prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import pandas as pd import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from matplotlib import cm, colors from astropy.modeling import models, fitting # Reading in all data files at once import glob path_normal ='/projects/p30137/ageller/testing/EBLSST/add_m5/output_files' allFiles_normal = glob.glob(path_normal + "/*.csv") path_fast = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/output_files' allFiles_fast = glob.glob(path_fast + "/*.csv") path_obsDist = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/obsDist/output_files' allFiles_obsDist = glob.glob(path_obsDist + "/*.csv") N_totalnormal_array = [] N_totalobservablenormal_array = [] N_totalrecoverablenormal_array = [] N_totalnormal_array_03 = [] N_totalobservablenormal_array_03 = [] N_totalrecoverablenormal_array_03 = [] N_totalnormal_array_1 = [] N_totalobservablenormal_array_1 = [] N_totalrecoverablenormal_array_1 = [] N_totalnormal_array_10 = [] N_totalobservablenormal_array_10 = [] N_totalrecoverablenormal_array_10 = [] N_totalnormal_array_30 = [] N_totalobservablenormal_array_30 = [] N_totalrecoverablenormal_array_30 = [] N_totalnormal_array_100 = [] N_totalobservablenormal_array_100 = [] N_totalrecoverablenormal_array_100 = [] N_totalnormal_array_1000 = [] N_totalobservablenormal_array_1000 = [] N_totalrecoverablenormal_array_1000 = [] N_totalnormal22_array = [] N_totalobservablenormal22_array = [] N_totalrecoverablenormal22_array = [] N_totalnormal22_array_03 = [] N_totalobservablenormal22_array_03 = [] N_totalrecoverablenormal22_array_03 = [] N_totalnormal22_array_1 = [] N_totalobservablenormal22_array_1 = [] N_totalrecoverablenormal22_array_1 = [] N_totalnormal22_array_10 = [] N_totalobservablenormal22_array_10 = [] N_totalrecoverablenormal22_array_10 = [] N_totalnormal22_array_30 = [] N_totalobservablenormal22_array_30 = [] N_totalrecoverablenormal22_array_30 = [] N_totalnormal22_array_100 = [] N_totalobservablenormal22_array_100 = [] N_totalrecoverablenormal22_array_100 = [] N_totalnormal22_array_1000 = [] N_totalobservablenormal22_array_1000 = [] N_totalrecoverablenormal22_array_1000 = [] N_totalnormal195_array = [] N_totalobservablenormal195_array = [] N_totalrecoverablenormal195_array = [] N_totalnormal195_array_03 = [] N_totalobservablenormal195_array_03 = [] N_totalrecoverablenormal195_array_03 = [] N_totalnormal195_array_1 = [] N_totalobservablenormal195_array_1 = [] N_totalrecoverablenormal195_array_1 = [] N_totalnormal195_array_10 = [] N_totalobservablenormal195_array_10 = [] N_totalrecoverablenormal195_array_10 = [] N_totalnormal195_array_30 = [] N_totalobservablenormal195_array_30 = [] N_totalrecoverablenormal195_array_30 = [] N_totalnormal195_array_100 = [] N_totalobservablenormal195_array_100 = [] N_totalrecoverablenormal195_array_100 = [] N_totalnormal195_array_1000 = [] N_totalobservablenormal195_array_1000 = [] N_totalrecoverablenormal195_array_1000 = [] N_totalfast_array = [] N_totalobservablefast_array = [] N_totalrecoverablefast_array = [] N_totalfast_array_03 = [] N_totalobservablefast_array_03 = [] N_totalrecoverablefast_array_03 = [] N_totalfast_array_1 = [] N_totalobservablefast_array_1 = [] N_totalrecoverablefast_array_1 = [] N_totalfast_array_10 = [] N_totalobservablefast_array_10 = [] N_totalrecoverablefast_array_10 = [] N_totalfast_array_30 = [] N_totalobservablefast_array_30 = [] N_totalrecoverablefast_array_30 = [] N_totalfast_array_100 = [] N_totalobservablefast_array_100 = [] N_totalrecoverablefast_array_100 = [] N_totalfast_array_1000 = [] N_totalobservablefast_array_1000 = [] N_totalrecoverablefast_array_1000 = [] N_totalfast22_array = [] N_totalobservablefast22_array = [] N_totalrecoverablefast22_array = [] N_totalfast22_array_03 = [] N_totalobservablefast22_array_03 = [] N_totalrecoverablefast22_array_03 = [] N_totalfast22_array_1 = [] N_totalobservablefast22_array_1 = [] N_totalrecoverablefast22_array_1 = [] N_totalfast22_array_10 = [] N_totalobservablefast22_array_10 = [] N_totalrecoverablefast22_array_10 = [] N_totalfast22_array_30 = [] N_totalobservablefast22_array_30 = [] N_totalrecoverablefast22_array_30 = [] N_totalfast22_array_100 = [] N_totalobservablefast22_array_100 = [] N_totalrecoverablefast22_array_100 = [] N_totalfast22_array_1000 = [] N_totalobservablefast22_array_1000 = [] N_totalrecoverablefast22_array_1000 = [] N_totalfast195_array = [] N_totalobservablefast195_array = [] N_totalrecoverablefast195_array = [] N_totalfast195_array_03 = [] N_totalobservablefast195_array_03 = [] N_totalrecoverablefast195_array_03 = [] N_totalfast195_array_1 = [] N_totalobservablefast195_array_1 = [] N_totalrecoverablefast195_array_1 = [] N_totalfast195_array_10 = [] N_totalobservablefast195_array_10 = [] N_totalrecoverablefast195_array_10 = [] N_totalfast195_array_30 = [] N_totalobservablefast195_array_30 = [] N_totalrecoverablefast195_array_30 = [] N_totalfast195_array_100 = [] N_totalobservablefast195_array_100 = [] N_totalrecoverablefast195_array_100 = [] N_totalfast195_array_1000 = [] N_totalobservablefast195_array_1000 = [] N_totalrecoverablefast195_array_1000 = [] N_totalobsDist_array = [] N_totalobservableobsDist_array = [] N_totalrecoverableobsDist_array = [] N_totalobsDist_array_03 = [] N_totalobservableobsDist_array_03 = [] N_totalrecoverableobsDist_array_03 = [] N_totalobsDist_array_1 = [] N_totalobservableobsDist_array_1 = [] N_totalrecoverableobsDist_array_1 = [] N_totalobsDist_array_10 = [] N_totalobservableobsDist_array_10 = [] N_totalrecoverableobsDist_array_10 = [] N_totalobsDist_array_30 = [] N_totalobservableobsDist_array_30 = [] N_totalrecoverableobsDist_array_30 = [] N_totalobsDist_array_100 = [] N_totalobservableobsDist_array_100 = [] N_totalrecoverableobsDist_array_100 = [] N_totalobsDist_array_1000 = [] N_totalobservableobsDist_array_1000 = [] N_totalrecoverableobsDist_array_1000 = [] N_totalobsDist22_array = [] N_totalobservableobsDist22_array = [] N_totalrecoverableobsDist22_array = [] N_totalobsDist22_array_03 = [] N_totalobservableobsDist22_array_03 = [] N_totalrecoverableobsDist22_array_03 = [] N_totalobsDist22_array_1 = [] N_totalobservableobsDist22_array_1 = [] N_totalrecoverableobsDist22_array_1 = [] N_totalobsDist22_array_10 = [] N_totalobservableobsDist22_array_10 = [] N_totalrecoverableobsDist22_array_10 = [] N_totalobsDist22_array_30 = [] N_totalobservableobsDist22_array_30 = [] N_totalrecoverableobsDist22_array_30 = [] N_totalobsDist22_array_100 = [] N_totalobservableobsDist22_array_100 = [] N_totalrecoverableobsDist22_array_100 = [] N_totalobsDist22_array_1000 = [] N_totalobservableobsDist22_array_1000 = [] N_totalrecoverableobsDist22_array_1000 = [] N_totalobsDist195_array = [] N_totalobservableobsDist195_array = [] N_totalrecoverableobsDist195_array = [] N_totalobsDist195_array_03 = [] N_totalobservableobsDist195_array_03 = [] N_totalrecoverableobsDist195_array_03 = [] N_totalobsDist195_array_1 = [] N_totalobservableobsDist195_array_1 = [] N_totalrecoverableobsDist195_array_1 = [] N_totalobsDist195_array_10 = [] N_totalobservableobsDist195_array_10 = [] N_totalrecoverableobsDist195_array_10 = [] N_totalobsDist195_array_30 = [] N_totalobservableobsDist195_array_30 = [] N_totalrecoverableobsDist195_array_30 = [] N_totalobsDist195_array_100 = [] N_totalobservableobsDist195_array_100 = [] N_totalrecoverableobsDist195_array_100 = [] N_totalobsDist195_array_1000 = [] N_totalobservableobsDist195_array_1000 = [] N_totalrecoverableobsDist195_array_1000 = [] def fitRagfb(): x = [0.05, 0.1, 1, 8, 15] #estimates of midpoints in bins, and using this: https:/sites.uni.edu/morgans/astro/course/Notes/section2/spectralmasses.html y = [0.20, 0.35, 0.50, 0.70, 0.75] init = models.PowerLaw1D(amplitude=0.5, x_0=1, alpha=-1.) fitter = fitting.LevMarLSQFitter() fit = fitter(init, x, y) return fit fbFit= fitRagfb() mbins = np.arange(0,10, 0.1, dtype='float') cutP = 0.10 #condition on recoverability/tolerance for filenormal_ in sorted(allFiles_normal): filename = filenormal_[60:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datnormal = pd.read_csv(filenormal_, sep = ',', header=2) PeriodIn = datnormal['p'] # input period -- 'p' in data file ########################################################## datnormal1 = pd.read_csv(filenormal_, sep = ',', header=0, nrows=1) N_tri = datnormal1["NstarsTRILEGAL"][0] #print("N_tri = ", N_tri) Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datnormal["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datnormal['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datnormal['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datnormal.loc[PeriodOut != -999].index observable_03 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datnormal.