lines from GAMA s_flux, s_wave, magnorm_flag = s_bgs.Spectra( g12_rfib[match_gama], g12_z[match_gama], np.repeat(100.0, len(match_gama)), seed=1, templateid=template_match[gama_samp], emflux=emline_flux, mag_em=g12_rmag_gama[match_gama] ) igals = np.random.choice(np.arange(len(match_gama))[magnorm_flag], size=5, replace=False) fig = plt.figure(figsize=(15,20)) for i, igal in enumerate(igals): sub = fig.add_subplot(5,1,i+1) #sub.plot(coadd_wave, medfilt(coadd_fluxes[igal,:], 101), c='k', # ls=':', lw=0.5, label='smoothed (coadd flux)') sub.plot(coadd_wave, coadd_fluxes[igal,:] * transp * 0.775 , c='C0', lw=0.1) sub.plot(coadd_wave, medfilt(coadd_fluxes[igal,:], 101) * transp * 0.775 , c='C0', label='(coadd flux) x (TRANSP) x (0.775)') sub.plot(coadd_wave, coadd_fluxes[igal,:] * fibloss, c='C1', lw=0.1) sub.plot(coadd_wave, medfilt(coadd_fluxes[igal,:], 101) * fibloss, c='C1', label='(coadd flux) x (TRANSP) x (FIBER FRACFLUX)') sub.plot(s_wave, s_flux[igal,:] * transp, c='k', ls='--', label='(sim source flux) x (TRANSP)') sub.set_xlim(3600, 9800) if i < 4: sub.set_xticklabels([]) if i == 1: sub.set_ylabel('inciddent flux [$10^{-17} erg/s/cm^2/A$]', fontsize=25) if expid == 55432: sub.set_ylim(-0.5, 3.) else: sub.set_ylim(-0.5, 10.) #sub.set_ylim(1e-1, None) #sub.set_yscale('log') sub.legend(loc='upper right', handletextpad=0.1, fontsize=20) sub.set_xlabel('wavelength', fontsize=25) fig.savefig(os.path.join(dir, 'valid.spectral_pipeline_source_flux.exp%i.png' % expid), bbox_inches='tight') plt.close() return None def validate_spectral_pipeline_source(): ''' compare the color-matched and fiber flux scaled source spectra from the spectral simulation to the fiber loss corrected cframes CMX data. This is because the GAMA comparison was a bust. ''' import glob from scipy.signal import medfilt from scipy.interpolate import interp1d from scipy.spatial import cKDTree as KDTree from desitarget.cmx import cmx_targetmask from pydl.pydlutils.spheregroup import spherematch np.random.seed(0) tileid = 66003 date = 20200315 expids = [55654, 55655, 55656] dir_gfa = '/global/cfs/cdirs/desi/users/ameisner/GFA/conditions' dir_redux = "/global/cfs/cdirs/desi/spectro/redux/daily" dir_coadd = '/global/cfs/cdirs/desi/users/chahah/bgs_exp_coadd/' # read VI redshifts, which will be used for constructing the source spectra fvi = os.path.join('/global/cfs/cdirs/desi/sv/vi/TruthTables/', 'truth_table_BGS_v1.2.csv') vi_id, ztrue, qa_flag = np.genfromtxt(fvi, delimiter=',', skip_header=1, unpack=True, usecols=[0, 2, 3]) good_z = (qa_flag >= 2.5) vi_id = vi_id[good_z].astype(int) ztrue = ztrue[good_z] mbgs = FM.BGStree() for expid in expids: print('--- %i ---' % expid) # get fiber acceptance fraction for exposure from GFA gfa = fitsio.read(os.path.join(dir_gfa, 'offline_all_guide_ccds_thru_20200315.fits')) isexp = (gfa['EXPID'] == expid) fwhm = gfa['FWHM_ASEC'][isexp] print(' (FWHM) = %f' % np.median(fwhm[~np.isnan(fwhm)])) transp = gfa['TRANSPARENCY'][isexp] transp = np.median(transp[~np.isnan(transp)]) print(' (TRANSP) = %f' % transp) fibloss = gfa['TRANSPARENCY'][isexp] * gfa['FIBER_FRACFLUX'][isexp] fibloss = np.median(fibloss[~np.isnan(fibloss)]) print(' fiber loss = (TRANSP) x (FFRAC) = %f' % fibloss) # spectrographs available for the exposure ispecs = np.sort([int(os.path.basename(fframe).split('-')[1].replace('z', '')) for fframe in glob.glob(os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'frame-z*.fits'))]) coadd_fluxes, s_fluxes = [], [] for ispec in ispecs: # read coadd file f_coadd = os.path.join(dir_coadd, 'coadd-%i-%i-%i-%s.fits' % (tileid, date, ispec, str(expid).zfill(8))) coadd = fitsio.read(f_coadd) coadd_wave = fitsio.read(f_coadd, ext=2) coadd_flux = fitsio.read(f_coadd, ext=3) is_BGS = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SV0_BGS')) != 0 gal_cut = is_BGS & (np.sum(coadd_flux, axis=1) != 0) targetid = coadd['TARGETID'][gal_cut] rmag = UT.flux2mag(coadd['FLUX_R'], method='log')[gal_cut] gmag = UT.flux2mag(coadd['FLUX_G'], method='log')[gal_cut] rfib = UT.flux2mag(coadd['FIBERFLUX_R'], method='log')[gal_cut] _, m_vi, m_coadd = np.intersect1d(vi_id, targetid, return_indices=True) print(' %i matches to VI' % len(m_vi)) # match to templates temp_rmag = mbgs.meta['SDSS_UGRIZ'].data[:,2] temp_gmag = mbgs.meta['SDSS_UGRIZ'].data[:,1] temp_meta = np.vstack([ mbgs.meta['Z'].data, temp_rmag, temp_gmag - temp_rmag]).T tree = KDTree(temp_meta) # match CMX galaxies to templates _, match_temp = tree.query(np.vstack([ ztrue[m_vi], rmag[m_coadd], (gmag - rmag)[m_coadd]]).T) # in some cases there won't be a match from KDTree.query # we flag these with -999 has_match = ~(match_temp >= len(mbgs.meta['TEMPLATEID'])) s_bgs = FM.BGSsourceSpectra(wavemin=1500.0, wavemax=15000) s_flux, s_wave, magnorm_flag = s_bgs.Spectra( rfib[m_coadd][has_match], ztrue[m_vi][has_match], np.repeat(100.0, np.sum(has_match)), seed=1, templateid=match_temp[has_match], emflux=None, mag_em=None) coadd_fluxes.append(coadd_flux[gal_cut][m_coadd][has_match]) s_fluxes.append(s_flux) coadd_fluxes = np.concatenate(coadd_fluxes, axis=0) s_fluxes = np.concatenate(s_fluxes, axis=0) igals = np.random.choice(np.arange(s_fluxes.shape[0]), size=5, replace=False) fig = plt.figure(figsize=(15,20)) for i, igal in enumerate(igals): sub = fig.add_subplot(5,1,i+1) sub.plot(coadd_wave, coadd_fluxes[igal,:] * transp * 0.775, c='C0', lw=0.1) sub.plot(coadd_wave, medfilt(coadd_fluxes[igal,:], 101) * transp * 0.775 , c='C0', label='(coadd flux) x (TRANSP) x (0.775)') sub.plot(coadd_wave, coadd_fluxes[igal,:] * fibloss, c='C1', lw=0.1) sub.plot(coadd_wave, medfilt(coadd_fluxes[igal,:], 101) * fibloss, c='C1', label='(coadd flux) x (TRANSP) x (FIBER FRACFLUX)') sub.plot(s_wave, s_fluxes[igal,:] * transp, c='k', ls='--', label='(sim source flux) x (TRANSP)') sub.set_xlim(3600, 9800) if i < 4: sub.set_xticklabels([]) if i == 1: sub.set_ylabel('inciddent flux [$10^{-17} erg/s/cm^2/A$]', fontsize=25) sub.set_ylim(-0.5, 6) sub.legend(loc='upper right', handletextpad=0.1, fontsize=20) sub.set_xlabel('wavelength', fontsize=25) fig.savefig(os.path.join(dir, 'valid.spectral_pipeline_source.exp%i.png' % expid), bbox_inches='tight') plt.close() return None def validate_cmx_zsuccess_specsim_discrepancy(dchi2=40.): ''' This ended up being a useless test because the smoothed CMX spectra that I was using as the source spectra has no features to fit the redshfits! currently we know that the spectral simulation pipeline does not fuly reproduce the noise level of CMX spectra even when we use the smoothed out fiber loss corrected CMX spectra as input. This script is to check whether this discrepancy significantly impacts the redshift success rates. So we'll be comparing - z-success rate of observe CMX exposure with VI truth table - z-success rate of simulated CMX exposure (smoothed fib.loss corrected source spectra + CMX sky) VI is currently available for tile 66033 and night 20200315. ''' import glob from scipy.signal import medfilt import desisim.simexp import specsim.instrument from desitarget.cmx import cmx_targetmask np.random.seed(0) tileid = 66003 date = 20200315 expids = [55654, 55655, 55656] dir_gfa = '/global/cfs/cdirs/desi/users/ameisner/GFA/conditions' dir_redux = "/global/cfs/cdirs/desi/spectro/redux/daily" dir_coadd = '/global/cfs/cdirs/desi/users/chahah/bgs_exp_coadd/' fvi = os.path.join('/global/cfs/cdirs/desi/sv/vi/TruthTables/', 'truth_table_BGS_v1.2.csv') vi_id, ztrue, qa_flag = np.genfromtxt(fvi, delimiter=',', skip_header=1, unpack=True, usecols=[0, 2, 3]) good_z = (qa_flag >= 2.5) vi_id = vi_id[good_z].astype(int) ztrue = ztrue[good_z] for expid in expids: print('--- %i ---' % expid) # get fiber acceptance fraction and airmass gfa = fitsio.read(os.path.join(dir_gfa, 'offline_all_guide_ccds_thru_20200315.fits')) isexp = (gfa['EXPID'] == expid) fibloss = gfa['TRANSPARENCY'][isexp] * gfa['FIBER_FRACFLUX'][isexp] fibloss = np.median(fibloss[~np.isnan(fibloss)]) print(' fiber loss = (TRANSP) x (FFRAC) = %f' % fibloss) airmass = np.median(gfa['AIRMASS'][isexp]) print(' airmass = %.2f' % airmass) ispecs = np.sort([int(os.path.basename(fframe).split('-')[1].replace('z', '')) for fframe in glob.glob(os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'frame-z*.fits'))]) # exposure time _frame = desispec.io.read_frame(os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'frame-b%i-%s.fits' % (ispecs[0], str(expid).zfill(8)))) exptime = _frame.meta['EXPTIME'] print(' exp.time = %.fs' % exptime) for ispec in ispecs: print(' petal %i' % ispec) fexp = os.path.join(dir, 'sim_cmx_spectra.exp%i.petal%i.texp%.fs.fits' % (expid, ispec, exptime)) # get target id f_coadd = os.path.join(dir_coadd, 'coadd-%i-%i-%i-%s.fits' % (tileid, date, ispec, str(expid).zfill(8))) coadd = fitsio.read(f_coadd) coadd_wave = fitsio.read(f_coadd, ext=2) coadd_flux = fitsio.read(f_coadd, ext=3) is_BGS = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SV0_BGS')) != 0 gal_cut = is_BGS & (np.sum(coadd_flux, axis=1) != 0) igals = np.arange(len(gal_cut))[gal_cut] print(' %i BGS galaxies' % np.sum(gal_cut)) if os.path.isfile(fexp): continue # get sky surface brightness for petal f_sky = lambda band: os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'sky-%s%i-%s.fits' % (band, ispec, str(expid).zfill(8))) sky_b = desispec.io.read_sky(f_sky('b')) sky_r = desispec.io.read_sky(f_sky('r')) sky_z = desispec.io.read_sky(f_sky('z')) wave, sky_electrons = bs_coadd( [sky_b.wave, sky_r.wave, sky_z.wave], [sky_b.flux, sky_r.flux, sky_z.flux]) # get which are good fibers from coadd file is_good = (coadd['FIBERSTATUS'] == 0) is_sky = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SKY')) != 0 good_sky = is_good & is_sky # get throughput for the cameras config = desisim.simexp._specsim_config_for_wave(wave, dwave_out=0.8, specsim_config_file='desi') instrument = specsim.instrument.initialize(config, True) throughput = np.amax([instrument.cameras[0].throughput, instrument.cameras[1].throughput, instrument.cameras[2].throughput], axis=0) desi_fiber_area = 1.862089 # fiber area # calculate sky brightness sky_bright = np.median(sky_electrons[good_sky,:], axis=0) / throughput / instrument.photons_per_bin / exptime * 1e17 # source flux is the smoothed CMX spetra source_flux = np.zeros((len(igals), len(wave))) for i in range(len(igals)): source_flux[i,:] = np.clip(np.interp(wave, coadd_wave, medfilt(coadd_flux[igals[i],:], 101)), 0, None) # simulate the exposures using the spectral simulation pipeline fdesi = FM.fakeDESIspec() bgs = fdesi.simExposure( wave, source_flux * fibloss, # scale by fiber acceptance fraction exptime=exptime, airmass=airmass, Isky=[wave, sky_bright], dwave_out=0.8, filename=fexp) frr = run_redrock(fexp, overwrite=False) for ispec in ispecs: print(' petal %i' % ispec) # get target id f_coadd = os.path.join(dir_coadd, 'coadd-%i-%i-%i-%s.fits' % (tileid, date, ispec, str(expid).zfill(8))) coadd = fitsio.read(f_coadd) coadd_wave = fitsio.read(f_coadd, ext=2) coadd_flux = fitsio.read(f_coadd, ext=3) coadd_ivar = fitsio.read(f_coadd, ext=4) is_BGS = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SV0_BGS')) != 0 gal_cut = is_BGS & (np.sum(coadd_flux, axis=1) != 0) fexp = os.path.join(dir, 'sim_cmx_spectra.exp%i.petal%i.texp%.fs.fits' % (expid, ispec, exptime)) sim = desispec.io.read_spectra(fexp) # randomly check 3 galaxies igals = np.random.choice(np.arange(np.sum(gal_cut)), size=3, replace=False) fig = plt.figure(figsize=(15,15)) for i, igal in enumerate(igals): sub = fig.add_subplot(3,1,i+1) sub.plot(coadd_wave, coadd_flux[gal_cut,:][igal,:], c='C0', label='coadd') for band in ['b', 'r', 'z']: sub.plot(sim.wave[band], sim.flux[band][igal,:] / fibloss, c='C1', label='sim / fib.loss') sub.set_xlim(3600, 9800) if i < 2: sub.set_xticklabels([]) if i == 1: sub.set_ylabel('flux [$10^{-17} erg/s/cm^2/A$]', fontsize=25) sub.set_ylim(-1., None) sub.legend(loc='upper right', handletextpad=0.1, fontsize=20) sub.set_xlabel('wavelength', fontsize=25) fig.savefig(os.path.join(dir, 'valid.spectral_pipeline_zsuccess_flux.exp%i.petal%i.png' % (expid, ispec)), bbox_inches='tight') plt.close() fig = plt.figure(figsize=(15,15)) for i, igal in enumerate(igals): sub = fig.add_subplot(3,1,i+1) sub.plot(coadd_wave, coadd_ivar[gal_cut,:][igal,:], c='C0', label='coadd') for band in ['b', 'r', 'z']: sub.plot(sim.wave[band], sim.ivar[band][igal,:] * fibloss**2, c='C1', label='sim x (fib.loss$)^2$') sub.set_xlim(3600, 9800) if i < 2: sub.set_xticklabels([]) if i == 1: sub.set_ylabel('ivar', fontsize=25) sub.set_ylim(0., None) sub.legend(loc='upper right', handletextpad=0.1, fontsize=20) sub.set_xlabel('wavelength', fontsize=25) fig.savefig(os.path.join(dir, 'valid.spectral_pipeline_zsuccess_ivar.exp%i.petal%i.png' % (expid, ispec)), bbox_inches='tight') plt.close() # read in single exposure coadd and redrock output for i, ispec in enumerate(ispecs): # get target id f_coadd = os.path.join(dir_coadd, 'coadd-%i-%i-%i-%s.fits' % (tileid, date, ispec, str(expid).zfill(8))) coadd = fitsio.read(f_coadd) coadd_flux = fitsio.read(f_coadd, ext=3) is_BGS = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SV0_BGS')) != 0 gal_cut = is_BGS & (np.sum(coadd_flux, axis=1) != 0) targetid = coadd['TARGETID'][gal_cut] # read coadd redrock fits rr_coadd = fitsio.read(f_coadd.replace('coadd-', 'zbest-')) rr_coadd_z = rr_coadd['Z'][gal_cut] rr_coadd_zwarn = rr_coadd['ZWARN'][gal_cut] rr_coadd_dchi2 = rr_coadd['DELTACHI2'][gal_cut] fexp = os.path.join(dir, 'sim_cmx_spectra.exp%i.petal%i.texp%.fs.fits' % (expid, ispec, exptime)) frr_sim = run_redrock(fexp, overwrite=False) rr_sim = fitsio.read(frr_sim) rr_sim_z = rr_sim['Z'] rr_sim_zwarn = rr_sim['ZWARN'] rr_sim_dchi2 = rr_sim['DELTACHI2'] # match VI to exposure based on target ids _, m_vi, m_sim = np.intersect1d(vi_id, targetid, return_indices=True) print('%i matches to VI' % len(m_vi)) print(' ', ztrue[m_vi][:5]) print(' ', rr_coadd_z[m_sim][:5]) print(' ', rr_sim_z[m_sim][:5]) if i == 0: rmags = [] ztrues = [] rr_coadd_zs = [] rr_coadd_zwarns = [] rr_coadd_dchi2s = [] rr_sim_zs = [] rr_sim_zwarns = [] rr_sim_dchi2s = [] rmags.append(UT.flux2mag(coadd['FLUX_R'][gal_cut][m_sim], method='log')) ztrues.append(ztrue[m_vi]) rr_coadd_zs.append(rr_coadd_z[m_sim]) rr_coadd_zwarns.append(rr_coadd_zwarn[m_sim]) rr_coadd_dchi2s.append(rr_coadd_dchi2[m_sim]) rr_sim_zs.append(rr_sim_z[m_sim]) rr_sim_zwarns.append(rr_sim_zwarn[m_sim]) rr_sim_dchi2s.append(rr_sim_dchi2[m_sim]) rmags = np.concatenate(rmags) ztrues = np.concatenate(ztrues) rr_coadd_zs = np.concatenate(rr_coadd_zs) rr_coadd_zwarns = np.concatenate(rr_coadd_zwarns) rr_coadd_dchi2s = np.concatenate(rr_coadd_dchi2s) rr_sim_zs = np.concatenate(rr_sim_zs) rr_sim_zwarns = np.concatenate(rr_sim_zwarns) rr_sim_dchi2s = np.concatenate(rr_sim_dchi2s) zs_coadd = UT.zsuccess(rr_coadd_zs, ztrues, rr_coadd_zwarns, deltachi2=rr_coadd_dchi2s, min_deltachi2=dchi2) zs_sim = UT.zsuccess(rr_sim_zs, ztrues, rr_sim_zwarns, deltachi2=rr_sim_dchi2s, min_deltachi2=dchi2) print('coadd z-success %.2f' % (np.sum(zs_coadd)/float(len(zs_coadd)))) print('sim z-success %.2f' % (np.sum(zs_sim)/float(len(zs_sim)))) # compare the two redshift success rates fig = plt.figure(figsize=(6,6)) sub = fig.add_subplot(111) sub.plot([16, 21], [1.0, 1.0], c='k', ls='--') wmean, rate, err_rate = UT.zsuccess_rate(rmags, zs_coadd, range=[15,22], nbins=28, bin_min=10) sub.errorbar(wmean, rate, err_rate, fmt='.C0', label='coadd') wmean, rate, err_rate = UT.zsuccess_rate(rmags, zs_sim, range=[15,22], nbins=28, bin_min=10) sub.errorbar(wmean, rate, err_rate, fmt='.C1', label='specsim') sub.text(21., 1.05, r'$\Delta \chi^2 = %.f$' % dchi2, fontsize=20) sub.legend(loc='lower left', ncol=3, handletextpad=0.1, fontsize=15) sub.set_xlabel(r'Legacy $r$ fiber magnitude', fontsize=20) sub.set_xlim(16, 20.5) sub.set_ylabel(r'redrock $z$ success rate', fontsize=20) sub.set_ylim([0.6, 1.1]) sub.set_yticks([0.6, 0.7, 0.8, 0.9, 1.]) fig.savefig(os.path.join(dir, 'valid.spectral_pipeline_zsuccess.exp%i.png' % expid), bbox_inches='tight') plt.close() return None def validate_cmx_zsuccess(dchi2=40.): ''' currently we know that the spectral simulation pipeline does not fuly reproduce the noise level of CMX spectra even when we use the smoothed out fiber loss corrected CMX spectra as input. This script is to check whether this discrepancy significantly impacts the redshift success rates. So we'll be comparing - z-success rate of observe CMX exposure with VI truth table - z-success rate of spectral simulations run with CMX sky and transparency VI is currently available for tile 66033 and night 20200315. ''' import glob from scipy.signal import medfilt import desisim.simexp import specsim.instrument from desitarget.cmx import cmx_targetmask np.random.seed(0) tileid = 66003 date = 20200315 expids = [55654, 55655, 55656] dir_gfa = '/global/cfs/cdirs/desi/users/ameisner/GFA/conditions' dir_redux = "/global/cfs/cdirs/desi/spectro/redux/daily" dir_coadd = '/global/cfs/cdirs/desi/users/chahah/bgs_exp_coadd/' # read VI table fvi = os.path.join('/global/cfs/cdirs/desi/sv/vi/TruthTables/', 'truth_table_BGS_v1.2.csv') vi_id, ztrue, qa_flag = np.genfromtxt(fvi, delimiter=',', skip_header=1, unpack=True, usecols=[0, 2, 3]) good_z = (qa_flag >= 2.5) vi_id = vi_id[good_z].astype(int) ztrue = ztrue[good_z] # read GAMA-Legacy source fluxes wave_s, flux_s, meta_s = source_spectra() for expid in expids: print('--- %i ---' % expid) # get fiber acceptance fraction and airmass gfa = fitsio.read(os.path.join(dir_gfa, 'offline_all_guide_ccds_thru_20200315.fits')) isexp = (gfa['EXPID'] == expid) fwhm = gfa['FWHM_ASEC'][isexp] print(' (FWHM) = %f' % np.median(fwhm[~np.isnan(fwhm)])) transp = gfa['TRANSPARENCY'][isexp] transp = np.median(transp[~np.isnan(transp)]) print(' (TRANSP) = %f' % transp) fibloss = transp * gfa['FIBER_FRACFLUX'][isexp] fibloss = np.median(fibloss[~np.isnan(fibloss)]) print(' fiber loss = (TRANSP) x (FFRAC) = %f' % fibloss) airmass = np.median(gfa['AIRMASS'][isexp]) print(' airmass = %.2f' % airmass) # get petals ispecs = np.sort([int(os.path.basename(fframe).split('-')[1].replace('z', '')) for fframe in glob.glob(os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'frame-z*.fits'))]) # exposure time _frame = desispec.io.read_frame(os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'frame-b%i-%s.fits' % (ispecs[0], str(expid).zfill(8)))) exptime = _frame.meta['EXPTIME'] print(' exp.time = %.fs' % exptime) # simulated exposure fexp = os.path.join(dir, 'spectralsim_source.cmx_sky.exp%i.fits' % expid) if not os.path.isfile(fexp): # get sky brightness for exposure sky_brights = [] for ispec in ispecs: print(' petal %i' % ispec) f_coadd = os.path.join(dir_coadd, 'coadd-%i-%i-%i-%s.fits' % (tileid, date, ispec, str(expid).zfill(8))) coadd = fitsio.read(f_coadd) # get sky surface brightness for petal f_sky = lambda band: os.path.join(dir_redux, 'exposures', str(date), str(expid).zfill(8), 'sky-%s%i-%s.fits' % (band, ispec, str(expid).zfill(8))) sky_b = desispec.io.read_sky(f_sky('b')) sky_r = desispec.io.read_sky(f_sky('r')) sky_z = desispec.io.read_sky(f_sky('z')) wave, sky_electrons = bs_coadd( [sky_b.wave, sky_r.wave, sky_z.wave], [sky_b.flux, sky_r.flux, sky_z.flux]) # get which are good fibers from coadd file is_good = (coadd['FIBERSTATUS'] == 0) is_sky = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SKY')) != 0 good_sky = is_good & is_sky # get throughput for the cameras config = desisim.simexp._specsim_config_for_wave(wave, dwave_out=0.8, specsim_config_file='desi') instrument = specsim.instrument.initialize(config, True) throughput = np.amax([instrument.cameras[0].throughput, instrument.cameras[1].throughput, instrument.cameras[2].throughput], axis=0) desi_fiber_area = 1.862089 # fiber area # calculate sky brightness sky_bright = np.median(sky_electrons[good_sky,:], axis=0) / throughput / instrument.photons_per_bin / exptime * 1e17 sky_brights.append(sky_bright) sky_brights = np.array(sky_brights) # median sky brightness of the petals sky_bright = np.median(sky_brights, axis=0) # simulate the exposures using the spectral simulation pipeline fdesi = FM.fakeDESIspec() bgs = fdesi.simExposure( wave_s, flux_s * transp, # scale by transparency exptime=exptime, airmass=airmass, Isky=[wave, sky_bright], dwave_out=0.8, filename=fexp) # run redrock frr_sim = run_redrock(fexp, overwrite=False) rr_sim = fitsio.read(frr_sim) rr_sim_z = rr_sim['Z'] rr_sim_zwarn = rr_sim['ZWARN'] rr_sim_dchi2 = rr_sim['DELTACHI2'] # compile single exposure coadd and redrock output for i, ispec in enumerate(ispecs): # get target id f_coadd = os.path.join(dir_coadd, 'coadd-%i-%i-%i-%s.fits' % (tileid, date, ispec, str(expid).zfill(8))) coadd = fitsio.read(f_coadd) coadd_flux = fitsio.read(f_coadd, ext=3) is_BGS = (coadd['CMX_TARGET'] & cmx_targetmask.cmx_mask.mask('SV0_BGS')) != 0 gal_cut = is_BGS & (np.sum(coadd_flux, axis=1) != 0) targetid = coadd['TARGETID'][gal_cut] # read coadd redrock fits rr_coadd = fitsio.read(f_coadd.replace('coadd-', 'zbest-')) rr_coadd_z = rr_coadd['Z'][gal_cut] rr_coadd_zwarn = rr_coadd['ZWARN'][gal_cut] rr_coadd_dchi2 = rr_coadd['DELTACHI2'][gal_cut] # match VI to exposure based on target ids _, m_vi, m_coadd = np.intersect1d(vi_id, targetid, return_indices=True) if i == 0: rmags = [] ztrues = [] rr_coadd_zs = [] rr_coadd_zwarns = [] rr_coadd_dchi2s = [] rmags.append(UT.flux2mag(coadd['FLUX_R'][gal_cut][m_coadd], method='log')) ztrues.append(ztrue[m_vi]) rr_coadd_zs.append(rr_coadd_z[m_coadd]) rr_coadd_zwarns.append(rr_coadd_zwarn[m_coadd]) rr_coadd_dchi2s.append(rr_coadd_dchi2[m_coadd]) print('%i matches to VI' % len(rmags)) rmags = np.concatenate(rmags) ztrues = np.concatenate(ztrues) rr_coadd_zs = np.concatenate(rr_coadd_zs) rr_coadd_zwarns = np.concatenate(rr_coadd_zwarns) rr_coadd_dchi2s = np.concatenate(rr_coadd_dchi2s) zs_coadd = UT.zsuccess(rr_coadd_zs, ztrues, rr_coadd_zwarns, deltachi2=rr_coadd_dchi2s, min_deltachi2=dchi2) zs_sim = UT.zsuccess(rr_sim_z, meta_s['zred'], rr_sim_zwarn, deltachi2=rr_sim_dchi2, min_deltachi2=dchi2) print('coadd z-success %.2f' % (np.sum(zs_coadd)/float(len(zs_coadd)))) print('sim z-success %.2f' % (np.sum(zs_sim)/float(len(zs_sim)))) # compare the two redshift success rates fig = plt.figure(figsize=(6,6)) sub = fig.add_subplot(111) sub.plot([16, 21], [1.0, 1.0], c='k', ls='--') wmean, rate, err_rate = UT.zsuccess_rate(rmags, zs_coadd, range=[15,22], nbins=28, bin_min=10) sub.errorbar(wmean, rate, err_rate, fmt='.C0', label='coadd') wmean, rate, err_rate = UT.zsuccess_rate(meta_s['r_mag'], zs_sim, range=[15,22], nbins=28, bin_min=10) sub.errorbar(wmean, rate, err_rate, fmt='.C1', label='spectral sim') sub.text(19.5, 1.05, r'$\Delta \chi^2 = %.f$' % dchi2, fontsize=20) sub.legend(loc='lower left', ncol=3, handletextpad=0.1, fontsize=15) sub.set_xlabel(r'Legacy $r$ fiber magnitude', fontsize=20) sub.set_xlim(16, 20.5) sub.set_ylabel(r'redrock $z$ success rate', fontsize=20) sub.set_ylim([0.6, 1.1]) sub.set_yticks([0.6, 0.7, 0.8, 0.9, 1.]) fig.savefig(os.path.join(dir, 'valid.spectralsim_source.cmx_sky.zsuccess.exp%i.png' % expid), bbox_inches='tight') plt.close() return None def tnom(dchi2=40.): ''' Calculate z-success rate for nominal dark time exposure with different tnom exposure times. For each tnom, use the z-success rate to determine r_lim, the r magnitude that gets 95% completeness. ''' np.random.seed(0) # nominal exposure times if dchi2 == 40: texps = [100 + 20 * i for i in range(11)][::2] elif dchi2 == 100: texps = [200 + 10 * i for i in range(11)][::2] # true redshift and r-magnitude _, _, meta = source_spectra() ztrue = meta['zred'] # true redshifts r_mag = meta['r_mag'] r_fib = meta['r_mag_apflux'] # generate spectra for nominal dark sky exposures and run redrock frr_noms = [] for texp in texps: spec_nom = nomdark_spectra(texp) # run redrock on nominal dark sky exposure spectra frr_nom = run_redrock( os.path.join(dir, 'exp_spectra.nominal_dark.%.fs.fits' % texp), overwrite=False) frr_noms.append(frr_nom) rmags = np.linspace(17, 20, 31) fig = plt.figure(figsize=(6,6)) sub = fig.add_subplot(111) sub.plot([16, 21], [1., 1.], c='k', ls=':') # for each tnom, calculate rlim from the z-sucess rates for i, texp, frr_nom in zip(range(len(texps)), texps, frr_noms): # read redrock output and calculate z-success rr_nom = fitsio.read(frr_nom) zs_nom = UT.zsuccess(rr_nom['Z'], ztrue, rr_nom['ZWARN'], deltachi2=rr_nom['DELTACHI2'], min_deltachi2=dchi2) # ignore redshift failtures for bright r < 18.2 galaxies, since this is # likely an issue with the emission line zs_nom[r_mag < 18.2] = True # determine rlim zs_rmag = [] for _r in rmags: brighter = (r_mag < _r) zs_rmag.append(np.sum(zs_nom[brighter]) / np.sum(brighter)) crit = (np.array(zs_rmag) < 0.95) & (rmags > 18) if np.sum(crit) > 0: rlim = np.min(rmags[crit]) else: rlim = np.max(rmags) print('--- tnom = %.fs ---' % texp) print(' total z-success = %.2f' % (np.sum(zs_nom)/float(len(zs_nom)))) print(' 95percent complete rlim = %.1f' % rlim) wmean, rate, err_rate = UT.zsuccess_rate(r_mag, zs_nom, range=[15,22], nbins=28, bin_min=10) sub.plot(wmean, rate, label=r'%.fs; $r_{\rm lim}= %.1f$' % (texp, rlim)) sub.text(19., 1.05, r'$\Delta \chi^2 = %.f$' % dchi2, fontsize=20) sub.legend(loc='lower left', handletextpad=0.1, fontsize=15) sub.set_xlabel(r'Legacy $r$ magnitude', fontsize=20) sub.set_xlim([16., 20.5]) sub.set_ylabel(r'redrock $z$ success rate', fontsize=20) sub.set_ylim([0.6, 1.1]) sub.set_yticks([0.6, 0.7, 0.8, 0.9, 1.]) fig.savefig(os.path.join(dir, 'zsuccess.tnom.dchi2_%i.png' % dchi2), bbox_inches='tight') plt.close() fig = plt.figure(figsize=(6,6)) sub = fig.add_subplot(111) sub.plot([18, 25], [1., 1.], c='k', ls=':') # nominal exposure z-success rate as a function of fiber magnitude for i, texp, frr_nom in zip(range(len(texps)), texps, frr_noms): # read redrock output and calculate z-success rr_nom = fitsio.read(frr_nom) zs_nom = UT.zsuccess(rr_nom['Z'], ztrue, rr_nom['ZWARN'], deltachi2=rr_nom['DELTACHI2'], min_deltachi2=dchi2) # ignore redshift failtures for bright r < 18.2 galaxies, since this is # likely an issue with the emission line zs_nom[r_mag < 18.2] = True wmean, rate, err_rate = UT.zsuccess_rate(r_fib, zs_nom, range=[18,23], nbins=28, bin_min=10) sub.plot(wmean, rate, err_rate, label=r'%.fs' % texp) sub.text(21., 1.05, r'$\Delta \chi^2 = %.f$' % dchi2, fontsize=20) sub.legend(loc='lower left', ncol=3, handletextpad=0.1, fontsize=15) sub.set_xlabel(r'Legacy $r$ fiber magnitude', fontsize=20) sub.set_xlim([18., 22.5]) sub.set_ylabel(r'redrock $z$ success rate', fontsize=20) sub.set_ylim([0.6, 1.1]) sub.set_yticks([0.6, 0.7, 0.8, 0.9, 1.]) fig.savefig(os.path.join(dir, 'zsuccess.tnom.r_fib.dchi2_%i.png' % dchi2), bbox_inches='tight') return None def texp_factor_wavelength(emlines=True): ''' Q: Should the exposure time correction factor be determined by sky surface brightness ratio at 5000A or 6500A? sky surface brightness ratio = (sky surface brightness) / (nominal dark sky) We will answer this by constructing a set of nominal dark sky exposure spectra with 150s exposure time, getting the redshift success rate for these spectra. Then we'll compare the redshift success rate for 1. exposure spectra constructed with CMX sky brightness and texp = 150s x (sky ratio at 5000A) 2. exposure spectra constructed with CMX sky brightness and texp = 150s x (sky ratio at 6500A) We use CMX sky brightness during bright exposures. Whichever redshift success rate is coser to the nominal dark exposure z success rate will determine the exposure factor updates ------- * <NAME> was surprised that 6500A agreed better. He finds that 5000A agrees better. He suggested I run this test without emission lines * 06/11/2020: Read noise term in the SNR calculation cannot be ignored when our nominal exposure time is low. New fsky values calculated for CMX exposures including read noise. ''' np.random.seed(0) import desisim.simexp from desimodel.io import load_throughput wavemin = load_throughput('b').wavemin - 10.0 wavemax = load_throughput('z').wavemax + 10.0 wave = np.arange(round(wavemin, 1), wavemax, 0.8) * u.Angstrom config = desisim.simexp._specsim_config_for_wave(wave.to('Angstrom').value, dwave_out=0.8, specsim_config_file='desi') nominal_surface_brightness_dict = config.load_table( config.atmosphere.sky, 'surface_brightness', as_dict=True) Isky_nom = [wave, nominal_surface_brightness_dict['dark']] # generate spectra for nominal dark sky exposure as reference spec_nom = nomdark_spectra(150, emlines=emlines) # run redrock on nominal dark sky exposure spectra frr_nom = run_redrock(os.path.join(dir, 'exp_spectra.nominal_dark%s.150s.fits' % ['.noemission', ''][emlines]), overwrite=False) # read in CMX sky data skies = cmx_skies() # select CMX exposures when the sky was brighter than dark time. In # principle we should focus on bright exposures (i.e. 2.5x nominal). # we also remove exposures from 20200314 which has strange sky fluxes. #bright = (((skies['sky_ratio_5000'] > 1.) | (skies['sky_ratio_7000'] > 1.)) # & (skies['date'] != 20200314)) #print('%i exposures with sky ratios > 1 and not taken during March 14' % len(expids)) bright = (((skies['fsky_5000'] > 1.5) | (skies['fsky_7000'] > 1.5)) & (skies['date'] != 20200314)) expids = np.unique(skies['expid'][bright])[:5] print('%i exposures with fsky > 1.5 and not taken during March 14' % len(expids)) #np.random.choice(np.unique(skies['expid'][bright]), size=5, replace=False) # generate exposure spectra for select CMX sky surface brightnesses with # exposure times scaled by (1) sky ratio at 5000A (2) sky ratio at 6500A for expid in expids: print('--- expid = %i ---' % expid) is_exp = (skies['expid'] == expid) # get median sky surface brightnesses for exposure Isky = bs_coadd( [skies['wave_b'], skies['wave_r'], skies['wave_z']], [ np.median(skies['sky_sb_b'][is_exp], axis=0), np.median(skies['sky_sb_r'][is_exp], axis=0), np.median(skies['sky_sb_z'][is_exp], axis=0)] ) fig = plt.figure(figsize=(15,10)) sub = fig.add_subplot(211) sub.plot(Isky_nom[0], Isky_nom[1], c='k', lw=0.5) sub.plot(Isky[0], Isky[1], c='C0', lw=0.5) sub.set_xlabel('wavelength', fontsize=20) sub.set_xlim(3.6e3, 9.8e3) sub.set_ylabel('flux', fontsize=20) sub.set_ylim(0., 10.) sub = fig.add_subplot(212) for band in ['b', 'r', 'z']: sub.plot(spec_nom.wave[band], spec_nom.flux[band][0,:], c='k', lw=1) # get median sky ratios for the exposure for i, _w in enumerate([5000, 7000]): _fexp = np.median(skies['fsky_%i' % _w ][is_exp]) print(' fexp at %iA = %.2f' % (_w, _fexp)) print(' sky ratio = %.2f' % (
np.median(skies['sky_ratio_%i' % _w][is_exp])
numpy.median
import pytest import os import glob import json from numpy import arange, allclose from bolt import array as barray from thunder.images.readers import fromlist, fromarray, frompng, fromtif, frombinary, fromexample pytestmark = pytest.mark.usefixtures("eng") resources = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'resources') def test_from_list(eng): a = arange(8).reshape((2, 4)) data = fromlist([a], engine=eng) assert allclose(data.shape, (1,) + a.shape) assert allclose(data.value_shape, a.shape) assert allclose(data.toarray(), a) def test_from_array(eng): a = arange(8).reshape((1, 2, 4)) data = fromarray(a, engine=eng) assert allclose(data.shape, a.shape) assert allclose(data.value_shape, a.shape[1:]) assert allclose(data.toarray(), a) def test_from_array_bolt(eng): a = arange(8).reshape((1, 2, 4)) if eng is not None: b = barray(a, context=eng) else: b = barray(a) data = fromarray(b) assert allclose(data.shape, a.shape) assert allclose(data.value_shape, a.shape[1:]) assert allclose(data.toarray(), a) def test_from_array_single(eng): a = arange(8).reshape((2, 4)) data = fromarray(a, engine=eng) assert
allclose(data.shape, (1,) + a.shape)
numpy.allclose
import PIL.Image from PIL import ImageTk from tkbuilder.widgets import basic_widgets from tkbuilder.utils.color_utils.hex_color_palettes import SeabornHexPalettes import tkbuilder.utils.color_utils.color_utils as color_utils import platform import numpy import time import tkinter import tkinter.colorchooser as colorchooser from numpy import ndarray from typing import Union import PIL.Image import numpy as np from tkbuilder.image_readers.image_reader import ImageReader if platform.system() == "Linux": import pyscreenshot as ImageGrab else: from PIL import ImageGrab # @property # def canvas_image_object(self): # type: () -> AbstractCanvasImage # return self._canvas_image_object # # @canvas_image_object.setter # def canvas_image_object(self, value): # if value is None: # self._canvas_image_object = None # return # # if not isinstance(value, AbstractCanvasImage): # raise TypeError('Requires instance of AbstractCanvasImage, got {}'.format(type(value))) # self._canvas_image_object = value # class SpecificAppVariables(AppVariables): # @property # def canvas_image_object(self): # type: () -> object # return self._canvas_image_object # # @canvas_image_object.setter # def canvas_image_object(self, value): # if value is None: # self._canvas_image_object = None # return # # if not isinstance(value, object): # raise TypeError('Requires instance of AbstractCanvasImage, got {}'.format(type(value))) # self._canvas_image_object = value class ToolConstants: ZOOM_IN_TOOL = "zoom in" ZOOM_OUT_TOOL = "zoom out" DRAW_RECT_BY_DRAGGING = "draw rect by dragging" DRAW_RECT_BY_CLICKING = "draw rect by clicking" DRAW_LINE_BY_DRAGGING = "draw line by dragging" DRAW_LINE_BY_CLICKING = "draw line by clicking" DRAW_ARROW_BY_DRAGGING = "draw arrow by dragging" DRAW_ARROW_BY_CLICKING = "draw arrow by clicking" DRAW_POLYGON_BY_CLICKING = "draw polygon by clicking" DRAW_POINT_BY_CLICKING = "draw point by clicking" SELECT_TOOL = "select tool" SELECT_CLOSEST_SHAPE_TOOL = "select closest shape" PAN_TOOL = "pan tool" TRANSLATE_SHAPE_TOOL = "translate shape tool" EDIT_SHAPE_COORDS_TOOL = "edit shape coords tool" EDIT_SHAPE_TOOL = "edit shape tool" class ShapePropertyConstants: SHAPE_TYPE = "shape type" CANVAS_COORDS = "canvas coords" IMAGE_COORDS = "image coords" POINT_SIZE = "point size" COLOR = "color" class ShapeTypeConstants: POINT = "point" LINE = "line" RECT = "rect" ARROW = "arrow" POLYGON = "polygon" class AppVariables: def __init__(self): self.canvas_height = 200 # default width self.canvas_width = 300 # default height self.rect_border_width = 2 self.line_width = 2 self.point_size = 3 self.poly_border_width = 2 self.poly_fill = None self.foreground_color = "red" self.image_id = None # type: int self.current_shape_id = None self.current_shape_canvas_anchor_point_xy = None self.pan_anchor_point_xy = None self.shape_ids = [] # type: [int] self.shape_properties = {} self.canvas_image_object = None # type: CanvasImage self.zoom_rect_id = None # type: int self.zoom_rect_color = "cyan" self.zoom_rect_border_width = 2 self.animate_zoom = True self.animate_pan = False self.n_zoom_animations = 5 self.animation_time_in_seconds = 0.3 self.select_rect_id = None self.select_rect_color = "red" self.select_rect_border_width = 2 self.active_tool = None self.current_tool = None self.pan_anchor_point_xy = (0, 0) self.vertex_selector_pixel_threshold = 10.0 # type: float self.the_canvas_is_currently_zooming = False # type: bool self.mouse_wheel_zoom_percent_per_event = 1.5 self.actively_drawing_shape = False self.shape_drag_xy_limits = {} # type: dict self.highlight_color_palette = SeabornHexPalettes.blues self.highlight_n_colors_cycle = 10 self.tmp_points = None # type: [int] self.tmp_closest_coord_index = 0 # type: int self.zoom_on_wheel = True self._tk_im = None # type: ImageTk.PhotoImage self.rescale_image_to_fit_canvas = True self.scale_dynamic_range = False SHAPE_PROPERTIES = ShapePropertyConstants() SHAPE_TYPES = ShapeTypeConstants() TOOLS = ToolConstants() class ImageCanvas(basic_widgets.Canvas): def __init__(self, master, ): basic_widgets.Canvas.