prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from pytorch2keras.converter import pytorch_to_keras class LayerTest(nn.Module): def __init__(self, kernel_size=3, padding=1, stride=1): super(LayerTest, self).__init__() self.pool = nn.AvgPool2d(kernel_size=kernel_size, padding=padding, stride=stride) def forward(self, x): x = self.pool(x) return x def check_error(output, k_model, input_np, epsilon=1e-5): pytorch_output = output.data.numpy() keras_output = k_model.predict(input_np) error = np.max(pytorch_output - keras_output) print('Error:', error) assert error < epsilon return error if __name__ == '__main__': max_error = 0 for kernel_size in [1, 3, 5, 7]: for padding in [0, 1, 3]: for stride in [1, 2, 3, 4]: # RuntimeError: invalid argument 2: pad should be smaller than half of kernel size, but got padW = 1, padH = 1, kW = 1, if padding > kernel_size / 2: continue model = LayerTest(kernel_size=kernel_size, padding=padding, stride=stride) model.eval() input_np =
np.random.uniform(0, 1, (1, 3, 224, 224))
numpy.random.uniform
import numpy as np import pdb from tqdm import tqdm import torch as t import torch.nn.functional as F import torch.nn as nn from scipy.stats import chi2, truncnorm import sys import pickle as pkl import cdm_pytorch as cp import matplotlib.pyplot as plt def gen_choices_from_rank(order): order = order[::-1] vec = np.zeros([len(order),1]) choice_sets = np.zeros([len(order)-1, len(order)]) choices = np.zeros([len(order)-1, len(order)]) vec[order[0]] = 1 for i in range(1,len(order)): vec[order[i]] = 1 choice_sets[i-1] = vec[:,0] choices[i-1, order[i]] = 1 return choice_sets, choices def gen_CDM_ranking(U): order = [] vec = np.ones(U.shape[0], dtype=np.bool) for idx in range(U.shape[0]-1): p = np.exp(U[:,vec][vec,:].sum(-1)) p /= p.sum() order.append(vec.nonzero()[0][np.random.choice(len(p),p=p)]) vec[order[-1]] = 0 order.append(vec.nonzero()[0][0]) return np.array(order) def gen_O_J_v2(m,n,U): # EDITED FOR CDM # Given a fixed CDM U, it will generate lots of choices. O, J = [], [] for i in tqdm(range(m)): order = gen_CDM_ranking(U) o, j = gen_choices_from_rank(order) O.append(o) J.append(j) O = np.concatenate(O,0) J = np.concatenate(J,0) return O, J def set_to_edge(o): n = len(o) o_nnz = o.nonzero()[0] L_list = np.zeros([n*(n-1), len(o_nnz)]) for idx_nz, idx in enumerate(o_nnz): L_list[idx*(n-1):(idx+1)*(n-1),idx_nz] = np.delete(o, idx) L_sum = L_list.sum(-1,keepdims=True) #pdb.set_trace() return L_list.dot(L_list.T) - (1/(len(o_nnz)))*L_sum.dot(L_sum.T) ### Methods for L2 Error Plot def vectorize(U): n,_=U.shape u=np.array([U[i,j] for i in range(n) for j in range(n) if i!=j]) return (u-u.mean()) def gen_datasets(n=6, num_rankings=1000, num_datasets=20, B=1.5, theta=None, d=None, random_state=8080): if theta is not None: theta = np.array(theta) theta -= theta.mean() U = -np.ones([n,1]).dot(theta); np.fill_diagonal(U,0); elif d is not None: T = truncnorm.rvs(-B, B, loc=0, scale=1, size=(n,d), random_state=random_state) C = truncnorm.rvs(-B, B, loc=0, scale=1, size=(n,d), random_state=random_state) T /= np.sqrt(d*(n-1)) C /= np.sqrt(d*(n-1)) U = T.dot(C.T) np.fill_diagonal(U,0); U -= U.sum()/(n*(n-1)); np.fill_diagonal(U,0) else: U = truncnorm.rvs(-B, B, loc=0, scale=1, size=(n,n), random_state=random_state) np.fill_diagonal(U,0); U /= n-1; U -= U.sum()/(n*(n-1)); np.fill_diagonal(U,0) print(f'U: {U}') data = [gen_O_J_v2(num_rankings,n,U) for idx in range(num_datasets)] u = vectorize(U) return u, data def fit_functions(data, num_fits, start_point, end_point, d=None, logspace=True): param_store = [] gv_store = [] if logspace: if num_fits == 1: increment_sizes = [int(10**end_point)] else: increment_sizes=np.int32(
np.logspace(start_point, end_point, num_fits)
numpy.logspace
# coding:utf-8 import numpy as np import torch import math import cv2 from pycocotools import mask as cocomask class IOUMetric(object): """ Class to calculate mean-iou using fast_hist method """ def __init__(self, num_classes): self.num_classes = num_classes self.hist = np.zeros((num_classes, num_classes)) def _fast_hist(self, label_pred, label_true): mask = (label_true >= 0) & (label_true < self.num_classes) hist = np.bincount( self.num_classes * label_true[mask].astype(int) + label_pred[mask], minlength=self.num_classes ** 2).reshape(self.num_classes, self.num_classes) return hist def add_batch(self, predictions, gts): for lp, lt in zip(predictions, gts): self.hist += self._fast_hist(lp.flatten(), lt.flatten()) def evaluate(self): acc = np.diag(self.hist).sum() / self.hist.sum() acc_cls =
np.diag(self.hist)
numpy.diag
#!/usr/bin/python # -*- coding: utf-8 -*- from matplotlib import animation import matplotlib.pyplot as plt import time import numpy as np import gc import datetime from . import AC_tools as AC """ Animate a NetCDF array to give a video of 2D (surface) """ # --- Settings for calling main as via scripting specs = ['O3', 'NO2', 'PAN', 'ALD2'] pcent = True ClearFlo_unit = True # verbose and debug settings for script main call debug = True def main(spec='NO', pcent=False, fixcb=None, limit_by_dates=False, extend='neither', ClearFlo_unit=False, verbose=True, debug=False): """ Extract data array from given location and make Animation """ # Get data in array ( time, lat, lon ) and dates (datetime.datetime ) arr, dates = get_data_dates(spec=spec, limit_by_dates=limit_by_dates, debug=debug) if debug: print([(i[:5], i.shape) for i in (arr, dates)]) # Get titles and other varibles for run (e.g. res, lons and lats for GC config. ) lat, lon, units, fname, res, title, scale = get_run_info(spec=spec, pcent=pcent, ClearFlo_unit=ClearFlo_unit) arr = arr*scale # Setup figure and axis fig, ax = setup_figure_and_axis() # Set manual limit colormap ( colorbar )? # fixcb = np.array([ 0, 100]) # extend ='both' # extend ='max' # Setup first frame for re-use ( inc. basemap ) and get key variables cmap, specplt, lvls, cnorm, m, fixcb, fixcb_buffered = setup_plot2animate( arr, fig=fig, ax=ax, lat=lat, lon=lon, units=units, res=res, fixcb=fixcb, debug=debug) # setup figure ascetics setup_figure_ascetics(dates, cmap=cmap, cnorm=cnorm, units=units, fig=fig, title=title, extend=extend, arr=arr, fixcb=fixcb, fixcb_buffered=fixcb_buffered, debug=debug) # animate the array and save as animate_array(arr, dates, specplt, lvls=lvls, cnorm=cnorm, cmap=cmap, debug=debug, fig=fig, m=m, lon=lon, lat=lat, spec=spec, fname=fname) def extract_data_dates(spec='O3', file=None, dates_variable='time', fill_invalid_with_mean=True, limit_by_dates=False, sdate=datetime.datetime(2005, 0o1, 0o1), ver='1.7', edate=datetime.datetime(2005, 0o1, 0o7), debug=False): """ Extracts dates and data from a given location """ from pandas import DataFrame import numpy as np from netCDF4 import Dataset import datetime # # <= Kludge: convert to tracer name used in NetCDF for extraction from AC.funcs_vars import what_species_am_i pspec = what_species_am_i(input=spec, ver=ver, invert=True, debug=debug) with Dataset(file, 'r') as rootgrp: if debug: print([i for i in rootgrp.variables]) # Return data as an array # arr = np.ma.array( rootgrp.variables[ pspec ] ) arr = np.array(rootgrp.variables[pspec]) print(rootgrp.variables[pspec]) print(np.array(rootgrp.variables[pspec])) # get dates dates =
np.ma.array(rootgrp.variables[dates_variable])
numpy.ma.array
"""Solvers for multitask group-stl with a simplex constraint.""" import numpy as np from sklearn.linear_model import Lasso def solver_stl(X, Y, alpha=None, callback=None, positive=False, maxiter=3000, tol=1e-4): """Perform CD to solve positive Lasso.""" n_tasks, n_samples, n_features = X.shape theta = np.zeros((n_features, n_tasks)) if callback: callback(theta) if alpha is None: alpha =
np.ones(n_tasks)
numpy.ones
import pytest import sys import numpy as np import os #import os.path as osp import yaml import matplotlib.pyplot as plt from scipy.interpolate import PchipInterpolator import wisdem.inputs as sch # used for loading turbine YAML and using WISDEM validation process from wisdem.commonse.utilities import arc_length # test local code; consider src layout in future to test installed code import raft as raft import moorpy as mp import importlib mp = importlib.reload(mp) raft = importlib.reload(raft) raft_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def runRAFT(fname_design, fname_turbine, fname_env): ''' This the main function for running the raft model in standalone form, where inputs are contained in the specified input files. ''' # open the design YAML file and parse it into a dictionary for passing to raft with open(fname_design) as file: design = yaml.load(file, Loader=yaml.FullLoader) print("Loading file: "+fname_design) print(f"'{design['name']}'") depth = float(design['mooring']['water_depth']) # now off potMod in the design dictionary to avoid BEM analysis for mi in design['platform']['members']: mi['potMod'] = False # set up frequency range w = np.arange(0.05, 5, 0.05) # frequency range (to be set by modeling options yaml) # read in turbine data and combine it in # turbine = loadTurbineYAML(fname_turbine) # design['turbine'].update(turbine) # --- Create and run the model --- model = raft.Model(design, w=w, depth=depth) # set up model model.setEnv(Hs=8, Tp=12, V=10, Fthrust=float(design['turbine']['Fthrust'])) # set basic wave and wind info model.calcSystemProps() # get all the setup calculations done within the model model.solveEigen() model.calcMooringAndOffsets() # calculate the offsets for the given loading model.solveDynamics() # put everything together and iteratively solve the dynamic response model.plot() plt.show() return model def loadTurbineYAML(fname_turbine): ''' This loads data from a standard turbine YAML file to fill in the turbine portion of the RAFT input dictionary. ''' # Set discretization parameters n_span = 30 # [-] - number of blade stations along span grid = np.linspace(0., 1., n_span) # equally spaced grid along blade span, root=0 tip=1 n_aoa = 200 # [-] - number of angles of attack to discretize airfoil polars # dictionary to be filled in with turbine data d = dict(blade={}, airfoils={}, env={}) # Load wind turbine geometry yaml print("Loading turbine YAML file: "+fname_turbine) run_dir = os.path.dirname( os.path.realpath(__file__) ) + os.sep fname_input_wt = os.path.join(run_dir, fname_turbine) wt_init = sch.load_geometry_yaml(fname_input_wt) print(f"'{wt_init['name']}'") # Conversion of the yaml inputs into CCBlade inputs Rhub = 0.5 * wt_init["components"]["hub"]["diameter"] # [m] - hub radius d['precone'] =
np.rad2deg(wt_init["components"]["hub"]["cone_angle"])
numpy.rad2deg
from __future__ import division from __future__ import print_function import numpy as np import scipy as sp from sklearn.metrics import mean_squared_error from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.svm import SVC from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import Perceptron as PerceptronClf from sklearn.linear_model import Lasso from sklearn.model_selection import KFold RANDOM_STATE = 0 # Error calculator for class average for each fold def error_calc(test_labels, predictions): error = [] eps = 1e-15 # Calculate the custom metric 1- 0.5(Specificity + Sensitivity) for i in np.unique(test_labels): # true positives tp = ((test_labels == i) & (predictions == i)).sum() # true negatives tn = ((test_labels != i) & (predictions != i)).sum() # false positives fp = ((test_labels != i) & (predictions == i)).sum() # false negatives fn = ((test_labels == i) & (predictions != i)).sum() tp_new = sp.maximum(eps, tp) pos_new = sp.maximum(eps, tp+fn) tn_new = sp.maximum(eps, tn) neg_new = sp.maximum(eps, tn+fp) error.append(1 - 0.5*(tp_new/pos_new) - 0.5*(tn_new/neg_new)) # convert the error list into numpy array error_np = np.array(error) return
np.mean(error_np)
numpy.mean
import unittest import numpy as np import matplotlib.pyplot as plt import torch from torch.distributions.multivariate_normal import MultivariateNormal from torch.distributions.uniform import Uniform from .spatial_hist import SpatialHist class TestSpatialHist(unittest.TestCase): def setUp(self): # Parameters nbin_per_side = 50 prior_count = 0.1 xlm = [-30, 20] ylm = [-15, 15] n = 1000 # number of training points in each slice # Shape of distribution mu1 = torch.tensor([-22., 0.]) mu2 = torch.tensor([0., 8.]) Sigma = torch.eye(2) # Sample the data data1 = MultivariateNormal(mu1, Sigma).sample(torch.Size([n])) data2 = MultivariateNormal(mu2, Sigma).sample(torch.Size([n])) data = torch.cat([data1, data2]) # Build the SpatialHist instance & sample data self.H = SpatialHist(data, xlm, ylm, nbin_per_side, prior_count) self.syndata, _, _ = self.H.sample(n) self.data = data self.xlim = xlm self.ylim = ylm def test_sample(self): """ Plot the sampled data next to the original data to verify that it looks correct. """ # Plot original data fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(8,8)) axes[0].scatter(self.data[:,0], self.data[:,1], s=3, c='r') axes[0].set_title('original data') axes[0].set_xlim(self.xlim) axes[0].set_ylim(self.ylim) # plot reconstructed data axes[1].scatter(self.syndata[:,0], self.syndata[:,1], s=3, c='b') axes[1].set_title('reconstructed data') axes[1].set_xlim(self.xlim) axes[1].set_ylim(self.ylim) plt.show() # TODO - write assertions def test_plot(self): """ Test visualization of learned position model """ self.H.plot() # TODO - write assertions def test_dualMethodLL(self): """ Check two different ways of computing likelihood """ ll = self.H.score(self.syndata) _, ll2 = self.H.get_id(self.syndata) ll2 = torch.sum(ll2) self.assertTrue(torch.abs(ll - ll2) <= 1e-2) def test_validDensity(self): """ Numerically check the normalizing constant of the density """ nsamp = 10000 area = (self.xlim[1]-self.xlim[0]) * (self.ylim[1]-self.ylim[0]) x = Uniform(low=self.xlim[0], high=self.xlim[1]).sample(torch.Size([nsamp])) y = Uniform(low=self.ylim[0], high=self.ylim[1]).sample(torch.Size([nsamp])) D = torch.cat([x.view(-1, 1), y.view(-1, 1)], 1) _, ll = self.H.get_id(D) ltot = torch.logsumexp(ll.view(-1), 0) tsum = torch.exp(ltot) tot = (area/nsamp) * tsum tot = tot.item() print('Average score: %0.3f' % tot) self.assertTrue(
np.abs(1 - tot)
numpy.abs
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest, os import numpy as np from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci @skip_check_grad_ci(reason="DNNL's MatMul doesn't implemend grad kernel.") class TestDnnlMatMulOp(OpTest): def generate_data(self): self.x = np.random.random((25, 2, 2)).astype("float32") self.y = np.random.random((25, 2, 2)).astype("float32") self.alpha = 1.0 self.out = self.alpha * np.matmul(self.x, self.y) def set_attributes(self): self.alpha = self.alpha if hasattr(self, 'alpha') else 1.0 self.attrs = {'alpha': self.alpha} def setUp(self): # Set max isa, otherwise fails on SKX and earlier os.environ["DNNL_MAX_CPU_ISA"] = "AVX" self.op_type = "matmul" self._cpu_only = True self.use_mkldnn = True self.generate_data() self.set_attributes() self.attrs['use_mkldnn'] = True self.inputs = {'X': self.x, 'Y': self.y} self.outputs = {'Out': self.out} def test_check_output(self): self.check_output() class TestDnnlMatMulOpAlpha(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((17, 2, 3)).astype("float32") self.y = np.random.random((17, 3, 2)).astype("float32") self.alpha = 2.0 self.out = self.alpha * np.matmul(self.x, self.y) class TestDnnlMatMulOp2D(TestDnnlMatMulOp): def print_tensor(self, name, tensor): print(name) print(tensor) def generate_data(self): self.x = np.random.random((12, 9)).astype("float32") self.y = np.random.random((9, 12)).astype("float32") self.out = np.matmul(self.x, self.y) class TestDnnlMatMulOpTransposeX(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((12, 9)).astype("float32") self.y = np.random.random((12, 9)).astype("float32") self.out = np.matmul(np.transpose(self.x), self.y) def set_attributes(self): self.attrs = {'transpose_X': True} class TestDnnlMatMulOpTransposeY(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((12, 9)).astype("float32") self.y = np.random.random((12, 9)).astype("float32") self.out = np.matmul(self.x, np.transpose(self.y)) def set_attributes(self): self.attrs = {'transpose_Y': True} class TestDnnlMatMulOpTransposeY3D(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((17, 3, 2)).astype("float32") self.y = np.random.random((17, 3, 2)).astype("float32") self.out = np.matmul(self.x, np.transpose(self.y, (0, 2, 1))) def set_attributes(self): self.attrs = {'transpose_Y': True} class TestDnnlMatMulOpInt8NoScales(TestDnnlMatMulOp): def generate_data(self): self.x =
np.random.random((12, 9))
numpy.random.random
''' this is EMU^r (recursive computation of expected marginal utility) algorithm of Bhattacharjee et.al REFERENCES: <NAME>., <NAME>., <NAME>., <NAME>.: Bridging the gap: Manyobjective optimization and informed decision-making. IEEE Trans. Evolutionary Computation 21(5), 813{820 (2017) ''' import numpy as np import math as m import copy from sklearn.cluster import AffinityPropagation class solution(object): def __init__(self): self.index = None self.objective = None self.original_objective = None self.type = None self.marginalU = 0 self.front = 0 self.pick = 0 self.re_vector = None class reference_point(object): def __init__(self): self.direction = None self.neighbor = [] self.associate = [] self.identify = None def compute_emu(p, w): for i in range(len(p)): p[i].index = i obj_mat = np.asarray([i.objective for i in p]).T w_mat = np.asarray([i.direction for i in w]) u_mat = np.dot(w_mat, obj_mat) for i in range(len(u_mat)): temp_index = np.argsort(u_mat[i, :]) for j in p: if j.index == temp_index[0]: k = 1 eta = u_mat[i, temp_index[k]] - u_mat[i, temp_index[0]] while eta == 0.0: k = k + 1 if k >= len(temp_index): eta = 0 break eta = u_mat[i, temp_index[k]] - u_mat[i, temp_index[0]] j.marginalU += eta else: j.marginalU += 0 return p def Compute(p, w): front_current = 0 current_array = p while len(current_array) > 1: current_array = compute_emu(current_array, w) front_current += 1 next_array = [] for i in current_array: if i.marginalU != 0: i.front = front_current else: next_array.append(i) current_array = next_array if len(current_array) == 1: front_current += 1 current_array[0].front = front_current else: pass for i in range(front_current): front_now = front_current - i if front_now != 1: temp_front_array = [j.marginalU for j in p if j.front == front_now] temp_max_emu = max(temp_front_array) for k in p: if k.front == front_now-1: k.marginalU += temp_max_emu else: pass else: pass return p def Associate(p, w): obj_mat = np.asarray([i.objective for i in p]).T w_mat = np.asarray([i.direction for i in w]) d_mat = np.dot(w_mat, obj_mat) for i in range(len(w_mat)): d_mat[i, :] = d_mat[i, :] / np.sqrt(sum(w_mat[i, :]**2)) for i in range(len(obj_mat[0, :])): length2 = sum(obj_mat[:, i]**2) for j in range(len(d_mat[:, i])): d_2 = length2-d_mat[j, i]**2 if d_2 < 0: d_mat[j, i] = 0 else: d_mat[j, i] = d_2 w[np.argmin(d_mat[:, i])].associate.append(p[i]) p[i].repoints = w[np.argmin(d_mat[:, i])] return p, w def Identify(w): for i in w: if len(i.associate) >= 1: temp_max = -1 for k in i.associate: if k.marginalU > temp_max: temp_max = k.marginalU i.identify = k k.re_vector = i else: pass else: pass return w def Select(w): select_set = [] for i in w: if i.identify: mark = 1 for j in i.neighbor: if j.identify: if i.identify.marginalU >= j.identify.marginalU: pass else: mark = 0 else: pass if mark == 1: select_set.append(i.identify) else: pass else: pass return select_set def Initializaiton(p, w): for i in p: i.type = None i.index = None i.marginalU = 0 i.front = 0 i.pick = 0 i.re_vector = None for i in w: i.associate = [] i.identify = None return p, w def main_function(data, K): points = copy.copy(data) dim = len(points[0]) popsize = len(points) for i in range(dim): temp1 = max(points[:, i]) temp2 = min(points[:, i]) points[:, i] = (points[:, i] - temp2) / (temp1 - temp2) solutions = [solution() for i in range(popsize)] # reference_points div = 0 H = 0 factor = 400 / 1600 * popsize while H <= factor: div += 1 H = m.factorial(div + dim - 1) / (m.factorial(div) * m.factorial(dim - 1)) div -= 1 list_range = [i / div for i in range(div + 1)] direction = [] def w_generator(now_dim, now_sum, now_array): if now_dim == 1: for i in list_range: temp_array = copy.copy(now_array) if round(i + now_sum - 1, 5) == 0: temp_array.append(i) direction.append(temp_array) else: for i in list_range: temp_array = copy.copy(now_array) if round(i + now_sum - 1, 5) <= 0: temp_array.append(i) w_generator(now_dim - 1, now_sum + i, temp_array) w_generator(dim, 0, []) direction = np.asarray(direction) Repoints = [reference_point() for i in range(len(direction))] for i in range(len(direction)): Repoints[i].direction = direction[i, :] distance_list = np.sum((direction - direction[i, :] * np.ones(direction.shape)) ** 2, axis = 1) distance_sort =
np.argsort(distance_list)
numpy.argsort
""" gui/average ~~~~~~~~~~~~~~~~~~~~ Graphical user interface for three-dimensional averaging of particles :author: <NAME>, 2017 :copyright: Copyright (c) 2017 Jungmann Lab, Max Planck Institute of Biochemistry """ import os.path import sys import traceback import colorsys import matplotlib.pyplot as plt import numba import numpy as np import scipy from scipy import signal from PyQt4 import QtCore, QtGui from .. import io, lib, render from numpy.lib.recfunctions import stack_arrays from cmath import rect, phase from tqdm import tqdm import scipy.ndimage.filters DEFAULT_OVERSAMPLING = 1.0 INITIAL_REL_MAXIMUM = 2.0 ZOOM = 10 / 7 N_GROUP_COLORS = 8 @numba.jit(nopython=True, nogil=True) def render_hist(x, y, oversampling, t_min, t_max): n_pixel = int(np.ceil(oversampling * (t_max - t_min))) in_view = (x > t_min) & (y > t_min) & (x < t_max) & (y < t_max) x = x[in_view] y = y[in_view] x = oversampling * (x - t_min) y = oversampling * (y - t_min) image = np.zeros((n_pixel, n_pixel), dtype=np.float32) render._fill(image, x, y) return len(x), image @numba.jit(nopython=True, nogil=True) def render_histxyz(a, b, oversampling, a_min, a_max, b_min, b_max): n_pixel_a = int(np.ceil(oversampling * (a_max - a_min))) n_pixel_b = int(np.ceil(oversampling * (b_max - b_min))) in_view = (a > a_min) & (b > b_min) & (a < a_max) & (b < b_max) a = a[in_view] b = b[in_view] a = oversampling * (a - a_min) b = oversampling * (b - b_min) image = np.zeros((n_pixel_b, n_pixel_a), dtype=np.float32) render._fill(image, a, b) return len(a), image def rotate_axis(axis,vx,vy,vz,angle,pixelsize): if axis == 'z': vx_rot = np.cos(angle) * vx - np.sin(angle) * vy vy_rot = np.sin(angle) * vx + np.cos(angle) * vy vz_rot = vz elif axis == 'y': vx_rot = np.cos(angle) * vx + np.sin(angle) * np.divide(vz, pixelsize) vy_rot = vy vz_rot = -np.sin(angle) * vx * pixelsize + np.cos(angle) * vz elif axis == 'x': vx_rot = vx vy_rot = np.cos(angle) * vy - np.sin(angle) * np.divide(vz, pixelsize) vz_rot = np.sin(angle) * vy * pixelsize + np.cos(angle) * vz return vx_rot, vy_rot, vz_rot def compute_xcorr(CF_image_avg, image): F_image = np.fft.fft2(image) xcorr = np.fft.fftshift(np.real(np.fft.ifft2((F_image * CF_image_avg)))) return xcorr class ParametersDialog(QtGui.QDialog): def __init__(self, window): super().__init__(window) self.window = window self.setWindowTitle('Parameters') self.setModal(False) grid = QtGui.QGridLayout(self) grid.addWidget(QtGui.QLabel('Oversampling:'), 0, 0) self.oversampling = QtGui.QDoubleSpinBox() self.oversampling.setRange(1, 200) self.oversampling.setValue(DEFAULT_OVERSAMPLING) self.oversampling.setDecimals(1) self.oversampling.setKeyboardTracking(False) self.oversampling.valueChanged.connect(self.window.updateLayout) grid.addWidget(self.oversampling, 0, 1) self.iterations = QtGui.QSpinBox() self.iterations.setRange(1, 1) self.iterations.setValue(1) class View(QtGui.QLabel): def __init__(self, window): super().__init__() self.window = window self.setMinimumSize(1, 1) self.setAlignment(QtCore.Qt.AlignCenter) self.setAcceptDrops(True) self._pixmap = None def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.accept() else: event.ignore() def dropEvent(self, event): urls = event.mimeData().urls() path = urls[0].toLocalFile() ext = os.path.splitext(path)[1].lower() if ext == '.hdf5': self.open(path) def resizeEvent(self, event): if self._pixmap is not None: self.set_pixmap(self._pixmap) def set_image(self, image): cmap = np.uint8(np.round(255 * plt.get_cmap('magma')(np.arange(256)))) image /= image.max() image = np.minimum(image, 1.0) image = np.round(255 * image).astype('uint8') Y, X = image.shape self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order='C') self._bgra[..., 0] = cmap[:, 2][image] self._bgra[..., 1] = cmap[:, 1][image] self._bgra[..., 2] = cmap[:, 0][image] qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) self._pixmap = QtGui.QPixmap.fromImage(qimage) self.set_pixmap(self._pixmap) def set_pixmap(self, pixmap): self.setPixmap(pixmap.scaled(self.width(), self.height(), QtCore.Qt.KeepAspectRatio, QtCore.Qt.FastTransformation)) def update_image(self, *args): oversampling = self.window.parameters_dialog.oversampling.value() t_min = -self.r t_max = self.r N_avg, image_avg = render.render_hist(self.locs, oversampling, t_min, t_min, t_max, t_max) self.set_image(image_avg) class DatasetDialog(QtGui.QDialog): def __init__(self, window): super().__init__(window) self.window = window self.setWindowTitle('Datasets') self.setModal(False) self.layout = QtGui.QVBoxLayout() self.checks = [] self.setLayout(self.layout) def add_entry(self,path): c = QtGui.QCheckBox(path) self.layout.addWidget(c) self.checks.append(c) self.checks[-1].setChecked(True) class Window(QtGui.QMainWindow): def __init__(self): super().__init__() self.setWindowTitle('Picasso: Average3') self.resize(1024, 512) this_directory = os.path.dirname(os.path.realpath(__file__)) icon_path = os.path.join(this_directory, 'icons', 'average.ico') icon = QtGui.QIcon(icon_path) self.setWindowIcon(icon) self.setAcceptDrops(True) self.parameters_dialog = ParametersDialog(self) self.dataset_dialog = DatasetDialog(self) menu_bar = self.menuBar() file_menu = menu_bar.addMenu('File') open_action = file_menu.addAction('Open') open_action.setShortcut(QtGui.QKeySequence.Open) open_action.triggered.connect(self.open) file_menu.addAction(open_action) save_action = file_menu.addAction('Save') save_action.setShortcut(QtGui.QKeySequence.Save) save_action.triggered.connect(self.save) file_menu.addAction(save_action) process_menu = menu_bar.addMenu('Process') parameters_action = process_menu.addAction('Parameters') parameters_action.setShortcut('Ctrl+P') parameters_action.triggered.connect(self.parameters_dialog.show) dataset_action = process_menu.addAction('Datasets') dataset_action.triggered.connect(self.dataset_dialog.show) self.status_bar = self.statusBar() self._pixmap = None self.locs = [] self.z_state = [] self.group_index = [] self.infos = [] self.locs_paths = [] self._mode = 'Zoom' self._pan = False self._size_hint = (768, 768) self.n_locs = 0 self._picks = [] self.index_blocks = [] self._drift = [] # Define DisplaySettingsDialog self.viewxy = QtGui.QLabel('') self.viewxz = QtGui.QLabel('') self.viewyz = QtGui.QLabel('') self.viewcp = QtGui.QLabel('') minsize = 512 self.viewxy.setFixedWidth(minsize) self.viewxy.setFixedHeight(minsize) self.viewxz.setFixedWidth(minsize) self.viewxz.setFixedHeight(minsize) self.viewyz.setFixedWidth(minsize) self.viewyz.setFixedHeight(minsize) self.viewcp.setFixedWidth(minsize) self.viewcp.setFixedHeight(minsize) # Define layout display_groupbox = QtGui.QGroupBox('Display') displaygrid = QtGui.QGridLayout(display_groupbox) displaygrid.addWidget(QtGui.QLabel('XY'), 0, 0) displaygrid.addWidget(self.viewxy, 1, 0) displaygrid.addWidget(QtGui.QLabel('XZ'), 0, 1) displaygrid.addWidget(self.viewxz, 1, 1) displaygrid.addWidget(QtGui.QLabel('YZ'), 2, 0) displaygrid.addWidget(self.viewyz, 3, 0) displaygrid.addWidget(QtGui.QLabel('CP'), 2, 1) displaygrid.addWidget(self.viewcp, 3, 1) button_groupbox = QtGui.QGroupBox('Buttons') buttongrid = QtGui.QGridLayout(button_groupbox) rotation_groupbox = QtGui.QGroupBox('Rotation + Translation') rotationgrid = QtGui.QGridLayout(rotation_groupbox) centerofmassbtn = QtGui.QPushButton("Center of Mass XYZ") axis_groupbox = QtGui.QGroupBox('Axis') axisgrid = QtGui.QGridLayout(axis_groupbox) self.x_axisbtn = QtGui.QRadioButton("X") self.y_axisbtn = QtGui.QRadioButton("Y") self.z_axisbtn = QtGui.QRadioButton("Z") self.z_axisbtn.setChecked(True) axisgrid.addWidget(self.x_axisbtn, 0, 0) axisgrid.addWidget(self.y_axisbtn, 0, 1) axisgrid.addWidget(self.z_axisbtn, 0, 2) proj_groupbox = QtGui.QGroupBox('Projection') projgrid = QtGui.QGridLayout(proj_groupbox) self.xy_projbtn = QtGui.QRadioButton("XY") self.yz_projbtn = QtGui.QRadioButton("YZ") self.xz_projbtn = QtGui.QRadioButton("XZ") self.xy_projbtn.setChecked(True) projgrid.addWidget(self.xy_projbtn, 0, 0) projgrid.addWidget(self.yz_projbtn, 0, 1) projgrid.addWidget(self.xz_projbtn, 0, 2) rotatebtn = QtGui.QPushButton("Rotate") self.radio_sym = QtGui.QRadioButton("x symmetry") self.symEdit = QtGui.QSpinBox() self.symEdit.setRange(2, 50) self.symEdit.setValue(8) self.radio_sym_custom = QtGui.QRadioButton("custom symmetry") self.symcustomEdit = QtGui.QLineEdit("90,180,270") deg_groupbox = QtGui.QGroupBox('Degrees') deggrid = QtGui.QGridLayout(deg_groupbox) self.full_degbtn = QtGui.QRadioButton("Full") self.part_degbtn = QtGui.QRadioButton("Part") self.degEdit = QtGui.QTextEdit() self.degEdit = QtGui.QSpinBox() self.degEdit.setRange(1, 10) self.degEdit.setValue(5) deggrid.addWidget(self.full_degbtn, 0, 0) deggrid.addWidget(self.part_degbtn, 0, 1) deggrid.addWidget(self.degEdit, 0, 2) self.full_degbtn.setChecked(True) # Rotation Groupbox rotationgrid.addWidget(axis_groupbox, 0, 0, 1, 2) rotationgrid.addWidget(proj_groupbox, 1, 0, 1, 2) rotationgrid.addWidget(deg_groupbox, 2, 0, 1, 2) rotationgrid.addWidget(rotatebtn, 3, 0, 1, 2) rotationgrid.addWidget(self.symEdit, 4, 0) rotationgrid.addWidget(self.radio_sym, 4, 1) rotationgrid.addWidget(self.radio_sym_custom, 5, 0) rotationgrid.addWidget(self.symcustomEdit, 5, 1) buttongrid.addWidget(centerofmassbtn, 0, 0) buttongrid.addWidget(rotation_groupbox, 1, 0) centerofmassbtn.clicked.connect(self.centerofmass) rotatebtn.clicked.connect(self.rotate_groups) self.translatebtn = QtGui.QCheckBox("Translate only") self.flipbtn = QtGui.QCheckBox("Consider flipped structures") self.alignxbtn = QtGui.QPushButton("Align X") self.alignybtn = QtGui.QPushButton("Align Y") self.alignzzbtn = QtGui.QPushButton("Align Z_Z") self.alignzybtn = QtGui.QPushButton("Align Z_Y") self.translatexbtn = QtGui.QPushButton("Translate X") self.translateybtn = QtGui.QPushButton("Translate Y") self.translatezbtn = QtGui.QPushButton("Translate Z") self.rotatexy_convbtn = QtGui.QPushButton('Rotate XY - Convolution') self.scorebtn = QtGui.QPushButton('Calculate Score') operate_groupbox = QtGui.QGroupBox('Operate') operategrid = QtGui.QGridLayout(operate_groupbox) rotationgrid.addWidget(self.translatebtn, 7, 0) rotationgrid.addWidget(self.flipbtn, 8, 0) self.x_range = QtGui.QLineEdit('-3,3') rotationgrid.addWidget(QtGui.QLabel('x-Range (Px)'), 9, 0) rotationgrid.addWidget(self.x_range, 9, 1) self.y_range = QtGui.QLineEdit('-3,3') rotationgrid.addWidget(QtGui.QLabel('y-Range (Px)'), 10, 0) rotationgrid.addWidget(self.y_range, 10, 1) self.z_range = QtGui.QLineEdit('-1000,1000') rotationgrid.addWidget(QtGui.QLabel('z-Range (nm)'), 11, 0) rotationgrid.addWidget(self.z_range, 11, 1) self.z_range.textChanged.connect(self.adjust_z) self.x_range.textChanged.connect(self.adjust_xy) self.y_range.textChanged.connect(self.adjust_xy) operategrid.addWidget(self.alignxbtn, 0, 1) operategrid.addWidget(self.alignybtn, 1, 1) operategrid.addWidget(self.alignzzbtn, 2, 1) operategrid.addWidget(self.alignzybtn, 3, 1) operategrid.addWidget(self.translatexbtn, 0, 0) operategrid.addWidget(self.translateybtn, 1, 0) operategrid.addWidget(self.translatezbtn, 2, 0) operategrid.addWidget(self.rotatexy_convbtn,4,0) operategrid.addWidget(self.scorebtn,4,1) self.rotatexy_convbtn.clicked.connect(self.rotatexy_convolution) self.alignxbtn.clicked.connect(self.align_x) self.alignybtn.clicked.connect(self.align_y) self.alignzzbtn.clicked.connect(self.align_zz) self.alignzybtn.clicked.connect(self.align_zy) self.translatexbtn.clicked.connect(self.translate_x) self.translateybtn.clicked.connect(self.translate_y) self.translatezbtn.clicked.connect(self.translate_z) self.scorebtn.clicked.connect(self.calculate_score) buttongrid.addWidget(operate_groupbox, 2, 0) self.contrastEdit = QtGui.QDoubleSpinBox() self.contrastEdit.setDecimals(1) self.contrastEdit.setRange(0, 10) self.contrastEdit.setValue(0.5) self.contrastEdit.setSingleStep(0.1) self.contrastEdit.valueChanged.connect(self.updateLayout) self.grid = QtGui.QGridLayout() self.grid.addWidget(display_groupbox, 0, 0, 2, 1) self.grid.addWidget(button_groupbox, 0, 1, 1, 1) contrast_groupbox = QtGui.QGroupBox('Contrast') contrastgrid = QtGui.QGridLayout(contrast_groupbox) contrastgrid.addWidget(self.contrastEdit) buttongrid.addWidget(contrast_groupbox) MODEL_X_DEFAULT = '0,20,40,60,0,20,40,60,0,20,40,60' MODEL_Y_DEFAULT = '0,20,40,0,20,40,0,20,40,0,20,40' MODEL_Z_DEFAULT = '0,0,0,0,0,0,0,0,0,0,0,0' self.modelchk = QtGui.QCheckBox("Use Model") self.model_x = QtGui.QLineEdit(MODEL_X_DEFAULT) self.model_y = QtGui.QLineEdit(MODEL_Y_DEFAULT) self.model_z = QtGui.QLineEdit(MODEL_Z_DEFAULT) self.model_preview_btn = QtGui.QPushButton('Preview') self.model_preview_btn.clicked.connect(self.model_preview) self.modelblurEdit = QtGui.QDoubleSpinBox() self.modelblurEdit.setDecimals(1) self.modelblurEdit.setRange(0, 10) self.modelblurEdit.setValue(0.5) self.modelblurEdit.setSingleStep(0.1) self.pixelsizeEdit = QtGui.QSpinBox() self.pixelsizeEdit.setRange(1,999) self.pixelsizeEdit.setValue(130) model_groupbox = QtGui.QGroupBox('Model') modelgrid = QtGui.QGridLayout(model_groupbox) modelgrid.addWidget(self.modelchk,0,0) modelgrid.addWidget(QtGui.QLabel('X-Coordinates'),1,0) modelgrid.addWidget(self.model_x,1,1) modelgrid.addWidget(QtGui.QLabel('Y-Coordinates'),2,0) modelgrid.addWidget(self.model_y,2,1) modelgrid.addWidget(QtGui.QLabel('Z-Coordinates'),3,0) modelgrid.addWidget(self.model_z,3,1) modelgrid.addWidget(QtGui.QLabel('Blur:'),4, 0) modelgrid.addWidget(self.modelblurEdit, 4, 1) modelgrid.addWidget(QtGui.QLabel('Pixelsize:'),5,0) modelgrid.addWidget(self.pixelsizeEdit, 5, 1) modelgrid.addWidget(self.model_preview_btn, 6 ,0) modelgrid.addWidget(self.modelchk, 6, 1) buttongrid.addWidget(model_groupbox) mainWidget = QtGui.QWidget() mainWidget.setLayout(self.grid) self.setCentralWidget(mainWidget) self.status_bar.showMessage('Average3 ready.') def open(self): path = QtGui.QFileDialog.getOpenFileName(self, 'Open localizations', filter='*.hdf5') if path: self.add(path) def save(self, path): n_channels = len(self.locs) for i in range(n_channels): cx = self.infos[i][0]['Width'] / 2 cy = self.infos[i][0]['Height'] / 2 out_locs = self.locs[i].copy() out_locs.x += cx out_locs.y += cy info = self.infos[i] + [{'Generated by': 'Picasso Average3'}] if not self.z_state[i]: out_locs = lib.remove_from_rec(out_locs, 'z') out_path = os.path.splitext(self.locs_paths[i])[0] + '_avg3.hdf5' path = QtGui.QFileDialog.getSaveFileName(self, 'Save localizations', out_path, filter='*.hdf5') io.save_locs(path, out_locs, info) def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.accept() else: event.ignore() def dropEvent(self, event): urls = event.mimeData().urls() path = urls[0].toLocalFile() ext = os.path.splitext(path)[1].lower() if ext == '.hdf5': print('Opening {} ..'.format(path)) self.add(path) def add(self, path, rendermode=True): try: locs, info = io.load_locs(path, qt_parent=self) except io.NoMetadataFileError: return if len(self.locs) == 0: self.pixelsize = 0 if not hasattr(locs, 'group'): msgBox = QtGui.QMessageBox(self) msgBox.setWindowTitle('Error') msgBox.setText('Datafile does not contain group information. Please load file with picked localizations.') msgBox.exec_() else: locs = lib.ensure_sanity(locs, info) if not hasattr(locs, 'z'): locs = lib.append_to_rec(locs, locs.x.copy(), 'z') self.pixelsize = 1 has_z = False else: has_z = True if self.pixelsize == 0: pixelsize,ok = QtGui.QInputDialog.getInt(self,"Pixelsize Dialog","Please enter the pixelsize in nm", 130) if ok: self.pixelsize = pixelsize else: self.pixelsize = 130 self.locs.append(locs) self.z_state.append(has_z) self.infos.append(info) self.locs_paths.append(path) self.index_blocks.append(None) self._drift.append(None) self.dataset_dialog.add_entry(path) self.dataset_dialog.checks[-1].stateChanged.connect(self.updateLayout) cx = self.infos[-1][0]['Width'] / 2 cy = self.infos[-1][0]['Height'] / 2 self.locs[-1].x -= cx self.locs[-1].y -= cy if len(self.locs) == 1: self.median_lp = np.mean([np.median(locs.lpx), np.median(locs.lpy)]) if hasattr(locs, 'group'): groups = np.unique(locs.group) groupcopy = locs.group.copy() for i in range(len(groups)): groupcopy[locs.group == groups[i]] = i np.random.shuffle(groups) groups %= N_GROUP_COLORS self.group_color = groups[groupcopy] if render: self.fit_in_view(autoscale=True) else: if render: self.update_scene() self.oversampling = 1 if len(self.locs) == 1: self.t_min = np.min([np.min(locs.x),np.min(locs.y)]) self.t_max = np.max([np.max(locs.x),np.max(locs.y)]) self.z_min = np.min(locs.z) self.z_max = np.max(locs.z) else: self.t_min = np.min([np.min(locs.x),np.min(locs.y),self.t_min]) self.t_max = np.max([np.max(locs.x),np.max(locs.y),self.t_max]) self.z_min = np.min([np.min(locs.z),self.z_min]) self.z_max = np.min([np.max(locs.z),self.z_max]) if len(self.locs) == 1: print('Dataset loaded from {}.'.format(path)) else: print('Dataset loaded from {}, Total number of datasets {}.'.format(path, len(self.locs))) #CREATE GROUP INDEX if hasattr(locs, 'group'): groups = np.unique(locs.group) n_groups = len(groups) n_locs = len(locs) group_index = scipy.sparse.lil_matrix((n_groups, n_locs), dtype=np.bool) progress = lib.ProgressDialog('Creating group index', 0, len(groups), self) progress.set_value(0) for i, group in enumerate(groups): index = np.where(locs.group == group)[0] group_index[i, index] = True progress.set_value(i+1) self.group_index.append(group_index) self.n_groups = n_groups os.chdir(os.path.dirname(path)) self.calculate_radii() self.oversampling = 4 self.updateLayout() def updateLayout(self): if len(self.locs) > 0: pixmap1, pixmap2, pixmap3 = self.hist_multi_channel(self.locs) self.viewxy.setPixmap(pixmap1) self.viewxz.setPixmap(pixmap2) self.viewyz.setPixmap(pixmap3) def centerofmass_all(self): #Align all by center of mass n_channels = len(self.locs) out_locs_x = [] out_locs_y = [] out_locs_z = [] for j in range(n_channels): sel_locs_x = [] sel_locs_y = [] sel_locs_z = [] #stack arrays sel_locs_x = self.locs[j].x sel_locs_y = self.locs[j].y sel_locs_z = self.locs[j].z out_locs_x.append(sel_locs_x) out_locs_y.append(sel_locs_y) out_locs_z.append(sel_locs_z) out_locs_x=stack_arrays(out_locs_x, asrecarray=True, usemask=False) out_locs_y=stack_arrays(out_locs_y, asrecarray=True, usemask=False) out_locs_z=stack_arrays(out_locs_z, asrecarray=True, usemask=False) mean_x = np.mean(out_locs_x) mean_y = np.mean(out_locs_y) mean_z = np.mean(out_locs_z) for j in range(n_channels): self.locs[j].x -= mean_x self.locs[j].y -= mean_y self.locs[j].z -= mean_z def calculate_radii(self): #CALCULATE PROPER R VALUES n_channels = len(self.locs) self.r = 0 self.r_z = 0 for j in range(n_channels): self.r = np.max([3 * np.sqrt(np.mean(self.locs[j].x**2 + self.locs[j].y**2)),self.r]) self.r_z = np.max([5 * np.sqrt(np.mean(self.locs[j].z**2)),self.r_z]) self.t_min = -self.r self.t_max = self.r self.z_min = -self.r_z self.z_max = self.r_z self.z_min_load = self.z_min.copy() self.z_max_load = self.z_max.copy() def centerofmass(self): print('Aligning by center of mass.. ', end='', flush=True) n_groups = self.n_groups n_channels = len(self.locs) progress = lib.ProgressDialog('Aligning by center of mass', 0, n_groups, self) progress.set_value(0) for i in range(n_groups): out_locs_x = [] out_locs_y = [] out_locs_z = [] for j in range(n_channels): sel_locs_x = [] sel_locs_y = [] sel_locs_z = [] index = self.group_index[j][i, :].nonzero()[1] # stack arrays sel_locs_x = self.locs[j].x[index] sel_locs_y = self.locs[j].y[index] sel_locs_z = self.locs[j].z[index] out_locs_x.append(sel_locs_x) out_locs_y.append(sel_locs_y) out_locs_z.append(sel_locs_z) progress.set_value(i+1) out_locs_x = stack_arrays(out_locs_x, asrecarray=True, usemask=False) out_locs_y = stack_arrays(out_locs_y, asrecarray=True, usemask=False) out_locs_z = stack_arrays(out_locs_z, asrecarray=True, usemask=False) mean_x = np.mean(out_locs_x) mean_y = np.mean(out_locs_y) mean_z = np.mean(out_locs_z) for j in range(n_channels): index = self.group_index[j][i, :].nonzero()[1] self.locs[j].x[index] -= mean_x self.locs[j].y[index] -= mean_y self.locs[j].z[index] -= mean_z self.calculate_radii() self.updateLayout() print('Complete.') def histtoImage(self, image): cmap = np.uint8(np.round(255 * plt.get_cmap('magma')(np.arange(256)))) image /= image.max() image = np.minimum(image, 1.0) image = np.round(255 * image).astype('uint8') Y, X = image.shape self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order='C') self._bgra[..., 0] = cmap[:, 2][image] self._bgra[..., 1] = cmap[:, 1][image] self._bgra[..., 2] = cmap[:, 0][image] qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) qimage = qimage.scaled(self.viewxy.width(), np.round(self.viewxy.height()*Y/X), QtCore.Qt.KeepAspectRatioByExpanding) pixmap = QtGui.QPixmap.fromImage(qimage) return pixmap def hist_multi_channel(self, locs): oversampling = self.parameters_dialog.oversampling.value() self.oversampling = oversampling if locs is None: locs = self.locs n_channels = len(locs) hues = np.arange(0, 1, 1 / n_channels) colors = [colorsys.hsv_to_rgb(_, 1, 1) for _ in hues] renderings = [] for i in range(n_channels): if self.dataset_dialog.checks[i].isChecked(): renderings.append(render.render_hist3d(locs[i], oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize)) n_locs = sum([_[0] for _ in renderings]) images = np.array([_[1] for _ in renderings]) pixmap1 = self.pixmap_from_colors(images,colors,2) pixmap2 = self.pixmap_from_colors(images,colors,0) pixmap3 = self.pixmap_from_colors(images,colors,1) return pixmap1, pixmap2, pixmap3 def pixmap_from_colors(self,images,colors,axisval): if axisval == 2: image = [np.sum(_, axis=axisval) for _ in images] else: image = [np.transpose(np.sum(_, axis=axisval)) for _ in images] image = np.array([self.scale_contrast(_) for _ in image]) Y, X = image.shape[1:] bgra = np.zeros((Y, X, 4), dtype=np.float32) for color, image in zip(colors, image): bgra[:, :, 0] += color[2] * image bgra[:, :, 1] += color[1] * image bgra[:, :, 2] += color[0] * image bgra = np.minimum(bgra, 1) self._bgra = self.to_8bit(bgra) qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) qimage = qimage.scaled(self.viewxy.width(), np.round(self.viewxy.height()*Y/X), QtCore.Qt.KeepAspectRatioByExpanding) pixmap = QtGui.QPixmap.fromImage(qimage) return pixmap def align_x(self): print('Align X') self.align_all('x') def align_y(self): print('Align Y') self.align_all('y') def align_zz(self): print('Align Z') self.align_all('zz') def align_zy(self): print('Align Z') self.align_all('zy') def translate_x(self): print('Translate X') self.translate('x') def translate_y(self): print('Translate Y') self.translate('y') def translate_z(self): print('Translate Z') self.translate('z') def translate(self, translateaxis): renderings = [render.render_hist3d(_, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize) for _ in self.locs] n_locs = sum([_[0] for _ in renderings]) images = np.array([_[1] for _ in renderings]) if translateaxis == 'x': image = [np.sum(_, axis=2) for _ in images] signalimg = [np.sum(_, axis=0) for _ in image] elif translateaxis == 'y': image = [np.sum(_, axis=2) for _ in images] signalimg = [np.sum(_, axis=1) for _ in image] elif translateaxis == 'z': image = [np.sum(_, axis=1) for _ in images] signalimg = [np.sum(_, axis=0) for _ in image] fig = plt.figure(figsize =(5,5)) ax1 = fig.add_subplot(1, 1 ,1) for element in signalimg: plt.plot(element) n_groups = self.group_index[0].shape[0] print('Translating..') for i in tqdm(range(n_groups)): self.status_bar.showMessage('Group {} / {}.'.format(i, n_groups)) self.translate_group(signalimg, i, translateaxis) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) self.centerofmass_all() self.updateLayout() self.status_bar.showMessage('Done!') def translate_group(self, signalimg, group, translateaxis): n_channels = len(self.locs) all_xcorr = np.zeros((1, n_channels)) all_da = np.zeros((1, n_channels)) if translateaxis == 'x': proplane = 'xy' elif translateaxis == 'y': proplane = 'xy' elif translateaxis == 'z': proplane = 'xz' plotmode = 0 for j in range(n_channels): if plotmode: fig = plt.figure() ax1 = fig.add_subplot(1, 3, 1) plt.plot(signalimg[j]) ax2 = fig.add_subplot(1, 3, 2) if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] xcorr_max = 0.0 plane = self.render_planes(x_rot, y_rot, z_rot, proplane, self.pixelsize) # if translateaxis == 'x': projection = np.sum(plane, axis=0) elif translateaxis == 'y': projection = np.sum(plane, axis=1) elif translateaxis == 'z': projection = np.sum(plane, axis=1) if plotmode: plt.plot(projection) #print('Step X') #ax3 = fig.add_subplot(1,3,3) #plt.imshow(plane, interpolation='nearest', cmap=plt.cm.ocean) corrval = np.max(signal.correlate(signalimg[j],projection)) shiftval = np.argmax(signal.correlate(signalimg[j], projection))-len(signalimg[j])+1 all_xcorr[0,j] = corrval all_da[0,j] = shiftval/self.oversampling if plotmode: plt.show() #value with biggest cc value form table maximumcc = np.argmax(np.sum(all_xcorr,axis = 1)) dafinal = np.mean(all_da[maximumcc,:]) for j in range(n_channels): index = self.group_index[j][group].nonzero()[1] if translateaxis == 'x': self.locs[j].x[index] += dafinal elif translateaxis == 'y': self.locs[j].y[index] += dafinal elif translateaxis == 'z': self.locs[j].z[index] += dafinal*self.pixelsize def adjust_z(self): z_range_str = np.asarray((self.z_range.text()).split(",")) z_range = [] for element in z_range_str: try: z_range.append(float(element)) except ValueError: pass z_min = z_range[0] z_max = z_range[1] self.z_min = np.max([z_min, self.z_min_load]) self.z_max = np.min([z_max, self.z_max_load]) print('Z min {}, Z max {}'.format(self.z_min, self.z_max)) self.updateLayout() def adjust_xy(self): x_range_str = np.asarray((self.x_range.text()).split(",")) x_range = [] for element in x_range_str: try: x_range.append(float(element)) except ValueError: pass x_min = x_range[0] x_max = x_range[1] self.x_min = np.max([x_min, self.t_min]) self.x_max = np.min([x_max, self.t_max]) print('X min {}, X max {}'.format(self.x_min, self.x_max)) y_range_str = np.asarray((self.y_range.text()).split(",")) y_range = [] for element in y_range_str: try: y_range.append(float(element)) except ValueError: pass y_min = y_range[0] y_max = y_range[1] self.y_min = np.max([y_min, self.t_min]) self.y_max = np.min([y_max, self.t_max]) print('Y min {}, Y max {}'.format(self.y_min, self.y_max)) self.updateLayout() def rotatexy_convolution_group(self, CF_image_avg, angles, group, rotaxis, proplane): n_channels = len(self.locs) allrot = [] alldx = [] alldy = [] alldz = [] n_angles = len(angles) all_xcorr = np.zeros((n_angles,n_channels)) all_da = np.zeros((n_angles,n_channels)) all_db = np.zeros((n_angles,n_channels)) for j in range(n_channels): if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() xcorr_max = 0.0 if self.translatebtn.isChecked(): angles = [0] n_angles = 1 for k in range(n_angles): angle = angles[k] # rotate locs x_rot, y_rot, z_rot = rotate_axis(rotaxis, x_original, y_original, z_original, angle, self.pixelsize) # render group image for plane image = self.render_planes(x_rot, y_rot, z_rot, proplane, self.pixelsize) # calculate cross-correlation if 0: fig = plt.figure() ax1 = fig.add_subplot(1,2,1) ax1.set_aspect('equal') plt.imshow(image, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar() plt.show() plt.waitforbuttonpress() xcorr = np.sum(np.multiply(CF_image_avg[j], image)) all_xcorr[k,j] = xcorr #value with biggest cc value form table maximumcc = np.argmax(np.sum(all_xcorr,axis = 1)) rotfinal = angles[maximumcc] dafinal = np.mean(all_da[maximumcc,:]) dbfinal = np.mean(all_db[maximumcc,:]) for j in range(n_channels): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() # rotate and shift image group locs x_rot, y_rot, z_rot = rotate_axis(rotaxis, x_original, y_original, z_original, rotfinal, self.pixelsize) self.locs[j].x[index] = x_rot self.locs[j].y[index] = y_rot self.locs[j].z[index] = z_rot def rotatexy_convolution(self): #TODO: re-write ths with kwargs at some point rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = 'x' elif self.y_axisbtn.isChecked(): rotaxis = 'y' elif self.z_axisbtn.isChecked(): rotaxis = 'z' n_groups = self.group_index[0].shape[0] a_step = np.arcsin(1 / (self.oversampling * self.r)) if self.full_degbtn.isChecked(): angles = np.arange(0, 2*np.pi, a_step) elif self.part_degbtn.isChecked(): degree = self.degEdit.value() angles = np.arange(-degree/360*2*np.pi, degree/360*2*np.pi, a_step) renderings = [render.render_hist3d(_, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize) for _ in self.locs] n_locs = sum([_[0] for _ in renderings]) images = np.array([_[1] for _ in renderings]) #DELIVER CORRECT PROJECTION FOR IMAGE proplane = [] if self.xy_projbtn.isChecked(): proplane = 'xy' image = [np.sum(_, axis=2) for _ in images] elif self.yz_projbtn.isChecked(): proplane = 'yz' image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif self.xz_projbtn.isChecked(): proplane = 'xz' image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] #Change CFiamge for symmetry if self.radio_sym.isChecked(): print('Using symmetry.') fig = plt.figure(figsize =(5,5)) ax1 = fig.add_subplot(1,2,1) symmetry = self.symEdit.value() ax1.set_aspect('equal') imageold = image[0].copy() plt.imshow(imageold, interpolation='nearest', cmap=plt.cm.ocean) #rotate image for i in range(symmetry-1): image[0] += scipy.ndimage.interpolation.rotate(imageold,((i+1)*360/symmetry) , axes=(1, 0),reshape=False) ax2 = fig.add_subplot(1,2,2) ax2.set_aspect('equal') plt.imshow(image[0], interpolation='nearest', cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.radio_sym_custom.isChecked(): print('Using custom symmetry.') symmetry_txt = np.asarray((self.symcustomEdit.text()).split(',')) print(symmetry_txt) fig = plt.figure(figsize =(5,5)) ax1 = fig.add_subplot(1,2,1) symmetry = self.symEdit.value() ax1.set_aspect('equal') imageold = image[0].copy() plt.imshow(imageold, interpolation='nearest', cmap=plt.cm.ocean) #rotate image for degree in symmetry_txt: image[0] += scipy.ndimage.interpolation.rotate(imageold, float(degree) , axes=(1, 0),reshape=False) ax2 = fig.add_subplot(1,2,2) ax2.set_aspect('equal') plt.imshow(image[0], interpolation='nearest', cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.modelchk.isChecked(): self.generate_template() image[0] = self.template_img CF_image_avg = image # TODO: blur auf average !!! print('Convolving..') for i in tqdm(range(n_groups)): self.status_bar.showMessage('Group {} / {}.'.format(i,n_groups)) self.rotatexy_convolution_group(CF_image_avg, angles, i, rotaxis, proplane) self.updateLayout() self.status_bar.showMessage('Done!') def rotate_groups(self): #Read out values from radiobuttons #TODO: maybe re-write this with kwargs rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = 'x' elif self.y_axisbtn.isChecked(): rotaxis = 'y' elif self.z_axisbtn.isChecked(): rotaxis = 'z' n_groups = self.group_index[0].shape[0] a_step = np.arcsin(1 / (self.oversampling * self.r)) if self.full_degbtn.isChecked(): angles = np.arange(0, 2*np.pi, a_step) elif self.part_degbtn.isChecked(): degree = self.degEdit.value() angles = np.arange(-degree/360*2*np.pi, degree/360*2*np.pi, a_step) renderings = [render.render_hist3d(_, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize) for _ in self.locs] n_locs = sum([_[0] for _ in renderings]) images = np.array([_[1] for _ in renderings]) #DELIVER CORRECT PROJECTION FOR IMAGE proplane = [] if self.xy_projbtn.isChecked(): proplane = 'xy' image = [np.sum(_, axis=2) for _ in images] elif self.yz_projbtn.isChecked(): proplane = 'yz' image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif self.xz_projbtn.isChecked(): proplane = 'xz' image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] if self.radio_sym.isChecked(): print('Radio sym') fig = plt.figure(figsize = (5,5)) ax1 = fig.add_subplot(1,2,1) symmetry = self.symEdit.value() ax1.set_aspect('equal') imageold = image[0].copy() plt.imshow(imageold, interpolation='nearest', cmap=plt.cm.ocean) #rotate image for i in range(symmetry-1): image[0] += scipy.ndimage.interpolation.rotate(imageold,((i+1)*360/symmetry) , axes=(1, 0),reshape=False) ax2 = fig.add_subplot(1,2,2) ax2.set_aspect('equal') plt.imshow(image[0], interpolation='nearest', cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) #TODO: Sort these functions out, combine with radio_sym / also for convolving. if self.radio_sym_custom.isChecked(): print('Using custom symmetry.') symmetry_txt = np.asarray((self.symcustomEdit.text()).split(',')) fig = plt.figure(figsize =(5,5)) ax1 = fig.add_subplot(1,2,1) symmetry = self.symEdit.value() ax1.set_aspect('equal') imageold = image[0].copy() plt.imshow(imageold, interpolation='nearest', cmap=plt.cm.ocean) #rotate image for degree in symmetry_txt: image[0] += scipy.ndimage.interpolation.rotate(imageold, float(degree) , axes=(1, 0),reshape=False) ax2 = fig.add_subplot(1,2,2) ax2.set_aspect('equal') plt.imshow(image[0], interpolation='nearest', cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage(fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.modelchk.isChecked(): self.generate_template() image[0] = self.template_img CF_image_avg = [np.conj(np.fft.fft2(_)) for _ in image] #n_pixel, _ = image_avg.shape #image_half = n_pixel / 2 # TODO: blur auf average !!! print('Rotating..') for i in tqdm(range(n_groups)): self.status_bar.showMessage('Group {} / {}.'.format(i,n_groups)) self.align_group(CF_image_avg, angles, i, rotaxis, proplane) self.updateLayout() self.status_bar.showMessage('Done!') def getUIstate(self): rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = 'x' elif self.y_axisbtn.isChecked(): rotaxis = 'y' elif self.z_axisbtn.isChecked(): rotaxis = 'z' proplane = [] if self.xy_projbtn.isChecked(): proplane = 'xy' elif self.yz_projbtn.isChecked(): proplane = 'yz' elif self.xz_projbtn.isChecked(): proplane = 'xz' return rotaxis, proplane def projectPlanes(self, images, proplane): if proplane == 'xy': image = [np.sum(_, axis=2) for _ in images] elif proplane == 'yz': image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif proplane == 'xz': image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] return image def generate_template(self): model_x_str = np.asarray((self.model_x.text()).split(",")) model_y_str = np.asarray((self.model_y.text()).split(",")) model_z_str = np.asarray((self.model_z.text()).split(",")) model_x = [] model_y = [] model_z = [] for element in model_x_str: try: model_x.append(float(element)) except ValueError: pass for element in model_y_str: try: model_y.append(float(element)) except ValueError: pass for element in model_z_str: try: model_z.append(float(element)) except ValueError: pass pixelsize = self.pixelsizeEdit.value() blur = self.modelblurEdit.value() # Center of mass model_x = np.array(model_x)/pixelsize model_y = np.array(model_y)/pixelsize model_z = np.array(model_z) model_x = model_x - np.mean(model_x) model_y = model_y - np.mean(model_y) model_z = model_z - np.mean(model_z) rotaxis, proplane = self.getUIstate() template_img = self.render_planes(model_x, model_y, model_z, proplane, pixelsize) self.template_img = scipy.ndimage.filters.gaussian_filter(template_img,blur) def model_preview(self): self.generate_template() #Generate a template image fig = plt.figure() plt.title('Preview of Template') plt.imshow(self.template_img, interpolation='nearest', cmap =plt.cm.hot) plt.show() def calculate_score(self): #Dummy button -> Functionality of rotatebtn for now #TODO: maybe re-write this with kwargs self.scores = [] rotaxis, proplane = self.getUIstate() n_groups = self.group_index[0].shape[0] renderings = [render.render_hist3d(_, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize) for _ in self.locs] n_locs = sum([_[0] for _ in renderings]) #Make an average and not a sum image here.. images = np.array([_[1]/n_groups for _ in renderings]) #DELIVER CORRECT PROJECTION FOR IMAGE image = self.projectPlanes(images, proplane) n_channels = len(image) print('Calculating score..') for i in tqdm(range(n_groups)): channel_score = [] for j in range(n_channels): if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][i].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] groupimage = self.render_planes(x_rot, y_rot, z_rot, proplane, self.pixelsize) score = np.sum(np.sqrt(groupimage*image[j]))/np.sum(np.sqrt(groupimage*groupimage)) channel_score.append(score) self.scores.append(channel_score) self.status_bar.showMessage('Group {} / {}.'.format(i,n_groups)) self.status_bar.showMessage('Done. Average score: {}'.format(np.mean(self.scores))) plt.hist(np.array(self.scores), 40) plt.title('Histogram of Scores, Mean: {:.2f}'.format(np.mean(self.scores))) plt.xlabel('Score') plt.ylabel('Counts') plt.show() def mean_angle(self, deg): return (phase(sum(rect(1, d) for d in deg)/len(deg))) def render_planes(self, xdata, ydata, zdata, proplane, pixelsize): #assign correct renderings for all planes a_render = [] b_render = [] if proplane == 'xy': a_render = xdata b_render = ydata aval_min = self.t_min aval_max = self.t_max bval_min = self.t_min bval_max = self.t_max elif proplane == 'yz': a_render = ydata b_render = np.divide(zdata,pixelsize) aval_min = self.t_min aval_max = self.t_max bval_min = np.divide(self.z_min,pixelsize) bval_max = np.divide(self.z_max,pixelsize) elif proplane == 'xz': b_render = np.divide(zdata, pixelsize) a_render = xdata bval_min = np.divide(self.z_min,pixelsize) bval_max = np.divide(self.z_max,pixelsize) aval_min = self.t_min aval_max = self.t_max N, plane = render_histxyz(a_render, b_render, self.oversampling, aval_min, aval_max, bval_min, bval_max) return plane def align_all(self, alignaxis): a_step = np.arcsin(1 / (self.oversampling * self.r)) angles = np.arange(0, 2*np.pi, a_step) n_channels = len(self.locs) allrot = [] n_angles = len(angles) all_corr = np.zeros((n_angles,n_channels)) for j in range(n_channels): if self.dataset_dialog.checks[j].isChecked(): alignimage = [] x_rot = self.locs[j].x y_rot = self.locs[j].y z_rot = self.locs[j].z x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() alignimage = [] for k in range(n_angles): angle = angles[k] if alignaxis == 'zz': proplane = 'yz' rotaxis = 'x' elif alignaxis == 'zy': proplane = 'yz' rotaxis = 'x' elif alignaxis == 'y': proplane = 'xy' rotaxis = 'z' elif alignaxis == 'x': proplane = 'xy' rotaxis = 'z' x_rot, y_rot, z_rot = rotate_axis(rotaxis, x_original, y_original, z_original, angle,self.pixelsize) # render group image for plane image = self.render_planes(x_rot, y_rot, z_rot, proplane, self.pixelsize) #RENDR PLANES WAS BUGGY AT SOME POINT if alignimage == []: alignimage = np.zeros(image.shape) #CREATE ALIGNIMAGE if alignaxis == 'zz': alignimage[np.int(alignimage.shape[0]/2),:]+=2 alignimage[np.int(alignimage.shape[0]/2)+1,:]+=1 alignimage[np.int(alignimage.shape[0]/2)-1,:]+=1 elif alignaxis == 'zy': alignimage[:,np.int(alignimage.shape[0]/2)]+=2 alignimage[:,np.int(alignimage.shape[0]/2)+1]+=1 alignimage[:,np.int(alignimage.shape[0]/2)-1]+=1 elif alignaxis == 'y': alignimage[:,np.int(alignimage.shape[1]/2)]+=2 alignimage[:,np.int(alignimage.shape[1]/2)-1]+=1 alignimage[:,np.int(alignimage.shape[1]/2)+1]+=1 elif alignaxis == 'x': alignimage[np.int(alignimage.shape[0]/2),:]+=2 alignimage[np.int(alignimage.shape[0]/2)+1,:]+=1 alignimage[
np.int(alignimage.shape[0]/2)
numpy.int
import random from collections import namedtuple from enum import IntEnum from pathlib import Path from typing import Sequence, Union import numpy as np from PIL import Image from math_utils import Vec2, Vec3, apply_weights from tiny_renderer.bitmap import Bitmap from tiny_renderer.model import Model Color = namedtuple("Color", "r g b a") class Colors: White = Color(255, 255, 255, 255) Red = Color(255, 0, 0, 255) Green = Color(0, 255, 0, 255) Blue = Color(0, 0, 255, 255) class LightingMode(IntEnum): """ Lighting mode for `TinyRenderer` """ Smooth = 0 Flat = 1 @classmethod def get_caption(cls, index): captions = { cls.Smooth: "Smooth", cls.Flat: "Flat", } return captions[index] @classmethod def get_captions(cls): return [LightingMode.get_caption(i) for i in LightingMode] class RenderingMode(IntEnum): """ Possible rendering modes for `TinyRenderer` """ Wireframe = 0 RandomColors = 1 Texturized = 2 LightOnly = 3 @classmethod def get_caption(cls, index): captions = { cls.Wireframe: "Wireframe", cls.RandomColors: "Random color", cls.Texturized: "Texturized", cls.LightOnly: "Light only", } return captions[index] @classmethod def get_captions(cls): return [RenderingMode.get_caption(i) for i in RenderingMode] class TinyRenderer: """ My own version of the original Tiny Renderer: https://github.com/ssloy/tinyrenderer/wiki """ def __init__(self, *, bind_texture=True): """ :param bind_texture: If `True`, `TinyRenderer` will create a `tiny_renderer.bitmap.Bitmap` instance binding any rendered image to an OpenGL texture. This can be disabled for tests so they don't need to initialize an OpenGL context. """ self._height = 800 self._width = 800 self._depth = 800 self._scale_x = 1.0 self._scale_y = 1.0 self._scale_z = 1.0 self._image =
np.zeros((self._height, self._width, 3), np.uint8)
numpy.zeros
import numpy as np import pandas as pd import scipy.integrate as integrate import scipy.optimize as optimize def simulate_JM_base(I, obstime, miss_rate=0.1, opt="none", seed=None): if seed is not None: np.random.seed(seed) J = len(obstime) #### longitudinal submodel #### beta0 = np.array([1.5,2,0.5],) beta1 = np.array([2,-1,1]) betat = np.array([1.5, -1, 0.6]) b_var = np.array([1,1.5,2]) e_var = np.array([1,1,1]) rho = np.array([-0.2,0.1,-0.3]) b_Sigma = np.diag(b_var) b_Sigma[0,1] = b_Sigma[1,0] = np.sqrt(b_var[0]*b_var[1])*rho[0] b_Sigma[0,2] = b_Sigma[2,0] = np.sqrt(b_var[0]*b_var[2])*rho[1] b_Sigma[1,2] = b_Sigma[2,1] = np.sqrt(b_var[1]*b_var[2])*rho[2] X = np.random.normal(3,1,size=I) ranef = np.random.multivariate_normal(mean=[0,0,0], cov=b_Sigma, size=I) mean_long = beta0 + np.outer(X,beta1) eta_long = mean_long + ranef if opt=="none" or opt=="nonph": gamma = np.array([-4,-2]) alpha = np.array([0.2,-0.2,0.4]) x1 = np.random.binomial(n=1,p=0.5,size=I) x2 = np.random.normal(size=I) W = np.stack((x1,x2), axis=1) eta_surv = W@gamma + eta_long@alpha base = W[...,np.newaxis] if opt=="interaction": gamma = np.array([-4,-2,3]) alpha = np.array([0.2,-0.2,0.4]) x1 = np.random.binomial(n=1,p=0.5,size=I) x2 = np.random.normal(size=I) x3 = x1*x2 W = np.stack((x1,x2,x3), axis=1) eta_surv = W@gamma + eta_long@alpha base = np.stack((x1,x2), axis=1) base = base[...,np.newaxis] #Simulate Survival Times using Inverse Sampling Transform scale = np.exp(-7) U = np.random.uniform(size=I) alpha_beta = alpha@betat def CHF(tau): def h(t): if opt=="none" or opt=="interaction": return scale * np.exp(eta_surv[i] + alpha_beta*t) if opt=="nonph": return scale * np.exp(eta_surv[i] + 3*x2[i]*np.sin(t) + alpha_beta*t) return np.exp(-1 * integrate.quad(lambda xi: h(xi),0,tau)[0]) Ti = np.empty(I) Ti[:] = np.NaN for i in range(0,I): Ti[i] = optimize.brentq(lambda xi: U[i]-CHF(xi), 0, 100) #Get true survival probabilities true_prob = np.ones((I, len(obstime))) for i in range(0,I): for j in range(1,len(obstime)): tau = obstime[j] true_prob[i,j] = CHF(tau) C = np.random.uniform(low=obstime[3], high=obstime[-1]+25, size=I) C = np.minimum(C, obstime[-1]) event = Ti<C true_time = np.minimum(Ti, C) # round true_time up to nearest obstime time = [np.min([obs for obs in obstime if obs-t>=0]) for t in true_time] subj_obstime = np.tile(obstime, reps=I) pred_time = np.tile(obstime, reps=I) mean_long = np.repeat(mean_long, repeats=J, axis=0) eta_long = np.repeat(eta_long, repeats=J, axis=0) long_err = np.random.multivariate_normal(mean=[0,0,0], cov=np.diag(e_var), size=I*J) Y = np.empty((I*J,3)) Y_pred = np.empty((I*J,3)) for i in range(0,3): Y[:,i] = eta_long[:,i] + betat[i]*subj_obstime + long_err[:,i] Y_pred[:,i] = eta_long[:,i] + betat[i]*pred_time + long_err[:,i] true_prob = true_prob.flatten() ID = np.repeat(range(0,I), repeats=J) visit = np.tile(range(0,J), reps=I) data = pd.DataFrame({"id":ID, "visit":visit, "obstime":subj_obstime, "predtime":pred_time, "time":np.repeat(time,repeats=J), "event":
np.repeat(event,repeats=J)
numpy.repeat
import numpy as np from graphbutler import recipe, save_all, Graph, Parameterized @recipe def sine_waves(): g = Graph() g.x = np.arange(0.0, 10.0, 0.01) g.y = Parameterized("A", lambda A: A *
np.sin(g.x)
numpy.sin
import scipy as sp import numpy as np from scipy.stats import lognorm as dist from ngboost.distns import SurvivalDistn from ngboost.scores import LogScore, CRPScore class LogNormalLogScore(LogScore): def score(self, Y): E = Y['Event'] T = Y['Time'] cens = (1-E) * np.log(1 - self.dist.cdf(T) + self.eps) uncens = E * self.dist.logpdf(T) return -(cens + uncens) def d_score(self, Y): E = Y['Event'][:,np.newaxis] T = Y['Time'] lT = np.log(T) Z = (lT - self.loc) / self.scale D_uncens = np.zeros((self.loc.shape[0], 2)) D_uncens[:, 0] = (self.loc - lT) / (self.scale ** 2) D_uncens[:, 1] = 1 - ((self.loc - lT) ** 2) / (self.scale ** 2) D_cens = np.zeros((self.loc.shape[0], 2)) D_cens[:, 0] = -sp.stats.norm.pdf(lT, loc=self.loc, scale=self.scale) / \ (1 - self.dist.cdf(T) + self.eps) D_cens[:, 1] = -Z * sp.stats.norm.pdf(lT, loc=self.loc, scale=self.scale) / \ (1 - self.dist.cdf(T) + self.eps) D_cens[:, 0] = -sp.stats.norm.pdf(lT, loc=self.loc, scale=self.scale) / \ (1 - self.dist.cdf(T) + self.eps) D_cens[:, 1] = -Z * sp.stats.norm.pdf(lT, loc=self.loc, scale=self.scale) / \ (1 - self.dist.cdf(T) + self.eps) return (1-E) * D_cens + E * D_uncens def metric(self): FI = np.zeros((self.loc.shape[0], 2, 2)) FI[:, 0, 0] = 1/(self.scale ** 2) + self.eps FI[:, 1, 1] = 2 return FI class LogNormalCRPScore(CRPScore): def score(self, Y): E = Y["Event"] T = Y["Time"] lT = np.log(T) Z = (lT - self.loc) / self.scale crps_uncens = (self.scale * (Z * (2 * sp.stats.norm.cdf(Z) - 1) + \ 2 * sp.stats.norm.pdf(Z) - 1 / np.sqrt(np.pi))) crps_cens = self.scale * (Z * sp.stats.norm.cdf(Z) ** 2 + \ 2 * sp.stats.norm.cdf(Z) * sp.stats.norm.pdf(Z) - \ sp.stats.norm.cdf(np.sqrt(2) * Z) / np.sqrt(np.pi)) return (1-E) * crps_cens + E * crps_uncens def d_score(self, Y): E = Y["Event"] T = Y["Time"] lT = np.log(T) Z = (lT - self.loc) / self.scale D = np.zeros((self.loc.shape[0], 2)) D[:, 0] = E * -(2 * sp.stats.norm.cdf(Z) - 1) D[:, 0] = (1-E) * -(sp.stats.norm.cdf(Z) ** 2 + \ 2 * Z * sp.stats.norm.cdf(Z) * sp.stats.norm.pdf(Z) + \ 2 * sp.stats.norm.pdf(Z) ** 2 - \ 2 * sp.stats.norm.cdf(Z) * sp.stats.norm.pdf(Z) ** 2 - \ np.sqrt(2/np.pi) * sp.stats.norm.pdf(np.sqrt(2) * Z)) D[:, 1] = self.crps(Y) + (lT - self.loc) * D[:, 0] return D def metric(self): I = 1/(2*
np.sqrt(np.pi)
numpy.sqrt
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den =
N.array([1,1,2])
numpy.array
import numpy as np import numpy.typing as npt AR_b: npt.NDArray[np.bool_] AR_i8: npt.NDArray[np.int64] AR_f8: npt.NDArray[np.float64] AR_M: npt.NDArray[np.datetime64] AR_O: npt.NDArray[np.object_] AR_LIKE_f8: list[float] reveal_type(np.ediff1d(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[{int8}]] reveal_type(np.ediff1d(AR_i8, to_end=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] reveal_type(np.ediff1d(AR_M)) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] reveal_type(np.ediff1d(AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] reveal_type(np.ediff1d(AR_LIKE_f8, to_begin=[1, 1.5])) # E: numpy.ndarray[Any, numpy.dtype[Any]] reveal_type(np.intersect1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] reveal_type(np.intersect1d(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] reveal_type(np.intersect1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] reveal_type(np.intersect1d(AR_f8, AR_f8, return_indices=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] reveal_type(np.setxor1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] reveal_type(np.setxor1d(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] reveal_type(np.setxor1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] reveal_type(np.in1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] reveal_type(np.in1d(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] reveal_type(np.in1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] reveal_type(np.in1d(AR_f8, AR_LIKE_f8, invert=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] reveal_type(np.isin(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] reveal_type(np.isin(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] reveal_type(np.isin(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] reveal_type(np.isin(AR_f8, AR_LIKE_f8, invert=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] reveal_type(np.union1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] reveal_type(np.union1d(AR_M, AR_M)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] reveal_type(np.union1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] reveal_type(np.setdiff1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] reveal_type(np.setdiff1d(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] reveal_type(
np.setdiff1d(AR_f8, AR_i8)
numpy.setdiff1d
import numpy as np a =
np.load("/home/xxx/AAAI/My-ZSSBIR/sketchy_acc_im_em.npy")
numpy.load
import cv2 import numpy as np from moviepy.editor import VideoFileClip def print_section_header(title, len_banner=35): """ Helper function to print section header with given title :param title: :return: """ print() print('#' * len_banner) print('#', title) print('#' * len_banner) # Analyze image details def analyze_test_image(img_path): img = cv2.imread(img_path) img_y_size, img_x_size = img.shape[0:2] print("Image File: {}".format(img_path)) print("Image Size: {}x{}".format(img_x_size, img_y_size)) print("Image Min/Max Values: ({}, {})".format(img.min(), img.max())) def compute_curvature_poly2(A, B, y_eval): return ((1 + (2 * A * y_eval + B)**2)**1.5) /
np.abs(2*A)
numpy.abs
import numpy as np import random # from imblearn.over_sampling import SMOTE # following libraries for classification test # import test_nn import math class KNNOR: # def knnor_over_sample(X,y,n_to_sample,num_neighbors,proportion,max_dist_point,intra=True): def fit_resample(self,X,y,**params): threshold_cannot_use=10 # check for number of neighbors if 'num_neighbors' in params.keys(): num_neighbors=params['num_neighbors'] else: good_neighbor_count=self.good_count_neighbors(X,y) if good_neighbor_count<=1: print("Too few neighbors") return X,y num_neighbors=random.randrange(1,good_neighbor_count) if 'max_dist_point' in params.keys(): max_dist_point=params['max_dist_point'] else: max_dist_point=self.max_threshold_dist(X,y,num_neighbors) if 'proportion_minority' in params.keys(): ''' proportion of minority population to use ''' proportion_minority=params['proportion_minority'] inter=False else: proportion_intra=self.calculate_distance_threshold(X,y,num_neighbors,intra=False) proportion_minority=proportion_intra inter=True if not self.check_enough_minorities(X,y,num_neighbors): print("Too few minorities") return X,y if 'final_proportion' in params.keys(): ''' final minority pop = what percentage of majority pop ''' final_proportion=params['final_proportion'] else: final_proportion=1 n_to_sample=self.calculate_count_to_add(X,y,final_proportion) original_n_neighbors=num_neighbors original_max_dist_point=max_dist_point original_proportion=proportion_minority minority_label,minority_indices=self.get_minority_label_index(X,y) X_minority=X[minority_indices] y_minority=y[minority_indices] majority_indices=[] for i in range(0,y.shape[0]): if i not in minority_indices: majority_indices.append(i) print(len(majority_indices),len(minority_indices),y.shape) X_majority=X[majority_indices] y_majority=y[majority_indices] if not inter: internal_distance = np.linalg.norm(X_minority - X_minority[:,None], axis = -1) internal_distance = np.sort(internal_distance) knd=internal_distance[:,num_neighbors] knd_sorted = np.sort(knd) else: external_distance=np.linalg.norm(X_majority - X_minority[:,None], axis = -1) external_distance = np.sort(external_distance) knd=external_distance[:,num_neighbors] knd_sorted=-np.sort(-knd) threshold_dist = knd_sorted[math.floor(proportion_minority*len(knd_sorted))] X_new_minority=[] N = n_to_sample consecutive_cannot_use=0 while N>0: for i in range(X_minority.shape[0]): if inter: if knd[i]>threshold_dist: continue else: if knd[i]<threshold_dist: continue if N==0: break v = X_minority[i,:] val=np.sort( abs((X_minority-v)*(X_minority-v)).sum(axis=1) ) # sort neighbors by distance # obviously will have to ignore the # first term as its a distance to iteself # which wil be 0 posit=np.argsort(abs((X_minority-v)*(X_minority-v)).sum(axis=1)) kv = X_minority[posit[1:num_neighbors+1],:] alphak = random.uniform(0,max_dist_point) m0 = v for j in range(num_neighbors): m1 = m0 + alphak * (kv[j,:] - m0) m0 = m1 num_neighbors_to_test=math.floor(math.sqrt(num_neighbors)) can_use=self.predict_classification(X,y,m0, num_neighbors_to_test,minority_label) can_use=can_use and not(self.check_duplicates(m0,X_minority)) can_use=can_use and not(self.check_duplicates(m0,X_new_minority)) if can_use: consecutive_cannot_use=0 num_neighbors=min(num_neighbors+1,original_n_neighbors) max_dist_point=min(max_dist_point+0.01,original_max_dist_point) proportion_minority=max(proportion_minority-0.01,original_proportion) threshold_dist = knd_sorted[math.floor(proportion_minority*len(knd_sorted))] X_new_minority.append(m0) N-=1 else: consecutive_cannot_use+=1 if consecutive_cannot_use>=threshold_cannot_use: num_neighbors=max(num_neighbors-1,2) max_dist_point=max(max_dist_point-0.01,0.01) proportion_minority=min(proportion_minority+0.01,0.9) threshold_dist = knd_sorted[math.floor(proportion_minority*len(knd_sorted))] consecutive_cannot_use=0 y_new_minority=[minority_label for i in range(len(X_new_minority))] X_new_minority=np.array(X_new_minority) X_new_all=np.concatenate((X, X_new_minority), axis=0) y_new_all=
np.concatenate((y, y_new_minority), axis=0)
numpy.concatenate
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]), 'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]), 'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]), 'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]), 'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]), 'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]), 'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]), 'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]), 'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]), 'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]), 'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]), 'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]), 'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&75': np.array([0.0, 0.47562425924289314]), 'versicolor&2&76': np.array([0.0, 0.4854368956593117]), 'versicolor&2&77': np.array([0.0, -0.7348263896003956]), 'versicolor&2&78': np.array([0.0, -0.7920887571493729]), 'versicolor&2&79': np.array([0.0, -0.507614207038711]), 'versicolor&2&80': np.array([0.0, 0.4854368956593117]), 'versicolor&2&81': np.array([0.0, -0.3982542883933272]), 'versicolor&2&82': np.array([0.0, -0.08633733326458487]), 'versicolor&2&83': np.array([0.0, 0.4039238345412103]), 'versicolor&2&84': np.array([0.0, -0.38897705551367706]), 'versicolor&2&85': np.array([0.0, -0.06915310813754129]), 'versicolor&2&86': np.array([0.0, 0.41580041887839214]), 'versicolor&2&87': np.array([0.0, -0.7348263896003956]), 'versicolor&2&88': np.array([0.0, -0.7348263896003956]), 'versicolor&2&89': np.array([0.0, -0.7920887571493729]), 'versicolor&2&90': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&91': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&92': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&93': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&94': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&95': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&96': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&97': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&98': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&99': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&100': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&101': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&102': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&103': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&104': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&105': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&106': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&107': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&108': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&109': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&110': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&111': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&112': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&113': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&114': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&115': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&116': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&117': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&118': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&119': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&120': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&121': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&122': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&123': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&124': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&125': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&126': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&127': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&128': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&129': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&130': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&131': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&132': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&133': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&134': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&135': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&136': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&137': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&138': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&139': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&140': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&141': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&142': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&143': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&144': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&145': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&146': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&147': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&148': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&149': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&150': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&151': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&152': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&153': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&154': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&155': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&156': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&157': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&158': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&159': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&160': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&161': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&162': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&163': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&164': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&165': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&166': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&167': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&168': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&169': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&170': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&171': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&172': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&173': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&174': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&175': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&176': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&177': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&178': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&179': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&180': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&181': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&182': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&183': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&184': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&185': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&186': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&187': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&188': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&189': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&190': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&191': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&192': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&193': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&194': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&195': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&196': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&197': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&198': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&199': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&200': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&201': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&202': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&203': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&204': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&205': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&206': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&207': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&208': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&209': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&210': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&211': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&212': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&213': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&214': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&215': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&216': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&217': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&218': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&219': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&220': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&221': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&222': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&223': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&224': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&225': np.array([-0.5775629083348267, 0.7118687782288384]), 'versicolor&2&226': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&227': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&228': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&229': np.array([-0.25603689955471853, -0.451727980232351]), 'versicolor&2&230': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&231': np.array([-0.1269405801024398, -0.34161216844748166]), 'versicolor&2&232': np.array([-0.33176333807327857, 0.09538228407203546]), 'versicolor&2&233': np.array([-0.564696311454556, 0.6421194512020755]), 'versicolor&2&234': np.array([-0.12669523681593967, -0.32786313310034665]), 'versicolor&2&235': np.array([-0.35960845047491363, 0.1335988694092619]), 'versicolor&2&236': np.array([-0.589572650064144, 0.6697478899606418]), 'versicolor&2&237': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&238': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&239': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&240': np.array([0.05667262840030629, 0.4335746514880877]), 'versicolor&2&241': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&242': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&243': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&244': np.array([0.3463149754241171, -0.5568366400939154]), 'versicolor&2&245': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&246': np.array([0.4022739113634462, -0.4700171786183992]), 'versicolor&2&247': np.array([0.5046771347249378, -0.33609610934748635]), 'versicolor&2&248': np.array([0.1370187510624256, 0.30303755274337163]), 'versicolor&2&249': np.array([0.41683021879255133, -0.4812793747667524]), 'versicolor&2&250': np.array([0.5150371666265885, -0.33852139184639396]), 'versicolor&2&251': np.array([0.10611499646955676, 0.33589829339460586]), 'versicolor&2&252': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&253': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&254': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&255': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&256': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&257': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&258': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&259': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&260': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&261': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&262': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&263': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&264': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&265': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&266': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&267': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&268': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&269': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&270': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&271': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&275': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&276': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&277': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&278': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&279': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&280': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&281': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&285': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&286': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&290': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&291': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&292': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&293': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&294': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&295': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&296': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&300': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&301': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&305': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&306': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&307': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&308': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&309': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&310': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&311': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'virginica&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&2': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&3': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&6': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&7': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&9': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&10': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&12': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&13': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&14': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&17': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&18': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&21': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&22': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&24': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&25': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&27': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&28': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&29': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&32': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&33': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&36': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&37': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&39': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&40': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&42': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&43': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&44': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&45': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&46': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&47': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&48': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&49': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&50': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&51': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&52': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&53': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&54': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&55': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&56': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&57': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&58': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&59': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&62': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&63': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&66': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&67': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&69': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&70': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&72': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&73': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&74': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&0&75': np.array([0.0, -0.95124502153736]), 'virginica&0&76': np.array([0.0, -0.9708703761803881]), 'virginica&0&77': np.array([0.0, -0.5659706098422994]), 'virginica&0&78': np.array([0.0, -0.3962828716108186]), 'virginica&0&79': np.array([0.0, 0.2538069363248767]), 'virginica&0&80': np.array([0.0, -0.9708703761803881]), 'virginica&0&81': np.array([0.0, -0.5659706098422994]), 'virginica&0&82': np.array([0.0, -0.3962828716108186]), 'virginica&0&83': np.array([0.0, -0.8943993997517804]), 'virginica&0&84': np.array([0.0, -0.5659706098422994]), 'virginica&0&85': np.array([0.0, -0.3962828716108186]), 'virginica&0&86': np.array([0.0, -0.9166476163222441]), 'virginica&0&87': np.array([0.0, -0.3962828716108186]), 'virginica&0&88': np.array([0.0, -0.5466925844560601]), 'virginica&0&89': np.array([0.0, -0.38529908946531777]), 'virginica&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&92': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&93': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&96': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&97': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&99': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&100': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&102': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&103': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&104': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&107': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&108': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&111': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&112': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&114': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&115': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&117': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&118': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&119': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&120': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&121': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&122': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&123': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&124': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&125': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&126': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&127': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&128': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&129': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&130': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&131': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&132': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&133': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&134': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&137': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&138': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&141': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&142': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&144': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&145': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&147': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&148': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&149': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&152': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&153': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&156': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&157': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&159': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&160': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&162': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&163': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&164': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&167': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&168': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&171': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&172': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&174': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&175': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&177': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&178': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&179': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&180': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&181': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&182': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&183': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&184': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&185': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&186': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&187': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&188': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&189': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&190': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&191': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&192': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&193': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&194': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&197': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&198': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&201': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&202': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&204': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&205': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&207': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&208': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&209': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&212': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&213': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&216': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&217': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&219': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&220': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&222': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&223': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&224': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&225': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&226': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&227': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&228': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&229': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&230': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&231': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&232': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&233': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&234': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&235': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&236': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&237': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&238': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&239': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'virginica&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&242': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&243': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'virginica&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&246': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&247': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'virginica&0&249': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&250': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'virginica&0&252': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&253': np.array([-0.544626974647221, -0.24972982107967573]), 'virginica&0&254': np.array([-0.6426355680762406, -0.20016519137103667]), 'virginica&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&257': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&258': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&261': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&262': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&264': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&265': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&267': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&268': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&269': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&270': np.array([-0.04201361383207032, -0.9372571358382161]), 'virginica&0&271': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&272': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&273': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&274': np.array([-0.4167677904879879, 0.22207334821665425]), 'virginica&0&275': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&276': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&277': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&278': np.array([-0.07857689135903215, -0.8696882596532965]), 'virginica&0&279': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&280': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&281': np.array([-0.05160969201296555, -0.9000166344885441]), 'virginica&0&282': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&283': np.array([-0.0766197045034485, -0.5080325256323984]), 'virginica&0&284': np.array([-0.32767091750230254, -0.19689316772421933]), 'virginica&0&285': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&286': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&287': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&288': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&289': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&290': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&291': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&292': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&293': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&294': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&295': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&296': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&297': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&298': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&299': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&302': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&303': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&306': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&307': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&309': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&310': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&312': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&313': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&314': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&2': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&3': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&6': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&7': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&9': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&10': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&12': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&13': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&14': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&17': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&18': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&21': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&22': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&24': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&25': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&27': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&28': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&29': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&32': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&33': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&36': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&37': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&39': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&40': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&42': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&43': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&44': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&45': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&46': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&47': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&48': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&49': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&50': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&51': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&52': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&53': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&54': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&55': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&56': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&57': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&58': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&59': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'virginica&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&62': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&63': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'virginica&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&66': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&67': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'virginica&1&69': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&70': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'virginica&1&72': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&73': np.array([0.28313251310829024, -0.10978015869508362]), 'virginica&1&74': np.array([0.20013484983664692, -0.3483612449300506]), 'virginica&1&75': np.array([0.0, 0.4756207622944677]), 'virginica&1&76': np.array([0.0, 0.4854334805210761]), 'virginica&1&77': np.array([0.0, -0.16885577975809632]), 'virginica&1&78': np.array([0.0, -0.39580588553855395]), 'virginica&1&79': np.array([0.0, 0.2538072707138344]), 'virginica&1&80': np.array([0.0, 0.4854334805210761]), 'virginica&1&81': np.array([0.0, -0.16885577975809632]), 'virginica&1&82': np.array([0.0, -0.39580588553855395]), 'virginica&1&83': np.array([0.0, 0.4904755652105692]), 'virginica&1&84': np.array([0.0, -0.16885577975809632]), 'virginica&1&85': np.array([0.0, -0.39580588553855395]), 'virginica&1&86': np.array([0.0, 0.5008471974438506]), 'virginica&1&87': np.array([0.0, -0.39580588553855395]), 'virginica&1&88': np.array([0.0, -0.14423919730424817]), 'virginica&1&89': np.array([0.0, -0.3847817540585927]), 'virginica&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&92': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&93': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&96': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&97': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&99': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&100': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&102': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&103': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&104': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&107': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&108': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&111': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&112': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&114': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&115': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&117': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&118': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&119': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&120': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&121': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&122': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&123': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&124': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&125': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&126': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&127': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&128': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&129': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&130': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&131': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&132': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&133': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&134': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'virginica&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&137': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&138': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'virginica&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&141': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&142': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'virginica&1&144': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&145': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'virginica&1&147': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&148': np.array([0.7419884013108898, -0.4595742931114029]), 'virginica&1&149': np.array([0.6092194175719845, -0.5086479426935605]), 'virginica&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&152': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&153': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&156': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&157': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&159': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&160': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&162': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&163': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&164': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&167': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&168': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&171': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&172': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&174': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&175': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&177': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&178': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&179': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&180': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&181': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&182': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&183': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&184': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&185': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&186': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&187': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&188': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&189': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&190': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&191': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&192': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&193': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&194': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'virginica&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&197': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&198': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'virginica&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'virginica&1&201': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&202': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'virginica&1&204': np.array([0.7329462736700701, -0.4610490766898857]), 'virginica&1&205': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'virginica&1&207': np.array([0.5965042032375719, -0.48856644624972617]), 'virginica&1&208': np.array([0.7419884013108898, -0.4595742931114029]), 'virginica&1&209': np.array([0.6092194175719845, -0.5086479426935605]), 'virginica&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'virginica&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&212': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&213': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'virginica&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'virginica&1&216': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&217': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'virginica&1&219': np.array([0.9105775730167809, -0.6842162738602727]), 'virginica&1&220': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'virginica&1&222': np.array([0.6718337295341265, -0.6620422637360074]), 'virginica&1&223': np.array([0.8441748651745272, -0.6057436494968107]), 'virginica&1&224': np.array([0.6453274192140858, -0.6334259878992301]), 'virginica&1&225': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&226': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&227': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&228': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&229': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&230': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&231': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&232': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&233': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&234': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&235': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&236': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&237': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&238': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&239': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'virginica&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'virginica&1&242': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&243': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'virginica&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'virginica&1&246': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&247': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'virginica&1&249': np.array([0.5806365328450952, -0.4726270680771261]), 'virginica&1&250': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'virginica&1&252': np.array([0.41462901544715686, -0.4964318942067897]), 'virginica&1&253': np.array([0.581569928198426, -0.46134543884925855]), 'virginica&1&254': np.array([0.42361197252581306, -0.5068181610814407]), 'virginica&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'virginica&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&257': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&258': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'virginica&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'virginica&1&261': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&262': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'virginica&1&264': np.array([0.7141739659554729, -0.661981914015288]), 'virginica&1&265': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'virginica&1&267': np.array([0.4446001433508151, -0.6107546840046901]), 'virginica&1&268': np.array([0.6253066100206679, -0.5612970743228719]), 'virginica&1&269': np.array([0.4159041613345079, -0.5802838287107943]), 'virginica&1&270': np.array([-0.6288817118959938, 0.6849987400957501]), 'virginica&1&271': np.array([-0.6491819158994796, 0.7060292771859485]), 'virginica&1&272': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&273': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&274': np.array([-0.3507937472799825, 0.22709708691079003]), 'virginica&1&275': np.array([-0.6491819158994796, 0.7060292771859485]), 'virginica&1&276': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&277': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&278': np.array([-0.6219129029345898, 0.6860569455333333]), 'virginica&1&279': np.array([-0.36354251586275393, 0.01503732165107865]), 'virginica&1&280': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&281': np.array([-0.6423063482710314, 0.7078274136226649]), 'virginica&1&282': np.array([-0.2224264339516076, -0.2751400010362469]), 'virginica&1&283': np.array([-0.38798262782075055, 0.05152547330256509]), 'virginica&1&284': np.array([-0.23804537254556749, -0.24790919248823104]), 'virginica&1&285': np.array([-0.7749499208750119, 0.8147189440804429]), 'virginica&1&286': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&287': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&288': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&289': np.array([-0.4079256832347186, 0.038455640985860955]), 'virginica&1&290': np.array([-0.8040309195416899, 0.8445152504134819]), 'virginica&1&291': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&292': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&293': np.array([-0.6964303997553315, 0.7444536452136676]), 'virginica&1&294': np.array([-0.582650696375085, 0.22335655671229132]), 'virginica&1&295': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&296': np.array([-0.7213651642695392, 0.7718874443854203]), 'virginica&1&297': np.array([-0.33108168891715994, -0.1364781674635115]), 'virginica&1&298': np.array([-0.5538416840542331, 0.2026191723113616]), 'virginica&1&299': np.array([-0.3472412936248763, -0.1219322389673262]), 'virginica&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'virginica&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&302': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&303': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'virginica&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'virginica&1&306': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&307': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'virginica&1&309': np.array([0.25657760110071476, -0.12592645350389117]), 'virginica&1&310': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'virginica&1&312': np.array([0.13717260713320115, -0.36277799079016637]), 'virginica&1&313': np.array([0.28313251310829024, -0.10978015869508362]), 'virginica&1&314': np.array([0.20013484983664692, -0.3483612449300506]), 'virginica&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'virginica&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&2': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&3': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'virginica&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'virginica&2&6': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&7': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'virginica&2&9': np.array([0.04449246321056297, 0.7096449459722027]), 'virginica&2&10': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'virginica&2&12': np.array([0.2953784217387408, 0.6750352694420284]), 'virginica&2&13': np.array([0.11274898124253621, 0.6292927079496371]), 'virginica&2&14':
np.array([0.32240464148521225, 0.645858545382009])
numpy.array
import h5py import numpy as np import os files = ['train.h5', 'train2.h5', 'train3.h5', 'train4.h5', 'train5.h5', 'train6.h5'] if __name__ == '__main__': new_data = h5py.File('new.h5', 'w') # for key in new_data.keys(): # print(new_data['data']) # print(new_data['label_x4']) for i, file in enumerate(files): piece = h5py.File(file, 'r') if i == 0: dat = piece['data'].value label_x4 = piece['label_x4'].value else: dat =
np.concatenate((dat, piece['data'].value), axis=0)
numpy.concatenate