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datnormal.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datnormal.loc[PeriodIn <= 0.3].index P1 = datnormal.loc[PeriodIn <= 1].index P10 = datnormal.loc[PeriodIn <= 10].index P30 = datnormal.loc[PeriodIn <= 30].index P100 = datnormal.loc[PeriodIn <= 100].index P1000 = datnormal.loc[PeriodIn <= 1000].index P_22 = datnormal.loc[appMagMean <= 22.].index P03_22 = datnormal.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datnormal.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datnormal.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datnormal.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datnormal.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datnormal.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datnormal.loc[appMagMean <= 19.5].index P03_195 = datnormal.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datnormal.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datnormal.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datnormal.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datnormal.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datnormal.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalnormal_array.append(float(N_all)) N_totalobservablenormal_array.append(float(N_obs)) N_totalrecoverablenormal_array.append(float(N_rec)) N_totalnormal_array_03.append(float(N_all03)) N_totalobservablenormal_array_03.append(float(N_obs03)) N_totalrecoverablenormal_array_03.append(float(N_rec03)) N_totalnormal_array_1.append(float(N_all1)) N_totalobservablenormal_array_1.append(float(N_obs1)) N_totalrecoverablenormal_array_1.append(float(N_rec1)) N_totalnormal_array_10.append(float(N_all10)) N_totalobservablenormal_array_10.append(float(N_obs10)) N_totalrecoverablenormal_array_10.append(float(N_rec10)) N_totalnormal_array_30.append(float(N_all30)) N_totalobservablenormal_array_30.append(float(N_obs30)) N_totalrecoverablenormal_array_30.append(float(N_rec30)) N_totalnormal_array_100.append(float(N_all100)) N_totalobservablenormal_array_100.append(float(N_obs100)) N_totalrecoverablenormal_array_100.append(float(N_rec100)) N_totalnormal_array_1000.append(float(N_all1000)) N_totalobservablenormal_array_1000.append(float(N_obs1000)) N_totalrecoverablenormal_array_1000.append(float(N_rec1000)) N_totalnormal22_array.append(float(N_all_22)) N_totalobservablenormal22_array.append(float(N_obs_22)) N_totalrecoverablenormal22_array.append(float(N_rec_22)) N_totalnormal22_array_03.append(float(N_all03_22)) N_totalobservablenormal22_array_03.append(float(N_obs03_22)) N_totalrecoverablenormal22_array_03.append(float(N_rec03_22)) N_totalnormal22_array_1.append(float(N_all1_22)) N_totalobservablenormal22_array_1.append(float(N_obs1_22)) N_totalrecoverablenormal22_array_1.append(float(N_rec1_22)) N_totalnormal22_array_10.append(float(N_all10_22)) N_totalobservablenormal22_array_10.append(float(N_obs10_22)) N_totalrecoverablenormal22_array_10.append(float(N_rec10_22)) N_totalnormal22_array_30.append(float(N_all30_22)) N_totalobservablenormal22_array_30.append(float(N_obs30_22)) N_totalrecoverablenormal22_array_30.append(float(N_rec30_22)) N_totalnormal22_array_100.append(float(N_all100_22)) N_totalobservablenormal22_array_100.append(float(N_obs100_22)) N_totalrecoverablenormal22_array_100.append(float(N_rec100_22)) N_totalnormal22_array_1000.append(float(N_all1000_22)) N_totalobservablenormal22_array_1000.append(float(N_obs1000_22)) N_totalrecoverablenormal22_array_1000.append(float(N_rec1000_22)) N_totalnormal195_array.append(float(N_all_195)) N_totalobservablenormal195_array.append(float(N_obs_195)) N_totalrecoverablenormal195_array.append(float(N_rec_195)) N_totalnormal195_array_03.append(float(N_all03_195)) N_totalobservablenormal195_array_03.append(float(N_obs03_195)) N_totalrecoverablenormal195_array_03.append(float(N_rec03_195)) N_totalnormal195_array_1.append(float(N_all1_195)) N_totalobservablenormal195_array_1.append(float(N_obs1_195)) N_totalrecoverablenormal195_array_1.append(float(N_rec1_195)) N_totalnormal195_array_10.append(float(N_all10_195)) N_totalobservablenormal195_array_10.append(float(N_obs10_195)) N_totalrecoverablenormal195_array_10.append(float(N_rec10_195)) N_totalnormal195_array_30.append(float(N_all30_195)) N_totalobservablenormal195_array_30.append(float(N_obs30_195)) N_totalrecoverablenormal195_array_30.append(float(N_rec30_195)) N_totalnormal195_array_100.append(float(N_all100_195)) N_totalobservablenormal195_array_100.append(float(N_obs100_195)) N_totalrecoverablenormal195_array_100.append(float(N_rec100_195)) N_totalnormal195_array_1000.append(float(N_all1000_195)) N_totalobservablenormal195_array_1000.append(float(N_obs1000_195)) N_totalrecoverablenormal195_array_1000.append(float(N_rec1000_195)) N_totalnormal = np.sum(N_totalnormal_array) N_totalnormal_03 = np.sum(N_totalnormal_array_03) N_totalnormal_1 = np.sum(N_totalnormal_array_1) N_totalnormal_10 = np.sum(N_totalnormal_array_10) N_totalnormal_30 = np.sum(N_totalnormal_array_30) N_totalnormal_100 = np.sum(N_totalnormal_array_100) N_totalnormal_1000 = np.sum(N_totalnormal_array_1000) N_totalobservablenormal = np.sum(N_totalobservablenormal_array) N_totalobservablenormal_03 = np.sum(N_totalobservablenormal_array_03) N_totalobservablenormal_1 = np.sum(N_totalobservablenormal_array_1) N_totalobservablenormal_10 = np.sum(N_totalobservablenormal_array_10) N_totalobservablenormal_30 = np.sum(N_totalobservablenormal_array_30) N_totalobservablenormal_100 = np.sum(N_totalobservablenormal_array_100) N_totalobservablenormal_1000 = np.sum(N_totalobservablenormal_array_1000) N_totalrecoverablenormal = np.sum(N_totalrecoverablenormal_array) N_totalrecoverablenormal_03 = np.sum(N_totalrecoverablenormal_array_03) N_totalrecoverablenormal_1 = np.sum(N_totalrecoverablenormal_array_1) N_totalrecoverablenormal_10 = np.sum(N_totalrecoverablenormal_array_10) N_totalrecoverablenormal_30 = np.sum(N_totalrecoverablenormal_array_30) N_totalrecoverablenormal_100 = np.sum(N_totalrecoverablenormal_array_100) N_totalrecoverablenormal_1000 = np.sum(N_totalrecoverablenormal_array_1000) N_totalnormal22 = np.sum(N_totalnormal22_array) N_totalnormal22_03 = np.sum(N_totalnormal22_array_03) N_totalnormal22_1 = np.sum(N_totalnormal22_array_1) N_totalnormal22_10 = np.sum(N_totalnormal22_array_10) N_totalnormal22_30 = np.sum(N_totalnormal22_array_30) N_totalnormal22_100 = np.sum(N_totalnormal22_array_100) N_totalnormal22_1000 = np.sum(N_totalnormal22_array_1000) N_totalobservablenormal22 = np.sum(N_totalobservablenormal22_array) N_totalobservablenormal22_03 = np.sum(N_totalobservablenormal22_array_03) N_totalobservablenormal22_1 = np.sum(N_totalobservablenormal22_array_1) N_totalobservablenormal22_10 = np.sum(N_totalobservablenormal22_array_10) N_totalobservablenormal22_30 = np.sum(N_totalobservablenormal22_array_30) N_totalobservablenormal22_100 = np.sum(N_totalobservablenormal22_array_100) N_totalobservablenormal22_1000 = np.sum(N_totalobservablenormal22_array_1000) N_totalrecoverablenormal22 = np.sum(N_totalrecoverablenormal22_array) N_totalrecoverablenormal22_03 = np.sum(N_totalrecoverablenormal22_array_03) N_totalrecoverablenormal22_1 = np.sum(N_totalrecoverablenormal22_array_1) N_totalrecoverablenormal22_10 = np.sum(N_totalrecoverablenormal22_array_10) N_totalrecoverablenormal22_30 = np.sum(N_totalrecoverablenormal22_array_30) N_totalrecoverablenormal22_100 = np.sum(N_totalrecoverablenormal22_array_100) N_totalrecoverablenormal22_1000 = np.sum(N_totalrecoverablenormal22_array_1000) N_totalnormal195 = np.sum(N_totalnormal195_array) N_totalnormal195_03 = np.sum(N_totalnormal195_array_03) N_totalnormal195_1 = np.sum(N_totalnormal195_array_1) N_totalnormal195_10 = np.sum(N_totalnormal195_array_10) N_totalnormal195_30 = np.sum(N_totalnormal195_array_30) N_totalnormal195_100 = np.sum(N_totalnormal195_array_100) N_totalnormal195_1000 = np.sum(N_totalnormal195_array_1000) N_totalobservablenormal195 = np.sum(N_totalobservablenormal195_array) N_totalobservablenormal195_03 = np.sum(N_totalobservablenormal195_array_03) N_totalobservablenormal195_1 = np.sum(N_totalobservablenormal195_array_1) N_totalobservablenormal195_10 = np.sum(N_totalobservablenormal195_array_10) N_totalobservablenormal195_30 = np.sum(N_totalobservablenormal195_array_30) N_totalobservablenormal195_100 = np.sum(N_totalobservablenormal195_array_100) N_totalobservablenormal195_1000 = np.sum(N_totalobservablenormal195_array_1000) N_totalrecoverablenormal195 = np.sum(N_totalrecoverablenormal195_array) N_totalrecoverablenormal195_03 = np.sum(N_totalrecoverablenormal195_array_03) N_totalrecoverablenormal195_1 = np.sum(N_totalrecoverablenormal195_array_1) N_totalrecoverablenormal195_10 = np.sum(N_totalrecoverablenormal195_array_10) N_totalrecoverablenormal195_30 = np.sum(N_totalrecoverablenormal195_array_30) N_totalrecoverablenormal195_100 = np.sum(N_totalrecoverablenormal195_array_100) N_totalrecoverablenormal195_1000 = np.sum(N_totalrecoverablenormal195_array_1000) wholerecoverypercent_normal = (N_totalrecoverablenormal/N_totalobservablenormal)*100 wholerecoverypercent_normal_03 = (N_totalrecoverablenormal_03/N_totalobservablenormal_03)*100 wholerecoverypercent_normal_1 = (N_totalrecoverablenormal_1/N_totalobservablenormal_1)*100 wholerecoverypercent_normal_10 = (N_totalrecoverablenormal_10/N_totalobservablenormal_10)*100 wholerecoverypercent_normal_30 = (N_totalrecoverablenormal_30/N_totalobservablenormal_30)*100 wholerecoverypercent_normal_100 = (N_totalrecoverablenormal_100/N_totalobservablenormal_100)*100 wholerecoverypercent_normal_1000 = (N_totalrecoverablenormal_1000/N_totalobservablenormal_1000)*100 sigmanormal = ((N_totalrecoverablenormal**(1/2))/N_totalobservablenormal)*100 sigmanormal_03 = ((N_totalrecoverablenormal_03**(1/2))/N_totalobservablenormal_03)*100 sigmanormal_1 = ((N_totalrecoverablenormal_1**(1/2))/N_totalobservablenormal_1)*100 sigmanormal_10 = ((N_totalrecoverablenormal_10**(1/2))/N_totalobservablenormal_10)*100 sigmanormal_30 = ((N_totalrecoverablenormal_30**(1/2))/N_totalobservablenormal_30)*100 sigmanormal_100 = ((N_totalrecoverablenormal_100**(1/2))/N_totalobservablenormal_100)*100 sigmanormal_1000 = ((N_totalrecoverablenormal_1000**(1/2))/N_totalobservablenormal_1000)*100 overallrecoverypercent_normal = (N_totalrecoverablenormal/N_totalnormal)*100 overallrecoverypercent_normal_03 = (N_totalrecoverablenormal_03/N_totalnormal_03)*100 overallrecoverypercent_normal_1 = (N_totalrecoverablenormal_1/N_totalnormal_1)*100 overallrecoverypercent_normal_10 = (N_totalrecoverablenormal_10/N_totalnormal_10)*100 overallrecoverypercent_normal_30 = (N_totalrecoverablenormal_30/N_totalnormal_30)*100 overallrecoverypercent_normal_100 = (N_totalrecoverablenormal_100/N_totalnormal_100)*100 overallrecoverypercent_normal_1000 = (N_totalrecoverablenormal_1000/N_totalnormal_1000)*100 overallsigmanormal = ((N_totalrecoverablenormal**(1/2))/N_totalnormal)*100 overallsigmanormal_03 = ((N_totalrecoverablenormal_03**(1/2))/N_totalnormal_03)*100 overallsigmanormal_1 = ((N_totalrecoverablenormal_1**(1/2))/N_totalnormal_1)*100 overallsigmanormal_10 = ((N_totalrecoverablenormal_10**(1/2))/N_totalnormal_10)*100 overallsigmanormal_30 = ((N_totalrecoverablenormal_30**(1/2))/N_totalnormal_30)*100 overallsigmanormal_100 = ((N_totalrecoverablenormal_100**(1/2))/N_totalnormal_100)*100 overallsigmanormal_1000 = ((N_totalrecoverablenormal_1000**(1/2))/N_totalnormal_1000)*100 wholerecoverypercent_normal22 = (N_totalrecoverablenormal22/N_totalobservablenormal22)*100 wholerecoverypercent_normal22_03 = (N_totalrecoverablenormal22_03/N_totalobservablenormal22_03)*100 wholerecoverypercent_normal22_1 = (N_totalrecoverablenormal22_1/N_totalobservablenormal22_1)*100 wholerecoverypercent_normal22_10 = (N_totalrecoverablenormal22_10/N_totalobservablenormal22_10)*100 wholerecoverypercent_normal22_30 = (N_totalrecoverablenormal22_30/N_totalobservablenormal22_30)*100 wholerecoverypercent_normal22_100 = (N_totalrecoverablenormal22_100/N_totalobservablenormal22_100)*100 wholerecoverypercent_normal22_1000 = (N_totalrecoverablenormal22_1000/N_totalobservablenormal22_1000)*100 sigmanormal22 = ((N_totalrecoverablenormal22**(1/2))/N_totalobservablenormal22)*100 sigmanormal22_03 = ((N_totalrecoverablenormal22_03**(1/2))/N_totalobservablenormal22_03)*100 sigmanormal22_1 = ((N_totalrecoverablenormal22_1**(1/2))/N_totalobservablenormal22_1)*100 sigmanormal22_10 = ((N_totalrecoverablenormal22_10**(1/2))/N_totalobservablenormal22_10)*100 sigmanormal22_30 = ((N_totalrecoverablenormal22_30**(1/2))/N_totalobservablenormal22_30)*100 sigmanormal22_100 = ((N_totalrecoverablenormal22_100**(1/2))/N_totalobservablenormal22_100)*100 sigmanormal22_1000 = ((N_totalrecoverablenormal22_1000**(1/2))/N_totalobservablenormal22_1000)*100 overallrecoverypercent_normal22 = (N_totalrecoverablenormal22/N_totalnormal22)*100 overallrecoverypercent_normal22_03 = (N_totalrecoverablenormal22_03/N_totalnormal22_03)*100 overallrecoverypercent_normal22_1 = (N_totalrecoverablenormal22_1/N_totalnormal22_1)*100 overallrecoverypercent_normal22_10 = (N_totalrecoverablenormal22_10/N_totalnormal22_10)*100 overallrecoverypercent_normal22_30 = (N_totalrecoverablenormal22_30/N_totalnormal22_30)*100 overallrecoverypercent_normal22_100 = (N_totalrecoverablenormal22_100/N_totalnormal22_100)*100 overallrecoverypercent_normal22_1000 = (N_totalrecoverablenormal22_1000/N_totalnormal22_1000)*100 overallsigmanormal22 = ((N_totalrecoverablenormal22**(1/2))/N_totalnormal22)*100 overallsigmanormal22_03 = ((N_totalrecoverablenormal22_03**(1/2))/N_totalnormal22_03)*100 overallsigmanormal22_1 = ((N_totalrecoverablenormal22_1**(1/2))/N_totalnormal22_1)*100 overallsigmanormal22_10 = ((N_totalrecoverablenormal22_10**(1/2))/N_totalnormal22_10)*100 overallsigmanormal22_30 = ((N_totalrecoverablenormal22_30**(1/2))/N_totalnormal22_30)*100 overallsigmanormal22_100 = ((N_totalrecoverablenormal22_100**(1/2))/N_totalnormal22_100)*100 overallsigmanormal22_1000 = ((N_totalrecoverablenormal22_1000**(1/2))/N_totalnormal22_1000)*100 wholerecoverypercent_normal195 = (N_totalrecoverablenormal195/N_totalobservablenormal195)*100 wholerecoverypercent_normal195_03 = (N_totalrecoverablenormal195_03/N_totalobservablenormal195_03)*100 wholerecoverypercent_normal195_1 = (N_totalrecoverablenormal195_1/N_totalobservablenormal195_1)*100 wholerecoverypercent_normal195_10 = (N_totalrecoverablenormal195_10/N_totalobservablenormal195_10)*100 wholerecoverypercent_normal195_30 = (N_totalrecoverablenormal195_30/N_totalobservablenormal195_30)*100 wholerecoverypercent_normal195_100 = (N_totalrecoverablenormal195_100/N_totalobservablenormal195_100)*100 wholerecoverypercent_normal195_1000 = (N_totalrecoverablenormal195_1000/N_totalobservablenormal195_1000)*100 sigmanormal195 = ((N_totalrecoverablenormal195**(1/2))/N_totalobservablenormal195)*100 sigmanormal195_03 = ((N_totalrecoverablenormal195_03**(1/2))/N_totalobservablenormal195_03)*100 sigmanormal195_1 = ((N_totalrecoverablenormal195_1**(1/2))/N_totalobservablenormal195_1)*100 sigmanormal195_10 = ((N_totalrecoverablenormal195_10**(1/2))/N_totalobservablenormal195_10)*100 sigmanormal195_30 = ((N_totalrecoverablenormal195_30**(1/2))/N_totalobservablenormal195_30)*100 sigmanormal195_100 = ((N_totalrecoverablenormal195_100**(1/2))/N_totalobservablenormal195_100)*100 sigmanormal195_1000 = ((N_totalrecoverablenormal195_1000**(1/2))/N_totalobservablenormal195_1000)*100 overallrecoverypercent_normal195 = (N_totalrecoverablenormal195/N_totalnormal195)*100 overallrecoverypercent_normal195_03 = (N_totalrecoverablenormal195_03/N_totalnormal195_03)*100 overallrecoverypercent_normal195_1 = (N_totalrecoverablenormal195_1/N_totalnormal195_1)*100 overallrecoverypercent_normal195_10 = (N_totalrecoverablenormal195_10/N_totalnormal195_10)*100 overallrecoverypercent_normal195_30 = (N_totalrecoverablenormal195_30/N_totalnormal195_30)*100 overallrecoverypercent_normal195_100 = (N_totalrecoverablenormal195_100/N_totalnormal195_100)*100 overallrecoverypercent_normal195_1000 = (N_totalrecoverablenormal195_1000/N_totalnormal195_1000)*100 overallsigmanormal195 = ((N_totalrecoverablenormal195**(1/2))/N_totalnormal195)*100 overallsigmanormal195_03 = ((N_totalrecoverablenormal195_03**(1/2))/N_totalnormal195_03)*100 overallsigmanormal195_1 = ((N_totalrecoverablenormal195_1**(1/2))/N_totalnormal195_1)*100 overallsigmanormal195_10 = ((N_totalrecoverablenormal195_10**(1/2))/N_totalnormal195_10)*100 overallsigmanormal195_30 = ((N_totalrecoverablenormal195_30**(1/2))/N_totalnormal195_30)*100 overallsigmanormal195_100 = ((N_totalrecoverablenormal195_100**(1/2))/N_totalnormal195_100)*100 overallsigmanormal195_1000 = ((N_totalrecoverablenormal195_1000**(1/2))/N_totalnormal195_1000)*100\ print("N_totalnormal = ", N_totalnormal, "and in log = ", np.log10(N_totalnormal), "**** N_totalobservablenormal = ", N_totalobservablenormal, "and in log = ", np.log10(N_totalobservablenormal), "**** N_totalrecoverablenormal = ", N_totalrecoverablenormal, "and in log = ", np.log10(N_totalrecoverablenormal)) print("N_totalnormal_03 = ", N_totalnormal_03, "and in log = ", np.log10(N_totalnormal_03), "**** N_totalobservablenormal_03 = ", N_totalobservablenormal_03, "and in log = ", np.log10(N_totalobservablenormal_03), "**** N_totalrecoverablenormal_03 = ", N_totalrecoverablenormal_03, "and in log = ", np.log10(N_totalrecoverablenormal_03)) print("N_totalnormal_1 = ", N_totalnormal_1, "and in log = ", np.log10(N_totalnormal_1), "**** N_totalobservablenormal_1 = ", N_totalobservablenormal_1, "and in log = ", np.log10(N_totalobservablenormal_1), "**** N_totalrecoverablenormal_1 = ", N_totalrecoverablenormal_1, "and in log = ", np.log10(N_totalrecoverablenormal_1)) print("N_totalnormal_10 = ", N_totalnormal_10, "and in log = ", np.log10(N_totalnormal_10), "**** N_totalobservablenormal_10 = ", N_totalobservablenormal_10, "and in log = ", np.log10(N_totalobservablenormal_10), "**** N_totalrecoverablenormal_10 = ", N_totalrecoverablenormal_10, "and in log = ", np.log10(N_totalrecoverablenormal_10)) print("N_totalnormal_30 = ", N_totalnormal_30, "and in log = ", np.log10(N_totalnormal_30), "**** N_totalobservablenormal_30 = ", N_totalobservablenormal_30, "and in log = ", np.log10(N_totalobservablenormal_30), "**** N_totalrecoverablenormal_30 = ", N_totalrecoverablenormal_30, "and in log = ", np.log10(N_totalrecoverablenormal_30)) print("N_totalnormal_100 = ", N_totalnormal_100, "and in log = ", np.log10(N_totalnormal_100), "**** N_totalobservablenormal_100 = ", N_totalobservablenormal_100, "and in log = ", np.log10(N_totalobservablenormal_100), "**** N_totalrecoverablenormal_100 = ", N_totalrecoverablenormal_100, "and in log = ", np.log10(N_totalrecoverablenormal_100)) print("N_totalnormal_1000 = ", N_totalnormal_1000, "and in log = ", np.log10(N_totalnormal_1000), "**** N_totalobservablenormal_1000 = ", N_totalobservablenormal_1000, "and in log = ", np.log10(N_totalobservablenormal_1000), "**** N_totalrecoverablenormal_1000 = ", N_totalrecoverablenormal_1000, "and in log = ", np.log10(N_totalrecoverablenormal_1000)) print("********************************") print("wholerecoverypercent_normal = $", wholerecoverypercent_normal, "/pm", sigmanormal, "$") print("wholerecoverypercent_normal_03 = $", wholerecoverypercent_normal_03, "/pm", sigmanormal_03, "$") print("wholerecoverypercent_normal_1 = $", wholerecoverypercent_normal_1, "/pm", sigmanormal_1, "$") print("wholerecoverypercent_normal_10 = $", wholerecoverypercent_normal_10, "/pm", sigmanormal_10, "$") print("wholerecoverypercent_normal_30 = $", wholerecoverypercent_normal_30, "/pm", sigmanormal_30, "$") print("wholerecoverypercent_normal_100 = $", wholerecoverypercent_normal_100, "/pm", sigmanormal_100, "$") print("wholerecoverypercent_normal_1000 = $", wholerecoverypercent_normal_1000, "/pm", sigmanormal_1000, "$") print("********************************") print("overallrecoverypercent_normal = $", overallrecoverypercent_normal, "/pm", overallsigmanormal) print("overallrecoverypercent_normal_03 = $", overallrecoverypercent_normal_03, "/pm", overallsigmanormal_03) print("overallrecoverypercent_normal_1 = $", overallrecoverypercent_normal_1, "/pm", overallsigmanormal_1) print("overallrecoverypercent_normal_10 = $", overallrecoverypercent_normal_10, "/pm", overallsigmanormal_10) print("overallrecoverypercent_normal_30 = $", overallrecoverypercent_normal_30, "/pm", overallsigmanormal_30) print("overallrecoverypercent_normal_100 = $", overallrecoverypercent_normal_100, "/pm", overallsigmanormal_100) print("overallrecoverypercent_normal_1000 = $", overallrecoverypercent_normal_1000, "/pm", overallsigmanormal_1000) print("################################") print("N_totalnormal22 = ", N_totalnormal22, "and in log = ", np.log10(N_totalnormal22), "**** N_totalobservablenormal22 = ", N_totalobservablenormal22, "and in log = ", np.log10(N_totalobservablenormal22), "**** N_totalrecoverablenormal22 = ", N_totalrecoverablenormal22, "and in log = ", np.log10(N_totalrecoverablenormal22)) print("N_totalnormal22_03 = ", N_totalnormal22_03, "and in log = ", np.log10(N_totalnormal22_03), "**** N_totalobservablenormal22_03 = ", N_totalobservablenormal22_03, "and in log = ", np.log10(N_totalobservablenormal22_03), "**** N_totalrecoverablenormal22_03 = ", N_totalrecoverablenormal22_03, "and in log = ", np.log10(N_totalrecoverablenormal22_03)) print("N_totalnormal22_1 = ", N_totalnormal22_1, "and in log = ", np.log10(N_totalnormal22_1), "**** N_totalobservablenormal22_1 = ", N_totalobservablenormal22_1, "and in log = ", np.log10(N_totalobservablenormal22_1), "**** N_totalrecoverablenormal22_1 = ", N_totalrecoverablenormal22_1, "and in log = ", np.log10(N_totalrecoverablenormal22_1)) print("N_totalnormal22_10 = ", N_totalnormal22_10, "and in log = ", np.log10(N_totalnormal22_10), "**** N_totalobservablenormal22_10 = ", N_totalobservablenormal22_10, "and in log = ", np.log10(N_totalobservablenormal22_10), "**** N_totalrecoverablenormal22_10 = ", N_totalrecoverablenormal22_10, "and in log = ", np.log10(N_totalrecoverablenormal22_10)) print("N_totalnormal22_30 = ", N_totalnormal22_30, "and in log = ", np.log10(N_totalnormal22_30), "**** N_totalobservablenormal22_30 = ", N_totalobservablenormal22_30, "and in log = ", np.log10(N_totalobservablenormal22_30), "**** N_totalrecoverablenormal22_30 = ", N_totalrecoverablenormal22_30, "and in log = ", np.log10(N_totalrecoverablenormal22_30)) print("N_totalnormal22_100 = ", N_totalnormal22_100, "and in log = ", np.log10(N_totalnormal22_100), "**** N_totalobservablenormal22_100 = ", N_totalobservablenormal22_100, "and in log = ", np.log10(N_totalobservablenormal22_100), "**** N_totalrecoverablenormal22_100 = ", N_totalrecoverablenormal22_100, "and in log = ", np.log10(N_totalrecoverablenormal22_100)) print("N_totalnormal22_1000 = ", N_totalnormal22_1000, "and in log = ", np.log10(N_totalnormal22_1000), "**** N_totalobservablenormal22_1000 = ", N_totalobservablenormal22_1000, "and in log = ", np.log10(N_totalobservablenormal22_1000), "**** N_totalrecoverablenormal22_1000 = ", N_totalrecoverablenormal22_1000, "and in log = ", np.log10(N_totalrecoverablenormal22_1000)) print("********************************") print("wholerecoverypercent_normal22 = $", wholerecoverypercent_normal22, "/pm", sigmanormal22, "$") print("wholerecoverypercent_normal22_03 = $", wholerecoverypercent_normal22_03, "/pm", sigmanormal22_03, "$") print("wholerecoverypercent_normal22_1 = $", wholerecoverypercent_normal22_1, "/pm", sigmanormal22_1, "$") print("wholerecoverypercent_normal22_10 = $", wholerecoverypercent_normal22_10, "/pm", sigmanormal22_10, "$") print("wholerecoverypercent_normal22_30 = $", wholerecoverypercent_normal22_30, "/pm", sigmanormal22_30, "$") print("wholerecoverypercent_normal22_100 = $", wholerecoverypercent_normal22_100, "/pm", sigmanormal22_100, "$") print("wholerecoverypercent_normal22_1000 = $", wholerecoverypercent_normal22_1000, "/pm", sigmanormal22_1000, "$") print("********************************") print("overallrecoverypercent_normal22 = $", overallrecoverypercent_normal22, "/pm", overallsigmanormal22, "$") print("overallrecoverypercent_normal22_03 = $", overallrecoverypercent_normal22_03, "/pm", overallsigmanormal22_03, "$") print("overallrecoverypercent_normal22_1 = $", overallrecoverypercent_normal22_1, "/pm", overallsigmanormal22_1, "$") print("overallrecoverypercent_normal22_10 = $", overallrecoverypercent_normal22_10, "/pm", overallsigmanormal22_10, "$") print("overallrecoverypercent_normal22_30 = $", overallrecoverypercent_normal22_30, "/pm", overallsigmanormal22_30, "$") print("overallrecoverypercent_normal22_100 = $", overallrecoverypercent_normal22_100, "/pm", overallsigmanormal22_100, "$") print("overallrecoverypercent_normal22_1000 = $", overallrecoverypercent_normal22_1000, "/pm", overallsigmanormal22_1000, "$") print("###############################") print("N_totalnormal195 = ", N_totalnormal195, "and in log = ", np.log10(N_totalnormal195), "**** N_totalobservablenormal195 = ", N_totalobservablenormal195, "and in log = ", np.log10(N_totalobservablenormal195), "**** N_totalrecoverablenormal195 = ", N_totalrecoverablenormal195, "and in log = ", np.log10(N_totalrecoverablenormal195)) print("N_totalnormal195_03 = ", N_totalnormal195_03, "and in log = ", np.log10(N_totalnormal195_03), "**** N_totalobservablenormal195_03 = ", N_totalobservablenormal195_03, "and in log = ", np.log10(N_totalobservablenormal195_03), "**** N_totalrecoverablenormal195_03 = ", N_totalrecoverablenormal195_03, "and in log = ", np.log10(N_totalrecoverablenormal195_03)) print("N_totalnormal195_1 = ", N_totalnormal195_1, "and in log = ", np.log10(N_totalnormal195_1), "**** N_totalobservablenormal195_1 = ", N_totalobservablenormal195_1, "and in