__init__(self, master) self.variables = AppVariables() self.variables.zoom_rect_id = self.create_new_rect((0, 0, 1, 1), outline=self.variables.zoom_rect_color, width=self.variables.zoom_rect_border_width) self.variables.select_rect_id = self.create_new_rect((0, 0, 1, 1), outline=self.variables.select_rect_color, width=self.variables.select_rect_border_width) # hide the shapes we initialize self.hide_shape(self.variables.select_rect_id) self.hide_shape(self.variables.zoom_rect_id) self.on_left_mouse_click(self.callback_handle_left_mouse_click) self.on_left_mouse_motion(self.callback_handle_left_mouse_motion) self.on_left_mouse_release(self.callback_handle_left_mouse_release) self.on_right_mouse_click(self.callback_handle_right_mouse_click) self.on_mouse_motion(self.callback_handle_mouse_motion) self.on_mouse_wheel(self.callback_mouse_zoom) self.variables.active_tool = None self.variables.current_shape_id = None def set_image_reader(self, image_reader, # type: ImageReader ): self.variables.canvas_image_object = CanvasImage(image_reader, self.variables.canvas_width, self.variables.canvas_height) if self.variables.rescale_image_to_fit_canvas: self.set_image_from_numpy_array(self.variables.canvas_image_object.display_image) else: self.set_image_from_numpy_array(self.variables.canvas_image_object.canvas_decimated_image) def get_canvas_line_length(self, line_id): line_coords = self.coords(line_id) x1 = line_coords[0] y1 = line_coords[1] x2 = line_coords[2] y2 = line_coords[3] length = numpy.sqrt(numpy.square(x2-x1) + numpy.square(y2-y1)) return length def get_image_line_length(self, line_id): canvas_line_length = self.get_canvas_line_length(line_id) return canvas_line_length * self.variables.canvas_image_object.decimation_factor def get_shape_type(self, shape_id, # type: int ): return self._get_shape_property(shape_id, SHAPE_PROPERTIES.SHAPE_TYPE) def hide_shape(self, shape_id): if shape_id: self.itemconfigure(shape_id, state="hidden") def show_shape(self, shape_id): if shape_id: self.itemconfigure(shape_id, state="normal") def callback_mouse_zoom(self, event): if self.variables.zoom_on_wheel: delta = event.delta single_delta = 120 # handle case where platform is linux: if platform.system() == "Linux": delta = single_delta if event.num == 5: delta = delta*-1 zoom_in_box_half_width = int(self.variables.canvas_width / self.variables.mouse_wheel_zoom_percent_per_event / 2) zoom_out_box_half_width = int(self.variables.canvas_width * self.variables.mouse_wheel_zoom_percent_per_event / 2) zoom_in_box_half_height = int(self.variables.canvas_height / self.variables.mouse_wheel_zoom_percent_per_event / 2) zoom_out_box_half_height = int(self.variables.canvas_height * self.variables.mouse_wheel_zoom_percent_per_event / 2) x = event.x y = event.y after_zoom_x_offset = (self.variables.canvas_width/2 - x)/self.variables.mouse_wheel_zoom_percent_per_event after_zoom_y_offset = (self.variables.canvas_height/2 - y)/self.variables.mouse_wheel_zoom_percent_per_event x_offset_point = x + after_zoom_x_offset y_offset_point = y + after_zoom_y_offset zoom_in_box = [x_offset_point - zoom_in_box_half_width, y_offset_point - zoom_in_box_half_height, x_offset_point + zoom_in_box_half_width, y_offset_point + zoom_in_box_half_height] zoom_out_box = [x_offset_point - zoom_out_box_half_width, y_offset_point - zoom_out_box_half_height, x_offset_point + zoom_out_box_half_width, y_offset_point + zoom_out_box_half_height] if self.variables.the_canvas_is_currently_zooming: pass else: if delta > 0: self.zoom_to_selection(zoom_in_box, self.variables.animate_zoom) else: self.zoom_to_selection(zoom_out_box, self.variables.animate_zoom) else: pass def animate_with_numpy_frame_sequence(self, numpy_frame_sequence, # type: [numpy.ndarray] frames_per_second=15, # type: float ): sleep_time = 1/frames_per_second for animation_frame in numpy_frame_sequence: tic = time.time() self.set_image_from_numpy_array(animation_frame) self.update() toc = time.time() frame_generation_time = toc-tic if frame_generation_time < sleep_time: new_sleep_time = sleep_time - frame_generation_time time.sleep(new_sleep_time) else: pass def animate_with_pil_frame_sequence(self, pil_frame_sequence, # type: [PIL.Image] frames_per_second=15, # type: float ): sleep_time = 1/frames_per_second for animation_frame in pil_frame_sequence: tic = time.time() self._set_image_from_pil_image(animation_frame) self.update() toc = time.time() frame_generation_time = toc-tic if frame_generation_time < sleep_time: new_sleep_time = sleep_time - frame_generation_time time.sleep(new_sleep_time) else: pass def callback_handle_left_mouse_click(self, event): if self.variables.active_tool == TOOLS.PAN_TOOL: self.variables.pan_anchor_point_xy = event.x, event.y self.variables.tmp_anchor_point = event.x, event.y elif self.variables.active_tool == TOOLS.TRANSLATE_SHAPE_TOOL: self.variables.translate_anchor_point_xy = event.x, event.y self.variables.tmp_anchor_point = event.x, event.y elif self.variables.active_tool == TOOLS.EDIT_SHAPE_COORDS_TOOL: closest_coord_index = self.find_closest_shape_coord(self.variables.current_shape_id, event.x, event.y) self.variables.tmp_closest_coord_index = closest_coord_index elif self.variables.active_tool == TOOLS.SELECT_CLOSEST_SHAPE_TOOL: closest_shape_id = self.find_closest_shape(event.x, event.y) self.variables.current_shape_id = closest_shape_id self.highlight_existing_shape(self.variables.current_shape_id) else: start_x = self.canvasx(event.x) start_y = self.canvasy(event.y) self.variables.current_shape_canvas_anchor_point_xy = (start_x, start_y) if self.variables.current_shape_id not in self.variables.shape_ids: coords = (start_x, start_y, start_x + 1, start_y + 1) if self.variables.active_tool == TOOLS.DRAW_LINE_BY_DRAGGING: self.create_new_line(coords) elif self.variables.active_tool == TOOLS.DRAW_LINE_BY_CLICKING: self.create_new_line(coords) self.variables.actively_drawing_shape = True elif self.variables.active_tool == TOOLS.DRAW_ARROW_BY_DRAGGING: self.create_new_arrow(coords) elif self.variables.active_tool == TOOLS.DRAW_ARROW_BY_CLICKING: self.create_new_arrow(coords) self.variables.actively_drawing_shape = True elif self.variables.active_tool == TOOLS.DRAW_RECT_BY_DRAGGING: self.create_new_rect(coords) elif self.variables.active_tool == TOOLS.DRAW_RECT_BY_CLICKING: self.create_new_rect(coords) self.variables.actively_drawing_shape = True elif self.variables.active_tool == TOOLS.DRAW_POINT_BY_CLICKING: self.create_new_point((start_x, start_y)) elif self.variables.active_tool == TOOLS.DRAW_POLYGON_BY_CLICKING: self.create_new_polygon(coords) self.variables.actively_drawing_shape = True else: print("no tool selected") else: if self.variables.current_shape_id in self.variables.shape_ids: if self.get_shape_type(self.variables.current_shape_id) == SHAPE_TYPES.POINT: self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (start_x, start_y)) elif self.variables.active_tool == TOOLS.DRAW_LINE_BY_CLICKING: self.event_click_line(event) elif self.variables.active_tool == TOOLS.DRAW_ARROW_BY_CLICKING: self.event_click_line(event) elif self.variables.active_tool == TOOLS.DRAW_POLYGON_BY_CLICKING: self.event_click_polygon(event) elif self.variables.active_tool == TOOLS.DRAW_RECT_BY_CLICKING: if self.variables.actively_drawing_shape: self.variables.actively_drawing_shape = False else: self.variables.actively_drawing_shape = True def callback_handle_left_mouse_release(self, event): if self.variables.active_tool == TOOLS.PAN_TOOL: self._pan(event) if self.variables.active_tool == TOOLS.ZOOM_IN_TOOL: rect_coords = self.coords(self.variables.zoom_rect_id) self.zoom_to_selection(rect_coords, self.variables.animate_zoom) self.hide_shape(self.variables.zoom_rect_id) if self.variables.active_tool == TOOLS.ZOOM_OUT_TOOL: rect_coords = self.coords(self.variables.zoom_rect_id) x1 = -rect_coords[0] x2 = self.variables.canvas_width + rect_coords[2] y1 = -rect_coords[1] y2 = self.variables.canvas_height + rect_coords[3] zoom_rect = (x1, y1, x2, y2) self.zoom_to_selection(zoom_rect, self.variables.animate_zoom) self.hide_shape(self.variables.zoom_rect_id) def callback_handle_mouse_motion(self, event): if self.variables.actively_drawing_shape: if self.variables.active_tool == TOOLS.DRAW_LINE_BY_CLICKING: self.event_drag_multipoint_line(event) elif self.variables.active_tool == TOOLS.DRAW_ARROW_BY_CLICKING: self.event_drag_multipoint_line(event) elif self.variables.active_tool == TOOLS.DRAW_POLYGON_BY_CLICKING: self.event_drag_multipoint_polygon(event) elif self.variables.active_tool == TOOLS.DRAW_RECT_BY_CLICKING: self.event_drag_line(event) elif self.variables.current_tool == TOOLS.EDIT_SHAPE_TOOL: if self.get_shape_type(self.variables.current_shape_id) == SHAPE_TYPES.RECT: select_x1, select_y1, select_x2, select_y2 = self.get_shape_canvas_coords( self.variables.current_shape_id) select_xul = min(select_x1, select_x2) select_xlr = max(select_x1, select_x2) select_yul = min(select_y1, select_y2) select_ylr = max(select_y1, select_y2) distance_to_ul = numpy.sqrt(numpy.square(event.x - select_xul) + numpy.square(event.y - select_yul)) distance_to_ur = numpy.sqrt(numpy.square(event.x - select_xlr) + numpy.square(event.y - select_yul)) distance_to_lr = numpy.sqrt(numpy.square(event.x - select_xlr) + numpy.square(event.y - select_ylr)) distance_to_ll = numpy.sqrt(numpy.square(event.x - select_xul) + numpy.square(event.y - select_ylr)) if distance_to_ul < self.variables.vertex_selector_pixel_threshold: self.config(cursor="top_left_corner") self.variables.active_tool = TOOLS.EDIT_SHAPE_COORDS_TOOL elif distance_to_ur < self.variables.vertex_selector_pixel_threshold: self.config(cursor="top_right_corner") self.variables.active_tool = TOOLS.EDIT_SHAPE_COORDS_TOOL elif distance_to_lr < self.variables.vertex_selector_pixel_threshold: self.config(cursor="bottom_right_corner") self.variables.active_tool = TOOLS.EDIT_SHAPE_COORDS_TOOL elif distance_to_ll < self.variables.vertex_selector_pixel_threshold: self.config(cursor="bottom_left_corner") self.variables.active_tool = TOOLS.EDIT_SHAPE_COORDS_TOOL elif select_xul < event.x < select_xlr and select_yul < event.y < select_ylr: self.config(cursor="fleur") self.variables.active_tool = TOOLS.TRANSLATE_SHAPE_TOOL else: self.config(cursor="arrow") self.variables.active_tool = None def callback_handle_left_mouse_motion(self, event): if self.variables.active_tool == TOOLS.PAN_TOOL: x_dist = event.x - self.variables.tmp_anchor_point[0] y_dist = event.y - self.variables.tmp_anchor_point[1] self.move(self.variables.image_id, x_dist, y_dist) self.variables.tmp_anchor_point = event.x, event.y elif self.variables.active_tool == TOOLS.TRANSLATE_SHAPE_TOOL: x_dist = event.x - self.variables.tmp_anchor_point[0] y_dist = event.y - self.variables.tmp_anchor_point[1] new_x1 = min(self.get_shape_canvas_coords(self.variables.current_shape_id)[0] + x_dist, self.get_shape_canvas_coords(self.variables.current_shape_id)[2] + x_dist) new_x2 = max(self.get_shape_canvas_coords(self.variables.current_shape_id)[0] + x_dist, self.get_shape_canvas_coords(self.variables.current_shape_id)[2] + x_dist) new_y1 = min(self.get_shape_canvas_coords(self.variables.current_shape_id)[1] + y_dist, self.get_shape_canvas_coords(self.variables.current_shape_id)[3] + y_dist) new_y2 = max(self.get_shape_canvas_coords(self.variables.current_shape_id)[1] + y_dist, self.get_shape_canvas_coords(self.variables.current_shape_id)[3] + y_dist) width = new_x2 - new_x1 height = new_y2 - new_y1 if str(self.variables.current_shape_id) in self.variables.shape_drag_xy_limits.keys(): drag_x_lim_1, drag_y_lim_1, drag_x_lim_2, drag_y_lim_2 = self.variables.shape_drag_xy_limits[str(self.variables.current_shape_id)] if self.get_shape_type(self.variables.current_shape_id) == SHAPE_TYPES.RECT: if new_x1 < drag_x_lim_1: new_x1 = drag_x_lim_1 new_x2 = new_x1 + width if new_x2 > drag_x_lim_2: new_x2 = drag_x_lim_2 new_x1 = new_x2 - width if new_y1 < drag_y_lim_1: new_y1 = drag_y_lim_1 new_y2 = new_y1 + height if new_y2 > drag_y_lim_2: new_y2 = drag_y_lim_2 new_y1 = new_y2 - height self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (new_x1, new_y1, new_x2, new_y2), update_pixel_coords=True) self.variables.tmp_anchor_point = event.x, event.y elif self.variables.active_tool == TOOLS.EDIT_SHAPE_COORDS_TOOL: previous_coords = self.get_shape_canvas_coords(self.variables.current_shape_id) coord_x_index = self.variables.tmp_closest_coord_index*2 coord_y_index = coord_x_index + 1 new_coords = list(previous_coords) new_coords[coord_x_index] = event.x new_coords[coord_y_index] = event.y if str(self.variables.current_shape_id) in self.variables.shape_drag_xy_limits.keys(): drag_x_lim_1, drag_y_lim_1, drag_x_lim_2, drag_y_lim_2 = self.variables.shape_drag_xy_limits[str(self.variables.current_shape_id)] if new_coords[coord_x_index] < drag_x_lim_1: new_coords[coord_x_index] = drag_x_lim_1 if new_coords[coord_x_index] > drag_x_lim_2: new_coords[coord_x_index] = drag_x_lim_2 if new_coords[coord_y_index] < drag_y_lim_1: new_coords[coord_y_index] = drag_y_lim_1 if new_coords[coord_y_index] > drag_y_lim_2: new_coords[coord_y_index] = drag_y_lim_2 self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, tuple(new_coords)) elif self.variables.active_tool == TOOLS.ZOOM_IN_TOOL: self.event_drag_line(event) elif self.variables.active_tool == TOOLS.ZOOM_OUT_TOOL: self.event_drag_line(event) elif self.variables.active_tool == TOOLS.SELECT_TOOL: self.event_drag_line(event) elif self.variables.active_tool == TOOLS.DRAW_RECT_BY_DRAGGING: self.event_drag_line(event) elif self.variables.active_tool == TOOLS.DRAW_LINE_BY_DRAGGING: self.event_drag_line(event) elif self.variables.active_tool == TOOLS.DRAW_ARROW_BY_DRAGGING: self.event_drag_line(event) elif self.variables.active_tool == TOOLS.DRAW_POINT_BY_CLICKING: self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (event.x, event.y)) def highlight_existing_shape(self, shape_id): original_color = self._get_shape_property(shape_id, SHAPE_PROPERTIES.COLOR) colors = color_utils.get_full_hex_palette(self.variables.highlight_color_palette, self.variables.highlight_n_colors_cycle) for color in colors: self.change_shape_color(shape_id, color) time.sleep(0.001) self.update() colors.reverse() for color in colors: self.change_shape_color(shape_id, color) time.sleep(0.001) self.update() self.change_shape_color(shape_id, original_color) def callback_handle_right_mouse_click(self, event): if self.variables.active_tool == TOOLS.DRAW_LINE_BY_CLICKING: self.variables.actively_drawing_shape = False elif self.variables.active_tool == TOOLS.DRAW_ARROW_BY_CLICKING: self.variables.actively_drawing_shape = False elif self.variables.active_tool == TOOLS.DRAW_POLYGON_BY_CLICKING: self.variables.actively_drawing_shape = False def set_image_from_numpy_array(self, numpy_data, # type: numpy.ndarray ): """ This is the default way to set and display image data. All other methods to update images should ultimately call this. """ if self.variables.scale_dynamic_range: dynamic_range = numpy_data.max() - numpy_data.min() numpy_data = numpy_data - numpy_data.min() numpy_data = numpy_data / dynamic_range numpy_data = numpy_data * 255 numpy_data = numpy.asanyarray(numpy_data, dtype=numpy.int8) pil_image = PIL.Image.fromarray(numpy_data) self._set_image_from_pil_image(pil_image) def set_canvas_size(self, width_npix, # type: int height_npix, # type: int ): self.variables.canvas_width = width_npix self.variables.canvas_height = height_npix self.config(width=width_npix, height=height_npix) def modify_existing_shape_using_canvas_coords(self, shape_id, # type: int new_coords, # type: tuple update_pixel_coords=True, # type: bool ): if self.get_shape_type(shape_id) == SHAPE_TYPES.POINT: point_size = self._get_shape_property(shape_id, SHAPE_PROPERTIES.POINT_SIZE) x1, y1 = (new_coords[0] - point_size), (new_coords[1] - point_size) x2, y2 = (new_coords[0] + point_size), (new_coords[1] + point_size) canvas_drawing_coords = (x1, y1, x2, y2) else: canvas_drawing_coords = tuple(new_coords) self.coords(shape_id, canvas_drawing_coords) self.set_shape_canvas_coords(shape_id, new_coords) if update_pixel_coords: self.set_shape_pixel_coords_from_canvas_coords(shape_id) def modify_existing_shape_using_image_coords(self, shape_id, # type: int image_coords, # type: tuple ): self.set_shape_pixel_coords(shape_id, image_coords) canvas_coords = self.image_coords_to_canvas_coords(shape_id) self.modify_existing_shape_using_canvas_coords(shape_id, canvas_coords, update_pixel_coords=False) def event_drag_multipoint_line(self, event): if self.variables.current_shape_id: self.show_shape(self.variables.current_shape_id) event_x_pos = self.canvasx(event.x) event_y_pos = self.canvasy(event.y) coords = self.coords(self.variables.current_shape_id) new_coords = list(coords[0:-2]) + [event_x_pos, event_y_pos] if self.get_shape_type(self.variables.current_shape_id) == SHAPE_TYPES.ARROW or self.get_shape_type(self.variables.current_shape_id) == SHAPE_TYPES.LINE: self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, new_coords) else: pass def event_drag_multipoint_polygon(self, event): if self.variables.current_shape_id: self.show_shape(self.variables.current_shape_id) event_x_pos = self.canvasx(event.x) event_y_pos = self.canvasy(event.y) coords = self.coords(self.variables.current_shape_id) new_coords = list(coords[0:-2]) + [event_x_pos, event_y_pos] self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, new_coords) else: pass def event_drag_line(self, event): if self.variables.current_shape_id: self.show_shape(self.variables.current_shape_id) event_x_pos = self.canvasx(event.x) event_y_pos = self.canvasy(event.y) self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (self.variables.current_shape_canvas_anchor_point_xy[0], self.variables.current_shape_canvas_anchor_point_xy[1], event_x_pos, event_y_pos)) def event_drag_rect(self, event): if self.variables.current_shape_id: self.show_shape(self.variables.current_shape_id) event_x_pos = self.canvasx(event.x) event_y_pos = self.canvasy(event.y) self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (self.variables.current_shape_canvas_anchor_point_xy[0], self.variables.current_shape_canvas_anchor_point_xy[1], event_x_pos, event_y_pos)) def event_click_line(self, event): if self.variables.actively_drawing_shape: old_coords = self.get_shape_canvas_coords(self.variables.current_shape_id) new_coords = tuple(list(old_coords) + [event.x, event.y]) self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, new_coords) else: new_coords = (event.x, event.y, event.x+1, event.y+1) self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, new_coords) self.variables.actively_drawing_shape = True def delete_shape(self, shape_id): self.variables.shape_ids.remove(shape_id) self.delete(shape_id) if shape_id == self.variables.current_shape_id: self.variables.current_shape_id = None def event_click_polygon(self, event): if self.variables.actively_drawing_shape: old_coords = self.get_shape_canvas_coords(self.variables.current_shape_id) new_coords = tuple(list(old_coords) + [event.x, event.y]) self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, new_coords) # re-initialize shape if we're not actively drawing else: new_coords = (event.x, event.y, event.x+1, event.y+1) self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, new_coords) self.variables.actively_drawing_shape = True def create_new_rect(self, coords, # type: (int, int, int, int) **options ): if options == {}: shape_id = self.create_rectangle(coords[0], coords[1], coords[2], coords[3], outline=self.variables.foreground_color, width=self.variables.rect_border_width) else: shape_id = self.create_rectangle(coords[0], coords[1], coords[2], coords[3], options) self.variables.shape_ids.append(shape_id) self._set_shape_property(shape_id, SHAPE_PROPERTIES.SHAPE_TYPE, SHAPE_TYPES.RECT) self._set_shape_property(shape_id, SHAPE_PROPERTIES.COLOR, self.variables.foreground_color) self.set_shape_canvas_coords(shape_id, coords) self.set_shape_pixel_coords_from_canvas_coords(shape_id) self.variables.current_shape_id = shape_id return shape_id def create_new_polygon(self, coords, # type: (int, int, int, int) **options ): if options == {}: shape_id = self.create_polygon(coords[0], coords[1], coords[2], coords[3], outline=self.variables.foreground_color, width=self.variables.poly_border_width, fill='') else: shape_id = self.create_polygon(coords[0], coords[1], coords[2], coords[3], options) self.variables.shape_ids.append(shape_id) self._set_shape_property(shape_id, SHAPE_PROPERTIES.SHAPE_TYPE, SHAPE_TYPES.POLYGON) self._set_shape_property(shape_id, SHAPE_PROPERTIES.COLOR, self.variables.foreground_color) self.set_shape_canvas_coords(shape_id, coords) self.set_shape_pixel_coords_from_canvas_coords(shape_id) self.variables.current_shape_id = shape_id return shape_id def create_new_arrow(self, coords, **options ): if options == {}: shape_id = self.create_line(coords[0], coords[1], coords[2], coords[3], fill=self.variables.foreground_color, width=self.variables.line_width, arrow=tkinter.LAST) else: shape_id = self.create_line(coords[0], coords[1], coords[2], coords[3], options, arrow=tkinter.LAST) self.variables.shape_ids.append(shape_id) self._set_shape_property(shape_id, SHAPE_PROPERTIES.SHAPE_TYPE, SHAPE_TYPES.ARROW) self._set_shape_property(shape_id, SHAPE_PROPERTIES.COLOR, self.variables.foreground_color) self.set_shape_canvas_coords(shape_id, coords) self.set_shape_pixel_coords_from_canvas_coords(shape_id) self.variables.current_shape_id = shape_id return shape_id def create_new_line(self, coords, **options): if options == {}: shape_id = self.create_line(coords, fill=self.variables.foreground_color, width=self.variables.line_width) else: shape_id = self.create_line(coords[0], coords[1], coords[2], coords[3], options) self.variables.shape_ids.append(shape_id) self._set_shape_property(shape_id, SHAPE_PROPERTIES.SHAPE_TYPE, SHAPE_TYPES.LINE) self._set_shape_property(shape_id, SHAPE_PROPERTIES.COLOR, self.variables.foreground_color) self.set_shape_canvas_coords(shape_id, coords) self.set_shape_pixel_coords_from_canvas_coords(shape_id) self.variables.current_shape_id = shape_id return shape_id def create_new_point(self, coords, **options): x1, y1 = (coords[0] - self.variables.point_size), (coords[1] - self.variables.point_size) x2, y2 = (coords[0] + self.variables.point_size), (coords[1] + self.variables.point_size) if options == {}: shape_id = self.create_oval(x1, y1, x2, y2, fill=self.variables.foreground_color) else: shape_id = self.create_oval(x1, y1, x2, y2, options) self._set_shape_property(shape_id, SHAPE_PROPERTIES.POINT_SIZE, self.variables.point_size) self.variables.shape_ids.append(shape_id) self._set_shape_property(shape_id, SHAPE_PROPERTIES.SHAPE_TYPE, self.SHAPE_TYPES.POINT) self._set_shape_property(shape_id, SHAPE_PROPERTIES.COLOR, self.variables.foreground_color) self.set_shape_canvas_coords(shape_id, coords) self.set_shape_pixel_coords_from_canvas_coords(shape_id) self.variables.current_shape_id = shape_id return shape_id def change_shape_color(self, shape_id, # type: int color, # type: str ): shape_type = self.get_shape_type(shape_id) if shape_type == SHAPE_TYPES.RECT: self.itemconfig(shape_id, outline=color) elif shape_type == SHAPE_TYPES.POLYGON: self.itemconfig(shape_id, outline=color) else: self.itemconfig(shape_id, fill=color) self._set_shape_property(shape_id, SHAPE_PROPERTIES.COLOR, color) def set_shape_canvas_coords(self, shape_id, coords): self._set_shape_property(shape_id, SHAPE_PROPERTIES.CANVAS_COORDS, coords) def set_shape_pixel_coords_from_canvas_coords(self, shape_id): if self.variables.canvas_image_object is None: self._set_shape_property(shape_id, SHAPE_PROPERTIES.IMAGE_COORDS, None) else: image_coords = self.canvas_shape_coords_to_image_coords(shape_id) self._set_shape_property(shape_id, SHAPE_PROPERTIES.IMAGE_COORDS, image_coords) def set_shape_pixel_coords(self, shape_id, # type: int image_coords, # type: list ): self._set_shape_property(shape_id, SHAPE_PROPERTIES.IMAGE_COORDS, image_coords) def canvas_shape_coords_to_image_coords(self, shape_id): canvas_coords = self.get_shape_canvas_coords(shape_id) return self.variables.canvas_image_object.canvas_coords_to_full_image_yx(canvas_coords) def get_shape_canvas_coords(self, shape_id): return self._get_shape_property(shape_id, SHAPE_PROPERTIES.CANVAS_COORDS) def get_shape_image_coords(self, shape_id): return self._get_shape_property(shape_id, SHAPE_PROPERTIES.IMAGE_COORDS) def image_coords_to_canvas_coords(self, shape_id): image_coords = self.get_shape_image_coords(shape_id) return self.variables.canvas_image_object.full_image_yx_to_canvas_coords(image_coords) def get_image_data_in_canvas_rect_by_id(self, rect_id, decimation=None): image_coords = self.get_shape_image_coords(rect_id) if image_coords[0] > image_coords[2]: tmp = image_coords[0] image_coords[0] = image_coords[2] image_coords[2] = tmp if image_coords[1] > image_coords[3]: tmp = image_coords[1] image_coords[1] = image_coords[3] image_coords[3] = tmp if decimation is None: decimation = self.variables.canvas_image_object.get_decimation_factor_from_full_image_rect(image_coords) image_data_in_rect = self.variables.canvas_image_object.get_decimated_image_data_in_full_image_rect(image_coords, decimation) return image_data_in_rect def zoom_to_selection(self, canvas_rect, animate=False): self.variables.the_canvas_is_currently_zooming = True # fill up empty canvas space due to inconsistent ratios between the canvas rect and the canvas dimensions image_coords = self.variables.canvas_image_object.canvas_coords_to_full_image_yx(canvas_rect) zoomed_image_height = image_coords[2] - image_coords[0] zoomed_image_width = image_coords[3] - image_coords[1] canvas_height_width_ratio = self.variables.canvas_height / self.variables.canvas_width zoomed_image_height_width_ratio = zoomed_image_height / zoomed_image_width new_image_width = zoomed_image_height / canvas_height_width_ratio new_image_height = zoomed_image_width * canvas_height_width_ratio if zoomed_image_height_width_ratio > canvas_height_width_ratio: image_zoom_point_center = (image_coords[3] + image_coords[1]) / 2 image_coords[1] = image_zoom_point_center - new_image_width/2 image_coords[3] = image_zoom_point_center + new_image_width/2 else: image_zoom_point_center = (image_coords[2] + image_coords[0]) / 2 image_coords[0] = image_zoom_point_center - new_image_height / 2 image_coords[2] = image_zoom_point_center + new_image_height / 2 # keep the rect within the image bounds image_y_ul = max(image_coords[0], 0) image_x_ul = max(image_coords[1], 0) image_y_br = min(image_coords[2], self.variables.canvas_image_object.image_reader.full_image_ny) image_x_br = min(image_coords[3], self.variables.canvas_image_object.image_reader.full_image_nx) # re-adjust if we ran off one of the edges if image_x_ul == 0: image_coords[3] = new_image_width if image_x_br == self.variables.canvas_image_object.image_reader.full_image_nx: image_coords[1] = self.variables.canvas_image_object.image_reader.full_image_nx - new_image_width if image_y_ul == 0: image_coords[2] = new_image_height if image_y_br == self.variables.canvas_image_object.image_reader.full_image_ny: image_coords[0] = self.variables.canvas_image_object.image_reader.full_image_ny - new_image_height # keep the rect within the image bounds image_y_ul = max(image_coords[0], 0) image_x_ul = max(image_coords[1], 0) image_y_br = min(image_coords[2], self.variables.canvas_image_object.image_reader.full_image_ny) image_x_br = min(image_coords[3], self.variables.canvas_image_object.image_reader.full_image_nx) new_canvas_rect = self.variables.canvas_image_object.full_image_yx_to_canvas_coords((image_y_ul, image_x_ul, image_y_br, image_x_br)) new_canvas_rect = (int(new_canvas_rect[0]), int(new_canvas_rect[1]), int(new_canvas_rect[2]), int(new_canvas_rect[3])) background_image = self.variables.canvas_image_object.display_image self.variables.canvas_image_object.update_canvas_display_image_from_canvas_rect(new_canvas_rect) if self.variables.rescale_image_to_fit_canvas: new_image = PIL.Image.fromarray(self.variables.canvas_image_object.display_image) else: new_image = PIL.Image.fromarray(self.variables.canvas_image_object.canvas_decimated_image) if animate is True: #create frame sequence n_animations = self.variables.n_zoom_animations background_image = background_image / 2 background_image = np.asarray(background_image, dtype=np.uint8) canvas_x1, canvas_y1, canvas_x2, canvas_y2 = new_canvas_rect display_x_ul = min(canvas_x1, canvas_x2) display_x_br = max(canvas_x1, canvas_x2) display_y_ul = min(canvas_y1, canvas_y2) display_y_br = max(canvas_y1, canvas_y2) x_diff = new_image.width - (display_x_br - display_x_ul) y_diff = new_image.height - (display_y_br - display_y_ul) pil_background_image = PIL.Image.fromarray(background_image) frame_sequence = [] for i in range(n_animations): new_x_ul = int(display_x_ul * (1 - i/(n_animations-1))) new_y_ul = int(display_y_ul * (1 - i/(n_animations-1))) new_size_x = int((display_x_br - display_x_ul) + x_diff * (i/(n_animations-1))) new_size_y = int((display_y_br - display_y_ul) + y_diff * (i/(n_animations-1))) resized_zoom_image = new_image.resize((new_size_x, new_size_y)) animation_image = pil_background_image.copy() animation_image.paste(resized_zoom_image, (new_x_ul, new_y_ul)) frame_sequence.append(animation_image) fps = n_animations / self.variables.animation_time_in_seconds self.animate_with_pil_frame_sequence(frame_sequence, frames_per_second=fps) if self.variables.rescale_image_to_fit_canvas: self.set_image_from_numpy_array(self.variables.canvas_image_object.display_image) else: self.set_image_from_numpy_array(self.variables.canvas_image_object.canvas_decimated_image) self.update() self.redraw_all_shapes() self.variables.the_canvas_is_currently_zooming = False def update_current_image(self): rect = (0, 0, self.variables.canvas_width, self.variables.canvas_height) self.variables.canvas_image_object.update_canvas_display_image_from_canvas_rect(rect) self.set_image_from_numpy_array(self.variables.canvas_image_object.display_image) self.update() def redraw_all_shapes(self): for shape_id in self.variables.shape_ids: pixel_coords = self._get_shape_property(shape_id, SHAPE_PROPERTIES.IMAGE_COORDS) if pixel_coords: new_canvas_coords = self.image_coords_to_canvas_coords(shape_id) self.modify_existing_shape_using_canvas_coords(shape_id, new_canvas_coords, update_pixel_coords=False) def set_current_tool_to_select_closest_shape(self): self.variables.active_tool = TOOLS.SELECT_CLOSEST_SHAPE_TOOL self.variables.current_tool = TOOLS.SELECT_CLOSEST_SHAPE_TOOL def set_current_tool_to_zoom_out(self): self.variables.current_shape_id = self.variables.zoom_rect_id self.variables.active_tool = TOOLS.ZOOM_OUT_TOOL self.variables.current_tool = TOOLS.ZOOM_OUT_TOOL def set_current_tool_to_zoom_in(self): self.variables.current_shape_id = self.variables.zoom_rect_id self.variables.active_tool = TOOLS.ZOOM_IN_TOOL self.variables.current_tool = TOOLS.ZOOM_IN_TOOL def set_current_tool_to_draw_rect(self, rect_id=None): self.variables.current_shape_id = rect_id self.show_shape(rect_id) self.variables.active_tool = TOOLS.DRAW_RECT_BY_DRAGGING self.variables.current_tool = TOOLS.DRAW_RECT_BY_DRAGGING def set_current_tool_to_draw_rect_by_clicking(self, rect_id=None): self.variables.current_shape_id = rect_id self.show_shape(rect_id) self.variables.active_tool = TOOLS.DRAW_RECT_BY_CLICKING self.variables.current_tool = TOOLS.DRAW_RECT_BY_CLICKING def set_current_tool_to_selection_tool(self): self.variables.current_shape_id = self.variables.select_rect_id self.variables.active_tool = TOOLS.SELECT_TOOL self.variables.current_tool = TOOLS.SELECT_TOOL def set_current_tool_to_draw_line_by_dragging(self, line_id=None): self.variables.current_shape_id = line_id self.show_shape(line_id) self.variables.active_tool = TOOLS.DRAW_LINE_BY_DRAGGING self.variables.current_tool = TOOLS.DRAW_LINE_BY_DRAGGING def set_current_tool_to_draw_line_by_clicking(self, line_id=None): self.variables.current_shape_id = line_id self.show_shape(line_id) self.variables.active_tool = TOOLS.DRAW_LINE_BY_CLICKING self.variables.current_tool = TOOLS.DRAW_LINE_BY_CLICKING def set_current_tool_to_draw_arrow_by_dragging(self, arrow_id=None): self.variables.current_shape_id = arrow_id self.show_shape(arrow_id) self.variables.active_tool = TOOLS.DRAW_ARROW_BY_DRAGGING self.variables.current_tool = TOOLS.DRAW_ARROW_BY_DRAGGING def set_current_tool_to_draw_arrow_by_clicking(self, line_id=None): self.variables.current_shape_id = line_id self.show_shape(line_id) self.variables.active_tool = TOOLS.DRAW_ARROW_BY_CLICKING self.variables.current_tool = TOOLS.DRAW_ARROW_BY_CLICKING def set_current_tool_to_draw_polygon_by_clicking(self, polygon_id=None): self.variables.current_shape_id = polygon_id self.show_shape(polygon_id) self.variables.active_tool = TOOLS.DRAW_POLYGON_BY_CLICKING self.variables.current_tool = TOOLS.DRAW_POLYGON_BY_CLICKING def set_current_tool_to_draw_point(self, point_id=None): self.variables.current_shape_id = point_id self.show_shape(point_id) self.variables.active_tool = TOOLS.DRAW_POINT_BY_CLICKING self.variables.current_tool = TOOLS.DRAW_POINT_BY_CLICKING def set_current_tool_to_translate_shape(self): self.variables.active_tool = TOOLS.TRANSLATE_SHAPE_TOOL self.variables.current_tool = TOOLS.TRANSLATE_SHAPE_TOOL def set_current_tool_to_none(self): self.variables.active_tool = None self.variables.current_tool = None def set_current_tool_to_edit_shape(self): self.variables.active_tool = TOOLS.EDIT_SHAPE_TOOL self.variables.current_tool = TOOLS.EDIT_SHAPE_TOOL def set_current_tool_to_edit_shape_coords(self): self.variables.active_tool = TOOLS.EDIT_SHAPE_COORDS_TOOL self.variables.current_tool = TOOLS.EDIT_SHAPE_COORDS_TOOL def set_current_tool_to_pan(self): self.variables.active_tool = TOOLS.PAN_TOOL self.variables.current_tool = TOOLS.PAN_TOOL def _set_image_from_pil_image(self, pil_image): nx_pix, ny_pix = pil_image.size self.config(scrollregion=(0, 0, nx_pix, ny_pix)) self.variables._tk_im = ImageTk.PhotoImage(pil_image) self.variables.image_id = self.create_image(0, 0, anchor="nw", image=self.variables._tk_im) self.tag_lower(self.variables.image_id) def _get_shape_property(self, shape_id, # type: int shape_property, # type: str ): properties = self.variables.shape_properties[str(shape_id)] return properties[shape_property] def _set_shape_property(self, shape_id, # type: int shape_property, # type: str val, ): if not str(shape_id) in self.variables.shape_properties.keys(): self.variables.shape_properties[str(shape_id)] = {} self.variables.shape_properties[str(shape_id)][shape_property] = val def _update_shape_properties(self, shape_id, # type: int properties, # type: dict ): for key in properties.keys(): val = properties[key] self._set_shape_property(shape_id, key, val) def _pan(self, event): new_canvas_x_ul = self.variables.pan_anchor_point_xy[0] - event.x new_canvas_y_ul = self.variables.pan_anchor_point_xy[1] - event.y new_canvas_x_br = new_canvas_x_ul + self.variables.canvas_width new_canvas_y_br = new_canvas_y_ul + self.variables.canvas_height canvas_coords = (new_canvas_x_ul, new_canvas_y_ul, new_canvas_x_br, new_canvas_y_br) image_coords = self.variables.canvas_image_object.canvas_coords_to_full_image_yx(canvas_coords) image_y_ul = image_coords[0] image_x_ul = image_coords[1] image_y_br = image_coords[2] image_x_br = image_coords[3] if image_y_ul < 0: new_canvas_y_ul = 0 new_canvas_y_br = self.variables.canvas_height if image_x_ul < 0: new_canvas_x_ul = 0 new_canvas_x_br = self.variables.canvas_width if image_y_br > self.variables.canvas_image_object.image_reader.full_image_ny: image_y_br = self.variables.canvas_image_object.image_reader.full_image_ny new_canvas_x_br, new_canvas_y_br = self.variables.canvas_image_object.full_image_yx_to_canvas_coords( (image_y_br, image_x_br)) new_canvas_x_ul, new_canvas_y_ul = int(new_canvas_x_br - self.variables.canvas_width), int( new_canvas_y_br - self.variables.canvas_height) if image_x_br > self.variables.canvas_image_object.image_reader.full_image_nx: image_x_br = self.variables.canvas_image_object.image_reader.full_image_nx new_canvas_x_br, new_canvas_y_br = self.variables.canvas_image_object.full_image_yx_to_canvas_coords( (image_y_br, image_x_br)) new_canvas_x_ul, new_canvas_y_ul = int(new_canvas_x_br - self.variables.canvas_width), int( new_canvas_y_br - self.variables.canvas_height) canvas_rect = (new_canvas_x_ul, new_canvas_y_ul, new_canvas_x_br, new_canvas_y_br) self.zoom_to_selection(canvas_rect, self.variables.animate_pan) self.hide_shape(self.variables.zoom_rect_id) def config_do_not_scale_image_to_fit(self): self.sbarv=tkinter.Scrollbar(self, orient=tkinter.VERTICAL) self.sbarh=tkinter.Scrollbar(self, orient=tkinter.HORIZONTAL) self.sbarv.config(command=self.yview) self.sbarh.config(command=self.xview) self.config(yscrollcommand=self.sbarv.set) self.config(xscrollcommand=self.sbarh.set) self.sbarv.grid(row=0, column=1, stick=tkinter.N+tkinter.S) self.sbarh.grid(row=1, column=0, sticky=tkinter.E+tkinter.W) def save_full_canvas_as_png(self, output_fname, # type: str ): # put a sleep in here in case there is a dialog covering the screen before this method is called. time.sleep(0.2) im = self.save_currently_displayed_canvas_to_numpy_array() im.save(output_fname) def save_currently_displayed_canvas_to_numpy_array(self): x_ul = self.winfo_rootx() + 1 y_ul = self.winfo_rooty() + 1 x_lr = x_ul + self.variables.canvas_width y_lr = y_ul + self.variables.canvas_height im = ImageGrab.grab() im = im.crop((x_ul, y_ul, x_lr, y_lr)) return im def activate_color_selector(self, event): color = colorchooser.askcolor()[1] self.variables.foreground_color = color self.change_shape_color(self.variables.current_shape_id, color) def find_closest_shape_coord(self, shape_id, # type: int canvas_x, # type: int canvas_y, # type: int ): # type: (...) -> int shape_type = self.get_shape_type(self.variables.current_shape_id) coords = self.get_shape_canvas_coords(shape_id) if shape_type == SHAPE_TYPES.RECT: select_x1, select_y1, select_x2, select_y2 = coords select_xul = min(select_x1, select_x2) select_xlr = max(select_x1, select_x2) select_yul = min(select_y1, select_y2) select_ylr = max(select_y1, select_y2) ul = (select_xul, select_yul) ur = (select_xlr, select_yul) lr = (select_xlr, select_ylr) ll = (select_xul, select_ylr) rect_coords = [(select_x1, select_y1), (select_x2, select_y2)] all_coords = [ul, ur, lr, ll] squared_distances = [] for corner_coord in all_coords: coord_x, coord_y = corner_coord d = (coord_x - canvas_x)**2 + (coord_y - canvas_y)**2 squared_distances.append(d) closest_coord_index = numpy.where(squared_distances == numpy.min(squared_distances))[0][0] closest_coord = all_coords[closest_coord_index] if closest_coord not in rect_coords: if closest_coord == ul: self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (ul[0], ul[1], lr[0], lr[1])) if closest_coord == ur: self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (ur[0], ur[1], ll[0], ll[1])) if closest_coord == lr: self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (ul[0], ul[1], lr[0], lr[1])) if closest_coord == ll: self.modify_existing_shape_using_canvas_coords(self.variables.current_shape_id, (ll[0], ll[1], ur[0], ur[1])) coords = self.get_shape_canvas_coords(shape_id) squared_distances = [] coord_indices = numpy.arange(0, len(coords), step=2) for i in coord_indices: coord_x, coord_y = coords[i], coords[i+1] d = (coord_x - canvas_x)**2 + (coord_y - canvas_y)**2 squared_distances.append(d) closest_coord_index = numpy.where(squared_distances ==