from __future__ import annotations from typing import * import numpy as np #type: ignore from enum import Enum from DataLoader import LoadDatasets, SamplingMethod, Colour, TrainDataset, TestDataset from VisualWords import MakeGrayPatchExtractor from sklearn import cluster, metrics, neighbors #type: ignore import itertools import math import os import sys import cmath import numba #type: ignore from numba import prange #type: ignore import config class ClusteringMethod(Enum): kmeans = 0 OPTICS = 1 class SummaryPerformanceMetrics(NamedTuple): Accuracy: float Support: int MacroAvgPrecision: float MacroAvgRecall: float MacroAvgf1: float MacroAvgSupport:int WeightAvgPrecision: float WeightedAvgRecall: float WeightedAvgf1: float WeightedAvgSupport: int def __str__(self): return f"Summary Performance Metrics:\n\tAccuracy: {self.Accuracy}\n\tSupport: {self.Support}\n\tMacro average precision: {self.MacroAvgPrecision}\n\tMacro average recall: {self.MacroAvgRecall}\n\tMacro average f1 score: {self.MacroAvgf1}\n\tMacro average support: {self.MacroAvgSupport}\n\tWeighted average precision: {self.WeightAvgPrecision}\n\tWeighted average recall: {self.WeightedAvgRecall}\n\tWeighted average f1 score: {self.WeightedAvgf1}\n\tWeighted average support: {self.WeightedAvgSupport}" class FeatureExtractors(Enum): Gray_Patches = 0 Colour_Patches = 1 Gray_SIFT = 2 Colour_SIFT = 3 Gray_SIFT_Sparse = 4 @numba.jit(nopython=True) def Expectation(P_TopicGivenWordDocument, P_TopicGivenDocument, P_WordGivenTopic): NTopics = P_TopicGivenDocument.shape[0] NWords = P_WordGivenTopic.shape[0] NDocs = P_TopicGivenDocument.shape[1] for i in prange(NDocs): for j in range(NWords): divisor = 0 for k in range(NTopics): divisor += P_WordGivenTopic[j,k]*P_TopicGivenDocument[k,i] if divisor == 0: for k in range(NTopics): P_TopicGivenWordDocument[k,i,j] = 0 else: for k in range(NTopics): P_TopicGivenWordDocument[k,i,j] = P_WordGivenTopic[j,k]*P_TopicGivenDocument[k,i]/divisor return P_TopicGivenWordDocument @numba.jit(nopython=True) def Maximize_TopicGivenDocument(Old_P_TopicGivenDocument, Co_OccurenceTable, P_TopicGivenDocumentWord): NTopics = P_TopicGivenDocumentWord.shape[0] NWords = P_TopicGivenDocumentWord.shape[2] NDocs = P_TopicGivenDocumentWord.shape[1] N = np.sum(Co_OccurenceTable, axis=0) #print(Old_P_TopicGivenDocument.shape) #print(P_TopicGivenDocumentWord.shape) #print(f"NTopcis:{NTopics}") #print(f"NWords:{NWords}") #print(f"NDocs:{NDocs}") for i in prange(NDocs): for k in range(NTopics): Old_P_TopicGivenDocument[k,i] = 0 for j in range(NWords): Old_P_TopicGivenDocument[k,i] += Co_OccurenceTable[j,i]*P_TopicGivenDocumentWord[k,i,j] Old_P_TopicGivenDocument[k,i]/N[i] return Old_P_TopicGivenDocument @numba.jit(nopython=True) def Maximize_WordGivenTopic(Old_P_WordGivenDocument, Co_OccurenceTable, P_TopicGivenDocumentWord, NormalizationFactors): NTopics = P_TopicGivenDocumentWord.shape[0] NWords = P_TopicGivenDocumentWord.shape[2] NDocs = P_TopicGivenDocumentWord.shape[1] for k in range(NTopics): NormalizationFactors[k] = 0 for m in prange(NWords): for i in range(NDocs): for k in range(NTopics): NormalizationFactors[k] += Co_OccurenceTable[m,i]*P_TopicGivenDocumentWord[k,i,m] for j in prange(NWords): for k in range(NTopics): partial_sum = 0 if NormalizationFactors[k] == 0: Old_P_WordGivenDocument[j,k] = 0 continue for i in range(NDocs): partial_sum += Co_OccurenceTable[j,i]*P_TopicGivenDocumentWord[k,i,j] Old_P_WordGivenDocument[j,k] = partial_sum/NormalizationFactors[k] return Old_P_WordGivenDocument @numba.jit(nopython=True) def logLiklihood_jit(P_TopicGivenDocument, Co_OccurenceTable, P_TopicGivenDocumentWord, P_WordGivenTopic) -> float: ll = 0.0 NTopics = P_TopicGivenDocumentWord.shape[0] NWords = P_TopicGivenDocumentWord.shape[2] NDocs = P_TopicGivenDocumentWord.shape[1] for N in prange(NDocs): for M in range(NWords): partial_sum = 0.0 for K in range(NTopics): Nan_test = P_TopicGivenDocumentWord[K, N, M]*np.log(P_WordGivenTopic[M, K] * P_TopicGivenDocument[K,N]) if not cmath.isnan(Nan_test): partial_sum += Nan_test ll += partial_sum * Co_OccurenceTable[N,M] return ll class PLSA: def __init__(self, BaseImageListPath:str = "./dataset/filelist/places365_train_standard.txt", BaseDatasetPath:str="./dataset/data", NumVisualWords: int=1500, NumTopics: int=25, NumNeighbors:int = 10, NumCategories:int = 365, TrainSize:int = 1000, TestSize: int = 1000, SamplingMethod = SamplingMethod.Deterministic, ImageColour = Colour.GRAY, ImageTransform: Any = None, Eps = 0.000001, MaxIter = 1000 ): self.SamplingMethod = SamplingMethod self.NumCategories = NumCategories self.NumVisualWords = NumVisualWords self.NumTopics = NumTopics self.NumNeighbors = NumNeighbors self.Eps = Eps self.MaxIter = MaxIter self.TrainingDataset: TrainDataset self.TestingDataset: TestDataset self.TrainingDataset, self.TestingDataset = LoadDatasets(BaseImageListPath, BaseDatasetPath, TrainSize, TestSize, NumCategories, SamplingMethod, ImageColour, ImageTransform) self.Extractor = MakeGrayPatchExtractor() self.KNNClassifier = neighbors.KNeighborsClassifier(n_neighbors=NumNeighbors) self.ImageLabels = np.zeros((1,1)) self.WordCenters = np.zeros((1,1)) # Axis 0 - Number of unique words # Axis 1 - Number of topics self.P_WordGivenTopic = np.full((NumVisualWords, NumTopics), 1/NumVisualWords, dtype="float64") #A uniform distribution is assumed at first so no additional normalization is required def train(self): print("Beginning training") AllVisualWords = np.zeros((1,1)) NumberOfImageFeatures = [] self.ImageLabels = np.zeros((len(self.TrainingDataset),)) numFeatures = -1 feature_idx = 0 image_idx = 0 print("Extracting all image features") for img in self.TrainingDataset: vWords = self.Extractor(img[0]) self.ImageLabels[image_idx] = img[1] NumberOfImageFeatures.append(vWords.NumFeatureVecs) if numFeatures == -1: totalNumberOfFeatures = vWords.NumFeatureVecs * len(self.TrainingDataset) numFeatures = vWords.NumFeatureVecs AllVisualWords = np.zeros((totalNumberOfFeatures, vWords.FeatureDim)) if AllVisualWords.shape[0] < feature_idx + vWords.NumFeatureVecs: AllVisualWords = np.pad(AllVisualWords,((0,vWords.NumFeatureVecs*(len(self.TrainingDataset)-image_idx)), (0,0))) for feature in vWords: try: AllVisualWords[feature_idx, :] = feature feature_idx += 1 except Exception as e: print(f"On the {image_idx}th image out of {len(self.TrainingDataset)}") print(f"There are {numFeatures} per image\n On the {feature_idx}th feature of the image") print(e) exit(1) image_idx += 1 print("Completed feature extraction, beginning cluster visual words") labels = self.cluster(AllVisualWords[0:feature_idx,:]) print("Done clustering beginning EM") img_index = 0 img_word_index = 0 Co_OccurenceTable = np.zeros((self.NumVisualWords, len(self.TrainingDataset)), dtype="uint32") for label in labels: Co_OccurenceTable[label, img_index] += 1 img_word_index += 1 if img_word_index == NumberOfImageFeatures[img_index]: img_word_index = 0 img_index += 1 # Axis 0 - Number of topics # Axis 1 - Length of training set or number of documents P_TopicGivenDocument = np.random.random((self.NumTopics, len(self.TrainingDataset))) #Normalize the conditional distribution P_TopicGivenDocument = P_TopicGivenDocument/np.sum(P_TopicGivenDocument, axis=0) # Axis 0 - number of topics # Axis 1 - number of documents # Axis 2 - number of words P_TopicGivenDocumentWord = np.random.random((self.NumTopics, len(self.TrainingDataset), self.NumVisualWords)) P_TopicGivenDocumentWord = P_TopicGivenDocumentWord/ np.sum(P_TopicGivenDocumentWord, axis = 0) #Beginning EM maximization NormalizationFactors = np.zeros((self.NumTopics,), dtype="float64") Old_logLiklihood = -sys.float_info.max New_logLiklihood = 0.0 for iteration in range(self.MaxIter): New_logLiklihood = logLiklihood_jit(P_TopicGivenDocument, Co_OccurenceTable, P_TopicGivenDocumentWord, self.P_WordGivenTopic) if New_logLiklihood - Old_logLiklihood < self.Eps: break print(f"\t[{iteration}]: delta= {New_logLiklihood - Old_logLiklihood}") Old_logLiklihood = New_logLiklihood #Expectation portion P_TopicGivenDocumentWord = Expectation(P_TopicGivenDocumentWord, P_TopicGivenDocument, self.P_WordGivenTopic) #Maximization portion P_TopicGivenDocument = Maximize_TopicGivenDocument(P_TopicGivenDocument, Co_OccurenceTable, P_TopicGivenDocumentWord) self.P_WordGivenTopic = Maximize_WordGivenTopic(self.P_WordGivenTopic, Co_OccurenceTable, P_TopicGivenDocumentWord, NormalizationFactors) print("Done EM training KNN classifier") self.KNNClassifier.fit(P_TopicGivenDocument.T, self.ImageLabels) print("Done training") def calculate_Z_vector(self, image): vWords = self.Extractor(image) #Z vector is equivalent to a portion of the topic specific distribution given the document #the distribution of the words given the topics is the distribution that was fitted to the training data P_TopicGivenDocumentWord =
np.random.random((self.NumTopics, 1, self.NumVisualWords))
numpy.random.random
import numpy as np import math import sys import matplotlib.pyplot as plt class initialGeometry(): def __init__(self, c, Mchord, typeSpacing, pitchSSrad, rotationPt): self.c = c self.Mchord = Mchord self.typeSpacing = typeSpacing self.pitchSSrad = pitchSSrad self.rotationPt = rotationPt self.panelEndPts = self.getPanelEndPts() self.panelVortexPts = self.getPanelVortexPts() self.panelEvalPts = self.getPanelEvalPts() self.panelNormVec = self.getPanelNormVec() self.panelTangVec = self.getPanelTangVec() self.panelArea = self.getPanelArea() self.checkPanelNormVectorOrthogonality = self.getCheckPanelNormVectorOrthogonality() self.checkPanelNormVectorMagnitude = self.getCheckPanelNormVectorMagnitude() def getPanelEndPts(self): panelEndPts = np.zeros((self.Mchord+1,2)) thetaSpacing = np.linspace(0,180,self.Mchord+1) rotationMatrix = np.array([[math.cos(self.pitchSSrad), math.sin(self.pitchSSrad)],[-math.sin(self.pitchSSrad), math.cos(self.pitchSSrad)]]) # Computation of panelEndPts x-component if self.typeSpacing == "uniform": panelEndPts[:,0] = np.linspace(0,self.c,self.Mchord+1) - self.rotationPt elif self.typeSpacing == "cosine": for i in range(self.Mchord+1): panelEndPts[i,0] = 0.5*self.c*(1-math.cos(math.radians(thetaSpacing[i]))) - self.rotationPt else: sys.exit('typeSpacing must be "uniform" or "cosine"') # Rotation of panelEndPts by pitchSS angle for i in range(self.Mchord+1): panelEndPts[i,:] = np.matmul(rotationMatrix, panelEndPts[i,:]) return panelEndPts def getPanelVortexPts(self): panelVortexPts = np.zeros((self.Mchord,2)) for i in range(self.Mchord): vec = self.panelEndPts[i+1,:] - self.panelEndPts[i,:] panelVortexPts[i,:] = self.panelEndPts[i,:] + 0.25*vec return panelVortexPts def getPanelEvalPts(self): panelEvalPts = np.zeros((self.Mchord,2)) for i in range(self.Mchord): vec = self.panelEndPts[i+1,:] - self.panelEndPts[i,:] panelEvalPts[i,:] = self.panelEndPts[i,:] + 0.75*vec return panelEvalPts def getPanelNormVec(self): panelNormVec = np.zeros((self.Mchord,2)) thetaRotation = np.pi/2 transformationMatrix = np.array([[math.cos(thetaRotation), -math.sin(thetaRotation)],[math.sin(thetaRotation), math.cos(thetaRotation)]]) for i in range(self.Mchord): vec = self.panelEndPts[i+1,:] - self.panelEndPts[i,:] # this vector is rotated by pi/2 in the counter-clockwise direction panelNormVec[i,:] = ( np.matmul(transformationMatrix, vec) ) / np.linalg.norm(vec) return panelNormVec def getPanelTangVec(self): panelTangVec = np.zeros((self.Mchord,2)) for i in range(self.Mchord): vec = self.panelEndPts[i+1,:] - self.panelEndPts[i,:] panelTangVec[i,:] = vec / np.linalg.norm(vec) return panelTangVec def getPanelArea(self): panelArea = np.zeros(self.Mchord) for i in range(self.Mchord): vec = self.panelEndPts[i+1,:] - self.panelEndPts[i,:] panelArea[i] = np.linalg.norm(vec) return panelArea def getCheckPanelNormVectorOrthogonality(self): checkPanelNormVectorOrthogonality = np.zeros(self.Mchord) for i in range(self.Mchord): vec = self.panelEndPts[i+1,:] - self.panelEndPts[i,:] checkPanelNormVectorOrthogonality[i] = np.vdot(vec,self.panelNormVec[i,:]) return checkPanelNormVectorOrthogonality def getCheckPanelNormVectorMagnitude(self): checkPanelNormVectorMagnitude =
np.zeros(self.Mchord)
numpy.zeros
import numpy as np import pandas as pd import matplotlib.pyplot as plt import datetime from seir.wrapper import MultiPopWrapper from seir.utils import plot_solution # read calibration data actual_hospitalisations = pd.read_excel('data/calibration.xlsx', sheet_name='Hospitalisations') actual_hospitalisations['Date'] = [pd.to_datetime(x, ).date() for x in actual_hospitalisations['Date']] # TODO: should check if file is downloaded: if not, download, then use the downloaded file actual_infections = pd.read_csv( 'https://raw.githubusercontent.com/dsfsi/covid19za/master/data/covid19za_provincial_cumulative_timeline_confirmed.csv') actual_infections.rename(columns={'date': 'Date', 'total': 'Cum. Confirmed'}, inplace=True) actual_infections.index = pd.to_datetime(actual_infections['Date'], dayfirst=True) actual_infections = actual_infections.resample('D').mean().ffill().reset_index() actual_infections['Date'] = [pd.to_datetime(x, dayfirst=True).date() for x in actual_infections['Date']] # TODO: should check if file is downloaded: if not, download, then use the downloaded file reported_deaths = pd.read_csv( 'https://raw.githubusercontent.com/dsfsi/covid19za/master/data/covid19za_timeline_deaths.csv') reported_deaths.rename(columns={'date': 'Date'}, inplace=True) reported_deaths['Date'] = [pd.to_datetime(x, dayfirst=True).date() for x in reported_deaths['Date']] actual_deaths = reported_deaths.groupby('Date').report_id.count().reset_index() actual_deaths.rename(columns={'report_id': 'Daily deaths'}, inplace=True) actual_deaths.index = pd.to_datetime(actual_deaths['Date']) actual_deaths = actual_deaths.resample('D').mean().fillna(0).reset_index() actual_deaths['Cum. Deaths'] = np.cumsum(actual_deaths['Daily deaths']) # variable parameters for front-end asymptomatic_prop = 0.75 # 0.2-0.8 asymp_rel_infectivity = 0.5 # 0.3 - 1 asymp_prop_imported = 0.0 # 0 - 0.8 r0 = 2.6 # 1.5 - 5.5 lockdown_ratio = 0.6 # 0.25 - 0.8 imported_scale = 2.5 # 0.5 - 2 lockdown_period = 35 # 35, 42, 49, 56, 63, 70 social_distancing_ratio = 0.75 # 0.5-1 period_asymp = 2.3 # 8-12 period_mild_infect = 2.3 # 2-4 period_severe_infect = 2.3 # 2-4 period_severe_isolate = 6 - period_severe_infect period_hosp_if_not_icu = 10 # 6-10 period_hosp_if_icu = 8 # 6-10 period_icu_if_recover = 10 # 8-12 period_icu_if_die = 6 # 3-7 mort_loading = 1.0 # 0.5 - 1.5 prop_mild_detected = 0.3 # 0.2 - 0.8 hosp_to_icu = 0.2133 # 0.1 - 0.4 (0.21330242 = Ferguson) descr = 'asymp_' + str(asymptomatic_prop) + '_R0_' + str(r0) + '_imported_scale_' + str( imported_scale) + '_lockdown_' + str(lockdown_ratio) + '_postlockdown_' + str( social_distancing_ratio) + '_ICU_' + str(hosp_to_icu) + '_mort_' + str(mort_loading) + '_asympinf_' + str( asymp_rel_infectivity) full_descr = f'Baseline R0: {r0:.1f}, asymptomatic proportion: {asymptomatic_prop:.0%}, asymptomatic relative ' \ f'infectiousness {asymp_rel_infectivity:.0%}, {prop_mild_detected:.0%} of mild cases detected \n ' full_descr += f'Imported scaling factor {imported_scale:.2f}, asymptomatic proportion imported {asymp_prop_imported:.0%}\n ' full_descr += f'Lockdown period: {lockdown_period:,.0f}, R0 relative to baseline {lockdown_ratio:.0%} in lockdown,' \ f'{social_distancing_ratio:.0%} post-lockdown \n ' full_descr += f'Infectious days pre-isolation: {period_asymp} asymptomatic, {period_mild_infect} mild, {period_severe_infect} severe; severe isolation days pre-hospitalisation: {period_severe_isolate} \n' full_descr += f'Hospital days: {period_hosp_if_not_icu} not critical, {period_hosp_if_icu} critical plus {period_icu_if_recover} in ICU if recover/{period_icu_if_die} if die \n' full_descr += f'Proportion of hospitalised cases ending in ICU: {hosp_to_icu:.2%}, mortality loading {mort_loading:.0%}' # get s0 from file: df = pd.read_csv('data/Startpop_2density_0comorbidity.csv') # , index_col=0) df['density'] = df['density'].map({'High': 'high', 'Low': 'low'}) df['label'] = df['age'].str.lower() + '_' + df['sex'].str.lower() + '_' + df['density'].str.lower() df_dict = df[['label', 'Population']].to_dict() s_0 = {df_dict['label'][i]: df_dict['Population'][i] for i in df_dict['label'].keys()} # Ferguson et al. parameterisation ferguson = {'0-9': [0.001, 0.05, 0.00002], '10-19': [0.003, 0.05, 0.00006], '20-29': [0.012, 0.05, 0.0003], '30-39': [0.032, 0.05, 0.0008], '40-49': [0.049, 0.063, 0.0015], '50-59': [0.102, 0.122, 0.006], '60-69': [0.166, 0.274, 0.022], '70-79': [0.243, 0.432, 0.051], '80+': [0.273, 0.709, 0.093]} # work out deaths as % of those entering ICU for key in ferguson: # TODO: add this calc to the df, not to the lists. ferguson[key].append(ferguson[key][2] / ferguson[key][1] / ferguson[key][0]) # age profile - calculate ICU transition adjustment age_profile = df.groupby('age').Population.sum().reset_index() ferguson_df = pd.DataFrame(ferguson).T.reset_index() ferguson_df.rename(columns={'index': 'age', 0: 'symp_to_hosp', 1: 'hosp_to_icu', 2: 'symp_to_dead', 3: 'icu_to_dead'}, inplace=True) age_profile['Proportion'] = age_profile['Population'] / age_profile['Population'].sum() age_profile = age_profile.merge(ferguson_df[['age', 'symp_to_hosp', 'hosp_to_icu']], on='age') age_profile['hosp'] = age_profile['Proportion'] * age_profile['symp_to_hosp'] age_profile['prop_hosp'] = age_profile['hosp'] / age_profile['hosp'].sum() age_profile['overall_hosp_to_icu'] = age_profile['prop_hosp'] * age_profile['hosp_to_icu'] overall_hosp_to_icu = age_profile['overall_hosp_to_icu'].sum() icu_adjustment = hosp_to_icu / overall_hosp_to_icu # ~1 when hosp_to_icu is == ferguson number # hard-coded parameters infectious_func = lambda t: 1 if t < 11 else ( 1 - (1 - social_distancing_ratio) / 11 * (t - 11)) if 11 <= t < 22 else lockdown_ratio if 22 <= t < ( 22 + lockdown_period) else social_distancing_ratio c = 1 s = 0.06 # proportion of imported cases below 60 that are severe (1-s are mild) # scale of ferguson ratio for 60+ - setting to inverse value from ferguson means we assume 100% of cases 60+ are severe scale = {'60-69': 1, '70-79': 1/ferguson['70-79'][0], '80+': 1/ferguson['80+'][0]} a = 0.25 l = asymp_prop_imported / (1 - asymp_prop_imported) x = c * imported_scale imported_func = lambda t: {'0-9_male_high': [0.0101 * x * l * np.exp(a * t), 0.0101 * x * (1 - s) * np.exp(a * t), 0.0101 * x * s * np.exp(a * t), 0, 0, 0], '10-19_male_high': [0.0101 * x * l * np.exp(a * t), 0.0101 * x * (1 - s) * np.exp(a * t), 0.0101 * x * s * np.exp(a * t), 0, 0, 0], '20-29_male_high': [0.0657 * x * l * np.exp(a * t), 0.0657 * x * (1 - s) * np.exp(a * t), 0.0657 * x * s * np.exp(a * t), 0, 0, 0], '30-39_male_high': [0.1768 * x * l * np.exp(a * t), 0.1768 * x * (1 - s) * np.exp(a * t), 0.1768 * x * s * np.exp(a * t), 0, 0, 0], '40-49_male_high': [0.0960 * x * l * np.exp(a * t), 0.0960 * x * (1 - s) * np.exp(a * t), 0.0960 * x * s * np.exp(a * t), 0, 0, 0], '50-59_male_high': [0.1717 * x * l * np.exp(a * t), 0.1717 * x * (1 - ferguson['50-59'][0]) * np.exp(a * t), 0.1717 * x * ferguson['50-59'][0] * np.exp(a * t), 0, 0, 0], '60-69_male_high': [0.0758 * x * l * np.exp(a * t), 0.0758 * x * (1 - scale['60-69'] * ferguson['60-69'][0]) * np.exp(a * t), 0.0758 * x * scale['60-69'] * ferguson['60-69'][0] * np.exp(a * t), 0, 0, 0], '70-79_male_high': [0.0202 * x * l * np.exp(a * t), 0.0202 * x * (1 - scale['70-79'] * ferguson['70-79'][0]) * np.exp(a * t), 0.0202 * x * scale['70-79'] * ferguson['70-79'][0] * np.exp(a * t), 0, 0, 0], '80+_male_high': [0.0051 * x * l * np.exp(a * t), 0.0051 * x * (1 - scale['80+'] * ferguson['80+'][0]) * np.exp(a * t), 0.0051 * x * scale['80+'] * ferguson['80+'][0] * np.exp(a * t), 0, 0, 0], '0-9_female_high': [0.0000 * x * l * np.exp(a * t), 0.0000 * x * (1 - s) *
np.exp(a * t)
numpy.exp
import sys from copy import copy from itertools import chain from numpy import * from scipy.signal import medfilt as MF from scipy.stats import scoreatpercentile as sap from numpy.random import normal, seed from statsmodels.robust import mad from george.kernels import ConstantKernel, Matern32Kernel, DotProductKernel from .core import * from .lpf import * from .extcore import * from .lpfsd import LPFSD class LPFSRR(LPFSD): def __init__(self, passband, lctype='relative', use_ldtk=False, n_threads=1, night=2, pipeline='gc'): super().__init__(passband, lctype, use_ldtk, n_threads, night, pipeline) self.fluxes = asarray(self.fluxes) self.fluxes_m = self.fluxes.mean(0) self.fluxes /= self.fluxes_m self.wn_estimates = array([sqrt(2) * mad(diff(f)) for f in self.fluxes]) self.priors = self.priors[:self._sgp] # Update the priors using the external data modelling # --------------------------------------------------- self.priors[0] = NP(125.417380, 8e-5, 'tc') # 0 - Transit centre self.priors[1] = NP(3.06785547, 4e-7, 'p') # 1 - Period self.priors[2] = NP(4.17200000, 3e-2, 'rho') # 2 - Stellar density self.priors[3] = NP(0.16100000, 2e-2, 'b') # 3 - Impact parameter # Change the GP priors slightly # ----------------------------- self.priors.extend([UP(-5, -1, 'log10_constant'), UP(-5, -1, 'log10_ra_amplitude'), UP(-5, 3, 'log10_ra_inv_scale')]) self.ps = PriorSet(self.priors) self.prior_kw = NP(0.1707, 3.2e-4, 'kw', lims=(0.16,0.18)) # Use mock data # ------------- if passband == 'nb_mock' and type(self) == LPFSRR: self.create_mock_nb_dataset() def set_pv_indices(self, sbl=None, swn=None): self.ik2 = [self._sk2 + pbid for pbid in self.gpbids] self.iq1 = [self._sq1 + pbid * 2 for pbid in self.gpbids] self.iq2 = [self._sq2 + pbid * 2 for pbid in self.gpbids] self.uq1 = np.unique(self.iq1) self.uq2 = np.unique(self.iq2) sbl = sbl if sbl is not None else self._sbl self.ibcn = [sbl + ilc for ilc in range(self.nlc)] if hasattr(self, '_sgp'): self.slgp = s_[self._sgp:self._sgp + 3] def setup_gp(self): self.gp_inputs = array([self.airmass, self.rotang]).T self.kernel = (ConstantKernel(1e-3 ** 2, ndim=2, axes=0) + DotProductKernel(ndim=2, axes=0) + ConstantKernel(1e-3 ** 2, ndim=2, axes=1) * ExpSquaredKernel(.01, ndim=2, axes=1)) self.gp = GP(self.kernel) self.gp.compute(self.gp_inputs, yerr=5e-4) def map_to_gp(self, pv): log10_to_ln = 1. / log10(e) gpp = zeros(3) gpp[0] = 2 * pv[0] * log10_to_ln gpp[1] = 2 * pv[1] * log10_to_ln gpp[2] = -pv[2] * log10_to_ln return gpp def lnposterior(self, pv): _k = median(sqrt(pv[self.ik2])) return super().lnposterior(pv) + self.prior_kw.log(_k) def compute_lc_model(self, pv, copy=False): bl = self.compute_baseline(pv) tr = self.compute_transit(pv) self._wrk_lc[:] = bl[:,np.newaxis]*tr/tr.mean(0) return self._wrk_lc if not copy else self._wrk_lc.copy() def create_mock_nb_dataset(self): tc, p, rho, b = 125.417380, 3.06785547, 4.17200000, 0.161 ks = np.full(self.npb, 0.171) ks[1::3] = 0.170 ks[2::3] = 0.172 ks[[7, 13]] = 0.173 q1 = array([0.581, 0.582, 0.590, 0.567, 0.541, 0.528, 0.492, 0.490, 0.461, 0.440, 0.419, 0.382, 0.380, 0.368, 0.344, 0.328, 0.320, 0.308, 0.301, 0.292]) q2 = array([0.465, 0.461, 0.446, 0.442, 0.425, 0.427, 0.414, 0.409, 0.422, 0.402, 0.391, 0.381, 0.379, 0.373, 0.369, 0.365, 0.362, 0.360, 0.360, 0.358]) seed(0) cam = normal(0, 0.03, self.nlc) ctm =
normal(0, 0.08, self.nlc)
numpy.random.normal
import math import numpy as np import torch from torch import nn from torch.backends import cudnn from torch.utils.data import DataLoader from tqdm import tqdm from model import CharRNN from data import TextDataset, TextConverter class Trainer(object): def __init__(self, args): self.args = args self.device = torch.device('cuda' if self.args.cuda else 'cpu') self.convert = None self.model = None self.optimizer = None self.criterion = self.get_loss self.meter = AverageValueMeter() self.train_loader = None self.get_data() self.get_model() self.get_optimizer() def get_data(self): self.convert = TextConverter(self.args.txt, max_vocab=self.args.max_vocab) dataset = TextDataset(self.args.txt, self.args.len, self.convert.text_to_arr) self.train_loader = DataLoader(dataset, self.args.batch_size, shuffle=True, num_workers=self.args.num_workers) def get_model(self): self.model = CharRNN(self.convert.vocab_size, self.args.embed_dim, self.args.hidden_size, self.args.num_layers, self.args.dropout, self.args.cuda).to(self.device) if self.args.cuda: cudnn.benchmark = True def get_optimizer(self): optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.lr) self.optimizer = ScheduledOptim(optimizer) @staticmethod def get_loss(score, label): return nn.CrossEntropyLoss()(score, label.view(-1)) def save_checkpoint(self, epoch): if (epoch + 1) % self.args.save_interval == 0: model_out_path = self.args.save_file + "epoch_{}_model.pth".format(epoch + 1) torch.save(self.model, model_out_path) print("Checkpoint saved to {}".format(model_out_path)) def save(self): model_out_path = self.args.save_file + "final_model.pth" torch.save(self.model, model_out_path) print("Final model saved to {}".format(model_out_path)) @staticmethod def pick_top_n(predictions, top_n=5): top_predict_prob, top_predict_label = torch.topk(predictions, top_n, 1) top_predict_prob /= torch.sum(top_predict_prob) top_predict_prob = top_predict_prob.squeeze(0).cpu().numpy() top_predict_label = top_predict_label.squeeze(0).cpu().numpy() c =
np.random.choice(top_predict_label, size=1, p=top_predict_prob)
numpy.random.choice
"""Script containing a non-flow variant of the ring road environment.""" import numpy as np import csv import time import random import json import gym from scipy.optimize import fsolve from collections import defaultdict from gym.spaces import Box from copy import deepcopy from hbaselines.envs.mixed_autonomy.envs.utils import get_rl_accel from hbaselines.envs.mixed_autonomy.envs.utils import v_eq_function # the length of the individual vehicles VEHICLE_LENGTH = 5.0 # a normalizing term for the vehicle headways MAX_HEADWAY = 100.0 # a normalizing term for the vehicle speeds MAX_SPEED = 10.0 class RingEnv(gym.Env): """Non-flow variant of the ring road environment. Attributes ---------- initial_state : str or None the initial state. Must be one of the following: * None: in this case, vehicles are evenly distributed * "random": in this case, vehicles are randomly placed with a minimum gap between vehicles specified by "min_gap" * str: A string that is not "random" is assumed to be a path to a json file specifying initial vehicle positions and speeds length : float the length of the ring at the current time step num_vehicles : int total number of vehicles in the network dt : float seconds per simulation step horizon : int the environment time horizon, in steps sims_per_step : int the number of simulation steps per environment step max_accel : float scaling factor for the AV accelerations, in m/s^2 min_gap : float the minimum allowable gap by all vehicles. This is used during the failsafe computations. gen_emission : bool whether to generate the emission file rl_ids : array_like the indices of vehicles that are treated as automated, or RL, vehicles num_rl : int the number of automated, or RL, vehicles warmup_steps : int number of steps performed before the initialization of training during a rollout maddpg : bool whether to use a variant that is compatible with MADDPG t : int number of simulation steps since the start of the current rollout positions : array_like positions of all vehicles in the network speeds : array_like speeds of all vehicles in the network headways : array_like bumper-to-bumper gaps of all vehicles in the network accelerations : array_like previous step accelerations by the individual vehicles v0 : float desirable velocity, in m/s T : float safe time headway, in s a : float max acceleration, in m/s2 b : float comfortable deceleration, in m/s2 delta : float acceleration exponent s0 : float linear jam distance, in m noise : float std dev of normal perturbation to the acceleration decel : float maximum desired deceleration delay : float delay in applying the action, in seconds. This is used by the failsafe computation. """ def __init__(self, length, num_vehicles, dt, horizon, sims_per_step, max_accel=0.5, min_gap=1.0, gen_emission=False, rl_ids=None, warmup_steps=0, initial_state=None, maddpg=False, obs_frames=5): """Instantiate the environment class. Parameters ---------- length : float or [float, float] the length of the ring if a float, and a range of [min, max] length values that are sampled from during the reset procedure num_vehicles : int total number of vehicles in the network dt : float seconds per simulation step horizon : int the environment time horizon, in steps sims_per_step : int the number of simulation steps per environment step max_accel : float scaling factor for the AV accelerations, in m/s^2 min_gap : float the minimum allowable gap by all vehicles. This is used during the failsafe computations. gen_emission : bool whether to generate the emission file rl_ids : list of int or None the indices of vehicles that are treated as automated, or RL, vehicles warmup_steps : int number of steps performed before the initialization of training during a rollout initial_state : str or None the initial state. Must be one of the following: * None: in this case, vehicles are evenly distributed * "random": in this case, vehicles are randomly placed with a minimum gap between vehicles specified by "min_gap" * str: A string that is not "random" is assumed to be a path to a json file specifying initial vehicle positions and speeds maddpg : bool whether to use a variant that is compatible with MADDPG obs_frames : int number of observation frames to use. Additional frames are provided from previous time steps. """ self._length = length # Load the initial state (if needed). if isinstance(initial_state, str) and initial_state != "random": with open(initial_state, "r") as fp: self.initial_state = json.load(fp) self._length = list(self.initial_state.keys()) else: self.initial_state = initial_state self.length = self._set_length(self._length) self.num_vehicles = num_vehicles self.dt = dt self.horizon = horizon self.sims_per_step = sims_per_step self.max_accel = max_accel self.min_gap = min_gap self.gen_emission = gen_emission self.num_rl = len(rl_ids) if rl_ids is not None else 0 self.rl_ids = np.asarray(rl_ids) self.warmup_steps = warmup_steps self.maddpg = maddpg self.obs_frames = obs_frames self._time_log = None self._v_eq = 0. self._mean_speeds = None self._mean_accels = None # observations from previous time steps self._obs_history = defaultdict(list) # simulation parameters self.t = 0 self.positions, self.speeds = self._set_initial_state( length=self.length, num_vehicles=self.num_vehicles, initial_state=self.initial_state, min_gap=self.min_gap, ) self.headways = self._compute_headway() self.accelerations = np.array([0. for _ in range(num_vehicles)]) self._emission_data = [] # human-driver model parameters self.v0 = 30 self.T = 1 self.a = 1.3 self.b = 2.0 self.delta = 4 self.s0 = 2 self.noise = 0.2 # failsafe parameters self.decel = 4.5 self.delay = self.dt @staticmethod def _set_length(length): """Update the length of the ring road. Parameters ---------- length : float or [float, float] the length of the ring if a float, and a range of [min, max] length values that are sampled from during the reset procedure Returns ------- float the updated ring length """ if isinstance(length, list): if len(length) == 2: # if the range for the length term was defined by the length # parameter length = random.randint(length[0], length[1]) else: # if the lengths to choose from were defined the initial_states # parameter length = int(random.choice(length)) return length @staticmethod def _set_initial_state(length, num_vehicles, initial_state, min_gap): """Choose an initial state for all vehicles in the network. Parameters ---------- length : float the length of the ring road num_vehicles : int number of vehicles in the network initial_state : str or None or dict the initial state. See description in __init__. Returns ------- array_like initial vehicle positions array_like initial vehicle speeds """ if initial_state is None: # uniformly distributed vehicles pos = np.arange(0, length, length / num_vehicles) # no initial speed (0 m/s) vel = np.array([0. for _ in range(num_vehicles)]) elif initial_state == "random": # Choose random number not including a minimum gap. pos = sorted(np.random.uniform( low=0, high=length - num_vehicles * (VEHICLE_LENGTH + min_gap), size=(num_vehicles,))) # Append to each position the min_gap value. pos += (VEHICLE_LENGTH + min_gap) * np.arange(num_vehicles) # no initial speed (0 m/s) vel = np.array([0. for _ in range(num_vehicles)]) else: # Choose from the available initial states. pos_vel = random.choice(initial_state[str(length)]) pos = np.array([pv[0] for pv in pos_vel]) vel = np.array([pv[1] for pv in pos_vel]) return pos, vel def _update_state(self, pos, vel, accel): """Update the positions and speeds of all vehicles. Parameters ---------- pos : array_like positions of all vehicles in the network vel : array_like speeds of all vehicles in the network accel : array_like accelerations of all vehicles in the network Returns ------- array_like the updated vehicle positions array_like the updated vehicle speeds """ new_vel = vel + accel * self.dt new_pos = np.mod( pos + vel * self.dt + 0.5 * accel * self.dt ** 2, self.length) return new_pos, new_vel def _compute_headway(self): """Compute the current step headway for all vehicles.""" # compute the individual headways headway = np.append( self.positions[1:] - self.positions[:-1] - VEHICLE_LENGTH, self.positions[0] - self.positions[-1] - VEHICLE_LENGTH) # dealing with wraparound headway[np.argmax(self.positions)] += self.length return headway def _get_accel(self, vel, h): """Compute the accelerations of individual vehicles. The acceleration values are dictated by the Intelligent Driver Model (IDM), which car-following parameters specified in __init__. Parameters ---------- vel : array_like speeds of all vehicles in the network h : array_like bumper-to-bumper gaps of all vehicles in the network Returns ------- array_like vehicle accelerations """ lead_vel = np.append(vel[1:], vel[0]) s_star = self.s0 + np.clip( vel * self.T + np.multiply(vel, vel - lead_vel) / (2 * np.sqrt(self.a * self.b)), a_min=0, a_max=np.inf, ) accel = self.a * ( 1 - np.power(vel/self.v0, self.delta) - np.power(s_star/h, 2)) noise = np.random.normal(0, self.noise, self.num_vehicles) accel_max = self._failsafe(np.arange(self.num_vehicles)) accel_min = - vel / self.dt accel = np.clip(accel + noise, a_max=accel_max, a_min=accel_min) return accel def _failsafe(self, veh_ids): """Compute the failsafe maximum acceleration. Parameters ---------- veh_ids : array_like the IDs of vehicles whose failsafe actions should be computed Returns ------- array_like maximum accelerations """ lead_vel = self.speeds[(veh_ids + 1) % self.num_vehicles] h = self.headways[veh_ids] # how much we can reduce the speed in each time step speed_reduction = self.decel * self.dt # how many steps to get the speed to zero steps_to_zero = np.round(lead_vel / speed_reduction) brake_distance = self.dt * ( np.multiply(steps_to_zero, lead_vel) - 0.5 * speed_reduction * np.multiply(steps_to_zero, steps_to_zero+1) ) brake_distance = h + brake_distance - self.min_gap indx_nonzero = brake_distance > 0 brake_distance = brake_distance[indx_nonzero] v_safe = np.zeros(len(veh_ids)) s = self.dt t = self.delay # h = the distance that would be covered if it were possible to # stop exactly after gap and decelerate with max_deaccel every # simulation step sqrt_quantity = np.sqrt( ((s * s) + (4.0 * ((s * (2.0 * brake_distance / speed_reduction - t)) + (t * t))))) * -0.5 n = np.floor(.5 - ((t + sqrt_quantity) / s)) h = 0.5 * n * (n-1) * speed_reduction * s + n * speed_reduction * t assert all(h <= brake_distance + 1e-6) # compute the additional speed that must be used during deceleration to # fix the discrepancy between g and h r = (brake_distance - h) / (n * s + t) x = n * speed_reduction + r assert all(x >= 0) v_safe[indx_nonzero] = x max_accel = (v_safe - self.speeds[veh_ids]) / self.dt return max_accel def get_state(self): """Compute the environment reward. This is defined by the child classes. """ return [] def compute_reward(self, action): """Compute the environment reward. This is defined by the child classes. """ return 0 def step(self, action): """Advance the simulation by one step.""" collision = False done = False for _ in range(self.sims_per_step): self.t += 1 # Compute the accelerations. self.accelerations = self._get_accel(self.speeds, self.headways) if self.rl_ids is not None and action is not None: # Compute the accelerations for RL vehicles. self.accelerations[self.rl_ids] = get_rl_accel( accel=action, vel=self.speeds[self.rl_ids], max_accel=self.max_accel, dt=self.dt, ) # Clip by safe, non-negative bounds. accel_min = - self.speeds[self.rl_ids] / self.dt accel_max = self._failsafe(self.rl_ids) self.accelerations[self.rl_ids] = np.clip( self.accelerations[self.rl_ids], a_max=accel_max, a_min=accel_min) # Update the speeds, positions, and headways. self.positions, self.speeds = self._update_state( pos=self.positions, vel=self.speeds, accel=self.accelerations, ) self.headways = self._compute_headway() if self.gen_emission: data = {"t": self.t} data.update({ "pos_{}".format(i): self.positions[i] for i in range(self.num_vehicles) }) data.update({ "vel_{}".format(i): self.speeds[i] for i in range(self.num_vehicles) }) self._emission_data.append(data) # Determine whether the rollout is done. collision = any(self.headways < 0) done = (self.t >= (self.warmup_steps + self.horizon) * self.sims_per_step) or collision if done: break if collision: print("Collision") info = {} if self.t > self.warmup_steps * self.sims_per_step: speed =
np.mean(self.speeds)
numpy.mean
# Copyright 2020 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility for opening arms until they are not in contact with a prop.""" import contextlib from dm_control.mujoco.wrapper import mjbindings import numpy as np _MAX_IK_ATTEMPTS = 100 _IK_MAX_CORRECTION_WEIGHT = 0.1 _JOINT_LIMIT_TOLERANCE = 1e-4 _GAP_TOLERANCE = 0.1 class _ArmPropContactRemover(object): """Helper class for removing contacts between an arm and a prop via IK.""" def __init__(self, physics, arm_root, prop, gap): arm_geoms = arm_root.find_all('geom') self._arm_geom_ids = set(physics.bind(arm_geoms).element_id) arm_joints = arm_root.find_all('joint') self._arm_joint_ids = list(physics.bind(arm_joints).element_id) self._arm_qpos_indices = physics.model.jnt_qposadr[self._arm_joint_ids] self._arm_dof_indices = physics.model.jnt_dofadr[self._arm_joint_ids] self._prop_geoms = prop.find_all('geom') self._prop_geom_ids = set(physics.bind(self._prop_geoms).element_id) self._arm_joint_min = np.full(len(self._arm_joint_ids), float('-inf'), dtype=physics.model.jnt_range.dtype) self._arm_joint_max = np.full(len(self._arm_joint_ids), float('inf'), dtype=physics.model.jnt_range.dtype) for i, joint_id in enumerate(self._arm_joint_ids): if physics.model.jnt_limited[joint_id]: self._arm_joint_min[i], self._arm_joint_max[i] = ( physics.model.jnt_range[joint_id]) self._gap = gap def _contact_pair_is_relevant(self, contact): set1 = self._arm_geom_ids set2 = self._prop_geom_ids return ((contact.geom1 in set1 and contact.geom2 in set2) or (contact.geom2 in set1 and contact.geom1 in set2)) def _forward_and_find_next_contact(self, physics): """Forwards the physics and finds the next contact to handle.""" physics.forward() next_contact = None for contact in physics.data.contact: if (self._contact_pair_is_relevant(contact) and (next_contact is None or contact.dist < next_contact.dist)): next_contact = contact return next_contact def _remove_contact_ik_iteration(self, physics, contact): """Performs one linearized IK iteration to remove the specified contact.""" if contact.geom1 in self._arm_geom_ids: sign = -1 geom_id = contact.geom1 else: sign = 1 geom_id = contact.geom2 body_id = physics.model.geom_bodyid[geom_id] normal = sign * contact.frame[:3] jac_dtype = physics.data.qpos.dtype jac = np.empty((6, physics.model.nv), dtype=jac_dtype) jac_pos, jac_rot = jac[:3], jac[3:] mjbindings.mjlib.mj_jacPointAxis( physics.model.ptr, physics.data.ptr, jac_pos, jac_rot, contact.pos + (contact.dist / 2) * normal, normal, body_id) # Calculate corrections w.r.t. all joints, disregarding joint limits. delta_xpos = normal * max(0, self._gap - contact.dist) jac_all_joints = jac_pos[:, self._arm_dof_indices] update_unfiltered = np.linalg.lstsq( jac_all_joints, delta_xpos, rcond=None)[0] # Filter out joints at limit that are corrected in the "wrong" direction. initial_qpos =
np.array(physics.data.qpos[self._arm_qpos_indices])
numpy.array
import copy from typing import Any import numpy as np import pytest from neuraxle.base import BaseStep from neuraxle.steps.column_transformer import ColumnTransformer class MultiplyBy2(BaseStep): def __init__(self): BaseStep.__init__(self) self.fitted_data = [] def fit(self, data_inputs, expected_outputs=None) -> 'BaseStep': self._add_fitted_data(data_inputs, expected_outputs) return self def fit_transform(self, data_inputs, expected_outputs=None) -> ('BaseStep', Any): self._add_fitted_data(data_inputs, expected_outputs) return self, self.transform(data_inputs) def _add_fitted_data(self, data_inputs, expected_outputs): self.fitted_data.append((copy.deepcopy(data_inputs), copy.deepcopy(expected_outputs))) def transform(self, data_inputs): return (2 * np.array(data_inputs)).tolist() class ColumnChooserTestCase: def __init__( self, data_inputs, expected_processed_outputs, column_transformer_tuple_list, n_dimension, expected_step_key=None, expected_fitted_data=None, expected_outputs=None ): self.n_dimension = n_dimension self.expected_step_key = expected_step_key self.data_inputs = data_inputs self.expected_outputs = expected_outputs self.expected_fitted_data = expected_fitted_data self.expected_processed_outputs = expected_processed_outputs self.column_transformer_tuple_list = column_transformer_tuple_list # 2d test_case_index_int_2d = ColumnChooserTestCase( data_inputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_outputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_processed_outputs=np.array([ [2], [22], [42] ]), expected_fitted_data=[( [[1], [11], [21]], [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]] )], expected_step_key='1_MultiplyBy2', column_transformer_tuple_list=[ (1, MultiplyBy2()) ], n_dimension=2 ) test_case_index_start_end_2d = ColumnChooserTestCase( data_inputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_outputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_processed_outputs=np.array([ [0, 2], [20, 22], [40, 42] ]), expected_fitted_data=[( [[0, 1], [10, 11], [20, 21]], [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]] )], expected_step_key='slice(0, 2, None)_MultiplyBy2', column_transformer_tuple_list=[ (slice(0, 2), MultiplyBy2()) ], n_dimension=2 ) test_case_index_range_2d = ColumnChooserTestCase( data_inputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_outputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_processed_outputs=np.array([ [0, 2], [20, 22], [40, 42] ]), expected_fitted_data=[( [[0, 1], [10, 11], [20, 21]], [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]] )], expected_step_key='range(0, 2)_MultiplyBy2', column_transformer_tuple_list=[ (range(2), MultiplyBy2()) ], n_dimension=2 ) test_case_index_start_2d = ColumnChooserTestCase( data_inputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_outputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_processed_outputs=np.array([ [2, 4, 6], [22, 24, 26], [42, 44, 46] ]), expected_fitted_data=[( [[1, 2, 3], [11, 12, 13], [21, 22, 23]], [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]] )], expected_step_key='slice(1, None, None)_MultiplyBy2', column_transformer_tuple_list=[ (slice(1, None), MultiplyBy2()) ], n_dimension=2 ) test_case_index_end_2d = ColumnChooserTestCase( data_inputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_outputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_processed_outputs=np.array([ [0, 2], [20, 22], [40, 42] ]), expected_fitted_data=[( [[0, 1], [10, 11], [20, 21]], [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]] )], expected_step_key='slice(None, 2, None)_MultiplyBy2', column_transformer_tuple_list=[ (slice(None, 2), MultiplyBy2()) ], n_dimension=2 ) test_case_index_last_2d = ColumnChooserTestCase( data_inputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_outputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_processed_outputs=np.array([ [0, 2, 4], [20, 22, 24], [40, 42, 44] ]), expected_fitted_data=[ ( [[0, 1, 2], [10, 11, 12], [20, 21, 22]], [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]] ) ], expected_step_key='slice(None, -1, None)_MultiplyBy2', column_transformer_tuple_list=[ (slice(None, -1), MultiplyBy2()) ], n_dimension=2 ) test_case_list_of_columns_2d = ColumnChooserTestCase( data_inputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_outputs=np.array([ [0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23] ]), expected_processed_outputs=np.array([ [0, 4], [20, 24], [40, 44] ]), expected_fitted_data=[( [[0, 2], [10, 12], [20, 22]], [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]] )], expected_step_key='[0, 2]_MultiplyBy2', column_transformer_tuple_list=[ ([0, 2], MultiplyBy2()) ], n_dimension=2 ) # 3d test_case_index_int = ColumnChooserTestCase( data_inputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_outputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_processed_outputs=np.array([ [[2]], [[22]], [[42]] ]), expected_fitted_data=[ ([np.array([[1]]), np.array([[11]]), np.array([[21]])], [np.array([[0, 1, 2, 3]]), np.array([[10, 11, 12, 13]]), np.array([[20, 21, 22, 23]])] ) ], expected_step_key='1_MultiplyBy2', column_transformer_tuple_list=[ (1, MultiplyBy2()) ], n_dimension=3 ) # test_case_index_int = ColumnChooserTestCase( # data_inputs=np.array([[ # [0, 1, 2, 3], # [10, 11, 12, 13], # [20, 21, 22, 23] # ]]), # expected_outputs=np.array([[ # [0, 1, 2, 3], # [10, 11, 12, 13], # [20, 21, 22, 23] # ]]), # expected_processed_outputs=np.array([[ # [2], # [22], # [42] # ]]), # expected_fitted_data=[( # [np.array([[1], [11], [21]])], # [np.array([[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23]])] # )], # expected_step_key='1_MultiplyBy2', # column_transformer_tuple_list=[ # (1, MultiplyBy2()) # ], # n_dimension=3 # ) test_case_index_start_end = ColumnChooserTestCase( data_inputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_outputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_processed_outputs=np.array([ [[0, 2]], [[20, 22]], [[40, 42]] ]), expected_fitted_data=[( [np.array([[0, 1]]), np.array([[10, 11]]), np.array([[20, 21]])], [np.array([[0, 1, 2, 3]]), np.array([[10, 11, 12, 13]]), np.array([[20, 21, 22, 23]])] )], expected_step_key='slice(0, 2, None)_MultiplyBy2', column_transformer_tuple_list=[ (slice(0, 2), MultiplyBy2()) ], n_dimension=3 ) test_case_index_range = ColumnChooserTestCase( data_inputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_outputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_processed_outputs=np.array([ [[0, 2]], [[20, 22]], [[40, 42]] ]), expected_fitted_data=[( [np.array([[0, 1]]), np.array([[10, 11]]), np.array([[20, 21]])], [np.array([[0, 1, 2, 3]]), np.array([[10, 11, 12, 13]]), np.array([[20, 21, 22, 23]])] )], expected_step_key='range(0, 2)_MultiplyBy2', column_transformer_tuple_list=[ (range(2), MultiplyBy2()) ], n_dimension=3 ) test_case_index_start = ColumnChooserTestCase( data_inputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_outputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_processed_outputs=np.array([ [[2, 4, 6]], [[22, 24, 26]], [[42, 44, 46]] ]), expected_fitted_data=[( [np.array([[1, 2, 3]]), np.array([[11, 12, 13]]), np.array([[21, 22, 23]])], [np.array([[0, 1, 2, 3]]), np.array([[10, 11, 12, 13]]), np.array([[20, 21, 22, 23]])] )], expected_step_key='slice(1, None, None)_MultiplyBy2', column_transformer_tuple_list=[ (slice(1, None), MultiplyBy2()) ], n_dimension=3 ) test_case_index_end = ColumnChooserTestCase( data_inputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_outputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_processed_outputs=np.array([ [[0, 2]], [[20, 22]], [[40, 42]] ]), expected_fitted_data=[( [np.array([[0, 1]]), np.array([[10, 11]]), np.array([[20, 21]])], [np.array([[0, 1, 2, 3]]), np.array([[10, 11, 12, 13]]), np.array([[20, 21, 22, 23]])] )], expected_step_key='slice(None, 2, None)_MultiplyBy2', column_transformer_tuple_list=[ (slice(None, 2), MultiplyBy2()) ], n_dimension=3 ) test_case_index_last = ColumnChooserTestCase( data_inputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_outputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_processed_outputs=np.array([ [[0, 2, 4]], [[20, 22, 24]], [[40, 42, 44]] ]), expected_fitted_data=[ ( [np.array([[0, 1, 2]]), np.array([[10, 11, 12]]), np.array([[20, 21, 22]])], [np.array([[0, 1, 2, 3]]), np.array([[10, 11, 12, 13]]), np.array([[20, 21, 22, 23]])] ) ], expected_step_key='slice(None, -1, None)_MultiplyBy2', column_transformer_tuple_list=[ (slice(None, -1), MultiplyBy2()) ], n_dimension=3 ) test_case_list_of_columns = ColumnChooserTestCase( data_inputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_outputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_processed_outputs=np.array([ [[0, 4]], [[20, 24]], [[40, 44]] ]), expected_fitted_data=[( [np.array([[0, 2]]), np.array([[10, 12]]), np.array([[20, 22]])], [np.array([[0, 1, 2, 3]]), np.array([[10, 11, 12, 13]]), np.array([[20, 21, 22, 23]])] )], expected_step_key='[0, 2]_MultiplyBy2', column_transformer_tuple_list=[ ([0, 2], MultiplyBy2()) ], n_dimension=3 ) @pytest.mark.parametrize("test_case", [ copy.deepcopy(test_case_index_int), copy.deepcopy(test_case_index_start_end), copy.deepcopy(test_case_index_start), copy.deepcopy(test_case_index_range), copy.deepcopy(test_case_index_end), copy.deepcopy(test_case_index_last), copy.deepcopy(test_case_list_of_columns), copy.deepcopy(test_case_index_int_2d), copy.deepcopy(test_case_index_start_end_2d), copy.deepcopy(test_case_index_start_2d), copy.deepcopy(test_case_index_range_2d), copy.deepcopy(test_case_index_end_2d), copy.deepcopy(test_case_index_last_2d), copy.deepcopy(test_case_list_of_columns_2d) ]) def test_column_transformer_transform_should_support_indexes(test_case: ColumnChooserTestCase): data_inputs = test_case.data_inputs column_transformer = ColumnTransformer(test_case.column_transformer_tuple_list, test_case.n_dimension) outputs = column_transformer.transform(data_inputs) assert np.array_equal(outputs, test_case.expected_processed_outputs) @pytest.mark.parametrize("test_case", [ copy.deepcopy(test_case_index_int), copy.deepcopy(test_case_index_start_end), copy.deepcopy(test_case_index_start), copy.deepcopy(test_case_index_range), copy.deepcopy(test_case_index_end), copy.deepcopy(test_case_index_last), copy.deepcopy(test_case_list_of_columns), copy.deepcopy(test_case_index_int_2d), copy.deepcopy(test_case_index_start_end_2d), copy.deepcopy(test_case_index_start_2d), copy.deepcopy(test_case_index_range_2d), copy.deepcopy(test_case_index_end_2d), copy.deepcopy(test_case_index_last_2d), copy.deepcopy(test_case_list_of_columns_2d) ]) def test_column_transformer_fit_transform_should_support_indexes(test_case: ColumnChooserTestCase): data_inputs = test_case.data_inputs expected_outputs = test_case.expected_outputs p = ColumnTransformer(test_case.column_transformer_tuple_list, test_case.n_dimension) p, outputs = p.fit_transform(data_inputs, expected_outputs) assert np.array_equal(outputs, test_case.expected_processed_outputs) actual_fitted_data = p[test_case.expected_step_key]['MultiplyBy2'].fitted_data expected_fitted_data = test_case.expected_fitted_data assert_data_fitted_properly(actual_fitted_data, expected_fitted_data) @pytest.mark.parametrize("test_case", [ copy.deepcopy(test_case_index_int), copy.deepcopy(test_case_index_start_end), copy.deepcopy(test_case_index_start), copy.deepcopy(test_case_index_range), copy.deepcopy(test_case_index_end), copy.deepcopy(test_case_index_last), copy.deepcopy(test_case_list_of_columns), copy.deepcopy(test_case_index_int_2d), copy.deepcopy(test_case_index_start_end_2d), copy.deepcopy(test_case_index_start_2d), copy.deepcopy(test_case_index_range_2d), copy.deepcopy(test_case_index_end_2d), copy.deepcopy(test_case_index_last_2d), copy.deepcopy(test_case_list_of_columns_2d) ]) def test_column_transformer_fit_should_support_indexes(test_case: ColumnChooserTestCase): data_inputs = test_case.data_inputs p = ColumnTransformer(test_case.column_transformer_tuple_list, test_case.n_dimension) p = p.fit(data_inputs, test_case.expected_outputs) actual_fitted_data = p[test_case.expected_step_key]['MultiplyBy2'].fitted_data expected_fitted_data = test_case.expected_fitted_data assert_data_fitted_properly(actual_fitted_data, expected_fitted_data) def test_column_transformer_fit_should_support_multiple_tuples(): # Given test_case = ColumnChooserTestCase( data_inputs=np.array([ [[1, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_outputs=np.array([ [[0, 1, 2, 3]], [[10, 11, 12, 13]], [[20, 21, 22, 23]] ]), expected_processed_outputs=np.array([ [[2, 2, 2, 3]], [[20, 22, 12, 13]], [[40, 42, 44, 46]] ]), column_transformer_tuple_list=[ (slice(0, 2), MultiplyBy2()), (2, MultiplyBy2()) ], n_dimension=3 ) data_inputs = test_case.data_inputs p = ColumnTransformer(test_case.column_transformer_tuple_list, test_case.n_dimension) # When p = p.fit(data_inputs, test_case.expected_outputs) # Then actual_fitted_data = p['2_MultiplyBy2']['MultiplyBy2'].fitted_data expected_fitted_data = [ ([np.array([[2]]), np.array([[12]]), np.array([[22]])], [
np.array([[0, 1, 2, 3]])
numpy.array
""" Sampler which uses a single centralized policy over a set of parallel environments. This sampler is useful when using GPUs for the policy. Used in POIS2. """ import time import numpy as np def traj_segment_generator(pi, env, n_episodes, horizon, stochastic, gamma): """ Returns a generator of complete rollouts. It need to be fed a vectorized environment and a single policy. """ policy_time = 0 env_time = 0 # Initialize state variables t = 0 ac = np.array([env.action_space.sample()] * env.num_envs) _env_s = time.time() ob = env.reset() env_time += time.time() - _env_s zero_ob = np.zeros(ob.shape) current_indexes = np.arange(0, env.num_envs) def filter_indexes(idx_vector, t_vector): return map(list, zip(*[(i, v, t) for i,(v,t) in enumerate(zip(idx_vector, t_vector)) if v != -1])) def has_ended(idx_vector): return sum(idx_vector) == -len(idx_vector) # Iterate to make yield continuous while True: _tt = time.time() # Initialize history arrays obs = np.array([[zero_ob[0] for _t in range(horizon)] for _e in range(n_episodes)]) rews = np.zeros((n_episodes, horizon), 'float32') vpreds = np.zeros((n_episodes, horizon), 'float32') news = np.zeros((n_episodes, horizon), 'int32') acs = np.array([[ac[0] for _t in range(horizon)] for _e in range(n_episodes)]) prevacs = acs.copy() mask = np.zeros((n_episodes, horizon), 'int32') # Initialize indexes and timesteps current_indexes = np.arange(0, env.num_envs) current_timesteps = np.zeros((env.num_envs), dtype=np.int32) # Set to -1 indexes if njobs > num_episodes current_indexes[n_episodes:] = -1 # Indexes log: remember which indexes have been completed indexes_log = list(current_indexes) while not has_ended(current_indexes): # Get the action and save the previous one prevac = ac _pi_s = time.time() ac, vpred = pi.act(stochastic, ob) policy_time += time.time() - _pi_s # Filter the current indexes ci_ob, ci_memory, ct = filter_indexes(current_indexes, current_timesteps) # Save the current properties obs[ci_memory, ct,:] = ob[ci_ob] #vpreds[ci_memory, ct] = np.reshape(np.array(vpred), (-1,))[ci_ob] acs[ci_memory, ct] = ac[ci_ob] prevacs[ci_memory, ct] = prevac[ci_ob] # Take the action _env_s = time.time() env.step_async(ac) ob, rew, done, _ = env.step_wait() env_time += time.time() - _env_s # Save the reward rews[ci_memory, ct] = rew[ci_ob] mask[ci_memory, ct] = 1 news[ci_memory, ct] = np.reshape(np.array(done), (-1, ))[ci_ob] # Update the indexes and timesteps for i, d in enumerate(done): if not d and current_timesteps[i] < (horizon-1): current_timesteps[i] += 1 elif max(indexes_log) < n_episodes - 1: current_timesteps[i] = 0 # Reset the timestep current_indexes[i] = max(indexes_log) + 1 # Increment the index indexes_log.append(current_indexes[i]) else: current_indexes[i] = -1 # Disabling # Add discounted reward (here is simpler) gamma_log = np.log(np.full((horizon), gamma, dtype='float32')) gamma_discounter = np.exp(np.cumsum(gamma_log)) discounted_reward = rews * gamma_discounter total_time = time.time() - _tt # Reshape to flatten episodes and yield yield {'ob':
np.reshape(obs, (n_episodes * horizon,)+obs.shape[2:])
numpy.reshape
""" Module for adjusting viewing geometry using ISIS3. This module requires that the ISIS3 executables are in your PATH. """ import numpy as np import pandas as pd import quaternion, argparse, os, subprocess """ Compute the observer position given a ground point and distance parameters ---------- ground_point : array The ground point that will be viewed in body fixed X, Y, Z as a numpy array. distance : float The distance from the center of the body to the observer in kilometers. returns ------- position : array The observer position in body fixed X, Y, Z as a numpy array. """ def compute_position(ground_point, distance): bf_position = np.array(distance / np.linalg.norm(ground_point)) * ground_point return bf_position """ Compute the shortest rotation between two vectors. parameters ---------- u : array The first vector that the rotation will rotate to v. v : array The second vector that the rotation will rotate u to. fallback : array When the input vectors are exactly opposite, there is not a unique shortest rotation between them. A 180 degree rotation about any axis will work. If this parameter is entered, then it will be used as the axis of rotation. Otherwise, the cross product of u and either the x-axis or y-axis will be used for the axis of rotation. returns ------- rotation : quaternion The output rotation from u to v. """ def rotation_between(u, v, fallback=None): tolerance = 1e-10 if np.linalg.norm(u) < tolerance or np.linalg.norm(v) < tolerance: return np.quaternion(1,0,0,0) unit_u = u / np.linalg.norm(u) unit_v = v / np.linalg.norm(v) dot =
np.dot(unit_u,unit_v)
numpy.dot
# -*- coding: utf-8 -*- from __future__ import print_function import pandas as pd import numpy as np import math import copy import random import glob import os unit_size = 5 feature_dim = 2048 + 1024 def iou_with_anchors(anchors_min, anchors_max, box_min, box_max): """Compute jaccard score between a box and the anchors. """ len_anchors = anchors_max - anchors_min int_xmin = np.maximum(anchors_min, box_min) int_xmax = np.minimum(anchors_max, box_max) inter_len = np.maximum(int_xmax - int_xmin, 0.) union_len = len_anchors - inter_len + box_max - box_min # print inter_len,union_len jaccard =
np.divide(inter_len, union_len)
numpy.divide
#!/usr/bin/env python # Copyright 2014-2021 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce import numpy from pyscf import lib from pyscf.fci import cistring from pyscf.fci.addons import _unpack_nelec librdm = lib.load_library('libfci') ###################################################### # Spin squared operator ###################################################### # S^2 = (S+ * S- + S- * S+)/2 + Sz * Sz # S+ = \sum_i S_i+ ~ effective for all beta occupied orbitals. # S- = \sum_i S_i- ~ effective for all alpha occupied orbitals. # There are two cases for S+*S- # 1) same electron \sum_i s_i+*s_i-, <CI|s_i+*s_i-|CI> gives # <p|s+s-|q> \gammalpha_qp = trace(\gammalpha) = neleca # 2) different electrons for \sum s_i+*s_j- (i\neq j, n*(n-1) terms) # As a two-particle operator S+*S- # = <ij|s+s-|kl>Gamma_{ik,jl} = <iajb|s+s-|kbla>Gamma_{iakb,jbla} # = <ia|s+|kb><jb|s-|la>Gamma_{iakb,jbla} # <CI|S+*S-|CI> = neleca + <ia|s+|kb><jb|s-|la>Gamma_{iakb,jbla} # # There are two cases for S-*S+ # 1) same electron \sum_i s_i-*s_i+ # <p|s+s-|q> \gammabeta_qp = trace(\gammabeta) = nelecb # 2) different electrons # = <ij|s-s+|kl>Gamma_{ik,jl} = <ibja|s-s+|kalb>Gamma_{ibka,jalb} # = <ib|s-|ka><ja|s+|lb>Gamma_{ibka,jalb} # <CI|S-*S+|CI> = nelecb + <ib|s-|ka><ja|s+|lb>Gamma_{ibka,jalb} # # Sz*Sz = Msz^2 = (neleca-nelecb)^2 # 1) same electron # <p|ss|q>\gamma_qp = <p|q>\gamma_qp = (neleca+nelecb)/4 # 2) different electrons # <ij|2s1s2|kl>Gamma_{ik,jl}/2 # =(<ia|ka><ja|la>Gamma_{iaka,jala} - <ia|ka><jb|lb>Gamma_{iaka,jblb} # - <ib|kb><ja|la>Gamma_{ibkb,jala} + <ib|kb><jb|lb>Gamma_{ibkb,jblb})/4 # set aolst for local spin expectation value, which is defined as # <CI|ao><ao|S^2|CI> # For a complete list of AOs, I = \sum |ao><ao|, it becomes <CI|S^2|CI> def spin_square_general(dm1a, dm1b, dm2aa, dm2ab, dm2bb, mo_coeff, ovlp=1): r'''General spin square operator. ... math:: <CI|S_+*S_-|CI> &= n_\alpha + \delta_{ik}\delta_{jl}Gamma_{i\alpha k\beta ,j\beta l\alpha } \\ <CI|S_-*S_+|CI> &= n_\beta + \delta_{ik}\delta_{jl}Gamma_{i\beta k\alpha ,j\alpha l\beta } \\ <CI|S_z*S_z|CI> &= \delta_{ik}\delta_{jl}(Gamma_{i\alpha k\alpha ,j\alpha l\alpha } - Gamma_{i\alpha k\alpha ,j\beta l\beta } - Gamma_{i\beta k\beta ,j\alpha l\alpha} + Gamma_{i\beta k\beta ,j\beta l\beta}) + (n_\alpha+n_\beta)/4 Given the overlap betwen non-degenerate alpha and beta orbitals, this function can compute the expectation value spin square operator for UHF-FCI wavefunction ''' if isinstance(mo_coeff, numpy.ndarray) and mo_coeff.ndim == 2: mo_coeff = (mo_coeff, mo_coeff) # projected overlap matrix elements for partial trace if isinstance(ovlp, numpy.ndarray): ovlpaa = reduce(numpy.dot, (mo_coeff[0].T, ovlp, mo_coeff[0])) ovlpbb = reduce(numpy.dot, (mo_coeff[1].T, ovlp, mo_coeff[1])) ovlpab = reduce(numpy.dot, (mo_coeff[0].T, ovlp, mo_coeff[1])) ovlpba = reduce(numpy.dot, (mo_coeff[1].T, ovlp, mo_coeff[0])) else: ovlpaa = numpy.dot(mo_coeff[0].T, mo_coeff[0]) ovlpbb = numpy.dot(mo_coeff[1].T, mo_coeff[1]) ovlpab = numpy.dot(mo_coeff[0].T, mo_coeff[1]) ovlpba = numpy.dot(mo_coeff[1].T, mo_coeff[0]) # if ovlp=1, ssz = (neleca-nelecb)**2 * .25 ssz = (numpy.einsum('ijkl,ij,kl->', dm2aa, ovlpaa, ovlpaa) - numpy.einsum('ijkl,ij,kl->', dm2ab, ovlpaa, ovlpbb) + numpy.einsum('ijkl,ij,kl->', dm2bb, ovlpbb, ovlpbb) - numpy.einsum('ijkl,ij,kl->', dm2ab, ovlpaa, ovlpbb)) * .25 ssz += (numpy.einsum('ji,ij->', dm1a, ovlpaa) + numpy.einsum('ji,ij->', dm1b, ovlpbb)) *.25 dm2abba = -dm2ab.transpose(0,3,2,1) # alpha^+ beta^+ alpha beta dm2baab = -dm2ab.transpose(2,1,0,3) # beta^+ alpha^+ beta alpha ssxy =(numpy.einsum('ijkl,ij,kl->', dm2baab, ovlpba, ovlpab) +
numpy.einsum('ijkl,ij,kl->', dm2abba, ovlpab, ovlpba)
numpy.einsum
import unittest import numpy as np from depth.convolution import convolve2d class TestConvolution(unittest.TestCase): def test_convolve2d(self): data_tensor = np.ones((1, 1, 5, 5)) kernel_tensor = np.array([[ [0, 1, 0], [0, 0, 0], [0, -1, 0]]]) result = np.array([[[ [-1, -1, -1, -1, -1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], ]]]) convolution = convolve2d(data_tensor, kernel_tensor) self.assertTrue(
np.array_equal(convolution, result)
numpy.array_equal
import numpy as np from mayavi import mlab from mayavi.mlab import points3d, plot3d from collections import namedtuple import tqdm OrbitConfig = namedtuple("OrbitConfig", ["mu", "planet_radius", "cross_section_area", "drag_coefficient", "density_function", "ship_mass"]) class SimulateOrbit: def __init__(self, config): self.mu = config.mu self.planet_radius = config.planet_radius self.cross_section_area = config.cross_section_area self.drag_coefficient = config.drag_coefficient self.density_function = config.density_function self.ship_mass = config.ship_mass def run_simulation(self, start_position, start_velocity, h=1, time=100000): position = np.array(start_position) velocity =
np.array(start_velocity)
numpy.array
### Cross comparison m2 & b5. import geodata as gd import numpy as np import matplotlib as mpl import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib.tri as tri import cartopy.crs as ccrs import pystare as ps from netCDF4 import Dataset ### MERRA2 m2_dataPath = "/home/mrilee/data/" m2_dataFile = "MERRA2_300.tavg1_2d_slv_Nx.20051215.nc4" m2_fqFilename = m2_dataPath+m2_dataFile m2_ds = Dataset(m2_fqFilename) print('keys: ',m2_ds.variables.keys()) m2_dLat = 0.5 m2_dLon = 5.0/8.0 m2_dLatkm = m2_dLat * gd.re_km/gd.deg_per_rad m2_dLonkm = m2_dLon * gd.re_km/gd.deg_per_rad m2_lat0=0 m2_lat1=361+1 m2_lon0=0 m2_lon1=576+1 m2_tim0=0 m2_tim1=23+1 m2_lat = m2_ds['lat'][m2_lat0:m2_lat1] m2_lon = m2_ds['lon'][m2_lon0:m2_lon1] m2_tim = m2_ds['time'][m2_tim0:m2_tim1] m2_dataDayI = m2_ds['TQI'][m2_tim0:m2_tim1,m2_lat0:m2_lat1,m2_lon0:m2_lon1] m2_dataDayL = m2_ds['TQL'][m2_tim0:m2_tim1,m2_lat0:m2_lat1,m2_lon0:m2_lon1] m2_dataDayV = m2_ds['TQV'][m2_tim0:m2_tim1,m2_lat0:m2_lat1,m2_lon0:m2_lon1] m2_dataDay = m2_dataDayI + m2_dataDayL + m2_dataDayV m2_data = m2_dataDay[0,:,:].T m2_latg,m2_long = np.meshgrid(m2_lat,m2_lon) m2_latg_flat = m2_latg.flatten() m2_long_flat = m2_long.flatten() m2_data_flat = m2_data.flatten() print([type(i) for i in [m2_latg_flat,m2_long_flat,gd.resolution(m2_dLonkm),m2_dLonkm]]) m2_indices = ps.from_latlon(m2_latg_flat,m2_long_flat,int(gd.resolution(m2_dLonkm))) print('m2 lat.shape: ',m2_lat.shape) print('m2 lon.shape: ',m2_lon.shape) print('m2 tim.shape: ',m2_tim.shape) print('m2 latg.shape: ',m2_latg.shape) print('m2 long.shape: ',m2_long.shape) print('m2 dataDay.shape: ',m2_dataDay.shape) print('m2 data.shape: ',m2_data.shape) print('m2 data flat shape:',m2_data_flat.shape) print('m2 resolution: ',m2_dLonkm,gd.resolution(m2_dLonkm)) # Limit size for testing cropped = True if cropped: # 1 box # crop_lat=( 30.0, 31.0) # crop_lon=(-150.0,-149.0) # crop_lat=( 30.0, 32.0) # crop_lon=(-164.0,-162.0) # crop_lat=( 25.0, 30.0) # oops # crop_lat=( 25.0, 35.0) # crop_lon=(-160.0,-150.0) crop_lat=( 27.0, 39.0) crop_lon=(-161.5,-159.5) # Good # crop_lat=( 27.5, 32.5) # crop_lon=(-162.5,-157.5) m2_crop_idx = np.where(\ (m2_latg_flat > crop_lat[0]) & (m2_latg_flat < crop_lat[1]) & \ (m2_long_flat > crop_lon[0]) & (m2_long_flat < crop_lon[1]) ) m2_latg_flat = m2_latg_flat[m2_crop_idx] m2_long_flat = m2_long_flat[m2_crop_idx] m2_data_flat = m2_data_flat[m2_crop_idx] m2_indices = m2_indices[m2_crop_idx] print('m2 cropped length: ', m2_data_flat.size) ar_threshold_kgom2 = 2.0/gd.precipitable_water_cm_per_kgom2 ar_threshold_kgom2 = 0.0 print('ar_threshold_kgom2: ',ar_threshold_kgom2) m2_ar_idx = np.where(m2_data_flat >= ar_threshold_kgom2) print('m2_ar size idx: ',len(m2_ar_idx[0])) if len(m2_ar_idx[0]) is 0: print('no m2_ar found!'); exit() # print('m2 idx: ',m2_ar_idx) m2_ar_data = m2_data_flat[m2_ar_idx] m2_ar_indices = m2_indices[m2_ar_idx] m2_ar_lat = m2_latg_flat[m2_ar_idx] m2_ar_lon = m2_long_flat[m2_ar_idx] print('m2_ar_lat mnmx: ',np.amin(m2_ar_lat),np.amax(m2_ar_lat)) print('m2_ar_lon mnmx: ',
np.amin(m2_ar_lon)
numpy.amin
from typing import Tuple, Dict, Any, Union, Callable import numpy as np import scipy.ndimage as ndi from common.exceptionmanager import catch_error_exception from common.functionutil import ImagesUtil from preprocessing.imagegenerator import ImageGenerator _epsilon = 1e-6 class TransformRigidImages(ImageGenerator): def __init__(self, size_image: Union[Tuple[int, int, int], Tuple[int, int]], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, is_inverse_transform: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: super(TransformRigidImages, self).__init__(size_image, num_images=1) if is_normalize_data: if type_normalize_data == 'featurewise': self._featurewise_center = True self._featurewise_std_normalization = True self._samplewise_center = False self._samplewise_std_normalization = False else: # type_normalize_data == 'samplewise' self._featurewise_center = False self._featurewise_std_normalization = False self._samplewise_center = True self._samplewise_std_normalization = True else: self._featurewise_center = False self._featurewise_std_normalization = False self._samplewise_center = False self._samplewise_std_normalization = False self._is_zca_whitening = is_zca_whitening self._zca_epsilon = 1e-6 self._rescale_factor = rescale_factor self._preprocessing_function = preprocessing_function self._mean = None self._std = None self._principal_components = None self._is_inverse_transform = is_inverse_transform self._initialize_gendata() def update_image_data(self, in_shape_image: Tuple[int, ...]) -> None: # self._num_images = in_shape_image[0] pass def _initialize_gendata(self) -> None: self._transform_matrix = None self._transform_params = None self._count_trans_in_images = 0 def _update_gendata(self, **kwargs) -> None: seed = kwargs['seed'] (self._transform_matrix, self._transform_params) = self._calc_gendata_random_transform(seed) self._count_trans_in_images = 0 def _get_image(self, in_image: np.ndarray) -> np.ndarray: is_type_input_image = (self._count_trans_in_images == 0) self._count_trans_in_images += 1 return self._get_transformed_image(in_image, is_type_input_image=is_type_input_image) def _get_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: if ImagesUtil.is_without_channels(self._size_image, in_image.shape): in_image = np.expand_dims(in_image, axis=-1) is_reshape_input_image = True else: is_reshape_input_image = False in_image = self._calc_transformed_image(in_image, is_type_input_image=is_type_input_image) if is_type_input_image: in_image = self._standardize(in_image) if is_reshape_input_image: in_image = np.squeeze(in_image, axis=-1) return in_image def _get_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: if ImagesUtil.is_without_channels(self._size_image, in_image.shape): in_image = np.expand_dims(in_image, axis=-1) is_reshape_input_image = True else: is_reshape_input_image = False if is_type_input_image: in_image = self._standardize_inverse(in_image) in_image = self._calc_inverse_transformed_image(in_image, is_type_input_image=is_type_input_image) if is_reshape_input_image: in_image = np.squeeze(in_image, axis=-1) return in_image def _calc_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: raise NotImplementedError def _calc_inverse_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: raise NotImplementedError def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: raise NotImplementedError def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: raise NotImplementedError def _standardize(self, in_image: np.ndarray) -> np.ndarray: if self._preprocessing_function: in_image = self._preprocessing_function(in_image) if self._rescale_factor: in_image *= self._rescale_factor if self._samplewise_center: in_image -= np.mean(in_image, keepdims=True) if self._samplewise_std_normalization: in_image /= (np.std(in_image, keepdims=True) + _epsilon) template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \ 'training data. Fit it first by calling \'fit(numpy_data)\'.' if self._featurewise_center: if self._mean is not None: in_image -= self._mean else: message = template_message_error % ('featurewise_center') catch_error_exception(message) if self._featurewise_std_normalization: if self._std is not None: in_image /= (self._std + _epsilon) else: message = template_message_error % ('featurewise_std_normalization') catch_error_exception(template_message_error % (message)) if self._is_zca_whitening: if self._principal_components is not None: flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:]))) whitex = np.dot(flatx, self._principal_components) in_image = np.reshape(whitex, in_image.shape) else: message = template_message_error % ('zca_whitening') catch_error_exception(message) return in_image def _standardize_inverse(self, in_image: np.ndarray) -> np.ndarray: template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \ 'training data. Fit it first by calling \'fit(numpy_data)\'.' if self._is_zca_whitening: if self._principal_components is not None: flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:]))) inverse_principal_componens = np.divide(1.0, self._principal_components) whitex = np.dot(flatx, inverse_principal_componens) in_image = np.reshape(whitex, in_image.shape) else: message = template_message_error % ('zca_whitening') catch_error_exception(message) if self._featurewise_std_normalization: if self._std is not None: in_image *= self._std else: message = template_message_error % ('featurewise_std_normalization') catch_error_exception(message) if self._featurewise_center: if self._mean is not None: in_image += self._mean else: message = template_message_error % ('featurewise_center') catch_error_exception(message) if self._samplewise_std_normalization: in_image *= np.std(in_image, keepdims=True) if self._samplewise_center: in_image += np.mean(in_image, keepdims=True) if self._rescale_factor: in_image /= self._rescale_factor if self._preprocessing_function: catch_error_exception('Not implemented inverse preprocessing function') return in_image @staticmethod def _flip_axis(in_image: np.ndarray, axis: int) -> np.ndarray: in_image = np.asarray(in_image).swapaxes(axis, 0) in_image = in_image[::-1, ...] in_image = in_image.swapaxes(0, axis) return in_image @staticmethod def _apply_channel_shift(in_image: np.ndarray, intensity: int, channel_axis: int = 0) -> np.ndarray: in_image = np.rollaxis(in_image, channel_axis, 0) min_x, max_x = np.min(in_image), np.max(in_image) channel_images = [np.clip(x_channel + intensity, min_x, max_x) for x_channel in in_image] in_image = np.stack(channel_images, axis=0) in_image = np.rollaxis(in_image, 0, channel_axis + 1) return in_image def _apply_brightness_shift(self, in_image: np.ndarray, brightness: int) -> np.ndarray: catch_error_exception('Not implemented brightness shifting option...') # in_image = array_to_img(in_image) # in_image = imgenhancer_Brightness = ImageEnhance.Brightness(in_image) # in_image = imgenhancer_Brightness.enhance(brightness) # in_image = img_to_array(in_image) def get_text_description(self) -> str: raise NotImplementedError class TransformRigidImages2D(TransformRigidImages): _img_row_axis = 0 _img_col_axis = 1 _img_channel_axis = 2 def __init__(self, size_image: Tuple[int, int], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, rotation_range: float = 0.0, width_shift_range: float = 0.0, height_shift_range: float = 0.0, brightness_range: Tuple[float, float] = None, shear_range: float = 0.0, zoom_range: Union[float, Tuple[float, float]] = 0.0, channel_shift_range: float = 0.0, fill_mode: str = 'nearest', cval: float = 0.0, horizontal_flip: bool = False, vertical_flip: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: self._rotation_range = rotation_range self._width_shift_range = width_shift_range self._height_shift_range = height_shift_range self._brightness_range = brightness_range self._shear_range = shear_range self._channel_shift_range = channel_shift_range self._fill_mode = fill_mode self._cval = cval self._horizontal_flip = horizontal_flip self._vertical_flip = vertical_flip if np.isscalar(zoom_range): self._zoom_range = (1 - zoom_range, 1 + zoom_range) elif len(zoom_range) == 2: self._zoom_range = (zoom_range[0], zoom_range[1]) else: message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range)) catch_error_exception(message) if self._brightness_range is not None: if len(self._brightness_range) != 2: message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range)) catch_error_exception(message) super(TransformRigidImages2D, self).__init__(size_image, is_normalize_data=is_normalize_data, type_normalize_data=type_normalize_data, is_zca_whitening=is_zca_whitening, rescale_factor=rescale_factor, preprocessing_function=preprocessing_function) def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: rigid transformations # 2nd: channel shift intensity / flipping if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) return in_image def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: channel shift intensity / flipping # 2nd: rigid transformations if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) return in_image def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_range: theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range)) else: theta = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if np.max(self._height_shift_range) < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if np.max(self._width_shift_range) < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._shear_range: shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range)) else: shear = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis] transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w) # **************************************************** return (transform_matrix, transform_parameters) def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of inverse homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_range: theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range)) else: theta = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._shear_range: shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range)) else: shear = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), np.sin(theta), 0], [-np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, -tx], [0, 1, -ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, np.tan(shear), 0], [0, 1.0 / np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[1.0 / zx, 0, 0], [0, 1.0 / zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis] transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w) # **************************************************** return (transform_matrix, transform_parameters) @staticmethod def _transform_matrix_offset_center(matrix: np.ndarray, x: int, y: int) -> np.ndarray: o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix @staticmethod def _apply_transform(in_image: np.ndarray, transform_matrix: np.ndarray, channel_axis: int = 0, fill_mode: str = 'nearest', cval: float = 0.0) -> np.ndarray: in_image = np.rollaxis(in_image, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=1, mode=fill_mode, cval=cval) for x_channel in in_image] in_image = np.stack(channel_images, axis=0) in_image = np.rollaxis(in_image, 0, channel_axis + 1) return in_image def get_text_description(self) -> str: message = 'Rigid 2D transformations of images, with parameters...\n' message += 'rotation (plane_XY) range: \'%s\'...\n' % (self._rotation_range) message += 'shift (width, height) range: \'(%s, %s)\'...\n' \ % (self._width_shift_range, self._height_shift_range) message += 'flip (horizontal, vertical): \'(%s, %s)\'...\n' \ % (self._horizontal_flip, self._vertical_flip) message += 'zoom (min, max) range: \'(%s, %s)\'...\n' % (self._zoom_range[0], self._zoom_range[1]) message += 'shear (plane_XY) range: \'%s\'...\n' % (self._shear_range) message += 'fill mode, when applied transformation: \'%s\'...\n' % (self._fill_mode) return message class TransformRigidImages3D(TransformRigidImages): _img_dep_axis = 0 _img_row_axis = 1 _img_col_axis = 2 _img_channel_axis = 3 def __init__(self, size_image: Tuple[int, int, int], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, rotation_xy_range: float = 0.0, rotation_xz_range: float = 0.0, rotation_yz_range: float = 0.0, width_shift_range: float = 0.0, height_shift_range: float = 0.0, depth_shift_range: float = 0.0, brightness_range: Tuple[float, float] = None, shear_xy_range: float = 0.0, shear_xz_range: float = 0.0, shear_yz_range: float = 0.0, zoom_range: Union[float, Tuple[float, float]] = 0.0, channel_shift_range: float = 0.0, fill_mode: str = 'nearest', cval: float = 0.0, horizontal_flip: bool = False, vertical_flip: bool = False, axialdir_flip: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: self._rotation_xy_range = rotation_xy_range self._rotation_xz_range = rotation_xz_range self._rotation_yz_range = rotation_yz_range self._width_shift_range = width_shift_range self._height_shift_range = height_shift_range self._depth_shift_range = depth_shift_range self._brightness_range = brightness_range self._shear_xy_range = shear_xy_range self._shear_xz_range = shear_xz_range self._shear_yz_range = shear_yz_range self._channel_shift_range = channel_shift_range self._fill_mode = fill_mode self._cval = cval self._horizontal_flip = horizontal_flip self._vertical_flip = vertical_flip self._axialdir_flip = axialdir_flip if np.isscalar(zoom_range): self._zoom_range = (1 - zoom_range, 1 + zoom_range) elif len(zoom_range) == 2: self._zoom_range = (zoom_range[0], zoom_range[1]) else: message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range)) catch_error_exception(message) if self._brightness_range is not None: if len(self._brightness_range) != 2: message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range)) catch_error_exception(message) super(TransformRigidImages3D, self).__init__(size_image, is_normalize_data=is_normalize_data, type_normalize_data=type_normalize_data, is_zca_whitening=is_zca_whitening, rescale_factor=rescale_factor, preprocessing_function=preprocessing_function) def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: rigid transformations # 2nd: channel shift intensity / flipping if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_axialdir', False): in_image = self._flip_axis(in_image, axis=self._img_dep_axis) if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) return in_image def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: channel shift intensity / flipping # 2nd: rigid transformations if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) if self._transform_params.get('flip_axialdir', False): in_image = self._flip_axis(in_image, axis=self._img_dep_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) return in_image def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_xy_range: angle_xy = np.deg2rad(np.random.uniform(-self._rotation_xy_range, self._rotation_xy_range)) else: angle_xy = 0 if self._rotation_xz_range: angle_xz = np.deg2rad(np.random.uniform(-self._rotation_xz_range, self._rotation_xz_range)) else: angle_xz = 0 if self._rotation_yz_range: angle_yz = np.deg2rad(np.random.uniform(-self._rotation_yz_range, self._rotation_yz_range)) else: angle_yz = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._depth_shift_range: tz = np.random.uniform(-self._depth_shift_range, self._depth_shift_range) if self._depth_shift_range < 1: tz *= self._size_image[self._img_dep_axis] else: tz = 0 if self._shear_xy_range: shear_xy = np.deg2rad(np.random.uniform(-self._shear_xy_range, self._shear_xy_range)) else: shear_xy = 0 if self._shear_xz_range: shear_xz = np.deg2rad(np.random.uniform(-self._shear_xz_range, self._shear_xz_range)) else: shear_xz = 0 if self._shear_yz_range: shear_yz = np.deg2rad(np.random.uniform(-self._shear_yz_range, self._shear_yz_range)) else: shear_yz = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: (zx, zy, zz) = (1, 1, 1) else: (zx, zy, zz) = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 3) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip flip_axialdir = (np.random.random() < 0.5) * self._axialdir_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'flip_axialdir': flip_axialdir, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if angle_xy != 0: rotation_matrix = np.array([[1, 0, 0, 0], [0, np.cos(angle_xy), -np.sin(angle_xy), 0], [0, np.sin(angle_xy), np.cos(angle_xy), 0], [0, 0, 0, 1]]) transform_matrix = rotation_matrix if angle_xz != 0: rotation_matrix = np.array([[np.cos(angle_xz), np.sin(angle_xz), 0, 0], [-np.sin(angle_xz), np.cos(angle_xz), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) transform_matrix = \ rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix) if angle_yz != 0: rotation_matrix = np.array([[np.cos(angle_yz), 0, np.sin(angle_yz), 0], [0, 1, 0, 0], [-np.sin(angle_yz), 0, np.cos(angle_yz), 0], [0, 0, 0, 1]]) transform_matrix = \ rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix) if tx != 0 or ty != 0 or tz != 0: shift_matrix = np.array([[1, 0, 0, tz], [0, 1, 0, tx], [0, 0, 1, ty], [0, 0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear_xy != 0: shear_matrix = np.array([[1, 0, 0, 0], [0, 1, -np.sin(shear_xy), 0], [0, 0,
np.cos(shear_xy)
numpy.cos
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # https://github.com/yiskw713/asrf/libs/postprocess.py import paddle import paddle.nn as nn import paddle.nn.functional as F import numpy as np import math class GaussianSmoothing(nn.Layer): """ Apply gaussian smoothing on a 1d tensor. Filtering is performed seperately for each channel in the input using a depthwise convolution. Arguments: channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well. kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. """ def __init__(self, kernel_size=15, sigma=1.0): super().__init__() self.kernel_size = kernel_size # The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 meshgrid = paddle.arange(kernel_size) meshgrid = paddle.cast(meshgrid, dtype='float32') mean = (kernel_size - 1) / 2 kernel = kernel / (sigma * math.sqrt(2 * math.pi)) kernel = kernel * paddle.exp(-(((meshgrid - mean) / sigma)**2) / 2) # Make sure sum of values in gaussian kernel equals 1. # kernel = kernel / paddle.max(kernel) self.kernel = paddle.reshape(kernel, [1, 1, -1]) def forward(self, inputs): """ Apply gaussian filter to input. Arguments: input (paddle.Tensor): Input to apply gaussian filter on. Returns: filtered (paddle.Tensor): Filtered output. """ _, c, _ = inputs.shape inputs = F.pad(inputs, pad=((self.kernel_size - 1) // 2, (self.kernel_size - 1) // 2), mode="reflect", data_format='NCL') kernel = paddle.expand(self.kernel, shape=[c, 1, self.kernel_size]) return F.conv1d(inputs, weight=kernel, groups=c) def argrelmax(prob, threshold=0.7): """ Calculate arguments of relative maxima. prob: np.array. boundary probability maps distributerd in [0, 1] prob shape is (T) ignore the peak whose value is under threshold Return: Index of peaks for each batch """ # ignore the values under threshold prob[prob < threshold] = 0.0 # calculate the relative maxima of boundary maps # treat the first frame as boundary peak = np.concatenate( [ np.ones((1), dtype=np.bool), (prob[:-2] < prob[1:-1]) & (prob[2:] < prob[1:-1]), np.zeros((1), dtype=np.bool), ], axis=0, ) peak_idx = np.where(peak)[0].tolist() return peak_idx def is_probability(x): assert x.ndim == 3 if x.shape[1] == 1: # sigmoid if x.min() >= 0 and x.max() <= 1: return True else: return False else: # softmax _sum = np.sum(x, axis=1).astype(np.float32) _ones = np.ones_like(_sum, dtype=np.float32) return np.allclose(_sum, _ones) def convert2probability(x): """ Args: x (N, C, T) """ assert x.ndim == 3 if is_probability(x): return x else: if x.shape[1] == 1: # sigmoid prob = 1 / (1 + np.exp(-x)) else: # softmax prob = np.exp(x) / np.sum(
np.exp(x)
numpy.exp
import math import numpy as np import scipy import torch from torch.autograd import Variable import support.kernels as kernel_factory from support.utilities.general_settings import Settings from in_out.image_functions import points_to_voxels_transform, metric_to_image_radial_length def create_regular_grid_of_points(box, spacing): """ Creates a regular grid of 2D or 3D points, as a numpy array of size nb_of_points x dimension. box: (dimension, 2) """ dimension = Settings().dimension axis = [] for d in range(dimension): min = box[d, 0] max = box[d, 1] length = max - min assert (length > 0) offset = 0.5 * (length - spacing * math.floor(length / spacing)) axis.append(np.arange(min + offset, max + 1e-10, spacing)) if dimension == 1: control_points = np.zeros((len(axis[0]), dimension)) control_points[:, 0] = axis[0].flatten() elif dimension == 2: x_axis, y_axis =
np.meshgrid(axis[0], axis[1])
numpy.meshgrid
""" Module containing functions for transforming data to be put into deep learning model """ import numpy as np from fastai.vision import Image from torch import FloatTensor def fastai_image(img): """Turns numpy array into fastai Image object""" img = FloatTensor(img) img = img.permute(2, 0, 1) return Image(img) def make_3channel(img): """Ensures input image is a 3 channel image for training/predicting""" img = np.reshape(img, (img.shape[0], img.shape[1], 1)) img =
np.concatenate((img, img, img), axis=2)
numpy.concatenate
import numpy as np import theano import theano.tensor as T from sfo.sfo import SFO from skimage.filter import gabor_kernel from skimage.transform import resize def generate_data(ndim, nsamples, nfeatures): """Generate data by drawing samples that are a sparse combination of gabor features """ # build features features = list() for j in range(nfeatures): theta = np.pi * np.random.rand() sigma = 2*np.random.rand() + 1 freq = 0.2 *
np.random.rand()
numpy.random.rand
import numpy as np from scipy.optimize import curve_fit from sklearn.decomposition import PCA from sklearn.linear_model import RidgeClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.model_selection import KFold class NestedXval(): '''A generator for nested cross-validation that ensures that there is the same number of trials for each class in training. It is necessary to have the same number of trials in each category to vectorize the training of the decoder so that the training of all 6 decoders (in one vs one scheme) is done simultaneously. ''' def __init__(self, n_outer_splits=None): '''Nested crossvalidation to get the same number of trials in each class for training''' self.nouter = n_outer_splits self.ninner = 2 self.outerxval = KFold(n_splits=n_outer_splits) def split(self, targets): '''Returns a generator that splits data in test, train and subspace with the same number of trials in each category ''' labels, counts = np.unique(targets, return_counts=True) nclasses = len(labels) if not np.all(counts[0] == counts) and max(counts) - min(counts) > 1: raise ValueError("The number of trials in each class in not consistant") interleaved_outer = np.concatenate(list(zip(*[np.where(targets == label)[0] for label in labels]))) leftovers = [] for iclass in np.where(np.min(counts) < counts)[0]: leftovers.append(np.where(targets == labels[iclass])[0][-1]) interleaved_outer = np.concatenate((interleaved_outer, np.array(leftovers))).astype(int) targets_ = targets[interleaved_outer] outersplit = self.outerxval.split(targets) for ioutsplit in range(self.nouter): restinds, testinds = next(outersplit) ntrain_per_class = np.ceil(len(restinds) / 2 / nclasses).astype(int) inner_inds_by_class = [np.where(targets_[restinds] == label)[0] for label in labels] traininds = np.concatenate(list(zip(*[restinds[classinds[:ntrain_per_class]] for classinds in inner_inds_by_class]))) subinds = np.concatenate([restinds[classinds[ntrain_per_class:]] for classinds in inner_inds_by_class]) testinds = interleaved_outer[testinds] traininds = interleaved_outer[traininds] subinds = interleaved_outer[subinds] yield np.sort(testinds), np.sort(traininds), np.sort(subinds) traininds = np.concatenate(list(zip(*[restinds[classinds[:-ntrain_per_class:-1]] for classinds in inner_inds_by_class]))) subinds = np.concatenate([restinds[classinds[-ntrain_per_class::-1]] for classinds in inner_inds_by_class]) testinds = interleaved_outer[testinds] traininds = interleaved_outer[traininds] subinds = interleaved_outer[subinds] yield np.sort(testinds), np.sort(traininds), np.sort(subinds) def sub_split(targets, trainind): '''Cross-validation generator for the decoder and subspace trials Function to split training trials in training and subspace trials, ensuring that there is the same number of trials in each class for training. Parameters ---------- targets : np.array - The targets (or y values) trainind : np.array - The indices of the training trials Returns ------- Generator for each fold. Yields a tuple of np.array, one array for the training trials and one array for the subspace ''' targets = targets[trainind] labels = np.unique(targets) nclasses = len(labels) ntrain_per_class = np.ceil(len(targets) / 2 / nclasses).astype(int) inner_inds_by_class = [np.where(targets == label)[0] for label in labels] ridgeind = np.concatenate(list(zip(*[classinds[:ntrain_per_class] for classinds in inner_inds_by_class]))) subind = np.concatenate([classinds[ntrain_per_class:] for classinds in inner_inds_by_class]) yield np.sort(trainind[ridgeind]), np.sort(trainind[subind]) ridgeind = np.concatenate(list(zip(*[classinds[:-ntrain_per_class:-1] for classinds in inner_inds_by_class]))) subind = np.concatenate([classinds[-ntrain_per_class::-1] for classinds in inner_inds_by_class]) yield np.sort(trainind[ridgeind]), np.sort(trainind[subind]) def combine_xval_folds(acc_fold): '''Combine CTD cross-validation accuracies by averaging them Parameters ---------- acc_fold : list of np.array<bins * bins> - The CTD accuracy matrices of all the cross-validation folds Returns ------- np.array<bins * bins> - The averaged CTD accuracy ''' return np.stack(acc_fold).mean(0) def get_acc_mean(acc): '''Averages all accuracy points in a CTD accuracy matrix Parameters ---------- acc : np.array<bins * bins> - The CTD accuracy matrix Returns ------- float - The stability score ''' return acc.mean() def gaussian_func(x, mu, sigma, a): '''A gaussian function Parameters ---------- x : np.array - the x values to feed the function mu : float - the mean of the gaussian sigma : float - the standard deviation of the gaussian a : float - a scaling coefficient Returns ------- The transformed values in a np.array for each value in x. ''' b = .25 return a * np.exp(-(x-mu)**2/(2*sigma**2)) + b def get_CT_score(acc, bounds, dstraining=None): '''Get the "locality" score from a CTD accuracy Fits a gaussian on each vector formed by training at a time bin and testing at all time bins. Calculates the ratio between the maximum of the gaussian divided by its standard deviation. Then averages all the ratios to get a locality score. Parameters ---------- acc : np.array<bins * bins> - The accuracy matrix of a CTD bounds : a 2-element tuple of 3-element np.array - the bounds for gaussian fitting for the locality score, e.g. # mu sigma a np.array([0, 2, 0]), # lower bounds np.array([0, np.inf, 1])) # upper bounds dstraining : int - if the CTD was trained on a subset of the time bins. Every 'dstraining' bins have been selected for a down sampled training. Returns ------- Locality score ''' if dstraining is None: dstraining = 1 opted = [] nbinstrain, nbinstest = acc.shape x = np.arange(nbinstest) scores = np.empty(nbinstrain) for ibintrain in range(nbinstrain): data = acc[ibintrain, :] data[data < .25] = .25 ibintest = dstraining - 1 + ibintrain * dstraining params0 = [ibintest, 10, .5] bounds[0][0] = np.max((ibintest - 5, 0)) bounds[1][0] = np.min((ibintest + 5, nbinstest)) try: optparams = curve_fit(gaussian_func, x, data, params0, bounds=bounds)[0] except RuntimeError: optparams = [0, 0, 0] scores[ibintrain] = 0 else: max_val = np.max(gaussian_func(x, *optparams)) scores[ibintrain] = (max_val - .25) / optparams[1] * 1000 opted.append(optparams) return np.mean(scores) ############################################################################### ################################## VECTORIZED ################################# ############################################################################### def vectorized_xval_CTD(X, y, population=None, permseed=None, subspace=True, alpha=1, mask=None, dstraining=None): '''Cross-validation of vectorized cross-temporal decoding Cross-validation using a custom generator to ensure that the number of trials in each class is identical. Parameters ---------- X : np.array<trials * bins * neurons> - data y : np.array<ntrials> - targets population : np.array of int - the indices of the neurons included permseed : int - a seed for permutation testing subspace : bool - whether to use a subspace or not alpha : float - the ridge parameter mask : np.array<nbins> of bool - which bins to take to build the subspace dstraining : int - Every 'dstraining' bins will be selected for a down sampled training Returns ------- accuracy : np.array<bins * bins> - the CTD accuracy averaged across folds of the cross-validation ''' acc_fold = [] if subspace: nestedxval = NestedXval(n_outer_splits=5) for testind, trainind, subind in nestedxval.split(y): acc_fold.append(vectorized_CTD_job(X, y, trainind, testind, subind=subind, population=population, permseed=permseed, alpha=alpha, mask=mask, dstraining=dstraining)[0]) else: kfold = KFold(n_splits=5) for trainind, testind in kfold.split(y): acc_fold.append(vectorized_CTD_job(X, y, trainind, testind, population=population, permseed=permseed, alpha=alpha, mask=mask, dstraining=dstraining)[0]) accuracy = combine_xval_folds(acc_fold) return accuracy def vectorized_sub_split(X, y, restind, testind, population=None, permseed=None, subspace=True, alpha=1, mask=None): '''Cross-validation of vectorized cross-temporal decoding (for testing) Cross-validation of CTD with pre-defined testing trials. Used for testing, when the testing trials have already been set aside and only the remaining trials must be split into training and subspace trials Parameters ---------- X : np.array<trials * bins * neurons> - data y : np.array<ntrials> - targets restind : np.array - The indices of all the trials except the testing trials testind : np.array - The indices of the testing trials population : np.array of int - the indices of the neurons included permseed : int - a seed for permutation testing subspace : bool - whether to use a subspace or not alpha : float - the ridge parameter mask : np.array<nbins> of bool - which bins to take to build the subspace Returns ------- accuracy : np.array<bins * bins> - the CTD accuracy averaged across folds of the cross-validation ''' if subspace: acc_split = [] for ridgeind, subind in sub_split(y, restind): acc_split.append(vectorized_CTD_job(X, y, ridgeind, testind, subind=subind, population=population, permseed=permseed, alpha=alpha, mask=mask)[0]) accuracy = combine_xval_folds(acc_split) else: accuracy = vectorized_CTD_job(X, y, restind, testind, population=population, permseed=permseed, alpha=alpha, mask=mask)[0] return accuracy def vectorized_CTD_job(X, y, trainind, testind, population=None, **kwargs): '''Calling vectorized cross-temporal decoding with a given ensemble Parameters ---------- X : np.array<trials * bins * neurons> - data y : np.array<ntrials> - targets trainind : np.array - The indices of the training trials testind : np.array - The indices of the testing trials population : np.array of int - the indices of the neurons included **kwargs : keyword arguments for function 'vectorized_CTD' Returns ------- accuracy : np.array<bins * bins> - The CTD matrix accuracy testout : np.array<bins * bins * test trials> - The output of the classifier for each pair of train and test bins, for each trial ''' if population is None: population = np.arange(X.shape[-1]) newX = X[..., population] return vectorized_CTD(newX, y, trainind, testind, **kwargs) def vectorized_CTD(X, y, trainind, testind, alpha=1, subind=None, mask=None, permseed=None, dstraining=None): '''Vectorized cross-temporal decoding This is a vectorized version of the cross-temporal decoding algorithm. The six decoders (in a one vs one scheme) are trained simultaneously thanks to vectorization which considerably speeds up computations. Unfortunately it makes the code less readable. The decoding algorithm was inspired by scikit learn's implementation of ridge regression. Note that to be able to vectorize training and testing, each class must have the same number of training and testing trials. Parameters ---------- X : np.array<trials * bins * neurons> - data y : np.array<ntrials> - targets trainind : np.array The indices of the training trials testind : np.array The indices of the testing trials alpha : float - the ridge parameter subind : np.array The indices of trials used to define the subspace. If not None, a subspace will be defined mask : np.array<nbins> of bool - which bins to take to build the subspace permseed : int - a seed for permutation testing, only the training trials are shuffled dstraining : int Every 'dstraining' bins will be selected for a down sampled training Returns ------- accuracy : np.array<bins * bins> - The CTD matrix accuracy testout : np.array<bins * bins * test trials> - The output of the classifier for each pair of train and test bins, for each trial ''' subspace = bool(subind is not None) if dstraining is None: dstraining = 1 ntrials, nbins, _ = X.shape if mask is None: mask = range(nbins) labels = np.unique(y) nclasses = len(labels) Xtrain, Xtest = X[trainind], X[testind] ytrain, ytest = y[trainind], y[testind] if permseed is not None: np.random.seed(permseed) np.random.shuffle(ytrain) if dstraining is not None: Xtrain = Xtrain[:, dstraining-1::dstraining] nbinstrain = Xtrain.shape[1] else: nbinstrain = nbins Xtrain = Xtrain.transpose((1, 0, 2)) if subspace: ysub = y[subind] Xsub = X[:, mask][subind].mean(1) # Averaging over time bins Xsub = np.stack([Xsub[ysub == label].mean(0) for label in labels]) subspace = PCA() subspace.fit(Xsub) Xtrain = (Xtrain - subspace.mean_[None, None, :]) @ subspace.components_.T[None, ...] # We need to have the exact same number of trials for each class _, traincounts = np.unique(ytrain, return_counts=True) mintrials = np.min(traincounts) if not np.all(traincounts[0] == traincounts): mintrials = np.min(traincounts) keptind = [] for iclass, count in enumerate(traincounts): if count > mintrials: inds = np.where(ytrain == labels[iclass])[0][:-(count-mintrials)] else: inds = np.where(ytrain == labels[iclass])[0] keptind.append(inds) keptind = np.concatenate(keptind) else: keptind = np.arange(len(ytrain)) ytrain_cut = ytrain[keptind] Xtrain_cut = Xtrain[:, keptind] nestimators = (nclasses * (nclasses - 1)) // 2 nsamples = mintrials * 2 nfeatures = Xtrain_cut.shape[-1] ytrain_ = np.empty((nestimators, nsamples)) Xtrain_ = np.empty((nbinstrain, nestimators, nsamples, nfeatures)) k = 0 for c1 in range(nclasses): for c2 in range(c1+1, nclasses): cond = np.logical_or(ytrain_cut == c1, ytrain_cut == c2) ytrain_[k, ytrain_cut[cond] == c1] = -1 ytrain_[k, ytrain_cut[cond] == c2] = 1 Xtrain_[:, k] = Xtrain_cut[:, cond] k += 1 X_offset = Xtrain_.mean(2, keepdims=True) Xtrain_ -= X_offset if nfeatures > nsamples: XXT = Xtrain_ @ Xtrain_.transpose((0, 1, 3, 2)) XXT = XXT + np.eye(XXT.shape[-1])[None, None, ...] * alpha dual_coef = np.linalg.solve(XXT, ytrain_.reshape(1, nestimators, -1)) coefs = Xtrain_.transpose((0, 1, 3, 2)) @ dual_coef.reshape(dual_coef.shape[0], nestimators, -1, 1) else: XTX = Xtrain_.transpose((0, 1, 3, 2)) @ Xtrain_ Xy = Xtrain_.transpose((0, 1, 3, 2)) @ ytrain_.reshape((1, ytrain_.shape[0], -1, 1)) XTX = XTX + np.eye(XTX.shape[-1])[None, None, ...] * alpha coefs = np.linalg.solve(XTX, Xy) intercepts = - X_offset @ coefs Xtest_ = Xtest.reshape(Xtest.shape[0] * Xtest.shape[1], Xtest.shape[2]) if subspace: Xtest_ = subspace.transform(Xtest_) scores = (Xtest_ @ coefs) + intercepts scores = scores.reshape(scores.shape[:-1]) predictions = (scores > 0).astype(np.int) nsamples = predictions.shape[-1] predsT = predictions.transpose((0, 2, 1)) scoresT = scores.transpose((0, 2, 1)) votes = np.zeros((nbinstrain, nsamples, nclasses)) sum_of_confidences = np.zeros((nbinstrain, nsamples, nclasses)) k = 0 for i in range(nclasses): for j in range(i + 1, nclasses): sum_of_confidences[:, :, i] -= scoresT[:, :, k] sum_of_confidences[:, :, j] += scoresT[:, :, k] votes[predsT[:, :, k] == 0, i] += 1 votes[predsT[:, :, k] == 1, j] += 1 k += 1 transformed_confidences = (sum_of_confidences / (3 * (np.abs(sum_of_confidences) + 1))) preds = np.argmax(votes + transformed_confidences, 2) preds = preds.reshape(nbinstrain, len(testind), nbins) accuracy = (preds == ytest[None, :, None]).mean(1) return accuracy, preds def ensemble_mean_acc_vec(X, y, **kwargs): '''Get stable score for a given ensemble Parameters ---------- X : np.array<trials * bins * neurons> - data y : np.array<trials> - targets population : np.array of int - the indices of the neurons included alpha : float - the ridge parameter subspace : bool - whether to use a subspace or not Returns ------- float - Stable score ''' accuracy = vectorized_xval_CTD(X, y, **kwargs) perf = get_acc_mean(accuracy) return perf def ensemble_dynamic_acc_vec(X, y, bounds, dstraining=None, **kwargs): '''Get "locality" or dynamic score for a given ensemble Parameters ---------- X : np.array<trials * bins * neurons> - data y : np.array<trials> - targets bounds : a 2-element tuple of 3-element np.array - the bounds # mu sigma a np.array([0, 2, 0]), # lower bounds np.array([0, np.inf, 1])) # upper bounds population : np.array of int - the indices of the neurons included alpha : float - the ridge parameter subspace : bool - whether to use a subspace or not Returns ------- float - Stable score ''' if 'subspace' in kwargs and kwargs['subspace']: raise ValueError("There is no subspace with dynamic ensembles") accuracy = vectorized_xval_CTD(X, y, subspace=False, dstraining=dstraining, **kwargs) score = get_CT_score(accuracy, bounds, dstraining=dstraining) return score def vectorized_xval_subset(X, y, trialinds=None, **kwargs): '''Calling vectorized cross-validation of CTD with a subset of trials Used to get the ridge parameters from the training trials only. Parameters ---------- X : np.array<trials * bins * neurons> - data y : np.array<trials> - targets trialinds : np.array of int - The indices of the included trials **kwargs : see arguments for vectorized_xval_CTD Returns ------- np.array<bins * bins> - the CTD accuracy averaged across folds of the cross-validation ''' if trialinds is not None: X = X[trialinds] y = y[trialinds] return vectorized_xval_CTD(X, y, **kwargs) def get_ridge_param_CTD_vec(data, alpha_powers, subspace, perm_seed=None, trialinds=None, client=None): '''Get the ridge parameter for CTD Parameters ---------- data : a tuple of arguments - It contains the following in that order X : np.array<trials * bins * neurons> - data y : np.array<trials> - targets mask : np.array<bins> of bool - which bins to take to build the subspace population : np.array of int - the indices of the neurons included alpha_powers : np.array - the powers of ten of alpha values that will be tested subspace : bool - Whether to use a subspace for CTD perm_seed : int - A permutation seed to shuffle labels trialinds : np.array of int - The indices of the included trials client : dask client - To perform the parameter exploration in parallel Returns ------- float or dask future (if parallel) - The ridge parameter that yields the best decoding accuracy ''' X, y, delaymask, pop = data acc_alpha = [] for ap in alpha_powers: alpha = 10.**ap if client: acc_alpha.append(client.submit(vectorized_xval_subset, X, y, population=pop, permseed=perm_seed, subspace=subspace, alpha=alpha, mask=delaymask, trialinds=trialinds)) else: acc_alpha.append(vectorized_xval_subset(X, y, population=pop, permseed=perm_seed, subspace=subspace, alpha=alpha, mask=delaymask, trialinds=trialinds)) def get_mean(acc): return np.mean(acc[delaymask][:, delaymask]) acc_alpha = client.map(get_mean, acc_alpha) def best_alpha(acc_alpha): return 10. ** alpha_powers[np.argmax(acc_alpha)] if client: alpha = client.submit(best_alpha, acc_alpha) else: alpha = best_alpha(acc_alpha) return alpha def train_test_CTD(data, params, stable, dynparams=None, client=None): '''Generic function to test stable or dynamic ensembles Parameters ---------- data : 2-element tuple containing (or their equivalent dask future if parallelized) X : np.array<trials * bins * neurons*> - The firing rate activity for all bins and trials y : np.array<trials> - The identity of each trial params : 3-element tuple containing pop : np.array of int - the indices of the neurons included alpha : float - the ridge parameter subspace : bool - whether to use a subspace stable : bool - whether to test for a stable (True) or dynamic (False) ensemble dynparams : 2-element tuple containing (ignored if stable is True) bounds : a 2-element tuple of 3-element np.array - the bounds for gaussian fitting for the locality score, e.g. # mu sigma a np.array([0, 2, 0]), # lower bounds np.array([0, np.inf, 1])) # upper bounds dstraining : int - Every 'dstraining' bins will be selected for a down sampled training client : dask client - A dask client to perform the computations in parallel ''' if client is not None: parallel = True Xfold, yfold = data pop, alpha, subspace = params if not stable: bounds, dstraining = dynparams if stable: if parallel: perf = client.submit(ensemble_mean_acc_vec, Xfold, yfold, population=pop, alpha=alpha, subspace=subspace) else: perf = ensemble_mean_acc_vec(Xfold, yfold, population=pop, alpha=alpha, subspace=subspace) else: if parallel: perf = client.submit(ensemble_dynamic_acc_vec, Xfold, yfold, bounds, population=pop, alpha=alpha, dstraining=dstraining) else: perf = ensemble_dynamic_acc_vec(Xfold, yfold, bounds, population=pop, alpha=alpha, dstraining=dstraining) return perf ############################################################################### ################################ NON VECTORIZED ############################### ############################################################################### # Non vectorized versions of the above functions def decoding_subspace_xval_ridge(X, y, trainind, testind, alpha=1, subspace=True, mask=None): '''Decoding with cross-validation in subspace Parameters ---------- X : list of np.arrays [ntrials] np.array<nbins*nneurons> y : list of np.arrays [ntrials] np.array<nbins> trainind : np.array The indices of the training trials testind : np.array The indices of the testing trials Returns ------- correct : np.array<nbins*nbins> of Boolean's True if the output is correct, False otherwise testout : np.array<nbins*nbins*ntesttrials> The output of the classifier for each pair of train and test bins ''' sub_train_ratio = .5 nbins = X.shape[1] labels = np.unique(y) testout = np.empty((len(testind), nbins)) correct = np.empty(nbins) if mask is None: mask = range(nbins) ### Split subspace and training if subspace: nsubtrials = int(len(trainind)*sub_train_ratio) subind, trainind = trainind[:nsubtrials], trainind[nsubtrials:] ysub = y[subind] Xsub = X[:, mask][subind].mean(1) # Averaging over time bins Xsub = np.stack([Xsub[ysub == label].mean(0) for label in labels]) subspace = PCA() subspace.fit(Xsub) Xtrain, Xtest = X[trainind], X[testind] ytrain, ytest = y[trainind], y[testind] for ibin in range(nbins): if subspace: Xbintrain = subspace.transform(Xtrain[:, ibin]) else: Xbintrain = Xtrain[:, ibin] model = OneVsOneClassifier(RidgeClassifier(alpha=alpha, solver='cholesky')) model.fit(Xbintrain, ytrain) if subspace: Xbintest = subspace.transform(Xtest[:, ibin]) else: Xbintest = Xtest[:, ibin] out = model.predict(Xbintest) testout[:, ibin] = out correct[ibin] = np.mean(out == ytest) return correct, testout def crosstemp_decoding_subspace_xval_ridge(X, y, indtrain, indtest, alpha=1, indsub=None, mask=None): '''Cross-temporal decoding with cross-validation in subspace Parameters ---------- X : np.array<trials * bins * neurons> - data y : np.array<trials> - targets trainind : np.array - the indices of the training trials testind : np.array - the indices of the testing trials alpha : float - the L2 "ridge" regularization parameter subind : np.array - the indices of the trials used to define the subspace. They must be different from the training and testing indices. mask : np.array<nbins> of bool - a mask to select which bins are used to define the subspace. E.g.: np.array([False, False, True, True, False]) here only bins 2 and 3 are used to define the subspace. Returns ------- correct : np.array<bins * bins> of Boolean's True if the output is correct, False otherwise testout : np.array<bins * bins * test trials> The output of the classifier for each pair of train and test bins ''' assert len(set(indtrain) & set(indtest)) == 0 if indsub is not None: subspace = True assert len(set(indtrain) & set(indsub)) == 0 assert len(set(indtest) & set(indsub)) == 0 else: subspace = False nbins = X.shape[1] labels = np.unique(y) testout = np.empty((len(indtest), nbins, nbins)) correct = np.empty((nbins, nbins)) Xtrain, Xtest = X[indtrain], X[indtest] ytrain, ytest = y[indtrain], y[indtest] ### Split subspace and training if subspace indices are provided if subspace: if mask is None: mask = range(nbins) ysub = y[indsub] Xsub = X[:, mask][indsub].mean(1) # Averaging over time bins Xsub = np.stack([Xsub[ysub == label].mean(0) for label in labels]) subspace = PCA() subspace.fit(Xsub) ### A decoder is trained on each bin, and each decoder is tested on every bins for itrain in range(nbins): if subspace: Xbintrain = subspace.transform(Xtrain[:, itrain]) else: Xbintrain = Xtrain[:, itrain] model = OneVsOneClassifier(RidgeClassifier(alpha=alpha, solver='cholesky')) model.fit(Xbintrain, ytrain) # The test data is reshaped to test all the bins in a single shot (much faster) Xtest_ = Xtest.reshape(Xtest.shape[0] * Xtest.shape[1], Xtest.shape[2]) if subspace: Xtest_ = subspace.transform(Xtest_) preds = model.predict(Xtest_) # The output is reshaped to the original shape of the test data preds = preds.reshape(len(indtest), nbins) accs = (preds == ytest[:, None]).mean(0) testout[:, itrain, :] = preds correct[itrain, :] = accs return correct, testout def job_CT(X, y, trainind, testind, population, perm_seed=None, **kwargs): poparray = np.array(population) newX = X[:, :, poparray] if perm_seed: np.random.seed(perm_seed) np.random.shuffle(newX) result = crosstemp_decoding_subspace_xval_ridge(newX, y, trainind, testind, **kwargs)[0] return result def xval_job(data, client, pop,subspace=True, **kwargs): X, y, ntrials = data kfold = KFold(n_splits=5) twofold = KFold(n_splits=2) acc_fold = [] for trainind, testind in kfold.split(range(ntrials)): if subspace: acc_sub_split = [] for ridgeindind, subindind in twofold.split(trainind): ridgeind, subind = trainind[ridgeindind], trainind[subindind] acc_fold.append(job_CT(X, y, ridgeind, testind, pop, subind=subind, **kwargs)) acc_fold.append(combine_xval_folds(acc_sub_split)) else: acc_fold.append(job_CT(X, y, trainind, testind, pop, **kwargs)) accuracy = combine_xval_folds(acc_fold) return accuracy def submit_xval_jobs(data, client, pop, subspace=True, alpha=1, **kwargs): Xfut, yfut, ntrials = data kfold = KFold(n_splits=5) twofold = KFold(n_splits=2) acc_fold = [] for trainind, testind in kfold.split(range(ntrials)): if subspace: acc_sub_split = [] for ridgeindind, subindind in twofold.split(trainind): ridgeind, subind = trainind[ridgeindind], trainind[subindind] # acc_fold.append(job_CT(Xfut.result(), yfut.result(), ridgeind, testind, pop, # subind=subind, alpha=alpha.result(), **kwargs)) acc_sub_split.append(client.submit(job_CT, Xfut, yfut, ridgeind, testind, pop, subind=subind, alpha=alpha, **kwargs)) acc_fold.append(client.submit(combine_xval_folds, acc_sub_split)) else: acc_fold.append(client.submit(job_CT, Xfut, yfut, trainind, testind, pop, **kwargs)) accuracy = client.submit(combine_xval_folds, acc_fold) return accuracy def ensemble_mean_acc(data, client, *args, **kwargs): '''Get stable score for a given ensemble Parameters ---------- data : tuple (X, y, ntrials) - The data for decoding and the number of trials in a tuple client : the dask client **kwargs : keyword arguments, contains alpha : float - the L2 "ridge" regularization parameter subspace : bool - whether to use a subspace pop : np.array of int - the indices of the neurons included Returns ------- Stable score ''' accuracy = submit_xval_jobs(data, client, *args, **kwargs) return client.submit(get_acc_mean, accuracy) def ensemble_dynamic_acc(data, client, *args, **kwargs): '''Get "locality" or dynamic score for a given ensemble Parameters ---------- data : tuple (X, y, ntrials) - The data for decoding and the number of trials in a tuple client : the dask client **kwargs : keyword arguments, contains alpha : float - the L2 "ridge" regularization parameter subspace : bool - whether to use a subspace pop : np.array of int - the indices of the neurons included Returns ------- Stable score ''' accuracy = submit_xval_jobs(data, client, *args, **kwargs) return client.submit(get_CT_score, accuracy) def CT_permutations(data, client, subspace, alpha, nperms): Xfut, yfut, ntrials, delaymask, pop = data kfold = KFold(n_splits=10) permseeds =
np.random.randint(0, 10**9, nperms)
numpy.random.randint
import argparse from itertools import count import gym import gym.spaces import scipy.optimize import numpy as np import math import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from models.old_models import * from replay_memory import Memory from running_state import ZFilter from torch.autograd import Variable from trpo import trpo_step from utils import * from loss import * import time import swimmer import walker import halfcheetah import pickle torch.utils.backcompat.broadcast_warning.enabled = True torch.utils.backcompat.keepdim_warning.enabled = True torch.set_default_tensor_type('torch.DoubleTensor') use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") parser = argparse.ArgumentParser(description='PyTorch actor-critic example') parser.add_argument('--gamma', type=float, default=0.995, metavar='G', help='discount factor (default: 0.995)') parser.add_argument('--env-name', type=str, default="Reacher-v1", metavar='G', help='name of the environment to run') parser.add_argument('--tau', type=float, default=0.97, metavar='G', help='gae (default: 0.97)') parser.add_argument('--l2-reg', type=float, default=1e-3, metavar='G', help='l2 regularization regression (default: 1e-3)') parser.add_argument('--max-kl', type=float, default=1e-2, metavar='G', help='max kl value (default: 1e-2)') parser.add_argument('--damping', type=float, default=1e-1, metavar='G', help='damping (default: 1e-1)') parser.add_argument('--seed', type=int, default=1111, metavar='N', help='random seed (default: 1111') parser.add_argument('--batch-size', type=int, default=5000, metavar='N', help='size of a single batch') parser.add_argument('--log-interval', type=int, default=1, metavar='N', help='interval between training status logs (default: 10)') parser.add_argument('--eval-interval', type=int, default=1, metavar='N', help='interval between training status logs (default: 10)') parser.add_argument('--num-epochs', type=int, default=500, metavar='N', help='number of epochs to train an expert') parser.add_argument('--hidden-dim', type=int, default=64, metavar='H', help='the size of hidden layers') parser.add_argument('--lr', type=float, default=1e-3, metavar='L', help='learning rate') parser.add_argument('--vf-iters', type=int, default=30, metavar='V', help='number of iterations of value function optimization iterations per each policy optimization step') parser.add_argument('--vf-lr', type=float, default=3e-4, metavar='V', help='learning rate of value network') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--xml', default=None, help='the xml configuration file') parser.add_argument('--demo_files', nargs='+', help='the environment used for test') parser.add_argument('--ratios', nargs='+', type=float, help='the ratio of demos to load') parser.add_argument('--eval_epochs', type=int, default=10, help='the epochs for evaluation') parser.add_argument('--save_path', help='the path to save model') parser.add_argument('--feasibility_model', default=None, help='the path to the feasibility model') parser.add_argument('--mode', help='the mode of feasibility') parser.add_argument('--discount', type=float, default=0.9, help='the discount factor') parser.add_argument('--distance_normalizer', type=float, default=5., help='the normalization factor for the distance') args = parser.parse_args() if args.seed == 1111: log_file = open('log/'+args.save_path.split('/')[-1].split('.pth')[0]+'.txt', 'w') save_path = args.save_path else: log_file = open('log/'+args.save_path.split('/')[-1].split('.pth')[0]+'_seed_{}.txt'.format(args.seed), 'w') save_path = args.save_path.replace('.pth', '_seed_{}.pth'.format(args.seed)) env = gym.make(args.env_name, xml_file=args.xml, exclude_current_positions_from_observation=False) f_env = gym.make(args.env_name, xml_file=args.xml, exclude_current_positions_from_observation=False) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.shape[0] def load_demos(demo_files, ratios): state_files = [] trajs = [] traj_traj_id = [] traj_id = 0 pair_traj_id = [] init_obs = [] for i in range(len(demo_files)): state_pairs = [] demo_file = demo_files[i] raw_demos = pickle.load(open(demo_file, 'rb')) use_num = int(len(raw_demos['obs'])*ratios[i]) current_state = raw_demos['obs'][0:use_num] next_state = raw_demos['next_obs'][0:use_num] trajs += [np.array(traj) for traj in current_state] if 'InvertedDoublePendulum' in str(type(env.env)): init_obs += raw_demos['init_obs'] traj_traj_id += [i]*len(current_state) for j in range(len(current_state)): if 'Ant' in args.env_name: state_pairs.append(np.concatenate([np.array(current_state[j])[:,2:], np.array(next_state[j])[:,2:]], axis=1)) pair_traj_id.append(np.array([traj_id]*np.array(current_state[j]).shape[0])) else: state_pairs.append(np.concatenate([np.array(current_state[j]), np.array(next_state[j])], axis=1)) pair_traj_id.append(np.array([traj_id]*np.array(current_state[j]).shape[0])) traj_id += 1 state_files.append(np.concatenate(state_pairs, axis=0)) return state_files, trajs, np.concatenate(pair_traj_id, axis=0), np.array(traj_traj_id), init_obs env.seed(args.seed) torch.manual_seed(args.seed) np.random.seed(args.seed) def compute_feasibility_pair(expert_trajs, models, f_env): all_distance = [] for index in range(len(expert_trajs)): expert_traj = expert_trajs[index] model = models[index] batch_size = 64 batch_num = (expert_traj.shape[0]-1)//batch_size + 1 with torch.no_grad(): for i in range(batch_num): f_env.reset() action_mean, _, action_std = model(torch.from_numpy(expert_traj[i*batch_size:(i+1)*batch_size, 2:num_inputs])) action = torch.normal(action_mean, action_std).cpu().numpy() next_states = [] for j in range(action_mean.shape[0]): f_env.set_observation(expert_traj[i*batch_size+j]) next_state, _, _, _ = f_env.step(action[j]) next_states.append(next_state) next_states = np.array(next_states) distance = np.linalg.norm(expert_traj[i*batch_size:(i+1)*batch_size, num_inputs:] - next_states, ord=2, axis=1) all_distance.append(distance) all_distance = np.concatenate(all_distance, axis=0) feasibility = np.exp(-all_distance/3.) return feasibility def compute_feasibility_traj(expert_trajs, traj_traj_id, models, f_env, init_obs): all_distance = [] for index in range(len(expert_trajs)): if index >= 4: index = index % 2 + 2 all_distance.append([]) expert_traj = expert_trajs[index] model = models[traj_traj_id[index]] with torch.no_grad(): f_env.reset() f_env.set_observation(expert_traj[0]) state0 = expert_traj[0] state = expert_traj[0] for j in range(expert_traj.shape[0]-1): action_mean, _, action_std = model(torch.from_numpy(np.concatenate([state, state0], axis=0)).unsqueeze(0)) action = action_mean.cpu().numpy() next_state, _, _, _ = f_env.step(action) state = next_state all_distance[-1].append(np.linalg.norm(expert_traj[j+1] - next_state, ord=2, axis=0)*(args.discount**j)) all_distance[-1] = np.sum(all_distance[-1]) all_distance = np.array(all_distance) all_distance = (all_distance + np.max(-all_distance))/args.distance_normalizer all_distance[all_distance>50] = 50. feasibility =
np.exp(-all_distance)
numpy.exp