log = ", np.log10(N_totalobservablenormal195_1), "**** N_totalrecoverablenormal195_1 = ", N_totalrecoverablenormal195_1, "and in log = ", np.log10(N_totalrecoverablenormal195_1)) print("N_totalnormal195_10 = ", N_totalnormal195_10, "and in log = ", np.log10(N_totalnormal195_10), "**** N_totalobservablenormal195_10 = ", N_totalobservablenormal195_10, "and in log = ", np.log10(N_totalobservablenormal195_10), "**** N_totalrecoverablenormal195_10 = ", N_totalrecoverablenormal195_10, "and in log = ", np.log10(N_totalrecoverablenormal195_10)) print("N_totalnormal195_30 = ", N_totalnormal195_30, "and in log = ", np.log10(N_totalnormal195_30), "**** N_totalobservablenormal195_30 = ", N_totalobservablenormal195_30, "and in log = ", np.log10(N_totalobservablenormal195_30), "**** N_totalrecoverablenormal195_30 = ", N_totalrecoverablenormal195_30, "and in log = ", np.log10(N_totalrecoverablenormal195_30)) print("N_totalnormal195_100 = ", N_totalnormal195_100, "and in log = ", np.log10(N_totalnormal195_100), "**** N_totalobservablenormal195_100 = ", N_totalobservablenormal195_100, "and in log = ", np.log10(N_totalobservablenormal195_100), "**** N_totalrecoverablenormal195_100 = ", N_totalrecoverablenormal195_100, "and in log = ", np.log10(N_totalrecoverablenormal195_100)) print("N_totalnormal195_1000 = ", N_totalnormal195_1000, "and in log = ", np.log10(N_totalnormal195_1000), "**** N_totalobservablenormal195_1000 = ", N_totalobservablenormal195_1000, "and in log = ", np.log10(N_totalobservablenormal195_1000), "**** N_totalrecoverablenormal195_1000 = ", N_totalrecoverablenormal195_1000, "and in log = ", np.log10(N_totalrecoverablenormal195_1000)) print("********************************") print("wholerecoverypercent_normal195 = $", wholerecoverypercent_normal195, "/pm", sigmanormal195, "$") print("wholerecoverypercent_normal195_03 = $", wholerecoverypercent_normal195_03, "/pm", sigmanormal195_03, "$") print("wholerecoverypercent_normal195_1 = $", wholerecoverypercent_normal195_1, "/pm", sigmanormal195_1, "$") print("wholerecoverypercent_normal195_10 = $", wholerecoverypercent_normal195_10, "/pm", sigmanormal195_10, "$") print("wholerecoverypercent_normal195_30 = $", wholerecoverypercent_normal195_30, "/pm", sigmanormal195_30, "$") print("wholerecoverypercent_normal195_100 = $", wholerecoverypercent_normal195_100, "/pm", sigmanormal195_100, "$") print("wholerecoverypercent_normal195_1000 = $", wholerecoverypercent_normal195_1000, "/pm", sigmanormal195_1000, "$") print("********************************") print("overallrecoverypercent_normal195 = $", overallrecoverypercent_normal195, "/pm", overallsigmanormal195, "$") print("overallrecoverypercent_normal195_03 = $", overallrecoverypercent_normal195_03, "/pm", overallsigmanormal195_03, "$") print("overallrecoverypercent_normal195_1 = $", overallrecoverypercent_normal195_1, "/pm", overallsigmanormal195_1, "$") print("overallrecoverypercent_normal195_10 = $", overallrecoverypercent_normal195_10, "/pm", overallsigmanormal195_10, "$") print("overallrecoverypercent_normal195_30 = $", overallrecoverypercent_normal195_30, "/pm", overallsigmanormal195_30, "$") print("overallrecoverypercent_normal195_100 = $", overallrecoverypercent_normal195_100, "/pm", overallsigmanormal195_100, "$") print("overallrecoverypercent_normal195_1000 = $", overallrecoverypercent_normal195_1000, "/pm", overallsigmanormal195_1000, "$") print("#############################") print("binarypercent_22 = $", (N_totalnormal22/N_totalnormal)*100, "/pm", ((N_totalnormal22**(1/2))/N_totalnormal)*100, "$") print("binarypercent_195 = $", (N_totalnormal195/N_totalnormal)*100, "/pm", ((N_totalnormal195**(1/2))/N_totalnormal)*100, "$") print("binarypercent_03 = $", (N_totalnormal_03/N_totalnormal)*100, "/pm", ((N_totalnormal_03**(1/2))/N_totalnormal)*100, "$") print("binarypercent_1 = $", (N_totalnormal_1/N_totalnormal)*100, "/pm", ((N_totalnormal_1**(1/2))/N_totalnormal)*100, "$") print("binarypercent_10 = $", (N_totalnormal_10/N_totalnormal)*100, "/pm", ((N_totalnormal_10**(1/2))/N_totalnormal)*100, "$") print("binarypercent_30 = $", (N_totalnormal_30/N_totalnormal)*100, "/pm", ((N_totalnormal_30**(1/2))/N_totalnormal)*100, "$") print("binarypercent_100 = $", (N_totalnormal_100/N_totalnormal)*100, "/pm", ((N_totalnormal_100**(1/2))/N_totalnormal)*100, "$") print("binarypercent_1000 = $", (N_totalnormal_1000/N_totalnormal)*100, "/pm", ((N_totalnormal_1000**(1/2))/N_totalnormal)*100, "$") print("observablepercent_03 = $", (N_totalobservablenormal_03/N_totalnormal_03)*100, "/pm", ((N_totalobservablenormal_03**(1/2))/N_totalnormal_03)*100, "$") print("observablepercent_1 = $", (N_totalobservablenormal_1/N_totalnormal_1)*100, "/pm", ((N_totalobservablenormal_1**(1/2))/N_totalnormal_1)*100, "$") print("observablepercent_10 = $", (N_totalobservablenormal_10/N_totalnormal_10)*100, "/pm", ((N_totalobservablenormal_10**(1/2))/N_totalnormal_10)*100, "$") print("observablepercent_30 = $", (N_totalobservablenormal_30/N_totalnormal_30)*100, "/pm", ((N_totalobservablenormal_30**(1/2))/N_totalnormal_30)*100, "$") print("observablepercent_100 = $", (N_totalobservablenormal_100/N_totalnormal_100)*100, "/pm", ((N_totalobservablenormal_100**(1/2))/N_totalnormal_100)*100, "$") print("observablepercent_1000 = $", (N_totalobservablenormal_1000/N_totalnormal_1000)*100, "/pm", ((N_totalobservablenormal_1000**(1/2))/N_totalnormal_1000)*100, "$") print("observablepercent = $", (N_totalobservablenormal/N_totalnormal)*100, "/pm", ((N_totalobservablenormal**(1/2))/N_totalnormal)*100, "$") print("observablepercent22 = $", (N_totalobservablenormal22/N_totalnormal22)*100, "/pm", ((N_totalobservablenormal22**(1/2))/N_totalnormal22)*100, "$") print("observablepercent195 = $", (N_totalobservablenormal195/N_totalnormal195)*100, "/pm", ((N_totalobservablenormal195**(1/2))/N_totalnormal195)*100, "$") for filefast_ in sorted(allFiles_fast): filename = filefast_[69:] #when file path no longer has /old in it, will be filefast_[65:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datfast = pd.read_csv(filefast_, sep = ',', header=2) PeriodIn = datfast['p'] # input period -- 'p' in data file ########################################################## datfast1 = pd.read_csv(filefast_, sep = ',', header=0, nrows=1) N_tri = datfast1["NstarsTRILEGAL"][0] Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datfast["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datfast['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datfast['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datfast.loc[PeriodOut != -999].index observable_03 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datfast.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datfast.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datfast.loc[PeriodIn <= 0.3].index P1 = datfast.loc[PeriodIn <= 1].index P10 = datfast.loc[PeriodIn <= 10].index P30 = datfast.loc[PeriodIn <= 30].index P100 = datfast.loc[PeriodIn <= 100].index P1000 = datfast.loc[PeriodIn <= 1000].index P_22 = datfast.loc[appMagMean <= 22.].index P03_22 = datfast.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datfast.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datfast.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datfast.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datfast.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datfast.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datfast.loc[appMagMean <= 19.5].index P03_195 = datfast.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datfast.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datfast.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datfast.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datfast.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datfast.