numpy.min(squared_distances)
numpy.min
#!/usr/bin/env python3 import os import glob import re import sys import math TIMEOUT = 100 # use cases and their directory names tests = [ "CP3-4.8.5", "CP1-4.8.5", "CP3-4.8.9", "CP1-4.8.9", "noSeqCon-CP3-4.8.5", "noSeqCon-CP1-4.8.5", "noSeqCon-CP3-4.8.9", "noSeqCon-CP1-4.8.9", "nolambda-CP3-4.8.5", "nolambda-CP1-4.8.5", "nolambda-CP3-4.8.9", "nolambda-CP1-4.8.9" ] loc_orig_5 = os.path.join('Logs_DLL_8.20', 'Logs_orig_4.8.5', '*.trace') loc_orig_9 = os.path.join('Logs_DLL_8.20', 'Logs_orig_4.8.9', '*.trace') loc_noseqcon_5 = os.path.join('Logs_DLL_8.20', 'Logs_noseqcon_4.8.5', '*.trace') loc_noseqcon_9 = os.path.join('Logs_DLL_8.20', 'Logs_noseqcon_4.8.9', '*.trace') loc_nolambda_5 = os.path.join('Logs_DLL_8.20', 'Logs_nolambda_4.8.5', '*.trace') loc_nolambda_9 = os.path.join('Logs_DLL_8.20', 'Logs_nolambda_4.8.9', '*.trace') file_orig_5 = glob.glob(loc_orig_5) file_orig_9 = glob.glob(loc_orig_9) file_noseqcon_5 = glob.glob(loc_noseqcon_5) file_noseqcon_9 = glob.glob(loc_noseqcon_9) file_nolambda_5 = glob.glob(loc_nolambda_5) file_nolambda_9 = glob.glob(loc_nolambda_9) allinfo_Expand = {} allinfo_Remove = {} allinfo_InsertAfter = {} allinfo_InsertBefore = {} def get_time (files, index): for f in files: outfile = open(f, 'r') data = outfile.readlines() outfile.close() for i in range(0, len(data)): if 'Verifying Impl$$_module.__default.Expand ...' in data[i]: time = re.findall("\[([0-9.]*) s, ([0-9.]*) proof obligations\] ([a-z]+)", data[i + 1]) if len(time) > 0: if time[0][2] == "verified": if 'CP3' in f: allinfo_Expand[tests[index]] = allinfo_Expand.get(tests[index], []) allinfo_Expand[tests[index]] += [float(time[0][0])] else: allinfo_Expand[tests[index+1]] = allinfo_Expand.get(tests[index+1], []) allinfo_Expand[tests[index+1]] += [float(time[0][0])] else: if time[0][2] == "timed": if 'CP3' in f: allinfo_Expand[tests[index]] = allinfo_Expand.get(tests[index], []) allinfo_Expand[tests[index]] += [float(TIMEOUT)] else: allinfo_Expand[tests[index+1]] = allinfo_Expand.get(tests[index+1], []) allinfo_Expand[tests[index+1]] += [float(TIMEOUT)] else: allinfo_Expand[tests[index]] = allinfo_Expand.get(tests[index], []) allinfo_Expand[tests[index+1]] = allinfo_Expand.get(tests[index+1], []) if 'Verifying Impl$$_module.__default.Remove ...' in data[i]: time = re.findall("\[([0-9.]*) s, ([0-9.]*) proof obligations\] ([a-z]+)", data[i + 1]) if len(time) > 0: if time[0][2] == "verified": if 'CP3' in f: allinfo_Remove[tests[index]] = allinfo_Remove.get(tests[index], []) allinfo_Remove[tests[index]] += [float(time[0][0])] else: allinfo_Remove[tests[index+1]] = allinfo_Remove.get(tests[index+1], []) allinfo_Remove[tests[index+1]] += [float(time[0][0])] else: if time[0][2] == "timed": if 'CP3' in f: allinfo_Remove[tests[index]] = allinfo_Remove.get(tests[index], []) allinfo_Remove[tests[index]] += [float(TIMEOUT)] else: allinfo_Remove[tests[index+1]] = allinfo_Remove.get(tests[index+1], []) allinfo_Remove[tests[index+1]] += [float(TIMEOUT)] else: allinfo_Remove[tests[index]] = allinfo_Remove.get(tests[index], []) allinfo_Remove[tests[index+1]] = allinfo_Remove.get(tests[index+1], []) if 'Verifying Impl$$_module.__default.InsertAfter ...' in data[i]: time = re.findall("\[([0-9.]*) s, ([0-9.]*) proof obligations\] ([a-z]+)", data[i + 1]) if len(time) > 0: if time[0][2] == "verified": if 'CP3' in f: allinfo_InsertAfter[tests[index]] = allinfo_InsertAfter.get(tests[index], []) allinfo_InsertAfter[tests[index]] += [float(time[0][0])] else: allinfo_InsertAfter[tests[index+1]] = allinfo_InsertAfter.get(tests[index+1], []) allinfo_InsertAfter[tests[index+1]] += [float(time[0][0])] else: if time[0][2] == "timed": if 'CP3' in f: allinfo_InsertAfter[tests[index]] = allinfo_InsertAfter.get(tests[index], []) allinfo_InsertAfter[tests[index]] += [float(TIMEOUT)] else: allinfo_InsertAfter[tests[index+1]] = allinfo_InsertAfter.get(tests[index+1], []) allinfo_InsertAfter[tests[index+1]] += [float(TIMEOUT)] else: allinfo_InsertAfter[tests[index]] = allinfo_InsertAfter.get(tests[index], []) allinfo_InsertAfter[tests[index+1]] = allinfo_InsertAfter.get(tests[index+1], []) if 'Verifying Impl$$_module.__default.InsertBefore ...' in data[i]: time = re.findall("\[([0-9.]*) s, ([0-9.]*) proof obligations\] ([a-z]+)", data[i + 1]) if len(time) > 0: if time[0][2] == "verified": if 'CP3' in f: allinfo_InsertBefore[tests[index]] = allinfo_InsertBefore.get(tests[index], []) allinfo_InsertBefore[tests[index]] += [float(time[0][0])] else: allinfo_InsertBefore[tests[index+1]] = allinfo_InsertBefore.get(tests[index+1], []) allinfo_InsertBefore[tests[index+1]] += [float(time[0][0])] else: if time[0][2] == "timed": if 'CP3' in f: allinfo_InsertBefore[tests[index]] = allinfo_InsertBefore.get(tests[index], []) allinfo_InsertBefore[tests[index]] += [float(TIMEOUT)] else: allinfo_InsertBefore[tests[index+1]] = allinfo_InsertBefore.get(tests[index+1], []) allinfo_InsertBefore[tests[index+1]] += [float(TIMEOUT)] else: allinfo_InsertBefore[tests[index]] = allinfo_InsertBefore.get(tests[index], []) allinfo_InsertBefore[tests[index+1]] = allinfo_InsertBefore.get(tests[index+1], []) get_time(file_orig_5, 0) get_time(file_orig_9, 2) get_time(file_noseqcon_5, 4) get_time(file_noseqcon_9, 6) get_time(file_nolambda_5, 8) get_time(file_nolambda_9, 10) # print(allinfo_Expand) # print(allinfo_Remove) # print(allinfo_InsertAfter) # print(allinfo_InsertBefore) # print a CSV def show_csv(allinfo, info): for test in tests: if test in allinfo: times = allinfo[test] print(test + ", " + info), for i in times: print(", " + str(i)), print ("\n"), # show_csv(allinfo_Expand, "Expand") # show_csv(allinfo_Remove, "Remove") # show_csv(allinfo_InsertAfter, "InsertAfter") # show_csv(allinfo_InsertBefore, "InsertBefore") import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams.update({'font.size': 20}) Expand_cp3_5 = np.array(allinfo_Expand[tests[0]]) Expand_cp1_5 = np.array(allinfo_Expand[tests[1]]) Expand_cp3_9 = np.array(allinfo_Expand[tests[2]]) Expand_cp1_9 = np.array(allinfo_Expand[tests[3]]) Expand_noseqcon_cp3_5 = np.array(allinfo_Expand[tests[4]]) Expand_noseqcon_cp1_5 = np.array(allinfo_Expand[tests[5]]) Expand_noseqcon_cp3_9 = np.array(allinfo_Expand[tests[6]]) Expand_noseqcon_cp1_9 = np.array(allinfo_Expand[tests[7]]) Expand_nolambda_cp3_5 = np.array(allinfo_Expand[tests[8]]) Expand_nolambda_cp1_5 = np.array(allinfo_Expand[tests[9]]) Expand_nolambda_cp3_9 = np.array(allinfo_Expand[tests[10]]) Expand_nolambda_cp1_9 = np.array(allinfo_Expand[tests[11]]) Expand_cp3_5_mean = np.mean(Expand_cp3_5) Expand_cp3_5_std = np.std(Expand_cp3_5) Expand_cp1_5_mean = np.mean(Expand_cp1_5) Expand_cp1_5_std = np.std(Expand_cp1_5) Expand_cp3_9_mean = np.mean(Expand_cp3_9) Expand_cp3_9_std = np.std(Expand_cp3_9) Expand_cp1_9_mean = np.mean(Expand_cp1_9) Expand_cp1_9_std = np.std(Expand_cp1_9) Expand_noseqcon_cp3_5_mean = np.mean(Expand_noseqcon_cp3_5) Expand_noseqcon_cp3_5_std = np.std(Expand_noseqcon_cp3_5) Expand_noseqcon_cp1_5_mean = np.mean(Expand_noseqcon_cp1_5) Expand_noseqcon_cp1_5_std = np.std(Expand_noseqcon_cp1_5) Expand_noseqcon_cp3_9_mean = np.mean(Expand_noseqcon_cp3_9) Expand_noseqcon_cp3_9_std = np.std(Expand_noseqcon_cp3_9) Expand_noseqcon_cp1_9_mean = np.mean(Expand_noseqcon_cp1_9) Expand_noseqcon_cp1_9_std = np.std(Expand_noseqcon_cp1_9) Expand_nolambda_cp3_5_mean = np.mean(Expand_nolambda_cp3_5) Expand_nolambda_cp3_5_std = np.std(Expand_nolambda_cp3_5) Expand_nolambda_cp1_5_mean = np.mean(Expand_nolambda_cp1_5) Expand_nolambda_cp1_5_std = np.std(Expand_nolambda_cp1_5) Expand_nolambda_cp3_9_mean = np.mean(Expand_nolambda_cp3_9) Expand_nolambda_cp3_9_std = np.std(Expand_nolambda_cp3_9) Expand_nolambda_cp1_9_mean = np.mean(Expand_nolambda_cp1_9) Expand_nolambda_cp1_9_std = np.std(Expand_nolambda_cp1_9) Remove_cp3_5 = np.array(allinfo_Remove[tests[0]]) Remove_cp1_5 = np.array(allinfo_Remove[tests[1]]) Remove_cp3_9 = np.array(allinfo_Remove[tests[2]]) Remove_cp1_9 = np.array(allinfo_Remove[tests[3]]) Remove_noseqcon_cp3_5 = np.array(allinfo_Remove[tests[4]]) Remove_noseqcon_cp1_5 = np.array(allinfo_Remove[tests[5]]) Remove_noseqcon_cp3_9 = np.array(allinfo_Remove[tests[6]]) Remove_noseqcon_cp1_9 = np.array(allinfo_Remove[tests[7]]) Remove_nolambda_cp3_5 = np.array(allinfo_Remove[tests[8]]) Remove_nolambda_cp1_5 = np.array(allinfo_Remove[tests[9]]) Remove_nolambda_cp3_9 = np.array(allinfo_Remove[tests[10]]) Remove_nolambda_cp1_9 = np.array(allinfo_Remove[tests[11]]) Remove_cp3_5_mean = np.mean(Remove_cp3_5) Remove_cp3_5_std = np.std(Remove_cp3_5) Remove_cp1_5_mean = np.mean(Remove_cp1_5) Remove_cp1_5_std = np.std(Remove_cp1_5) Remove_cp3_9_mean = np.mean(Remove_cp3_9) Remove_cp3_9_std = np.std(Remove_cp3_9) Remove_cp1_9_mean = np.mean(Remove_cp1_9) Remove_cp1_9_std = np.std(Remove_cp1_9) Remove_noseqcon_cp3_5_mean = np.mean(Remove_noseqcon_cp3_5) Remove_noseqcon_cp3_5_std = np.std(Remove_noseqcon_cp3_5) Remove_noseqcon_cp1_5_mean = np.mean(Remove_noseqcon_cp1_5) Remove_noseqcon_cp1_5_std = np.std(Remove_noseqcon_cp1_5) Remove_noseqcon_cp3_9_mean = np.mean(Remove_noseqcon_cp3_9) Remove_noseqcon_cp3_9_std = np.std(Remove_noseqcon_cp3_9) Remove_noseqcon_cp1_9_mean = np.mean(Remove_noseqcon_cp1_9) Remove_noseqcon_cp1_9_std = np.std(Remove_noseqcon_cp1_9) Remove_nolambda_cp3_5_mean = np.mean(Remove_nolambda_cp3_5) Remove_nolambda_cp3_5_std = np.std(Remove_nolambda_cp3_5) Remove_nolambda_cp1_5_mean = np.mean(Remove_nolambda_cp1_5) Remove_nolambda_cp1_5_std = np.std(Remove_nolambda_cp1_5) Remove_nolambda_cp3_9_mean = np.mean(Remove_nolambda_cp3_9) Remove_nolambda_cp3_9_std = np.std(Remove_nolambda_cp3_9) Remove_nolambda_cp1_9_mean = np.mean(Remove_nolambda_cp1_9) Remove_nolambda_cp1_9_std = np.std(Remove_nolambda_cp1_9) InsertAfter_cp3_5 = np.array(allinfo_InsertAfter[tests[0]]) InsertAfter_cp1_5 = np.array(allinfo_InsertAfter[tests[1]]) InsertAfter_cp3_9 = np.array(allinfo_InsertAfter[tests[2]]) InsertAfter_cp1_9 = np.array(allinfo_InsertAfter[tests[3]]) InsertAfter_noseqcon_cp3_5 = np.array(allinfo_InsertAfter[tests[4]]) InsertAfter_noseqcon_cp1_5 = np.array(allinfo_InsertAfter[tests[5]]) InsertAfter_noseqcon_cp3_9 = np.array(allinfo_InsertAfter[tests[6]]) InsertAfter_noseqcon_cp1_9 = np.array(allinfo_InsertAfter[tests[7]]) InsertAfter_nolambda_cp3_5 = np.array(allinfo_InsertAfter[tests[8]]) InsertAfter_nolambda_cp1_5 = np.array(allinfo_InsertAfter[tests[9]]) InsertAfter_nolambda_cp3_9 = np.array(allinfo_InsertAfter[tests[10]]) InsertAfter_nolambda_cp1_9 = np.array(allinfo_InsertAfter[tests[11]]) InsertAfter_cp3_5_mean = np.mean(InsertAfter_cp3_5) InsertAfter_cp3_5_std = np.std(InsertAfter_cp3_5) InsertAfter_cp1_5_mean = np.mean(InsertAfter_cp1_5) InsertAfter_cp1_5_std = np.std(InsertAfter_cp1_5) InsertAfter_cp3_9_mean = np.mean(InsertAfter_cp3_9) InsertAfter_cp3_9_std = np.std(InsertAfter_cp3_9) InsertAfter_cp1_9_mean = np.mean(InsertAfter_cp1_9) InsertAfter_cp1_9_std = np.std(InsertAfter_cp1_9) InsertAfter_noseqcon_cp3_5_mean = np.mean(InsertAfter_noseqcon_cp3_5) InsertAfter_noseqcon_cp3_5_std = np.std(InsertAfter_noseqcon_cp3_5) InsertAfter_noseqcon_cp1_5_mean = np.mean(InsertAfter_noseqcon_cp1_5) InsertAfter_noseqcon_cp1_5_std = np.std(InsertAfter_noseqcon_cp1_5) InsertAfter_noseqcon_cp3_9_mean = np.mean(InsertAfter_noseqcon_cp3_9) InsertAfter_noseqcon_cp3_9_std = np.std(InsertAfter_noseqcon_cp3_9) InsertAfter_noseqcon_cp1_9_mean = np.mean(InsertAfter_noseqcon_cp1_9) InsertAfter_noseqcon_cp1_9_std = np.std(InsertAfter_noseqcon_cp1_9) InsertAfter_nolambda_cp3_5_mean = np.mean(InsertAfter_nolambda_cp3_5) InsertAfter_nolambda_cp3_5_std = np.std(InsertAfter_nolambda_cp3_5) InsertAfter_nolambda_cp1_5_mean = np.mean(InsertAfter_nolambda_cp1_5) InsertAfter_nolambda_cp1_5_std = np.std(InsertAfter_nolambda_cp1_5) InsertAfter_nolambda_cp3_9_mean = np.mean(InsertAfter_nolambda_cp3_9) InsertAfter_nolambda_cp3_9_std = np.std(InsertAfter_nolambda_cp3_9) InsertAfter_nolambda_cp1_9_mean = np.mean(InsertAfter_nolambda_cp1_9) InsertAfter_nolambda_cp1_9_std = np.std(InsertAfter_nolambda_cp1_9) InsertBefore_cp3_5 = np.array(allinfo_InsertBefore[tests[0]]) InsertBefore_cp1_5 = np.array(allinfo_InsertBefore[tests[1]]) InsertBefore_cp3_9 = np.array(allinfo_InsertBefore[tests[2]]) InsertBefore_cp1_9 = np.array(allinfo_InsertBefore[tests[3]]) InsertBefore_noseqcon_cp3_5 = np.array(allinfo_InsertBefore[tests[4]]) InsertBefore_noseqcon_cp1_5 = np.array(allinfo_InsertBefore[tests[5]]) InsertBefore_noseqcon_cp3_9 = np.array(allinfo_InsertBefore[tests[6]]) InsertBefore_noseqcon_cp1_9 = np.array(allinfo_InsertBefore[tests[7]]) InsertBefore_nolambda_cp3_5 = np.array(allinfo_InsertBefore[tests[8]]) InsertBefore_nolambda_cp1_5 = np.array(allinfo_InsertBefore[tests[9]]) InsertBefore_nolambda_cp3_9 = np.array(allinfo_InsertBefore[tests[10]]) InsertBefore_nolambda_cp1_9 = np.array(allinfo_InsertBefore[tests[11]]) InsertBefore_cp3_5_mean = np.mean(InsertBefore_cp3_5) InsertBefore_cp3_5_std = np.std(InsertBefore_cp3_5) InsertBefore_cp1_5_mean = np.mean(InsertBefore_cp1_5) InsertBefore_cp1_5_std = np.std(InsertBefore_cp1_5) InsertBefore_cp3_9_mean = np.mean(InsertBefore_cp3_9) InsertBefore_cp3_9_std = np.std(InsertBefore_cp3_9) InsertBefore_cp1_9_mean = np.mean(InsertBefore_cp1_9) InsertBefore_cp1_9_std = np.std(InsertBefore_cp1_9) InsertBefore_noseqcon_cp3_5_mean = np.mean(InsertBefore_noseqcon_cp3_5) InsertBefore_noseqcon_cp3_5_std = np.std(InsertBefore_noseqcon_cp3_5) InsertBefore_noseqcon_cp1_5_mean = np.mean(InsertBefore_noseqcon_cp1_5) InsertBefore_noseqcon_cp1_5_std = np.std(InsertBefore_noseqcon_cp1_5) InsertBefore_noseqcon_cp3_9_mean = np.mean(InsertBefore_noseqcon_cp3_9) InsertBefore_noseqcon_cp3_9_std = np.std(InsertBefore_noseqcon_cp3_9) InsertBefore_noseqcon_cp1_9_mean =
np.mean(InsertBefore_noseqcon_cp1_9)
numpy.mean
import unittest from ancb import NumpyCircularBuffer from ancb import ( # type: ignore star_can_broadcast, can_broadcast ) from numpy import array_equal, allclose, shares_memory from numpy import array, zeros, arange, ndarray, ones, empty from numpy.random import rand, randint from numpy import fill_diagonal, roll from itertools import zip_longest from operator import ( matmul, add, sub, mul, truediv, mod, floordiv, pow, rshift, lshift, and_, or_, xor, neg, pos, abs, inv, invert, iadd, iand, ifloordiv, ilshift, imod, imul, ior, ipow, irshift, isub, itruediv, ixor ) class TestBroadcastability(unittest.TestCase): def test_broadcastablity(self): x = zeros((1, 2, 3, 4, 5)) y = zeros((1, 1, 1, 4, 5)) z = zeros((1, 1, 1, 3, 5)) w = zeros(1) self.assertTrue(can_broadcast(x.shape, y.shape)) self.assertFalse(can_broadcast(x.shape, z.shape)) self.assertFalse(can_broadcast(y.shape, z.shape)) self.assertTrue(can_broadcast(x.shape, x.shape)) self.assertTrue(can_broadcast(y.shape, y.shape)) self.assertTrue(can_broadcast(z.shape, z.shape)) self.assertTrue(can_broadcast(w.shape, w.shape)) self.assertTrue(can_broadcast(x.shape, w.shape)) self.assertTrue(can_broadcast(y.shape, w.shape)) self.assertTrue(can_broadcast(z.shape, w.shape)) def test_star_broadcastablity(self): x = zeros((1, 2, 3, 4, 5)) y = zeros((1, 1, 1, 4, 5)) z = zeros((1, 1, 1, 3, 5)) w = zeros(1) starexpr = zip_longest(x.shape, y.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, z.shape, fillvalue=1) self.assertFalse(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, z.shape, fillvalue=1) self.assertFalse(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, x.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, y.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(z.shape, z.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(w.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(x.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(y.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) starexpr = zip_longest(z.shape, w.shape, fillvalue=1) self.assertTrue(star_can_broadcast(starexpr)) class OperatorTestFactory(type): def __new__(cls, name, bases, dct): obj = super().__new__(cls, name, bases, dct) bin_operators = [ matmul, add, sub, mul, truediv, mod, floordiv, pow ] un_operators = [neg, pos, abs, invert, inv] bitbin_operators = [rshift, lshift, and_, or_, xor] i_operators = [ iadd, ifloordiv, imul, ipow, isub, itruediv ] bit_ioperators = [ ilshift, irshift, ior, iand, ixor, imod ] def unop_testcase(op): def f(self): data = zeros(3, dtype=int) test = -arange(3, dtype=int) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(-1) buffer.append(-2) res = op(buffer) self.assertIsInstance(res, ndarray) self.assertTrue(array_equal(res, op(test))) # unfrag buffer.append(-3) test -= 1 res = op(buffer) self.assertIsInstance(res, ndarray) self.assertTrue(array_equal(res, op(test))) # frag return f def bitbinop_testcase(op): def f(self): data = zeros(3, dtype=int) test = arange(1, 4, dtype=int) x = randint(3) buffer = NumpyCircularBuffer(data) buffer.append(1) buffer.append(2) buffer.append(3) res1 = op(buffer, x) res2 = op(x, buffer) self.assertIsInstance(res1, ndarray) self.assertIsInstance(res2, ndarray) self.assertTrue(array_equal(res1, op(test, x))) self.assertTrue(array_equal(res2, op(x, test))) buffer.append(4) test += 1 res1 = op(buffer, x) res2 = op(x, buffer) self.assertIsInstance(res1, ndarray) self.assertIsInstance(res2, ndarray) self.assertTrue(array_equal(res1, op(test, x))) self.assertTrue(array_equal(res2, op(x, test))) return f def binop_testcase(op): def f(self): data = zeros(3, dtype=float) test = arange(1, 4, dtype=float) x = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(1) buffer.append(2) buffer.append(3) res1 = op(buffer, x) self.assertIsInstance(res1, ndarray) self.assertTrue(allclose(res1, op(test, x))) res2 = op(x, buffer) self.assertIsInstance(res2, ndarray) self.assertTrue(allclose(res2, op(x, test))) buffer.append(4) test += 1 res1 = op(buffer, x) self.assertIsInstance(res1, ndarray) self.assertTrue(allclose(res1, op(test, x))) res2 = op(x, buffer) self.assertIsInstance(res2, ndarray) self.assertTrue(allclose(res2, op(x, test))) return f def iop_testcase(op): def f(self): data = zeros(3, dtype=float) data2 = zeros(3, dtype=float) test1 = arange(1, 4, dtype=float) test2 = arange(2, 5, dtype=float) x = rand(3) buffer1 = NumpyCircularBuffer(data) buffer2 = NumpyCircularBuffer(data2) buffer1.append(1) buffer1.append(2) buffer1.append(3) buffer2.append(1) buffer2.append(2) buffer2.append(3) op(buffer1, x) op(test1, x) self.assertIsInstance(buffer1, NumpyCircularBuffer) self.assertTrue(array_equal(buffer1 + 0, test1)) buffer2.append(4) op(buffer2, x) op(test2, x) self.assertIsInstance(buffer2, NumpyCircularBuffer) self.assertTrue(array_equal(buffer2 + 0, test2)) return f def bitiop_testcase(op): def f(self): data = zeros(3, dtype=int) data2 = zeros(3, dtype=int) test1 = arange(1, 4, dtype=int) test2 = arange(2, 5, dtype=int) x = randint(low=1, high=100, size=3) buffer1 = NumpyCircularBuffer(data) buffer2 = NumpyCircularBuffer(data2) buffer1.append(1) buffer1.append(2) buffer1.append(3) buffer2.append(1) buffer2.append(2) buffer2.append(3) op(buffer1, x) op(test1, x) self.assertIsInstance(buffer1, NumpyCircularBuffer) self.assertTrue(allclose(buffer1 + 0, test1)) buffer2.append(4) op(buffer2, x) op(test2, x) self.assertIsInstance(buffer2, NumpyCircularBuffer) self.assertTrue(allclose(buffer2 + 0, test2)) return f for op in bin_operators: setattr(obj, 'test_{}'.format(op.__name__), binop_testcase(op)) for op in bitbin_operators: setattr(obj, 'test_{}'.format(op.__name__), bitbinop_testcase(op)) for op in un_operators: setattr(obj, 'test_{}'.format(op.__name__), unop_testcase(op)) for op in i_operators: setattr(obj, 'test_{}'.format(op.__name__), iop_testcase(op)) for op in bit_ioperators: setattr(obj, 'test_{}'.format(op.__name__), bitiop_testcase(op)) return(obj) class TestNumpyCircularBuffer( unittest.TestCase, metaclass=OperatorTestFactory ): """ NumpyCircularBuffer tests """ def test_init(self): data = zeros(3) buffer = NumpyCircularBuffer(data) self.assertTrue(array_equal(data, buffer)) def test_fragmentation(self): data = zeros(3) buffer = NumpyCircularBuffer(data) self.assertFalse(buffer.fragmented) buffer.append(0) self.assertFalse(buffer.fragmented) buffer.append(1) self.assertFalse(buffer.fragmented) buffer.append(2) self.assertFalse(buffer.fragmented) buffer.append(3) self.assertTrue(buffer.fragmented) buffer.append(4) self.assertTrue(buffer.fragmented) buffer.append(5) self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) buffer.pop() self.assertFalse(buffer.fragmented) def test_matmul_1d1d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) self.assertTrue(allclose(buffer @ C[:1], arange(1) @ C[:1])) buffer.append(1) self.assertTrue(allclose(buffer @ C[:2], arange(2) @ C[:2])) buffer.append(2) self.assertTrue(allclose(buffer @ C, arange(3) @ C)) buffer.append(3) self.assertTrue(allclose(buffer @ C, (arange(1, 4)) @ C)) buffer.append(4) self.assertTrue(allclose(buffer @ C, (arange(2, 5)) @ C)) buffer.append(5) self.assertTrue(allclose(buffer @ C, (arange(3, 6)) @ C)) buffer.append(6) self.assertTrue(allclose(buffer @ C, (arange(4, 7)) @ C)) buffer.pop() self.assertTrue(allclose(buffer @ C[1:], (arange(5, 7)) @ C[1:])) buffer.pop() self.assertTrue(allclose(buffer @ C[2:], (arange(6, 7)) @ C[2:])) def test_matmul_1d2d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 2""" data = zeros(3) A = zeros((3, 3)) B = rand(9).reshape(3, 3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, arange(3) @ A)) self.assertTrue(allclose(res_b, arange(3) @ B)) buffer.append(3) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(allclose(res_a, arange(1, 4) @ A)) self.assertTrue(allclose(res_b, arange(1, 4) @ B)) def test_matmul_2d2d(self): """Tests buffer @ X where buffer.ndim == 2""" data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) fill_diagonal(A, arange(1, 4)) buffer = NumpyCircularBuffer(data) buffer.append(arange(3)) buffer.append(arange(3, 6)) buffer.append(arange(6, 9)) test = arange(9).reshape(3, 3) self.assertTrue(array_equal(buffer, test)) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(arange(9, 12)) test += 3 res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) def test_matmul_ndnd(self): """Tests buffer @ X where X.ndim > 2 and buffer.ndim > 2""" data = zeros((3, 3, 3)) A = zeros((3, 3, 3)) B = rand(27).reshape(3, 3, 3) C = rand(12).reshape(3, 4) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) filler = arange(9).reshape(3, 3) buffer.append(filler) buffer.append(filler + 9) buffer.append(filler + 18) test = arange(27).reshape(3, 3, 3) res_a = buffer @ A res_b = buffer @ B self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(filler + 27) test += 9 res_a = buffer @ A res_b = buffer @ B res_c = buffer @ C self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) self.assertTrue(allclose(res_c, test @ C)) def test_rmatmul_1d1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) res_c = C[:1] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:1] @ arange(1))) buffer.append(1) res_c = C[:2] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:2] @ arange(2))) buffer.append(2) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3))) buffer.append(3) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(1, 4))) buffer.append(4) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3, 6))) buffer.append(6) res_c = C @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(4, 7))) buffer.pop() res_c = C[1:] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[1:] @ arange(5, 7))) buffer.pop() res_c = C[2:] @ buffer self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[2:] @ arange(6, 7))) def test_rmatmul_nd1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data = zeros(3) A = zeros(9).reshape(3, 3) B = arange(9).reshape(3, 3) C = arange(3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = A @ buffer self.assertIsInstance(res_a, ndarray) self.assertTrue(array_equal(A @ buffer, A @ array([0, 1, 2]))) buffer.append(3) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ array([1, 2, 3]))) self.assertTrue(allclose(res_b, B @ array([1, 2, 3]))) self.assertTrue(allclose(res_c, C @ array([1, 2, 3]))) buffer.append(4) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(2, 5))) self.assertTrue(allclose(res_b, B @ arange(2, 5))) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(3, 6))) self.assertTrue(allclose(res_b, B @ arange(3, 6))) self.assertTrue(allclose(res_c, C @ arange(3, 6))) def test_rmatmul_1dnd(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data1 = zeros((3, 3)) data2 = zeros((3, 3, 3)) A = rand(3) test1 = arange(9).reshape(3, 3) test2 = arange(27).reshape(3, 3, 3) buffer1 = NumpyCircularBuffer(data1) buffer2 = NumpyCircularBuffer(data2) buffer1.append(arange(3)) buffer1.append(arange(3, 6)) buffer1.append(arange(6, 9)) buffer2.append(arange(9).reshape(3, 3)) buffer2.append(arange(9, 18).reshape(3, 3)) buffer2.append(arange(18, 27).reshape(3, 3)) res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(9, 12)) buffer2.append(arange(27, 36).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(12, 15)) buffer2.append(arange(36, 45).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(15, 18)) buffer2.append(arange(45, 54).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = A @ buffer1 res_buf2 = A @ buffer2 self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) def test_rmatmul_2d2d(self): data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) C = rand(12).reshape(4, 3) fill_diagonal(A, arange(1, 4)) buffer = NumpyCircularBuffer(data) buffer.append(arange(3)) buffer.append(arange(3, 6)) buffer.append(arange(6, 9)) test = arange(9).reshape(3, 3) self.assertTrue(array_equal(buffer, test)) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) buffer.append([9, 10, 11]) test += 3 res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) def test_rmatmul_ndnd(self): data = zeros((3, 3, 3)) A = zeros(27).reshape(3, 3, 3) B = arange(27).reshape(3, 3, 3) C = arange(3*8*3).reshape(3, 8, 3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) filler = arange(9).reshape(3, 3) buffer.append(filler) buffer.append(filler + 9) buffer.append(filler + 18) test = arange(27).reshape(3, 3, 3) res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) buffer.append(filler + 27) test += 9 res_a = A @ buffer res_b = B @ buffer res_c = C @ buffer self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) def test_matmul2_1d1d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) self.assertTrue(allclose( buffer.matmul(C[:1], empty(1)), arange(1) @ C[:1] ) ) buffer.append(1) self.assertTrue(allclose( buffer.matmul(C[:2], empty(2)), arange(2) @ C[:2] ) ) buffer.append(2) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(3) @ C ) ) buffer.append(3) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(1, 4) @ C ) ) buffer.append(4) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(2, 5) @ C ) ) buffer.append(5) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(3, 6) @ C ) ) buffer.append(6) self.assertTrue(allclose( buffer.matmul(C, empty(3)), arange(4, 7) @ C ) ) buffer.pop() self.assertTrue(allclose( buffer.matmul(C[1:], empty(2)), arange(5, 7) @ C[1:] ) ) buffer.pop() self.assertTrue(allclose( buffer.matmul(C[2:], empty(1)), arange(6, 7) @ C[2:] ) ) def test_matmul2_1d2d(self): """Tests buffer @ X where buffer.ndim == 1 and X.ndim == 2""" data = zeros(3) A = zeros((3, 3)) B = rand(9).reshape(3, 3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = buffer.matmul(A, empty(3)) res_b = buffer.matmul(B, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, arange(3) @ A)) self.assertTrue(allclose(res_b, arange(3) @ B)) buffer.append(3) res_a = buffer.matmul(A, empty(3)) res_b = buffer.matmul(B, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(allclose(res_a, arange(1, 4) @ A)) self.assertTrue(allclose(res_b, arange(1, 4) @ B)) def test_matmul2_2d2d(self): """Tests buffer @ X where buffer.ndim == 2""" data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) fill_diagonal(A, arange(1, 4)) buffer = NumpyCircularBuffer(data) buffer.append(arange(3)) buffer.append(arange(3, 6)) buffer.append(arange(6, 9)) test = arange(9).reshape(3, 3) self.assertTrue(array_equal(buffer, test)) res_a = buffer.matmul(A, empty((3, 3))) res_b = buffer.matmul(B, empty((3, 3))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(arange(9, 12)) test += 3 res_a = buffer.matmul(A, empty((3, 3))) res_b = buffer.matmul(B, empty((3, 3))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) def test_matmul2_ndnd(self): """Tests buffer @ X where X.ndim > 2 and buffer.ndim > 2""" data = zeros((3, 3, 3)) A = zeros((3, 3, 3)) B = rand(27).reshape(3, 3, 3) C = rand(12).reshape(3, 4) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) filler = arange(9).reshape(3, 3) buffer.append(filler) buffer.append(filler + 9) buffer.append(filler + 18) test = arange(27).reshape(3, 3, 3) res_a = buffer.matmul(A, empty((3, 3, 3))) res_b = buffer.matmul(B, empty((3, 3, 3))) res_c = buffer.matmul(C, empty((3, 3, 4))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) buffer.append(filler + 27) test += 9 res_a = buffer.matmul(A, empty((3, 3, 3))) res_b = buffer.matmul(B, empty((3, 3, 3))) res_c = buffer.matmul(C, empty((3, 3, 4))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, test @ A)) self.assertTrue(allclose(res_b, test @ B)) self.assertTrue(allclose(res_c, test @ C)) def test_rmatmul2_1d1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim == 1""" data = zeros(3) C = rand(3) buffer = NumpyCircularBuffer(data) buffer.append(0) res_c = buffer.rmatmul(C[:1], empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:1] @ arange(1))) buffer.append(1) res_c = buffer.rmatmul(C[:2], empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[:2] @ arange(2))) buffer.append(2) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3))) buffer.append(3) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(1, 4))) buffer.append(4) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(3, 6))) buffer.append(6) res_c = buffer.rmatmul(C, empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C @ arange(4, 7))) buffer.pop() res_c = buffer.rmatmul(C[1:], empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[1:] @ arange(5, 7))) buffer.pop() res_c = buffer.rmatmul(C[2:], empty(1)) self.assertIsInstance(res_c, ndarray) self.assertTrue(allclose(res_c, C[2:] @ arange(6, 7))) def test_rmatmul2_nd1d(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data = zeros(3) A = zeros(9).reshape(3, 3) B = arange(9).reshape(3, 3) C = arange(3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) buffer.append(0) buffer.append(1) buffer.append(2) res_a = A @ buffer buffer.rmatmul(A, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertTrue(array_equal(A @ buffer, A @ array([0, 1, 2]))) buffer.append(3) res_a = buffer.rmatmul(A, empty(3)) res_b = buffer.rmatmul(B, empty(3)) res_c = buffer.rmatmul(C, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ array([1, 2, 3]))) self.assertTrue(allclose(res_b, B @ array([1, 2, 3]))) self.assertTrue(allclose(res_c, C @ array([1, 2, 3]))) buffer.append(4) res_a = buffer.rmatmul(A, empty(3)) res_b = buffer.rmatmul(B, empty(3)) res_c = buffer.rmatmul(C, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(2, 5))) self.assertTrue(allclose(res_b, B @ arange(2, 5))) self.assertTrue(allclose(res_c, C @ arange(2, 5))) buffer.append(5) res_a = buffer.rmatmul(A, empty(3)) res_b = buffer.rmatmul(B, empty(3)) res_c = buffer.rmatmul(C, empty(3)) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ arange(3, 6))) self.assertTrue(allclose(res_b, B @ arange(3, 6))) self.assertTrue(allclose(res_c, C @ arange(3, 6))) def test_rmatmul2_1dnd(self): """Tests X @ buffer where X.ndim == 1 and buffer.ndim > 1""" data1 = zeros((3, 3)) data2 = zeros((3, 3, 3)) A = rand(3) test1 = arange(9).reshape(3, 3) test2 = arange(27).reshape(3, 3, 3) buffer1 = NumpyCircularBuffer(data1) buffer2 = NumpyCircularBuffer(data2) buffer1.append(arange(3)) buffer1.append(arange(3, 6)) buffer1.append(arange(6, 9)) buffer2.append(arange(9).reshape(3, 3)) buffer2.append(arange(9, 18).reshape(3, 3)) buffer2.append(arange(18, 27).reshape(3, 3)) res_buf1 = buffer1.rmatmul(A, empty(3)) res_buf2 = buffer2.rmatmul(A, empty((3, 3))) self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(9, 12)) buffer2.append(arange(27, 36).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = buffer1.rmatmul(A, empty(3)) res_buf2 = buffer2.rmatmul(A, empty((3, 3))) self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(12, 15)) buffer2.append(arange(36, 45).reshape(3, 3)) test1 += 3 test2 += 9 res_buf1 = buffer1.rmatmul(A, empty(3)) res_buf2 = buffer2.rmatmul(A, empty((3, 3))) self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) buffer1.append(arange(15, 18)) buffer2.append(arange(45, 54).reshape((3, 3))) test1 += 3 test2 += 9 res_buf1 = buffer1.rmatmul(A, empty(3)) res_buf2 = buffer2.rmatmul(A, empty((3, 3))) self.assertIsInstance(res_buf1, ndarray) self.assertIsInstance(res_buf2, ndarray) self.assertTrue(allclose(res_buf1, A @ test1)) self.assertTrue(allclose(res_buf2, A @ test2)) def test_rmatmul2_2d2d(self): data = zeros((3, 3)) A = zeros(9).reshape(3, 3) B = rand(9).reshape(3, 3) C = rand(12).reshape(4, 3) fill_diagonal(A, arange(1, 4)) buffer = NumpyCircularBuffer(data) buffer.append(arange(3)) buffer.append(arange(3, 6)) buffer.append(arange(6, 9)) test = arange(9).reshape(3, 3) self.assertTrue(array_equal(buffer, test)) res_a = buffer.rmatmul(A, empty((3, 3))) res_b = buffer.rmatmul(B, empty((3, 3))) res_c = buffer.rmatmul(C, empty((4, 3))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) buffer.append([9, 10, 11]) test += 3 res_a = buffer.rmatmul(A, empty((3, 3))) res_b = buffer.rmatmul(B, empty((3, 3))) res_c = buffer.rmatmul(C, empty((4, 3))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) def test_rmatmul2_ndnd(self): data = zeros((3, 3, 3)) A = zeros(27).reshape(3, 3, 3) B = arange(27).reshape(3, 3, 3) C = arange(3*8*3).reshape(3, 8, 3) fill_diagonal(A, [1, 2, 3]) buffer = NumpyCircularBuffer(data) filler = arange(9).reshape(3, 3) buffer.append(filler) buffer.append(filler + 9) buffer.append(filler + 18) test = arange(27).reshape(3, 3, 3) res_a = buffer.rmatmul(A, empty((3, 3, 3))) res_b = buffer.rmatmul(B, empty((3, 3, 3))) res_c = buffer.rmatmul(C, empty((3, 8, 3))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) buffer.append(filler + 27) test += 9 res_a = buffer.rmatmul(A, empty((3, 3, 3))) res_b = buffer.rmatmul(B, empty((3, 3, 3))) res_c = buffer.rmatmul(C, empty((3, 8, 3))) self.assertIsInstance(res_a, ndarray) self.assertIsInstance(res_b, ndarray) self.assertIsInstance(res_c, ndarray) self.assertTrue(array_equal(res_a, A @ test)) self.assertTrue(allclose(res_b, B @ test)) self.assertTrue(allclose(res_c, C @ test)) def test_forward_1d(self): data = zeros(3) test = zeros(3) buffer = NumpyCircularBuffer(data) buffer.append(1) test[0] = 1 self.assertTrue(array_equal(buffer, test)) buffer.append(2) test[1] = 2 self.assertTrue(array_equal(buffer, test)) buffer.append(3) test[2] = 3 self.assertTrue(array_equal(buffer, test)) self.assertTrue(buffer.full) self.assertEqual(buffer.pop(), data[0]) self.assertEqual(buffer.pop(), data[1]) self.assertEqual(buffer.pop(), data[2]) self.assertTrue(buffer.empty) def test_forward_nd(self): data = zeros((3, 3, 3)) buffer = NumpyCircularBuffer(data) test = zeros((3, 3, 3)) buffer.append(1) test[0] = 1 self.assertTrue(array_equal(buffer, test)) buffer.append(2) test[1] = 2 self.assertTrue(array_equal(buffer, test)) buffer.append(3) test[2] = 3 self.assertTrue(array_equal(buffer, test)) self.assertTrue(buffer.full) self.assertTrue(array_equal(buffer.pop(), data[0])) self.assertTrue(array_equal(buffer.pop(), data[1])) self.assertTrue(array_equal(buffer.pop(), data[2])) self.assertTrue(buffer.empty) def test_peek(self): data = zeros((3, 3, 3)) buffer = NumpyCircularBuffer(data) self.assertRaises(ValueError, buffer.peek) buffer.append(1) self.assertTrue(array_equal(buffer.peek(), ones((3, 3)))) buffer.append(2) self.assertTrue(array_equal(buffer.peek(), ones((3, 3)))) buffer.append(3) self.assertTrue(array_equal(buffer.peek(), ones((3, 3)))) buffer.append(4) self.assertTrue(array_equal(buffer.peek(), ones((3, 3)) * 2)) buffer.append(5) self.assertTrue(array_equal(buffer.peek(), ones((3, 3)) * 3)) buffer.append(6) self.assertTrue(array_equal(buffer.peek(), ones((3, 3)) * 4)) def test_all(self): data = zeros((3, 3, 3)) buffer = NumpyCircularBuffer(data) buffer.append(1) self.assertTrue(buffer.all()) buffer.append(1) self.assertTrue(buffer.all()) buffer.append(0) self.assertFalse(buffer.all()) buffer.append(1) self.assertFalse(buffer.all()) buffer.append(1) self.assertFalse(buffer.all()) buffer.append(2) self.assertTrue(buffer.all()) def test_any(self): data = zeros((3, 3, 3)) buffer = NumpyCircularBuffer(data) buffer.append([0, 0, 1]) self.assertTrue(buffer.any()) buffer.append(0) self.assertTrue(buffer.any()) buffer.append(0) self.assertTrue(buffer.any()) buffer.append(0) self.assertFalse(buffer.any()) buffer.append(0) self.assertFalse(buffer.any()) buffer.append(2) self.assertTrue(buffer.any()) def test_byteswap(self): data = zeros(3) test = zeros(3) buffer = NumpyCircularBuffer(data) r = randint(100) buffer.append(r) test[0] = r r = randint(100) buffer.append(r) test[1] = r r = randint(100) buffer.append(r) test[2] = r res = buffer.byteswap() self.assertTrue(array_equal(res, test.byteswap())) self.assertIsInstance(res, ndarray) self.assertIsNot(buffer, res) r = randint(100) buffer.append(r) test[0] = r test = roll(test, -1) res = buffer.byteswap() self.assertTrue(array_equal(res, test.byteswap())) self.assertIsInstance(res, ndarray) self.assertIsNot(buffer, res) r = randint(100) buffer.append(r) test[0] = r test = roll(test, -1) res = buffer.byteswap() self.assertTrue(array_equal(res, test.byteswap())) self.assertIsInstance(res, ndarray) self.assertIsNot(buffer, res) r = randint(100) buffer.append(r) test[0] = r test = roll(test, -1) res = buffer.byteswap() self.assertTrue(array_equal(res, test.byteswap())) self.assertIsInstance(res, ndarray) self.assertIsNot(buffer, res) r = randint(100) buffer.append(r) res = buffer.byteswap() inplace_res = buffer.byteswap(inplace=True) self.assertTrue(array_equal(res, roll(inplace_res.view(ndarray), -1))) self.assertTrue(shares_memory(inplace_res, buffer)) self.assertIsInstance(res, ndarray) self.assertIsInstance(inplace_res, ndarray) def test_clip(self): data = zeros(3) test = zeros(3) buffer = NumpyCircularBuffer(data) r = randint(100) buffer.append(r) test[0] = r r = randint(100) buffer.append(r) test[1] = r r = randint(100) buffer.append(r) test[2] = r res = buffer.clip(1, 10) self.assertTrue(array_equal(test, buffer)) self.assertTrue(array_equal(res, test.clip(1, 10))) self.assertIsInstance(res, ndarray) r = randint(100) buffer.append(r) test[0] = r test = roll(test, -1) res = buffer.clip(1, 10) self.assertTrue(array_equal(res, test.clip(1, 10))) self.assertIsInstance(res, ndarray) r = randint(100) buffer.append(r) test[0] = r test = roll(test, -1) res = buffer.clip(1, 10) self.assertTrue(array_equal(res, test.clip(1, 10))) self.assertIsInstance(res, ndarray) r = randint(100) buffer.append(r) test[0] = r test = roll(test, -1) res = buffer.clip(1, 10) self.assertTrue(array_equal(res, test.clip(1, 10))) self.assertIsInstance(res, ndarray) self.assertIsNot(buffer, res) r = randint(100) buffer.append(r) res = buffer.clip(1, 10) inplace_res = buffer.clip(1, 10, out=buffer) self.assertTrue(array_equal(res, roll(inplace_res.view(ndarray), -1))) self.assertTrue(shares_memory(inplace_res.data, buffer.data)) self.assertIsInstance(res, ndarray) self.assertIsInstance(inplace_res, ndarray) def test_conj(self): data = zeros(3, dtype=complex) test = zeros(3, dtype=complex) buffer = NumpyCircularBuffer(data) r = rand() buffer.append(r + r*1j) test[0] = r + r*1j r = rand() buffer.append(r + r*1j) test[1] = r + r*1j r = rand() buffer.append(r + r*1j) test[2] = r + r*1j res = buffer.conj() self.assertTrue(array_equal(res, test.conj())) self.assertIsInstance(res, ndarray) r = rand() buffer.append(r + r*1j) test[0] = r + r*1j test =