import argparse from sklearn.metrics import roc_curve, auc import tensorflow as tf from tensorflow.python.ops.check_ops import assert_greater_equal_v2 import load_data from tqdm import tqdm import numpy as np import pandas as pd from math import e as e_VALUE import tensorflow.keras.backend as Keras_backend from sklearn.ensemble import RandomForestClassifier from scipy.special import bdtrc def func_CallBacks(Dir_Save=''): mode = 'min' monitor = 'val_loss' # checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath= Dir_Save + '/best_model_weights.h5', monitor=monitor , verbose=1, save_best_only=True, mode=mode) # Reduce_LR = tf.keras.callbacks.ReduceLROnPlateau(monitor=monitor, factor=0.1, min_delta=0.005 , patience=10, verbose=1, save_best_only=True, mode=mode , min_lr=0.9e-5 , ) # CSVLogger = tf.keras.callbacks.CSVLogger(Dir_Save + '/results.csv', separator=',', append=False) EarlyStopping = tf.keras.callbacks.EarlyStopping( monitor = monitor, min_delta = 0, patience = 4, verbose = 1, mode = mode, baseline = 0, restore_best_weights = True) return [EarlyStopping] # [checkpointer , EarlyStopping , CSVLogger] def reading_terminal_inputs(): parser = argparse.ArgumentParser() parser.add_argument("--epoch" , help="number of epochs") parser.add_argument("--bsize" , help="batch size") parser.add_argument("--max_sample" , help="maximum number of training samples") parser.add_argument("--naug" , help="number of augmentations") """ Xception VG16 VGG19 DenseNet201 ResNet50 ResNet50V2 ResNet101 DenseNet169 ResNet101V2 ResNet152 ResNet152V2 DenseNet121 InceptionV3 InceptionResNetV2 MobileNet MobileNetV2 if keras_version > 2.4 EfficientNetB0 EfficientNetB1 EfficientNetB2 EfficientNetB3 EfficientNetB4 EfficientNetB5 EfficientNetB6 EfficientNetB7 """ parser.add_argument("--architecture_name", help='architecture name') args = parser.parse_args() epoch = int(args.epoch) if args.epoch else 3 number_augmentation = int(args.naug) if args.naug else 3 bsize = int(args.bsize) if args.bsize else 100 max_sample = int(args.max_sample) if args.max_sample else 1000 architecture_name = str(args.architecture_name) if args.architecture_name else 'DenseNet121' return epoch, bsize, max_sample, architecture_name, number_augmentation def mlflow_settings(): """ RUN UI with postgres and HPC: REMOTE postgres server: # connecting to remote server through ssh tunneling ssh -L 5000:localhost:5432 <EMAIL> # using the mapped port and localhost to view the data mlflow ui --backend-store-uri postgresql://artinmajdi:1234@localhost:5000/chest_db --port 6789 RUN directly from GitHub or show experiments/runs list: export MLFLOW_TRACKING_URI=http://127.0.0.1:5000 mlflow runs list --experiment-id <id> mlflow run --no-conda --experiment-id 5 -P epoch=2 https://github.com/artinmajdi/mlflow_workflow.git -v main mlflow run mlflow_workflow --no-conda --experiment-id 5 -P epoch=2 PostgreSQL server style server = f'{dialect_driver}://{username}:{password}@{ip}/{database_name}' """ postgres_connection_type = { 'direct': ('5432', 'data7-db1.cyverse.org'), 'ssh-tunnel': ('5000', 'localhost') } port, host = postgres_connection_type['ssh-tunnel'] # 'direct' , 'ssh-tunnel' username = "artinmajdi" password = '<PASSWORD>' database_name = "chest_db_v2" dialect_driver = 'postgresql' server = f'{dialect_driver}://{username}:{password}@{host}:{port}/{database_name}' Artifacts = { 'hpc': 'sftp://mohammadsmajdi@file<EMAIL>iz<EMAIL>.<EMAIL>:/home/u29/mohammadsmajdi/projects/mlflow/artifact_store', 'data7_db1': 'sftp://[email protected]:/home/artinmajdi/mlflow_data/artifact_store'} # :temp2_data7_b return server, Artifacts['data7_db1'] def architecture(architecture_name: str='DenseNet121', input_shape: list=[224,224,3], num_classes: int=14): input_tensor=tf.keras.layers.Input(input_shape) if architecture_name == 'custom': model = tf.keras.layers.Conv2D(4, kernel_size=(3,3), activation='relu')(input_tensor) model = tf.keras.layers.BatchNormalization()(model) model = tf.keras.layers.MaxPooling2D(2,2)(model) model = tf.keras.layers.Conv2D(8, kernel_size=(3,3), activation='relu')(model) model = tf.keras.layers.BatchNormalization()(model) model = tf.keras.layers.MaxPooling2D(2,2)(model) model = tf.keras.layers.Conv2D(16, kernel_size=(3,3), activation='relu')(model) model = tf.keras.layers.BatchNormalization()(model) model = tf.keras.layers.MaxPooling2D(2,2)(model) model = tf.keras.layers.Flatten()(model) model = tf.keras.layers.Dense(32, activation='relu')(model) model = tf.keras.layers.Dense(num_classes , activation='softmax')(model) return tf.keras.models.Model(inputs=model.input, outputs=[model]) else: """ Xception VG16 VGG19 DenseNet201 ResNet50 ResNet50V2 ResNet101 DenseNet169 ResNet101V2 ResNet152 ResNet152V2 DenseNet121 InceptionV3 InceptionResNetV2 MobileNet MobileNetV2 if keras_version > 2.4 EfficientNetB0 EfficientNetB1 EfficientNetB2 EfficientNetB3 EfficientNetB4 EfficientNetB5 EfficientNetB6 EfficientNetB7 """ pooling='avg' weights='imagenet' include_top=False if architecture_name == 'xception': model_architecture = tf.keras.applications.Xception elif architecture_name == 'VGG16': model_architecture = tf.keras.applications.VGG16 elif architecture_name == 'VGG19': model_architecture = tf.keras.applications.VGG19 elif architecture_name == 'ResNet50': model_architecture = tf.keras.applications.ResNet50 elif architecture_name == 'ResNet50V2': model_architecture = tf.keras.applications.ResNet50V2 elif architecture_name == 'ResNet101': model_architecture = tf.keras.applications.ResNet101 elif architecture_name == 'ResNet101V2': model_architecture = tf.keras.applications.ResNet101V2 elif architecture_name == 'ResNet152': model_architecture = tf.keras.applications.ResNet152 elif architecture_name == 'ResNet152V2': model_architecture = tf.keras.applications.ResNet152V2 elif architecture_name == 'InceptionV3': model_architecture = tf.keras.applications.InceptionV3 elif architecture_name == 'InceptionResNetV2': model_architecture = tf.keras.applications.InceptionResNetV2 elif architecture_name == 'MobileNet': model_architecture = tf.keras.applications.MobileNet elif architecture_name == 'MobileNetV2': model_architecture = tf.keras.applications.MobileNetV2 elif architecture_name == 'DenseNet121': model_architecture = tf.keras.applications.DenseNet121 elif architecture_name == 'DenseNet169': model_architecture = tf.keras.applications.DenseNet169 elif architecture_name == 'DenseNet201': model_architecture = tf.keras.applications.DenseNet201 elif int(list(tf.keras.__version__)[2]) >= 4: if architecture_name == 'EfficientNetB0': model_architecture = tf.keras.applications.EfficientNetB0 elif architecture_name == 'EfficientNetB1': model_architecture = tf.keras.applications.EfficientNetB1 elif architecture_name == 'EfficientNetB2': model_architecture = tf.keras.applications.EfficientNetB2 elif architecture_name == 'EfficientNetB3': model_architecture = tf.keras.applications.EfficientNetB3 elif architecture_name == 'EfficientNetB4': model_architecture = tf.keras.applications.EfficientNetB4 elif architecture_name == 'EfficientNetB5': model_architecture = tf.keras.applications.EfficientNetB5 elif architecture_name == 'EfficientNetB6': model_architecture = tf.keras.applications.EfficientNetB6 elif architecture_name == 'EfficientNetB7': model_architecture = tf.keras.applications.EfficientNetB7 model = model_architecture( weights = weights, include_top = include_top, input_tensor = input_tensor, input_shape = input_shape, pooling = pooling) # ,classes=num_classes KK = tf.keras.layers.Dense( num_classes, activation='sigmoid', name='predictions' )(model.output) return tf.keras.models.Model(inputs=model.input,outputs=KK) def weighted_bce_loss(W): def func_loss(y_true,y_pred): NUM_CLASSES = y_pred.shape[1] loss = 0 for d in range(NUM_CLASSES): y_true = tf.cast(y_true, tf.float32) mask = tf.keras.backend.cast( tf.keras.backend.not_equal(y_true[:,d], -5), tf.keras.backend.floatx() ) loss += W[d]*tf.keras.losses.binary_crossentropy( y_true[:,d] * mask, y_pred[:,d] * mask ) return tf.divide( loss, tf.cast(NUM_CLASSES,tf.float32) ) return func_loss def optimize(dir, train_dataset, valid_dataset, epochs, Info, architecture_name): # architecture model = architecture( architecture_name = architecture_name, input_shape = list(Info.target_size) + [3] , num_classes = len(Info.pathologies) ) model.compile( optimizer = tf.keras.optimizers.Adam(learning_rate=0.001), loss = weighted_bce_loss(Info.class_weights), # tf.keras.losses.binary_crossentropy metrics = [tf.keras.metrics.binary_accuracy] ) # optimization history = model.fit( train_dataset, validation_data = valid_dataset, epochs = epochs, steps_per_epoch = Info.steps_per_epoch, validation_steps = Info.validation_steps, verbose = 1, use_multiprocessing = True) # ,callbacks=func_CallBacks(dir + '/model') # saving the optimized model model.save( dir + '/model/model.h5', overwrite = True, include_optimizer = False ) return model def evaluate(dir: str, dataset: str='chexpert', batch_size: int=1000, model=tf.keras.Model()): # Loading the data Data, Info = load_data.load_chest_xray( dir = dir, dataset = dataset, batch_size = batch_size, mode = 'test' ) score = measure_loss_acc_on_test_data( generator = Data.generator['test'], model = model, pathologies = Info.pathologies ) return score def measure_loss_acc_on_test_data(generator, model, pathologies): # Looping over all test samples score_values = {} NUM_CLASSES = len(pathologies) generator.reset() for j in tqdm(range(len(generator.filenames))): x_test, y_test = next(generator) full_path, x,y = generator.filenames[j] , x_test[0,...] , y_test[0,...] x,y = x[np.newaxis,:] , y[np.newaxis,:] # Estimating the loss & accuracy for instance eval = model.evaluate(x=x, y=y,verbose=0,return_dict=True) # predicting the labels for instance pred = model.predict(x=x,verbose=0) # Measuring the loss for each class loss_per_class = [ tf.keras.losses.binary_crossentropy(y[...,d],pred[...,d]) for d in range(NUM_CLASSES)] # saving all the infos score_values[full_path] = {'full_path':full_path,'loss_avg':eval['loss'], 'acc_avg':eval['binary_accuracy'], 'pred':pred[0], 'pred_binary':pred[0] > 0.5, 'truth':y[0]>0.5, 'loss':np.array(loss_per_class), 'pathologies':pathologies} # converting the outputs into panda dataframe df = pd.DataFrame.from_dict(score_values).T # resetting the index to integers df.reset_index(inplace=True) # # dropping the old index column df = df.drop(['index'],axis=1) return df class Parent_Child(): def __init__(self, subj_info: pd.DataFrame.dtypes={}, technique: int=0, tuning_variables: dict={}): """ subject_info = {'pred':[], 'loss':[], 'pathologies':['Edema','Cardiomegaly',...]} 1. After creating a class: SPC = Parent_Child(loss_dict, pred_dict, technique) 2. Update the parent child relationship: SPC.set_parent_child_relationship(parent_name1, child_name_list1) SPC.set_parent_child_relationship(parent_name2, child_name_list2) 3. Then update the loss and probabilities SPC.update_loss_pred() 4. In order to see the updated loss and probabilities use below loss_new_list = SPC.loss_dict_weighted or SPC.loss_list_weighted pred_new_list = SPC.pred_dict_weighted or SPC.predlist_weighted IMPORTANT NOTE: If there are more than 2 generation; it is absolutely important to enter the subjects in order of seniority gen1: grandparent (gen1) gen1_subjx_children: parent (gen2) gen2_subjx_children: child (gen3) SPC = Parent_Child(loss_dict, pred_dict, technique) SPC.set_parent_child_relationship(gen1_subj1, gen1_subj1_children) SPC.set_parent_child_relationship(gen1_subj2, gen1_subj2_children) . . . SPC.set_parent_child_relationship(gen2_subj1, gen2_subj1_children) SPC.set_parent_child_relationship(gen2_subj2, gen2_subj2_children) . . . SPC.update_loss_pred() """ self.subj_info = subj_info self.technique = technique self.all_parents: dict = {} self.tuning_variables = tuning_variables self.loss = subj_info.loss self.pred = subj_info.pred self.truth = subj_info.truth self._convert_inputs_list_to_dict() def _convert_inputs_list_to_dict(self): self.loss_dict = {disease:self.subj_info.loss[index] for index,disease in enumerate(self.subj_info.pathologies)} self.pred_dict = {disease:self.subj_info.pred[index] for index,disease in enumerate(self.subj_info.pathologies)} self.truth_dict = {disease:self.subj_info.truth[index] for index,disease in enumerate(self.subj_info.pathologies)} self.loss_dict_weighted = self.loss_dict self.pred_dict_weighted = self.pred_dict def set_parent_child_relationship(self, parent_name: str='parent_name', child_name_list: list=[]): self.all_parents[parent_name] = child_name_list def update_loss_pred(self): """ techniques: 1: coefficinet = (1 + parent_loss) 2: coefficinet = (2 * parent_pred) 3: coefficient = (2 * parent_pred) 1: loss_new = loss_old * coefficient if parent_pred < 0.5 else loss_old 2: loss_new = loss_old * coefficient if parent_pred < 0.5 else loss_old 3. loss_new = loss_old * coefficient """ for parent_name in self.all_parents: self._update_loss_for_children(parent_name) self._convert_outputs_to_list() def _convert_outputs_to_list(self): self.loss_new = np.array([self.loss_dict_weighted[disease] for disease in self.subj_info.pathologies]) self.pred_new = np.array([self.pred_dict_weighted[disease] for disease in self.subj_info.pathologies]) def _update_loss_for_children(self, parent_name: str='parent_name'): parent_loss = self.loss_dict_weighted[parent_name] parent_pred = self.pred_dict_weighted[parent_name] parent_truth = self.truth_dict[parent_name] TV = self.tuning_variables[ self.technique ] if TV['mode'] == 'truth': parent_truth_pred = parent_truth elif TV['mode'] == 'pred': parent_truth_pred = parent_pred else: parent_truth_pred = 1.0 if self.technique == 1: coefficient = TV['weight'] * parent_loss + TV['bias'] elif self.technique == 2: coefficient = TV['weight'] * parent_truth_pred + TV['bias'] elif self.technique == 3: coefficient = TV['weight'] * parent_truth_pred + TV['bias'] for child_name in self.all_parents[parent_name]: new_child_loss = self._measure_new_child_loss(coefficient, parent_name, child_name) self.loss_dict_weighted[child_name] = new_child_loss self.pred_dict_weighted[child_name] = 1 - np.power(e_VALUE , -new_child_loss) self.pred_dict[child_name] = 1 - np.power(e_VALUE , -self.loss_dict[child_name]) def _measure_new_child_loss(self, coefficient: float=0.0, parent_name: str='parent_name', child_name: str='child_name'): TV = self.tuning_variables[ self.technique ] parent_pred = self.pred_dict_weighted[parent_name] parent_truth = self.truth_dict[parent_name] if TV['mode'] == 'truth': loss_activated = (parent_truth < 0.5 ) elif TV['mode'] == 'pred': loss_activated = (parent_pred < TV['parent_pred_threshold'] ) else: loss_activated = True old_child_loss = self.loss_dict_weighted[child_name] if self.technique == 1: new_child_loss = old_child_loss * coefficient if loss_activated else old_child_loss elif self.technique == 2: new_child_loss = old_child_loss * coefficient if loss_activated else old_child_loss elif self.technique == 3: new_child_loss = old_child_loss * coefficient return new_child_loss class Measure_InterDependent_Loss_Aim1_1(Parent_Child): def __init__(self,score: pd.DataFrame.dtypes={}, technique: int=0, tuning_variables: dict={}): score['loss_new'] = score['loss'] score['pred_new'] = score['pred'] self.score = score self.technique = technique for subject_ix in tqdm(self.score.index): Parent_Child.__init__(self, subj_info=self.score.loc[subject_ix], technique=technique, tuning_variables=tuning_variables) self.set_parent_child_relationship(parent_name='Lung Opacity' , child_name_list=['Pneumonia', 'Atelectasis','Consolidation','Lung Lesion', 'Edema']) self.set_parent_child_relationship(parent_name='Enlarged Cardiomediastinum', child_name_list=['Cardiomegaly']) self.update_loss_pred() self.score.loss_new.loc[subject_ix] = self.loss_new self.score.pred_new.loc[subject_ix] = self.pred_new def apply_new_loss_techniques_aim1_1(pathologies: list=[], score: pd.DataFrame.dtypes={}, tuning_variables: dict={}): L = len(pathologies) accuracies =
np.zeros((4,L))
numpy.zeros
""" Determine continuum based on continuum mask and fit best radial velocity to observation """ import logging import warnings import emcee import numpy as np from scipy.constants import speed_of_light from scipy.interpolate import splev, splrep from scipy.optimize import least_squares from scipy.signal import correlate from tqdm import tqdm from .iliffe_vector import Iliffe_vector from .sme_synth import SME_DLL logger = logging.getLogger(__name__) c_light = speed_of_light * 1e-3 # speed of light in km/s class ContinuumNormalizationAbstract: def __init__(self): pass def __call__(self, sme, x_syn, y_syn, segments, rvel=0): raise NotImplementedError def apply(self, wave, smod, cwave, cscale, segments): return apply_continuum(wave, smod, cwave, cscale, self.cscale_type, segments) class ContinuumNormalizationMask(ContinuumNormalizationAbstract): def __call__(self, sme, x_syn, y_syn, segments, rvel=0): """ Fit a polynomial to the spectrum points marked as continuum The degree of the polynomial fit is determined by sme.cscale_flag Parameters ---------- sme : SME_Struct input sme structure with sme.sob, sme.wave, and sme.mask segment : int index of the wavelength segment to use, or -1 when dealing with the whole spectrum Returns ------- cscale : array of size (ndeg + 1,) polynomial coefficients of the continuum fit, in numpy order, i.e. largest exponent first """ if segments < 0: return sme.cscale if "spec" not in sme or "wave" not in sme: # If there is no observation, we have no continuum scale warnings.warn("Missing data for continuum fit") cscale = [1] elif sme.cscale_flag in ["none", -3]: cscale = [1] elif sme.cscale_flag in ["fix", -1, -2]: # Continuum flag is set to no continuum cscale = sme.cscale[segments] else: # fit a line to the continuum points ndeg = sme.cscale_degree # Extract points in this segment x, y = sme.wave, sme.spec if "mask" in sme: m = sme.mask else: m = sme.spec.copy() m[:] = sme.mask_value["line"] if "uncs" in sme: u = sme.uncs else: u = sme.spec.copy() u[:] = 1 x, y, m, u = x[segments], y[segments], m[segments], u[segments] # Set continuum mask if
np.all(m != sme.mask_values["continuum"])
numpy.all
# code to calculate fundamental stellar parameters and distances using # a "direct method", i.e. adopting a fixed reddening map and bolometric # corrections import astropy.units as units from astropy.coordinates import SkyCoord import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.interpolate import RegularGridInterpolator import pdb def distance_likelihood(plx, plxe, ds): """Distance Likelihood Likelihood of distance given measured parallax Args: plx (float): parallax plxe (float): parallax uncertainty ds (array): distance in parsecs Returns: array: likelihood (not log-likelihood) """ lh = ((1.0/(np.sqrt(2.0*np.pi)*plxe)) * np.exp( (-1.0/(2.0*plxe**2))*(plx - 1.0/ds)**2)) return lh def distance_prior(ds, L): """Distance prior Exponetial decreasing vol density prior Returns: array: prior probability (not log-prior) """ prior = ds**2/(2.0*L**3.0)*np.exp(-ds/L) return prior def stparas(input, dnumodel=-99, bcmodel=-99, dustmodel=-99, dnucor=-99, useav=-99, plot=0, band='k', ext=-99): # IAU XXIX Resolution, Mamajek et al. (2015) r_sun = 6.957e10 gconst = 6.67408e-8 gm = 1.3271244e26 m_sun = gm/gconst rho_sun = m_sun/(4./3.*np.pi*r_sun**3) g_sun = gconst*m_sun/r_sun**2. # solar constants numaxsun = 3090. dnusun = 135.1 teffsun = 5777. Msun = 4.74 # NB this is fixed to MESA BCs! # assumed uncertainty in bolometric corrections err_bc=0.02 # assumed uncertainty in extinction err_ext=0.02 # object containing output values out = resdata() ## extinction coefficients extfactors=ext if (len(band) == 4): bd=band[0:1] else: bd=band[0:2] ###################################### # case 1: input is parallax + colors # ###################################### #with h5py.File(bcmodel,'r') as h5: teffgrid = bcmodel['teffgrid'][:] logggrid = bcmodel['logggrid'][:] fehgrid = bcmodel['fehgrid'][:] avgrid = bcmodel['avgrid'][:] bc_band = bcmodel['bc_'+bd][:] if ((input.plx > 0.)): # load up bolometric correction grid # only K-band for now points = (teffgrid,logggrid,fehgrid,avgrid) values = bc_band interp = RegularGridInterpolator(points,values) ### Monte Carlo starts here # number of samples nsample = int(1e5) # length scale for exp decreasing vol density prior in pc L = 1350.0 # maximum distance to sample (in pc) maxdis = 1e5 # get a rough maximum and minimum distance tempdis = 1.0/input.plx tempdise = input.plxe/input.plx**2 maxds = tempdis + 5.0*tempdise minds = tempdis - 5.0*tempdise ds =
np.arange(1.0, maxdis, 1.0)
numpy.arange
import numpy as np from numpy import sin, cos, tan, pi, arcsin, arctan from functools import lru_cache import torch from torch import nn from torch.nn.parameter import Parameter # Calculate kernels of SphereCNN @lru_cache(None) def get_xy(delta_phi, delta_theta): return np.array([ [ (-tan(delta_theta), 1/cos(delta_theta)*tan(delta_phi)), (0, tan(delta_phi)), (tan(delta_theta), 1/cos(delta_theta)*tan(delta_phi)), ], [ (-tan(delta_theta), 0), (1, 1), (tan(delta_theta), 0), ], [ (-tan(delta_theta), -1/
cos(delta_theta)
numpy.cos
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 17 14:45:00 2017 @author: shenda class order: ['A', 'N', 'O', '~'] """ import numpy as np from sklearn import ensemble from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from OptF import OptF from copy import deepcopy import xgboost as xgb import ReadData import random from collections import Counter class MyXGB(object): """ bottom basic classifier, a warpper for xgboost the proba order is ['N', 'A', 'O', '~'] """ def __init__(self, n_estimators=5000, max_depth=10, subsample=0.85, colsample_bytree=0.85, min_child_weight=4, num_round = 500): self.param = {'learning_rate':0.1, 'eta':0.1, 'silent':1, 'objective':'multi:softprob', 'num_class': 4} self.bst = None self.num_round = num_round self.pred = None my_seed = random.randint(0, 1000) self.param['n_estimators'] = n_estimators self.param['max_depth'] = max_depth self.param['subsample'] = subsample self.param['colsample_bytree'] = colsample_bytree self.param['min_child_weight'] = min_child_weight # self.param['random_state'] = my_seed self.param['seed'] = my_seed self.param['n_jobs'] = -1 print(self.param.items()) print(self.num_round) def fit(self, train_data, train_label): train_label = ReadData.Label2Index(train_label) dtrain = xgb.DMatrix(train_data, label=train_label) self.bst = xgb.train(self.param, dtrain, num_boost_round=self.num_round) def predict_prob(self, test_data): dtest = xgb.DMatrix(test_data) self.pred = self.bst.predict(dtest) return self.pred def predict(self, test_data): pred_prob = self.predict_prob(test_data) pred_num = np.argmax(pred_prob, axis=1) pred = ReadData.Index2Label(pred_num) return pred def get_importance(self): return self.bst.get_score(importance_type='gain') def plot_importance(self): xgb.plot_importance(self.bst) class MyLR(object): """ Top level classifier, a warpper for Logistic Regression """ def __init__(self): self.clf = LogisticRegression() def fit(self, train_qrs_data, train_qrs_label): train_data =np.array(train_qrs_data) train_label = train_qrs_label self.clf.fit(train_data, train_label) def predict(self, test_qrs_data): test_data = np.array(test_qrs_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_qrs_data): test_qrs_data = np.array(test_qrs_data) if test_qrs_data.ndim == 1: test_qrs_data = np.expand_dims(np.array(test_qrs_data), axis=0) test_data = np.array(test_qrs_data) return list(list(self.clf.predict_proba(test_data))[0]) else: test_data = np.array(test_qrs_data) return self.clf.predict_proba(test_data) class MyKNN(object): """ bottom basic support unequal length vector """ def __init__(self, n_neighbors=3): self.n_neighbors = n_neighbors self.train_data = None self.train_label = None self.labels = ['N', 'A', 'O', '~'] # self.thresh = [0.5, 0.3, 0.2, ] def fit(self, train_data, train_label): self.train_data = np.array(train_data) self.train_label = np.array(train_label) def dist(self, vec1, vec2): res = 0.0 if len(vec1) <= len(vec2): vec1 = np.r_[vec1, np.zeros(len(vec2)-len(vec1))] else: vec2 = np.r_[vec2, np.zeros(len(vec1)-len(vec2))] dist_num = np.linalg.norm(vec1 - vec2) return dist_num def predict_prob(self, test_data): test_data = np.array(test_data) pred = [] for i in test_data: tmp_dist_list = [] tmp_pred = [] for j in self.train_data: tmp_dist_list.append(self.dist(i, j)) pred_n_neighbors = self.train_label[np.argsort(tmp_dist_list)[:self.n_neighbors]] pred_counter = Counter(pred_n_neighbors) # print(pred_counter) for ii in self.labels: tmp_pred.append(pred_counter[ii]) pred.append(tmp_pred) return pred def predict(self, test_data): pred = self.predict_prob(test_data) pred_label = [] for i in pred: pred_label.append(self.labels[np.argsort(i)[-1]]) return pred_label class MyGBDT(object): """ bottom basic a warpper for GradientBoostingClassifier """ def __init__(self): self.clf = ensemble.GradientBoostingClassifier() def fit(self, train_data, train_label): train_data =np.array(train_data) self.clf.fit(train_data, train_label) def predict(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) test_data = np.array(test_data) return list(list(self.clf.predict_proba(test_data))[0]) else: test_data = np.array(test_data) return self.clf.predict_proba(test_data) class MyExtraTrees(object): """ bottom basic a warpper for ExtraTreesClassifier """ def __init__(self): self.clf = ensemble.ExtraTreesClassifier(n_estimators=100) def fit(self, train_data, train_label): train_data =np.array(train_data) self.clf.fit(train_data, train_label) def predict(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) test_data = np.array(test_data) return list(list(self.clf.predict_proba(test_data))[0]) else: test_data = np.array(test_data) return self.clf.predict_proba(test_data) class MyAdaBoost(object): """ bottom basic a warpper for AdaBoostClassifier """ def __init__(self): self.clf = ensemble.AdaBoostClassifier(n_estimators=100, learning_rate=0.1) def fit(self, train_data, train_label): train_data =np.array(train_data) self.clf.fit(train_data, train_label) def predict(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) test_data = np.array(test_data) return list(list(self.clf.predict_proba(test_data))[0]) else: test_data = np.array(test_data) return self.clf.predict_proba(test_data) class MyRF(object): """ bottom basic a warpper for Random Forest """ def __init__(self): self.clf = ensemble.RandomForestClassifier( n_estimators=1000, n_jobs=-1) def fit(self, train_data, train_label): train_data =np.array(train_data) self.clf.fit(train_data, train_label) def predict(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_data): test_data = np.array(test_data) if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) test_data = np.array(test_data) return list(list(self.clf.predict_proba(test_data))[0]) else: test_data = np.array(test_data) return self.clf.predict_proba(test_data) class MyOptF(object): """ bottom basic classifier, a warpper for Opt F-score """ def __init__(self, alpha=0.5, epochs=10): self.clf = OptF(alpha, epochs) def fit(self, train_data, train_label): self.clf.fit(train_data, deepcopy(train_label)) def predict(self, test_data): return list(self.clf.predict(test_data)) def predict_prob(self, test_data): return self.clf.predict_prob(test_data) class RF(object): """ Top level classifier, a warpper for Random Forest use long_feature and qrs_feature seperatedly, thus no use any more deprecated """ def __init__(self): self.clf = ensemble.RandomForestClassifier() def fit(self, train_long_data, train_long_label, train_qrs_data, train_qrs_label): train_data = np.c_[np.array(train_long_data), np.array(train_qrs_data)] train_label = train_long_label self.clf.fit(train_data, train_label) def predict(self, test_long_data, test_qrs_data): test_data = np.c_[np.array(test_long_data), np.array(test_qrs_data)] if test_data.ndim == 1: test_data = np.expand_dims(np.array(test_data), axis=0) return list(self.clf.predict(test_data)) def predict_prob(self, test_long_data, test_qrs_data): test_long_data = np.array(test_long_data) test_qrs_data = np.array(test_qrs_data) if test_long_data.ndim == 1 or test_qrs_data.ndim == 1: test_long_data = np.expand_dims(np.array(test_long_data), axis=0) test_qrs_data = np.expand_dims(np.array(test_qrs_data), axis=0) test_data = np.c_[np.array(test_long_data), np.array(test_qrs_data)] else: test_data = np.c_[np.array(test_long_data), np.array(test_qrs_data)] return list(list(self.clf.predict_proba(test_data))[0]) class RFSimp(object): """ Top level classifier, a warpper for Random Forest use long/qrs feature deprecated """ def __init__(self): self.clf = ensemble.RandomForestClassifier() def fit(self, train_qrs_data, train_qrs_label): train_data =
np.array(train_qrs_data)
numpy.array
#!/usr/bin/env python from sklearn import metrics from sklearn.preprocessing import label_binarize from pandas_ml import ConfusionMatrix import pickle import numpy as np def generate_metrics(y_true, y_pred, scores, class_labels): # One-hot encode the truth (for multiclass metrics, if needed) y_true_onehot = label_binarize(y_true, classes=class_labels) m = {} m["sklearn"] = {} m["pandas-ml"] = {} # Calculate accuracy m["sklearn"]["acc"] = metrics.accuracy_score(y_true, y_pred) # Confusion matrix m["sklearn"]["confmat"] = metrics.confusion_matrix( y_true, y_pred, labels=class_labels ) # Generate classification report m["sklearn"]["report"] = metrics.classification_report( y_true, y_pred, target_names=class_labels ) # Get AUCs auc_indiv = metrics.roc_auc_score(y_true_onehot, scores, average=None) m["sklearn"]["auc_indiv"] = auc_indiv m["sklearn"]["auc_avg"] =
np.mean(auc_indiv)
numpy.mean
from bitstring import Bits def split_n(n, s): return [ s[x:x+n] for x in range(0, len(s), n)] def encode_floats(floats): packed = map(lambda x: Bits(float=x, length=32).bin, floats) return ''.join(packed) def decode_floats(s): return list(map(lambda s: Bits(bin=s).float, split_n(32, s))) def flip_bit(bit): return '1' if bit == '0' else '1' import numpy as np from neural_net import NeuralNetwork class GeneticAlgorithm: def __init__(self, population_size, crossover_rate, mutation_rate, n_layers): self.population_size = population_size self.crossover_rate = crossover_rate self.mutation_rate = mutation_rate self.n_layers = n_layers self.population = self.generate_initial_population() # these must be normalized at all times self.fitnesses = self.zero_fitnesses() def zero_fitnesses(self): return
np.array( [1.0/self.population_size] * self.population_size)
numpy.array
import time import shutil import os import sys import subprocess import math import pickle import glob import json from copy import deepcopy import warnings import random from multiprocessing import Pool # import emukit.multi_fidelity as emf # from emukit.model_wrappers.gpy_model_wrappers import GPyMultiOutputWrapper # from emukit.multi_fidelity.convert_lists_to_array import convert_x_list_to_array, convert_xy_lists_to_arrays try: moduleName = "emukit" import emukit.multi_fidelity as emf from emukit.model_wrappers.gpy_model_wrappers import GPyMultiOutputWrapper from emukit.multi_fidelity.convert_lists_to_array import convert_x_list_to_array, convert_xy_lists_to_arrays moduleName = "pyDOE" from pyDOE import lhs moduleName = "GPy" import GPy as GPy moduleName = "scipy" from scipy.stats import lognorm, norm moduleName = "numpy" import numpy as np error_tag=False except: error_tag=True class GpFromModel(object): def __init__(self, work_dir, run_type, os_type, inp, errlog): t_init = time.time() self.errlog = errlog self.work_dir = work_dir self.os_type = os_type self.run_type = run_type # # From external READ JSON FILE # rv_name = list() self.g_name = list() x_dim = 0 y_dim = 0 for rv in inp['randomVariables']: rv_name = rv_name + [rv['name']] x_dim += 1 if x_dim == 0: msg = 'Error reading json: RV is empty' errlog.exit(msg) for g in inp['EDP']: if g['length']==1: # scalar self.g_name = self.g_name + [g['name']] y_dim += 1 else: # vector for nl in range(g['length']): self.g_name = self.g_name + ["{}_{}".format(g['name'],nl+1)] y_dim += 1 if y_dim == 0: msg = 'Error reading json: EDP(QoI) is empty' errlog.exit(msg) # Accuracy is also sensitive to the range of X self.id_sim = 0 self.x_dim = x_dim self.y_dim = y_dim self.rv_name = rv_name self.do_predictive = False automate_doe = False surrogateInfo = inp["UQ_Method"]["surrogateMethodInfo"] try: self.do_parallel = surrogateInfo["parallelExecution"] except: self.do_parallel = True if self.do_parallel: if self.run_type.lower() == 'runninglocal': self.n_processor = os.cpu_count() from multiprocessing import Pool self.pool = Pool(self.n_processor) else: # Always from mpi4py import MPI from mpi4py.futures import MPIPoolExecutor self.world = MPI.COMM_WORLD self.pool = MPIPoolExecutor() self.n_processor = self.world.Get_size() #self.n_processor =20 print("nprocessor :") print(self.n_processor) #self.cal_interval = 5 self.cal_interval = self.n_processor else: self.pool = 0 self.cal_interval = 5 if surrogateInfo["method"] == "Sampling and Simulation": self.do_mf = False do_sampling = True do_simulation = True self.use_existing = surrogateInfo["existingDoE"] if self.use_existing: self.inpData = os.path.join(work_dir, "templatedir/inpFile.in") self.outData = os.path.join(work_dir, "templatedir/outFile.in") thr_count = surrogateInfo['samples'] # number of samples if surrogateInfo["advancedOpt"]: self.doe_method = surrogateInfo["DoEmethod"] if surrogateInfo["DoEmethod"] == "None": do_doe = False user_init = thr_count else: do_doe = True user_init = surrogateInfo["initialDoE"] else: self.doe_method = "pareto" #default do_doe = True user_init = -100 elif surrogateInfo["method"] == "Import Data File": self.do_mf = False do_sampling = False do_simulation = not surrogateInfo["outputData"] self.doe_method = "None" # default do_doe = False # self.inpData = surrogateInfo['inpFile'] self.inpData = os.path.join(work_dir, "templatedir/inpFile.in") if not do_simulation: # self.outData = surrogateInfo['outFile'] self.outData = os.path.join(work_dir, "templatedir/outFile.in") elif surrogateInfo["method"] == "Import Multi-fidelity Data File": self.do_mf = True self.doe_method = "None" # default self.hf_is_model = surrogateInfo['HFfromModel'] self.lf_is_model = surrogateInfo['LFfromModel'] if self. hf_is_model: self.use_existing_hf = surrogateInfo["existingDoE_HF"] self.samples_hf = surrogateInfo["samples_HF"] if self.use_existing_hf: self.inpData = os.path.join(work_dir, "templatedir/inpFile_HF.in") self.outData = os.path.join(work_dir, "templatedir/outFile_HF.in") else: self.inpData_hf = os.path.join(work_dir, "templatedir/inpFile_HF.in") self.outData_hf = os.path.join(work_dir, "templatedir/outFile_HF.in") self.X_hf = read_txt(self.inpData_hf, errlog) self.Y_hf = read_txt(self.outData_hf, errlog) if self.X_hf.shape[0] != self.Y_hf.shape[0]: msg = 'Error reading json: high fidelity input and output files should have the same number of rows' errlog.exit(msg) if self.lf_is_model: self.use_existing_lf = surrogateInfo["existingDoE_LF"] self.samples_lf = surrogateInfo["samples_LF"] if self.use_existing_lf: self.inpData = os.path.join(work_dir, "templatedir/inpFile_LF.in") self.outData = os.path.join(work_dir, "templatedir/outFile_LF.in") else: self.inpData_lf = os.path.join(work_dir, "templatedir/inpFile_LF.in") self.outData_lf = os.path.join(work_dir, "templatedir/outFile_LF.in") self.X_lf = read_txt(self.inpData_lf, errlog) self.Y_lf = read_txt(self.outData_lf, errlog) if self.X_lf.shape[0] != self.Y_lf.shape[0]: msg = 'Error reading json: low fidelity input and output files should have the same number of rows' errlog.exit(msg) if (not self.hf_is_model) and self.lf_is_model: self.mf_case = "data-model" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] self.use_existing = self.use_existing_lf if self.lf_is_model: if self.use_existing_lf: self.inpData = self.inpData_lf self.oupData = self.outData_lf else: self.inpData = self.inpData_lf self.outData = self.outData_lf if do_doe: user_init = -100 else: user_init = self.samples_lf thr_count = self.samples_lf # number of samples elif self.hf_is_model and (not self.lf_is_model): self.mf_case = "model-data" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] self.use_existing = self.use_existing_hf if self.hf_is_model: if self.use_existing_hf: self.inpData = self.inpData_hf self.oupData = self.outData_hf else: self.inpData = self.inpData_hf self.outData = self.outData_hf if do_doe: user_init = -100 else: user_init = self.samples_hf thr_count = self.samples_hf # number of samples elif self.hf_is_model and self.lf_is_model: self.mf_case = "model-model" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] elif (not self.hf_is_model) and (not self.lf_is_model): self.mf_case = "data-data" do_sampling = False do_simulation = False do_doe = False self.inpData = self.inpData_lf self.outData = self.outData_lf else: msg = 'Error reading json: either select "Import Data File" or "Sampling and Simulation"' errlog.exit(msg) if surrogateInfo["advancedOpt"]: self.do_logtransform = surrogateInfo["logTransform"] kernel = surrogateInfo["kernel"] do_linear = surrogateInfo["linear"] nugget_opt = surrogateInfo["nuggetOpt"] try: self.nuggetVal = np.array(json.loads("[{}]".format(surrogateInfo["nuggetString"]))) except json.decoder.JSONDecodeError: msg = 'Error reading json: improper format of nugget values/bounds. Provide nugget values/bounds of each QoI with comma delimiter' errlog.exit(msg) if self.nuggetVal.shape[0]!=self.y_dim and self.nuggetVal.shape[0]!=0 : msg = 'Error reading json: Number of nugget quantities ({}) does not match # QoIs ({})'.format(self.nuggetVal.shape[0],self.y_dim) errlog.exit(msg) if nugget_opt == "Fixed Values": for Vals in self.nuggetVal: if (not np.isscalar(Vals)): msg = 'Error reading json: provide nugget values of each QoI with comma delimiter' errlog.exit(msg) elif nugget_opt == "Fixed Bounds": for Bous in self.nuggetVal: if (np.isscalar(Bous)): msg = 'Error reading json: provide nugget bounds of each QoI in brackets with comma delimiter, e.g. [0.0,1.0],[0.0,2.0],...' errlog.exit(msg) elif (isinstance(Bous,list)): msg = 'Error reading json: provide both lower and upper bounds of nugget' errlog.exit(msg) elif Bous.shape[0]!=2: msg = 'Error reading json: provide nugget bounds of each QoI in brackets with comma delimiter, e.g. [0.0,1.0],[0.0,2.0],...' errlog.exit(msg) elif Bous[0]>Bous[1]: msg = 'Error reading json: the lower bound of a nugget value should be smaller than its upper bound' errlog.exit(msg) # if self.do_logtransform: # mu = 0 # sig2 = self.nuggetVal # #median = np.exp(mu) # #mean = np.exp(mu + sig2/2) # self.nuggetVal = np.exp(2*mu + sig2)*(np.exp(sig2)-1) else: self.do_logtransform = False kernel = 'Matern 5/2' do_linear = False #do_nugget = True nugget_opt = "optimize" if not self.do_mf: if do_simulation: femInfo = inp["fem"] self.inpFile = femInfo["inputFile"] self.postFile = femInfo["postprocessScript"] self.appName = femInfo["program"] # # get x points # if do_sampling: thr_NRMSE = surrogateInfo["accuracyLimit"] thr_t = surrogateInfo["timeLimit"] * 60 np.random.seed(surrogateInfo['seed']) random.seed(surrogateInfo['seed']) self.xrange = np.empty((0, 2), float) for rv in inp['randomVariables']: if "lowerbound" not in rv: msg = 'Error in input RV: all RV should be set to Uniform distribution' errlog.exit(msg) self.xrange = np.vstack((self.xrange, [rv['lowerbound'], rv['upperbound']])) self.len = np.abs(np.diff(self.xrange).T[0]) if sum(self.len == 0) > 0: msg = 'Error in input RV: training range of RV should be greater than 0' errlog.exit(msg) # # Read existing samples # if self.use_existing: X_tmp = read_txt(self.inpData,errlog) Y_tmp = read_txt(self.outData,errlog) n_ex = X_tmp.shape[0] if self.do_mf: if X_tmp.shape[1] != self.X_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} RV column(s) but low fidelity model have {}.'.format( self.X_hf.shape[1], X_tmp.shape[1]) errlog.exit(msg) if Y_tmp.shape[1] != self.Y_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} QoI column(s) but low fidelity model have {}.'.format( self.Y_hf.shape[1], Y_tmp.shape[1]) errlog.exit(msg) if X_tmp.shape[1] != x_dim: msg = 'Error importing input data: dimension inconsistent: have {} RV(s) but have {} column(s).'.format( x_dim, X_tmp.shape[1]) errlog.exit(msg) if Y_tmp.shape[1] != y_dim: msg = 'Error importing input data: dimension inconsistent: have {} QoI(s) but have {} column(s).'.format( y_dim, Y_tmp.shape[1]) errlog.exit(msg) if n_ex != Y_tmp.shape[0]: msg = 'Error importing input data: numbers of samples of inputs ({}) and outputs ({}) are inconsistent'.format(n_ex, Y_tmp.shape[0]) errlog.exit(msg) else: n_ex = 0 if user_init ==0: #msg = 'Error reading json: # of initial DoE should be greater than 0' #errlog.exit(msg) user_init = -1; X_tmp = np.zeros((0, x_dim)) Y_tmp = np.zeros((0, y_dim)) if user_init < 0: n_init_ref = min(4 * x_dim, thr_count + n_ex - 1, 500) if self.do_parallel: n_init_ref = int(np.ceil(n_init_ref/self.n_processor)*self.n_processor) # Let's not waste resource if n_init_ref > n_ex: n_init = n_init_ref - n_ex else: n_init = 0 else: n_init = user_init n_iter = thr_count - n_init def FEM_batch(Xs, id_sim): return run_FEM_batch(Xs, id_sim, self.rv_name, self.do_parallel, self.y_dim, self.os_type, self.run_type, self.pool, t_init, thr_t) # check validity of datafile if n_ex > 0: #Y_test, self.id_sim = FEM_batch(X_tmp[0, :][np.newaxis], self.id_sim) # TODO : Fix this print(X_tmp[0, :][np.newaxis].shape) X_test, Y_test ,self.id_sim= FEM_batch(X_tmp[0, :][np.newaxis] ,self.id_sim) if np.sum(abs((Y_test - Y_tmp[0, :][np.newaxis]) / Y_test) > 0.01, axis=1) > 0: msg = 'Consistency check failed. Your data is not consistent to your model response.' errlog.exit(msg) if n_init>0: n_init -= 1 else: n_iter -= 1 # # generate initial samples # if n_init>0: U = lhs(x_dim, samples=(n_init)) X = np.vstack([X_tmp, np.zeros((n_init, x_dim))]) for nx in range(x_dim): X[n_ex:n_ex+n_init, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] else: X = X_tmp if sum(abs(self.len / self.xrange[:, 0]) < 1.e-7) > 1: msg = 'Error : upperbound and lowerbound should not be the same' errlog.exit(msg) n_iter = thr_count - n_init else: n_ex = 0 thr_NRMSE = 0.02 # default thr_t = float('inf') # # Read sample locations from directory # X = read_txt(self.inpData,errlog) if self.do_mf: if X.shape[1] != self.X_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} RV column(s) but low fidelity model have {}.'.format( self.X_hf.shape[1], X.shape[1]) errlog.exit(msg) if X.shape[1] != x_dim: msg = 'Error importing input data: Number of dimension inconsistent: have {} RV(s) but {} column(s).' \ .format(x_dim, X.shape[1]) errlog.exit(msg) self.xrange = np.vstack([np.min(X, axis=0), np.max(X, axis=0)]).T self.len = 2 * np.std(X, axis=0) thr_count = X.shape[0] n_init = thr_count n_iter = 0 # give error if thr_count <= 2: msg = 'Number of samples should be greater than 2.' errlog.exit(msg) if do_doe: ac = 1 # pre-screening time = time*ac ar = 1 # cluster n_candi = min(200 * x_dim, 2000) # candidate points n_integ = min(200 * x_dim, 2000) # integration points if user_init > thr_count: msg = 'Number of DoE cannot exceed total number of simulation' errlog.exit(msg) else: ac = 1 # pre-screening time = time*ac ar = 1 # cluster n_candi = 1 # candidate points n_integ = 1 # integration points user_init = thr_count # # get y points # if do_simulation: # # SimCenter workflow setting # if os.path.exists('{}/workdir.1'.format(work_dir)): is_left = True idx = 0 def change_permissions_recursive(path, mode): for root, dirs, files in os.walk(path, topdown=False): for dir in [os.path.join(root, d) for d in dirs]: os.chmod(dir, mode) for file in [os.path.join(root, f) for f in files]: os.chmod(file, mode) while is_left: idx = idx + 1 try: if os.path.exists('{}/workdir.{}/workflow_driver.bat'.format(work_dir, idx)): #os.chmod('{}/workdir.{}'.format(work_dir, idx), 777) change_permissions_recursive('{}/workdir.{}'.format(work_dir, idx), 0o777) my_dir = '{}/workdir.{}'.format(work_dir, idx) os.chmod(my_dir, 0o777) shutil.rmtree(my_dir) #shutil.rmtree('{}/workdir.{}'.format(work_dir, idx), ignore_errors=False, onerror=handleRemoveReadonly) except Exception as ex: print(ex) is_left = True break print("Cleaned the working directory") else: print("Work directory is clean") if os.path.exists('{}/dakotaTab.out'.format(work_dir)): os.remove('{}/dakotaTab.out'.format(work_dir)) if os.path.exists('{}/inputTab.out'.format(work_dir)): os.remove('{}/inputTab.out'.format(work_dir)) if os.path.exists('{}/outputTab.out'.format(work_dir)): os.remove('{}/outputTab.out'.format(work_dir)) if os.path.exists('{}/SimGpModel.pkl'.format(work_dir)): os.remove('{}/SimGpModel.pkl'.format(work_dir)) if os.path.exists('{}/verif.out'.format(work_dir)): os.remove('{}/verif.out'.format(work_dir)) # func = self.__run_FEM(X,self.id_sim, self.rv_name) # # Generate initial samples # t_tmp = time.time() X_fem, Y_fem ,self.id_sim= FEM_batch(X[n_ex:, :],self.id_sim) Y = np.vstack((Y_tmp,Y_fem)) X = np.vstack((X[0:n_ex, :],X_fem)) t_sim_all = time.time() - t_tmp if automate_doe: self.t_sim_each = t_sim_all / n_init else: self.t_sim_each = float("inf") # # Generate predictive samples # if self.do_predictive: n_pred = 100 Xt = np.zeros((n_pred, x_dim)) U = lhs(x_dim, samples=n_pred) for nx in range(x_dim): Xt[:, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] # # Yt = np.zeros((n_pred, y_dim)) # for ns in range(n_pred): # Yt[ns, :],self.id_sim = run_FEM(Xt[ns, :][np.newaxis],self.id_sim, self.rv_name) Yt = np.zeros((n_pred, y_dim)) Xt, Yt ,self.id_sim= FEM_batch(Xt,self.id_sim) else: # # READ SAMPLES FROM DIRECTORY # Y = read_txt(self.outData,errlog) if self.do_mf: if Y.shape[1] != self.Y_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} QoI column(s) but low fidelity model have {}.'.format( self.Y_hf.shape[1], Y.shape[1]) errlog.exit(msg) if Y.shape[1] != y_dim: msg = 'Error importing input data: Number of dimension inconsistent: have {} QoI(s) but {} column(s).' \ .format(y_dim, Y.shape[1]) errlog.exit(msg) if X.shape[0] != Y.shape[0]: msg = 'Error importing input data: numbers of samples of inputs ({}) and outputs ({}) are inconsistent'.format(X.shape[0], Y.shape[0]) errlog.exit(msg) thr_count = 0 self.t_sim_each = float("inf") # # GP function # if kernel == 'Radial Basis': kr = GPy.kern.RBF(input_dim=x_dim, ARD=True) elif kernel == 'Exponential': kr = GPy.kern.Exponential(input_dim=x_dim, ARD=True) elif kernel == 'Matern 3/2': kr = GPy.kern.Matern32(input_dim=x_dim, ARD=True) elif kernel == 'Matern 5/2': kr = GPy.kern.Matern52(input_dim=x_dim, ARD=True) if do_linear: kr = kr + GPy.kern.Linear(input_dim=x_dim, ARD=True) if not self.do_mf: kg = kr self.m_list = list() for i in range(y_dim): self.m_list = self.m_list + [GPy.models.GPRegression(X, Y[:, i][np.newaxis].transpose(), kernel=kg.copy(),normalizer=True)] for parname in self.m_list[i].parameter_names(): if parname.endswith('lengthscale'): exec('self.m_list[i].' + parname + '=self.len') else: kgs = emf.kernels.LinearMultiFidelityKernel([kr.copy(), kr.copy()]) if not self.hf_is_model: if not X.shape[1]==self.X_hf.shape[1]: msg = 'Error importing input data: dimension of low ({}) and high ({}) fidelity models (datasets) are inconsistent'.format(X.shape[1], self.X_hf.shape[1]) errlog.exit(msg) if not self.lf_is_model: if not X.shape[1]==self.X_lf.shape[1]: msg = 'Error importing input data: dimension of low ({}) and high ({}) fidelity models (datasets) are inconsistent'.format(X.shape[1], self.X_hf.shape[1]) errlog.exit(msg) if self.mf_case == 'data-model' or self.mf_case=='data-data': X_list, Y_list = emf.convert_lists_to_array.convert_xy_lists_to_arrays([X, self.X_hf], [Y, self.Y_hf]) elif self.mf_case == 'model-data': X_list, Y_list = emf.convert_lists_to_array.convert_xy_lists_to_arrays([self.X_lf, X], [self.Y_lf, Y]) self.m_list = list() for i in range(y_dim): self.m_list = self.m_list + [GPyMultiOutputWrapper(emf.models.GPyLinearMultiFidelityModel(X_list, Y_list, kernel=kgs.copy(), n_fidelities=2), 2, n_optimization_restarts=15)] # # Verification measures # self.NRMSE_hist = np.zeros((1, y_dim), float) self.NRMSE_idx = np.zeros((1, 1), int) #leng_hist = np.zeros((1, self.m_list[0]._param_array_.shape[0]), int) if self.do_predictive: self.NRMSE_pred_hist = np.empty((1, y_dim), float) # # Run DoE # break_doe = False print("======== RUNNING GP DoE ===========") exit_code = 'count' # num iter i = 0 x_new = np.zeros((0,x_dim)) n_new = 0 doe_off = False # false if true while not doe_off: t = time.time() if self.doe_method == "random": do_cal = True elif self.doe_method == "pareto": do_cal = True elif np.mod(i, self.cal_interval) == 0: do_cal = True else: do_cal = False t_tmp = time.time() [x_new, self.m_list, err, idx, Y_cv, Y_cv_var] = self.__design_of_experiments(X, Y, ac, ar, n_candi, n_integ, self.m_list, do_cal, nugget_opt, do_doe) t_doe = time.time() - t_tmp print('DoE Time: {:.2f} s'.format(t_doe)) if automate_doe: if t_doe > self.t_sim_each: break_doe = True print('========>> DOE OFF') n_left = n_iter - i break if not self.do_mf: NRMSE_val = self.__normalized_mean_sq_error(Y_cv, Y) else: if self.mf_case == 'data-model' or self.mf_case == 'data-data': NRMSE_val = self.__normalized_mean_sq_error(Y_cv, self.Y_hf) elif self.mf_case == 'model-data' : NRMSE_val = self.__normalized_mean_sq_error(Y_cv, Y) self.NRMSE_hist = np.vstack((self.NRMSE_hist, np.array(NRMSE_val))) self.NRMSE_idx = np.vstack((self.NRMSE_idx, i)) if self.do_predictive: Yt_pred = np.zeros((n_pred, y_dim)) for ny in range(y_dim): y_pred_tmp, dummy = self.__predict(self.m_list[ny],Xt) Yt_pred[:, ny] = y_pred_tmp.transpose() if self.do_logtransform: Yt_pred = np.exp(Yt_pred) NRMSE_pred_val = self.__normalized_mean_sq_error(Yt_pred, Yt) self.NRMSE_pred_hist = np.vstack((self.NRMSE_pred_hist, np.array(NRMSE_pred_val))) if self.id_sim >= thr_count: n_iter = i exit_code = 'count' doe_off = True if not do_cal: break_doe = False n_left = 0 break if np.max(NRMSE_val) < thr_NRMSE: n_iter = i exit_code = 'accuracy' doe_off = True if not do_cal: break_doe = False n_left = n_iter - i break if time.time() - t_init > thr_t - self.calib_time: n_iter = i exit_code = 'time' doe_off = True if not do_cal: break_doe = False n_left = n_iter - i break n_new = x_new.shape[0] if not (n_new + self.id_sim < n_init + n_iter +1): n_new = n_init + n_iter - self.id_sim x_new = x_new[0:n_new, :] i = self.id_sim + n_new # y_new = np.zeros((n_new, y_dim)) # for ny in range(n_new): # y_new[ny, :],self.id_sim = run_FEM(x_new[ny, :][np.newaxis],self.id_sim, self.rv_name) x_new, y_new, self.id_sim = FEM_batch(x_new,self.id_sim) #print(">> {:.2f} s".format(time.time() - t_init)) X = np.vstack([X, x_new]) Y = np.vstack([Y, y_new]) print("======== RUNNING GP Calibration ===========") # not used if break_doe: X_tmp = np.zeros((n_left, x_dim)) Y_tmp = np.zeros((n_left, y_dim)) U = lhs(x_dim, samples=n_left) for nx in range(x_dim): # X[:,nx] = np.random.uniform(xrange[nx,0], xrange[nx,1], (1, n_init)) X_tmp[:, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] X_tmp, Y_tmp, self.id_sim = FEM_batch(X_tmp,self.id_sim) # for ns in np.arange(n_left): # Y_tmp[ns, :],self.id_sim = run_FEM(X_tmp[ns, :][np.newaxis],self.id_sim, self.rv_name) # print(">> {:.2f} s".format(time.time() - t_init)) # if time.time() - t_init > thr_t - self.calib_time: # X_tmp = X_tmp[:ns, :] # Y_tmp = Y_tmp[:ns, :] # break X = np.vstack((X, X_tmp)) Y = np.vstack((Y, Y_tmp)) do_doe = False # if not do_doe: # exit_code = 'count' # # do_cal = True # self.t_sim_each = float("inf") # so that calibration is not terminated in the middle # self.m_list, Y_cv, Y_cv_var = self.__design_of_experiments(X, Y, 1, 1, 1, 1, self.m_list, do_cal, # do_nugget, do_doe) # if not self.do_mf: # NRMSE_val = self.__normalized_mean_sq_error(Y_cv, Y) # else: # NRMSE_val = self.__normalized_mean_sq_error(Y_cv, self.Y_hf) sim_time = time.time() - t_init n_samp = Y.shape[0] # import matplotlib.pyplot as plt # if self.x_dim==1: # if self.do_mf: # for ny in range(y_dim): # # x_plot = np.linspace(0, 1, 200)[:, np.newaxis] # X_plot = convert_x_list_to_array([x_plot, x_plot]) # X_plot_l = X_plot[:len(x_plot)] # X_plot_h = X_plot[len(x_plot):] # # lf_mean_lin_mf_model, lf_var_lin_mf_model = self.__predict(self.m_list[ny],X_plot_l) # lf_std_lin_mf_model = np.sqrt(lf_var_lin_mf_model) # hf_mean_lin_mf_model, hf_var_lin_mf_model = self.__predict(self.m_list[ny],X_plot_h) # hf_std_lin_mf_model = np.sqrt(hf_var_lin_mf_model) # # # plt.plot(x_plot, lf_mean_lin_mf_model); # plt.plot(x_plot, hf_mean_lin_mf_model, '-'); # plt.plot(X, Y[:,ny], 'x'); # plt.plot(self.X_hf,self.Y_hf[:,ny], 'x'); # plt.show() # else: # for ny in range(y_dim): # x_plot = np.linspace(0, 1, 200)[:, np.newaxis] # # hf_mean_lin_mf_model, hf_var_lin_mf_model = self.__predict(self.m_list[ny], x_plot) # # plt.plot(x_plot, hf_mean_lin_mf_model, '-'); # plt.plot(X, Y[:, ny], 'x'); # plt.show() # # # plt.plot(Y_cv[:,0], self.Y_hf[:,0], 'x'); plt.show() # plt.show() # plt.plot(Y_cv[:,1], Y[:,1], 'x') # plt.show() print('my exit code = {}'.format(exit_code)) print('1. count = {}'.format(self.id_sim)) print('2. max(NRMSE) = {}'.format(np.max(NRMSE_val))) print('3. time = {:.2f} s'.format(sim_time)) # for user information if do_simulation: n_err = 1000 Xerr = np.zeros((n_err, x_dim)) U = lhs(x_dim, samples=n_err) for nx in range(x_dim): Xerr[:, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] y_pred_var = np.zeros((n_err, y_dim)) y_data_var = np.zeros((n_err, y_dim)) for ny in range(y_dim): # m_tmp = self.m_list[ny].copy() m_tmp = self.m_list[ny] if self.do_logtransform: #y_var_val = np.var(np.log(Y[:, ny])) log_mean = np.mean(np.log(Y[:, ny])) log_var = np.var(np.log(Y[:, ny])) y_var_val = np.exp(2*log_mean+log_var)*(np.exp(log_var)-1) # in linear space else: y_var_val = np.var(Y[:, ny]) for ns in range(n_err): y_pred_tmp, y_pred_var_tmp = self.__predict(m_tmp,Xerr[ns, :][np.newaxis]) if self.do_logtransform: y_pred_var[ns, ny] = np.exp(2 * y_pred_tmp + y_pred_var_tmp) * (np.exp(y_pred_var_tmp) - 1) else: y_pred_var[ns, ny] = y_pred_var_tmp y_data_var[ns, ny] = y_var_val #for parname in m_tmp.parameter_names(): # if ('Mat52' in parname) and parname.endswith('variance'): # exec('y_pred_prior_var[ns,ny]=m_tmp.' + parname) #error_ratio1_Pr = (y_pred_var / y_pred_prior_var) error_ratio2_Pr = (y_pred_var / y_data_var) #np.max(error_ratio1_Pr, axis=0) np.max(error_ratio2_Pr, axis=0) self.perc_thr = np.hstack([np.array([1]), np.arange(10, 1000, 50), np.array([999])]) error_sorted = np.sort(np.max(error_ratio2_Pr, axis=1), axis=0) self.perc_val = error_sorted[self.perc_thr] # criteria self.perc_thr = 1 - (self.perc_thr) * 0.001 # ratio=simulation/sampling corr_val = np.zeros((y_dim,)) R2_val = np.zeros((y_dim,)) for ny in range(y_dim): if not self.do_mf: Y_ex = Y[:, ny] else: if self.mf_case == 'data-model' or self.mf_case == 'data-data': Y_ex = self.Y_hf[:, ny] elif self.mf_case == 'model-data': Y_ex = Y[:, ny] corr_val[ny] = np.corrcoef(Y_ex, Y_cv[:, ny])[0, 1] R2_val[ny] = 1 - np.sum(pow(Y_cv[:, ny] - Y_ex, 2)) / np.sum(pow(Y_cv[:, ny] - np.mean(Y_cv[:, ny]), 2)) if np.var(Y_ex)==0: corr_val[ny] = 1 R2_val[ny] = 0 self.kernel = kernel self.NRMSE_val = NRMSE_val self.corr_val = corr_val self.R2_val = R2_val self.Y_loo = Y_cv self.X = X self.Y = Y self.do_sampling = do_sampling self.do_simulation = do_simulation self.do_doe = do_doe self.do_linear = do_linear self.exit_code = exit_code self.thr_count = thr_count self.thr_NRMSE = thr_NRMSE self.thr_t = thr_t self.NRMSE_val = NRMSE_val self.sim_time = sim_time self.n_samp = n_samp self.n_sim = self.id_sim self.y_loo = Y_cv self.y_exa = Y self.Y_loo_var = Y_cv_var self.rvName = [] self.rvDist = [] self.rvVal = [] for nx in range(x_dim): rvInfo = inp["randomVariables"][nx] self.rvName = self.rvName + [rvInfo["name"]] self.rvDist = self.rvDist + [rvInfo["distribution"]] if do_sampling: self.rvVal = self.rvVal + [(rvInfo["upperbound"] + rvInfo["lowerbound"]) / 2] else: self.rvVal = self.rvVal + [np.mean(X[:, nx])] def __parameter_calibration(self, m_tmp_list, x_dim, nugget_opt): warnings.filterwarnings("ignore") t_opt = time.time() m_list = list() for ny in range(self.y_dim): print("y dimension {}:".format(ny)) nopt = 10 # # previous optimal # nugget_opt_tmp = nugget_opt if not self.do_mf: if np.var(m_tmp_list[ny].Y) == 0: nugget_opt_tmp = "Zero" for parname in m_tmp_list[ny].parameter_names(): if parname.endswith('variance'): m_tmp_list[ny][parname].constrain_fixed(0) m_init = m_tmp_list[ny] m_tmp = m_init if nugget_opt_tmp == "Optimize": m_tmp['Gaussian_noise.variance'].unfix() elif nugget_opt_tmp == "Fixed Values": m_tmp['Gaussian_noise.variance'].constrain_fixed(self.nuggetVal[ny]) elif nugget_opt_tmp == "Fixed Bounds": m_tmp['Gaussian_noise.variance'].constrain_bounded(self.nuggetVal[ny][0], self.nuggetVal[ny][1]) elif nugget_opt_tmp == "Zero": m_tmp['Gaussian_noise.variance'].constrain_fixed(0) m_tmp.optimize(clear_after_finish=True) # m_tmp.optimize_restarts(5) max_log_likli = m_tmp.log_likelihood() t_unfix = time.time() m = m_tmp.copy() id_opt = 1 print('{} among {} Log-Likelihood: {}'.format(1, nopt, m_tmp.log_likelihood())) #print(' Calibration time for each: {:.2f} s'.format(time.time() - t_unfix)) if time.time() - t_unfix > self.t_sim_each: nopt = 1 # # initial try # for parname in m_tmp.parameter_names(): if parname.endswith('lengthscale'): exec('m_tmp.' + parname + '=self.len') if nugget_opt_tmp == "Optimize": m_tmp['Gaussian_noise.variance'].unfix() elif nugget_opt_tmp == "Fixed Values": m_tmp['Gaussian_noise.variance'].constrain_fixed(self.nuggetVal[ny]) elif nugget_opt_tmp == "Fixed Bounds": m_tmp['Gaussian_noise.variance'].constrain_bounded(self.nuggetVal[ny][0], self.nuggetVal[ny][1]) elif nugget_opt_tmp == "Zero": m_tmp['Gaussian_noise.variance'].constrain_fixed(0) m_tmp.optimize(clear_after_finish=True) # m_tmp.optimize_restarts(5) t_unfix = time.time() if m_tmp.log_likelihood() > max_log_likli: max_log_likli = m_tmp.log_likelihood() m = m_tmp.copy() id_opt = 1 print('{} among {} Log-Likelihood: {}'.format(2, nopt, m_tmp.log_likelihood())) #print(' Calibration time for each: {:.2f} s'.format(time.time() - t_unfix)) if time.time() - t_unfix > self.t_sim_each: nopt = 1 for no in range(nopt - 2): # m_tmp=m.copy() # m.randomize() for parname in m_tmp.parameter_names(): if parname.endswith('lengthscale'): if math.isnan(m.log_likelihood()): exec('m_tmp.' + parname + '=np.random.exponential(1, (1, x_dim)) * m_init.' + parname) else: exec('m_tmp.' + parname + '=np.random.exponential(1, (1, x_dim)) * m.' + parname) if nugget_opt_tmp == "Optimize": m_tmp['Gaussian_noise.variance'].unfix() elif nugget_opt_tmp == "Fixed Values": m_tmp['Gaussian_noise.variance'].constrain_fixed(self.nuggetVal[ny]) elif nugget_opt_tmp == "Fixed Bounds": m_tmp['Gaussian_noise.variance'].constrain_bounded(self.nuggetVal[ny][0], self.nuggetVal[ny][1]) elif nugget_opt_tmp == "Zero": m_tmp['Gaussian_noise.variance'].constrain_fixed(0) t_fix = time.time() try: m_tmp.optimize() # m_tmp.optimize_restarts(5) except Exception as ex: print("OS error: {0}".format(ex)) print('{} among {} Log-Likelihood: {}'.format(no + 3, nopt, m_tmp.log_likelihood())) #print(' Calibration time for each: {:.2f} s'.format(time.time() - t_fix)) if m_tmp.log_likelihood() > max_log_likli: max_log_likli = m_tmp.log_likelihood() m = m_tmp.copy() id_opt = no if time.time() - t_unfix > self.t_sim_each: nopt = 2 + no break if math.isinf(-max_log_likli) or math.isnan(-max_log_likli): #msg = "Error GP optimization failed, perhaps QoI values are zero." if np.var(m_tmp.Y) != 0: msg = "Error GP optimization failed for QoI #{}".format(ny+1) self.errlog.exit(msg) m_list = m_list + [m] print(m) else: if nugget_opt_tmp == "Optimize": m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise.unfix() m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise_1.unfix() elif nugget_opt_tmp == "Fixed Values": m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise.constrain_fixed(self.nuggetVal[ny]) m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise_1.constrain_fixed(self.nuggetVal[ny]) elif nugget_opt_tmp == "Fixed Bounds": m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise.constrain_bounded(self.nuggetVal[ny][0], self.nuggetVal[ny][1]) m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise_1.constrain_bounded(self.nuggetVal[ny][0], self.nuggetVal[ny][1]) elif nugget_opt_tmp == "Zero": m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise.constrain_fixed(0) m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise_1.constrain_fixed(0) # # if not do_nugget: # m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise.fix(0) # m_tmp_list[ny].gpy_model.mixed_noise.Gaussian_noise_1.fix(0) m_tmp_list[ny].optimize() nopt = 5 id_opt = 0 self.calib_time = (time.time() - t_opt) * round(10 / nopt) print(' Calibration time: {:.2f} s, id_opt={}'.format(self.calib_time, id_opt)) return m_tmp_list def __design_of_experiments(self, X, Y, ac, ar, n_candi, n_integ, pre_m_list, do_cal, nugget_opt, do_doe): # do log transform if self.do_logtransform: if np.min(Y)<0: msg = 'Error running SimCenterUQ. Response contains negative values. Please uncheck the log-transform option in the UQ tab' errlog.exit(msg) Y = np.log(Y) if self.do_mf: if self.mf_case == 'data-model' or self.mf_case == 'data-data': if np.min(self.Y_hf)<0: msg = 'Error running SimCenterUQ. Response contains negative values. Please uncheck the log-transform option in the UQ tab' errlog.exit(msg) self.Y_hf = np.log(self.Y_hf) elif self.mf_case == 'mode-data': if np.min(self.Y_lf) < 0: msg = 'Error running SimCenterUQ. Response contains negative values. Please uncheck the log-transform option in the UQ tab' errlog.exit(msg) self.Y_lf = np.log(self.Y_lf) r = 1 # adaptively y_dim = Y.shape[1] x_dim = X.shape[1] m_tmp_list = pre_m_list for i in range(y_dim): if not self.do_mf: m_tmp_list[i].set_XY(X, Y[:, i][np.newaxis].transpose()) else: if self.mf_case == 'data-model' or self.mf_case == 'data-data': X_list_tmp, Y_list_tmp = emf.convert_lists_to_array.convert_xy_lists_to_arrays([X, self.X_hf], [Y[:, i][np.newaxis].transpose(), self.Y_hf[:, i][np.newaxis].transpose()]) elif self.mf_case == 'model-data': X_list_tmp, Y_list_tmp = emf.convert_lists_to_array.convert_xy_lists_to_arrays([self.X_lf, X], [self.Y_lf[:, i][np.newaxis].transpose(),Y[:, i][np.newaxis].transpose()]) m_tmp_list[i].set_data(X=X_list_tmp,Y=Y_list_tmp) if do_cal: m_list = self.__parameter_calibration(m_tmp_list, x_dim, nugget_opt) else: m_list = m_tmp_list.copy() # # cross validation errors # Y_pred, Y_pred_var, e2 = self.__get_cross_validation(X,Y,m_list) if self.do_logtransform: mu = Y_pred sig2 = Y_pred_var median = np.exp(mu) mean = np.exp(mu + sig2/2) var = np.exp(2*mu + sig2)*(np.exp(sig2)-1) Y_pred = median Y_pred_var = var if self.do_mf: if self.mf_case == 'data-model' or self.mf_case == 'data-data': self.Y_hf = np.exp(self.Y_hf) elif self.mf_case == 'model-data': self.Y_lf = np.exp(self.Y_lf) if not do_doe: return 0, m_list, 0, 0, Y_pred, Y_pred_var # # candidates of DoE # y_var = np.var(Y, axis=0) # normalization y_idx = np.argmax(np.sum(e2 / y_var, axis=0)) # dimension of interest m_tmp_list = m_list.copy() m_idx = m_tmp_list[y_idx] # # SCREENING score_tmp function of each candidate # nc1 = round(n_candi) self.doe_method = self.doe_method.lower() if self.doe_method == "pareto": # # Initial candidates # xc1 = np.zeros((nc1, x_dim)) for nx in range(x_dim): xc1[:, nx] = np.random.uniform(self.xrange[nx, 0], self.xrange[nx, 1], (1, nc1)) # LHS nq = round(n_integ) xq = np.zeros((nq, x_dim)) for nx in range(x_dim): xq[:, nx] = np.random.uniform(self.xrange[nx, 0], self.xrange[nx, 1], (1, nq)) # # Lets Do Pareto # yc1_pred, yc1_var = self.__predict(m_idx, xc1) # use only variance score1 = np.zeros(yc1_pred.shape) cri1 = np.zeros(yc1_pred.shape) cri2 = np.zeros(yc1_pred.shape) # TODO: is this the best? ll = self.xrange[:, 1] - self.xrange[:, 0] for i in range(nc1): if not self.do_mf: wei = self.weights_node2(xc1[i, :], X, ll) #phi = e2[closest_node(xc1[i, :], X, ll)] #phi = e2[self.__closest_node(xc1[i, :], X)] else: if self.mf_case == 'data-model' or self.mf_case == 'data-data': wei = self.weights_node2(xc1[i, :], self.X_hf, ll) #phi = e2[closest_node(xc1[i, :], self.X_hf, ll)] #phi = e2[self.__closest_node(xc1[i, :], self.X_hf)] elif self.mf_case == 'model-data': wei = self.weights_node2(xc1[i, :], X, ll) #phi = e2[closest_node(xc1[i, :], X, ll)] #phi = e2[self.__closest_node(xc1[i, :], X)] #cri1[i] = yc1_var[i] cri2[i] = sum(e2[:, y_idx] / Y_pred_var[:, y_idx] * wei.T) #cri2[i] = pow(phi[y_idx],r) VOI = np.zeros(yc1_pred.shape) for i in range(nc1): pdfvals = m_idx.kern.K(np.array([xq[i]]), xq)**2/m_idx.kern.K(np.array([xq[0]]))**2 VOI[i] = np.mean(pdfvals)*np.prod(np.diff(self.xrange,axis=1)) # * np.prod(np.diff(self.xrange)) cri1[i] = yc1_var[i] * VOI[i] cri1 = (cri1-np.min(cri1))/(np.max(cri1)-np.min(cri1)) cri2 = (cri2-np.min(cri2))/(np.max(cri2)-np.min(cri2)) logcrimi1 = np.log(cri1[:, 0]) logcrimi2 = np.log(cri2[:, 0]) idx_pareto_front = list() rankid = np.zeros(nc1) varRank = np.zeros(nc1) biasRank = np.zeros(nc1) for id in range(nc1): idx_tmp = np.argwhere((logcrimi1 >= logcrimi1[id]) * (logcrimi2 >= logcrimi2[id])) varRank[id] = np.sum((logcrimi1 >= logcrimi1[id])) biasRank[id] = np.sum((logcrimi2 >= logcrimi2[id])) rankid[id] = idx_tmp.size idx_rank = np.argsort(rankid) sort_rank = np.sort(rankid) num_1rank = np.sum(rankid==1) idx_1rank = list((np.argwhere(rankid==1)).flatten()) npareto = 4 if num_1rank < self.cal_interval: prob = np.ones((nc1,)) prob[list(rankid==1)]=0 prob=prob/sum(prob) idx_pareto = idx_1rank + list(np.random.choice(nc1, self.cal_interval-num_1rank, p=prob)) else: idx_pareto_candi = idx_1rank.copy() X_tmp = X Y_tmp = Y[:,y_idx][np.newaxis].T m_tmp = m_idx.copy() # get MMSEw score = np.squeeze(cri1*cri2) score_candi = score[idx_pareto_candi] best_local = np.argsort(-score_candi)[0] best_global = idx_1rank[best_local] idx_pareto_new = [best_global] del idx_pareto_candi[best_local] for i in range(self.cal_interval-1): X_tmp = np.vstack([X_tmp, xc1[best_global, :][np.newaxis]]) Y_tmp = np.vstack([Y_tmp, np.array([[0]]) ]) # any variables m_tmp.set_XY(X=X_tmp, Y=Y_tmp) dummy, Yq_var = m_tmp.predict(xc1[idx_pareto_candi, :]) cri1 = Yq_var * VOI[idx_pareto_candi] cri1 = (cri1 - np.min(cri1)) / (np.max(cri1) - np.min(cri1)) score_tmp = cri1 * cri2[idx_pareto_candi] # only update the variance best_local = np.argsort(-np.squeeze(score_tmp))[0] best_global = idx_pareto_candi[best_local] idx_pareto_new = idx_pareto_new + [best_global] del idx_pareto_candi[best_local] #score_tmp = Yq_var * cri2[idx_pareto_left]/Y_pred_var[closest_node(xc1[i, :], X, self.m_list, self.xrange)] #idx_pareto = list(idx_rank[0:self.cal_interval]) idx_pareto = idx_pareto_new update_point = xc1[idx_pareto, :] update_IMSE = 0 # import matplotlib.pyplot as plt # plt.plot(logcrimi1, logcrimi2, 'x');plt.plot(logcrimi1[idx_pareto], logcrimi2[idx_pareto], 'x'); plt.show() # plt.plot(m_idx.X[:,0], m_idx.X[:,1], 'x'); plt.show() # plt.plot(X[:, 0],X[:, 1], 'ro'); # plt.scatter(xc1[:,0], xc1[:,1], c=cri2); plt.plot(xc1[rankid==0,0], xc1[rankid==0,1], 'rx'); plt.show() # plt.scatter(xc1[:,0], xc1[:,1], c=cri2); plt.plot(update_point[:,0], update_point[:,1], 'rx'); plt.show() # plt.scatter(xc1[:, 0], xc1[:, 1], c=cri2); plt.show() # ''' idx_pareto = list() for id in range(nc1): idx_tmp = np.argwhere(logcrimi2 >= logcrimi2[id]) if np.sum(logcrimi1[idx_tmp[:, 0]] >= logcrimi1[id]) == 1: idx_pareto = idx_pareto + [id] if len(idx_pareto) == 0: idx_pareto = np.arange(self.cal_interval) if len(idx_pareto) > self.cal_interval: random_indices = random.sample(range(len(idx_pareto)), self.cal_interval) # get 2 random indices idx_pareto2 = np.asarray(random_indices) idx_pareto = np.asarray(idx_pareto) idx_pareto = list(idx_pareto[idx_pareto2[0:self.cal_interval]]) ''' elif self.doe_method == "imsew": nq = round(n_integ) m_stack = m_idx.copy() X_stack = X Y_stack = Y update_point = np.zeros((self.cal_interval,self.x_dim)) update_IMSE = np.zeros((self.cal_interval,1)) # # Initial candidates # for ni in range(self.cal_interval): # # Initial candidates # xc1 = np.zeros((nc1, x_dim)) for nx in range(x_dim): xc1[:, nx] = np.random.uniform(self.xrange[nx, 0], self.xrange[nx, 1], (1, nc1)) # LHS xq = np.zeros((nq, x_dim)) for nx in range(x_dim): xq[:, nx] = np.random.uniform(self.xrange[nx, 0], self.xrange[nx, 1], (1, nq)) #TODO: is diff(xrange) the best? ll = self.xrange[:, 1] - self.xrange[:, 0] phiq = np.zeros((nq, y_dim)) for i in range(nq): phiq[i,:] = e2[closest_node(xq[i, :], X, ll)] phiqr = pow(phiq[:, y_idx], r) if self.do_parallel: tmp = time.time() iterables = ((m_stack.copy(), xc1[i,:][np.newaxis], xq, phiqr, i) for i in range(nc1)) result_objs = list(self.pool.starmap(imse, iterables)) IMSEc1 = np.zeros(nc1) for IMSE_val, idx in result_objs: IMSEc1[idx] = IMSE_val print("IMSE: finding the next DOE {} in a parallel way.. time = {}".format(ni,time.time() -tmp)) # 7s # 3-4s else: tmp = time.time() phiqr = pow(phiq[:, y_idx], r) IMSEc1 = np.zeros(nc1) for i in range(nc1): IMSEc1[i], dummy = imse(m_stack.copy(), xc1[i,:][np.newaxis], xq, phiqr, i) print("IMSE: finding the next DOE {} in a serial way.. time = {}".format(ni,time.time() -tmp)) # 4s new_idx = np.argmin(IMSEc1, axis=0) x_point = xc1[new_idx, :][np.newaxis] X_stack = np.vstack([X_stack, x_point]) Y_stack = np.zeros((Y_stack.shape[0] + 1, Y.shape[1])) # any variables m_stack.set_XY(X=X_stack, Y=Y_stack) update_point[ni, :] = x_point update_IMSE[ni, :] = IMSEc1[new_idx] # import matplotlib.pyplot as plt; plt.scatter(xc1[:,0],xc1[:,1],c = IMSEc1); plt.show() # import matplotlib.pyplot as plt; plt.scatter(xc1[:,0],xc1[:,1],c = IMSEc1); plt.plot(update_point[:,0],update_point[:,1],'x'); plt.show() # import matplotlib.pyplot as plt; plt.scatter(X_stack[:,0],X_stack[:,1]); plt.show() ''' nc1 = round(n_candi) xc1 = np.zeros((nc1, x_dim)) for nx in range(x_dim): xc1[:, nx] = np.random.uniform(self.xrange[nx, 0], self.xrange[nx, 1], (1, nc1)) # LHS yc1_pred, yc1_var = self.__predict(m_idx, xc1) # use only variance score1 = np.zeros(yc1_pred.shape) cri1 = np.zeros(yc1_pred.shape) cri2 = np.zeros(yc1_pred.shape) for i in range(nc1): if not self.do_mf: phi = e2[self.__closest_node(xc1[i, :], X)] else: phi = e2[self.__closest_node(xc1[i, :], self.X_hf)] score1[i] = yc1_var[i] * pow(phi[y_idx], r) cri1[i] = yc1_var[i] cri2[i] = pow(phi[y_idx], r) sort_idx_score1 = np.argsort(-score1.T) # (-) sign to make it descending order nc2 = round(nc1 * ac) xc2 = xc1[sort_idx_score1[0, 0:nc2], :] score2 = score1[sort_idx_score1[0, 0:nc2]] nc3 = round(nc2 * ar) if ar != 1: xc2_norm = np.zeros((nc2, x_dim)) for nx in range(x_dim): xc2_norm[:, nx] = (xc2[:, nx] - self.xrange[nx, 0]) / ( self.xrange[nx, 1] - self.xrange[nx, 0]) # additional weights? # n_clusters =1 km_model = KMeans(n_clusters=max(1, nc3)) km_model.fit(xc2_norm) idx_cluster = km_model.predict(xc2_norm) global_idx_cluster = np.zeros((nc3, 1), dtype=np.int64) for i in range(nc3): ith_cluster_comps = np.where(idx_cluster == i)[0] idx = np.argsort(-score2[ith_cluster_comps].T)[0][0] global_idx_cluster[i, 0] = ith_cluster_comps[idx] xc3 = xc2[global_idx_cluster.T, :][0] score3 = score2[global_idx_cluster.T][0] else: xc3 = xc2 score3 = score2 # # get IMSE # nq = round(n_integ) xq = np.zeros((nq, x_dim)) for nx in range(x_dim): xq[:, nx] = np.random.uniform(self.xrange[nx, 0], self.xrange[nx, 1], (1, nq)) phi = np.zeros((nq, y_dim)) for i in range(nq): phi[i, :] = e2[self.__closest_node(xq[i, :], X)] IMSE = np.zeros((nc3,)) m_tmp = m_idx.copy() for i in range(nc3): X_tmp = np.vstack([X, xc3[i, :][np.newaxis]]) Y_tmp = np.zeros((Y.shape[0] + 1, Y.shape[1])) # any variables m_tmp.set_XY(X=X_tmp, Y=Y_tmp) dummy, Yq_var = m_tmp.predict(xq) IMSE[i] = 1 / nq * sum(pow(phi[:, y_idx], r) * Yq_var.T[0]) new_idx = np.argmin(IMSE, axis=0) print(np.min(IMSE)) update_point = xc3[new_idx, :][np.newaxis] update_IMSE = IMSE[new_idx] ''' elif self.doe_method == "random": update_point = xc1[0:self.cal_interval, :] update_IMSE = 0 elif self.doe_method == "mmse": sort_idx_score1 = np.argsort(-cri1.T) # (-) sign to make it descending order nc2 = round(nc1 * ac) xc2 = xc1[sort_idx_score1[0, 0:nc2], :] update_point = xc2[0:1, :] update_IMSE = 0 elif self.doe_method == "mmsew": # # Initial candidates # xc1 = np.zeros((nc1, x_dim)) for nx in range(x_dim): xc1[:, nx] = np.random.uniform(self.xrange[nx, 0], self.xrange[nx, 1], (1, nc1)) # LHS m_stack = m_idx.copy() ll = self.xrange[:, 1] - self.xrange[:, 0] phic = np.zeros((nc1, y_dim)) for i in range(nc1): phic[i, :] = e2[closest_node(xc1[i, :], X, ll)] phicr = pow(phic[:, y_idx], r) X_stack = X Y_stack = Y update_point = np.zeros((self.cal_interval,self.x_dim)) update_IMSE = np.zeros((self.cal_interval,1)) for ni in range(self.cal_interval): yc1_pred, yc1_var = m_stack.predict(xc1) # use only variance MMSEc1 = yc1_var.flatten() * phicr.flatten() new_idx = np.argmax(MMSEc1, axis=0) x_point = xc1[new_idx, :][np.newaxis] X_stack = np.vstack([X_stack, x_point]) Y_stack = np.zeros((Y_stack.shape[0] + 1, Y.shape[1])) # any variables m_stack.set_XY(X=X_stack, Y=Y_stack) update_point[ni, :] = x_point update_IMSE[ni, :] = MMSEc1[new_idx] else: msg = 'Error running SimCenterUQ: cannot identify the doe method <' + self.doe_method + '>' errlog.exit(msg) return update_point, m_list, update_IMSE, y_idx, Y_pred, Y_pred_var def __normalized_mean_sq_error(self, yp, ye): nt = yp.shape[0] data_bound = (np.max(ye, axis=0) - np.min(ye, axis=0)) RMSE = np.sqrt(1 / nt * np.sum(pow(yp - ye, 2), axis=0)) NRMSE =RMSE/data_bound NRMSE[np.argwhere((data_bound ==0))]=0 return NRMSE def __closest_node(self, node, nodes): nodes = np.asarray(nodes) deltas = nodes - node deltas_norm = np.zeros(deltas.shape) for nx in range(self.x_dim): deltas_norm[:, nx] = (deltas[:, nx]) / (self.xrange[nx, 1] - self.xrange[nx, 0]) # additional weights? # np.argmin(np.sum(pow(deltas_norm,2),axis=1)) dist_2 = np.einsum('ij,ij->i', deltas_norm, deltas_norm) return np.argmin(dist_2) def __from_XY_into_list(self, X, Y): x_list = list() y_list = list() for i in range(Y.shape[1]): x_list = x_list + [X, ] y_list = y_list + [Y[:, [i, ]], ] return x_list, y_list def __predict(self, m, X): if not self.do_mf: return m.predict(X) else: if self.mf_case == 'data-model' or self.mf_case == 'data-data': X_list = convert_x_list_to_array([X, X]) X_list_l = X_list[:X.shape[0]] X_list_h = X_list[X.shape[0]:] return m.predict(X_list_h) elif self.mf_case == 'model-data': #return m.predict(X) X_list = convert_x_list_to_array([X, X]) X_list_l = X_list[:X.shape[0]] X_list_h = X_list[X.shape[0]:] return m.predict(X_list_h) def __get_cross_validation(self,X,Y,m_list): if not self.do_mf: e2 = np.zeros(Y.shape) Y_pred = np.zeros(Y.shape) Y_pred_var = np.zeros(Y.shape) for ny in range(Y.shape[1]): m_tmp = m_list[ny].copy() for ns in range(X.shape[0]): X_tmp = np.delete(X, ns, axis=0) Y_tmp = np.delete(Y, ns, axis=0) m_tmp.set_XY(X=X_tmp, Y=Y_tmp[:, ny][np.newaxis].transpose()) x_loo = X[ns, :][np.newaxis] # Y_pred_tmp, Y_err_tmp = m_tmp.predict(x_loo) Y_pred_tmp, Y_err_tmp = self.__predict(m_tmp,x_loo) Y_pred[ns, ny] = Y_pred_tmp Y_pred_var[ns, ny] = Y_err_tmp e2[ns, ny] = pow((Y_pred[ns, ny] - Y[ns, ny]), 2) # for nD outputs else: if self.mf_case == 'data-model' or self.mf_case == 'data-data': e2 = np.zeros(self.Y_hf.shape) Y_pred = np.zeros(self.Y_hf.shape) Y_pred_var = np.zeros(self.Y_hf.shape) for ny in range(Y.shape[1]): m_tmp = deepcopy(m_list[ny]) for ns in range(self.X_hf.shape[0]): X_hf_tmp = np.delete(self.X_hf, ns, axis=0) Y_hf_tmp = np.delete(self.Y_hf, ns, axis=0) X_list_tmp, Y_list_tmp = emf.convert_lists_to_array.convert_xy_lists_to_arrays([X, X_hf_tmp], [Y[:, ny][np.newaxis].transpose(), Y_hf_tmp[:, ny][np.newaxis].transpose()]) m_tmp.set_data(X=X_list_tmp, Y=Y_list_tmp) x_loo = self.X_hf[ns][np.newaxis] Y_pred_tmp, Y_err_tmp = self.__predict(m_tmp,x_loo) Y_pred[ns,ny] = Y_pred_tmp Y_pred_var[ns,ny] = Y_err_tmp e2[ns,ny] = pow((Y_pred[ns,ny] - self.Y_hf[ns,ny]), 2) # for nD outputs elif self.mf_case == 'model-data': e2 = np.zeros(Y.shape) Y_pred = np.zeros(Y.shape) Y_pred_var = np.zeros(Y.shape) for ny in range(Y.shape[1]): m_tmp = deepcopy(m_list[ny]) for ns in range(X.shape[0]): X_tmp = np.delete(X, ns, axis=0) Y_tmp = np.delete(Y, ns, axis=0) X_list_tmp, Y_list_tmp = emf.convert_lists_to_array.convert_xy_lists_to_arrays([self.X_lf, X_tmp], [self.Y_lf[:, ny][np.newaxis].transpose(), Y_tmp[:, ny][np.newaxis].transpose()]) m_tmp.set_data(X=X_list_tmp, Y=Y_list_tmp) #x_loo = np.hstack((X[ns], 1))[np.newaxis] x_loo = self.X_hf[ns][np.newaxis] Y_pred_tmp, Y_err_tmp = self.__predict(m_tmp,x_loo) Y_pred[ns,ny] = Y_pred_tmp Y_pred_var[ns,ny] = Y_err_tmp e2[ns,ny] = pow((Y_pred[ns,ny] - Y[ns,ny]), 2) # for nD outputs return Y_pred, Y_pred_var, e2 def term(self): if self.do_parallel: if self.run_type != "runningLocal": print("RUNNING SUCCESSFUL") self.world.Abort(0) # to prevent deadlock def save_model(self, filename): import json with open(self.work_dir + '/' + filename + '.pkl', 'wb') as file: pickle.dump(self.m_list, file) # json.dump(self.m_list, file) header_string_x = ' ' + ' '.join([str(elem) for elem in self.rv_name]) + ' ' header_string_y = ' ' + ' '.join([str(elem) for elem in self.g_name]) header_string = header_string_x + header_string_y if not self.do_mf: xy_data = np.concatenate((np.asmatrix(np.arange(1, self.X.shape[0] + 1)).T, self.X, self.Y), axis=1) else: if not self.hf_is_model: xy_data = np.concatenate((np.asmatrix(np.arange(1, self.X_hf.shape[0] + 1)).T, self.X_hf, self.Y_hf), axis=1) else: xy_data = np.concatenate((np.asmatrix(np.arange(1, self.X.shape[0] + 1)).T, self.X, self.Y), axis=1) np.savetxt(self.work_dir + '/dakotaTab.out', xy_data, header=header_string, fmt='%1.4e', comments='%')
np.savetxt(self.work_dir + '/inputTab.out', self.X, header=header_string_x, fmt='%1.4e', comments='%')
numpy.savetxt
#!/usr/bin/env python # Copyrigh 2018 <EMAIL> # MIT Licence from __future__ import print_function import torch import numpy as np import pdb try: xrange except: xrange = range # python3 class AnchorGenerator: def __init__(self, num_anchors_per_frame=20, min_box_size=30, max_box_size=220, max_utt_length=1500, device="cuda"): self.num_anchors_per_frame = num_anchors_per_frame self.max_box_size = max_box_size self.min_box_size = min_box_size self.max_utt_length = max_utt_length x = self._generate_basic_anchors(num_anchors_per_frame, min_box_size, max_box_size) self.basic_anchors = torch.from_numpy(x).float() self._update(max_utt_length, device) def _generate_basic_anchors(self, num_anchors_per_frame, min_window_size, max_window_size): shift = (max_window_size-min_window_size)/1.0/(num_anchors_per_frame-1) start_indexes = np.arange(min_window_size, max_window_size+1, shift) basic_anchors = np.zeros([num_anchors_per_frame, 2]) basic_anchors[:,0]=-start_indexes basic_anchors[:,1]=0 return basic_anchors def _generate_log_anchors(self, num_anchors_per_frame, min_window_size, max_window_size): log_min = np.log(min_window_size) log_max = np.log(max_window_size) log_shift = (log_max-log_min)/1.0/(num_anchors_per_frame-1) log_start_indexes = np.arange(log_min, log_max+log_shift, log_shift) start_indexes = np.exp(log_start_indexes) basic_anchors =
np.zeros([num_anchors_per_frame, 2])
numpy.zeros
""" Lean rigid transformation class Author: Jeff """ import logging import os import numpy as np import scipy.linalg from . import utils from . import transformations from .points import BagOfPoints, BagOfVectors, Point, PointCloud, Direction, NormalCloud from .dual_quaternion import DualQuaternion try: from geometry_msgs import msg except: logging.warning('Failed to import geometry msgs in rigid_transformations.py.') try: import rospy import rosservice except ImportError: logging.warning("Failed to import ros dependencies in rigid_transforms.py") try: from autolab_core.srv import * except ImportError: logging.warning("autolab_core not installed as catkin package, RigidTransform ros methods will be unavailable") import subprocess TF_EXTENSION = '.tf' STF_EXTENSION = '.stf' class RigidTransform(object): """A Rigid Transformation from one frame to another. """ def __init__(self, rotation=np.eye(3), translation=np.zeros(3), from_frame='unassigned', to_frame='world'): """Initialize a RigidTransform. Parameters ---------- rotation : :obj:`numpy.ndarray` of float A 3x3 rotation matrix (should be unitary). translation : :obj:`numpy.ndarray` of float A 3-entry translation vector. from_frame : :obj:`str` A name for the frame of reference on which this transform operates. This and to_frame are used for checking compositions of RigidTransforms, which is useful for debugging and catching errors. to_frame : :obj:`str` A name for the frame of reference to which this transform moves objects. Raises ------ ValueError If any of the arguments are invalid. The frames must be strings or unicode, the translations and rotations must be ndarrays, have the correct shape, and the determinant of the rotation matrix should be 1.0. """ if not isinstance(from_frame, str) and not isinstance(from_frame, unicode): raise ValueError('Must provide string name of input frame of data') if not isinstance(to_frame, str) and not isinstance(to_frame, unicode): raise ValueError('Must provide string name of output frame of data') self.rotation = rotation self.translation = translation self._from_frame = str(from_frame) self._to_frame = str(to_frame) def copy(self): """Returns a copy of the RigidTransform. Returns ------- :obj:`RigidTransform` A deep copy of the RigidTransform. """ return RigidTransform(np.copy(self.rotation), np.copy(self.translation), self.from_frame, self.to_frame) def _check_valid_rotation(self, rotation): """Checks that the given rotation matrix is valid. """ if not isinstance(rotation, np.ndarray) or not np.issubdtype(rotation.dtype, np.number): raise ValueError('Rotation must be specified as numeric numpy array') if len(rotation.shape) != 2 or rotation.shape[0] != 3 or rotation.shape[1] != 3: raise ValueError('Rotation must be specified as a 3x3 ndarray') if np.abs(np.linalg.det(rotation) - 1.0) > 1e-3: raise ValueError('Illegal rotation. Must have determinant == 1.0') def _check_valid_translation(self, translation): """Checks that the translation vector is valid. """ if not isinstance(translation, np.ndarray) or not np.issubdtype(translation.dtype, np.number): raise ValueError('Translation must be specified as numeric numpy array') t = translation.squeeze() if len(t.shape) != 1 or t.shape[0] != 3: raise ValueError('Translation must be specified as a 3-vector, 3x1 ndarray, or 1x3 ndarray') @property def rotation(self): """:obj:`numpy.ndarray` of float: A 3x3 rotation matrix. """ return self._rotation @rotation.setter def rotation(self, rotation): # Convert quaternions if len(rotation) == 4: q = np.array([q for q in rotation]) if np.abs(np.linalg.norm(q) - 1.0) > 1e-3: raise ValueError('Invalid quaternion. Must be norm 1.0') rotation = RigidTransform.rotation_from_quaternion(q) # Convert lists and tuples if type(rotation) in (list, tuple): rotation = np.array(rotation).astype(np.float32) self._check_valid_rotation(rotation) self._rotation = rotation * 1. @property def translation(self): """:obj:`numpy.ndarray` of float: A 3-ndarray that represents the transform's translation vector. """ return self._translation @translation.setter def translation(self, translation): # Convert lists to translation arrays if type(translation) in (list, tuple) and len(translation) == 3: translation = np.array([t for t in translation]).astype(np.float32) self._check_valid_translation(translation) self._translation = translation.squeeze() * 1. @property def position(self): """:obj:`numpy.ndarray` of float: A 3-ndarray that represents the transform's translation vector (same as translation). """ return self._translation @position.setter def position(self, position): self.translation = position @property def adjoint_tf(self): A = np.zeros([6,6]) A[:3,:3] = self.rotation A[3:,:3] = utils.skew(self.translation).dot(self.rotation) A[3:,3:] = self.rotation return A @property def from_frame(self): """:obj:`str`: The identifier for the 'from' frame of reference. """ return self._from_frame @from_frame.setter def from_frame(self, from_frame): self._from_frame = str(from_frame) @property def to_frame(self): """:obj:`str`: The identifier for the 'to' frame of reference. """ return self._to_frame @to_frame.setter def to_frame(self, to_frame): self._to_frame = str(to_frame) @property def euler_angles(self): """:obj:`tuple` of float: The three euler angles for the rotation. """ q_wxyz = self.quaternion q_xyzw = np.roll(q_wxyz, -1) return transformations.euler_from_quaternion(q_xyzw) @property def quaternion(self): """:obj:`numpy.ndarray` of float: A quaternion vector in wxyz layout. """ q_xyzw = transformations.quaternion_from_matrix(self.matrix) q_wxyz = np.roll(q_xyzw, 1) return q_wxyz @property def dual_quaternion(self): """:obj:`DualQuaternion`: The DualQuaternion corresponding to this transform. """ qr = self.quaternion qd = np.append([0], self.translation / 2.) return DualQuaternion(qr, qd) @property def axis_angle(self): """:obj:`numpy.ndarray` of float: The axis-angle representation for the rotation. """ qw, qx, qy, qz = self.quaternion theta = 2 *
np.arccos(qw)
numpy.arccos
import os import sys import time import pdb import gc import numpy as np import faiss import argparse import resource import benchmark.datasets from benchmark.datasets import DATASETS from benchmark.plotting import eval_range_search #################################################################### # Index building functions #################################################################### def two_level_clustering(xt, nc1, nc2, clustering_niter=25, spherical=False): d = xt.shape[1] print(f"2-level clustering of {xt.shape} nb clusters = {nc1}*{nc2} = {nc1*nc2}") print("perform coarse training") km = faiss.Kmeans( d, nc1, verbose=True, niter=clustering_niter, max_points_per_centroid=2000, spherical=spherical ) km.train(xt) print() # coarse centroids centroids1 = km.centroids print("assigning the training set") t0 = time.time() _, assign1 = km.assign(xt) bc = np.bincount(assign1, minlength=nc1) print(f"done in {time.time() - t0:.2f} s. Sizes of clusters {min(bc)}-{max(bc)}") o = assign1.argsort() del km # train sub-clusters i0 = 0 c2 = [] t0 = time.time() for c1 in range(nc1): print(f"[{time.time() - t0:.2f} s] training sub-cluster {c1}/{nc1}\r", end="", flush=True) i1 = i0 + bc[c1] subset = o[i0:i1] assert
np.all(assign1[subset] == c1)
numpy.all
from junctiontree import computation as comp import numpy as np from .util import assert_potentials_equal def get_arrays_and_vars(tree, node_list, potentials): """Get all arrays and their variables as a flat list Output: [array1, vars1, ..., arrayN, varsN] """ return list([potentials[tree[0]],node_list[tree[0]]]) + sum( [ get_arrays_and_vars(child_tree, node_list, potentials) for child_tree in tree[1:] ], [] ) def brute_force_sum_product(tree, node_list, potentials): """Compute brute force sum-product with einsum """ # Function to compute the sum-product with brute force einsum arrays_vars = get_arrays_and_vars(tree, node_list, potentials) f = lambda output_vars: np.einsum(*(arrays_vars + [output_vars])) def __run(tree, node_list, p, f, res=[]): res.append(f(node_list[tree[0]])) for child_tree in tree[1:]: __run(child_tree, node_list, p, f, res) return res return __run(tree, node_list, potentials, f) def assert_sum_product(tree, node_order, potentials, variables): """ Test shafer-shenoy vs brute force sum-product """ # node_order represents the order nodes are traversed # in get_arrays_and_vars function assert_potentials_equal( brute_force_sum_product( tree, [variables[idx] for idx in node_order], [potentials[idx] for idx in node_order] ), comp.compute_beliefs(tree, potentials, variables) ) def test_one_scalar_node(): assert_sum_product( [ 0, ], [0], [ np.random.randn(), ], [[]] # no variables for scalar ) def test_one_matrix_node(): assert_sum_product( [ 0, ], [0], [ np.random.randn(2, 3), ], [ [3,5] ] ) def test_one_child_node_with_all_variables_shared(): assert_sum_product( [ 0, ( 2, [ 1, ] ) ], [0,2,1], [ np.random.randn(2, 3), np.random.randn(3, 2), np.ones((3, 2)), ], [ [3,5], [5,3], [5,3] ] ) def test_one_child_node_with_one_common_variable(): assert_sum_product( [ 0, ( 2, [ 1, ] ) ], [0,2,1], [ np.random.randn(2, 3), np.random.randn(3, 4), np.ones((3,)), ], [ [3,5], [5,9], [5] ] ) def test_one_child_node_with_no_common_variable(): assert_sum_product( [ 0, ( 2, [ 1, ] ) ], [0,2,1], [ np.random.randn(2), np.random.randn(3), np.ones(()), ], [ [3], [9], [] ] ) def test_one_grand_child_node_with_no_variable_shared_with_grand_parent(): assert_sum_product( [ 0, ( 3, [ 1, ( 4, [ 2, ] ) ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3), np.random.randn(3, 4), np.random.randn(4, 5), np.ones((3,)), np.ones((4,)), ], [ [3, 5], [5, 9], [9, 1], [5], [9] ] ) def test_one_grand_child_node_with_variable_shared_with_grand_parent(): assert_sum_product( [ 0, ( 3, [ 1, ( 4, [ 2, ] ) ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3), np.random.randn(3, 4), np.random.randn(6, 3), np.ones((3,)), np.ones((3,)), ], [ [3, 5], [5, 9], [1, 5], [5], [5] ] ) def test_two_children_with_no_variable_shared(): assert_sum_product( [ 0, ( 3, [ 1, ] ), ( 4, [ 2, ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3), np.random.randn(3, 4), np.random.randn(2, 5), np.ones((3,)), np.ones((2,)), ], [ [3, 5], [5, 9], [3, 1], [5], [3] ] ) def test_two_child_with_shared_variable(): assert_sum_product( [ 0, ( 3, [ 1, ] ), ( 4, [ 2, ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3), np.random.randn(3, 4), np.random.randn(3), np.ones((3,)), np.ones((3,)), ], [ [3, 5], [5, 9], [5], [5], [5] ] ) def test_two_children_with_3D_tensors(): assert_sum_product( [ 0, ( 3, [ 1, ] ), ( 4, [ 2, ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3, 4), np.random.randn(3, 4, 5), np.random.randn(3, 6), np.ones((3, 4)), np.ones((3,)), ], [ [3,5,7], [5,7,9], [5,1], [5,7], [5] ] ) def test_divide_matrix_product(): # dividing messages from product when neighbor message is excluded # this avoids re-doing einsum calculations to accomplish the same # one full message product is calculated and messages are removed from the # product by performing the division operation potentials = [ np.random.randn(2, 3, 6), np.random.randn(3, 4), np.random.randn(2, 5), np.ones((3,)), np.ones((2,)), np.ones((6,)), np.random.randn(4, 6) ] variables = [ [3, 5, 7], [5, 9], [3, 1], [5], [3], [7], [2, 7] ] msg1 = np.einsum(potentials[1], variables[1], variables[3]) msg2 = np.einsum(potentials[2], variables[2], variables[4]) msg3 = np.einsum(potentials[6], variables[6], variables[5]) msg_prod = np.einsum(msg1, variables[3], msg2, variables[4], msg3, variables[5], variables[0]) msg_prod_x6 =
np.einsum(msg1, variables[3], msg2, variables[4], [3,5])
numpy.einsum
import os import pickle from PIL import Image import numpy as np import json import torch import torchvision.transforms as transforms from torch.utils.data import Dataset class CUB(Dataset): """support CUB""" def __init__(self, args, partition='base', transform=None): super(Dataset, self).__init__() self.data_root = args.data_root self.partition = partition self.data_aug = args.data_aug self.mean = [0.485, 0.456, 0.406] self.std = [0.229, 0.224, 0.225] self.normalize = transforms.Normalize(mean=self.mean, std=self.std) self.image_size = 84 if self.partition == 'base': self.resize_transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.Resize([int(self.image_size*1.15), int(self.image_size*1.15)]), transforms.RandomCrop(size=84) ]) else: self.resize_transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.Resize([int(self.image_size*1.15), int(self.image_size*1.15)]), transforms.CenterCrop(self.image_size) ]) if transform is None: if self.partition == 'base' and self.data_aug: self.transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), lambda x: np.asarray(x).copy(), transforms.ToTensor(), self.normalize ]) else: self.transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.ToTensor(), self.normalize ]) else: self.transform = transform self.data = {} self.file_pattern = '%s.json' with open(os.path.join(self.data_root, self.file_pattern % partition), 'rb') as f: meta = json.load(f) self.imgs = [] labels = [] for i in range(len(meta['image_names'])): image_path = os.path.join(meta['image_names'][i]) self.imgs.append(image_path) label = meta['image_labels'][i] labels.append(label) # adjust sparse labels to labels from 0 to n. cur_class = 0 label2label = {} for idx, label in enumerate(labels): if label not in label2label: label2label[label] = cur_class cur_class += 1 new_labels = [] for idx, label in enumerate(labels): new_labels.append(label2label[label]) self.labels = new_labels self.num_classes = np.unique(np.array(self.labels)).shape[0] def __getitem__(self, item): image_path = self.imgs[item] img = Image.open(image_path).convert('RGB') img = np.array(img).astype('uint8') img = np.asarray(self.resize_transform(img)).astype('uint8') img = self.transform(img) target = self.labels[item] return img, target, item def __len__(self): return len(self.labels) class MetaCUB(CUB): def __init__(self, args, partition='base', train_transform=None, test_transform=None, fix_seed=True): super(MetaCUB, self).__init__(args, partition) self.fix_seed = fix_seed self.n_ways = args.n_ways self.n_shots = args.n_shots self.n_queries = args.n_queries self.classes = list(self.data.keys()) self.n_test_runs = args.n_test_runs self.n_aug_support_samples = args.n_aug_support_samples self.resize_transform_train = transforms.Compose([ lambda x: Image.fromarray(x), transforms.Resize([int(self.image_size*1.15), int(self.image_size*1.15)]), transforms.RandomCrop(size=84) ]) self.resize_transform_test = transforms.Compose([ lambda x: Image.fromarray(x), transforms.Resize([int(self.image_size*1.15), int(self.image_size*1.15)]), transforms.CenterCrop(self.image_size) ]) if train_transform is None: self.train_transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), lambda x: np.asarray(x).copy(), transforms.ToTensor(), self.normalize ]) else: self.train_transform = train_transform if test_transform is None: self.test_transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.ToTensor(), self.normalize ]) else: self.test_transform = test_transform self.data = {} for idx in range(len(self.imgs)): if self.labels[idx] not in self.data: self.data[self.labels[idx]] = [] self.data[self.labels[idx]].append(self.imgs[idx]) self.classes = list(self.data.keys()) def _load_imgs(self, img_paths, transform): imgs = [] for image_path in img_paths: img = Image.open(image_path).convert('RGB') img = np.array(img).astype('uint8') img = transform(img) imgs.append(np.asarray(img).astype('uint8')) return np.asarray(imgs).astype('uint8') def __getitem__(self, item): if self.fix_seed: np.random.seed(item) cls_sampled = np.random.choice(self.classes, self.n_ways, False) support_xs = [] support_ys = [] query_xs = [] query_ys = [] for idx, cls in enumerate(cls_sampled): imgs_paths = self.data[cls] support_xs_ids_sampled = np.random.choice(range(len(imgs_paths)), self.n_shots, False) support_paths = [imgs_paths[i] for i in support_xs_ids_sampled] support_imgs = self._load_imgs(support_paths, transform=self.resize_transform_train) support_xs.append(support_imgs) support_ys.append([idx] * self.n_shots) query_xs_ids = np.setxor1d(np.arange(len(imgs_paths)), support_xs_ids_sampled) query_xs_ids = np.random.choice(query_xs_ids, self.n_queries, False) query_paths = [imgs_paths[i] for i in query_xs_ids] query_imgs = self._load_imgs(query_paths, transform=self.resize_transform_test) query_xs.append(query_imgs) query_ys.append([idx] * query_xs_ids.shape[0]) support_xs, support_ys, query_xs, query_ys = np.array(support_xs), np.array(support_ys), np.array(query_xs), np.array(query_ys) num_ways, n_queries_per_way, height, width, channel = query_xs.shape query_xs = query_xs.reshape((num_ways * n_queries_per_way, height, width, channel)) query_ys = query_ys.reshape((num_ways * n_queries_per_way,)) support_xs = support_xs.reshape((-1, height, width, channel)) if self.n_aug_support_samples > 1: support_xs = np.tile(support_xs, (self.n_aug_support_samples, 1, 1, 1)) support_ys = np.tile(support_ys.reshape((-1,)), (self.n_aug_support_samples)) support_xs =
np.split(support_xs, support_xs.shape[0], axis=0)
numpy.split
import cv2 from .figure import FigureStatus from collections import deque import numpy as np # Color space # The values below were obtained using ImageJ (image-> adjust-> threshold) MIN_H = 30 MAX_H = 100 MIN_S = 15 MAX_S = 176 MIN_V = 47 MAX_V = 175 lower =
np.array((MIN_H, MIN_S, MIN_V))
numpy.array
from tqdm import tqdm import numpy as np def standardize(x, std_x = None, mean_x = None, ignore_first = True): """Standardize the original data set.""" x = np.copy(x) if type(mean_x) == type(None): mean_x = np.mean(x, axis=0) x = x - mean_x if ignore_first: x[:,0] = 1 if type(std_x) == type(None): std_x = np.std(x, axis=0) for i in range(std_x.shape[0]): if std_x[i] > 0: x[:, i] = x[:, i] / std_x[i] return x, mean_x, std_x def binarize_categorical_feature(f): """ return binary columns for each feature value """ values = sorted(list(set(f[:,0]))) assert len(values) < 10, "too many categories" x = np.zeros((f.shape[0], 1)) for v in values: x = np.hstack((x, f == v)) return x[:,1:] def binarize_categorical(x, ids): """ replace categorical feature with multiple binary ones """ x_ = np.zeros((x.shape[0], 1)) for idx in ids: x_ = np.hstack((x_, binarize_categorical_feature(x[:, idx:idx+1]))) x = np.delete(x, ids, axis=1) x = np.hstack((x, x_[:, 1:])) return x def impute_with_mean(X_, ids, missing_val = -999): """ replace missing_val with mean value on columns ids """ X_ = np.copy(X_) X = X_[:, ids] X[X == missing_val] = None nan_mean = np.nanmean(X, axis = 0) inds = np.where(np.isnan(X)) X[inds] = np.take(nan_mean, inds[1]) X_[:, ids] = X return X_ def add_polynomial(X, ids, max_degrees = 2): """ add constant feature and degrees of features ids up to selected degree """ if type(max_degrees) == int: max_degrees = [max_degrees] * len(ids) X_orig = X X = np.copy(X) X = np.hstack((np.ones((X.shape[0], 1)), X)) for i, idx in enumerate(ids): for degree in range(2, max_degrees[i] + 1): X = np.hstack((X, np.power(X_orig[:, idx:idx+1], degree))) return X def indicator_missing(X, ids, missing_val = -999.): """ add binary feature indicating if original feature was missing """ X = np.copy(X) for idx in ids: f_miss = 1. * (X[:, idx:idx + 1] == missing_val) X = np.hstack((X, f_miss)) return X def add_mult(X): X = np.array(X) num_features = X.shape[1] num_to_add = num_features * (num_features - 1) // 2 res = np.hstack((np.copy(X), np.zeros((X.shape[0], num_to_add)))) idx_add = num_features for i in range(num_features): for j in range(i + 1, num_features): res[:, idx_add] = np.multiply(X[:, i], X[:, j]) idx_add += 1 return res ### DATASET-SPECIFIC FUNCTIONS need_impute = [0, 5, 6, 12, 23, 24, 25, 26, 27, 28] categorical = [23] #+1 need_poly = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,24,25,26,27,28,29] def process_X(X, degree, tpl = (None, None)): res = None (x_mean, x_std) = tpl with tqdm(total=6) as pbar: X_1 = indicator_missing(X, need_impute) pbar.update(1) X_2 = impute_with_mean(X_1, need_impute) pbar.update(1) X_22 = add_mult(X_2) pbar.update(1) X_3 = add_polynomial(X_22, need_poly, max_degrees = degree) pbar.update(1) X_4 = binarize_categorical(X_3, categorical) pbar.update(1) X_5, x_mean, x_std = standardize(X_4, mean_x = x_mean, std_x = x_std) pbar.update(1) res = X_5 return res, (x_mean, x_std) ### TESTING SECTION def test_binarize_1(): x = np.array([[1,2,2,4]]).T x_copy = np.copy(x) x_ = np.array([[1,0,0],[0,1,0],[0,1,0],[0,0,1]]) assert np.all(x_ == binarize_categorical_feature(x)), "binarize_categorical_feature" assert np.all(x == x_copy), "copy" def test_binarize_2(): x = np.array([[1,2,2,4],[0.1,0.2,0.3,0.4],[1,-1,1,1]]).T x_copy = np.copy(x) x_ = np.array([[0.1,1,0,0,0,1],[0.2,0,1,0,1,0],[0.3,0,1,0,0,1],[0.4,0,0,1,0,1]]) assert np.all(x_ == binarize_categorical(x, [0,2])), "binarize_categorical" assert np.all(x == x_copy), "copy" def test_impute_1(): X_ = np.array([[0,1,1],[3,4,0],[0,0,-999]], dtype=np.float64) X_copy = np.copy(X_) X__ = np.array([[ 0. , 1. , 1. ], [ 3. , 4. , 0. ], [ 0. , 0. , 0.5]]) assert np.all(X__ == impute_with_mean(X_, [2], missing_val=-999)), "impute_with_mean" assert np.all(X_ == X_copy), "copy" def test_poly_1(): X = np.array([[0,1,2],[3,4,5],[0.5,0.6,0.7]]) X_copy = np.copy(X) X_ans = np.array([[ 1. , 0. , 1. , 2. , 0. , 0. , 4. ], [ 1. , 3. , 4. , 5. , 9. , 27. , 25. ], [ 1. , 0.5 , 0.6 , 0.7 , 0.25 , 0.125, 0.49 ]]) assert np.allclose(X_ans, add_polynomial(X, [0,2], max_degrees = [3,2])), "add_polynomial" assert
np.all(X_copy == X)
numpy.all
import numpy as np from numpy.fft import fft, rfft, ifft, irfft import gmpy def is_prime(n): i = 2 while i * i <= n: if n % i == 0: return False i += 1 return True def find_next_prime(n): while True: n += 1 if is_prime(n): return n primes_list = [] def get_primes(bound): global primes_list pos = 0 cur_mult = 1 last_num = 1000000000 while cur_mult <= bound or pos == 0: if pos >= len(primes_list): primes_list.append(find_next_prime(last_num)) last_num = primes_list[pos] cur_mult *= last_num pos += 1 return primes_list[:pos] def multiply_fft(v1, v2, real=False): N = 1 while N < len(v1): N *= 2 N *= 2 if real: f1 =
rfft(v1, n=N)
numpy.fft.rfft
import os.path import PIL.Image as pimg import nibabel as nib import numpy as np import torch from torch.autograd import Variable from in_out.image_functions import rescale_image_intensities, points_to_voxels_transform from support.utilities.general_settings import Settings class Image: """ Landmarks (i.e. labelled point sets). The Landmark class represents a set of labelled points. This class assumes that the source and the target have the same number of points with a point-to-point correspondence. """ #################################################################################################################### ### Constructor: #################################################################################################################### # Constructor. def __init__(self): self.type = 'Image' self.is_modified = True self.affine = None self.corner_points = None self.bounding_box = None self.downsampling_factor = 1 self.intensities = None # Numpy array. self.intensities_torch = None self.intensities_dtype = None # Clone. def clone(self): clone = Image() clone.is_modified = True clone.affine = np.copy(self.affine) clone.corner_points = np.copy(self.corner_points) clone.bounding_box = np.copy(self.bounding_box) clone.downsampling_factor = self.downsampling_factor clone.intensities = np.copy(self.intensities) clone.intensities_torch = self.intensities_torch.clone() clone.intensities_dtype = self.intensities_dtype return clone #################################################################################################################### ### Encapsulation methods: #################################################################################################################### def get_number_of_points(self): raise RuntimeError("Not implemented for Image yet.") def set_affine(self, affine_matrix): """ The affine matrix A is a 4x4 matrix that gives the correspondence between the voxel coordinates and their spatial positions in the 3D space: (x, y, z, 1) = A (u, v, w, 1). See the nibabel documentation for further details (the same attribute name is used here). """ self.affine = affine_matrix def set_intensities(self, intensities): self.is_modified = True self.intensities = intensities def get_intensities(self): return self.intensities def get_intensities_torch(self): return self.intensities_torch def get_points(self): image_shape = self.intensities.shape dimension = Settings().dimension axes = [] for d in range(dimension): axe = np.linspace(self.corner_points[0, d], self.corner_points[2 ** d, d], image_shape[d] // self.downsampling_factor) axes.append(axe) points = np.array(np.meshgrid(*axes, indexing='ij')[:]) for d in range(dimension): points = np.swapaxes(points, d, d + 1) return points # @jit(parallel=True) def get_deformed_intensities(self, deformed_points, intensities): """ Torch input / output. Interpolation function with zero-padding. """ dimension = Settings().dimension image_shape = self.intensities.shape deformed_voxels = points_to_voxels_transform(deformed_points, self.affine) if dimension == 2: if not self.downsampling_factor == 1: shape = deformed_points.shape deformed_voxels = torch.nn.Upsample(size=self.intensities.shape, mode='bilinear', align_corners=True)( deformed_voxels.permute(2, 0, 1).contiguous().view( 1, shape[2], shape[0], shape[1]))[0].permute(1, 2, 0).contiguous() u, v = deformed_voxels.view(-1, 2)[:, 0], deformed_voxels.view(-1, 2)[:, 1] u1 = np.floor(u.data.cpu().numpy()).astype(int) v1 = np.floor(v.data.cpu().numpy()).astype(int) u1 = np.clip(u1, 0, image_shape[0] - 1) v1 = np.clip(v1, 0, image_shape[1] - 1) u2 = np.clip(u1 + 1, 0, image_shape[0] - 1) v2 = np.clip(v1 + 1, 0, image_shape[1] - 1) fu = u - Variable(torch.from_numpy(u1).type(Settings().tensor_scalar_type)) fv = v - Variable(torch.from_numpy(v1).type(Settings().tensor_scalar_type)) gu = Variable(torch.from_numpy(u1 + 1).type(Settings().tensor_scalar_type)) - u gv = Variable(torch.from_numpy(v1 + 1).type(Settings().tensor_scalar_type)) - v deformed_intensities = (intensities[u1, v1] * gu * gv + intensities[u1, v2] * gu * fv + intensities[u2, v1] * fu * gv + intensities[u2, v2] * fu * fv).view(image_shape) elif dimension == 3: if not self.downsampling_factor == 1: shape = deformed_points.shape deformed_voxels = torch.nn.Upsample(size=self.intensities.shape, mode='trilinear', align_corners=True)( deformed_voxels.permute(3, 0, 1, 2).contiguous().view( 1, shape[3], shape[0], shape[1], shape[2]))[0].permute(1, 2, 3, 0).contiguous() u, v, w = deformed_voxels.view(-1, 3)[:, 0], \ deformed_voxels.view(-1, 3)[:, 1], \ deformed_voxels.view(-1, 3)[:, 2] u1_numpy = np.floor(u.data.cpu().numpy()).astype(int) v1_numpy = np.floor(v.data.cpu().numpy()).astype(int) w1_numpy = np.floor(w.data.cpu().numpy()).astype(int) u1 = torch.from_numpy(np.clip(u1_numpy, 0, image_shape[0] - 1)).type(Settings().tensor_integer_type) v1 = torch.from_numpy(np.clip(v1_numpy, 0, image_shape[1] - 1)).type(Settings().tensor_integer_type) w1 = torch.from_numpy(np.clip(w1_numpy, 0, image_shape[2] - 1)).type(Settings().tensor_integer_type) u2 = torch.from_numpy(np.clip(u1_numpy + 1, 0, image_shape[0] - 1)).type(Settings().tensor_integer_type) v2 = torch.from_numpy(np.clip(v1_numpy + 1, 0, image_shape[1] - 1)).type(Settings().tensor_integer_type) w2 = torch.from_numpy(np.clip(w1_numpy + 1, 0, image_shape[2] - 1)).type(Settings().tensor_integer_type) fu = u - Variable(torch.from_numpy(u1_numpy).type(Settings().tensor_scalar_type)) fv = v - Variable(torch.from_numpy(v1_numpy).type(Settings().tensor_scalar_type)) fw = w - Variable(torch.from_numpy(w1_numpy).type(Settings().tensor_scalar_type)) gu = Variable(torch.from_numpy(u1_numpy + 1).type(Settings().tensor_scalar_type)) - u gv = Variable(torch.from_numpy(v1_numpy + 1).type(Settings().tensor_scalar_type)) - v gw = Variable(torch.from_numpy(w1_numpy + 1).type(Settings().tensor_scalar_type)) - w deformed_intensities = (intensities[u1, v1, w1] * gu * gv * gw + intensities[u1, v1, w2] * gu * gv * fw + intensities[u1, v2, w1] * gu * fv * gw + intensities[u1, v2, w2] * gu * fv * fw + intensities[u2, v1, w1] * fu * gv * gw + intensities[u2, v1, w2] * fu * gv * fw + intensities[u2, v2, w1] * fu * fv * gw + intensities[u2, v2, w2] * fu * fv * fw).view(image_shape) else: raise RuntimeError('Incorrect dimension of the ambient space: %d' % dimension) return deformed_intensities #################################################################################################################### ### Public methods: #################################################################################################################### # Update the relevant information. def update(self): if self.is_modified: self._update_corner_point_positions() self.update_bounding_box() self.intensities_torch = Variable(torch.from_numpy( self.intensities).type(Settings().tensor_scalar_type)).contiguous() self.is_modified = False def update_bounding_box(self): """ Compute a tight bounding box that contains all the 2/3D-embedded image data. """ dimension = Settings().dimension self.bounding_box = np.zeros((dimension, 2)) for d in range(dimension): self.bounding_box[d, 0] = np.min(self.corner_points[:, d]) self.bounding_box[d, 1] =
np.max(self.corner_points[:, d])
numpy.max
import os import csv import glob import h5py import shutil import random import numpy as np import nibabel as nib import multiprocessing from multiprocessing import Pool from joblib import Parallel, delayed from scipy.io import loadmat from scipy.ndimage import label as ndlabel from collections import Counter import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def label_filtering(lab, ignored_labels, true_labels): """Convert the labels and replace nan and inf with zeros. The filtered label starts from 1. """ lab[np.isnan(lab)] = 0 lab[np.isinf(lab)] = 0 # skip if the labels are already correct # (a strong assumption that we always have the largest label) if np.max(lab.ravel()) <= len(true_labels): return lab for ignored_label in ignored_labels: lab[lab == ignored_label] = 0 for idx, label in enumerate(true_labels): lab[lab == label] = idx + 1 return lab def get_nonzero_limit(img, axis, idx_range): """Get the index first hyperplane containing nonzeros. Input: img (np.ndarray): tensor, could be 2d or 3d axis (int): the axis to scan idx_range (list-like): ordered indice to search Output: the first index at which contains a nonzero hyperplane. """ dim = len(img.shape) s = [slice(None)] * dim # scan every plane until a nonzero item is found for idx in idx_range: # the plane cuts through this point s[axis] = idx if img[s].any(): return idx # otherwise, return the last index return idx_range[-1] def get_largest_component(lab): """Get largest connected component. Given a multi-class labeling, leave the largest connected component for each class. """ classes = np.unique(lab) classes = np.delete(classes, np.argwhere(classes == 0)) pruned_lab = np.zeros(lab.shape, dtype=lab.dtype) for c in classes: print("Finding largest connected component in class {}".format(c)) # make it black and white bw = np.zeros(lab.shape) bw[lab == c] = 1 # 26 connectivity for 3D images conn = np.ones((3,3,3)) # clustered_lab.shape = bw.shape clustered_lab, n_comps = ndlabel(bw, conn) # sort components by volume from smallest to largest (skip zero) comp_volumes = [np.sum(clustered_lab == i) for i in range(1, n_comps)] comp_labels =
np.argsort(comp_volumes)
numpy.argsort
import builtins import warnings import numpy as np from aesara import config, printing from aesara import scalar as aes from aesara.gradient import DisconnectedType from aesara.graph.basic import Apply, Variable from aesara.graph.op import COp, Op from aesara.graph.params_type import ParamsType from aesara.graph.type import Generic from aesara.misc.safe_asarray import _asarray from aesara.printing import pprint from aesara.scalar.basic import BinaryScalarOp from aesara.tensor.basic import ( alloc, arange, as_tensor_variable, cast, concatenate, constant, patternbroadcast, stack, switch, ) from aesara.tensor.elemwise import ( CAReduce, CAReduceDtype, DimShuffle, Elemwise, scalar_elemwise, ) from aesara.tensor.shape import shape from aesara.tensor.type import ( complex_dtypes, continuous_dtypes, discrete_dtypes, int_dtypes, integer_dtypes, tensor, uint_dtypes, ) from aesara.tensor.type_other import NoneConst from aesara.tensor.utils import as_list from aesara.tensor.var import TensorConstant, _tensor_py_operators # We capture the builtins that we are going to replace to follow the numpy API _abs = builtins.abs if int(config.tensor__cmp_sloppy) > 1: # This config variable is a quick-and-dirty way to get low-precision # comparisons. For a more precise setting of these tolerances set # them explicitly in your user code by assigning, for example, # "aesara.tensor.math.float32_atol = ..." # When config.tensor__cmp_sloppy>1 we are even more sloppy. This is # useful to test the GPU as they don't use extended precision and # this cause some difference bigger then the normal sloppy. float16_atol = 1e-2 float16_rtol = 5e-2 float32_atol = 5e-4 float32_rtol = 1e-3 float64_rtol = 1e-4 float64_atol = 1e-3 elif int(config.tensor__cmp_sloppy): float16_atol = 5e-3 float16_rtol = 1e-2 float32_atol = 1e-4 float32_rtol = 1e-3 float64_rtol = 1e-4 float64_atol = 1e-3 else: # If you change those value in test don't forget to put them back # when the test end. Don't forget the case when the test fail. float16_atol = 1e-3 float16_rtol = 1e-3 float32_atol = 1e-5 float32_rtol = 1e-5 # defaults in numpy.allclose # Don't be more strict then numpy rtol # It cause useless error. float64_rtol = 1.0000000000000001e-05 float64_atol = 1e-8 def _get_atol_rtol(a, b): tiny = ("float16",) narrow = ("float32", "complex64") if (str(a.dtype) in tiny) or (str(b.dtype) in tiny): atol = float16_atol rtol = float16_rtol elif (str(a.dtype) in narrow) or (str(b.dtype) in narrow): atol = float32_atol rtol = float32_rtol else: atol = float64_atol rtol = float64_rtol return atol, rtol def _allclose(a, b, rtol=None, atol=None): a = np.asarray(a) b = np.asarray(b) atol_, rtol_ = _get_atol_rtol(a, b) if rtol is not None: rtol_ = rtol if atol is not None: atol_ = atol return np.allclose(a, b, atol=atol_, rtol=rtol_) class MaxAndArgmax(COp): """ Calculate the max and argmax over a given axis or over all axes. """ nin = 2 # tensor, axis nout = 2 # max val, max idx E_axis = "invalid axis" params_type = Generic() __props__ = ("axis",) _f16_ok = True def __init__(self, axis): assert isinstance(axis, list) self.axis = tuple(axis) def get_params(self, node): return self.axis def make_node(self, x): x = as_tensor_variable(x) # We keep the original broadcastable flags for dimensions on which # we do not perform the max / argmax. all_axes = set(self.axis) broadcastable = [ b for i, b in enumerate(x.type.broadcastable) if i not in all_axes ] inputs = [x] outputs = [ tensor(x.type.dtype, broadcastable, name="max"), tensor("int64", broadcastable, name="argmax"), ] return Apply(self, inputs, outputs) def perform(self, node, inp, outs, params): x = inp[0] axes = params max, max_idx = outs if axes is None: axes = tuple(range(x.ndim)) else: axes = tuple(int(ax) for ax in axes) max[0] = _asarray(np.max(x, axes), dtype=node.outputs[0].dtype) # Numpy does not support multiple axes for argmax # Work around keep_axes = np.array([i for i in range(x.ndim) if i not in axes], dtype="int64") # Not-reduced axes in front transposed_x = np.transpose(x, np.concatenate((keep_axes, axes))) kept_shape = transposed_x.shape[: len(keep_axes)] reduced_shape = transposed_x.shape[len(keep_axes) :] # Numpy.prod returns 1.0 when arg is empty, so we cast it to int64 # Otherwise reshape would complain citing float arg new_shape = kept_shape + (np.prod(reduced_shape, dtype="int64"),) reshaped_x = transposed_x.reshape(new_shape) max_idx[0] = _asarray(
np.argmax(reshaped_x, axis=-1)
numpy.argmax
#!/usr/bin/env python3 import click #from PIL import Image import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as clrs # math def flat(x1, x2, y1, y2, steps_per_unit): a = np.linspace(x1, x2, int((x2-x1)*steps_per_unit + 1))[np.newaxis, ...] b = np.linspace(y2, y1, int((y2-y1)*steps_per_unit + 1))[..., np.newaxis] * 1j return a + b def M(x1, x2, y1, y2, dpu, r, iters): c = flat(x1, x2, y1, y2, dpu) sp = c.shape z = np.zeros(sp).astype(np.complex) t =
np.ones(sp)
numpy.ones
from enum import Enum from functools import partial from z3 import * from anyHR.constraint.Constraint import Constraints from anyHR.pso.pso import * import numpy as np def _obj_wrapper(func, args, kwargs, x): return func(x, *args, **kwargs) # class HRVariant(Enum): # VANILLA = 0, # SHRINKING = 1, # SMT = 2, # VANILLA_SMT = 3, # SHRINKING_SMT = 4 # CDHR = 5 class DirectionSampling(Enum): RDHR = 0 CDHR = 1 class Shrinking(Enum): NO_SHRINKING = 0 SHRINKING = 1 class InitPoint(Enum): PSO = 0 SMT = 1 class HitAndRun: def __init__(self, constraint, bounding_box, direction_sampling=DirectionSampling.RDHR, shrinking=Shrinking.NO_SHRINKING, init_point=InitPoint.PSO): self.constraint = constraint self.bounding_box = bounding_box self.shrinking = shrinking self.direction_sampling = direction_sampling self.init_point = init_point assert(self.init_point == InitPoint.PSO or self.constraint.is_polynomial), \ "You cannot use non-polynomial constraints with SMT" # set the starting point- either with optimizer or with smt solver if init_point == InitPoint.PSO: self.starting_point = self._starting_point_pso() else: # using z3/SMT self.starting_point = self._starting_point_smt() self.current_point = self.starting_point # set the function handles according to the options (direction set, shrinking) # Beware: the next_sample() function is being set here. This means if direction_sampling == DirectionSampling.RDHR and shrinking == Shrinking.NO_SHRINKING: # simple RDHR self.next_sample = self._next_sample_vanilla elif direction_sampling == DirectionSampling.RDHR and shrinking == Shrinking.SHRINKING: # RDHR + Shrinking self.next_sample = self._next_sample_rdhr_shrinking elif direction_sampling == DirectionSampling.CDHR and shrinking == Shrinking.NO_SHRINKING: # simple CDHR self.next_sample = self._next_sample_cdhr elif direction_sampling == DirectionSampling.CDHR and shrinking == Shrinking.SHRINKING: self.next_sample = self.next_sample_cdhr_shrinking def sampler(self, n, burn_in_period=100): # should be the easiest way to get a sample- simple wrapper which needs little to none of the smaller methods dim = len(self.constraint.var_name_list) # start = time.perf_counter() samples = np.ndarray((dim, n)) rejections = 0 for i in range(n): for j in range(burn_in_period): sample, rejections_this_sample = self.next_sample() rejections += rejections_this_sample # TODO does this number make sense to compare? Maybe average rej/sample? sample, rejections_this_sample = self.next_sample() rejections += rejections_this_sample samples[:, i] = sample # end = time.perf_counter() # elapsed = end - start return samples # def next_sample(self): # if self.variant == HRVariant.VANILLA or self.variant == HRVariant.VANILLA_SMT: # return self.next_sample_vanilla() # elif self.variant == HRVariant.SHRINKING or self.variant == HRVariant.SHRINKING_SMT: # return self.next_sample_with_shrinking() # elif self.variant == HRVariant.CDHR: # return self._next_sample_cdhr() # else: # return self.next_sample_z3() def _next_sample_vanilla(self): # normal random directions hit-and-run (rdhr) b = self.current_point success = False while not success: a = self._random_direction() inter, success = self._line_box_intersection(a, b, self.bounding_box) inter_1 = inter[0] inter_2 = inter[1] success = False rejections = -1 while not success: rnd = np.random.uniform() sample = [] for i in range(len(inter_1)): x_0 = inter_1[i] x_1 = inter_2[i] s_i = (x_1 - x_0) * rnd + x_0 sample.append(s_i) success = self.constraint.evaluate(sample) rejections += 1 self.current_point = sample return sample, rejections def _next_sample_rdhr_shrinking(self): b = self.current_point success = False while not success: a = self._random_direction() inter, success = self._line_box_intersection(a, b, self.bounding_box) success = False rejections = -1 inter_1 = inter[0] inter_2 = inter[1] r_1 = (inter_1[0] - b[0]) / a[0] r_2 = (inter_2[0] - b[0]) / a[0] r_min = min(r_1, r_2) r_max = max(r_1, r_2) while not success: rnd = np.random.uniform(r_min, r_max) sample = [] for i in range(len(inter_1)): s_i = b[i] + rnd * a[i] sample.append(s_i) success = self.constraint.evaluate(sample) if not success: if rnd > 0: r_max = rnd else: r_min = rnd rejections += 1 # FELIX: fixed bug in next line, 30.03. self.current_point = sample return sample, rejections def _next_sample_cdhr(self): b = self.current_point success = False while not success: a, direction_int = self._random_direction_cdhr() inter, success = self._line_box_intersection_cdhr(a, direction_int, b, self.bounding_box) inter_1 = inter[0] inter_2 = inter[1] success = False rejections = -1 while not success: rnd = np.random.uniform() sample = [] for i in range(len(inter_1)): x_0 = inter_1[i] x_1 = inter_2[i] s_i = (x_1 - x_0) * rnd + x_0 sample.append(s_i) success = self.constraint.evaluate(sample) rejections += 1 self.current_point = sample return sample, rejections def next_sample_cdhr_shrinking(self): # assert (False), 'Not yet implemented.' # TODO check whether this is even theoretically sound b = self.current_point success = False while not success: # This should only do one iteration? a, direction_int = self._random_direction_cdhr() inter, success = self._line_box_intersection_cdhr(a, direction_int, b, self.bounding_box) inter_1 = inter[0] inter_2 = inter[1] # on the numer line, minus b[dir_int] describes the translation such that the current point now has value zero # in the axis parallel to the chosen line r_min = inter_1[direction_int] - b[direction_int] r_max = inter_2[direction_int] - b[direction_int] success = False rejections = -1 while not success: rnd = np.random.uniform(r_min, r_max) # sample = [] # for i in range(len(inter_1)): # s_i = b[i] + rnd * a[i] # sample.append(s_i) sample = b.copy() sample[direction_int] += rnd # only one component changes in cdhr and vector is unit vector. simply add success = self.constraint.evaluate(sample) if not success: if rnd > 0: r_max = rnd else: r_min = rnd rejections += 1 # FELIX: fixed bug in next line, 30.03. self.current_point = sample return sample, rejections def _line_box_intersection(self, a, b, box): potential_solutions = [] for i in range(len(a)): box_i = box[i] box_i_min = box_i[0] box_i_max = box_i[1] t_min = (box_i_min - b[i]) / a[i] t_max = (box_i_max - b[i]) / a[i] potential_solutions.append(t_min) potential_solutions.append(t_max) solutions = [] for ps in potential_solutions: is_solution = True solution = [] for i in range(len(a)): box_i = box[i] result = a[i] * ps + b[i] solution.append(result) if result < box_i[0] or result > box_i[1]: is_solution = False break if is_solution: solutions.append(solution) if len(solutions) >= 2: flag = True else: flag = False return solutions, flag def _line_box_intersection_cdhr(self, a, direction_int, b, box): # this is much easier since we know in which dimensions the hyperplanes are hit potential_solutions = [] # i = np.argmax(np.abs(a)) # where the 1 is (cdhr has only vectors (0,...,1,0,...,0)) i = direction_int box_i = box[i] box_i_min = box_i[0] box_i_max = box_i[1] t_min = (box_i_min - b[i]) / a[i] t_max = (box_i_max - b[i]) / a[i] potential_solutions.append(t_min) potential_solutions.append(t_max) solutions = [] for ps in potential_solutions: is_solution = True solution = a * ps + b solutions.append(solution) if len(solutions) >= 2: flag = True else: flag = False return solutions, flag def _sort_first(self, l): return l[0] # def _starting_point(self): # if self.variant == HRVariant.SMT or self.variant == HRVariant.SHRINKING_SMT or self.variant == HRVariant.VANILLA_SMT or self.variant == HRVariant.CDHR: # return self._starting_point_smt() # else: # return self._starting_point_pso() def _starting_point_pso(self): lb = [] ub = [] for b in self.bounding_box: lb.append(b[0]) ub.append(b[1]) # out, rob_opt = pso(self._evaluate, lb, ub, f_ieqcons=None, swarmsize=10, omega=0.5, phip=0.5, # phig=0.5, maxiter=10, minstep=1e-2, minfunc=0.1, debug=False) out, rob_opt, budget = pso(self._evaluate, lb, ub, f_ieqcons=None, swarmsize=10000, omega=0.5, phip=0.5, phig=0.5, maxiter=10000, minstep=1e-2, minfunc=0.1, debug=False) if rob_opt > 0: raise Exception('Could not find a starting point in the set.') return out def _evaluate(self, sample): return -self.constraint.q_evaluate(sample) def _starting_point_smt(self): solver = self.constraint.solver status = solver.check() if status == unsat: raise Exception('The set of constraints is unsatisfiable.') model = solver.model() out_d = dict() for var in model: value = model[var] num = float(value.numerator_as_long()) den = float(value.denominator_as_long()) out_d[str(var)] = num / den out = [] for var in self.constraint.var_name_list: out.append(out_d[var]) return out def _random_direction(self): direction = [] for i in range(self.constraint.dimensions): dir = np.random.uniform(-1, 1) direction.append(dir) direction =
np.array(direction)
numpy.array