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalfast_array.append(float(N_all)) N_totalobservablefast_array.append(float(N_obs)) N_totalrecoverablefast_array.append(float(N_rec)) N_totalfast_array_03.append(float(N_all03)) N_totalobservablefast_array_03.append(float(N_obs03)) N_totalrecoverablefast_array_03.append(float(N_rec03)) N_totalfast_array_1.append(float(N_all1)) N_totalobservablefast_array_1.append(float(N_obs1)) N_totalrecoverablefast_array_1.append(float(N_rec1)) N_totalfast_array_10.append(float(N_all10)) N_totalobservablefast_array_10.append(float(N_obs10)) N_totalrecoverablefast_array_10.append(float(N_rec10)) N_totalfast_array_30.append(float(N_all30)) N_totalobservablefast_array_30.append(float(N_obs30)) N_totalrecoverablefast_array_30.append(float(N_rec30)) N_totalfast_array_100.append(float(N_all100)) N_totalobservablefast_array_100.append(float(N_obs100)) N_totalrecoverablefast_array_100.append(float(N_rec100)) N_totalfast_array_1000.append(float(N_all1000)) N_totalobservablefast_array_1000.append(float(N_obs1000)) N_totalrecoverablefast_array_1000.append(float(N_rec1000)) N_totalfast22_array.append(float(N_all_22)) N_totalobservablefast22_array.append(float(N_obs_22)) N_totalrecoverablefast22_array.append(float(N_rec_22)) N_totalfast22_array_03.append(float(N_all03_22)) N_totalobservablefast22_array_03.append(float(N_obs03_22)) N_totalrecoverablefast22_array_03.append(float(N_rec03_22)) N_totalfast22_array_1.append(float(N_all1_22)) N_totalobservablefast22_array_1.append(float(N_obs1_22)) N_totalrecoverablefast22_array_1.append(float(N_rec1_22)) N_totalfast22_array_10.append(float(N_all10_22)) N_totalobservablefast22_array_10.append(float(N_obs10_22)) N_totalrecoverablefast22_array_10.append(float(N_rec10_22)) N_totalfast22_array_30.append(float(N_all30_22)) N_totalobservablefast22_array_30.append(float(N_obs30_22)) N_totalrecoverablefast22_array_30.append(float(N_rec30_22)) N_totalfast22_array_100.append(float(N_all100_22)) N_totalobservablefast22_array_100.append(float(N_obs100_22)) N_totalrecoverablefast22_array_100.append(float(N_rec100_22)) N_totalfast22_array_1000.append(float(N_all1000_22)) N_totalobservablefast22_array_1000.append(float(N_obs1000_22)) N_totalrecoverablefast22_array_1000.append(float(N_rec1000_22)) N_totalfast195_array.append(float(N_all_195)) N_totalobservablefast195_array.append(float(N_obs_195)) N_totalrecoverablefast195_array.append(float(N_rec_195)) N_totalfast195_array_03.append(float(N_all03_195)) N_totalobservablefast195_array_03.append(float(N_obs03_195)) N_totalrecoverablefast195_array_03.append(float(N_rec03_195)) N_totalfast195_array_1.append(float(N_all1_195)) N_totalobservablefast195_array_1.append(float(N_obs1_195)) N_totalrecoverablefast195_array_1.append(float(N_rec1_195)) N_totalfast195_array_10.append(float(N_all10_195)) N_totalobservablefast195_array_10.append(float(N_obs10_195)) N_totalrecoverablefast195_array_10.append(float(N_rec10_195)) N_totalfast195_array_30.append(float(N_all30_195)) N_totalobservablefast195_array_30.append(float(N_obs30_195)) N_totalrecoverablefast195_array_30.append(float(N_rec30_195)) N_totalfast195_array_100.append(float(N_all100_195)) N_totalobservablefast195_array_100.append(float(N_obs100_195)) N_totalrecoverablefast195_array_100.append(float(N_rec100_195)) N_totalfast195_array_1000.append(float(N_all1000_195)) N_totalobservablefast195_array_1000.append(float(N_obs1000_195)) N_totalrecoverablefast195_array_1000.append(float(N_rec1000_195)) N_totalfast = np.sum(N_totalfast_array) N_totalfast_03 = np.sum(N_totalfast_array_03) N_totalfast_1 = np.sum(N_totalfast_array_1) N_totalfast_10 = np.sum(N_totalfast_array_10) N_totalfast_30 = np.sum(N_totalfast_array_30) N_totalfast_100 = np.sum(N_totalfast_array_100) N_totalfast_1000 = np.sum(N_totalfast_array_1000) N_totalobservablefast = np.sum(N_totalobservablefast_array) N_totalobservablefast_03 = np.sum(N_totalobservablefast_array_03) N_totalobservablefast_1 = np.sum(N_totalobservablefast_array_1) N_totalobservablefast_10 = np.sum(N_totalobservablefast_array_10) N_totalobservablefast_30 = np.sum(N_totalobservablefast_array_30) N_totalobservablefast_100 = np.sum(N_totalobservablefast_array_100) N_totalobservablefast_1000 = np.sum(N_totalobservablefast_array_1000) N_totalrecoverablefast = np.sum(N_totalrecoverablefast_array) N_totalrecoverablefast_03 = np.sum(N_totalrecoverablefast_array_03) N_totalrecoverablefast_1 = np.sum(N_totalrecoverablefast_array_1) N_totalrecoverablefast_10 = np.sum(N_totalrecoverablefast_array_10) N_totalrecoverablefast_30 = np.sum(N_totalrecoverablefast_array_30) N_totalrecoverablefast_100 = np.sum(N_totalrecoverablefast_array_100) N_totalrecoverablefast_1000 = np.sum(N_totalrecoverablefast_array_1000) N_totalfast22 = np.sum(N_totalfast22_array) N_totalfast22_03 = np.sum(N_totalfast22_array_03) N_totalfast22_1 = np.sum(N_totalfast22_array_1) N_totalfast22_10 = np.sum(N_totalfast22_array_10) N_totalfast22_30 = np.sum(N_totalfast22_array_30) N_totalfast22_100 = np.sum(N_totalfast22_array_100) N_totalfast22_1000 = np.sum(N_totalfast22_array_1000) N_totalobservablefast22 = np.sum(N_totalobservablefast22_array) N_totalobservablefast22_03 = np.sum(N_totalobservablefast22_array_03) N_totalobservablefast22_1 = np.sum(N_totalobservablefast22_array_1) N_totalobservablefast22_10 = np.sum(N_totalobservablefast22_array_10) N_totalobservablefast22_30 = np.sum(N_totalobservablefast22_array_30) N_totalobservablefast22_100 = np.sum(N_totalobservablefast22_array_100) N_totalobservablefast22_1000 = np.sum(N_totalobservablefast22_array_1000) N_totalrecoverablefast22 = np.sum(N_totalrecoverablefast22_array) N_totalrecoverablefast22_03 = np.sum(N_totalrecoverablefast22_array_03) N_totalrecoverablefast22_1 = np.sum(N_totalrecoverablefast22_array_1) N_totalrecoverablefast22_10 = np.sum(N_totalrecoverablefast22_array_10) N_totalrecoverablefast22_30 = np.sum(N_totalrecoverablefast22_array_30) N_totalrecoverablefast22_100 = np.sum(N_totalrecoverablefast22_array_100) N_totalrecoverablefast22_1000 = np.sum(N_totalrecoverablefast22_array_1000) N_totalfast195 = np.sum(N_totalfast195_array) N_totalfast195_03 = np.sum(N_totalfast195_array_03) N_totalfast195_1 = np.sum(N_totalfast195_array_1) N_totalfast195_10 = np.sum(N_totalfast195_array_10) N_totalfast195_30 = np.sum(N_totalfast195_array_30) N_totalfast195_100 = np.sum(N_totalfast195_array_100) N_totalfast195_1000 = np.sum(N_totalfast195_array_1000) N_totalobservablefast195 = np.sum(N_totalobservablefast195_array) N_totalobservablefast195_03 = np.sum(N_totalobservablefast195_array_03) N_totalobservablefast195_1 = np.sum(N_totalobservablefast195_array_1) N_totalobservablefast195_10 = np.sum(N_totalobservablefast195_array_10) N_totalobservablefast195_30 = np.sum(N_totalobservablefast195_array_30) N_totalobservablefast195_100 = np.sum(N_totalobservablefast195_array_100) N_totalobservablefast195_1000 = np.sum(N_totalobservablefast195_array_1000) N_totalrecoverablefast195 = np.sum(N_totalrecoverablefast195_array) N_totalrecoverablefast195_03 = np.sum(N_totalrecoverablefast195_array_03) N_totalrecoverablefast195_1 = np.sum(N_totalrecoverablefast195_array_1) N_totalrecoverablefast195_10 = np.sum(N_totalrecoverablefast195_array_10) N_totalrecoverablefast195_30 = np.sum(N_totalrecoverablefast195_array_30) N_totalrecoverablefast195_100 = np.sum(N_totalrecoverablefast195_array_100) N_totalrecoverablefast195_1000 = np.sum(N_totalrecoverablefast195_array_1000) wholerecoverypercent_fast = (N_totalrecoverablefast/N_totalobservablefast)*100 wholerecoverypercent_fast_03 = (N_totalrecoverablefast_03/N_totalobservablefast_03)*100 wholerecoverypercent_fast_1 = (N_totalrecoverablefast_1/N_totalobservablefast_1)*100 wholerecoverypercent_fast_10 = (N_totalrecoverablefast_10/N_totalobservablefast_10)*100 wholerecoverypercent_fast_30 = (N_totalrecoverablefast_30/N_totalobservablefast_30)*100 wholerecoverypercent_fast_100 = (N_totalrecoverablefast_100/N_totalobservablefast_100)*100 wholerecoverypercent_fast_1000 = (N_totalrecoverablefast_1000/N_totalobservablefast_1000)*100 sigmafast = ((N_totalrecoverablefast**(1/2))/N_totalobservablefast)*100 sigmafast_03 = ((N_totalrecoverablefast_03**(1/2))/N_totalobservablefast_03)*100 sigmafast_1 = ((N_totalrecoverablefast_1**(1/2))/N_totalobservablefast_1)*100 sigmafast_10 = ((N_totalrecoverablefast_10**(1/2))/N_totalobservablefast_10)*100 sigmafast_30 = ((N_totalrecoverablefast_30**(1/2))/N_totalobservablefast_30)*100 sigmafast_100 = ((N_totalrecoverablefast_100**(1/2))/N_totalobservablefast_100)*100 sigmafast_1000 = ((N_totalrecoverablefast_1000**(1/2))/N_totalobservablefast_1000)*100 overallrecoverypercent_fast = (N_totalrecoverablefast/N_totalfast)*100 overallrecoverypercent_fast_03 = (N_totalrecoverablefast_03/N_totalfast_03)*100 overallrecoverypercent_fast_1 = (N_totalrecoverablefast_1/N_totalfast_1)*100 overallrecoverypercent_fast_10 = (N_totalrecoverablefast_10/N_totalfast_10)*100 overallrecoverypercent_fast_30 = (N_totalrecoverablefast_30/N_totalfast_30)*100 overallrecoverypercent_fast_100 = (N_totalrecoverablefast_100/N_totalfast_100)*100 overallrecoverypercent_fast_1000 = (N_totalrecoverablefast_1000/N_totalfast_1000)*100 overallsigmafast = ((N_totalrecoverablefast**(1/2))/N_totalfast)*100 overallsigmafast_03 = ((N_totalrecoverablefast_03**(1/2))/N_totalfast_03)*100 overallsigmafast_1 = ((N_totalrecoverablefast_1**(1/2))/N_totalfast_1)*100 overallsigmafast_10 = ((N_totalrecoverablefast_10**(1/2))/N_totalfast_10)*100 