roll(test, -1)
numpy.roll
#!/usr/bin/env python # -*-coding:utf-8-*- # Original code from: https://github.com/ugursogukpinar/csv2arff/blob/master/csv2arff/csv2arff.py import argparse import numpy as np import sys class Csv2Arff(): ''' Reads a CSV file and determines attributes' types and converts to an ARFF file. ''' def __init__(self, args): print("Converting CSV to ARFF...") self.args = args self.attribute_types = {} if self.args['input'] == self.args['output']: sys.exit("input file can't be the same as the output file!") self.read_csv() self.determine_attribute_types() self.write_arff() print("Finished conversion. ARFF file written at: %s" % self.args['output']) def read_csv(self): if self.verbose(): print("Reading CSV file '%s'" % (self.args['input'])) data = np.genfromtxt(self.args['input'], delimiter=self.args.get('delimiter',','), dtype='str') self.columns = data[0] if self.is_without_labels(): self.data = np.array(data[:]) else: self.data =
np.array(data[1:])
numpy.array
import numpy as np from os.path import join as os_join import matplotlib.pyplot as plt import source.postprocess as post from source.utilities import utilities as utils from source.utilities import global_definitions as GD from plot_settings import plot_settings COLORS = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red'] #params = plot_settings.get_params(w=7.3, h=5.2) dest_folder = 'plots_new\\CAARC' def get_CAARC_properties(src_file_name = 'CAARC_advanced_eigenmodes.txt', evaluate_at = None, interpolation_degree = 3): ''' a dictionary is returned with information about the building A - storey (number), storey_level, mass, frequencies, eigenmodes the eigenmodes are appened to a list for each dof a list is created in a dictionary ''' src = os_join(*['inputs','eigenvectors', src_file_name]) caarc = {} caarc['storey'] = np.flip(np.loadtxt(src, usecols = (0,))) # [-] caarc['storey_level'] = np.flip(np.loadtxt(src, usecols = (1,))) # [m] caarc['dimensons'] = {'x':240,'y':24, 'z':72} caarc['mass'] = 1231000.0 caarc['frequencies'] = [0.231, 0.429, 0.536] caarc['eigenmodes'] = {'x':[],'y':[],'z':[],'a':[]} caarc['eigenmodes_fitted'] = {'x':[],'y':[],'z':[],'a':[]} for i in range (3): caarc['eigenmodes']['x'].append(np.zeros(60)) caarc['eigenmodes']['y'].append(np.flip(np.loadtxt(src, usecols = (3+3*i,)))) caarc['eigenmodes']['z'].append(np.flip(np.loadtxt(src, usecols = (2+3*i,)))) caarc['eigenmodes']['a'].append(np.flip(np.loadtxt(src, usecols = (4+3*i,)))) if not evaluate_at: x = caarc['storey_level'] else: x = evaluate_at for dof_label in ['y', 'z', 'a']: for mode_id in range(3): y = caarc['eigenmodes'][dof_label][mode_id] current_polynomial = np.poly1d(np.polyfit(caarc['storey_level'] ,y , interpolation_degree)) values = [] for x_i in x:# evaluate the fitted eigenmode at certain intervals values.append(current_polynomial(x_i)) caarc['eigenmodes_fitted'][dof_label].append(np.asarray(values)) return caarc def get_CAARC_eigenform_polyfit (CAARC_eigenmodes, evaluate_at = None, degree = 5): ''' retruns the values of a fitted caarc eigenmode. evaluate_at must be a list of x coordiantes at which the fitted curve should be evaluated. if it is not provided the fitted curve is evaluated at each storey level of caarc. ''' eigenmodes_fitted = {} #CAARC_eigenmodes = self.structure_model.CAARC_eigenmodes # returns the fitted polynomial and the discrete array of displacements if not evaluate_at: x = CAARC_eigenmodes['storey_level'] else: x = evaluate_at eigenmodes_fitted['storey_level'] = np.copy(x) eigenmodes_fitted['eigenmodes'] = [] for mode_id in range(1,4): eigenmodes_fitted['eigenmodes'].append({}) for dof_label in ['y', 'z', 'a']: y = CAARC_eigenmodes['eigenmodes'][mode_id][dof_label] current_polynomial = np.poly1d(np.polyfit(CAARC_eigenmodes['storey_level'],y,degree)) values = [] for x_i in x:# evaluate the fitted eigenmode at certain intervals values.append(current_polynomial(x_i)) eigenmodes_fitted['eigenmodes'][mode_id][dof_label] = np.asarray(values) return eigenmodes_fitted def get_m_eff(eigenmodes_dict, mode_id, main_direction_only, print_to_console): ''' retruns the generalized mass and the participation factor of a mode prints the effective mass that should be around 60% of the total mass (first modes) ''' mass = eigenmodes_dict['mass'] # constant over height phi_y = eigenmodes_dict['eigenmodes']['y'][mode_id] phi_z = eigenmodes_dict['eigenmodes']['z'][mode_id] if main_direction_only: if mode_id == 1: participation_factor = (mass * sum(phi_y))**2 # mass not in the sum since it is constant elif mode_id == 2: participation_factor = (mass * sum(phi_z))**2 else: participation_factor = (mass * sum(np.add(phi_y, phi_z)))**2 if main_direction_only: if mode_id == 1: generalized_mass = mass * sum(
np.square(phi_y)
numpy.square
import numpy as np from extra_data.components import AGIPD1M import dask.array as da import xarray as xr from dask.distributed import Client, progress import warnings import h5py as h5 import bottleneck as bn import pdb class Calibrator: """Calibrate AGIPD dataset""" adu_per_photon = 66 mask = np.ones((16, 512, 128), "bool") def __init__( self, run, cell_ids, train_ids, flatfield_run_number=None, dark_run_number=None, mask=None, is_dark=False, is_flatfield=False, apply_internal_mask=False, dropletize=False, stripes=None, baseline=False, asic_commonmode=False, subshape=(64, 64), cell_commonmode=False, cellCM_window=2, ): #: DataCollection: e.g., returned from extra_data.RunDirectory self.run = run #: bool: True if data is a dark run self.is_dark = is_dark #: bool: True if data is a flatfield run self.is_flatfield = is_flatfield #: tuple: asic (or subasic) shape for asic commonmode. Default (64, 64) self.subshape = subshape self.cell_ids = cell_ids self.train_ids = train_ids # corrections applied on Dask lazy array self.corrections = { "dark_subtraction": False, "baseline": baseline, # baseline has to be applied # before any masking "masking": False, # Switch of masking with DataArray.where and mask on workers. "internal_masking": apply_internal_mask, # 'dropletize': dropletize, } # corrections applied on each worker self.worker_corrections = { "asic_commonmode": asic_commonmode, "cell_commonmode": cell_commonmode, "dropletize": dropletize, } self.mask = mask self.xmask = self.mask self.is_proc = None #: (np.ndarray): average dark over trains self.avr_dark = None #: (np.ndarray): mask calculated from darks self.dark_mask = None #: str: file with dark data. self.darkfile = None # setting the dark run also sets the previous dark attributes self.dark_run_number = dark_run_number #: (np.ndarray): flatfield data self.flatfield = None #: (np.ndarray): mask calculated from flatfields self.flatfield_mask = None #: str: file with flatfield data. self.flatfieldfile = None # setting the flatfield run also sets the previous attributes self.flatfield_run_number = flatfield_run_number self.stripes = stripes # Darks will not be calibrated (overwrite configfile) if self.is_dark or self.is_flatfield: for correction in ["corrections", "worker_corrections"]: correction_dict = getattr(self, correction) for key in correction_dict: correction_dict[key] = False #: DataArray: the run AGIPD data self.data = None def __getstate__(self): """needed for apply dask.apply_along_axis We return only those attributes needed by the worker functions """ attrs = ["adu_per_photon", "worker_corrections", "subshape", "mask"] return {attr: getattr(self, attr) for attr in attrs} @property def xmask(self): """DataArray: pixel mask as xarray.DataArray""" return self.__xmask @xmask.setter def xmask(self, mask): if isinstance(mask, xr.DataArray): mask = mask.values elif isinstance(mask, np.ndarray): pass else: raise ValueError(f"{type(mask)} cannot be used as mask.") self.__xmask = xr.DataArray( mask, dims=("module", "dim_0", "dim_1"), coords={ "module": np.arange(16), "dim_0": np.arange(512), "dim_1": np.arange(128), }, ) @property def dark_run_number(self): """The run number and the file index to load the average dark""" return self.__dark_run_number @dark_run_number.setter def dark_run_number(self, number): if number is None: pass elif len(number) == 2: self.darkfile = f"r{number[0]:04}-dark_{number[1]:03}.h5" with h5.File(self.darkfile, "r") as f: avr_dark = f["dark/intensity"][:] pulse_ids = f["identifiers/pulse_ids"][:].flatten() self.dark_mask = self.xmask.copy(data=f["dark/mask"][:]) xdark = xr.DataArray( avr_dark, dims=("pulseId", "module", "dim_0", "dim_1"), coords={ "pulseId": pulse_ids, "module": np.arange(16), "dim_0": np.arange(512), "dim_1": np.arange(128), }, ) xdark = xdark.transpose("module", "dim_0", "dim_1", "pulseId") self.avr_dark = xdark self.is_proc = False self.corrections["dark_subtraction"] = True # internal mask available only in processed data self.corrections["internal_masking"] = False else: raise ValueError( "Dark input parameter could not be processed:\n" f"{number}" ) self.__dark_run_number = number @property def flatfield_run_number(self): """The run number and the file index to load the flatfield""" return self.__flatfield_run_number @flatfield_run_number.setter def flatfield_run_number(self, number): if number is None: pass elif len(number) == 2: self.flatfieldfile = f"r{number[0]:04}-flatfield_{number[1]:03}.h5" with h5.File(self.flatfieldfile, "r") as f: flatfield = f["flatfield/intensity"][:] pulse_ids = f["identifiers/pulse_ids"][:].flatten() self.flatfield_mask = self.xmask.copy(data=f["flatfield/mask"][:]) xflatfield = xr.DataArray( flatfield, dims=("pulseId", "module", "dim_0", "dim_1"), coords={ "pulseId": pulse_ids, "module": np.arange(16), "dim_0":
np.arange(512)
numpy.arange
from typing import ( Dict, Optional, ) import numpy as np from pandas.compat._optional import import_optional_dependency from pandas.core.util.numba_ import ( NUMBA_FUNC_CACHE, get_jit_arguments, ) def generate_online_numba_ewma_func(engine_kwargs: Optional[Dict[str, bool]]): """ Generate a numba jitted groupby ewma function specified by values from engine_kwargs. Parameters ---------- engine_kwargs : dict dictionary of arguments to be passed into numba.jit Returns ------- Numba function """ nopython, nogil, parallel = get_jit_arguments(engine_kwargs) cache_key = (lambda x: x, "online_ewma") if cache_key in NUMBA_FUNC_CACHE: return NUMBA_FUNC_CACHE[cache_key] numba = import_optional_dependency("numba") @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) def online_ewma( values: np.ndarray, deltas: np.ndarray, minimum_periods: int, old_wt_factor: float, new_wt: float, old_wt: np.ndarray, adjust: bool, ignore_na: bool, ): """ Compute online exponentially weighted mean per column over 2D values. Takes the first observation as is, then computes the subsequent exponentially weighted mean accounting minimum periods. """ result = np.empty(values.shape) weighted_avg = values[0] nobs = (~np.isnan(weighted_avg)).astype(np.int64) result[0] = np.where(nobs >= minimum_periods, weighted_avg, np.nan) for i in range(1, len(values)): cur = values[i] is_observations = ~np.isnan(cur) nobs += is_observations.astype(np.int64) for j in numba.prange(len(cur)): if not np.isnan(weighted_avg[j]): if is_observations[j] or not ignore_na: # note that len(deltas) = len(vals) - 1 and deltas[i] is to be # used in conjunction with vals[i+1] old_wt[j] *= old_wt_factor ** deltas[j - 1] if is_observations[j]: # avoid numerical errors on constant series if weighted_avg[j] != cur[j]: weighted_avg[j] = ( (old_wt[j] * weighted_avg[j]) + (new_wt * cur[j]) ) / (old_wt[j] + new_wt) if adjust: old_wt[j] += new_wt else: old_wt[j] = 1.0 elif is_observations[j]: weighted_avg[j] = cur[j] result[i] = np.where(nobs >= minimum_periods, weighted_avg, np.nan) return result, old_wt return online_ewma class EWMMeanState: def __init__(self, com, adjust, ignore_na, axis, shape): alpha = 1.0 / (1.0 + com) self.axis = axis self.shape = shape self.adjust = adjust self.ignore_na = ignore_na self.new_wt = 1.0 if adjust else alpha self.old_wt_factor = 1.0 - alpha self.old_wt =
np.ones(self.shape[self.axis - 1])
numpy.ones
# coding=utf-8 import os import logging from typing import Dict, List, Tuple, Union import numpy as np from scipy.stats import entropy from scipy.sparse import csr_matrix from sklearn.preprocessing import normalize from sklearn.metrics.pairwise import cosine_similarity try: import networkx as nx from networkx.algorithms.bipartite.matrix import from_biadjacency_matrix except ImportError: nx = None import torch from transformers import BertModel, BertTokenizer, XLMModel, XLMTokenizer, RobertaModel, RobertaTokenizer, XLMRobertaModel, XLMRobertaTokenizer, AutoConfig, AutoModel, AutoTokenizer from simalign.utils import get_logger LOG = get_logger(__name__) class EmbeddingLoader(object): def __init__(self, model: str="bert-base-multilingual-cased", device=torch.device('cpu'), layer: int=8): TR_Models = { 'bert-base-uncased': (BertModel, BertTokenizer), 'bert-base-multilingual-cased': (BertModel, BertTokenizer), 'bert-base-multilingual-uncased': (BertModel, BertTokenizer), 'bert-large-uncased': (BertModel, BertTokenizer), 'bert-large-cased': (BertModel, BertTokenizer), 'xlm-mlm-100-1280': (XLMModel, XLMTokenizer), 'xlm-roberta-base': (XLMRobertaModel, XLMRobertaTokenizer), 'xlm-roberta-large': (XLMRobertaModel, XLMRobertaTokenizer), 'roberta-base': (RobertaModel, RobertaTokenizer), 'roberta-large': (RobertaModel, RobertaTokenizer), # <====================================== } self.model = model self.device = device self.layer = layer self.emb_model = None self.tokenizer = None if model in TR_Models: model_class, tokenizer_class = TR_Models[model] self.emb_model = model_class.from_pretrained(model, output_hidden_states=True) self.emb_model.eval() self.emb_model.to(self.device) self.tokenizer = tokenizer_class.from_pretrained(model) LOG.info("Initialized the EmbeddingLoader with model: {}".format(self.model)) else: if os.path.isdir(model): # try to load model with auto-classes config = AutoConfig.from_pretrained(model, output_hidden_states=True) self.emb_model = AutoModel.from_pretrained(model, config=config) self.emb_model.eval() self.emb_model.to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(model) LOG.info("Initialized the EmbeddingLoader from path: {}".format(self.model)) else: raise ValueError("The model '{}' is not recognised!".format(model)) def get_embed_list(self, sent_batch: List[List[str]]) -> torch.Tensor: if self.emb_model is not None: with torch.no_grad(): if not isinstance(sent_batch[0], str): inputs = self.tokenizer(sent_batch, is_split_into_words=True, padding=True, truncation=True, return_tensors="pt") else: inputs = self.tokenizer(sent_batch, is_split_into_words=False, padding=True, truncation=True, return_tensors="pt") if self.layer == "cat": outputs = self.emb_model(**inputs.to(self.device))[2] # all the hidden layers, list of 13 tensors of torch.Size([2, 32, 768]) # Exa - No of BPE token = 32, No of Layers = 13 and emb_dim = 768 token_embeddings = torch.stack(outputs, dim=0) # [13, 2, 32, 768] token_embeddings = token_embeddings.permute(1,0,2,3) # [2, 13, 32, 768] token_embeddings_a = token_embeddings[0, ...] # [13, 32, 768] token_embeddings_b = token_embeddings[1, ...] # [13, 32, 768] token_embeddings_a = token_embeddings[0, ...].permute(1,0,2) # [32, 13, 768] token_embeddings_b = token_embeddings[1, ...].permute(1,0,2) # [32, 13, 768] token_vecs_cat_a = [] for token in token_embeddings_a: cat_vec = torch.cat((token[-1], token[-2], token[-3], token[-4]), dim=0) token_vecs_cat_a.append(cat_vec) token_vecs_cat_b = [] for token in token_embeddings_b: cat_vec = torch.cat((token[-1], token[-2], token[-3], token[-4]), dim=0) token_vecs_cat_b.append(cat_vec) outputs_a = torch.stack(token_vecs_cat_a)[np.newaxis, :, :] # [1, 32, 3072]) outputs_b = torch.stack(token_vecs_cat_b)[np.newaxis, :, :] # [1, 32, 3072]) outputs = torch.cat((outputs_a, outputs_b), dim = 0) # [2, 32, 3072]) # torch.Size([2, no_of_bpes, emb_dim X 4]) elif self.layer == "sum": outputs = self.emb_model(**inputs.to(self.device))[2] # all the hidden layers, list of 13 tensors of torch.Size([2, 32, 768]) # Exa - No of BPE token = 32, No of Layers = 13 and emb_dim = 768 token_embeddings = torch.stack(outputs, dim=0) # [13, 2, 32, 768] token_embeddings = token_embeddings.permute(1,0,2,3) # [2, 13, 32, 768] token_embeddings_a = token_embeddings[0, ...] # [13, 32, 768] token_embeddings_b = token_embeddings[1, ...] # [13, 32, 768] token_embeddings_a = token_embeddings[0, ...].permute(1,0,2) # [32, 13, 768] token_embeddings_b = token_embeddings[1, ...].permute(1,0,2) # [32, 13, 768] token_vecs_sum_a = [] for token in token_embeddings_a: sum_vec = torch.sum(token[-4:], dim=0) token_vecs_sum_a.append(sum_vec) token_vecs_sum_b = [] for token in token_embeddings_b: sum_vec = torch.sum(token[-4:], dim=0) token_vecs_sum_b.append(sum_vec) outputs_a = torch.stack(token_vecs_sum_a)[np.newaxis, :, :] # [1, 32, 768]) outputs_b = torch.stack(token_vecs_sum_b)[np.newaxis, :, :] # [1, 32, 768]) outputs = torch.cat((outputs_a, outputs_b), dim = 0) # [2, 32, 768]) # torch.Size([2, no_of_bpes, emb_dim]) else: outputs = self.emb_model(**inputs.to(self.device))[2][self.layer] # [2, 32, 768]) # torch.Size([2, no_of_bpes, emb_dim]) return outputs[:, 1:-1, :] else: return None class SentenceAligner(object): def __init__(self, model: str = "bert", token_type: str = "bpe", distortion: float = 0.0, matching_methods: str = "mai", device: str = "cpu", layer: int = 8): model_names = { "bert_bu": 'bert-base-uncased', # b = base, u = uncased "bert_bmc": "bert-base-multilingual-cased", # m = multilingual, c = cased "bert_bmu": "bert-base-multilingual-uncased", "bert_lu": "bert-large-uncased", # l = large "bert_lc": "bert-large-cased", "xlmr_base": "xlm-roberta-base", "xlmr_large": "xlm-roberta-large", "roberta_base": "roberta-base", "roberta_large": "roberta-large", # <====================================== } all_matching_methods = {"a": "inter", "m": "mwmf", "i": "itermax", "f": "fwd", "r": "rev"} self.model = model if model in model_names: self.model = model_names[model] self.token_type = token_type self.distortion = distortion self.matching_methods = [all_matching_methods[m] for m in matching_methods] self.device = torch.device(device) self.embed_loader = EmbeddingLoader(model=self.model, device=self.device, layer=layer) @staticmethod def get_max_weight_match(sim: np.ndarray) -> np.ndarray: if nx is None: raise ValueError("networkx must be installed to use match algorithm.") def permute(edge): if edge[0] < sim.shape[0]: return edge[0], edge[1] - sim.shape[0] else: return edge[1], edge[0] - sim.shape[0] G = from_biadjacency_matrix(csr_matrix(sim)) matching = nx.max_weight_matching(G, maxcardinality=True) matching = [permute(x) for x in matching] matching = sorted(matching, key=lambda x: x[0]) res_matrix = np.zeros_like(sim) for edge in matching: res_matrix[edge[0], edge[1]] = 1 return res_matrix @staticmethod def get_similarity(X: np.ndarray, Y: np.ndarray) -> np.ndarray: return (cosine_similarity(X, Y) + 1.0) / 2.0 @staticmethod def average_embeds_over_words(bpe_vectors: np.ndarray, word_tokens_pair: List[List[str]]) -> List[np.array]: w2b_map = [] cnt = 0 w2b_map.append([]) for wlist in word_tokens_pair[0]: w2b_map[0].append([]) for x in wlist: w2b_map[0][-1].append(cnt) cnt += 1 cnt = 0 w2b_map.append([]) for wlist in word_tokens_pair[1]: w2b_map[1].append([]) for x in wlist: w2b_map[1][-1].append(cnt) cnt += 1 new_vectors = [] for l_id in range(2): w_vector = [] for word_set in w2b_map[l_id]: w_vector.append(bpe_vectors[l_id][word_set].mean(0)) new_vectors.append(np.array(w_vector)) return new_vectors @staticmethod def get_alignment_matrix(sim_matrix: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: m, n = sim_matrix.shape forward = np.eye(n)[sim_matrix.argmax(axis=1)] # m x n backward = np.eye(m)[sim_matrix.argmax(axis=0)] # n x m return forward, backward.transpose() @staticmethod def apply_distortion(sim_matrix: np.ndarray, ratio: float = 0.5) -> np.ndarray: shape = sim_matrix.shape if (shape[0] < 2 or shape[1] < 2) or ratio == 0.0: return sim_matrix pos_x = np.array([[y / float(shape[1] - 1) for y in range(shape[1])] for x in range(shape[0])]) pos_y = np.array([[x / float(shape[0] - 1) for x in range(shape[0])] for y in range(shape[1])]) distortion_mask = 1.0 - ((pos_x - np.transpose(pos_y)) ** 2) * ratio return np.multiply(sim_matrix, distortion_mask) @staticmethod def iter_max(sim_matrix: np.ndarray, max_count: int=2) -> np.ndarray: alpha_ratio = 0.9 m, n = sim_matrix.shape forward = np.eye(n)[sim_matrix.argmax(axis=1)] # m x n backward = np.eye(m)[sim_matrix.argmax(axis=0)] # n x m inter = forward * backward.transpose() if min(m, n) <= 2: return inter new_inter = np.zeros((m, n)) count = 1 while count < max_count: mask_x = 1.0 - np.tile(inter.sum(1)[:, np.newaxis], (1, n)).clip(0.0, 1.0) mask_y = 1.0 - np.tile(inter.sum(0)[np.newaxis, :], (m, 1)).clip(0.0, 1.0) mask = ((alpha_ratio * mask_x) + (alpha_ratio * mask_y)).clip(0.0, 1.0) mask_zeros = 1.0 - ((1.0 - mask_x) * (1.0 - mask_y)) if mask_x.sum() < 1.0 or mask_y.sum() < 1.0: mask *= 0.0 mask_zeros *= 0.0 new_sim = sim_matrix * mask fwd = np.eye(n)[new_sim.argmax(axis=1)] * mask_zeros bac =
np.eye(m)
numpy.eye
""" Run random agent to test the 3D environment """ import numpy as np import gym import gym_pcgrl from pdb import set_trace as TT # from utils import make_vec_envs from gym_pcgrl.envs.helper_3D import calc_num_regions, debug_path, get_string_map,\ get_tile_locations, calc_longest_path, run_dijkstra import matplotlib.pyplot as plt ################################################################################ # test the helper functions tile_types = ["AIR", "DIRT"] ######## Test the path finding func and region counting func in stairing logic ######### # test_map_1: # size: 7 * 7 * 5 # longest path length: 28 + 2 + 29 = 59 test_map_1 = [ [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 0] ], [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1] ], [ [0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 0] ], [ [0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 1, 1, 1, 0] ] ] # test_map_2: # size: 7 * 7 * 5 # longest path length: 28 + 2 + 27 = 57 test_map_2 = [ [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 0] ], [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1] ], [ [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0] ], [ [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 1, 0, 0, 0] ] ] # test_map_3: # size: 7 * 7 * 5 # longest path length: 28 + 2 + 27 = 57 # info: identical to test_map_2, except that some unnecessary tiles are removed (to test region number) test_map_3 = [ [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 0] ], [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 1, 1, 1] ], [ [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0] # diff: [0, 0, 0, 1, 0, 0, 0] in test_map_2 ], [ [1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0] # diff: [0, 0, 1, 1, 0, 0, 0] in test_map_2 ] ] # test_map_4: # size: 3 * 6 * 6 # longest path length: 2 + 1 + 1 + 1 = 5 # info: small map for testing climbing stairs test_map_4 = [ [ [1, 0, 1], [1, 0, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1] ], [ [1, 0, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1] ], [ [1, 0, 1], [1, 0, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1], [1, 1, 1] ], [ [1, 1, 1], [1, 1, 1], [1, 0, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1] ], [ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1] ], [ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1] ] ] ########### For testing the 3D plotting ########### # test_map_5: # size: 3 * 3 * 3 test_map_5 = [ [ [1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0], ], [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0] ], [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0] ], [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0] ] ] ############ Test the path finding func in the jumping logic ############# # Note: In Minecraft jumping, the extra head room of the staring position and extra head room of the position 1 before # foothold needs to be garanteded # # |__ # O # 大_ __ # | | # | | # test_map_6: # size: 5 * 1 * 6 # This is the max jump distance in Minecraft (press double w + space to jump) # path length: 2 # region number: 1 # jump: 1 # jump distance: 3 test_map_6 = [ [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0] ] ] # test_map_7: # size: 5 * 1 * 6 # This is the max jump distance in Minecraft (press double w + space to jump) # path length: 2 # region number: 1 # jump: 1 # jump distance: 3 # info: valid jump, the head room of the foothold position is trivial test_map_7 = [ [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 1] # the head room of the foothold position is trivial ] ] # test_map_8: # size: 5 * 1 * 6 # This is the max jump distance in Minecraft (press double w + space to jump) # path length: 1 # region number: 1 # jump: 0 # jump distance: 3 # info: head blocked in starting position in either direction test_map_8 = [ [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0] ], [ [1, 0, 0, 0, 1] # head blocked in starting position in either direction ] ] # test_map_9: # size: 5 * 1 * 6 # This is the max jump distance in Minecraft (press double w + space to jump) # path length: 1 # region number: 1 # jump: 0 # jump distance: 3 # info: head blocked in the position before foothold position test_map_9 = [ [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 1] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 0, 0] ], [ [0, 0, 0, 1, 1] # head blocked in the position before foothold position ] ] # test_map_10: # size: 4 * 1 * 6 # jump distance: 2 # path length: 2 # region number: 1 # jump: 1 test_map_10 = [ [ [1, 0, 0, 1] ], [ [1, 0, 0, 1] ], [ [1, 0, 0, 1] ], [ [1, 0, 0, 1] ], [ [0, 0, 0, 0] ], [ [0, 0, 0, 0] ], [ [0, 0, 0, 0] ] ] # test_map_11: # size: 3 * 1 * 6 # jump distance: 1 # path length: 2 # region number: 1 # jump: 1 test_map_11 = [ [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [0, 0, 0] ], [ [0, 0, 0] ], [ [0, 0, 0] ] ] # test_map_12: # size: 3 * 1 * 6 # jump distance: 1 # path length: 2 # region number: 1 # jump: 1 # height difference: 1 # info: the height difference of starting point and foothold position is 1 test_map_12 = [ [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 0] # the height difference of starting point and foothold position is 1 ], [ [0, 0, 0] ], [ [0, 0, 0] ], [ [0, 0, 0] ] ] # test_map_13: # size: 3 * 1 * 6 # jump distance: 1 # path length: 2 # region number: 1 # jump: 1 # height difference: 2 # info: the height difference of starting point and foothold position is 1 test_map_13 = [ [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 0] ], [ [1, 0, 0] # the height difference of starting point and foothold position is 2 ], [ [0, 0, 0] ], [ [0, 0, 0] ], [ [0, 0, 0] ] ] # test_map_14: # size: 3 * 1 * 6 # jump distance: 1 # path length: 1 # region number: 1 # jump: 0 # height difference: 0 # info: head blocked in starting position in either direction test_map_14 = [ [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [0, 0, 0] ], [ [0, 0, 0] ], [ [1, 0, 1] ] ] # test_map_15: # size: 3 * 1 * 6 # jump distance: 1 # path length: 1 # region number: 1 # jump: 0 # height difference: 0 # info: head blocked in foothold position test_map_15 = [ [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [0, 0, 0] ], [ [0, 0, 0] ], [ [0, 1, 1] ] ] # test_map_16: # size: 3 * 1 * 6 # jump distance: 1 # path length: 2 # region number: 1 # jump: 1 # height difference: 0 # info: valid jump test_map_16 = [ [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [0, 0, 0] ], [ [0, 0, 0] ], [ [0, 0, 1] ] ] # test_map_17: # size: 3 * 1 * 6 # jump distance: 1 # path length: 2 # region number: 1 # jump: 1 # height difference: -1 # info: valid jump test_map_17 = [ [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 1] ], [ [1, 0, 0] ], [ [0, 0, 0] ], [ [0, 0, 1] ], [ [0, 0, 1] ] ] # TODO: test map for falling distance > 1 and <= 3 """ get the state of the test maps """ def get_test_state(test_map, tile_types): test_map = np.array(test_map) test_string_map = get_string_map(test_map, tile_types) map_locations = get_tile_locations(test_string_map, tile_types) # get the state of the test map path_length, path_coords = calc_longest_path(test_string_map, map_locations, ["AIR"], get_path=True) num_regions = calc_num_regions(test_string_map, map_locations, ["AIR"]) debug_path_coords = debug_path(path_coords, test_string_map, ["AIR"]) print("longest path length:", path_length) print("number of regions:", num_regions) print(f"The path is: {debug_path_coords}") return path_length, path_coords, num_regions """ plot the test maps using matplotlib 3D voxel / volumetric plotting """ def plot_3d_map(test_map): test_map = np.array(test_map) # change the map axis for plotting test_map = np.moveaxis(test_map, (0, 2), (2, 1)) # create the boolen map of the maze boolen_map = np.array(test_map) == 1 # create the color map of the maze color_map =
np.empty(test_map.shape, dtype=object)
numpy.empty
""" Created on Mon Nov 05 03:52:36 2018 @author: Paul """ ### Boiler-Plate ### import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import scipy as sp from numpy import random import time import csv from Class1_Eq import * from Func import * """ Change this value when changed in restart .i files """ global t_final t_final = 10000 # seconds global ss_fail_penalty ss_fail_penalty = 700 global cost_multiplier_for_nucl_safety_grade cost_multiplier_for_nucl_safety_grade = 5.0 ########################################################################### """"""""" Tri-System Option Class """"""""" ########################### ########################################################################### class Option: """ Inputs: x1 = Zion core loop x-optimization parameters x2 = PERCS loop x-optimization parameters x3 = PCS superstructure x-optimization parameters y = PCS superstructure y-optimization parameters Parameters: *Individual optimization parameters (explained in __init__() function) Core Loop: cards = Array of RELAP5 card numbers with core loop value changes i_vals = Array of column numbers for core loop value changes vals = Array of new values for core loop value changes T_fuel_cent_max = Maximum fuel centerline temperature (constraint) T_clad_surf_max = Maximum cladding surface temperature (constraint) MDNBR = Minimum departure from nucleate boiling ratio (constraint) T_f_over_max = [Boolean] Did fuel temperature go over the max? T_clad_surf_max = [Boolean] Did cladding temperature go over the max? MDNBR_below_1 = [Boolean] Did MDNBR go below 1.0? peanlized = [Boolean] Did the core loop receive a penalty? failed = [Boolean] Did the RELAP5 core loop model fail early? csvFileLocation = [String] Core's PyPost results file location *Parameters for T, P, m_dot, H, & x_e core data from PyPost k_eff = Effective multiplication factor per neutron cycle in core rho_0 = Initial reactivity of the core Bc = Cycle burn-up of the fuel [EFPD = effective full-power days] nBc = Discharge burn-up of the fuel cost_RCPs = Capital cost of RCPs op_cost_RCPs = Operating cost of RCPs (40 yrs) cost_total_fuel = Cost of UO2 fuel (40 yrs) PERCS Loop: list_card = Array of RELAP5 card numbers with PERCS value changes list_i_change = Array of column numbers for PERCS value changes list_change = Array of new values for PERCS value changes len_diff_717 = Parameter used to calculate length of Pipe 717 n_tubes = Number of tubes w/in PERCS tank m_MgCO3 = Mass of Magnesium Carbonate w/in PERCS tank T_over_620 = [Boolean] Did the core outlet T go above 620K? T_over_635 = [Boolean] Did the core outlet T go above 635K? csvFileLocation2 = [String] PERCS's PyPost results file location *Parameters for T & alpha PERCS data from PyPost PERCS_failed = [Boolean] Did the PERCS RELAP5 model fail early? PERCS_penalty = [Boolean] Did the PERCS receive a penalty? cost_penalty = Multaplicative cost penalty if 'PERCS_failed' = TRUE ss_fail = [Boolean] Redundant of Core's 'failed' p716, p717 = Pipes 716 & 717 (for cost purposes) support = Support structure for PERCS tank (for cost purposes) hx = Fake heat exchanger (for cost purposes) tank = PERCS tank (for cost purposes) chemical = MgCO3 in tank (for cost purposes) PCS Loop: pinch_point = [Boolean] s = Array of Stream instances for all 37 PCS superstructure streams phx = PHX instance representing the Steam Generator t1a, t1b, t1c, t2a, t2b = Turbines representing the diff. stages t1, t2 = Actual turbines (for cost purposes) t3, t4, t5 = Turbine instances for LPTs ms1, ms2 = Moisture separator instances rh1, rh2 = Reheater heat exchanger instances cond = Condenser instance fwh1, fwh2, fwh3, fwh4 = Feedwater heater instances p1, p2, p3, p4, p5, p6 = Pump instances Objective Functions: W_rcp = Core Obj. 1 - Total work of RCPs cost_1 = Core Obj. 2 - Total core loop costs obj_1_1 = Normalized W_rcp obj_1_2 = Normalized cost_1 fmm_1 = Maximin fitness value for core loop cost_2 = PERCS Obj. 1 - Total PERCS equipment cost dT_int = PERCS Obj. 2 - Integral of deviation of core outlet T alpha = PERCS Obj. 3 - Consumption of MgCO3 obj_2_1 = Normalized cost_2 obj_2_2 = Normalized dT_int obj_2_3 = Normalized alpha fmm_2 = Maximin fitness value for PERCS loop color = [String] PCS superstructure color/configuration eff = PCS Obj. 1 - Thermodynamic Efficiency cost_3 = PCS Obj. 2 - Total PCS equipment cost obj_3_1 = Normalized eff obj_3_2 = Normalized cost_3 fmm_3 = Maximin fitness value for PCS loop obj_fmm_1 = Normalized fmm_1 obj_fmm_2 = Normalized fmm_2 obj_fmm_3 = Normalized fmm_3 fmm_o = Overall Maximin fitness value Functions: init_ZION_calcs() - Fills arrays to make core loop RELAP5 value changes init_PERCS_calcs() - Fills arrays to make PERCS RELAP5 value changes final_ZION_calcs() - Grabs PyPost data, Performs final core loop calcs final_PERCS_calcs() - Grabs PyPost data, Performs final PERCS calcs Alpha_calcs() - Grabs alpha PyPost data, Calcs overall Alpha PCS_SS_calcs() - Calls solve_PCS(), Performs final PCS calcs solve_PCS() - Fills out PCS superstructure & converges the cycle """ def __init__(self,x1_in,x2_in,x3_in,y_in): self.opt_ID = 0 self.last_sec_penalty = False # Define the x- and y-optimization parameter arrays self.x1 = x1_in # ZION x-opt parameters self.x2 = x2_in # PERCS x-opt parameters self.x3 = x3_in # PCS x-opt parameters self.y = y_in # PCS y-opt parameters # Further define the ZION Core loop opt. parameters self.R_f = self.x1[0] # ft (radius of fuel per pin) self.H_fuel = self.x1[1] # ft (height of fuel pins) self.Dh_00 = self.x1[2] # ft (hydraulic D of pipes _00) self.Dh_12 = self.x1[3] # ft (hydraulic D of pipes _12) self.Dh_14 = self.x1[4] # ft (hydraulic D of pipes _14) # Further define the PERCS loop opt. parameters self.R_tank = self.x2[0] # ft (radius of PERCS HX tank) self.pitch = self.x2[1] # ft (pitch b/t tubes in PERCS) self.D_h = self.x2[2] # ft (hydraulic D of tubes) self.th = self.x2[3] # ft (thickness of tubes) self.Len = self.x2[4] # ft (length of tubes / height of tank) self.elev = self.x2[5] # ft (height diff. b/t core outlet & PERCS inlet) # Further define the PCS superstructure x-opt. parameters self.To_PHX = self.x3[0] # degC self.Po_t1a = self.x3[1] # bar self.mf_t1a = self.x3[2] self.Po_t1b = self.x3[3] # bar self.mf_t1b = self.x3[4] self.Po_t1c = self.x3[5] # bar