#!/usr/bin/env python3 ############## # ver 2.1 - coding python by <NAME> on 2/3/2019 # instead of ml_wr.py, we divide several files. # ver 2.2 - add n_ensemble option on 2/21/2019 import argparse parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description='generate data block for machine learning input') ## args parser.add_argument('-i', '--input', default='target.list', nargs='?', help='input list file (format $file_index $temperature/density)') parser.add_argument('-ipf', '--input_prefix', default='grid', nargs='?', help='prefix of input grid .npy file') parser.add_argument('-s1', '--select1', default=0.5, nargs='?', type=float, help='select temperature/density1 (< args.select2) for training set') parser.add_argument('-s2', '--select2', default=1.0, nargs='?', type=float, help='select temperature/density2 (> args.select1) for training set') parser.add_argument('-prop', '--prop', default=-1.0, nargs='?', type=float, help='the proportion [0:1] of training set for getting accuracy of modeling (< 0. means nothing test set)') parser.add_argument('-nb', '--n_blocks', default=0, nargs='?', type=int, help='# of blocks for training set (zero means no block average sets)') parser.add_argument('-nbe', '--n_blocks_eval', default=0, nargs='?', type=int, help='# of blocks for eval set (zero means no block average sets)') parser.add_argument('-net', '--ne_train', default=-1, nargs='?', type=int, help='# of ensembles for train set per grid.npy (-1 to use all)') parser.add_argument('-nee', '--ne_eval', default=-1, nargs='?', type=int, help='# of ensembles for eval set per grid.npy (-1 to use all)') parser.add_argument('-ng', '--n_grids', default=15, nargs='?', type=int, help='# of grids for data sets') parser.add_argument('-seed', '--seed', default=1985, nargs='?', type=int, help='random seed to shuffle for test sets and block sets') parser.add_argument('-o1', '--out_train', default='train', nargs='?', help='prefix of output training set .npy file like train.(coord/temp/cat).$i.npy') parser.add_argument('-o2', '--out_test', default='test', nargs='?', help='prefix of output test set .npy file for accuracy like test.(coord/temp/cat).npy') parser.add_argument('-o3', '--out_eval', default='eval', nargs='?', help='prefix of output Tc evaluation set .npy file like eval.(coord/temp).npy') parser.add_argument('args', nargs=argparse.REMAINDER) parser.add_argument('-v', '--version', action='version', version='%(prog)s 2.2') # read args args = parser.parse_args() # check args print(" input arguments: {0}".format(args)) # import modules import numpy as np import scipy as sc import math import copy np.random.seed(args.seed) # step1: read list file and split to train, test, and eval sets. list_file = np.loadtxt(args.input) list_temp = np.array(list_file[:,0],dtype=float) list_file_idx = np.array(list_file[:,1],dtype=int) train_set1 = np.where(list_temp <= args.select1)[0] # indices for temp1 of training train_set2 = np.where(list_temp >= args.select2)[0] # indices for temp2 of training eval_set = np.delete(np.arange(len(list_file_idx)), np.append(train_set1,train_set2)) # indices for eval # make train_set and test_set with proportion and shuffle if args.prop > 0.0: if args.prop >= 0.5: raise ValueError("args.prop {} is too high unlike purpose".format(args.prop)) n_test1 = int(len(train_set1)*args.prop) n_test2 = int(len(train_set2)*args.prop) np.random.shuffle(train_set1) np.random.shuffle(train_set2) test_set = np.append(train_set1[0:n_test1],train_set2[0:n_test2]) train_set1 = train_set1[n_test1:] train_set2 = train_set2[n_test2:] else: print(" Not make test set") np.random.shuffle(train_set1) np.random.shuffle(train_set2) test_set = np.array([],dtype=int) print("Based on {} list file: ".format(args.input)) print(" total #train data: {} for temp <= {}, {} for temp >= {}".format(len(train_set1),args.select1,len(train_set2),args.select2)) print(" #test data: {}".format(len(test_set))) print(" #eval data: {}".format(len(eval_set))) # step2: make blocks for training sets. if args.n_blocks > 0: remain_1 = len(train_set1)%args.n_blocks remain_2 = len(train_set2)%args.n_blocks print(" trim ({},{}) elements from two training sets for equal size of block sets".format(remain_1,remain_2)) if remain_1 > 0: train_set1 = train_set1[remain_1:] if remain_2 > 0: train_set2 = train_set2[remain_2:] block_sets1 = np.split(train_set1,args.n_blocks) block_sets2 = np.split(train_set2,args.n_blocks) print(" #blocks for training set = {}".format(args.n_blocks)) else: print(" no blocks for training sets") block_sets1 = train_set1 block_sets2 = train_set2 # step3: make blocks for evaluation sets: if args.n_blocks_eval > 0: if len(eval_set)%args.n_blocks_eval != 0 : raise ValueError("n_blocks_eval value is not good to splite eval_set ({} % {} != 0)".format(len(eval_set),args.n_blocks_eval)) block_sets_eval = np.split(eval_set,args.n_blocks_eval) print(" #blocks for eval set = {}".format(args.n_blocks_eval)) else: print(" no blocks for eval sets") block_sets_eval = eval_set # without padding def make_npy_files_mode_ver0(mode, i_block, idx_array, input_prefix, output_prefix): # mode = test/eval/train if ("test" in mode) or ("train" in mode): gen_cat = True else: gen_cat = False # eval case # initialzie arrays # As for eval set, we only use original grid info excluding ensembles or copies by trans, rot, and flip. n_data = len(idx_array) if gen_cat: set_coord=np.empty((n_data,n_ensembles*pow(args.n_grids,3))) set_temp=np.empty((n_data,n_ensembles)) set_cat=np.empty((n_data,n_ensembles)) esti_n_sets = n_ensembles else: # eval case set_coord=np.empty((n_data,n_eval_ensembles*pow(args.n_grids,3))) set_temp=
np.empty((n_data,n_eval_ensembles))
numpy.empty
#%% import sys import os os.chdir(os.path.dirname(os.getcwd())) # make directory one step up the current directory sys.path.append('/Users/mwinding/repos/maggot_models') from pymaid_creds import url, name, password, token import pymaid rm = pymaid.CatmaidInstance(url, token, name, password) import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 # font settings plt.rcParams['font.size'] = 5 plt.rcParams['font.family'] = 'arial' from src.data import load_metagraph from src.visualization import CLASS_COLOR_DICT, adjplot from src.traverse import Cascade, to_transmission_matrix from src.traverse import TraverseDispatcher from src.visualization import matrixplot import connectome_tools.cascade_analysis as casc import connectome_tools.celltype as ct import connectome_tools.process_matrix as pm adj_ad = pm.Promat.pull_adj(type_adj='ad', subgraph='brain') #%% # pull sensory annotations and then pull associated skids order = ['olfactory', 'gustatory-external', 'gustatory-pharyngeal', 'enteric', 'thermo-warm', 'thermo-cold', 'visual', 'noci', 'mechano-Ch', 'mechano-II/III', 'proprio', 'respiratory'] sens = [ct.Celltype(name, ct.Celltype_Analyzer.get_skids_from_meta_annotation(f'mw {name}')) for name in order] input_skids_list = [x.get_skids() for x in sens] input_skids = ct.Celltype_Analyzer.get_skids_from_meta_meta_annotation('mw brain sensory modalities') output_names = pymaid.get_annotated('mw brain outputs').name output_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain outputs').name)) output_skids = [val for sublist in output_skids_list for val in sublist] #%% # cascades from each sensory modality import pickle p = 0.05 max_hops = 10 n_init = 1000 simultaneous = True adj=adj_ad ''' input_hit_hist_list = casc.Cascade_Analyzer.run_cascades_parallel(source_skids_list=input_skids_list, source_names = order, stop_skids=output_skids, adj=adj_ad, p=p, max_hops=max_hops, n_init=n_init, simultaneous=simultaneous) pickle.dump(input_hit_hist_list, open('data/cascades/sensory-modality-cascades_1000-n_init.p', 'wb')) ''' input_hit_hist_list = pickle.load(open('data/cascades/sensory-modality-cascades_1000-n_init.p', 'rb')) # %% # plot sensory cascades raw fig, axs = plt.subplots(len(input_hit_hist_list), 1, figsize=(10, 20)) fig.tight_layout(pad=2.0) for i, hit_hist in enumerate(input_hit_hist_list): ax = axs[i] sns.heatmap(hit_hist.skid_hit_hist, ax=ax) ax.set_xlabel(hit_hist.get_name()) plt.savefig('cascades/plots/sensory_modality_signals.pdf', format='pdf', bbox_inches='tight') os.system('say "code executed"') # %% # how close are descending neurons to sensory? # load output types dVNC = pymaid.get_skids_by_annotation('mw dVNC') dSEZ = pymaid.get_skids_by_annotation('mw dSEZ') RGN = pymaid.get_skids_by_annotation('mw RGN') # generate Cascade_Analyzer objects containing name of pathway and the hit_hist to each output type dVNC_hits = [casc.Cascade_Analyzer(f'{hit_hist.get_name()}-dVNC', hit_hist.skid_hit_hist.loc[dVNC, :]) for hit_hist in input_hit_hist_list] dSEZ_hits = [casc.Cascade_Analyzer(f'{hit_hist.get_name()}-dSEZ', hit_hist.skid_hit_hist.loc[dSEZ, :]) for hit_hist in input_hit_hist_list] RGN_hits = [casc.Cascade_Analyzer(f'{hit_hist.get_name()}-RGN', hit_hist.skid_hit_hist.loc[RGN, :]) for hit_hist in input_hit_hist_list] dVNC_hits = [casc.Cascade_Analyzer([hit_hist.get_name(), 'dVNC'], hit_hist.skid_hit_hist.loc[dVNC, :]) for hit_hist in input_hit_hist_list] dSEZ_hits = [casc.Cascade_Analyzer([hit_hist.get_name(), 'dSEZ'], hit_hist.skid_hit_hist.loc[dSEZ, :]) for hit_hist in input_hit_hist_list] RGN_hits = [casc.Cascade_Analyzer([hit_hist.get_name(), 'RGN'], hit_hist.skid_hit_hist.loc[RGN, :]) for hit_hist in input_hit_hist_list] # max possible hits that all output neuron types could receive max_dVNC_hits = len(dVNC_hits[0].skid_hit_hist.index)*n_init max_dSEZ_hits = len(dVNC_hits[0].skid_hit_hist.index)*n_init max_RGN_hits = len(dVNC_hits[0].skid_hit_hist.index)*n_init # organize data so that each sens -> dVNC, dSEZ, RGN is intercalated sens_output_data = list(zip(dVNC_hits, dSEZ_hits, RGN_hits)) sens_output_data = [x for sublist in sens_output_data for x in sublist] sens_output_df = pd.DataFrame([x.skid_hit_hist.sum(axis=0) for x in sens_output_data]) # set up multiindex sens_output_df['source']=[x.get_name()[0] for x in sens_output_data] sens_output_df['target']=[x.get_name()[1] for x in sens_output_data] sens_output_df = sens_output_df.set_index(['source', 'target']) # normalize by max possible input to each output type (num neurons * n_init) sens_output_df_plot = sens_output_df.copy() sens_output_df_plot.loc[(slice(None), 'dVNC'), :] = sens_output_df_plot.loc[(slice(None), 'dVNC'), :]/max_dVNC_hits sens_output_df_plot.loc[(slice(None), 'dSEZ'), :] = sens_output_df_plot.loc[(slice(None), 'dSEZ'), :]/max_dSEZ_hits sens_output_df_plot.loc[(slice(None), 'RGN'), :] = sens_output_df_plot.loc[(slice(None), 'RGN'), :]/max_RGN_hits import cmasher as cmr fig, ax = plt.subplots(1, 1, figsize=(1.5, 2)) fig.tight_layout(pad=3.0) vmax = 0.35 cmap = cmr.torch sns.heatmap(sens_output_df_plot, ax = ax, cmap = cmap, vmax=vmax) ax.set_title('Signal to brain outputs') ax.set(xlim = (0, 11)) plt.savefig('cascades/plots/sensory_modality_signals_to_output.pdf', format='pdf', bbox_inches='tight') # determine mean/median hop distance from sens -> output def counts_to_list(count_list): expanded_counts = [] for i, count in enumerate(count_list): expanded = np.repeat(i, count) expanded_counts.append(expanded) return([x for sublist in expanded_counts for x in sublist]) all_sens_output_dist = [] for row in sens_output_df.iterrows(): list_hits = counts_to_list(row[1]) all_sens_output_dist.append([row[0][0], row[0][1], np.mean(list_hits), np.median(list_hits)]) all_sens_output_dist = pd.DataFrame(all_sens_output_dist, columns = ['source', 'target', 'mean_hop', 'median_hop']) # %% # plotting visits by modality to each descending to VNC neuron pair # supplemental figure dVNC_hits_summed = [pd.DataFrame(x.skid_hit_hist.iloc[:, 0:8].sum(axis=1), columns=[x.get_name()[0]]) for x in dVNC_hits] dVNC_hits_summed = pd.concat(dVNC_hits_summed, axis=1) dVNC_hits_pairwise = pm.Promat.convert_df_to_pairwise(dVNC_hits_summed) dSEZ_hits_summed = [pd.DataFrame(x.skid_hit_hist.iloc[:, 0:8].sum(axis=1), columns=[x.get_name()[0]]) for x in dSEZ_hits] dSEZ_hits_summed = pd.concat(dSEZ_hits_summed, axis=1) dSEZ_hits_pairwise = pm.Promat.convert_df_to_pairwise(dSEZ_hits_summed) RGN_hits_summed = [pd.DataFrame(x.skid_hit_hist.iloc[:, 0:8].sum(axis=1), columns=[x.get_name()[0]]) for x in RGN_hits] RGN_hits_summed = pd.concat(RGN_hits_summed, axis=1) RGN_hits_pairwise = pm.Promat.convert_df_to_pairwise(RGN_hits_summed) fig, axs = plt.subplots( 3, 1, figsize=(8, 8) ) fig.tight_layout(pad=3.0) ax = axs[0] ax.get_xaxis().set_visible(False) ax.set_title('Signal to Individual VNC Descending Neurons') sns.heatmap(dVNC_hits_pairwise.T, ax = ax) ax = axs[1] ax.get_xaxis().set_visible(False) ax.set_title('Signal to Individual SEZ Descending Neurons') sns.heatmap(dSEZ_hits_pairwise.T, ax = ax) ax = axs[2] ax.set_xlabel('Individual Ring Gland Neurons') ax.get_xaxis().set_visible(False) ax.set_title('Signal to Individual Ring Gland Neurons') sns.heatmap(RGN_hits_pairwise.T, ax = ax) plt.savefig('cascades/plots/signal_to_individual_outputs.pdf', format='pdf', bbox_inches='tight') #%% # alternative clustermap plot of descending neurons # supplemental figure plot vmax = n_init fig = sns.clustermap(dVNC_hits_pairwise.T, row_cluster = False, figsize = (8, 4), vmax=vmax) ax = fig.ax_heatmap ax.set_xlabel('Individual dVNCs') ax.set_xticks([]) fig.savefig('cascades/plots/signal_to_individual_dVNCs.pdf', format='pdf', bbox_inches='tight') fig = sns.clustermap(dSEZ_hits_pairwise.T, row_cluster = False, figsize = (8, 4), vmax=vmax) ax = fig.ax_heatmap ax.set_xlabel('Individual dSEZs') ax.set_xticks([]) fig.savefig('cascades/plots/signal_to_individual_dSEZs.pdf', format='pdf', bbox_inches='tight') fig = sns.clustermap(RGN_hits_pairwise.T, row_cluster = False, figsize = (8, 4), vmax=vmax) ax = fig.ax_heatmap ax.set_xlabel('Individual RG neurons') ax.set_xticks([]) fig.savefig('cascades/plots/signal_to_individual_RGs.pdf', format='pdf', bbox_inches='tight') # %% # distribution summary of signal to output neurons dVNC_dist = (dVNC_hits_pairwise.groupby('pair_id').sum()>=n_init).sum(axis=1) dSEZ_dist = (dSEZ_hits_pairwise.groupby('pair_id').sum()>=n_init).sum(axis=1) RGN_dist = (RGN_hits_pairwise.groupby('pair_id').sum()>=n_init).sum(axis=1) dist_data = pd.DataFrame(list(zip(dVNC_dist.values, ['dVNC']*len(dVNC_dist))) + list(zip(dSEZ_dist.values, ['dSEZ']*len(dSEZ_dist))) + list(zip(RGN_dist.values, ['RGN']*len(RGN_dist))), columns = ['combinations', 'type']) fig, ax = plt.subplots(1,1, figsize=(4,4)) sns.stripplot(data = dist_data, y = 'combinations', x='type', s=1, ax=ax) fig.savefig('cascades/plots/signal_to_outputs_dist.pdf', format='pdf', bbox_inches='tight') fig, ax = plt.subplots(1,1, figsize=(4,4)) sns.histplot(data = dVNC_dist-0.5, ax=ax, bins=len(sens)) fig.savefig('cascades/plots/signal_to_dVNC_dist.pdf', format='pdf', bbox_inches='tight') fig, ax = plt.subplots(1,1, figsize=(4,4)) sns.histplot(data = dSEZ_dist-0.5, ax=ax, bins=len(sens)) fig.savefig('cascades/plots/signal_to_dSEZ_dist.pdf', format='pdf', bbox_inches='tight') fig, ax = plt.subplots(1,1, figsize=(4,4)) sns.histplot(data = RGN_dist-0.5, ax=ax, bins=len(sens)) fig.savefig('cascades/plots/signal_to_RGN_dist.pdf', format='pdf', bbox_inches='tight') # %% # parallel coordinates plots from pandas.plotting import parallel_coordinates linewidth = 0.75 alpha = 0.8 very_low_color = '#D7DF23' low_color = '#C2DD26' med_color = '#8DC63F' high_color = '#00A651' data = dVNC_hits_pairwise.groupby('pair_id').sum() very_low = (dVNC_dist<=1) low = (dVNC_dist>1) & (dVNC_dist<4) med = (dVNC_dist>=4) & (dVNC_dist<8) high = dVNC_dist>=8 data['type'] = [0]*len(data.index) data.loc[high, 'type'] = ['high']*len(data.loc[high, 'type']) data.loc[med, 'type'] = ['med']*len(data.loc[med, 'type']) data.loc[low, 'type'] = ['low']*len(data.loc[low, 'type']) data.loc[very_low, 'type'] = ['very_low']*len(data.loc[very_low, 'type']) data = data.sort_values(by='type') fig, ax = plt.subplots(1,1, figsize=(4,4)) parallel_coordinates(data, class_column='type', color = [high_color, med_color, low_color, very_low_color], alpha=alpha, linewidth=linewidth) fig.savefig('cascades/plots/signal-to-dVNC_parallel-coordinates.pdf', format='pdf', bbox_inches='tight') data = dSEZ_hits_pairwise.groupby('pair_id').sum() very_low = (dSEZ_dist<=1) low = (dSEZ_dist>1) & (dSEZ_dist<4) med = (dSEZ_dist>=4) & (dSEZ_dist<8) high = dSEZ_dist>=8 data['type'] = [0]*len(data.index) data.loc[high, 'type'] = ['high']*len(data.loc[high, 'type']) data.loc[med, 'type'] = ['med']*len(data.loc[med, 'type']) data.loc[low, 'type'] = ['low']*len(data.loc[low, 'type']) data.loc[very_low, 'type'] = ['very_low']*len(data.loc[very_low, 'type']) data = data.sort_values(by='type') fig, ax = plt.subplots(1,1, figsize=(4,4)) parallel_coordinates(data, class_column='type', color = [high_color, low_color, med_color, very_low_color], alpha=alpha, linewidth=linewidth) fig.savefig('cascades/plots/signal-to-dSEZ_parallel-coordinates.pdf', format='pdf', bbox_inches='tight') data = RGN_hits_pairwise.groupby('pair_id').sum() very_low = (RGN_dist<=1) low = (RGN_dist>1) & (RGN_dist<4) med = (RGN_dist>=4) & (RGN_dist<8) high = RGN_dist>=8 data['type'] = [0]*len(data.index) data.loc[high, 'type'] = ['high']*len(data.loc[high, 'type']) data.loc[med, 'type'] = ['med']*len(data.loc[med, 'type']) data.loc[low, 'type'] = ['low']*len(data.loc[low, 'type']) data.loc[very_low, 'type'] = ['very_low']*len(data.loc[very_low, 'type']) data = data.sort_values(by='type') fig, ax = plt.subplots(1,1, figsize=(4,4)) parallel_coordinates(data, class_column='type', color = [high_color, low_color, very_low_color, med_color], alpha=alpha, linewidth=linewidth) fig.savefig('cascades/plots/signal-to-RGN_parallel-coordinates.pdf', format='pdf', bbox_inches='tight') # %% # PCA of descending input from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA data = dVNC_hits_pairwise.groupby('pair_id').sum() data['type'] = ['dVNC']*len(data) data2 = dSEZ_hits_pairwise.groupby('pair_id').sum() data2['type'] = ['dSEZ']*len(data2) data3 = RGN_hits_pairwise.groupby('pair_id').sum() data3['type'] = ['RGN']*len(data3) data = pd.concat([data, data2, data3]) x = data.drop(columns='type').values x = StandardScaler().fit_transform(x) pca = PCA(n_components=2) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data = principalComponents , columns = ['pc1', 'pc2'], index=data.index) principalDf['type'] = data['type'] ylim = (-2.25, 2.25) xlim = (-5, 6) size = 3 alpha = 0.75 # plot dVNC PCA plot_data = principalDf[principalDf.type=='dVNC'] low = (dVNC_dist<4) med = (dVNC_dist>=4) & (dVNC_dist<10) high = dVNC_dist>=10 plot_data.loc[high, 'type'] = ['high']*len(plot_data.loc[high, 'type']) plot_data.loc[med, 'type'] = ['med']*len(plot_data.loc[med, 'type']) plot_data.loc[low, 'type'] = ['low']*len(plot_data.loc[low, 'type']) fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.scatterplot(data = plot_data, x='pc1', y='pc2', hue='type', hue_order = ['high', 'med', 'low'], s=size, linewidth=0, alpha=alpha, ax=ax) ax.set(xlim=xlim, ylim=ylim) fig.savefig('cascades/plots/signal-to-dVNC_PCA.pdf', format='pdf', bbox_inches='tight') # plot dSEZ PCA plot_data = principalDf[principalDf.type=='dSEZ'] low = (dSEZ_dist<4) med = (dSEZ_dist>=4) & (dSEZ_dist<10) high = dSEZ_dist>=10 plot_data.loc[high, 'type'] = ['high']*len(plot_data.loc[high, 'type']) plot_data.loc[med, 'type'] = ['med']*len(plot_data.loc[med, 'type']) plot_data.loc[low, 'type'] = ['low']*len(plot_data.loc[low, 'type']) fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.scatterplot(data = plot_data, x='pc1', y='pc2', hue='type', hue_order = ['high', 'med', 'low'], s=size, linewidth=0, alpha=alpha, ax=ax) ax.set(xlim=xlim, ylim=ylim) fig.savefig('cascades/plots/signal-to-dSEZ_PCA.pdf', format='pdf', bbox_inches='tight') # plot RGN PCA plot_data = principalDf[principalDf.type=='RGN'] low = (RGN_dist<4) med = (RGN_dist>=4) & (RGN_dist<10) high = RGN_dist>=10 plot_data.loc[high, 'type'] = ['high']*len(plot_data.loc[high, 'type']) plot_data.loc[med, 'type'] = ['med']*len(plot_data.loc[med, 'type']) plot_data.loc[low, 'type'] = ['low']*len(plot_data.loc[low, 'type']) fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.scatterplot(data = plot_data, x='pc1', y='pc2', hue='type', hue_order = ['high', 'med', 'low'], s=size, linewidth=0, alpha=alpha, ax=ax) ax.set(xlim=xlim, ylim=ylim) fig.savefig('cascades/plots/signal-to-RGN_PCA.pdf', format='pdf', bbox_inches='tight') # %% # bar plot of high, med, low categories for each type of output integration_data = [['dVNC', 'high', sum(dVNC_dist>=10)], ['dVNC', 'med', sum((dVNC_dist>=4) & (dVNC_dist<10))], ['dVNC', 'low', sum(dVNC_dist<4)], ['dSEZ', 'high', sum(dSEZ_dist>=10)], ['dSEZ', 'med', sum((dSEZ_dist>=4) & (dSEZ_dist<10))], ['dSEZ', 'low', sum(dSEZ_dist<4)], ['RGN', 'high', sum(RGN_dist>=10)], ['RGN', 'med', sum((RGN_dist>=4) & (RGN_dist<10))], ['RGN', 'low', sum(RGN_dist<4)]] integration_data = pd.DataFrame(integration_data, columns = ['class', 'type', 'count']) fig, ax = plt.subplots(1,1,figsize=(2,2)) sns.barplot(data = integration_data, x='class', y='count', hue='type', hue_order = ['high', 'med', 'low'], ax=ax) fig.savefig('cascades/plots/signal-integration-counts_dVNCs.pdf', format='pdf', bbox_inches='tight') # %% ########## # **** Note Well: REALLY old code below, deprecated or never used in paper **** ########## # %% # num of descendings at each level # this assumes that thresholding per node is useful; it might not be threshold = 50 num_dVNC_dsSens = pd.DataFrame(([np.array(dVNC_ORN_hit>threshold).sum(axis = 0), np.array(dVNC_AN_hit>threshold).sum(axis = 0), np.array(dVNC_MN_hit>threshold).sum(axis = 0), np.array(dVNC_A00c_hit>threshold).sum(axis = 0), np.array(dVNC_vtd_hit>threshold).sum(axis = 0), np.array(dVNC_thermo_hit>threshold).sum(axis = 0), np.array(dVNC_photo_hit>threshold).sum(axis = 0)]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) num_dSEZ_dsSens = pd.DataFrame(([np.array(dSEZ_ORN_hit>threshold).sum(axis = 0), np.array(dSEZ_AN_hit>threshold).sum(axis = 0), np.array(dSEZ_MN_hit>threshold).sum(axis = 0), np.array(dSEZ_A00c_hit>threshold).sum(axis = 0), np.array(dSEZ_vtd_hit>threshold).sum(axis = 0), np.array(dSEZ_thermo_hit>threshold).sum(axis = 0), np.array(dSEZ_photo_hit>threshold).sum(axis = 0)]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) num_RG_dsSens = pd.DataFrame(([np.array(RG_ORN_hit>threshold).sum(axis = 0), np.array(RG_AN_hit>threshold).sum(axis = 0), np.array(RG_MN_hit>threshold).sum(axis = 0), np.array(RG_A00c_hit>threshold).sum(axis = 0), np.array(RG_vtd_hit>threshold).sum(axis = 0), np.array(RG_thermo_hit>threshold).sum(axis = 0), np.array(RG_photo_hit>threshold).sum(axis = 0)]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) fig, axs = plt.subplots( 3, 1, figsize=(8, 8) ) fig.tight_layout(pad=3.0) vmax = 50 cmap = cmr.heat ax = axs[0] ax.set_title('Number of VNC Descending Neurons downstream of Sensory Signal') sns.heatmap(num_dVNC_dsSens, ax = ax, vmax = vmax, rasterized=True, cmap = cmap) ax.set(xlim = (0, 13)) ax = axs[1] ax.set_title('Number of SEZ Descending Neurons downstream of Sensory Signal') sns.heatmap(num_dSEZ_dsSens, ax = ax, vmax = vmax, rasterized=True, cmap = cmap) ax.set(xlim = (0, 13)) ax = axs[2] ax.set_title('Number of Ring Gland Neurons downstream of Sensory Signal') sns.heatmap(num_RG_dsSens, ax = ax, vmax = vmax, rasterized=True, cmap = cmap) ax.set_xlabel('Hops from sensory') ax.set(xlim = (0, 13)) plt.savefig('cascades/plots/number_outputs_ds_each_sensory_modality.pdf', format='pdf', bbox_inches='tight') # %% # When modality are each outputs associated with? dVNC_hits = pd.DataFrame(([ dVNC_skids, dVNC_ORN_hit.sum(axis = 1), dVNC_AN_hit.sum(axis = 1), dVNC_MN_hit.sum(axis = 1), dVNC_thermo_hit.sum(axis = 1), dVNC_photo_hit.sum(axis = 1), dVNC_A00c_hit.sum(axis = 1), dVNC_vtd_hit.sum(axis = 1)]), index = ['dVNC_skid', 'ORN', 'AN', 'MN', 'thermo', 'photo', 'A00c', 'vtd']) dVNC_hits = dVNC_hits.T dSEZ_hits = pd.DataFrame(([ dSEZ_skids, dSEZ_ORN_hit.sum(axis = 1), dSEZ_AN_hit.sum(axis = 1), dSEZ_MN_hit.sum(axis = 1), dSEZ_thermo_hit.sum(axis = 1), dSEZ_photo_hit.sum(axis = 1), dSEZ_A00c_hit.sum(axis = 1), dSEZ_vtd_hit.sum(axis = 1)]), index = ['dSEZ_skid', 'ORN', 'AN', 'MN', 'thermo', 'photo', 'A00c', 'vtd']) dSEZ_hits = dSEZ_hits.T RG_hits = pd.DataFrame(([ RG_skids, RG_ORN_hit.sum(axis = 1), RG_AN_hit.sum(axis = 1), RG_MN_hit.sum(axis = 1), RG_thermo_hit.sum(axis = 1), RG_photo_hit.sum(axis = 1), RG_A00c_hit.sum(axis = 1), RG_vtd_hit.sum(axis = 1)]), index = ['RG_skid', 'ORN', 'AN', 'MN', 'thermo', 'photo', 'A00c', 'vtd']) RG_hits = RG_hits.T # %% # sensory characterization of each layer of each sensory modality import plotly.express as px from pandas.plotting import parallel_coordinates # replacement if I want to use this later #sensory_profiles = [hit_hist.skid_hit_hist.sum(axis=1).values for hit_hist in input_hit_hist_list] #sensory_profiles = pd.DataFrame(sensory_profiles, index=[hit_hist.get_name() for hit_hist in input_hit_hist_list], columns = input_hit_hist_list[0].skid_hit_hist.index) sensory_profile = pd.DataFrame(([ORN_hit_hist.sum(axis = 1), AN_hit_hist.sum(axis = 1), MN_hit_hist.sum(axis = 1), A00c_hit_hist.sum(axis = 1), vtd_hit_hist.sum(axis = 1), thermo_hit_hist.sum(axis = 1), photo_hit_hist.sum(axis = 1)]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile0 = pd.DataFrame(([ORN_hit_hist[:, 0], AN_hit_hist[:, 0], MN_hit_hist[:, 0], A00c_hit_hist[:, 0], vtd_hit_hist[:, 0], thermo_hit_hist[:, 0], photo_hit_hist[:, 0]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile1 = pd.DataFrame(([ORN_hit_hist[:, 1], AN_hit_hist[:, 1], MN_hit_hist[:, 1], A00c_hit_hist[:, 1], vtd_hit_hist[:, 1], thermo_hit_hist[:, 1], photo_hit_hist[:, 1]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile2 = pd.DataFrame(([ORN_hit_hist[:, 2], AN_hit_hist[:, 2], MN_hit_hist[:, 2], A00c_hit_hist[:, 2], vtd_hit_hist[:, 2], thermo_hit_hist[:, 2], photo_hit_hist[:, 2]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile3 = pd.DataFrame(([ORN_hit_hist[:, 3], AN_hit_hist[:, 3], MN_hit_hist[:, 3], A00c_hit_hist[:, 3], vtd_hit_hist[:, 3], thermo_hit_hist[:, 3], photo_hit_hist[:, 3]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile4 = pd.DataFrame(([ORN_hit_hist[:, 4], AN_hit_hist[:, 4], MN_hit_hist[:, 4], A00c_hit_hist[:, 4], vtd_hit_hist[:, 4], thermo_hit_hist[:, 4], photo_hit_hist[:, 4]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile5 = pd.DataFrame(([ORN_hit_hist[:, 5], AN_hit_hist[:, 5], MN_hit_hist[:, 5], A00c_hit_hist[:, 5], vtd_hit_hist[:, 5], thermo_hit_hist[:, 5], photo_hit_hist[:, 5]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile6 = pd.DataFrame(([ORN_hit_hist[:, 6], AN_hit_hist[:, 6], MN_hit_hist[:, 6], A00c_hit_hist[:, 6], vtd_hit_hist[:, 6], thermo_hit_hist[:, 6], photo_hit_hist[:, 6]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile7 = pd.DataFrame(([ORN_hit_hist[:, 7], AN_hit_hist[:, 7], MN_hit_hist[:, 7], A00c_hit_hist[:, 7], vtd_hit_hist[:, 7], thermo_hit_hist[:, 7], photo_hit_hist[:, 7]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile8 = pd.DataFrame(([ORN_hit_hist[:, 8], AN_hit_hist[:, 8], MN_hit_hist[:, 8], A00c_hit_hist[:, 8], vtd_hit_hist[:, 8], thermo_hit_hist[:, 8], photo_hit_hist[:, 8]]), index = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) sensory_profile = sensory_profile.T sensory_profile0 = sensory_profile0.T sensory_profile1 = sensory_profile1.T sensory_profile2 = sensory_profile2.T sensory_profile3 = sensory_profile3.T sensory_profile4 = sensory_profile4.T sensory_profile5 = sensory_profile5.T sensory_profile6 = sensory_profile6.T sensory_profile7 = sensory_profile7.T sensory_profile8 = sensory_profile8.T #%% # multisensory elements per layer (apples to apples) threshold = 25 ORN0_indices = np.where(ORN_hit_hist[:, 0]>threshold)[0] ORN1_indices = np.where(ORN_hit_hist[:, 1]>threshold)[0] ORN2_indices = np.where(ORN_hit_hist[:, 2]>threshold)[0] ORN3_indices = np.where(ORN_hit_hist[:, 3]>threshold)[0] ORN4_indices = np.where(ORN_hit_hist[:, 4]>threshold)[0] ORN5_indices = np.where(ORN_hit_hist[:, 5]>threshold)[0] ORN6_indices = np.where(ORN_hit_hist[:, 6]>threshold)[0] ORN7_indices = np.where(ORN_hit_hist[:, 7]>threshold)[0] ORN8_indices = np.where(ORN_hit_hist[:, 8]>threshold)[0] AN0_indices = np.where(AN_hit_hist[:, 0]>threshold)[0] AN1_indices = np.where(AN_hit_hist[:, 1]>threshold)[0] AN2_indices = np.where(AN_hit_hist[:, 2]>threshold)[0] AN3_indices = np.where(AN_hit_hist[:, 3]>threshold)[0] AN4_indices = np.where(AN_hit_hist[:, 4]>threshold)[0] AN5_indices = np.where(AN_hit_hist[:, 5]>threshold)[0] AN6_indices = np.where(AN_hit_hist[:, 6]>threshold)[0] AN7_indices = np.where(AN_hit_hist[:, 7]>threshold)[0] AN8_indices = np.where(AN_hit_hist[:, 8]>threshold)[0] MN0_indices = np.where(MN_hit_hist[:, 0]>threshold)[0] MN1_indices = np.where(MN_hit_hist[:, 1]>threshold)[0] MN2_indices = np.where(MN_hit_hist[:, 2]>threshold)[0] MN3_indices = np.where(MN_hit_hist[:, 3]>threshold)[0] MN4_indices = np.where(MN_hit_hist[:, 4]>threshold)[0] MN5_indices = np.where(MN_hit_hist[:, 5]>threshold)[0] MN6_indices = np.where(MN_hit_hist[:, 6]>threshold)[0] MN7_indices = np.where(MN_hit_hist[:, 7]>threshold)[0] MN8_indices = np.where(MN_hit_hist[:, 8]>threshold)[0] A00c0_indices = np.where(A00c_hit_hist[:, 0]>threshold)[0] A00c1_indices = np.where(A00c_hit_hist[:, 1]>threshold)[0] A00c2_indices = np.where(A00c_hit_hist[:, 2]>threshold)[0] A00c3_indices = np.where(A00c_hit_hist[:, 3]>threshold)[0] A00c4_indices = np.where(A00c_hit_hist[:, 4]>threshold)[0] A00c5_indices = np.where(A00c_hit_hist[:, 5]>threshold)[0] A00c6_indices = np.where(A00c_hit_hist[:, 6]>threshold)[0] A00c7_indices = np.where(A00c_hit_hist[:, 7]>threshold)[0] A00c8_indices = np.where(A00c_hit_hist[:, 8]>threshold)[0] vtd0_indices = np.where(vtd_hit_hist[:, 0]>threshold)[0] vtd1_indices = np.where(vtd_hit_hist[:, 1]>threshold)[0] vtd2_indices = np.where(vtd_hit_hist[:, 2]>threshold)[0] vtd3_indices = np.where(vtd_hit_hist[:, 3]>threshold)[0] vtd4_indices = np.where(vtd_hit_hist[:, 4]>threshold)[0] vtd5_indices = np.where(vtd_hit_hist[:, 5]>threshold)[0] vtd6_indices = np.where(vtd_hit_hist[:, 6]>threshold)[0] vtd7_indices = np.where(vtd_hit_hist[:, 7]>threshold)[0] vtd8_indices = np.where(vtd_hit_hist[:, 8]>threshold)[0] thermo0_indices = np.where(thermo_hit_hist[:, 0]>threshold)[0] thermo1_indices = np.where(thermo_hit_hist[:, 1]>threshold)[0] thermo2_indices = np.where(thermo_hit_hist[:, 2]>threshold)[0] thermo3_indices = np.where(thermo_hit_hist[:, 3]>threshold)[0] thermo4_indices = np.where(thermo_hit_hist[:, 4]>threshold)[0] thermo5_indices = np.where(thermo_hit_hist[:, 5]>threshold)[0] thermo6_indices = np.where(thermo_hit_hist[:, 6]>threshold)[0] thermo7_indices = np.where(thermo_hit_hist[:, 7]>threshold)[0] thermo8_indices = np.where(thermo_hit_hist[:, 8]>threshold)[0] photo0_indices = np.where(photo_hit_hist[:, 0]>threshold)[0] photo1_indices = np.where(photo_hit_hist[:, 1]>threshold)[0] photo2_indices = np.where(photo_hit_hist[:, 2]>threshold)[0] photo3_indices = np.where(photo_hit_hist[:, 3]>threshold)[0] photo4_indices = np.where(photo_hit_hist[:, 4]>threshold)[0] photo5_indices = np.where(photo_hit_hist[:, 5]>threshold)[0] photo6_indices = np.where(photo_hit_hist[:, 6]>threshold)[0] photo7_indices = np.where(photo_hit_hist[:, 7]>threshold)[0] photo8_indices = np.where(photo_hit_hist[:, 8]>threshold)[0] ORN_profile = pd.DataFrame([np.array(sensory_profile0.iloc[ORN0_indices, :].sum(axis=0)/len(ORN0_indices)), np.array(sensory_profile1.iloc[ORN1_indices, :].sum(axis=0)/len(ORN1_indices)), np.array(sensory_profile2.iloc[ORN2_indices, :].sum(axis=0)/len(ORN2_indices)), np.array(sensory_profile3.iloc[ORN3_indices, :].sum(axis=0)/len(ORN3_indices)), np.array(sensory_profile4.iloc[ORN4_indices, :].sum(axis=0)/len(ORN4_indices)), np.array(sensory_profile5.iloc[ORN5_indices, :].sum(axis=0)/len(ORN5_indices)), np.array(sensory_profile6.iloc[ORN6_indices, :].sum(axis=0)/len(ORN6_indices)), np.array(sensory_profile7.iloc[ORN7_indices, :].sum(axis=0)/len(ORN7_indices)), np.array(sensory_profile8.iloc[ORN8_indices, :].sum(axis=0)/len(ORN8_indices))], index = ['ORN0', 'ORN1', 'ORN2', 'ORN3', 'ORN4', 'ORN5', 'ORN6', 'ORN7', 'ORN8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) AN_profile = pd.DataFrame([np.array(sensory_profile0.iloc[AN0_indices, :].sum(axis=0)/len(AN0_indices)), np.array(sensory_profile1.iloc[AN1_indices, :].sum(axis=0)/len(AN1_indices)), np.array(sensory_profile2.iloc[AN2_indices, :].sum(axis=0)/len(AN2_indices)), np.array(sensory_profile3.iloc[AN3_indices, :].sum(axis=0)/len(AN3_indices)), np.array(sensory_profile4.iloc[AN4_indices, :].sum(axis=0)/len(AN4_indices)), np.array(sensory_profile5.iloc[AN5_indices, :].sum(axis=0)/len(AN5_indices)), np.array(sensory_profile6.iloc[AN6_indices, :].sum(axis=0)/len(AN6_indices)), np.array(sensory_profile7.iloc[AN7_indices, :].sum(axis=0)/len(AN7_indices)), np.array(sensory_profile8.iloc[AN8_indices, :].sum(axis=0)/len(AN8_indices))], index = ['AN0', 'AN1', 'AN2', 'AN3', 'AN4', 'AN5', 'AN6', 'AN7', 'AN8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) MN_profile = pd.DataFrame([np.array(sensory_profile0.iloc[MN0_indices, :].sum(axis=0)/len(MN0_indices)), np.array(sensory_profile1.iloc[MN1_indices, :].sum(axis=0)/len(MN1_indices)), np.array(sensory_profile2.iloc[MN2_indices, :].sum(axis=0)/len(MN2_indices)), np.array(sensory_profile3.iloc[MN3_indices, :].sum(axis=0)/len(MN3_indices)), np.array(sensory_profile4.iloc[MN4_indices, :].sum(axis=0)/len(MN4_indices)), np.array(sensory_profile5.iloc[MN5_indices, :].sum(axis=0)/len(MN5_indices)), np.array(sensory_profile6.iloc[MN6_indices, :].sum(axis=0)/len(MN6_indices)), np.array(sensory_profile7.iloc[MN7_indices, :].sum(axis=0)/len(MN7_indices)), np.array(sensory_profile8.iloc[MN8_indices, :].sum(axis=0)/len(MN8_indices))], index = ['MN0', 'MN1', 'MN2', 'MN3', 'MN4', 'MN5', 'MN6', 'MN7', 'MN8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) A00c_profile = pd.DataFrame([np.array(sensory_profile0.iloc[A00c0_indices, :].sum(axis=0)/len(A00c0_indices)), np.array(sensory_profile1.iloc[A00c1_indices, :].sum(axis=0)/len(A00c1_indices)), np.array(sensory_profile2.iloc[A00c2_indices, :].sum(axis=0)/len(A00c2_indices)), np.array(sensory_profile3.iloc[A00c3_indices, :].sum(axis=0)/len(A00c3_indices)), np.array(sensory_profile4.iloc[A00c4_indices, :].sum(axis=0)/len(A00c4_indices)), np.array(sensory_profile5.iloc[A00c5_indices, :].sum(axis=0)/len(A00c5_indices)), np.array(sensory_profile6.iloc[A00c6_indices, :].sum(axis=0)/len(A00c6_indices)), np.array(sensory_profile7.iloc[A00c7_indices, :].sum(axis=0)/len(A00c7_indices)), np.array(sensory_profile8.iloc[A00c8_indices, :].sum(axis=0)/len(A00c8_indices))], index = ['A00c0', 'A00c1', 'A00c2', 'A00c3', 'A00c4', 'A00c5', 'A00c6', 'A00c7', 'A00c8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) vtd_profile = pd.DataFrame([np.array(sensory_profile0.iloc[vtd0_indices, :].sum(axis=0)/len(vtd0_indices)), np.array(sensory_profile1.iloc[vtd1_indices, :].sum(axis=0)/len(vtd1_indices)), np.array(sensory_profile2.iloc[vtd2_indices, :].sum(axis=0)/len(vtd2_indices)), np.array(sensory_profile3.iloc[vtd3_indices, :].sum(axis=0)/len(vtd3_indices)), np.array(sensory_profile4.iloc[vtd4_indices, :].sum(axis=0)/len(vtd4_indices)), np.array(sensory_profile5.iloc[vtd5_indices, :].sum(axis=0)/len(vtd5_indices)), np.array(sensory_profile6.iloc[vtd6_indices, :].sum(axis=0)/len(vtd6_indices)), np.array(sensory_profile7.iloc[vtd7_indices, :].sum(axis=0)/len(vtd7_indices)), np.array(sensory_profile8.iloc[vtd8_indices, :].sum(axis=0)/len(vtd8_indices))], index = ['vtd0', 'vtd1', 'vtd2', 'vtd3', 'vtd4', 'vtd5', 'vtd6', 'vtd7', 'vtd8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) thermo_profile = pd.DataFrame([np.array(sensory_profile0.iloc[thermo0_indices, :].sum(axis=0)/len(thermo0_indices)), np.array(sensory_profile1.iloc[thermo1_indices, :].sum(axis=0)/len(thermo1_indices)), np.array(sensory_profile2.iloc[thermo2_indices, :].sum(axis=0)/len(thermo2_indices)), np.array(sensory_profile3.iloc[thermo3_indices, :].sum(axis=0)/len(thermo3_indices)), np.array(sensory_profile4.iloc[thermo4_indices, :].sum(axis=0)/len(thermo4_indices)), np.array(sensory_profile5.iloc[thermo5_indices, :].sum(axis=0)/len(thermo5_indices)), np.array(sensory_profile6.iloc[thermo6_indices, :].sum(axis=0)/len(thermo6_indices)), np.array(sensory_profile7.iloc[thermo7_indices, :].sum(axis=0)/len(thermo7_indices)), np.array(sensory_profile8.iloc[thermo8_indices, :].sum(axis=0)/len(thermo8_indices))], index = ['thermo0', 'thermo1', 'thermo2', 'thermo3', 'thermo4', 'thermo5', 'thermo6', 'thermo7', 'thermo8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) photo_profile = pd.DataFrame([np.array(sensory_profile0.iloc[photo0_indices, :].sum(axis=0)/len(photo0_indices)), np.array(sensory_profile1.iloc[photo1_indices, :].sum(axis=0)/len(photo1_indices)), np.array(sensory_profile2.iloc[photo2_indices, :].sum(axis=0)/len(photo2_indices)), np.array(sensory_profile3.iloc[photo3_indices, :].sum(axis=0)/len(photo3_indices)), np.array(sensory_profile4.iloc[photo4_indices, :].sum(axis=0)/len(photo4_indices)), np.array(sensory_profile5.iloc[photo5_indices, :].sum(axis=0)/len(photo5_indices)), np.array(sensory_profile6.iloc[photo6_indices, :].sum(axis=0)/len(photo3_indices)), np.array(sensory_profile7.iloc[photo7_indices, :].sum(axis=0)/len(photo4_indices)), np.array(sensory_profile8.iloc[photo8_indices, :].sum(axis=0)/len(photo5_indices))], index = ['photo0', 'photo1', 'photo2', 'photo3', 'photo4', 'photo5', 'photo6', 'photo7', 'photo8'], columns = ['ORN', 'AN', 'MN', 'A00c', 'vtd', 'thermo', 'photo']) # %% # plotting multisensory elements per layer x_axis_labels = [0,1,2,3,4,5,6] x_label = 'Hops from Sensory' fig, axs = plt.subplots( 4, 2, figsize=(5, 8) ) fig.tight_layout(pad=2.5) #cbar_ax = axs.add_axes([3, 7, .1, .75]) ax = axs[0, 0] ax.set_title('Signal from ORN') ax.set(xticks=[0, 1, 2, 3, 4, 5]) sns.heatmap(ORN_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[1, 0] ax.set_title('Signal from AN') sns.heatmap(AN_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[2, 0] ax.set_title('Signal from MN') sns.heatmap(MN_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[3, 0] ax.set_title('Signal from A00c') sns.heatmap(A00c_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax.set_xlabel(x_label) ax = axs[0, 1] ax.set_title('Signal from vtd') sns.heatmap(vtd_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[1, 1] ax.set_title('Signal from thermo') sns.heatmap(thermo_profile.T.iloc[:,0:7], ax = ax, cbar=False, xticklabels = x_axis_labels, rasterized=True) ax = axs[2, 1] ax.set_title('Signal from photo') sns.heatmap(photo_profile.T.iloc[:,0:7], ax = ax, cbar_ax = axs[3, 1], xticklabels = x_axis_labels, rasterized=True) ax.set_xlabel(x_label) ax = axs[3, 1] ax.set_xlabel('Number of Visits\nfrom Sensory Signal') #ax.axis("off") plt.savefig('cascades/plots/sensory_integration_per_hop.pdf', format='pdf', bbox_inches='tight') # %% # parallel coordinate plot of different sensory layer integration fig, axs = plt.subplots( 6, 7, figsize=(30, 30), sharey = True ) fig.tight_layout(pad=2.5) threshold = 25 alpha = 0.10 #fig.tight_layout(pad=3.0) sensory_profile0_parallel = sensory_profile0 sensory_profile0_parallel['class'] = np.zeros(len(sensory_profile0_parallel)) sensory_profile1_parallel = sensory_profile1 sensory_profile1_parallel['class'] = np.zeros(len(sensory_profile1_parallel)) sensory_profile2_parallel = sensory_profile2 sensory_profile2_parallel['class'] = np.zeros(len(sensory_profile2_parallel)) sensory_profile3_parallel = sensory_profile3 sensory_profile3_parallel['class'] = np.zeros(len(sensory_profile3_parallel)) sensory_profile4_parallel = sensory_profile4 sensory_profile4_parallel['class'] = np.zeros(len(sensory_profile4_parallel)) sensory_profile5_parallel = sensory_profile5 sensory_profile5_parallel['class'] = np.zeros(len(sensory_profile5_parallel)) column = 0 color = 'blue' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(ORN_hit_hist[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(ORN_hit_hist[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(ORN_hit_hist[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[np.where(ORN_hit_hist[:, 3]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[4, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile4_parallel.iloc[np.where(ORN_hit_hist[:, 4]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[5, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile5_parallel.iloc[np.where(ORN_hit_hist[:, 5]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) modality_list = AN_hit_hist column = 1 color = 'orange' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(modality_list[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(modality_list[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(modality_list[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[np.where(modality_list[:, 3]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[4, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile4_parallel.iloc[np.where(modality_list[:, 4]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[5, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile5_parallel.iloc[np.where(modality_list[:, 5]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) modality_list = MN_hit_hist column = 2 color = 'green' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(modality_list[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(modality_list[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(modality_list[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[np.where(modality_list[:, 3]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[4, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile4_parallel.iloc[np.where(modality_list[:, 4]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[5, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile5_parallel.iloc[np.where(modality_list[:, 5]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) modality_list = A00c_hit_hist column = 3 color = 'maroon' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(modality_list[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(modality_list[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(modality_list[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[np.where(modality_list[:, 3]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[4, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile4_parallel.iloc[np.where(modality_list[:, 4]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[5, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile5_parallel.iloc[np.where(modality_list[:, 5]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) modality_list = vtd_hit_hist column = 4 color = 'purple' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(modality_list[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(modality_list[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(modality_list[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[np.where(modality_list[:, 3]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[4, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile4_parallel.iloc[np.where(modality_list[:, 4]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[5, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile5_parallel.iloc[np.where(modality_list[:, 5]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) modality_list = thermo_hit_hist column = 5 color = 'navy' ax = axs[0, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile0_parallel.iloc[np.where(modality_list[:, 0]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[1, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile1_parallel.iloc[np.where(modality_list[:, 1]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[2, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile2_parallel.iloc[np.where(modality_list[:, 2]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[3, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile3_parallel.iloc[np.where(modality_list[:, 3]>threshold)[0], :], class_column = 'class', ax = ax, alpha = alpha, color = color) ax = axs[4, column] ax.set(ylim = (0, 100)) parallel_coordinates(sensory_profile4_parallel.iloc[
np.where(modality_list[:, 4]>threshold)
numpy.where
import numpy as np import scipy.io as sio import matplotlib.pyplot as plt from SpectrogramTools import * from CQT import * from NMF import * from NMFGPU import * from NMFJoint import * from SongAnalogies import * def testNMFJointSynthetic(): np.random.seed(100) N = 20 M = 100 K = 6 H = np.random.rand(K, M) W1 = np.random.rand(N, K) W2 = np.random.rand(N, K) X1 = W1.dot(H) X2 = W2.dot(H) lambdas = [0.01]*2 plotfn = lambda Xs, Us, Vs, VStar, errs: \ plotJointNMFwGT(Xs, Us, Vs, VStar, [W1, W2], [H.T, H.T], errs) res = doJointNMF([X1, X2], lambdas, K, tol = 0.01, Verbose = True, plotfn = plotfn) res['X1'] = X1 res['X2'] = X2 sio.savemat("JointNMF.mat", res) def testNMF1DConvSynthetic(): np.random.seed(100) N = 20 M = 40 K = 3 L = 80 T = 10 V = 0*np.ones((N, M)) V[5+np.arange(T), np.arange(T)] = 1 V[5+np.arange(T), 5+np.arange(T)] = 0.5 V[15-np.arange(T), 10+np.arange(T)] = 1 V[5+np.arange(T), 20+np.arange(T)] = 1 V[15-np.arange(T), 22+np.arange(T)] = 0.5 V[5+np.arange(T), 10+np.arange(T)] += 0.7 V *= 1000 #doNMF(V, K*T, L, plotfn=plotNMFSpectra) doNMF1DConv(V, K, T+5, L, plotfn=plotNMF1DConvSpectra) def testNMF2DConvSynthetic(): initParallelAlgorithms() np.random.seed(300) N = 20 M = 40 K = 2 L = 200 T = 10 F = 5 V = 0.1*np.ones((N, M)) V[5+np.arange(T), np.arange(T)] = 1 V[8+np.arange(T), 5+np.arange(T)] = 0.5 V[15-np.arange(T), 10+np.arange(T)] = 1 V[6+np.arange(T), 20+np.arange(T)] = 1 V[10-np.arange(T), 22+np.arange(T)] = 0.5 V[10+np.arange(T), 10+np.arange(T)] += 0.7 doNMF2DConv(V, K, T, F, L, doKL = True, plotfn=plotNMF2DConvSpectra) #doNMF1DConv(V, K, T, L, plotfn=plotNMF1DConvSpectra) def get2DSyntheticJointExample(): T = 10 F = 10 K = 3 M = 20 N = 60 W1 = np.zeros((T, M, K)) W2 = np.zeros((T, M, K)) #Pattern 1: A tall block in A that goes to a fat block in A' [J, I] = np.meshgrid(np.arange(2), 4+np.arange(5)) W1[J.flatten(), I.flatten(), 0] = 1 [J, I] = np.meshgrid(np.arange(5), 7+np.arange(2)) W2[J.flatten(), I.flatten(), 0] = 1 #Pattern 2: An antidiagonal line in A that goes to a diagonal line in A' W1[np.arange(7), 9-np.arange(7), 1] = 1 W2[np.arange(7), np.arange(7), 1] = 1 #Pattern 3: A square in A that goes into a circle in A' [J, I] = np.meshgrid(np.arange(5), 10+np.arange(5)) I = I.flatten() J = J.flatten() W1[0, np.arange(10), 2] = 1 W1[9, np.arange(10), 2] = 1 W1[np.arange(10), 0, 2] = 1 W1[np.arange(10), 10, 2] = 1 [J, I] = np.meshgrid(np.arange(T), np.arange(T)) I = I.flatten() J = J.flatten() idx = np.arange(I.size) idx = idx[np.abs((I-5)**2 + (J-5)**2 - 4**2) < 4] I = I[idx] J = J[idx] W2[J, I, 2] = 1 H = np.zeros((F, K, N)) H[9, 0, [3, 15, 50]] = 1 H[0, 0, 27] = 1 #3 diagonal lines in a row, then a gap, then 3 in a row pitch shifted H[0, 1, [5, 15, 25]] = 1 H[0, 1, [35, 45, 55]] = 1 #Squares and circles moving down then up H[1, 2, [0, 48]] = 1 H[4, 2, [12, 36]] = 1 H[8, 2, 24] = 1 return {'W1':W1, 'W2':W2, 'H':H, 'T':T, 'F':F, 'K':K, 'M':M, 'N':N} def testNMF2DConvJointSynthetic(): initParallelAlgorithms() L = 200 res = get2DSyntheticJointExample() [W1, W2, H, T, F, K] = \ [res['W1'], res['W2'], res['H'], res['T'], res['F'], res['K']] A = multiplyConv2D(W1, H) Ap = multiplyConv2D(W2, H) doNMF2DConvJointGPU(A, Ap, K, T, F, L, doKL = False, plotfn=plotNMF2DConvSpectraJoint) #doNMF1DConv(V, K, T, L, plotfn=plotNMF1DConvSpectra) def testNMF2DConvJoint3WaySynthetic(): initParallelAlgorithms() np.random.seed(300) N2 = 40 res = get2DSyntheticJointExample() [W1, W2, H1, T, F, K] = \ [res['W1'], res['W2'], res['H'], res['T'], res['F'], res['K']] H2 = np.random.rand(F, K, N2) H2[H2 > 0.98] = 1 H2[H2 < 1] = 0 A = multiplyConv2D(W1, H1) Ap = multiplyConv2D(W2, H1) B = multiplyConv2D(W1, H2) doNMF2DConvJoint3WayGPU(A, Ap, B, K, T, F, 200, plotfn = plotNMF2DConvSpectraJoint3Way) def outputNMFSounds(U1, U2, winSize, hopSize, Fs, fileprefix): for k in range(U1.shape[1]): S1 = np.repeat(U1[:, k][:, None], 60, axis = 1) X1 = griffinLimInverse(S1, winSize, hopSize) X1 = X1/np.max(np.abs(X1)) S2 = np.repeat(U2[:, k][:, None], 60, axis = 1) X2 = griffinLimInverse(S2, winSize, hopSize) X2 = X2/np.max(np.abs(X2)) X = np.array([X1.flatten(), X2.flatten()]).T sio.wavfile.write("%s%i.wav"%(fileprefix, k), Fs, X) def testNMFJointSmoothCriminal(): """ Trying out the technique in [1] "Multi-View Clustering via Joint Nonnegative Matrix Factorization" <NAME>, <NAME>, <NAME>, <NAME> """ Fs, X = sio.wavfile.read("music/SmoothCriminalAligned.wav") X1 = X[:, 0]/(2.0**15) X2 = X[:, 1]/(2.0**15) #Only take first 30 seconds for initial experiments X1 = X1[0:Fs*30] X2 = X2[0:Fs*30] hopSize = 256 winSize = 2048 S1 = np.abs(STFT(X1, winSize, hopSize)) S2 = np.abs(STFT(X2, winSize, hopSize)) lambdas = [1e-4]*2 K = S1.shape[1]*2 plotfn = lambda Xs, Us, Vs, VStar, errs: \ plotJointNMFSpectra(Xs, Us, Vs, VStar, errs, hopSize) res = doJointNMF([S1, S2], lambdas, K, tol = 0.01, Verbose = True, plotfn = plotfn) U1 = res['Us'][0] U2 = res['Us'][1] V1 = res['Vs'][0] V2 = res['Vs'][1] S1Res = U1.dot(V1.T) S2Res = U2.dot(V2.T) X1Res = griffinLimInverse(S1Res, winSize, hopSize, NIters = 10) X2Res = griffinLimInverse(S2Res, winSize, hopSize, NIters = 10) X1Res = X1Res/np.max(np.abs(X1Res)) X2Res = X2Res/np.max(np.abs(X2Res)) sio.wavfile.write("MJ_%i_%.3g.wav"%(K, lambdas[0]), Fs, X1Res) sio.wavfile.write("AAF_%i_%.3g.wav"%(K, lambdas[0]), Fs, X2Res) #outputNMFSounds(U1, U2, winSize, hopSize, Fs, "MAJF") #sio.savemat("JointNMFSTFT.mat", res) #Now represent Bad in MJ's basis import librosa X, Fs = librosa.load("music/MJBad.mp3") X = X[0:Fs*30] S = np.abs(STFT(X, winSize, hopSize)) fn = lambda V, W, H, iter, errs: plotNMFSpectra(V, W, H, iter, errs, hopSize) NIters = 100 H = doNMF(S, 10, NIters, W=U1, plotfn = fn) SRes = U1.dot(H) XRes = griffinLimInverse(SRes, winSize, hopSize, NIters = 10) SResCover = U2.dot(H) XResCover = griffinLimInverse(SResCover, winSize, hopSize, NIters = 10) sio.wavfile.write("BadRes.wav", Fs, XRes) sio.wavfile.write("BadResCover.wav", Fs, XResCover) def testNMFMusaicingSimple(): """ Try to replicate the results from the Driedger paper """ import librosa winSize = 2048 hopSize = 1024 Fs = 22050 X, Fs = librosa.load("music/Bees_Buzzing.mp3") WComplex = getPitchShiftedSpecs(X, Fs, winSize, hopSize, 6) W = np.abs(WComplex) X, Fs = librosa.load("music/Beatles_LetItBe.mp3") V = np.abs(STFT(X, winSize, hopSize)) #librosa.display.specshow(librosa.amplitude_to_db(H), y_axis = 'log', x_axis = 'time') fn = lambda V, W, H, iter, errs: plotNMFSpectra(V, W, H, iter, errs, hopSize) NIters = 50 #(W, H) = doNMF(V, W.shape[1], NIters, W=W, plotfn = fn) H = doNMFDriedger(V, W, NIters, r=7, p=10, c=6, plotfn=fn) H = np.array(H, dtype=np.complex) V2 = WComplex.dot(H) sio.savemat("V2.mat", {"V2":V2, "H":H}) #V2 = sio.loadmat("V2.mat")["V2"] X = iSTFT(V2, winSize, hopSize) X = X/np.max(np.abs(X)) wavfile.write("letitbeeISTFT.wav", Fs, X) print("Doing phase retrieval...") Y = griffinLimInverse(V2, winSize, hopSize, NIters=30) Y = Y/np.max(np.abs(Y)) wavfile.write("letitbee.wav", Fs, Y) def testHarmPercMusic(): import librosa from scipy.io import wavfile import scipy.ndimage foldername = "HarmPerc" K = 2 #STFT Params winSize = 2048 hopSize = 256 if not os.path.exists(foldername): os.mkdir(foldername) Fs, X = wavfile.read("music/SmoothCriminalAligned.wav") X = np.array(X, dtype=np.float32) A = X[:, 0]/(2.0**15) Ap = X[:, 1]/(2.0**15) #Take 20 seconds clips from each A = A[0:Fs*20] Ap = Ap[0:Fs*20] B, Fs = librosa.load("music/MJBad.mp3") B = B[Fs*3:Fs*23] #B, Fs = librosa.load("music/MJSpeedDemonClip.wav") SsA = [] SsAp = [] SsB = [] for (V, Ss, s) in zip([A, Ap, B], [SsA, SsAp, SsB], ["A", "Ap", "B"]): S = STFT(V, winSize, hopSize) Harm, Perc = librosa.decompose.hpss(S) X1 = iSTFT(Harm, winSize, hopSize) X2 = iSTFT(Perc, winSize, hopSize) wavfile.write("%s/%s_0.wav"%(foldername, s), Fs, X1) wavfile.write("%s/%s_1.wav"%(foldername, s), Fs, X2) if s == "B": Ss.append(Harm) Ss.append(Perc) else: for Xk in [X1, X2]: Ss.append(getPitchShiftedSpecs(Xk, Fs, winSize, hopSize)) ##Do NMF Driedger on one track at a time fn = lambda V, W, H, iter, errs: plotNMFSpectra(V, W, H, iter, errs, hopSize) SFinal = np.zeros(SsB[0].shape, dtype = np.complex) print("SFinal.shape = ", SFinal.shape) for k in range(K): print("Doing Driedger on track %i..."%k) HFilename = "%s/DriedgerH%i.mat"%(foldername, k) if not os.path.exists(HFilename): H = doNMFDriedger(np.abs(SsB[k]), np.abs(SsA[k]), 100, \ r = 7, p = 10, c = 3, plotfn = fn) sio.savemat(HFilename, {"H":H}) else: H = sio.loadmat(HFilename)["H"] H = np.array(H, dtype=np.complex) S = SsA[k].dot(H) X = griffinLimInverse(S, winSize, hopSize) wavfile.write("%s/B%i_Driedger.wav"%(foldername, k), Fs, X) S = SsAp[k].dot(H) X = griffinLimInverse(S, winSize, hopSize) wavfile.write("%s/Bp%i.wav"%(foldername, k), Fs, X) SFinal += S ##Do Griffin Lim phase correction on the final mixed STFT X = griffinLimInverse(SFinal, winSize, hopSize) Y = X/np.max(np.abs(X)) wavfile.write("%s/BpFinal.wav"%foldername, Fs, Y) def testNMF1DMusic(): import librosa from scipy.io import wavfile foldername = "1DNMFResults" if not os.path.exists(foldername): os.mkdir(foldername) NIters = 80 hopSize = 256 winSize = 2048 #Step 1: Do joint embedding on A and Ap K = 10 T = 16 Fs, X = sio.wavfile.read("music/SmoothCriminalAligned.wav") X1 = X[:, 0]/(2.0**15) X2 = X[:, 1]/(2.0**15) #Only take first 30 seconds for initial experiments X1 = X1[0:Fs*30] X2 = X2[0:Fs*30] #Load in B B, Fs = librosa.load("music/MJBad.mp3") B = B[Fs*3:Fs*23] S1 = STFT(X1, winSize, hopSize) N = S1.shape[0] S2 = STFT(X2, winSize, hopSize) SOrig = np.concatenate((S1, S2), 0) S = np.abs(SOrig) plotfn = lambda V, W, H, iter, errs: \ plotNMF1DConvSpectraJoint(V, W, H, iter, errs, hopLength = hopSize, \ audioParams = {'Fs':Fs, 'winSize':winSize, 'prefix':foldername}) filename = "%s/NMFAAp.mat"%foldername if os.path.exists(filename): res = sio.loadmat(filename) [W, H] = [res['W'], res['H']] else: (W, H) = doNMF1DConvJoint(S, K, T, NIters, prefix=foldername, plotfn=plotfn) sio.savemat(filename, {"W":W, "H":H}) W1 = W[:, 0:N, :] W2 = W[:, N::, :] S = multiplyConv1D(W, H) S1 = S[0:N, :] S2 = S[N::, :] y_hat = griffinLimInverse(S1, winSize, hopSize) y_hat = y_hat/np.max(np.abs(y_hat)) sio.wavfile.write("%s/ANMF.wav"%foldername, Fs, y_hat) y_hat = griffinLimInverse(S2, winSize, hopSize) y_hat = y_hat/np.max(np.abs(y_hat)) sio.wavfile.write("%s/ApNMF.wav"%foldername, Fs, y_hat) #Also invert each Wt for k in range(W.shape[2]): Wk = np.array(W[:, :, k].T) Wk1 = Wk[0:N, :] Wk2 = Wk[N::, :] y_hat = griffinLimInverse(Wk1, winSize, hopSize) y_hat = y_hat/np.max(np.abs(y_hat)) sio.wavfile.write("%s/WA_%i.wav"%(foldername, k), Fs, y_hat) y_hat = griffinLimInverse(Wk2, winSize, hopSize) y_hat = y_hat/np.max(np.abs(y_hat)) sio.wavfile.write("%s/WAp_%i.wav"%(foldername, k), Fs, y_hat) S1 = SOrig[0:N, :] S2 = SOrig[N::, :] (AllSsA, RatiosA) = getComplexNMF1DTemplates(S1, W1, H, p = 2, audioParams = {'winSize':winSize, \ 'hopSize':hopSize, 'Fs':Fs, 'fileprefix':"%s/TrackA"%foldername}) (AllSsAp, RatiosAp) = getComplexNMF1DTemplates(S2, W2, H, p = 2, audioParams = {'winSize':winSize, \ 'hopSize':hopSize, 'Fs':Fs, 'fileprefix':"%s/TrackAp"%foldername}) #Step 1a: Combine templates manually clusters = [[3], [5], [0, 1, 2, 4, 6, 7, 8, 9]] SsA = [] SsAp = [] for i, cluster in enumerate(clusters): SAi = np.zeros(S1.shape, dtype = np.complex) SApi = np.zeros(S2.shape, dtype = np.complex) for idx in cluster: SAi += AllSsA[idx] SApi += AllSsAp[idx] SsA.append(SAi) SsAp.append(SApi) y_hat = griffinLimInverse(SAi, winSize, hopSize) y_hat = y_hat/np.max(np.abs(y_hat)) wavfile.write("%s/TrackAManual%i.wav"%(foldername, i), Fs, y_hat) y_hat = griffinLimInverse(SApi, winSize, hopSize) y_hat = y_hat/np.max(np.abs(y_hat)) wavfile.write("%s/TrackApManual%i.wav"%(foldername, i), Fs, y_hat) #Step 2: Create a W matrix which is grouped by cluster and which has pitch shifted #versions of each template WB = np.array([]) clusteridxs = [0] for i, cluster in enumerate(clusters): for idx in cluster: thisW = W1[:, :, idx].T for shift in range(-6, 7): thisWShift = pitchShiftSTFT(thisW, Fs, shift).T[:, :, None] if WB.size == 0: WB = thisWShift else: WB = np.concatenate((WB, thisWShift), 2) clusteridxs.append(WB.shape[2]) print("WB.shape = ", WB.shape) print("clusteridxs = ", clusteridxs) sio.savemat("%s/WB.mat"%foldername, {"WB":WB}) #Step 3: Filter B by the new W matrix SBOrig = STFT(B, winSize, hopSize) plotfn = lambda V, W, H, iter, errs: \ plotNMF1DConvSpectra(V, W, H, iter, errs, hopLength = hopSize) filename = "%s/NMFB.mat"%foldername if not os.path.exists(filename): (WB, HB) = doNMF1DConv(np.abs(SBOrig), WB.shape[2], T, NIters, W = WB) sio.savemat(filename, {"HB":HB, "WB":WB}) else: HB = sio.loadmat(filename)["HB"] #Separate out B tracks As = [] AsSum = np.zeros(SBOrig.shape) p = 2 for i in range(len(clusters)): thisH = np.array(HB) thisH[0:clusteridxs[i], :] = 0 thisH[clusteridxs[i+1]::, :] = 0 As.append(multiplyConv1D(WB, thisH)**p) AsSum += As[-1] SsB = [] for i in range(len(clusters)): SBi = SBOrig*As[i]/AsSum SsB.append(SBi) y_hat = griffinLimInverse(SBi, winSize, hopSize) y_hat = y_hat/np.max(np.abs(y_hat)) wavfile.write("%s/TrackBManual%i.wav"%(foldername, i), Fs, y_hat) plt.clf() plt.plot(np.sum(As[i]**2, 0)/np.sum(AsSum**2, 0)) plt.savefig("%s/TrackBManual%s.svg"%(foldername, i)) #Step 4: Do NMF Driedger on one track of B at a time NIters = 100 shiftrange = 6 for i in range(len(SsA)): SsA[i] = getPitchShiftedSpecsFromSpec(SsA[i], Fs, winSize, hopSize, shiftrange=shiftrange) SsAp[i] = getPitchShiftedSpecsFromSpec(SsAp[i], Fs, winSize, hopSize, shiftrange=shiftrange) fn = lambda V, W, H, iter, errs: plotNMFSpectra(V, W, H, iter, errs, hopSize) XFinal = np.array([]) for i in range(len(SsA)): print("Doing track %i..."%i) HFilename = "%s/H%i.mat"%(foldername, i) if not os.path.exists(HFilename): H = doNMFDriedger(np.abs(SsB[i]), np.abs(SsA[i]), NIters, \ r = 7, p = 10, c = 3, plotfn = fn) sio.savemat(HFilename, {"H":H}) else: H = sio.loadmat(HFilename)["H"] H = np.array(H, dtype=np.complex) S = SsA[i].dot(H) X = griffinLimInverse(S, winSize, hopSize) wavfile.write("%s/B%i_Driedger.wav"%(foldername, i), Fs, X) S = SsAp[i].dot(H) X = griffinLimInverse(S, winSize, hopSize) Y = X/np.max(np.abs(X)) wavfile.write("%s/Bp%i.wav"%(foldername, i), Fs, Y) if XFinal.size == 0: XFinal = X else: XFinal += X Y = XFinal/np.max(
np.abs(XFinal)
numpy.abs
# ratios.py: simple method for estimating volume change and lake length ratios # # OVERVIEW # this code constructs plots of estimated vs. true subglacial water volume change and # subglacial lake length over a range of ice thicknesses and oscillation periods. # the computation is based on a small-perturbation ice-flow model # --see the supporting information for a full description of the method. # # the main parameters that can be set below are: # (1) the (dimensional) basal friction coefficient beta_d) # (2) the subglacial lake length (Ls) # (3) the spatial component of the lake's basal vertical velocity anomaly (w_base); default is a Gaussian # (4) the maximum amplitude of the oscillation (amp) import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp2d,interpolate from scipy import integrate from scipy.fft import fft,ifft,fftshift,fftfreq import matplotlib as mpl import numpy as np from scipy.io import loadmat import copy mpl.rcParams['xtick.major.size'] = 4 mpl.rcParams['xtick.major.width'] = 1 mpl.rcParams['xtick.minor.size'] = 4 mpl.rcParams['xtick.minor.width'] = 1 mpl.rcParams['ytick.major.size'] = 4 mpl.rcParams['ytick.major.width'] = 1 mpl.rcParams['ytick.minor.size'] = 4 mpl.rcParams['ytick.minor.width'] = 1 # 1.---------------FUNCTIONS FOR VOLUME CHANGE / LENGTH RATIOS------------------ def get_Dj(lamda,beta_nd,w_ft,k): # function for computing displacements D1 (in-phase with base) and D2 (anti-phase with base) k = np.abs(k) g = beta_nd/k # relaxation function R1 = (1/k)*((1+g)*np.exp(4*k) - (2+4*g*k)*np.exp(2*k) + 1 -g) D = (1+g)*np.exp(4*k) + (2*g+4*k+4*g*(k**2))*np.exp(2*k) -1 + g R = R1/D # transfer function T1 = 2*(1+g)*(k+1)*np.exp(3*k) + 2*(1-g)*(k-1)*np.exp(k) T = T1/D G1 = T*w_ft G2 = 1 + (lamda*R)**2 # displacements D1 = ifft(G1/G2).real D2 = ifft(lamda*R*G1/G2).real return D1,D2 def get_Tj(D1,D2,x,H): # Times where elevation anomaly is maximized (T1) and minimized (T2), T1 = np.pi - np.arctan(np.mean(D2[np.abs(x)*H/1000<10])/np.mean(D1[np.abs(x)*H/1000<10])) T2 = 2*np.pi - np.arctan(np.mean(D2[np.abs(x)*H/1000<10])/np.mean(D1[np.abs(x)*H/1000<10])) return T1,T2 def get_kappaj(T1,T2): # weights on the displacements: # kappa1 is the in-phase component # kappa2 is the anti-phase component kappa1 = np.cos(T2) - np.cos(T1) kappa2 = np.sin(T1) - np.sin(T2) return kappa1,kappa2 def get_ratios(H,t_pd,beta_d,Ls): # compute ratios of the estimated lake length (dL) and water volume change (dV) # relative to their true values given the true lake length (Ls), # dimensional friction (beta_d), and ice thickness (H) # discretization in frequency domain N = 2000 x = np.linspace(-100,100,num=N) d = np.abs(x[1]-x[0]) k = fftfreq(N,d) # frequency k[0] = 1e-10 # set zero frequency to small number due to (integrable) singularity k *= 2*np.pi # convert to SciPy's Fourier transform definition (angular # freq. definition) used in notes w = w_base(x,Ls/H) # compute basal velocity anomaly w_ft = fft(w) # fourier transform for numerical method beta_nd = beta_d*H/(2*eta) # non-dimensional friction parameter # relative to viscosity/ice thickness tr = (4*np.pi*eta)/(rho*g*H) # relaxation time lamda = t_pd/tr # ratio of oscillation time to relaxation time D1,D2 = get_Dj(lamda,beta_nd,w_ft,k) # compute surface displacements T1,T2 = get_Tj(D1,D2,x,H) # compute estimated highstand/lowstand times kappa1,kappa2 = get_kappaj(T1,T2) # compute weights for displacements dH = kappa1*D1 + kappa2*D2 # compute surface elevation change anomaly dS = 2*w # elevation change at base # interpolate displacements for integration dSi = interpolate.interp1d(x, dS,fill_value="extrapolate") dHi = interpolate.interp1d(x, dH,fill_value="extrapolate") dVs = integrate.quad(dSi,-0.5*Ls/H,0.5*Ls/H,full_output=1)[0] # compute estimated lake length if np.size(x[np.abs(dH)>delta])>0: x0 = x[np.abs(dH)>delta] else: x0 = 0*x Lh = 2*np.max(x0) # (problem is symmetric with respect to x) if Lh > 1e-5: dVh = integrate.quad(dHi,-0.5*Lh,0.5*Lh,full_output=1)[0] dV = dVh/dVs dL = Lh*H/Ls lag = (2/np.pi)*(np.pi-T1) else: dV = 0 dL = 0 lag = 1.01 return dV,dL,lag # 2.------------------------- MODEL PARAMETERS --------------------------------- # function for spatial component of basal vertical velocity anomaly # default is a Gaussian def w_base(x,Ls): sigma = Ls/4 # define standard deviation for Gaussian w = np.exp(-0.5*(x/sigma)**2) return w amp = 0.5 # oscillation amplitude at base (m) delta = 0.1/amp # dimensionless displacement threshold corresponding # to dimensional threshold of 0.1 m eta = 1e13 # viscosity (Pa s) rho = 917.0 # ice density kg/m^3 g = 9.81 # gravitational acceleration m^2/s Ls = 10*1000.0 # lake length (km) N_pts = 5 # number of ice thickness and friction # values (between max and min values from data) # for constructing minimum lake size function # (the total number of computations is N_pts**2) # 3.---COMPUTE VOLUME CHANGE AND LAKE LENGTH RATIOS AS FUNCTIONS OF BETA AND H--- # construct arrays for H and beta_d H =
np.linspace(1000,4000,N_pts)
numpy.linspace
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Handles prediction output data from Medical Waveforms experiments. Contains the PredictionDataService class that grabs and formats prediction data to be sent to and rendered by the client. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from absl import logging import numpy as np from eeg_modelling.eeg_viewer import signal_helper from eeg_modelling.eeg_viewer import utils from eeg_modelling.pyprotos import data_pb2 class PredictionDataService(object): """Extracts experiment prediction data from a PredictionOutputs proto. See prediction_output.proto """ def __init__(self, prediction_outputs, data_source, max_samples): self._prediction_outputs = prediction_outputs self._data_source = data_source self._abs_start = data_source.GetStartTime() self._max_samples = max_samples def _GetChunkTiming(self, prediction_output): chunk_info = prediction_output.chunk_info start = utils.TimestampPb2ToSeconds(chunk_info.chunk_start_time) start = round(start - self._abs_start) duration = round(chunk_info.chunk_size_sec) return start, duration def _PreprocessAttributionData(self, prediction_output): """Thresholds and normalizes the attribution in PredictionOutput. Args: prediction_output: PredictionOutput Message. Returns: PredictionOutput Message with thresholded and normalized attribution values. """ for label in prediction_output.label: if not label.HasField('attribution_map'): continue attribution = label.attribution_map.attribution # Threshold and normalize over flattened array attribution = np.absolute(
np.array(attribution)
numpy.array
import unittest import numpy as np import sympy from sympy.abc import r, t, z import discretize from discretize import tests np.random.seed(16) TOL = 1e-1 # ----------------------------- Test Operators ------------------------------ # MESHTYPES = ["uniformCylMesh", "randomCylMesh"] call2 = lambda fun, xyz: fun(xyz[:, 0], xyz[:, 2]) call3 = lambda fun, xyz: fun(xyz[:, 0], xyz[:, 1], xyz[:, 2]) cyl_row2 = lambda g, xfun, yfun: np.c_[call2(xfun, g), call2(yfun, g)] cyl_row3 = lambda g, xfun, yfun, zfun: np.c_[ call3(xfun, g), call3(yfun, g), call3(zfun, g) ] cylF2 = lambda M, fx, fy: np.vstack( (cyl_row2(M.gridFx, fx, fy), cyl_row2(M.gridFz, fx, fy)) ) cylF3 = lambda M, fx, fy, fz: np.vstack( ( cyl_row3(M.gridFx, fx, fy, fz), cyl_row3(M.gridFy, fx, fy, fz), cyl_row3(M.gridFz, fx, fy, fz), ) ) cylE3 = lambda M, ex, ey, ez: np.vstack( ( cyl_row3(M.gridEx, ex, ey, ez), cyl_row3(M.gridEy, ex, ey, ez), cyl_row3(M.gridEz, ex, ey, ez), ) ) # class TestCellGradx3D(tests.OrderTest): # name = "CellGradx" # MESHTYPES = MESHTYPES # meshDimension = 3 # meshSizes = [8, 16, 32, 64] # def getError(self): # fun = lambda r, t, z: ( # np.sin(2.*np.pi*r) + np.sin(t) + np.sin(2*np.pi*z) # ) # solR = lambda r, t, z: 2.*np.pi*np.cos(2.*np.pi*r) # phi = call3(fun, self.M.gridCC) # phix_num = self.M.cellGradx * phi # phix_ana = call3(solR, self.M.gridFx) # err = np.linalg.norm(phix_num - phix_ana, np.inf) # return err # def test_order(self): # self.orderTest() class TestFaceDiv3D(tests.OrderTest): name = "FaceDiv" meshTypes = MESHTYPES meshDimension = 3 meshSizes = [8, 16, 32, 64] def getError(self): funR = lambda r, t, z: np.sin(2.0 * np.pi * r) funT = lambda r, t, z: r * np.exp(-r) * np.sin(t) # * np.sin(2.*np.pi*r) funZ = lambda r, t, z: np.sin(2.0 * np.pi * z) sol = lambda r, t, z: ( (2 * np.pi * r * np.cos(2 * np.pi * r) + np.sin(2 * np.pi * r)) / r + np.exp(-r) * np.cos(t) + 2 * np.pi * np.cos(2 * np.pi * z) ) Fc = cylF3(self.M, funR, funT, funZ) # Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]] F = self.M.projectFaceVector(Fc) divF = self.M.faceDiv.dot(F) divF_ana = call3(sol, self.M.gridCC) err = np.linalg.norm((divF - divF_ana), np.inf) return err def test_order(self): self.orderTest() class TestEdgeCurl3D(tests.OrderTest): name = "edgeCurl" meshTypes = MESHTYPES meshDimension = 3 meshSizes = [8, 16, 32, 64] def getError(self): # use the same function in r, t, z # need to pick functions that make sense at the axis of symmetry # careful that r, theta contributions make sense at axis of symmetry funR = lambda r, t, z: np.sin(2 * np.pi * z) * np.sin(np.pi * r) * np.sin(t) funT = lambda r, t, z: np.cos(np.pi * z) * np.sin(np.pi * r) * np.sin(t) funZ = lambda r, t, z: np.sin(np.pi * r) * np.sin(t) derivR_t = lambda r, t, z: np.sin(2 * np.pi * z) * np.sin(np.pi * r) *
np.cos(t)
numpy.cos
from __future__ import division from collections import Iterable, defaultdict import copy import os import pickle import itertools from numbers import Integral, Real from xml.etree import ElementTree as ET import sys import numpy as np from openmc import Mesh, Filter, Trigger, Nuclide from openmc.cross import CrossScore, CrossNuclide, CrossFilter from openmc.filter import _FILTER_TYPES import openmc.checkvalue as cv from openmc.clean_xml import * if sys.version_info[0] >= 3: basestring = str # "Static" variable for auto-generated Tally IDs AUTO_TALLY_ID = 10000 def reset_auto_tally_id(): global AUTO_TALLY_ID AUTO_TALLY_ID = 10000 class Tally(object): """A tally defined by a set of scores that are accumulated for a list of nuclides given a set of filters. Parameters ---------- tally_id : Integral, optional Unique identifier for the tally. If none is specified, an identifier will automatically be assigned name : str, optional Name of the tally. If not specified, the name is the empty string. Attributes ---------- id : Integral Unique identifier for the tally name : str Name of the tally filters : list of openmc.filter.Filter List of specified filters for the tally nuclides : list of openmc.nuclide.Nuclide List of nuclides to score results for scores : list of str List of defined scores, e.g. 'flux', 'fission', etc. estimator : {'analog', 'tracklength', 'collision'} Type of estimator for the tally triggers : list of openmc.trigger.Trigger List of tally triggers num_score_bins : Integral Total number of scores, accounting for the fact that a single user-specified score, e.g. scatter-P3 or flux-Y2,2, might have multiple bins num_scores : Integral Total number of user-specified scores num_filter_bins : Integral Total number of filter bins accounting for all filters num_bins : Integral Total number of bins for the tally num_realizations : Integral Total number of realizations with_summary : bool Whether or not a Summary has been linked sum : ndarray An array containing the sum of each independent realization for each bin sum_sq : ndarray An array containing the sum of each independent realization squared for each bin mean : ndarray An array containing the sample mean for each bin std_dev : ndarray An array containing the sample standard deviation for each bin """ def __init__(self, tally_id=None, name=''): # Initialize Tally class attributes self.id = tally_id self.name = name self._filters = [] self._nuclides = [] self._scores = [] self._estimator = None self._triggers = [] self._num_score_bins = 0 self._num_realizations = 0 self._with_summary = False self._sum = None self._sum_sq = None self._mean = None self._std_dev = None self._with_batch_statistics = False self._derived = False self._sp_filename = None self._results_read = False def __deepcopy__(self, memo): existing = memo.get(id(self)) # If this is the first time we have tried to copy this object, create a copy if existing is None: clone = type(self).__new__(type(self)) clone.id = self.id clone.name = self.name clone.estimator = self.estimator clone.num_score_bins = self.num_score_bins clone.num_realizations = self.num_realizations clone._sum = copy.deepcopy(self._sum, memo) clone._sum_sq = copy.deepcopy(self._sum_sq, memo) clone._mean = copy.deepcopy(self._mean, memo) clone._std_dev = copy.deepcopy(self._std_dev, memo) clone._with_summary = self.with_summary clone._with_batch_statistics = self.with_batch_statistics clone._derived = self.derived clone._sp_filename = self._sp_filename clone._results_read = self._results_read clone._filters = [] for filter in self.filters: clone.add_filter(copy.deepcopy(filter, memo)) clone._nuclides = [] for nuclide in self.nuclides: clone.add_nuclide(copy.deepcopy(nuclide, memo)) clone._scores = [] for score in self.scores: clone.add_score(score) clone._triggers = [] for trigger in self.triggers: clone.add_trigger(trigger) memo[id(self)] = clone return clone # If this object has been copied before, return the first copy made else: return existing def __eq__(self, other): if not isinstance(other, Tally): return False # Check all filters if len(self.filters) != len(other.filters): return False for filter in self.filters: if filter not in other.filters: return False # Check all nuclides if len(self.nuclides) != len(other.nuclides): return False for nuclide in self.nuclides: if nuclide not in other.nuclides: return False # Check all scores if len(self.scores) != len(other.scores): return False for score in self.scores: if score not in other.scores: return False if self.estimator != other.estimator: return False return True def __ne__(self, other): return not self == other def __hash__(self): return hash(repr(self)) def __repr__(self): string = 'Tally\n' string += '{0: <16}{1}{2}\n'.format('\tID', '=\t', self.id) string += '{0: <16}{1}{2}\n'.format('\tName', '=\t', self.name) string += '{0: <16}{1}\n'.format('\tFilters', '=\t') for filter in self.filters: string += '{0: <16}\t\t{1}\t{2}\n'.format('', filter.type, filter.bins) string += '{0: <16}{1}'.format('\tNuclides', '=\t') for nuclide in self.nuclides: if isinstance(nuclide, Nuclide): string += '{0} '.format(nuclide.name) else: string += '{0} '.format(nuclide) string += '\n' string += '{0: <16}{1}{2}\n'.format('\tScores', '=\t', self.scores) string += '{0: <16}{1}{2}\n'.format('\tEstimator', '=\t', self.estimator) return string @property def id(self): return self._id @property def name(self): return self._name @property def filters(self): return self._filters @property def nuclides(self): return self._nuclides @property def num_nuclides(self): return len(self._nuclides) @property def scores(self): return self._scores @property def num_scores(self): return len(self._scores) @property def num_score_bins(self): return self._num_score_bins @property def num_filter_bins(self): num_bins = 1 for filter in self.filters: num_bins *= filter.num_bins return num_bins @property def num_bins(self): num_bins = self.num_filter_bins num_bins *= self.num_nuclides num_bins *= self.num_score_bins return num_bins @property def estimator(self): return self._estimator @property def triggers(self): return self._triggers @property def num_realizations(self): return self._num_realizations @property def with_summary(self): return self._with_summary @property def sum(self): if not self._sp_filename: return None if not self._results_read: import h5py # Open the HDF5 statepoint file f = h5py.File(self._sp_filename, 'r') # Extract Tally data from the file data = f['tallies/tally {0}/results'.format( self.id)].value sum = data['sum'] sum_sq = data['sum_sq'] # Define a routine to convert 0 to 1 def nonzero(val): return 1 if not val else val # Reshape the results arrays new_shape = (nonzero(self.num_filter_bins), nonzero(self.num_nuclides), nonzero(self.num_score_bins)) sum = np.reshape(sum, new_shape) sum_sq = np.reshape(sum_sq, new_shape) # Set the data for this Tally self._sum = sum self._sum_sq = sum_sq # Indicate that Tally results have been read self._results_read = True # Close the HDF5 statepoint file f.close() return self._sum @property def sum_sq(self): if not self._sp_filename: return None if not self._results_read: # Force reading of sum and sum_sq self.sum return self._sum_sq @property def mean(self): if self._mean is None: if not self._sp_filename: return None self._mean = self.sum / self.num_realizations return self._mean @property def std_dev(self): if self._std_dev is None: if not self._sp_filename: return None n = self.num_realizations nonzero = np.abs(self.mean) > 0 self._std_dev = np.zeros_like(self.mean) self._std_dev[nonzero] = np.sqrt((self.sum_sq[nonzero]/n - self.mean[nonzero]**2)/(n - 1)) self.with_batch_statistics = True return self._std_dev @property def with_batch_statistics(self): return self._with_batch_statistics @property def derived(self): return self._derived @estimator.setter def estimator(self, estimator): cv.check_value('estimator', estimator, ['analog', 'tracklength', 'collision']) self._estimator = estimator def add_trigger(self, trigger): """Add a tally trigger to the tally Parameters ---------- trigger : openmc.trigger.Trigger Trigger to add """ if not isinstance(trigger, Trigger): msg = 'Unable to add a tally trigger for Tally ID="{0}" to ' \ 'since "{1}" is not a Trigger'.format(self.id, trigger) raise ValueError(msg) if trigger not in self.triggers: self.triggers.append(trigger) @id.setter def id(self, tally_id): if tally_id is None: global AUTO_TALLY_ID self._id = AUTO_TALLY_ID AUTO_TALLY_ID += 1 else: cv.check_type('tally ID', tally_id, Integral) cv.check_greater_than('tally ID', tally_id, 0, equality=True) self._id = tally_id @name.setter def name(self, name): if name is not None: cv.check_type('tally name', name, basestring) self._name = name else: self._name = '' def add_filter(self, filter): """Add a filter to the tally Parameters ---------- filter : openmc.filter.Filter Filter to add """ if not isinstance(filter, (Filter, CrossFilter)): msg = 'Unable to add Filter "{0}" to Tally ID="{1}" since it is ' \ 'not a Filter object'.format(filter, self.id) raise ValueError(msg) self._filters.append(filter) def add_nuclide(self, nuclide): """Specify that scores for a particular nuclide should be accumulated Parameters ---------- nuclide : openmc.nuclide.Nuclide Nuclide to add """ self._nuclides.append(nuclide) def add_score(self, score): """Specify a quantity to be scored Parameters ---------- score : str Score to be accumulated, e.g. 'flux' """ if not isinstance(score, (basestring, CrossScore)): msg = 'Unable to add score "{0}" to Tally ID="{1}" since it is ' \ 'not a string'.format(score, self.id) raise ValueError(msg) # If the score is already in the Tally, don't add it again if score in self.scores: return # Normal score strings if isinstance(score, basestring): self._scores.append(score.strip()) # CrossScores else: self._scores.append(score) @num_score_bins.setter def num_score_bins(self, num_score_bins): self._num_score_bins = num_score_bins @num_realizations.setter def num_realizations(self, num_realizations): cv.check_type('number of realizations', num_realizations, Integral) cv.check_greater_than('number of realizations', num_realizations, 0, True) self._num_realizations = num_realizations @with_summary.setter def with_summary(self, with_summary): cv.check_type('with_summary', with_summary, bool) self._with_summary = with_summary @with_batch_statistics.setter def with_batch_statistics(self, with_batch_statistics): cv.check_type('with_batch_statistics', with_batch_statistics, bool) self._with_batch_statistics = with_batch_statistics @sum.setter def sum(self, sum): cv.check_type('sum', sum, Iterable) self._sum = sum @sum_sq.setter def sum_sq(self, sum_sq): cv.check_type('sum_sq', sum_sq, Iterable) self._sum_sq = sum_sq def remove_score(self, score): """Remove a score from the tally Parameters ---------- score : str Score to remove """ if score not in self.scores: msg = 'Unable to remove score "{0}" from Tally ID="{1}" since ' \ 'the Tally does not contain this score'.format(score, self.id) ValueError(msg) self._scores.remove(score) def remove_filter(self, filter): """Remove a filter from the tally Parameters ---------- filter : openmc.filter.Filter Filter to remove """ if filter not in self.filters: msg = 'Unable to remove filter "{0}" from Tally ID="{1}" since the ' \ 'Tally does not contain this filter'.format(filter, self.id) ValueError(msg) self._filters.remove(filter) def remove_nuclide(self, nuclide): """Remove a nuclide from the tally Parameters ---------- nuclide : openmc.nuclide.Nuclide Nuclide to remove """ if nuclide not in self.nuclides: msg = 'Unable to remove nuclide "{0}" from Tally ID="{1}" since the ' \ 'Tally does not contain this nuclide'.format(nuclide, self.id) ValueError(msg) self._nuclides.remove(nuclide) def can_merge(self, tally): """Determine if another tally can be merged with this one Parameters ---------- tally : Tally Tally to check for merging """ if not isinstance(tally, Tally): return False # Must have same estimator if self.estimator != tally.estimator: return False # Must have same nuclides if len(self.nuclides) != len(tally.nuclides): return False for nuclide in self.nuclides: if nuclide not in tally.nuclides: return False # Must have same or mergeable filters if len(self.filters) != len(tally.filters): return False # Check if only one tally contains a delayed group filter tally1_dg = False for filter1 in self.filters: if filter1.type == 'delayedgroup': tally1_dg = True tally2_dg = False for filter2 in tally.filters: if filter2.type == 'delayedgroup': tally2_dg = True # Return False if only one tally has a delayed group filter if (tally1_dg or tally2_dg) and not (tally1_dg and tally2_dg): return False # Look to see if all filters are the same, or one or more can be merged for filter1 in self.filters: mergeable_filter = False for filter2 in tally.filters: if filter1 == filter2 or filter1.can_merge(filter2): mergeable_filter = True break # If no mergeable filter was found, the tallies are not mergeable if not mergeable_filter: return False # Tallies are mergeable if all conditional checks passed return True def merge(self, tally): """Merge another tally with this one Parameters ---------- tally : Tally Tally to merge with this one Returns ------- merged_tally : Tally Merged tallies """ if not self.can_merge(tally): msg = 'Unable to merge tally ID="{0}" with "{1}"'.format(tally.id, self.id) raise ValueError(msg) # Create deep copy of tally to return as merged tally merged_tally = copy.deepcopy(self) # Differentiate Tally with a new auto-generated Tally ID merged_tally.id = None # Merge filters for i, filter1 in enumerate(merged_tally.filters): for filter2 in tally.filters: if filter1 != filter2 and filter1.can_merge(filter2): merged_filter = filter1.merge(filter2) merged_tally.filters[i] = merged_filter break # Add scores from second tally to merged tally for score in tally.scores: merged_tally.add_score(score) # Add triggers from second tally to merged tally for trigger in tally.triggers: merged_tally.add_trigger(trigger) return merged_tally def get_tally_xml(self): """Return XML representation of the tally Returns ------- element : xml.etree.ElementTree.Element XML element containing tally data """ element = ET.Element("tally") # Tally ID element.set("id", str(self.id)) # Optional Tally name if self.name != '': element.set("name", self.name) # Optional Tally filters for filter in self.filters: subelement = ET.SubElement(element, "filter") subelement.set("type", str(filter.type)) if filter.bins is not None: bins = '' for bin in filter.bins: bins += '{0} '.format(bin) subelement.set("bins", bins.rstrip(' ')) # Optional Nuclides if len(self.nuclides) > 0: nuclides = '' for nuclide in self.nuclides: if isinstance(nuclide, Nuclide): nuclides += '{0} '.format(nuclide.name) else: nuclides += '{0} '.format(nuclide) subelement = ET.SubElement(element, "nuclides") subelement.text = nuclides.rstrip(' ') # Scores if len(self.scores) == 0: msg = 'Unable to get XML for Tally ID="{0}" since it does not ' \ 'contain any scores'.format(self.id) raise ValueError(msg) else: scores = '' for score in self.scores: scores += '{0} '.format(score) subelement = ET.SubElement(element, "scores") subelement.text = scores.rstrip(' ') # Tally estimator type if self.estimator is not None: subelement = ET.SubElement(element, "estimator") subelement.text = self.estimator # Optional Triggers for trigger in self.triggers: trigger.get_trigger_xml(element) return element def find_filter(self, filter_type): """Return a filter in the tally that matches a specified type Parameters ---------- filter_type : str Type of the filter, e.g. 'mesh' Returns ------- filter : openmc.filter.Filter Filter from this tally with matching type, or None if no matching Filter is found Raises ------ ValueError If no matching Filter is found """ filter = None # Look through all of this Tally's Filters for the type requested for test_filter in self.filters: if test_filter.type == filter_type: filter = test_filter break # If we did not find the Filter, throw an Exception if filter is None: msg = 'Unable to find filter type "{0}" in ' \ 'Tally ID="{1}"'.format(filter_type, self.id) raise ValueError(msg) return filter def get_filter_index(self, filter_type, filter_bin): """Returns the index in the Tally's results array for a Filter bin Parameters ---------- filter_type : str The type of Filter (e.g., 'cell', 'energy', etc.) filter_bin : Integral or tuple The bin is an integer ID for 'material', 'surface', 'cell', 'cellborn', and 'universe' Filters. The bin is an integer for the cell instance ID for 'distribcell' Filters. The bin is a 2-tuple of floats for 'energy' and 'energyout' filters corresponding to the energy boundaries of the bin of interest. The bin is a (x,y,z) 3-tuple for 'mesh' filters corresponding to the mesh cell of interest. Returns ------- The index in the Tally data array for this filter bin """ # Find the equivalent Filter in this Tally's list of Filters filter = self.find_filter(filter_type) # Get the index for the requested bin from the Filter and return it filter_index = filter.get_bin_index(filter_bin) return filter_index def get_nuclide_index(self, nuclide): """Returns the index in the Tally's results array for a Nuclide bin Parameters ---------- nuclide : str The name of the Nuclide (e.g., 'H-1', 'U-238') Returns ------- nuclide_index : int The index in the Tally data array for this nuclide. Raises ------ KeyError When the argument passed to the 'nuclide' parameter cannot be found in the Tally. """ nuclide_index = -1 # Look for the user-requested nuclide in all of the Tally's Nuclides for i, test_nuclide in enumerate(self.nuclides): # If the Summary was linked, then values are Nuclide objects if isinstance(test_nuclide, Nuclide): if test_nuclide._name == nuclide: nuclide_index = i break # If the Summary has not been linked, then values are ZAIDs else: if test_nuclide == nuclide: nuclide_index = i break if nuclide_index == -1: msg = 'Unable to get the nuclide index for Tally since "{0}" ' \ 'is not one of the nuclides'.format(nuclide) raise KeyError(msg) else: return nuclide_index def get_score_index(self, score): """Returns the index in the Tally's results array for a score bin Parameters ---------- score : str The score string (e.g., 'absorption', 'nu-fission') Returns ------- score_index : int The index in the Tally data array for this score. Raises ------ ValueError When the argument passed to the 'score' parameter cannot be found in the Tally. """ try: score_index = self.scores.index(score) except ValueError: msg = 'Unable to get the score index for Tally since "{0}" ' \ 'is not one of the scores'.format(score) raise ValueError(msg) return score_index def get_filter_indices(self, filters=[], filter_bins=[]): """Get indices into the filter axis of this tally's data arrays. This is a helper method for the Tally.get_values(...) method to extract tally data. This method returns the indices into the filter axis of the tally's data array (axis=0) for particular combinations of filters and their corresponding bins. Parameters ---------- filters : list of str A list of filter type strings (e.g., ['mesh', 'energy']; default is []) filter_bins : list of Iterables A list of the filter bins corresponding to the filter_types parameter (e.g., [(1,), (0., 0.625e-6)]; default is []). Each bin in the list is the integer ID for 'material', 'surface', 'cell', 'cellborn', and 'universe' Filters. Each bin is an integer for the cell instance ID for 'distribcell' Filters. Each bin is a 2-tuple of floats for 'energy' and 'energyout' filters corresponding to the energy boundaries of the bin of interest. The bin is a (x,y,z) 3-tuple for 'mesh' filters corresponding to the mesh cell of interest. The order of the bins in the list must correspond to the filter_types parameter. Returns ------- ndarray A NumPy array of the filter indices """ cv.check_iterable_type('filters', filters, basestring) cv.check_iterable_type('filter_bins', filter_bins, tuple) # Determine the score indices from any of the requested scores if filters: # Initialize empty list of indices for each bin in each Filter filter_indices = [] # Loop over all of the Tally's Filters for i, filter in enumerate(self.filters): user_filter = False # If a user-requested Filter, get the user-requested bins for j, test_filter in enumerate(filters): if filter.type == test_filter: bins = filter_bins[j] user_filter = True break # If not a user-requested Filter, get all bins if not user_filter: # Create list of 2- or 3-tuples tuples for mesh cell bins if filter.type == 'mesh': dimension = filter.mesh.dimension xyz = map(lambda x: np.arange(1, x+1), dimension) bins = list(itertools.product(*xyz)) # Create list of 2-tuples for energy boundary bins elif filter.type in ['energy', 'energyout']: bins = [] for k in range(filter.num_bins): bins.append((filter.bins[k], filter.bins[k+1])) # Create list of cell instance IDs for distribcell Filters elif filter.type == 'distribcell': bins = np.arange(filter.num_bins) # Create list of IDs for bins for all other filter types else: bins = filter.bins # Initialize a NumPy array for the Filter bin indices filter_indices.append(np.zeros(len(bins), dtype=np.int)) # Add indices for each bin in this Filter to the list for j, bin in enumerate(bins): filter_index = self.get_filter_index(filter.type, bin) filter_indices[i][j] = filter_index # Account for stride in each of the previous filters for indices in filter_indices[:i]: indices *= filter.num_bins # Apply outer product sum between all filter bin indices filter_indices = list(map(sum, itertools.product(*filter_indices))) # If user did not specify any specific Filters, use them all else: filter_indices = np.arange(self.num_filter_bins) return filter_indices def get_nuclide_indices(self, nuclides): """Get indices into the nuclide axis of this tally's data arrays. This is a helper method for the Tally.get_values(...) method to extract tally data. This method returns the indices into the nuclide axis of the tally's data array (axis=1) for one or more nuclides. Parameters ---------- nuclides : list of str A list of nuclide name strings (e.g., ['U-235', 'U-238']; default is []) Returns ------- ndarray A NumPy array of the nuclide indices """ cv.check_iterable_type('nuclides', nuclides, basestring) # Determine the score indices from any of the requested scores if nuclides: nuclide_indices = np.zeros(len(nuclides), dtype=np.int) for i, nuclide in enumerate(nuclides): nuclide_indices[i] = self.get_nuclide_index(nuclide) # If user did not specify any specific Nuclides, use them all else: nuclide_indices = np.arange(self.num_nuclides) return nuclide_indices def get_score_indices(self, scores): """Get indices into the score axis of this tally's data arrays. This is a helper method for the Tally.get_values(...) method to extract tally data. This method returns the indices into the score axis of the tally's data array (axis=2) for one or more scores. Parameters ---------- scores : list of str A list of one or more score strings (e.g., ['absorption', 'nu-fission']; default is []) Returns ------- ndarray A NumPy array of the score indices """ cv.check_iterable_type('scores', scores, basestring) # Determine the score indices from any of the requested scores if scores: score_indices = np.zeros(len(scores), dtype=np.int) for i, score in enumerate(scores): score_indices[i] = self.get_score_index(score) # If user did not specify any specific scores, use them all else: score_indices = np.arange(self.num_scores) return score_indices def get_values(self, scores=[], filters=[], filter_bins=[], nuclides=[], value='mean'): """Returns one or more tallied values given a list of scores, filters, filter bins and nuclides. This method constructs a 3D NumPy array for the requested Tally data indexed by filter bin, nuclide bin, and score index. The method will order the data in the array as specified in the parameter lists. Parameters ---------- scores : list of str A list of one or more score strings (e.g., ['absorption', 'nu-fission']; default is []) filters : list of str A list of filter type strings (e.g., ['mesh', 'energy']; default is []) filter_bins : list of Iterables A list of the filter bins corresponding to the filter_types parameter (e.g., [(1,), (0., 0.625e-6)]; default is []). Each bin in the list is the integer ID for 'material', 'surface', 'cell', 'cellborn', and 'universe' Filters. Each bin is an integer for the cell instance ID for 'distribcell' Filters. Each bin is a 2-tuple of floats for 'energy' and 'energyout' filters corresponding to the energy boundaries of the bin of interest. The bin is a (x,y,z) 3-tuple for 'mesh' filters corresponding to the mesh cell of interest. The order of the bins in the list must correspond to the filter_types parameter. nuclides : list of str A list of nuclide name strings (e.g., ['U-235', 'U-238']; default is []) value : str A string for the type of value to return - 'mean' (default), 'std_dev', 'rel_err', 'sum', or 'sum_sq' are accepted Returns ------- float or ndarray A scalar or NumPy array of the Tally data indexed in the order each filter, nuclide and score is listed in the parameters. Raises ------ ValueError When this method is called before the Tally is populated with data by the StatePoint.read_results() method. ValueError is also thrown if the input parameters do not correspond to the Tally's attributes, e.g., if the score(s) do not match those in the Tally. """ # Ensure that StatePoint.read_results() was called first if (value == 'mean' and self.mean is None) or \ (value == 'std_dev' and self.std_dev is None) or \ (value == 'rel_err' and self.mean is None) or \ (value == 'sum' and self.sum is None) or \ (value == 'sum_sq' and self.sum_sq is None): msg = 'The Tally ID="{0}" has no data to return. Call the ' \ 'StatePoint.read_results() method before using ' \ 'Tally.get_values(...)'.format(self.id) raise ValueError(msg) # Get filter, nuclide and score indices filter_indices = self.get_filter_indices(filters, filter_bins) nuclide_indices = self.get_nuclide_indices(nuclides) score_indices = self.get_score_indices(scores) # Construct outer product of all three index types with each other indices = np.ix_(filter_indices, nuclide_indices, score_indices) # Return the desired result from Tally if value == 'mean': data = self.mean[indices] elif value == 'std_dev': data = self.std_dev[indices] elif value == 'rel_err': data = self.std_dev[indices] / self.mean[indices] elif value == 'sum': data = self.sum[indices] elif value == 'sum_sq': data = self.sum_sq[indices] else: msg = 'Unable to return results from Tally ID="{0}" since the ' \ 'the requested value "{1}" is not \'mean\', \'std_dev\', ' \ '\'rel_err\', \'sum\', or \'sum_sq\''.format(self.id, value) raise LookupError(msg) return data def get_pandas_dataframe(self, filters=True, nuclides=True, scores=True, summary=None): """Build a Pandas DataFrame for the Tally data. This method constructs a Pandas DataFrame object for the Tally data with columns annotated by filter, nuclide and score bin information. This capability has been tested for Pandas >=0.13.1. However, it is recommended to use v0.16 or newer versions of Pandas since this method uses the Multi-index Pandas feature. Parameters ---------- filters : bool Include columns with filter bin information (default is True). nuclides : bool Include columns with nuclide bin information (default is True). scores : bool Include columns with score bin information (default is True). summary : None or Summary An optional Summary object to be used to construct columns for distribcell tally filters (default is None). The geometric information in the Summary object is embedded into a Multi-index column with a geometric "path" to each distribcell intance. NOTE: This option requires the OpenCG Python package. Returns ------- pandas.DataFrame A Pandas DataFrame with each column annotated by filter, nuclide and score bin information (if these parameters are True), and the mean and standard deviation of the Tally's data. Raises ------ KeyError When this method is called before the Tally is populated with data by the StatePoint.read_results() method. ImportError When Pandas can not be found on the caller's system """ # Ensure that StatePoint.read_results() was called first if self.mean is None or self.std_dev is None: msg = 'The Tally ID="{0}" has no data to return. Call the ' \ 'StatePoint.read_results() method before using ' \ 'Tally.get_pandas_dataframe(...)'.format(self.id) raise KeyError(msg) # If using Summary, ensure StatePoint.link_with_summary(...) was called if summary and not self.with_summary: msg = 'The Tally ID="{0}" has not been linked with the Summary. ' \ 'Call the StatePoint.link_with_summary(...) method ' \ 'before using Tally.get_pandas_dataframe(...) with ' \ 'Summary info'.format(self.id) raise KeyError(msg) # Attempt to import Pandas try: import pandas as pd except ImportError: msg = 'The Pandas Python package must be installed on your system' raise ImportError(msg) # Initialize a pandas dataframe for the tally data df = pd.DataFrame() # Find the total length of the tally data array data_size = self.mean.size # Build DataFrame columns for filters if user requested them if filters: # Append each Filter's DataFrame to the overall DataFrame for filter in self.filters: filter_df = filter.get_pandas_dataframe(data_size, summary) df = pd.concat([df, filter_df], axis=1) # Include DataFrame column for nuclides if user requested it if nuclides: nuclides = [] for nuclide in self.nuclides: # Write Nuclide name if Summary info was linked with StatePoint if isinstance(nuclide, Nuclide): nuclides.append(nuclide.name) else: nuclides.append(nuclide) # Tile the nuclide bins into a DataFrame column nuclides = np.repeat(nuclides, len(self.scores)) tile_factor = data_size / len(nuclides) df['nuclide'] = np.tile(nuclides, tile_factor) # Include column for scores if user requested it if scores: tile_factor = data_size / len(self.scores) df['score'] = np.tile(self.scores, tile_factor) # Append columns with mean, std. dev. for each tally bin df['mean'] = self.mean.ravel() df['std. dev.'] = self.std_dev.ravel() df = df.dropna(axis=1) # Expand the columns into Pandas MultiIndices for readability if pd.__version__ >= '0.16': columns = copy.deepcopy(df.columns.values) # Convert all elements in columns list to tuples for i, column in enumerate(columns): if not isinstance(column, tuple): columns[i] = (column,) # Make each tuple the same length max_len_column = len(max(columns, key=len)) for i, column in enumerate(columns): delta_len = max_len_column - len(column) if delta_len > 0: new_column = list(column) new_column.extend(['']*delta_len) columns[i] = tuple(new_column) # Create and set a MultiIndex for the DataFrame's columns df.columns = pd.MultiIndex.from_tuples(columns) return df def get_reshaped_data(self, value='mean'): """Returns an array of tally data with one dimension per filter. The tally data in OpenMC is stored as a 3D array with the dimensions corresponding to filters, nuclides and scores. As a result, tally data can be opaque for a user to directly index (i.e., without use of the Tally.get_values(...) method) since one must know how to properly use the number of bins and strides for each filter to index into the first (filter) dimension. This builds and returns a reshaped version of the tally data array with unique dimensions corresponding to each tally filter. For example, suppose this tally has arrays of data with shape (8,5,5) corresponding to two filters (2 and 4 bins, respectively), five nuclides and five scores. This method will return a version of the data array with the with a new shape of (2,4,5,5) such that the first two dimensions correspond directly to the two filters with two and four bins. Parameters ---------- value : str A string for the type of value to return - 'mean' (default), 'std_dev', 'rel_err', 'sum', or 'sum_sq' are accepted Returns ------- ndarray The tally data array indexed by filters, nuclides and scores. """ # Get the 3D array of data in filters, nuclides and scores data = self.get_values(value=value) # Build a new array shape with one dimension per filter new_shape = () for filter in self.filters: new_shape += (filter.num_bins, ) new_shape += (self.num_nuclides,) new_shape += (self.num_score_bins,) # Reshape the data with one dimension for each filter data = np.reshape(data, new_shape) return data def export_results(self, filename='tally-results', directory='.', format='hdf5', append=True): """Exports tallly results to an HDF5 or Python pickle binary file. Parameters ---------- filename : str The name of the file for the results (default is 'tally-results') directory : str The name of the directory for the results (default is '.') format : str The format for the exported file - HDF5 ('hdf5', default) and Python pickle ('pkl') files are supported append : bool Whether or not to append the results to the file (default is True) Raises ------ KeyError When this method is called before the Tally is populated with data by the StatePoint.read_results() method. """ # Ensure that StatePoint.read_results() was called first if self._sum is None or self._sum_sq is None and not self.derived: msg = 'The Tally ID="{0}" has no data to export. Call the ' \ 'StatePoint.read_results() method before using ' \ 'Tally.export_results(...)'.format(self.id) raise KeyError(msg) if not isinstance(filename, basestring): msg = 'Unable to export the results for Tally ID="{0}" to ' \ 'filename="{1}" since it is not a ' \ 'string'.format(self.id, filename) raise ValueError(msg) elif not isinstance(directory, basestring): msg = 'Unable to export the results for Tally ID="{0}" to ' \ 'directory="{1}" since it is not a ' \ 'string'.format(self.id, directory) raise ValueError(msg) elif format not in ['hdf5', 'pkl', 'csv']: msg = 'Unable to export the results for Tally ID="{0}" to format ' \ '"{1}" since it is not supported'.format(self.id, format) raise ValueError(msg) elif not isinstance(append, bool): msg = 'Unable to export the results for Tally ID="{0}" since the ' \ 'append parameter is not True/False'.format(self.id, append) raise ValueError(msg) # Make directory if it does not exist if not os.path.exists(directory): os.makedirs(directory) # HDF5 binary file if format == 'hdf5': import h5py filename = directory + '/' + filename + '.h5' if append: tally_results = h5py.File(filename, 'a') else: tally_results = h5py.File(filename, 'w') # Create an HDF5 group within the file for this particular Tally tally_group = tally_results.create_group('Tally-{0}'.format(self.id)) # Add basic Tally data to the HDF5 group tally_group.create_dataset('id', data=self.id) tally_group.create_dataset('name', data=self.name) tally_group.create_dataset('estimator', data=self.estimator) tally_group.create_dataset('scores', data=np.array(self.scores)) # Add a string array of the nuclides to the HDF5 group nuclides = [] for nuclide in self.nuclides: nuclides.append(nuclide.name) tally_group.create_dataset('nuclides', data=np.array(nuclides)) # Create an HDF5 sub-group for the Filters filter_group = tally_group.create_group('filters') for filter in self.filters: filter_group.create_dataset(filter.type, data=filter.bins) # Add all results to the main HDF5 group for the Tally tally_group.create_dataset('sum', data=self.sum) tally_group.create_dataset('sum_sq', data=self.sum_sq) tally_group.create_dataset('mean', data=self.mean) tally_group.create_dataset('std_dev', data=self.std_dev) # Close the Tally results HDF5 file tally_results.close() # Python pickle binary file elif format == 'pkl': # Load the dictionary from the Pickle file filename = directory + '/' + filename + '.pkl' if os.path.exists(filename) and append: tally_results = pickle.load(file(filename, 'rb')) else: tally_results = {} # Create a nested dictionary within the file for this particular Tally tally_results['Tally-{0}'.format(self.id)] = {} tally_group = tally_results['Tally-{0}'.format(self.id)] # Add basic Tally data to the nested dictionary tally_group['id'] = self.id tally_group['name'] = self.name tally_group['estimator'] = self.estimator tally_group['scores'] = np.array(self.scores) # Add a string array of the nuclides to the HDF5 group nuclides = [] for nuclide in self.nuclides: nuclides.append(nuclide.name) tally_group['nuclides'] = np.array(nuclides) # Create a nested dictionary for the Filters tally_group['filters'] = {} filter_group = tally_group['filters'] for filter in self.filters: filter_group[filter.type] = filter.bins # Add all results to the main sub-dictionary for the Tally tally_group['sum'] = self.sum tally_group['sum_sq'] = self.sum_sq tally_group['mean'] = self.mean tally_group['std_dev'] = self.std_dev # Pickle the Tally results to a file pickle.dump(tally_results, open(filename, 'wb')) def _outer_product(self, other, binary_op): """Combines filters, scores and nuclides with another tally. This is a helper method for the tally arithmetic methods. The filters, scores and nuclides from both tallies are enumerated into all possible combinations and expressed as CrossFilter, CrossScore and CrossNuclide objects in the new derived tally. Parameters ---------- other : Tally The tally on the right hand side of the outer product binary_op : {'+', '-', '*', '/', '^'} The binary operation in the outer product Returns ------- Tally A new Tally that is the outer product with this one. Raises ------ ValueError When this method is called before the other tally is populated with data by the StatePoint.read_results() method. """ # Check that results have been read if not other.derived and other.sum is None: msg = 'Unable to use tally arithmetic with Tally ID="{0}" ' \ 'since it does not contain any results.'.format(other.id) raise ValueError(msg) new_tally = Tally() new_tally.with_batch_statistics = True new_tally._derived = True # Construct a combined derived name from the two tally operands if self.name != '' and other.name != '': new_name = '({0} {1} {2})'.format(self.name, binary_op, other.name) new_tally.name = new_name # Create copies of self and other tallies to rearrange for tally # arithmetic self_copy = copy.deepcopy(self) other_copy = copy.deepcopy(other) # Find any shared filters between the two tallies filter_intersect = [] for filter in self_copy.filters: if filter in other_copy.filters: filter_intersect.append(filter) # Align the shared filters in successive order for i, filter in enumerate(filter_intersect): self_index = self_copy.filters.index(filter) other_index = other_copy.filters.index(filter) # If necessary, swap self filter if self_index != i: self_copy.swap_filters(filter, self_copy.filters[i], inplace=True) # If necessary, swap other filter if other_index != i: other_copy.swap_filters(filter, other_copy.filters[i], inplace=True) data = self_copy._align_tally_data(other_copy) if binary_op == '+': new_tally._mean = data['self']['mean'] + data['other']['mean'] new_tally._std_dev = np.sqrt(data['self']['std. dev.']**2 + data['other']['std. dev.']**2) elif binary_op == '-': new_tally._mean = data['self']['mean'] - data['other']['mean'] new_tally._std_dev = np.sqrt(data['self']['std. dev.']**2 + data['other']['std. dev.']**2) elif binary_op == '*': self_rel_err = data['self']['std. dev.'] / data['self']['mean'] other_rel_err = data['other']['std. dev.'] / data['other']['mean'] new_tally._mean = data['self']['mean'] * data['other']['mean'] new_tally._std_dev = np.abs(new_tally.mean) * \ np.sqrt(self_rel_err**2 + other_rel_err**2) elif binary_op == '/': self_rel_err = data['self']['std. dev.'] / data['self']['mean'] other_rel_err = data['other']['std. dev.'] / data['other']['mean'] new_tally._mean = data['self']['mean'] / data['other']['mean'] new_tally._std_dev = np.abs(new_tally.mean) * \ np.sqrt(self_rel_err**2 + other_rel_err**2) elif binary_op == '^': mean_ratio = data['other']['mean'] / data['self']['mean'] first_term = mean_ratio * data['self']['std. dev.'] second_term = \ np.log(data['self']['mean']) * data['other']['std. dev.'] new_tally._mean = data['self']['mean'] ** data['other']['mean'] new_tally._std_dev = np.abs(new_tally.mean) * \ np.sqrt(first_term**2 + second_term**2) if self_copy.estimator == other_copy.estimator: new_tally.estimator = self_copy.estimator if self_copy.with_summary and other_copy.with_summary: new_tally.with_summary = self_copy.with_summary if self_copy.num_realizations == other_copy.num_realizations: new_tally.num_realizations = self_copy.num_realizations # If filters are identical, simply reuse them in derived tally if self_copy.filters == other_copy.filters: for self_filter in self_copy.filters: new_tally.add_filter(self_filter) # Generate filter "outer products" for non-identical filters else: # Find the common longest sequence of shared filters match = 0 for self_filter, other_filter in zip(self_copy.filters, other_copy.filters): if self_filter == other_filter: match += 1 else: break match_filters = self_copy.filters[:match] cross_filters = [self_copy.filters[match:], other_copy.filters[match:]] # Simply reuse shared filters in derived tally for filter in match_filters: new_tally.add_filter(filter) # Use cross filters to combine non-shared filters in derived tally if len(self_copy.filters) != match and len(other_copy.filters) == match: for filter in cross_filters[0]: new_tally.add_filter(filter) elif len(self_copy.filters) == match and len(other_copy.filters) != match: for filter in cross_filters[1]: new_tally.add_filter(filter) else: for self_filter, other_filter in itertools.product(*cross_filters): new_filter = CrossFilter(self_filter, other_filter, binary_op) new_tally.add_filter(new_filter) # Generate score "outer products" if self_copy.scores == other_copy.scores: new_tally.num_score_bins = self_copy.num_score_bins for self_score in self_copy.scores: new_tally.add_score(self_score) else: new_tally.num_score_bins = self_copy.num_score_bins * other_copy.num_score_bins all_scores = [self_copy.scores, other_copy.scores] for self_score, other_score in itertools.product(*all_scores): new_score = CrossScore(self_score, other_score, binary_op) new_tally.add_score(new_score) # Generate nuclide "outer products" if self_copy.nuclides == other_copy.nuclides: for self_nuclide in self_copy.nuclides: new_tally.nuclides.append(self_nuclide) else: all_nuclides = [self_copy.nuclides, other_copy.nuclides] for self_nuclide, other_nuclide in itertools.product(*all_nuclides): new_nuclide = CrossNuclide(self_nuclide, other_nuclide, binary_op) new_tally.add_nuclide(new_nuclide) # Correct each Filter's stride stride = new_tally.num_nuclides * new_tally.num_score_bins for filter in reversed(new_tally.filters): filter.stride = stride stride *= filter.num_bins return new_tally def _align_tally_data(self, other): """Aligns data from two tallies for tally arithmetic. This is a helper method to construct a dict of dicts of the "aligned" data arrays from each tally for tally arithmetic. The method analyzes the filters, scores and nuclides in both tally's and determines how to appropriately align the data for vectorized arithmetic. For example, if the two tallies have different filters, this method will use NumPy 'tile' and 'repeat' operations to the new data arrays such that all possible combinations of the data in each tally's bins will be made when the arithmetic operation is applied to the arrays. Parameters ---------- other : Tally The tally to outer product with this tally Returns ------- dict A dictionary of dictionaries to "aligned" 'mean' and 'std. dev' NumPy arrays for each tally's data. """ self_mean = copy.deepcopy(self.mean) self_std_dev = copy.deepcopy(self.std_dev) other_mean = copy.deepcopy(other.mean) other_std_dev = copy.deepcopy(other.std_dev) if self.filters != other.filters: # Determine the number of paired combinations of filter bins # between the two tallies and repeat arrays along filter axes diff1 = list(set(self.filters).difference(set(other.filters))) diff2 = list(set(other.filters).difference(set(self.filters))) # Determine the factors by which each tally operands' data arrays # must be tiled or repeated for the tally outer product other_tile_factor = 1 self_repeat_factor = 1 for filter in diff1: other_tile_factor *= filter.num_bins for filter in diff2: self_repeat_factor *= filter.num_bins # Tile / repeat the tally data for the tally outer product self_shape = list(self_mean.shape) other_shape = list(other_mean.shape) self_shape[0] *= self_repeat_factor self_mean = np.repeat(self_mean, self_repeat_factor) self_std_dev = np.repeat(self_std_dev, self_repeat_factor) if self_repeat_factor == 1: other_shape[0] *= other_tile_factor other_mean = np.repeat(other_mean, other_tile_factor, axis=0) other_std_dev = np.repeat(other_std_dev, other_tile_factor, axis=0) else: other_mean =
np.tile(other_mean, (other_tile_factor, 1, 1))
numpy.tile
""" Leak data, leak distribution properties, and leak objects are created in this module """ import pickle import numpy as np from os.path import dirname, abspath import os # Constants: g = 9.8 # g is the strength of gravity [m/s^2] RHO_AIR = 1225 # density of air [g/m^3] RHO_METHANE = 681 # density of methane at atmospheric pressure [g/m^3] class Leak: """ Stores a list of leaks """ def __init__(self, flux=(), leaks_detected=(), capacity=0, reparable=True, site_index=(), comp_index=(), endtime=np.infty): """ Inputs: flux leak size (g/s) leaks_detected Binary value to save whether the leak has been detected or not (1 if detected, 0 otherwise) capacity Expected total number of leaks to be stored in this instance of Leak (allows for faster extend method) reparable Indicates whether an emission is reparable leak or a permanent vent endtime time index when emission will stop if not repaired """ if leaks_detected == () and flux != (): leaks_detected = np.zeros(len(flux)) try: length_in = len(flux) except TypeError: length_in = 1 if capacity == 0: self.flux = np.array(flux) self.site_index = np.array(site_index) self.comp_index = np.array(comp_index) self.leaks_detected = np.array(leaks_detected) if leaks_detected != () else np.zeros(length_in) if reparable is True: self.reparable = np.ones(length_in, dtype=np.bool) elif reparable is False: self.reparable = np.zeros(length_in, dtype=np.bool) else: self.reparable = reparable try: if len(endtime) == length_in: self.endtime = np.array(endtime) except TypeError: self.endtime =
np.ones(length_in)
numpy.ones
from ...util import context, call, config_update import multiprocessing as mp import numpy as np import os import click def minmax(el, v): return (el - np.min(v)) / (np.max(v) - np.min(v)) if
np.max(v)
numpy.max
import coopihc from coopihc.space import StateElement, State, StateNotContainedError, Space import gym import numpy import sys import copy _str = sys.argv[1] # -------- Correct assigment if _str == "correct" or _str == "all": x = StateElement( values=None, spaces=[ coopihc.space.Space( [ numpy.array([-1], dtype=numpy.float32), numpy.array([1], dtype=numpy.float32), ] ), coopihc.space.Space([numpy.array([1, 2, 3], dtype=numpy.int16)]), coopihc.space.Space( [numpy.array([-6, -5, -4, -3, -2, -1], dtype=numpy.int16)] ), ], ) gridsize = (11, 11) number_of_targets = 3 y = StateElement( values=None, spaces=[ Space( [ numpy.array([i for i in range(gridsize[0])], dtype=numpy.int16), numpy.array([i for i in range(gridsize[1])], dtype=numpy.int16), ] ) for j in range(number_of_targets) ], clipping_mode="error", ) x = StateElement( values=None, spaces=[ coopihc.space.Space( [ numpy.array([-1], dtype=numpy.float32), numpy.array([1], dtype=numpy.float32), ] ), coopihc.space.Space([numpy.array([1, 2, 3], dtype=numpy.int16)]), coopihc.space.Space([numpy.array([-6, -5, -4, -3, -2, -1], dtype=numpy.int16)]), ], ) gridsize = (11, 11) number_of_targets = 3 y = StateElement( values=None, spaces=[ Space( [ numpy.array([i for i in range(gridsize[0])], dtype=numpy.int16), numpy.array([i for i in range(gridsize[1])], dtype=numpy.int16), ] ) for j in range(number_of_targets) ], clipping_mode="error", ) if _str == "action-state": a = StateElement(values=None, spaces=Space([numpy.array([None], dtype=object)])) # -------------- accessing values if _str == "access" or _str == "all": x["values"] x["spaces"] x.values x["values"] = [ numpy.array([[0.335]]), numpy.array([[2]]), numpy.array([[-4]]), ] x["values"] = [0.2, 2, -5] y["values"] y["spaces"] y["values"] = [ numpy.array([1, 1]), numpy.array([0, 0]), numpy.array([2, 2]), ] y["values"] = [ numpy.array([15, 15]), numpy.array([0, 0]), numpy.array([2, 2]), ] # ------ normal reset if _str == "reset" or _str == "all": x.reset() y.reset() # -------- forced reset if _str == "forced-reset" or _str == "all": reset_dic = {"values": [-1 / 2, 2, -2]} x.reset(dic=reset_dic) reset_dic = {"values": [[0, 0], [10, 10], [5, 5]]} y.reset(dic=reset_dic) # ------ iterate on StateElement if _str == "iter" or _str == "all": for _x in x: print(_x) for _y in y: print(_y) if _str == "cartesianproduct" or _str == "all": x.reset() for n, _x in enumerate(x.cartesian_product()): # print(n, _x.values) print(n, _x) y.reset() # There are a million elements in y for n, _y in enumerate(y[0].cartesian_product()): print(n, _y.values) if _str == "comp" or _str == "all": x.reset() a = x[0] print(x < numpy.array([2, -2, 4])) if _str == "len" or _str == "all": len(x) len(y) if _str == "cast" or _str == "all": y.reset() targetdomain = StateElement( values=None, spaces=[ coopihc.space.Space( [ -numpy.ones((2, 1), dtype=numpy.float32), numpy.ones((2, 1), dtype=numpy.float32), ] ) for j in range(3) ], ) res = y.cast(targetdomain) b = StateElement( values=5, spaces=coopihc.space.Space( [numpy.array([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5], dtype=numpy.int16)] ), ) a = StateElement( values=0, spaces=coopihc.space.Space( [ numpy.array([-1], dtype=numpy.float32), numpy.array([1], dtype=numpy.float32), ] ), ) # C2D continuous = [] discrete = [] for elem in
numpy.linspace(-1, 1, 200)
numpy.linspace
''' rotation_coreg_phase_corr.py Script for performing corregistration (rotation) of two 2D images by using phase correlation \ in polar coordinate system PhaseCorrDiffEvolutionRotationPolar \ Phase correlation (degree level) in Polar coordinate system with differential evolution (sub-degree level), \ image comparison metric = mean squared error ''' import numpy as np from utils.coreg_utils import ImageTranslate, _NormalizeImage, _ApplyHighPassFilter, _ApplyHannWindow, \ _MseMetric, _CartesianToPolar, _DiffEvolutionRotation def _PhaseCorr(image_ref, image_shifted): # Determine pixel level shift Nrows, Ncols = image_ref.shape; image_ref_fft = np.fft.fft2(image_ref); image_shifted_fft = np.fft.fft2(image_shifted); top = np.multiply(np.matrix.conjugate(image_ref_fft), (image_shifted_fft)); bottom =
np.abs(top)
numpy.abs
"""Implements the utilities to generate general multi-objective mixed-integer linear program instances Referenced articles: @article{mavrotas2005multi, title={Multi-criteria branch and bound: A vector maximization algorithm for mixed 0-1 multiple objective linear programming}, author={<NAME> and <NAME>}, journal={Applied mathematics and computation}, volume={171}, number={1}, pages={53--71}, year={2005}, publisher={Elsevier} } @article{boland2015criterion, title={A criterion space search algorithm for biobjective mixed integer programming: The triangle splitting method}, author={<NAME> and <NAME> and <NAME>}, journal={INFORMS Journal on Computing}, volume={27}, number={4}, pages={597--618}, year={2015}, publisher={INFORMS} } @article{kirlik2014new, title={A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems}, author={<NAME> and <NAME>}, journal={European Journal of Operational Research}, volume={232}, number={3}, pages={479--488}, year={2014}, publisher={Elsevier} } """ from abc import ABCMeta, abstractmethod from gurobipy import GRB, LinExpr, Model import numpy as np import os import pandas as pd class MomilpInstanceParameterSet: """Implements MOMILP instance parameter set""" def __init__( self, constraint_coeff_range=(-1, 20), continuous_var_obj_coeff_range=(-10, 10), # if 'True', all the integer variables have zero coefficient in the discrete objectives dummy_discrete_obj=True, integer_var_obj_coeff_range=(-200, 200), # num of binary variables out of the num of integer vars num_binary_vars=10, num_constraints=20, num_continuous_vars=10, # starting from the objective function at the first index num_discrete_objs=1, num_integer_vars=10, num_objs=3, obj_sense="max", rhs_range=(50, 100)): self.constraint_coeff_range = constraint_coeff_range self.continuous_var_obj_coeff_range = continuous_var_obj_coeff_range self.dummy_discrete_obj = dummy_discrete_obj self.integer_var_obj_coeff_range = integer_var_obj_coeff_range self.num_binary_vars = num_binary_vars self.num_constraints = num_constraints self.num_continuous_vars = num_continuous_vars self.num_discrete_objs = num_discrete_objs self.num_integer_vars = num_integer_vars self.num_objs = num_objs self.obj_sense = obj_sense self.rhs_range = rhs_range def to_dict(self): """Returns the dictionary representation of the parameter set""" return self.__dict__ class MomilpInstance(metaclass=ABCMeta): """Implements an abstract MOMILP instance class""" @abstractmethod def write(self, path): """Writes the model""" class MomilpInstanceData: """Implements a MOMILP instance data""" def __init__( self, param_2_value, constraint_coeff_df=None, continuous_var_obj_coeff_df=None, integer_var_obj_coeff_df=None, rhs=None): self._constraint_coeff_df = constraint_coeff_df self._continuous_var_obj_coeff_df = continuous_var_obj_coeff_df self._integer_var_obj_coeff_df = integer_var_obj_coeff_df self._param_2_value = param_2_value self._rhs = rhs def constraint_coeff_df(self): """Returns the constraint coefficient data frame NOTE: An (m by n) matrix where rows are constraints and columns are variables""" return self._constraint_coeff_df def continuous_var_obj_coeff_df(self): """Returns the objective functions coefficients data frame for the continuous variables NOTE: An (m by n) matrix where rows are variables and columns are objective functions""" return self._continuous_var_obj_coeff_df def integer_var_obj_coeff_df(self): """Returns the objective functions coefficients data frame for the integer variables NOTE: An (m by n) matrix where rows are variables and columns are objective functions""" return self._integer_var_obj_coeff_df def rhs(self): """Returns the right-hand-side values of the constraints NOTE: A series of length m""" return self._rhs class KnapsackFileInstanceData(MomilpInstanceData): """Implements a Knapsack problem instance data retrived from a file NOTE: Based on the data input schema defined in Kirlik and Sayin. (2014): http://home.ku.edu.tr/~moolibrary/ A '.dat' file describing a multi-objective 0-1 knapsack problem Line 1: Number of objective functions, p Line 2: Number of objects, n Line 3: Capacity of the knapsack, W Line 5: Profits of the objects in each objective function, V Line 6: Weights of the objects, w """ _ESCAPED_CHARACTERS = ["[", "]"] _LINE_DELIMITER = ", " _NEW_LINE_SEPARATOR = "\n" def __init__(self, file_name, param_2_value): super(KnapsackFileInstanceData, self).__init__(param_2_value) self._file_name = file_name self._create() def _create(self): """Creates the instance data""" lines = [] with open(self._file_name, "r") as f: lines = f.readlines() # read the number of objectives num_objectives = int(self._process_lines(lines).iloc[0,0]) assert num_objectives == self._param_2_value["num_objs"], \ "the number of objectives in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_objectives, self._param_2_value["num_objs"]) # read the number of objects num_continuous_vars = self._param_2_value["num_continuous_vars"] assert num_continuous_vars == 0, "there should not be any continuous variables" num_binary_vars = self._param_2_value["num_binary_vars"] num_objects = int(self._process_lines(lines).iloc[0,0]) assert num_objects == num_binary_vars, \ "the number of objects in the data file is not equal to the number of binary variables in the " \ "configuration, '%d' != '%d'" % (num_objects, num_continuous_vars + num_binary_vars) # read the knapsack capacities self._rhs = self._process_lines(lines).iloc[0, :] num_constraints = len(self._rhs) assert num_constraints == self._param_2_value["num_constraints"], \ "the number of constraints in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_constraints, self._param_2_value["num_constraints"]) # read the objective function coefficients self._continuous_var_obj_coeff_df = pd.DataFrame() self._integer_var_obj_coeff_df = self._process_lines(lines, to_index=num_objectives).T # read the constraint coefficients self._constraint_coeff_df = self._process_lines(lines, to_index=num_constraints) def _process_lines(self, lines, from_index=0, to_index=1): """Processes the lines between the indices, removes the processed lines, and returns the data frame for the processed data""" rows = [] for line in lines[from_index:to_index]: for char in KnapsackFileInstanceData._ESCAPED_CHARACTERS: line = line.replace(char, "") line = line.split(KnapsackFileInstanceData._NEW_LINE_SEPARATOR)[0] values = line.split(KnapsackFileInstanceData._LINE_DELIMITER) if values[-1][-1] == ",": values[-1] = values[-1][:-1] if not values[-1]: values = values[:-1] rows.append(values) del lines[from_index:to_index] df = pd.DataFrame(rows, dtype='float') return df class MomilpFileInstanceData(MomilpInstanceData): """Implements a MOMILP instance data retrived from a file NOTE: Based on the data input schema defined in Boland et al. (2015): A '.txt' file describing a bi-objective problem Line 1: Number of constraints, m Line 2: Number of continuous variables, n_c Line 3: Number of binary variables, n_b Line 4: Array of coefficients for the first objective and the continuous variables, c^{1} Line 5: Array of coefficients for the first objective and the binary variables, f^{1} Line 6: Array of coefficients for the second objective and the continuous variables, c^{2} Line 7: Array of coefficients for the second objective and the binary variables, f^{2} Next 'n_c' lines: Array of constraint matrix coefficients for the continuous variables, a_{i,j} Next line: Array of constraint matrix coefficients for the binary variables, a^{'}_{j} Next line: Array of constraint right-hand-side values, b_j The instance is converted to a three-obj problem by creating an additional objective with all zero coefficients. """ _INTEGER_VARIABLE_SUM_CONTRAINT_RHS_MULTIPLIER = 1/3 _LINE_DELIMITER = " " _NEW_LINE_SEPARATOR = "\n" def __init__(self, file_name, param_2_value): super(MomilpFileInstanceData, self).__init__(param_2_value) self._file_name = file_name self._create() def _create(self): """Creates the instance data""" lines = [] with open(self._file_name, "r") as f: lines = f.readlines() num_constraints = int(self._process_lines(lines).iloc[0,0]) assert num_constraints == self._param_2_value["num_constraints"], \ "the number of constraints in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_constraints, self._param_2_value["num_constraints"]) num_continuous_vars = int(self._process_lines(lines).iloc[0,0]) assert num_continuous_vars == self._param_2_value["num_continuous_vars"], \ "the number of continuous vars in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_continuous_vars, self._param_2_value["num_continuous_vars"]) num_binary_vars = int(self._process_lines(lines).iloc[0,0]) assert num_binary_vars == self._param_2_value["num_binary_vars"], \ "the number of binary vars in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_binary_vars, self._param_2_value["num_binary_vars"]) # since we solve the BOMILP as TOMILP in the momilp solver, and the default discrete obj index is zero, we # create zero arrays as the coefficient vectors for the first objective self._continuous_var_obj_coeff_df = pd.DataFrame(np.zeros(shape=(1, num_continuous_vars))) self._integer_var_obj_coeff_df = pd.DataFrame(np.zeros(shape=(1, num_binary_vars))) self._continuous_var_obj_coeff_df = self._continuous_var_obj_coeff_df.append(self._process_lines(lines)) self._integer_var_obj_coeff_df = self._integer_var_obj_coeff_df.append(self._process_lines(lines)) self._continuous_var_obj_coeff_df = self._continuous_var_obj_coeff_df.append( self._process_lines(lines)).reset_index(drop=True).T self._integer_var_obj_coeff_df = self._integer_var_obj_coeff_df.append( self._process_lines(lines)).reset_index(drop=True).T continuous_var_columns = [i for i in range(num_continuous_vars)] binary_var_columns = [len(continuous_var_columns) + i for i in range(num_binary_vars)] continuous_var_constraint_df = self._process_lines(lines, to_index=num_continuous_vars).T continuous_var_constraint_df = continuous_var_constraint_df.append( pd.DataFrame(np.zeros(shape=(1, num_continuous_vars)))).reset_index(drop=True) continuous_var_constraint_df.columns = continuous_var_columns binary_var_constraint_df = pd.DataFrame(np.diag(self._process_lines(lines).iloc[0,:])).append( pd.DataFrame(np.zeros(shape=(num_constraints - num_binary_vars - 1, num_binary_vars)))).append( pd.DataFrame(np.ones(shape=(1, num_binary_vars)))).reset_index(drop=True) binary_var_constraint_df.columns = binary_var_columns self._constraint_coeff_df = pd.concat([continuous_var_constraint_df, binary_var_constraint_df], axis=1) binary_var_sum_rhs = num_binary_vars * MomilpFileInstanceData._INTEGER_VARIABLE_SUM_CONTRAINT_RHS_MULTIPLIER self._rhs = self._process_lines(lines).iloc[0, :].append(pd.Series(binary_var_sum_rhs)).reset_index(drop=True) def _process_lines(self, lines, from_index=0, to_index=1): """Processes the lines between the indices, removes the processed lines, and returns the data frame for the processed data""" rows = [] for line in lines[from_index:to_index]: line = line.split(MomilpFileInstanceData._NEW_LINE_SEPARATOR)[0] values = line.split(MomilpFileInstanceData._LINE_DELIMITER) if not values[-1]: values = values[:-1] rows.append(values) del lines[from_index:to_index] df = pd.DataFrame(rows, dtype='float') return df def constraint_coeff_df(self): """Returns the constraint coefficient data frame NOTE: An (m by n) matrix where rows are constraints and columns are variables""" return self._constraint_coeff_df def continuous_var_obj_coeff_df(self): """Returns the objective functions coefficients data frame for the continuous variables NOTE: An (m by n) matrix where rows are variables and columns are objective functions""" return self._continuous_var_obj_coeff_df def integer_var_obj_coeff_df(self): """Returns the objective functions coefficients data frame for the integer variables NOTE: An (m by n) matrix where rows are variables and columns are objective functions""" return self._integer_var_obj_coeff_df def rhs(self): """Returns the right-hand-side values of the constraints NOTE: A series of length m""" return self._rhs class MomilpRandomInstanceData(MomilpInstanceData): """Implements a MOMILP random instance data NOTE: Based on the data generation schema defined in Mavrotas and Diakoulaki (2005) and Boland et al. (2015)""" _INTEGER_VARIABLE_SUM_CONTRAINT_RHS_MULTIPLIER = 1/3 def __init__(self, param_2_value, np_rand_num_generator_seed=0):
np.random.seed(np_rand_num_generator_seed)
numpy.random.seed
#!/usr/bin/python """calculate_skystats.py -- Mask stars aggressively, together with input mask, determine sky background stats in remaining pixels. Stats are Average Median Standard deviation of x by x pixels's average values (y boxes are placed randomly) Note that for using aplpy to plot location of randomly placed sky areas, the vmin and vmax for fits image is hard coded in right now. So if you get black png files, that's why. For randomly placed boxes, take in vmin, vmax command line options; but not for annuli! Should also write in a remove created files option. Need to update to be an importable module. Required input fitsimage - image for which background stats are desired. Usage: calculate_skystats.py [-h] [-v] [-b STRING] [-a STRING] [--annulusallover STRING] [-n INT] [-m FILE] [-s SEXLOC] [--vmin FLOAT] [--vmax FLOAT] <fitsimage> Options: -h, --help Print this screen. -v, --verbose Print extra information [default: False] -b STRING, --box STRING Input box parameters: size of box (pixels), number of random boxes to be placed. E.g. 8,1000. -a STRING, --annulus STRING Select annulus with params 'xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2', angle in degrees, counter clockwise rotation; place random annuli around galaxy. --annulusallover STRING Select annulus with params 'xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2', angle in degrees, counter clockwise rotation; place annulus around galaxy, but let it move around a little more than above option. -n INT, --niterations INT Input number of random annuli to be placed. (not used for boxes). [default: 100] -m FILE, --mask FILE Required. Input mask to be combined with grown sextractor mask. Important to input a mask that masks out the galaxy and its extended low surface brightness features! -s SEXLOC, --sex SEXLOC SExtractor location [default: /opt/local/bin/sex] --vmin FLOAT For plotting up box/ annuli locations [default: 4.25] --vmax FLOAT For plotting up box/ annuli locations [default: 4.32] Example: python calculate_skystats.py -v fitsimage.fits """ import docopt import numpy as np import astropy.io.fits as fits from scipy import ndimage import subprocess import os, sys, copy import matplotlib.pyplot as plt import aplpy sextractor_params = """NUMBER FLUX_AUTO FLUXERR_AUTO FLUX_APER FLUXERR_APER X_IMAGE Y_IMAGE X_WORLD Y_WORLD FLUX_RADIUS FLAGS CLASS_STAR BACKGROUND ELLIPTICITY FWHM_IMAGE """ sextractor_config = """ ANALYSIS_THRESH 3 BACK_FILTERSIZE 3 BACKPHOTO_TYPE LOCAL BACK_SIZE 32 CATALOG_NAME test.cat CATALOG_TYPE ASCII_HEAD CHECKIMAGE_TYPE SEGMENTATION CHECKIMAGE_NAME {check_name} CLEAN Y CLEAN_PARAM 1. DEBLEND_MINCONT 0.001 DEBLEND_NTHRESH 32 DETECT_MINAREA 5 DETECT_THRESH 3 DETECT_TYPE CCD FILTER Y FILTER_NAME {filter_name} FLAG_IMAGE flag.fits GAIN 1.0 MAG_GAMMA 4. MAG_ZEROPOINT 0.0 MASK_TYPE CORRECT MEMORY_BUFSIZE 1024 MEMORY_OBJSTACK 3000 MEMORY_PIXSTACK 300000 PARAMETERS_NAME {parameters_name} PHOT_APERTURES 5 PHOT_AUTOPARAMS 2.5, 3.5 PIXEL_SCALE 2.85 SATUR_LEVEL 50000. SEEING_FWHM 2.5 STARNNW_NAME {starnnw_name} VERBOSE_TYPE {verbose_type} """ default_conv = """CONV NORM # 3x3 ``all-ground'' convolution mask with FWHM = 2 pixels. 1 2 1 2 4 2 1 2 1 """ default_nnw = """NNW # Neural Network Weights for the SExtractor star/galaxy classifier (V1.3) # inputs: 9 for profile parameters + 1 for seeing. # outputs: ``Stellarity index'' (0.0 to 1.0) # Seeing FWHM range: from 0.025 to 5.5'' (images must have 1.5 < FWHM < 5 pixels) # Optimized for Moffat profiles with 2<= beta <= 4. 3 10 10 1 -1.56604e+00 -2.48265e+00 -1.44564e+00 -1.24675e+00 -9.44913e-01 -5.22453e-01 4.61342e-02 8.31957e-01 2.15505e+00 2.64769e-01 3.03477e+00 2.69561e+00 3.16188e+00 3.34497e+00 3.51885e+00 3.65570e+00 3.74856e+00 3.84541e+00 4.22811e+00 3.27734e+00 -3.22480e-01 -2.12804e+00 6.50750e-01 -1.11242e+00 -1.40683e+00 -1.55944e+00 -1.84558e+00 -1.18946e-01 5.52395e-01 -4.36564e-01 -5.30052e+00 4.62594e-01 -3.29127e+00 1.10950e+00 -6.01857e-01 1.29492e-01 1.42290e+00 2.90741e+00 2.44058e+00 -9.19118e-01 8.42851e-01 -4.69824e+00 -2.57424e+00 8.96469e-01 8.34775e-01 2.18845e+00 2.46526e+00 8.60878e-02 -6.88080e-01 -1.33623e-02 9.30403e-02 1.64942e+00 -1.01231e+00 4.81041e+00 1.53747e+00 -1.12216e+00 -3.16008e+00 -1.67404e+00 -1.75767e+00 -1.29310e+00 5.59549e-01 8.08468e-01 -1.01592e-02 -7.54052e+00 1.01933e+01 -2.09484e+01 -1.07426e+00 9.87912e-01 6.05210e-01 -6.04535e-02 -5.87826e-01 -7.94117e-01 -4.89190e-01 -8.12710e-02 -2.07067e+01 -5.31793e+00 7.94240e+00 -4.64165e+00 -4.37436e+00 -1.55417e+00 7.54368e-01 1.09608e+00 1.45967e+00 1.62946e+00 -1.01301e+00 1.13514e-01 2.20336e-01 1.70056e+00 -5.20105e-01 -4.28330e-01 1.57258e-03 -3.36502e-01 -8.18568e-02 -7.16163e+00 8.23195e+00 -1.71561e-02 -1.13749e+01 3.75075e+00 7.25399e+00 -1.75325e+00 -2.68814e+00 -3.71128e+00 -4.62933e+00 -2.13747e+00 -1.89186e-01 1.29122e+00 -7.49380e-01 6.71712e-01 -8.41923e-01 4.64997e+00 5.65808e-01 -3.08277e-01 -1.01687e+00 1.73127e-01 -8.92130e-01 1.89044e+00 -2.75543e-01 -7.72828e-01 5.36745e-01 -3.65598e+00 7.56997e+00 -3.76373e+00 -1.74542e+00 -1.37540e-01 -5.55400e-01 -1.59195e-01 1.27910e-01 1.91906e+00 1.42119e+00 -4.35502e+00 -1.70059e+00 -3.65695e+00 1.22367e+00 -5.74367e-01 -3.29571e+00 2.46316e+00 5.22353e+00 2.42038e+00 1.22919e+00 -9.22250e-01 -2.32028e+00 0.00000e+00 1.00000e+00 """ def run_SExtractor(image_name): 'Create temporary directory' if not os.path.exists('tmpSkystats'): os.makedirs('tmpSkystats') else: print('./tmpSkystats directory existed already') 'Names of required config files' sextractor_config_name = './tmpSkystats/scamp.sex' params_name = './tmpSkystats/scamp.param' conv_name = './tmpSkystats/default.conv' nnw_name = './tmpSkystats/default.nnw' catalog_name = image_name.split('.fits')[0]+'_bkg.cat' check_name = image_name.split('.fits')[0]+'_bkg_segmap.fits' if verbose: verbose_type = 'NORMAL' else: verbose_type = 'QUIET' 'Stick content in config files' configs = zip([sextractor_config_name,params_name,conv_name,nnw_name],[sextractor_config,sextractor_params,default_conv,default_nnw]) for fname,fcontent in configs: fout = open(fname,'w') if 'scamp.sex' in fname: fout.write(fcontent.format(filter_name=conv_name, parameters_name=params_name,starnnw_name=nnw_name, verbose_type=verbose_type,check_name=check_name)) else: fout.write(fcontent) fout.close() if verbose: print('SExtracting...') 'SExtractor command' command = sexloc + ' -c {config} -CATALOG_NAME {catalog} {image}'.format(config=sextractor_config_name,catalog=catalog_name,image=image_name) if verbose: print('Running this command:') print(command+'\n') 'Run SExtractor' subprocess.call(command,shell=True) 'Clear unnecessary files' for fname in [sextractor_config_name,params_name,conv_name,nnw_name]: clearit(fname) 'Remove temp directory if its not empty' try: os.rmdir('tmpSkystats') except OSError as ex: if ex.errno == errno.ENOTEMPTY: print("directory not empty") return check_name def clearit(fname): if os.path.isfile(fname): os.remove(fname) return None def writeFITS(im,saveAs,header=None): if header != None: hdu = fits.PrimaryHDU(data=im,header=header) else: hdu = fits.PrimaryHDU(data=im) hdulist = fits.HDUList([hdu]) hdulist.writeto(saveAs,overwrite=True) hdulist.close() return None def calculate_sky_box(fitsimage,image,total_mask,boxsize_pix,nboxes,vmin=4.25,vmax=4.32): '''Place nboxes boxsize_pix sized boxes randomly in image with total_mask, calculate average in each box and standard deviation of averages''' sky_counts = [] pix_counts = [] n_counter = 0 n_notfinite = 0 # Read in image size and set boxes # to be placed not too near edge h = fits.getheader(fitsimage) xmin = 1.5*boxsize_pix ymin = 1.5*boxsize_pix xmax = float(h['NAXIS1'])-1.5*boxsize_pix ymax = float(h['NAXIS2'])-1.5*boxsize_pix # Start figure to plot up box locations fig = plt.figure(figsize=(48, 36)) f1 = aplpy.FITSFigure(fitsimage,figure=fig) #f1.set_tick_labels_font(size='xx-small') f1.ticks.hide() f1.tick_labels.hide_x() f1.tick_labels.hide_y() f1.axis_labels.hide() f1.show_grayscale(invert=True, stretch='linear', vmin=vmin, vmax=vmax) xlen = int(h['NAXIS2']) ylen = int(h['NAXIS1']) xtomesh = np.arange(0, ylen, 1) ytomesh = np.arange(0, xlen, 1) X, Y = np.meshgrid(xtomesh, ytomesh) while n_counter <= nboxes: # Choose a random spot row = np.random.randint(low=ymin,high=ymax) col = np.random.randint(low=xmin,high=xmax) # Make a box image_box = image[row-int(boxsize_pix/2):row+int(boxsize_pix/2)+1,col-int(boxsize_pix/2):col+int(boxsize_pix/2)+1] mask_box = total_mask[row-int(boxsize_pix/2):row+int(boxsize_pix/2)+1,col-int(boxsize_pix/2):col+int(boxsize_pix/2)+1] # Plot up location of box for display using show_contour display_mask = np.zeros((xlen,ylen)) display_mask[row-int(boxsize_pix/2):row+int(boxsize_pix/2)+1,col-int(boxsize_pix/2):col+int(boxsize_pix/2)+1] = 1.0 CS = plt.contour(X, Y, display_mask,linewidths=1.0,alpha=0.1,colors='red') # Measure average counts in this masked box counts = np.ma.mean(np.ma.masked_array(image_box,mask=mask_box)) # Measure number of pixels not masked in this masked box no_pixels_notmasked = np.sum(mask_box) # Add average to sky_counts if finite # Also increment box count # Else increment n_notfinite if np.isfinite(counts): sky_counts.append(counts) pix_counts.append(no_pixels_notmasked) n_counter += 1 else: n_notfinite += 1 # Save figure to of annuli locations outname = './skyregionlocs.png' f1.save(outname) print(' ') print('***OUTPUT: Box location plot saved here: ',outname) return sky_counts, pix_counts, n_notfinite, h def read_annulusparams(annulusparams): '''Read out annulus parameters of form xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2''' params = annulusparams.split(',') xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2 = params return float(xc1),float(yc1),float(a1),float(b1),float(ang1),float(xc2),float(yc2),float(a2),float(b2),float(ang2) def make_annulus_mask(xlen,ylen,xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2): '''Read in annulus parameters and create grabber of annulus (1 inside and 0 outside)''' ang1_rad = (ang1/360.)*2*np.pi ang2_rad = (ang2/360.)*2*np.pi # Ellipse 1 mask1 = np.zeros((xlen,ylen)) xv,yv = np.meshgrid(np.linspace(0,xlen-1,xlen),np.linspace(0,ylen-1,ylen)) A = ( (xv-xc1)*np.cos(ang1_rad) + (yv-yc1)*np.sin(ang1_rad) )**2 / a1**2 B = ( (xv-xc1)*np.sin(ang1_rad) - (yv-yc1)*np.cos(ang1_rad) )**2 / b1**2 xi,yi = np.where( A+B < 1.0 ) mask1[xi,yi] = 1 # Ellipse 2 mask2 = np.zeros((xlen,ylen)) A = ( (xv-xc2)*np.cos(ang2_rad) + (yv-yc2)*np.sin(ang2_rad) )**2 / a2**2 B = ( (xv-xc2)*np.sin(ang2_rad) - (yv-yc2)*np.cos(ang2_rad) )**2 / b2**2 xi,yi = np.where( A+B < 1.0 ) mask2[xi,yi] = 1 # Combine Ellipse 1 and 2 --> annulus mask3 = np.ones((xlen,ylen)).astype(int) tmp = mask1+mask2 xi,yi = np.where(tmp == 1.0) mask3[xi,yi] = 0 return mask3.astype(bool) def calculate_sky_annuli(fitsimage,image,total_mask,annulusparams,n_iterations): '''Save sky count averages in n_iteration annuli, also plot up where random n_iterations of annuli were placed on fits image.''' # Calculate sky in input annulus xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2 = read_annulusparams(annulusparams) h = fits.getheader(fitsimage) xlen = int(h['NAXIS2']) ylen = int(h['NAXIS1']) mask = make_annulus_mask(xlen,ylen,xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2) initial_annuli_mask_data = mask.copy() image_annuli = copy.copy(image) image_annuli[mask] = float('nan') image_annuli[total_mask] = float('nan') initial_annuli_name = 'annuli_input.fits' writeFITS(image_annuli,initial_annuli_name) print(' ') print('***OUTPUT: Sky calculation annulus saved here: ',initial_annuli_name) print(' ') print('Average in input sky annulus is: ',np.nanmean(image_annuli)) print('Median in input sky annulus is: ',np.nanmedian(image_annuli)) print('Std in input sky annulus is: ',np.nanstd(image_annuli)) print('Number of finite non masked pixels in input sky annulus: ',np.sum(np.isfinite(image_annuli))) # Plonk some random annuli, calculate average of averages and std of averages # Vary xc,yc within width of annuli randomly (move xc2,yc2 by same amount) # AND vary a1 randomly while keeping a1-a2 constant, varations up to width of annuli annuli_thickness = abs(a1-a2)/2. # Start figure to plot up annuli locations fig = plt.figure(figsize=(48, 36)) f1 = aplpy.FITSFigure(fitsimage,figure=fig) #f1.set_tick_labels_font(size='xx-small') f1.ticks.hide() f1.tick_labels.hide_x() f1.tick_labels.hide_y() f1.axis_labels.hide() f1.show_grayscale(invert=True, stretch='linear', vmin=4.25, vmax=4.32) # for g-band ngc 2841: vmin=2.38, vmax=2.42 sky_counts = [] pix_counts = [] n_counter = 0 n_notfinite = 0 xtomesh = np.arange(0, ylen, 1) ytomesh = np.arange(0, xlen, 1) X, Y = np.meshgrid(xtomesh, ytomesh) while n_counter < n_iterations: # Choose X random values for xc,yc and a1 xc_shift = np.random.randint(low=-annuli_thickness,high=annuli_thickness) yc_shift = np.random.randint(low=-annuli_thickness,high=annuli_thickness) a1_shift = np.random.randint(low=-annuli_thickness,high=annuli_thickness) new_xc1 = xc1+xc_shift new_xc2 = xc2+xc_shift new_yc1 = yc1+yc_shift new_yc2 = yc2+yc_shift new_a1 = a1+a1_shift new_a2 = a2+a1_shift new_b1 = (b1/a1)*(new_a1) new_b2 = (b2/a2)*(new_a2) # Make mask for new annuli mask = make_annulus_mask(xlen,ylen, new_xc1,new_yc1,new_a1,new_b1,ang1, new_xc2,new_yc2,new_a2,new_b2,ang2) image_annuli = copy.copy(image) image_annuli[mask] = float('nan') image_annuli[total_mask] = float('nan') # Plot up location annulus for display using show_contour CS = plt.contour(X, Y, mask,linewidths=1.0,alpha=0.1,colors='red') # Calculate average and number of pixels in average to array #counts = 3.*np.nanmedian(image_annuli) - 2.*np.nanmean(image_annuli) counts = np.nanmean(image_annuli) # Add average to sky_counts if finite # Also increment n_counter # Else increment n_notfinite if np.isfinite(counts): sky_counts.append(counts) pix_counts.append(np.sum(np.isfinite(image_annuli))) n_counter += 1 else: n_notfinite += 1 # Increment counter n_counter += 1 # Plot initial sky ellipse # Copy wcs to total_mask_name, and show initial ellipse contour CS = plt.contour(X, Y, initial_annuli_mask_data,linewidths=6.0,colors='green') # Save figure to of annuli locations outname = './skyregionlocs.png' f1.save(outname) print(' ') print('***OUTPUT: Annuli location plot saved here: ',outname) if verbose: print('Number of annuli placed randomly is: ',n_counter) return sky_counts, pix_counts, n_notfinite, h def copy_wcs(fits_withwcs,fits_withoutwcs): h = fits.getheader(fits_withwcs) f = fits.open(fits_withoutwcs) newf = fits.PrimaryHDU() newf.header = f[0].header newf.data = f[0].data newf.header['CTYPE1'] = h['CTYPE1'] newf.header['CRPIX1'] = h['CRPIX1'] newf.header['CRVAL1'] = h['CRVAL1'] newf.header['CTYPE2'] = h['CTYPE2'] newf.header['CRPIX2'] = h['CRPIX2'] newf.header['CRVAL2'] = h['CRVAL2'] newf.header['CD1_1'] = h['CD1_1'] newf.header['CD1_2'] = h['CD1_2'] newf.header['CD2_1'] = h['CD2_1'] newf.header['CD2_2'] = h['CD2_2'] #newf.header['RADECSYS'] = h['RADECSYS'] newf.header['EQUINOX'] = h['EQUINOX'] saveloc = fits_withoutwcs.split('.')[0]+'_wcs.fits' newf.writeto(saveloc, overwrite=True) return saveloc def calculate_sky_annuli_alloverim(fitsimage,image,total_mask,annulusparams,n_iterations): '''Save sky count averages in n_iteration annuli, also plot up where random n_iterations of annuli were placed on fits image.''' # Calculate sky in input annulus xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2 = read_annulusparams(annulusparams) h = fits.getheader(fitsimage) xlen = int(h['NAXIS2']) ylen = int(h['NAXIS1']) mask = make_annulus_mask(xlen,ylen,xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2) initial_annuli_mask_data = mask.copy() image_annuli = copy.copy(image) image_annuli[mask] = float('nan') image_annuli[total_mask] = float('nan') initial_annuli_name = 'annuli_input.fits' writeFITS(image_annuli,initial_annuli_name) print(' ') print('***OUTPUT: Sky calculation annulus saved here: ',initial_annuli_name) print(' ') print('Average in input sky annulus is: ',np.nanmean(image_annuli)) print('Median in input sky annulus is: ',np.nanmedian(image_annuli)) print('Std in input sky annulus is: ',np.nanstd(image_annuli)) print('Number of finite non masked pixels in input sky annulus: ',np.sum(np.isfinite(image_annuli))) # Plonk some random annuli, calculate average of averages and std of averages # Vary xc,yc within width of annuli randomly (move xc2,yc2 by same amount) # AND vary a1 randomly while keeping a1-a2 constant, varations up to width of annuli annuli_thickness = abs(a1-a2)/2. # Start figure to plot up annuli locations fig = plt.figure(figsize=(48, 36)) f1 = aplpy.FITSFigure(fitsimage,figure=fig) #f1.set_tick_labels_font(size='xx-small') f1.ticks.hide() f1.tick_labels.hide_x() f1.tick_labels.hide_y() f1.axis_labels.hide() f1.show_grayscale(invert=True, stretch='linear', vmin=4.25, vmax=4.32) # g-band ngc 2841 vmin=2.38, vmax=2.42 sky_counts = [] pix_counts = [] n_counter = 0 n_notfinite = 0 xtomesh =
np.arange(0, ylen, 1)
numpy.arange
#!/usr/bin/env python import os, sys import fnmatch import numpy as np import scipy.io.wavfile import scipy.signal import pyaudio import pandas as pd from bokeh.io import curdoc from bokeh.layouts import row, column, widgetbox, gridplot from bokeh.models import ColumnDataSource, Span, BoxAnnotation, Range1d from bokeh.models.tools import \ CrosshairTool, BoxZoomTool, BoxSelectTool, HoverTool, \ PanTool, ResetTool, SaveTool, TapTool, WheelZoomTool from bokeh.models.widgets import Div, Slider, TextInput, PreText, Select, Button from bokeh.plotting import figure, output_file, output_notebook, show from bokeh.document import without_document_lock from tornado import gen def play_all(): audata = orig_au.astype(np.int16).tostring() stream.write(audata) def play_sel(): sel = gp.select_one(dict(tags=['cursel'])) samp1 = np.int(sel.left * orig_rate) samp2 = np.int(sel.right * orig_rate) audata = orig_au[samp1:samp2].astype(np.int16).tostring() stream.write(audata) def get_filenames(): '''Walk datadir and get all .wav filenamess.''' files = [] for root, dirnames, fnames in os.walk(datadir): for fname in fnmatch.filter(fnames, '*.wav'): files.append(os.path.join(root, fname)) return files def load_file(attrname, old, wav): global au, orig_au, rate, orig_rate, timepts, df, stream global xrng, yrng (orig_rate, au) = scipy.io.wavfile.read(wav) orig_au = au.copy() if stream is None: # Set up the audio stream for playback. pya = pyaudio.PyAudio() stream = pya.open( format = pyaudio.paInt16, channels = 1, rate = np.int(orig_rate), output = True) decim_factor = 16 au = scipy.signal.decimate(au, decim_factor) rate = orig_rate / decim_factor timepts = np.arange(0, len(au)) / rate source.data['x'] = timepts source.data['au'] = au x_range.update(end=timepts[-1]) # Now load the tongue data tngfile = os.path.splitext(wav)[0] + '.txy' palfile = os.path.join(os.path.dirname(wav), 'PAL.DAT') phafile = os.path.join(os.path.dirname(wav), 'PHA.DAT') df = pd.read_csv( tngfile, sep='\t', names=[ 'sec', 'ULx', 'ULy', 'LLx', 'LLy', 'T1x', 'T1y', 'T2x', 'T2y', 'T3x', 'T3y', 'T4x', 'T4y', 'MIx', 'MIy', 'MMx', 'MMy' ] ) # Convert to seconds df['sec'] = df['sec'] / 1e6 df = df.set_index(['sec']) # Convert to mm df[[ 'ULx', 'ULy', 'LLx', 'LLy', 'T1x', 'T1y', 'T2x', 'T2y', 'T3x', 'T3y', 'T4x', 'T4y', 'MIx', 'MIy', 'MMx', 'MMy' ]] = df[[ 'ULx', 'ULy', 'LLx', 'LLy', 'T1x', 'T1y', 'T2x', 'T2y', 'T3x', 'T3y', 'T4x', 'T4y', 'MIx', 'MIy', 'MMx', 'MMy' ]] * 1e-3 # Find global x/y max/min in this recording to set axis limits. # Exclude bad values (1000000 in data file; 1000 mm in scaled dataframe). cmpdf = df[df < badval] xmax = np.max( np.max( cmpdf[['ULx','LLx','T1x', 'T2x', 'T3x', 'T4x', 'MIx', 'MMx']] ) ) xmin = np.min( np.min( cmpdf[['ULx','LLx','T1x', 'T2x', 'T3x', 'T4x', 'MIx', 'MMx']] ) ) ymax = np.max( np.max( cmpdf[['ULy','LLy','T1y', 'T2y', 'T3y', 'T4y', 'MIy', 'MMy']] ) ) ymin = np.min( np.min( cmpdf[['ULy','LLy','T1y', 'T2y', 'T3y', 'T4y', 'MIy', 'MMy']] ) ) # TODO: this works but produces SettingWithCopyWarning # will not have to use this when bokeh can handle NaN in plots # xdf = df[[ # 'ULx', 'LLx', 'T1x', 'T2x', # 'T3x', 'T4x', 'MIx', 'MMx' # ]] # xmax = np.max(np.max(xdf[xdf < badval])) # xdf[xdf == badval] = xrng[1] # ydf = df[[ # 'ULy', 'LLy', 'T1y', 'T2y', # 'T3y', 'T4y', 'MIy', 'MMy' # ]] # ymax = np.max(np.max(ydf[ydf < badval])) # ydf[ydf == badval] = yrng[1] # df = pd.concat([xdf, ydf], axis=1) paldf = pd.read_csv(palfile, sep='\s+', header=None, names=['x', 'y']) paldf = paldf * 1e-3 palsource.data = {'x': paldf['x'], 'y': paldf['y']} phadf = pd.read_csv(phafile, sep='\s+', header=None, names=['x', 'y']) phadf = phadf * 1e-3 phasource.data = {'x': phadf['x'], 'y': phadf['y']} xmin = np.min([xmin, np.min(paldf['x']), np.min(phadf['x'])]) xmax = np.max([xmax, np.max(paldf['x']), np.max(phadf['x'])]) ymin = np.min([ymin, np.min(paldf['y']),
np.min(phadf['y'])
numpy.min
import numpy as np import h5py as h import numpy as np import matplotlib as mpl mpl.use('Qt5Agg') """ USEFUL METHODS. """ def toPoint(point): point = np.array(point) point[1] *= -1 return point-250 def toIndex(point): point = np.array(point) point[1] *= -1 return point+250 """ START OF MASK STUFF. """ import imageio as io arr = io.read('../scratch/testMask.png').get_data(0) arr = np.int64(np.all(arr[:, :, :3] == 0, axis=2)) from matplotlib import pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Circle,Rectangle # N pixels per mm. pixelSize = 10 # Beam height in mm converted to pixels. beamHeight = 0.5 # Look at beam position (center position in mm). _lookAt = 10 _beamB = _lookAt - beamHeight/2 _beamT = _lookAt + beamHeight/2 # Initialise mask start and stop positions. # Start and stop are index positions of the array. start = [0,0] stop = [0,0] # Find mask horizontal start and stop positions. for row in range(arr.shape[0]): # Find the first row with a 0 in it. if np.sum(arr[row,:]) != arr.shape[0]: # Find the middle position of all the values that are 0. middle = np.argwhere(arr[row,:] == 0).mean() # Store the start position. start = [row,middle] break for row in reversed(range(arr.shape[0])): if np.sum(arr[row,:]) != arr.shape[0]: middle = np.argwhere(arr[row,:] == 0).mean() stop = [row,middle] break # Set diameter for the mask (in mm). _radius = 25 # Create datapoints for two half circles in degrees. leftCircleAngle = np.linspace(90, 270, 2000) rightCircleAngle = np.linspace(90, -90, 2000) # Find the tangent values of the points in each half circle. leftCircleTangent = np.tan(np.deg2rad(leftCircleAngle)) rightCircleTangent = np.tan(np.deg2rad(rightCircleAngle)) # Get subArray of mask. # subArray = arr[b:t,:] # Investigate beam area: _bt = int( np.absolute(25-_beamT)*10 ) _bb = int( np.absolute(25-_beamB)*10 ) subArray = arr[_bt:_bb,:] # Get the top and bottom line of the sub array. line1 = subArray[0,:] line2 = subArray[-1,:] # Find the left and right most points for each line. line1 = np.argwhere(line1 == 0) line2 = np.argwhere(line2 == 0) tl = line1.min() tr = line1.max() bl = line2.min() br = line2.max() # Calculate the tangent for each side. left = np.arctan(((tl-bl)/pixelSize)/beamHeight) right = np.arctan(((tr-br)/pixelSize)/beamHeight) # Find the tangent condition that matches in the circle. leftAngle = np.deg2rad(leftCircleAngle[ np.argmin(np.absolute(leftCircleTangent-left)) ]) rightAngle = np.deg2rad(rightCircleAngle[ np.argmin(np.absolute(rightCircleTangent-right)) ]) # Find the position of the mask that matches the tangent condition. circleLeftPosition = np.array([_radius*np.cos(leftAngle),-_radius*np.sin(leftAngle)]) circleRightPosition = np.array([_radius*np.cos(rightAngle),-_radius*np.sin(rightAngle)]) # Get the position of the matched pixel. x1 = (0 + np.min(np.array([tl,bl])) + np.absolute(tl-bl)/2)/pixelSize y1 = (_bt + subArray.shape[0]/2)/pixelSize pos1 = np.array([-25+x1,25-y1]) move1 = circleLeftPosition - pos1 # Right circle. x2 = (0 + np.min(np.array([tr,br])) + np.absolute(tr-br)/2)/pixelSize y2 = (_bt + subArray.shape[0]/2)/pixelSize pos2 =
np.array([-25+x2,25-y2])
numpy.array
from time import time import cv2 import numpy as np from scene import Scene from light import Light from camera import Camera from game_object import GameObject def triangle_area(v0, v1, v2): """ | v01[0] v01[1] | | v02[0] v02[1] | = v01[0]*v02[1] - v01[1]*v02[0] """ return (v1[0]-v0[0])*(v2[1]-v0[1]) - (v1[1]-v0[1])*(v2[0]-v0[0]) def convert_map_for_vis(m, ignore=np.inf): m = np.array(m) m[m == ignore] = 1 m_min = np.min(m[m != 1]) m_max = np.max(m[m != 1]) m[m != 1] = (m[m != 1] - m_min) / (m_max - m_min) * 0.8 return m def geometric_transform(scene): world_to_camera = scene.camera.world_to_camera world_to_light = scene.light.world_to_light near_clip = scene.camera.near_clip far_clip = scene.camera.far_clip # for light.shadow_map_param sxmin, sxmax = np.inf, -np.inf symin, symax = np.inf, -np.inf for obj in scene.objects: for name, mesh in obj.mesh.mesh.items(): mesh_format = mesh['format'] # V: vertex, N: normal, T: texture if mesh_format == 'V3F': step = 3 elif mesh_format == 'N3F_V3F': step = 6 elif mesh_format == 'T2F_V3F': step = 5 elif mesh_format == 'T2F_N3F_V3F': step = 8 else: assert False, 'invalid mesh_format' vertices = mesh['vertices'] for i in range(0, len(vertices), step*3): # triangle vertex coordinates and scaling v0 = np.array([[*vertices[i+1*step-3:i+1*step], 1]]).T * obj.scale v1 = np.array([[*vertices[i+2*step-3:i+2*step], 1]]).T * obj.scale v2 = np.array([[*vertices[i+3*step-3:i+3*step], 1]]).T * obj.scale v0[3, 0] = 1 v1[3, 0] = 1 v2[3, 0] = 1 if False and 'N3F' in mesh_format: # triangle vertex normal vectors n0 = np.array([vertices[i+1*step-6:i+1*step-3]]).T n1 = np.array([vertices[i+2*step-6:i+2*step-3]]).T n2 = np.array([vertices[i+3*step-6:i+3*step-3]]).T else: # if the model does not provide normal vectors, generate normal from triangle vertices n =
np.cross((v1-v0)[:3, 0], (v2-v0)[:3, 0])
numpy.cross
# Copyright 2020 <NAME>, MIT license import pickle import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib.colorbar import ColorbarBase from matplotlib.dates import DateFormatter import numpy as np from statsmodels.robust.robust_linear_model import RLM import statsmodels.api as sm from plot_maps import get_bounds, get_cmap, get_colors from traveltime import repack, filters, LATLON0 from util.imaging import convert_coords2km def fit_velocity(dist, tmax1, plot=True): # rlm = RLM(dist/1000 , np.abs(tmax1)) # rlm = RLM(np.abs(tmax1), dist/1000, M=sm.robust.norms.Hampel(1, 2, 4)) s = dist / 1000 t = np.abs(tmax1) o = np.ones(len(t)) # rlm = RLM(d/t, np.ones(len(d)), M=sm.robust.norms.Hampel(1, 2, 4)) rlm = RLM(s/t, o, M=sm.robust.norms.Hampel(1, 2, 4)) res = rlm.fit(maxiter=100) v = res.params[0] w = res.weights # scale = res.scale # v = np.median(s/t) from statsmodels.robust.scale import mad scale = mad(s/t, center=v, c=1) tmax = np.max(s) / v if plot: fig = plt.figure() ax = fig.add_subplot(121) ax.scatter(tmax1, dist) ax.plot((-tmax, 0, tmax), (np.max(dist), 0, np.max(dist))) ax2 = fig.add_subplot(122) ax2.hist(dist/1000/np.abs(tmax1), bins=np.linspace(3, 5, 21)) return v, w, scale def stats_vs_time(dist, tmax1, tmax2, evids, times1, times2, bounds): ress = [] r = [] for t1, t2 in zip(bounds[:-1], bounds[1:]): print(t1, t2) cond = np.logical_and.reduce((times1 <= t2, times1 > t1, times2 <= t2, times2 > t1, tmax1 != 0)) dist_, tmax1_, tmax2_, t1_ = filters(cond, dist, tmax1, tmax2, times1) ind = tmax2_!=0 tmax_=tmax1_ v, weights, scale = fit_velocity(dist_, tmax_, plot=False) r.append((t1, v, weights, scale, dist_, tmax_)) ress.append('{!s:10} {:.3f} {} {:.3f}'.format(t1, np.round(v, 3), len(dist_), np.round(scale, 3))) fig = plt.figure(figsize=(10, 8.5)) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332, sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(333, sharex=ax1, sharey=ax1) ax4 = fig.add_subplot(334, sharex=ax1, sharey=ax1) ax5 = fig.add_subplot(335, sharex=ax1, sharey=ax1) ax6 = fig.add_subplot(336) axes = [ax1, ax2, ax3, ax4, ax5] colors = get_colors() for i, (t1, v, weights, scale, dist, tmax1) in enumerate(r): tmax = np.max(dist) / 1000 / v c = colors[i] ax = axes[i] cmap = LinearSegmentedColormap.from_list('w_%d' % i, ['white', c]) ax.scatter(tmax1, dist, c=weights, cmap=cmap, edgecolors='k') ax.plot((-tmax, 0, tmax), (np.max(dist), 0, np.max(dist)), color=c) ax.annotate('N=%d' % len(dist), (0.03, 0.03), xycoords='axes fraction') ax.annotate(r'$v_{{\rm{{S}}}}{{=}}({:.2f}{{\pm}}{:.2f})$km/s'.format(v, scale), (0.97, 0.03), xycoords='axes fraction', ha='right') bins=np.linspace(2, 6, 41) centers = 0.5 * (bins[:-1] + bins[1:]) heights = np.diff(bins) for i, (t1, v, weights, scale, dist, tmax1) in enumerate(r): c = colors[i] vmedian = np.median(dist/1000/
np.abs(tmax1)
numpy.abs
#!/usr/bin/env python3 """ Context objects for managing datasets. """ import numpy as np from . import ic # noqa: F401 from . import _make_logger # Set up ArrayContext logger logger = _make_logger('ArrayContext', 'error') # or 'info' def _exe_axis_moves(array, moves, reverse=False): """ Execute the input series of axis swaps. """ slice_ = slice(None, None, -1) if reverse else slice(None) for move in moves[slice_]: move = move[slice_] array = np.moveaxis(array, *move) logger.info(f'Move {move[0]} to {move[1]}: {array.shape}') return array def _get_axis_moves(push_left, push_right, left_base=0, right_base=-1): """ Get the series of axis swaps given the input dimensionality. """ logger.info(f'Push axes left: {push_left}') logger.info(f'Push axes right: {push_right}') moves = [] left_base = 0 right_base = -1 for i, axis in enumerate(push_right): moves.append((axis, right_base)) for push in (push_left, push_right): push[push > axis] -= 1 # NOTE: some of these changes have no effect for axis in push_left: moves.append((axis, left_base)) for push in (push_left, push_right): push[push < axis] += 1 # NOTE: some of these changes have no effect return np.array(moves) class _ArrayContext(object): """ Temporarily reshape the input dataset(s). This is needed so we can do objective analysis tasks "along an axis". Some tasks can be done by just moving axes and using array[..., :] notation but this is not always possible. Should work with arbitrary duck-type arrays, including dask arrays. """ def __init__( self, *args, push_right=None, push_left=None, nflat_right=None, nflat_left=None, ): """ Parameters ---------- *datas : numpy.ndarray The arrays to be reshaped push_left, push_right : int or list of int, optional Axis or axes to move to the left or right sides. Axes are moved in the input order. By default, if neither are provided, `push_right` is set to ``-1``. nflat_left, nflat_right : int, optional Number of dimensions to flatten on the left or right sides. By default, if only `push_left` is provided, `nflat_right` is set to ``data.ndim - len(push_left)``, and if only `push_right` is provided, `nflat_left` is set to ``data.ndim - len(push_right)``. Examples -------- Here is a worked example used with the EOF algorithm: >>> import logging >>> import numpy as np >>> import xarray as xr >>> from climopy.internals.context import logger, _ArrayContext >>> logger.setLevel(logging.INFO) >>> # Generate neof, member, run, time, plev, lat array >>> dataarray = xr.DataArray( ... np.random.rand(12, 8, 100, 40, 20), ... dims=('member', 'run', 'time', 'plev', 'lat'), ... ) >>> array = dataarray.data >>> with _ArrayContext( ... array, ... push_left=(0, 1), nflat_left=2, ... push_right=(2, 3, 4), nflat_right=2, ... ) as context: ... data = context.data ... nextra, ntime, nspace = data.shape ... eofs = np.random.rand(nextra, 5, 1, nspace) # singleton time dimension ... pcs = np.random.rand(nextra, 5, ntime, 1) # singleton space dimension ... context.replace_data(eofs, pcs, insert_left=1) >>> logger.setLevel(logging.ERROR) >>> eofs, pcs = context.data """ # Set arrays # NOTE: No array standardization here. Assume duck-type arrays (numpy # arrays, pint quantities, xarray DataArrays, dask arrays). if not args: raise ValueError('Need at least one input argument.') self._arrays = args self._shapes = [] self._moves = [] ndim = self._arrays[0].ndim # Parse axis arguments and ensure they are positive if push_right is None and push_left is None: push_right = -1 if push_right is None: push_right = np.array([]) else: push_right = np.atleast_1d(push_right) if push_left is None: push_left = np.array([]) else: push_left = np.atleast_1d(push_left) for push, side in zip((push_left, push_right), ('left', 'right')): push[push < 0] += ndim if any(push < 0) or any(push >= ndim) or np.unique(push).size != push.size: raise ValueError(f'Invalid push_{side}={push} for {ndim}D array.') self._push_left = push_left self._push_right = push_right # Parse nflat arguments. When user requests pushing to right, means we want # to flatten the remaining left dims. Same goes for pushing to left. # NOTE: There is distinction here between 'None' and '0'. The latter means # add a singleton dimension (useful when iterating over 'extra' dimensions) # while the former means add nothing. if nflat_left is None and not push_left.size and push_right.size: nflat_left = ndim - push_right.size if nflat_right is None and not push_right.size and push_left.size: nflat_right = ndim - push_left.size self._nflat_left = nflat_left self._nflat_right = nflat_right def replace_data(self, *args, insert_left=None, insert_right=None): """ Replace the data attribute with new array(s). Parameters ---------- *args : array-like, optional The new arrays. The unflattened middle-dimensions can be changed. The flattened leading or trailing dimensions can be reduced to singleton, but otherwise must be identical or it is unclear how they should be re-expanded. insert_left, insert_right : int, optional Number of new dimensions added to the left or right of the array. Dimensions can only be added to the left or the right of the unflattened middle-dimensions of the array. For example, `climopy.eof` adds a new `neof` dimension so that dimensions are transformed from ``(nextra, ntime, nspace)`` to ``(nextra, neof, ntime, nspace)``. Use lists of numbers to transform input arguments differently. Examples -------- Inserting new dimensions does not mess up the order of values in dimensions that come before or after. This is revealed by playing with a simple example. >>> a = np.array( ... [ ... [[1, 2, 1], [3, 4, 3]], ... [[5, 6, 5], [7, 8, 7]], ... [[9, 10, 9], [11, 12, 11]], ... ] ... ) >>> a.shape (3, 2, 3) >>> a[:, 0, 0] array([1, 5, 9]) >>> np.reshape(a, (3, 6), order='F')[:, 0] array([1, 5, 9]) >>> np.reshape(a, (3, 6), order='C')[:, 0] array([1, 5, 9]) """ # Parse arguments inserts_left, inserts_right = [], [] for inserts, insert in zip((inserts_left, inserts_right), (insert_left, insert_right)): # noqa: E501 insert =
np.atleast_1d(insert)
numpy.atleast_1d
#!/usr/bin/env python # -*- coding: latin-1 -*- # # Copyright 2016-2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # import bisect import copy import gc import logging import multiprocessing as mp import os import platform import warnings import numpy as np from matplotlib.pyplot import figure, plot, show from nilearn import masking from scipy import ndimage from sklearn.decomposition import PCA import rapidtide.calccoherence as tide_calccoherence import rapidtide.calcnullsimfunc as tide_nullsimfunc import rapidtide.calcsimfunc as tide_calcsimfunc import rapidtide.correlate as tide_corr import rapidtide.filter as tide_filt import rapidtide.fit as tide_fit import rapidtide.glmpass as tide_glmpass import rapidtide.helper_classes as tide_classes import rapidtide.io as tide_io import rapidtide.miscmath as tide_math import rapidtide.multiproc as tide_multiproc import rapidtide.peakeval as tide_peakeval import rapidtide.refine as tide_refine import rapidtide.resample as tide_resample import rapidtide.simfuncfit as tide_simfuncfit import rapidtide.stats as tide_stats import rapidtide.util as tide_util import rapidtide.wiener as tide_wiener from rapidtide.tests.utils import mse from .utils import setup_logger try: import mkl mklexists = True except ImportError: mklexists = False print("mklexists:", mklexists) try: from memory_profiler import profile memprofilerexists = True except ImportError: memprofilerexists = False LGR = logging.getLogger("GENERAL") TimingLGR = logging.getLogger("TIMING") def conditionalprofile(): def resdec(f): if memprofilerexists: return profile(f) return f return resdec @conditionalprofile() def memcheckpoint(message): print(message) def maketmask(filename, timeaxis, maskvector, debug=False): inputdata = tide_io.readvecs(filename) theshape = np.shape(inputdata) if theshape[0] == 1: # this is simply a vector, one per TR. If the value is nonzero, include the point, otherwise don't if theshape[1] == len(timeaxis): maskvector = np.where(inputdata[0, :] > 0.0, 1.0, 0.0) else: raise ValueError("tmask length does not match fmri data") else: maskvector *= 0.0 for idx in range(0, theshape[1]): starttime = inputdata[0, idx] endtime = starttime + inputdata[1, idx] startindex = np.max((bisect.bisect_left(timeaxis, starttime), 0)) endindex = np.min((bisect.bisect_right(timeaxis, endtime), len(maskvector) - 1)) maskvector[startindex:endindex] = 1.0 LGR.info(f"{starttime}, {startindex}, {endtime}, {endindex}") return maskvector def numpy2shared(inarray, thetype): thesize = inarray.size theshape = inarray.shape if thetype == np.float64: inarray_shared = mp.RawArray("d", inarray.reshape(thesize)) else: inarray_shared = mp.RawArray("f", inarray.reshape(thesize)) inarray = np.frombuffer(inarray_shared, dtype=thetype, count=thesize) inarray.shape = theshape return inarray def allocshared(theshape, thetype): thesize = int(1) if not isinstance(theshape, (list, tuple)): thesize = theshape else: for element in theshape: thesize *= int(element) if thetype == np.float64: outarray_shared = mp.RawArray("d", thesize) else: outarray_shared = mp.RawArray("f", thesize) outarray = np.frombuffer(outarray_shared, dtype=thetype, count=thesize) outarray.shape = theshape return outarray, outarray_shared, theshape def readamask(maskfilename, nim_hdr, xsize, istext=False, valslist=None, maskname="the"): LGR.verbose(f"readamask called with filename: {maskfilename} vals: {valslist}") if istext: maskarray = tide_io.readvecs(maskfilename).astype("int16") theshape = np.shape(maskarray) theincludexsize = theshape[0] if not theincludexsize == xsize: raise ValueError( f"Dimensions of {maskname} mask do not match the input data - exiting" ) else: themask, maskarray, mask_hdr, maskdims, masksizes = tide_io.readfromnifti(maskfilename) maskarray = np.round(maskarray, 0).astype("int16") if not tide_io.checkspacematch(mask_hdr, nim_hdr): raise ValueError(f"Dimensions of {maskname} mask do not match the fmri data - exiting") if valslist is not None: tempmask = (0 * maskarray).astype("int16") for theval in valslist: LGR.verbose(f"looking for voxels matching {theval}") tempmask[np.where(np.fabs(maskarray - theval) < 0.1)] += 1 maskarray = np.where(tempmask > 0, 1, 0) return maskarray def getglobalsignal(indata, optiondict, includemask=None, excludemask=None, pcacomponents=0.8): # Start with all voxels themask = indata[:, 0] * 0 + 1 # modify the mask if needed if includemask is not None: themask = themask * includemask if excludemask is not None: themask = themask * (1 - excludemask) # combine all the voxels using one of the three methods global rt_floatset, rt_floattype globalmean = rt_floatset(indata[0, :]) thesize = np.shape(themask) numvoxelsused = int(np.sum(np.where(themask > 0.0, 1, 0))) selectedvoxels = indata[np.where(themask > 0.0), :][0] LGR.info(f"constructing global mean signal using {optiondict['globalsignalmethod']}") if optiondict["globalsignalmethod"] == "sum": globalmean = np.sum(selectedvoxels, axis=0) elif optiondict["globalsignalmethod"] == "meanscale": themean = np.mean(indata, axis=1) for vox in range(0, thesize[0]): if themask[vox] > 0.0: if themean[vox] != 0.0: globalmean += indata[vox, :] / themean[vox] - 1.0 elif optiondict["globalsignalmethod"] == "pca": try: thefit = PCA(n_components=pcacomponents).fit(selectedvoxels) except ValueError: if pcacomponents == "mle": LGR.warning("mle estimation failed - falling back to pcacomponents=0.8") thefit = PCA(n_components=0.8).fit(selectedvoxels) else: raise ValueError("unhandled math exception in PCA refinement - exiting") varex = 100.0 * np.cumsum(thefit.explained_variance_ratio_)[len(thefit.components_) - 1] LGR.info( f"Using {len(thefit.components_)} component(s), accounting for " f"{varex:.2f}% of the variance" ) else: dummy = optiondict["globalsignalmethod"] raise ValueError(f"illegal globalsignalmethod: {dummy}") LGR.info(f"used {numvoxelsused} voxels to calculate global mean signal") return tide_math.stdnormalize(globalmean), themask def addmemprofiling(thefunc, memprofile, themessage): if memprofile: return profile(thefunc, precision=2) else: tide_util.logmem(themessage) return thefunc def checkforzeromean(thedataset): themean = np.mean(thedataset, axis=1) thestd = np.std(thedataset, axis=1) if np.mean(thestd) > np.mean(themean): return True else: return False def echocancel(thetimecourse, echooffset, thetimestep, outputname, padtimepoints): tide_io.writebidstsv( f"{outputname}_desc-echocancellation_timeseries", thetimecourse, 1.0 / thetimestep, columns=["original"], append=False, ) shifttr = echooffset / thetimestep # lagtime is in seconds echotc, dummy, dummy, dummy = tide_resample.timeshift(thetimecourse, shifttr, padtimepoints) echotc[0 : int(np.ceil(shifttr))] = 0.0 echofit, echoR = tide_fit.mlregress(echotc, thetimecourse) fitcoeff = echofit[0, 1] outputtimecourse = thetimecourse - fitcoeff * echotc tide_io.writebidstsv( f"{outputname}_desc-echocancellation_timeseries", echotc, 1.0 / thetimestep, columns=["echo"], append=True, ) tide_io.writebidstsv( f"{outputname}_desc-echocancellation_timeseries", outputtimecourse, 1.0 / thetimestep, columns=["filtered"], append=True, ) return outputtimecourse, echofit, echoR def rapidtide_main(argparsingfunc): optiondict, theprefilter = argparsingfunc optiondict["nodename"] = platform.node() fmrifilename = optiondict["in_file"] outputname = optiondict["outputname"] filename = optiondict["regressorfile"] # Set up loggers for workflow setup_logger( logger_filename=f"{outputname}_log.txt", timing_filename=f"{outputname}_runtimings.tsv", memory_filename=f"{outputname}_memusage.tsv", verbose=optiondict["verbose"], debug=optiondict["debug"], ) TimingLGR.info("Start") # construct the BIDS base dictionary outputpath = os.path.dirname(optiondict["outputname"]) rawsources = [os.path.relpath(optiondict["in_file"], start=outputpath)] if optiondict["regressorfile"] is not None: rawsources.append(os.path.relpath(optiondict["regressorfile"], start=outputpath)) bidsbasedict = { "RawSources": rawsources, "Units": "arbitrary", "CommandLineArgs": optiondict["commandlineargs"], } TimingLGR.info("Argument parsing done") # don't use shared memory if there is only one process if (optiondict["nprocs"] == 1) and not optiondict["alwaysmultiproc"]: optiondict["sharedmem"] = False LGR.info("running single process - disabled shared memory use") # disable numba now if we're going to do it (before any jits) if optiondict["nonumba"]: tide_util.disablenumba() # set the internal precision global rt_floatset, rt_floattype if optiondict["internalprecision"] == "double": LGR.info("setting internal precision to double") rt_floattype = "float64" rt_floatset = np.float64 else: LGR.info("setting internal precision to single") rt_floattype = "float32" rt_floatset = np.float32 # set the output precision if optiondict["outputprecision"] == "double": LGR.info("setting output precision to double") rt_outfloattype = "float64" rt_outfloatset = np.float64 else: LGR.info("setting output precision to single") rt_outfloattype = "float32" rt_outfloatset = np.float32 # set set the number of worker processes if multiprocessing if optiondict["nprocs"] < 1: optiondict["nprocs"] = tide_multiproc.maxcpus() if optiondict["singleproc_getNullDist"]: optiondict["nprocs_getNullDist"] = 1 else: optiondict["nprocs_getNullDist"] = optiondict["nprocs"] if optiondict["singleproc_calcsimilarity"]: optiondict["nprocs_calcsimilarity"] = 1 else: optiondict["nprocs_calcsimilarity"] = optiondict["nprocs"] if optiondict["singleproc_peakeval"]: optiondict["nprocs_peakeval"] = 1 else: optiondict["nprocs_peakeval"] = optiondict["nprocs"] if optiondict["singleproc_fitcorr"]: optiondict["nprocs_fitcorr"] = 1 else: optiondict["nprocs_fitcorr"] = optiondict["nprocs"] if optiondict["singleproc_glm"]: optiondict["nprocs_glm"] = 1 else: optiondict["nprocs_glm"] = optiondict["nprocs"] # set the number of MKL threads to use if mklexists: mklmaxthreads = mkl.get_max_threads() if not (1 <= optiondict["mklthreads"] <= mklmaxthreads): optiondict["mklthreads"] = mklmaxthreads mkl.set_num_threads(optiondict["mklthreads"]) print(f"using {optiondict['mklthreads']} MKL threads") # Generate MemoryLGR output file with column names if not optiondict["memprofile"]: tide_util.logmem() # open the fmri datafile tide_util.logmem("before reading in fmri data") if tide_io.checkiftext(fmrifilename): LGR.info("input file is text - all I/O will be to text files") optiondict["textio"] = True if optiondict["gausssigma"] > 0.0: optiondict["gausssigma"] = 0.0 LGR.info("gaussian spatial filter disabled for text input files") else: optiondict["textio"] = False if optiondict["textio"]: nim_data = tide_io.readvecs(fmrifilename) nim_hdr = None theshape = np.shape(nim_data) xsize = theshape[0] ysize = 1 numslices = 1 fileiscifti = False timepoints = theshape[1] thesizes = [0, int(xsize), 1, 1, int(timepoints)] numspatiallocs = int(xsize) else: fileiscifti = tide_io.checkifcifti(fmrifilename) if fileiscifti: LGR.info("input file is CIFTI") ( cifti, cifti_hdr, nim_data, nim_hdr, thedims, thesizes, dummy, ) = tide_io.readfromcifti(fmrifilename) optiondict["isgrayordinate"] = True timepoints = nim_data.shape[1] numspatiallocs = nim_data.shape[0] LGR.info(f"cifti file has {timepoints} timepoints, {numspatiallocs} numspatiallocs") slicesize = numspatiallocs else: LGR.info("input file is NIFTI") nim, nim_data, nim_hdr, thedims, thesizes = tide_io.readfromnifti(fmrifilename) optiondict["isgrayordinate"] = False xsize, ysize, numslices, timepoints = tide_io.parseniftidims(thedims) numspatiallocs = int(xsize) * int(ysize) * int(numslices) xdim, ydim, slicethickness, tr = tide_io.parseniftisizes(thesizes) tide_util.logmem("after reading in fmri data") # correct some fields if necessary if fileiscifti: fmritr = 0.72 # this is wrong and is a hack until I can parse CIFTI XML else: if optiondict["textio"]: if optiondict["realtr"] <= 0.0: raise ValueError( "for text file data input, you must use the -t option to set the timestep" ) else: if nim_hdr.get_xyzt_units()[1] == "msec": fmritr = thesizes[4] / 1000.0 else: fmritr = thesizes[4] if optiondict["realtr"] > 0.0: fmritr = optiondict["realtr"] # check to see if we need to adjust the oversample factor if optiondict["oversampfactor"] < 0: optiondict["oversampfactor"] = int(np.max([np.ceil(fmritr / 0.5), 1])) LGR.info(f"oversample factor set to {optiondict['oversampfactor']}") oversamptr = fmritr / optiondict["oversampfactor"] LGR.verbose(f"fmri data: {timepoints} timepoints, tr = {fmritr}, oversamptr = {oversamptr}") LGR.info(f"{numspatiallocs} spatial locations, {timepoints} timepoints") TimingLGR.info("Finish reading fmrifile") # if the user has specified start and stop points, limit check, then use these numbers validstart, validend = tide_util.startendcheck( timepoints, optiondict["startpoint"], optiondict["endpoint"] ) if abs(optiondict["lagmin"]) > (validend - validstart + 1) * fmritr / 2.0: raise ValueError( f"magnitude of lagmin exceeds {(validend - validstart + 1) * fmritr / 2.0} - invalid" ) if abs(optiondict["lagmax"]) > (validend - validstart + 1) * fmritr / 2.0: raise ValueError( f"magnitude of lagmax exceeds {(validend - validstart + 1) * fmritr / 2.0} - invalid" ) # do spatial filtering if requested if optiondict["gausssigma"] < 0.0 and not optiondict["textio"]: # set gausssigma automatically optiondict["gausssigma"] = np.mean([xdim, ydim, slicethickness]) / 2.0 if optiondict["gausssigma"] > 0.0: LGR.info( f"applying gaussian spatial filter to timepoints {validstart} " f"to {validend} with sigma={optiondict['gausssigma']}" ) reportstep = 10 for i in range(validstart, validend + 1): if (i % reportstep == 0 or i == validend) and optiondict["showprogressbar"]: tide_util.progressbar( i - validstart + 1, validend - validstart + 1, label="Percent complete", ) nim_data[:, :, :, i] = tide_filt.ssmooth( xdim, ydim, slicethickness, optiondict["gausssigma"], nim_data[:, :, :, i], ) print() TimingLGR.info("End 3D smoothing") # reshape the data and trim to a time range, if specified. Check for special case of no trimming to save RAM fmri_data = nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1] validtimepoints = validend - validstart + 1 # detect zero mean data optiondict["dataiszeromean"] = checkforzeromean(fmri_data) if optiondict["dataiszeromean"]: LGR.warning( "WARNING: dataset is zero mean - forcing variance masking and no refine prenormalization. " "Consider specifying a global mean and correlation mask." ) optiondict["refineprenorm"] = "None" optiondict["globalmaskmethod"] = "variance" # read in the optional masks tide_util.logmem("before setting masks") internalglobalmeanincludemask = None internalglobalmeanexcludemask = None internalrefineincludemask = None internalrefineexcludemask = None if optiondict["globalmeanincludename"] is not None: LGR.info("constructing global mean include mask") theglobalmeanincludemask = readamask( optiondict["globalmeanincludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["globalmeanincludevals"], maskname="global mean include", ) internalglobalmeanincludemask = theglobalmeanincludemask.reshape(numspatiallocs) if tide_stats.getmasksize(internalglobalmeanincludemask) == 0: raise ValueError( "ERROR: there are no voxels in the global mean include mask - exiting" ) if optiondict["globalmeanexcludename"] is not None: LGR.info("constructing global mean exclude mask") theglobalmeanexcludemask = readamask( optiondict["globalmeanexcludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["globalmeanexcludevals"], maskname="global mean exclude", ) internalglobalmeanexcludemask = theglobalmeanexcludemask.reshape(numspatiallocs) if tide_stats.getmasksize(internalglobalmeanexcludemask) == numspatiallocs: raise ValueError( "ERROR: the global mean exclude mask does not leave any voxels - exiting" ) if (internalglobalmeanincludemask is not None) and (internalglobalmeanexcludemask is not None): if ( tide_stats.getmasksize( internalglobalmeanincludemask * (1 - internalglobalmeanexcludemask) ) == 0 ): raise ValueError( "ERROR: the global mean include and exclude masks not leave any voxels between them - exiting" ) if optiondict["refineincludename"] is not None: LGR.info("constructing refine include mask") therefineincludemask = readamask( optiondict["refineincludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["refineincludevals"], maskname="refine include", ) internalrefineincludemask = therefineincludemask.reshape(numspatiallocs) if tide_stats.getmasksize(internalrefineincludemask) == 0: raise ValueError("ERROR: there are no voxels in the refine include mask - exiting") if optiondict["refineexcludename"] is not None: LGR.info("constructing refine exclude mask") therefineexcludemask = readamask( optiondict["refineexcludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["refineexcludevals"], maskname="refine exclude", ) internalrefineexcludemask = therefineexcludemask.reshape(numspatiallocs) if tide_stats.getmasksize(internalrefineexcludemask) == numspatiallocs: raise ValueError("ERROR: the refine exclude mask does not leave any voxels - exiting") tide_util.logmem("after setting masks") # read or make a mask of where to calculate the correlations tide_util.logmem("before selecting valid voxels") threshval = tide_stats.getfracvals(fmri_data[:, :], [0.98])[0] / 25.0 LGR.info("constructing correlation mask") if optiondict["corrmaskincludename"] is not None: thecorrmask = readamask( optiondict["corrmaskincludename"], nim_hdr, xsize, istext=optiondict["textio"], valslist=optiondict["corrmaskincludevals"], maskname="correlation", ) corrmask = np.uint16(np.where(thecorrmask > 0, 1, 0).reshape(numspatiallocs)) else: # check to see if the data has been demeaned meanim = np.mean(fmri_data, axis=1) stdim = np.std(fmri_data, axis=1) if fileiscifti: corrmask = np.uint(nim_data[:, 0] * 0 + 1) else: if np.mean(stdim) < np.mean(meanim): LGR.info("generating correlation mask from mean image") corrmask = np.uint16(masking.compute_epi_mask(nim).dataobj.reshape(numspatiallocs)) else: LGR.info("generating correlation mask from std image") corrmask = np.uint16( tide_stats.makemask(stdim, threshpct=optiondict["corrmaskthreshpct"]) ) if tide_stats.getmasksize(corrmask) == 0: raise ValueError("ERROR: there are no voxels in the correlation mask - exiting") optiondict["corrmasksize"] = tide_stats.getmasksize(corrmask) if internalrefineincludemask is not None: if internalrefineexcludemask is not None: if ( tide_stats.getmasksize( corrmask * internalrefineincludemask * (1 - internalrefineexcludemask) ) == 0 ): raise ValueError( "ERROR: the refine include and exclude masks not leave any voxels in the corrmask - exiting" ) else: if tide_stats.getmasksize(corrmask * internalrefineincludemask) == 0: raise ValueError( "ERROR: the refine include mask does not leave any voxels in the corrmask - exiting" ) else: if internalrefineexcludemask is not None: if tide_stats.getmasksize(corrmask * (1 - internalrefineexcludemask)) == 0: raise ValueError( "ERROR: the refine exclude mask does not leave any voxels in the corrmask - exiting" ) if optiondict["nothresh"]: corrmask *= 0 corrmask += 1 threshval = -10000000.0 if optiondict["savecorrmask"] and not (fileiscifti or optiondict["textio"]): theheader = copy.deepcopy(nim_hdr) theheader["dim"][0] = 3 theheader["dim"][4] = 1 if optiondict["bidsoutput"]: savename = f"{outputname}_desc-processed_mask" else: savename = f"{outputname}_corrmask" tide_io.savetonifti(corrmask.reshape(xsize, ysize, numslices), theheader, savename) LGR.verbose(f"image threshval = {threshval}") validvoxels = np.where(corrmask > 0)[0] numvalidspatiallocs = np.shape(validvoxels)[0] LGR.info(f"validvoxels shape = {numvalidspatiallocs}") fmri_data_valid = fmri_data[validvoxels, :] + 0.0 LGR.info(f"original size = {np.shape(fmri_data)}, trimmed size = {np.shape(fmri_data_valid)}") if internalglobalmeanincludemask is not None: internalglobalmeanincludemask_valid = 1.0 * internalglobalmeanincludemask[validvoxels] del internalglobalmeanincludemask LGR.info( "internalglobalmeanincludemask_valid has size: " f"{internalglobalmeanincludemask_valid.size}" ) else: internalglobalmeanincludemask_valid = None if internalglobalmeanexcludemask is not None: internalglobalmeanexcludemask_valid = 1.0 * internalglobalmeanexcludemask[validvoxels] del internalglobalmeanexcludemask LGR.info( "internalglobalmeanexcludemask_valid has size: " f"{internalglobalmeanexcludemask_valid.size}" ) else: internalglobalmeanexcludemask_valid = None if internalrefineincludemask is not None: internalrefineincludemask_valid = 1.0 * internalrefineincludemask[validvoxels] del internalrefineincludemask LGR.info( "internalrefineincludemask_valid has size: " f"{internalrefineincludemask_valid.size}" ) else: internalrefineincludemask_valid = None if internalrefineexcludemask is not None: internalrefineexcludemask_valid = 1.0 * internalrefineexcludemask[validvoxels] del internalrefineexcludemask LGR.info( "internalrefineexcludemask_valid has size: " f"{internalrefineexcludemask_valid.size}" ) else: internalrefineexcludemask_valid = None tide_util.logmem("after selecting valid voxels") # move fmri_data_valid into shared memory if optiondict["sharedmem"]: LGR.info("moving fmri data to shared memory") TimingLGR.info("Start moving fmri_data to shared memory") numpy2shared_func = addmemprofiling( numpy2shared, optiondict["memprofile"], "before fmri data move" ) fmri_data_valid = numpy2shared_func(fmri_data_valid, rt_floatset) TimingLGR.info("End moving fmri_data to shared memory") # get rid of memory we aren't using tide_util.logmem("before purging full sized fmri data") meanvalue = np.mean( nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1], axis=1, ) del fmri_data del nim_data gc.collect() tide_util.logmem("after purging full sized fmri data") # filter out motion regressors here if optiondict["motionfilename"] is not None: LGR.info("regressing out motion") TimingLGR.info("Motion filtering start") (motionregressors, motionregressorlabels, fmri_data_valid,) = tide_glmpass.motionregress( optiondict["motionfilename"], fmri_data_valid, fmritr, motstart=validstart, motend=validend + 1, position=optiondict["mot_pos"], deriv=optiondict["mot_deriv"], derivdelayed=optiondict["mot_delayderiv"], ) TimingLGR.info( "Motion filtering end", { "message2": fmri_data_valid.shape[0], "message3": "voxels", }, ) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-orthogonalizedmotion_timeseries", motionregressors, 1.0 / fmritr, columns=motionregressorlabels, append=True, ) else: tide_io.writenpvecs(motionregressors, f"{outputname}_orthogonalizedmotion.txt") if optiondict["memprofile"]: memcheckpoint("...done") else: tide_util.logmem("after motion glm filter") if optiondict["savemotionfiltered"]: outfmriarray = np.zeros((numspatiallocs, validtimepoints), dtype=rt_floattype) outfmriarray[validvoxels, :] = fmri_data_valid[:, :] if optiondict["textio"]: tide_io.writenpvecs( outfmriarray.reshape((numspatiallocs, validtimepoints)), f"{outputname}_motionfiltered.txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-motionfiltered" else: savename = f"{outputname}_motionfiltered" tide_io.savetonifti( outfmriarray.reshape((xsize, ysize, numslices, validtimepoints)), nim_hdr, savename, ) # read in the timecourse to resample TimingLGR.info("Start of reference prep") if filename is None: LGR.info("no regressor file specified - will use the global mean regressor") optiondict["useglobalref"] = True else: optiondict["useglobalref"] = False # calculate the global mean whether we intend to use it or not meanfreq = 1.0 / fmritr meanperiod = 1.0 * fmritr meanstarttime = 0.0 meanvec, meanmask = getglobalsignal( fmri_data_valid, optiondict, includemask=internalglobalmeanincludemask_valid, excludemask=internalglobalmeanexcludemask_valid, pcacomponents=optiondict["globalpcacomponents"], ) # now set the regressor that we'll use if optiondict["useglobalref"]: LGR.info("using global mean as probe regressor") inputfreq = meanfreq inputperiod = meanperiod inputstarttime = meanstarttime inputvec = meanvec fullmeanmask = np.zeros(numspatiallocs, dtype=rt_floattype) fullmeanmask[validvoxels] = meanmask[:] if optiondict["bidsoutput"]: savename = f"{outputname}_desc-globalmean_mask" else: savename = f"{outputname}_meanmask" if fileiscifti: theheader = copy.deepcopy(nim_hdr) timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = 1 theheader["dim"][spaceindex] = numspatiallocs tide_io.savetocifti( fullmeanmask, cifti_hdr, theheader, savename, isseries=False, names=["meanmask"], ) elif optiondict["textio"]: tide_io.writenpvecs( fullmeanmask, savename + ".txt", ) else: theheader = copy.deepcopy(nim_hdr) theheader["dim"][0] = 3 theheader["dim"][4] = 1 tide_io.savetonifti( fullmeanmask.reshape((xsize, ysize, numslices)), theheader, savename ) optiondict["preprocskip"] = 0 else: LGR.info(f"using externally supplied probe regressor {filename}") ( fileinputfreq, filestarttime, dummy, inputvec, dummy, dummy, ) = tide_io.readvectorsfromtextfile(filename, onecol=True) inputfreq = optiondict["inputfreq"] inputstarttime = optiondict["inputstarttime"] if inputfreq is None: if fileinputfreq is not None: inputfreq = fileinputfreq else: inputfreq = 1.0 / fmritr LGR.warning(f"no regressor frequency specified - defaulting to {inputfreq} (1/tr)") if inputstarttime is None: if filestarttime is not None: inputstarttime = filestarttime else: LGR.warning("no regressor start time specified - defaulting to 0.0") inputstarttime = 0.0 inputperiod = 1.0 / inputfreq # inputvec = tide_io.readvec(filename) numreference = len(inputvec) optiondict["inputfreq"] = inputfreq optiondict["inputstarttime"] = inputstarttime LGR.info( "Regressor start time, end time, and step: {:.3f}, {:.3f}, {:.3f}".format( -inputstarttime, inputstarttime + numreference * inputperiod, inputperiod ) ) LGR.verbose("Input vector") LGR.verbose(f"length: {len(inputvec)}") LGR.verbose(f"input freq: {inputfreq}") LGR.verbose(f"input start time: {inputstarttime:.3f}") if not optiondict["useglobalref"]: globalcorrx, globalcorry, dummy, dummy = tide_corr.arbcorr( meanvec, meanfreq, inputvec, inputfreq, start2=inputstarttime ) synctime = globalcorrx[np.argmax(globalcorry)] if optiondict["autosync"]: optiondict["offsettime"] = -synctime optiondict["offsettime_total"] = synctime else: synctime = 0.0 LGR.info(f"synctime is {synctime}") reference_x = np.arange(0.0, numreference) * inputperiod - ( inputstarttime - optiondict["offsettime"] ) LGR.info(f"total probe regressor offset is {inputstarttime + optiondict['offsettime']}") # Print out initial information LGR.verbose(f"there are {numreference} points in the original regressor") LGR.verbose(f"the timepoint spacing is {1.0 / inputfreq}") LGR.verbose(f"the input timecourse start time is {inputstarttime}") # generate the time axes fmrifreq = 1.0 / fmritr optiondict["fmrifreq"] = fmrifreq skiptime = fmritr * (optiondict["preprocskip"]) LGR.info(f"first fMRI point is at {skiptime} seconds relative to time origin") initial_fmri_x = np.arange(0.0, validtimepoints) * fmritr + skiptime os_fmri_x = ( np.arange( 0.0, validtimepoints * optiondict["oversampfactor"] - (optiondict["oversampfactor"] - 1), ) * oversamptr + skiptime ) LGR.verbose(f"os_fmri_x dim-0 shape: {np.shape(os_fmri_x)[0]}") LGR.verbose(f"initial_fmri_x dim-0 shape: {np.shape(initial_fmri_x)[0]}") # generate the comparison regressor from the input timecourse # correct the output time points # check for extrapolation if os_fmri_x[0] < reference_x[0]: LGR.warning( f"WARNING: extrapolating {os_fmri_x[0] - reference_x[0]} " "seconds of data at beginning of timecourse" ) if os_fmri_x[-1] > reference_x[-1]: LGR.warning( f"WARNING: extrapolating {os_fmri_x[-1] - reference_x[-1]} " "seconds of data at end of timecourse" ) # invert the regressor if necessary if optiondict["invertregressor"]: invertfac = -1.0 else: invertfac = 1.0 # detrend the regressor if necessary if optiondict["detrendorder"] > 0: reference_y = invertfac * tide_fit.detrend( inputvec[0:numreference], order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) else: reference_y = invertfac * (inputvec[0:numreference] - np.mean(inputvec[0:numreference])) # write out the reference regressor prior to filtering if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-initialmovingregressor_timeseries", reference_y, inputfreq, starttime=inputstarttime, columns=["prefilt"], append=False, ) else: tide_io.writenpvecs(reference_y, f"{outputname}_reference_origres_prefilt.txt") # band limit the regressor if that is needed LGR.info(f"filtering to {theprefilter.gettype()} band") ( optiondict["lowerstop"], optiondict["lowerpass"], optiondict["upperpass"], optiondict["upperstop"], ) = theprefilter.getfreqs() reference_y_classfilter = theprefilter.apply(inputfreq, reference_y) if optiondict["negativegradregressor"]: reference_y = -np.gradient(reference_y_classfilter) else: reference_y = reference_y_classfilter # write out the reference regressor used if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-initialmovingregressor_timeseries", tide_math.stdnormalize(reference_y), inputfreq, starttime=inputstarttime, columns=["postfilt"], append=True, ) else: tide_io.writenpvecs( tide_math.stdnormalize(reference_y), f"{outputname}_reference_origres.txt" ) # filter the input data for antialiasing if optiondict["antialias"]: LGR.debug("applying trapezoidal antialiasing filter") reference_y_filt = tide_filt.dolptrapfftfilt( inputfreq, 0.25 * fmrifreq, 0.5 * fmrifreq, reference_y, padlen=int(inputfreq * optiondict["padseconds"]), debug=optiondict["debug"], ) reference_y = rt_floatset(reference_y_filt.real) warnings.filterwarnings("ignore", "Casting*") if optiondict["fakerun"]: return # generate the resampled reference regressors oversampfreq = optiondict["oversampfactor"] / fmritr if optiondict["detrendorder"] > 0: resampnonosref_y = tide_fit.detrend( tide_resample.doresample( reference_x, reference_y, initial_fmri_x, padlen=int(inputfreq * optiondict["padseconds"]), method=optiondict["interptype"], debug=optiondict["debug"], ), order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) resampref_y = tide_fit.detrend( tide_resample.doresample( reference_x, reference_y, os_fmri_x, padlen=int(oversampfreq * optiondict["padseconds"]), method=optiondict["interptype"], debug=optiondict["debug"], ), order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) else: resampnonosref_y = tide_resample.doresample( reference_x, reference_y, initial_fmri_x, padlen=int(inputfreq * optiondict["padseconds"]), method=optiondict["interptype"], ) resampref_y = tide_resample.doresample( reference_x, reference_y, os_fmri_x, padlen=int(oversampfreq * optiondict["padseconds"]), method=optiondict["interptype"], ) LGR.info( f"{len(os_fmri_x)} " f"{len(resampref_y)} " f"{len(initial_fmri_x)} " f"{len(resampnonosref_y)}" ) previousnormoutputdata = resampnonosref_y + 0.0 # prepare the temporal mask if optiondict["tmaskname"] is not None: tmask_y = maketmask(optiondict["tmaskname"], reference_x, rt_floatset(reference_y)) tmaskos_y = tide_resample.doresample( reference_x, tmask_y, os_fmri_x, method=optiondict["interptype"] ) if optiondict["bidsoutput"]: tide_io.writenpvecs(tmask_y, f"{outputname}_temporalmask.txt") else: tide_io.writenpvecs(tmask_y, f"{outputname}_temporalmask.txt") resampnonosref_y *= tmask_y thefit, R = tide_fit.mlregress(tmask_y, resampnonosref_y) resampnonosref_y -= thefit[0, 1] * tmask_y resampref_y *= tmaskos_y thefit, R = tide_fit.mlregress(tmaskos_y, resampref_y) resampref_y -= thefit[0, 1] * tmaskos_y nonosrefname = "_reference_fmrires_pass1.txt" osrefname = "_reference_resampres_pass1.txt" ( optiondict["kurtosis_reference_pass1"], optiondict["kurtosisz_reference_pass1"], optiondict["kurtosisp_reference_pass1"], ) = tide_stats.kurtosisstats(resampref_y) if optiondict["bidsoutput"]: if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-movingregressor_timeseries", tide_math.stdnormalize(resampnonosref_y), 1.0 / fmritr, columns=["pass1"], append=False, ) tide_io.writebidstsv( f"{outputname}_desc-oversampledmovingregressor_timeseries", tide_math.stdnormalize(resampref_y), oversampfreq, columns=["pass1"], append=False, ) else: tide_io.writenpvecs(tide_math.stdnormalize(resampnonosref_y), outputname + nonosrefname) tide_io.writenpvecs(tide_math.stdnormalize(resampref_y), outputname + osrefname) TimingLGR.info("End of reference prep") corrtr = oversamptr LGR.verbose(f"corrtr={corrtr}") # initialize the Correlator theCorrelator = tide_classes.Correlator( Fs=oversampfreq, ncprefilter=theprefilter, negativegradient=optiondict["negativegradient"], detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], corrweighting=optiondict["corrweighting"], corrpadding=optiondict["zeropadding"], ) theCorrelator.setreftc( np.zeros((optiondict["oversampfactor"] * validtimepoints), dtype=np.float64) ) corrorigin = theCorrelator.similarityfuncorigin dummy, corrscale, dummy = theCorrelator.getfunction(trim=False) lagmininpts = int((-optiondict["lagmin"] / corrtr) - 0.5) lagmaxinpts = int((optiondict["lagmax"] / corrtr) + 0.5) if (lagmaxinpts + lagmininpts) < 3: raise ValueError( "correlation search range is too narrow - decrease lagmin, increase lagmax, or increase oversample factor" ) theCorrelator.setlimits(lagmininpts, lagmaxinpts) dummy, trimmedcorrscale, dummy = theCorrelator.getfunction() # initialize the MutualInformationator theMutualInformationator = tide_classes.MutualInformationator( Fs=oversampfreq, smoothingtime=optiondict["smoothingtime"], ncprefilter=theprefilter, negativegradient=optiondict["negativegradient"], detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], madnorm=False, lagmininpts=lagmininpts, lagmaxinpts=lagmaxinpts, debug=optiondict["debug"], ) theMutualInformationator.setreftc( np.zeros((optiondict["oversampfactor"] * validtimepoints), dtype=np.float64) ) nummilags = theMutualInformationator.similarityfunclen theMutualInformationator.setlimits(lagmininpts, lagmaxinpts) dummy, trimmedmiscale, dummy = theMutualInformationator.getfunction() LGR.verbose(f"trimmedcorrscale length: {len(trimmedcorrscale)}") LGR.verbose(f"trimmedmiscale length: {len(trimmedmiscale)} {nummilags}") LGR.verbose(f"corrorigin at point {corrorigin} {corrscale[corrorigin]}") LGR.verbose( f"corr range from {corrorigin - lagmininpts} ({corrscale[corrorigin - lagmininpts]}) " f"to {corrorigin + lagmaxinpts} ({corrscale[corrorigin + lagmaxinpts]})" ) if optiondict["savecorrtimes"]: if optiondict["bidsoutput"]: tide_io.writenpvecs(trimmedcorrscale, f"{outputname}_corrtimes.txt") tide_io.writenpvecs(trimmedmiscale, f"{outputname}_mitimes.txt") else: tide_io.writenpvecs(trimmedcorrscale, f"{outputname}_corrtimes.txt") tide_io.writenpvecs(trimmedmiscale, f"{outputname}_mitimes.txt") # allocate all of the data arrays tide_util.logmem("before main array allocation") if optiondict["textio"]: nativespaceshape = xsize else: if fileiscifti: nativespaceshape = (1, 1, 1, 1, numspatiallocs) else: nativespaceshape = (xsize, ysize, numslices) internalspaceshape = numspatiallocs internalvalidspaceshape = numvalidspatiallocs meanval = np.zeros(internalvalidspaceshape, dtype=rt_floattype) lagtimes = np.zeros(internalvalidspaceshape, dtype=rt_floattype) lagstrengths = np.zeros(internalvalidspaceshape, dtype=rt_floattype) lagsigma = np.zeros(internalvalidspaceshape, dtype=rt_floattype) fitmask = np.zeros(internalvalidspaceshape, dtype="uint16") failreason = np.zeros(internalvalidspaceshape, dtype="uint32") R2 = np.zeros(internalvalidspaceshape, dtype=rt_floattype) outmaparray = np.zeros(internalspaceshape, dtype=rt_floattype) tide_util.logmem("after main array allocation") corroutlen = np.shape(trimmedcorrscale)[0] if optiondict["textio"]: nativecorrshape = (xsize, corroutlen) else: if fileiscifti: nativecorrshape = (1, 1, 1, corroutlen, numspatiallocs) else: nativecorrshape = (xsize, ysize, numslices, corroutlen) internalcorrshape = (numspatiallocs, corroutlen) internalvalidcorrshape = (numvalidspatiallocs, corroutlen) LGR.info( f"allocating memory for correlation arrays {internalcorrshape} {internalvalidcorrshape}" ) if optiondict["sharedmem"]: corrout, dummy, dummy = allocshared(internalvalidcorrshape, rt_floatset) gaussout, dummy, dummy = allocshared(internalvalidcorrshape, rt_floatset) windowout, dummy, dummy = allocshared(internalvalidcorrshape, rt_floatset) outcorrarray, dummy, dummy = allocshared(internalcorrshape, rt_floatset) else: corrout = np.zeros(internalvalidcorrshape, dtype=rt_floattype) gaussout = np.zeros(internalvalidcorrshape, dtype=rt_floattype) windowout = np.zeros(internalvalidcorrshape, dtype=rt_floattype) outcorrarray = np.zeros(internalcorrshape, dtype=rt_floattype) tide_util.logmem("after correlation array allocation") if optiondict["textio"]: nativefmrishape = (xsize, np.shape(initial_fmri_x)[0]) else: if fileiscifti: nativefmrishape = (1, 1, 1, np.shape(initial_fmri_x)[0], numspatiallocs) else: nativefmrishape = (xsize, ysize, numslices, np.shape(initial_fmri_x)[0]) internalfmrishape = (numspatiallocs, np.shape(initial_fmri_x)[0]) internalvalidfmrishape = (numvalidspatiallocs, np.shape(initial_fmri_x)[0]) if optiondict["sharedmem"]: lagtc, dummy, dummy = allocshared(internalvalidfmrishape, rt_floatset) else: lagtc = np.zeros(internalvalidfmrishape, dtype=rt_floattype) tide_util.logmem("after lagtc array allocation") if optiondict["passes"] > 1 or optiondict["convergencethresh"] is not None: if optiondict["sharedmem"]: shiftedtcs, dummy, dummy = allocshared(internalvalidfmrishape, rt_floatset) weights, dummy, dummy = allocshared(internalvalidfmrishape, rt_floatset) else: shiftedtcs = np.zeros(internalvalidfmrishape, dtype=rt_floattype) weights = np.zeros(internalvalidfmrishape, dtype=rt_floattype) tide_util.logmem("after refinement array allocation") if optiondict["sharedmem"]: outfmriarray, dummy, dummy = allocshared(internalfmrishape, rt_floatset) else: outfmriarray = np.zeros(internalfmrishape, dtype=rt_floattype) # prepare for fast resampling padtime = ( max((-optiondict["lagmin"], optiondict["lagmax"])) + 30.0 + np.abs(optiondict["offsettime"]) ) LGR.info(f"setting up fast resampling with padtime = {padtime}") numpadtrs = int(padtime // fmritr) padtime = fmritr * numpadtrs genlagtc = tide_resample.FastResampler(reference_x, reference_y, padtime=padtime) # cycle over all voxels refine = True LGR.verbose(f"refine is set to {refine}") optiondict["edgebufferfrac"] = max( [optiondict["edgebufferfrac"], 2.0 / np.shape(corrscale)[0]] ) LGR.verbose(f"edgebufferfrac set to {optiondict['edgebufferfrac']}") # intitialize the correlation fitter thefitter = tide_classes.SimilarityFunctionFitter( lagmod=optiondict["lagmod"], lthreshval=optiondict["lthreshval"], uthreshval=optiondict["uthreshval"], bipolar=optiondict["bipolar"], lagmin=optiondict["lagmin"], lagmax=optiondict["lagmax"], absmaxsigma=optiondict["absmaxsigma"], absminsigma=optiondict["absminsigma"], debug=optiondict["debug"], peakfittype=optiondict["peakfittype"], searchfrac=optiondict["searchfrac"], enforcethresh=optiondict["enforcethresh"], hardlimit=optiondict["hardlimit"], ) # Preprocessing - echo cancellation if optiondict["echocancel"]: LGR.info("\n\nEcho cancellation") TimingLGR.info("Echo cancellation start") calcsimilaritypass_func = addmemprofiling( tide_calcsimfunc.correlationpass, optiondict["memprofile"], "before correlationpass", ) referencetc = tide_math.corrnormalize( resampref_y, detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], ) (voxelsprocessed_echo, theglobalmaxlist, trimmedcorrscale,) = calcsimilaritypass_func( fmri_data_valid[:, :], referencetc, theCorrelator, initial_fmri_x, os_fmri_x, lagmininpts, lagmaxinpts, corrout, meanval, nprocs=optiondict["nprocs_calcsimilarity"], alwaysmultiproc=optiondict["alwaysmultiproc"], oversampfactor=optiondict["oversampfactor"], interptype=optiondict["interptype"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) for i in range(len(theglobalmaxlist)): theglobalmaxlist[i] = corrscale[theglobalmaxlist[i]] if optiondict["bidsoutput"]: namesuffix = "_desc-globallag_hist" else: namesuffix = "_globallaghist_echocancel" tide_stats.makeandsavehistogram( np.asarray(theglobalmaxlist), len(corrscale), 0, outputname + namesuffix, displaytitle="lagtime histogram", therange=(corrscale[0], corrscale[-1]), refine=False, dictvarname="globallaghist_preechocancel", saveasbids=optiondict["bidsoutput"], append=False, thedict=optiondict, ) # Now find and regress out the echo echooffset, echoratio = tide_stats.echoloc(np.asarray(theglobalmaxlist), len(corrscale)) LGR.info(f"Echooffset, echoratio: {echooffset} {echoratio}") echoremovedtc, echofit, echoR = echocancel( resampref_y, echooffset, oversamptr, outputname, numpadtrs ) optiondict["echooffset"] = echooffset optiondict["echoratio"] = echoratio optiondict["echofit"] = [echofit[0, 0], echofit[0, 1]] optiondict["echofitR"] = echoR resampref_y = echoremovedtc TimingLGR.info( "Echo cancellation calculation end", { "message2": voxelsprocessed_echo, "message3": "voxels", }, ) # --------------------- Main pass loop --------------------- # loop over all passes stoprefining = False refinestopreason = "passesreached" if optiondict["convergencethresh"] is None: numpasses = optiondict["passes"] else: numpasses = np.max([optiondict["passes"], optiondict["maxpasses"]]) for thepass in range(1, numpasses + 1): if stoprefining: break # initialize the pass if optiondict["passes"] > 1: LGR.info("\n\n*********************") LGR.info(f"Pass number {thepass}") referencetc = tide_math.corrnormalize( resampref_y, detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], ) # Step -1 - check the regressor for periodic components in the passband dolagmod = True doreferencenotch = True if optiondict["respdelete"]: resptracker = tide_classes.FrequencyTracker(nperseg=64) thetimes, thefreqs = resptracker.track(resampref_y, 1.0 / oversamptr) if optiondict["bidsoutput"]: tide_io.writevec(thefreqs, f"{outputname}_peakfreaks_pass{thepass}.txt") else: tide_io.writevec(thefreqs, f"{outputname}_peakfreaks_pass{thepass}.txt") resampref_y = resptracker.clean(resampref_y, 1.0 / oversamptr, thetimes, thefreqs) if optiondict["bidsoutput"]: tide_io.writevec(resampref_y, f"{outputname}_respfilt_pass{thepass}.txt") else: tide_io.writevec(resampref_y, f"{outputname}_respfilt_pass{thepass}.txt") referencetc = tide_math.corrnormalize( resampref_y, detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], ) if optiondict["check_autocorrelation"]: LGR.info("checking reference regressor autocorrelation properties") optiondict["lagmod"] = 1000.0 lagindpad = corrorigin - 2 * np.max((lagmininpts, lagmaxinpts)) acmininpts = lagmininpts + lagindpad acmaxinpts = lagmaxinpts + lagindpad theCorrelator.setreftc(referencetc) theCorrelator.setlimits(acmininpts, acmaxinpts) thexcorr, accheckcorrscale, dummy = theCorrelator.run(resampref_y) thefitter.setcorrtimeaxis(accheckcorrscale) ( maxindex, maxlag, maxval, acwidth, maskval, peakstart, peakend, thisfailreason, ) = tide_simfuncfit.onesimfuncfit( thexcorr, thefitter, despeckle_thresh=optiondict["despeckle_thresh"], lthreshval=optiondict["lthreshval"], fixdelay=optiondict["fixdelay"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) outputarray = np.asarray([accheckcorrscale, thexcorr]) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-autocorr_timeseries", thexcorr, 1.0 / (accheckcorrscale[1] - accheckcorrscale[0]), starttime=accheckcorrscale[0], columns=[f"pass{thepass}"], append=(thepass > 1), ) else: tide_io.writenpvecs( outputarray, f"{outputname}_referenceautocorr_pass" + str(thepass) + ".txt", ) thelagthresh = np.max((abs(optiondict["lagmin"]), abs(optiondict["lagmax"]))) theampthresh = 0.1 LGR.info( f"searching for sidelobes with amplitude > {theampthresh} " f"with abs(lag) < {thelagthresh} s" ) sidelobetime, sidelobeamp = tide_corr.check_autocorrelation( accheckcorrscale, thexcorr, acampthresh=theampthresh, aclagthresh=thelagthresh, detrendorder=optiondict["detrendorder"], ) optiondict["acwidth"] = acwidth + 0.0 optiondict["absmaxsigma"] = acwidth * 10.0 passsuffix = "_pass" + str(thepass) if sidelobetime is not None: optiondict["acsidelobelag" + passsuffix] = sidelobetime optiondict["despeckle_thresh"] = np.max( [optiondict["despeckle_thresh"], sidelobetime / 2.0] ) optiondict["acsidelobeamp" + passsuffix] = sidelobeamp LGR.warning( f"\n\nWARNING: check_autocorrelation found bad sidelobe at {sidelobetime} " f"seconds ({1.0 / sidelobetime} Hz)..." ) if optiondict["bidsoutput"]: tide_io.writenpvecs( np.array([sidelobetime]), f"{outputname}_autocorr_sidelobetime" + passsuffix + ".txt", ) else: tide_io.writenpvecs( np.array([sidelobetime]), f"{outputname}_autocorr_sidelobetime" + passsuffix + ".txt", ) if optiondict["fix_autocorrelation"]: LGR.info("Removing sidelobe") if dolagmod: LGR.info("subjecting lag times to modulus") optiondict["lagmod"] = sidelobetime / 2.0 if doreferencenotch: LGR.info("removing spectral component at sidelobe frequency") acstopfreq = 1.0 / sidelobetime acfixfilter = tide_filt.NoncausalFilter( transferfunc=optiondict["transferfunc"], debug=optiondict["debug"], ) acfixfilter.settype("arb_stop") acfixfilter.setfreqs( acstopfreq * 0.9, acstopfreq * 0.95, acstopfreq * 1.05, acstopfreq * 1.1, ) cleaned_resampref_y = tide_math.corrnormalize( acfixfilter.apply(1.0 / oversamptr, resampref_y), windowfunc="None", detrendorder=optiondict["detrendorder"], ) cleaned_referencetc = tide_math.corrnormalize( cleaned_resampref_y, detrendorder=optiondict["detrendorder"], windowfunc=optiondict["windowfunc"], ) cleaned_nonosreferencetc = tide_math.stdnormalize( acfixfilter.apply(fmrifreq, resampnonosref_y) ) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-cleanedreferencefmrires_info", cleaned_nonosreferencetc, fmrifreq, columns=[f"pass{thepass}"], append=(thepass > 1), ) tide_io.writebidstsv( f"{outputname}_desc-cleanedreference_info", cleaned_referencetc, 1.0 / oversamptr, columns=[f"pass{thepass}"], append=(thepass > 1), ) tide_io.writebidstsv( f"{outputname}_desc-cleanedresamprefy_info", cleaned_resampref_y, 1.0 / oversamptr, columns=[f"pass{thepass}"], append=(thepass > 1), ) else: tide_io.writenpvecs( cleaned_nonosreferencetc, f"{outputname}_cleanedreference_fmrires_pass{thepass}.txt", ) tide_io.writenpvecs( cleaned_referencetc, f"{outputname}_cleanedreference_pass{thepass}.txt", ) tide_io.writenpvecs( cleaned_resampref_y, f"{outputname}_cleanedresampref_y_pass{thepass}.txt", ) else: cleaned_resampref_y = 1.0 * tide_math.corrnormalize( resampref_y, windowfunc="None", detrendorder=optiondict["detrendorder"], ) cleaned_referencetc = 1.0 * referencetc cleaned_nonosreferencetc = 1.0 * resampnonosref_y else: LGR.info("no sidelobes found in range") cleaned_resampref_y = 1.0 * tide_math.corrnormalize( resampref_y, windowfunc="None", detrendorder=optiondict["detrendorder"], ) cleaned_referencetc = 1.0 * referencetc cleaned_nonosreferencetc = 1.0 * resampnonosref_y else: cleaned_resampref_y = 1.0 * tide_math.corrnormalize( resampref_y, windowfunc="None", detrendorder=optiondict["detrendorder"] ) cleaned_referencetc = 1.0 * referencetc cleaned_nonosreferencetc = 1.0 * resampnonosref_y # Step 0 - estimate significance if optiondict["numestreps"] > 0: TimingLGR.info(f"Significance estimation start, pass {thepass}") LGR.info(f"\n\nSignificance estimation, pass {thepass}") LGR.verbose( "calling getNullDistributionData with args: " f"{oversampfreq} {fmritr} {corrorigin} {lagmininpts} {lagmaxinpts}" ) getNullDistributionData_func = addmemprofiling( tide_nullsimfunc.getNullDistributionDatax, optiondict["memprofile"], "before getnulldistristributiondata", ) if optiondict["checkpoint"]: if optiondict["bidsoutput"]: tide_io.writenpvecs( cleaned_referencetc, f"{outputname}_cleanedreference_pass" + str(thepass) + ".txt", ) tide_io.writenpvecs( cleaned_resampref_y, f"{outputname}_cleanedresampref_y_pass" + str(thepass) + ".txt", ) else: tide_io.writenpvecs( cleaned_referencetc, f"{outputname}_cleanedreference_pass" + str(thepass) + ".txt", ) tide_io.writenpvecs( cleaned_resampref_y, f"{outputname}_cleanedresampref_y_pass" + str(thepass) + ".txt", ) tide_io.writedicttojson( optiondict, f"{outputname}_options_pregetnull_pass" + str(thepass) + ".json", ) theCorrelator.setlimits(lagmininpts, lagmaxinpts) theCorrelator.setreftc(cleaned_resampref_y) theMutualInformationator.setlimits(lagmininpts, lagmaxinpts) theMutualInformationator.setreftc(cleaned_resampref_y) dummy, trimmedcorrscale, dummy = theCorrelator.getfunction() thefitter.setcorrtimeaxis(trimmedcorrscale) corrdistdata = getNullDistributionData_func( cleaned_resampref_y, oversampfreq, theCorrelator, thefitter, numestreps=optiondict["numestreps"], nprocs=optiondict["nprocs_getNullDist"], alwaysmultiproc=optiondict["alwaysmultiproc"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], permutationmethod=optiondict["permutationmethod"], fixdelay=optiondict["fixdelay"], fixeddelayvalue=optiondict["fixeddelayvalue"], rt_floatset=np.float64, rt_floattype="float64", ) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-corrdistdata_info", corrdistdata, 1.0, columns=["pass" + str(thepass)], append=(thepass > 1), ) else: tide_io.writenpvecs( corrdistdata, f"{outputname}_corrdistdata_pass" + str(thepass) + ".txt", ) # calculate percentiles for the crosscorrelation from the distribution data thepercentiles = np.array([0.95, 0.99, 0.995, 0.999]) thepvalnames = [] for thispercentile in thepercentiles: thepvalnames.append("{:.3f}".format(1.0 - thispercentile).replace(".", "p")) pcts, pcts_fit, sigfit = tide_stats.sigFromDistributionData( corrdistdata, optiondict["sighistlen"], thepercentiles, twotail=optiondict["bipolar"], nozero=optiondict["nohistzero"], dosighistfit=optiondict["dosighistfit"], ) for i in range(len(thepvalnames)): optiondict[ "p_lt_" + thepvalnames[i] + "_pass" + str(thepass) + "_thresh.txt" ] = pcts[i] if optiondict["dosighistfit"]: optiondict[ "p_lt_" + thepvalnames[i] + "_pass" + str(thepass) + "_fitthresh" ] = pcts_fit[i] optiondict["sigfit"] = sigfit if optiondict["ampthreshfromsig"]: if pcts is not None: LGR.info( f"setting ampthresh to the p < {1.0 - thepercentiles[0]:.3f} threshhold" ) optiondict["ampthresh"] = pcts[0] tide_stats.printthresholds( pcts, thepercentiles, "Crosscorrelation significance thresholds from data:", ) if optiondict["dosighistfit"]: tide_stats.printthresholds( pcts_fit, thepercentiles, "Crosscorrelation significance thresholds from fit:", ) if optiondict["bidsoutput"]: namesuffix = "_desc-nullsimfunc_hist" else: namesuffix = "_nullsimfunchist_pass" + str(thepass) tide_stats.makeandsavehistogram( corrdistdata, optiondict["sighistlen"], 0, outputname + namesuffix, displaytitle="Null correlation histogram, pass" + str(thepass), refine=False, dictvarname="nullsimfunchist_pass" + str(thepass), saveasbids=optiondict["bidsoutput"], therange=(0.0, 1.0), append=(thepass > 1), thedict=optiondict, ) else: LGR.info("leaving ampthresh unchanged") del corrdistdata TimingLGR.info( f"Significance estimation end, pass {thepass}", { "message2": optiondict["numestreps"], "message3": "repetitions", }, ) # Step 1 - Correlation step if optiondict["similaritymetric"] == "mutualinfo": similaritytype = "Mutual information" elif optiondict["similaritymetric"] == "correlation": similaritytype = "Correlation" else: similaritytype = "MI enhanced correlation" LGR.info(f"\n\n{similaritytype} calculation, pass {thepass}") TimingLGR.info(f"{similaritytype} calculation start, pass {thepass}") calcsimilaritypass_func = addmemprofiling( tide_calcsimfunc.correlationpass, optiondict["memprofile"], "before correlationpass", ) if optiondict["similaritymetric"] == "mutualinfo": theMutualInformationator.setlimits(lagmininpts, lagmaxinpts) (voxelsprocessed_cp, theglobalmaxlist, trimmedcorrscale,) = calcsimilaritypass_func( fmri_data_valid[:, :], cleaned_referencetc, theMutualInformationator, initial_fmri_x, os_fmri_x, lagmininpts, lagmaxinpts, corrout, meanval, nprocs=optiondict["nprocs_calcsimilarity"], alwaysmultiproc=optiondict["alwaysmultiproc"], oversampfactor=optiondict["oversampfactor"], interptype=optiondict["interptype"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) else: (voxelsprocessed_cp, theglobalmaxlist, trimmedcorrscale,) = calcsimilaritypass_func( fmri_data_valid[:, :], cleaned_referencetc, theCorrelator, initial_fmri_x, os_fmri_x, lagmininpts, lagmaxinpts, corrout, meanval, nprocs=optiondict["nprocs_calcsimilarity"], alwaysmultiproc=optiondict["alwaysmultiproc"], oversampfactor=optiondict["oversampfactor"], interptype=optiondict["interptype"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) for i in range(len(theglobalmaxlist)): theglobalmaxlist[i] = corrscale[theglobalmaxlist[i]] if optiondict["bidsoutput"]: namesuffix = "_desc-globallag_hist" else: namesuffix = "_globallaghist_pass" + str(thepass) tide_stats.makeandsavehistogram( np.asarray(theglobalmaxlist), len(corrscale), 0, outputname + namesuffix, displaytitle="lagtime histogram", therange=(corrscale[0], corrscale[-1]), refine=False, dictvarname="globallaghist_pass" + str(thepass), saveasbids=optiondict["bidsoutput"], append=(optiondict["echocancel"] or (thepass > 1)), thedict=optiondict, ) if optiondict["checkpoint"]: outcorrarray[:, :] = 0.0 outcorrarray[validvoxels, :] = corrout[:, :] if optiondict["textio"]: tide_io.writenpvecs( outcorrarray.reshape(nativecorrshape), f"{outputname}_corrout_prefit_pass" + str(thepass) + ".txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-corroutprefit_pass-" + str(thepass) else: savename = f"{outputname}_corrout_prefit_pass" + str(thepass) tide_io.savetonifti(outcorrarray.reshape(nativecorrshape), theheader, savename) TimingLGR.info( f"{similaritytype} calculation end, pass {thepass}", { "message2": voxelsprocessed_cp, "message3": "voxels", }, ) # Step 1b. Do a peak prefit if optiondict["similaritymetric"] == "hybrid": LGR.info(f"\n\nPeak prefit calculation, pass {thepass}") TimingLGR.info(f"Peak prefit calculation start, pass {thepass}") peakevalpass_func = addmemprofiling( tide_peakeval.peakevalpass, optiondict["memprofile"], "before peakevalpass", ) voxelsprocessed_pe, thepeakdict = peakevalpass_func( fmri_data_valid[:, :], cleaned_referencetc, initial_fmri_x, os_fmri_x, theMutualInformationator, trimmedcorrscale, corrout, nprocs=optiondict["nprocs_peakeval"], alwaysmultiproc=optiondict["alwaysmultiproc"], bipolar=optiondict["bipolar"], oversampfactor=optiondict["oversampfactor"], interptype=optiondict["interptype"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) TimingLGR.info( f"Peak prefit end, pass {thepass}", { "message2": voxelsprocessed_pe, "message3": "voxels", }, ) mipeaks = lagtimes * 0.0 for i in range(numvalidspatiallocs): if len(thepeakdict[str(i)]) > 0: mipeaks[i] = thepeakdict[str(i)][0][0] else: thepeakdict = None # Step 2 - similarity function fitting and time lag estimation LGR.info(f"\n\nTime lag estimation pass {thepass}") TimingLGR.info(f"Time lag estimation start, pass {thepass}") fitcorr_func = addmemprofiling( tide_simfuncfit.fitcorr, optiondict["memprofile"], "before fitcorr" ) thefitter.setfunctype(optiondict["similaritymetric"]) thefitter.setcorrtimeaxis(trimmedcorrscale) # use initial lags if this is a hybrid fit if optiondict["similaritymetric"] == "hybrid" and thepeakdict is not None: initlags = mipeaks else: initlags = None voxelsprocessed_fc = fitcorr_func( genlagtc, initial_fmri_x, lagtc, trimmedcorrscale, thefitter, corrout, fitmask, failreason, lagtimes, lagstrengths, lagsigma, gaussout, windowout, R2, peakdict=thepeakdict, nprocs=optiondict["nprocs_fitcorr"], alwaysmultiproc=optiondict["alwaysmultiproc"], fixdelay=optiondict["fixdelay"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], despeckle_thresh=optiondict["despeckle_thresh"], initiallags=initlags, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) TimingLGR.info( f"Time lag estimation end, pass {thepass}", { "message2": voxelsprocessed_fc, "message3": "voxels", }, ) # Step 2b - Correlation time despeckle if optiondict["despeckle_passes"] > 0: LGR.info(f"\n\nCorrelation despeckling pass {thepass}") LGR.info(f"\tUsing despeckle_thresh = {optiondict['despeckle_thresh']:.3f}") TimingLGR.info(f"Correlation despeckle start, pass {thepass}") # find lags that are very different from their neighbors, and refit starting at the median lag for the point voxelsprocessed_fc_ds = 0 despecklingdone = False for despecklepass in range(optiondict["despeckle_passes"]): LGR.info(f"\n\nCorrelation despeckling subpass {despecklepass + 1}") outmaparray *= 0.0 outmaparray[validvoxels] = eval("lagtimes")[:] medianlags = ndimage.median_filter( outmaparray.reshape(nativespaceshape), 3 ).reshape(numspatiallocs) initlags = np.where( np.abs(outmaparray - medianlags) > optiondict["despeckle_thresh"], medianlags, -1000000.0, )[validvoxels] if len(initlags) > 0: if len(np.where(initlags != -1000000.0)[0]) > 0: voxelsprocessed_thispass = fitcorr_func( genlagtc, initial_fmri_x, lagtc, trimmedcorrscale, thefitter, corrout, fitmask, failreason, lagtimes, lagstrengths, lagsigma, gaussout, windowout, R2, peakdict=thepeakdict, nprocs=optiondict["nprocs_fitcorr"], alwaysmultiproc=optiondict["alwaysmultiproc"], fixdelay=optiondict["fixdelay"], showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], despeckle_thresh=optiondict["despeckle_thresh"], initiallags=initlags, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) voxelsprocessed_fc_ds += voxelsprocessed_thispass optiondict[ "despecklemasksize_pass" + str(thepass) + "_d" + str(despecklepass + 1) ] = voxelsprocessed_thispass optiondict[ "despecklemaskpct_pass" + str(thepass) + "_d" + str(despecklepass + 1) ] = (100.0 * voxelsprocessed_thispass / optiondict["corrmasksize"]) else: despecklingdone = True else: despecklingdone = True if despecklingdone: LGR.info("Nothing left to do! Terminating despeckling") break if optiondict["savedespecklemasks"] and thepass == optiondict["passes"]: theheader = copy.deepcopy(nim_hdr) theheader["dim"][4] = 1 if optiondict["bidsoutput"]: savename = f"{outputname}_desc-despeckle_mask" else: savename = f"{outputname}_despecklemask" if not fileiscifti: theheader["dim"][0] = 3 tide_io.savetonifti( ( np.where( np.abs(outmaparray - medianlags) > optiondict["despeckle_thresh"], medianlags, 0.0, ) ).reshape(nativespaceshape), theheader, savename, ) else: timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = 1 theheader["dim"][spaceindex] = numspatiallocs tide_io.savetocifti( ( np.where( np.abs(outmaparray - medianlags) > optiondict["despeckle_thresh"], medianlags, 0.0, ) ), cifti_hdr, theheader, savename, isseries=False, names=["despecklemask"], ) LGR.info( f"\n\n{voxelsprocessed_fc_ds} voxels despeckled in " f"{optiondict['despeckle_passes']} passes" ) TimingLGR.info( f"Correlation despeckle end, pass {thepass}", { "message2": voxelsprocessed_fc_ds, "message3": "voxels", }, ) # Step 3 - regressor refinement for next pass if thepass < optiondict["passes"] or optiondict["convergencethresh"] is not None: LGR.info(f"\n\nRegressor refinement, pass {thepass}") TimingLGR.info(f"Regressor refinement start, pass {thepass}") if optiondict["refineoffset"]: peaklag, peakheight, peakwidth = tide_stats.gethistprops( lagtimes[np.where(fitmask > 0)], optiondict["histlen"], pickleft=optiondict["pickleft"], peakthresh=optiondict["pickleftthresh"], ) optiondict["offsettime"] = peaklag optiondict["offsettime_total"] += peaklag LGR.info( f"offset time set to {optiondict['offsettime']:.3f}, " f"total is {optiondict['offsettime_total']:.3f}" ) # regenerate regressor for next pass refineregressor_func = addmemprofiling( tide_refine.refineregressor, optiondict["memprofile"], "before refineregressor", ) ( voxelsprocessed_rr, outputdata, refinemask, locationfails, ampfails, lagfails, sigmafails, ) = refineregressor_func( fmri_data_valid, fmritr, shiftedtcs, weights, thepass, lagstrengths, lagtimes, lagsigma, fitmask, R2, theprefilter, optiondict, bipolar=optiondict["bipolar"], padtrs=numpadtrs, includemask=internalrefineincludemask_valid, excludemask=internalrefineexcludemask_valid, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) optiondict["refinemasksize_pass" + str(thepass)] = voxelsprocessed_rr optiondict["refinemaskpct_pass" + str(thepass)] = ( 100.0 * voxelsprocessed_rr / optiondict["corrmasksize"] ) optiondict["refinelocationfails_pass" + str(thepass)] = locationfails optiondict["refineampfails_pass" + str(thepass)] = ampfails optiondict["refinelagfails_pass" + str(thepass)] = lagfails optiondict["refinesigmafails_pass" + str(thepass)] = sigmafails if voxelsprocessed_rr > 0: normoutputdata = tide_math.stdnormalize(theprefilter.apply(fmrifreq, outputdata)) normunfilteredoutputdata = tide_math.stdnormalize(outputdata) if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-refinedmovingregressor_timeseries", normunfilteredoutputdata, 1.0 / fmritr, columns=["unfiltered_pass" + str(thepass)], append=(thepass > 1), ) tide_io.writebidstsv( f"{outputname}_desc-refinedmovingregressor_timeseries", normoutputdata, 1.0 / fmritr, columns=["filtered_pass" + str(thepass)], append=True, ) else: tide_io.writenpvecs( normoutputdata, f"{outputname}_refinedregressor_pass" + str(thepass) + ".txt", ) tide_io.writenpvecs( normunfilteredoutputdata, f"{outputname}_unfilteredrefinedregressor_pass" + str(thepass) + ".txt", ) # check for convergence regressormse = mse(normoutputdata, previousnormoutputdata) optiondict["regressormse_pass" + str(thepass).zfill(2)] = regressormse LGR.info(f"regressor difference at end of pass {thepass:d} is {regressormse:.6f}") if optiondict["convergencethresh"] is not None: if thepass >= optiondict["maxpasses"]: LGR.info("refinement ended (maxpasses reached)") stoprefining = True refinestopreason = "maxpassesreached" elif regressormse < optiondict["convergencethresh"]: LGR.info("refinement ended (refinement has converged") stoprefining = True refinestopreason = "convergence" else: stoprefining = False elif thepass >= optiondict["passes"]: stoprefining = True refinestopreason = "passesreached" else: stoprefining = False if optiondict["detrendorder"] > 0: resampnonosref_y = tide_fit.detrend( tide_resample.doresample( initial_fmri_x, normoutputdata, initial_fmri_x, method=optiondict["interptype"], ), order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) resampref_y = tide_fit.detrend( tide_resample.doresample( initial_fmri_x, normoutputdata, os_fmri_x, method=optiondict["interptype"], ), order=optiondict["detrendorder"], demean=optiondict["dodemean"], ) else: resampnonosref_y = tide_resample.doresample( initial_fmri_x, normoutputdata, initial_fmri_x, method=optiondict["interptype"], ) resampref_y = tide_resample.doresample( initial_fmri_x, normoutputdata, os_fmri_x, method=optiondict["interptype"], ) if optiondict["tmaskname"] is not None: resampnonosref_y *= tmask_y thefit, R = tide_fit.mlregress(tmask_y, resampnonosref_y) resampnonosref_y -= thefit[0, 1] * tmask_y resampref_y *= tmaskos_y thefit, R = tide_fit.mlregress(tmaskos_y, resampref_y) resampref_y -= thefit[0, 1] * tmaskos_y # reinitialize lagtc for resampling previousnormoutputdata = normoutputdata + 0.0 genlagtc = tide_resample.FastResampler( initial_fmri_x, normoutputdata, padtime=padtime ) nonosrefname = "_reference_fmrires_pass" + str(thepass + 1) + ".txt" osrefname = "_reference_resampres_pass" + str(thepass + 1) + ".txt" ( optiondict["kurtosis_reference_pass" + str(thepass + 1)], optiondict["kurtosisz_reference_pass" + str(thepass + 1)], optiondict["kurtosisp_reference_pass" + str(thepass + 1)], ) = tide_stats.kurtosisstats(resampref_y) if not stoprefining: if optiondict["bidsoutput"]: tide_io.writebidstsv( f"{outputname}_desc-movingregressor_timeseries", tide_math.stdnormalize(resampnonosref_y), 1.0 / fmritr, columns=["pass" + str(thepass + 1)], append=True, ) tide_io.writebidstsv( f"{outputname}_desc-oversampledmovingregressor_timeseries", tide_math.stdnormalize(resampref_y), oversampfreq, columns=["pass" + str(thepass + 1)], append=True, ) else: tide_io.writenpvecs( tide_math.stdnormalize(resampnonosref_y), outputname + nonosrefname, ) tide_io.writenpvecs( tide_math.stdnormalize(resampref_y), outputname + osrefname ) else: LGR.warning(f"refinement failed - terminating at end of pass {thepass}") stoprefining = True refinestopreason = "emptymask" TimingLGR.info( f"Regressor refinement end, pass {thepass}", { "message2": voxelsprocessed_rr, "message3": "voxels", }, ) if optiondict["saveintermediatemaps"]: maplist = [ ("lagtimes", "maxtime"), ("lagstrengths", "maxcorr"), ("lagsigma", "maxwidth"), ("fitmask", "fitmask"), ("failreason", "corrfitfailreason"), ] if thepass < optiondict["passes"]: maplist.append(("refinemask", "refinemask")) for mapname, mapsuffix in maplist: if optiondict["memprofile"]: memcheckpoint(f"about to write {mapname} to {mapsuffix}") else: tide_util.logmem(f"about to write {mapname} to {mapsuffix}") outmaparray[:] = 0.0 outmaparray[validvoxels] = eval(mapname)[:] if optiondict["textio"]: tide_io.writenpvecs( outmaparray.reshape(nativespaceshape, 1), f"{outputname}_{mapsuffix}{passsuffix}.txt", ) else: if optiondict["bidsoutput"]: bidspasssuffix = f"_intermediatedata-pass{thepass}" if mapname == "fitmask": savename = f"{outputname}{bidspasssuffix}_desc-corrfit_mask" elif mapname == "failreason": savename = f"{outputname}{bidspasssuffix}_desc-corrfitfailreason_info" else: savename = f"{outputname}{bidspasssuffix}_desc-{mapsuffix}_map" bidsdict = bidsbasedict.copy() if mapname == "lagtimes" or mapname == "lagsigma": bidsdict["Units"] = "second" tide_io.writedicttojson(bidsdict, f"{savename}.json") else: savename = f"{outputname}_{mapname}" + passsuffix tide_io.savetonifti(outmaparray.reshape(nativespaceshape), theheader, savename) # We are done with refinement. if optiondict["convergencethresh"] is None: optiondict["actual_passes"] = optiondict["passes"] else: optiondict["actual_passes"] = thepass - 1 optiondict["refinestopreason"] = refinestopreason # Post refinement step -1 - Coherence calculation if optiondict["calccoherence"]: TimingLGR.info("Coherence calculation start") LGR.info("\n\nCoherence calculation") reportstep = 1000 # make the Coherer theCoherer = tide_classes.Coherer( Fs=(1.0 / fmritr), reftc=cleaned_nonosreferencetc, freqmin=0.0, freqmax=0.2, ncprefilter=theprefilter, windowfunc=optiondict["windowfunc"], detrendorder=optiondict["detrendorder"], debug=False, ) theCoherer.setreftc(cleaned_nonosreferencetc) ( coherencefreqstart, dummy, coherencefreqstep, coherencefreqaxissize, ) = theCoherer.getaxisinfo() if optiondict["textio"]: nativecoherenceshape = (xsize, coherencefreqaxissize) else: if fileiscifti: nativecoherenceshape = (1, 1, 1, coherencefreqaxissize, numspatiallocs) else: nativecoherenceshape = (xsize, ysize, numslices, coherencefreqaxissize) internalvalidcoherenceshape = (numvalidspatiallocs, coherencefreqaxissize) internalcoherenceshape = (numspatiallocs, coherencefreqaxissize) # now allocate the arrays needed for the coherence calculation if optiondict["sharedmem"]: coherencefunc, dummy, dummy = allocshared(internalvalidcoherenceshape, rt_outfloatset) coherencepeakval, dummy, dummy = allocshared(numvalidspatiallocs, rt_outfloatset) coherencepeakfreq, dummy, dummy = allocshared(numvalidspatiallocs, rt_outfloatset) else: coherencefunc = np.zeros(internalvalidcoherenceshape, dtype=rt_outfloattype) coherencepeakval, dummy, dummy = allocshared(numvalidspatiallocs, rt_outfloatset) coherencepeakfreq = np.zeros(numvalidspatiallocs, dtype=rt_outfloattype) coherencepass_func = addmemprofiling( tide_calccoherence.coherencepass, optiondict["memprofile"], "before coherencepass", ) voxelsprocessed_coherence = coherencepass_func( fmri_data_valid, theCoherer, coherencefunc, coherencepeakval, coherencepeakfreq, reportstep, alt=True, showprogressbar=optiondict["showprogressbar"], chunksize=optiondict["mp_chunksize"], nprocs=1, alwaysmultiproc=False, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) # save the results of the calculations outcoherencearray = np.zeros(internalcoherenceshape, dtype=rt_floattype) outcoherencearray[validvoxels, :] = coherencefunc[:, :] theheader = copy.deepcopy(nim_hdr) theheader["toffset"] = coherencefreqstart theheader["pixdim"][4] = coherencefreqstep if optiondict["textio"]: tide_io.writenpvecs( outcoherencearray.reshape(nativecoherenceshape), f"{outputname}_coherence.txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-coherence_info" else: savename = f"{outputname}_coherence" if fileiscifti: timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = coherencefreqaxissize theheader["dim"][spaceindex] = numspatiallocs tide_io.savetocifti( outcoherencearray, cifti_hdr, theheader, savename, isseries=True, names=["coherence"], ) else: theheader["dim"][0] = 3 theheader["dim"][4] = coherencefreqaxissize tide_io.savetonifti( outcoherencearray.reshape(nativecoherenceshape), theheader, savename ) del coherencefunc del outcoherencearray TimingLGR.info( "Coherence calculation end", { "message2": voxelsprocessed_coherence, "message3": "voxels", }, ) # Post refinement step 0 - Wiener deconvolution if optiondict["dodeconv"]: TimingLGR.info("Wiener deconvolution start") LGR.info("\n\nWiener deconvolution") reportstep = 1000 # now allocate the arrays needed for Wiener deconvolution if optiondict["sharedmem"]: wienerdeconv, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) wpeak, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) else: wienerdeconv = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) wpeak = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) wienerpass_func = addmemprofiling( tide_wiener.wienerpass, optiondict["memprofile"], "before wienerpass", ) voxelsprocessed_wiener = wienerpass_func( numspatiallocs, reportstep, fmri_data_valid, threshval, optiondict, wienerdeconv, wpeak, resampref_y, rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) TimingLGR.info( "Wiener deconvolution end", { "message2": voxelsprocessed_wiener, "message3": "voxels", }, ) # Post refinement step 1 - GLM fitting to remove moving signal if optiondict["doglmfilt"]: TimingLGR.info("GLM filtering start") LGR.info("\n\nGLM filtering") reportstep = 1000 if (optiondict["gausssigma"] > 0.0) or (optiondict["glmsourcefile"] is not None): if optiondict["glmsourcefile"] is not None: LGR.info(f"reading in {optiondict['glmsourcefile']} for GLM filter, please wait") if optiondict["textio"]: nim_data = tide_io.readvecs(optiondict["glmsourcefile"]) else: nim, nim_data, nim_hdr, thedims, thesizes = tide_io.readfromnifti( optiondict["glmsourcefile"] ) else: LGR.info(f"rereading {fmrifilename} for GLM filter, please wait") if optiondict["textio"]: nim_data = tide_io.readvecs(fmrifilename) else: nim, nim_data, nim_hdr, thedims, thesizes = tide_io.readfromnifti(fmrifilename) """meanvalue = np.mean( nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1], axis=1, )""" fmri_data_valid = ( nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1] )[validvoxels, :] + 0.0 # move fmri_data_valid into shared memory if optiondict["sharedmem"]: LGR.info("moving fmri data to shared memory") TimingLGR.info("Start moving fmri_data to shared memory") numpy2shared_func = addmemprofiling( numpy2shared, optiondict["memprofile"], "before movetoshared (glm)", ) fmri_data_valid = numpy2shared_func(fmri_data_valid, rt_floatset) TimingLGR.info("End moving fmri_data to shared memory") del nim_data # now allocate the arrays needed for GLM filtering if optiondict["sharedmem"]: glmmean, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) rvalue, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) r2value, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) fitNorm, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) fitcoeff, dummy, dummy = allocshared(internalvalidspaceshape, rt_outfloatset) movingsignal, dummy, dummy = allocshared(internalvalidfmrishape, rt_outfloatset) filtereddata, dummy, dummy = allocshared(internalvalidfmrishape, rt_outfloatset) else: glmmean = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) rvalue = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) r2value = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) fitNorm = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) fitcoeff = np.zeros(internalvalidspaceshape, dtype=rt_outfloattype) movingsignal = np.zeros(internalvalidfmrishape, dtype=rt_outfloattype) filtereddata = np.zeros(internalvalidfmrishape, dtype=rt_outfloattype) if optiondict["memprofile"]: memcheckpoint("about to start glm noise removal...") else: tide_util.logmem("before glm") if optiondict["preservefiltering"]: for i in range(len(validvoxels)): fmri_data_valid[i] = theprefilter.apply(optiondict["fmrifreq"], fmri_data_valid[i]) glmpass_func = addmemprofiling( tide_glmpass.glmpass, optiondict["memprofile"], "before glmpass" ) voxelsprocessed_glm = glmpass_func( numvalidspatiallocs, fmri_data_valid, threshval, lagtc, glmmean, rvalue, r2value, fitcoeff, fitNorm, movingsignal, filtereddata, reportstep=reportstep, nprocs=optiondict["nprocs_glm"], alwaysmultiproc=optiondict["alwaysmultiproc"], showprogressbar=optiondict["showprogressbar"], mp_chunksize=optiondict["mp_chunksize"], rt_floatset=rt_floatset, rt_floattype=rt_floattype, ) del fmri_data_valid TimingLGR.info( "GLM filtering end", { "message2": voxelsprocessed_glm, "message3": "voxels", }, ) if optiondict["memprofile"]: memcheckpoint("...done") else: tide_util.logmem("after glm filter") LGR.info("") else: # get the original data to calculate the mean LGR.info(f"rereading {fmrifilename} to calculate mean value, please wait") if optiondict["textio"]: nim_data = tide_io.readvecs(fmrifilename) else: nim, nim_data, nim_hdr, thedims, thesizes = tide_io.readfromnifti(fmrifilename) """meanvalue = np.mean( nim_data.reshape((numspatiallocs, timepoints))[:, validstart : validend + 1], axis=1 )""" # Post refinement step 2 - make and save interesting histograms TimingLGR.info("Start saving histograms") if optiondict["bidsoutput"]: namesuffix = "_desc-maxtime_hist" else: namesuffix = "_laghist" tide_stats.makeandsavehistogram( lagtimes[np.where(fitmask > 0)], optiondict["histlen"], 0, outputname + namesuffix, displaytitle="lagtime histogram", refine=False, dictvarname="laghist", saveasbids=optiondict["bidsoutput"], thedict=optiondict, ) if optiondict["bidsoutput"]: namesuffix = "_desc-maxcorr_hist" else: namesuffix = "_strengthhist" tide_stats.makeandsavehistogram( lagstrengths[np.where(fitmask > 0)], optiondict["histlen"], 0, outputname + namesuffix, displaytitle="lagstrength histogram", therange=(0.0, 1.0), dictvarname="strengthhist", saveasbids=optiondict["bidsoutput"], thedict=optiondict, ) if optiondict["bidsoutput"]: namesuffix = "_desc-maxwidth_hist" else: namesuffix = "_widthhist" tide_stats.makeandsavehistogram( lagsigma[np.where(fitmask > 0)], optiondict["histlen"], 1, outputname + namesuffix, displaytitle="lagsigma histogram", dictvarname="widthhist", saveasbids=optiondict["bidsoutput"], thedict=optiondict, ) if optiondict["bidsoutput"]: namesuffix = "_desc-maxcorrsq_hist" else: namesuffix = "_R2hist" if optiondict["doglmfilt"]: tide_stats.makeandsavehistogram( r2value[np.where(fitmask > 0)], optiondict["histlen"], 1, outputname + namesuffix, displaytitle="correlation R2 histogram", dictvarname="R2hist", saveasbids=optiondict["bidsoutput"], thedict=optiondict, ) TimingLGR.info("Finished saving histograms") # put some quality metrics into the info structure histpcts = [0.02, 0.25, 0.5, 0.75, 0.98] thetimepcts = tide_stats.getfracvals(lagtimes[np.where(fitmask > 0)], histpcts, nozero=False) thestrengthpcts = tide_stats.getfracvals( lagstrengths[np.where(fitmask > 0)], histpcts, nozero=False ) thesigmapcts = tide_stats.getfracvals(lagsigma[np.where(fitmask > 0)], histpcts, nozero=False) for i in range(len(histpcts)): optiondict[ "lagtimes_" + str(int(np.round(100 * histpcts[i], 0))).zfill(2) + "pct" ] = thetimepcts[i] optiondict[ "lagstrengths_" + str(int(np.round(100 * histpcts[i], 0))).zfill(2) + "pct" ] = thestrengthpcts[i] optiondict[ "lagsigma_" + str(int(np.round(100 * histpcts[i], 0))).zfill(2) + "pct" ] = thesigmapcts[i] optiondict["fitmasksize"] = np.sum(fitmask) optiondict["fitmaskpct"] = 100.0 * optiondict["fitmasksize"] / optiondict["corrmasksize"] # Post refinement step 3 - save out all of the important arrays to nifti files # write out the options used tide_io.writedicttojson(optiondict, f"{outputname}_options.json") # do ones with one time point first TimingLGR.info("Start saving maps") if not optiondict["textio"]: theheader = copy.deepcopy(nim_hdr) if fileiscifti: timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = 1 theheader["dim"][spaceindex] = numspatiallocs else: theheader["dim"][0] = 3 theheader["dim"][4] = 1 # Prepare extra maps savelist = [ ("lagtimes", "maxtime"), ("lagstrengths", "maxcorr"), ("lagsigma", "maxwidth"), ("R2", "maxcorrsq"), ("fitmask", "fitmask"), ("failreason", "corrfitfailreason"), ] MTT = np.square(lagsigma) - (optiondict["acwidth"] * optiondict["acwidth"]) MTT = np.where(MTT > 0.0, MTT, 0.0) MTT = np.sqrt(MTT) savelist += [("MTT", "MTT")] if optiondict["calccoherence"]: savelist += [ ("coherencepeakval", "coherencepeakval"), ("coherencepeakfreq", "coherencepeakfreq"), ] # if optiondict["similaritymetric"] == "mutualinfo": # savelist += [("baseline", "baseline"), ("baselinedev", "baselinedev")] for mapname, mapsuffix in savelist: if optiondict["memprofile"]: memcheckpoint(f"about to write {mapname}" + "to" + mapsuffix) else: tide_util.logmem(f"about to write {mapname}" + "to" + mapsuffix) outmaparray[:] = 0.0 outmaparray[validvoxels] = eval(mapname)[:] if optiondict["textio"]: tide_io.writenpvecs( outmaparray.reshape(nativespaceshape, 1), f"{outputname}_" + mapsuffix + ".txt", ) else: if optiondict["bidsoutput"]: if mapname == "fitmask": savename = f"{outputname}_desc-corrfit_mask" elif mapname == "failreason": savename = f"{outputname}_desc-corrfitfailreason_info" else: savename = f"{outputname}_desc-" + mapsuffix + "_map" bidsdict = bidsbasedict.copy() if mapname == "lagtimes" or mapname == "lagsigma" or mapname == "MTT": bidsdict["Units"] = "second" tide_io.writedicttojson(bidsdict, savename + ".json") else: savename = f"{outputname}_{mapname}" if not fileiscifti: tide_io.savetonifti(outmaparray.reshape(nativespaceshape), theheader, savename) else: tide_io.savetocifti( outmaparray, cifti_hdr, theheader, savename, isseries=False, names=[mapsuffix], ) if optiondict["doglmfilt"]: for mapname, mapsuffix in [ ("rvalue", "lfofilterR"), ("r2value", "lfofilterR2"), ("glmmean", "lfofilterMean"), ("fitcoeff", "lfofilterCoeff"), ("fitNorm", "lfofilterNorm"), ]: if optiondict["memprofile"]: memcheckpoint(f"about to write {mapname}") else: tide_util.logmem(f"about to write {mapname}") outmaparray[:] = 0.0 outmaparray[validvoxels] = eval(mapname)[:] if optiondict["textio"]: tide_io.writenpvecs( outmaparray.reshape(nativespaceshape), f"{outputname}_" + mapsuffix + ".txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-" + mapsuffix + "_map" bidsdict = bidsbasedict.copy() tide_io.writedicttojson(bidsdict, savename + ".json") else: savename = f"{outputname}_{mapname}" if not fileiscifti: tide_io.savetonifti(outmaparray.reshape(nativespaceshape), theheader, savename) else: tide_io.savetocifti( outmaparray, cifti_hdr, theheader, savename, isseries=False, names=[mapsuffix], ) del rvalue del r2value del fitcoeff del fitNorm for mapname, mapsuffix in [("meanvalue", "mean")]: if optiondict["memprofile"]: memcheckpoint(f"about to write {mapname}") else: tide_util.logmem(f"about to write {mapname}") outmaparray[:] = 0.0 outmaparray[:] = eval(mapname)[:] if optiondict["textio"]: tide_io.writenpvecs( outmaparray.reshape(nativespaceshape), f"{outputname}_" + mapsuffix + ".txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-" + mapsuffix + "_map" bidsdict = bidsbasedict.copy() tide_io.writedicttojson(bidsdict, savename + ".json") else: savename = f"{outputname}_{mapname}" if not fileiscifti: tide_io.savetonifti(outmaparray.reshape(nativespaceshape), theheader, savename) else: tide_io.savetocifti( outmaparray, cifti_hdr, theheader, savename, isseries=False, names=[mapsuffix], ) del meanvalue if optiondict["numestreps"] > 0: for i in range(0, len(thepercentiles)): pmask = np.where(np.abs(lagstrengths) > pcts[i], fitmask, 0 * fitmask) outmaparray[:] = 0.0 outmaparray[validvoxels] = pmask[:] if optiondict["textio"]: tide_io.writenpvecs( outmaparray.reshape(nativespaceshape), f"{outputname}_p_lt_" + thepvalnames[i] + "_mask.txt", ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-plt" + thepvalnames[i] + "_mask" else: savename = f"{outputname}_p_lt_" + thepvalnames[i] + "_mask" if not fileiscifti: tide_io.savetonifti(outmaparray.reshape(nativespaceshape), theheader, savename) else: tide_io.savetocifti( outmaparray, cifti_hdr, theheader, savename, isseries=False, names=["p_lt_" + thepvalnames[i] + "_mask"], ) if optiondict["passes"] > 1 and optiondict["refinestopreason"] != "emptymask": outmaparray[:] = 0.0 outmaparray[validvoxels] = refinemask[:] if optiondict["textio"]: tide_io.writenpvecs( outfmriarray.reshape(nativefmrishape), f"{outputname}_lagregressor.txt" ) else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-refine_mask" else: savename = f"{outputname}_refinemask" if not fileiscifti: tide_io.savetonifti(outmaparray.reshape(nativespaceshape), theheader, savename) else: tide_io.savetocifti( outmaparray, cifti_hdr, theheader, savename, isseries=False, names=["refinemask"], ) del refinemask # clean up arrays that will no longer be needed del lagtimes del lagstrengths del lagsigma del R2 del fitmask # now do the ones with other numbers of time points if not optiondict["textio"]: theheader = copy.deepcopy(nim_hdr) theheader["toffset"] = corrscale[corrorigin - lagmininpts] if fileiscifti: timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = np.shape(outcorrarray)[1] theheader["dim"][spaceindex] = numspatiallocs else: theheader["dim"][4] = np.shape(outcorrarray)[1] theheader["pixdim"][4] = corrtr outcorrarray[:, :] = 0.0 outcorrarray[validvoxels, :] = gaussout[:, :] if optiondict["textio"]: tide_io.writenpvecs(outcorrarray.reshape(nativecorrshape), f"{outputname}_gaussout.txt") else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-gaussout_info" else: savename = f"{outputname}_gaussout" if not fileiscifti: tide_io.savetonifti(outcorrarray.reshape(nativecorrshape), theheader, savename) else: tide_io.savetocifti( outcorrarray, cifti_hdr, theheader, savename, isseries=True, start=theheader["toffset"], step=corrtr, ) del gaussout outcorrarray[:, :] = 0.0 outcorrarray[validvoxels, :] = windowout[:, :] if optiondict["textio"]: tide_io.writenpvecs(outcorrarray.reshape(nativecorrshape), f"{outputname}_windowout.txt") else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-corrfitwindow_info" else: savename = f"{outputname}_windowout" if not fileiscifti: tide_io.savetonifti(outcorrarray.reshape(nativecorrshape), theheader, savename) else: tide_io.savetocifti( outcorrarray, cifti_hdr, theheader, savename, isseries=True, start=theheader["toffset"], step=corrtr, ) del windowout outcorrarray[:, :] = 0.0 outcorrarray[validvoxels, :] = corrout[:, :] if optiondict["textio"]: tide_io.writenpvecs(outcorrarray.reshape(nativecorrshape), f"{outputname}_corrout.txt") else: if optiondict["bidsoutput"]: savename = f"{outputname}_desc-corrout_info" else: savename = f"{outputname}_corrout" if not fileiscifti: tide_io.savetonifti(outcorrarray.reshape(nativecorrshape), theheader, savename) else: tide_io.savetocifti( outcorrarray, cifti_hdr, theheader, savename, isseries=True, start=theheader["toffset"], step=corrtr, ) del corrout if not optiondict["textio"]: theheader = copy.deepcopy(nim_hdr) if fileiscifti: timeindex = theheader["dim"][0] - 1 spaceindex = theheader["dim"][0] theheader["dim"][timeindex] = np.shape(outfmriarray)[1] theheader["dim"][spaceindex] = numspatiallocs else: theheader["dim"][4] =