self.Po_t2a = self.x3[6] # bar self.mf_t2a = self.x3[7] self.Po_t2b = self.x3[8] # bar # Further define the PCS superstructure y-opt. parameters self.y_ipt = self.y[0] # IPT self.y_rh1 = self.y[1] # RH 1 self.y_rh2 = self.y[2] # RH 2 self.y_s14 = self.y[3] # s[14] self.y_s4 = self.y[4] # s[4] self.y_s5 = self.y[5] # s[5] ################################ """ Init stuff for ZION Core """ ################################ # Initialize card, i_change, and change lists for ZION self.cards = np.empty(119,dtype='<U32') self.i_vals = np.zeros(119,dtype=int) self.vals = np.zeros(119) # Initiate the Booleans that tracks thermal design limit violations self.T_fuel_cent_max = 2100 # degC self.T_clad_surf_max = 348 # degC self.MDNBR = 0 self.T_f_over_max = False self.T_c_over_max = False self.MDNBR_below_1 = False self.penalized = False self.failed = False # Parameter data grabbed from .csv files using PyPost self.csvFileLocation = 'None' self.T_106 = 0.0 # degC self.T_110 = 0.0 # degC self.P_106 = 0.0 # bar self.P_110 = 0.0 # bar self.P_335 = np.zeros(6) # MPa self.P_p_out = 0.0 # bar self.m_dot_100 = 0.0 # kg/s self.m_dot_335 = 0.0 # kg/s self.m_dot_400 = 0.0 # kg/s self.m_dot_600 = 0.0 # kg/s self.m_dot_200 = 0.0 # kg/s self.H_106 = 0.0 # kJ/kg self.H_110 = 0.0 # kJ/kg self.H_335_1 = 0.0 # kJ/kg self.H_112_5 = 0.0 # kJ/kg self.H_114 = 0.0 # kJ/kg self.H_412_5 = 0.0 # kJ/kg self.H_414 = 0.0 # kJ/kg self.H_612_5 = 0.0 # kJ/kg self.H_614 = 0.0 # kJ/kg self.H_212_5 = 0.0 # kJ/kg self.H_214 = 0.0 # kJ/kg self.T_1336_1 = np.zeros(6) # K self.T_1336_17 = np.zeros(6) # K self.x_e_335 = np.zeros(6) # Other parameters that should be reported in Excel self.k_eff = 0.0 self.rho_0 = 0.0 self.Bc = 0.0 # EFPD self.nBc = 0.0 # yr # Three cost parameters that make up 'cost_1' self.cost_RCPs = 0.0 # $ self.op_cost_RCPs = 0.0 # $ self.cost_total_fuel = 0.0 # $ ############################ """ Init stuff for PERCS """ ############################ # Initialize card, i_change, and change lists for PERCS self.list_card = np.empty(39,dtype='<U32') self.list_i_change = np.zeros(39,dtype=int) self.list_change = np.empty(39) # Needed to calc the elev of Pipe 717, calc'd in Init_ZION_Calcs() self.len_diff_717 = 0.0 # ft # Initialize some stuff self.n_tubes = 0 self.m_MgCO3 = 0 # kg # Initiate the Boolean that says whether T goes over 620 K and/or 635 K self.T_over_620 = False self.T_over_635 = False # Initiate the arrays for t and T and the matrix for a (alpha) self.csvFileLocation2 = 'None' self.t = np.zeros(0) self.T_335_6 = np.zeros(0) self.dT_335_6 = np.zeros(0) self.a_array = np.zeros(100) self.a = np.zeros((10,10)) # Initiate the Boolean that says if there was a penalty for failing before t_final self.PERCS_failed = False self.PERCS_penalty = 1.0 self.cost_penalty = 1.0 self.ss_fail = False # Redundant # Initialize PERCS system equipment self.p716 = Pipe(self.elev) self.p717 = Pipe(0.0) self.support = Support(self.R_tank,self.Len,0.0) self.hx = HX() self.tank = Tank(self.R_tank,self.Len) self.chemical = Chemical(0) ########################## """ Init stuff for PCS """ ########################## self.pinch_point = False # Initialize all Streams with zeros self.s = np.array([0]) for i in range(1,37): self.s = np.append(self.s,Stream(0.0,0.0,0.0,0.0)) # Create the PCS equipment w/ original opt. parameters self.phx = PHX(self.To_PHX) self.t1a = Turbine(0.0,0.0,0.0,0.0,self.Po_t1a) self.t1b = Turbine(0.0,0.0,0.0,0.0,self.Po_t1b) self.t1c = Turbine(0.0,0.0,0.0,0.0,self.Po_t1c) self.t1 = Turbine(0.0,0.0,0.0,0.0,self.Po_t1c) self.ms1 = MS(self.Po_t1c,0.0,0.0,0.0) self.rh1 = Reheater(1,self.Po_t1a,0.0,0.0,0.0,self.Po_t1c,0.0,0.0,False) self.t2a = Turbine(0.0,0.0,0.0,0.0,self.Po_t2a) self.t2b = Turbine(0.0,0.0,0.0,0.0,self.Po_t2b) self.t2 = Turbine(0.0,0.0,0.0,0.0,self.Po_t2b) self.ms2 = MS(self.Po_t2b,0.0,0.0,0.0) self.rh2 = Reheater(2,0.0,0.0,0.0,0.0,self.Po_t2b,0.0,0.0,False) self.t3 = Turbine(0.0,0.0,0.0,0.0,0.086) self.t4 = Turbine(0.0,0.0,0.0,0.0,0.086) self.t5 = Turbine(0.0,0.0,0.0,0.0,0.086) self.cond = Condenser(0.086,0.0,0.0,0.0) self.fwh1 = FWH(0.0,0.0,0.0,0.0,0.0,0.0,0.0) self.fwh2 = FWH(0.0,0.0,0.0,0.0,0.0,0.0,0.0) self.fwh3 = FWH(0.0,0.0,0.0,0.0,0.0,0.0,0.0) self.fwh4 = FWH(0.0,0.0,0.0,0.0,0.0,0.0,0.0) self.p1 = Pump(0.0,0.0,0.0,self.phx.Pin) self.p2 = Pump(0.0,0.0,0.0,self.Po_t1a) self.p3 = Pump(0.0,0.0,0.0,0.0) self.p4 = Pump(0.0,0.0,0.0,0.0) self.p5 = Pump(0.0,0.0,0.0,0.0) self.p6 = Pump(0.0,0.0,0.0,0.0) ########################################################## """ Initiate all objective function and maximin values """ ########################################################## # For ZION Core self.W_rcp = 0.0 # 1 self.cost_1 = 0.0 # 2 self.obj_1_1 = 0.0 # W_rcp self.obj_1_2 = 0.0 # cost_1 self.fmm_1 = 0 # For PERCS self.cost_2 = 0.0 # 1 self.dT_int = 0.0 # 2 self.alpha = 0.0 # 3 self.obj_2_1 = 0.0 # cost_2 self.obj_2_2 = 0.0 # dT_int self.obj_2_3 = 0.0 # consumption(alpha) self.fmm_2 = 0 # For Rankine PCS self.color = 'black' self.eff = 0.0 self.inv_eff = 0.0 # 1 self.cost_3 = 0.0 # 2 self.obj_3_1 = 0.0 # inv_eff self.obj_3_2 = 0.0 # cost_3 self.fmm_3 = 0 # Overall fmm-value self.obj_fmm_1 = 0.0 # normalized fmm_1 self.obj_fmm_2 = 0.0 # normalized fmm_2 self.obj_fmm_3 = 0.0 # normalized fmm_3 self.fmm_o = 0 ####################################################### """ Perform the initial calculations for the Option """ ####################################################### self.init_ZION_calcs() self.init_PERCS_calcs() """ The initial calcs take place in the init_ZION_calcs(), init_PERCS_calcs() function below. The RELAP5 and PyPost files are run from the Population.calc_Options() function. The obj. function and constraints calcs are run from the Population.final_Option_calcs() function. """ def init_ZION_calcs(self): ############################################## """ Calcs corresponding to a change in R_f """ ############################################## #----------------------------- """ Core Area Calculations """ #----------------------------- ## Constants and Ratios ratio_f2m = 0.48374681 # Fuel to Moderator Ratio th_g = 0.002 # ft th_c = 0.0005 # ft self.n_pins = 41958.0554 # ~42,000 (value derived from RELAP5 model) ratio_p2D = 1.35532 # Fuel Pin Pitch to Diameter Ratio ## Calculations self.R_g = np.round(self.R_f + th_g, 4) # Gap radius [ft] self.R_c = np.round(self.R_f + th_g + th_c, 4) # Cladding radius [ft] pitch = ratio_p2D * (2.0 * self.R_c) # ft self.p = np.round(pitch, 4) # Fuel pin pitch [ft] A_f = np.pi * self.R_f**2.0 # Fuel A_c [ft^2] A_g = np.pi * (self.R_g**2.0 - self.R_f**2.0) # Gap A_c [ft^2] A_c = np.pi * (self.R_c**2.0 - self.R_g**2.0) # Cladding A_c [ft^2] A_p = A_f + A_g + A_c # Fuel pin A_c [ft^2] self.A_fuel = self.n_pins * A_f # Total fuel pin A_c [ft^2] self.A_gap = self.n_pins * A_g # Total gap A_c [ft^2] self.A_clad = self.n_pins * A_c # Total cladding A_c [ft^2] A_pins = self.n_pins * A_p # Total fuel pin A_c [ft^2] self.A_H2O = self.A_fuel / ratio_f2m # Core coolant A_c [ft^2] self.A_total = A_pins + self.A_H2O # Total core A_c [ft^2] self.A_335 = np.round(self.A_H2O,5) # Rounded core A_c [ft^2] A_jun_diff_335 = 2.207 # Total A_c of the baffle [ft^2] # Junction A_c at end of core flow segment self.A_jun_335 = np.round(self.A_H2O - A_jun_diff_335, 5) # ft^2 # Hydraulic diameter of core flow segment 335 [ft] D_hyd = 4.0 * (pitch**2.0 - np.pi*self.R_c**2.0) / (2.0*np.pi*self.R_c) # Rounded hydraulic diameter of core flow segment 335 self.Dh_335 = np.round(D_hyd,5) # ft # A_c of branch 336 (core above baffle) [ft^2] A_336 = np.round(0.272*(self.A_H2O-self.A_jun_335)+self.A_jun_335, 5) ## Fill the lists self.cards[114:117] = ['13360101','13360102','13360103'] self.cards[78:80] = ['3350101','3350201'] self.cards[86:88] = ['3350801','3360101'] self.i_vals[114:117] = [3,3,3] self.i_vals[78:80] = [2,2] self.i_vals[86:88] = [3,4] self.vals[114:117] = [self.R_f,self.R_g,self.R_c] self.vals[78:80] = [self.A_335,self.A_jun_335] self.vals[86:88] = [self.Dh_335,A_336] #------------------------------------ """ Outer Area/R_eff Calculations """ #------------------------------------ ## Constants and Ratios R_in_barrel = 6.1667 # Inner radius of the barrel [ft] th_baffle = 0.0937 # Thickness of the barrel [ft] ratio_baffle_2_core = 1.2577045 # Ratio b/t core and effective baffle ## Calculations self.R_core = np.sqrt(self.A_total/np.pi) # Radius of the entire core [ft] # Effective inner radius of the baffle Reff_in_baffle = self.R_core * ratio_baffle_2_core # ft # Rounded effective inner radius of the baffle left_bc_1335 = np.round(Reff_in_baffle, 4) # ft # Effective outer radius of the the baffle Reff_out_baffle = Reff_in_baffle + th_baffle # ft # Rounded effective outer radius of the baffle right_bc_1335 = np.round(Reff_out_baffle, 4) # ft # A_c taken up by the baffle A_baffle = np.pi * (Reff_out_baffle**2.0 - Reff_in_baffle**2.0) # ft^2 # Total A_c of core contents (calc'd from inside out) A_total_plus_baffle = self.A_total + A_baffle # ft^2 # Total A_c of core (calc'd from outside in) A_total_in_barrel = np.pi * R_in_barrel**2.0 # ft^2 self.A_320_bypass = 0.0 if (A_total_in_barrel - A_total_plus_baffle) > 18.6736: self.A_320_bypass = 18.6736 # ft^2 else: self.A_320_bypass = A_total_in_barrel - A_total_plus_baffle # ft^2 Dh_320 = 0.9591 # Hydraulic diameter of core bypass [ft] ## Fill the lists self.cards[106:108],self.cards[70],self.cards[77] = ['13350000','13350101'],'3200101','3200801' self.i_vals[106:108],self.i_vals[70],self.i_vals[77] = [6,3],2,3 self.vals[106:108],self.vals[70],self.vals[77] = [left_bc_1335,right_bc_1335],self.A_320_bypass,Dh_320 ################################################# """ Calcs corresponding to a change in H_fuel """ ################################################# #--------------------------- """ RPV len's and elev's """ #--------------------------- ## Ratios and Percentages # Height ratio b/t core flow segment (335) and actual fuel w/in pins ratio_H335_2_Hfuel = 1.1145844358 # Length fractions per node along core flow segment (335) L_frac_335 = np.array((0.187389,0.1632396,0.1632396,0.1632396,0.1632396,0.1596523)) # Length fractions per node along fuel in pins L_frac_pin = np.array((0.1819444,0.1819444,0.1819444,0.1819444,0.1819444,0.090278)) ## Calculations # Height of core flow segment (335) self.H_335 = self.H_fuel * ratio_H335_2_Hfuel # ft # Lengths per node along core flow segment (335) len_335 = np.round(self.H_335 * L_frac_335, 5) # ft # Lengths of 'len_335' for upward-oriented RELAP5 flow segments Lu = [len_335[0],len_335[3],len_335[5]] # ft # Lengths of 'len_335' for downward-oriented RELAP5 flow segments Ld = [len_335[5],len_335[3],len_335[0]] # ft # Lengths of 'len_335' for downward-flowing RELAP5 flow segments nLd = [-len_335[5],-len_335[3],-len_335[0]] # ft len_pin = np.round(self.H_fuel * L_frac_pin, 5) # Rounded length of pin [ft] C_pin = 2.0*np.pi * self.R_c # Circumference of fuel pin [ft] # Total pin surface area on node 5 SA_1336_5R = np.round(self.n_pins * C_pin * len_pin[4], 4) # ft^2 # Total pin surface area on node 6 SA_1336_6R = np.round(self.n_pins * C_pin * len_pin[5], 4) # ft^2 ## Fill the lists self.cards[80:86] = ['3350301','3350302','3350303','3350701','3350702','3350703'] self.i_vals[80:86] = [2,2,2,2,2,2] self.vals[80:86] = Lu+Lu self.cards[71:77] = ['3200301','3200302','3200303','3200701','3200702','3200703'] self.i_vals[71:77] = [2,2,2,2,2,2] self.vals[71:77] = Ld+nLd self.cards[64:70] = ['3150301','3150302','3150303','3150701','3150702','3150703'] self.i_vals[64:70] = [2,2,2,2,2,2] self.vals[64:70] = Ld+nLd self.cards[88:94] = ['13150501','13150502','13150503','13150601','13150602','13150603'] self.i_vals[88:94] = [6,6,6,6,6,6] self.vals[88:94] = Ld+Ld self.cards[94:100] = ['13160501','13160502','13160503','13160601','13160602','13160603'] self.i_vals[94:100] = [6,6,6,6,6,6] self.vals[94:100] = Ld+Ld self.cards[100:106] = ['13200501','13200502','13200503','13200601','13200602','13200603'] self.i_vals[100:106] = [6,6,6,6,6,6] self.vals[100:106] = Ld+Ld self.cards[108:114] = ['13350501','13350502','13350503','13350601','13350602','13350603'] self.i_vals[108:114] = [6,6,6,6,6,6] self.vals[108:114] = Lu+Lu self.cards[117:119] = ['13360601','13360602'] self.i_vals[117:119] = [6,6] self.vals[117:119] = [SA_1336_5R,SA_1336_6R] #------------------------------ """ PERCS p717 len and elev """ #------------------------------ ## Calculations # Deviation from original height of the fuel (for PERCS pipe 717 calc) self.len_diff_717 = ratio_H335_2_Hfuel * (self.H_fuel - 11.99971) # ft ################################################## """ Calcs corresponding to changes in pipe D's """ ################################################## ## Calculations A_00 = np.round(np.pi/4.0*self.Dh_00**2.0, 3) # A_c of pipes _00 [ft^2] A_12 = np.round(np.pi/4.0*self.Dh_12**2.0, 3) # A_c of pipes _12 [ft^2] A_14 = np.round(np.pi/4.0*self.Dh_14**2.0, 3) # A_c of pipes _14 [ft^2] ## Fill the lists self.cards[0:6] = ['1000101','1000801','1020101','1020101','1040101','1040801'] self.i_vals[0:6] = [2,3,2,9,2,3] self.vals[0:6] = [A_00,self.Dh_00,A_00,self.Dh_00,A_00,self.Dh_00] self.cards[6:10] = ['1120101','1120801','1130101','1130108'] self.i_vals[6:10] = [2,3,2,3] self.vals[6:10] = [A_12,self.Dh_12,A_12,A_12] self.cards[10:19] = ['1130109','1140101','1140801','1160101','1160101','1161101','1162101','1180101','1180801'] self.i_vals[10:19] = [3,2,3,2,9,4,4,2,3] self.vals[10:19] = [A_14,A_14,self.Dh_14,A_14,self.Dh_14,A_14,A_14,A_14,self.Dh_14] self.cards[19:25] = ['4000101','4000801','4120101','4120801','4130101','4130108'] self.i_vals[19:25] = [2,3,2,3,2,3] self.vals[19:25] = [A_00,self.Dh_00,A_12,self.Dh_12,A_12,A_12] self.cards[25:34] = ['4130109','4140101','4140801','4160101','4160101','4161101','4162101','4180101','4180801'] self.i_vals[25:34] = [3,2,3,2,9,4,4,2,3] self.vals[25:34] = [A_14,A_14,self.Dh_14,A_14,self.Dh_14,A_14,A_14,A_14,self.Dh_14] self.cards[34:40] = ['6000101','6000801','6120101','6120801','6130101','6130108'] self.i_vals[34:40] = [2,3,2,3,2,3] self.vals[34:40] = [A_00,self.Dh_00,A_12,self.Dh_12,A_12,A_12] self.cards[40:49] = ['6130109','6140101','6140801','6160101','6160101','6161101','6162101','6180101','6180801'] self.i_vals[40:49] = [3,2,3,2,9,4,4,2,3] self.vals[40:49] = [A_14,A_14,self.Dh_14,A_14,self.Dh_14,A_14,A_14,A_14,self.Dh_14] self.cards[49:55] = ['2000101','2000801','2120101','2120801','2130101','2130108'] self.i_vals[49:55] = [2,3,2,3,2,3] self.vals[49:55] = [A_00,self.Dh_00,A_12,self.Dh_12,A_12,A_12] self.cards[55:64] = ['2130109','2140101','2140801','2160101','2160101','2161101','2162101','2180101','2180801'] self.i_vals[55:64] = [3,2,3,2,9,4,4,2,3] self.vals[55:64] = [A_14,A_14,self.Dh_14,A_14,self.Dh_14,A_14,A_14,A_14,self.Dh_14] def init_PERCS_calcs(self): # Calc the number of tubes in PERCS Ac_tank = np.pi * self.R_tank**2.0 # A_c of entire tank ft^2 Ac_hex = np.sqrt(3)/2 * self.pitch**2.0 # A_c of hexagon around tube [ft^2] self.n_tubes = np.round(Ac_tank / Ac_hex) # Number of PERCS tubes self.hx.n = self.n_tubes # Calc the heat transfer Surface Area in PERCS OD_tube = self.D_h + 2.0*self.th # Outer D of tube [ft] SA_tube = np.pi*OD_tube*self.Len # Surface area of tube [ft^2] SA_tot = SA_tube * self.n_tubes # Total surface area of tubes ft^2] self.hx.A = SA_tot / 10.7639 # m^2 # Perform calcs for HX and Tank self.hx.calc_HX() self.tank.calc_Tank() # Calc the total cross-sectional Area of all tubes Ac_tube = np.pi*(self.D_h/2.0)**2 # ft^2 Ac_tubes = np.round(Ac_tube*self.n_tubes,5) # ft^2 # Calc the length of a single node along the tubes len_node = np.round((self.Len / 10.0),5) # ft # Calc the thickness of a single MgCO3 section (there being 10 across) R_hex = np.sqrt(Ac_hex/np.pi) # ft OR_tube = OD_tube / 2.0 # ft th_MgCO3 = '%.5g'%((R_hex - OR_tube)/10.0) # ft # Calc the heat transfer length between all tubes and MgCO3 per node HT_len_per_node = np.round((len_node*self.n_tubes),5) # ft # Calc the len and elev of Pipe 717 self.elev_717 = np.round(-(15.62469 + self.elev - self.Len + self.len_diff_717),5) # ft * was 15.62463 # Now replace elev_717 values and solve Pipe 717 and Support self.p717.len = -self.elev_717 # ft self.p717.calc_Pipe() self.support.elev = np.round(-self.elev_717,5) # ft self.support.calc_Support() """ Calc the masses of MgCO3 in each of the 10 sections per axial node """ # Define rho_MgCO3, then Calc Ac_tank, Vol_MgCO3, m_MgCO3 rho_MgCO3 = 5.29903 # kg/ft^3 Ac_tank = np.pi*self.R_tank**2 # ft^2 Vol_MgCO3 = (Ac_tank - Ac_tubes)*self.Len #ft^3 self.m_MgCO3 = rho_MgCO3 * Vol_MgCO3 # kg # Since we calculated the total chemical mass, calc the Chemical costs self.chemical.mass = self.m_MgCO3 self.chemical.calc_Chemical() # Create array of radii of the all radial nodes radii = np.empty(11) for f in range(11): radii[f] = 0.5*self.D_h + self.th + f*float(th_MgCO3) # ft # Create array of annular area for all radial nodes areas = np.empty(10) for h in range(10): areas[h] = np.pi*radii[h+1]**2.0 - np.pi*radii[h]**2.0 # ft^2 tot_area = sum(areas) # ft^2 # Create array of area ratios for all radial nodes self.ratio = np.empty(10) for k in range(10): self.ratio[k] = areas[k]/tot_area # Create array of MgCO3 masses per axial node for all radial nodes self.masses = np.empty(10) for n in range(10): self.masses[n] = np.round(self.ratio[n]*self.m_MgCO3/10,5) # kg """ The Filling of the card, i_change, and change Lists """ # Start filling the card, i_change, and change lists self.list_card[0:4] = ['7160101','7160101','7170101','7170101'] self.list_i_change[0:4] = [3,7,3,7] self.list_change[0:4] = [self.elev,self.elev,self.p717.len,self.elev_717] # Fill lists w/ changes to PERCS tube Ac, node length, & D_h self.list_card[4:7] = ['7020101','7020301','7020801'] self.list_i_change[4:7] = [2,2,3] self.list_change[4:7] = [Ac_tubes,len_node,self.D_h] # Fill lists w/ the remaining tube node lengths card_ = 7070301 for k in range(9): self.list_card[7+k] = repr(card_) self.list_i_change[7+k] = 2 self.list_change[7+k] = len_node card_ = card_ + 10000 # Fill lists w/ changes to tube & MgCO3 thicknesses self.list_card[16:18] = ['14000101','14000102'] self.list_i_change[16:18] = [2,2] self.list_change[16:18] = [self.th,th_MgCO3] # Fill lists w/ changes to "heat transfer length b/t all tubes and MgCO3 per node" self.list_card[18:20] = ['14000501','14000601'] self.list_i_change[18:20] = [6,6] self.list_change[18:20] = [HT_len_per_node,HT_len_per_node] # Fill lists w/ changes to 9 other MgCO3 thicknesses card_ = 14001101 for k in range(9): self.list_card[20+k] = repr(card_) self.list_i_change[20+k] = 2 self.list_change[20+k] = th_MgCO3 card_ = card_ + 1000 # Fill lists w/ changes to MgCO3 masses for all 10 sections self.list_card[29] = '20507070' self.list_i_change[29] = 4 self.list_change[29] = self.masses[0] card_ = 20514020 for k in range(1,10): self.list_card[29+k] = repr(card_) self.list_i_change[29+k] = 4 self.list_change[29+k] = self.masses[k] card_ = card_ + 10 def final_ZION_calcs(self): ################################### """ Grab all the .csv file data """ ################################### #-------------------------- """ tempf.csv file data """ #-------------------------- # Read steam generator T-data from .csv file into 'tempf_data' array csv_name = self.csvFileLocation + "\\tempf_data.csv" tempf_data = np.zeros(2) with open(csv_name) as csvfile: numreader = csv.reader(csvfile) i = 0 for row in numreader: tempf_data[i] = float(row[0]) # K i = i + 1 # Assign tempf_data to the correct variables self.T_106 = tempf_data[0] - 273.15 # degC self.T_110 = tempf_data[1] - 273.15 # degC #---------------------- """ p.csv file data """ #---------------------- # Read P-data from .csv file into 'P_106', 'P_110', and 'P_335[]' csv_name2 = self.csvFileLocation + "\\p_data.csv" p_data = np.zeros(9) with open(csv_name2) as csvfile2: numreader2 = csv.reader(csvfile2) i = 0 for row in numreader2: p_data[i] = float(row[0]) # Pa i = i + 1 # Assign p_data to the correct variables self.P_106 = p_data[0] / 10**5.0 # bar self.P_110 = p_data[1] / 10**5.0 # bar for i in range(6): self.P_335[i] = p_data[i+2] / 10**6.0 # MPa self.P_p_out = p_data[8] / 10**5.0 # bar #--------------------------- """ mflowj.csv file data """ #--------------------------- # Read m_dot-data from .csv file into 1 combined array csv_name3 = self.csvFileLocation + "\\mflowj_data.csv" mflowj_data = np.zeros(29) with open(csv_name3) as csvfile3: numreader3 = csv.reader(csvfile3) i = 0 for row in numreader3: mflowj_data[i] = float(row[0]) # kg/s i = i + 1 # Assign averaged mflowj_data to the correct variables m_dot_100_data = mflowj_data[0:7] # kg/s self.m_dot_100 = np.average(m_dot_100_data) # kg/s m_dot_400_data = mflowj_data[7:14] # kg/s self.m_dot_400 = np.average(m_dot_400_data) # kg/s m_dot_600_data = mflowj_data[14:21] # kg/s self.m_dot_600 = np.average(m_dot_600_data) # kg/s m_dot_200_data = mflowj_data[21:28] # kg/s self.m_dot_200 = np.average(m_dot_200_data) # kg/s self.m_dot_335 = mflowj_data[28] # kg/s #-------------------------- """ hvmix.csv file data """ #-------------------------- # Read enthalpy data from .csv file into 1 combined array csv_name4 = self.csvFileLocation + "\\hvmix_data.csv" hvmix_data = np.zeros(11) with open(csv_name4) as csvfile4: numreader4 = csv.reader(csvfile4) i = 0 for row in numreader4: hvmix_data[i] = float(row[0]) # J/kg i = i + 1 # Assign hvmix_data to the correct variables self.H_106 = hvmix_data[0] / 10**3.0 # kJ/kg self.H_110 = hvmix_data[1] / 10**3.0 # kJ/kg self.H_335_1 = hvmix_data[2] / 10**3.0 # kJ/kg self.H_112_5 = hvmix_data[3] / 10**3.0 # kJ/kg self.H_114 = hvmix_data[4] / 10**3.0 # kJ/kg self.H_412_5 = hvmix_data[5] / 10**3.0 # kJ/kg self.H_414 = hvmix_data[6] / 10**3.0 # kJ/kg self.H_612_5 = hvmix_data[7] / 10**3.0 # kJ/kg self.H_614 = hvmix_data[8] / 10**3.0 # kJ/kg self.H_212_5 = hvmix_data[9] / 10**3.0 # kJ/kg self.H_214 = hvmix_data[10] / 10**3.0 # kJ/kg #--------------------------- """ httemp.csv file data """ #--------------------------- # Read fuel/cladding T-data from .csv file into 2 arrays csv_name5 = self.csvFileLocation + "\\httemp_data.csv" httemp_data = np.zeros(12) with open(csv_name5) as csvfile5: numreader5 = csv.reader(csvfile5) i = 0 for row in numreader5: httemp_data[i] = float(row[0]) # K i = i + 1 # Assign httemp_data to the correct variables for j in range(6): self.T_1336_1[j] = httemp_data[j] - 273.15 # degC for j in range(6): self.T_1336_17[j] = httemp_data[j+6] - 273.15 # degC #-------------------------- """ quale.csv file data """ #-------------------------- # Read core quality data from .csv file into array csv_name6 = self.csvFileLocation + "\\quale_data.csv" quale_data =
np.zeros(6)
numpy.zeros
# This files contains your custom actions which can be used to run # custom Python code. # # See this guide on how to implement these action: # https://rasa.com/docs/rasa/core/actions/#custom-actions/ # This is a simple example for a custom action which utters "Hello World!" import json from typing import Any, Text, Dict, List from bert_serving.client import BertClient from rasa_sdk import Action, Tracker from rasa_sdk.executor import CollectingDispatcher import numpy as np import os import boto3 import glob bertHost = 'bert' BUCKET = 'BUCKET' FAQ = 'FAQ' VOLUME = 'VOLUME' class ActionGetFAQAnswer(Action): def __init__(self): super(ActionGetFAQAnswer, self).__init__() self.bc = BertClient(bertHost) self.faq, self.encoder, self.encoder_len = encode_faq(self.bc) print(self.encoder.shape) def find_question(self, query_question): query_vector = self.bc.encode([query_question])[0] score = np.sum((self.encoder * query_vector), axis=1) / ( self.encoder_len * (np.sum(query_vector * query_vector) ** 0.5)) top_id = np.argsort(score)[::-1][0] return top_id, score[top_id] def name(self) -> Text: return "action_get_answer" def run( self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any] ) -> List[Dict[Text, Any]]: query = tracker.latest_message['text'] most_similar_id, score = self.find_question(query) if float(score) > 0.93: response = self.faq[most_similar_id]['a'] dispatcher.utter_message(response) else: response = 'Sorry, this question is beyond my ability...' dispatcher.utter_message(response) return [] def get_faq(volume): bucket = None faq = None if BUCKET in os.environ: bucket = os.environ[BUCKET] if FAQ in os.environ: faq = os.environ[FAQ] if bucket and faq: s3client = boto3.client('s3') try: print(f'Fetching s3://{bucket}/{faq}') r = s3client.get_object(Bucket=bucket, Key=faq) data = json.load(r['Body']) faq = f'{volume}/{os.path.basename(faq)}' print(f'Saving {faq}') with open(faq, 'wt', encoding='utf-8') as f: json.dump(data, f, ensure_ascii=False, indent=4) return data except Exception as ex: print(f'Cannot get FAQ from s3://{bucket}/{faq}: {ex}') if not os.path.exists(faq): faq = f'{volume}/{os.path.basename(faq)}' print(f'Loading FAQ from {faq}') if os.path.exists(faq): with open(faq, 'rt', encoding='utf-8') as f: return json.load(f) return None def encode_faq(bc): volume = '.' if VOLUME in os.environ: volume = os.environ[VOLUME] faq = get_faq(volume) questions = [each['q'] for each in faq] with open(f'{volume}/faq.md', 'wt', encoding="utf-8") as f: f.write('## intent:faq\n') for q in questions: f.write(f'- {q}\n') print(f'FAQ size {len(questions)}') print('Calculating encoder') encoder = bc.encode(questions) np.save(f'{volume}/questions', encoder) encoder_len = np.sqrt(
np.sum(encoder * encoder, axis=1)
numpy.sum
#%% import numpy as np import pandas as pd import tensorflow as tf import scipy.io import random import xgboost as xgb import seaborn as sns from tensorflow import keras from tensorflow.keras import layers from sklearn.model_selection import train_test_split from sklearn import metrics, decomposition import plotly.graph_objects as go import matplotlib.pyplot as plt from tensorflow.python.keras.backend import std from tensorflow.python.keras.layers import embeddings from tensorflow.python.keras.layers.core import RepeatVector from tensorflow.python.keras.losses import mean_squared_error from tensorflow.python.util.nest import _IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ from load_data import * #%% SAMPLE_LEN = 5 channels = 8 latent_dim = 3 data, label = split_session(SAMPLE_LEN) x_train, x_test, y_train, y_test = train_test_split(session_data_1, session_data_1, train_size = 0.85) x_val, x_test, y_val, y_test = train_test_split(x_test, y_test, train_size = 0.5) #%% new_batch = [] for i, batch in enumerate(session_data_1): print(batch.shape[1]//SAMPLE_LEN) new_batch.extend(np.array_split(batch, batch.shape[1]//SAMPLE_LEN, axis = 1)[1:batch.shape[1]//SAMPLE_LEN-2]) #%% np.array(new_batch) #%% def create_model(): input = keras.Input(shape = (sample_len,channels)) # Variable-length sequence of ints x = layers.LSTM(64, return_sequences=True)(input) x = layers.LSTM(64, return_sequences=True)(x) #x = layers.RepeatVector(sample_len)(x) #x = layers.LSTM(64, return_sequences=True)(x) x = layers.TimeDistributed(layers.Dense(16))(x) x = layers.Dense(latent_dim, name = 'embedding')(x) x = layers.Dense(16)(x) output = layers.Dense(channels, activation='linear')(x) model = keras.Model(inputs=[input],outputs=[output]) return model model = create_model() keras.utils.plot_model(model, "keras_LSTM_autoencoder.png", show_shapes=True) #%% model.summary() model.compile(optimizer=keras.optimizers.Adam(1e-3), loss='mse') #tf.keras.metrics.mean_squared_error history = model.fit(x_train, y_train, validation_data = (x_val, y_val), epochs=100, batch_size=32) plt.plot(history.history['loss']) plt.yscale("log") plt.show() def get_embedding(sequences, model): encoder_model = keras.Model(inputs = model.input, outputs = model.get_layer('embedding').output) try: emb = encoder_model.predict(sequences)[:,-1,:] except: sequences = list(sequences) emb = encoder_model.predict(sequences)[:,-1,:] return emb def plot_3D_embedding(sequences, model): emb_vec = get_embedding(sequences, model) try: emb_vec = emb_vec.reshape(3,len(list(emb_vec))) except: 'Embedding dim != 3' fig = go.Figure(data=[go.Scatter3d(x=emb_vec[0], y=emb_vec[1], z=emb_vec[2], mode='markers')]) fig.show() def plot_curve_comparison(sequences, model, n_sample = 1, title = ''): for i in range(n_sample): pred = model.predict(sequences[i]) plt.plot(sequences[i], label = 'Truth') plt.plot(pred.reshape(sample_len), label = 'Pred') plt.title(title) plt.legend() plt.show() def plot_reconstruction_error(sequences, model, n_sample = 1, title = ''): res = model.predict(sequences) try: s_len = len(sequences) except: s_len = sequences.shape[0] for i in np.random.randint(0, s_len - 1, size = n_sample): plt.plot(res[i] - sequences[i]) plt.title(title) plt.show() #%% plot_reconstruction_error(x_train, model, 2, title = 'Train: Rec - Truth') plot_reconstruction_error(x_test, model, 2, title = 'Test: Rec - Truth') plot_reconstruction_error(x_val, model, 2, title = 'Val: Rec - Truth') if channels == 1: plot_curve_comparison(x_train, model, title = 'Train') plot_curve_comparison(x_test, model, title = 'Test') plot_curve_comparison(x_val, model, title = 'Validation') if latent_dim == 3: plot_3D_embedding(x_train, model) plot_3D_embedding(x_test, model) plot_3D_embedding(x_val, model) #%% if channels == 1: def stress_seq(rand = 'normal'): ampl = np.random.uniform(0.1, 1.) freq = np.random.uniform(0.01, 0.1) high_noise = np.random.uniform(0.1, 0.5) low_noise =
np.random.uniform(0.1, 0.5)
numpy.random.uniform
from warnings import warn import numpy as np from scipy import sparse def _asarray(a): """convenience - turn np.matrix to np.array including dim reduction""" return np.array(a).squeeze() def _sum_false(msk, axis): if axis is None: top = msk.shape[0] * msk.shape[1] else: top = msk.shape[axis] return _asarray(top - msk.sum(axis=axis)) def make_nan_mask(x): nans = np.isnan(x.data) msk = sparse.csr_matrix((nans, x.indices, x.indptr), shape=x.shape) return msk def mean(x, axis=None, mask=None, **kwargs): if mask is None: m = np.mean(x, axis=axis, **kwargs) if
np.isnan(m)
numpy.isnan
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for fedjax.google.experimental.serialization.""" from absl.testing import absltest from fedjax.experimental import serialization import numpy as np import numpy.testing as npt class SerializationTest(absltest.TestCase): def test_dict(self): original = { 'int32': np.arange(4, dtype=np.int32).reshape([2, 2]), 'float64': -np.arange(4, dtype=np.float64).reshape([1, 4]), 'bytes': np.array([b'a', b'bc', b'def'], dtype=np.object).reshape([3, 1]), } output = serialization.msgpack_deserialize( serialization.msgpack_serialize(original)) self.assertCountEqual(output, original) self.assertEqual(output['int32'].dtype, np.int32) npt.assert_array_equal(output['int32'], original['int32']) self.assertEqual(output['float64'].dtype, np.float64) npt.assert_array_equal(output['float64'], original['float64']) self.assertEqual(output['bytes'].dtype, np.object) npt.assert_array_equal(output['bytes'], original['bytes']) def test_nested_list(self): original = [ np.arange(4, dtype=np.int32).reshape([2, 2]), [ -np.arange(4, dtype=np.float64).reshape([1, 4]), [ np.array([b'a', b'bc', b'def'], dtype=np.object).reshape([3, 1]), [] ] ] ] output = serialization.msgpack_deserialize( serialization.msgpack_serialize(original)) int32_array, rest = output self.assertEqual(int32_array.dtype, np.int32) npt.assert_array_equal(int32_array, original[0]) float64_array, rest = rest self.assertEqual(float64_array.dtype, np.float64) npt.assert_array_equal(float64_array, original[1][0]) bytes_array, rest = rest self.assertEqual(bytes_array.dtype, np.object)
npt.assert_array_equal(bytes_array, original[1][1][0])
numpy.testing.assert_array_equal
import os import numpy as np import numpy.random as rnd import matplotlib.pyplot as plt import logging from pandas import DataFrame from common.gen_samples import * from common.data_plotter import * from aad.aad_globals import * from aad.aad_support import * from aad.forest_description import * from aad.anomaly_dataset_support import * # from percept.percept import * """ pythonw -m aad.plot_anomalies_rectangle """ def get_x_tau(x, w, tau): v = x.dot(w) ranked = np.argsort(-v) tau_id = ranked[int(tau * len(v))] return tau_id, x[tau_id] def plot_anomalies_ifor(outdir, plot=False, plot_legends=False): u_theta = np.pi * 4. / 4 + np.pi * 5 / 180 x, y = get_sphere_samples([(50, 0, np.pi * 4. / 4, np.pi * 4. / 4 + np.pi * 2 / 4), (15, 1, u_theta - np.pi * 5 / 180, u_theta + np.pi * 5 / 180), (15, 1, np.pi * 6. / 4 - np.pi * 1.5 / 180, np.pi * 6. / 4)]) n, d = x.shape id_nomls = np.where(y == 0)[0] id_anoms = np.where(y == 1)[0] n_anoms = len(id_anoms) x_nomls, y_nomls = x[id_nomls, :], y[id_nomls] x_anoms, y_anoms = x[id_anoms, :], y[id_anoms] if plot: axis_fontsize = 16 line_colors = ["blue", "red", "red"] line_types = ["--", "--", "-"] line_widths = [2, 2, 2] lines = list() line_labels = list() tau = n_anoms * 1. / n # multiplying by a factor to move the plane lower w = normalize(np.ones(2)) r = np.array([np.min(x[:, 0]), np.max(x[:, 0])]) tau_id, x_tau = get_x_tau(x, w, tau) q_tau = w.dot(x_tau) # plot the true weight vector u = interpolate_2D_line_by_point_and_vec(np.array([-1., 1.]), [0., 0.], [np.cos(u_theta + np.pi * 1 / 4), np.sin(u_theta + np.pi * 1 / 4)]) lines.append(u) line_labels.append(r"True weights ${\bf u}$") zd = interpolate_2D_line_by_point_and_vec(np.array([-1., 1.0]), [0., 0.], w) lines.append(zd) line_labels.append(r"Uniform weights ${\bf w}_{unif}$") zw = interpolate_2D_line_by_slope_and_intercept(np.array([-1., 1.]), -w[0] / w[1], q_tau / w[1]) lines.append(zw) line_labels.append(r"hyperplane $\perp$ ${\bf w}_{unif}$") pdffile = os.path.join(outdir, "anomalies_in_ifor.pdf") dp = DataPlotter(pdfpath=pdffile, rows=1, cols=1) pl = dp.get_next_plot() pl.set_aspect('equal') # plt.xlabel('x', fontsize=axis_fontsize) # plt.ylabel('y', fontsize=axis_fontsize) plt.xticks([]) plt.yticks([]) plt.xlim([-1.05, 1.05]) plt.ylim([-1.05, 1.05]) pl.scatter(x_nomls[:, 0], x_nomls[:, 1], s=45, c="blue", marker="+", label="Nominal") pl.scatter(x_anoms[:, 0], x_anoms[:, 1], s=45, c="red", marker="+", label="Anomaly") for i, line in enumerate(lines): color = "blue" if line_colors is None else line_colors[i] pl.plot(line[:, 0], line[:, 1], line_types[i], color=color, linewidth=line_widths[i], label=line_labels[i] if plot_legends else None) plt.axhline(0, linestyle="--", color="lightgrey") plt.axvline(0, linestyle="--", color="lightgrey") if plot_legends: pl.legend(loc='lower right', prop={'size': 12}) dp.close() return x, y def plot_anomalies_rect(outdir, plot=False, plot_legends=False): x_nomls = rnd.uniform(0., 1., 500) x_nomls = np.reshape(x_nomls, newshape=(250, -1)) anom_mu = (0.83, 0.95) u_theta = np.arctan(0.9 / 0.8) anom_score_dist = MVNParams( mu=np.array([anom_mu[0], anom_mu[1]]), mcorr=np.array([ [1, -0.5], [0, 1.0]]), dvar=np.array([0.002, 0.0005]) ) n_anoms = 30 x_anoms = generate_dependent_normal_samples(n_anoms, anom_score_dist.mu, anom_score_dist.mcorr, anom_score_dist.dvar) x = np.vstack([x_nomls, x_anoms]) y = np.array(np.zeros(x_nomls.shape[0], dtype=int)) y = np.append(y, np.ones(x_anoms.shape[0], dtype=int)) if plot: n, d = x.shape # tau is computed assuming that the anomalies occupy tau-proportion # of the circumference tau = n_anoms * 1.3 / n # multiplying by a factor to move the plane lower w = normalize(np.ones(2)) r = np.array([
np.min(x[:, 0])
numpy.min