np.shape(outfmriarray)
numpy.shape
import numpy as np import pytest from experimentator import yaml from tests.test_design import make_heterogeneous_tree @pytest.mark.parametrize('data', [
np.random.randn(5)
numpy.random.randn
#!/usr/bin/env python # Copyright 2014-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # ''' UCCSD with spatial integrals ''' import time from functools import reduce import numpy as np from pyscf import lib from pyscf import ao2mo from pyscf.lib import logger from pyscf.cc import ccsd from pyscf.cc import rccsd from pyscf.ao2mo import _ao2mo from pyscf.mp import ump2 from pyscf import scf from pyscf import __config__ MEMORYMIN = getattr(__config__, 'cc_ccsd_memorymin', 2000) # This is unrestricted (U)CCSD, in spatial-orbital form. def update_amps(cc, t1, t2, eris): time0 = time.clock(), time.time() log = logger.Logger(cc.stdout, cc.verbose) t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape mo_ea_o = eris.mo_energy[0][:nocca] mo_ea_v = eris.mo_energy[0][nocca:] + cc.level_shift mo_eb_o = eris.mo_energy[1][:noccb] mo_eb_v = eris.mo_energy[1][noccb:] + cc.level_shift fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] u1a = np.zeros_like(t1a) u1b = np.zeros_like(t1b) #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:u2aa += lib.einsum('ijef,aebf->ijab', tauaa, eris_vvvv) * .5 #:u2bb += lib.einsum('ijef,aebf->ijab', taubb, eris_VVVV) * .5 #:u2ab += lib.einsum('iJeF,aeBF->iJaB', tauab, eris_vvVV) tauaa, tauab, taubb = make_tau(t2, t1, t1) u2aa, u2ab, u2bb = cc._add_vvvv(None, (tauaa,tauab,taubb), eris) u2aa *= .5 u2bb *= .5 Fooa = .5 * lib.einsum('me,ie->mi', fova, t1a) Foob = .5 * lib.einsum('me,ie->mi', fovb, t1b) Fvva = -.5 * lib.einsum('me,ma->ae', fova, t1a) Fvvb = -.5 * lib.einsum('me,ma->ae', fovb, t1b) Fooa += eris.focka[:nocca,:nocca] - np.diag(mo_ea_o) Foob += eris.fockb[:noccb,:noccb] - np.diag(mo_eb_o) Fvva += eris.focka[nocca:,nocca:] - np.diag(mo_ea_v) Fvvb += eris.fockb[noccb:,noccb:] - np.diag(mo_eb_v) dtype = u2aa.dtype wovvo = np.zeros((nocca,nvira,nvira,nocca), dtype=dtype) wOVVO = np.zeros((noccb,nvirb,nvirb,noccb), dtype=dtype) woVvO = np.zeros((nocca,nvirb,nvira,noccb), dtype=dtype) woVVo = np.zeros((nocca,nvirb,nvirb,nocca), dtype=dtype) wOvVo = np.zeros((noccb,nvira,nvirb,nocca), dtype=dtype) wOvvO = np.zeros((noccb,nvira,nvira,noccb), dtype=dtype) mem_now = lib.current_memory()[0] max_memory = max(0, cc.max_memory - mem_now - u2aa.size*8e-6) if nvira > 0 and nocca > 0: blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira**3*3+1))) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] ovvv = ovvv - ovvv.transpose(0,3,2,1) Fvva += np.einsum('mf,mfae->ae', t1a[p0:p1], ovvv) wovvo[p0:p1] += lib.einsum('jf,mebf->mbej', t1a, ovvv) u1a += 0.5*lib.einsum('mief,meaf->ia', t2aa[p0:p1], ovvv) u2aa[:,p0:p1] += lib.einsum('ie,mbea->imab', t1a, ovvv.conj()) tmp1aa = lib.einsum('ijef,mebf->ijmb', tauaa, ovvv) u2aa -= lib.einsum('ijmb,ma->ijab', tmp1aa, t1a[p0:p1]*.5) ovvv = tmp1aa = None if nvirb > 0 and noccb > 0: blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb**3*3+1))) for p0,p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] OVVV = OVVV - OVVV.transpose(0,3,2,1) Fvvb += np.einsum('mf,mfae->ae', t1b[p0:p1], OVVV) wOVVO[p0:p1] = lib.einsum('jf,mebf->mbej', t1b, OVVV) u1b += 0.5*lib.einsum('MIEF,MEAF->IA', t2bb[p0:p1], OVVV) u2bb[:,p0:p1] += lib.einsum('ie,mbea->imab', t1b, OVVV.conj()) tmp1bb = lib.einsum('ijef,mebf->ijmb', taubb, OVVV) u2bb -= lib.einsum('ijmb,ma->ijab', tmp1bb, t1b[p0:p1]*.5) OVVV = tmp1bb = None if nvirb > 0 and nocca > 0: blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3+1))) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] Fvvb += np.einsum('mf,mfAE->AE', t1a[p0:p1], ovVV) woVvO[p0:p1] = lib.einsum('JF,meBF->mBeJ', t1b, ovVV) woVVo[p0:p1] = lib.einsum('jf,mfBE->mBEj',-t1a, ovVV) u1b += lib.einsum('mIeF,meAF->IA', t2ab[p0:p1], ovVV) u2ab[p0:p1] += lib.einsum('IE,maEB->mIaB', t1b, ovVV.conj()) tmp1ab = lib.einsum('iJeF,meBF->iJmB', tauab, ovVV) u2ab -= lib.einsum('iJmB,ma->iJaB', tmp1ab, t1a[p0:p1]) ovVV = tmp1ab = None if nvira > 0 and noccb > 0: blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3+1))) for p0,p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] Fvva += np.einsum('MF,MFae->ae', t1b[p0:p1], OVvv) wOvVo[p0:p1] = lib.einsum('jf,MEbf->MbEj', t1a, OVvv) wOvvO[p0:p1] = lib.einsum('JF,MFbe->MbeJ',-t1b, OVvv) u1a += lib.einsum('iMfE,MEaf->ia', t2ab[:,p0:p1], OVvv) u2ab[:,p0:p1] += lib.einsum('ie,MBea->iMaB', t1a, OVvv.conj()) tmp1abba = lib.einsum('iJeF,MFbe->iJbM', tauab, OVvv) u2ab -= lib.einsum('iJbM,MA->iJbA', tmp1abba, t1b[p0:p1]) OVvv = tmp1abba = None eris_ovov = np.asarray(eris.ovov) eris_ovoo = np.asarray(eris.ovoo) Woooo = lib.einsum('je,nemi->mnij', t1a, eris_ovoo) Woooo = Woooo - Woooo.transpose(0,1,3,2) Woooo += np.asarray(eris.oooo).transpose(0,2,1,3) Woooo += lib.einsum('ijef,menf->mnij', tauaa, eris_ovov) * .5 u2aa += lib.einsum('mnab,mnij->ijab', tauaa, Woooo*.5) Woooo = tauaa = None ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) Fooa += np.einsum('ne,nemi->mi', t1a, ovoo) u1a += 0.5*lib.einsum('mnae,meni->ia', t2aa, ovoo) wovvo += lib.einsum('nb,nemj->mbej', t1a, ovoo) ovoo = eris_ovoo = None tilaa = make_tau_aa(t2[0], t1a, t1a, fac=0.5) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) Fvva -= .5 * lib.einsum('mnaf,menf->ae', tilaa, ovov) Fooa += .5 * lib.einsum('inef,menf->mi', tilaa, ovov) Fova = np.einsum('nf,menf->me',t1a, ovov) u2aa += ovov.conj().transpose(0,2,1,3) * .5 wovvo -= 0.5*lib.einsum('jnfb,menf->mbej', t2aa, ovov) woVvO += 0.5*lib.einsum('nJfB,menf->mBeJ', t2ab, ovov) tmpaa = lib.einsum('jf,menf->mnej', t1a, ovov) wovvo -= lib.einsum('nb,mnej->mbej', t1a, tmpaa) eirs_ovov = ovov = tmpaa = tilaa = None eris_OVOV = np.asarray(eris.OVOV) eris_OVOO = np.asarray(eris.OVOO) WOOOO = lib.einsum('je,nemi->mnij', t1b, eris_OVOO) WOOOO = WOOOO - WOOOO.transpose(0,1,3,2) WOOOO += np.asarray(eris.OOOO).transpose(0,2,1,3) WOOOO += lib.einsum('ijef,menf->mnij', taubb, eris_OVOV) * .5 u2bb += lib.einsum('mnab,mnij->ijab', taubb, WOOOO*.5) WOOOO = taubb = None OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) Foob += np.einsum('ne,nemi->mi', t1b, OVOO) u1b += 0.5*lib.einsum('mnae,meni->ia', t2bb, OVOO) wOVVO += lib.einsum('nb,nemj->mbej', t1b, OVOO) OVOO = eris_OVOO = None tilbb = make_tau_aa(t2[2], t1b, t1b, fac=0.5) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) Fvvb -= .5 * lib.einsum('MNAF,MENF->AE', tilbb, OVOV) Foob += .5 * lib.einsum('inef,menf->mi', tilbb, OVOV) Fovb = np.einsum('nf,menf->me',t1b, OVOV) u2bb += OVOV.conj().transpose(0,2,1,3) * .5 wOVVO -= 0.5*lib.einsum('jnfb,menf->mbej', t2bb, OVOV) wOvVo += 0.5*lib.einsum('jNbF,MENF->MbEj', t2ab, OVOV) tmpbb = lib.einsum('jf,menf->mnej', t1b, OVOV) wOVVO -= lib.einsum('nb,mnej->mbej', t1b, tmpbb) eris_OVOV = OVOV = tmpbb = tilbb = None eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) Fooa += np.einsum('NE,NEmi->mi', t1b, eris_OVoo) u1a -= lib.einsum('nMaE,MEni->ia', t2ab, eris_OVoo) wOvVo -= lib.einsum('nb,MEnj->MbEj', t1a, eris_OVoo) woVVo += lib.einsum('NB,NEmj->mBEj', t1b, eris_OVoo) Foob += np.einsum('ne,neMI->MI', t1a, eris_ovOO) u1b -= lib.einsum('mNeA,meNI->IA', t2ab, eris_ovOO) woVvO -= lib.einsum('NB,meNJ->mBeJ', t1b, eris_ovOO) wOvvO += lib.einsum('nb,neMJ->MbeJ', t1a, eris_ovOO) WoOoO = lib.einsum('JE,NEmi->mNiJ', t1b, eris_OVoo) WoOoO+= lib.einsum('je,neMI->nMjI', t1a, eris_ovOO) WoOoO += np.asarray(eris.ooOO).transpose(0,2,1,3) eris_OVoo = eris_ovOO = None eris_ovOV = np.asarray(eris.ovOV) WoOoO += lib.einsum('iJeF,meNF->mNiJ', tauab, eris_ovOV) u2ab += lib.einsum('mNaB,mNiJ->iJaB', tauab, WoOoO) WoOoO = None tilab = make_tau_ab(t2[1], t1 , t1 , fac=0.5) Fvva -= lib.einsum('mNaF,meNF->ae', tilab, eris_ovOV) Fvvb -= lib.einsum('nMfA,nfME->AE', tilab, eris_ovOV) Fooa += lib.einsum('iNeF,meNF->mi', tilab, eris_ovOV) Foob += lib.einsum('nIfE,nfME->MI', tilab, eris_ovOV) Fova += np.einsum('NF,meNF->me',t1b, eris_ovOV) Fovb += np.einsum('nf,nfME->ME',t1a, eris_ovOV) u2ab += eris_ovOV.conj().transpose(0,2,1,3) wovvo += 0.5*lib.einsum('jNbF,meNF->mbej', t2ab, eris_ovOV) wOVVO += 0.5*lib.einsum('nJfB,nfME->MBEJ', t2ab, eris_ovOV) wOvVo -= 0.5*lib.einsum('jnfb,nfME->MbEj', t2aa, eris_ovOV) woVvO -= 0.5*lib.einsum('JNFB,meNF->mBeJ', t2bb, eris_ovOV) woVVo += 0.5*lib.einsum('jNfB,mfNE->mBEj', t2ab, eris_ovOV) wOvvO += 0.5*lib.einsum('nJbF,neMF->MbeJ', t2ab, eris_ovOV) tmpabab = lib.einsum('JF,meNF->mNeJ', t1b, eris_ovOV) tmpbaba = lib.einsum('jf,nfME->MnEj', t1a, eris_ovOV) woVvO -= lib.einsum('NB,mNeJ->mBeJ', t1b, tmpabab) wOvVo -= lib.einsum('nb,MnEj->MbEj', t1a, tmpbaba) woVVo += lib.einsum('NB,NmEj->mBEj', t1b, tmpbaba) wOvvO += lib.einsum('nb,nMeJ->MbeJ', t1a, tmpabab) tmpabab = tmpbaba = tilab = None Fova += fova Fovb += fovb u1a += fova.conj() u1a += np.einsum('ie,ae->ia', t1a, Fvva) u1a -= np.einsum('ma,mi->ia', t1a, Fooa) u1a -= np.einsum('imea,me->ia', t2aa, Fova) u1a += np.einsum('iMaE,ME->ia', t2ab, Fovb) u1b += fovb.conj() u1b += np.einsum('ie,ae->ia',t1b,Fvvb) u1b -= np.einsum('ma,mi->ia',t1b,Foob) u1b -= np.einsum('imea,me->ia', t2bb, Fovb) u1b += np.einsum('mIeA,me->IA', t2ab, Fova) eris_oovv = np.asarray(eris.oovv) eris_ovvo = np.asarray(eris.ovvo) wovvo -= eris_oovv.transpose(0,2,3,1) wovvo += eris_ovvo.transpose(0,2,1,3) oovv = eris_oovv - eris_ovvo.transpose(0,3,2,1) u1a-= np.einsum('nf,niaf->ia', t1a, oovv) tmp1aa = lib.einsum('ie,mjbe->mbij', t1a, oovv) u2aa += 2*lib.einsum('ma,mbij->ijab', t1a, tmp1aa) eris_ovvo = eris_oovv = oovv = tmp1aa = None eris_OOVV = np.asarray(eris.OOVV) eris_OVVO = np.asarray(eris.OVVO) wOVVO -= eris_OOVV.transpose(0,2,3,1) wOVVO += eris_OVVO.transpose(0,2,1,3) OOVV = eris_OOVV - eris_OVVO.transpose(0,3,2,1) u1b-= np.einsum('nf,niaf->ia', t1b, OOVV) tmp1bb = lib.einsum('ie,mjbe->mbij', t1b, OOVV) u2bb += 2*lib.einsum('ma,mbij->ijab', t1b, tmp1bb) eris_OVVO = eris_OOVV = OOVV = None eris_ooVV = np.asarray(eris.ooVV) eris_ovVO = np.asarray(eris.ovVO) woVVo -= eris_ooVV.transpose(0,2,3,1) woVvO += eris_ovVO.transpose(0,2,1,3) u1b+= np.einsum('nf,nfAI->IA', t1a, eris_ovVO) tmp1ab = lib.einsum('ie,meBJ->mBiJ', t1a, eris_ovVO) tmp1ab+= lib.einsum('IE,mjBE->mBjI', t1b, eris_ooVV) u2ab -= lib.einsum('ma,mBiJ->iJaB', t1a, tmp1ab) eris_ooVV = eris_ovVo = tmp1ab = None eris_OOvv = np.asarray(eris.OOvv) eris_OVvo = np.asarray(eris.OVvo) wOvvO -= eris_OOvv.transpose(0,2,3,1) wOvVo += eris_OVvo.transpose(0,2,1,3) u1a+= np.einsum('NF,NFai->ia', t1b, eris_OVvo) tmp1ba = lib.einsum('IE,MEbj->MbIj', t1b, eris_OVvo) tmp1ba+= lib.einsum('ie,MJbe->MbJi', t1a, eris_OOvv) u2ab -= lib.einsum('MA,MbIj->jIbA', t1b, tmp1ba) eris_OOvv = eris_OVvO = tmp1ba = None u2aa += 2*lib.einsum('imae,mbej->ijab', t2aa, wovvo) u2aa += 2*lib.einsum('iMaE,MbEj->ijab', t2ab, wOvVo) u2bb += 2*lib.einsum('imae,mbej->ijab', t2bb, wOVVO) u2bb += 2*lib.einsum('mIeA,mBeJ->IJAB', t2ab, woVvO) u2ab += lib.einsum('imae,mBeJ->iJaB', t2aa, woVvO) u2ab += lib.einsum('iMaE,MBEJ->iJaB', t2ab, wOVVO) u2ab += lib.einsum('iMeA,MbeJ->iJbA', t2ab, wOvvO) u2ab += lib.einsum('IMAE,MbEj->jIbA', t2bb, wOvVo) u2ab += lib.einsum('mIeA,mbej->jIbA', t2ab, wovvo) u2ab += lib.einsum('mIaE,mBEj->jIaB', t2ab, woVVo) wovvo = wOVVO = woVvO = wOvVo = woVVo = wOvvO = None Ftmpa = Fvva - .5*lib.einsum('mb,me->be', t1a, Fova) Ftmpb = Fvvb - .5*lib.einsum('mb,me->be', t1b, Fovb) u2aa += lib.einsum('ijae,be->ijab', t2aa, Ftmpa) u2bb += lib.einsum('ijae,be->ijab', t2bb, Ftmpb) u2ab += lib.einsum('iJaE,BE->iJaB', t2ab, Ftmpb) u2ab += lib.einsum('iJeA,be->iJbA', t2ab, Ftmpa) Ftmpa = Fooa + 0.5*lib.einsum('je,me->mj', t1a, Fova) Ftmpb = Foob + 0.5*lib.einsum('je,me->mj', t1b, Fovb) u2aa -= lib.einsum('imab,mj->ijab', t2aa, Ftmpa) u2bb -= lib.einsum('imab,mj->ijab', t2bb, Ftmpb) u2ab -= lib.einsum('iMaB,MJ->iJaB', t2ab, Ftmpb) u2ab -= lib.einsum('mIaB,mj->jIaB', t2ab, Ftmpa) eris_ovoo = np.asarray(eris.ovoo).conj() eris_OVOO = np.asarray(eris.OVOO).conj() eris_OVoo = np.asarray(eris.OVoo).conj() eris_ovOO = np.asarray(eris.ovOO).conj() ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) u2aa -= lib.einsum('ma,jbim->ijab', t1a, ovoo) u2bb -= lib.einsum('ma,jbim->ijab', t1b, OVOO) u2ab -= lib.einsum('ma,JBim->iJaB', t1a, eris_OVoo) u2ab -= lib.einsum('MA,ibJM->iJbA', t1b, eris_ovOO) eris_ovoo = eris_OVoo = eris_OVOO = eris_ovOO = None u2aa *= .5 u2bb *= .5 u2aa = u2aa - u2aa.transpose(0,1,3,2) u2aa = u2aa - u2aa.transpose(1,0,2,3) u2bb = u2bb - u2bb.transpose(0,1,3,2) u2bb = u2bb - u2bb.transpose(1,0,2,3) eia_a = lib.direct_sum('i-a->ia', mo_ea_o, mo_ea_v) eia_b = lib.direct_sum('i-a->ia', mo_eb_o, mo_eb_v) u1a /= eia_a u1b /= eia_b u2aa /= lib.direct_sum('ia+jb->ijab', eia_a, eia_a) u2ab /= lib.direct_sum('ia+jb->ijab', eia_a, eia_b) u2bb /= lib.direct_sum('ia+jb->ijab', eia_b, eia_b) time0 = log.timer_debug1('update t1 t2', *time0) t1new = u1a, u1b t2new = u2aa, u2ab, u2bb return t1new, t2new def energy(cc, t1=None, t2=None, eris=None): '''UCCSD correlation energy''' if t1 is None: t1 = cc.t1 if t2 is None: t2 = cc.t2 if eris is None: eris = cc.ao2mo() t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] e = np.einsum('ia,ia', fova, t1a) e += np.einsum('ia,ia', fovb, t1b) e += 0.25*np.einsum('ijab,iajb',t2aa,eris_ovov) e -= 0.25*np.einsum('ijab,ibja',t2aa,eris_ovov) e += 0.25*np.einsum('ijab,iajb',t2bb,eris_OVOV) e -= 0.25*np.einsum('ijab,ibja',t2bb,eris_OVOV) e += np.einsum('iJaB,iaJB',t2ab,eris_ovOV) e += 0.5*np.einsum('ia,jb,iajb',t1a,t1a,eris_ovov) e -= 0.5*np.einsum('ia,jb,ibja',t1a,t1a,eris_ovov) e += 0.5*
np.einsum('ia,jb,iajb',t1b,t1b,eris_OVOV)
numpy.einsum
# -*- coding: utf-8 -*- """ Showcases *ICTCP* *colour encoding* computations. """ import numpy as np import colour from colour.utilities import message_box message_box('"ICTCP" Colour Encoding Computations') RGB = np.array([0.45620519, 0.03081071, 0.04091952]) message_box(('Converting from "ITU-R BT.2020" colourspace to "ICTCP" colour ' 'encoding given "RGB" values:\n' '\n\t{0}'.format(RGB))) print(colour.RGB_to_ICTCP(RGB)) print('\n') ICTCP =
np.array([0.07351364, 0.00475253, 0.09351596])
numpy.array
import math from typing import List, Tuple import cv2 import numpy as np from pedrec.models.constants.skeleton_pedrec import SKELETON_PEDREC_IDS from pedrec.models.data_structures import ImageSize from pedrec.models.human import Human from pedrec.tracking.color_tracking import get_color_similarity from pedrec.tracking.pose_tracking import get_skeleton_diameter, get_pose_similarity from pedrec.utils.bb_helper import bb_iou_numpy, get_coord_bb_from_center_bb, get_bb_width, get_bb_height from pedrec.utils.skeleton_helper import get_euclidean_joint_distances def get_bb_color(human, img): human_bb = get_coord_bb_from_center_bb(human.bb) area_min_x = int(max(0, human_bb[0])) # head area = 10x10px area_max_x = int(min(img.shape[1], human_bb[2])) # head area = 10x10px area_min_y = int(max(0, human_bb[1])) # head area = 10x10px area_max_y = int(min(img.shape[0], human_bb[3])) # head area = 10x10px bb_area = img[area_min_y:area_max_y, area_min_x:area_max_x] return
np.mean(bb_area, axis=(0, 1))
numpy.mean
# -*- coding: utf-8 -*- """ Created on Wed Mar 21 10:00:33 2018 @author: jdkern """ from __future__ import division from sklearn import linear_model from statsmodels.tsa.api import VAR import scipy.stats as st import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns ###################################################################### # LOAD ###################################################################### #import data df_load = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='hourly_load',header=0) df_weather = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='weather',header=0) BPA_weights = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='BPA_location_weights',header=0) CAISO_weights = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='CAISO_location_weights',header=0) Name_list=pd.read_csv('Synthetic_demand_pathflows/Covariance_Calculation.csv') Name_list=list(Name_list.loc['SALEM_T':]) Name_list=Name_list[1:] df_wind=pd.read_csv('Synthetic_wind_power/wind_power_sim.csv',header=0) sim_years = int(len(df_wind)/8760) + 3 sim_weather=pd.read_csv('Synthetic_weather/synthetic_weather_data.csv',header=0,index_col=0) sim_weather = sim_weather.iloc[0:365*sim_years,:] sim_weather = sim_weather.iloc[365:len(sim_weather)-730,:] sim_weather = sim_weather.reset_index(drop=True) #weekday designation dow = df_weather.loc[:,'Weekday'] #generate simulated day of the week assuming starts from monday count=0 sim_dow= np.zeros(len(sim_weather)) for i in range(0,len(sim_weather)): count = count +1 if count <=5: sim_dow[i]=1 elif count > 5: sim_dow[i]=0 if count ==7: count =0 #Generate a datelist datelist=pd.date_range(pd.datetime(2017,1,1),periods=365).tolist() sim_month=np.zeros(len(sim_weather)) sim_day=np.zeros(len(sim_weather)) sim_year=np.zeros(len(sim_weather)) count=0 for i in range(0,len(sim_weather)): if count <=364: sim_month[i]=datelist[count].month sim_day[i]=datelist[count].day sim_year[i]=datelist[count].year else: count=0 sim_month[i]=datelist[count].month sim_day[i]=datelist[count].day sim_year[i]=datelist[count].year count=count+1 ###################################################################### # BPAT ###################################################################### #Find the simulated data at the sites col_BPA_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T'] col_BPA_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W'] BPA_sim_T=sim_weather[col_BPA_T].values BPA_sim_W=sim_weather[col_BPA_W].values sim_days = len(sim_weather) weighted_SimT = np.zeros((sim_days,1)) ########################################### #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise'] num_cities = len(cities) num_days = len(df_weather) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) weighted_AvgT = np.zeros((num_days,1)) for i in cities: n1 = i + '_MaxT' n2 = i + '_MinT' n3 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = 0.5*df_weather.loc[:,n1] + 0.5*df_weather.loc[:,n2] weighted_AvgT[:,0] = weighted_AvgT[:,0] + AvgT[:,j]*BPA_weights.loc[0,i] Wind[:,j] = df_weather.loc[:,n3] weighted_SimT[:,0] = weighted_SimT[:,0] + BPA_sim_T[:,j]*BPA_weights.loc[0,i] #Convert simulated temperature to F weighted_SimT=(weighted_SimT * 9/5) +32 BPA_sim_T_F=(BPA_sim_T * 9/5) +32 #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) HDD_sim = np.zeros((sim_days,num_cities)) CDD_sim = np.zeros((sim_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) for i in range(0,sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-BPA_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,BPA_sim_T_F[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(BPA_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(BPA_sim_W,binary_HDD_sim) #convert load to array BPA_load = df_load.loc[:,'BPA'].values #remove NaNs a = np.argwhere(np.isnan(BPA_load)) for i in a: BPA_load[i] = BPA_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(BPA_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X70p = M[(M[:,0] >= 70),2:] y70p = M[(M[:,0] >= 70),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X40_50 = M[(M[:,0] >= 40) & (M[:,0] < 50),2:] y40_50 = M[(M[:,0] >= 40) & (M[:,0] < 50),1] X30_40 = M[(M[:,0] >= 30) & (M[:,0] < 40),2:] y30_40 = M[(M[:,0] >= 30) & (M[:,0] < 40),1] X25_30 = M[(M[:,0] >= 25) & (M[:,0] < 30),2:] y25_30 = M[(M[:,0] >= 25) & (M[:,0] < 30),1] X25m = M[(M[:,0] < 25),2:] y25m = M[(M[:,0] < 25),1] X70p_Sim = M_sim[(M_sim[:,0] >= 70),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X40_50_Sim = M_sim[(M_sim[:,0] >= 40) & (M_sim[:,0] < 50),1:] X30_40_Sim = M_sim[(M_sim[:,0] >= 30) & (M_sim[:,0] < 40),1:] X25_30_Sim = M_sim[(M_sim[:,0] >= 25) & (M_sim[:,0] < 30),1:] X25m_Sim = M_sim[(M_sim[:,0] < 25),1:] #multivariate regression #Create linear regression object reg70p = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg40_50 = linear_model.LinearRegression() reg30_40 = linear_model.LinearRegression() reg25_30 = linear_model.LinearRegression() reg25m = linear_model.LinearRegression() # Train the model using the training sets if len(y70p) > 0: reg70p.fit(X70p,y70p) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y40_50) > 0: reg40_50.fit(X40_50,y40_50) if len(y30_40) > 0: reg30_40.fit(X30_40,y30_40) if len(y25_30) > 0: reg25_30.fit(X25_30,y25_30) if len(y25m) > 0: reg25m.fit(X25m,y25m) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=70: y_hat = reg70p.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] >= 40 and M[i,0] < 50: y_hat = reg40_50.predict(s) elif M[i,0] >= 30 and M[i,0] < 40: y_hat = reg30_40.predict(s) elif M[i,0] >= 25 and M[i,0] < 30: y_hat = reg25_30.predict(s) elif M[i,0] < 25: y_hat = reg25m.predict(s) predicted = np.append(predicted,y_hat) BPA_p = predicted.reshape((len(predicted),1)) #Simulate using the regression above simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=70: y_hat = reg70p.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] >= 40 and M_sim[i,0] < 50: y_hat = reg40_50.predict(s) elif M_sim[i,0] >= 30 and M_sim[i,0] < 40: y_hat = reg30_40.predict(s) elif M_sim[i,0] >= 25 and M_sim[i,0] < 30: y_hat = reg25_30.predict(s) elif M_sim[i,0] < 25: y_hat = reg25m.predict(s) simulated = np.append(simulated,y_hat) BPA_sim = simulated.reshape((len(simulated),1)) a=st.pearsonr(peaks,BPA_p) print(a[0]**2, a[1]) # Residuals BPAresiduals = BPA_p - peaks BPA_y = peaks # RMSE RMSE = (np.sum((BPAresiduals**2))/len(BPAresiduals))**.5 output = np.column_stack((BPA_p,peaks)) ######################################################################### # CAISO ######################################################################### #Find the simulated data at the sites col_CAISO_T = ['FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_CAISO_W = ['FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','SAN FRANCISCO_W'] CAISO_sim_T=sim_weather[col_CAISO_T].values CAISO_sim_W=sim_weather[col_CAISO_W].values sim_days = len(sim_weather) weighted_SimT = np.zeros((sim_days,1)) #find average temps cities = ['Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_weather) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) weighted_AvgT = np.zeros((num_days,1)) for i in cities: n1 = i + '_MaxT' n2 = i + '_MinT' n3 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = 0.5*df_weather.loc[:,n1] + 0.5*df_weather.loc[:,n2] Wind[:,j] = df_weather.loc[:,n3] weighted_AvgT[:,0] = weighted_AvgT[:,0] + AvgT[:,j]*CAISO_weights.loc[1,i] weighted_SimT[:,0] = weighted_SimT[:,0] + CAISO_sim_T[:,j]*CAISO_weights.loc[1,i] #Convert simulated temperature to F weighted_SimT=(weighted_SimT * 9/5) +32 CAISO_sim_T_F=(CAISO_sim_T * 9/5) +32 #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) HDD_sim = np.zeros((sim_days,num_cities)) CDD_sim = np.zeros((sim_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) for i in range(0,sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-CAISO_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,CAISO_sim_T_F[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) CDD_wind_sim = np.multiply(CAISO_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(CAISO_sim_W,binary_HDD_sim) ########################### # CAISO - SDGE ########################### #convert load to array SDGE_load = df_load.loc[:,'SDGE'].values #remove NaNs a = np.argwhere(np.isnan(SDGE_load)) for i in a: SDGE_load[i] = SDGE_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(SDGE_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) SDGE_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) # simulated = np.append(simulated,y_hat) SDGE_sim = simulated.reshape((len(simulated),1)) # Residuals SDGEresiduals = SDGE_p - peaks SDGE_y = peaks #a=st.pearsonr(peaks,SDGE_p) #print a[0]**2 # RMSE RMSE = (np.sum((SDGEresiduals**2))/len(SDGEresiduals))**.5 ########################### # CAISO - SCE ########################### #convert load to array SCE_load = df_load.loc[:,'SCE'].values #remove NaNs a = np.argwhere(np.isnan(SCE_load)) for i in a: SCE_load[i] = SCE_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(SCE_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] ##multivariate regression # #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) SCE_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) simulated = np.append(simulated,y_hat) SCE_sim = simulated.reshape((len(simulated),1)) #a=st.pearsonr(peaks,SCE_p) #print a[0]**2 # Residuals SCEresiduals = SCE_p - peaks SCE_y = peaks # RMSE RMSE = (np.sum((SCEresiduals**2))/len(SCEresiduals))**.5 ########################### # CAISO - PG&E Valley ########################### #convert load to array PGEV_load = df_load.loc[:,'PGE_V'].values #remove NaNs a = np.argwhere(np.isnan(PGEV_load)) for i in a: PGEV_load[i] = PGEV_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(PGEV_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] ##multivariate regression # #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) PGEV_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) simulated = np.append(simulated,y_hat) PGEV_sim = simulated.reshape((len(simulated),1)) a=st.pearsonr(peaks,PGEV_p) print(a[0]**2, a[1]) # Residuals PGEVresiduals = PGEV_p - peaks PGEV_y = peaks # RMSE RMSE = (np.sum((PGEVresiduals**2))/len(PGEVresiduals))**.5 ########################### # CAISO - PG&E Bay ########################### #convert load to array PGEB_load = df_load.loc[:,'PGE_B'].values #remove NaNs a = np.argwhere(np.isnan(PGEB_load)) for i in a: PGEB_load[i] = PGEB_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(PGEB_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) PGEB_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) # simulated = np.append(simulated,y_hat) PGEB_sim = simulated.reshape((len(simulated),1)) #a=st.pearsonr(peaks,PGEB_p) #print a[0]**2 # Residuals PGEBresiduals = PGEB_p - peaks PGEB_y = peaks # RMSE RMSE = (np.sum((PGEBresiduals**2))/len(PGEBresiduals))**.5 #Collect residuals from load regression R = np.column_stack((BPAresiduals,SDGEresiduals,SCEresiduals,PGEVresiduals,PGEBresiduals)) ResidualsLoad = R[0:3*365,:] ################################### # PATH 46 ################################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/46_daily.xlsx',sheet_name='Sheet1',header=0) #find average temps cities = ['Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Path66']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path46'}, inplace=True) df_data.rename(columns={4:'Weekday'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] y = df_data.loc[:,'Path46'] #multivariate regression jan_reg_46 = linear_model.LinearRegression() feb_reg_46 = linear_model.LinearRegression() mar_reg_46 = linear_model.LinearRegression() apr_reg_46 = linear_model.LinearRegression() may_reg_46 = linear_model.LinearRegression() jun_reg_46 = linear_model.LinearRegression() jul_reg_46 = linear_model.LinearRegression() aug_reg_46 = linear_model.LinearRegression() sep_reg_46 = linear_model.LinearRegression() oct_reg_46 = linear_model.LinearRegression() nov_reg_46 = linear_model.LinearRegression() dec_reg_46 = linear_model.LinearRegression() # Train the model using the training sets jan_reg_46.fit(jan.loc[:,'Weekday':],jan.loc[:,'Path46']) feb_reg_46.fit(feb.loc[:,'Weekday':],feb.loc[:,'Path46']) mar_reg_46.fit(mar.loc[:,'Weekday':],mar.loc[:,'Path46']) apr_reg_46.fit(apr.loc[:,'Weekday':],apr.loc[:,'Path46']) may_reg_46.fit(may.loc[:,'Weekday':],may.loc[:,'Path46']) jun_reg_46.fit(jun.loc[:,'Weekday':],jun.loc[:,'Path46']) jul_reg_46.fit(jul.loc[:,'Weekday':],jul.loc[:,'Path46']) aug_reg_46.fit(aug.loc[:,'Weekday':],aug.loc[:,'Path46']) sep_reg_46.fit(sep.loc[:,'Weekday':],sep.loc[:,'Path46']) oct_reg_46.fit(oct.loc[:,'Weekday':],oct.loc[:,'Path46']) nov_reg_46.fit(nov.loc[:,'Weekday':],nov.loc[:,'Path46']) dec_reg_46.fit(dec.loc[:,'Weekday':],dec.loc[:,'Path46']) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'Weekday':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jan_reg_46.predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = feb_reg_46.predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = mar_reg_46.predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = apr_reg_46.predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = may_reg_46.predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jun_reg_46.predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jul_reg_46.predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = aug_reg_46.predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = sep_reg_46.predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = oct_reg_46.predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = nov_reg_46.predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = dec_reg_46.predict(s) predicted = np.append(predicted,p) Path46_p = predicted # Residuals residuals = predicted - y.values Residuals46 = np.reshape(residuals[730:],(1095,1)) Path46_y = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 ##R2 #a=st.pearsonr(y,predicted) #print a[0]**2 ############################### # NW PATHS ############################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/NW_Path_data.xlsx',sheet_name='Daily',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Weekday']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) H = df_data #df_data.to_excel('Synthetic_demand_pathflows/cX.xlsx') df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path8'}, inplace=True) df_data.rename(columns={4:'Path14'}, inplace=True) df_data.rename(columns={5:'Path3'}, inplace=True) df_data.rename(columns={6:'BPA_wind'}, inplace=True) df_data.rename(columns={7:'BPA_hydro'}, inplace=True) df_data.rename(columns={8:'Weekday'}, inplace=True) df_data.rename(columns={9:'Salem_HDD'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path8','Path14','Path3'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) NWPaths_p= np.zeros((len(cX),num_lines)) NWPaths_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name='jan_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='feb_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='mar_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='apr_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='may_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='jun_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='jul_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='aug_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='sep_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='oct_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='nov_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='dec_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() # Train the model using the training sets name='jan_reg_NW' + str(line) locals()[name].fit(jan.loc[:,'BPA_wind':],jan.loc[:,line]) name='feb_reg_NW' + str(line) locals()[name].fit(feb.loc[:,'BPA_wind':],feb.loc[:,line]) name='mar_reg_NW' + str(line) locals()[name].fit(mar.loc[:,'BPA_wind':],mar.loc[:,line]) name='apr_reg_NW' + str(line) locals()[name].fit(apr.loc[:,'BPA_wind':],apr.loc[:,line]) name='may_reg_NW' + str(line) locals()[name].fit(may.loc[:,'BPA_wind':],may.loc[:,line]) name='jun_reg_NW' + str(line) locals()[name].fit(jun.loc[:,'BPA_wind':],jun.loc[:,line]) name='jul_reg_NW' + str(line) locals()[name].fit(jul.loc[:,'BPA_wind':],jul.loc[:,line]) name='aug_reg_NW' + str(line) locals()[name].fit(aug.loc[:,'BPA_wind':],aug.loc[:,line]) name='sep_reg_NW' + str(line) locals()[name].fit(sep.loc[:,'BPA_wind':],sep.loc[:,line]) name='oct_reg_NW' + str(line) locals()[name].fit(oct.loc[:,'BPA_wind':],oct.loc[:,line]) name='nov_reg_NW' + str(line) locals()[name].fit(nov.loc[:,'BPA_wind':],nov.loc[:,line]) name='dec_reg_NW' + str(line) locals()[name].fit(dec.loc[:,'BPA_wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'BPA_wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jan_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='feb_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='mar_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='apr_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='may_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jun_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jul_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='aug_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='sep_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='oct_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='nov_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='dec_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) NWPaths_p[:,line_index] = predicted # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals NWPaths_y[:,line_index] = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 # #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 ResidualsNWPaths = export_residuals ############################### # Other CA PATHS ############################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/OtherCA_Path_data.xlsx',sheet_name='Daily',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Path66']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path61'}, inplace=True) df_data.rename(columns={4:'Path42'}, inplace=True) df_data.rename(columns={5:'Path24'}, inplace=True) df_data.rename(columns={6:'Path45'}, inplace=True) df_data.rename(columns={7:'BPA_wind'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path61','Path42','Path24','Path45'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) OtherCA_Paths_p= np.zeros((len(cX),num_lines)) OtherCA_Paths_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name_1='jan_reg_CA' + str(line) name_2='feb_reg_CA' + str(line) name_3='mar_reg_CA' + str(line) name_4='apr_reg_CA' + str(line) name_5='may_reg_CA' + str(line) name_6='jun_reg_CA' + str(line) name_7='jul_reg_CA' + str(line) name_8='aug_reg_CA' + str(line) name_9='sep_reg_CA' + str(line) name_10='oct_reg_CA' + str(line) name_11='nov_reg_CA' + str(line) name_12='dec_reg_CA' + str(line) locals()[name_1] = linear_model.LinearRegression() locals()[name_2] = linear_model.LinearRegression() locals()[name_3] = linear_model.LinearRegression() locals()[name_4] = linear_model.LinearRegression() locals()[name_5] = linear_model.LinearRegression() locals()[name_6] = linear_model.LinearRegression() locals()[name_7] = linear_model.LinearRegression() locals()[name_8] = linear_model.LinearRegression() locals()[name_9] = linear_model.LinearRegression() locals()[name_10] = linear_model.LinearRegression() locals()[name_11] = linear_model.LinearRegression() locals()[name_12] = linear_model.LinearRegression() # Train the model using the training sets locals()[name_1].fit(jan.loc[:,'BPA_wind':],jan.loc[:,line]) locals()[name_2].fit(feb.loc[:,'BPA_wind':],feb.loc[:,line]) locals()[name_3].fit(mar.loc[:,'BPA_wind':],mar.loc[:,line]) locals()[name_4].fit(apr.loc[:,'BPA_wind':],apr.loc[:,line]) locals()[name_5].fit(may.loc[:,'BPA_wind':],may.loc[:,line]) locals()[name_6].fit(jun.loc[:,'BPA_wind':],jun.loc[:,line]) locals()[name_7].fit(jul.loc[:,'BPA_wind':],jul.loc[:,line]) locals()[name_8].fit(aug.loc[:,'BPA_wind':],aug.loc[:,line]) locals()[name_9].fit(sep.loc[:,'BPA_wind':],sep.loc[:,line]) locals()[name_10].fit(oct.loc[:,'BPA_wind':],oct.loc[:,line]) locals()[name_11].fit(nov.loc[:,'BPA_wind':],nov.loc[:,line]) locals()[name_12].fit(dec.loc[:,'BPA_wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'BPA_wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) OtherCA_Paths_p[:,line_index] = predicted # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals OtherCA_Paths_y[:,line_index] = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 # #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 ResidualsOtherCA_Paths = export_residuals ########################## # PATH 65 & 66 ########################## #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/Path65_66_regression_data.xlsx',sheet_name='Sheet1',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Weekday']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path65'}, inplace=True) df_data.rename(columns={4:'Path66'}, inplace=True) df_data.rename(columns={5:'Wind'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path65','Path66'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) Path65_66_p = np.zeros((len(cX),num_lines)) Path65_66_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name_1='jan_reg_6566' + str(line) name_2='feb_reg_6566' + str(line) name_3='mar_reg_6566' + str(line) name_4='apr_reg_6566' + str(line) name_5='may_reg_6566' + str(line) name_6='jun_reg_6566' + str(line) name_7='jul_reg_6566' + str(line) name_8='aug_reg_6566' + str(line) name_9='sep_reg_6566' + str(line) name_10='oct_reg_6566' + str(line) name_11='nov_reg_6566' + str(line) name_12='dec_reg_6566' + str(line) locals()[name_1] = linear_model.LinearRegression() locals()[name_2] = linear_model.LinearRegression() locals()[name_3] = linear_model.LinearRegression() locals()[name_4] = linear_model.LinearRegression() locals()[name_5] = linear_model.LinearRegression() locals()[name_6] = linear_model.LinearRegression() locals()[name_7] = linear_model.LinearRegression() locals()[name_8] = linear_model.LinearRegression() locals()[name_9] = linear_model.LinearRegression() locals()[name_10] = linear_model.LinearRegression() locals()[name_11] = linear_model.LinearRegression() locals()[name_12] = linear_model.LinearRegression() # Train the model using the training sets locals()[name_1].fit(jan.loc[:,'Wind':],jan.loc[:,line]) locals()[name_2].fit(feb.loc[:,'Wind':],feb.loc[:,line]) locals()[name_3].fit(mar.loc[:,'Wind':],mar.loc[:,line]) locals()[name_4].fit(apr.loc[:,'Wind':],apr.loc[:,line]) locals()[name_5].fit(may.loc[:,'Wind':],may.loc[:,line]) locals()[name_6].fit(jun.loc[:,'Wind':],jun.loc[:,line]) locals()[name_7].fit(jul.loc[:,'Wind':],jul.loc[:,line]) locals()[name_8].fit(aug.loc[:,'Wind':],aug.loc[:,line]) locals()[name_9].fit(sep.loc[:,'Wind':],sep.loc[:,line]) locals()[name_10].fit(oct.loc[:,'Wind':],oct.loc[:,line]) locals()[name_11].fit(nov.loc[:,'Wind':],nov.loc[:,line]) locals()[name_12].fit(dec.loc[:,'Wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'Wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) Path65_66_p[:,line_index] = predicted Path65_66_y[:,line_index] = y.values # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals # # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 Residuals65_66 = export_residuals[730:,:] ##################################################################### # Residual Analysis ##################################################################### R = np.column_stack((ResidualsLoad,ResidualsNWPaths,ResidualsOtherCA_Paths,Residuals46,Residuals65_66)) rc = np.shape(R) cols = rc[1] mus = np.zeros((cols,1)) stds = np.zeros((cols,1)) R_w = np.zeros(np.shape(R)) sim_days = len(R_w) #whiten residuals for i in range(0,cols): mus[i] = np.mean(R[:,i]) stds[i] = np.std(R[:,i]) R_w[:,i] = (R[:,i] - mus[i])/stds[i] #Vector autoregressive model on residuals model = VAR(R_w) results = model.fit(1) sim_residuals = np.zeros((sim_days,cols)) errors = np.zeros((sim_days,cols)) p = results.params y_seeds = R_w[-1] C = results.sigma_u means = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] E = np.random.multivariate_normal(means,C,sim_days) ys = np.zeros((cols,1)) # Generate cross correlated residuals for i in range(0,sim_days): for j in range(1,cols+1): name='y' + str(j) locals()[name]= p[0,j-1] + p[1,j-1]*y_seeds[0]+ p[2,j-1]*y_seeds[1]+ p[3,j-1]*y_seeds[2]+ p[4,j-1]*y_seeds[3]+ p[5,j-1]*y_seeds[4]+ p[6,j-1]*y_seeds[5]+ p[7,j-1]*y_seeds[6]+ p[8,j-1]*y_seeds[7]+ p[9,j-1]*y_seeds[8]+ p[10,j-1]*y_seeds[9]+ p[11,j-1]*y_seeds[10]+ p[12,j-1]*y_seeds[11]+ p[13,j-1]*y_seeds[12]+ p[13,j-1]*y_seeds[12]+ p[14,j-1]*y_seeds[13]+ p[15,j-1]*y_seeds[14]+E[i,j-1] for j in range(1,cols+1): name='y' + str(j) y_seeds[j-1]=locals()[name] sim_residuals[i,:] = [y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15] for i in range(0,cols): sim_residuals[:,i] = sim_residuals[:,i]*stds[i]*(1/np.std(sim_residuals[:,i])) + mus[i] #validation Y = np.column_stack((np.reshape(BPA_y[0:3*365],(1095,1)),np.reshape(SDGE_y[0:3*365],(1095,1)),np.reshape(SCE_y[0:3*365],(1095,1)),np.reshape(PGEV_y[0:3*365],(1095,1)),np.reshape(PGEB_y[0:3*365],(1095,1)),NWPaths_y,OtherCA_Paths_y,np.reshape(Path46_y[730:],(1095,1)),np.reshape(Path65_66_y[730:,:],(1095,2)))) combined_BPA = np.reshape(sim_residuals[:,0],(1095,1)) + np.reshape(BPA_p[0:3*365],(1095,1)) combined_SDGE = np.reshape(sim_residuals[:,1],(1095,1)) + np.reshape(SDGE_p[0:3*365],(1095,1)) combined_SCE = np.reshape(sim_residuals[:,2],(1095,1)) + np.reshape(SCE_p[0:3*365],(1095,1)) combined_PGEV = np.reshape(sim_residuals[:,3],(1095,1)) + np.reshape(PGEV_p[0:3*365],(1095,1)) combined_PGEB = np.reshape(sim_residuals[:,4],(1095,1)) + np.reshape(PGEB_p[0:3*365],(1095,1)) combined_Path8 = np.reshape(sim_residuals[:,5],(1095,1)) + np.reshape(NWPaths_p[:,0],(1095,1)) combined_Path14 = np.reshape(sim_residuals[:,6],(1095,1)) + np.reshape(NWPaths_p[:,1],(1095,1)) combined_Path3 = np.reshape(sim_residuals[:,7],(1095,1)) + np.reshape(NWPaths_p[:,2],(1095,1)) combined_Path61 = np.reshape(sim_residuals[:,8],(1095,1)) + np.reshape(OtherCA_Paths_p[:,0],(1095,1)) combined_Path42 = np.reshape(sim_residuals[:,9],(1095,1)) + np.reshape(OtherCA_Paths_p[:,1],(1095,1)) combined_Path24 = np.reshape(sim_residuals[:,10],(1095,1)) + np.reshape(OtherCA_Paths_p[:,2],(1095,1)) combined_Path45 = np.reshape(sim_residuals[:,11],(1095,1)) + np.reshape(OtherCA_Paths_p[:,3],(1095,1)) combined_Path46 = np.reshape(sim_residuals[:,12],(1095,1)) + np.reshape(Path46_p[730:],(1095,1)) combined_Path65 = np.reshape(sim_residuals[:,13],(1095,1)) + np.reshape(Path65_66_p[730:,0],(1095,1)) combined_Path66 = np.reshape(sim_residuals[:,14],(1095,1)) + np.reshape(Path65_66_p[730:,1],(1095,1)) combined = np.column_stack((combined_BPA,combined_SDGE,combined_SCE,combined_PGEV,combined_PGEB,combined_Path8,combined_Path14,combined_Path3,combined_Path61,combined_Path42,combined_Path24,combined_Path45,combined_Path46,combined_Path65,combined_Path66)) rc = np.shape(Y) cols = rc[1] names = ['BPA','SDGE','SCE','PGEV','PGEB','Path8','Path14','Path3','Path61','Path42','Path24','Path45','Path46','Path65','Path66'] #for n in names: # # n_index = names.index(n) # # plt.figure() # plt.plot(combined[:,n_index],'r') # plt.plot(Y[:,n_index],'b') # plt.title(n) # ########################################################################################################################################################## #Simulating demand and path ######################################################################################################################################################### #Sim Residual simulation_length=len(sim_weather) syn_residuals = np.zeros((simulation_length,cols)) errors = np.zeros((simulation_length,cols)) y_seeds = R_w[-1] C = results.sigma_u means = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] E = np.random.multivariate_normal(means,C,simulation_length) ys = np.zeros((cols,1)) for i in range(0,simulation_length): for n in range(0,cols): ys[n] = p[0,n] for m in range(0,cols): ys[n] = ys[n] + p[m+1,n]*y_seeds[n] ys[n] = ys[n] + E[i,n] for n in range(0,cols): y_seeds[n] = ys[n] syn_residuals[i,:] = np.reshape([ys],(1,cols)) for i in range(0,cols): syn_residuals[:,i] = syn_residuals[:,i]*stds[i]*(1/np.std(syn_residuals[:,i])) + mus[i] ################################################## # PATH NW ################################################## #This only uses BPA wind and hydro col_nw_T =['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_nw_W =['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W','TUCSON_W','PHOENIX_W','LAS VEGAS_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','<NAME>'] num_cities = len(col_nw_T) NW_sim_T=sim_weather[col_nw_T].values NW_sim_W=sim_weather[col_nw_W].values NW_sim_T=sim_weather[col_nw_T].values NW_sim_W=sim_weather[col_nw_W].values NW_sim_T_F=(NW_sim_T * 9/5) +32 NW_sim_W =NW_sim_W *2.23694 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-NW_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,NW_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(NW_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(NW_sim_W,binary_HDD_sim) #Need Month,Day,Year,8 14 3 BPA_wind,BPA_hydro sim_BPA_hydro = pd.read_csv('PNW_hydro/FCRPS/Path_dams.csv',header=None) sim_BPA_hydro=sim_BPA_hydro.values sim_BPA_hydro=np.sum(sim_BPA_hydro,axis=1)/24 #What is the common length effect_sim_year=int(len(sim_BPA_hydro)/365) sim_month=sim_month[:len(sim_BPA_hydro)] sim_day=sim_day[:len(sim_BPA_hydro)] sim_year=sim_year[:len(sim_BPA_hydro)] sim_dow= sim_dow[:len(sim_BPA_hydro)] sim_wind_power=pd.read_csv('Synthetic_wind_power/wind_power_sim.csv',header=0) sim_BPA_wind_power= sim_wind_power.loc[:,'BPA']/24 sim_wind_daily = np.zeros((effect_sim_year*365,1)) for i in range(0,effect_sim_year*365): sim_wind_daily[i] = np.sum((sim_BPA_wind_power.loc[i*24:i*24+24])) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),sim_wind_daily,sim_BPA_hydro,sim_dow)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path8'}, inplace=True) df_data_sim.rename(columns={4:'Path14'}, inplace=True) df_data_sim.rename(columns={5:'Path3'}, inplace=True) df_data_sim.rename(columns={6:'BPA_wind'}, inplace=True) df_data_sim.rename(columns={7:'BPA_hydro'}, inplace=True) df_data_sim.rename(columns={8:'Weekday'}, inplace=True) df_data_sim.rename(columns={9:'Salem_HDD'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] lines = ['Path8','Path14','Path3'] upper = [1900,1500,1900] lower = [-600,-900,-2200] for line in lines: name='predicted_' + str(line) locals()[name]=[] for line in lines: predicted=[] rc = np.shape(jan2.loc[:,'BPA_wind':]) n = rc[1] y = df_data_sim.loc[:,line] line_index = lines.index(line) #regression names name_1='jan_reg_NW' + str(line) name_2='feb_reg_NW' + str(line) name_3='mar_reg_NW' + str(line) name_4='apr_reg_NW' + str(line) name_5='may_reg_NW' + str(line) name_6='jun_reg_NW' + str(line) name_7='jul_reg_NW' + str(line) name_8='aug_reg_NW' + str(line) name_9='sep_reg_NW' + str(line) name_10='oct_reg_NW' + str(line) name_11='nov_reg_NW' + str(line) name_12='dec_reg_NW' + str(line) for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) if predicted[i] > upper[line_index]: predicted[i] = upper[line_index] elif predicted[i] < lower[line_index]: predicted[i] = lower[line_index] name='predicted_' + str(line) locals()[name]=predicted syn_Path8=predicted_Path8+syn_residuals[:effect_sim_year*365,5] syn_Path14=predicted_Path14+syn_residuals[:effect_sim_year*365,6] syn_Path3=predicted_Path3+syn_residuals[:effect_sim_year*365,7] bias = np.mean(syn_Path8) - np.mean(NWPaths_y[:,0]) syn_Path8 = syn_Path8 - bias bias = np.mean(syn_Path14) - np.mean(NWPaths_y[:,1]) syn_Path14 = syn_Path14 - bias bias = np.mean(syn_Path3) - np.mean(NWPaths_y[:,2]) syn_Path3 = syn_Path3 - bias S = df_data_sim.values HO = H.values stats = np.zeros((69,4)) for i in range(0,69): stats[i,0] = np.mean(S[:,i]) stats[i,1] = np.mean(HO[:,i]) stats[i,2] = np.std(S[:,i]) stats[i,3] = np.std(HO[:,i]) ################################################################################ ################################################### ## PATH 65 & 66 ################################################### col_6566_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_6566_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','<NAME>_W'] num_cities = len(col_6566_T) P6566_sim_T=sim_weather[col_6566_T].values P6566_sim_W=sim_weather[col_6566_W].values P6566_sim_W =P6566_sim_W*2.23694 sim_days = len(sim_weather) P6566_sim_T_F=(P6566_sim_T * 9/5) +32 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-P6566_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,P6566_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(P6566_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(P6566_sim_W,binary_HDD_sim) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),sim_wind_daily,sim_BPA_hydro,syn_Path3,syn_Path8,syn_Path14,sim_dow)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path65'}, inplace=True) df_data_sim.rename(columns={4:'Path66'}, inplace=True) df_data_sim.rename(columns={5:'Wind'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] lines = ['Path65','Path66'] upper = [3100,4300] lower = [-2210,-500] for line in lines: name='predicted_' + str(line) locals()[name]=[] for line in lines: predicted=[] rc = np.shape(jan2.loc[:,'Wind':]) n = rc[1] y = df_data_sim.loc[:,line] line_index = lines.index(line) #regression names name_1='jan_reg_6566' + str(line) name_2='feb_reg_6566' + str(line) name_3='mar_reg_6566' + str(line) name_4='apr_reg_6566' + str(line) name_5='may_reg_6566' + str(line) name_6='jun_reg_6566' + str(line) name_7='jul_reg_6566' + str(line) name_8='aug_reg_6566' + str(line) name_9='sep_reg_6566' + str(line) name_10='oct_reg_6566' + str(line) name_11='nov_reg_6566' + str(line) name_12='dec_reg_6566' + str(line) for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) if predicted[i] > upper[line_index]: predicted[i] = upper[line_index] elif predicted[i] < lower[line_index]: predicted[i] = lower[line_index] name='predicted_' + str(line) locals()[name]=predicted syn_Path65= predicted_Path65 + syn_residuals[:effect_sim_year*365,13] syn_Path66 = predicted_Path66 + syn_residuals[:effect_sim_year*365,14] bias = np.mean(syn_Path65) - np.mean(Path65_66_y[:,0]) syn_Path65 = syn_Path65 - bias bias = np.mean(syn_Path66) - np.mean(Path65_66_y[:,1]) syn_Path66 = syn_Path66 - bias ################################################### ## PATH 46 ################################################### #Find the simulated data at the sites col_46_T = ['TUCSON_T','PHOENIX_T','LAS VEGAS_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_46_W = ['TUCSON_W','PHOENIX_W','LAS VEGAS_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','SAN FRANCISCO_W'] num_cities = len(col_46_T) P46_sim_T=sim_weather[col_46_T].values P46_sim_W=sim_weather[col_46_W].values P46_sim_W =P46_sim_W *2.23694 sim_days = len(sim_weather) P46_sim_T_F=(P46_sim_T * 9/5) +32 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-P46_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,P46_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(P46_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(P46_sim_W,binary_HDD_sim) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] sim_Hoover = pd.read_csv('Synthetic_streamflows/synthetic_discharge_Hoover.csv',header=None) sim_Hoover=sim_Hoover.values sim_Hoover = sim_Hoover[:effect_sim_year*365] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),sim_dow,sim_Hoover,syn_Path65,syn_Path66)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path46'}, inplace=True) df_data_sim.rename(columns={4:'Weekday'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] y = df_data_sim.loc[:,'Path46'] predicted_Path46 =[] rc = np.shape(jan2.loc[:,'Weekday':]) n = rc[1] upper = 185000 lower = 48000 predicted=[] for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jan_reg_46.predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = feb_reg_46.predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = mar_reg_46.predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = apr_reg_46.predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = may_reg_46.predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jun_reg_46.predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jul_reg_46.predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = aug_reg_46.predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = sep_reg_46.predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = oct_reg_46.predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = nov_reg_46.predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = dec_reg_46.predict(s) predicted = np.append(predicted,p) if predicted[i] > upper: predicted[i] = upper elif predicted[i] < lower: predicted[i] = lower predicted_Path46=predicted syn_Path46=predicted_Path46+syn_residuals[:effect_sim_year*365,12] bias = np.mean(syn_Path46) - np.mean(Path46_y) syn_Path46 = syn_Path46 - bias syn_Path46 = syn_Path46/24 # ################################ ## Other CA PATHS ################################ col_ca_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_ca_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W','TUCSON_W','PHOENIX_W','LAS VEGAS_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','SAN FRANCISCO_W'] num_cities = len(col_ca_T) CA_sim_T=sim_weather[col_ca_T].values CA_sim_W=sim_weather[col_ca_W].values CA_sim_W =CA_sim_W *2.23694 CA_sim_T_F=(CA_sim_T * 9/5) +32 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-CA_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,CA_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(CA_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(CA_sim_W,binary_HDD_sim) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),sim_wind_daily,sim_BPA_hydro,sim_dow,syn_Path46,sim_Hoover,syn_Path65,syn_Path66)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path61'}, inplace=True) df_data_sim.rename(columns={4:'Path42'}, inplace=True) df_data_sim.rename(columns={5:'Path24'}, inplace=True) df_data_sim.rename(columns={6:'Path45'}, inplace=True) df_data_sim.rename(columns={7:'BPA_wind'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] lines = ['Path61','Path42','Path24','Path45'] upper = [1940,98,92,340] lower = [240,-400,-48,-190] num_lines = len(lines) for line in lines: name='predicted_' + str(line) locals()[name]=[] for line in lines: predicted=[] rc = np.shape(jan2.loc[:,'BPA_wind':]) n = rc[1] y = df_data_sim.loc[:,line] line_index = lines.index(line) #regression names name_1='jan_reg_CA' + str(line) name_2='feb_reg_CA' + str(line) name_3='mar_reg_CA' + str(line) name_4='apr_reg_CA' + str(line) name_5='may_reg_CA' + str(line) name_6='jun_reg_CA' + str(line) name_7='jul_reg_CA' + str(line) name_8='aug_reg_CA' + str(line) name_9='sep_reg_CA' + str(line) name_10='oct_reg_CA' + str(line) name_11='nov_reg_CA' + str(line) name_12='dec_reg_CA' + str(line) for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'BPA_wind':] s =
np.reshape(s[:,None],(1,n))
numpy.reshape
# Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Planar Stacker domain.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from dm_control import mujoco from dm_control.rl import control from dm_control.suite import base from dm_control.suite import common from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import xml_tools from lxml import etree import numpy as np _CLOSE = .01 # (Meters) Distance below which a thing is considered close. _CONTROL_TIMESTEP = .01 # (Seconds) _TIME_LIMIT = 10 # (Seconds) _ARM_JOINTS = ['arm_root', 'arm_shoulder', 'arm_elbow', 'arm_wrist', 'finger', 'fingertip', 'thumb', 'thumbtip'] SUITE = containers.TaggedTasks() def make_model(n_boxes): """Returns a tuple containing the model XML string and a dict of assets.""" xml_string = common.read_model('stacker.xml') parser = etree.XMLParser(remove_blank_text=True) mjcf = etree.XML(xml_string, parser) # Remove unused boxes for b in range(n_boxes, 4): box = xml_tools.find_element(mjcf, 'body', 'box' + str(b)) box.getparent().remove(box) return etree.tostring(mjcf, pretty_print=True), common.ASSETS @SUITE.add('hard') def stack_2(fully_observable=True, time_limit=_TIME_LIMIT, random=None, environment_kwargs=None): """Returns stacker task with 2 boxes.""" n_boxes = 2 physics = Physics.from_xml_string(*make_model(n_boxes=n_boxes)) task = Stack(n_boxes=n_boxes, fully_observable=fully_observable, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit, **environment_kwargs) @SUITE.add('hard') def stack_4(fully_observable=True, time_limit=_TIME_LIMIT, random=None, environment_kwargs=None): """Returns stacker task with 4 boxes.""" n_boxes = 4 physics = Physics.from_xml_string(*make_model(n_boxes=n_boxes)) task = Stack(n_boxes=n_boxes, fully_observable=fully_observable, random=random) environment_kwargs = environment_kwargs or {} return control.Environment( physics, task, control_timestep=_CONTROL_TIMESTEP, time_limit=time_limit, **environment_kwargs) class Physics(mujoco.Physics): """Physics with additional features for the Planar Manipulator domain.""" def bounded_joint_pos(self, joint_names): """Returns joint positions as (sin, cos) values.""" joint_pos = self.named.data.qpos[joint_names] return np.vstack([
np.sin(joint_pos)
numpy.sin
import numpy from src.ppopt.utils.general_utils import * def test_make_column_1(): test_case = make_column([1, 1, 1, 1]) correct_result = numpy.array([[1], [1], [1], [1]]) assert numpy.allclose(correct_result, test_case) assert correct_result.shape == test_case.shape def test_make_column_2(): k = numpy.ones((2, 2)) assert make_column(k).shape == (4, 1) def test_make_column_3(): k = numpy.ones((2,)) assert make_column(k).shape == (2, 1) def test_make_row_1(): test_case = make_row([1, 1, 1, 1]) correct_result = numpy.array([[1, 1, 1, 1]]) assert numpy.allclose(correct_result, test_case) assert correct_result.shape == test_case.shape def test_make_row_2(): k = numpy.ones((2, 2)) assert make_row(k).shape == (1, 4) def test_make_row_3(): k = numpy.ones((2,)) assert make_row(k).shape == (1, 2) def test_select_not_in_list_1(): A =
numpy.eye(5)
numpy.eye
import argparse import math from datetime import datetime import h5py import numpy as np import tensorflow as tf import socket import importlib import os import sys import provider import pickle BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = BASE_DIR sys.path.append(BASE_DIR) # model sys.path.append(os.path.join(ROOT_DIR, 'models')) sys.path.append(os.path.join(ROOT_DIR, 'utils')) import time from sklearn.neighbors import NearestNeighbors from sklearn.neighbors import KDTree parser = argparse.ArgumentParser() parser.add_argument('--category', default='chair', help='Which class') parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='pointnet_triplet', help='Model name [default: model]') parser.add_argument('--log_dir', default='log_chair_triplet/', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 2048]') parser.add_argument('--max_epoch', type=int, default=401, help='Epoch to run [default: 201]') parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 32]') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]') parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]') parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]') ####For triplets parser.add_argument('--margin', type=float, default=0.5, help='Margin for hinge loss [default: 0.5]') parser.add_argument('--positives_per_query', type=int, default=2, help='Number of potential positives in each training tuple [default: 2]') parser.add_argument('--negatives_per_query', type=int, default=13, help='Number of definite negatives in each training tuple [default: 18]') parser.add_argument('--output_dim', type=int, default=256, help='with or without autoencoder for triplet') FLAGS = parser.parse_args() EPOCH_CNT = 0 BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point MAX_EPOCH = FLAGS.max_epoch BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu MOMENTUM = FLAGS.momentum OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate ##For triplet POSITIVES_PER_QUERY= FLAGS.positives_per_query NEGATIVES_PER_QUERY= FLAGS.negatives_per_query MARGIN = FLAGS.margin MODEL = importlib.import_module(FLAGS.model) # import network module MODEL_FILE = os.path.join(os.path.join(ROOT_DIR, 'models'), FLAGS.model+'.py') LOG_DIR = FLAGS.log_dir if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def os.system('cp train_triplet.py %s' % (LOG_DIR)) # bkp of train procedure LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 HOSTNAME = socket.gethostname() OBJ_CAT = FLAGS.category TRAIN_FILE = '../candidate_generation/train_'+OBJ_CAT+'.h5' TEST_FILE = '../candidate_generation/test_'+OBJ_CAT+'.h5' TRAIN_DATA = provider.load_h5(TRAIN_FILE) TEST_DATA = provider.load_h5(TEST_FILE) TRAIN_CANDIDATES_FILE = 'generate_deformed_candidates/chamfer_triplet_train_'+OBJ_CAT+'.pickle' TEST_CANDIDATES_FILE = 'generate_deformed_candidates/chamfer_triplet_test_'+OBJ_CAT+'.pickle' pickle_in = open(TRAIN_CANDIDATES_FILE,"rb") TRAIN_DICT = pickle.load(pickle_in) pickle_in = open(TEST_CANDIDATES_FILE,"rb") TEST_DICT = pickle.load(pickle_in) OUTPUT_DIM = FLAGS.output_dim np.random.seed(0) global TRAINING_LATENT_VECTORS TRAINING_LATENT_VECTORS=[] def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learing_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch*BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def train(): with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): query= MODEL.placeholder_inputs(BATCH_SIZE, 1, NUM_POINT) positives= MODEL.placeholder_inputs(BATCH_SIZE, POSITIVES_PER_QUERY, NUM_POINT) negatives= MODEL.placeholder_inputs(BATCH_SIZE, NEGATIVES_PER_QUERY, NUM_POINT) is_training_pl = tf.placeholder(tf.bool, shape=()) print (is_training_pl) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. batch = tf.Variable(0) bn_decay = get_bn_decay(batch) tf.summary.scalar('bn_decay', bn_decay) print ("--- Get model and loss") with tf.variable_scope("query_triplets") as scope: vecs= tf.concat([query, positives, negatives],1) print(vecs) out_vecs, end_points= MODEL.get_model(vecs, is_training_pl, autoencoder=False, bn_decay=bn_decay, output_dim=OUTPUT_DIM) print(out_vecs) q_vec, pos_vecs, neg_vecs= tf.split(out_vecs, [1,POSITIVES_PER_QUERY,NEGATIVES_PER_QUERY],1) # pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay) # Get loss loss = MODEL.triplet_loss(q_vec, pos_vecs, neg_vecs, MARGIN) # loss = MODEL.chamfer_loss(pred, pointclouds_pl) tf.summary.scalar('triplet_loss', loss) print ("--- Get training operator") # Get training operator learning_rate = get_learning_rate(batch) tf.summary.scalar('learning_rate', learning_rate) if OPTIMIZER == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM) elif OPTIMIZER == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=batch) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Add summary writers merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph) test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph) # Init variables init = tf.global_variables_initializer() sess.run(init) #sess.run(init, {is_training_pl: True}) ops = {'query': query, 'positives': positives, 'negatives': negatives, 'q_vec':q_vec, 'pos_vecs': pos_vecs, 'neg_vecs': neg_vecs, 'is_training_pl': is_training_pl, 'loss': loss, 'train_op': train_op, 'merged': merged, 'step': batch, 'end_points': end_points} best_loss = 1e20 for epoch in range(MAX_EPOCH): log_string('**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() train_one_epoch(sess, ops, train_writer) ### Train with hard negatives # if (epoch > 50): # train_one_epoch(sess, ops, train_writer, use_hard_neg=True, recache=True) # else: # train_one_epoch(sess, ops, train_writer) epoch_loss = eval_one_epoch(sess, ops, test_writer) if epoch_loss < best_loss: best_loss = epoch_loss save_path = saver.save(sess, os.path.join(LOG_DIR, "best_model_epoch_%03d.ckpt"%(epoch))) log_string("Model saved in file: %s" % save_path) # Save the variables to disk. if epoch % 10 == 0: save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt")) log_string("Model saved in file: %s" % save_path) def train_one_epoch(sess, ops, train_writer, use_hard_neg=False, recache = False): """ ops: dict mapping from string to tf ops """ global TRAINING_LATENT_VECTORS is_training = True # Sample and shuffle train samples current_data, positives, negatives, idx = provider.get_current_data_arap(TRAIN_DATA, TRAIN_DICT, POSITIVES_PER_QUERY, NEGATIVES_PER_QUERY, NUM_POINT, shuffle=True) log_string(str(datetime.now())) num_batches = current_data.shape[0]//BATCH_SIZE train_pcs = provider.get_current_data(TRAIN_DATA, NUM_POINT, shuffle=False) if (use_hard_neg and len(TRAINING_LATENT_VECTORS)==0): TRAINING_LATENT_VECTORS = get_latent_vectors(sess, ops) num_hard_negs = 8 loss_sum = 0 for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE batch_data = current_data[start_idx:end_idx, :, :] batch_data= np.expand_dims(batch_data,axis=1) curr_positives = positives[start_idx:end_idx, :, :, :] if (use_hard_neg): # print("Using hard negatives") curr_idx = idx[start_idx:end_idx] # current_queries = train_pcs[curr_idx] # query_feat = get_feature_representation(current_queries, sess, ops) curr_queries_latent_vector = TRAINING_LATENT_VECTORS[curr_idx] curr_negatives = [] for j in range(BATCH_SIZE): neg_idx = TRAIN_DICT["negatives"][curr_idx[j]] #returns a list # if (len(neg_idx) == 0): # continue if (len(neg_idx) < NEGATIVES_PER_QUERY): selected_idx = np.random.choice(neg_idx, NEGATIVES_PER_QUERY, replace=True) else: neg_latent_vec = TRAINING_LATENT_VECTORS[np.array(neg_idx)] query_vec = curr_queries_latent_vector[j] hard_negs = get_hard_negatives(query_vec, neg_latent_vec, neg_idx, num_hard_negs) ##Get negative pcs if (len(neg_idx) - num_hard_negs < NEGATIVES_PER_QUERY): selected_idx = np.random.choice(neg_idx, NEGATIVES_PER_QUERY, replace=False) selected_idx[:num_hard_negs] = np.array(hard_negs) else: neg_idx = np.delete(np.array(neg_idx), np.where(np.isin(np.array(neg_idx) ,np.array(hard_negs)))) to_select_idx = np.arange(0,len(neg_idx)) np.random.shuffle(to_select_idx) selected_idx = neg_idx[to_select_idx[0:NEGATIVES_PER_QUERY]] selected_idx[:num_hard_negs] = np.array(hard_negs) curr_neg_pcs = train_pcs[selected_idx] curr_negatives.append(curr_neg_pcs) curr_negatives = np.array(curr_negatives) if (len(curr_negatives.shape) != 4 or curr_negatives.shape[0]!=BATCH_SIZE): continue else: curr_negatives = negatives[start_idx:end_idx, :, :, :] feed_dict = {ops['query']: batch_data, ops['positives']: curr_positives, ops['negatives']: curr_negatives, ops['is_training_pl']: is_training} summary, step, _, loss_val = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['loss']], feed_dict=feed_dict) train_writer.add_summary(summary, step) loss_sum += loss_val if (batch_idx+1)%10 == 0: log_string(' -- %03d / %03d --' % (batch_idx+1, num_batches)) log_string('mean loss: %f' % (loss_sum / 10)) loss_sum = 0 def eval_one_epoch(sess, ops, test_writer): """ ops: dict mapping from string to tf ops """ global EPOCH_CNT is_training = False # current_data = provider.get_current_data(TEST_DATA, NUM_POINT) current_data, positives, negatives = provider.get_current_data_triplet(TEST_DATA, TEST_DICT, POSITIVES_PER_QUERY, NEGATIVES_PER_QUERY, NUM_POINT, shuffle=True) num_batches = current_data.shape[0]//BATCH_SIZE log_string(str(datetime.now())) log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT)) loss_sum = 0 for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx+1) * BATCH_SIZE batch_data = current_data[start_idx:end_idx, :, :] batch_data= np.expand_dims(batch_data,axis=1) curr_positives = positives[start_idx:end_idx, :, :, :] curr_negatives = negatives[start_idx:end_idx, :, :, :] feed_dict = {ops['query']: batch_data, ops['positives']: curr_positives, ops['negatives']: curr_negatives, ops['is_training_pl']: is_training} summary, step, loss_val = sess.run([ops['merged'], ops['step'], ops['loss']], feed_dict=feed_dict) test_writer.add_summary(summary, step) loss_sum += loss_val log_string('eval mean loss: %f' % (loss_sum / float(num_batches))) EPOCH_CNT += 1 return loss_sum/float(num_batches) def get_hard_negatives(query_vec, neg_latent_vecs, neg_idx, num_to_take): neg_latent_vecs=np.array(neg_latent_vecs) nbrs = KDTree(neg_latent_vecs) distances, indices = nbrs.query(np.array([query_vec]),k=num_to_take) hard_negs=np.squeeze(np.array(neg_idx)[indices[0]]) hard_negs= hard_negs.tolist() return hard_negs def get_latent_vectors(sess, ops): print("Caching latent features.") start_time = time.time() is_training=False train_idxs =
np.arange(0, TRAIN_DATA.shape[0])
numpy.arange
# SPDX-FileCopyrightText: Copyright 2021, <NAME> <<EMAIL>> # SPDX-License-Identifier: BSD-3-Clause # SPDX-FileType: SOURCE # # This program is free software: you can redistribute it and/or modify it under # the terms of the license found in the LICENSE.txt file in the root directory # of this source tree. # ======= # Imports # ======= import numpy # ============================== # find interval with sign change # ============================== def find_interval_with_sign_change(f, bracket, num_bracket_trials, args=(), ): """ Finds an interval ``[x0, x1]`` in which ``f(x0)`` and ``f(x1)`` have opposite signs. The interval is used for some root finding algorithms, such as Brent and Chandrupatla method. Finding such interval is known as *bracketing* the function. If the initial interval is not a sitable *bracket*, then it iterates *num_bracket_trials* times. If within the iterations the bracket is yet not found, it exits with false status. """ # Initialization bracket_found = False # Interval bounds x0 = bracket[0] x1 = bracket[1] # Initial bracket f0 = f(x0, *args) f1 = f(x1, *args) # Trials iterations = 0 while (not bracket_found) and (iterations < num_bracket_trials): iterations += 1 if
numpy.sign(f0)
numpy.sign
import numpy as np import scipy.sparse as sparse import scipy.sparse.linalg as linalg from landlab import Component # Things to add: 1. Explicit stability check. # 2. Implicit handling of scenarios where kappa*dt exceeds critical step - # subdivide dt automatically. class PerronNLDiffuse(Component): """Nonlinear diffusion, following Perron (2011). This module uses Taylor Perron's implicit (2011) method to solve the nonlinear hillslope diffusion equation across a rectangular, regular grid for a single timestep. Note it works with the mass flux implicitly, and thus does not actually calculate it. Grid must be at least 5x5. Boundary condition handling assumes each edge uses the same BC for each of its nodes. This component cannot yet handle looped boundary conditions, but all others should be fine. This component has KNOWN STABILITY ISSUES which will be resolved in a future release; use at your own risk. The primary method of this class is :func:`run_one_step`. Examples -------- >>> from landlab.components import PerronNLDiffuse >>> from landlab import RasterModelGrid >>> import numpy as np >>> mg = RasterModelGrid((5, 5)) >>> z = mg.add_zeros("topographic__elevation", at="node") >>> nl = PerronNLDiffuse(mg, nonlinear_diffusivity=1.) >>> dt = 100. >>> nt = 20 >>> uplift_rate = 0.001 >>> for i in range(nt): ... z[mg.core_nodes] += uplift_rate*dt ... nl.run_one_step(dt) >>> z_target = np.array( ... [ 0. , 0. , 0. , 0. , 0. , ... 0. , 0.00778637, 0.0075553 , 0.00778637, 0. , ... 0. , 0.0075553 , 0.0078053 , 0.0075553 , 0. , ... 0. , 0.00778637, 0.0075553 , 0.00778637, 0. , ... 0. , 0. , 0. , 0. , 0. ]) >>> np.allclose(z, z_target) True References ---------- **Required Software Citation(s) Specific to this Component** None Listed **Additional References** <NAME>. (2011). Numerical methods for nonlinear hillslope transport laws. Journal of Geophysical Research 116(F2), 23 - 13. https://dx.doi.org/10.1029/2010jf001801 """ _name = "PerronNLDiffuse" _info = { "topographic__elevation": { "dtype": float, "intent": "inout", "optional": False, "units": "m", "mapping": "node", "doc": "Land surface topographic elevation", } } def __init__( self, grid, nonlinear_diffusivity=0.01, S_crit=33.0 * np.pi / 180.0, rock_density=2700.0, sed_density=2700.0, ): """ Parameters ---------- grid : RasterModelGrid A Landlab raster grid nonlinear_diffusivity : float, array or field name The nonlinear diffusivity S_crit : float (radians) The critical hillslope angle rock_density : float (kg*m**-3) The density of intact rock sed_density : float (kg*m**-3) The density of the mobile (sediment) layer """ super(PerronNLDiffuse, self).__init__(grid) self._bc_set_code = self._grid.bc_set_code self._values_to_diffuse = "topographic__elevation" self._kappa = nonlinear_diffusivity self._rock_density = rock_density self._sed_density = sed_density self._S_crit = S_crit self._uplift = 0.0 self._delta_x = grid.dx self._delta_y = grid.dy self._one_over_delta_x = 1.0 / self._delta_x self._one_over_delta_y = 1.0 / self._delta_y self._one_over_delta_x_sqd = self._one_over_delta_x ** 2.0 self._one_over_delta_y_sqd = self._one_over_delta_y ** 2.0 self._b = 1.0 / self._S_crit ** 2.0 ncols = grid.number_of_node_columns self._ncols = ncols nrows = grid.number_of_node_rows self._nrows = nrows nnodes = grid.number_of_nodes self._nnodes = nnodes ninteriornodes = grid.number_of_interior_nodes ncorenodes = ninteriornodes - 2 * (ncols + nrows - 6) self._ninteriornodes = ninteriornodes self._interior_grid_width = ncols - 2 self._core_cell_width = ncols - 4 self._interior_corners = np.array( [ncols + 1, 2 * ncols - 2, nnodes - 2 * ncols + 1, nnodes - ncols - 2] ) _left_list = np.array(range(2 * ncols + 1, nnodes - 2 * ncols, ncols)) # ^these are still real IDs _right_list = np.array(range(3 * ncols - 2, nnodes - 2 * ncols, ncols)) _bottom_list = np.array(range(ncols + 2, 2 * ncols - 2)) _top_list = np.array(range(nnodes - 2 * ncols + 2, nnodes - ncols - 2)) self._left_list = _left_list self._right_list = _right_list self._bottom_list = _bottom_list self._top_list = _top_list self._core_nodes = self._coreIDtoreal(np.arange(ncorenodes, dtype=int)) self._corenodesbyintIDs = self._realIDtointerior(self._core_nodes) self._ncorenodes = len(self._core_nodes) self._corner_interior_IDs = self._realIDtointerior(self._interior_corners) # ^i.e., interior corners as interior IDs self._bottom_interior_IDs = self._realIDtointerior(np.array(_bottom_list)) self._top_interior_IDs = self._realIDtointerior(np.array(_top_list)) self._left_interior_IDs = self._realIDtointerior(np.array(_left_list)) self._right_interior_IDs = self._realIDtointerior(np.array(_right_list)) # build an ID map to let us easily map the variables of the core nodes # onto the operating matrix: # This array is ninteriornodes long, but the IDs it contains are # REAL IDs operating_matrix_ID_map = np.empty((ninteriornodes, 9)) self._interior_IDs_as_real = self._interiorIDtoreal(np.arange(ninteriornodes)) for j in range(ninteriornodes): i = self._interior_IDs_as_real[j] operating_matrix_ID_map[j, :] = np.array( [ (i - ncols - 1), (i - ncols), (i - ncols + 1), (i - 1), i, (i + 1), (i + ncols - 1), (i + ncols), (i + ncols + 1), ] ) self._operating_matrix_ID_map = operating_matrix_ID_map self._operating_matrix_core_int_IDs = self._realIDtointerior( operating_matrix_ID_map[self._corenodesbyintIDs, :] ) # ^shape(ncorenodes,9) # see below for corner and edge maps # Build masks for the edges and corners to be applied to the operating # matrix map. # Antimasks are the boundary nodes, masks are "normal" self._topleft_mask = [1, 2, 4, 5] topleft_antimask = [0, 3, 6, 7, 8] self._topright_mask = [0, 1, 3, 4] topright_antimask = [2, 5, 6, 7, 8] self._bottomleft_mask = [4, 5, 7, 8] bottomleft_antimask = [0, 1, 2, 3, 6] self._bottomright_mask = [3, 4, 6, 7] bottomright_antimask = [0, 1, 2, 5, 8] self._corners_masks = np.vstack( ( self._bottomleft_mask, self._bottomright_mask, self._topleft_mask, self._topright_mask, ) ) # ^(each_corner,mask_for_each_corner) self._corners_antimasks = np.vstack( ( bottomleft_antimask, bottomright_antimask, topleft_antimask, topright_antimask, ) ) # ^so shape becomes (4,5) self._left_mask = [1, 2, 4, 5, 7, 8] self._left_antimask = [0, 3, 6] self._top_mask = [0, 1, 2, 3, 4, 5] self._top_antimask = [6, 7, 8] self._right_mask = [0, 1, 3, 4, 6, 7] self._right_antimask = [2, 5, 8] self._bottom_mask = [3, 4, 5, 6, 7, 8] self._bottom_antimask = [0, 1, 2] self._antimask_corner_position = [0, 2, 2, 4] # ^this is the position w/i the corner antimasks that the true corner # actually occupies self._modulator_mask = np.array( [-ncols - 1, -ncols, -ncols + 1, -1, 0, 1, ncols - 1, ncols, ncols + 1] ) self.updated_boundary_conditions() def updated_boundary_conditions(self): """Call if grid BCs are updated after component instantiation.""" grid = self._grid nrows = self._nrows ncols = self._ncols # ^Set up terms for BC handling (still feels very clumsy) bottom_edge = grid.nodes_at_bottom_edge[1:-1] top_edge = grid.nodes_at_top_edge[1:-1] left_edge = grid.nodes_at_left_edge[1:-1] right_edge = grid.nodes_at_right_edge[1:-1] self._bottom_flag = 1 self._top_flag = 1 self._left_flag = 1 self._right_flag = 1 # self._corner_flags = [1,1,1,1] #In ID order, so BL,BR,TL,TR if np.all(grid.status_at_node[bottom_edge] == 4): # ^This should be all of them, or none of them self._bottom_flag = 4 elif np.all(grid.status_at_node[bottom_edge] == 3): self._bottom_flag = 3 elif np.all(grid.status_at_node[bottom_edge] == 2): self._bottom_flag = 2 elif np.all(grid.status_at_node[bottom_edge] == 1): pass else: raise NameError( "Different cells on the same grid edge have " "different boundary statuses" ) # Note this could get fraught if we need to open a cell to let # water flow out... if np.all(grid.status_at_node[top_edge] == 4): self._top_flag = 4 elif np.all(grid.status_at_node[top_edge] == 3): self._top_flag = 3 elif np.all(grid.status_at_node[top_edge] == 2): self._top_flag = 2 elif np.all(grid.status_at_node[top_edge] == 1): pass else: raise NameError( "Different cells on the same grid edge have " "different boundary statuses" ) if np.all(grid.status_at_node[left_edge] == 4): self._left_flag = 4 elif np.all(grid.status_at_node[left_edge] == 3): self._left_flag = 3 elif np.all(grid.status_at_node[left_edge] == 2): self._left_flag = 2 elif np.all(grid.status_at_node[left_edge] == 1): pass else: raise NameError( "Different cells on the same grid edge have " "different boundary statuses" ) if np.all(grid.status_at_node[right_edge] == 4): self._right_flag = 4 elif np.all(grid.status_at_node[right_edge] == 3): self._right_flag = 3 elif np.all(grid.status_at_node[right_edge] == 2): self._right_flag = 2 elif np.all(grid.status_at_node[right_edge] == 1): pass else: raise NameError( "Different cells on the same grid edge have " "different boundary statuses" ) self._fixed_grad_BCs_present = ( self._bottom_flag == 2 or self._top_flag == 2 or self._left_flag == 2 or self._right_flag == 2 ) self._looped_BCs_present = ( self._bottom_flag == 3 or self._top_flag == 3 or self._left_flag == 3 or self._right_flag == 3 ) if self._fixed_grad_BCs_present: if self._values_to_diffuse != grid.fixed_gradient_of: raise ValueError( "Boundary conditions set in the grid don't " "apply to the data the diffuser is trying to " "work with" ) if np.any(grid.status_at_node == 2): self._fixed_grad_offset_map = np.empty(nrows * ncols, dtype=float) self._fixed_grad_anchor_map = np.empty_like(self._fixed_grad_offset_map) self._fixed_grad_offset_map[ grid.fixed_gradient_node_properties["boundary_node_IDs"] ] = grid.fixed_gradient_node_properties["values_to_add"] self._corner_flags = grid.status_at_node[[0, ncols - 1, -ncols, -1]] op_mat_just_corners = self._operating_matrix_ID_map[ self._corner_interior_IDs, : ] op_mat_cnr0 = op_mat_just_corners[0, self._bottomleft_mask] op_mat_cnr1 = op_mat_just_corners[1, self._bottomright_mask] op_mat_cnr2 = op_mat_just_corners[2, self._topleft_mask] op_mat_cnr3 = op_mat_just_corners[3, self._topright_mask] op_mat_just_active_cnrs = np.vstack( (op_mat_cnr0, op_mat_cnr1, op_mat_cnr2, op_mat_cnr3) ) self._operating_matrix_corner_int_IDs = self._realIDtointerior( op_mat_just_active_cnrs ) # ^(4corners,4nodesactivepercorner) self._operating_matrix_bottom_int_IDs = self._realIDtointerior( self._operating_matrix_ID_map[self._bottom_interior_IDs, :][ :, self._bottom_mask ] ) # ^(nbottomnodes,6activenodeseach) self._operating_matrix_top_int_IDs = self._realIDtointerior( self._operating_matrix_ID_map[self._top_interior_IDs, :][:, self._top_mask] ) self._operating_matrix_left_int_IDs = self._realIDtointerior( self._operating_matrix_ID_map[self._left_interior_IDs, :][ :, self._left_mask ] ) self._operating_matrix_right_int_IDs = self._realIDtointerior( self._operating_matrix_ID_map[self._right_interior_IDs, :][ :, self._right_mask ] ) def _gear_timestep(self, timestep_in, new_grid): """This method allows the gearing between the model run step and the component (shorter) step. The method becomes unstable if S>Scrit, so we test to prevent this. We implicitly assume the initial condition does not contain slopes > Scrit. If the method persistently explodes, this may be the problem. """ extended_elevs = np.empty(self._grid.number_of_nodes + 1, dtype=float) extended_elevs[-1] = np.nan node_neighbors = self._grid.active_adjacent_nodes_at_node extended_elevs[:-1] = new_grid["node"][self._values_to_diffuse] max_offset = np.nanmax( np.fabs( extended_elevs[:-1][node_neighbors] - extended_elevs[:-1].reshape((self._grid.number_of_nodes, 1)) ) ) if max_offset > np.tan(self._S_crit) * min(self._grid.dx, self._grid.dy): # ^using S not tan(S) adds a buffer - but not appropriate self._internal_repeats = ( int( max_offset // (np.tan(self._S_crit) * min(self._grid.dx, self._grid.dy)) ) + 1 ) # now we rig it so the actual timestep is an integer divisor # of T_in: self._delta_t = timestep_in / self._internal_repeats self._uplift_per_step = ( new_grid["node"][self._values_to_diffuse] - self._grid["node"][self._values_to_diffuse] ) / self._internal_repeats if self._internal_repeats > 10000: raise ValueError( """Uplift rate is too high; solution is not stable!!""" ) else: self._internal_repeats = 1 self._delta_t = timestep_in self._uplift_per_step = ( new_grid["node"][self._values_to_diffuse] - self._grid["node"][self._values_to_diffuse] ) return self._delta_t def _set_variables(self, grid): """This function sets the variables needed for update(). Now vectorized, shouold run faster. At the moment, this method can only handle fixed value BCs. """ n_interior_nodes = grid.number_of_interior_nodes # Initialize the local builder lists _mat_RHS = np.zeros(n_interior_nodes) try: elev = grid["node"][self._values_to_diffuse] except KeyError: raise NameError("elevations not found in grid!") try: _delta_t = self._delta_t except AttributeError: raise NameError( """Timestep not set! Call _gear_timestep(tstep) after initializing the component, but before running it.""" ) _one_over_delta_x = self._one_over_delta_x _one_over_delta_x_sqd = self._one_over_delta_x_sqd _one_over_delta_y = self._one_over_delta_y _one_over_delta_y_sqd = self._one_over_delta_y_sqd _kappa = self._kappa _b = self._b _S_crit = self._S_crit _core_nodes = self._core_nodes corenodesbyintIDs = self._corenodesbyintIDs operating_matrix_core_int_IDs = self._operating_matrix_core_int_IDs operating_matrix_corner_int_IDs = self._operating_matrix_corner_int_IDs _interior_corners = self._interior_corners corners_antimasks = self._corners_antimasks corner_interior_IDs = self._corner_interior_IDs modulator_mask = self._modulator_mask corner_flags = self._corner_flags bottom_interior_IDs = self._bottom_interior_IDs top_interior_IDs = self._top_interior_IDs left_interior_IDs = self._left_interior_IDs right_interior_IDs = self._right_interior_IDs bottom_antimask = self._bottom_antimask _bottom_list = self._bottom_list top_antimask = self._top_antimask _top_list = self._top_list left_antimask = self._left_antimask _left_list = self._left_list right_antimask = self._right_antimask _right_list = self._right_list # Need to modify the "effective" values of the edge nodes if any of # the edges are inactive: if self._bottom_flag == 4: bottom_edge, inside_bottom_edge = grid.nodes[(0, 1), :] elev[bottom_edge] = elev[inside_bottom_edge] # corners are special cases, and assumed linked to the bottom and # top edge BCs... elev[bottom_edge[0]] = elev[inside_bottom_edge[1]] elev[bottom_edge[-1]] = elev[inside_bottom_edge[-2]] if self._top_flag == 4: top_edge, inside_top_edge = grid.nodes[(-1, -2), :] elev[top_edge] = elev[inside_top_edge] # corners are special cases, and assumed linked to the bottom and # top edge BCs... elev[top_edge[0]] = elev[inside_top_edge[1]] elev[top_edge[-1]] = elev[inside_top_edge[-2]] if self._left_flag == 4: left_edge = grid.nodes[1:-1, 0] inside_left_edge = grid.nodes[1:-1, 1] elev[left_edge] = elev[inside_left_edge] if self._right_flag == 4: right_edge = grid.nodes[1:-1, -1] inside_right_edge = grid.nodes[1:-1, -2] elev[right_edge] = elev[inside_right_edge] # replacing loop: cell_neighbors = grid.active_adjacent_nodes_at_node # ^E,N,W,S cell_diagonals = grid.diagonal_adjacent_nodes_at_node # NE,NW,SW,SE # ^this should be dealt with by active_neighbors... (skips bad nodes) _z_x = ( (elev[cell_neighbors[:, 0]] - elev[cell_neighbors[:, 2]]) * 0.5 * _one_over_delta_x ) _z_y = ( (elev[cell_neighbors[:, 1]] - elev[cell_neighbors[:, 3]]) * 0.5 * _one_over_delta_y ) _z_xx = ( elev[cell_neighbors[:, 0]] - 2.0 * elev + elev[cell_neighbors[:, 2]] ) * _one_over_delta_x_sqd _z_yy = ( elev[cell_neighbors[:, 1]] - 2.0 * elev + elev[cell_neighbors[:, 3]] ) * _one_over_delta_y_sqd _z_xy = ( ( elev[cell_diagonals[:, 0]] - elev[cell_diagonals[:, 1]] - elev[cell_diagonals[:, 3]] + elev[cell_diagonals[:, 2]] ) * 0.25 * _one_over_delta_x * _one_over_delta_y ) _d = 1.0 / (1.0 - _b * (_z_x * _z_x + _z_y * _z_y)) _abd_sqd = _kappa * _b * _d * _d _F_ij = -2.0 * _kappa * _d * ( _one_over_delta_x_sqd + _one_over_delta_y_sqd ) - 4.0 * _abd_sqd * ( _z_x * _z_x * _one_over_delta_x_sqd + _z_y * _z_y * _one_over_delta_y_sqd ) _F_ijminus1 = ( _kappa * _d * _one_over_delta_x_sqd - _abd_sqd * _z_x * (_z_xx + _z_yy) * _one_over_delta_x - 4.0 * _abd_sqd * _b * _d * (_z_x * _z_x * _z_xx + _z_y * _z_y * _z_yy + 2.0 * _z_x * _z_y * _z_xy) * _z_x * _one_over_delta_x - 2.0 * _abd_sqd * ( _z_x * _z_xx * _one_over_delta_x - _z_x * _z_x * _one_over_delta_x_sqd + _z_y * _z_xy * _one_over_delta_x ) ) _F_ijplus1 = ( _kappa * _d * _one_over_delta_x_sqd + _abd_sqd * _z_x * (_z_xx + _z_yy) * _one_over_delta_x + 4.0 * _abd_sqd * _b * _d * (_z_x * _z_x * _z_xx + _z_y * _z_y * _z_yy + 2.0 * _z_x * _z_y * _z_xy) * _z_x * _one_over_delta_x + 2.0 * _abd_sqd * ( _z_x * _z_xx * _one_over_delta_x + _z_x * _z_x * _one_over_delta_x_sqd + _z_y * _z_xy * _one_over_delta_x ) ) _F_iminus1j = ( _kappa * _d * _one_over_delta_y_sqd - _abd_sqd * _z_y * (_z_xx + _z_yy) * _one_over_delta_y - 4.0 * _abd_sqd * _b * _d * (_z_x * _z_x * _z_xx + _z_y * _z_y * _z_yy + 2.0 * _z_x * _z_y * _z_xy) * _z_y * _one_over_delta_y - 2.0 * _abd_sqd * ( _z_y * _z_yy * _one_over_delta_y - _z_y * _z_y * _one_over_delta_y_sqd + _z_x * _z_xy * _one_over_delta_y ) ) _F_iplus1j = ( _kappa * _d * _one_over_delta_y_sqd + _abd_sqd * _z_y * (_z_xx + _z_yy) * _one_over_delta_y + 4.0 * _abd_sqd * _b * _d * (_z_x * _z_x * _z_xx + _z_y * _z_y * _z_yy + 2.0 * _z_x * _z_y * _z_xy) * _z_y * _one_over_delta_y + 2.0 * _abd_sqd * ( _z_y * _z_yy * _one_over_delta_y + _z_y * _z_y * _one_over_delta_y_sqd + _z_x * _z_xy * _one_over_delta_y ) ) _F_iplus1jplus1 = _abd_sqd * _z_x * _z_y * _one_over_delta_x * _one_over_delta_y _F_iminus1jminus1 = _F_iplus1jplus1 _F_iplus1jminus1 = -_F_iplus1jplus1 _F_iminus1jplus1 = _F_iplus1jminus1 _equ_RHS_calc_frag = ( _F_ij * elev + _F_ijminus1 * elev[cell_neighbors[:, 2]] + _F_ijplus1 * elev[cell_neighbors[:, 0]] + _F_iminus1j * elev[cell_neighbors[:, 3]] + _F_iplus1j * elev[cell_neighbors[:, 1]] + _F_iminus1jminus1 * elev[cell_diagonals[:, 2]] + _F_iplus1jplus1 * elev[cell_diagonals[:, 0]] + _F_iplus1jminus1 * elev[cell_diagonals[:, 1]] + _F_iminus1jplus1 * elev[cell_diagonals[:, 3]] ) # NB- all _z_... and _F_... variables are nnodes long, and thus use # real IDs (tho calcs will be flawed for Bnodes) # RHS of equ 6 (see para [20]) _func_on_z = self._rock_density / self._sed_density * self._uplift + _kappa * ( (_z_xx + _z_yy) / (1.0 - (_z_x * _z_x + _z_y * _z_y) / _S_crit * _S_crit) + 2.0 * (_z_x * _z_x * _z_xx + _z_y * _z_y * _z_yy + 2.0 * _z_x * _z_y * _z_xy) / ( _S_crit * _S_crit * (1.0 - (_z_x * _z_x + _z_y * _z_y) / _S_crit * _S_crit) ** 2.0 ) ) # Remember, the RHS is getting wiped each loop as part of # self._set_variables() # _mat_RHS is ninteriornodes long, but were only working on a # ncorenodes long subset here _mat_RHS[corenodesbyintIDs] += elev[_core_nodes] + _delta_t * ( _func_on_z[_core_nodes] - _equ_RHS_calc_frag[_core_nodes] ) low_row = ( np.vstack((_F_iminus1jminus1, _F_iminus1j, _F_iminus1jplus1)) * -_delta_t ) mid_row = np.vstack( (-_delta_t * _F_ijminus1, 1.0 - _delta_t * _F_ij, -_delta_t * _F_ijplus1) ) top_row = np.vstack((_F_iplus1jminus1, _F_iplus1j, _F_iplus1jplus1)) * -_delta_t nine_node_map = np.vstack((low_row, mid_row, top_row)).T # ^Note shape is (nnodes,9); it's realID indexed core_op_mat_row = np.repeat(corenodesbyintIDs, 9) core_op_mat_col = operating_matrix_core_int_IDs.astype(int).flatten() core_op_mat_data = nine_node_map[_core_nodes, :].flatten() # Now the interior corners; BL,BR,TL,TR _mat_RHS[corner_interior_IDs] += elev[_interior_corners] + _delta_t * ( _func_on_z[_interior_corners] - _equ_RHS_calc_frag[_interior_corners] ) corners_op_mat_row = np.repeat(self._corner_interior_IDs, 4) corners_op_mat_col = operating_matrix_corner_int_IDs.astype(int).flatten() corners_op_mat_data = nine_node_map[_interior_corners, :][ (np.arange(4).reshape((4, 1)), self._corners_masks) ].flatten() # ^1st index gives (4,9), 2nd reduces to (4,4), then flattened for i in range(4): # loop over each corner, as so few # Note that this ONLY ADDS THE VALUES FOR THE TRUE GRID CORNERS. # The sides get done in the edge tests, below. if corner_flags[i] == 1: true_corner = self._antimask_corner_position[i] _mat_RHS[corner_interior_IDs[i]] -= _delta_t * np.sum( nine_node_map[_interior_corners[i], :][ corners_antimasks[i, true_corner] ] * elev[ _interior_corners[i] + modulator_mask[corners_antimasks[i, true_corner]] ] ) elif corner_flags[i] == 4 or corner_flags[i] == 3: # ^inactive boundary cell # Actually the easiest case! Equivalent to fixed gradient, # but the gradient is zero, so material only goes in the linked # cell. And because it's a true corner, that linked cell # doesn't appear in the interior matrix at all! pass elif corner_flags[i] == 2: true_corner = self._antimask_corner_position[i] _mat_RHS[corner_interior_IDs[i]] -= _delta_t * np.sum( nine_node_map[_interior_corners[i], :][ corners_antimasks[i, true_corner] ] * self._fixed_gradient_offset_map[ _interior_corners[i] + modulator_mask[corners_antimasks[i, true_corner]] ] ) else: raise NameError( """Sorry! This module cannot yet handle fixed gradient or looped BCs...""" ) # Todo: handle these BCs properly, once the grid itself works with # them. # Can follow old routines; see self.set_bc_cell() commented out # method below. # Now the edges _mat_RHS[bottom_interior_IDs] += elev[_bottom_list] + _delta_t * ( _func_on_z[_bottom_list] - _equ_RHS_calc_frag[_bottom_list] ) _mat_RHS[top_interior_IDs] += elev[_top_list] + _delta_t * ( _func_on_z[_top_list] - _equ_RHS_calc_frag[_top_list] ) _mat_RHS[left_interior_IDs] += elev[_left_list] + _delta_t * ( _func_on_z[_left_list] - _equ_RHS_calc_frag[_left_list] ) _mat_RHS[right_interior_IDs] += elev[_right_list] + _delta_t * ( _func_on_z[_right_list] - _equ_RHS_calc_frag[_right_list] ) bottom_op_mat_row = np.repeat(bottom_interior_IDs, 6) top_op_mat_row =
np.repeat(top_interior_IDs, 6)
numpy.repeat
""" 该脚本用于调用训练好的模型权重去计算验证集/测试集的COCO指标 以及每个类别的mAP(IoU=0.5) """ import os import json import torch from tqdm import tqdm import numpy as np import transforms from network_files import FasterRCNN from backbone import resnet50_fpn_backbone from my_dataset import VOC2012DataSet from train_utils import get_coco_api_from_dataset, CocoEvaluator def summarize(self, catId=None): """ Compute and display summary metrics for evaluation results. Note this functin can *only* be applied on the default parameter setting """ def _summarize(ap=1, iouThr=None, areaRng='all', maxDets=100): p = self.params iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' titleStr = 'Average Precision' if ap == 1 else 'Average Recall' typeStr = '(AP)' if ap == 1 else '(AR)' iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ if iouThr is None else '{:0.2f}'.format(iouThr) aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] if ap == 1: # dimension of precision: [TxRxKxAxM] s = self.eval['precision'] # IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] if isinstance(catId, int): s = s[:, :, catId, aind, mind] else: s = s[:, :, :, aind, mind] else: # dimension of recall: [TxKxAxM] s = self.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] if isinstance(catId, int): s = s[:, catId, aind, mind] else: s = s[:, :, aind, mind] if len(s[s > -1]) == 0: mean_s = -1 else: mean_s =
np.mean(s[s > -1])
numpy.mean
"""Performs face alignment and stores face thumbnails in the output directory.""" # MIT License # # Copyright (c) 2016 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import random import sys import detect_face # import facenet import facenet.src.facenet as facenet import numpy as np import tensorflow as tf from scipy import misc def main(args): output_dir = args.output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if args.detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - args.margin / 2, 0) bb[1] = np.maximum(det[1] - args.margin / 2, 0) bb[2] = np.minimum(det[2] + args.margin / 2, img_size[1]) bb[3] =
np.minimum(det[3] + args.margin / 2, img_size[0])
numpy.minimum
############################################################################## # # Copyright (c) 2003-2018 by The University of Queensland # http://www.uq.edu.au # # Primary Business: Queensland, Australia # Licensed under the Apache License, version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # # Development until 2012 by Earth Systems Science Computational Center (ESSCC) # Development 2012-2013 by School of Earth Sciences # Development from 2014 by Centre for Geoscience Computing (GeoComp) # ############################################################################## from __future__ import print_function, division __copyright__="""Copyright (c) 2003-2018 by The University of Queensland http://www.uq.edu.au Primary Business: Queensland, Australia""" __license__="""Licensed under the Apache License, version 2.0 http://www.apache.org/licenses/LICENSE-2.0""" __url__="https://launchpad.net/escript-finley" """ Test suite for the util.py module. The tests must be linked with a function space class object in the setUp method: to run the use: from esys.bruce import Brick class Test_utilOnBruce(Test_util_no_tagged_data): def setUp(self): self.domain = Brick(10,10,13) self.functionspace = ContinuousFunction(self.domain) suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(Test_utilOnBruce)) unittest.TextTestRunner(verbosity=2).run(suite) This test assumes that samples with x_0 coordinate 0 are tagged with 1 and all samples tagged with 1 have x_0 coordinate 0. :note: at this stage this test will not pass as it tests for functionlity that has not been implemented yet. It also does not test the full functionalitu of util.py yet. :var __author__: name of author :var __copyright__: copyrights :var __license__: licence agreement :var __url__: url entry point on documentation :var __version__: version :var __date__: date of the version """ __author__="<NAME>, <EMAIL>" import esys.escriptcore.utestselect as unittest import numpy from esys.escript import * from test_util_base import Test_util_base, Test_util_values from test_util_reduction_new import Test_util_reduction_new from test_util_unary_new import Test_util_unary_new from test_util_binary_new import Test_util_binary_new from test_util_binary_leftover import Test_util_binary_leftover ## these aspects are test in the _new tests #from test_util_overloaded_binary_no_tagged_data import Test_util_overloaded_binary_no_tagged_data #from test_util_overloaded_binary_with_tagged_data import Test_util_overloaded_binary_with_tagged_data #from test_util_unary_no_tagged_data import Test_util_unary_no_tagged_data #from test_util_unary_with_tagged_data import Test_util_unary_with_tagged_data #from test_util_binary_no_tagged_data import Test_util_binary_no_tagged_data #from test_util_binary_with_tagged_data import Test_util_binary_with_tagged_data from test_util_spatial_functions1 import Test_Util_SpatialFunctions_noGradOnBoundary_noContact from test_util_spatial_functions2 import Test_Util_SpatialFunctions_noGradOnBoundary from test_util_spatial_functions3 import Test_Util_SpatialFunctions from test_util_slicing_no_tagged_data import Test_util_slicing_no_tagged_data from test_util_slicing_with_tagged_data import Test_util_slicing_with_tagged_data class Test_util_reduction(Test_util_reduction_new): """ test for reduction operation Lsup,sup,inf for all data types""" pass class Test_util_unary(Test_util_unary_new): """ all unary tests """ pass class Test_util_binary(Test_util_binary_new, Test_util_binary_leftover): """ test for all binary operation """ pass ## Testing of these ops is now in Test_util_binary #class Test_util_overloaded_binary(Test_util_overloaded_binary_no_tagged_data,Test_util_overloaded_binary_with_tagged_data): #"""test for all overloaded operation""" #pass class Test_util(Test_util_unary_new,Test_util_reduction_new, Test_util_binary): """all tests""" pass class Test_util_overloaded_binary_still_failing(Test_util_base): """ these overloaded operations still fail! - wrong return value of Data binaries (Mantis 0000054) """ #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank0_Symbol_rank1(self): arg0=Data(-4.93686078973,self.functionspace) arg1=Symbol(shape=(2,)) res=arg0+arg1 s1=numpy.array([0.51662736235119944, 2.8171396846123073]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([-4.4202334273802917, -2.1197211051191838]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank0_Symbol_rank2(self): arg0=Data(-2.22764991169,self.functionspace) arg1=Symbol(shape=(4, 5)) res=arg0+arg1 s1=numpy.array([[2.0746979587719538, 0.99992890307042437, -2.3128078094931848, -4.0103712739722654, 4.8853529531011013], [0.09856857946648212, 0.73520899085847624, -3.6585265509750844, 3.0095320582437939, 3.4125902906059444], [1.4894150898632059, -1.4124339049368793, 1.5397397961722188, 4.8841402613336111, 1.1241155288598881], [2.8283598865494408, 1.5980765295723476, -1.0022373011497274, -2.0622178471715067, 4.9699555072046042]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[-0.15295195292152819, -1.2277210086230577, -4.5404577211866668, -6.2380211856657475, 2.6577030414076193], [-2.1290813322269999, -1.4924409208350058, -5.8861764626685664, 0.78188214655031185, 1.1849403789124624], [-0.73823482183027611, -3.6400838166303613, -0.68791011552126324, 2.6564903496401291, -1.103534382833594], [0.60070997485595878, -0.62957338212113445, -3.2298872128432095, -4.2898677588649887, 2.7423055955111222]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank0_Symbol_rank3(self): arg0=Data(-4.67318656609,self.functionspace) arg1=Symbol(shape=(6, 2, 2)) res=arg0+arg1 s1=numpy.array([[[3.9409337165894076, 1.6101568824796857], [1.2441782896909706, 1.2872758759353298]], [[4.022494973005406, -2.758155583474049], [1.8311643900357311, 4.0940647266277157]], [[2.5378127449303243, 0.063283784588161751], [4.5495644157820809, 2.8673770080506742]], [[-0.93484143473477577, 4.914438575705228], [-1.951066895455166, -1.2021165219313259]], [[-0.4220608661301819, -4.9682501775464418], [0.98338081352961559, 3.4054674805751066]], [[3.9967556325744127, -4.7659141789100659], [0.34265275409881024, -0.25226631819007572]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-0.73225284950136693, -3.0630296836110888], [-3.429008276399804, -3.3859106901554448]], [[-0.6506915930853685, -7.4313421495648235], [-2.8420221760550435, -0.57912183946305884]], [[-2.1353738211604503, -4.6099027815026128], [-0.12362215030869361, -1.8058095580401003]], [[-5.6080280008255503, 0.24125200961445348], [-6.6242534615459405, -5.8753030880221004]], [[-5.0952474322209564, -9.6414367436372164], [-3.6898057525611589, -1.2677190855156679]], [[-0.67643093351636185, -9.4391007450008395], [-4.3305338119919643, -4.9254528842808503]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank0_Symbol_rank4(self): arg0=Data(4.16645075056,self.functionspace) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0+arg1 s1=numpy.array([[[[1.5917180025121436, -0.50082927718401749, 0.71261274386013618, 2.4216324938382936], [2.5988764746053095, 0.15985324844397741, -2.1952754277135025, -2.1102730593254035], [4.7816092243808672, -3.1240954141765496, 4.0831220997721331, 2.4301203557965216]], [[3.4691826046114969, -2.4961081730013177, -4.9623977358253111, 2.2652744558918698], [0.41830032681767193, -3.2186897293959649, -4.1590967541108324, -1.7789994379155196], [-0.17901184206486764, -0.85223673399918809, 1.2515459884606104, -4.530305999148645]]], [[[-4.9028671865135838, 3.9106181278983012, 0.69716765577825246, 4.8537569187159395], [-2.8912890367657318, -4.8177854256421764, -4.3303142092509415, -0.99481907472179198], [-1.2640734452454305, 4.8028129765204639, -2.5491771511234962, 3.2550469051981921]], [[2.0572417475748761, 3.7392706991121187, 4.5778678295843704, 3.6658188498258486], [-2.7069743698567206, -2.684769111460461, -3.0941141983763156, -2.1180719361316589], [-1.4744678905986119, 1.926687036555828, 2.2206999030392947, 0.72956973127168734]]], [[[-2.8290294475300151, -3.1467788245496631, 3.6471044178360348, 3.5237454065241209], [-1.6165850845596652, 1.2437746199742081, -2.8022357261752004, -1.9652183524467781], [-2.3842126490032092, 3.7068998814751613, -1.389546865398994, -1.7153758702474589]], [[-1.0746517242894815, -4.3575382718398723, 0.93160793707280121, 1.4002531109392731], [-1.5745690740270168, -3.4394046042905124, 4.2641517580348793, -1.7620679696550843], [-4.2559205627171135, 2.1912319337278863, 1.1987265764805723, -3.2957352772592809]]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[5.7581687530761378, 3.6656214733799768, 4.8790634944241305, 6.5880832444022879], [6.7653272251693037, 4.3263039990079717, 1.9711753228504918, 2.0561776912385907], [8.9480599749448615, 1.0423553363874447, 8.2495728503361274, 6.5965711063605159]], [[7.6356333551754911, 1.6703425775626766, -0.7959469852613168, 6.4317252064558641], [4.5847510773816662, 0.94776102116802941, 0.0073539964531619262, 2.3874513126484747], [3.9874389084991266, 3.3142140165648062, 5.4179967390246047, -0.36385524858465068]]], [[[-0.7364164359495895, 8.0770688784622955, 4.8636184063422467, 9.0202076692799338], [1.2751617137982625, -0.6513346750781821, -0.16386345868694718, 3.1716316758422023], [2.9023773053185637, 8.9692637270844582, 1.6172735994404981, 7.4214976557621863]], [[6.2236924981388704, 7.905721449676113, 8.7443185801483647, 7.8322696003898429], [1.4594763807072737, 1.4816816391035332, 1.0723365521876786, 2.0483788144323354], [2.6919828599653823, 6.0931377871198222, 6.3871506536032889, 4.8960204818356816]]], [[[1.3374213030339792, 1.0196719260143312, 7.8135551684000291, 7.6901961570881152], [2.5498656660043291, 5.4102253705382024, 1.3642150243887938, 2.2012323981172162], [1.7822381015607851, 7.8733506320391555, 2.7769038851650003, 2.4510748803165354]], [[3.0917990262745128, -0.19108752127587803, 5.0980586876367955, 5.5667038615032673], [2.5918816765369774, 0.72704614627348185, 8.4306025085988736, 2.40438278090891], [-0.089469812153119221, 6.3576826842918805, 5.3651773270445666, 0.87071547330471333]]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank1_Symbol_rank0(self): arg0=Data(numpy.array([3.8454947431609945, 3.4801848055393254]),self.functionspace) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(0.181985677208) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([4.0274804203691783, 3.6621704827475092]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank1_Symbol_rank1(self): arg0=Data(numpy.array([2.6719646801005306, 4.0262173014652003]),self.functionspace) arg1=Symbol(shape=(2,)) res=arg0+arg1 s1=numpy.array([3.7355891147806837, -3.0309968912239551]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([6.4075537948812142, 0.99522041024124519]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank2_Symbol_rank0(self): arg0=Data(numpy.array([[2.209887477038702, 2.087043312051243, 3.7254247294014622, -3.7510652436671732, 0.70343608099575317], [4.1654611738215745, 1.5418518980850271, 2.7730022594684423, 3.386030420596251, 1.2758288509710365], [2.2174938185138764, -1.244837837360393, 2.2331288285078887, -1.1442348969501834, 1.9394801392868004], [0.68612447219195705, 0.7127527031233436, -3.6346644102130776, 2.0671128943191714, 3.7445028703597156]]),self.functionspace) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(4.82316401579) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[7.0330514928326018, 6.9102073278451428, 8.5485887451953619, 1.0720987721267266, 5.5266000967896529], [8.9886251896154743, 6.3650159138789268, 7.596166275262342, 8.2091944363901508, 6.0989928667649362], [7.0406578343077761, 3.5783261784335068, 7.0562928443017885, 3.6789291188437163, 6.7626441550807002], [5.5092884879858568, 5.5359167189172434, 1.1884996055808221, 6.8902769101130712, 8.5676668861536154]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank2_Symbol_rank2(self): arg0=Data(numpy.array([[-3.62961836797558, 4.0323249470469893, -2.4833229912823516, -0.0081902035785272886, -0.26448613257378906], [2.0867535529248489, 0.049446344294963751, 4.4906317789174501, 2.6121865600043499, 1.3687146632565392], [4.2509170325103511, 2.9845191554148567, -0.9329820582137387, -0.58236994049271118, -3.4448732067194388], [-2.3231599587033402, 1.6550934434842866, -4.5990521452319584, -2.1470268566500152, -3.9698084155531008]]),self.functionspace) arg1=Symbol(shape=(4, 5)) res=arg0+arg1 s1=numpy.array([[3.3234017918244003, 3.3386199217996175, -2.5928786077225316, -4.1429140632213803, 0.42204291369978719], [3.4123580113357495, -3.9076190537235664, 1.8779298531672159, 0.98377543853039562, -4.9365820051249267], [4.5252395032935961, -4.8193051910732096, 1.060979071451845, -3.2927325266544871, -3.3828356655691971], [-4.6411804903406182, -0.42921544747540707, -2.4541073523344323, -0.70845691989162329, -1.2357505826155588]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[-0.3062165761511797, 7.3709448688466068, -5.0762015990048832, -4.1511042667999076, 0.15755678112599814], [5.4991115642605983, -3.8581727094286027, 6.3685616320846661, 3.5959619985347455, -3.5678673418683875], [8.7761565358039473, -1.834786035658353, 0.12799701323810631, -3.8751024671471983, -6.8277088722886354], [-6.9643404490439584, 1.2258779960088795, -7.0531594975663907, -2.8554837765416385, -5.2055589981686596]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank3_Symbol_rank0(self): arg0=Data(numpy.array([[[-2.0819775543023136, 4.4438294149957258], [1.203494127071604, 1.3934659764012478]], [[-1.7207192546012995, 1.128687542370864], [1.013953229943537, 2.0535582502969056]], [[-1.8482126685735398, 0.64499519705235819], [-4.1200947648310313, 3.8041018736261574]], [[-0.12876390427677542, -0.26859118353213773], [-2.8945993824974847, -3.3476923883525944]], [[3.1332107854705562, -4.6334666373330595], [3.0499420638074994, -2.7959034777693104]], [[4.726734207260332, -1.3724501610660034], [3.3499737674080023, -2.515294322458935]]]),self.functionspace) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(0.860178486532) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-1.2217990677700952, 5.3040079015279442], [2.0636726136038224, 2.2536444629334662]], [[-0.86054076806908109, 1.9888660289030824], [1.8741317164757554, 2.913736736829124]], [[-0.98803418204132143, 1.5051736835845766], [-3.2599162782988129, 4.6642803601583758]], [[0.73141458225544298, 0.59158730300008067], [-2.0344208959652663, -2.487513901820376]], [[3.9933892720027746, -3.7732881508008411], [3.9101205503397178, -1.935724991237092]], [[5.5869126937925504, -0.51227167453378497], [4.2101522539402207, -1.6551158359267166]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank3_Symbol_rank3(self): arg0=Data(numpy.array([[[-1.849788129717993, 0.64693319038907493], [3.0379670344950327, 0.80277076526299229]], [[2.4995340022105639, -4.3955703049125949], [0.58331276679079203, 0.044119077451267863]], [[2.2979922792046947, 1.6054844683234073], [0.50524258350986084, -3.5539312710422779]], [[-1.1980433912188793, -2.6450000406046001], [-2.4128326188310121, 0.80678465051263526]], [[-2.9963692865064209, -1.0152803020104519], [-0.21931259441936035, -1.153119362615751]], [[-4.2927186206837717, 0.4561872009236847], [3.0860876046130041, -0.78568544768378068]]]),self.functionspace) arg1=Symbol(shape=(6, 2, 2)) res=arg0+arg1 s1=numpy.array([[[-3.4985389035935222, 1.8888458641158987], [-4.2891085749380489, 2.8296217607019845]], [[-0.8200921678141917, 4.4359194831012676], [-4.6185751325042244, 0.16520675598470014]], [[-2.801157092531934, 3.6231020804204928], [1.5439760747845899, 2.0378140868272894]], [[0.99864930993784018, 3.369884315459073], [4.399815205976239, -4.9546136700941936]], [[1.6240932313892289, -3.4517363344048615], [2.8668483027947236, 1.1624090061600336]], [[2.6364367974081624, 2.628371373764919], [-2.5877409052653833, -1.29236451403668]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-5.3483270333115147, 2.5357790545049737], [-1.2511415404430162, 3.6323925259649767]], [[1.6794418343963722, 0.040349178188672674], [-4.0352623657134323, 0.209325833435968]], [[-0.50316481332723928, 5.2285865487439001], [2.0492186582944507, -1.5161171842149885]], [[-0.19939408128103908, 0.72488427485447282], [1.9869825871452269, -4.1478290195815584]], [[-1.372276055117192, -4.4670166364153134], [2.6475357083753632, 0.0092896435442826331]], [[-1.6562818232756094, 3.0845585746886037], [0.49834669934762088, -2.0780499617204606]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank4_Symbol_rank0(self): arg0=Data(numpy.array([[[[-0.026017904532606551, -0.80192450547405958, 0.93785799257835656, -4.4900007911078319], [-1.8444162073720949, 1.2059856695600812, 1.8326324480310756, 3.3745782356451564], [3.0929324433706693, -0.94197156488767142, -2.3469684397851207, -4.8976052662192613]], [[1.2658444546015346, 3.0389250549456399, -2.567254770133963, 3.7513728753285314], [-0.10225306211433605, -0.34121316520335299, -2.8745573331597321, -0.73976781968982142], [4.6114590072566681, 3.5325642767850063, 2.1587079910040661, 3.8644723652636905]]], [[[-2.5953113243103623, 0.6437882672443429, 4.5677362343759853, 3.4108524985046262], [2.9904338528780352, 0.73113299006492127, 2.4253724263400445, 3.8646536702562031], [-1.2545053686514152, -4.2675706218911706, -3.6576679389702105, -0.29502287354943402]], [[0.9550527228483654, 2.9537233833481267, -2.6904009310953283, 1.5998857010519698], [-3.7171702199982004, -1.1578306702024044, 1.764070139728485, -1.1506068782808967], [1.5727320181060982, 0.18468074769418674, 3.3262967055395372, -1.2208265816075849]]], [[[-0.25003967903418278, -2.603663543909648, 4.6824047463125531, 1.0968919539473987], [1.3471700099604398, -3.8321880437450218, -4.2809409903460676, 1.2933005361204906], [-2.857251250328674, 3.6768205829450178, -2.7999953058490643, 2.1117422072666692]], [[-2.1994223710236427, 3.7669030216280923, -3.5232105054852991, -3.7071480752824462], [-0.35952695279389246, 2.5451704526750873, -4.2842310996736144, -1.3813503044378783], [-2.5647173415905145, 4.7437501634141572, -4.2234318870342245, 2.1862042652792866]]]]),self.functionspace) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(0.33323555487) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[0.30721765033724147, -0.46868895060421156, 1.2710935474482046, -4.1567652362379839], [-1.5111806525022469, 1.5392212244299293, 2.1658680029009236, 3.7078137905150044], [3.4261679982405173, -0.6087360100178234, -2.0137328849152727, -4.5643697113494133]], [[1.5990800094713826, 3.3721606098154879, -2.234019215264115, 4.0846084301983794], [0.23098249275551197, -0.0079776103335049697, -2.541321778289884, -0.4065322648199734], [4.9446945621265161, 3.8657998316548543, 2.4919435458739141, 4.1977079201335386]]], [[[-2.2620757694405143, 0.97702382211419092, 4.9009717892458333, 3.7440880533744743], [3.3236694077478832, 1.0643685449347693, 2.7586079812098925, 4.1978892251260511], [-0.92126981378156714, -3.9343350670213226, -3.3244323841003625, 0.038212681320413999]], [[1.2882882777182134, 3.2869589382179747, -2.3571653762254803, 1.9331212559218178], [-3.3839346651283524, -0.82459511533255636, 2.097305694598333, -0.81737132341104868], [1.9059675729759462, 0.51791630256403476, 3.6595322604093852, -0.88759102673773693]]], [[[0.083195875835665234, -2.2704279890398, 5.0156403011824011, 1.4301275088172467], [1.6804055648302878, -3.4989524888751737, -3.9477054354762195, 1.6265360909903386], [-2.524015695458826, 4.0100561378148658, -2.4667597509792163, 2.4449777621365172]], [[-1.8661868161537947, 4.1001385764979403, -3.1899749506154511, -3.3739125204125981], [-0.026291397924044446, 2.8784060075449354, -3.9509955448037664, -1.0481147495680303], [-2.2314817867206664, 5.0769857182840052, -3.8901963321643764, 2.5194398201491346]]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_constData_rank4_Symbol_rank4(self): arg0=Data(numpy.array([[[[1.6204760394819004, -0.95393695229398112, -1.221681223499369, 2.6618713903411937], [-1.5387523541807724, 4.6220978399651482, -2.1795716817360713, -3.776821154104939], [1.4330066566763016, 3.7880327985429378, -0.65902727001966976, -4.29506128665055]], [[-4.0199255222547103, -3.644811287300751, 3.6508998060332054, -3.569704984460552], [-3.8429890733645489, -2.9119635791576437, 2.3183698092323652, 1.3643661323778851], [2.9328022056563725, -0.080129403375118535, 0.15566128013433289, 2.344258136058456]]], [[[3.03272210358924, 2.8841814084596393, -4.059068204445289, -0.091640986980607408], [-4.2591024547151859, -0.36305436045316863, 0.19284537915686428, 4.5041324479849649], [1.2988816365062537, -1.6778808169453416, -3.5496975707176146, 4.314356820196215]], [[-1.4533462849506518, -1.003910808707118, 3.8948057966291092, 1.266066103629278], [-4.4119138102620346, -2.1246183047037603, -2.4610566322999161, -3.5862383252945271], [2.9290698526446066, -0.26093763373887136, 0.87809331627623344, -0.47993365832407076]]], [[[2.1717793325666745, 0.83592896851733212, -2.2538107669063279, 1.6303402530881517], [-0.53207705017646578, -4.5214994998308979, -3.6999121226789988, 3.5355643886671686], [3.3936340080223193, -2.1140030580705247, 1.821327452830638, -1.6123768640462668]], [[2.3105165926895497, -3.0414367260786292, -1.5788704194425076, 1.0377969965556915], [1.3575822980511116, 4.3465002873169833, 0.55678010189701688, 4.99079375906609], [4.2819911907361128, 4.9615031124625322, 2.7964852390480104, 0.029646894001982282]]]]),self.functionspace) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0+arg1 s1=numpy.array([[[[3.779495003239937, -4.7840877608643506, 2.651273004571375, -2.179381582597685], [-0.27370078331190673, -3.6151069379138887, -0.6880481455894909, 4.4373993248198644], [-1.6276288613086387, -1.6376839670015721, -3.1138607609774835, -2.7809800576738719]], [[0.85446276622548556, -4.3676040003341114, -4.0083595770538496, -3.915065868011578], [1.6989039436984452, 3.5347026474299419, -1.8748410832866327, -4.6526613314583045], [1.9480513434936046, 4.7386182205273322, -1.2001630607496541, 1.8094726084650006]]], [[[4.9996435011863589, 0.60285036470010045, 1.457536438507919, 2.7443970579013879], [4.131864622110669, 0.20996245110639133, 3.3652305004680549, 3.1437873739212119], [-3.0818670302029405, -2.461603163946088, -0.56609916674720218, -4.1186964404844861]], [[-2.7183232427482262, -2.1509712746053999, -2.281087666097271, -2.4094567126275344], [-3.4723848022755091, -1.563218902128277, -4.7598832341275878, 1.8751725484288029], [-4.0474621098792882, 0.59894943914858167, 1.0736279895120182, 4.5015525072725033]]], [[[-3.0082200796749703, 0.23283074563588535, 2.5230303985659734, 4.8262414779000231], [3.3772486493634837, 1.8234317033464915, -1.7905158376185746, -2.9990918311449244], [-3.6765085717620041, 2.0057610304617572, -2.1487273241068525, -4.1965541804451352]], [[0.26210933249566715, -2.9167787158271663, -0.89589477578380539, -0.41427249402553912], [-3.1708181836677332, 4.3890602408555726, -1.1754542095914857, 4.8422639037274919], [-3.0044937138520034, -4.1626528668210083, 0.20385989364778467, -0.016309737359709864]]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[5.3999710427218375, -5.7380247131583317, 1.429591781072006, 0.48248980774350869], [-1.8124531374926791, 1.0069909020512595, -2.8676198273255622, 0.66057817071492542], [-0.19462220463233715, 2.1503488315413657, -3.7728880309971533, -7.0760413443244214]], [[-3.1654627560292248, -8.0124152876348624, -0.35745977102064419, -7.4847708524721295], [-2.1440851296661037, 0.62273906827229819, 0.44352872594573256, -3.2882951990804195], [4.8808535491499772, 4.6584888171522136, -1.0445017806153212, 4.1537307445234566]]], [[[8.0323656047755989, 3.4870317731597398, -2.60153176593737, 2.6527560709207805], [-0.12723783260451693, -0.1530919093467773, 3.5580758796249192, 7.6479198219061768], [-1.7829853936966868, -4.1394839808914297, -4.1157967374648168, 0.19566037971172889]], [[-4.171669527698878, -3.154882083312518, 1.6137181305318382, -1.1433906089982564], [-7.8842986125375436, -3.6878372068320373, -7.2209398664275035, -1.7110657768657243], [-1.1183922572346816, 0.33801180540971032, 1.9517213057882516, 4.0216188489484326]]], [[[-0.83644074710829575, 1.0687597141532175, 0.26921963165964558, 6.4565817309881748], [2.8451715991870179, -2.6980677964844064, -5.4904279602975734, 0.53647255752224421], [-0.28287456373968478, -0.10824202760876744, -0.3273998712762145, -5.808931044491402]], [[2.5726259251852168, -5.9582154419057956, -2.474765195226313, 0.62352450253015235], [-1.8132358856166215, 8.7355605281725559, -0.61867410769446884, 9.833057662793582], [1.2774974768841094, 0.79885024564152385, 3.0003451326957951, 0.013337156642272419]]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank0_Symbol_rank0(self): arg0=Data(3.50668349593,self.functionspace) arg0.setTaggedValue(1,-3.09146650776) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(-4.32369560802) sub=res.substitute({arg1:s1}) ref=Data(-0.81701211209,self.functionspace) ref.setTaggedValue(1,-7.41516211578) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank0_Symbol_rank1(self): arg0=Data(3.83444600418,self.functionspace) arg0.setTaggedValue(1,-0.266863397142) arg1=Symbol(shape=(2,)) res=arg0+arg1 s1=numpy.array([3.6938635924807581, -2.3199399928130826]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([7.5283095966592981, 1.5145060113654574]),self.functionspace) ref.setTaggedValue(1,numpy.array([3.4270001953384694, -2.5868033899553713])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank0_Symbol_rank2(self): arg0=Data(-2.85642807584,self.functionspace) arg0.setTaggedValue(1,-0.357260114938) arg1=Symbol(shape=(4, 5)) res=arg0+arg1 s1=numpy.array([[4.4124412590911621, 1.732298167196193, 1.8228166076040306, -3.9853565905277355, 3.3793508288079881], [-1.5339512663354116, -2.8915144317379058, -3.6493591659102464, 1.4243106283527815, -0.6931246781623841], [4.7714119110273394, 0.45700055229079606, 1.2539528503924027, -1.4029360809413403, 2.8915917074007416], [4.2546657221847255, 3.2639891865967527, -0.4712967898993945, -3.9077971138749112, -3.5655383189938084]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[1.5560131832472779, -1.1241299086476912, -1.0336114682398536, -6.8417846663716197, 0.52292275296410384], [-4.3903793421792958, -5.74794250758179, -6.5057872417541311, -1.4321174474911027, -3.5495527540062684], [1.9149838351834552, -2.3994275235530882, -1.6024752254514816, -4.2593641567852245, 0.035163631556857311], [1.3982376463408412, 0.40756111075286849, -3.3277248657432787, -6.7642251897187951, -6.4219663948376926]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[4.0551811441529519, 1.3750380522579828, 1.4655564926658204, -4.3426167054659457, 3.0220907138697779], [-1.8912113812736218, -3.248774546676116, -4.0066192808484562, 1.0670505134145714, -1.0503847931005943], [4.4141517960891292, 0.099740437352585865, 0.89669273545419248, -1.7601961958795505, 2.5343315924625314], [3.8974056072465153, 2.9067290716585426, -0.82855690483760469, -4.2650572288131219, -3.9227984339320185]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank0_Symbol_rank3(self): arg0=Data(-2.98759917871,self.functionspace) arg0.setTaggedValue(1,-4.26584239637) arg1=Symbol(shape=(6, 2, 2)) res=arg0+arg1 s1=numpy.array([[[0.65736935684204045, 1.4685807994312459], [0.99740155640158257, -2.8001282911414127]], [[-0.80947613326718226, -4.0270117786915378], [1.1564198209626229, -4.917538904347448]], [[-1.0488230155998202, 4.0958534641909754], [-4.9502522108275002, -0.19486641488505008]], [[-4.507307254914509, -0.98539101308887389], [-4.5909807035957675, 2.4265853650826985]], [[-4.252924691613126, 0.42394291278212481], [3.4198717705842103, -4.6000003047031024]], [[4.9609535782609235, 3.1625779529060711], [0.26834958946896492, 3.0941570460788874]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-2.3302298218695272, -1.5190183792803218], [-1.9901976223099851, -5.7877274698529799]], [[-3.7970753119787499, -7.0146109574031055], [-1.8311793577489448, -7.9051380830590157]], [[-4.0364221943113883, 1.1082542854794077], [-7.9378513895390679, -3.1824655935966177]], [[-7.4949064336260767, -3.9729901918004416], [-7.5785798823073351, -0.56101381362886915]], [[-7.2405238703246937, -2.5636562659294428], [0.43227259187264266, -7.5875994834146701]], [[1.9733543995493559, 0.17497877419450347], [-2.7192495892426027, 