import os import copy import math import time import numpy as np from sklearn.neighbors import NearestNeighbors from sklearn.cluster import KMeans from sklearn import svm from model_coin.prediction_strength import optimalK from tqdm import tqdm class COIN(object): def __init__(self, data, inds_otlr, nbrs_ratio, AUG=1.0, MIN_CLUSTER_SIZE=5, MAX_NUM_CLUSTER=4, VAL_TIMES=10, C_SVM=1., RESOLUTION=0.05, THRE_PS=0.85, DEFK=0): """ data: Data matrix, each row represents one instance inds_otlr: A vector with each entry telling whether this instance is outlier (1) or not (0) nbrs_ratio: The ratio of normal instances as the context for each outlier AUG: An additional feature attached to the input as data augmentation MIN_CLUSTER_SIZE: Minimum number of nodes in each cluster MAX_NUM_CLUSTER: Maximum number of clusters considered in prediction strength computation VAL_TIMES: Number of iterations for computing prediction strength C_SVM: A hyperparameter in SVM (optimum value would be better to be estimated through validation) DEFK: Predefined number of clusters in each context. Value 0 means using Prediction Strength to estimate it. """ self.data = data self.dim = data.shape[1] self.inds_otlr = inds_otlr self.ano_idx = np.where(inds_otlr == 1)[0] self.AUG = float(AUG) self.num_inst = data.shape[0] self.num_feat = data.shape[1] self.num_nbrs = int(nbrs_ratio * self.num_inst) self.MIN_CLUSTER_SIZE = MIN_CLUSTER_SIZE self.MAX_NUM_CLUSTER = MAX_NUM_CLUSTER self.VAL_TIMES = VAL_TIMES self.C_SVM = C_SVM self.RESOLUTION = RESOLUTION self.THRE_PS = THRE_PS self.DEFK = DEFK # normal instances self.data_normal = self.data[np.where(self.inds_otlr == 0)[0]] # nearest nbrs object based on normal instances self.nbrs = NearestNeighbors(n_neighbors=self.num_nbrs, n_jobs=-1) self.nbrs.fit(self.data_normal) def interpret_outliers(self, ids_target, sgnf_vec, int_flag=0): """ ids_target: Indices of target outliers sgnf_vec: A vector indicating the importance of each attribute, as prior knowledge int_flag: Discrete attribute or not :return: A list of sorted (outlier_ID, outlierness) tuples, a list of clfs, attr importance 2D-array """ # Attach 0 to the augmented feature if isinstance(sgnf_vec, int) or isinstance(sgnf_vec, float): sgnf_vec = np.hstack((np.ones(self.num_feat), 0)) else: sgnf_vec = np.hstack((sgnf_vec, [0])) # Interpret each target outlier oid_devt_dict = dict() # id-score tuples score_attr_mat = [] for ii in tqdm(range(len(ids_target))): i = ids_target[ii] # Do clustering on the context, build one classifier for each cluster nums_c, clfs, cluster_attr_scale = self.cluster_context(i, int_flag) # Calculate outlierness score devt_i = self.CalculateOutlierness(i, clfs, nums_c, sgnf_vec) oid_devt_dict[i] = devt_i # Find outlying attributes score_attr = np.zeros(self.num_feat) for num_c, clf in zip(nums_c, clfs): score_attr += num_c * np.abs(clf.coef_[0]) # weighted by the normal cluster size score_attr /= float(np.sum(nums_c)) score_attr /= np.sum(score_attr) # relative importance score_attr_mat.append(copy.copy(score_attr)) # print(score_attr) return np.array(score_attr_mat), oid_devt_dict def cluster_context(self, id_outlier, int_flag): # find the context of the outlier dist_btwn, otlr_nbrs = self.nbrs.kneighbors([self.data[id_outlier]]) dist_btwn, otlr_nbrs = dist_btwn[0], self.data_normal[otlr_nbrs[0], :] # print(self.data[id_outlier]) # print(otlr_nbrs) # choose the number of clusters in the context if self.DEFK == 0: k_best = optimalK(otlr_nbrs, self.VAL_TIMES, self.MAX_NUM_CLUSTER, self.THRE_PS) else: k_best = self.DEFK k_best = min(k_best+1, self.MAX_NUM_CLUSTER) # empirically, it is better to have a lager K # print('Best k:', k_best) # clutering the context kmeans = KMeans(n_clusters=k_best, random_state=0).fit(otlr_nbrs) label_nbrs = kmeans.labels_ clfs = [] nbrs_mean = [] nums_c = [] cluster_attr_scale = [] # build a linear classifier for each cluster of nbrs for c in range(k_best): # indices for instances in cluster c inds_c = np.where(label_nbrs == c)[0] # the cluster cannot be too small if np.size(inds_c) < self.MIN_CLUSTER_SIZE: continue nums_c.append(len(inds_c)) # instances for cluster c otlr_nbrs_c = otlr_nbrs[inds_c, :] dist_btwn_c = dist_btwn[inds_c] # distance property of cluster c cluster_attr_scale.append(np.hstack((np.max(otlr_nbrs_c, axis=0) - np.min(otlr_nbrs_c, axis=0), 0))) # scale for each attr # synthetic sampling to build two classes insts_c0 = self.SyntheticSampling(otlr_nbrs_c, self.data[id_outlier], int_flag) insts_c1 = otlr_nbrs_c clf = self.SVCInterpreter(insts_c0, insts_c1) clfs.append(clf) nbrs_mean.append(np.average(insts_c1, axis=0)) return nums_c, clfs, cluster_attr_scale def SyntheticSampling(self, insts, otlr, int_flag): ''' Expand the outlier into a class. insts: normal instances otlr: the outlier instance expand_ratio: expand ratio int_flag: whether to round to int :return: two classes of data points ''' num_c0_new = insts.shape[0] - 1 coeff_c0_new = np.random.rand(num_c0_new, insts.shape[0]) # transformation matrix for synthetic sampling nbrs_local = NearestNeighbors(n_neighbors=1).fit(insts) min_dist_to_nbr = nbrs_local.kneighbors([otlr])[0][0, 0]/insts.shape[1] for r in range(coeff_c0_new.shape[0]): coeff_c0_new[r, :] /= sum(coeff_c0_new[r, :]) insts_c0_new = np.dot(coeff_c0_new, insts - np.dot(np.ones((insts.shape[0], 1)), [otlr])) for r in range(insts_c0_new.shape[0]): # shrink to prevent overlap insts_c0_new[r, :] *= (0.2 * np.random.rand(1)[0] * min_dist_to_nbr) insts_c0_new += np.dot(np.ones((num_c0_new, 1)), [otlr]) # origin + shift if int_flag: insts_c0_new = np.round(insts_c0_new) insts_c0 = np.vstack((otlr, insts_c0_new)) return insts_c0 def SVCInterpreter(self, insts_c0, insts_c1): # classification between normal instances and outliers, where outliers have negative output clf = svm.LinearSVC(penalty='l1', C=self.C_SVM, dual=False, intercept_scaling=self.AUG) X_c = np.vstack((insts_c0, insts_c1)) y_c = np.hstack((np.zeros(insts_c0.shape[0]), np.ones(insts_c1.shape[0]))) clf.fit(X_c, y_c) #print(insts_c1) #print(insts_c0) return clf def CalculateOutlierness(self, id_outlier, clfs, nums_c, sgnf_vec): otlr = self.data[id_outlier] devt_overall = 0. for c in range(len(nums_c)): # distance to the boundary otlr_aug = np.hstack((otlr, self.AUG)) w = np.hstack((clfs[c].coef_[0], clfs[c].intercept_[0]/self.AUG)) w_a = np.hstack((clfs[c].coef_[0], 0)) dist = -min(0, np.inner(otlr_aug, w))/np.linalg.norm(w_a) # rescale deviation according to attributes' importance devt = np.linalg.norm(np.multiply(dist * w_a / np.linalg.norm(w_a), sgnf_vec)) if np.isnan(devt): devt = 0. # weighted by the opponent cluster size devt_overall += devt * nums_c[c] devt_overall /= sum(nums_c) return devt_overall def fit(self, sgnf_prior): importance_attr, outlierness = self.interpret_outliers(self.ano_idx, sgnf_prior) return importance_attr def weight2subspace(self, weight, r=0.7, num=-1): threshold = r * np.sum(weight) tmp_s = 0 exp_subspace = [] sorted_idx1 =
np.argsort(weight)
numpy.argsort
# Import required libraries: import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from sklearn.metrics import r2_score # Generating dataset: # Y = A*sin(B(X + C)) + D # A = Amplitude # Period = 2*pi/B # Period = Length of One Cycle # C = Phase Shift (In Radian) # D = Vertical Shift X = np.linspace(0,1,100) #(Start,End,Points) # Here… # A = 1 # B= 2*pi # B = 2*pi/Period # Period = 1 # C = 0 # D = 0 Y = 1*np.sin(2*np.pi*X) # Adding some Noise : Noise = 0.4*
np.random.normal(size=100)
numpy.random.normal
import cv2 import sys import os import numpy as np import matplotlib.pyplot as plt def cal_hist_point(gt, score, thr_l=0.4, thr_r=0.5): p = 0 n = 0 gt_len = len(gt) score_len = len(score) comp_len = min(gt_len, score_len) for i in range(0, comp_len): if score[i] >= thr_l and score[i] < thr_r: if gt[i] == 1.0: p += 1 else: n += 1 print("range[{}, {}] p={}, n={}".format(thr_l, thr_r, p, n)) return thr_l, thr_r, p, n def cal_far_frr_point(gt, score, thr=0.5): # far = false acceptance rate = false positive / inter match num # frr = false rejection rate = false negative / intra match num tp = 0 tn = 0 fp = 0 fn = 0 inter_num = 0 intra_num = 0 gt_len = len(gt) score_len = len(score) comp_len = min(gt_len, score_len) for i in range(0, comp_len): if float(gt[i]) >= 1.0: intra_num += 1 if float(gt[i]) <= 0.0: inter_num += 1 if float(score[i]) >= thr and float(gt[i]) >= 1.0: tp += 1 elif float(score[i]) < thr and float(gt[i]) <= 0.0: tn += 1 elif float(score[i]) >= thr and float(gt[i]) <= 0.0: fp += 1 elif float(score[i]) < thr and float(gt[i]) >= 1.0: fn += 1 frr = float(fn) / intra_num far = float(fp) / inter_num # print("thr={}, tp={}, fp={}, tn={}, fn={}".format(thr, tp, fp, tn, fn)) # print("intra_num={}, inter_num={}".format(intra_num, inter_num)) print("FRR={}, FAR={}".format(frr, far)) return frr, far def cal_roc_point(gt, score, thr=0.5): tp = 0 tn = 0 fp = 0 fn = 0 # tpr = recall = tp / (tp + fn) # fpr = fp / (fp + tn) # fp gt_len = len(gt) score_len = len(score) comp_len = min(gt_len, score_len) for i in range(0, comp_len): if float(score[i]) >= thr and float(gt[i]) >= 1.0: tp += 1 elif float(score[i]) < thr and float(gt[i]) <= 0.0: tn += 1 elif float(score[i]) >= thr and float(gt[i]) <= 0.0: fp += 1 elif float(score[i]) < thr and float(gt[i]) >= 1.0: fn += 1 # print("thr={}, tp={}, fp={}, tn={}, fn={}".format(thr, tp, fp, tn, fn)) recall = float(tp) / (tp + fn) print("recall={}, fp={}".format(recall, fp)) return recall, fp # gt_file = "face_list_lfw_gt.txt" # score_file = "vggface2_lfwdata/facenet_vggface2_inception_resnet_v2_192k_lfw.txt" # gt_file = "face_list_gt.txt" # score_file = "vggface2_160data/facenet_vggface2_inception_resnet_v2_192k_160data.txt" if __name__ == '__main__': gt_file = sys.argv[1] score_file = sys.argv[2] if not os.path.exists(gt_file): print("{} does not exist, quit".format(gt_file)) exit() if not os.path.exists(score_file): print("{} does not exist, quit".format(score_file)) exit() list_gt_fd = open(gt_file, "r") gt_lines = list_gt_fd.readlines() list_score_fd = open(score_file, "r") score_lines = list_score_fd.readlines() gt_list = [] score_list = [] for idx, l in enumerate(gt_lines): gt, lm, rm = l.strip("\n").split(" ") score = score_lines[idx].strip("\n") # print(gt, score) # if int(gt) == 1 and float(score) < 0.2: # print("____{}_{}".format(score, idx)) # # if int(gt) == 0 and float(score) > 0.5: # print("####{}_{}".format(score, idx)) gt_list.append(float(gt)) score = score.split("[[")[1].split("]]")[0] score_list.append(float(score)) thrs = np.arange(0, 1, 0.01)[::-1] print(thrs) # calculate roc recall_list = [] fp_list = [] for thr in thrs: recall, fp = cal_roc_point(gt_list, score_list, thr) recall_list.append(recall) fp_list.append(fp) # calculate auc fp_max = max(fp_list) fpr_list = [] for idx in range(0, len(fp_list)): fpr = float(fp_list[idx])/fp_max fpr_list.append(fpr) print("fpr={}".format(fpr)) auc = 0 for idx in range(0, len(recall_list) - 1): auc += (recall_list[idx] + recall_list[idx + 1]) * (fpr_list[idx + 1] - fpr_list[idx]) / 2 print("auc={}".format(auc)) print("AUC={}".format(auc)) # calculate far & frr frr_list = [] far_list = [] for thr in thrs: frr, far = cal_far_frr_point(gt_list, score_list, thr) frr_list.append(frr) far_list.append(far) thrs =
np.arange(0, 1.0, 0.1)
numpy.arange
import numpy as np import numpy.ma as ma import numpy.testing as npt import pandas as pd import pymc3_ext as pm import scipy.sparse as sps import theano import theano.tensor as tt import theano.sparse as sparse class TestHelperFunc: def test_pandas_to_array(self): """ Ensure that pandas_to_array returns the dense array, masked array, graph variable, TensorVariable, or sparse matrix as appropriate. """ # Create the various inputs to the function sparse_input = sps.csr_matrix(np.eye(3)) dense_input = np.arange(9).reshape((3, 3)) input_name = 'input_variable' theano_graph_input = tt.as_tensor(dense_input, name=input_name) pandas_input = pd.DataFrame(dense_input) # All the even numbers are replaced with NaN missing_pandas_input = pd.DataFrame(np.array([[np.nan, 1, np.nan], [3, np.nan, 5], [np.nan, 7, np.nan]])) masked_array_input = ma.array(dense_input, mask=(np.mod(dense_input, 2) == 0)) # Create a generator object. Apparently the generator object needs to # yield numpy arrays. square_generator = (np.array([i**2], dtype=int) for i in range(100)) # Alias the function to be tested func = pm.model.pandas_to_array ##### # Perform the various tests ##### # Check function behavior with dense arrays and pandas dataframes # without missing values for input_value in [dense_input, pandas_input]: func_output = func(input_value) assert isinstance(func_output, np.ndarray) assert func_output.shape == input_value.shape
npt.assert_allclose(func_output, dense_input)
numpy.testing.assert_allclose
# ---------------------------------------------------------------------------- # Copyright (c) 2016--, Calour development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from unittest import main from os.path import join from numpy.testing import assert_array_equal, assert_almost_equal import numpy as np import pandas as pd import pandas.util.testing as pdt from sklearn import datasets from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.model_selection import KFold import calour as ca from calour._testing import Tests from calour.training import ( plot_cm, plot_roc, plot_prc, plot_scatter, SortedStratifiedKFold, RepeatedSortedStratifiedKFold, _interpolate_precision_recall) class TTests(Tests): def setUp(self): super().setUp() self.test2_sparse = ca.read(self.test2_biom, self.test2_samp, self.test2_feat, normalize=None) self.test2_dense = ca.read(self.test2_biom, self.test2_samp, self.test2_feat, sparse=False, normalize=None) def test_add_sample_metadata_as_features(self): new = self.test2_sparse.add_sample_metadata_as_features(['categorical']) dat = new.data.toarray() assert_array_equal(dat[:, 0:3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]] * 3) self.assertListEqual(new.feature_metadata.index[:3].tolist(), ['categorical=A', 'categorical=B', 'categorical=C']) def test_add_sample_metadata_as_features_dense(self): new = self.test2_dense.add_sample_metadata_as_features(['categorical']) assert_array_equal(new.data[:, 0:3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]] * 3) self.assertListEqual(new.feature_metadata.index[:3].tolist(), ['categorical=A', 'categorical=B', 'categorical=C']) def test_split_train_test(self): train_X, test_X, train_y, test_y = self.test2_dense.split_train_test( test_size=3, field='group', stratify='categorical', random_state=7) self.assertListEqual(test_y.tolist(), [1, 2, 1]) self.assertListEqual(test_y.index.tolist(), ['S3', 'S8', 'S1']) self.assertListEqual(train_y.tolist(), [2, 1, 1, 1, 1, 1]) self.assertListEqual(train_y.index.tolist(), ['S9', 'S6', 'S5', 'S2', 'S4', 'S7']) def test_regress(self): diabetes = datasets.load_diabetes() X = diabetes.data[:9] y = diabetes.target[:9] smd = pd.DataFrame({'diabetes': y}) exp = ca.Experiment(X, smd, sparse=False) run = exp.regress('diabetes', KNeighborsRegressor(), KFold(3, random_state=0)) res = next(run) obs = pd.read_table(join(self.test_data_dir, 'diabetes_pred.txt'), index_col=0) # make sure the column order are the same for comparison pdt.assert_frame_equal(res.sort_index(axis=1), obs.sort_index(axis=1)) def test_plot_scatter(self): res = pd.read_table(join(self.test_data_dir, 'diabetes_pred.txt'), index_col=0) title = 'foo' ax = plot_scatter(res, title=title) self.assertEqual(title, ax.get_title()) cor = 'r=-0.62 p-value=0.078' self.assertEqual(cor, ax.texts[0].get_text()) dots = [] for collection in ax.collections: dots.append(collection.get_offsets()) assert_array_equal(np.concatenate(dots, axis=0), res[['Y_TRUE', 'Y_PRED']].values) def test_classify(self): iris = datasets.load_iris() n = len(iris.target) np.random.seed(0) i = np.random.randint(0, n, 36) X = iris.data[i] y = iris.target[i] d = dict(enumerate(iris.target_names)) smd = pd.DataFrame({'plant': y}).replace(d) exp = ca.Experiment(X, smd, sparse=False) run = exp.classify('plant', KNeighborsClassifier(), predict='predict_proba', cv=KFold(3, random_state=0)) res = next(run) obs = pd.read_table(join(self.test_data_dir, 'iris_pred.txt'), index_col=0) pdt.assert_frame_equal(res, obs) # plot_roc(res) # from matplotlib import pyplot as plt # plt.show() def test_plot_roc_multi(self): result = pd.read_table(join(self.test_data_dir, 'iris_pred.txt')) ax = plot_roc(result) legend = ax.get_legend() exp = {'Luck', 'setosa (0.99 $\pm$ 0.00)', 'virginica (0.96 $\\pm$ 0.05)', 'versicolor (0.95 $\\pm$ 0.07)'} obs = {i.get_text() for i in legend.get_texts()} self.assertSetEqual(exp, obs) # from matplotlib import pyplot as plt # plt.show() def test_plot_roc_binary(self): result = pd.read_table(join(self.test_data_dir, 'iris_pred.txt')) result['Y_TRUE'] = ['virginica' if i == 'virginica' else 'not virginica' for i in result['Y_TRUE']] result['not virginica'] = 1 - result['virginica'] ax = plot_roc(result, classes=['virginica']) # from matplotlib import pyplot as plt # plt.show() legend = ax.get_legend() exp = {'Luck', 'virginica (0.96 $\pm$ 0.05)'} obs = {i.get_text() for i in legend.get_texts()} self.assertSetEqual(exp, obs) def test_interpolate_precision_recall(self): n = 9 recall = np.linspace(0.0, 1.0, num=n) rand = np.random.RandomState(9) precision = rand.rand(n) * (1 - recall) x = np.linspace(0, 1, num=20) obs = _interpolate_precision_recall(x, recall, precision) exp = np.array([0.43914, 0.43914, 0.43914, 0.37183, 0.37183, 0.104627, 0.104627, 0.104627, 0.104627, 0.104627, 0.104627, 0.104627, 0.104627, 0.104627, 0.104627, 0.031013, 0.031013, 0., 0., 0.]) assert_almost_equal(obs, exp, decimal=5) # # use the plot to visually check the func works as expected # from matplotlib import pyplot as plt # fig, axes = plt.subplots(nrows=2, ncols=1) # axes[0].hold(True) # axes[0].plot(recall, precision, '--b') # decreasing_max_precision = np.maximum.accumulate(precision[::-1])[::-1] # axes[0].step(recall, decreasing_max_precision, '-r') # axes[1].step(x, obs, '-g') # plt.show() def test_plot_prc(self): # generating test data set: # http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html#plot-the-precision-recall-curve # from sklearn import svm, datasets # from sklearn.model_selection import train_test_split # iris = datasets.load_iris() # X = iris.data # y = iris.target # # Add noisy features # random_state = np.random.RandomState(0) # n_samples, n_features = X.shape # X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # # Limit to the two first classes, and split into training and test # X_train, X_test, y_train, y_test = train_test_split(X[y < 2], y[y < 2], # test_size=.5, # random_state=random_state) # # Create a simple classifier # classifier = svm.LinearSVC(random_state=random_state) # classifier.fit(X_train, y_train) # y_score = classifier.decision_function(X_test) # result = pd.DataFrame({'Y_TRUE': ['setosa' if i == 1 else 'non-setosa' for i in y_test], # 'setosa': y_score, 'CV': 0}) f = join(self.test_data_dir, 'plot_prc.txt') result = pd.read_table(f, index_col=0) ax = plot_prc(result, classes=['setosa']) legend = ax.get_legend() exp = {'iso-f1 curves', 'setosa (0.88 $\\pm$ 0.00)'} obs = {i.get_text() for i in legend.get_texts()} self.assertSetEqual(exp, obs) def test_plot_cm(self): result = pd.read_table(join(self.test_data_dir, 'iris_pred.txt'), index_col=0) ax = plot_cm(result, classes=['setosa', 'virginica', 'versicolor']) # from matplotlib import pyplot as plt # plt.show() # make sure you don't confuse x, y label self.assertEqual(ax.get_xlabel(), 'Prediction') self.assertEqual(ax.get_ylabel(), 'Observation') obs = [((0, 0), '13'), ((1, 0), '0'), ((2, 0), '0'), ((0, 1), '0'), ((1, 1), '9'), ((2, 1), '1'), ((0, 2), '0'), ((1, 2), '3'), ((2, 2), '10')] for exp, obs in zip(ax.texts, obs): self.assertEqual(exp.get_text(), obs[1]) self.assertEqual(exp.get_position(), obs[0]) class RTests(Tests): def setUp(self): self.y = np.array([9.1, 7.1, 8.1, 5.1, 3.1, 1.1, 2.1, 6.1, 4.1]) self.X = self.y[:, np.newaxis] def test_sorted_stratified_k3(self): k = SortedStratifiedKFold(3, shuffle=True, random_state=9) splits = [[9.1, 8.1, 5.1, 3.1, 2.1, 4.1], [7.1, 1.1, 6.1], [7.1, 8.1, 1.1, 2.1, 6.1, 4.1], [9.1, 5.1, 3.1], [9.1, 7.1, 5.1, 3.1, 1.1, 6.1], [8.1, 2.1, 4.1]] for i, (train, test) in enumerate(k.split(self.X, self.y)): exp_train = splits[i * 2] exp_test = splits[i * 2 + 1] assert_array_equal(self.y[train], exp_train)
assert_array_equal(self.y[test], exp_test)
numpy.testing.assert_array_equal
################################################################################ # # test_estimator.py - testing the basic estimator class # # author: <NAME> <<EMAIL>> # ################################################################################ from nose.tools import assert_raises, assert_true, assert_equal from pytram.estimator import Estimator, ExpressionError import numpy as np def test_expression_error_None(): """test Estimator throws ExpressionError with None""" assert_raises(ExpressionError, Estimator, None) def test_expression_error_int(): """test Estimator throws ExpressionError with number""" assert_raises(ExpressionError, Estimator, 5) def test_expression_error_list(): """test Estimator throws ExpressionError with list""" assert_raises(ExpressionError, Estimator, [1, 2]) def test_expression_error_dim(): """test Estimator throws ExpressionError with wrong dimension""" assert_raises(ExpressionError, Estimator, np.ones(shape=(2, 2), dtype=np.intc)) def test_expression_error_markov(): """test Estimator throws ExpressionError with wrong Markov state count""" assert_raises(ExpressionError, Estimator,
np.ones(shape=(2, 2, 3), dtype=np.intc)
numpy.ones
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import operator import tvm from tvm.contrib import graph_runtime from tvm.relay.testing.config import ctx_list from tvm import relay import mxnet as mx from mxnet import gluon from mxnet.gluon.model_zoo import vision import model_zoo def verify_mxnet_frontend_impl(mx_symbol, data_shape=(1, 3, 224, 224), out_shape=(1, 1000), gluon_impl=False, name=None, dtype='float32'): """Use name different from test to avoid pytest picking it up""" if gluon_impl: def get_gluon_output(name, x): net = vision.get_model(name) net.collect_params().initialize(mx.init.Xavier()) net_sym = gluon.nn.SymbolBlock(outputs=net(mx.sym.var('data')), inputs=mx.sym.var('data'), params=net.collect_params()) out = net_sym(mx.nd.array(x.astype(dtype))).asnumpy() return out, net_sym else: def get_mxnet_output(symbol, x, dtype='float32'): from collections import namedtuple Batch = namedtuple('Batch', ['data']) mod = mx.mod.Module(symbol, label_names=None) mod.bind(data_shapes=[('data', x.shape)], for_training=False) mod.init_params() mod.forward(Batch([mx.nd.array(x.astype(dtype))])) out = mod.get_outputs()[0].asnumpy() args, auxs = mod.get_params() return out, args, auxs def get_tvm_output(symbol, x, args, auxs, target, ctx, dtype='float32'): shape_dict = {"data": x.shape} if gluon_impl: mod, params = relay.frontend.from_mxnet(symbol, shape_dict) else: mod, params = relay.frontend.from_mxnet(symbol, shape_dict, arg_params=args, aux_params=auxs) with relay.build_config(opt_level=3): graph, lib, params = relay.build(mod, target, params=params) m = graph_runtime.create(graph, lib, ctx) # set inputs m.set_input("data", tvm.nd.array(x.astype(dtype))) m.set_input(**params) m.run() # get outputs out = m.get_output(0, tvm.nd.empty(out_shape, dtype)) return out.asnumpy() # random input x = np.random.uniform(size=data_shape) if gluon_impl: gluon_out, gluon_sym = get_gluon_output(name, x) for target, ctx in ctx_list(): tvm_out = get_tvm_output(gluon_sym, x, None, None, target, ctx, dtype) tvm.testing.assert_allclose(gluon_out, tvm_out, rtol=1e-5, atol=1e-5) else: mx_out, args, auxs = get_mxnet_output(mx_symbol, x, dtype) assert "data" not in args for target, ctx in ctx_list(): tvm_out = get_tvm_output(mx_symbol, x, args, auxs, target, ctx, dtype) tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5) def test_forward_mlp(): mlp = model_zoo.mx_mlp() verify_mxnet_frontend_impl(mlp, data_shape=(1, 1, 28, 28), out_shape=(1, 10)) def test_forward_vgg(): for n in [11]: mx_sym = model_zoo.mx_vgg(n) verify_mxnet_frontend_impl(mx_sym) def test_forward_resnet(): for n in [18]: mx_sym = model_zoo.mx_resnet(18) verify_mxnet_frontend_impl(mx_sym) def test_forward_elu(): data = mx.sym.var('data') data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type='elu') verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) def test_forward_rrelu(): data = mx.sym.var('data') data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type='rrelu', lower_bound=0.3, upper_bound=0.7) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) def test_forward_prelu(): data = mx.sym.var('data') data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type='prelu') verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) def test_forward_softrelu(): data = mx.sym.var('data') data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.Activation(data, act_type='softrelu') verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) def test_forward_fc_flatten(): # test flatten=True option in mxnet 0.11.1 data = mx.sym.var('data') try: mx_sym = mx.sym.FullyConnected(data, num_hidden=100, flatten=True) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 100)) mx_sym = mx.sym.FullyConnected(mx.sym.Flatten(data), num_hidden=100, flatten=False) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 100)) except: pass def test_forward_clip(): data = mx.sym.var('data') data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.clip(data, a_min=0, a_max=1) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) def test_forward_split(): data = mx.sym.var('data') mx_sym = mx.sym.split(data, axis=1, num_outputs=4, squeeze_axis=False) verify_mxnet_frontend_impl(mx_sym, (1, 4, 2, 1), (1, 1, 2, 1)) def test_forward_split_squeeze(): data = mx.sym.var('data') mx_sym = mx.sym.split(data, axis=1, num_outputs=4, squeeze_axis=True) verify_mxnet_frontend_impl(mx_sym, (1, 4, 2, 1), (1, 2, 1)) def test_forward_expand_dims(): data = mx.sym.var('data') mx_sym = mx.sym.expand_dims(data, axis=1) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 1, 3, 4)) def test_forward_pooling(): data = mx.sym.var('data') mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type='avg') verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8)) mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type='max') verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8)) def test_forward_adaptive_pooling(): data = mx.sym.var('data') mx_sym = mx.sym.contrib.AdaptiveAvgPooling2D(data, output_size=(1,)) verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 1, 1)) mx_sym = mx.sym.contrib.AdaptiveAvgPooling2D(data, output_size=(3, 3)) verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 3, 3)) def test_forward_lrn(): data = mx.sym.var('data') mx_sym = mx.sym.LRN(data, alpha=2, beta=2, knorm=1, nsize=5) verify_mxnet_frontend_impl(mx_sym, (1, 10, 24, 24), (1, 10, 24, 24)) def test_forward_ones(): data = mx.sym.var('data') ones = mx.sym.ones(shape=(2, 3, 4), dtype='float32') mx_sym = mx.sym.elemwise_add(data, ones) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) def test_forward_zeros(): data = mx.sym.var('data') zeros = mx.sym.zeros(shape=(2, 3, 4), dtype='float32') mx_sym = mx.sym.elemwise_add(data, zeros) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) def test_forward_ones_like(): data = mx.sym.var('data') mx_sym = mx.sym.ones_like(data, dtype='float32') verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) def test_forward_zeros_like(): data = mx.sym.var('data') mx_sym = mx.sym.zeros_like(data, dtype='float32') verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) def test_forward_argmax(): data = mx.sym.var('data') mx_sym = mx.sym.argmax(data, axis=1) verify_mxnet_frontend_impl(mx_sym, (5, 3), (5,)) def test_forward_argmin(): data = mx.sym.var('data') mx_sym = mx.sym.argmin(data, axis=0) verify_mxnet_frontend_impl(mx_sym, (5, 4), (4,)) def test_forward_slice(): data = mx.sym.var('data') mx_sym = mx.sym.slice(data, begin=(0, 1), end=(2, 4)) verify_mxnet_frontend_impl(mx_sym, (3, 4), (2, 3)) mx_sym = mx.sym.slice(data, begin=(-1, 1), end=(-3, 4), step=(-1, 2)) verify_mxnet_frontend_impl(mx_sym, (3, 4), (2, 2)) def test_forward_where(): cond = mx.sym.var('cond') x = mx.sym.var('x') y = mx.sym.var('y') dshape = (2, 2) dtype = 'float32' mx_sym = mx.sym.where(cond, x, y) np_cond = np.array([[0, 1], [-1, 0]]).astype(dtype) np_x = np.random.uniform(size=dshape).astype(dtype) np_y = np.random.uniform(size=dshape).astype(dtype) mx_cond = mx.nd.array(np_cond) mx_x = mx.nd.array(np_x) mx_y = mx.nd.array(np_y) shapes = {'cond': dshape, 'x': dshape, 'y': dshape} mod = mx.mod.Module(mx_sym, label_names=None, data_names=['cond', 'x', 'y']) mod.bind(data_shapes=shapes.items(), for_training=False) mod.init_params() args, auxs = mod.get_params() mx_out = mx.nd.where(mx_cond, mx_x, mx_y).asnumpy() mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, args, auxs) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(np_cond, np_x, np_y) tvm.testing.assert_allclose(op_res.asnumpy(), mx_out) def test_forward_arange(): def _mx_symbol(F, start, stop, step): if start is None and step is None: sym = F.arange(stop) elif start is None: sym = F.arange(stop, step=step) elif step is None: sym = F.arange(start, stop) else: sym = F.arange(start, stop, step) return sym def verify(start, stop, step): ref_res = _mx_symbol(mx.nd, start, stop, step).asnumpy() mx_sym = _mx_symbol(mx.sym, start, stop, step) mod, _ = relay.frontend.from_mxnet(mx_sym, {}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()() tvm.testing.assert_allclose(op_res.asnumpy(), ref_res) verify(0, 20, None) verify(0, 20, 2) verify(1, 20, None) verify(1, 20, 2) verify(1, 20, 1.5) verify(1, 20.5, None) verify(1, 20, 3) verify(20, 1, -1) verify(20, 1, -1.5) def _mx_symbol(F, op_name, inputs): op = getattr(F, op_name) return op(*inputs) def test_forward_broadcast_ops(): for op in ["broadcast_add", "broadcast_sub", "broadcast_mul", "broadcast_div", "broadcast_mod", "broadcast_maximum", "broadcast_minimum", "broadcast_equal", "broadcast_not_equal", "broadcast_greater", "broadcast_greater_equal", "broadcast_lesser", "broadcast_lesser_equal"]: a_shape = (3, 4, 5) b_shape = (4, 5) if op == "broadcast_mod": dtype = 'int32' a_np = np.random.randint(1, 100, size=a_shape).astype(dtype) b_np = np.random.randint(1, 100, size=b_shape).astype(dtype) else: dtype = 'float32' a_np = np.random.uniform(size=a_shape).astype(dtype) b_np = np.random.uniform(size=b_shape).astype(dtype) mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('a'), mx.sym.var('b')]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)]) shapes = {'a': a_shape, 'b': b_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(a_np, b_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) def test_forward_elemwise_ops(): for op in ["elemwise_add", "elemwise_sub", "elemwise_mul", "elemwise_div", "maximum", "minimum"]: shape = (3, 4, 5) dtype = 'float32' a_np = np.random.uniform(size=shape).astype(dtype) b_np = np.random.uniform(size=shape).astype(dtype) mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('a'), mx.sym.var('b')]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)]) shapes = {'a': shape, 'b': shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(a_np, b_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) def test_forward_scalar_ops(): for op in [operator.add, operator.sub, operator.mul, operator.truediv, operator.pow, operator.lt, operator.le, operator.eq, operator.ne, operator.gt, operator.ge]: dtype='float32' a_shape = (3, 4, 5) a_np = np.random.uniform(size=a_shape).astype(dtype) b_scalar = 2.3 mx_sym = op(mx.sym.var('a'), b_scalar) ref_res = op(mx.nd.array(a_np), b_scalar) shapes = {'a': a_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(a_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) for op in ["maximum", "minimum"]: dtype='float32' a_shape = (3, 4, 5) a_np = np.random.uniform(size=a_shape).astype(dtype) b_scalar = 2.3 mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('a'), b_scalar]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), b_scalar]) shapes = {'a': a_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(a_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) def test_forward_slice_axis(): def verify(shape, axis, begin, end): data_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.slice_axis(mx.nd.array(data_np), axis, begin, end) mx_sym = mx.sym.slice_axis(mx.sym.var("data"), axis, begin, end) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": shape}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(data_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((3, 4), 0, 1, 2) verify((3, 4), 0, 1, None) verify((3, 4), 1, 0, 2) verify((3, 4), 1, -3, -1) verify((3, 4), -1, -3, -1) def test_forward_slice_like(): def verify(x_shape, y_shape, axes): x_np = np.random.uniform(size=x_shape).astype("float32") y_np = np.random.uniform(size=y_shape).astype("float32") if axes is None: ref_res = mx.nd.slice_like(mx.nd.array(x_np), mx.nd.array(y_np)) mx_sym = mx.sym.slice_like(mx.sym.var("x"), mx.sym.var("y")) else: ref_res = mx.nd.slice_like(mx.nd.array(x_np), mx.nd.array(y_np), axes=axes) mx_sym = mx.sym.slice_like(mx.sym.var("x"), mx.sym.var("y"), axes=axes) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": x_shape, "y": y_shape}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(x_np, y_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((3, 4), (2, 3), None) verify((3, 4), (2, 3), (0, 1)) verify((3, 4), (2, 3), (0)) verify((3, 4), (2, 3), (-1)) def test_forward_l2_normalize(): data = mx.sym.var('data') mx_sym = mx.sym.L2Normalization(data, mode="channel") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4, 5), (2, 3, 4, 5)) def test_forward_shape_array(): def verify(shape): x_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.shape_array(mx.nd.array(x_np)) mx_sym = mx.sym.shape_array(mx.sym.var("x")) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, ctx in ctx_list(): for kind in ["debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(x_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((1,)) verify((3, 4, 5)) verify((3, 4, 5, 6)) def test_forward_squeeze(): def verify(shape, axis): x_np = np.random.uniform(size=shape).astype("float32") if axis is None: ref_res = mx.nd.squeeze(mx.nd.array(x_np)) mx_sym = mx.sym.squeeze(mx.sym.var("x")) else: ref_res = mx.nd.squeeze(mx.nd.array(x_np), axis=axis) mx_sym = mx.sym.squeeze(mx.sym.var("x"), axis=axis) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(x_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((1, 3, 1), None) verify((1, 3, 1), 0) verify((1, 3, 1), 2) verify((1, 3, 1), (0, 2)) def test_forward_broadcast_axis(): def verify(shape, axis, size): x_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.broadcast_axis(mx.nd.array(x_np), axis=axis, size=size) mx_sym = mx.sym.broadcast_axis(mx.sym.var("x"), axis=axis, size=size) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(x_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((1, 2, 1), 2, 3) verify((1, 2, 1), (0, 2), (2, 3)) def test_forward_full(): def verify(val, shape, dtype): ctx = mx.cpu() ref_res = mx.nd.full(shape, val, dtype=dtype) mx_sym = mx.sym.full(shape, val, dtype=dtype) mod, _ = relay.frontend.from_mxnet(mx_sym, {}) for target, ctx in ctx_list(): # Skip testing graph runtime because this op will be optimized out # by constant folding. for kind in ["debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()() tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify(2, (3, 4), "float32") verify(2, (3, 4), "int32") verify(3.5, (1, 3, 4), "float32") def test_forward_embedding(): def verify(data_shape, weight_shape): in_dim, out_dim = weight_shape x_np = np.random.randint(0, weight_shape[0], size=data_shape).astype("float32") w_np = np.random.uniform(size=weight_shape).astype("float32") ref_res = mx.nd.Embedding(mx.nd.array(x_np), mx.nd.array(w_np), input_dim=in_dim, output_dim=out_dim) mx_sym = mx.sym.Embedding(mx.sym.var("x"), mx.sym.var("w"), input_dim=in_dim, output_dim=out_dim) mod, _ = relay.frontend.from_mxnet( mx_sym, {"x": data_shape, "w": weight_shape}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(x=x_np, w=w_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((2, 2), (4, 5)) verify((2, 3, 4), (4, 5)) def test_forward_smooth_l1(): data = mx.sym.var('data') mx_sym = mx.sym.smooth_l1(data) verify_mxnet_frontend_impl(mx_sym, (3, 4), (3, 4)) mx_sym = mx.sym.smooth_l1(data, scalar=1.0) verify_mxnet_frontend_impl(mx_sym, (3, 4), (3, 4)) def test_forward_take(): def verify(shape, indices_src, axis, mode="clip"): x_np = np.random.uniform(size=shape).astype("float32") indices_np = np.array(indices_src, dtype="float32") ref_res = mx.nd.take(mx.nd.array(x_np), mx.nd.array(indices_np), axis, mode) mx_sym = mx.sym.take(mx.sym.var("x"), mx.sym.var("y"), axis, mode) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape, "y": indices_np.shape}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(x_np, indices_np) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((2,2), [[[1,0],[0,1]]], 0) verify((2,2), [[[1,0],[0,1]]], 1) verify((4,3,5,6), [[2,1,0,0]], -2) verify((3,4), [-1, 5], 0) verify((3,4), [-1, 5], 0, mode="wrap") verify((3,4), [-1, 5], 1) verify((3,4), [-1, 5], 1, mode="wrap") def test_forward_gather_nd(): def verify(xshape, yshape, y_data): x_data = np.random.uniform(size=xshape).astype("float32") ref_res = mx.nd.gather_nd(mx.nd.array(x_data), mx.nd.array(y_data)) mx_sym = mx.sym.gather_nd(mx.sym.var("x_data"), mx.sym.var("y_data")) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x_data": xshape, "y_data": yshape}, {"x_data": "float32", "y_data": "int32"}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(x_data, y_data) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((2, 2), (2, 3), [[1, 1, 0], [0, 1, 0]]) verify((2, 2, 2), (2, 2), [[0, 1], [1, 0]]) verify((3, 2, 2), (2, 2), [[0, 1], [1, 0]]) verify((3, 2), (2, 2, 3), [[[0, 1, 2], [2, 0, 1]], [[0, 0, 0], [1, 1, 1]]]) def test_forward_bilinear_resize(): # add tests including scale_height and scale_width when mxnet is updated to version 1.5 data = mx.sym.var('data') mx_sym = mx.sym.contrib.BilinearResize2D(data, height=5, width=10) verify_mxnet_frontend_impl(mx_sym, (1, 2, 3, 4), (1, 2, 5, 10)) def test_forward_rnn_layer(): def verify(mode, seq_len, input_size, hidden_size, num_layers, batch=1, init_states=True, bidirectional=False): if mode == "rnn": layer = gluon.rnn.RNN(hidden_size, num_layers, bidirectional=bidirectional) elif mode == "gru": layer = gluon.rnn.GRU(hidden_size, num_layers, bidirectional=bidirectional) else: # mode == "lstm" layer = gluon.rnn.LSTM(hidden_size, num_layers, bidirectional=bidirectional) num_states = 2 if mode == "lstm" else 1 layer.initialize() layer.hybridize() dtype = "float32" directions = 2 if bidirectional else 1 data_np = np.random.uniform(size=(seq_len, batch, input_size)).astype(dtype) data_mx = mx.nd.array(data_np) if init_states: shape_dict = {'data0': data_np.shape} inputs = {'data0': data_np} state_shape = (num_layers*directions, batch, hidden_size) states_np = [] states_mx = [] for i in range(num_states): s = np.random.uniform(size=state_shape).astype(dtype) states_np.append(s) states_mx.append(mx.nd.array(s)) shape_dict['data%s' % (i+1)] = s.shape inputs['data%s' % (i+1)] = s mx_out, mx_states = layer(data_mx, states_mx) mx_res = [mx_out] + mx_states else: shape_dict = {'data': data_np.shape} inputs = {'data': data_np} mx_res = layer(data_mx) mx_sym = layer._cached_graph[1] mx_params = {} for name, param in layer.collect_params().items(): mx_params[name] = param._reduce() mod, params = relay.frontend.from_mxnet( mx_sym, shape=shape_dict, arg_params=mx_params) for target, ctx in ctx_list(): # only test graph runtime because debug runtime is too slow for kind in ["graph"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) op_res = intrp.evaluate()(**inputs, **params) if init_states: assert len(op_res) == len(mx_res) for i, val in enumerate(op_res): tvm.testing.assert_allclose( val.asnumpy(), mx_res[i].asnumpy(), rtol=1e-3) else: tvm.testing.assert_allclose( op_res.asnumpy(), mx_res.asnumpy(), rtol=1e-3) for mode in ["rnn", "gru", "lstm"]: verify(mode, 1, 64, 64, 1) verify(mode, 10, 64, 64, 2) verify(mode, 10, 64, 32, 2) verify(mode, 10, 64, 32, 2, batch=2) verify(mode, 10, 32, 64, 1, bidirectional=True) # The following two codeblocks need to be fixed for mxnet 1.5 # verify(mode, 10, 64, 64, 3, init_states=False) # verify(mode, 10, 64, 64, 3, batch=2, bidirectional=True, init_states=False) def test_forward_Crop(): def verify(xshape, yshape, offset=None): x_data = np.random.uniform(size=xshape).astype("float32") y_data = np.random.uniform(size=yshape).astype("float32") if offset is None: mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y")) ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data)) else: mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y"), offset=offset) ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data), offset=offset) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": xshape, "y": yshape}) for target, ctx in ctx_list(): for kind in ["graph", "debug"]: intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target) if offset is None or offset == (0, 0): op_res = intrp.evaluate()(x_data, y_data) else: op_res = intrp.evaluate()(x_data) tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy()) verify((1, 3, 40, 40), (1, 3, 20, 20)) verify((1, 3, 40, 40), (1, 3, 20, 20), (0, 0)) verify((1, 3, 40, 40), (1, 3, 20, 20), (10, 10)) verify((5, 32, 40, 40), (5, 32, 25, 25)) verify((5, 32, 40, 40), (5, 32, 25, 25), (5, 5)) def test_forward_argsort(): def verify(shape, axis, is_ascend, dtype="float32"): x_np =
np.random.uniform(size=shape)
numpy.random.uniform
import time import matplotlib.pyplot as pyplot import networkx as networkx import numpy as numpy import scipy as scipy import scipy.integrate import seaborn ######################################################## # @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@# # @ @# # @ [LEGACY] BASIC SEIRS MODELS @# # @ @# # @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@# ######################################################## class SEIRSModel: """ A class to simulate the Deterministic SEIRS Model =================================================== Params: beta Rate of transmission (exposure) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth beta_D Rate of transmission (exposure) for individuals with detected infections sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interacting with others initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (all remaining nodes initialized susceptible) """ def __init__( self, initN, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, p=0, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, theta_E=0, theta_I=0, psi_E=0, psi_I=0, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0, ): # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = beta self.sigma = sigma self.gamma = gamma self.xi = xi self.mu_I = mu_I self.mu_0 = mu_0 self.nu = nu self.p = p # Testing-related parameters: self.beta_D = beta_D if beta_D is not None else self.beta self.sigma_D = sigma_D if sigma_D is not None else self.sigma self.gamma_D = gamma_D if gamma_D is not None else self.gamma self.mu_D = mu_D if mu_D is not None else self.mu_I self.theta_E = theta_E if theta_E is not None else self.theta_E self.theta_I = theta_I if theta_I is not None else self.theta_I self.psi_E = psi_E if psi_E is not None else self.psi_E self.psi_I = psi_I if psi_I is not None else self.psi_I self.q = q if q is not None else self.q # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tseries = numpy.array([0]) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of individuals with each state: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.N = numpy.array([int(initN)]) self.numE = numpy.array([int(initE)]) self.numI = numpy.array([int(initI)]) self.numD_E = numpy.array([int(initD_E)]) self.numD_I = numpy.array([int(initD_I)]) self.numR = numpy.array([int(initR)]) self.numF = numpy.array([int(initF)]) self.numS = numpy.array( [ self.N[-1] - self.numE[-1] - self.numI[-1] - self.numD_E[-1] - self.numD_I[-1] - self.numR[-1] - self.numF[-1] ] ) assert ( self.numS[0] >= 0 ), "The specified initial population size N must be greater than or equal to the initial compartment counts." @staticmethod def system_dfes( t, variables, beta, sigma, gamma, xi, mu_I, mu_0, nu, beta_D, sigma_D, gamma_D, mu_D, theta_E, theta_I, psi_E, psi_I, q, ): ( S, E, I, D_E, D_I, R, F, ) = variables # variables is a list with compartment counts as elements N = S + E + I + D_E + D_I + R dS = ( -(beta * S * I) / N - q * (beta_D * S * D_I) / N + xi * R + nu * N - mu_0 * S ) dE = ( (beta * S * I) / N + q * (beta_D * S * D_I) / N - sigma * E - theta_E * psi_E * E - mu_0 * E ) dI = sigma * E - gamma * I - mu_I * I - theta_I * psi_I * I - mu_0 * I dDE = theta_E * psi_E * E - sigma_D * D_E - mu_0 * D_E dDI = ( theta_I * psi_I * I + sigma_D * D_E - gamma_D * D_I - mu_D * D_I - mu_0 * D_I ) dR = gamma * I + gamma_D * D_I - xi * R - mu_0 * R dF = mu_I * I + mu_D * D_I return [dS, dE, dI, dDE, dDI, dR, dF] def run_epoch(self, runtime, dt=0.1): # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create a list of times at which the ODE solver should output system values. # Append this list of times as the model's time series t_eval = numpy.arange(start=self.t, stop=self.t + runtime, step=dt) # Define the range of time values for the integration: t_span = (self.t, self.t + runtime) # Define the initial conditions as the system's current state: # (which will be the t=0 condition if this is the first run of this model, # else where the last sim left off) init_cond = [ self.numS[-1], self.numE[-1], self.numI[-1], self.numD_E[-1], self.numD_I[-1], self.numR[-1], self.numF[-1], ] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Solve the system of differential eqns: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ solution = scipy.integrate.solve_ivp( lambda t, X: SEIRSModel.system_dfes( t, X, self.beta, self.sigma, self.gamma, self.xi, self.mu_I, self.mu_0, self.nu, self.beta_D, self.sigma_D, self.gamma_D, self.mu_D, self.theta_E, self.theta_I, self.psi_E, self.psi_I, self.q, ), t_span=t_span, y0=init_cond, t_eval=t_eval, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Store the solution output as the model's time series and data series: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.tseries = numpy.append(self.tseries, solution["t"]) self.numS = numpy.append(self.numS, solution["y"][0]) self.numE = numpy.append(self.numE, solution["y"][1]) self.numI = numpy.append(self.numI, solution["y"][2]) self.numD_E = numpy.append(self.numD_E, solution["y"][3]) self.numD_I = numpy.append(self.numD_I, solution["y"][4]) self.numR = numpy.append(self.numR, solution["y"][5]) self.numF = numpy.append(self.numF, solution["y"][6]) self.t = self.tseries[-1] def run(self, T, dt=0.1, checkpoints=None, verbose=False): if T > 0: self.tmax += T else: return False # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if checkpoints: numCheckpoints = len(checkpoints["t"]) paramNames = [ "beta", "sigma", "gamma", "xi", "mu_I", "mu_0", "nu", "beta_D", "sigma_D", "gamma_D", "mu_D", "theta_E", "theta_I", "psi_E", "psi_I", "q", ] for param in paramNames: # For params that don't have given checkpoint values (or bad value given), # set their checkpoint values to the value they have now for all checkpoints. if ( param not in list(checkpoints.keys()) or not isinstance(checkpoints[param], (list, numpy.ndarray)) or len(checkpoints[param]) != numCheckpoints ): checkpoints[param] = [getattr(self, param)] * numCheckpoints #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if not checkpoints: self.run_epoch(runtime=self.tmax, dt=dt) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("t = %.2f" % self.t) if verbose: print("\t S = " + str(self.numS[-1])) print("\t E = " + str(self.numE[-1])) print("\t I = " + str(self.numI[-1])) print("\t D_E = " + str(self.numD_E[-1])) print("\t D_I = " + str(self.numD_I[-1])) print("\t R = " + str(self.numR[-1])) print("\t F = " + str(self.numF[-1])) else: # checkpoints provided for checkpointIdx, checkpointTime in enumerate(checkpoints["t"]): # Run the sim until the next checkpoint time: self.run_epoch(runtime=checkpointTime - self.t, dt=dt) # Having reached the checkpoint, update applicable parameters: print("[Checkpoint: Updating parameters]") for param in paramNames: setattr(self, param, checkpoints[param][checkpointIdx]) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("t = %.2f" % self.t) if verbose: print("\t S = " + str(self.numS[-1])) print("\t E = " + str(self.numE[-1])) print("\t I = " + str(self.numI[-1])) print("\t D_E = " + str(self.numD_E[-1])) print("\t D_I = " + str(self.numD_I[-1])) print("\t R = " + str(self.numR[-1])) print("\t F = " + str(self.numF[-1])) if self.t < self.tmax: self.run_epoch(runtime=self.tmax - self.t, dt=dt) return True def total_num_infections(self, t_idx=None): if t_idx is None: return self.numE[:] + self.numI[:] + self.numD_E[:] + self.numD_I[:] else: return ( self.numE[t_idx] + self.numI[t_idx] + self.numD_E[t_idx] + self.numD_I[t_idx] ) def plot( self, ax=None, plot_S="line", plot_E="line", plot_I="line", plot_R="line", plot_F="line", plot_D_E="line", plot_D_I="line", combine_D=True, color_S="tab:green", color_E="orange", color_I="crimson", color_R="tab:blue", color_F="black", color_D_E="mediumorchid", color_D_I="mediumorchid", color_reference="#E0E0E0", dashed_reference_results=None, dashed_reference_label="reference", shaded_reference_results=None, shaded_reference_label="reference", vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, ): # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if not ax: fig, ax = pyplot.subplots() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = self.numF / self.N if plot_percentages else self.numF Eseries = self.numE / self.N if plot_percentages else self.numE Dseries = ( (self.numD_E + self.numD_I) / self.N if plot_percentages else (self.numD_E + self.numD_I) ) D_Eseries = self.numD_E / self.N if plot_percentages else self.numD_E D_Iseries = self.numD_I / self.N if plot_percentages else self.numD_I Iseries = self.numI / self.N if plot_percentages else self.numI Rseries = self.numR / self.N if plot_percentages else self.numR Sseries = self.numS / self.N if plot_percentages else self.numS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if dashed_reference_results: dashedReference_tseries = dashed_reference_results.tseries[ :: int(self.N / 100) ] dashedReference_IDEstack = ( dashed_reference_results.numI + dashed_reference_results.numD_I + dashed_reference_results.numD_E + dashed_reference_results.numE )[:: int(self.N / 100)] / (self.N if plot_percentages else 1) ax.plot( dashedReference_tseries, dashedReference_IDEstack, color="#E0E0E0", linestyle="--", label="$I+D+E$ (" + dashed_reference_label + ")", zorder=0, ) if shaded_reference_results: shadedReference_tseries = shaded_reference_results.tseries shadedReference_IDEstack = ( shaded_reference_results.numI + shaded_reference_results.numD_I + shaded_reference_results.numD_E + shaded_reference_results.numE ) / (self.N if plot_percentages else 1) ax.fill_between( shaded_reference_results.tseries, shadedReference_IDEstack, 0, color="#EFEFEF", label="$I+D+E$ (" + shaded_reference_label + ")", zorder=0, ) ax.plot( shaded_reference_results.tseries, shadedReference_IDEstack, color="#E0E0E0", zorder=1, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the stacked variables: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ topstack = numpy.zeros_like(self.tseries) if any(Fseries) and plot_F == "stacked": ax.fill_between( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, topstack + Fseries), topstack, color=color_F, alpha=0.5, label="$F$", zorder=2, ) ax.plot( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, topstack + Fseries), color=color_F, zorder=3, ) topstack = topstack + Fseries if any(Eseries) and plot_E == "stacked": ax.fill_between( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, topstack + Eseries), topstack, color=color_E, alpha=0.5, label="$E$", zorder=2, ) ax.plot( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, topstack + Eseries), color=color_E, zorder=3, ) topstack = topstack + Eseries if combine_D and plot_D_E == "stacked" and plot_D_I == "stacked": ax.fill_between( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, topstack + Dseries), topstack, color=color_D_E, alpha=0.5, label="$D_{all}$", zorder=2, ) ax.plot( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, topstack + Dseries), color=color_D_E, zorder=3, ) topstack = topstack + Dseries else: if any(D_Eseries) and plot_D_E == "stacked": ax.fill_between( numpy.ma.masked_where(D_Eseries <= 0, self.tseries), numpy.ma.masked_where(D_Eseries <= 0, topstack + D_Eseries), topstack, color=color_D_E, alpha=0.5, label="$D_E$", zorder=2, ) ax.plot( numpy.ma.masked_where(D_Eseries <= 0, self.tseries), numpy.ma.masked_where(D_Eseries <= 0, topstack + D_Eseries), color=color_D_E, zorder=3, ) topstack = topstack + D_Eseries if any(D_Iseries) and plot_D_I == "stacked": ax.fill_between( numpy.ma.masked_where(D_Iseries <= 0, self.tseries), numpy.ma.masked_where(D_Iseries <= 0, topstack + D_Iseries), topstack, color=color_D_I, alpha=0.5, label="$D_I$", zorder=2, ) ax.plot( numpy.ma.masked_where(D_Iseries <= 0, self.tseries), numpy.ma.masked_where(D_Iseries <= 0, topstack + D_Iseries), color=color_D_I, zorder=3, ) topstack = topstack + D_Iseries if any(Iseries) and plot_I == "stacked": ax.fill_between( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, topstack + Iseries), topstack, color=color_I, alpha=0.5, label="$I$", zorder=2, ) ax.plot( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, topstack + Iseries), color=color_I, zorder=3, ) topstack = topstack + Iseries if any(Rseries) and plot_R == "stacked": ax.fill_between( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, topstack + Rseries), topstack, color=color_R, alpha=0.5, label="$R$", zorder=2, ) ax.plot( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, topstack + Rseries), color=color_R, zorder=3, ) topstack = topstack + Rseries if any(Sseries) and plot_S == "stacked": ax.fill_between( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, topstack + Sseries), topstack, color=color_S, alpha=0.5, label="$S$", zorder=2, ) ax.plot( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, topstack + Sseries), color=color_S, zorder=3, ) topstack = topstack + Sseries # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the shaded variables: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if any(Fseries) and plot_F == "shaded": ax.fill_between( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, Fseries), 0, color=color_F, alpha=0.5, label="$F$", zorder=4, ) ax.plot( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, Fseries), color=color_F, zorder=5, ) if any(Eseries) and plot_E == "shaded": ax.fill_between( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, Eseries), 0, color=color_E, alpha=0.5, label="$E$", zorder=4, ) ax.plot( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, Eseries), color=color_E, zorder=5, ) if combine_D and ( any(Dseries) and plot_D_E == "shaded" and plot_D_E == "shaded" ): ax.fill_between( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, Dseries), 0, color=color_D_E, alpha=0.5, label="$D_{all}$", zorder=4, ) ax.plot( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, Dseries), color=color_D_E, zorder=5, ) else: if any(D_Eseries) and plot_D_E == "shaded": ax.fill_between( numpy.ma.masked_where(D_Eseries <= 0, self.tseries), numpy.ma.masked_where(D_Eseries <= 0, D_Eseries), 0, color=color_D_E, alpha=0.5, label="$D_E$", zorder=4, ) ax.plot( numpy.ma.masked_where(D_Eseries <= 0, self.tseries), numpy.ma.masked_where(D_Eseries <= 0, D_Eseries), color=color_D_E, zorder=5, ) if any(D_Iseries) and plot_D_I == "shaded": ax.fill_between( numpy.ma.masked_where(D_Iseries <= 0, self.tseries), numpy.ma.masked_where(D_Iseries <= 0, D_Iseries), 0, color=color_D_I, alpha=0.5, label="$D_I$", zorder=4, ) ax.plot( numpy.ma.masked_where(D_Iseries <= 0, self.tseries), numpy.ma.masked_where(D_Iseries <= 0, D_Iseries), color=color_D_I, zorder=5, ) if any(Iseries) and plot_I == "shaded": ax.fill_between( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, Iseries), 0, color=color_I, alpha=0.5, label="$I$", zorder=4, ) ax.plot( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, Iseries), color=color_I, zorder=5, ) if any(Sseries) and plot_S == "shaded": ax.fill_between( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, Sseries), 0, color=color_S, alpha=0.5, label="$S$", zorder=4, ) ax.plot( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, Sseries), color=color_S, zorder=5, ) if any(Rseries) and plot_R == "shaded": ax.fill_between( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, Rseries), 0, color=color_R, alpha=0.5, label="$R$", zorder=4, ) ax.plot( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, Rseries), color=color_R, zorder=5, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the line variables: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if any(Fseries) and plot_F == "line": ax.plot( numpy.ma.masked_where(Fseries <= 0, self.tseries), numpy.ma.masked_where(Fseries <= 0, Fseries), color=color_F, label="$F$", zorder=6, ) if any(Eseries) and plot_E == "line": ax.plot( numpy.ma.masked_where(Eseries <= 0, self.tseries), numpy.ma.masked_where(Eseries <= 0, Eseries), color=color_E, label="$E$", zorder=6, ) if combine_D and (any(Dseries) and plot_D_E == "line" and plot_D_E == "line"): ax.plot( numpy.ma.masked_where(Dseries <= 0, self.tseries), numpy.ma.masked_where(Dseries <= 0, Dseries), color=color_D_E, label="$D_{all}$", zorder=6, ) else: if any(D_Eseries) and plot_D_E == "line": ax.plot( numpy.ma.masked_where(D_Eseries <= 0, self.tseries), numpy.ma.masked_where(D_Eseries <= 0, D_Eseries), color=color_D_E, label="$D_E$", zorder=6, ) if any(D_Iseries) and plot_D_I == "line": ax.plot( numpy.ma.masked_where(D_Iseries <= 0, self.tseries), numpy.ma.masked_where(D_Iseries <= 0, D_Iseries), color=color_D_I, label="$D_I$", zorder=6, ) if any(Iseries) and plot_I == "line": ax.plot( numpy.ma.masked_where(Iseries <= 0, self.tseries), numpy.ma.masked_where(Iseries <= 0, Iseries), color=color_I, label="$I$", zorder=6, ) if any(Sseries) and plot_S == "line": ax.plot( numpy.ma.masked_where(Sseries <= 0, self.tseries), numpy.ma.masked_where(Sseries <= 0, Sseries), color=color_S, label="$S$", zorder=6, ) if any(Rseries) and plot_R == "line": ax.plot( numpy.ma.masked_where(Rseries <= 0, self.tseries), numpy.ma.masked_where(Rseries <= 0, Rseries), color=color_R, label="$R$", zorder=6, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the vertical line annotations: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if len(vlines) > 0 and len(vline_colors) == 0: vline_colors = ["gray"] * len(vlines) if len(vlines) > 0 and len(vline_labels) == 0: vline_labels = [None] * len(vlines) if len(vlines) > 0 and len(vline_styles) == 0: vline_styles = [":"] * len(vlines) for vline_x, vline_color, vline_style, vline_label in zip( vlines, vline_colors, vline_styles, vline_labels ): if vline_x is not None: ax.axvline( x=vline_x, color=vline_color, linestyle=vline_style, alpha=1, label=vline_label, ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the plot labels: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ax.set_xlabel("days") ax.set_ylabel( "percent of population" if plot_percentages else "number of individuals" ) ax.set_xlim(0, (max(self.tseries) if not xlim else xlim)) ax.set_ylim(0, ylim) if plot_percentages: ax.set_yticklabels(["{:,.0%}".format(y) for y in ax.get_yticks()]) if legend: legend_handles, legend_labels = ax.get_legend_handles_labels() ax.legend( legend_handles[::-1], legend_labels[::-1], loc="upper right", facecolor="white", edgecolor="none", framealpha=0.9, prop={"size": 8}, ) if title: ax.set_title(title, size=12) if side_title: ax.annotate( side_title, (0, 0.5), xytext=(-45, 0), ha="right", va="center", size=12, rotation=90, xycoords="axes fraction", textcoords="offset points", ) return ax def figure_basic( self, plot_S="line", plot_E="line", plot_I="line", plot_R="line", plot_F="line", plot_D_E="line", plot_D_I="line", combine_D=True, color_S="tab:green", color_E="orange", color_I="crimson", color_R="tab:blue", color_F="black", color_D_E="mediumorchid", color_D_I="mediumorchid", color_reference="#E0E0E0", dashed_reference_results=None, dashed_reference_label="reference", shaded_reference_results=None, shaded_reference_label="reference", vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12, 8), use_seaborn=True, show=True, ): fig, ax = pyplot.subplots(figsize=figsize) if use_seaborn: seaborn.set_style("ticks") seaborn.despine() self.plot( ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I, plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages, ) if show: pyplot.show() return fig, ax def figure_infections( self, plot_S=False, plot_E="stacked", plot_I="stacked", plot_R=False, plot_F=False, plot_D_E="stacked", plot_D_I="stacked", combine_D=True, color_S="tab:green", color_E="orange", color_I="crimson", color_R="tab:blue", color_F="black", color_D_E="mediumorchid", color_D_I="mediumorchid", color_reference="#E0E0E0", dashed_reference_results=None, dashed_reference_label="reference", shaded_reference_results=None, shaded_reference_label="reference", vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12, 8), use_seaborn=True, show=True, ): fig, ax = pyplot.subplots(figsize=figsize) if use_seaborn: seaborn.set_style("ticks") seaborn.despine() self.plot( ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I, plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages, ) if show: pyplot.show() return fig, ax class SEIRSNetworkModel: """ A class to simulate the SEIRS Stochastic Network Model =================================================== Params: G Network adjacency matrix (numpy array) or Networkx graph object. beta Rate of transmission (exposure) (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals (optional) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth p Probability of interaction outside adjacent nodes Q Quarantine adjacency matrix (numpy array) or Networkx graph object. beta_D Rate of transmission (exposure) for individuals with detected infections (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals with detected infections (optional) sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals phi_E Rate of contact tracing testing for exposed individuals phi_I Rate of contact tracing testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interaction outside adjacent nodes initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (all remaining nodes initialized susceptible) """ def __init__( self, G, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, beta_local=None, p=0, Q=None, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, beta_D_local=None, theta_E=0, theta_I=0, phi_E=0, phi_I=0, psi_E=1, psi_I=1, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0, node_groups=None, store_Xseries=False, ): # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Adjacency matrix: self.update_G(G) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Quarantine Adjacency matrix: if Q is None: Q = G # If no Q graph is provided, use G in its place self.update_Q(Q) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.parameters = { "beta": beta, "sigma": sigma, "gamma": gamma, "xi": xi, "mu_I": mu_I, "mu_0": mu_0, "nu": nu, "beta_D": beta_D, "sigma_D": sigma_D, "gamma_D": gamma_D, "mu_D": mu_D, "beta_local": beta_local, "beta_D_local": beta_D_local, "p": p, "q": q, "theta_E": theta_E, "theta_I": theta_I, "phi_E": phi_E, "phi_I": phi_I, "psi_E": psi_E, "psi_I": psi_I, } self.update_parameters() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Each node can undergo up to 4 transitions (sans vitality/re-susceptibility returns to S state), # so there are ~numNodes*4 events/timesteps expected; initialize numNodes*5 timestep slots to start # (will be expanded during run if needed) self.tseries = numpy.zeros(5 * self.numNodes) self.numE = numpy.zeros(5 * self.numNodes) self.numI = numpy.zeros(5 * self.numNodes) self.numD_E = numpy.zeros(5 * self.numNodes) self.numD_I = numpy.zeros(5 * self.numNodes) self.numR = numpy.zeros(5 * self.numNodes) self.numF = numpy.zeros(5 * self.numNodes) self.numS = numpy.zeros(5 * self.numNodes) self.N = numpy.zeros(5 * self.numNodes) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tidx = 0 self.tseries[0] = 0 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.numE[0] = int(initE) self.numI[0] = int(initI) self.numD_E[0] = int(initD_E) self.numD_I[0] = int(initD_I) self.numR[0] = int(initR) self.numF[0] = int(initF) self.numS[0] = ( self.numNodes - self.numE[0] - self.numI[0] - self.numD_E[0] - self.numD_I[0] - self.numR[0] - self.numF[0] ) self.N[0] = ( self.numS[0] + self.numE[0] + self.numI[0] + self.numD_E[0] + self.numD_I[0] + self.numR[0] ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Node states: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.S = 1 self.E = 2 self.I = 3 self.D_E = 4 self.D_I = 5 self.R = 6 self.F = 7 self.X = numpy.array( [self.S] * int(self.numS[0]) + [self.E] * int(self.numE[0]) + [self.I] * int(self.numI[0]) + [self.D_E] * int(self.numD_E[0]) + [self.D_I] * int(self.numD_I[0]) + [self.R] * int(self.numR[0]) + [self.F] * int(self.numF[0]) ).reshape((self.numNodes, 1)) numpy.random.shuffle(self.X) self.store_Xseries = store_Xseries if store_Xseries: self.Xseries = numpy.zeros( shape=(5 * self.numNodes, self.numNodes), dtype="uint8" ) self.Xseries[0, :] = self.X.T self.transitions = { "StoE": {"currentState": self.S, "newState": self.E}, "EtoI": {"currentState": self.E, "newState": self.I}, "ItoR": {"currentState": self.I, "newState": self.R}, "ItoF": {"currentState": self.I, "newState": self.F}, "RtoS": {"currentState": self.R, "newState": self.S}, "EtoDE": {"currentState": self.E, "newState": self.D_E}, "ItoDI": {"currentState": self.I, "newState": self.D_I}, "DEtoDI": {"currentState": self.D_E, "newState": self.D_I}, "DItoR": {"currentState": self.D_I, "newState": self.R}, "DItoF": {"currentState": self.D_I, "newState": self.F}, "_toS": {"currentState": True, "newState": self.S}, } # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize node subgroup data series: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.nodeGroupData = None if node_groups: self.nodeGroupData = {} for groupName, nodeList in node_groups.items(): self.nodeGroupData[groupName] = { "nodes": numpy.array(nodeList), "mask": numpy.isin(range(self.numNodes), nodeList).reshape( (self.numNodes, 1) ), } self.nodeGroupData[groupName]["numS"] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]["numE"] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]["numI"] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]["numD_E"] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]["numD_I"] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]["numR"] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]["numF"] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]["N"] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]["numS"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.S ) self.nodeGroupData[groupName]["numE"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.E ) self.nodeGroupData[groupName]["numI"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.I ) self.nodeGroupData[groupName]["numD_E"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.D_E ) self.nodeGroupData[groupName]["numD_I"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.D_I ) self.nodeGroupData[groupName]["numR"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.R ) self.nodeGroupData[groupName]["numF"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.F ) self.nodeGroupData[groupName]["N"][0] = ( self.nodeGroupData[groupName]["numS"][0] + self.nodeGroupData[groupName]["numE"][0] + self.nodeGroupData[groupName]["numI"][0] + self.nodeGroupData[groupName]["numD_E"][0] + self.nodeGroupData[groupName]["numD_I"][0] + self.nodeGroupData[groupName]["numR"][0] ) def update_parameters(self): updatestart = time.time() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model parameters: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = ( numpy.array(self.parameters["beta"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["beta"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["beta"], shape=(self.numNodes, 1) ) ) self.sigma = ( numpy.array(self.parameters["sigma"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["sigma"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["sigma"], shape=(self.numNodes, 1) ) ) self.gamma = ( numpy.array(self.parameters["gamma"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["gamma"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["gamma"], shape=(self.numNodes, 1) ) ) self.xi = ( numpy.array(self.parameters["xi"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["xi"], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters["xi"], shape=(self.numNodes, 1)) ) self.mu_I = ( numpy.array(self.parameters["mu_I"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["mu_I"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["mu_I"], shape=(self.numNodes, 1) ) ) self.mu_0 = ( numpy.array(self.parameters["mu_0"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["mu_0"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["mu_0"], shape=(self.numNodes, 1) ) ) self.nu = ( numpy.array(self.parameters["nu"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["nu"], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters["nu"], shape=(self.numNodes, 1)) ) self.p = ( numpy.array(self.parameters["p"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["p"], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters["p"], shape=(self.numNodes, 1)) ) # Testing-related parameters: self.beta_D = ( ( numpy.array(self.parameters["beta_D"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["beta_D"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["beta_D"], shape=(self.numNodes, 1) ) ) if self.parameters["beta_D"] is not None else self.beta ) self.sigma_D = ( ( numpy.array(self.parameters["sigma_D"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["sigma_D"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["sigma_D"], shape=(self.numNodes, 1) ) ) if self.parameters["sigma_D"] is not None else self.sigma ) self.gamma_D = ( ( numpy.array(self.parameters["gamma_D"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["gamma_D"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["gamma_D"], shape=(self.numNodes, 1) ) ) if self.parameters["gamma_D"] is not None else self.gamma ) self.mu_D = ( ( numpy.array(self.parameters["mu_D"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["mu_D"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["mu_D"], shape=(self.numNodes, 1) ) ) if self.parameters["mu_D"] is not None else self.mu_I ) self.theta_E = ( numpy.array(self.parameters["theta_E"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["theta_E"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["theta_E"], shape=(self.numNodes, 1) ) ) self.theta_I = ( numpy.array(self.parameters["theta_I"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["theta_I"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["theta_I"], shape=(self.numNodes, 1) ) ) self.phi_E = ( numpy.array(self.parameters["phi_E"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["phi_E"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["phi_E"], shape=(self.numNodes, 1) ) ) self.phi_I = ( numpy.array(self.parameters["phi_I"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["phi_I"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["phi_I"], shape=(self.numNodes, 1) ) ) self.psi_E = ( numpy.array(self.parameters["psi_E"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["psi_E"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["psi_E"], shape=(self.numNodes, 1) ) ) self.psi_I = ( numpy.array(self.parameters["psi_I"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["psi_I"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["psi_I"], shape=(self.numNodes, 1) ) ) self.q = ( numpy.array(self.parameters["q"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["q"], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters["q"], shape=(self.numNodes, 1)) ) # Local transmission parameters: if self.parameters["beta_local"] is not None: if isinstance(self.parameters["beta_local"], (list, numpy.ndarray)): if isinstance(self.parameters["beta_local"], list): self.beta_local = numpy.array(self.parameters["beta_local"]) else: # is numpy.ndarray self.beta_local = self.parameters["beta_local"] if self.beta_local.ndim == 1: self.beta_local.reshape((self.numNodes, 1)) elif self.beta_local.ndim == 2: self.beta_local.reshape((self.numNodes, self.numNodes)) else: self.beta_local = numpy.full_like( self.beta, fill_value=self.parameters["beta_local"] ) else: self.beta_local = self.beta # ---------------------------------------- if self.parameters["beta_D_local"] is not None: if isinstance(self.parameters["beta_D_local"], (list, numpy.ndarray)): if isinstance(self.parameters["beta_D_local"], list): self.beta_D_local = numpy.array(self.parameters["beta_D_local"]) else: # is numpy.ndarray self.beta_D_local = self.parameters["beta_D_local"] if self.beta_D_local.ndim == 1: self.beta_D_local.reshape((self.numNodes, 1)) elif self.beta_D_local.ndim == 2: self.beta_D_local.reshape((self.numNodes, self.numNodes)) else: self.beta_D_local = numpy.full_like( self.beta_D, fill_value=self.parameters["beta_D_local"] ) else: self.beta_D_local = self.beta_D # Pre-multiply beta values by the adjacency matrix ("transmission weight connections") if self.beta_local.ndim == 1: self.A_beta = scipy.sparse.csr_matrix.multiply( self.A, numpy.tile(self.beta_local, (1, self.numNodes)) ).tocsr() elif self.beta_local.ndim == 2: self.A_beta = scipy.sparse.csr_matrix.multiply( self.A, self.beta_local ).tocsr() # Pre-multiply beta_D values by the quarantine adjacency matrix ("transmission weight connections") if self.beta_D_local.ndim == 1: self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply( self.A_Q, numpy.tile(self.beta_D_local, (1, self.numNodes)) ).tocsr() elif self.beta_D_local.ndim == 2: self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply( self.A_Q, self.beta_D_local ).tocsr() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update scenario flags: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.update_scenario_flags() def node_degrees(self, Amat): return Amat.sum(axis=0).reshape(self.numNodes, 1) # sums of adj matrix cols def update_G(self, new_G): self.G = new_G # Adjacency matrix: if type(new_G) == numpy.ndarray: self.A = scipy.sparse.csr_matrix(new_G) elif type(new_G) == networkx.classes.graph.Graph: self.A = networkx.adj_matrix( new_G ) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes = int(self.A.shape[1]) self.degree = numpy.asarray(self.node_degrees(self.A)).astype(float) return def update_Q(self, new_Q): self.Q = new_Q # Quarantine Adjacency matrix: if type(new_Q) == numpy.ndarray: self.A_Q = scipy.sparse.csr_matrix(new_Q) elif type(new_Q) == networkx.classes.graph.Graph: self.A_Q = networkx.adj_matrix( new_Q ) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes_Q = int(self.A_Q.shape[1]) self.degree_Q = numpy.asarray(self.node_degrees(self.A_Q)).astype(float) assert ( self.numNodes == self.numNodes_Q ), "The normal and quarantine adjacency graphs must be of the same size." return def update_scenario_flags(self): self.testing_scenario = ( numpy.any(self.psi_I) and (numpy.any(self.theta_I) or numpy.any(self.phi_I)) ) or ( numpy.any(self.psi_E) and (numpy.any(self.theta_E) or numpy.any(self.phi_E)) ) self.tracing_scenario = (numpy.any(self.psi_E) and numpy.any(self.phi_E)) or ( numpy.any(self.psi_I) and numpy.any(self.phi_I) ) self.vitality_scenario = numpy.any(self.mu_0) and numpy.any(self.nu) self.resusceptibility_scenario = numpy.any(self.xi) def total_num_infections(self, t_idx=None): if t_idx is None: return self.numE[:] + self.numI[:] + self.numD_E[:] + self.numD_I[:] else: return ( self.numE[t_idx] + self.numI[t_idx] + self.numD_E[t_idx] + self.numD_I[t_idx] ) def calc_propensities(self): # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-calculate matrix multiplication terms that may be used in multiple propensity calculations, # and check to see if their computation is necessary before doing the multiplication transmissionTerms_I = numpy.zeros(shape=(self.numNodes, 1)) if numpy.any(self.numI[self.tidx]) and numpy.any(self.beta != 0): transmissionTerms_I = numpy.asarray( scipy.sparse.csr_matrix.dot(self.A_beta, self.X == self.I) ) transmissionTerms_DI = numpy.zeros(shape=(self.numNodes, 1)) if ( self.testing_scenario and numpy.any(self.numD_I[self.tidx]) and numpy.any(self.beta_D) ): transmissionTerms_DI = numpy.asarray( scipy.sparse.csr_matrix.dot(self.A_Q_beta_D, self.X == self.D_I) ) numContacts_D = numpy.zeros(shape=(self.numNodes, 1)) if self.tracing_scenario and ( numpy.any(self.numD_E[self.tidx]) or numpy.any(self.numD_I[self.tidx]) ): numContacts_D = numpy.asarray( scipy.sparse.csr_matrix.dot( self.A, ((self.X == self.D_E) | (self.X == self.D_I)) ) ) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_StoE = ( self.p * ( ( self.beta * self.numI[self.tidx] + self.q * self.beta_D * self.numD_I[self.tidx] ) / self.N[self.tidx] ) + (1 - self.p) * numpy.divide( (transmissionTerms_I + transmissionTerms_DI), self.degree, out=numpy.zeros_like(self.degree), where=self.degree != 0, ) ) * (self.X == self.S) propensities_EtoI = self.sigma * (self.X == self.E) propensities_ItoR = self.gamma * (self.X == self.I) propensities_ItoF = self.mu_I * (self.X == self.I) # propensities_EtoDE = ( self.theta_E + numpy.divide((self.phi_E*numContacts_D), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*self.psi_E*(self.X==self.E) propensities_EtoDE = ( (self.theta_E + self.phi_E * numContacts_D) * self.psi_E * (self.X == self.E) ) # propensities_ItoDI = ( self.theta_I + numpy.divide((self.phi_I*numContacts_D), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*self.psi_I*(self.X==self.I) propensities_ItoDI = ( (self.theta_I + self.phi_I * numContacts_D) * self.psi_I * (self.X == self.I) ) propensities_DEtoDI = self.sigma_D * (self.X == self.D_E) propensities_DItoR = self.gamma_D * (self.X == self.D_I) propensities_DItoF = self.mu_D * (self.X == self.D_I) propensities_RtoS = self.xi * (self.X == self.R) propensities__toS = self.nu * (self.X != self.F) propensities = numpy.hstack( [ propensities_StoE, propensities_EtoI, propensities_ItoR, propensities_ItoF, propensities_EtoDE, propensities_ItoDI, propensities_DEtoDI, propensities_DItoR, propensities_DItoF, propensities_RtoS, propensities__toS, ] ) columns = [ "StoE", "EtoI", "ItoR", "ItoF", "EtoDE", "ItoDI", "DEtoDI", "DItoR", "DItoF", "RtoS", "_toS", ] return propensities, columns def increase_data_series_length(self): self.tseries = numpy.pad( self.tseries, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) self.numS = numpy.pad( self.numS, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) self.numE = numpy.pad( self.numE, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) self.numI = numpy.pad( self.numI, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) self.numD_E = numpy.pad( self.numD_E, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) self.numD_I = numpy.pad( self.numD_I, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) self.numR = numpy.pad( self.numR, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) self.numF = numpy.pad( self.numF, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) self.N = numpy.pad( self.N, [(0, 5 * self.numNodes)], mode="constant", constant_values=0 ) if self.store_Xseries: self.Xseries = numpy.pad( self.Xseries, [(0, 5 * self.numNodes), (0, 0)], mode="constant", constant_values=0, ) if self.nodeGroupData: for groupName in self.nodeGroupData: self.nodeGroupData[groupName]["numS"] = numpy.pad( self.nodeGroupData[groupName]["numS"], [(0, 5 * self.numNodes)], mode="constant", constant_values=0, ) self.nodeGroupData[groupName]["numE"] = numpy.pad( self.nodeGroupData[groupName]["numE"], [(0, 5 * self.numNodes)], mode="constant", constant_values=0, ) self.nodeGroupData[groupName]["numI"] = numpy.pad( self.nodeGroupData[groupName]["numI"], [(0, 5 * self.numNodes)], mode="constant", constant_values=0, ) self.nodeGroupData[groupName]["numD_E"] = numpy.pad( self.nodeGroupData[groupName]["numD_E"], [(0, 5 * self.numNodes)], mode="constant", constant_values=0, ) self.nodeGroupData[groupName]["numD_I"] = numpy.pad( self.nodeGroupData[groupName]["numD_I"], [(0, 5 * self.numNodes)], mode="constant", constant_values=0, ) self.nodeGroupData[groupName]["numR"] = numpy.pad( self.nodeGroupData[groupName]["numR"], [(0, 5 * self.numNodes)], mode="constant", constant_values=0, ) self.nodeGroupData[groupName]["numF"] = numpy.pad( self.nodeGroupData[groupName]["numF"], [(0, 5 * self.numNodes)], mode="constant", constant_values=0, ) self.nodeGroupData[groupName]["N"] = numpy.pad( self.nodeGroupData[groupName]["N"], [(0, 5 * self.numNodes)], mode="constant", constant_values=0, ) return None def finalize_data_series(self): self.tseries = numpy.array(self.tseries, dtype=float)[: self.tidx + 1] self.numS = numpy.array(self.numS, dtype=float)[: self.tidx + 1] self.numE = numpy.array(self.numE, dtype=float)[: self.tidx + 1] self.numI = numpy.array(self.numI, dtype=float)[: self.tidx + 1] self.numD_E = numpy.array(self.numD_E, dtype=float)[: self.tidx + 1] self.numD_I = numpy.array(self.numD_I, dtype=float)[: self.tidx + 1] self.numR = numpy.array(self.numR, dtype=float)[: self.tidx + 1] self.numF = numpy.array(self.numF, dtype=float)[: self.tidx + 1] self.N = numpy.array(self.N, dtype=float)[: self.tidx + 1] if self.store_Xseries: self.Xseries = self.Xseries[: self.tidx + 1, :] if self.nodeGroupData: for groupName in self.nodeGroupData: self.nodeGroupData[groupName]["numS"] = numpy.array( self.nodeGroupData[groupName]["numS"], dtype=float )[: self.tidx + 1] self.nodeGroupData[groupName]["numE"] = numpy.array( self.nodeGroupData[groupName]["numE"], dtype=float )[: self.tidx + 1] self.nodeGroupData[groupName]["numI"] = numpy.array( self.nodeGroupData[groupName]["numI"], dtype=float )[: self.tidx + 1] self.nodeGroupData[groupName]["numD_E"] = numpy.array( self.nodeGroupData[groupName]["numD_E"], dtype=float )[: self.tidx + 1] self.nodeGroupData[groupName]["numD_I"] = numpy.array( self.nodeGroupData[groupName]["numD_I"], dtype=float )[: self.tidx + 1] self.nodeGroupData[groupName]["numR"] = numpy.array( self.nodeGroupData[groupName]["numR"], dtype=float )[: self.tidx + 1] self.nodeGroupData[groupName]["numF"] = numpy.array( self.nodeGroupData[groupName]["numF"], dtype=float )[: self.tidx + 1] self.nodeGroupData[groupName]["N"] = numpy.array( self.nodeGroupData[groupName]["N"], dtype=float )[: self.tidx + 1] return None def run_iteration(self): if self.tidx >= len(self.tseries) - 1: # Room has run out in the timeseries storage arrays; double the size of these arrays: self.increase_data_series_length() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 1. Generate 2 random numbers uniformly distributed in (0,1) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r1 = numpy.random.rand() r2 = numpy.random.rand() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 2. Calculate propensities # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities, transitionTypes = self.calc_propensities() # Terminate when probability of all events is 0: if propensities.sum() <= 0.0: self.finalize_data_series() return False # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 3. Calculate alpha # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_flat = propensities.ravel(order="F") cumsum = propensities_flat.cumsum() alpha = propensities_flat.sum() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 4. Compute the time until the next event takes place # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tau = (1 / alpha) * numpy.log(float(1 / r1)) self.t += tau # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 5. Compute which event takes place # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ transitionIdx = numpy.searchsorted(cumsum, r2 * alpha) transitionNode = transitionIdx % self.numNodes transitionType = transitionTypes[int(transitionIdx / self.numNodes)] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 6. Update node states and data series # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ assert ( self.X[transitionNode] == self.transitions[transitionType]["currentState"] and self.X[transitionNode] != self.F ), ( "Assertion error: Node " + str(transitionNode) + " has unexpected current state " + str(self.X[transitionNode]) + " given the intended transition of " + str(transitionType) + "." ) self.X[transitionNode] = self.transitions[transitionType]["newState"] self.tidx += 1 self.tseries[self.tidx] = self.t self.numS[self.tidx] = numpy.clip( numpy.count_nonzero(self.X == self.S), a_min=0, a_max=self.numNodes ) self.numE[self.tidx] = numpy.clip( numpy.count_nonzero(self.X == self.E), a_min=0, a_max=self.numNodes ) self.numI[self.tidx] = numpy.clip( numpy.count_nonzero(self.X == self.I), a_min=0, a_max=self.numNodes ) self.numD_E[self.tidx] = numpy.clip( numpy.count_nonzero(self.X == self.D_E), a_min=0, a_max=self.numNodes ) self.numD_I[self.tidx] = numpy.clip( numpy.count_nonzero(self.X == self.D_I), a_min=0, a_max=self.numNodes ) self.numR[self.tidx] = numpy.clip( numpy.count_nonzero(self.X == self.R), a_min=0, a_max=self.numNodes ) self.numF[self.tidx] = numpy.clip(
numpy.count_nonzero(self.X == self.F)
numpy.count_nonzero
import numpy as np import os import glob import healpy as hp from rubin_sim.photUtils import Sed, Bandpass from .twilightFunc import twilightFunc from scipy.interpolate import InterpolatedUnivariateSpline, interp1d from rubin_sim.data import get_data_dir # Make backwards compatible with healpy if hasattr(hp, 'get_interp_weights'): get_neighbours = hp.get_interp_weights elif hasattr(hp, 'get_neighbours'): get_neighbours = hp.get_neighbours else: print("Could not find appropriate healpy function for get_interp_weight or get_neighbours") __all__ = ['id2intid', 'intid2id', 'loadSpecFiles', 'BaseSingleInterp', 'ScatteredStar', 'LowerAtm', 'UpperAtm', 'MergedSpec', 'Airglow', 'TwilightInterp', 'MoonInterp', 'ZodiacalInterp'] def id2intid(ids): """ take an array of ids, and convert them to an integer id. Handy if you want to put things into a sparse array. """ uids = np.unique(ids) order = np.argsort(ids) oids = ids[order] uintids = np.arange(np.size(uids), dtype=int) left = np.searchsorted(oids, uids) right = np.searchsorted(oids, uids, side='right') intids = np.empty(ids.size, dtype=int) for i in range(np.size(left)): intids[left[i]:right[i]] = uintids[i] result = intids*0 result[order] = intids return result, uids, uintids def intid2id(intids, uintids, uids, dtype=int): """ convert an int back to an id """ ids = np.zeros(np.size(intids)) order = np.argsort(intids) ointids = intids[order] left = np.searchsorted(ointids, uintids, side='left') right = np.searchsorted(ointids, uintids, side='right') for i, (le, ri) in enumerate(zip(left, right)): ids[le:ri] = uids[i] result = np.zeros(np.size(intids), dtype=dtype) result[order] = ids return result def loadSpecFiles(filenames, mags=False): """ Load up the ESO spectra. The ESO npz files contain the following arrays: filterWave: The central wavelengths of the pre-computed magnitudes wave: wavelengths for the spectra spec: array of spectra and magnitudes along with the relevant variable inputs. For example, airglow has dtype = [('airmass', '<f8'), ('solarFlux', '<f8'), ('spectra', '<f8', (17001,)), ('mags', '<f8', (6,)] For each unique airmass and solarFlux value, there is a 17001 elements spectra and 6 magnitudes. """ if len(filenames) == 1: temp = np.load(filenames[0]) wave = temp['wave'].copy() filterWave = temp['filterWave'].copy() if mags: # don't copy the spectra to save memory space dt = np.dtype([(key, temp['spec'].dtype[i]) for i, key in enumerate(temp['spec'].dtype.names) if key != 'spectra']) spec = np.zeros(temp['spec'].size, dtype=dt) for key in temp['spec'].dtype.names: if key != 'spectra': spec[key] = temp['spec'][key].copy() else: spec = temp['spec'].copy() else: temp = np.load(filenames[0]) wave = temp['wave'].copy() filterWave = temp['filterWave'].copy() if mags: # don't copy the spectra to save memory space dt = np.dtype([(key, temp['spec'].dtype[i]) for i, key in enumerate(temp['spec'].dtype.names) if key != 'spectra']) spec = np.zeros(temp['spec'].size, dtype=dt) for key in temp['spec'].dtype.names: if key != 'spectra': spec[key] = temp['spec'][key].copy() else: spec = temp['spec'].copy() for filename in filenames[1:]: temp = np.load(filename) if mags: # don't copy the spectra to save memory space dt = np.dtype([(key, temp['spec'].dtype[i]) for i, key in enumerate(temp['spec'].dtype.names) if key != 'spectra']) tempspec = np.zeros(temp['spec'].size, dtype=dt) for key in temp['spec'].dtype.names: if key != 'spectra': tempspec[key] = temp['spec'][key].copy() else: tempspec = temp['spec'] spec = np.append(spec, tempspec) return spec, wave, filterWave class BaseSingleInterp(object): """ Base class for sky components that only need to be interpolated on airmass """ def __init__(self, compName=None, sortedOrder=['airmass', 'nightTimes'], mags=False): """ mags: Rather than the full spectrum, return the LSST ugrizy magnitudes. """ self.mags = mags dataDir = os.path.join(get_data_dir(), 'skybrightness', 'ESO_Spectra/'+compName) filenames = sorted(glob.glob(dataDir+'/*.npz')) self.spec, self.wave, self.filterWave = loadSpecFiles(filenames, mags=self.mags) # Take the log of the spectra in case we want to interp in log space. if not mags: self.logSpec = np.zeros(self.spec['spectra'].shape, dtype=float) good = np.where(self.spec['spectra'] != 0) self.logSpec[good] = np.log10(self.spec['spectra'][good]) self.specSize = self.spec['spectra'][0].size else: self.specSize = 0 # What order are the dimesions sorted by (from how the .npz was packaged) self.sortedOrder = sortedOrder self.dimDict = {} self.dimSizes = {} for dt in self.sortedOrder: self.dimDict[dt] = np.unique(self.spec[dt]) self.dimSizes[dt] = np.size(np.unique(self.spec[dt])) # Set up and save the dict to order the filters once. self.filterNameDict = {'u': 0, 'g': 1, 'r': 2, 'i': 3, 'z': 4, 'y': 5} def __call__(self, intepPoints, filterNames=['u', 'g', 'r', 'i', 'z', 'y']): if self.mags: return self.interpMag(intepPoints, filterNames=filterNames) else: return self.interpSpec(intepPoints) def indxAndWeights(self, points, grid): """ for given 1-D points, find the grid points on either side and return the weights assume grid is sorted """ order =
np.argsort(points)
numpy.argsort
import simulation.quadrotor3 as quad import simulation.config as cfg import numpy as np import random from math import pi, sin, cos, exp import gym from gym import error, spaces, utils from gym.utils import seeding import simulation.animation_gl as ani_gl class PerchMTEnv(gym.Env): """ Environment wrapper for training low-level flying skills. In this environment, the aircraft is meant to perch on any of the four walls at a 90 degree angle """ def __init__(self): metadata = {'render.modes': ['human']} self.r_max = 2.5 self.goal_thresh = 0.2 self.t = 0 self.T = 10 self.action_space = np.zeros((4,)) self.observation_space = np.zeros((34,)) #Dictionary to hold the wall data self.wall_data = {"wall_plane":None,"PR":None,"ELA":None,"wall_pos":None} wall_goal = self.get_wall_goal() self.wall =wall_goal[0] self.goal_xyz = wall_goal[1] zeta_goal = self.get_goal_zeta() self.goal_zeta_sin = np.sin(zeta_goal) self.goal_zeta_cos = np.cos(zeta_goal) self.goal_uvw = np.array([[0.], [0.], [0.]]) self.goal_pqr = np.array([[0.], [0.], [0.]]) # simulation parameters self.params = cfg.params self.iris = quad.Quadrotor(self.params) self.sim_dt = self.params["dt"] self.ctrl_dt = 0.05 self.steps = range(int(self.ctrl_dt/self.sim_dt)) self.action_bound = [0, self.iris.max_rpm] self.H = int(self.T/self.ctrl_dt) self.hov_rpm = self.iris.hov_rpm self.trim = [self.hov_rpm, self.hov_rpm,self.hov_rpm, self.hov_rpm] self.trim_np = np.array(self.trim) self.bandwidth = 35. xyz, zeta, uvw, pqr = self.iris.get_state() self.vec_xyz = xyz-self.goal_xyz self.vec_zeta_sin = np.sin(zeta)-self.goal_zeta_sin self.vec_zeta_cos = np.cos(zeta)-self.goal_zeta_cos self.vec_uvw = uvw-self.goal_uvw self.vec_pqr = pqr-self.goal_pqr self.vel_r = pqr[2][0] exp_wall_approach_angle = self.wall_data["ELA"] if self.wall_data["PR"] == "R": self.wall_approach_angle = abs(exp_wall_approach_angle - zeta[0][0])+ abs(0 - zeta[1][0]) self.approach_line = ((self.goal_xyz[0][0]-xyz[0][0])**2+(self.goal_xyz[2][0]-xyz[2][0])**2)**0.5 else: self.wall_approach_angle = abs(exp_wall_approach_angle - zeta[1][0]) + abs(0 - zeta[0][0]) self.approach_line = ((self.goal_xyz[1][0]-xyz[1][0])**2+(self.goal_xyz[2][0]-xyz[2][0])**2)**0.5 self.dist_norm = np.linalg.norm(self.vec_xyz) self.att_norm_sin = np.linalg.norm(self.vec_zeta_sin) self.att_norm_cos = np.linalg.norm(self.vec_zeta_cos) self.vel_norm = np.linalg.norm(self.vec_uvw) self.ang_norm = np.linalg.norm(self.vec_pqr) self.init_rendering = False def get_goal(self): return self.goal_xyz def get_wall_goal(self): """ sets a wall in either 4 corners of of the world The goal is anywehere on this wall, the location of the wall and goal is randomly generated per reset - Landing is more consistent if the landing pad is not randomly located on each of the walls. Only randomness would be the wall. - PR = pitch or roll, needs to be controlled - ELA = expected landing angle, ie -90 or +90 - wall pos = is the location of the wall - wall plane = X or Y axis contains the wall """ size = 6 if random.randint(0,1): x = -3 if random.randint(0,1): y = -3 self.wall_data["ELA"] = np.pi/2 self.wall_data["wall_pos"] = y else: y = 3 self.wall_data["ELA"] = -np.pi/2 self.wall_data["wall_pos"] = y g_x = 0#random.randint(-5,5)/10. #Comment this out for more consistency g_z = 2.5 goal = np.array([[g_x],[y],[g_z]]) self.wall_data["wall_plane"] = 'y' self.wall_data["PR"] = 'R' A1 = np.array([x,y,-3]) A2 = np.array([x+size,y,-3]) A3 = np.array([x+size,y,3]) A4 = np.array([x,y,3]) else: y = -3 if random.randint(0,1): x = -3 self.wall_data["ELA"] = -np.pi/2 self.wall_data["wall_pos"] = x else: x = 3 self.wall_data["ELA"] = np.pi/2 self.wall_data["wall_pos"] = x g_y = 0#random.randint(-5,5)/10. #Comment this out for more consistency g_z = 2.5 goal = np.array([[x],[g_y],[g_z]]) self.wall_data["wall_plane"] = 'x' self.wall_data["PR"] = 'P' A1 = np.array([x,y,-3]) A2 = np.array([x,y+size,-3]) A3 =
np.array([x,y+size,3])
numpy.array
import os import random import numpy as np import cv2 def normalize(img, mean, std, max_pixel_value=255.0): mean = np.array(mean, dtype=np.float32) mean *= max_pixel_value std = np.array(std, dtype=np.float32) std *= max_pixel_value denominator = np.reciprocal(std, dtype=np.float32) img = img.astype(np.float32) img -= mean img *= denominator return img ###################### get image path ###################### def get_image_paths(dataroot): paths = [] if dataroot is not None: paths_img = os.listdir(dataroot) for _ in sorted(paths_img): path = os.path.join(dataroot, _) paths.append(path) return paths ###################### read images ###################### def read_img(path): img = cv2.imread(path, cv2.IMREAD_UNCHANGED) img = img.astype(np.float32) / 255. if img.ndim == 2: img = np.expand_dims(img, axis=2) # img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # some images have 4 channels if img.shape[2] > 3: img = img[:, :, :3] img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=1) return img ###################### read labels ###################### def read_nodule_label(label_path): img_label = cv2.imread(label_path, cv2.IMREAD_UNCHANGED) img_label = img_label / 255 return img_label def read_cell_label(label_path): img_label = cv2.imread(label_path, cv2.IMREAD_UNCHANGED) img_label = np.where(img_label == 128, 1, img_label) img_label = np.where(img_label == 255, 2, img_label) return img_label #----------------------------------------------------------------------------------------------------# # 数据增广----Z #----------------------------------------------------------------------------------------------------# img_w = 512 img_h = 512 # def gamma_transform(img, gamma): # gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)] # gamma_table = np.round(np.array(gamma_table)).astype(np.uint8) # return cv2.LUT(img, gamma_table) # # # def random_gamma_transform(img, gamma_vari): # log_gamma_vari = np.log(gamma_vari) # alpha = np.random.uniform(-log_gamma_vari, log_gamma_vari) # gamma = np.exp(alpha) # return gamma_transform(img, gamma) def rotate(xb, yb, angle): M_rotate = cv2.getRotationMatrix2D((img_w / 2, img_h / 2), angle, 1) xb = cv2.warpAffine(xb, M_rotate, (img_w, img_h)) yb = cv2.warpAffine(yb, M_rotate, (img_w, img_h)) return xb, yb def img_blur(img): img = cv2.blur(img, (3, 3)) return img def add_noise(img): for i in range(200): # 添加点噪声 temp_x = np.random.randint(0, img.shape[0]) temp_y = np.random.randint(0, img.shape[1]) img[temp_x][temp_y] = 255 return img def channel_change(img): channels = [0, 1, 2] random.shuffle(channels) img = img[:, :, channels] return img def data_augment(img_list, rot=True, flip=True, blur=True, noise=True, channel_ch=True): xb, yb = img_list if rot: if np.random.random() < 0.25: xb, yb = rotate(xb, yb, 90) if np.random.random() < 0.25: xb, yb = rotate(xb, yb, 180) if np.random.random() < 0.25: xb, yb = rotate(xb, yb, 270) if flip: if np.random.random() < 0.25: xb = cv2.flip(xb, 1) # flipcode > 0:沿y轴翻转 yb = cv2.flip(yb, 1) if np.random.random() < 0.25: xb = cv2.flip(xb, 0) # flipcode > 0:沿x yb = cv2.flip(yb, 0) if np.random.random() < 0.25: xb = cv2.flip(xb, -1) # flipcode > 0:沿x,y yb = cv2.flip(yb, -1) if blur: if
np.random.random()
numpy.random.random
from CoolProp.CoolProp import PropsSI import CoolProp.CoolProp as CP import numpy as np import matplotlib.pyplot as plt #from scipy.interpolate import interp1d def curva_limitePH(mix, color, label, pc): n=20 if pc==0: pc = mix.keyed_output(CP.iP_critical) #pc = 30*10**5#mix.keyed_output(CP.iP_critical) #tc = mix.keyed_output(CP.iT_critical) pt=101325*2 H_l =
np.zeros(n)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Thu Jan 11 11:31:35 2018 @author: mvanoudh """ import numpy as np from sklearn.dummy import DummyRegressor, DummyClassifier from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier from sklearn.ensemble import ExtraTreesRegressor, ExtraTreesClassifier # Format is # model_constructor, is_regressor, is_tree, max_try, { parameters } model_list = [ (DummyRegressor(), True, False, 10, { 'mo__strategy': ['mean', 'median'] }), (DummyClassifier(), False, False, 10, { 'mo__strategy':['stratified', 'most_frequent', 'prior', 'uniform'] }), (Ridge(), True, False, 100, { 'mo__alpha': np.power(10., range(2, -5, -1)), 'mo__normalize': [True, False] }), (LogisticRegression(), False, False, 1, { 'mo__penalty': ['l1', 'l2'], 'mo__C': [1.0, 0.1, 10] }), (KNeighborsRegressor(), True, False, 10, { 'mo__n_neighbors': range(1, 10), 'mo__algorithm' : ('auto', 'ball_tree', 'kd_tree', 'brute') }), (KNeighborsClassifier(), False, False, 10, { 'mo__n_neighbors': range(1, 10), 'mo__algorithm' : ('auto', 'ball_tree', 'kd_tree', 'brute'), }), (DecisionTreeRegressor(), True, True, 1, { 'mo__max_features': ('auto', 'sqrt', 'log2'), 'mo__criterion': ('mae', 'mse',), 'mo__max_depth': range(1, 5), 'mo__min_impurity_decrease': np.arange(0., 10e-7, step=1e-7), 'mo__min_samples_split': range(2, 5), 'mo__min_samples_leaf': range(1, 10), 'mo__random_state': (0, ) }), (DecisionTreeClassifier(), False, True, 10, { 'mo__max_features': np.arange(.05, 1, step=.05), 'mo__criterion': ('entropy',), 'mo__max_depth': range(3, 20), 'mo__min_impurity_decrease': np.arange(1e-7, 10e-7, step=1e-7), 'mo__min_samples_split': range(2, 5), 'mo__random_state': (0, ) }), (RandomForestRegressor(), True, True, 10, { 'mo__n_estimators': range(10, 100), 'mo__max_features': np.arange(.05, .9, step=.1), 'mo__criterion': ('mae', 'mse'), 'mo__max_depth': [0.2, 0.5, 0.8, None], 'mo__min_samples_split': range(2, 10), 'mo__random_state': (0, ) }), (RandomForestClassifier(), False, True, 10, { 'mo__n_estimators': range(10, 100), 'mo__max_features':
np.arange(.05, .9, step=.1)
numpy.arange
import numpy as np import keras from learning import max_error, boundary_cond, transform, back_transform from scipy import interpolate preprocessing = "shift_and_rescale" def shorten_gf(tau, gf, new_n_tau): skip_factor = (len(tau) - 1) // (new_n_tau - 1) return tau[::skip_factor], gf[::skip_factor] def load_nn_model(filename): return keras.models.load_model(filename, custom_objects={'max_error': max_error, 'boundary_cond': boundary_cond}) def nn_gf(weak_gf, strong_gf, model): n_tau = len(weak_gf) X = np.zeros((1, 2 * n_tau)) X[0, :n_tau] = weak_gf X[0, n_tau:] = strong_gf X = transform(X, preprocessing) Y = model.predict(X) Y = back_transform(Y, preprocessing) return Y[0] def interpolate_gf(tau, gf, new_n_tau): tck = interpolate.splrep(tau, gf, s=0.000001) new_tau = np.linspace(0, tau[-1], num=new_n_tau, endpoint=True) new_gf = interpolate.splev(new_tau, tck, der=0) return new_tau, new_gf def save_gf(filename, tau, G) : if single_spin == True: data = np.asarray([tau, G[0]]) else: data = np.asarray([tau, G[0], G[1]]) if not only_gf: np.savetxt(filename, data.T) else: with open(filename, 'ab') as f: np.savetxt(f, data[1][::skip_factor, np.newaxis].T, delimiter=",", fmt="%1.4f") if __name__ == "__main__": from params import * tau_strong, strong_gf =
np.loadtxt(G_strong_filename, unpack=True)
numpy.loadtxt
import pytest import unittest.mock as mock import open_cp.sepp_base as sepp_base import open_cp.data import open_cp.predictors import numpy as np import datetime class OurModel(sepp_base.ModelBase): def background(self, points): assert len(points.shape) == 2 assert points.shape[0] == 3 return points[0] * np.exp(-(points[1]**2 + points[2]**2)) def trigger(self, pt, dpts): assert pt.shape == (3,) assert len(dpts.shape) == 2 assert dpts.shape[0] == 3 w = np.sum(np.abs(pt)) return dpts[0] * np.exp(-(dpts[1]**2 + dpts[2]**2) / w) def slow_p_matrix(model, points): assert points.shape[0] == 3 d = points.shape[1] p = np.zeros((d,d)) for i in range(d): pt = points[:,i] p[i,i] = model.background(pt[:,None]) for j in range(i): dp = pt - points[:,j] if dp[0] <= 0: p[j,i] = 0 else: p[j,i] = model.trigger(pt, dp[:,None]) for i in range(d): p[:,i] /= np.sum(p[:,i]) return p def test_p_matrix(): model = OurModel() for _ in range(10): points =
np.random.random((3,20))
numpy.random.random
"""Tests for coco_tools. """ import unittest import numpy as np from neural_compressor.experimental.metric.coco_tools import * class TestCOCO(unittest.TestCase): @classmethod def setUpClass(cls): groundtruth_annotations_list = [ { 'id': 1, 'image_id': 1, 'category_id': 1, 'bbox': [387.99,97.43,84.99,81.29], 'area': 2991.9213, 'iscrowd': 0, 'segmentation':[ [387.99,176.5,398.34,164.68,405.733,156.55,412.38,141.77, 419.77,136.6,424.94,125.51,432.33,116.64,434.55,102.6, 436.77,97.43,441.944,102.6,453.76,101.12,459.68,109.99, 457.46,115.9,463.37,124.03,470.76,128.47,472.98,137.34, 465.559,143.25,447.11,137.34,444.9,142.51,442.68,156.55, 444.9,163.2,446.37,176.5,444.9,178.72] ] } ] image_list = [{'id': 1}] category_list = [{'id': 0, 'name': 'person'}, {'id': 1, 'name': 'cat'}, {'id': 2, 'name': 'dog'}] cls.groundtruth_dict = { 'annotations': groundtruth_annotations_list, 'images': image_list, 'categories': category_list } cls.detections_list = [ { 'image_id': 1, 'category_id': 1, 'bbox': [387.99,97.43,84.99,81.29], 'score': .8, 'segmentation':[ [387.99,176.5,398.34,164.68,405.733,156.55,412.38,141.77, 419.77,136.6,424.94,125.51,432.33,116.64,434.55,102.6, 436.77,97.43,441.944,102.6,453.76,101.12,459.68,109.99, 457.46,115.9,463.37,124.03,470.76,128.47,472.98,137.34, 465.559,143.25,447.11,137.34,444.9,142.51,442.68,156.55, 444.9,163.2,446.37,176.5,444.9,178.72] ] }, ] def testCOCOWrapper(self): with self.assertRaises(ValueError): wrap = COCOWrapper(None, 'test') wrap = COCOWrapper(TestCOCO.groundtruth_dict) with self.assertRaises(ValueError): wrap.LoadAnnotations(TestCOCO.groundtruth_dict) wrong_detection = { 'image_id': 'test', 'category_id': 1, 'bbox': [100., 100., 100., 100.], 'score': .8 } with self.assertRaises(ValueError): wrap.LoadAnnotations(wrong_detection) wrong_detection = [ { 'image_id': 'test', 'category_id': 1, 'bbox': [100., 100., 100., 100.], 'score': .8 } ] with self.assertRaises(ValueError): wrap.LoadAnnotations(wrong_detection) groundtruth = COCOWrapper(TestCOCO.groundtruth_dict) detections = groundtruth.LoadAnnotations(TestCOCO.detections_list) evaluator = COCOEvalWrapper(groundtruth, detections) self.assertEqual(evaluator.GetCategory(1)['name'], 'cat') self.assertTrue(not evaluator.GetAgnosticMode()) self.assertEqual(evaluator.GetCategoryIdList(), [0, 1, 2]) evaluator = COCOEvalWrapper(groundtruth, detections, agnostic_mode=True) self.assertTrue(evaluator.GetAgnosticMode()) summary_metrics, _ = evaluator.ComputeMetrics() self.assertAlmostEqual(1.0, summary_metrics['Precision/mAP']) with self.assertRaises(ValueError): summary_metrics, _ = evaluator.ComputeMetrics(True, True) iou_thrs = '0.5:0.05:0.95' map_points = 101 evaluator = COCOEvalWrapper(groundtruth, detections, iou_thrs=iou_thrs, map_points=map_points) evaluator.evaluate() evaluator.accumulate() self.assertEqual(evaluator.eval['counts'], [10, 101, 3, 4, 3]) iou_thrs = 0.5 map_points = 11 evaluator = COCOEvalWrapper(groundtruth, detections, iou_thrs=iou_thrs, map_points=map_points) evaluator.evaluate() evaluator.accumulate() self.assertEqual(evaluator.eval['counts'], [1, 11, 3, 4, 3]) iou_thrs = 0.5 map_points = 0 evaluator = COCOEvalWrapper(groundtruth, detections, iou_thrs=iou_thrs, map_points=map_points) evaluator.evaluate() evaluator.accumulate() self.assertEqual(evaluator.eval['counts'], [1, 1, 3, 4, 3]) def testExportSingleImageDetectionBoxesToCoco(self): with self.assertRaises(ValueError): ExportSingleImageDetectionBoxesToCoco(None, None, None, np.array([0]), np.array([[0,0]])) with self.assertRaises(ValueError): ExportSingleImageDetectionBoxesToCoco(None, None, np.array([0,0]), np.array([0]), np.array([0])) with self.assertRaises(ValueError): ExportSingleImageDetectionBoxesToCoco(None, None, np.array([[0,0]]), np.array([0]), np.array([0])) def testExportSingleImageGroundtruthToCoco(self): with self.assertRaises(ValueError): ExportSingleImageGroundtruthToCoco(None, None, None, np.array([0,0]), np.array([0])) with self.assertRaises(ValueError): ExportSingleImageGroundtruthToCoco(None, None, None, np.array([[0,0]]), np.array([0])) with self.assertRaises(ValueError): ExportSingleImageGroundtruthToCoco(None, None, None, np.array([[1,1,5,5]]), np.array([1]), np.array([[[1]]]), np.array([[1,0]])) ExportSingleImageGroundtruthToCoco(1, 2, [0,1,2], np.array([[1,1,5,5]]), np.array([1]), np.array([[[1]]], dtype=np.uint8), np.array([1,0])) def testExportSingleImageDetectionMasksToCoco(self): with self.assertRaises(ValueError): ExportSingleImageDetectionMasksToCoco(None, None, None, np.array([0]), np.array([[0,0]])) with self.assertRaises(ValueError): ExportSingleImageDetectionMasksToCoco(None, None, np.array([0,0]), np.array([0]), np.array([0])) mask=[ [387.99,176.5,398.34,164.68,405.733,156.55,412.38,141.77, 419.77,136.6,424.94,125.51,432.33,116.64,434.55,102.6, 436.77,97.43,441.944,102.6,453.76,101.12,459.68,109.99, 457.46,115.9,463.37,124.03,470.76,128.47,472.98,137.34, 465.559,143.25,447.11,137.34,444.9,142.51,442.68,156.55, 444.9,163.2,446.37,176.5,444.9,178.72] ] result = ExportSingleImageDetectionMasksToCoco( 1, [0,1,2], mask, np.array([0.8]),
np.array([1])
numpy.array
#!/usr/bin/env python3 # ~ https://dataportals.pangaea.de/bsrn/?q=LR0100 import pandas as pd from pandas._libs.tslibs.timestamps import Timestamp import datetime import matplotlib.pyplot as plt from sklearn.metrics import r2_score from pysolar.solar import * import numpy as np from scipy.special import lambertw from libreria_clear_sky_models_panda import * # get the number of the last line of header comment def get_skip_pangaea( _filename ): skip_line = 0 document = open( _filename , 'r+') with document as f: for line in f: skip_line += 1 if "*/" in line: break document.close() ''' import file as a panda object''' ds = pd.read_csv(_filename, sep='\t', lineterminator = "\n", skiprows= skip_line ) return ds def clear_minus_to_0(_col): if _col <0: _col = 0 return _col # get cenital angle def theta_z_calculation( _col , _longitude, _latitude): col = Timestamp(_col, freq='MS').to_pydatetime() date = col.replace(tzinfo=datetime.timezone.utc) # ~ get_altitude(self.lat, self.lon, d) return ( 90-get_altitude(_latitude, _longitude, date) ) def check_if_value_is_in_range(_col, _max_std): std_col = _col max_std = _max_std if std_col<= max_std: return(1) return(0) ''' Extraterrestial functions implementations ''' def get_Ext_irradiance_pandas(_time ): # Calculed like: Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis day_time = Timestamp(_time, freq='MS').to_pydatetime() N = day_time.timetuple().tm_yday I_0 = 1361.2 # extaterrestrial solar irradiance [w/m2] c = np.pi/180 c_360 = 360*(N-1)/365*c fac1 = 1.00011 + 0.034221* np.cos(c_360) fac2 = 0.00128 * np.sin(c_360) + 0.000719*np.cos(2*c_360) fac3 = 0.000077 * np.sin(2*c_360) I_ext = I_0 * ( fac1 + fac2 + fac3) return(I_ext) # get a and b parameter of SANCHEZ SEGuRA - PENA CRUZ K_n model def compute_SSPCnormalDistribution_parameters(_theta_1, _DNI_1 , _theta_2 , _DNI_2, _Iext): ''' y = a e**(b x**2)''' kt1 = 1 - _DNI_1 / _Iext kt2 = 1 - _DNI_2 / _Iext theta_z1 = _theta_1 * np.pi/180 theta_z2 = _theta_2 * np.pi/180 x1 = kt1 * np.sin(theta_z1) y1 = kt1 * np.cos(theta_z1) x2 = kt2 * np.sin(theta_z2) y2 = kt2 * np.cos(theta_z2) b = np.real( 1/(x1**2-x2**2)*np.log(y1/y2) ) a = y1 * (y1/y2)**(-x1**2/(x1**2-x2**2)) # validation to obtain a real curve using a and b parametres sscp = compute_SSPC_using_a_b( theta_z1, a, b, 1000) # ~ print("sscp is: " , type(sscp) ) # ~ print("sscp is nan: " , np.isnan(sscp) ) # ~ print("sscp value: " , sscp) return ( a , b , sscp) def compute_SSPC_using_a_b(_theta_z, a, b, _I_ext): theta_z1 = _theta_z * np.pi/180 if _theta_z < 90: #productLogfunction w = np.real(lambertw(-2*a**2*b*(np.tan(theta_z1))**2 )) x = 1 * (w)**0.5 /(2*-b)**0.5 y = x /np.tan(theta_z1) else: x = 0 y = 1 kt = 1- (x**2 + y**2)**0.5 if kt < 0: kt = 0 SSPC = kt*_I_ext return (SSPC) def main(): # data save_document_name = "DB_.csv" ''' ------------------------ ''' filename_tl = "Alert_TL.csv" #Linke Turbidity coefficient data from soda path_base = "ALE_radiation_" name_station = "Alert" latitude = 82.490000 longitude = -62.420000 elevation = 127.0 ''' ------------------------ ''' ''' Reno's conditions''' max_std = 0.2 # max std permited inman max_M = 75 max_mean = 75 ''' import linke turbidity data by months ''' Tl_ds = get_tl_by_interpolation_soda( filename_tl ) print('Tl_ds' , Tl_ds) ds =
np.asarray([])
numpy.asarray
import helpers import numpy import pytest import toughio write_read = lambda x, **kwargs: helpers.write_read( "INFILE", x, toughio.write_input, toughio.read_input, **kwargs ) write_read_tough = lambda x: write_read( x, writer_kws={"file_format": "tough"}, reader_kws={"file_format": "tough"}, ) write_read_json = lambda x: write_read( x, writer_kws={"file_format": "json"}, reader_kws={"file_format": "json"}, ) @pytest.mark.parametrize( "write_read, single", [ (write_read_tough, True), (write_read_tough, False), (write_read_json, True), (write_read_json, False), ], ) def test_title(write_read, single): parameters_ref = { "title": ( helpers.random_string(80) if single else [helpers.random_string(80) for _ in range(numpy.random.randint(5) + 2)] ), } parameters = write_read(parameters_ref) assert parameters_ref["title"] == parameters["title"] @pytest.mark.parametrize("write_read", [write_read_tough, write_read_json]) def test_rocks(write_read): keys = [ "density", "porosity", "permeability", "conductivity", "specific_heat", "compressibility", "expansivity", "conductivity_dry", "tortuosity", "klinkenberg_parameter", "distribution_coefficient_3", "distribution_coefficient_4", ] parameters_ref = { "rocks": { helpers.random_string(5): {key: numpy.random.rand() for key in keys[:5]}, helpers.random_string(5): { key: numpy.random.rand() if key != "permeability" else numpy.random.rand(3) for key in keys[:5] }, helpers.random_string(5): {key: numpy.random.rand() for key in keys}, helpers.random_string(5): {key: numpy.random.rand() for key in keys}, helpers.random_string(5): {key: numpy.random.rand() for key in keys}, helpers.random_string(5): {key: numpy.random.rand() for key in keys}, } } names = list(parameters_ref["rocks"].keys()) parameters_ref["rocks"][names[-1]].update( { "relative_permeability": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, } ) parameters_ref["rocks"][names[-2]].update( { "capillarity": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, } ) parameters_ref["rocks"][names[-3]].update( { "relative_permeability": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, "capillarity": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, } ) parameters = write_read(parameters_ref) assert sorted(parameters_ref["rocks"].keys()) == sorted(parameters["rocks"].keys()) for k, v in parameters_ref["rocks"].items(): for kk, vv in v.items(): if not isinstance(vv, dict): assert numpy.allclose(vv, parameters["rocks"][k][kk], atol=1.0e-5) else: helpers.allclose_dict(vv, parameters["rocks"][k][kk], atol=1.0e-4) @pytest.mark.parametrize( "write_read, rpcap", [ (write_read_tough, "rp"), (write_read_tough, "cap"), (write_read_tough, "both"), (write_read_json, "rp"), (write_read_json, "cap"), (write_read_json, "both"), ], ) def test_rpcap(write_read, rpcap): parameters_ref = {"default": {}} if rpcap in {"rp", "both"}: parameters_ref["default"]["relative_permeability"] = { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), } if rpcap in {"cap", "both"}: parameters_ref["default"]["capillarity"] = { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), } parameters = write_read(parameters_ref) for k, v in parameters_ref["default"].items(): helpers.allclose_dict(v, parameters["default"][k], atol=1.0e-4) @pytest.mark.parametrize("write_read", [write_read_tough, write_read_json]) def test_flac(write_read): parameters_ref = { "flac": { "creep": bool(numpy.random.randint(2)), "porosity_model": numpy.random.randint(10), "version": numpy.random.randint(10), }, "rocks": { helpers.random_string(5): { "permeability_model": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(
numpy.random.randint(7)
numpy.random.randint