0.10655786736731976]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[-3.6084730395261495, -2.7972615969369441], [-3.2684408399666074, -7.0659706875096031]], [[-5.0753185296353722, -8.2928541750597269], [-3.1094225754055671, -9.183381300715638]], [[-5.3146654119680097, -0.16998893217721456], [-9.2160946071956893, -4.46070881125324]], [[-8.773149651282699, -5.2512334094570638], [-8.8568230999639574, -1.8392570312854915]], [[-8.5187670879813169, -3.8418994835860651], [-0.84597062578397964, -8.8658427010712924]], [[0.69511118189273358, -1.1032644434621188], [-3.997492806899225, -1.1716853502893025]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank0_Symbol_rank4(self): arg0=Data(-3.36894529378,self.functionspace) arg0.setTaggedValue(1,-4.62956527999) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0+arg1 s1=numpy.array([[[[-4.6824549992604805, 0.17860523484039881, -3.9939994980255102, -0.36579022311332743], [-2.0003582573358858, 3.3436256968249793, -1.5671485178714373, 3.9554829351801821], [4.0499415739210693, -3.1796189569360358, 0.28181611699077536, 1.4851321313182684]], [[4.9608073066477267, 2.1353944107091136, 3.2103965744924743, 0.36273874746876089], [0.33193515801312934, -1.8768462949087295, -3.5968753845201462, -1.9342255010038101], [-0.98845968068423407, -2.6505467151645048, -3.9269883741621214, -1.2671783073823359]]], [[[4.0296290320262234, 0.094183089334959114, -1.6548527114390654, 1.1815006848827636], [4.4205350333429578, 1.0602877007979998, -2.7207610093848364, 2.5749353581909009], [2.368743673752042, 0.36879117257479166, 3.1294699111463196, 3.8766421343643209]], [[-4.2994052301352443, -4.4665347726615128, -4.9654257982784813, 1.4010627781386145], [-0.49010647980719568, 1.1149343027340697, 3.8533389980231654, -1.4762647122950145], [-2.4078638813490985, 4.4431147205208923, 3.0392301612263246, -2.3032611338556377]]], [[[1.1388924488325571, 4.4978561941078308, -3.3123851704811691, 1.3453478111463726], [4.1779635175178385, 3.1786527767023234, -2.8109803623964669, 4.7217176158252876], [0.26914741902392958, -1.6630169842885789, -3.6267544687045641, -4.7016327677304943]], [[0.44478691577550755, 2.9451130426961889, -1.0836274217802466, -4.8754431681482586], [1.6457024072282014, -1.106310648992209, -3.2732924796145912, 4.7940609535301668], [-4.2482158844391957, 2.2391243759174451, 4.6408645091714327, 4.1449515947243611]]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[-8.0514002930449351, -3.1903400589440558, -7.3629447918099649, -3.734735516897782], [-5.3693035511203409, -0.025319596959475277, -4.9360938116558923, 0.5865376413957275], [0.68099628013661473, -6.5485642507204904, -3.0871291767936793, -1.8838131624661862]], [[1.5918620128632721, -1.233550883075341, -0.15854871929198033, -3.0062065463156937], [-3.0370101357713253, -5.2457915886931836, -6.9658206783046008, -5.3031707947882651], [-4.3574049744686887, -6.0194920089489594, -7.2959336679465761, -4.6361236011667906]]], [[[0.66068373824176874, -3.2747622044494955, -5.0237980052235205, -2.187444608901691], [1.0515897395585032, -2.3086575929864548, -6.0897063031692911, -0.79400993559355371], [-1.0002016200324126, -3.000154121209663, -0.23947538263813506, 0.5076968405798663]], [[-7.668350523919699, -7.8354800664459674, -8.3343710920629359, -1.9678825156458402], [-3.8590517735916503, -2.2540109910503849, 0.48439370423871075, -4.8452100060794692], [-5.7768091751335531, 1.0741694267364377, -0.32971513255813001, -5.6722064276400923]]], [[[-2.2300528449518975, 1.1289109003233762, -6.6813304642656242, -2.023597482638082], [0.80901822373338383, -0.19029251708213124, -6.1799256561809219, 1.352772322040833], [-3.099797874760525, -5.0319622780730331, -6.9956997624890187, -8.0705780615149489]], [[-2.9241583780089471, -0.42383225108826572, -4.4525727155647008, -8.2443884619327132], [-1.7232428865562532, -4.4752559427766636, -6.6422377733990459, 1.4251156597457122], [-7.6171611782236504, -1.1298209178670096, 1.2719192153869781, 0.77600630093990652]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[-9.3120202792456048, -4.4509600451447255, -8.6235647780106355, -4.9953555030984518], [-6.6299235373210106, -1.285939583160145, -6.1967137978565621, -0.67408234480494222], [-0.579623706064055, -7.8091842369211601, -4.347749162994349, -3.144433148666856]], [[0.33124202666260238, -2.4941708692760107, -1.4191687054926501, -4.2668265325163635], [-4.297630121971995, -6.5064115748938534, -8.2264406645052706, -6.5637907809889349], [-5.6180249606693584, -7.2801119951496291, -8.5565536541472458, -5.8967435873674603]]], [[[-0.59993624795890099, -4.5353821906501652, -6.2844179914241902, -3.4480645951023607], [-0.20903024664216652, -3.5692775791871245, -7.3503262893699608, -2.0546299217942234], [-2.2608216062330824, -4.2607741074103327, -1.5000953688388048, -0.75292314562080342]], [[-8.9289705101203687, -9.0961000526466371, -9.5949910782636056, -3.2285025018465099], [-5.11967175979232, -3.5146309772510547, -0.77622628196195897, -6.1058299922801389], [-7.0374291613342228, -0.18645055946423206, -1.5903351187587997, -6.932826413840762]]], [[[-3.4906728311525672, -0.13170908587729357, -7.9419504504662939, -3.2842174688387518], [-0.45160176246728589, -1.450912503282801, -7.4405456423815917, 0.092152335840163246], [-4.3604178609611948, -6.2925822642737028, -8.2563197486896875, -9.3311980477156187]], [[-4.1847783642096168, -1.6844522372889355, -5.7131927017653705, -9.505008448133383], [-2.983862872756923, -5.7358759289773333, -7.9028577595997156, 0.16449567354504246], [-8.8777811644243201, -2.3904409040676793, 0.011299229186308324, -0.48461368526076321]]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank1_Symbol_rank0(self): arg0=Data(numpy.array([-4.9434811071655114, 1.7588416724781917]),self.functionspace) arg0.setTaggedValue(1,numpy.array([3.0524482361043965, -0.58828792238396233])) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(-4.86003727467) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([-9.8035183818403411, -3.1011956021966389]),self.functionspace) ref.setTaggedValue(1,numpy.array([-1.8075890385704341, -5.4483251970587929])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank1_Symbol_rank1(self): arg0=Data(numpy.array([0.47124983588436109, 3.3842142103059487]),self.functionspace) arg0.setTaggedValue(1,numpy.array([4.4506172428158504, -1.5976912605342894])) arg1=Symbol(shape=(2,)) res=arg0+arg1 s1=numpy.array([2.7380372395241483, -1.2414970456241372]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([3.2092870754085094, 2.1427171646818115]),self.functionspace) ref.setTaggedValue(1,numpy.array([7.1886544823399987, -2.8391883061584267])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank2_Symbol_rank0(self): arg0=Data(numpy.array([[3.7123556177495072, -1.2322724929891438, -4.3196981967098704, 4.5149190397092358, -3.4294461596271342], [-0.32526237821140569, 4.906418518064358, 1.6782843293160443, -4.5452294423093242, -3.4252951962126454], [4.7623389482797158, 4.8957853100883888, 2.4605965522735644, -3.3235939770772349, -3.6622677868193731], [3.7849671492059009, -3.7965523255405484, -0.98706292680421903, -2.9575953641431996, 3.7235194699440495]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[3.846235478086534, -2.9152984736534773, 2.1299170235868692, 1.4194093106373815, -1.9728564928751369], [0.12730504885223404, -2.4537968289763077, 1.8352652361138375, -1.1054616749639532, -0.67553225283567997], [-4.6542627767136047, 0.014905560429250286, 0.84138572626791408, -1.4074784720342515, -3.3322631066777983], [-0.64893500421415951, 4.4524265176475826, -3.5204114624144456, 3.5239615703390363, 2.3718443568961201]])) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(3.4845259086) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[7.1968815263516515, 2.2522534156130005, -0.83517228810772615, 7.9994449483113801, 0.055079748975010112], [3.1592635303907386, 8.3909444266665023, 5.1628102379181886, -1.06070353370718, 0.059230712389498841], [8.2468648568818601, 8.3803112186905331, 5.9451224608757087, 0.16093193152490937, -0.17774187821722887], [7.2694930578080452, -0.31202641693840416, 2.4974629817979253, 0.52693054445894472, 7.2080453785461938]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[7.3307613866886783, 0.56922743494866701, 5.6144429321890135, 4.9039352192395258, 1.5116694157270074], [3.6118309574543783, 1.0307290796258366, 5.3197911447159818, 2.3790642336381911, 2.8089936557664643], [-1.1697368681114604, 3.4994314690313946, 4.3259116348700584, 2.0770474365678928, 0.15226280192434594], [2.8355909043879848, 7.9369524262497269, -0.035885553812301296, 7.0084874789411806, 5.8563702654982643]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank2_Symbol_rank2(self): arg0=Data(numpy.array([[2.7675952117994296, 0.98431175880226363, -1.8309000840442566, 2.0351166910383416, 2.1718600084175153], [0.64718493825654111, 3.0274641310077364, 4.6031246235215555, -0.072830522019846633, -3.436466903373192], [-2.7989895712459734, 3.2804563231391093, 3.1416998470123456, 0.25702028842752966, -3.1553411419958821], [-4.5620989116806543, -0.23300222673645532, -2.3978689464069101, 0.41391436589174457, -3.7252639362836382]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[-2.1509506437818238, -2.5007519800405218, 0.30616207266744233, -0.46790716227581797, 0.6454558125610621], [1.9589653025955753, -4.9059174981425437, -4.7107956989445992, 2.6150016745692826, -3.3329567586885211], [1.1850451086308738, 3.8781029980110997, -4.7104324292639133, -4.8362413881812492, 4.9066980390674555], [-1.2440311634968171, -1.6429522113717008, 4.0547225056117124, -0.33314796054153195, -2.6143781039708855]])) arg1=Symbol(shape=(4, 5)) res=arg0+arg1 s1=numpy.array([[-0.0104190624259477, 3.439083370835446, -1.7585221913131677, 3.8784501968475897, 0.08088556648108991], [0.53276272310770789, -1.3171951284400176, -0.841014288686317, 2.4350359443944622, 0.55796159262639922], [-3.3985580423616479, 0.73804937880111687, 0.84641655693241269, -2.0376479444757822, -0.094456394031885438], [0.8829252865168975, 0.84170422580042903, -1.9539396350167637, -4.8054718599517194, -0.37594711864698205]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[2.7571761493734819, 4.4233951296377096, -3.5894222753574243, 5.9135668878859313, 2.2527455748986052], [1.179947661364249, 1.7102690025677187, 3.7621103348352385, 2.3622054223746156, -2.8785053107467928], [-6.1975476136076217, 4.0185057019402262, 3.9881164039447583, -1.7806276560482526, -3.2497975360277676], [-3.6791736251637568, 0.60870199906397371, -4.3518085814236738, -4.3915574940599749, -4.1012110549306202]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[-2.1613697062077715, 0.93833139079492422, -1.4523601186457253, 3.4105430345717718, 0.72634137904215201], [2.4917280257032832, -6.2231126265825614, -5.5518099876309162, 5.0500376189637448, -2.7749951660621219], [-2.2135129337307742, 4.6161523768122166, -3.8640158723315006, -6.8738893326570309, 4.8122416450355701], [-0.36110587697991958, -0.80124798557127175, 2.1007828705949487, -5.1386198204932514, -2.9903252226178676]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank3_Symbol_rank0(self): arg0=Data(numpy.array([[[1.6094791339338048, 4.27222307751477], [4.9486531857239697, -4.5552975586923292]], [[-0.12032729123703056, -4.1413061177629231], [-2.7473350985925316, 4.7319188820310991]], [[0.13107637034429231, -3.2138415379490204], [-3.9942457581718696, 1.3262496008026838]], [[2.56850905863657, 1.8321753808437329], [4.5176482730823331, 4.4664637318837137]], [[0.50860355331966556, 0.55279434819439199], [3.1688695988617859, -2.6740526298455016]], [[4.4977965557520072, 3.6422271944652209], [3.7948343945899445, -3.0377990068633332]]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[[-2.9548694146760557, 3.1101651017467038], [-0.31006440672923752, 0.74616091042484989]], [[-3.1016477433464864, 2.9532816390640111], [-2.0494474684559894, -1.1448583599993354]], [[4.2052724347365604, -1.8157003708847643], [4.8073133555422327, -2.7045312989764492]], [[-2.3803833325202763, 0.19928505008920272], [-2.8622812030202094, 3.9488692362256081]], [[-4.1266217915470236, 4.8461083576413735], [-3.1895474177762351, 4.4625154514412237]], [[-0.65350755924337811, 2.8015786665738105], [0.94103003425367859, 0.27556367440023166]]])) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(4.49324308458) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[6.1027222185118468, 8.765466162092812], [9.4418962703020117, -0.062054474114287217]], [[4.3729157933410114, 0.35193696681511888], [1.7459079859855104, 9.2251619666091411]], [[4.6243194549223343, 1.2794015466290216], [0.49899732640617245, 5.8194926853807258]], [[7.061752143214612, 6.3254184654217749], [9.0108913576603751, 8.9597068164617557]], [[5.0018466378977076, 5.046037432772434], [7.6621126834398279, 1.8191904547325404]], [[8.9910396403300492, 8.1354702790432629], [8.2880774791679865, 1.4554440777147089]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[1.5383736699019863, 7.6034081863247458], [4.1831786778488045, 5.2394039950028919]], [[1.3915953412315556, 7.4465247236420531], [2.4437956161220526, 3.3483847245787066]], [[8.6985155193146024, 2.6775427136932777], [9.3005564401202747, 1.7887117856015928]], [[2.1128597520577657, 4.6925281346672447], [1.6309618815578326, 8.4421123208036501]], [[0.36662129303101842, 9.3393514422194155], [1.3036956668018069, 8.9557585360192657]], [[3.8397355253346639, 7.2948217511518525], [5.4342731188317206, 4.7688067589782737]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank3_Symbol_rank3(self): arg0=Data(numpy.array([[[-2.7345315461324993, 4.5316724428402377], [-1.2207000383039999, -2.1651454481686692]], [[-2.5222456135735638, 3.1325113872519896], [0.54140311786327011, -1.6266115642059011]], [[4.3999274072752783, -0.64510581732829841], [-3.3878893926233533, -0.14783111107246061]], [[2.4816188811184228, 1.505965932327137], [-2.8128544405052458, 3.2460332510852936]], [[1.5649806120186849, 1.1768584297160487], [-3.3133262672401544, -2.5740884272652789]], [[2.936076596237732, -0.80694051724477056], [1.6382059835800931, -0.059174653042079584]]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[[4.107948776768561, 4.79459166600315], [-0.070211802843057391, -2.3000592273671394]], [[1.53142006950028, 0.5983353676488381], [4.2000369856633419, -3.7326077043834074]], [[-3.6852528003303684, -0.40061815593309014], [4.849947657932514, 3.2046322763443698]], [[4.6824735127774275, -2.3356975272114679], [-1.4284737023138216, -0.96863966970867921]], [[4.4306883649430571, 0.16250464015770305], [4.7866411719098583, -1.6949698779239197]], [[-4.9624929004021014, -0.4120760567738655], [-3.510925072784119, -0.26388846668772636]]])) arg1=Symbol(shape=(6, 2, 2)) res=arg0+arg1 s1=numpy.array([[[3.7560333190798687, 0.63030183757017788], [-3.8821224320935288, 4.3508142113739634]], [[4.3548667192676795, -3.4709315123037445], [-0.19540447292770935, -1.1720138856956916]], [[3.7993994701980398, -4.5475458462287497], [-0.20650310401114513, -2.7802894344079201]], [[-0.46867874332271242, 0.82685022383334505], [-3.5357776147305264, 0.7633420403065605]], [[-0.19578164461526359, -4.1370261640670458], [-1.2073883253186946, 0.74664652191646397]], [[-0.697880661399644, -0.46932885527321488], [2.4087818009804716, -1.8245102799854829]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[1.0215017729473694, 5.1619742804104156], [-5.1028224703975287, 2.1856687632052942]], [[1.8326211056941157, -0.33842012505175489], [0.34599864493556076, -2.7986254499015928]], [[8.1993268774733181, -5.1926516635570481], [-3.5943924966344984, -2.9281205454803807]], [[2.0129401377957103, 2.3328161561604821], [-6.3486320552357718, 4.0093752913918541]], [[1.3691989674034213, -2.9601677343509971], [-4.520714592558849, -1.8274419053488149]], [[2.238195934838088, -1.2762693725179854], [4.0469877845605646, -1.8836849330275625]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[7.8639820958484297, 5.4248935035733279], [-3.9523342349365862, 2.050754984006824]], [[5.8862867887679595, -2.8725961446549064], [4.0046325127356326, -4.904621590079099]], [[0.11414666986767141, -4.9481640021618398], [4.6434445539213689, 0.42434284193644967]], [[4.2137947694547151, -1.5088473033781229], [-4.9642513170443481, -0.20529762940211871]], [[4.2349067203277935, -3.9745215239093428], [3.5792528465911637, -0.94832335600745576]], [[-5.6603735618017454, -0.88140491204708038], [-1.1021432718036475, -2.0883987466732092]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank4_Symbol_rank0(self): arg0=Data(numpy.array([[[[1.2403285479679145, -0.65355746314869823, 0.23507371305026048, 2.9495208917061202], [-4.4153187452600653, -1.0271324152128747, 3.6087985228033794, 1.587633224392107], [1.5882989512534262, -2.3766989521547401, -4.6462509853387939, 1.1425676014861166]], [[-4.8469447836806694, -1.4338245370809863, -4.8441809139347694, 0.082128480181090424], [4.2695412477206585, -2.0376229192188622, -2.685821131586259, -4.5654361329152717], [3.5226403567783482, -4.9633770210253347, 4.1637469549065127, -3.5898874968684167]]], [[[2.7439089503129228, 0.81346375693975492, -2.576882111469688, 4.758878084101946], [0.098363354586225249, -4.314913184354209, -1.1821682575010484, 4.9687115939178916], [-2.5414207769554564, 1.9836872846103208, -1.5982744174212127, 4.5509211096426121]], [[4.759533396882766, -4.550347299113696, 4.9394743649799153, -3.9692445921595421], [1.5755016838325195, 2.6599597206311305, -0.59545966103916648, -1.308464088815966], [1.7018715016873482, 0.31781368103450536, -0.91184792887657995, -0.60566457689943931]]], [[[-0.365764084374395, -0.75878286483821444, -3.1104661623240091, -3.7302303444372109], [0.58052395594970907, 0.14085590954626337, 4.6712439745076182, 0.65991412045590181], [-4.5675491076195733, -3.3042112830144132, -2.6719400309110553, -3.8520603991598765]], [[3.4260488825099618, -1.2789319515430164, 1.8435112511824903, 1.0773214658952854], [-4.0772283149901236, 1.0211433275718873, -2.015430043082814, 0.1376630245430368], [1.3249956905172624, 3.1987247807146968, 1.0304156332749459, 3.785256475561086]]]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[[[-3.8774766185796605, 3.1521364883779448, -4.9233158714840091, 3.7988193665209522], [4.8244393256113263, 2.4688683468745563, -4.5044275072582254, 1.1107496985072052], [-2.9980383766650376, -4.2922660982517158, 3.4924104659712771, -0.5135964311738892]], [[1.9573144047865201, -2.2686101409008961, -2.907052414660404, -4.0582253229051144], [-2.0281877168409657, 1.7867206317317663, 0.018511114285918673, -4.0475974398672498], [1.3023403490307315, 1.9932255873687215, -4.6698465653310688, -4.5630845029599421]]], [[[-1.9525649263627876, -0.72040110769848908, -3.6987029249472769, -3.3184217891099999], [-4.0519149413902857, 4.1195877398536549, -3.8261874289376463, 3.423780007792768], [0.11768639970294359, -1.4898880703788131, -1.1746648112150213, -0.28493737967147226]], [[-2.0138403307539932, 3.9987186392010816, -1.0125535260055338, 0.57376641241565363], [4.213727608092972, 0.51388058678005066, -4.4106027756910908, -1.9979423050108283], [1.5708368447511347, -1.6270284297780933, -0.55277364435139376, -1.7748804647831715]]], [[[2.7639070541103061, 2.7303808332951629, 0.41148416591473591, -1.9337000414572802], [-2.7585163378482456, 2.2319457297797207, 3.7988668025967804, 3.6103374331669471], [-4.5925114196923271, -2.1274746711435997, 3.3094547630756779, -4.1386856959210352]], [[-2.1348423629137692, 3.539794593057783, 4.8265405725541157, 4.9426398297282788], [4.5757071915543417, -4.0433372993763399, -0.84096548582416997, 2.0567811910343226], [4.5367596882428671, -4.9139510999364404, 1.1342166543217944, 1.4859311895053571]]]])) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(4.83582066753) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[6.0761492154946453, 4.1822632043780326, 5.0708943805769913, 7.785341559232851], [0.4205019222666655, 3.8086882523138561, 8.4446191903301102, 6.4234538919188378], [6.424119618780157, 2.4591217153719906, 0.18956968218793691, 5.9783882690128474]], [[-0.011124116153938601, 3.4019961304457444, -0.008360246408038563, 4.9179491477078212], [9.1053619152473892, 2.7981977483078686, 2.1499995359404718, 0.27038453461145906], [8.358461024305079, -0.12755635349860395, 8.9995676224332435, 1.2459331706583141]]], [[[7.5797296178396536, 5.6492844244664857, 2.2589385560570427, 9.5946987516286768], [4.934184022112956, 0.52090748317252178, 3.6536524100256824, 9.8045322614446224], [2.2943998905712744, 6.8195079521370516, 3.2375462501055181, 9.3867417771693429]], [[9.5953540644094968, 0.28547336841303483, 9.7752950325066461, 0.86657607536718873], [6.4113223513592503, 7.4957803881578613, 4.2403610064875643, 3.5273565787107648], [6.537692169214079, 5.1536343485612361, 3.9239727386501508, 4.2301560906272915]]], [[[4.4700565831523358, 4.0770378026885163, 1.7253545052027217, 1.1055903230895199], [5.4163446234764399, 4.9766765770729942, 9.507064642034349, 5.4957347879826326], [0.26827155990715745, 1.5316093845123175, 2.1638806366156755, 0.98376026836685426]], [[8.2618695500366925, 3.5568887159837144, 6.679331918709221, 5.9131421334220162], [0.75859235253660717, 5.8569639950986181, 2.8203906244439167, 4.9734836920697676], [6.1608163580439932, 8.0345454482414276, 5.8662363008016767, 8.6210771430878168]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[0.95834404894707026, 7.9879571559046756, -0.087495203957278278, 8.634640034047683], [9.6602599931380571, 7.304689014401287, 0.3313931602685054, 5.946570366033936], [1.8377822908616932, 0.543554569275015, 8.3282311334980079, 4.3222242363528416]], [[6.7931350723132509, 2.5672105266258347, 1.9287682528663268, 0.77759534462161639], [2.8076329506857651, 6.6225412992584971, 4.8543317818126495, 0.78822322765948094], [6.1381610165574623, 6.8290462548954523, 0.165974102195662, 0.27273616456678873]]], [[[2.8832557411639432, 4.1154195598282417, 1.1371177425794539, 1.5173988784167309], [0.78390572613644505, 8.9554084073803857, 1.0096332385890845, 8.2596006753194988], [4.9535070672296744, 3.3459325971479177, 3.6611558563117095, 4.5508832878552585]], [[2.8219803367727376, 8.8345393067278124, 3.823267141521197, 5.4095870799423844], [9.0495482756197028, 5.3497012543067815, 0.42521789183563996, 2.8378783625159025], [6.4066575122778655, 3.2087922377486375, 4.283047023175337, 3.0609402027435593]]], [[[7.5997277216370369, 7.5662015008218937, 5.2473048334414667, 2.9021206260694505], [2.0773043296784852, 7.0677663973064515, 8.6346874701235112, 8.4461581006936779], [0.24330924783440366, 2.7083459963831311, 8.1452754306024087, 0.6971349716056956]], [[2.7009783046129616, 8.3756152605845138, 9.6623612400808465, 9.7784604972550095], [9.4115278590810725, 0.79248336815039089, 3.9948551817025608, 6.8926018585610533], [9.3725803557695979, -0.078130432409709627, 5.9700373218485252, 6.3217518570320879]]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_taggedData_rank4_Symbol_rank4(self): arg0=Data(numpy.array([[[[-3.1509236523814286, 1.680234058442708, -1.7187977550532416, 3.9846453843972913], [-1.6754979614332322, -3.8450074807346901, -1.5740330789137689, -4.4201074343218751], [2.276529915966389, -0.80235747833916982, 4.571247045598767, -3.4093255486695617]], [[-4.0166628667791446, -1.3933240066153738, -1.215071574667598, -3.4706735067142258], [-3.0960303329082572, 4.3009033191704589, 4.4065883064621634, 4.8965445768019009], [-4.4443460968929758, 3.8975314333052253, -4.4153045047286144, 1.7496820405056166]]], [[[1.634274247051799, -2.4623052709302771, 1.4279180811059975, 0.92544783745377668], [-4.4862942162658106, -0.17080151547727951, 0.52532922395695625, -0.11419327223481623], [-1.1603038628614835, -2.5757515035829472, 1.9959550719114718, -1.7953240768392242]], [[4.9309159450812103, 3.2298165897638906, -0.075208625571880461, -1.1899071115534432], [1.6545058865005409, -1.9426363189361773, 1.620629502101667, -4.2257681218133687], [-0.24689686416986767, 2.1247379677905815, -0.022501917990521925, -1.9988138278359822]]], [[[-2.16170138942825, 1.2184335532362125, 1.1509535832826323, 2.2195238124001797], [2.7455643566460015, 4.6453581322389361, -4.1082447076462643, -4.0639146315693067], [-4.96116105494092, -3.6915142795866762, -1.2186796693827917, 4.7933913234222967]], [[2.0022553772723217, -0.96891528014022654, -2.5457411370843142, -3.3574915783043058], [0.10326637441549735, 2.2065594442944327, 3.4159550457557479, -0.71182719653128945], [-1.5473005591196651, -1.8237704422942014, 3.7660184612895105, -2.1565964302540372]]]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[[[-2.7644812297675436, 0.40931971763703956, 3.611075059192606, 0.50972765741910564], [-4.2130726841282584, -1.1190277433669751, -0.71203745760782766, -3.152956525368753], [-1.6186056313723087, 1.1274726343098616, 4.4133392834898437, 1.5220424195160689]], [[0.16147933294385375, 2.4654462130650998, -2.2315133839410328, -4.5248215067907562], [2.2226933853289026, 3.7083490689582508, 1.6042940030913613, 0.26178935291219929], [2.4033332562872989, 2.6116613010273229, -3.5340848426974594, -4.3871506552920767]]], [[[-2.5011422414749243, -2.9785737952530678, -4.0632268435384287, -2.9061747268645899], [-3.4361922491984487, 0.92512310228203631, -3.7591410062368915, -0.10199113857196274], [1.4370716393838645, 0.71874746237537668, -4.5480615526025323, -3.9385610102938093]], [[-3.5039474073115562, 1.4740925776889409, -0.06403798877318323, -3.3828440686373753], [-1.9590119108809123, -0.13446729158123816, -2.4360152863347251, 0.81375486060557112], [2.4638296949211451, 0.84554464160795018, 1.0770605717668191, 0.90311465710515648]]], [[[-3.0365259446312756, -2.1113062138954444, 3.190598106141481, 4.7146234105400531], [4.7073713389281071, 2.0949812753843036, 1.902801485931489, -0.4384294077249864], [-4.4341512258710214, 4.114619941421422, 4.1663347911930675, -0.082374028629738305]], [[-0.58950965471106098, -1.9744112566224792, -0.0098348725084971278, 2.3871548847218813], [-1.1861224380121662, -3.8703032573387253, 0.2332725218101972, 2.7881117501797101], [-4.3313677243610327, 2.5428749523942127, 3.9018944633638419, -0.49408732338659789]]]])) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0+arg1 s1=numpy.array([[[[1.8433628252117984, 1.5322432245117268, 0.55363793461945665, 4.6657626927783653], [-0.94710403494804751, 3.9800168829397649, 3.0366988370600794, 2.8875431155604332], [-1.188024345098996, 1.0665386751463011, 4.7835901054797993, 2.5969696632689807]], [[-1.99850752062535, 1.1333681341555639, -0.49718999089842697, 1.1440753369804515], [0.26294280812698378, -3.8684363170040701, 0.061030108864615684, -4.1179127492349608], [-4.67031644465197, 4.9054510497550492, -0.2640662442281041, 1.363134852748785]]], [[[-1.4621905107325697, -2.8811881835070574, -2.0127263016810106, 3.9187151372775499], [4.0559843147336121, 3.8748150284806506, -4.7195991819934049, 1.6441241199343715], [1.1018797372155733, 1.5720711461020827, -2.8718182782954003, -2.4926472889456743]], [[2.1583981297206112, -2.7029142786449709, -4.0306810999276212, -0.041927417439557857], [2.5297094316362001, 3.2023688131127575, -0.87830172094753056, 1.5087811969314782], [0.94040146920827272, 1.8042467131134678, 2.6306472495122346, 0.16819275341523543]]], [[[0.15798239523545377, 2.4104584738150319, 2.3850248364278386, 3.2174938931658534], [4.8575582926065533, 0.30772922316230389, -4.4397211951638047, 0.39063821497748741], [-2.3146321369181688, -3.0703095447217885, 1.7397877979741549, 4.033153568325778]], [[-1.7935270727714037, -3.9682025038313595, -3.4065483616803141, 2.1844510922893523], [-4.2449404804537032, 1.9572337718531996, -4.6593011375931308, 0.98236210083608633], [4.8624542464851288, 0.5657266529616205, 0.50114562982511135, -3.2736237576584317]]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[-1.3075608271696302, 3.2124772829544348, -1.165159820433785, 8.6504080771756566], [-2.6226019963812797, 0.13500940220507474, 1.4626657581463105, -1.5325643187614419], [1.088505570867393, 0.26418119680713126, 9.3548371510785664, -0.81235588540058101]], [[-6.0151703874044946, -0.25995587245980989, -1.7122615655660249, -2.3265981697337743], [-2.8330875247812735, 0.43246700216638878, 4.4676184153267791, 0.77863182756694016], [-9.1146625415449449, 8.8029824830602745, -4.6793707489567185, 3.1128168932544016]]], [[[0.17208373631922935, -5.3434934544373345, -0.58480822057501314, 4.8441629747313266], [-0.4303099015321985, 3.7040135130033711, -4.1942699580364486, 1.5299308476995552], [-0.058424125645910152, -1.0036803574808646, -0.87586320638392845, -4.2879713657848981]], [[7.0893140748018215, 0.52690231111891972, -4.1058897254995017, -1.2318345289930011], [4.184215318136741, 1.2597324941765802, 0.74232778115413645, -2.7169869248818905], [0.69350460503840505, 3.9289846809040494, 2.6081453315217127, -1.8306210744207467]]], [[[-2.0037189941927962, 3.6288920270512444, 3.5359784197104709, 5.4370177055660331], [7.6031226492525548, 4.95308735540124, -8.5479659028100698, -3.6732764165918192], [-7.2757931918590888, -6.7618238243084647, 0.52110812859136324, 8.8265448917480747]], [[0.20872830450091806, -4.9371177839715861, -5.9522894987646282, -1.1730404860149535], [-4.1416741060382058, 4.1637932161476323, -1.2433460918373829, 0.27053490430479687], [3.3151536873654637, -1.2580437893325809, 4.2671640911146218, -5.430220187912469]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[-0.92111840455574523, 1.9415629421487663, 4.1647129938120626, 5.1754903501974709], [-5.1601767190763059, 2.8609891395727898, 2.3246613794522517, -0.26541340980831984], [-2.8066299764713047, 2.1940113094561626, 9.1969293889696431, 4.1190120827850496]], [[-1.8370281876814962, 3.5988143472206637, -2.7287033748394598, -3.3807461698103047], [2.4856361934558864, -0.16008724804581931, 1.665324111955977, -3.8561233963227615], [-2.2669831883646712, 7.5171123507823721, -3.7981510869255635, -3.0240158025432917]]], [[[-3.9633327522074939, -5.8597619787601252, -6.0759531452194393, 1.0125404104129601], [0.61979206553516342, 4.7999381307626869, -8.4787401882302973, 1.5421329813624087], [2.5389513765994378, 2.2908186084774593, -7.4198798308979326, -6.4312082992394837]], [[-1.345549277590945, -1.22882170095603, -4.0947190887008045, -3.4247714860769332], [0.57069752075528779, 3.0679015215315193, -3.3143170072822556, 2.3225360575370493], [3.4042311641294178, 2.649791354721418, 3.7077078212790537, 1.0713074105203919]]], [[[-2.8785435493958218, 0.29915225991958749, 5.5756229425693196, 7.9321173037059065], [9.5649296315346604, 2.4027104985466075, -2.5369197092323157, -0.047791192747498989], [-6.7487833627891902, 1.0443103966996334, 5.9061225891672224, 3.9507795396960397]], [[-2.3830367274824646, -5.9426137604538383, -3.4163832341888112, 4.5716059770112336], [-5.4310629184658694, -1.9130694854855257, -4.4260286157829336, 3.7704738510157965], [0.53108652212409613, 3.1086016053558332, 4.4030400931889533, -3.7677110810450296]]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank0_Symbol_rank0(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(-0.481249850026)+(1.-msk_arg0)*(-1.48465416864) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(-2.65110429185) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*(-3.13235414188)+(1.-msk_ref)*(-4.13575846049) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank0_Symbol_rank1(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(1.13411439983)+(1.-msk_arg0)*(-0.629637549331) arg1=Symbol(shape=(2,)) res=arg0+arg1 s1=numpy.array([-0.62992419613163175, 4.55886114005793]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([0.50419020369403444, 5.6929755398835962])+(1.-msk_ref)*numpy.array([-1.259561745462479, 3.9292235907270827]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank0_Symbol_rank2(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(3.01809294358)+(1.-msk_arg0)*(0.889743657807) arg1=Symbol(shape=(4, 5)) res=arg0+arg1 s1=numpy.array([[-2.793178683106079, -2.6222774715493582, 1.0142792223620747, -3.0640922264732984, -2.3554298671206055], [0.088775964219395043, 3.4441381957619619, 3.3892189758872853, 2.7423767697866088, 3.977644321141641], [1.4526982641352157, 2.2184052986969505, -3.952710218879385, -4.7169576073736375, -0.7937042808225101], [2.2686916098744314, -1.553248315886353, -2.7367045745859819, 3.7958840729585344, 1.4548199443717298]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[0.22491426047411567, 0.39581547203083645, 4.0323721659422693, -0.045999282893103732, 0.66266307645958911], [3.1068689077995897, 6.4622311393421565, 6.4073119194674799, 5.7604697133668035, 6.9957372647218357], [4.4707912077154104, 5.2364982422771451, -0.93461727529919036, -1.6988646637934428, 2.2243886627576845], [5.2867845534546261, 1.4648446276938416, 0.28138836899421271, 6.813977016538729, 4.4729128879519244]])+(1.-msk_ref)*numpy.array([[-1.9034350252987218, -1.732533813742001, 1.9040228801694319, -2.1743485686659412, -1.4656862093132483], [0.97851962202675224, 4.3338818535693191, 4.2789626336946425, 3.632120427593966, 4.8673879789489982], [2.3424419219425729, 3.1081489565043077, -3.0629665610720278, -3.8272139495662802, 0.096039376984847102], [3.1584352676817886, -0.66350465807899583, -1.8469609167786247, 4.6856277307658916, 2.344563602179087]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank0_Symbol_rank3(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(-4.98444562132)+(1.-msk_arg0)*(4.30756765987) arg1=Symbol(shape=(6, 2, 2)) res=arg0+arg1 s1=numpy.array([[[1.9993822405268356, -3.1230808428690615], [4.9036400439562815, -4.8838867997176525]], [[0.42763250705520939, 1.7579324334230453], [-3.7242679708963458, 1.8833596506298056]], [[-3.5481907533254931, 0.2040318933875751], [-2.5124574767604746, -4.1576503017979416]], [[2.4187154671810562, -0.51775884222858526], [-1.722028671225063, 4.8177194310600537]], [[3.5460779618762999, 3.7426721831596925], [-3.14876579453641, -1.8491069265603413]], [[-2.0602497125201733, 1.8445672729830882], [2.6289048953955998, -2.1171625740448654]]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[[-2.9850633807947604, -8.1075264641906575], [-0.080805577365314463, -9.8683324210392485]], [[-4.5568131142663866, -3.2265131878985507], [-8.7087135922179417, -3.1010859706917904]], [[-8.5326363746470886, -4.7804137279340209], [-7.4969030980820701, -9.1420959231195376]], [[-2.5657301541405397, -5.5022044635501812], [-6.7064742925466589, -0.16672619026154223]], [[-1.4383676594452961, -1.2417734381619034], [-8.1332114158580069, -6.8335525478819372]], [[-7.0446953338417693, -3.1398783483385078], [-2.3555407259259962, -7.1016081953664614]]])+(1.-msk_ref)*numpy.array([[[6.3069499004015404, 1.1844868170056433], [9.2112077038309863, -0.57631913984294769]], [[4.7352001669299142, 6.0655000932977501], [0.58329968897835904, 6.1909273105045104]], [[0.75937690654921175, 4.5115995532622799], [1.7951101831142302, 0.14991735807676321]], [[6.726283127055761, 3.7898088176461195], [2.5855389886496418, 9.1252870909347585]], [[7.8536456217510047, 8.0502398430343973], [1.1588018653382948, 2.4584607333143635]], [[2.2473179473545315, 6.152134932857793], [6.9364725552703046, 2.1904050858298394]]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank0_Symbol_rank4(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(-2.9697925334)+(1.-msk_arg0)*(-4.26135335725) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0+arg1 s1=numpy.array([[[[3.9689996783063126, 2.6024749301521517, -2.8657897182202263, 3.4523361907793202], [1.0646468808240472, 2.2809214673673006, 1.9110441510817342, 3.6637536830808415], [-4.8161620946685977, 1.1260192950202335, -1.5444099528131283, 4.5856953227320361]], [[3.4807853259935388, 1.0632821522370133, -1.7813251042294, 0.96803702807832348], [-2.2395880868316476, 4.8919502166960243, 3.0915081953974273, -0.85921425228962178], [-0.24500754865585961, -3.000069805276242, -2.3285433357124861, -3.7526812827715004]]], [[[-2.6148866735769314, -2.9426881222754986, -2.1105189060422127, -1.718323686970705], [0.38236683235255065, 4.8146833101999391, -0.69724678041282662, -3.674837501299455], [-1.1217878757973345, 1.9457797122429064, 4.3330454272287042, 1.2870165165330079]], [[0.90390350707926448, 4.0932246664578322, 4.0170833493811937, 2.3057200276883218], [-4.1149618340720506, 4.3206785552080422, 4.5478406361616468, 3.4270491303459689], [-3.2122582790653578, -0.051138136931458078, 2.847106348954056, -2.0922906343243097]]], [[[-3.8470709835005801, 0.79389346854249432, 1.9702586564654192, -1.230993932131331], [0.52027641197917784, 4.1606002966489264, -4.1240899145057277, 3.0855602864655047], [1.2434749670286918, 1.9421106344042691, -4.7997149299258455, -3.1016051858236517]], [[-4.0158867307020536, -1.2810983979769732, 4.1806447574751786, 2.4159993753375488], [3.8210591526688589, 2.9170696329659753, 0.212629682453775, -3.6791629346607402], [-0.52709663403725493, -2.0893727810689953, -1.7473644406170976, -4.1869442335699976]]]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[[[0.99920714490574225, -0.36731760324841867, -5.8355822516207967, 0.48254365737874982], [-1.9051456525765231, -0.68887106603326975, -1.0587483823188362, 0.69396114968027112], [-7.7859546280691685, -1.8437732383803369, -4.5142024862136987, 1.6159027893314657]], [[0.51099279259296848, -1.9065103811635571, -4.7511176376299709, -2.0017555053222469], [-5.2093806202322179, 1.9221576832954539, 0.12171566199685691, -3.8290067856901921], [-3.21480008205643, -5.9698623386768119, -5.2983358691130569, -6.7224738161720712]]], [[[-5.5846792069775013, -5.9124806556760685, -5.0803114394427826, -4.6881162203712758], [-2.5874257010480197, 1.8448907767993687, -3.667039313813397, -6.6446300347000253], [-4.0915804091979044, -1.024012821157664, 1.3632528938281339, -1.6827760168675625]], [[-2.0658890263213059, 1.1234321330572619, 1.0472908159806233, -0.66407250571224852], [-7.0847543674726214, 1.3508860218074719, 1.5780481027610764, 0.45725659694539855], [-6.1820508124659277, -3.0209306703320284, -0.12268618444651436, -5.0620831677248805]]], [[[-6.8168635169011509, -2.175899064858076, -0.99953387693515117, -4.2007864655319018], [-2.4495161214213925, 1.190807763248356, -7.0938824479062976, 0.11576775306493436], [-1.7263175663718786, -1.0276818989963012, -7.7695074633264163, -6.0713977192242226]], [[-6.9856792641026235, -4.250890931377544, 1.2108522240746082, -0.55379315806302154], [0.8512666192682885, -0.052722900434595044, -2.7571628509467954, -6.6489554680613105], [-3.4968891674378253, -5.0591653144695652, -4.7171569740176675, -7.1567367669705675]]]])+(1.-msk_ref)*numpy.array([[[[-0.29235367894345909, -1.65887842709762, -7.1271430754699985, -0.80901716647045152], [-3.1967064764257245, -1.9804318898824711, -2.3503092061680375, -0.59759967416893023], [-9.0775154519183694, -3.1353340622295383, -5.8057633100629005, 0.32434196548226435]], [[-0.78056803125623286, -3.1980712050127584, -6.0426784614791718, -3.2933163291714482], [-6.5009414440814197, 0.63059685944625254, -1.1698451618523444, -5.1205676095393935], [-4.5063609059056313, -7.2614231625260137, -6.5898966929622578, -8.0140346400212721]]], [[[-6.8762400308267031, -7.2040414795252703, -6.3718722632919844, -5.9796770442204767], [-3.8789865248972211, 0.5533299529501674, -4.9586001376625983, -7.9361908585492262], [-5.3831412330471062, -2.3155736450068654, 0.071692069978932516, -2.9743368407167639]], [[-3.3574498501705072, -0.16812869079193948, -0.244270007868578, -1.9556333295614499], [-8.3763151913218223, 0.059325197958270515, 0.28648727891187509, -0.83430422690380279], [-7.4736116363151295, -4.3124914941812298, -1.4142470082957157, -6.3536439915740814]]], [[[-8.1084243407503518, -3.4674598887072774, -2.2910947007843525, -5.4923472893811027], [-3.7410769452705939, -0.10075306060084532, -8.3854432717554985, -1.175793070784267], [-3.01787839022108, -2.3192427228455026, -9.0610682871756172, -7.3629585430734235]], [[-8.2772400879518244, -5.5424517552267449, -0.080708599774593104, -1.8453539819122229], [-0.44029420458091284, -1.3442837242837964, -4.0487236747959967, -7.9405162919105123], [-4.7884499912870266, -6.350726138318767, -6.0087177978668693, -8.4482975908197702]]]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank1_Symbol_rank0(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([2.1945719955206853, -3.4851810549539852])+(1.-msk_arg0)*numpy.array([-3.159460740559509, 1.0507096466806898]) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(2.92811762582) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([5.1226896213358133, -0.5570634291388572])+(1.-msk_ref)*numpy.array([-0.23134311474438096, 3.9788272724958178]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank1_Symbol_rank1(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([1.9387192390641195, -2.294788495198282])+(1.-msk_arg0)*numpy.array([-3.9950296964046816, -4.9584579002903517]) arg1=Symbol(shape=(2,)) res=arg0+arg1 s1=numpy.array([0.68148355985483988, 0.33396702170122339]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([2.6202027989189594, -1.9608214734970586])+(1.-msk_ref)*numpy.array([-3.3135461365498418, -4.6244908785891283]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank2_Symbol_rank0(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([[1.9335525790389809, 4.8876884032830024, -3.6794048434152948, -2.9337672885330814, 0.5880232587543972], [1.2731441866942719, 4.8021715240969982, 2.9871285060348427, 4.3674026791776921, 2.3324101078324144], [3.257367767879968, 3.614481137699638, -4.0465097244122443, -3.3712543524462166, 0.83424572698980626], [-4.7734011845397317, -1.1918316514932537, -2.641576771310632, -3.7441723823507447, 2.5792398168240602]])+(1.-msk_arg0)*numpy.array([[0.51038147587387783, -3.548018657118809, 3.7494118465432393, 3.6729170048063136, -2.9522974158811746], [3.2109365766033289, -1.7347320393345091, -0.9996429948297223, -0.75500884718678307, 1.5928790967815267], [-4.1174844249701259, 4.2030131668606234, -4.8484509001230229, 2.7032344298767921, 4.3009935101668333], [-1.4527019870327429, 3.9347061378002781, 1.21415230923688, -3.666838308237784, -3.8400590973123858]]) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(3.22997214356) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[5.1635247225953336, 8.117660546839355, -0.44943269985894219, 0.29620485502327121, 3.8179954023107499], [4.5031163302506245, 8.0321436676533509, 6.2171006495911953, 7.5973748227340447, 5.5623822513887671], [6.4873399114363206, 6.8444532812559906, -0.81653758085589168, -0.14128220888986398, 4.0642178705461589], [-1.5434290409833791, 2.038140492063099, 0.58839537224572069, -0.51420023879439203, 5.8092119603804129]])+(1.-msk_ref)*numpy.array([[3.7403536194302305, -0.31804651356245639, 6.979383990099592, 6.9028891483626662, 0.27767472767517809], [6.4409087201596815, 1.4952401042218435, 2.2303291487266304, 2.4749632963695696, 4.8228512403378794], [-0.88751228141377325, 7.4329853104169761, -1.6184787565666703, 5.9332065734331447, 7.5309656537231859], [1.7772701565236098, 7.1646782813566308, 4.4441244527932326, -0.43686616468143136, -0.61008695375603317]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank2_Symbol_rank2(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([[-0.074742989914646785, -1.8482493880577588, 1.0926262448311599, 4.5158483202643716, -3.0805669333005561], [0.0085606966159099684, -2.9696862086974996, 3.3024460854167597, 1.5088165460119427, -3.6452065491857266], [0.18694035412066512, -4.6738922180085147, 3.9551045875071438, 4.0084174115638724, -0.63332177275981749], [2.5093858800842108, -0.36171911019222946, 0.19138395375626427, -3.1795621861527734, -2.6267949144535008]])+(1.-msk_arg0)*numpy.array([[-3.5942187686631524, -3.7060821431133406, 0.9533196788857623, -4.8840044000628744, 0.3938790125214453], [4.0652979493208985, 4.5325841421496644, -0.4281905049316661, -1.742508580451184, 2.7120740894023898], [0.56888661640784566, -2.4569299021956068, 3.568568120069024, -2.0793352745659766, -1.7689628659930126], [-4.8632954420706014, -2.8828667280653364, 3.4090243893802246, 3.0651732601260697, 4.6463764755640256]]) arg1=Symbol(shape=(4, 5)) res=arg0+arg1 s1=numpy.array([[-1.4953863183942318, -3.5127993001524969, 2.9138150805794103, -1.6144165168200519, -0.65062618022498242], [-4.9181569250500168, -2.6971927119277908, 4.2365880197149934, -4.2036145824282496, 2.2260090531531453], [4.0868409931398002, -3.3893548967194032, 2.9012650531553019, -2.2355683566643378, 2.9627609193479501], [4.9921359000605019, 0.6569024014440803, 3.3639734573108839, 0.89356331435440595, -4.0709626638242327]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[-1.5701293083088785, -5.3610486882102553, 4.0064413254105702, 2.9014318034443196, -3.7311931135255385], [-4.9095962284341068, -5.6668789206252903, 7.5390341051317531, -2.6947980364163069, -1.4191974960325813], [4.2737813472604653, -8.0632471147279183, 6.8563696406624457, 1.7728490548995346, 2.3294391465881326], [7.5015217801447127, 0.29518329125185083, 3.5553574110671482, -2.2859988717983675, -6.6977575782777334]])+(1.-msk_ref)*numpy.array([[-5.0896050870573841, -7.2188814432658379, 3.8671347594651726, -6.4984209168829263, -0.25674716770353712], [-0.85285897572911828, 1.8353914302218737, 3.8083975147833273, -5.9461231628794335, 4.9380831425555352], [4.6557276095476459, -5.8462847989150095, 6.4698331732243259, -4.3149036312303144, 1.1937980533549375], [0.12884045798990051, -2.2259643266212561, 6.7729978466911085, 3.9587365744804757, 0.57541381173979289]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank3_Symbol_rank0(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([[[-2.1957568090391955, 0.56747277575122101], [-1.4226171578539604, -3.1174336379255854]], [[1.9150168705353749, 0.46771483389240665], [-0.73261624542450932, 1.4533109165427449]], [[-4.3700026677098416, -4.4121889510507675], [-4.2432470132589684, -4.6365817911825937]], [[4.3712760608754326, 0.48815678812850649], [-4.2919585871561221, 2.8753619236403747]], [[4.7410827225779482, -3.2941488290580354], [3.5834613437014919, 0.53477849558006074]], [[-2.2697241902980902, 1.4839036193452078], [4.3514574228344109, 2.0334834769049763]]])+(1.-msk_arg0)*numpy.array([[[1.9065956016010119, 3.8011536401496766], [4.2481111431072272, 0.7657337986451509]], [[1.7488690210709832, 4.5064595133713876], [-1.261534521038973, -1.5095749568667172]], [[1.2010203264269057, 0.055494332510111377], [4.3269730839285749, -0.54412407243328076]], [[-2.6257140205956175, -3.4462245120816002], [1.3451771798822101, 2.462398203439907]], [[-2.5713124204289493, 1.9356323962441504], [1.8879658089499234, 3.1212800001648091]], [[1.942043508304808, 0.80539011514164471], [-0.3765200612428643, 0.73339801844715691]]]) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(2.24723235412) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[[0.05147554507665264, 2.8147051298670691], [0.82461519626188773, -0.87020128380973727]], [[4.162249224651223, 2.7149471880082547], [1.5146161086913388, 3.700543270658593]], [[-2.1227703135939935, -2.1649565969349194], [-1.9960146591431203, -2.3893494370667456]], [[6.6185084149912807, 2.7353891422443546], [-2.044726233040274, 5.1225942777562228]], [[6.9883150766937963, -1.0469164749421873], [5.83069369781734, 2.7820108496959088]], [[-0.022491836182242153, 3.7311359734610559], [6.598689776950259, 4.2807158310208244]]])+(1.-msk_ref)*numpy.array([[[4.15382795571686, 6.0483859942655247], [6.4953434972230752, 3.012966152760999]], [[3.9961013751868313, 6.7536918674872357], [0.98569783307687509, 0.73765739724913093]], [[3.4482526805427538, 2.3027266866259595], [6.574205438044423, 1.7031082816825673]], [[-0.37848166647976944, -1.1989921579657521], [3.5924095339980582, 4.7096305575557551]], [[-0.32408006631310116, 4.1828647503599985], [4.1351981630657715, 5.3685123542806572]], [[4.1892758624206561, 3.0526224692574928], [1.8707122928729838, 2.980630372563005]]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank3_Symbol_rank3(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([[[-3.6330041831896742, 1.9011276595647058], [4.0527837903730326, 3.7453216540822218]], [[1.1423057067323032, -4.6191355501663702], [-0.19479401086936399, 3.6518312558771875]], [[-0.78164127432320996, -0.0025588788834731702], [-2.5155059876978534, -2.7853664238124578]], [[-2.4557560474662496, -1.7001261418483038], [2.2437567320884249, -4.5528490181464578]], [[3.3965240991344601, 2.7531638892344281], [-1.0182649859279858, 0.37879180372082377]], [[-2.2634040587587356, -3.6908761533687482], [-2.6652399154901509, -2.0159814304593739]]])+(1.-msk_arg0)*numpy.array([[[4.9981907924797788, 4.277720751221235], [-4.4785446333946686, -3.8140270519701982]], [[1.4517149340948965, 1.9122847710945834], [-1.0984824997077558, 4.9260526287710995]], [[3.0231870187238314, -4.426803554802202], [-0.1009215503507912, -2.4226611633877337]], [[3.1439947236211125, -2.7156096061802728], [-0.27949941006709977, 0.15562912547547469]], [[-1.6704879956646712, -0.87822202800174587], [-4.0968204088950708, -4.8812474874399072]], [[-3.0876637956180186, 0.42808604578959475], [-0.76617423765119153, 1.4811418969805343]]]) arg1=Symbol(shape=(6, 2, 2)) res=arg0+arg1 s1=numpy.array([[[-3.655791939954395, 1.9082625611635287], [2.0305234873740705, -3.9575879711347337]], [[0.58883813376680294, -0.44253502109642717], [-0.50659655202841058, 4.7262250303753071]], [[2.3551049262619417, -2.7472704728416062], [-4.2131185370897501, 1.1560716927603512]], [[-1.8521430501234626, -2.8126771236453196], [-1.6116964851382032, 4.3144406033510982]], [[-4.4005771771028979, -3.8795508309654512], [0.95903540985898683, -0.84559016177598512]], [[-2.6007509769442674, -0.13151235868250399], [-1.5038936232862978, -3.9733280592961249]]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[[-7.2887961231440688, 3.8093902207282344], [6.0833072777471031, -0.21226631705251187]], [[1.7311438404991062, -5.0616705712627974], [-0.70139056289777457, 8.3780562862524945]], [[1.5734636519387317, -2.7498293517250794], [-6.7286245247876035, -1.6292947310521066]], [[-4.3078990975897122, -4.5128032654936234], [0.63206024695022167, -0.23840841479535957]], [[-1.0040530779684378, -1.1263869417310231], [-0.059229576068998924, -0.46679835805516134]], [[-4.8641550357030034, -3.8223885120512522], [-4.1691335387764488, -5.9893094897554988]]])+(1.-msk_ref)*numpy.array([[[1.3423988525253838, 6.1859833123847636], [-2.4480211460205981, -7.7716150231049319]], [[2.0405530678616994, 1.4697497499981562], [-1.6050790517361664, 9.6522776591464066]], [[5.3782919449857731, -7.1740740276438082], [-4.3140400874405413, -1.2665894706273826]], [[1.29185167349765, -5.5282867298255924], [-1.891195895205303, 4.4700697288265729]], [[-6.0710651727675691, -4.757772858967197], [-3.137784999036084, -5.7268376492158923]], [[-5.688414772562286, 0.29657368710709076], [-2.2700678609374894, -2.4921861623155905]]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank4_Symbol_rank0(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([[[[4.965007128412612, 3.4584141019026564, -1.0391619896304451, 4.5542963326499351], [-0.0016792172679549466, -2.9053441565334981, 0.025786108583792711, -0.89554847161554374], [4.4904084527351209, -0.89553646258473307, 3.8929449623498495, -2.8715607346304415]], [[-3.727374719009604, 2.2555823384608908, 0.53380019017552272, -0.29480940480144113], [-3.6344667828862445, -4.8499559892732567, 3.5342171405331317, 1.9875915936023327], [3.0643486049591804, -2.9482947381564806, 1.257296440825332, -4.4599817600046716]]], [[[-3.7989993001254971, 4.2006768317373879, -1.9340842456373886, 0.25295780568139836], [0.15305381262779072, 2.184447614622945, -2.0595806484522039, 1.6196719151709491], [-1.550459702477788, 2.2328097059995393, -3.2648987061947632, -1.7698524550474004]], [[-3.1067614393264673, 3.6490340896776274, 4.2948603770463407, -3.4382940099694084], [-1.765073080880275, 2.5928931740693892, 2.2530590640640069, 2.7653349815108443], [-0.88766895991026384, 3.8444038125137965, 3.8283329993863564, 1.6961545196727537]]], [[[-1.6941819291782823, -4.3507603532160344, 0.58625398426930175, -4.9534370199923137], [4.3258398610183271, 4.7398172498630355, -0.27425006429631082, -0.80958052389792012], [0.27800145594245151, -0.70646630926925713, -1.3619199397032533, -0.22712536683851958]], [[-3.7307177958823781, -0.17135910311966995, -1.2454260400370809, 1.8499155339141273], [0.7652733563966283, -4.2318891899847593, 4.1390775019993704, 2.1086112655335079], [-4.4480501135282662, 4.3290513315610166, -4.1098101623830443, -2.8839598970399614]]]])+(1.-msk_arg0)*numpy.array([[[[3.9323713317642746, 4.4527426387356446, 1.8489227456459432, 2.295838413561385], [-1.5932231826477694, -0.043483214358698064, 2.6866561252017789, -1.3064680912144833], [-4.563955043071191, -4.5294274892608124, 1.1139333008427865, -3.356095173880258]], [[-0.39784058429088365, 1.3572530126249651, 0.73921609667405086, -2.8036097598039502], [-1.6466307808609693, -3.6730522383966999, -4.2815488732075613, -3.0943250956889665], [0.84471742986867238, 3.3304241697775492, -2.7207357502431542, -1.8257126717947059]]], [[[0.21030801293033274, 4.6379651350087698, 4.213456762528347, 4.0550184068364885], [-2.5755175539757227, 2.6713165204428986, 3.2808072440183729, 2.8475364996882107], [4.8503832880401561, -0.89396576884489498, 4.8726952699950328, 1.8570156992262419]], [[-4.6778874236692944, 2.1109769293880465, 0.79097589510131172, -2.1112073984121893], [2.558958067688426, 2.8307096810380727, 0.012443144332241474, -3.7601222060065065], [-1.3755439053562823, 2.9800220614031678, 1.6579582033193425, 4.4427116407434362]]], [[[-0.86660146317817688, 1.3032310329697525, 3.0027070238303377, -2.9114837729491319], [-3.4567748888099636, 3.3638086688271702, 4.1486162466002519, 2.0749122046757407], [0.84439318528796647, -3.6592289308593697, 0.77430002321168345, 1.7927967246699836]], [[-1.1981415218608116, 2.3445312580391588, -1.5436298697897444, 1.6111465180751141], [1.6230738725320037, -1.3035089800291666, -4.6787506207538687, 2.9155460797717678], [3.3315156088599238, -3.5200805068877128, -1.1181004173108544, -2.2485916181204857]]]]) arg1=Symbol(shape=()) res=arg0+arg1 s1=numpy.array(3.43950171094) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[[[8.4045088393544027, 6.8979158128444471, 2.4003397213113455, 7.9937980435917257], [3.4378224936738357, 0.5341575544082926, 3.4652878195255834, 2.543953239326247], [7.9299101636769116, 2.5439652483570576, 7.3324466732916402, 0.56794097631134921]], [[-0.28787300806781335, 5.6950840494026815, 3.9733019011173134, 3.1446923061403496], [-0.19496507194445378, -1.410454278331466, 6.9737188514749224, 5.4270933045441234], [6.5038503159009711, 0.49120697278531011, 4.6967981517671227, -1.0204800490628809]]], [[[-0.35949758918370645, 7.6401785426791786, 1.5054174653044021, 3.6924595166231891], [3.5925555235695814, 5.6239493255647357, 1.3799210624895868, 5.0591736261127398], [1.8890420084640027, 5.67231141694133, 0.1746030047470275, 1.6696492558943903]], [[0.33274027161532338, 7.0885358006194181, 7.7343620879881314, 0.0012077009723823195], [1.6744286300615157, 6.0323948850111799, 5.6925607750057976, 6.204836692452635], [2.5518327510315268, 7.2839055234555872, 7.2678347103281471, 5.1356562306145443]]], [[[1.7453197817635084, -0.91125864227424369, 4.0257556952110924, -1.513935309050523], [7.7653415719601178, 8.1793189608048262, 3.1652516466454799, 2.6299211870438706], [3.7175031668842422, 2.7330354016725336, 2.0775817712385374, 3.2123763441032711]], [[-0.29121608494058737, 3.2681426078221207, 2.1940756709047098, 5.289417244855918], [4.204775067338419, -0.79238747904296858, 7.5785792129411611, 5.5481129764752986], [-1.0085484025864755, 7.7685530425028073, -0.67030845144125362, 0.55554181390182933]]]])+(1.-msk_ref)*numpy.array([[[[7.3718730427060652, 7.8922443496774353, 5.2884244565877339, 5.7353401245031757], [1.8462785282940213, 3.3960184965830926, 6.1261578361435696, 2.1330336197273074], [-1.1244533321294004, -1.0899257783190217, 4.5534350117845772, 0.083406537061532671]], [[3.041661126650907, 4.7967547235667558, 4.1787178076158416, 0.63589195113784047], [1.7928709300808214, -0.23355052745490923, -0.84204716226577059, 0.34517661525282417], [4.2842191408104631, 6.7699258807193399, 0.71876596069863652, 1.6137890391470848]]], [[[3.6498097238721234, 8.0774668459505605, 7.6529584734701377, 7.4945201177782792], [0.86398415696606801, 6.1108182313846893, 6.7203089549601636, 6.2870382106300013], [8.2898849989819468, 2.5455359420968957, 8.3121969809368235, 5.2965174101680326]], [[-1.2383857127275038, 5.5504786403298372, 4.2304776060431024, 1.3282943125296014], [5.9984597786302167, 6.2702113919798634, 3.4519448552740322, -0.32062049506471579], [2.0639578055855083, 6.4195237723449585, 5.0974599142611332, 7.8822133516852269]]], [[[2.5729002477636138, 4.7427327439115432, 6.4422087347721284, 0.52801793799265884], [-0.017273177868172951, 6.8033103797689609, 7.5881179575420425, 5.5144139156175314], [4.2838948962297572, -0.21972721991757904, 4.2138017341534741, 5.2322984356117743]], [[2.2413601890809791, 5.7840329689809495, 1.8958718411520463, 5.0506482290169048], [5.0625755834737944, 2.1359927309126241, -1.239248909812078, 6.3550477907135585], [6.7710173198017145, -0.080578795945922099, 2.3214012936309363, 1.190910092821305]]]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_add_overloaded_expandedData_rank4_Symbol_rank4(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([[[[3.2510674404409041, 2.1171696862303406, 2.9610258759664267, -3.8373977579450456], [0.75383244276133166, 2.4077943881602728, 3.873284406870285, 3.7937584009819574], [-4.6069898901399364, -2.5452970249895754, 3.650830786457707, -0.56630176651201847]], [[3.6738989513815135, -1.1553536380556686, 4.303352195803182, 2.0201689947921695], [2.5110280594242029, 1.1178178456135743, 3.5722095880572251, -3.0495901167648221], [-1.8161969765914288, -3.850369287459924, 1.8305771607495833, 3.8129356009276751]]], [[[4.8159492177547296, -2.7259760165966638, -0.056119891503465524, 3.2320437499651025], [4.1412540490540568, 2.3145635424798332, 4.2298625240821792, -4.9326174629443722], [1.2505234798682396, 4.1728981653768358, -1.4526511101284445, -0.73865645812869563]], [[-2.5027203270038956, -0.75821705726011146, -2.0074201432570495, -0.20166798891695503], [1.7962444938241209, 4.9186635916785164, -3.3612255674731486, -3.1402103698143327], [4.8100127068213077, -3.7003932729639377, -2.3809463861562454, 2.6337296431542621]]], [[[0.8461884816413443, 2.2850095300693116, 3.1039351776827235, 2.7358221987272575], [-1.331100327658973, -2.4718869003284438, 3.8392116060077814, 3.7886003252177218], [-2.740692362699221, -1.1104811343803189, 1.065443269317063, -1.604926521206449]], [[3.1359320207935291, 2.4159415877072101, -2.9781841648177654, 0.4457695581762291], [1.4022534028069558, 3.2181877465159641, 4.1561033889739196, -4.5314636502141923], [2.4896032954770373, -1.6749755107952033, -4.2977752660345292, 4.3862296692093636]]]])+(1.-msk_arg0)*numpy.array([[[[3.8098232095134126, -2.0180524002497693, 4.420784171182504, -2.4324750966542674], [2.4681882567616125, 3.0279649104786941, 2.2383665512055266, -0.091420157761364251], [4.7846856391630048, 0.45001495814867454, 2.8428137570111911, 3.6542996408716562]], [[-3.3832925941075711, -4.6684050424331947, 2.7145812310865534, 0.57489640415196952], [3.2363298539062395, -0.28076205609599914, -2.1610563710523598, -3.9600308036480381], [4.1445091213012599, 0.23464603550937735, -4.9214532841127738, 3.7601288072640866]]], [[[4.5878923885513938, -2.7602444517968006, -2.4823493575559641, -1.1998619544811917], [-1.0165322624110429, 4.8743114304602564, 3.0069704689379755, 2.0086372739622043], [-1.7482883016273565, 4.5233781656491008, 1.0481669308330579, 3.3780108680134457]], [[-4.5351514069636076, -4.760484108729206, -1.7334568308716203, -4.3080131499917833], [4.0321976091043883, -2.6576000312675063, 1.3372423488299923, -3.8949616711167625], [3.5793384711817051, 2.60693067621275, 1.8056256765125287, -3.9915454170699869]]], [[[0.39851532295995273, 2.2465287291059273, 0.64170560779626662, -4.7331314705888738], [3.5329039709028898, -2.5311269573107662, 2.8367974744858193, -4.3457969220676684], [-1.526677955424999, -2.5983211468943357, -1.3293797580217093, -3.1887378668078279]], [[3.1416335105809505, 0.35146012646543134, 2.428390004415637, 2.7813900205500861], [3.5228217461650111, -0.012304332300811183, -3.1395042313107369, 4.8647351561551702], [2.2570133784920099, -1.7535240218446777, 0.38792070998653028, -0.21839923153693785]]]]) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0+arg1 s1=numpy.array([[[[-0.55399336747432937, -3.6468486902030306, 2.4533567494215669, 4.8267547347789659], [1.1480960590338416, 3.5599245920968787, -2.8247534868419724, -2.2031349101131505], [1.7520095897646017, 4.4293583295521266, -3.2046920932014888, -3.8760923163847472]], [[3.9288042477427645, 1.103593535294765, 0.62546922225950485, 2.5431633219905123], [2.5483588394973191, -0.82358610517599207, -0.47010674146441023, 2.7635563586840011], [3.5616440522317419, 2.2995934729430481, -3.501591556463012, 1.3778428754586027]]], [[[-4.3918539920661051, 0.24976043236636869, -2.4847081470778463, 4.8636790550226792], [-4.2172400078729559, -2.0316184192507647, -0.53464794178739794, -0.035422588600630966], [1.7049703562375615, 4.2019750499164399, -3.7430217705554858, -3.4952387702082346]], [[-0.39925876875124189, 1.4505137462439404, -4.1941814051173072, -1.844757872605356], [-3.4448187389632414, -3.5340944666273377, -3.178247383159305, -1.7824872241435519], [-3.6843631882800798, -4.1186208792142187, 2.0636953370355959, -0.18717114434561122]]], [[[-2.4316812831173742, 0.39582208925882689, 1.4893695917228467, -3.1232026180567773], [2.1122901499636226, 4.9884613457151978, -4.7793541216702149, -3.9541373136233391], [-4.8256481088328194, -0.10764491664526066, 2.9970513787255895, -1.0443943611478437]], [[3.6491162738908258, 3.4225261399204765, -2.9600723325757849, 3.3422667802452324], [-3.763493116056098, 4.6894908619506595, 2.532040050484988, 0.99028387045053101], [2.5962274887920085, -0.2721955960411897, -4.7946284910477441, -0.96141278632713245]]]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[[[2.6970740729665748, -1.52967900397269, 5.4143826253879936, 0.98935697683392032], [1.9019285017951733, 5.9677189802571515, 1.0485309200283126, 1.5906234908688068], [-2.8549803003753347, 1.8840613045625512, 0.44613869325621813, -4.4423940828967652]], [[7.6027031991242779, -0.051760102760903592, 4.9288214180626868, 4.5633323167826818], [5.059386898921522, 0.29423174043758227, 3.1021028465928149, -0.28603375808082099], [1.7454470756403131, -1.550775814516876, -1.6710143957134287, 5.1907784763862779]]], [[[0.42409522568862457, -2.4762155842302951, -2.5408280385813118, 8.0957228049877816], [-0.075985958818899135, 0.28294512322906851, 3.6952145822947813, -4.9680400515450032], [2.9554938361058012, 8.3748732152932757, -5.1956728806839303, -4.2338952283369302]], [[-2.9019790957551375, 0.6922966889838289, -6.2016015483743567, -2.046425861522311], [-1.6485742451391205, 1.3845691250511787, -6.5394729506324536, -4.922697593957885], [1.1256495185412279, -7.8190141521781564, -0.3172510491206495, 2.4465584988086508]]], [[[-1.5854928014760299, 2.6808316193281385, 4.5933047694055702, -0.38738041932951983], [0.78118982230464962, 2.516574445386754, -0.94014251566243345, -0.16553698840561726], [-7.5663404715320404, -1.2181260510255796, 4.0624946480426525, -2.6493208823542926]], [[6.7850482946843549, 5.8384677276276866, -5.9382564973935503, 3.7880363384214615], [-2.3612397132491423, 7.9076786084666235, 6.6881434394589077, -3.5411797797636613], [5.0858307842690458, -1.9471711068363931, -9.0924037570822733, 3.4248168828822312]]]])+(1.-msk_ref)*numpy.array([[[[3.2558298420390832, -5.6649010904527994, 6.8741409206040709, 2.3942796381246985], [3.6162843157954541, 6.5878895025755728, -0.58638693563644573, -2.2945550678745148], [6.5366952289276066, 4.8793732877008011, -0.36187833619029774, -0.22179267551309101]], [[0.54551165363519338, -3.5648115071384296, 3.3400504533460582, 3.1180597261424818], [5.7846886934035586, -1.1043481612719912, -2.63116311251677, -1.196474444964037], [7.7061531735330018, 2.5342395084524254, -8.4230448405757858, 5.1379716827226893]]], [[[0.19603839648528876, -2.5104840194304319, -4.9670575046338108, 3.6638171005414875], [-5.2337722702839988, 2.8426930112094917, 2.4723225271505775, 1.9732146853615733], [-0.043317945389794943, 8.7253532155655407, -2.6948548397224279, -0.11722790219478885]], [[-4.9344101757148495, -3.3099703624852657, -5.9276382359889279, -6.1527710225971397], [0.58737887014114687, -6.1916944978948436, -1.8410050343293127, -5.6774488952603139], [-0.10502471709837469, -1.5116902030014687, 3.8693210135481246, -4.1787165614155981]]], [[[-2.0331659601574215, 2.6423508183647542, 2.1310751995191133, -7.8563340886456512], [5.6451941208665124, 2.4573343884044316, -1.9425566471843956, -8.2999342356910084], [-6.3523260642578183, -2.7059660635395963, 1.6676716207038802, -4.2331322279556716]], [[6.7907497844717764, 3.7739862663859078, -0.53168232816014793, 6.1236568007953185], [-0.24067136989108695, 4.6771865296498483, -0.60746418082574882, 5.8550190266057012], [4.8532408672840184, -2.0257196178858674, -4.4067077810612139, -1.1798120178640703]]]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank0_Symbol_rank0(self): arg0=Data(1.30830371112,self.functionspace) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(0.0412291309402) sub=res.substitute({arg1:s1}) ref=Data(1.26707458018,self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank0_Symbol_rank1(self): arg0=Data(-4.2604726935,self.functionspace) arg1=Symbol(shape=(2,)) res=arg0-arg1 s1=numpy.array([-3.8546037299533653, -1.305392606117024]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([-0.4058689635493371, -2.9550800873856784]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank0_Symbol_rank2(self): arg0=Data(0.902009664206,self.functionspace) arg1=Symbol(shape=(4, 5)) res=arg0-arg1 s1=numpy.array([[-3.117681444740418, -3.2512793024980069, -3.7762244881344218, -0.50644943812549315, 3.066726444630655], [-2.6348956508380805, -0.90372740616696667, 0.5252271533586752, 2.0132741900533446, 2.0837322808099037], [0.088376617597372586, 0.67864487020517306, 3.7057383001711681, 1.0445042366908988, -2.1093161712985955], [4.328915747720707, -0.73501622742024342, -0.088412628376807412, -3.0414953794209754, 1.610361274316344]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[4.0196911089468177, 4.1532889667044071, 4.6782341523408215, 1.4084591023318929, -2.1647167804242553], [3.5369053150444802, 1.8057370703733664, 0.37678251084772452, -1.1112645258469449, -1.181722616603504], [0.81363304660902713, 0.22336479400122666, -2.8037286359647684, -0.14249457248449904, 3.0113258355049952], [-3.4269060835143073, 1.6370258916266431, 0.99042229258320713, 3.9435050436273751, -0.7083516101099443]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank0_Symbol_rank3(self): arg0=Data(4.30012329043,self.functionspace) arg1=Symbol(shape=(6, 2, 2)) res=arg0-arg1 s1=numpy.array([[[-2.4328051948060772, 1.3096803933228829], [-1.9201038070201615, 2.2529209930562519]], [[4.4911763191005498, -0.0070408039855616167], [-4.5070979412665588, 0.23394826644475319]], [[-2.0679275681214171, 4.7260141882743518], [-1.9530690972223672, 4.2165911161948344]], [[4.2340594486013217, 0.31531838157863668], [1.2102543060708451, 4.5768051588147358]], [[4.9016533619135778, 1.0237157761801843], [-1.6198381225390657, 1.509534129406096]], [[-2.8351524725878399, -0.8712771035569391], [-1.2500793307427105, 0.52784760832550681]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[6.732928485237343, 2.990442897108383], [6.2202270974514278, 2.0472022973750139]], [[-0.19105302866928398, 4.3071640944168275], [8.8072212316978238, 4.0661750239865126]], [[6.3680508585526834, -0.42589089784308598], [6.2531923876536331, 0.083532174236431445]], [[0.066063841829944181, 3.9848049088526292], [3.0898689843604208, -0.27668186838346998]], [[-0.60153007148231197, 3.2764075142510816], [5.9199614129703315, 2.7905891610251699]], [[7.1352757630191057, 5.1714003939882049], [5.5502026211739768, 3.772275682105759]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank0_Symbol_rank4(self): arg0=Data(-3.5839426267,self.functionspace) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0-arg1 s1=numpy.array([[[[-2.9729696451374421, 2.7845056200381855, 0.070436437102223692, 0.66836223796868044], [0.40381761203578836, -1.7869220467261826, -4.3681167712065552, 1.0762008553734699], [-3.4293067325266744, -3.8959384230092855, -4.2869773308861872, -3.5982581222849266]], [[3.8085384127848325, -4.9902013750126919, 1.7025140755302903, -1.8585391591273237], [-1.8948326373524536, 2.0874520505745666, -1.8647114753321095, 3.9665649921657007], [-2.6617432109425376, -0.043781338271665859, -4.3924469058705498, -4.6038566089651081]]], [[[4.1612414942039617, -0.24691459950937489, 1.8801077349311939, -4.0607604598486082], [-0.48975931816079132, 4.776651055544292, 2.5892649853139229, 2.6300466396994988], [-0.6331493645323949, -4.8747858313906498, 2.5714462579440713, -0.12625615907892662]], [[1.8766405716198298, 0.97931619405259518, -1.2333119307639082, 3.632140408148242], [0.96979041799351151, -4.0819837173164526, 3.4625138677193164, -1.7431511130821575], [-2.7530992377422381, -3.1495479306859906, 1.3466227111831488, -2.3016323722421128]]], [[[-2.8378224290103491, -0.7230057223129247, 0.95865498114414649, 0.14297561114879365], [2.3319242484901492, 4.9972541799736234, -1.7121650896762564, 1.6097551517446558], [2.7133813837524077, -3.1913323682416994, -0.39896207531318861, -3.2753783571190107]], [[1.3158800827274399, -0.034075573686918936, 3.2707189112070392, -2.9118211235462041], [4.362994678434946, -3.2771781302292515, 3.4919565479064456, 1.6061522420425254], [-1.8973785117347788, -4.4461539342202174, -3.8132486661529263, -0.74231592463494511]]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[-0.61097298156602342, -6.368448246741651, -3.6543790638056892, -4.252304864672146], [-3.9877602387392539, -1.7970205799772829, 0.78417414450308964, -4.6601434820769354], [-0.15463589417679113, 0.31199579630581997, 0.70303470418272163, 0.014315495581461057]], [[-7.392481039488298, 1.4062587483092264, -5.2864567022337559, -1.7254034675761418], [-1.689109989351012, -5.6713946772780321, -1.7192311513713561, -7.5505076188691662], [-0.9221994157609279, -3.5401612884317997, 0.80850427916708423, 1.0199139822616425]]], [[[-7.7451841209074272, -3.3370280271940906, -5.4640503616346594, 0.4768178331451427], [-3.0941833085426742, -8.3605936822477567, -6.1732076120173884, -6.2139892664029643], [-2.9507932621710706, 1.2908432046871843, -6.1553888846475369, -3.4576864676245389]], [[-5.4605831983232953, -4.5632588207560607, -2.3506306959395573, -7.2160830348517075], [-4.553733044696977, 0.49804109061298707, -7.0464564944227819, -1.840791513621308], [-0.83084338896122745, -0.43439469601747493, -4.9305653378866143, -1.2823102544613527]]], [[[-0.74612019769311644, -2.8609369043905408, -4.542597607847612, -3.7269182378522592], [-5.9158668751936148, -8.5811968066770881, -1.8717775370272092, -5.1936977784481213], [-6.2973240104558732, -0.39261025846176612, -3.1849805513902769, -0.30856426958445482]], [[-4.8998227094309055, -3.5498670530165466, -6.8546615379105047, -0.67212150315726138], [-7.9469373051384116, -0.306764496474214, -7.0758991746099111, -5.1900948687459909], [-1.6865641149686867, 0.8622113075167519, 0.22930603944946082, -2.8416267020685204]]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank1_Symbol_rank0(self): arg0=Data(numpy.array([2.6649927252905226, 0.29496968217893382]),self.functionspace) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(1.03366663195) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([1.6313260933372291, -0.73869694977435962]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank1_Symbol_rank1(self): arg0=Data(numpy.array([3.9090880537794526, -3.9706193840215942]),self.functionspace) arg1=Symbol(shape=(2,)) res=arg0-arg1 s1=numpy.array([-3.7233870114697742, 0.99043840493200186]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([7.6324750652492268, -4.9610577889535961]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank2_Symbol_rank0(self): arg0=Data(numpy.array([[2.8033126273843685, 0.51509190965393792, 3.931306976936968, -3.3823534090429486, -2.3486719525293087], [-2.9837425664154784, -2.4457160287299686, 3.8981965382683743, -0.89609359902144714, 4.1620406111464288], [3.6868893591462246, -2.9993029597001462, 1.8283120616948665, -2.0195573949932277, -2.1640627499057361], [-2.9723279323425489, -4.8559061533246624, -1.0130455282709172, -3.7833351321644395, 3.514692525422209]]),self.functionspace) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(4.86937457463) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[-2.0660619472497519, -4.3542826649801825, -0.93806759769715242, -8.2517279836770694, -7.2180465271634286], [-7.8531171410495988, -7.315090603364089, -0.97117803636574607, -5.7654681736555675, -0.70733396348769162], [-1.1824852154878958, -7.8686775343342665, -3.0410625129392539, -6.8889319696273486, -7.0334373245398565], [-7.8417025069766693, -9.7252807279587827, -5.8824201029050371, -8.6527097067985608, -1.3546820492119114]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank2_Symbol_rank2(self): arg0=Data(numpy.array([[-1.1140360715186182, -1.5235600156934481, 4.3075103934286023, 4.6800377743432158, -3.2505150436972521], [0.39123458636258768, 0.41088806870879768, -2.9614108446790501, 1.1049238977643405, 0.92166667279843395], [0.54565864417397059, -4.8476249672143004, 4.9444652981547943, 4.0252126389168215, -3.9123423425216322], [-3.6777596228844844, -3.4408972758983558, 2.7718180074050611, -0.3997152204895924, -0.16573647825956073]]),self.functionspace) arg1=Symbol(shape=(4, 5)) res=arg0-arg1 s1=numpy.array([[-2.4209487163246299, 1.3152643083131128, -0.71046464711788015, 0.21557543046364458, -2.202065459251934], [-3.9101544501984198, -2.8682151089642827, 2.7125251197023488, 1.4173123031722534, 2.7246295240806209], [-1.5744991442525436, 3.0598215212654001, 0.63494427405471487, -4.906149376046594, -1.6839564426436748], [4.0729555430880922, -0.83371622418680769, 0.46337987461630981, 4.0014755703742395, -2.1103899940006032]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[1.3069126448060118, -2.8388243240065609, 5.0179750405464825, 4.4644623438795712, -1.0484495844453181], [4.301389036561007, 3.2791031776730803, -5.6739359643813989, -0.31238840540791291, -1.8029628512821869], [2.1201577884265141, -7.9074464884797004, 4.3095210241000794, 8.9313620149634154, -2.2283858998779573], [-7.7507151659725766, -2.6071810517115481, 2.3084381327887513, -4.4011907908638319, 1.9446535157410425]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank3_Symbol_rank0(self): arg0=Data(numpy.array([[[-2.6064326776506652, 4.9989076052590633], [-3.0068821433777249, -3.1193113732509516]], [[-1.3190483681618739, 3.9479827067009108], [1.0954417889014865, 4.6359051697534426]], [[-2.9778493741722056, 3.4845430816156977], [1.7569072943914552, 1.1616150547614428]], [[-0.91210869485198565, -1.3406976214361355], [3.2217649968914159, -2.662260898242006]], [[4.1697693146337542, -1.1741423631833072], [-4.9803850608859115, 1.2700647554700222]], [[4.6074170359664368, 1.453706456526124], [0.20949339688511692, 3.0091215511346796]]]),self.functionspace) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(-1.04145599079) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-1.5649766868561219, 6.0403635960536066], [-1.9654261525831815, -2.0778553824564083]], [[-0.27759237736733056, 4.9894386974954541], [2.1368977796960298, 5.6773611605479859]], [[-1.9363933833776623, 4.525999072410241], [2.7983632851859985, 2.2030710455559861]], [[0.12934729594255767, -0.29924163064159215], [4.2632209876859593, -1.6208049074474626]], [[5.2112253054282975, -0.13268637238876391], [-3.9389290700913682, 2.3115207462645655]], [[5.6488730267609801, 2.4951624473206673], [1.2509493876796602, 4.0505775419292229]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank3_Symbol_rank3(self): arg0=Data(numpy.array([[[2.0075159970537113, 4.417162011434554], [0.71949384400506577, 1.0783048900035652]], [[4.7614254606302335, -2.0888542276996978], [-3.5997702799671547, 4.2825487871951644]], [[-0.39389734575197544, 1.3283252585178928], [3.6919455158435834, -0.76277259642421402]], [[-4.4972180700076887, -3.7983795355307128], [-0.26779668046970784, -0.79380221724008582]], [[-2.0572521505738273, -1.5154686544559368], [4.0972713376059851, 4.5986089620495108]], [[-1.3971821196462377, 0.16028646761807508], [-0.63755809097850857, -3.3787710682197272]]]),self.functionspace) arg1=Symbol(shape=(6, 2, 2)) res=arg0-arg1 s1=numpy.array([[[3.5103565349856751, 0.91526758558677379], [-3.7224124618951135, -0.27931399630195397]], [[1.5813622936549105, 3.6172915696233972], [-1.2364412564258132, 0.16417768270487709]], [[0.64050559170122234, 4.6361361331624593], [-0.47839680540824325, -2.1615310941440589]], [[-0.85667930966756511, 1.669882578368358], [0.22343162562157293, 0.80905790542025358]], [[-3.5873387244847543, 3.1163266795230058], [3.5553732672252671, -4.6758779472194405]], [[3.6742958529176484, 0.58762359541383802], [1.5778519953325496, -0.39731537378910975]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-1.5028405379319638, 3.5018944258477802], [4.4419063059001793, 1.3576188863055192]], [[3.180063166975323, -5.7061457973230949], [-2.3633290235413416, 4.1183711044902873]], [[-1.0344029374531978, -3.3078108746445665], [4.1703423212518267, 1.3987584977198448]], [[-3.6405387603401236, -5.4682621138990708], [-0.49122830609128076, -1.6028601226603394]], [[1.5300865739109271, -4.6317953339789426], [0.54189807038071791, 9.2744869092689513]], [[-5.0714779725638861, -0.42733712779576294], [-2.2154100863110582, -2.9814556944306174]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank4_Symbol_rank0(self): arg0=Data(numpy.array([[[[0.66483074145605592, 2.9129070748039982, -1.8655842911981346, -1.098354904466996], [1.7426470733136448, -2.4896761957460898, 4.3864323453867851, -4.0781460331955177], [-0.62183708580819008, -2.6186592235582786, -1.8750164189422014, -3.9631241880095969]], [[4.0419620323350909, 0.15536839603964836, 1.9771157591398101, -2.6101097405194453], [-4.7364297803535704, 1.8318126417179714, 3.2354822684907454, 2.2507758179659376], [-4.8699934080808029, -0.35744120243411981, 4.0908957400805122, -3.8440017446794084]]], [[[4.5466344627836612, -2.8174576749848423, -0.32339288977492142, -3.3368918944053516], [3.3311423168153738, -1.2448667289851647, -0.66737673743075376, -3.9953617725851598], [-4.8878412407428931, 3.1347720870691358, -2.4390985397355847, -3.5615840737730475]], [[-3.7978882365989697, 4.345238312451805, 2.8310129832366435, 2.8564779239624674], [-0.85025481289091864, -4.3757742754757345, 3.5451710843902031, -2.5068001174158816], [2.6943798866386315, 2.2746017608025317, -4.2655778273063607, 0.97165631163417387]]], [[[-2.9330039029788955, 4.3910413333213238, 2.5513441899802833, -3.8678703253194402], [-2.6748516851594308, -3.8887038302549062, 1.2485088138696518, -3.9629424578182251], [-0.38166273681210328, 3.82781593241344, -4.1817331752844087, 4.682478964767725]], [[-0.85849290617372809, -0.49338756563096275, -1.0480256440941615, -0.51008618582467946], [-0.26820315453886501, 4.8354933917592806, 2.9555158912003154, -2.4766421456452479], [2.5098219987182944, 3.6215601735655589, -4.4497307132070123, -3.9295385075107028]]]]),self.functionspace) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(-2.59361652138) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[3.2584472628375467, 5.506523596185489, 0.72803223018335617, 1.4952616169144948], [4.3362635946951356, 0.10394032563540101, 6.9800488667682759, -1.4845295118140269], [1.9717794355733007, -0.025042702176787834, 0.7186001024392894, -1.3695076666281061]], [[6.6355785537165817, 2.7489849174211392, 4.5707322805213009, -0.01649321913795454], [-2.1428132589720796, 4.4254291630994622, 5.8290987898722362, 4.8443923393474284], [-2.2763768866993122, 2.236175318947371, 6.6845122614620029, -1.2503852232979176]]], [[[7.140250984165152, -0.22384115360335155, 2.2702236316065694, -0.74327537302386082], [5.9247588381968646, 1.3487497923963261, 1.926239783950737, -1.401745251203669], [-2.2942247193614023, 5.7283886084506266, 0.15451798164590613, -0.96796755239155674]], [[-1.2042717152174789, 6.9388548338332958, 5.4246295046181343, 5.4500944453439581], [1.7433617084905721, -1.7821577540942437, 6.1387876057716939, 0.08681640396560919], [5.2879964080201223, 4.8682182821840225, -1.6719613059248699, 3.5652728330156647]]], [[[-0.33938738159740467, 6.9846578547028146, 5.1449607113617741, -1.2742538039379494], [-0.081235163777940045, -1.2950873088734154, 3.8421253352511426, -1.3693259364367343], [2.2119537845693875, 6.4214324537949308, -1.5881166539029179, 7.2760954861492158]], [[1.7351236152077627, 2.100228955750528, 1.5455908772873292, 2.0835303355568113], [2.3254133668426258, 7.4291099131407714, 5.5491324125818062, 0.11697437573624292], [5.1034385200997852, 6.2151766949470497, -1.8561141918255215, -1.335921986129212]]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_constData_rank4_Symbol_rank4(self): arg0=Data(numpy.array([[[[2.140332416756844, -4.5756565160935745, 1.0268217328307561, 1.594533973931731], [4.1426026647673879, 0.1548614651600202, 3.351820863446946, 0.54777524679756073], [-4.6470169243406527, -3.4101935702258368, 1.3604597013400213, -4.3236653508957374]], [[2.3543066928954612, 1.6355558219698443, 3.8590758340122093, 0.055467084597328409], [1.3949738751098479, -2.9042097100731445, 2.1331143130237962, -0.45715627400394165], [3.9505052117900146, -4.8644226435153097, 0.13641466419900183, 0.92434447564323374]]], [[[-4.2036478385109302, -2.2096856472681958, -3.309442061812593, -0.17761420723311439], [-4.5417481392819026, 3.354117107537796, 2.9925164896060084, 4.231145636082223], [-4.3165407391400308, -0.16204594013147311, -1.5308101185053733, 3.7017204822457384]], [[2.4648028362561725, 0.43817614121240833, -4.4908194091317366, -0.081928750874263656], [-3.4087689978816016, 4.259133980931324, -4.2850896710829334, 4.6395735766216326], [-1.3584480043808989, -4.7738821023855085, -1.2617431337636842, -1.2598313032270116]]], [[[2.2708892792624855, 1.9132737394453327, -0.50215367058696003, 0.19108419265161469], [-2.0796597802531669, 1.1505151966811367, 1.2957662425378791, -1.5883201097665802], [-1.7035021892623838, 4.8639671345493021, 3.1243484697100534, 0.47610495992410051]], [[-4.0444287366693015, -1.3614006776767349, -0.18268931922481002, 4.8063591217845332], [3.1407426206783704, 2.8940879164962441, -4.9664997014592807, 1.6951588068340158], [-3.895479459710558, 1.7220903215355694, -3.7165673657855267, 3.1903385713544257]]]]),self.functionspace) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0-arg1 s1=numpy.array([[[[-4.3482304868754991, -1.2480666735558845, 0.43538858115159051, -2.0858236027245205], [-2.442305699452354, 2.0213192586154003, -2.5262404161243679, -4.458062700052194], [0.26228138879138641, -2.6430658161459242, -4.7246503759525602, 4.2538788761081854]], [[-1.6124403577544308, -1.8284497197976037, -3.0160374139385002, 2.7523938918136759], [1.4437250527651582, -2.7814473787336489, 3.5116683735594361, -3.9808640616716562], [1.7054962689298705, 4.7974185413341068, 1.9447068850818283, -1.2797130952071156]]], [[[3.7642823106611107, 0.11145650212965919, -0.096799862214571597, 2.0215787533002523], [0.26390717935294816, 0.12612295721321498, 4.0275730341758482, -1.2268861937462172], [-2.947926663434548, -1.4514539315574626, 2.4550945474164232, -2.7897655841602651]], [[-1.5947829088079746, 0.80620330852535815, -4.5614285986030234, -1.9102368071164841], [2.0807019362652692, -4.099640999530064, -1.8395330667711352, -4.6367501410986929], [-2.5162327168837786, 4.6954385782651951, -2.1576821461704854, -1.62194811763983]]], [[[0.06729391952569852, -0.57919376543293488, -3.1838952254737416, 1.7056529660452817], [3.6116233555564143, 0.81964000588296315, -0.16440769780998377, 0.079355513141521783], [2.9805073823987431, 1.3188532056435962, 3.4153481616516537, -2.5138710663982189]], [[2.8884594089569315, 1.1351683507610142, -0.68804270946144719, -4.7325886514124882], [1.1204800401276476, 0.55566378590737031, 0.94240513232859335, 2.9610440134171334], [-2.6222587774463815, -4.4048348584786705, -0.29650368246657699, -1.0078523107846902]]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[6.4885629036323431, -3.32758984253769, 0.59143315167916555, 3.6803575766562515], [6.5849083642197419, -1.8664577934553801, 5.8780612795713143, 5.0058379468497547], [-4.9092983131320391, -0.76712775407991263, 6.0851100772925815, -8.5775442270039228]], [[3.9667470506498921, 3.464005541767448, 6.8751132479507095, -2.6969268072163475], [-0.048751177655310229, -0.12276233133949566, -1.3785540605356399, 3.5237077876677145], [2.2450089428601441, -9.6618411848494166, -1.8082922208828265, 2.2040575708503494]]], [[[-7.9679301491720409, -2.321142149397855, -3.2126421995980214, -2.1991929605333667], [-4.8056553186348507, 3.227994150324581, -1.0350565445698399, 5.4580318298284407], [-1.3686140757054828, 1.2894079914259895, -3.9859046659217965, 6.4914860664060035]], [[4.0595857450641475, -0.36802716731294982, 0.070609189471286804, 1.8283080562422205], [-5.4894709341468708, 8.3587749804613871, -2.4455566043117982, 9.2763237177203255], [1.1577847125028797, -9.4693206806507035, 0.89593901240680118, 0.3621168144128184]]], [[[2.203595359736787, 2.4924675048782676, 2.6817415548867816, -1.514568773393667], [-5.6912831358095808, 0.33087519079817351, 1.4601739403478629, -1.667675622908102], [-4.684009571661127, 3.5451139289057059, -0.29099969194160025, 2.9899760263223194]], [[-6.932888145626233, -2.4965690284377491, 0.50535339023663717, 9.5389477731970214], [2.0202625805507228, 2.3384241305888738, -5.908904833787874, -1.2658852065831177], [-1.2732206822641765, 6.1269251800142399, -3.4200636833189497, 4.1981908821391158]]]]),self.functionspace) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank0_Symbol_rank0(self): arg0=Data(-2.29417952191,self.functionspace) arg0.setTaggedValue(1,-4.27612309963) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(-2.86386679086) sub=res.substitute({arg1:s1}) ref=Data(0.569687268944,self.functionspace) ref.setTaggedValue(1,-1.41225630877) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank0_Symbol_rank1(self): arg0=Data(-4.72691427991,self.functionspace) arg0.setTaggedValue(1,0.483106242273) arg1=Symbol(shape=(2,)) res=arg0-arg1 s1=numpy.array([-0.58516003749737244, 2.93231182282255]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([-4.1417542424175267, -7.6592261027374491]),self.functionspace) ref.setTaggedValue(1,numpy.array([1.0682662797700972, -2.4492055805498252])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank0_Symbol_rank2(self): arg0=Data(4.84060376911,self.functionspace) arg0.setTaggedValue(1,-3.32867505476) arg1=Symbol(shape=(4, 5)) res=arg0-arg1 s1=numpy.array([[3.5332516865172998, 4.2256878903288939, -4.6404295927681405, 4.9721874322243114, -1.5545932240349902], [0.40603544670242542, -2.879718425724147, -2.1385047584627337, 4.6127992237598132, 0.57646645021785048], [-2.6334801212800754, -2.3655947826469701, 0.48086858542515643, 1.0360291664664301, -3.4378490059536082], [-0.23853194944872236, -2.0363663305583768, -2.3289186751171798, 3.5102407359843486, 4.1303419895739388]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[1.3073520825884426, 0.6149158787768485, 9.4810333618738838, -0.13158366311856895, 6.3951969931407326], [4.434568322403317, 7.7203221948298895, 6.9791085275684761, 0.2278045453459292, 4.2641373188878919], [7.4740838903858178, 7.2061985517527125, 4.359735183680586, 3.8045746026393124, 8.2784527750593497], [5.0791357185544648, 6.8769700996641188, 7.1695224442229222, 1.3303630331213938, 0.71026177953180358]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[-6.8619267412736988, -7.5543629450852929, 1.3117545380117415, -8.3008624869807104, -1.7740818307214088], [-3.7347105014588244, -0.44895662903225197, -1.1901702962936653, -7.9414742785162122, -3.9051415049742495], [-0.69519493347632366, -0.96308027210942893, -3.8095436401815554, -4.3647042212228291, 0.10917395119720918], [-3.0901431053076767, -1.2923087241980222, -0.99975637963921926, -6.8389157907407476, -7.4590170443303379]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank0_Symbol_rank3(self): arg0=Data(-3.20552188916,self.functionspace) arg0.setTaggedValue(1,-0.473083670166) arg1=Symbol(shape=(6, 2, 2)) res=arg0-arg1 s1=numpy.array([[[0.71230320805011704, -3.008236723891188], [0.81066003773158002, -3.6043239509733382]], [[3.691034498943317, -3.3919882986743777], [0.84551364067512935, 3.3207859438709946]], [[0.41963337446652105, -3.6038224020133991], [-2.3537235378574151, -3.7120927558232997]], [[-3.4588851001838727, -0.31880183563871789], [-1.3379489058063267, -3.9118810181560226]], [[4.4984539881701195, -3.2158956295350851], [1.5013508852420685, 2.8717656529358955]], [[-0.13701019263353231, -3.1176264463626078], [-1.67955120335195, 4.317481449568719]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-3.917825097207726, -0.19728516526642093], [-4.016181926889189, 0.3988020618157293]], [[-6.896556388100926, 0.18646640951676874], [-4.0510355298327383, -6.5263078330286035]], [[-3.62515526362413, 0.39830051285579016], [-0.85179835130019388, 0.50657086666569073]], [[0.2533632110262638, -2.886720053518891], [-1.8675729833512822, 0.70635912899841369]], [[-7.7039758773277285, 0.010373740377476182], [-4.7068727743996774, -6.0772875420935044]], [[-3.0685116965240766, -0.087895442795001166], [-1.525970685805659, -7.523003338726328]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[-1.1853868782160886, 2.5351530537252165], [-1.2837437078975515, 3.1312402808073667]], [[-4.1641181691092886, 2.9189046285084062], [-1.3185973108411009, -3.7938696140369661]], [[-0.89271704463249257, 3.1307387318474276], [1.8806398676914435, 3.2390090856573281]], [[2.9858014300179012, -0.15428183452725364], [0.86486523564035522, 3.4387973479900511]], [[-4.9715376583360911, 2.7428119593691136], [-1.97443455540804, -3.344849323101867]], [[-0.33607347753243921, 2.6445427761966362], [1.2064675331859784, -4.7905651197346906]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank0_Symbol_rank4(self): arg0=Data(-0.215341183726,self.functionspace) arg0.setTaggedValue(1,-3.01917111711) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0-arg1 s1=numpy.array([[[[3.1718058337950783, -4.3218518167555349, 4.7360170033398816, 2.6415781893387447], [1.7953624357215787, 0.37239845986582054, 0.85595953231170441, -4.2093909477304852], [-4.0724848735753412, -2.3789549933876364, 3.8266481046469991, -4.4686983670793881]], [[-1.3807814097985793, -0.9345570079736385, 3.2111606830229267, 2.5248569160832579], [-0.19847478717542089, 3.6200277417416071, -1.3367301493578787, -1.9914051287776093], [4.2384277387383236, -3.1625190831895669, -4.8267032630177118, -3.7590986361039294]]], [[[-0.96721285038350846, 0.23717549644533698, -2.0558971771798862, -2.1889488119398925], [2.1163450477817447, -4.308535473047935, 0.96468545582662735, 0.58036767508710252], [-0.26889479983427034, -4.6749066439752021, -2.6908936581627731, 3.3090528029139286]], [[1.0683391958055246, -4.3705975019062535, 4.6959723711804546, -0.58815635047014858], [-1.7921642772643898, 2.8079866307247423, 4.5837878995413348, -3.6656523242301429], [2.1083853748587442, -0.44280454111162726, -2.5427523262585563, 3.9551312168955626]]], [[[4.0479839543530591, 1.694708528108122, -1.8081650371476021, 2.5627212563151982], [2.9443513555348222, -3.4330381296191126, -2.3471872352829837, 2.9291777099369405], [0.92208424820838264, -1.7857214370413055, 3.2638247404414695, 3.3713981402987798]], [[-2.3853121535462418, 2.1417428055374232, 3.1558224539661612, -4.4802179321245248], [-3.0197245205703069, 2.7624146301708477, -4.6790033997765104, -4.0453165901737584], [4.8295161047601614, -3.5764718373510842, 4.356981591617421, -4.7034098127513264]]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[-3.3871470175211567, 4.1065106330294565, -4.95135818706596, -2.856919373064823], [-2.0107036194476571, -0.5877396435918989, -1.0713007160377828, 3.9940497640044068], [3.8571436898492628, 2.163613809661558, -4.0419892883730775, 4.2533571833533097]], [[1.165440226072501, 0.71921582424756014, -3.426501866749005, -2.7401980998093363], [-0.01686639655065747, -3.8353689254676855, 1.1213889656318003, 1.776063945051531], [-4.4537689224644019, 2.9471778994634885, 4.6113620792916334, 3.543757452377851]]], [[[0.7518716666574301, -0.45251668017141533, 1.8405559934538078, 1.9736076282138142], [-2.3316862315078231, 4.0931942893218567, -1.1800266395527057, -0.79570885881318087], [0.053553616108191981, 4.4595654602491237, 2.4755524744366948, -3.5243939866400069]], [[-1.283680379531603, 4.1552563181801752, -4.911313554906533, 0.37281516674407023], [1.5768230935383114, -3.0233278144508207, -4.7991290832674132, 3.4503111405040645], [-2.3237265585848226, 0.2274633573855489, 2.3274111425324779, -4.1704724006216409]]], [[[-4.2633251380791375, -1.9100497118342004, 1.5928238534215238, -2.7780624400412766], [-3.1596925392609005, 3.2176969458930342, 2.1318460515569053, -3.1445188936630188], [-1.137425431934461, 1.5703802533152271, -3.4791659241675479, -3.5867393240248582]], [[2.1699709698201635, -2.3570839892635016, -3.3711636376922396, 4.2648767483984464], [2.8043833368442286, -2.977755813896926, 4.463662216050432, 3.8299754064476801], [-5.0448572884862397, 3.3611306536250058, -4.5723227753434994, 4.4880686290252481]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[-6.1909769509085075, 1.3026806996421056, -7.7551881204533109, -5.6607493064521739], [-4.8145335528350079, -3.3915695769792498, -3.8751306494251336, 1.1902198306170559], [1.0533137564619119, -0.64021612372579284, -6.8458192217604283, 1.4495272499659588]], [[-1.6383897073148499, -2.0846141091397907, -6.2303318001363559, -5.5440280331966871], [-2.8206963299380083, -6.6391988588550364, -1.6824409677555505, -1.0277659883358199], [-7.2575988558517528, 0.14334796607613765, 1.8075321459042826, 0.73992751899050013]]], [[[-2.0519582667299208, -3.2563466135587662, -0.96327393993354304, -0.83022230517353668], [-5.1355161648951739, 1.2893643559345058, -3.9838565729400566, -3.5995387922005317], [-2.7502763172791589, 1.6557355268617728, -0.32827745895065608, -6.3282239200273578]], [[-4.0875103129189538, 1.3514263847928243, -7.7151434882938839, -2.4310147666432806], [-1.2270068398490395, -5.8271577478381715, -7.602959016654764, 0.64648120711671364], [-5.1275564919721734, -2.576366576001802, -0.47641879085487293, -6.9743023340089918]]], [[[-7.0671550714664884, -4.7138796452215512, -1.2110060799658271, -5.5818923734286274], [-5.9635224726482514, 0.41386701250568336, -0.67198388183044555, -5.9483488270503697], [-3.9412553653218119, -1.2334496800721237, -6.2829958575548988, -6.390569257412209]], [[-0.63385896356718741, -5.1609139226508525, -6.1749935710795905, 1.4610468150110956], [0.0005534034568777102, -5.7815857472842769, 1.6598322826630811, 1.0261454730603292], [-7.8486872218735906, 0.55730072023765498, -7.3761527087308503, 1.6842386956378972]]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank1_Symbol_rank0(self): arg0=Data(numpy.array([3.3101673523710691, 0.048409361416743124]),self.functionspace) arg0.setTaggedValue(1,numpy.array([0.70887806236646611, -0.73932065177372408])) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(1.15960287006) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([2.1505644823090515, -1.1111935086452744]),self.functionspace) ref.setTaggedValue(1,numpy.array([-0.45072480769555145, -1.8989235218357416])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank1_Symbol_rank1(self): arg0=Data(numpy.array([-2.0708546339036071, 2.2714034647505121]),self.functionspace) arg0.setTaggedValue(1,numpy.array([-0.16265022615439584, -0.29272834777410406])) arg1=Symbol(shape=(2,)) res=arg0-arg1 s1=numpy.array([1.8495632665872739, -2.2808524667130694]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([-3.920417900490881, 4.5522559314635815]),self.functionspace) ref.setTaggedValue(1,numpy.array([-2.0122134927416697, 1.9881241189389653])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank2_Symbol_rank0(self): arg0=Data(numpy.array([[4.703380807076492, -4.2567944639019304, -2.0784707905046593, 0.18023637488621791, 1.1164321428411501], [3.3809585074696322, 1.5795463086222137, 1.5300027430790495, -1.6695215658775489, -4.9671698822372887], [-0.56875186129757704, -0.88988163011215704, 1.0953422249288387, 1.2629450835517639, 1.9829321534877584], [-2.3470243950738103, -1.5345245349366401, 1.7913793425402638, 3.2778179482022125, 3.2743088989127749]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[2.1331140495285128, 4.902243346193929, -3.8569193535703947, -1.2051025219030698, 4.8526791592750644], [-1.9285295160668192, -2.2715983725035862, -1.6280809153232632, 0.63571110979312273, -4.5616322454088643], [1.1933837591252878, -2.4657544917793928, 3.8511059475300904, -3.0018611957635444, 3.560382804940847], [-4.284584247208282, -4.3366343606789348, 3.6048395763720524, -2.2301793774115106, 4.6397261587379131]])) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(0.0560012612314) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[4.6473795458450571, -4.3127957251333653, -2.1344720517360942, 0.12423511365478301, 1.0604308816097152], [3.3249572462381973, 1.5235450473907788, 1.4740014818476146, -1.7255228271089837, -5.0231711434687236], [-0.62475312252901194, -0.94588289134359194, 1.0393409636974038, 1.206943822320329, 1.9269308922563235], [-2.4030256563052452, -1.590525796168075, 1.7353780813088289, 3.2218166869707776, 3.21830763768134]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[2.0771127882970779, 4.8462420849624941, -3.9129206148018296, -1.2611037831345047, 4.7966778980436295], [-1.9845307772982541, -2.3275996337350211, -1.6840821765546981, 0.57970984856168783, -4.6176335066402991], [1.1373824978938529, -2.5217557530108277, 3.7951046862986555, -3.0578624569949793, 3.5043815437094121], [-4.3405855084397169, -4.3926356219103697, 3.5488383151406175, -2.2861806386429455, 4.5837248975064782]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank2_Symbol_rank2(self): arg0=Data(numpy.array([[0.044613582775737015, -0.22965054883260905, -3.3954728255423361, -0.043404784226975579, -0.81018025865095922], [4.0980455142640473, 3.3299876326958326, 4.4694158188546833, 0.047800124529065791, -4.1128886475115927], [-0.86793714814288414, 3.7852706993586231, 2.8168181178475837, -2.6081900317073039, 1.795227525921204], [-2.7964436060814792, 2.46599228887926, -4.3894587372918519, -3.0809581135280197, 4.5629513161933648]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[0.18467263707487369, -2.906541382403959, -4.2471361917218733, 1.7478696798949915, -2.0555035204044225], [-4.1703824796767011, -0.58145273211245829, -1.3034416354534684, -4.4238643252257699, -3.0019960418182654], [-0.011560599410600503, 4.5614736908410478, -4.1865499712522745, 0.41611035316936196, 1.4719370557053075], [3.3285499812876207, 4.2147545548351992, 3.8796865015190463, -2.8665673368928459, 3.8754754018195001]])) arg1=Symbol(shape=(4, 5)) res=arg0-arg1 s1=numpy.array([[-0.34040680852948757, 0.51480179015857086, 2.6579250902566542, -3.8908104282358877, -1.0766494604779266], [-1.7785348143550985, 1.7875285221080928, -0.26464821727786259, 3.7856697734154743, 0.14935084548977784], [1.6454427368239299, -3.0878902261983701, 2.1577262475041596, -3.540342914142153, 2.8529020416879671], [2.8849125795379305, -3.1409630887157123, -0.30215664293811351, 3.5493007526176896, 0.27226779139430857]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[0.38502039130522459, -0.74445233899117991, -6.0533979157989908, 3.8474056440089122, 0.26646920182696743], [5.8765803286191458, 1.5424591105877399, 4.7340640361325459, -3.7378696488864085, -4.2622394930013705], [-2.5133798849668141, 6.8731609255569932, 0.65909187034342409, 0.93215288243484906, -1.0576745157667631], [-5.6813561856194097, 5.6069553775949723, -4.0873020943537384, -6.6302588661457094, 4.2906835247990562]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[0.52507944560436126, -3.4213431725625298, -6.9050612819785275, 5.6386801081308793, -0.97885405992649588], [-2.3918476653216025, -2.3689812542205511, -1.0387934181756058, -8.2095340986412442, -3.1513468873080432], [-1.6570033362345304, 7.6493639170394179, -6.3442762187564341, 3.9564532673115149, -1.3809649859826596], [0.44363740174969024, 7.3557176435509115, 4.1818431444571598, -6.4158680895105356, 3.6032076104251916]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank3_Symbol_rank0(self): arg0=Data(numpy.array([[[-0.70323441272603926, -1.4205742401701604], [-3.6004008923276585, 4.1739347100888349]], [[-2.7687391296703767, -0.96114141211843496], [0.45711266950319906, 0.36713165606152121]], [[3.8726070188081287, 2.6611494194452137], [-0.28060302358441547, 1.0399275995737964]], [[2.5912385881777, -0.12172669528696911], [1.831517522951442, -4.9891623764024926]], [[3.8572507842255241, 2.9719918728052663], [0.42882676434271261, -1.4826468418372341]], [[0.16110396579090835, 4.8052378752678955], [2.4890225545274554, -1.4594734254395068]]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[[3.4601998637619467, 3.5105292543746671], [-1.9715134513187751, 1.6897677346566677]], [[0.99895689216195205, 3.7908023259957879], [-2.9811497902134496, 0.46336396583979944]], [[-2.0979181014824011, 0.68992077008736707], [4.5817275596392033, 3.1112543881649586]], [[-1.0666850119171398, -3.7136243224538679], [-2.1842168128700248, -0.60998709362389292]], [[-1.0817587775668578, 1.1357523207967555], [0.72114300996433212, 2.0871085948686607]], [[2.6196090777455074, -4.8403131105182826], [4.4462612480444346, 2.6275786734235638]]])) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(3.40075496466) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-4.1039893773891789, -4.8213292048333001], [-7.0011558569907981, 0.77317974542569523]], [[-6.1694940943335164, -4.3618963767815746], [-2.9436422951599406, -3.0336233086016184]], [[0.4718520541449891, -0.73960554521792599], [-3.6813579882475551, -2.3608273650893432]], [[-0.80951637648543961, -3.5224816599501088], [-1.5692374417116977, -8.3899173410656331]], [[0.4564958195623845, -0.42876309185787331], [-2.971928200320427, -4.8834018065003733]], [[-3.2396509988722313, 1.4044829106047558], [-0.91173241013568429, -4.8602283901026464]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[0.059444899098807014, 0.10977428971152747], [-5.3722684159819147, -1.7109872300064719]], [[-2.4017980725011876, 0.39004736133264828], [-6.3819047548765893, -2.9373909988233402]], [[-5.4986730661455407, -2.7108341945757726], [1.1809725949760637, -0.28950057649818106]], [[-4.4674399765802795, -7.1143792871170071], [-5.5849717775331644, -4.0107420582870326]], [[-4.4825137422299974, -2.2650026438663842], [-2.6796119546988075, -1.3136463697944789]], [[-0.7811458869176322, -8.2410680751814223], [1.0455062833812949, -0.77317629123957587]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank3_Symbol_rank3(self): arg0=Data(numpy.array([[[-2.8893927498914151, -3.9495986710021471], [2.0674301637688552, -4.9323681378020368]], [[-3.9365223323164567, -3.9166796931279513], [-2.1295831296849688, 0.049270642730291137]], [[1.1604521699930164, -4.7263968957110194], [0.18403419227820805, -3.9919770732677948]], [[-4.4683480884742268, 3.1077188243660192], [0.090355977211302729, -0.013539049772621325]], [[1.2239143556433882, 4.66468811676115], [4.6443599318212119, 2.902664355759085]], [[3.1499666861977964, 3.5678517696258449], [0.73557701807290599, -4.1703133219986768]]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[[0.62745401025262382, 0.69024538347902542], [4.3685303267738433, 2.2109723240557235]], [[-0.7348498808881363, -2.7513236139357309], [2.5887407011037489, 4.1931952710033542]], [[2.1336250254996258, -2.1610465999144091], [-4.054796877122568, 0.054975312915938268]], [[2.8778982280083021, 0.031841424972327559], [-1.6040852288365626, -0.14653197703489251]], [[1.0241081083490533, 2.0236436389548764], [-4.7683548819587331, 0.81201234013234735]], [[-3.2923450240347405, 2.2531528995219965], [-3.594199051432386, -1.9523442452177875]]])) arg1=Symbol(shape=(6, 2, 2)) res=arg0-arg1 s1=numpy.array([[[0.67454553417657603, 2.9833990689244789], [-3.9375622829117427, 0.0094498156860893801]], [[2.1574617938010734, -0.48892733726965609], [0.62118276066421352, 0.99065918564407696]], [[1.7968244154456219, -1.6314349433046926], [1.8612952961850224, 4.6630470176393288]], [[0.43763307675500052, 4.0271951272236688], [-1.1711764825930993, -4.5547560714878275]], [[2.514477748308436, 3.7600620047710827], [1.5805136896170069, 2.4948517124974012]], [[-0.74781838229224817, -2.9876928953003903], [4.1339271192034222, 4.4719827170790509]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[-3.5639382840679912, -6.932997739926626], [6.004992446680598, -4.9418179534881261]], [[-6.0939841261175296, -3.4277523558582952], [-2.7507658903491823, -0.94138854291378582]], [[-0.63637224545260551, -3.0949619524063268], [-1.6772611039068144, -8.6550240909071228]], [[-4.9059811652292273, -0.91947630285764959], [1.261532459804402, 4.5412170217152061]], [[-1.2905633926650477, 0.90462611199006737], [3.063846242204205, 0.40781264326168376]], [[3.8977850684900446, 6.5555446649262352], [-3.3983501011305162, -8.6422960390777277]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[-0.047091523923952217, -2.2931536854454535], [8.3060926096855852, 2.2015225083696341]], [[-2.8923116746892097, -2.2623962766660748], [1.9675579404395354, 3.2025360853592773]], [[0.33680061005400397, -0.52961165660971643], [-5.9160921733075904, -4.6080717047233906]], [[2.4402651512533016, -3.9953537022513412], [-0.43290874624346332, 4.4082240944529349]], [[-1.4903696399593827, -1.7364183658162062], [-6.34886857157574, -1.6828393723650539]], [[-2.5445266417424923, 5.2408457948223868], [-7.7281261706358082, -6.4243269622968384]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank4_Symbol_rank0(self): arg0=Data(numpy.array([[[[3.1002455029763922, 2.6515488300516923, -0.77582358496211956, -3.4443694355246803], [-2.6599091620789581, -0.70044327546902529, -4.3223485855396966, 4.9338402947088049], [-4.5546987200991147, -4.159833516760548, -1.2113818643763619, 1.341501344402797]], [[-0.99132126989665803, -3.81966827017445, -1.5631671743562592, -2.9170370396917167], [0.94015514336519956, -4.5328623228274036, 2.5469993786586862, 4.5298447080413311], [-1.8826808741220304, -0.21100480137345734, -1.7750931594239239, -3.5343470478632764]]], [[[-3.4624410933639691, 3.7419877938482422, -4.1641241285521557, -2.8763768520849711], [4.3838179808162643, -0.076650368742670949, -2.2790272387608601, 1.4407514353417152], [-0.58059366739859364, 3.0282179950037378, 4.3946428646333242, -3.9361840734571896]], [[-0.40769305246403231, -0.93123230765280152, -3.5500981163613665, -1.4382421516555786], [0.18862577968690264, 3.8234595158976035, 1.2783334948832605, -0.84599833008897818], [-1.5452449895609535, -2.1285283532469434, 2.9517034908101669, -1.043778516582341]]], [[[2.5188074736534176, 4.926760464276164, -1.2494158315784532, -4.1847607799981805], [1.764772573553314, 4.6090994448443769, -3.7864884573437072, 2.5743244083963681], [-0.44624416686502322, -0.44288726525437028, -2.5180469174818598, -4.8009656021603]], [[-1.0967276921708047, -1.5639987059537273, -3.3122649580537331, -3.947879272385495], [4.1267460589959857, -4.5801997177900287, 0.85366271506547697, -3.5573421152778972], [-4.7127368302025108, -4.5592524679039892, -1.8586387462495613, -3.2614675219884837]]]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[[[-3.6140016210408508, -4.1545999292001445, 4.9863169403898908, -2.2007289242442383], [-2.3634275248295822, 1.4929955627211893, 1.1905831175627091, -3.1298255396253936], [-0.78867439130174599, -2.5664248245819756, -1.882393556334109, -2.3300345925878529]], [[3.7578772846055983, -1.9632657478837121, -1.3792653830852455, -0.23840250166856869], [-1.650781665029756, -3.2744446113480907, -1.2541229166086589, -2.3471598629273149], [-1.939332795628903, 0.81542234976851624, 0.52422540705571663, 0.91808367692950554]]], [[[-3.0689349511345867, -4.8032602579819264, 3.769084882991141, -1.5864959564378189], [-3.2063200431555905, -0.3347729502698602, 1.763270929850381, 0.65936335478094321], [-3.6143633139881959, 0.15424644431103118, 3.7156782910709154, -3.2826914978804203]], [[-0.091940996157960697, 2.5331247115220021, 3.4383904670893202, 0.77887041122794898], [4.2850997491436988, 3.3877021574758341, 3.9303516193668084, 0.97217787674818279], [-1.8219977615256742, 3.7582967180633755, -3.967674705101544, 3.2183851949652524]]], [[[3.8000102844693906, -2.9266220460152672, 0.11901081743168795, -0.70455205529677301], [4.6787843021952913, -3.2637583894745239, 4.6693989140352041, 2.042172937625808], [-2.9445501417858964, 0.36254085518902812, 2.8333171427728354, -2.7757509476245721]], [[3.8180860212706147, -3.4817247466262815, -3.2683613783585006, -2.0706219843820262], [4.8065072235822566, 2.2788211866672707, 3.8562835841415382, -1.1633706258500731], [2.652336823163191, -2.6060953909144513, 0.62089818312127321, -1.6242126976534612]]]])) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(-4.55573857649) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[7.6559840794689205, 7.2072874065442205, 3.7799149915304087, 1.1113691409678479], [1.8958294144135701, 3.8552953010235029, 0.23338999095283164, 9.4895788712013331], [0.0010398563934135296, 0.3959050597319802, 3.3443567121161664, 5.8972399208953252]], [[3.5644173065958702, 0.73607030631807824, 2.992571402136269, 1.6387015368008115], [5.4958937198577278, 0.02287625366512458, 7.1027379551512144, 9.0855832845338593], [2.6730577023704978, 4.3447337751190709, 2.7806454170686044, 1.0213915286292519]]], [[[1.0932974831285591, 8.2977263703407704, 0.39161444794037248, 1.6793617244075572], [8.9395565573087925, 4.4790882077498573, 2.2767113377316681, 5.9964900118342435], [3.9751449090939346, 7.583956571496266, 8.9503814411258524, 0.61955450303533866]], [[4.1480455240284959, 3.6245062688397267, 1.0056404601311617, 3.1174964248369497], [4.7443643561794309, 8.3791980923901317, 5.8340720713757888, 3.70974024640355], [3.0104935869315748, 2.4272102232455848, 7.5074420673026951, 3.5119600599101872]]], [[[7.0745460501459458, 9.4824990407686922, 3.3063227449140751, 0.3709777964943477], [6.3205111500458422, 9.1648380213369052, 0.76925011914882102, 7.1300629848888963], [4.109494409627505, 4.1128513112381579, 2.0376916590106684, -0.24522702566777177]], [[3.4590108843217235, 2.991739870538801, 1.2434736184387951, 0.60785930410703326], [8.6824846354885139, -0.024461141297500433, 5.4094012915580052, 0.99839646121463099], [-0.15699825370998255, -0.0035138914114609676, 2.697099830242967, 1.2942710545040446]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[0.94173695545167746, 0.40113864729238369, 9.542055516882419, 2.35500965224829], [2.192311051662946, 6.0487341392137175, 5.7463216940552373, 1.4259130368671347], [3.7670641851907822, 1.9893137519105526, 2.6733450201584192, 2.2257039839046753]], [[8.3136158610981266, 2.5924728286088161, 3.1764731934072827, 4.3173360748239595], [2.9049569114627722, 1.2812939651444375, 3.3016156598838693, 2.2085787135652133], [2.6164057808636252, 5.3711609262610445, 5.0799639835482449, 5.4738222534220338]]], [[[1.4868036253579415, -0.24752168148939813, 8.3248234594836692, 2.9692426200547093], [1.3494185333369377, 4.220965626222668, 6.3190095063429093, 5.2151019312734714], [0.94137526250433234, 4.7099850208035594, 8.2714168675634436, 1.273047078612108]], [[4.4637975803345675, 7.0888632880145304, 7.9941290435818484, 5.3346089877204772], [8.8408383256362271, 7.9434407339683624, 8.4860901958593367, 5.527916453240711], [2.7337408149668541, 8.3140352945559037, 0.58806387139098426, 7.7741237714577807]]], [[[8.3557488609619188, 1.629116530477261, 4.6747493939242162, 3.8511865211957552], [9.2345228786878195, 1.2919801870180043, 9.2251374905277324, 6.5979115141183362], [1.6111884347066319, 4.9182794316815563, 7.3890557192653636, 1.7799876288679561]], [[8.3738245977631429, 1.0740138298662467, 1.2873771981340276, 2.4851165921105021], [9.3622458000747848, 6.834559763159799, 8.4120221606340664, 3.3923679506424551], [7.2080753996557192, 1.9496431855780769, 5.1766367596138014, 2.931525878839067]]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_taggedData_rank4_Symbol_rank4(self): arg0=Data(numpy.array([[[[2.1869721643026576, 0.35542091272423715, 2.5099944114031967, 4.7276012581949995], [-0.23596027111215712, 3.2557128306673206, -2.4174678213407566, 4.9025765849007588], [3.4987602616867228, -2.3969967727517094, 2.614715035832643, -3.9538109091356577]], [[0.54151166641114745, 4.3433313907072311, -3.9824411189395126, 0.11193040884063787], [-4.3326960505433521, -2.6555021449849603, -1.6650005107909016, -0.21278258756168267], [2.9438726263016104, 4.614591333740627, -1.4283352855346321, 4.195747529596801]]], [[[0.4129039465707498, 0.25218586208094607, 4.2227877593235625, -3.8395686827717723], [-4.246422814789943, -4.2708029152046789, -4.4791253262093615, 2.3703854064691221], [-0.32074671911367325, -4.0633264555676574, -4.8034904727622223, 0.101245496731595]], [[3.3860052077100544, 4.4048456672981686, 3.3258905421337257, -0.60591078242426555], [2.9574702297232829, 2.9390786518156196, 3.0627580449874809, -2.1902821038190523], [1.2765769390449559, 4.5442832941192819, 0.47031486471564055, -3.2094801674304509]]], [[[1.4972627407797212, -2.7514173987810633, 0.19744444113354387, 1.3720920976100972], [-3.147124860705004, -3.6707691951555885, 1.1521564952279704, -0.12493802519996233], [1.3717811158015873, -1.737983464544548, -2.5919544001996897, -4.4195022009129206]], [[-3.5078213357756582, 1.5909514876001909, 3.932618549290213, 0.32844467348406869], [-0.037083415286228494, 2.358949404615915, -3.7082781631298478, -4.9441324919087766], [1.219588665287433, -2.1155364750524797, 2.3443039764677165, 4.1618790582351313]]]]),self.functionspace) arg0.setTaggedValue(1,numpy.array([[[[3.8216987557975131, -0.59039813916696193, -1.9474433412604117, 4.1666345075852202], [1.0033840403657788, -1.8365638623400207, -1.1472895447555285, 0.49043998461267968], [1.525782098623524, 0.98710575843395354, 1.9521603305269073, 1.4982217977497818]], [[4.8105014981222372, 0.18255767851204219, 0.10092997041413909, 2.3610713615733667], [3.8639541584797801, 1.8455276769077198, 3.9278199867001007, 2.5501176762845867], [3.2925051662999447, 0.78129602184334157, -0.73105877010655362, 2.9378923845982694]]], [[[1.3162347911484948, -1.7534583809398363, -4.4745574675152744, 0.84388146264593455], [-2.1398633576757309, 1.6224556269216279, 4.0151064679341637, 0.81646760002277574], [0.95506629968888479, -3.384786519820715, 2.08961451298733, 1.4802214615087061]], [[2.5752388025402837, -2.7094797245847468, -2.6808155024703106, -1.7780191613070642], [-0.58755728186204248, -4.3097624692690948, 3.6757907841395685, -1.8312242243207608], [-3.7229135985460826, -1.5786991892133564, 2.6894504757052617, -0.48567336902160463]]], [[[3.4562176552233623, -1.5291903913231595, 4.9276217294297595, -1.4641622460496571], [-3.9633150641051529, -1.3895475276782743, -2.0928641563143735, 4.286214622292805], [-0.016872120519226819, -0.86571000346058913, 4.2635805792181465, 4.0351866281897113]], [[-1.973695982407413, -4.452260246087465, -2.5681734906597109, 3.0954829513656215], [2.6526834215550927, -4.3976717675273207, 2.0111485813735106, 2.7969396373439324], [-0.72100288848623784, 1.4868693846138363, 2.3876845459322045, -3.759851286518614]]]])) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0-arg1 s1=numpy.array([[[[-1.2326165508314046, 0.019536700697927678, 3.3313535404093759, -2.4782775769684271], [3.9342491756801525, 1.2904741959913864, -2.7701975380199206, 2.4757520771582744], [2.5202328466158281, -1.3683915774027189, 3.4678638218372768, -2.2884507446983129]], [[-4.9275394706777931, 4.7975831194456333, 1.7829898690658723, -0.96339421834763073], [-2.7923805247323799, -0.026981154987572253, 2.5136604629187271, 0.14658337947380495], [1.1254475424349959, 4.8000437885357261, 3.3479331374253167, 1.6298765760037002]]], [[[-0.46473842692243572, 1.2430212762010644, -0.23618382206216726, -1.2230171932711418], [2.0127498669810855, -0.31475870950595031, -0.20645609212011973, -4.9825089187683691], [-4.6108703987985988, -0.47963035537661725, -3.1919702863790422, -3.9993603357626117]], [[3.8402219409685951, 3.04406815317755, 4.7640360318949195, 1.5279973254325983], [-4.9716807317737235, -3.4706635767559693, -1.2581696190523903, -2.591452040312936], [1.6191001515432157, -3.5419762128533741, 0.92904425652178801, 4.6966930122512043]]], [[[-2.4787875268428614, 4.8717538415307775, 3.6264063974305554, 2.0645154974740256], [-4.5070489852671329, 2.3540394703493703, 3.2007816723140134, -0.44359603196672026], [2.5406621078154732, 3.6651768892659895, -2.7039262200534422, -1.9309627063916244]], [[-0.037762488646412962, -4.6825147640959859, -3.1180187992817956, -0.3407644296025687], [-1.6601757648009907, -1.0174825465103088, 0.060955158106047236, 1.2341204474061849], [-0.24621306712976931, -1.3620636349151272, -0.12322079758969373, 2.3717593913603183]]]]) sub=res.substitute({arg1:s1}) ref=Data(numpy.array([[[[3.4195887151340623, 0.33588421202630947, -0.82135912900617924, 7.2058788351634266], [-4.1702094467923096, 1.9652386346759343, 0.35272971667916408, 2.4268245077424844], [0.97852741507089469, -1.0286051953489905, -0.85314878600463384, -1.6653601644373448]], [[5.4690511370889405, -0.45425172873840225, -5.7654309880053844, 1.0753246271882686], [-1.5403155258109722, -2.628520989997388, -4.1786609737096292, -0.35936596703548762], [1.8184250838666145, -0.18545245479509909, -4.7762684229599488, 2.5658709535931008]]], [[[0.87764237349318552, -0.99083541412011833, 4.4589715813857298, -2.6165514895006305], [-6.2591726817710285, -3.9560442056987286, -4.2726692340892418, 7.3528943252374912], [4.2901236796849256, -3.5836961001910401, -1.6115201863831801, 4.1006058324942067]], [[-0.45421673325854073, 1.3607775141206186, -1.4381454897611938, -2.1339081078568638], [7.9291509614970064, 6.4097422285715888, 4.3209276640398713, 0.40116993649388366], [-0.34252321249825979, 8.0862595069726559, -0.45872939180614747, -7.9061731796816552]]], [[[3.9760502676225826, -7.6231712403118408, -3.4289619562970115, -0.69242339986392842], [1.359924124562129, -6.0248086655049589, -2.0486251770860431, 0.31865800676675793], [-1.1688809920138858, -5.4031603538105379, 0.11197181985375249, -2.4885394945212962]], [[-3.4700588471292453, 6.2734662516961768, 7.0506373485720086, 0.66920910308663739], [1.6230923495147622, 3.3764319511262237, -3.7692333212358951, -6.1782529393149614], [1.4658017324172024, -0.7534728401373525, 2.4675247740574102, 1.7901196668748129]]]]),self.functionspace) ref.setTaggedValue(1,numpy.array([[[[5.0543153066289177, -0.60993483986488961, -5.2787968816697877, 6.6449120845536473], [-2.9308651353143738, -3.127038058331407, 1.6229079932643922, -1.9853120925455947], [-0.99445074799230415, 2.3554973358366724, -1.5157034913103695, 3.7866725424480947]], [[9.7380409688000302, -4.6150254409335911, -1.6820598986517332, 3.3244655799209974], [6.6563346832121599, 1.872508831895292, 1.4141595237813736, 2.4035342968107818], [2.1670576238649488, -4.0187477666923845, -4.0789919075318704, 1.3080158085945692]]], [[[1.7809732180709306, -2.9964796571409007, -4.2383736454531071, 2.0668986559170763], [-4.1526132246568164, 1.9372143364275782, 4.2215625600542834, 5.7989765187911448], [5.5659366984874836, -2.9051561644440977, 5.2815847993663727, 5.4795817972713179]], [[-1.2649831384283114, -5.7535478777622968, -7.4448515343652302, -3.3060164867396624], [4.384123449911681, -0.83909889251312553, 4.9339604031919588, 0.76022781599217515], [-5.3420137500892988, 1.9632770236400177, 1.7604062191834737, -5.1823663812728089]]], [[[5.9350051820662237, -6.400944232853937, 1.3012153319992041, -3.5286777435236827], [0.54373392116198005, -3.7435869980276446, -5.293645828628387, 4.7298106542595253], [-2.5575342283347, -4.5308868927265786, 6.9675067992715887, 5.9661493345813357]], [[-1.935933493761, 0.23025451800852093, 0.54984530862208469, 3.4362473809681902], [4.3128591863560839, -3.3801892210170119, 1.9501934232674634, 1.5628191899377475], [-0.47478982135646852, 2.8489330195289635, 2.5109053435218982, -6.1316106778789319]]]])) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank0_Symbol_rank0(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(2.42413566075)+(1.-msk_arg0)*(2.73592046896) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(0.0730314190245) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*(2.35110424173)+(1.-msk_ref)*(2.66288904994) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank0_Symbol_rank1(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(-2.38585027921)+(1.-msk_arg0)*(-2.14546935212) arg1=Symbol(shape=(2,)) res=arg0-arg1 s1=numpy.array([1.0449404678521192, -2.9654578889240057]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([-3.4307907470591283, 0.57960760971699665])+(1.-msk_ref)*numpy.array([-3.1904098199744872, 0.81998853680163775]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank0_Symbol_rank2(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(2.15276640076)+(1.-msk_arg0)*(-2.04284766814) arg1=Symbol(shape=(4, 5)) res=arg0-arg1 s1=numpy.array([[-2.5429314638433684, 2.0318827224945402, -2.3636856893688076, 3.4855417570765717, 0.44952339669472341], [2.5403509140391156, 2.3524971436536095, 3.9461465487262188, 2.6955339698780154, -0.45702899742654868], [-1.0602022717036155, 0.74771157767510843, 1.6452939357358289, -3.0322095528230921, 1.6787335078454735], [-4.263078102519902, 3.2046384335109863, 4.0147512257312048, 3.3998288702285713, -0.56118778404289138]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[4.6956978646047602, 0.12088367826685165, 4.5164520901301994, -1.3327753563151798, 1.7032430040666684], [-0.38758451327772381, -0.19973074289221771, -1.793380147964827, -0.5427675691166236, 2.6097953981879405], [3.2129686724650073, 1.4050548230862834, 0.50747246502556287, 5.1849759535844839, 0.47403289291591832], [6.4158445032812939, -1.0518720327495945, -1.861984824969813, -1.2470624694671795, 2.7139541848042832]])+(1.-msk_ref)*numpy.array([[0.50008379570506278, -4.0747303906328458, 0.32083802123050198, -5.5283894252148773, -2.4923710648330291], [-4.5831985821774213, -4.3953448117919152, -5.9889942168645245, -4.7383816380163211, -1.585818670711757], [-0.98264539643469018, -2.7905592458134141, -3.6881416038741346, 0.98936188468478647, -3.7215811759837791], [2.2202304343815964, -5.247486101649292, -6.0575988938695104, -5.4426765383668769, -1.4816598840954143]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank0_Symbol_rank3(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(3.30825297654)+(1.-msk_arg0)*(-3.92076322418) arg1=Symbol(shape=(6, 2, 2)) res=arg0-arg1 s1=numpy.array([[[-0.52002332126128437, 4.3478222442071139], [3.3434922005534364, 2.8013302606159396]], [[-2.3200079969586795, -3.0556917667690642], [-2.7103276420969582, 4.1511200748037105]], [[-0.92404095393396624, 2.6484690327098859], [-2.1529217611726503, 4.4602897709717144]], [[0.58271708006920253, 1.9322598870751975], [-3.5184596230462182, -4.4222029485403436]], [[-4.3953168785776278, -4.450145776704125], [4.2137072146995536, 3.8966485797913304]], [[3.1838339108927798, -3.6438064267677328], [1.3789445362861974, -2.9975552731311272]]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[[3.8282762978010325, -1.0395692676673658], [-0.035239224013688286, 0.50692271592380855]], [[5.6282609734984277, 6.3639447433088119], [6.0185806186367063, -0.84286709826396233]], [[4.2322939304737144, 0.65978394382986227], [5.4611747377123985, -1.1520367944319663]], [[2.7255358964705456, 1.3759930894645507], [6.8267125995859663, 7.7304559250800917]], [[7.7035698551173759, 7.7583987532438732], [-0.90545423815980541, -0.58839560325158224]], [[0.12441906564696836, 6.952059403307481], [1.9293084402535507, 6.3058082496708749]]])+(1.-msk_ref)*numpy.array([[[-3.4007399029178136, -8.2685854683862114], [-7.2642554247325339, -6.7220934847950371]], [[-1.6007552272204184, -0.86507145741003377], [-1.2104355820821397, -8.071883298982808]], [[-2.9967222702451317, -6.5692322568889843], [-1.7678414630064476, -8.3810529951508119]], [[-4.5034803042483009, -5.853023111254295], [-0.40230360113287977, 0.50143972436124562]], [[0.47455365439852981, 0.52938255252502708], [-8.1344704388786511, -7.8174118039704279]], [[-7.1045971350718773, -0.27695679741136514], [-5.2997077604652958, -0.92320795104797071]]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(6, 2, 2),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank0_Symbol_rank4(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*(4.28115160685)+(1.-msk_arg0)*(-2.99624588284) arg1=Symbol(shape=(3, 2, 3, 4)) res=arg0-arg1 s1=numpy.array([[[[-3.7034845683259832, -3.2006988280486115, 4.6850337347787345, -1.5431340070704103], [-3.9508001556883876, 4.7231128873762902, -3.0051096732527691, -0.071944916970104522], [3.2109725637398565, 4.0910170733379978, -3.7166755556626772, -4.402146700420734]], [[-1.5273991623031669, -1.4865381526416344, 3.902360473786171, -1.3538484671917517], [0.38707743115008331, 4.3855048056490773, 1.9022231675241139, 1.397387379628614], [1.0431068102446126, 3.0934379513218886, 2.0138255231319624, 4.2870052231295865]]], [[[-4.2737086360299941, 4.2752748398653857, -3.7092106416006629, 1.417380944080846], [-2.4275128587779737, -2.879911926405645, -4.23153844815229, -0.30555854124221682], [-2.6571106905165331, 2.6754859746804112, -4.5544081791240201, -0.020082609244357563]], [[1.0570642052363857, -1.7647078574502792, 2.6330635742775668, 3.717540829723692], [4.9220552078075279, -3.9060168420798869, 1.4799017868437296, 2.7842835488914588], [-2.0839669385912343, -4.8850626605172867, 1.7595980725429907, 3.0026383083452117]]], [[[-0.83195539201513036, -1.2109400306251725, 2.0638657571201078, -0.86905066581365009], [-0.54092453152611775, 3.4954317917180884, 3.7826658876966359, -2.5779636206330894], [1.6720368874738147, 0.42564364358069096, -4.9027760864384096, 0.66861897918883617]], [[-4.1302737255553801, -3.2949127465748109, 1.5706320204575341, -2.2912291830881903], [-2.19574275564025, 3.983182476523945, 2.032922034582441, -2.7459308093848711], [4.6025690264891459, 3.7012963844874829, 0.1748188819614116, 4.2002322255258893]]]]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[[[7.984636175171131, 7.4818504348937598, -0.40388212793358669, 5.8242856139155581], [8.2319517625335354, -0.44196128053114236, 7.286261280097917, 4.3530965238152524], [1.0701790431052913, 0.19013453350715004, 7.997827162507825, 8.6832983072658827]], [[5.8085507691483151, 5.7676897594867818, 0.37879113305897683, 5.6350000740368991], [3.8940741756950645, -0.10435319880392946, 2.3789284393210339, 2.8837642272165338], [3.2380447966005352, 1.1877136555232592, 2.2673260837131854, -0.0058536162844387007]]], [[[8.5548602428751419, 0.005876766979762138, 7.9903622484458108, 2.8637706627643018], [6.7086644656231211, 7.1610635332507933, 8.5126900549974387, 4.5867101480873647], [6.938262297361681, 1.6056656321647367, 8.835559785969167, 4.3012342160895054]], [[3.2240874016087622, 6.0458594642954271, 1.6480880325675811, 0.5636107771214558], [-0.64090360096238008, 8.1871684489250356, 2.8012498200014182, 1.496868057953689], [6.3651185454363821, 9.1662142673624345, 2.5215535343021571, 1.2785132984999361]]], [[[5.1131069988602782, 5.4920916374703204, 2.2172858497250401, 5.1502022726587979], [4.8220761383712656, 0.78571981512705946, 0.49848571914851192, 6.8591152274782372], [2.6091147193713331, 3.8555079632644569, 9.1839276932835574, 3.6125326276563117]], [[8.4114253324005279, 7.5760643534199588, 2.7105195863876137, 6.5723807899333382], [6.4768943624853978, 0.29796913032120287, 2.2482295722627068, 7.0270824162300194], [-0.32141741964399806, 0.57985522235766496, 4.1063327248837362, 0.080919381319258576]]]])+(1.-msk_ref)*numpy.array([[[[0.70723868548106505, 0.20445294520369339, -7.6812796176236526, -1.4531118757745078], [0.9545542728434695, -7.7193587702212083, 0.0088637904078510132, -2.9243009658748136], [-6.2072184465847746, -7.0872629561829159, 0.72042967281775905, 1.4059008175758159]], [[-1.4688467205417512, -1.5097077302032837, -6.8986063566310891, -1.6423974156531664], [-3.3833233139950014, -7.3817506884939954, -4.898469050369032, -4.3936332624735321], [-4.0393526930895307, -6.0896838341668067, -5.0100714059768805, -7.2832511059745046]]], [[[1.277462753185076, -7.2715207227103038, 0.71296475875574483, -4.4136268269257641], [-0.56873302406694437, -0.11633395643927313, 1.2352925653073719, -2.6906873416027013], [-0.33913519232838496, -5.6717318575253293, 1.558162296279102, -2.9761632736005605]], [[-4.0533100880813038, -1.2315380253946389, -5.6293094571224849, -6.7137867125686101], [-7.918301090652446, 0.90977095923496876, -4.4761476696886477, -5.7805294317363769], [-0.91227894425368383, 1.8888167776723686, -4.7558439553879088, -5.9988841911901298]]], [[[-2.1642904908297877, -1.7853058522197456, -5.0601116399650259, -2.127195217031268], [-2.4553213513188004, -6.4916776745630065, -6.778911770541554, -0.41828226221182874], [-4.6682827703187328, -3.4218895264256091, 1.9065302035934915, -3.6648648620337543]], [[1.134027842710462, 0.29866686372989282, -4.5668779033024522, -0.70501669975672776], [-0.8005031272046681, -6.9794283593688631, -5.0291679174273591, -0.250315073460047], [-7.598814909334064, -6.697542267332401, -3.1710647648063297, -7.1964781083708074]]]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(3, 2, 3, 4),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank1_Symbol_rank0(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([0.57185536765716005, -4.5016440600070959])+(1.-msk_arg0)*numpy.array([-0.4418100919929735, 1.7838290839713755]) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(4.01685432532) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([-3.4449989576654145, -8.5184983853296714])+(1.-msk_ref)*numpy.array([-4.4586644173155481, -2.2330252413511991]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank1_Symbol_rank1(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([-4.1734209340603439, 4.5527582003296185])+(1.-msk_arg0)*numpy.array([-1.7000682822887789, 0.76683988376374757]) arg1=Symbol(shape=(2,)) res=arg0-arg1 s1=numpy.array([-1.5016152385157842, 0.80809700227400683]) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([-2.6718056955445597, 3.7446611980556117])+(1.-msk_ref)*numpy.array([-0.19845304377299477, -0.041257118510259261]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(2,),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank2_Symbol_rank0(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*numpy.array([[3.3500126396534871, 3.4943903203535527, -1.7005861531401179, 1.4952347206139418, -4.5979578172283739], [-2.3055331093587372, -3.6474162865795225, -3.0632961186256935, 4.7258384683418715, -0.58388337502415943], [4.7641302227265427, -0.11182220465882864, 2.8628458472454756, 1.6967713595739653, 2.8474759788446562], [2.5863322473986914, 1.6349340161801535, -2.9934700314340712, 3.4068691472223609, -0.97913156666695667]])+(1.-msk_arg0)*numpy.array([[-0.34407378508566389, 2.6789454460601672, -3.3795587578901665, -4.1659261688389009, 2.3147542825953309], [-2.0615148857755603, -2.1181768528675784, 4.7855957803525566, 2.4248630846228734, 4.4597452365342818], [4.5985091304874572, 2.9992334161018466, 0.73974708846994552, -0.24440017509511858, -0.49166350583553875], [1.5878740787090537, 3.0210382196579779, 3.6343442933400869, 1.5494651243470852, -3.3635312675197349]]) arg1=Symbol(shape=()) res=arg0-arg1 s1=numpy.array(-3.53998589595) sub=res.substitute({arg1:s1}) msk_ref=1.-whereZero(self.functionspace.getX()[0],1.e-8) ref=msk_ref*numpy.array([[6.8899985356048354, 7.0343762163049011, 1.8393997428112305, 5.0352206165652902, -1.0579719212770256], [1.2344527865926112, -0.10743039062817417, 0.47668977732565487, 8.2658243642932199, 2.9561025209271889], [8.3041161186778911, 3.4281636912925197, 6.402831743196824, 5.2367572555253137, 6.3874618747960046], [6.1263181433500398, 5.1749199121315019, 0.54651586451727718, 6.9468550431737093, 2.5608543292843917]])+(1.-msk_ref)*numpy.array([[3.1959121108656845, 6.2189313420115155, 0.16042713806118192, -0.6259402728875525, 5.8547401785466793], [1.4784710101757881, 1.42180904308377, 8.325581676303905, 5.9648489805742217, 7.9997311324856302], [8.1384950264388056, 6.539219312053195, 4.2797329844212939, 3.2955857208562298, 3.0483223901158096], [5.1278599746604021, 6.5610241156093263, 7.1743301892914353, 5.0894510202984335, 0.17645462843161352]]) self.assertTrue(isinstance(res,Symbol),"wrong type of result.") self.assertEqual(res.getShape(),(4, 5),"wrong shape of result.") self.assertTrue(Lsup(sub-ref)<=self.RES_TOL*Lsup(ref),"wrong result") #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def test_sub_overloaded_expandedData_rank2_Symbol_rank2(self): msk_arg0=whereNegative(self.functionspace.getX()[0]-0.5) arg0=msk_arg0*
numpy.array([[2.0867998826855514, 2.311725929216629, -3.4719596731221403, 1.7817832811577139, 1.5141982978301929], [3.1010865709749673, -2.1704923524391537, 3.7204405507466163, 4.629811066660821, 1.6635344950905893], [-2.574527711983543, -1.6203338172344193, 3.7119433126415871, -4.2495237660622687, -2.1154248806831588], [0.14708606411584846, -4.3739162090051034, 0.28212084215683131, -3.2454357930486841, 4.0490170686662843]])+(1.-msk_arg0)
numpy.array
# Copyright (c) 2003-2019 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import treecorr import os import coord import fitsio from test_helper import get_script_name, do_pickle, assert_raises, CaptureLog, timer from test_helper import is_ccw, is_ccw_3d @timer def test_log_binning(): import math # Test some basic properties of the base class def check_arrays(nnn): np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.ubin_size * nnn.nubins, nnn.max_u-nnn.min_u) np.testing.assert_almost_equal(nnn.vbin_size * nnn.nvbins, nnn.max_v-nnn.min_v) #print('logr = ',nnn.logr1d) np.testing.assert_equal(nnn.logr1d.shape, (nnn.nbins,) ) np.testing.assert_almost_equal(nnn.logr1d[0], math.log(nnn.min_sep) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr1d[-1], math.log(nnn.max_sep) - 0.5*nnn.bin_size) np.testing.assert_equal(nnn.logr.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.logr[:,0,0], nnn.logr1d) np.testing.assert_almost_equal(nnn.logr[:,-1,-1], nnn.logr1d) assert len(nnn.logr) == nnn.nbins #print('u = ',nnn.u1d) np.testing.assert_equal(nnn.u1d.shape, (nnn.nubins,) ) np.testing.assert_almost_equal(nnn.u1d[0], nnn.min_u + 0.5*nnn.ubin_size) np.testing.assert_almost_equal(nnn.u1d[-1], nnn.max_u - 0.5*nnn.ubin_size) np.testing.assert_equal(nnn.u.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.u[0,:,0], nnn.u1d) np.testing.assert_almost_equal(nnn.u[-1,:,-1], nnn.u1d) #print('v = ',nnn.v1d) np.testing.assert_equal(nnn.v1d.shape, (2*nnn.nvbins,) ) np.testing.assert_almost_equal(nnn.v1d[0], -nnn.max_v + 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[-1], nnn.max_v - 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[nnn.nvbins], nnn.min_v + 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[nnn.nvbins-1], -nnn.min_v - 0.5*nnn.vbin_size) np.testing.assert_equal(nnn.v.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.v[0,0,:], nnn.v1d) np.testing.assert_almost_equal(nnn.v[-1,-1,:], nnn.v1d) def check_defaultuv(nnn): assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == np.ceil(1./nnn.ubin_size) assert nnn.min_v == 0. assert nnn.max_v == 1. assert nnn.nvbins == np.ceil(1./nnn.vbin_size) # Check the different ways to set up the binning: # Omit bin_size nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, bin_type='LogRUV') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify min, max, n for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, min_u=0.2, max_u=0.9, nubins=12, min_v=0., max_v=0.2, nvbins=2) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 assert nnn.min_u == 0.2 assert nnn.max_u == 0.9 assert nnn.nubins == 12 assert nnn.min_v == 0. assert nnn.max_v == 0.2 assert nnn.nvbins == 2 check_arrays(nnn) # Omit min_sep nnn = treecorr.NNNCorrelation(max_sep=20, nbins=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify max, n, bs for u,v too. nnn = treecorr.NNNCorrelation(max_sep=20, nbins=20, bin_size=0.1, max_u=0.9, nubins=3, ubin_size=0.05, max_v=0.4, nvbins=4, vbin_size=0.05) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.max_sep == 20. assert nnn.nbins == 20 assert np.isclose(nnn.ubin_size, 0.05) assert np.isclose(nnn.min_u, 0.75) assert nnn.max_u == 0.9 assert nnn.nubins == 3 assert np.isclose(nnn.vbin_size, 0.05) assert np.isclose(nnn.min_v, 0.2) assert nnn.max_v == 0.4 assert nnn.nvbins == 4 check_arrays(nnn) # Omit max_sep nnn = treecorr.NNNCorrelation(min_sep=5, nbins=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.min_sep == 5. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify min, n, bs for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, nbins=20, bin_size=0.1, min_u=0.7, nubins=4, ubin_size=0.05, min_v=0.2, nvbins=4, vbin_size=0.05) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.bin_size == 0.1 assert nnn.nbins == 20 assert nnn.min_u == 0.7 assert np.isclose(nnn.ubin_size, 0.05) assert nnn.nubins == 4 assert nnn.min_v == 0.2 assert nnn.max_v == 0.4 assert np.isclose(nnn.vbin_size, 0.05) assert nnn.nvbins == 4 check_arrays(nnn) # Omit nbins nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. check_defaultuv(nnn) check_arrays(nnn) # Specify min, max, bs for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=0.1, max_v=0.3, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.bin_size <= 0.1 assert nnn.min_u == 0.2 assert nnn.max_u == 0.9 assert nnn.nubins == 24 assert np.isclose(nnn.ubin_size, 0.7/24) assert nnn.min_v == 0.1 assert nnn.max_v == 0.3 assert nnn.nvbins == 3 assert np.isclose(nnn.vbin_size, 0.2/3) check_arrays(nnn) # If only one of min/max v are set, respect that nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, min_u=0.2, ubin_size=0.03, min_v=0.2, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_u == 0.2 assert nnn.max_u == 1. assert nnn.nubins == 27 assert np.isclose(nnn.ubin_size, 0.8/27) assert nnn.min_v == 0.2 assert nnn.max_v == 1. assert nnn.nvbins == 12 assert np.isclose(nnn.vbin_size, 0.8/12) check_arrays(nnn) nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, max_u=0.2, ubin_size=0.03, max_v=0.2, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_u == 0. assert nnn.max_u == 0.2 assert nnn.nubins == 7 assert np.isclose(nnn.ubin_size, 0.2/7) assert nnn.min_v == 0. assert nnn.max_v == 0.2 assert nnn.nvbins == 3 assert np.isclose(nnn.vbin_size, 0.2/3) check_arrays(nnn) # If only vbin_size is set for v, automatically figure out others. # (And if necessary adjust the bin_size down a bit.) nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, ubin_size=0.3, vbin_size=0.3) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == 4 assert np.isclose(nnn.ubin_size, 0.25) assert nnn.min_v == 0. assert nnn.max_v == 1. assert nnn.nvbins == 4 assert np.isclose(nnn.vbin_size, 0.25) check_arrays(nnn) # If only nvbins is set for v, automatically figure out others. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, nubins=5, nvbins=5) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == 5 assert np.isclose(nnn.ubin_size,0.2) assert nnn.min_v == 0. assert nnn.max_v == 1. assert nnn.nvbins == 5 assert np.isclose(nnn.vbin_size,0.2) check_arrays(nnn) # If both nvbins and vbin_size are set, set min/max automatically nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, ubin_size=0.1, nubins=5, vbin_size=0.1, nvbins=5) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.ubin_size == 0.1 assert nnn.nubins == 5 assert nnn.max_u == 1. assert np.isclose(nnn.min_u,0.5) assert nnn.vbin_size == 0.1 assert nnn.nvbins == 5 assert nnn.min_v == 0. assert np.isclose(nnn.max_v,0.5) check_arrays(nnn) assert_raises(TypeError, treecorr.NNNCorrelation) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5) assert_raises(TypeError, treecorr.NNNCorrelation, max_sep=20) assert_raises(TypeError, treecorr.NNNCorrelation, bin_size=0.1) assert_raises(TypeError, treecorr.NNNCorrelation, nbins=20) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, max_sep=20) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, bin_size=0.1) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, nbins=20) assert_raises(TypeError, treecorr.NNNCorrelation, max_sep=20, bin_size=0.1) assert_raises(TypeError, treecorr.NNNCorrelation, max_sep=20, nbins=20) assert_raises(TypeError, treecorr.NNNCorrelation, bin_size=0.1, nbins=20) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, nbins=20) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, bin_size=0.1) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, bin_type='Log') assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, bin_type='Linear') assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, bin_type='TwoD') assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, bin_type='Invalid') assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_u=0.3, max_u=0.9, ubin_size=0.1, nubins=6) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_u=0.9, max_u=0.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_u=-0.1, max_u=0.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_u=0.1, max_u=1.3) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_v=0.1, max_v=0.9, vbin_size=0.1, nvbins=9) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_v=0.9, max_v=0.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_v=-0.1, max_v=0.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_v=0.1, max_v=1.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, split_method='invalid') # Check the use of sep_units # radians nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='radians') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5.) np.testing.assert_almost_equal(nnn._max_sep, 20.) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # arcsec nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='arcsec') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180/3600) np.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180/3600) assert nnn.nbins == 20 np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) # Note that logr is in the separation units, not radians. np.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # arcmin nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='arcmin') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180/60) np.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180/60) assert nnn.nbins == 20 np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # degrees nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='degrees') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180) np.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180) assert nnn.nbins == 20 np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # hours nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='hours') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/12) np.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/12) assert nnn.nbins == 20 np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # Check bin_slop # Start with default behavior nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.1) np.testing.assert_almost_equal(nnn.bu, 0.03) np.testing.assert_almost_equal(nnn.bv, 0.07) # Explicitly set bin_slop=1.0 does the same thing. nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, bin_slop=1.0, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.1) np.testing.assert_almost_equal(nnn.bu, 0.03) np.testing.assert_almost_equal(nnn.bv, 0.07) # Use a smaller bin_slop nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, bin_slop=0.2, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 0.2 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.02) np.testing.assert_almost_equal(nnn.bu, 0.006) np.testing.assert_almost_equal(nnn.bv, 0.014) # Use bin_slop == 0 nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, bin_slop=0.0, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 0.0 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.0) np.testing.assert_almost_equal(nnn.bu, 0.0) np.testing.assert_almost_equal(nnn.bv, 0.0) # Bigger bin_slop nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, bin_slop=2.0, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07, verbose=0) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 2.0 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.2) np.testing.assert_almost_equal(nnn.bu, 0.06) np.testing.assert_almost_equal(nnn.bv, 0.14) # With bin_size > 0.1, explicit bin_slop=1.0 is accepted. nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.4, bin_slop=1.0, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07, verbose=0) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.4 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.4) np.testing.assert_almost_equal(nnn.bu, 0.03) np.testing.assert_almost_equal(nnn.bv, 0.07) # But implicit bin_slop is reduced so that b = 0.1 nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.4, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_size == 0.4 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.1) np.testing.assert_almost_equal(nnn.bu, 0.03) np.testing.assert_almost_equal(nnn.bv, 0.07) np.testing.assert_almost_equal(nnn.bin_slop, 0.25) # Separately for each of the three parameters nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.05, min_u=0., max_u=0.9, ubin_size=0.3, min_v=0., max_v=0.17, vbin_size=0.17) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_size == 0.05 assert np.isclose(nnn.ubin_size, 0.3) assert np.isclose(nnn.vbin_size, 0.17) np.testing.assert_almost_equal(nnn.b, 0.05) np.testing.assert_almost_equal(nnn.bu, 0.1) np.testing.assert_almost_equal(nnn.bv, 0.1) np.testing.assert_almost_equal(nnn.bin_slop, 1.0) # The stored bin_slop is just for lnr @timer def test_direct_count_auto(): # If the catalogs are small enough, we can do a direct count of the number of triangles # to see if comes out right. This should exactly match the treecorr code if bin_slop=0. ngal = 50 s = 10. rng = np.random.RandomState(8675309) x = rng.normal(0,s, (ngal,) ) y = rng.normal(0,s, (ngal,) ) cat = treecorr.Catalog(x=x, y=y) min_sep = 1. max_sep = 50. nbins = 50 min_u = 0.13 max_u = 0.89 nubins = 10 min_v = 0.13 max_v = 0.59 nvbins = 10 ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=1) ddd.process(cat) log_min_sep = np.log(min_sep) log_max_sep = np.log(max_sep) true_ntri = np.zeros( (nbins, nubins, 2*nvbins) ) bin_size = (log_max_sep - log_min_sep) / nbins ubin_size = (max_u-min_u) / nubins vbin_size = (max_v-min_v) / nvbins for i in range(ngal): for j in range(i+1,ngal): for k in range(j+1,ngal): dij = np.sqrt((x[i]-x[j])**2 + (y[i]-y[j])**2) dik = np.sqrt((x[i]-x[k])**2 + (y[i]-y[k])**2) djk = np.sqrt((x[j]-x[k])**2 + (y[j]-y[k])**2) if dij == 0.: continue if dik == 0.: continue if djk == 0.: continue if dij < dik: if dik < djk: d3 = dij; d2 = dik; d1 = djk ccw = is_ccw(x[i],y[i],x[j],y[j],x[k],y[k]) elif dij < djk: d3 = dij; d2 = djk; d1 = dik ccw = is_ccw(x[j],y[j],x[i],y[i],x[k],y[k]) else: d3 = djk; d2 = dij; d1 = dik ccw = is_ccw(x[j],y[j],x[k],y[k],x[i],y[i]) else: if dij < djk: d3 = dik; d2 = dij; d1 = djk ccw = is_ccw(x[i],y[i],x[k],y[k],x[j],y[j]) elif dik < djk: d3 = dik; d2 = djk; d1 = dij ccw = is_ccw(x[k],y[k],x[i],y[i],x[j],y[j]) else: d3 = djk; d2 = dik; d1 = dij ccw = is_ccw(x[k],y[k],x[j],y[j],x[i],y[i]) r = d2 u = d3/d2 v = (d1-d2)/d3 if r < min_sep or r >= max_sep: continue if u < min_u or u >= max_u: continue if v < min_v or v >= max_v: continue if not ccw: v = -v kr = int(np.floor( (np.log(r)-log_min_sep) / bin_size )) ku = int(np.floor( (u-min_u) / ubin_size )) if v > 0: kv = int(np.floor( (v-min_v) / vbin_size )) + nvbins else: kv = int(np.floor( (v-(-max_v)) / vbin_size )) assert 0 <= kr < nbins assert 0 <= ku < nubins assert 0 <= kv < 2*nvbins true_ntri[kr,ku,kv] += 1 nz = np.where((ddd.ntri > 0) | (true_ntri > 0)) print('non-zero at:') print(nz) print('d1 = ',ddd.meand1[nz]) print('d2 = ',ddd.meand2[nz]) print('d3 = ',ddd.meand3[nz]) print('rnom = ',ddd.rnom[nz]) print('u = ',ddd.u[nz]) print('v = ',ddd.v[nz]) print('ddd.ntri = ',ddd.ntri[nz]) print('true_ntri = ',true_ntri[nz]) print('diff = ',ddd.ntri[nz] - true_ntri[nz]) np.testing.assert_array_equal(ddd.ntri, true_ntri) # Check that running via the corr3 script works correctly. file_name = os.path.join('data','nnn_direct_data.dat') with open(file_name, 'w') as fid: for i in range(ngal): fid.write(('%.20f %.20f\n')%(x[i],y[i])) L = 10*s nrand = ngal rx = (rng.random_sample(nrand)-0.5) * L ry = (rng.random_sample(nrand)-0.5) * L rcat = treecorr.Catalog(x=rx, y=ry) rand_file_name = os.path.join('data','nnn_direct_rand.dat') with open(rand_file_name, 'w') as fid: for i in range(nrand): fid.write(('%.20f %.20f\n')%(rx[i],ry[i])) rrr = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=0, rng=rng) rrr.process(rcat) zeta, varzeta = ddd.calculateZeta(rrr) # Semi-gratuitous check of BinnedCorr3.rng access. assert rrr.rng is rng assert ddd.rng is not rng # First do this via the corr3 function. config = treecorr.config.read_config('configs/nnn_direct.yaml') logger = treecorr.config.setup_logger(0) treecorr.corr3(config, logger) corr3_output = np.genfromtxt(os.path.join('output','nnn_direct.out'), names=True, skip_header=1) print('corr3_output = ',corr3_output) print('corr3_output.dtype = ',corr3_output.dtype) print('rnom = ',ddd.rnom.flatten()) print(' ',corr3_output['r_nom']) np.testing.assert_allclose(corr3_output['r_nom'], ddd.rnom.flatten(), rtol=1.e-3) print('unom = ',ddd.u.flatten()) print(' ',corr3_output['u_nom']) np.testing.assert_allclose(corr3_output['u_nom'], ddd.u.flatten(), rtol=1.e-3) print('vnom = ',ddd.v.flatten()) print(' ',corr3_output['v_nom']) np.testing.assert_allclose(corr3_output['v_nom'], ddd.v.flatten(), rtol=1.e-3) print('DDD = ',ddd.ntri.flatten()) print(' ',corr3_output['DDD']) np.testing.assert_allclose(corr3_output['DDD'], ddd.ntri.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['ntri'], ddd.ntri.flatten(), rtol=1.e-3) print('RRR = ',rrr.ntri.flatten()) print(' ',corr3_output['RRR']) np.testing.assert_allclose(corr3_output['RRR'], rrr.ntri.flatten(), rtol=1.e-3) print('zeta = ',zeta.flatten()) print('from corr3 output = ',corr3_output['zeta']) print('diff = ',corr3_output['zeta']-zeta.flatten()) diff_index = np.where(np.abs(corr3_output['zeta']-zeta.flatten()) > 1.e-5)[0] print('different at ',diff_index) print('zeta[diffs] = ',zeta.flatten()[diff_index]) print('corr3.zeta[diffs] = ',corr3_output['zeta'][diff_index]) print('diff[diffs] = ',zeta.flatten()[diff_index] - corr3_output['zeta'][diff_index]) np.testing.assert_allclose(corr3_output['zeta'], zeta.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['sigma_zeta'], np.sqrt(varzeta).flatten(), rtol=1.e-3) # Now calling out to the external corr3 executable. # This is the only time we test the corr3 executable. All other tests use corr3 function. import subprocess corr3_exe = get_script_name('corr3') p = subprocess.Popen( [corr3_exe,"configs/nnn_direct.yaml","verbose=0"] ) p.communicate() corr3_output = np.genfromtxt(os.path.join('output','nnn_direct.out'), names=True, skip_header=1) np.testing.assert_allclose(corr3_output['zeta'], zeta.flatten(), rtol=1.e-3) # Also check compensated drr = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=0) rdd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=0) drr.process(cat, rcat) rdd.process(rcat, cat) zeta, varzeta = ddd.calculateZeta(rrr,drr,rdd) config['nnn_statistic'] = 'compensated' treecorr.corr3(config, logger) corr3_output = np.genfromtxt(os.path.join('output','nnn_direct.out'), names=True, skip_header=1) np.testing.assert_allclose(corr3_output['r_nom'], ddd.rnom.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['u_nom'], ddd.u.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['v_nom'], ddd.v.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['DDD'], ddd.ntri.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['ntri'], ddd.ntri.flatten(), rtol=1.e-3) print('rrr.tot = ',rrr.tot) print('ddd.tot = ',ddd.tot) print('drr.tot = ',drr.tot) print('rdd.tot = ',rdd.tot) rrrf = ddd.tot / rrr.tot drrf = ddd.tot / drr.tot rddf = ddd.tot / rdd.tot np.testing.assert_allclose(corr3_output['RRR'], rrr.ntri.flatten() * rrrf, rtol=1.e-3) np.testing.assert_allclose(corr3_output['DRR'], drr.ntri.flatten() * drrf, rtol=1.e-3) np.testing.assert_allclose(corr3_output['RDD'], rdd.ntri.flatten() * rddf, rtol=1.e-3) np.testing.assert_allclose(corr3_output['zeta'], zeta.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['sigma_zeta'], np.sqrt(varzeta).flatten(), rtol=1.e-3) # Repeat with binslop = 0, since the code flow is different from bture=True ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0, verbose=1) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) np.testing.assert_array_equal(ddd.ntri, true_ntri) # And again with no top-level recursion ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0, verbose=1, max_top=0) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) np.testing.assert_array_equal(ddd.ntri, true_ntri) # And compare to the cross correlation # Here, we get 6x as much, since each triangle is discovered 6 times. ddd.clear() ddd.process(cat,cat,cat, num_threads=2) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) np.testing.assert_array_equal(ddd.ntri, 6*true_ntri) # With the real CrossCorrelation class, each of the 6 correlations should end up being # the same thing (without the extra factor of 6). dddc = treecorr.NNNCrossCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0, verbose=1, max_top=0) dddc.process(cat,cat,cat, num_threads=2) # All 6 correlations are equal. for d in [dddc.n1n2n3, dddc.n1n3n2, dddc.n2n1n3, dddc.n2n3n1, dddc.n3n1n2, dddc.n3n2n1]: #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) np.testing.assert_array_equal(d.ntri, true_ntri) # Or with 2 argument version, finds each triangle 3 times. ddd.process(cat,cat, num_threads=2) np.testing.assert_array_equal(ddd.ntri, 3*true_ntri) # Again, NNNCrossCorrelation gets it right in each permutation. dddc.process(cat,cat, num_threads=2) for d in [dddc.n1n2n3, dddc.n1n3n2, dddc.n2n1n3, dddc.n2n3n1, dddc.n3n1n2, dddc.n3n2n1]: np.testing.assert_array_equal(d.ntri, true_ntri) # Invalid to omit file_name config['verbose'] = 0 del config['file_name'] with assert_raises(TypeError): treecorr.corr3(config) config['file_name'] = 'data/nnn_direct_data.dat' # OK to not have rand_file_name # Also, check the automatic setting of output_dots=True when verbose=2. # It's not too annoying if we also set max_top = 0. del config['rand_file_name'] config['verbose'] = 2 config['max_top'] = 0 treecorr.corr3(config) data = np.genfromtxt(config['nnn_file_name'], names=True, skip_header=1) np.testing.assert_array_equal(data['ntri'], true_ntri.flatten()) assert 'zeta' not in data.dtype.names # Check a few basic operations with a NNNCorrelation object. do_pickle(ddd) ddd2 = ddd.copy() ddd2 += ddd np.testing.assert_allclose(ddd2.ntri, 2*ddd.ntri) np.testing.assert_allclose(ddd2.weight, 2*ddd.weight) np.testing.assert_allclose(ddd2.meand1, 2*ddd.meand1) np.testing.assert_allclose(ddd2.meand2, 2*ddd.meand2) np.testing.assert_allclose(ddd2.meand3, 2*ddd.meand3) np.testing.assert_allclose(ddd2.meanlogd1, 2*ddd.meanlogd1) np.testing.assert_allclose(ddd2.meanlogd2, 2*ddd.meanlogd2) np.testing.assert_allclose(ddd2.meanlogd3, 2*ddd.meanlogd3) np.testing.assert_allclose(ddd2.meanu, 2*ddd.meanu) np.testing.assert_allclose(ddd2.meanv, 2*ddd.meanv) ddd2.clear() ddd2 += ddd np.testing.assert_allclose(ddd2.ntri, ddd.ntri) np.testing.assert_allclose(ddd2.weight, ddd.weight) np.testing.assert_allclose(ddd2.meand1, ddd.meand1) np.testing.assert_allclose(ddd2.meand2, ddd.meand2) np.testing.assert_allclose(ddd2.meand3, ddd.meand3) np.testing.assert_allclose(ddd2.meanlogd1, ddd.meanlogd1) np.testing.assert_allclose(ddd2.meanlogd2, ddd.meanlogd2) np.testing.assert_allclose(ddd2.meanlogd3, ddd.meanlogd3) np.testing.assert_allclose(ddd2.meanu, ddd.meanu) np.testing.assert_allclose(ddd2.meanv, ddd.meanv) ascii_name = 'output/nnn_ascii.txt' ddd.write(ascii_name, precision=16) ddd3 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) ddd3.read(ascii_name) np.testing.assert_allclose(ddd3.ntri, ddd.ntri) np.testing.assert_allclose(ddd3.weight, ddd.weight) np.testing.assert_allclose(ddd3.meand1, ddd.meand1) np.testing.assert_allclose(ddd3.meand2, ddd.meand2) np.testing.assert_allclose(ddd3.meand3, ddd.meand3) np.testing.assert_allclose(ddd3.meanlogd1, ddd.meanlogd1) np.testing.assert_allclose(ddd3.meanlogd2, ddd.meanlogd2) np.testing.assert_allclose(ddd3.meanlogd3, ddd.meanlogd3) np.testing.assert_allclose(ddd3.meanu, ddd.meanu) np.testing.assert_allclose(ddd3.meanv, ddd.meanv) with assert_raises(TypeError): ddd2 += config ddd4 = treecorr.NNNCorrelation(min_sep=min_sep/2, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd4 ddd5 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep*2, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd5 ddd6 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins*2, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd6 ddd7 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u-0.1, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd7 ddd8 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u+0.1, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd8 ddd9 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins*2, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd9 ddd10 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v-0.1, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd10 ddd11 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v+0.1, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd11 ddd12 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins*2) with assert_raises(ValueError): ddd2 += ddd12 # Check that adding results with different coords or metric emits a warning. cat2 = treecorr.Catalog(x=x, y=y, z=x) with CaptureLog() as cl: ddd13 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, logger=cl.logger) ddd13.process_auto(cat2) ddd13 += ddd2 print(cl.output) assert "Detected a change in catalog coordinate systems" in cl.output with CaptureLog() as cl: ddd14 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, logger=cl.logger) ddd14.process_auto(cat2, metric='Arc') ddd14 += ddd2 assert "Detected a change in metric" in cl.output fits_name = 'output/nnn_fits.fits' ddd.write(fits_name) ddd15 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) ddd15.read(fits_name) np.testing.assert_allclose(ddd15.ntri, ddd.ntri) np.testing.assert_allclose(ddd15.weight, ddd.weight)
np.testing.assert_allclose(ddd15.meand1, ddd.meand1)
numpy.testing.assert_allclose
import datetime as dt import pytest from distutils.version import LooseVersion import numpy as np try: import pandas as pd from pandas._testing import ( makeCustomDataframe, makeMixedDataFrame, makeTimeDataFrame ) except ImportError: pytestmark = pytest.mark.skip('pandas not available') from bokeh.models.widgets.tables import ( NumberFormatter, IntEditor, NumberEditor, StringFormatter, SelectEditor, DateFormatter, DataCube, CellEditor, SumAggregator, AvgAggregator, MinAggregator ) from panel.depends import bind from panel.widgets import Button, DataFrame, Tabulator, TextInput pd_old = pytest.mark.skipif(LooseVersion(pd.__version__) < '1.3', reason="Requires latest pandas") def test_dataframe_widget(dataframe, document, comm): table = DataFrame(dataframe) model = table.get_root(document, comm) index_col, int_col, float_col, str_col = model.columns assert index_col.title == 'index' assert isinstance(index_col.formatter, NumberFormatter) assert isinstance(index_col.editor, CellEditor) assert int_col.title == 'int' assert isinstance(int_col.formatter, NumberFormatter) assert isinstance(int_col.editor, IntEditor) assert float_col.title == 'float' assert isinstance(float_col.formatter, NumberFormatter) assert isinstance(float_col.editor, NumberEditor) assert str_col.title == 'str' assert isinstance(float_col.formatter, StringFormatter) assert isinstance(float_col.editor, NumberEditor) def test_dataframe_widget_no_show_index(dataframe, document, comm): table = DataFrame(dataframe, show_index=False) model = table.get_root(document, comm) assert len(model.columns) == 3 int_col, float_col, str_col = model.columns assert int_col.title == 'int' assert float_col.title == 'float' assert str_col.title == 'str' table.show_index = True assert len(model.columns) == 4 index_col, int_col, float_col, str_col = model.columns assert index_col.title == 'index' assert int_col.title == 'int' assert float_col.title == 'float' assert str_col.title == 'str' def test_dataframe_widget_datetimes(document, comm): table = DataFrame(makeTimeDataFrame()) model = table.get_root(document, comm) dt_col, _, _, _, _ = model.columns assert dt_col.title == 'index' assert isinstance(dt_col.formatter, DateFormatter) assert isinstance(dt_col.editor, CellEditor) def test_dataframe_editors(dataframe, document, comm): editor = SelectEditor(options=['A', 'B', 'C']) table = DataFrame(dataframe, editors={'str': editor}) model = table.get_root(document, comm) model_editor = model.columns[-1].editor assert isinstance(model_editor, SelectEditor) is not editor assert isinstance(model_editor, SelectEditor) assert model_editor.options == ['A', 'B', 'C'] def test_dataframe_formatter(dataframe, document, comm): formatter = NumberFormatter(format='0.0000') table = DataFrame(dataframe, formatters={'float': formatter}) model = table.get_root(document, comm) model_formatter = model.columns[2].formatter assert model_formatter is not formatter assert isinstance(model_formatter, NumberFormatter) assert model_formatter.format == formatter.format def test_dataframe_triggers(dataframe): events = [] def increment(event, events=events): events.append(event) table = DataFrame(dataframe) table.param.watch(increment, 'value') table._process_events({'data': {'str': ['C', 'B', 'A']}}) assert len(events) == 1 def test_dataframe_does_not_trigger(dataframe): events = [] def increment(event, events=events): events.append(event) table = DataFrame(dataframe) table.param.watch(increment, 'value') table._process_events({'data': {'str': ['A', 'B', 'C']}}) assert len(events) == 0 def test_dataframe_selected_dataframe(dataframe): table = DataFrame(dataframe, selection=[0, 2]) pd.testing.assert_frame_equal(table.selected_dataframe, dataframe.iloc[[0, 2]]) def test_dataframe_process_selection_event(dataframe): table = DataFrame(dataframe, selection=[0, 2]) table._process_events({'indices': [0, 2]}) pd.testing.assert_frame_equal(table.selected_dataframe, dataframe.iloc[[0, 2]]) def test_dataframe_process_data_event(dataframe): df = dataframe.copy() table = DataFrame(dataframe, selection=[0, 2]) table._process_events({'data': {'int': [5, 7, 9]}}) df['int'] = [5, 7, 9] pd.testing.assert_frame_equal(table.value, df) table._process_events({'data': {'int': {1: 3, 2: 4, 0: 1}}}) df['int'] = [1, 3, 4] pd.testing.assert_frame_equal(table.value, df) def test_dataframe_duplicate_column_name(document, comm): df = pd.DataFrame([[1, 1], [2, 2]], columns=['col', 'col']) with pytest.raises(ValueError): table = DataFrame(df) df = pd.DataFrame([[1, 1], [2, 2]], columns=['a', 'b']) table = DataFrame(df) with pytest.raises(ValueError): table.value = table.value.rename(columns={'a': 'b'}) df = pd.DataFrame([[1, 1], [2, 2]], columns=['a', 'b']) table = DataFrame(df) table.get_root(document, comm) with pytest.raises(ValueError): table.value = table.value.rename(columns={'a': 'b'}) def test_hierarchical_index(document, comm): df = pd.DataFrame([ ('Germany', 2020, 9, 2.4, 'A'), ('Germany', 2021, 3, 7.3, 'C'), ('Germany', 2022, 6, 3.1, 'B'), ('UK', 2020, 5, 8.0, 'A'), ('UK', 2021, 1, 3.9, 'B'), ('UK', 2022, 9, 2.2, 'A') ], columns=['Country', 'Year', 'Int', 'Float', 'Str']).set_index(['Country', 'Year']) table = DataFrame(value=df, hierarchical=True, aggregators={'Year': {'Int': 'sum', 'Float': 'mean'}}) model = table.get_root(document, comm) assert isinstance(model, DataCube) assert len(model.grouping) == 1 grouping = model.grouping[0] assert len(grouping.aggregators) == 2 agg1, agg2 = grouping.aggregators assert agg1.field_ == 'Int' assert isinstance(agg1, SumAggregator) assert agg2.field_ == 'Float' assert isinstance(agg2, AvgAggregator) table.aggregators = {'Year': 'min'} agg1, agg2 = grouping.aggregators print(grouping) assert agg1.field_ == 'Int' assert isinstance(agg1, MinAggregator) assert agg2.field_ == 'Float' assert isinstance(agg2, MinAggregator) def test_none_table(document, comm): table = DataFrame(value=None) assert table.indexes == [] model = table.get_root(document, comm) assert model.source.data == {} def test_tabulator_selected_dataframe(): df = makeMixedDataFrame() table = Tabulator(df, selection=[0, 2]) pd.testing.assert_frame_equal(table.selected_dataframe, df.iloc[[0, 2]]) def test_tabulator_selected_and_filtered_dataframe(document, comm): df = makeMixedDataFrame() table = Tabulator(df) pd.testing.assert_frame_equal(table.selected_dataframe, df) table.add_filter('foo3', 'C') pd.testing.assert_frame_equal(table.selected_dataframe, df[df["C"] == "foo3"]) def test_tabulator_config_defaults(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) assert model.configuration['columns'] == [ {'field': 'index'}, {'field': 'A'}, {'field': 'B'}, {'field': 'C'}, {'field': 'D'} ] assert model.configuration['selectable'] == True def test_tabulator_config_formatter_string(document, comm): df = makeMixedDataFrame() table = Tabulator(df, formatters={'B': 'tickCross'}) model = table.get_root(document, comm) assert model.configuration['columns'][2] == {'field': 'B', 'formatter': 'tickCross'} def test_tabulator_config_formatter_dict(document, comm): df = makeMixedDataFrame() table = Tabulator(df, formatters={'B': {'type': 'tickCross', 'tristate': True}}) model = table.get_root(document, comm) assert model.configuration['columns'][2] == {'field': 'B', 'formatter': 'tickCross', 'formatterParams': {'tristate': True}} def test_tabulator_config_editor_string(document, comm): df = makeMixedDataFrame() table = Tabulator(df, editors={'B': 'select'}) model = table.get_root(document, comm) assert model.configuration['columns'][2] == {'field': 'B', 'editor': 'select'} def test_tabulator_config_editor_dict(document, comm): df = makeMixedDataFrame() table = Tabulator(df, editors={'B': {'type': 'select', 'values': True}}) model = table.get_root(document, comm) assert model.configuration['columns'][2] == {'field': 'B', 'editor': 'select', 'editorParams': {'values': True}} def test_tabulator_groups(document, comm): df = makeMixedDataFrame() table = Tabulator(df, groups={'Number': ['A', 'B'], 'Other': ['C', 'D']}) model = table.get_root(document, comm) assert model.configuration['columns'] == [ {'field': 'index'}, {'title': 'Number', 'columns': [ {'field': 'A'}, {'field': 'B'} ]}, {'title': 'Other', 'columns': [ {'field': 'C'}, {'field': 'D'} ]} ] def test_tabulator_frozen_cols(document, comm): df = makeMixedDataFrame() table = Tabulator(df, frozen_columns=['index']) model = table.get_root(document, comm) assert model.configuration['columns'] == [ {'field': 'index', 'frozen': True}, {'field': 'A'}, {'field': 'B'}, {'field': 'C'}, {'field': 'D'} ] def test_tabulator_frozen_rows(document, comm): df = makeMixedDataFrame() table = Tabulator(df, frozen_rows=[0, -1]) model = table.get_root(document, comm) assert model.frozen_rows == [0, 4] table.frozen_rows = [1, -2] assert model.frozen_rows == [1, 3] def test_tabulator_selectable_rows(document, comm): df = makeMixedDataFrame() table = Tabulator(df, selectable_rows=lambda df: list(df[df.A>2].index.values)) model = table.get_root(document, comm) assert model.selectable_rows == [3, 4] def test_tabulator_pagination(document, comm): df = makeMixedDataFrame() table = Tabulator(df, pagination='remote', page_size=2) model = table.get_root(document, comm) assert model.max_page == 3 assert model.page_size == 2 assert model.page == 1 expected = { 'index': np.array([0, 1]), 'A': np.array([0, 1]), 'B': np.array([0, 1]), 'C': np.array(['foo1', 'foo2']), 'D': np.array(['2009-01-01T00:00:00.000000000', '2009-01-02T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) table.page = 2 expected = { 'index': np.array([2, 3]), 'A': np.array([2, 3]), 'B': np.array([0., 1.]), 'C': np.array(['foo3', 'foo4']), 'D': np.array(['2009-01-05T00:00:00.000000000', '2009-01-06T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) table.page_size = 3 table.page = 1 assert model.max_page == 2 expected = { 'index': np.array([0, 1, 2]), 'A': np.array([0, 1, 2]), 'B': np.array([0, 1, 0]), 'C': np.array(['foo1', 'foo2', 'foo3']), 'D': np.array(['2009-01-01T00:00:00.000000000', '2009-01-02T00:00:00.000000000', '2009-01-05T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_pagination_selection(document, comm): df = makeMixedDataFrame() table = Tabulator(df, pagination='remote', page_size=2) model = table.get_root(document, comm) table.selection = [2, 3] assert model.source.selected.indices == [] table.page = 2 assert model.source.selected.indices == [0, 1] def test_tabulator_pagination_selectable_rows(document, comm): df = makeMixedDataFrame() table = Tabulator( df, pagination='remote', page_size=3, selectable_rows=lambda df: list(df.index.values[::2]) ) model = table.get_root(document, comm) print(table._processed) assert model.selectable_rows == [0, 2] table.page = 2 assert model.selectable_rows == [3] @pd_old def test_tabulator_styling(document, comm): df = makeMixedDataFrame() table = Tabulator(df) def high_red(value): return 'color: red' if value > 2 else 'color: black' table.style.applymap(high_red, subset=['A']) model = table.get_root(document, comm) assert model.styles == { 0: {1: [('color', 'black')]}, 1: {1: [('color', 'black')]}, 2: {1: [('color', 'black')]}, 3: {1: [('color', 'red')]}, 4: {1: [('color', 'red')]} } def test_tabulator_empty_table(document, comm): value_df = makeMixedDataFrame() empty_df = pd.DataFrame([], columns=value_df.columns) table = Tabulator(empty_df) table.get_root(document, comm) assert table.value.shape == empty_df.shape table.stream(value_df, follow=True) assert table.value.shape == value_df.shape def test_tabulator_stream_series(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) stream_value = pd.Series({'A': 5, 'B': 1, 'C': 'foo6', 'D': dt.datetime(2009, 1, 8)}) table.stream(stream_value) assert len(table.value) == 6 expected = { 'index': np.array([0, 1, 2, 3, 4, 5]), 'A': np.array([0, 1, 2, 3, 4, 5]), 'B': np.array([0, 1, 0, 1, 0, 1]), 'C': np.array(['foo1', 'foo2', 'foo3', 'foo4', 'foo5', 'foo6']), 'D': np.array(['2009-01-01T00:00:00.000000000', '2009-01-02T00:00:00.000000000', '2009-01-05T00:00:00.000000000', '2009-01-06T00:00:00.000000000', '2009-01-07T00:00:00.000000000', '2009-01-08T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_stream_series_rollover(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) stream_value = pd.Series({'A': 5, 'B': 1, 'C': 'foo6', 'D': dt.datetime(2009, 1, 8)}) table.stream(stream_value, rollover=5) assert len(table.value) == 5 expected = { 'index': np.array([1, 2, 3, 4, 5]), 'A': np.array([1, 2, 3, 4, 5]), 'B': np.array([1, 0, 1, 0, 1]), 'C': np.array(['foo2', 'foo3', 'foo4', 'foo5', 'foo6']), 'D': np.array(['2009-01-02T00:00:00.000000000', '2009-01-05T00:00:00.000000000', '2009-01-06T00:00:00.000000000', '2009-01-07T00:00:00.000000000', '2009-01-08T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_stream_df_rollover(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) stream_value = pd.Series({'A': 5, 'B': 1, 'C': 'foo6', 'D': dt.datetime(2009, 1, 8)}).to_frame().T table.stream(stream_value, rollover=5) assert len(table.value) == 5 expected = { 'index': np.array([1, 2, 3, 4, 5]), 'A': np.array([1, 2, 3, 4, 5]), 'B': np.array([1, 0, 1, 0, 1]), 'C': np.array(['foo2', 'foo3', 'foo4', 'foo5', 'foo6']), 'D': np.array(['2009-01-02T00:00:00.000000000', '2009-01-05T00:00:00.000000000', '2009-01-06T00:00:00.000000000', '2009-01-07T00:00:00.000000000', '2009-01-08T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_stream_dict_rollover(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) stream_value = {'A': [5], 'B': [1], 'C': ['foo6'], 'D': [dt.datetime(2009, 1, 8)]} table.stream(stream_value, rollover=5) assert len(table.value) == 5 expected = { 'index': np.array([1, 2, 3, 4, 5]), 'A': np.array([1, 2, 3, 4, 5]), 'B': np.array([1, 0, 1, 0, 1]), 'C': np.array(['foo2', 'foo3', 'foo4', 'foo5', 'foo6']), 'D': np.array(['2009-01-02T00:00:00.000000000', '2009-01-05T00:00:00.000000000', '2009-01-06T00:00:00.000000000', '2009-01-07T00:00:00.000000000', '2009-01-08T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_patch_scalars(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) table.patch({'A': [(0, 2), (4, 1)], 'C': [(0, 'foo0')]}) expected = { 'index': np.array([0, 1, 2, 3, 4]), 'A': np.array([2, 1, 2, 3, 1]), 'B': np.array([0, 1, 0, 1, 0]), 'C': np.array(['foo0', 'foo2', 'foo3', 'foo4', 'foo5']), 'D': np.array(['2009-01-01T00:00:00.000000000', '2009-01-02T00:00:00.000000000', '2009-01-05T00:00:00.000000000', '2009-01-06T00:00:00.000000000', '2009-01-07T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_patch_ranges(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) table.patch({ 'A': [(slice(0, 5), [5, 4, 3, 2, 1])], 'C': [(slice(0, 3), ['foo3', 'foo2', 'foo1'])] }) expected = { 'index': np.array([0, 1, 2, 3, 4]), 'A': np.array([5, 4, 3, 2, 1]), 'B': np.array([0, 1, 0, 1, 0]), 'C': np.array(['foo3', 'foo2', 'foo1', 'foo4', 'foo5']), 'D': np.array(['2009-01-01T00:00:00.000000000', '2009-01-02T00:00:00.000000000', '2009-01-05T00:00:00.000000000', '2009-01-06T00:00:00.000000000', '2009-01-07T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_stream_series_paginated_not_follow(document, comm): df = makeMixedDataFrame() table = Tabulator(df, pagination='remote', page_size=2) model = table.get_root(document, comm) stream_value = pd.Series({'A': 5, 'B': 1, 'C': 'foo6', 'D': dt.datetime(2009, 1, 8)}) table.stream(stream_value, follow=False) assert table.page == 1 assert len(table.value) == 6 expected = { 'index': np.array([0, 1]), 'A': np.array([0, 1]), 'B': np.array([0, 1]), 'C': np.array(['foo1', 'foo2']), 'D': np.array(['2009-01-01T00:00:00.000000000', '2009-01-02T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_stream_series_paginated_follow(document, comm): df = makeMixedDataFrame() table = Tabulator(df, pagination='remote', page_size=2) model = table.get_root(document, comm) stream_value = pd.Series({'A': 5, 'B': 1, 'C': 'foo6', 'D': dt.datetime(2009, 1, 8)}) table.stream(stream_value, follow=True) assert table.page == 3 assert len(table.value) == 6 expected = { 'index': np.array([4, 5]), 'A': np.array([4, 5]), 'B': np.array([0, 1]), 'C': np.array(['foo5', 'foo6']), 'D': np.array(['2009-01-07T00:00:00.000000000', '2009-01-08T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_paginated_sorted_selection(document, comm): df = makeMixedDataFrame() table = Tabulator(df, pagination='remote', page_size=2) table.sorters = [{'field': 'A', 'dir': 'dec'}] model = table.get_root(document, comm) table.selection = [3] assert model.source.selected.indices == [1] table.selection = [0, 1] assert model.source.selected.indices == [] table.selection = [3, 4] assert model.source.selected.indices == [1, 0] table.selection = [] assert model.source.selected.indices == [] table._process_events({'indices': [0, 1]}) assert table.selection == [4, 3] table._process_events({'indices': [1]}) assert table.selection == [3] table.sorters = [{'field': 'A', 'dir': 'asc'}] table._process_events({'indices': [1]}) assert table.selection == [1] def test_tabulator_stream_dataframe(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) stream_value = pd.DataFrame({ 'A': [5, 6], 'B': [1, 0], 'C': ['foo6', 'foo7'], 'D': [dt.datetime(2009, 1, 8), dt.datetime(2009, 1, 9)] }) table.stream(stream_value) assert len(table.value) == 7 expected = { 'index': np.array([0, 1, 2, 3, 4, 5, 6]), 'A': np.array([0, 1, 2, 3, 4, 5, 6]), 'B': np.array([0, 1, 0, 1, 0, 1, 0]), 'C': np.array(['foo1', 'foo2', 'foo3', 'foo4', 'foo5', 'foo6', 'foo7']), 'D': np.array(['2009-01-01T00:00:00.000000000', '2009-01-02T00:00:00.000000000', '2009-01-05T00:00:00.000000000', '2009-01-06T00:00:00.000000000', '2009-01-07T00:00:00.000000000', '2009-01-08T00:00:00.000000000', '2009-01-09T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_constant_scalar_filter(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) table.add_filter('foo3', 'C') expected = { 'index': np.array([2]), 'A': np.array([2]), 'B': np.array([0]), 'C': np.array(['foo3']), 'D': np.array(['2009-01-05T00:00:00.000000000'], dtype='datetime64[ns]') } for col, values in model.source.data.items(): np.testing.assert_array_equal(values, expected[col]) def test_tabulator_constant_list_filter(document, comm): df = makeMixedDataFrame() table = Tabulator(df) model = table.get_root(document, comm) table.add_filter(['foo3', 'foo5'], 'C') expected = { 'index': np.array([2, 4]), 'A': np.array([2, 4]), 'B': np.array([0, 0]), 'C':
np.array(['foo3', 'foo5'])
numpy.array
# This first demo shows how a robot swarm can autonomously choose a loop shape and form the # shape in a distributed manner, without central control. Two consensus processes, decision # making and role assignment, are performed consecutively with a fixed but arbitrary network. # input arguments: # '-n': number of robots # '--manual': manual mode, press ENTER to proceed between simulations # Description: # Starting dispersed in random positions, the swarm aggregates together arbitrarily to form # a connected network. Consensus decision making is performed with this network fixed, making # a collective decision of which loop the swarm should form. Then with the same network, role # assignment is performed, assigning the target positions to each robot. After these two # consensus processes are done, the swarm disperses and aggregates again, this time aiming to # form a loop with robots at their designated positions. The climbing method is used to permutate # the robots on the loop. When the robots get their target positions, they dyanmically adjust # the local shape so the loop deforms to the target one. The above steps will be ran repeatedly. # the simulations that run consecutively # Simulation 1: aggregate together to form a random network # Simulation 2: consensus decision making of target loop shape # Simulation 3: consensus role assignment for the loop shape # Simulation 4: loop formation with designated role assignment # Simulation 5: loop reshaping to chosen shape # message relay in the role assignment # Note that message transmission is simulated only in the role assignment. Because message # relay is implemented to make this simulation possible, therefore communication between robots # becomes important, and steps of message transmissions are simulated. However the delay caused # by communication is skipped in other simulations. # "seed" robot mechanism # In simulation 1, a new mechanism is added to accelerate the aggregation. Previous, each # robot in the swarm can start a new group with another robot. The result is that, often there # are too many small local groups spread out the space, decrease the chance of a large group # being formed. The new method is asigning certain number of robots to be "seed" robot. Only # seed robot can initialize the forming of a new group, so as to avoid too many local groups. # The percentage of seed robots is a new parameter to study, small percentage results in less # robustness of the aggregation process, large percentage results in slow aggregation process. # When a robot travels almost parallel to the boundaries, sometimes it takes unnecessarily long # time for it to reach a group. To avoid that, every time a robot is bounced away by the wall, # if the leaving direction is too perpendicular, a deviation angle is added to deviation the # robot. # 04/11/2018 # In simulation of aggregating to random network, the robots used to need only one connection # to stay stable in the group. The result is that the final network topology is always tree # branch like. Most robots are only serial connected. This topology is often rated as low # connectivity, and takes longer time for the consensus processes. Although the unintended # advantage is that the robots are more easily caught in the tree network. # Advised by Dr. Lee, it is better that the final network look like the triangle grid network. # In this way the swarm robots will have more evenly distributed coverage over the space. # To implement this: when in a group, if a robot has two or more connections, it moves to the # destination calculated in the old way. If it has only one connection, it will rotate around # counter-clockwise around that neighbor robot, untill it finds another neighbor. Again, there # is an exception that the group itself has only two members. # 05/19/2018 # Change color plan for the shape formation in simulation 1 and 4, use red color for seed robot # regardless of its states. Use black for dominant group robots, and use grey for the rest. # The same to the simulation 1 in demo 2. # As I later find out, it's not the color that make seed robot hard to distinguish, it's because # the size of the dot is small. from __future__ import print_function import pygame import sys, os, getopt, math, random import numpy as np import pickle # for storing variables swarm_size = 30 # default size of the swarm manual_mode = False # manually press enter key to proceed between simulations # read command line options try: opts, args = getopt.getopt(sys.argv[1:], 'n:', ['manual']) except getopt.GetoptError as err: print(str(err)) sys.exit() for opt,arg in opts: if opt == '-n': swarm_size = int(arg) elif opt == '--manual': manual_mode = True # conversion between physical and display world sizes # To best display any robot swarm in its appropriate window size, and have enough physical # space for the robots to move around, it has been made that the ratio from unit world size # to unit display size is fixed. The desired physical space between robots when they do shape # formation is also fixed. So a small swarm will have small physical world, and a linearly # small display window; vice versa for a large swarm. # If the size of the swarm is proportional to the side length of the world, the area of the # world will grow too fast. If the swarm size is proportional to the area of the world, when # the size of the swarm grow large, it won't be able to be fitted in if performing a line or # circle formation. A compromise is to make swarm size proportional to the side length to the # power exponent between 1 and 2. power_exponent = 1.3 # between 1.0 and 2.0 # the larger the parameter, the slower the windows grows with swarm size; vice versa # for converting from physical world to display world pixels_per_length = 50 # this is to be fixed # calculate world_side_coef from a desired screen size for 30 robots def cal_world_side_coef(): desired_screen_size = 400 # desired screen size for 30 robots desired_world_size = float(desired_screen_size) / pixels_per_length return desired_world_size / pow(30, 1/power_exponent) world_side_coef = cal_world_side_coef() world_side_length = world_side_coef * pow(swarm_size, 1/power_exponent) world_size = (world_side_length, world_side_length) # square physical world # screen size calculated from world size screen_side_length = int(pixels_per_length * world_side_length) screen_size = (screen_side_length, screen_side_length) # square display world # formation configuration comm_range = 0.65 # communication range in the world desired_space_ratio = 0.8 # ratio of the desired space to the communication range # should be larger than 1/1.414=0.71, to avoid connections crossing each other desired_space = comm_range * desired_space_ratio # deviate robot heading, so as to avoid robot travlling perpendicular to the walls perp_thres = math.pi/18 # threshold, range from the perpendicular line devia_angle = math.pi/9 # deviate these much angle from perpendicualr line # consensus configuration loop_folder = "loop-data2" # folder to store the loop shapes shape_catalog = ["airplane", "circle", "cross", "goblet", "hand", "K", "lamp", "square", "star", "triangle", "wrench"] shape_quantity = len(shape_catalog) # the number of decisions shape_decision = -1 # the index of chosen decision, in range(shape_quantity) # also the index in shape_catalog assignment_scheme = np.zeros(swarm_size) # variable to force shape to different choices, for video recording force_shape_set = range(shape_quantity) # robot properties robot_poses = np.random.rand(swarm_size, 2) * world_side_length # initialize the robot poses dist_table = np.zeros((swarm_size, swarm_size)) # distances between robots conn_table = np.zeros((swarm_size, swarm_size)) # connections between robots # 0 for disconnected, 1 for connected conn_lists = [[] for i in range(swarm_size)] # lists of robots connected # function for all simulations, update the distances and connections between the robots def dist_conn_update(): global dist_table global conn_table global conn_lists conn_lists = [[] for i in range(swarm_size)] # empty the lists for i in range(swarm_size): for j in range(i+1, swarm_size): dist_temp = np.linalg.norm(robot_poses[i] - robot_poses[j]) dist_table[i,j] = dist_temp dist_table[j,i] = dist_temp if dist_temp > comm_range: conn_table[i,j] = 0 conn_table[j,i] = 0 else: conn_table[i,j] = 1 conn_table[j,i] = 1 conn_lists[i].append(j) conn_lists[j].append(i) dist_conn_update() # update the distances and connections disp_poses = [] # display positions # function for all simulations, update the display positions def disp_poses_update(): global disp_poses poses_temp = robot_poses / world_side_length poses_temp[:,1] = 1.0 - poses_temp[:,1] poses_temp = poses_temp * screen_side_length disp_poses = poses_temp.astype(int) # convert to int and assign to disp_poses disp_poses_update() # deciding the seed robots, used in simulations with moving robots seed_percentage = 0.1 # the percentage of seed robots in the swarm seed_quantity = min(max(int(swarm_size*seed_percentage), 1), swarm_size) # no smaller than 1, and no larger than swarm_size robot_seeds = [False for i in range(swarm_size)] # whether a robot is a seed robot # only seed robot can initialize the forming a new group seed_list_temp = np.arange(swarm_size) np.random.shuffle(seed_list_temp) for i in seed_list_temp[:seed_quantity]: robot_seeds[i] = True # visualization configuration color_white = (255,255,255) color_black = (0,0,0) color_grey = (128,128,128) color_red = (255,0,0) # distinct_color_set = ((230,25,75), (60,180,75), (255,225,25), (0,130,200), (245,130,48), # (145,30,180), (70,240,240), (240,50,230), (210,245,60), (250,190,190), # (0,128,128), (230,190,255), (170,110,40), (255,250,200), (128,0,0), # (170,255,195), (128,128,0), (255,215,180), (0,0,128), (128,128,128)) distinct_color_set = ((230,25,75), (60,180,75), (255,225,25), (0,130,200), (245,130,48), (145,30,180), (70,240,240), (240,50,230), (210,245,60), (250,190,190), (0,128,128), (230,190,255), (170,110,40), (128,0,0), (170,255,195), (128,128,0), (0,0,128)) color_quantity = 17 # sizes for formation simulations robot_size_formation = 5 # robot size in formation simulations robot_width_empty = 2 conn_width_formation = 2 # connection line width in formation simulations # sizes for consensus simulations robot_size_consensus = 7 # robot size in consensus simulatiosn conn_width_thin_consensus = 2 # thin connection line in consensus simulations conn_width_thick_consensus = 4 # thick connection line in consensus simulations robot_ring_size = 9 # extra ring on robot in consensus simulations # the sizes for formation and consensus simulations are set to same for visual consistency # set up the simulation window pygame.init() font = pygame.font.SysFont("Cabin", 12) icon = pygame.image.load("icon_geometry_art.jpg") pygame.display.set_icon(icon) screen = pygame.display.set_mode(screen_size) pygame.display.set_caption("Demo 1") # draw the network screen.fill(color_white) for i in range(swarm_size): pygame.draw.circle(screen, color_black, disp_poses[i], robot_size_formation, robot_width_empty) # pygame.draw.circle(screen, color_black, disp_poses[i], # int(comm_range*pixels_per_length), 1) pygame.display.update() # pause to check the network before the simulations, or for screen recording raw_input("<Press Enter to continue>") # function for simulation 1 and 4, group robots by their group ids, and find the largest group def S14_robot_grouping(robot_list, robot_group_ids, groups): # the input list 'robot_list' should not be empty groups_temp = {} # key is group id, value is list of robots for i in robot_list: group_id_temp = robot_group_ids[i] if group_id_temp not in groups_temp.keys(): groups_temp[group_id_temp] = [i] else: groups_temp[group_id_temp].append(i) group_id_max = -1 # the group with most members # regardless of only one group or multiple groups in groups_temp if len(groups_temp.keys()) > 1: # there is more than one group # find the largest group and disassemble the rest group_id_max = groups_temp.keys()[0] size_max = len(groups[group_id_max][0]) for group_id_temp in groups_temp.keys()[1:]: size_temp = len(groups[group_id_temp][0]) if size_temp > size_max: group_id_max = group_id_temp size_max = size_temp else: # only one group, automatically the largest one group_id_max = groups_temp.keys()[0] return groups_temp, group_id_max # function for simulation 1 and 4, find the closest robot to a host robot # use global variable "dist_table" def S14_closest_robot(robot_host, robot_neighbors): # "robot_host": the robot to measure distance from # "robot_neighbors": a list of robots to be compared with robot_closest = robot_neighbors[0] dist_closest = dist_table[robot_host,robot_closest] for i in robot_neighbors[1:]: dist_temp = dist_table[robot_host,i] if dist_temp < dist_closest: robot_closest = i dist_closest = dist_temp return robot_closest # general function to normalize a numpy vector def normalize(v): norm = np.linalg.norm(v) if norm == 0: return v return v/norm # general function to reset radian angle to [-pi, pi) def reset_radian(radian): while radian >= math.pi: radian = radian - 2*math.pi while radian < -math.pi: radian = radian + 2*math.pi return radian # general function to steer robot away from wall if out of boundary (following physics) # use global variable "world_side_length" def robot_boundary_check(robot_pos, robot_ori): new_ori = robot_ori if robot_pos[0] >= world_side_length: # outside of right boundary if math.cos(new_ori) > 0: new_ori = reset_radian(2*(math.pi/2) - new_ori) # further check if new angle is too much perpendicular if new_ori > 0: if (math.pi - new_ori) < perp_thres: new_ori = new_ori - devia_angle else: if (new_ori + math.pi) < perp_thres: new_ori = new_ori + devia_angle elif robot_pos[0] <= 0: # outside of left boundary if math.cos(new_ori) < 0: new_ori = reset_radian(2*(math.pi/2) - new_ori) if new_ori > 0: if new_ori < perp_thres: new_ori = new_ori + devia_angle else: if (-new_ori) < perp_thres: new_ori = new_ori - devia_angle if robot_pos[1] >= world_side_length: # outside of top boundary if math.sin(new_ori) > 0: new_ori = reset_radian(2*(0) - new_ori) if new_ori > -math.pi/2: if (new_ori + math.pi/2) < perp_thres: new_ori = new_ori + devia_angle else: if (-math.pi/2 - new_ori) < perp_thres: new_ori = new_ori - devia_angle elif robot_pos[1] <= 0: # outside of bottom boundary if math.sin(new_ori) < 0: new_ori = reset_radian(2*(0) - new_ori) if new_ori > math.pi/2: if (new_ori - math.pi/2) < perp_thres: new_ori = new_ori + devia_angle else: if (math.pi/2 - new_ori) < perp_thres: new_ori = new_ori - devia_angle return new_ori # # general function to steer robot away from wall if out of boundary (in random direction) # # use global variable "world_side_length" # def robot_boundary_check(robot_pos, robot_ori): # new_ori = robot_ori # if robot_pos[0] >= world_side_length: # outside of right boundary # if math.cos(new_ori) > 0: # new_ori = reset_radian(math.pi/2 + np.random.uniform(0,math.pi)) # elif robot_pos[0] <= 0: # outside of left boundary # if math.cos(new_ori) < 0: # new_ori = reset_radian(-math.pi/2 + np.random.uniform(0,math.pi)) # if robot_pos[1] >= world_side_length: # outside of top boundary # if math.sin(new_ori) > 0: # new_ori = reset_radian(-math.pi + np.random.uniform(0,math.pi)) # elif robot_pos[1] <= 0: # outside of bottom boundary # if math.sin(new_ori) < 0: # new_ori = reset_radian(0 + np.random.uniform(0,math.pi)) # return new_ori # main loop of the program that run the set of simulations infinitely # this loop does not exit unless error thrown out or manually terminated from terminal while True: ########### simulation 1: aggregate together to form a random network ########### print("##### simulation 1: network aggregation #####") # (switching from using 'status' to using 'state': state here refers to being in one # condition from many options, like whether in a group, whether available for connection. # Status usually refers in a series of predefined stages, which goes one way from start # to the end, like referring the progress of a project. While my state may jump back and # forth. It's controversial of which one to use, but 'state' is what I choose.) # robot perperties # all robots start with state '-1', wandering around and ignoring connections robot_states = np.array([-1 for i in range(swarm_size)]) # '-1' for being single, moving around, not available for connection # '0' for being single, moving around, available for connection # '1' for in a group, adjust position for maintaining connections n1_life_lower = 2 # inclusive n1_life_upper = 6 # exclusive robot_n1_lives = np.random.uniform(n1_life_lower, n1_life_upper, swarm_size) robot_oris = np.random.rand(swarm_size) * 2 * math.pi - math.pi # in range of [-pi, pi) # group properties groups = {} # key is the group id, value is a list, in the list: # [0]: a list of robots in the group # [1]: remaining life time of the group # [2]: whether or not being the dominant group life_incre = 5 # number of seconds added to the life of a group when new robot joins group_id_upper = swarm_size # group id is integer randomly chosen in [0, group_id_upper) robot_group_ids = np.array([-1 for i in range(swarm_size)]) # group id of the robots # '-1' for not in a group # use moving distance in each simulation step, instead of robot velocity # so to make it independent of simulation frequency control step_moving_dist = 0.05 # should be smaller than destination distance error destination_error = 0.08 mov_vec_ratio = 0.5 # ratio used when calculating mov vector # the loop for simulation 1 sim_haulted = False time_last = pygame.time.get_ticks() time_now = time_last frame_period = 50 sim_freq_control = True iter_count = 0 # sys.stdout.write("iteration {}".format(iter_count)) # did nothing in iteration 0 print("swarm robots are aggregating to one network ...") swarm_aggregated = False ending_period = 3.0 # leave this much time to let robots settle after aggregation is dine # # progress bar # prog_bar_len = 30 # prog_pos = 0 # prog_step = 1 # prog_period = 1000 # prog_update_freq = int(prog_period/frame_period) # prog_counter = 0 # sys.stdout.write("[" + prog_pos*"-" + "#" + (prog_bar_len-(prog_pos+1))*"-" + "]\r") # sys.stdout.flush() while True: # close window button to exit the entire program; # space key to pause this simulation for event in pygame.event.get(): if event.type == pygame.QUIT: # close window button is clicked print("program exit in simulation 1") sys.exit() # exit the entire program if event.type == pygame.KEYUP: if event.key == pygame.K_SPACE: sim_haulted = not sim_haulted # reverse the pause flag if sim_haulted: continue # simulation frequency control if sim_freq_control: time_now = pygame.time.get_ticks() if (time_now - time_last) > frame_period: time_last = time_now else: continue # increase iteration count iter_count = iter_count + 1 # sys.stdout.write("\riteration {}".format(iter_count)) # sys.stdout.flush() # # progress bar # prog_counter = prog_counter + 1 # if prog_counter > prog_update_freq: # prog_counter == 0 # if prog_pos == 0: prog_step = 1 # goes forward # elif prog_pos == (prog_bar_len-1): prog_step = -1 # goes backward # prog_pos = prog_pos + prog_step # sys.stdout.write("[" + prog_pos*"-" + "#" + # (prog_bar_len-(prog_pos+1))*"-" + "]\r") # sys.stdout.flush() # state transition variables st_n1to0 = [] # robot '-1' gets back to '0' after life time ends # list of robots changing to '0' from '-1' st_gton1 = [] # group disassembles either life expires, or triggered by others # list of groups to be disassembled st_0to1_join = {} # robot '0' detects robot '1' group, join the group # key is the robot '0', value is the group id st_0to1_new = {} # robot '0' detects another robot '0', forming new group # key is the robot '0', value is the other neighbor robot '0' # update the "relations" of the robots dist_conn_update() # check any state transition, and schedule the tasks for i in range(swarm_size): if robot_states[i] == -1: # for host robot with state '-1' if robot_n1_lives[i] < 0: st_n1to0.append(i) # life of '-1' ends, becoming '0' else: conn_temp = conn_lists[i][:] # a list of connections with only state '1' for j in conn_lists[i]: if robot_states[j] != 1: conn_temp.remove(j) if len(conn_temp) != 0: groups_local, group_id_max = S14_robot_grouping(conn_temp, robot_group_ids, groups) # disassmeble all groups except the largest one for group_id_temp in groups_local.keys(): if (group_id_temp != group_id_max) and (group_id_temp not in st_gton1): st_gton1.append(group_id_temp) # schedule to disassemble this group # find the closest neighbor in groups_local[group_id_max] robot_closest = S14_closest_robot(i, groups_local[group_id_max]) # change moving direction opposing the closest robot vect_temp = robot_poses[i] - robot_poses[robot_closest] robot_oris[i] = math.atan2(vect_temp[1], vect_temp[0]) elif robot_states[i] == 0: # for host robot with state '0' state1_list = [] # list of state '1' robots in the connection list state0_list = [] # list of state '0' robots in teh connection list for j in conn_lists[i]: # ignore state '-1' robots if robot_states[j] == 1: state1_list.append(j) elif robot_states[j] == 0: state0_list.append(j) if len(state1_list) != 0: # there is state '1' robot in the list, ignoring state '0' robot groups_local, group_id_max = S14_robot_grouping(state1_list, robot_group_ids, groups) # disassmeble all groups except the largest one for group_id_temp in groups_local.keys(): if (group_id_temp != group_id_max) and (group_id_temp not in st_gton1): st_gton1.append(group_id_temp) # schedule to disassemble this group # join the the group with the most members st_0to1_join[i] = group_id_max elif len(state0_list) != 0: # there is no robot '1', but has robot '0' # find the closest robot, schedule to start a new group with it st_0to1_new[i] = S14_closest_robot(i, state0_list) elif robot_states[i] == 1: # for host robot with state '1' conn_temp = conn_lists[i][:] # a list of connections with only state '1' has_other_group = False # whether there is robot '1' from other group host_group_id = robot_group_ids[i] # group id of host robot for j in conn_lists[i]: if robot_states[j] != 1: conn_temp.remove(j) else: if robot_group_ids[j] != host_group_id: has_other_group = True # disassemble the smaller groups if has_other_group: groups_local, group_id_max = S14_robot_grouping(conn_temp, robot_group_ids, groups) # disassmeble all groups except the largest one for group_id_temp in groups_local.keys(): if (group_id_temp != group_id_max) and (group_id_temp not in st_gton1): st_gton1.append(group_id_temp) # schedule to disassemble this group else: # to be tested and deleted print("robot state error") sys.exit() # check the life time of the groups; if expired, schedule disassemble for group_id_temp in groups.keys(): if groups[group_id_temp][1] < 0: # life time of a group ends if group_id_temp not in st_gton1: st_gton1.append(group_id_temp) # process the scheduled state transitions, different transition has different priority # 1.st_0to1_join, robot '0' joins a group, becomes '1' for robot_temp in st_0to1_join.keys(): group_id_temp = st_0to1_join[robot_temp] # the id of the group to join # update properties of the robot robot_states[robot_temp] = 1 robot_group_ids[robot_temp] = group_id_temp # update properties of the group groups[group_id_temp][0].append(robot_temp) groups[group_id_temp][1] = groups[group_id_temp][1] + life_incre # 2.st_gton1 for group_id_temp in st_gton1: for robot_temp in groups[group_id_temp][0]: robot_states[robot_temp] = -1 robot_n1_lives[robot_temp] = np.random.uniform(n1_life_lower, n1_life_upper) robot_group_ids[robot_temp] = -1 robot_oris[robot_temp] = np.random.rand() * 2 * math.pi - math.pi groups.pop(group_id_temp) # 3.st_0to1_new while len(st_0to1_new.keys()) != 0: pair0 = st_0to1_new.keys()[0] pair1 = st_0to1_new[pair0] st_0to1_new.pop(pair0) if (pair1 in st_0to1_new.keys()) and (st_0to1_new[pair1] == pair0): st_0to1_new.pop(pair1) # only forming a group if there is at least one seed robot in the pair if robot_seeds[pair0] or robot_seeds[pair1]: # forming new group for robot pair0 and pair1 group_id_temp = np.random.randint(0, group_id_upper) while group_id_temp in groups.keys(): group_id_temp = np.random.randint(0, group_id_upper) # update properties of the robots robot_states[pair0] = 1 robot_states[pair1] = 1 robot_group_ids[pair0] = group_id_temp robot_group_ids[pair1] = group_id_temp # update properties of the group groups[group_id_temp] = [[pair0, pair1], life_incre*2, False] # 4.st_n1to0 for robot_temp in st_n1to0: robot_states[robot_temp] = 0 # check if a group becomes dominant for group_id_temp in groups.keys(): if len(groups[group_id_temp][0]) > swarm_size/2.0: groups[group_id_temp][2] = True else: groups[group_id_temp][2] = False # local connection lists for state '1' robots local_conn_lists = [[] for i in range(swarm_size)] # connections in same group robot_poses_t = np.copy(robot_poses) # as old poses # update the physics for i in range(swarm_size): # change move direction only for robot '1', for adjusting location in group if robot_states[i] == 1: # find the neighbors in the same group host_group_id = robot_group_ids[i] for j in conn_lists[i]: if (robot_states[j] == 1) and (robot_group_ids[j] == host_group_id): local_conn_lists[i].append(j) if len(local_conn_lists[i]) == 0: # should not happen after parameter tuning printf("robot {} loses its group {}".format(i, host_group_id)) sys.exit() # calculating the moving direction, based on neighbor situation if (len(local_conn_lists[i]) == 1) and (len(groups[host_group_id][0]) > 2): # If the robot has only one neighbor, and it is not the case that the group # has only members, then the robot will try to secure another neighbor, by # rotating counter-clockwise around this only neighbor. center = local_conn_lists[i][0] # the center robot # use the triangle of (desired_space, dist_table[i,center], step_moving_dist) if dist_table[i,center] > (desired_space + step_moving_dist): # moving toward the center robot robot_oris[i] = math.atan2(robot_poses_t[center,1] - robot_poses_t[i,1], robot_poses_t[center,0] - robot_poses_t[i,0]) elif (dist_table[i,center] + step_moving_dist) < desired_space: # moving away from the center robot robot_oris[i] = math.atan2(robot_poses_t[i,1] - robot_poses_t[center,1], robot_poses_t[i,0] - robot_poses_t[center,0]) else: # moving tangent along the circle of radius of "desired_space" robot_oris[i] = math.atan2(robot_poses_t[i,1] - robot_poses_t[center,1], robot_poses_t[i,0] - robot_poses_t[center,0]) # interior angle between dist_table[i,center] and step_moving_dist int_angle_temp = math.acos((math.pow(dist_table[i,center],2) + math.pow(step_moving_dist,2) - math.pow(desired_space,2)) / (2.0*dist_table[i,center]*step_moving_dist)) robot_oris[i] = reset_radian(robot_oris[i] + (math.pi - int_angle_temp)) else: # the normal situation # calculate the moving vector, and check if destination is within error range mov_vec = np.zeros(2) for j in local_conn_lists[i]: # accumulate the influence from all neighbors mov_vec = mov_vec + (mov_vec_ratio * (dist_table[i,j] - desired_space) * normalize(robot_poses_t[j] - robot_poses_t[i])) if np.linalg.norm(mov_vec) < destination_error: continue # skip the physics update if within destination error else: robot_oris[i] = math.atan2(mov_vec[1], mov_vec[0]) # change direction # check if out of boundaries robot_oris[i] = robot_boundary_check(robot_poses_t[i], robot_oris[i]) # update one step of move robot_poses[i] = robot_poses_t[i] + (step_moving_dist * np.array([math.cos(robot_oris[i]), math.sin(robot_oris[i])])) # update the graphics disp_poses_update() screen.fill(color_white) # draw the robots of states '-1' and '0' for i in range(swarm_size): if robot_seeds[i]: color_temp = color_red else: color_temp = color_grey if robot_states[i] == -1: # empty circle for state '-1' robot pygame.draw.circle(screen, color_temp, disp_poses[i], robot_size_formation, robot_width_empty) elif robot_states[i] == 0: # full circle for state '0' robot pygame.draw.circle(screen, color_temp, disp_poses[i], robot_size_formation, 0) # draw the in-group robots by each group for group_id_temp in groups.keys(): if groups[group_id_temp][2]: # highlight the dominant group with black color color_group = color_black else: color_group = color_grey conn_draw_sets = [] # avoid draw same connection two times # draw the robots and connections in the group for i in groups[group_id_temp][0]: for j in local_conn_lists[i]: if set([i,j]) not in conn_draw_sets: pygame.draw.line(screen, color_group, disp_poses[i], disp_poses[j], conn_width_formation) conn_draw_sets.append(set([i,j])) # draw robots in the group if robot_seeds[i]: # force color red for seed robot pygame.draw.circle(screen, color_red, disp_poses[i], robot_size_formation, 0) else: pygame.draw.circle(screen, color_group, disp_poses[i], robot_size_formation, 0) pygame.display.update() # reduce life time of robot '-1' and groups for i in range(swarm_size): if robot_states[i] == -1: robot_n1_lives[i] = robot_n1_lives[i] - frame_period/1000.0 for group_id_temp in groups.keys(): if not groups[group_id_temp][2]: # skip dominant group groups[group_id_temp][1] = groups[group_id_temp][1] - frame_period/1000.0 # check exit condition of simulation 1 if not swarm_aggregated: if (len(groups.keys()) == 1) and (len(groups.values()[0][0]) == swarm_size): swarm_aggregated = True # once aggregated, there is no turning back if swarm_aggregated: if ending_period <= 0: print("simulation 1 is finished") if manual_mode: raw_input("<Press Enter to continue>") print("") # empty line break else: ending_period = ending_period - frame_period/1000.0 # # store the variable "robot_poses" # # tmp_filepath = os.path.join('tmp', 'demo1_30_robot_poses') # tmp_filepath = os.path.join('tmp', 'demo1_100_robot_poses') # with open(tmp_filepath, 'w') as f: # pickle.dump(robot_poses, f) # raw_input("<Press Enter to continue>") # break ########### simulation 2: consensus decision making of target loop shape ########### # # restore variable "robot_poses" # # tmp_filepath = os.path.join('tmp', 'demo1_30_robot_poses') # tmp_filepath = os.path.join('tmp', 'demo1_100_robot_poses') # with open(tmp_filepath) as f: # robot_poses = pickle.load(f) print("##### simulation 2: decision making #####") # "dist" in the variable may also refer to distribution dist_conn_update() # need to update the network only once # draw the network first time disp_poses_update() screen.fill(color_white) for i in range(swarm_size): pygame.draw.circle(screen, color_black, disp_poses[i], robot_size_consensus, 0) for j in range(i+1, swarm_size): if conn_table[i,j]: pygame.draw.line(screen, color_black, disp_poses[i], disp_poses[j], conn_width_thin_consensus) pygame.display.update() # initialize the decision making variables shape_decision = -1 deci_dist = np.random.rand(swarm_size, shape_quantity) sum_temp = np.sum(deci_dist, axis=1) for i in range(swarm_size): deci_dist[i] = deci_dist[i] / sum_temp[i] deci_domi = np.argmax(deci_dist, axis=1) groups = [] # robots reach local consensus are in same group robot_group_sizes = [0 for i in range(swarm_size)] # group size for each robot # color assignments for the robots and decisions color_initialized = False # whether color assignment has been done for the first time deci_colors = [-1 for i in range(shape_quantity)] color_assigns = [0 for i in range(color_quantity)] group_colors = [] robot_colors = [0 for i in range(swarm_size)] # decision making control variables dist_diff_thres = 0.3 dist_diff_ratio = [0.0 for i in range(swarm_size)] dist_diff_power = 0.3 # the loop for simulation 2 sim_haulted = False time_last = pygame.time.get_ticks() time_now = time_last frame_period = 1000 sim_freq_control = True iter_count = 0 sys.stdout.write("iteration {}".format(iter_count)) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: # close window button is clicked print("program exit in simulation 2") sys.exit() # exit the entire program if event.type == pygame.KEYUP: if event.key == pygame.K_SPACE: sim_haulted = not sim_haulted # reverse the pause flag if sim_haulted: continue # simulation frequency control if sim_freq_control: time_now = pygame.time.get_ticks() if (time_now - time_last) > frame_period: time_last = time_now else: continue # increase iteration count iter_count = iter_count + 1 sys.stdout.write("\riteration {}".format(iter_count)) sys.stdout.flush() # 1.update the dominant decision for all robots deci_domi = np.argmax(deci_dist, axis=1) # 2.update the groups groups = [] # empty the group container group_deci = [] # the exhibited decision of the groups robot_pool = range(swarm_size) # a robot pool, to be assigned into groups while len(robot_pool) != 0: # searching groups one by one from the global robot pool # start a new group, with first robot in the robot_pool first_member = robot_pool[0] # first member of this group group_temp = [first_member] # current temporary group robot_pool.pop(0) # pop out first robot in the pool # a list of potential members for current group # this list may increase when new members of group are discovered p_members = list(conn_lists[first_member]) # an index for iterating through p_members, in searching group members p_index = 0 # if it climbs to the end, the searching ends # index of dominant decision for current group current_domi = deci_domi[first_member] # dynamically iterating through p_members with p_index while p_index < len(p_members): # index still in valid range if deci_domi[p_members[p_index]] == current_domi: # a new member has been found new_member = p_members[p_index] # get index of the new member p_members.remove(new_member) # remove it from p_members list # but not increase p_index, because new value in p_members will flush in robot_pool.remove(new_member) # remove it from the global robot pool group_temp.append(new_member) # add it to current group # check if new potential members are available, due to new robot discovery p_members_new = conn_lists[new_member] # new potential members for member in p_members_new: if member not in p_members: # should not already in p_members if member not in group_temp: # should not in current group if member in robot_pool: # should be available in global pool # if conditions satisfied, it is qualified as a potential member p_members.append(member) # append at the end else: # a boundary robot(share different decision) has been met # leave it in p_members, will help to avoid checking back again on this robot p_index = p_index + 1 # shift right one position # all connected members for this group have been located groups.append(group_temp) # append the new group group_deci.append(deci_domi[first_member]) # append new group's exhibited decision # update the colors for the exhibited decisions if not color_initialized: color_initialized = True select_set = range(color_quantity) # the initial selecting set all_deci_set = set(group_deci) # put all exhibited decisions in a set for deci in all_deci_set: # avoid checking duplicate decisions if len(select_set) == 0: select_set = range(color_quantity) # start a new set to select from chosen_color = np.random.choice(select_set) select_set.remove(chosen_color) deci_colors[deci] = chosen_color # assign the chosen color to decision # increase the assignments of chosen color by 1 color_assigns[chosen_color] = color_assigns[chosen_color] + 1 else: # remove the color for a decision, if it's no longer the decision of any group all_deci_set = set(group_deci) for i in range(shape_quantity): if deci_colors[i] != -1: # there was a color assigned before if i not in all_deci_set: # decrease the assignments of chosen color by 1 color_assigns[deci_colors[i]] = color_assigns[deci_colors[i]] - 1 deci_colors[i] = -1 # remove the assigned color # assign color for an exhibited decision if not assigned select_set = [] # set of colors to select from, start from empty for i in range(len(groups)): if deci_colors[group_deci[i]] == -1: if len(select_set) == 0: # construct a new select_set color_assigns_min = min(color_assigns) color_assigns_temp = [j - color_assigns_min for j in color_assigns] select_set = range(color_quantity) for j in range(color_quantity): if color_assigns_temp[j] != 0: select_set.remove(j) chosen_color = np.random.choice(select_set) select_set.remove(chosen_color) deci_colors[group_deci[i]] = chosen_color # assign the chosen color # increase the assignments of chosen color by 1 color_assigns[chosen_color] = color_assigns[chosen_color] + 1 # update the colors for the groups group_colors = [] for i in range(len(groups)): group_colors.append(deci_colors[group_deci[i]]) # 3.update the group size for each robot for i in range(len(groups)): size_temp = len(groups[i]) color_temp = group_colors[i] for robot in groups[i]: robot_group_sizes[robot] = size_temp robot_colors[robot] = color_temp # update the color for each robot # the decision distribution evolution converged_all = True # flag for convergence of entire network deci_dist_t = np.copy(deci_dist) # deep copy of the 'deci_dist' for i in range(swarm_size): host_domi = deci_domi[i] converged = True for neighbor in conn_lists[i]: if host_domi != deci_domi[neighbor]: converged = False break # action based on convergence of dominant decision if converged: # all neighbors have converged with host # step 1: take equally weighted average on all distributions # including host and all neighbors deci_dist[i] = deci_dist_t[i]*1.0 # start with host itself for neighbor in conn_lists[i]: # accumulate neighbor's distribution deci_dist[i] = deci_dist[i] + deci_dist_t[neighbor] # normalize the distribution such that sum is 1.0 sum_temp = np.sum(deci_dist[i]) deci_dist[i] = deci_dist[i] / sum_temp # step 2: increase the unipolarity by applying the linear multiplier # (this step is only for when all neighbors are converged) # First find the largest difference between two distributions in this block # of robots, including the host and all its neighbors. comb_pool = [i] + list(conn_lists[i]) # add host to a pool with its neighbors # will be used to form combinations from this pool comb_pool_len = len(comb_pool) dist_diff = [] for j in range(comb_pool_len): for k in range(j+1, comb_pool_len): j_robot = comb_pool[j] k_robot = comb_pool[k] dist_diff.append(np.sum(abs(deci_dist[j_robot] - deci_dist[k_robot]))) dist_diff_max = max(dist_diff) # maximum distribution difference of all if dist_diff_max < dist_diff_thres: # distribution difference is small enough, # that linear multiplier should be applied to increase unipolarity dist_diff_ratio = dist_diff_max/dist_diff_thres # Linear multiplier is generated from value of smaller and larger ends, the # smaller end is positively related with dist_diff_ratio. The smaller the # maximum distribution difference, the smaller the dist_diff_ratio, and the # steeper the linear multiplier. # '1.0/shape_quantity' is the average value of the linear multiplier small_end = 1.0/shape_quantity * np.power(dist_diff_ratio, dist_diff_power) large_end = 2.0/shape_quantity - small_end # sort the magnitude of the current distribution dist_temp = np.copy(deci_dist[i]) # temporary distribution sort_index = range(shape_quantity) for j in range(shape_quantity-1): # bubble sort, ascending order for k in range(shape_quantity-1-j): if dist_temp[k] > dist_temp[k+1]: # exchange values in 'dist_temp' temp = dist_temp[k] dist_temp[k] = dist_temp[k+1] dist_temp[k+1] = temp # exchange values in 'sort_index' temp = sort_index[k] sort_index[k] = sort_index[k+1] sort_index[k+1] = temp # applying the linear multiplier for j in range(shape_quantity): multiplier = small_end + float(j)/(shape_quantity-1) * (large_end-small_end) deci_dist[i][sort_index[j]] = deci_dist[i][sort_index[j]] * multiplier # normalize the distribution such that sum is 1.0 sum_temp = np.sum(deci_dist[i]) deci_dist[i] = deci_dist[i]/sum_temp else: # not applying linear multiplier when distribution difference is large pass else: # at least one neighbor has different opinion with host converged_all = False # the network is not converged # take unequal weights in the averaging process based on group sizes deci_dist[i] = deci_dist_t[i]*robot_group_sizes[i] # start with host itself for neighbor in conn_lists[i]: # accumulate neighbor's distribution deci_dist[i] = deci_dist[i] + deci_dist_t[neighbor]*robot_group_sizes[neighbor] # normalize the distribution sum_temp = np.sum(deci_dist[i]) deci_dist[i] = deci_dist[i] / sum_temp # update the graphics screen.fill(color_white) # draw the regualr connecting lines for i in range(swarm_size): for j in range(i+1, swarm_size): if conn_table[i,j]: pygame.draw.line(screen, color_black, disp_poses[i], disp_poses[j], conn_width_thin_consensus) # draw the connecting lines marking the groups for i in range(len(groups)): group_len = len(groups[i]) for j in range(group_len): for k in range(j+1, group_len): j_robot = groups[i][j] k_robot = groups[i][k] # check if two robots in one group is connected if conn_table[j_robot,k_robot]: pygame.draw.line(screen, distinct_color_set[group_colors[i]], disp_poses[j_robot], disp_poses[k_robot], conn_width_thick_consensus) # draw the robots as dots for i in range(swarm_size): pygame.draw.circle(screen, distinct_color_set[robot_colors[i]], disp_poses[i], robot_size_consensus, 0) pygame.display.update() # check exit condition for simulations 2 if converged_all: shape_decision = deci_domi[0] print("") # move cursor to the new line print("converged to decision {}: {}".format(shape_decision, shape_catalog[shape_decision])) print("simulation 2 is finished") if manual_mode: raw_input("<Press Enter to continue>") print("") # empty line break ########### simulation 3: consensus role assignment for the loop shape ########### print("##### simulation 3: role assignment #####") dist_conn_update() # need to update the network only once # draw the network first time disp_poses_update() screen.fill(color_white) for i in range(swarm_size): pygame.draw.circle(screen, color_black, disp_poses[i], robot_size_consensus, 0) for j in range(i+1, swarm_size): if conn_table[i,j]: pygame.draw.line(screen, color_black, disp_poses[i], disp_poses[j], conn_width_thin_consensus) pygame.display.update() # calculate the gradient map for message transmission gradients = np.copy(conn_table) # build gradient map on connection map pool_gradient = 1 # gradients of the connections in the pool pool_conn = {} for i in range(swarm_size): pool_conn[i] = conn_lists[i][:] # start with gradient 1 connections while len(pool_conn.keys()) != 0: source_deactivate = [] for source in pool_conn: targets_temp = [] # the new targets for target in pool_conn[source]: for target_new in conn_lists[target]: if target_new == source: continue # skip itself if gradients[source, target_new] == 0: gradients[source, target_new] = pool_gradient + 1 targets_temp.append(target_new) if len(targets_temp) == 0: source_deactivate.append(source) else: pool_conn[source] = targets_temp[:] # update with new targets for source in source_deactivate: pool_conn.pop(source) # remove the finished sources pool_gradient = pool_gradient + 1 # calculate the relative gradient values gradients_rel = [] # gradients_rel[i][j,k] refers to gradient of k relative to j with message source i for i in range(swarm_size): # message source i gradient_temp = np.zeros((swarm_size, swarm_size)) for j in range(swarm_size): # in the view point of j gradient_temp[j] = gradients[i] - gradients[i,j] gradients_rel.append(gradient_temp) # list the neighbors a robot can send message to regarding a message source neighbors_send = [[[] for j in range(swarm_size)] for i in range(swarm_size)] # neighbors_send[i][j][k] means, if message from source i is received in j, # it should be send to k for i in range(swarm_size): # message source i for j in range(swarm_size): # in the view point of j for neighbor in conn_lists[j]: if gradients_rel[i][j,neighbor] == 1: neighbors_send[i][j].append(neighbor) # initialize the role assignment variables # preference distribution of all robots pref_dist = np.random.rand(swarm_size, swarm_size) # no need to normalize it initial_roles = np.argmax(pref_dist, axis=1) # the chosen role # the local assignment information local_role_assignment = [[[-1, 0, -1] for j in range(swarm_size)] for i in range(swarm_size)] # local_role_assignment[i][j] is local assignment information of robot i for robot j # first number is chosen role, second is probability, third is time stamp local_robot_assignment = [[[] for j in range(swarm_size)] for i in range(swarm_size)] # local_robot_assignment[i][j] is local assignment of robot i for role j # contains a list of robots that choose role j # populate the chosen role of itself to the local assignment information for i in range(swarm_size): local_role_assignment[i][i][0] = initial_roles[i] local_role_assignment[i][i][1] = pref_dist[i, initial_roles[i]] local_role_assignment[i][i][2] = 0 local_robot_assignment[i][initial_roles[i]].append(i) # received message container for all robots message_rx = [[] for i in range(swarm_size)] # for each message entry, it containts: # message[0]: ID of message source # message[1]: its preferred role # message[2]: probability of chosen role # message[3]: time stamp # all robots transmit once their chosen role before the loop transmission_total = 0 # count message transmissions for each iteration iter_count = 0 # also used as time stamp in message for source in range(swarm_size): chosen_role = local_role_assignment[source][source][0] message_temp = [source, chosen_role, pref_dist[source, chosen_role], iter_count] for target in conn_lists[source]: # send to all neighbors message_rx[target].append(message_temp) transmission_total = transmission_total + 1 role_color = [0 for i in range(swarm_size)] # colors for a conflicting role # Dynamically manage color for conflicting robots is unnecessarily complicated, might just # assign the colors in advance. role_index_pool = range(swarm_size) random.shuffle(role_index_pool) color_index_pool = range(color_quantity) random.shuffle(color_index_pool) while len(role_index_pool) != 0: role_color[role_index_pool[0]] = color_index_pool[0] role_index_pool.pop(0) color_index_pool.pop(0) if len(color_index_pool) == 0: color_index_pool = range(color_quantity) random.shuffle(color_index_pool) # flags transmit_flag = [[False for j in range(swarm_size)] for i in range(swarm_size)] # whether robot i should transmit received message of robot j change_flag = [False for i in range(swarm_size)] # whether robot i should change its chosen role scheme_converged = [False for i in range(swarm_size)] # the loop for simulation 3 sim_haulted = False time_last = pygame.time.get_ticks() time_now = time_last time_period = 2000 # not frame_period sim_freq_control = True flash_delay = 200 sys.stdout.write("iteration {}".format(iter_count)) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: # close window button is clicked print("program exit in simulation 3") sys.exit() # exit the entire program if event.type == pygame.KEYUP: if event.key == pygame.K_SPACE: sim_haulted = not sim_haulted # reverse the pause flag if sim_haulted: continue # simulation frequency control if sim_freq_control: time_now = pygame.time.get_ticks() if (time_now - time_last) > time_period: time_last = time_now else: continue # increase iteration count iter_count = iter_count + 1 sys.stdout.write("\riteration {}".format(iter_count)) sys.stdout.flush() # process the received messages # transfer messages to the processing buffer, then empty the message receiver message_rx_buf = [[[k for k in j] for j in i] for i in message_rx] message_rx = [[] for i in range(swarm_size)] yield_robots = [] # the robots that are yielding on chosen roles yield_roles = [] # the old roles of yield_robots before yielding for i in range(swarm_size): # messages received by robot i for message in message_rx_buf[i]: source = message[0] role = message[1] probability = message[2] time_stamp = message[3] if source == i: print("error, robot {} receives message of itself".format(i)) sys.exit() if time_stamp > local_role_assignment[i][source][2]: # received message will only take any effect if time stamp is new # update local_robot_assignment role_old = local_role_assignment[i][source][0] if role_old >= 0: # has been initialized before, not -1 local_robot_assignment[i][role_old].remove(source) local_robot_assignment[i][role].append(source) # update local_role_assignment local_role_assignment[i][source][0] = role local_role_assignment[i][source][1] = probability local_role_assignment[i][source][2] = time_stamp transmit_flag[i][source] = True # check conflict with itself if role == local_role_assignment[i][i][0]: if probability >= pref_dist[i, local_role_assignment[i][i][0]]: # change its choice after all message received change_flag[i] = True yield_robots.append(i) yield_roles.append(local_role_assignment[i][i][0]) # change the choice of role for those decide to for i in range(swarm_size): if change_flag[i]: change_flag[i] = False role_old = local_role_assignment[i][i][0] pref_dist_temp = np.copy(pref_dist[i]) pref_dist_temp[local_role_assignment[i][i][0]] = -1 # set to negative to avoid being chosen for j in range(swarm_size): if len(local_robot_assignment[i][j]) != 0: # eliminate those choices that have been taken pref_dist_temp[j] = -1 role_new = np.argmax(pref_dist_temp) if pref_dist_temp[role_new] < 0: print("error, robot {} has no available role".format(i)) sys.exit() # role_new is good to go # update local_robot_assignment local_robot_assignment[i][role_old].remove(i) local_robot_assignment[i][role_new].append(i) # update local_role_assignment local_role_assignment[i][i][0] = role_new local_role_assignment[i][i][1] = pref_dist[i][role_new] local_role_assignment[i][i][2] = iter_count transmit_flag[i][i] = True # transmit the received messages or initial new message transmission transmission_total = 0 for transmitter in range(swarm_size): # transmitter robot for source in range(swarm_size): # message is for this source robot if transmit_flag[transmitter][source]: transmit_flag[transmitter][source] = False message_temp = [source, local_role_assignment[transmitter][source][0], local_role_assignment[transmitter][source][1], local_role_assignment[transmitter][source][2]] for target in neighbors_send[source][transmitter]: message_rx[target].append(message_temp) transmission_total = transmission_total + 1 # check if role assignment scheme is converged at every robot for i in range(swarm_size): if not scheme_converged[i]: converged = True for j in range(swarm_size): if len(local_robot_assignment[i][j]) != 1: converged = False break if converged: scheme_converged[i] = True # for display, scan the robots that have detected conflict but not yielding persist_robots = [] for i in range(swarm_size): if i in yield_robots: continue if len(local_robot_assignment[i][local_role_assignment[i][i][0]]) > 1: persist_robots.append(i) # update the display for i in range(swarm_size): for j in range(i+1, swarm_size): if conn_table[i,j]: pygame.draw.line(screen, color_black, disp_poses[i], disp_poses[j], conn_width_thin_consensus) for i in range(swarm_size): pygame.draw.circle(screen, color_black, disp_poses[i], robot_size_consensus, 0) # draw the persisting robots with color of conflicting role for i in persist_robots: pygame.draw.circle(screen, distinct_color_set[role_color[local_role_assignment[i][i][0]]], disp_poses[i], robot_size_consensus, 0) # draw extra ring on robot if local scheme has converged for i in range(swarm_size): if scheme_converged[i]: pygame.draw.circle(screen, color_black, disp_poses[i], robot_ring_size, 1) pygame.display.update() # flash the yielding robots with color of old role for _ in range(3): # change to color for i in range(len(yield_robots)): pygame.draw.circle(screen, distinct_color_set[role_color[yield_roles[i]]], disp_poses[yield_robots[i]], robot_size_consensus, 0) pygame.display.update() pygame.time.delay(flash_delay) # change to black for i in range(len(yield_robots)): pygame.draw.circle(screen, color_black, disp_poses[yield_robots[i]], robot_size_consensus, 0) pygame.display.update() pygame.time.delay(flash_delay) # exit the simulation if all role assignment schemes have converged all_converged = scheme_converged[0] for i in range(1, swarm_size): all_converged = all_converged and scheme_converged[i] if not all_converged: break if all_converged: for i in range(swarm_size): assignment_scheme[i] = local_role_assignment[0][i][0] print("") # move cursor to the new line print("simulation 3 is finished") if manual_mode: raw_input("<Press Enter to continue>") print("") # empty line break # # store the variable "assignment_scheme" # # tmp_filepath = os.path.join('tmp', 'demo1_30_assignment_scheme') # tmp_filepath = os.path.join('tmp', 'demo1_100_assignment_scheme') # with open(tmp_filepath, 'w') as f: # pickle.dump(assignment_scheme, f) # raw_input("<Press Enter to continue>") # break ########### simulation 4: loop formation with designated role assignment ########### # # restore variable "assignment_scheme" # # tmp_filepath = os.path.join('tmp', 'demo1_30_assignment_scheme') # tmp_filepath = os.path.join('tmp', 'demo1_100_assignment_scheme') # with open(tmp_filepath) as f: # assignment_scheme = pickle.load(f) print("##### simulation 4: loop formation #####") # robot perperties # all robots start with state '-1' robot_states = np.array([-1 for i in range(swarm_size)]) # '-1' for wandering around, ignoring all connections # '0' for wandering around, available to connection # '1' for in a group, order on loop not satisfied, climbing CCW around loop # '2' for in a group, order on loop satisfied n1_life_lower = 2 # inclusive n1_life_upper = 6 # exclusive robot_n1_lives = np.random.uniform(n1_life_lower, n1_life_upper, swarm_size) robot_oris = np.random.rand(swarm_size) * 2 * math.pi - math.pi # in range of [-pi, pi) robot_key_neighbors = [[] for i in range(swarm_size)] # key neighbors for robot on loop # for state '1' robot: the robot that it is climbing around # for state '2' robot: the left and right neighbors in serial connection on the loop # exception is the group has only two members, key neighbor will be only one robot # group properties groups = {} # key is the group id, value is a list, in the list: # [0]: a list of robots in the group, both state '1' and '2' # [1]: remaining life time of the group # [2]: whether or not being the dominant group life_incre = 5 # number of seconds added to the life of a group when new robot joins group_id_upper = swarm_size # upper limit of group id robot_group_ids = np.array([-1 for i in range(swarm_size)]) # group id for the robots # '-1' for not in a group # use step moving distance in each update, instead of calculating from robot velocity # so to make it independent of simulation frequency control step_moving_dist = 0.05 # should be smaller than destination distance error destination_error = 0.1 mov_vec_ratio = 0.5 # ratio used when calculating mov vector # spring constants in SMA linear_const = 1.0 bend_const = 0.8 disp_coef = 0.5 # for avoiding space too small on loop space_good_thres = desired_space * 0.85 # the loop for simulation 4 sim_haulted = False time_last = pygame.time.get_ticks() time_now = time_last frame_period = 50 sim_freq_control = True iter_count = 0 # sys.stdout.write("iteration {}".format(iter_count)) # did nothing in iteration 0 print("swarm robots are forming an ordered loop ...") loop_formed = False ending_period = 1.0 # grace period while True: for event in pygame.event.get(): if event.type == pygame.QUIT: # close window button is clicked print("program exit in simulation 4") sys.exit() # exit the entire program if event.type == pygame.KEYUP: if event.key == pygame.K_SPACE: sim_haulted = not sim_haulted # reverse the pause flag if sim_haulted: continue # simulation frequency control if sim_freq_control: time_now = pygame.time.get_ticks() if (time_now - time_last) > frame_period: time_last = time_now else: continue # increase iteration count iter_count = iter_count + 1 # sys.stdout.write("\riteration {}".format(iter_count)) # sys.stdout.flush() # state transition variables st_n1to0 = [] # robot '-1' gets back to '0' after life time ends # list of robots changing to '0' from '-1' st_gton1 = [] # group disassembles either life expires, or triggered by others # list of groups to be disassembled st_0to1 = {} # robot '0' detects robot '2', join its group # key is the robot '0', value is the group id st_0to2 = {} # robot '0' detects another robot '0', forming a new group # key is the robot '0', value is the other neighbor robot '0' st_1to2 = {} # robot '1' is climbing around the loop, and finds its right position # key is the left side of the slot, value is a list of robots intend to join dist_conn_update() # update "relations" of the robots # check state transitions, and schedule the tasks for i in range(swarm_size): if robot_states[i] == -1: # for host robot with state '-1' if robot_n1_lives[i] < 0: st_n1to0.append(i) else: if len(conn_lists[i]) == 0: continue state2_list = [] state1_list = [] for j in conn_lists[i]: if robot_states[j] == 2: state2_list.append(j) elif robot_states[j] == 1: state1_list.append(j) if len(state2_list) + len(state1_list) != 0: groups_local, group_id_max = S14_robot_grouping( state2_list + state1_list, robot_group_ids, groups) if len(groups_local.keys()) > 1: # disassemble all groups except the largest one for group_id_temp in groups_local.keys(): if ((group_id_temp != group_id_max) and (group_id_temp not in st_gton1)): # schedule to disassemble this group st_gton1.append(group_id_temp) else: # state '-1' robot can only be repelled away by state '2' robot if len(state2_list) != 0: # find the closest neighbor in groups_local[group_id_max] robot_closest = S14_closest_robot(i, state2_list) # change moving direction opposing the closest robot vect_temp = robot_poses[i] - robot_poses[robot_closest] robot_oris[i] = math.atan2(vect_temp[1], vect_temp[0]) elif robot_states[i] == 0: # for host robot with state '0' if len(conn_lists[i]) == 0: continue state2_list = [] state1_list = [] state0_list = [] for j in conn_lists[i]: if robot_states[j] == 2: state2_list.append(j) elif robot_states[j] == 1: state1_list.append(j) elif robot_states[j] == 0: state0_list.append(j) state2_quantity = len(state2_list) state1_quantity = len(state1_list) state0_quantity = len(state0_list) # disassemble minority groups if there are multiple groups if state2_quantity + state1_quantity > 1: # there is in-group robot in the neighbors groups_local, group_id_max = S14_robot_grouping(state2_list+state1_list, robot_group_ids, groups) # disassmeble all groups except the largest one for group_id_temp in groups_local.keys(): if (group_id_temp != group_id_max) and (group_id_temp not in st_gton1): st_gton1.append(group_id_temp) # schedule to disassemble this group # responses to the state '2', '1', and '0' robots if state2_quantity != 0: # join the group with state '2' robots if state2_quantity == 1: # only one state '2' robot # join the group of the state '2' robot st_0to1[i] = robot_group_ids[state2_list[0]] robot_key_neighbors[i] = [state2_list[0]] # add key neighbor else: # multiple state '2' robots # it's possible that the state '2' robots are in different groups # find the closest one in the largest group, and join the group groups_local, group_id_max = S14_robot_grouping(state2_list, robot_group_ids, groups) robot_closest = S14_closest_robot(i, groups_local[group_id_max]) st_0to1[i] = group_id_max robot_key_neighbors[i] = [robot_closest] # add key neighbor # elif state1_quantity != 0: # # get repelled away from state '1' robot # if state1_quantity == 1: # only one state '1' robot # vect_temp = robot_poses[i] - robot_poses[state1_list[0]] # robot_oris[i] = math.atan2(vect_temp[1], vect_temp[0]) # else: # groups_local, group_id_max = S14_robot_grouping(state1_list, # robot_group_ids, groups) # robot_closest = S14_closest_robot(i, groups_local[group_id_max]) # vect_temp = robot_poses[i] - robot_poses[robot_closest] # robot_oris[i] = math.atan2(vect_temp[1], vect_temp[0]) elif state0_quantity != 0: # form new group with state '0' robots st_0to2[i] = S14_closest_robot(i, state0_list) elif (robot_states[i] == 1) or (robot_states[i] == 2): # disassemble the minority groups state12_list = [] # list of state '1' and '2' robots in the list has_other_group = False host_group_id = robot_group_ids[i] for j in conn_lists[i]: if (robot_states[j] == 1) or (robot_states[j] == 2): state12_list.append(j) if robot_group_ids[j] != host_group_id: has_other_group = True if has_other_group: groups_local, group_id_max = S14_robot_grouping(state12_list, robot_group_ids, groups) for group_id_temp in groups_local.keys(): if (group_id_temp != group_id_max) and (group_id_temp not in st_gton1): st_gton1.append(group_id_temp) # schedule to disassemble this group # check if state '1' robot's order on loop is good if robot_states[i] == 1: current_key = robot_key_neighbors[i][0] next_key = robot_key_neighbors[current_key][-1] if next_key in conn_lists[i]: # next key neighbor is detected role_i = assignment_scheme[i] role_current_key = assignment_scheme[current_key] role_next_key = assignment_scheme[next_key] if len(robot_key_neighbors[current_key]) == 1: # the situation that only two members are in the group vect_temp = robot_poses[next_key] - robot_poses[current_key] # deciding which side of vect_temp robot i is at vect_i = robot_poses[i] - robot_poses[current_key] side_value = np.cross(vect_i, vect_temp) if side_value > 0: # robot i on the right side if role_next_key > role_current_key: if (role_i < role_current_key) or (role_i > role_next_key): # update with next key neighbor robot_key_neighbors[i] = [next_key] else: # its position on loop is achieved, becoming state '2' if current_key in st_1to2.keys(): st_1to2[current_key].append(i) else: st_1to2[current_key] = [i] else: if (role_i < role_current_key) and (role_i > role_next_key): # update with next key neighbor robot_key_neighbors[i] = [next_key] else: # its position on loop is achieved, becoming state '2' if current_key in st_1to2.keys(): st_1to2[current_key].append(i) else: st_1to2[current_key] = [i] else: # robot i on the left side pass else: # the situation that at least three members are in the group if role_next_key > role_current_key: # the roles of the two robots are on the same side if (role_i < role_current_key) or (role_i > role_next_key): # update with next key neighbor robot_key_neighbors[i] = [next_key] else: # its position on loop is achieved, becoming state '2' if current_key in st_1to2.keys(): st_1to2[current_key].append(i) else: st_1to2[current_key] = [i] else: # the roles of the two robots are on different side if (role_i < role_current_key) and (role_i > role_next_key): # update with next key neighbor robot_key_neighbors[i] = [next_key] else: # its position on loop is achieved, becoming state '2' if current_key in st_1to2.keys(): st_1to2[current_key].append(i) else: st_1to2[current_key] = [i] # check the life time of the groups; schedule disassembling if expired for group_id_temp in groups.keys(): if groups[group_id_temp][1] < 0: # life time of a group ends if group_id_temp not in st_gton1: st_gton1.append(group_id_temp) # process the state transition tasks # 1.st_1to2, robot '1' locates its order on loop, becoming '2' for left_key in st_1to2.keys(): right_key = robot_key_neighbors[left_key][-1] role_left_key = assignment_scheme[left_key] role_right_key = assignment_scheme[right_key] joiner = -1 # the accepted joiner in this position if len(st_1to2[left_key]) == 1: joiner = st_1to2[left_key][0] else: joiner_list = st_1to2[left_key] role_dist_min = swarm_size for joiner_temp in joiner_list: # find the joiner with closest role to left key neighbor role_joiner_temp = assignment_scheme[joiner_temp] role_dist_temp = role_joiner_temp - role_left_key if role_dist_temp < 0: role_dist_temp = role_dist_temp + swarm_size if role_dist_temp < role_dist_min: joiner = joiner_temp role_dist_min = role_dist_temp # put in the new joiner # update the robot properties group_id_temp = robot_group_ids[left_key] robot_states[joiner] = 2 robot_group_ids[joiner] = group_id_temp robot_key_neighbors[joiner] = [left_key, right_key] if len(robot_key_neighbors[left_key]) == 1: robot_key_neighbors[left_key] = [right_key, joiner] robot_key_neighbors[right_key] = [joiner, left_key] else: robot_key_neighbors[left_key][1] = joiner robot_key_neighbors[right_key][0] = joiner # no need to update the group properties # 2.st_0to1, robot '0' joins a group, becoming '1' for joiner in st_0to1.keys(): group_id_temp = st_0to1[joiner] # update the robot properties robot_states[joiner] = 1 robot_group_ids[joiner] = group_id_temp # update the group properties groups[group_id_temp][0].append(joiner) groups[group_id_temp][1] = groups[group_id_temp][1] + life_incre # 3.st_0to2, robot '0' forms new group with '0', both becoming '2' while len(st_0to2.keys()) != 0: pair0 = st_0to2.keys()[0] pair1 = st_0to2[pair0] st_0to2.pop(pair0) if (pair1 in st_0to2.keys()) and (st_0to2[pair1] == pair0): st_0to2.pop(pair1) # only forming a group if there is at least one seed robot in the pair if robot_seeds[pair0] or robot_seeds[pair1]: # forming new group for robot pair0 and pair1 group_id_temp = np.random.randint(0, group_id_upper) while group_id_temp in groups.keys(): group_id_temp = np.random.randint(0, group_id_upper) # update properties of the robots robot_states[pair0] = 2 robot_states[pair1] = 2 robot_group_ids[pair0] = group_id_temp robot_group_ids[pair1] = group_id_temp robot_key_neighbors[pair0] = [pair1] robot_key_neighbors[pair1] = [pair0] # update properties of the group groups[group_id_temp] = [[pair0, pair1], life_incre*2, False] # 4.st_gton1, groups get disassembled, life time ends or triggered by others for group_id_temp in st_gton1: for robot_temp in groups[group_id_temp][0]: robot_states[robot_temp] = -1 robot_n1_lives[robot_temp] = np.random.uniform(n1_life_lower, n1_life_upper) robot_group_ids[robot_temp] = -1 robot_oris[robot_temp] = np.random.rand() * 2 * math.pi - math.pi robot_key_neighbors[robot_temp] = [] groups.pop(group_id_temp) # 5.st_n1to0, life time of robot '-1' ends, get back to '0' for robot_temp in st_n1to0: robot_states[robot_temp] = 0 # check if a group becomes dominant for group_id_temp in groups.keys(): if len(groups[group_id_temp][0]) > swarm_size/2.0: groups[group_id_temp][2] = True else: groups[group_id_temp][2] = False # update the physics robot_poses_t = np.copy(robot_poses) # as old poses no_state1_robot = True for i in range(swarm_size): # adjusting moving direction for state '1' and '2' robots if robot_states[i] == 1: no_state1_robot = False # rotating around its only key neighbor center = robot_key_neighbors[i][0] # the center robot # use the triangle of (desired_space, dist_table[i,center], step_moving_dist) if dist_table[i,center] > (desired_space + step_moving_dist): # moving toward the center robot robot_oris[i] = math.atan2(robot_poses_t[center,1] - robot_poses_t[i,1], robot_poses_t[center,0] - robot_poses_t[i,0]) elif (dist_table[i,center] + step_moving_dist) < desired_space: # moving away from the center robot robot_oris[i] = math.atan2(robot_poses_t[i,1] - robot_poses_t[center,1], robot_poses_t[i,0] - robot_poses_t[center,0]) else: # moving tangent along the circle of radius of "desired_space" robot_oris[i] = math.atan2(robot_poses_t[i,1] - robot_poses_t[center,1], robot_poses_t[i,0] - robot_poses_t[center,0]) # interior angle between int_angle_temp = math.acos(np.around((math.pow(dist_table[i,center],2) + math.pow(step_moving_dist,2) - math.pow(desired_space,2)) / (2.0*dist_table[i,center]*step_moving_dist))) robot_oris[i] = reset_radian(robot_oris[i] + (math.pi - int_angle_temp)) elif robot_states[i] == 2: # adjusting position to maintain the loop if len(robot_key_neighbors[i]) == 1: # situation that only two robots are in the group j = robot_key_neighbors[i][0] if abs(dist_table[i,j] - desired_space) < destination_error: continue # stay in position if within destination error else: if dist_table[i,j] > desired_space: robot_oris[i] = math.atan2(robot_poses_t[j,1] - robot_poses_t[i,1], robot_poses_t[j,0] - robot_poses_t[i,0]) else: robot_oris[i] = math.atan2(robot_poses_t[i,1] - robot_poses_t[j,1], robot_poses_t[i,0] - robot_poses_t[j,0]) else: # normal situation with at least three members in the group group_id_temp = robot_group_ids[i] state2_quantity = 0 # number of state '2' robots for robot_temp in groups[group_id_temp][0]: if robot_states[robot_temp] == 2: state2_quantity = state2_quantity + 1 desired_angle = math.pi - 2*math.pi / state2_quantity # use the SMA algorithm to achieve the desired interior angle left_key = robot_key_neighbors[i][0] right_key = robot_key_neighbors[i][1] vect_l = (robot_poses_t[left_key] - robot_poses_t[i]) / dist_table[i,left_key] vect_r = (robot_poses_t[right_key] - robot_poses_t[i]) / dist_table[i,right_key] vect_lr = robot_poses_t[right_key] - robot_poses_t[left_key] vect_lr_dist = np.linalg.norm(vect_lr) vect_in = np.array([-vect_lr[1], vect_lr[0]]) / vect_lr_dist inter_curr = math.acos(np.dot(vect_l, vect_r)) # interior angle if np.cross(vect_r, vect_l) < 0: inter_curr = 2*math.pi - inter_curr fb_vect = np.zeros(2) # feedback vector to accumulate spring effects fb_vect = fb_vect + ((dist_table[i,left_key] - desired_space) * linear_const * vect_l) fb_vect = fb_vect + ((dist_table[i,right_key] - desired_space) * linear_const * vect_r) fb_vect = fb_vect + ((desired_angle - inter_curr) * bend_const * vect_in) if (
np.linalg.norm(fb_vect)
numpy.linalg.norm