overallsigmafast_30 = ((N_totalrecoverablefast_30**(1/2))/N_totalfast_30)*100 overallsigmafast_100 = ((N_totalrecoverablefast_100**(1/2))/N_totalfast_100)*100 overallsigmafast_1000 = ((N_totalrecoverablefast_1000**(1/2))/N_totalfast_1000)*100 wholerecoverypercent_fast22 = (N_totalrecoverablefast22/N_totalobservablefast22)*100 wholerecoverypercent_fast22_03 = (N_totalrecoverablefast22_03/N_totalobservablefast22_03)*100 wholerecoverypercent_fast22_1 = (N_totalrecoverablefast22_1/N_totalobservablefast22_1)*100 wholerecoverypercent_fast22_10 = (N_totalrecoverablefast22_10/N_totalobservablefast22_10)*100 wholerecoverypercent_fast22_30 = (N_totalrecoverablefast22_30/N_totalobservablefast22_30)*100 wholerecoverypercent_fast22_100 = (N_totalrecoverablefast22_100/N_totalobservablefast22_100)*100 wholerecoverypercent_fast22_1000 = (N_totalrecoverablefast22_1000/N_totalobservablefast22_1000)*100 sigmafast22 = ((N_totalrecoverablefast22**(1/2))/N_totalobservablefast22)*100 sigmafast22_03 = ((N_totalrecoverablefast22_03**(1/2))/N_totalobservablefast22_03)*100 sigmafast22_1 = ((N_totalrecoverablefast22_1**(1/2))/N_totalobservablefast22_1)*100 sigmafast22_10 = ((N_totalrecoverablefast22_10**(1/2))/N_totalobservablefast22_10)*100 sigmafast22_30 = ((N_totalrecoverablefast22_30**(1/2))/N_totalobservablefast22_30)*100 sigmafast22_100 = ((N_totalrecoverablefast22_100**(1/2))/N_totalobservablefast22_100)*100 sigmafast22_1000 = ((N_totalrecoverablefast22_1000**(1/2))/N_totalobservablefast22_1000)*100 overallrecoverypercent_fast22 = (N_totalrecoverablefast22/N_totalfast22)*100 overallrecoverypercent_fast22_03 = (N_totalrecoverablefast22_03/N_totalfast22_03)*100 overallrecoverypercent_fast22_1 = (N_totalrecoverablefast22_1/N_totalfast22_1)*100 overallrecoverypercent_fast22_10 = (N_totalrecoverablefast22_10/N_totalfast22_10)*100 overallrecoverypercent_fast22_30 = (N_totalrecoverablefast22_30/N_totalfast22_30)*100 overallrecoverypercent_fast22_100 = (N_totalrecoverablefast22_100/N_totalfast22_100)*100 overallrecoverypercent_fast22_1000 = (N_totalrecoverablefast22_1000/N_totalfast22_1000)*100 overallsigmafast22 = ((N_totalrecoverablefast22**(1/2))/N_totalfast22)*100 overallsigmafast22_03 = ((N_totalrecoverablefast22_03**(1/2))/N_totalfast22_03)*100 overallsigmafast22_1 = ((N_totalrecoverablefast22_1**(1/2))/N_totalfast22_1)*100 overallsigmafast22_10 = ((N_totalrecoverablefast22_10**(1/2))/N_totalfast22_10)*100 overallsigmafast22_30 = ((N_totalrecoverablefast22_30**(1/2))/N_totalfast22_30)*100 overallsigmafast22_100 = ((N_totalrecoverablefast22_100**(1/2))/N_totalfast22_100)*100 overallsigmafast22_1000 = ((N_totalrecoverablefast22_1000**(1/2))/N_totalfast22_1000)*100 wholerecoverypercent_fast195 = (N_totalrecoverablefast195/N_totalobservablefast195)*100 wholerecoverypercent_fast195_03 = (N_totalrecoverablefast195_03/N_totalobservablefast195_03)*100 wholerecoverypercent_fast195_1 = (N_totalrecoverablefast195_1/N_totalobservablefast195_1)*100 wholerecoverypercent_fast195_10 = (N_totalrecoverablefast195_10/N_totalobservablefast195_10)*100 wholerecoverypercent_fast195_30 = (N_totalrecoverablefast195_30/N_totalobservablefast195_30)*100 wholerecoverypercent_fast195_100 = (N_totalrecoverablefast195_100/N_totalobservablefast195_100)*100 wholerecoverypercent_fast195_1000 = (N_totalrecoverablefast195_1000/N_totalobservablefast195_1000)*100 sigmafast195 = ((N_totalrecoverablefast195**(1/2))/N_totalobservablefast195)*100 sigmafast195_03 = ((N_totalrecoverablefast195_03**(1/2))/N_totalobservablefast195_03)*100 sigmafast195_1 = ((N_totalrecoverablefast195_1**(1/2))/N_totalobservablefast195_1)*100 sigmafast195_10 = ((N_totalrecoverablefast195_10**(1/2))/N_totalobservablefast195_10)*100 sigmafast195_30 = ((N_totalrecoverablefast195_30**(1/2))/N_totalobservablefast195_30)*100 sigmafast195_100 = ((N_totalrecoverablefast195_100**(1/2))/N_totalobservablefast195_100)*100 sigmafast195_1000 = ((N_totalrecoverablefast195_1000**(1/2))/N_totalobservablefast195_1000)*100 overallrecoverypercent_fast195 = (N_totalrecoverablefast195/N_totalfast195)*100 overallrecoverypercent_fast195_03 = (N_totalrecoverablefast195_03/N_totalfast195_03)*100 overallrecoverypercent_fast195_1 = (N_totalrecoverablefast195_1/N_totalfast195_1)*100 overallrecoverypercent_fast195_10 = (N_totalrecoverablefast195_10/N_totalfast195_10)*100 overallrecoverypercent_fast195_30 = (N_totalrecoverablefast195_30/N_totalfast195_30)*100 overallrecoverypercent_fast195_100 = (N_totalrecoverablefast195_100/N_totalfast195_100)*100 overallrecoverypercent_fast195_1000 = (N_totalrecoverablefast195_1000/N_totalfast195_1000)*100 overallsigmafast195 = ((N_totalrecoverablefast195**(1/2))/N_totalfast195)*100 overallsigmafast195_03 = ((N_totalrecoverablefast195_03**(1/2))/N_totalfast195_03)*100 overallsigmafast195_1 = ((N_totalrecoverablefast195_1**(1/2))/N_totalfast195_1)*100 overallsigmafast195_10 = ((N_totalrecoverablefast195_10**(1/2))/N_totalfast195_10)*100 overallsigmafast195_30 = ((N_totalrecoverablefast195_30**(1/2))/N_totalfast195_30)*100 overallsigmafast195_100 = ((N_totalrecoverablefast195_100**(1/2))/N_totalfast195_100)*100 overallsigmafast195_1000 = ((N_totalrecoverablefast195_1000**(1/2))/N_totalfast195_1000)*100\ print("N_totalfast = ", N_totalfast, "and in log = ", np.log10(N_totalfast), "**** N_totalobservablefast = ", N_totalobservablefast, "and in log = ", np.log10(N_totalobservablefast), "**** N_totalrecoverablefast = ", N_totalrecoverablefast, "and in log = ", np.log10(N_totalrecoverablefast)) print("N_totalfast_03 = ", N_totalfast_03, "and in log = ", np.log10(N_totalfast_03), "**** N_totalobservablefast_03 = ", N_totalobservablefast_03, "and in log = ", np.log10(N_totalobservablefast_03), "**** N_totalrecoverablefast_03 = ", N_totalrecoverablefast_03, "and in log = ", np.log10(N_totalrecoverablefast_03)) print("N_totalfast_1 = ", N_totalfast_1, "and in log = ", np.log10(N_totalfast_1), "**** N_totalobservablefast_1 = ", N_totalobservablefast_1, "and in log = ", np.log10(N_totalobservablefast_1), "**** N_totalrecoverablefast_1 = ", N_totalrecoverablefast_1, "and in log = ", np.log10(N_totalrecoverablefast_1)) print("N_totalfast_10 = ", N_totalfast_10, "and in log = ", np.log10(N_totalfast_10), "**** N_totalobservablefast_10 = ", N_totalobservablefast_10, "and in log = ", np.log10(N_totalobservablefast_10), "**** N_totalrecoverablefast_10 = ", N_totalrecoverablefast_10, "and in log = ", np.log10(N_totalrecoverablefast_10)) print("N_totalfast_30 = ", N_totalfast_30, "and in log = ", np.log10(N_totalfast_30), "**** N_totalobservablefast_30 = ", N_totalobservablefast_30, "and in log = ", np.log10(N_totalobservablefast_30), "**** N_totalrecoverablefast_30 = ", N_totalrecoverablefast_30, "and in log = ", np.log10(N_totalrecoverablefast_30)) print("N_totalfast_100 = ", N_totalfast_100, "and in log = ", np.log10(N_totalfast_100), "**** N_totalobservablefast_100 = ", N_totalobservablefast_100, "and in log = ", np.log10(N_totalobservablefast_100), "**** N_totalrecoverablefast_100 = ", N_totalrecoverablefast_100, "and in log = ", np.log10(N_totalrecoverablefast_100)) print("N_totalfast_1000 = ", N_totalfast_1000, "and in log = ", np.log10(N_totalfast_1000), "**** N_totalobservablefast_1000 = ", N_totalobservablefast_1000, "and in log = ", np.log10(N_totalobservablefast_1000), "**** N_totalrecoverablefast_1000 = ", N_totalrecoverablefast_1000, "and in log = ", np.log10(N_totalrecoverablefast_1000)) print("********************************") print("wholerecoverypercent_fast = $", wholerecoverypercent_fast, "/pm", sigmafast, "$") print("wholerecoverypercent_fast_03 = $", wholerecoverypercent_fast_03, "/pm", sigmafast_03, "$") print("wholerecoverypercent_fast_1 = $", wholerecoverypercent_fast_1, "/pm", sigmafast_1, "$") print("wholerecoverypercent_fast_10 = $", wholerecoverypercent_fast_10, "/pm", sigmafast_10, "$") print("wholerecoverypercent_fast_30 = $", wholerecoverypercent_fast_30, "/pm", sigmafast_30, "$") print("wholerecoverypercent_fast_100 = $", wholerecoverypercent_fast_100, "/pm", sigmafast_100, "$") print("wholerecoverypercent_fast_1000 = $", wholerecoverypercent_fast_1000, "/pm", sigmafast_1000, "$") print("********************************") print("overallrecoverypercent_fast = $", overallrecoverypercent_fast, "/pm", overallsigmafast, "$") print("overallrecoverypercent_fast_03 = $", overallrecoverypercent_fast_03, "/pm", overallsigmafast_03, "$") print("overallrecoverypercent_fast_1 = $", overallrecoverypercent_fast_1, "/pm", overallsigmafast_1, "$") print("overallrecoverypercent_fast_10 = $", overallrecoverypercent_fast_10, "/pm", overallsigmafast_10, "$") print("overallrecoverypercent_fast_30 = $", overallrecoverypercent_fast_30, "/pm", overallsigmafast_30, "$") print("overallrecoverypercent_fast_100 = $", overallrecoverypercent_fast_100, "/pm", overallsigmafast_100, "$") print("overallrecoverypercent_fast_1000 = $", overallrecoverypercent_fast_1000, "/pm", overallsigmafast_1000, "$") print("################################") print("N_totalfast22 = ", N_totalfast22, "and in log = ", np.log10(N_totalfast22), "**** N_totalobservablefast22 = ", N_totalobservablefast22, "and in log = ", np.log10(N_totalobservablefast22), "**** N_totalrecoverablefast22 = ", N_totalrecoverablefast22, "and in log = ", np.log10(N_totalrecoverablefast22)) print("N_totalfast22_03 = ", N_totalfast22_03, "and in log = ", np.log10(N_totalfast22_03), "**** N_totalobservablefast22_03 = ", N_totalobservablefast22_03, "and in log = ", np.log10(N_totalobservablefast22_03), "**** N_totalrecoverablefast22_03 = ", N_totalrecoverablefast22_03, "and in log = ", np.log10(N_totalrecoverablefast22_03)) print("N_totalfast22_1 = ", N_totalfast22_1, "and in log = ", np.log10(N_totalfast22_1), "**** N_totalobservablefast22_1 = ", N_totalobservablefast22_1, "and in log = ", np.log10(N_totalobservablefast22_1), "**** N_totalrecoverablefast22_1 = ", N_totalrecoverablefast22_1, "and in log = ", np.log10(N_totalrecoverablefast22_1)) print("N_totalfast22_10 = ", N_totalfast22_10, "and in log = ", np.log10(N_totalfast22_10), "**** N_totalobservablefast22_10 = ", N_totalobservablefast22_10, "and in log = ", np.log10(N_totalobservablefast22_10), "**** N_totalrecoverablefast22_10 = ", N_totalrecoverablefast22_10, "and in log = ", np.log10(N_totalrecoverablefast22_10)) print("N_totalfast22_30 = ", N_totalfast22_30, "and in log = ", np.log10(N_totalfast22_30), "**** N_totalobservablefast22_30 = ", N_totalobservablefast22_30, "and in log = ", np.log10(N_totalobservablefast22_30), "**** N_totalrecoverablefast22_30 = ", N_totalrecoverablefast22_30, "and in log = ", np.log10(N_totalrecoverablefast22_30)) print("N_totalfast22_100 = ", N_totalfast22_100, "and in log = ", np.log10(N_totalfast22_100), "**** N_totalobservablefast22_100 = ", N_totalobservablefast22_100, "and in log = ", np.log10(N_totalobservablefast22_100), "**** N_totalrecoverablefast22_100 = ", N_totalrecoverablefast22_100, "and in log = ", np.log10(N_totalrecoverablefast22_100)) print("N_totalfast22_1000 = ", N_totalfast22_1000, "and in log = ", np.log10(N_totalfast22_1000), "**** N_totalobservablefast22_1000 = ", N_totalobservablefast22_1000, "and in log = ", np.log10(N_totalobservablefast22_1000), "**** N_totalrecoverablefast22_1000 = ", N_totalrecoverablefast22_1000, "and in log = ", np.log10(N_totalrecoverablefast22_1000)) print("********************************") print("wholerecoverypercent_fast22 = $", wholerecoverypercent_fast22, "/pm", sigmafast22, "$") print("wholerecoverypercent_fast22_03 = $", wholerecoverypercent_fast22_03, "/pm", sigmafast22_03, "$") print("wholerecoverypercent_fast22_1 = $", wholerecoverypercent_fast22_1, "/pm", sigmafast22_1, "$") print("wholerecoverypercent_fast22_10 = $", wholerecoverypercent_fast22_10, "/pm", sigmafast22_10, "$") print("wholerecoverypercent_fast22_30 = $", wholerecoverypercent_fast22_30, "/pm", sigmafast22_30, "$") print("wholerecoverypercent_fast22_100 = $", wholerecoverypercent_fast22_100, "/pm", sigmafast22_100, "$") print("wholerecoverypercent_fast22_1000 = $", wholerecoverypercent_fast22_1000, "/pm", sigmafast22_1000, "$") print("********************************") print("overallrecoverypercent_fast22 = $", overallrecoverypercent_fast22, "/pm", overallsigmafast22, "$") print("overallrecoverypercent_fast22_03 = $", overallrecoverypercent_fast22_03, "/pm", overallsigmafast22_03, "$") print("overallrecoverypercent_fast22_1 = $", overallrecoverypercent_fast22_1, "/pm", overallsigmafast22_1, "$") print("overallrecoverypercent_fast22_10 = $", overallrecoverypercent_fast22_10, "/pm", overallsigmafast22_10, "$") print("overallrecoverypercent_fast22_30 = $", overallrecoverypercent_fast22_30, "/pm", overallsigmafast22_30, "$") print("overallrecoverypercent_fast22_100 = $", overallrecoverypercent_fast22_100, "/pm", overallsigmafast22_100, "$") print("overallrecoverypercent_fast22_1000 = $", overallrecoverypercent_fast22_1000, "/pm", overallsigmafast22_1000, "$") print("###############################") print("N_totalfast195 = ", N_totalfast195, "and in log = ", np.log10(N_totalfast195), "**** N_totalobservablefast195 = ", N_totalobservablefast195, "and in log = ", np.log10(N_totalobservablefast195), "**** N_totalrecoverablefast195 = ", N_totalrecoverablefast195, "and in log = ", np.log10(N_totalrecoverablefast195)) print("N_totalfast195_03 = ", N_totalfast195_03, "and in log = ", np.log10(N_totalfast195_03), "**** N_totalobservablefast195_03 = ", N_totalobservablefast195_03, "and in log = ", np.log10(N_totalobservablefast195_03), "**** N_totalrecoverablefast195_03 = ", N_totalrecoverablefast195_03, "and in log = ", np.log10(N_totalrecoverablefast195_03)) print("N_totalfast195_1 = ", N_totalfast195_1, "and in log = ", np.log10(N_totalfast195_1), "**** N_totalobservablefast195_1 = ", N_totalobservablefast195_1, "and in log = ", np.log10(N_totalobservablefast195_1), "**** N_totalrecoverablefast195_1 = ", N_totalrecoverablefast195_1, "and in log = ", np.log10(N_totalrecoverablefast195_1)) print("N_totalfast195_10 = ", N_totalfast195_10, "and in log = ", np.log10(N_totalfast195_10), "**** N_totalobservablefast195_10 = ", N_totalobservablefast195_10, "and in log = ", np.log10(N_totalobservablefast195_10), "**** N_totalrecoverablefast195_10 = ", N_totalrecoverablefast195_10, "and in log = ", np.log10(N_totalrecoverablefast195_10)) print("N_totalfast195_30 = ", N_totalfast195_30, "and in log = ", np.log10(N_totalfast195_30), "**** N_totalobservablefast195_30 = ", N_totalobservablefast195_30, "and in log = ", np.log10(N_totalobservablefast195_30), "**** N_totalrecoverablefast195_30 = ", N_totalrecoverablefast195_30, "and in log = ", np.log10(N_totalrecoverablefast195_30)) print("N_totalfast195_100 = ", N_totalfast195_100, "and in log = ", np.log10(N_totalfast195_100), "**** N_totalobservablefast195_100 = ", N_totalobservablefast195_100, "and in log = ", np.log10(N_totalobservablefast195_100), "**** N_totalrecoverablefast195_100 = ", N_totalrecoverablefast195_100, "and in log = ", np.log10(N_totalrecoverablefast195_100)) print("N_totalfast195_1000 = ", N_totalfast195_1000, "and in log = ", np.log10(N_totalfast195_1000), "**** N_totalobservablefast195_1000 = ", N_totalobservablefast195_1000, "and in log = ", np.log10(N_totalobservablefast195_1000), "**** N_totalrecoverablefast195_1000 = ", N_totalrecoverablefast195_1000, "and in log = ", np.log10(N_totalrecoverablefast195_1000)) print("********************************") print("wholerecoverypercent_fast195 = $", wholerecoverypercent_fast195, "/pm", sigmafast195, "$") print("wholerecoverypercent_fast195_03 = $", wholerecoverypercent_fast195_03, "/pm", sigmafast195_03, "$") print("wholerecoverypercent_fast195_1 = $", wholerecoverypercent_fast195_1, "/pm", sigmafast195_1, "$") print("wholerecoverypercent_fast195_10 = $", wholerecoverypercent_fast195_10, "/pm", sigmafast195_10, "$") print("wholerecoverypercent_fast195_30 = $", wholerecoverypercent_fast195_30, "/pm", sigmafast195_30, "$") print("wholerecoverypercent_fast195_100 = $", wholerecoverypercent_fast195_100, "/pm", sigmafast195_100, "$") print("wholerecoverypercent_fast195_1000 = $", wholerecoverypercent_fast195_1000, "/pm", sigmafast195_1000, "$") print("********************************") print("overallrecoverypercent_fast195 = $", overallrecoverypercent_fast195, "/pm", overallsigmafast195, "$") print("overallrecoverypercent_fast195_03 = $", overallrecoverypercent_fast195_03, "/pm", overallsigmafast195_03, "$") print("overallrecoverypercent_fast195_1 = $", overallrecoverypercent_fast195_1, "/pm", overallsigmafast195_1, "$") print("overallrecoverypercent_fast195_10 = $", overallrecoverypercent_fast195_10, "/pm", overallsigmafast195_10, "$") print("overallrecoverypercent_fast195_30 = $", overallrecoverypercent_fast195_30, "/pm", overallsigmafast195_30, "$") print("overallrecoverypercent_fast195_100 = $", overallrecoverypercent_fast195_100, "/pm", overallsigmafast195_100, "$") print("overallrecoverypercent_fast195_1000 = $", overallrecoverypercent_fast195_1000, "/pm", overallsigmafast195_1000, "$") print("#############################") print("binarypercent_22 = $", (N_totalfast22/N_totalfast)*100, "/pm", ((N_totalfast22**(1/2))/N_totalfast)*100, "$") print("binarypercent_195 = $", (N_totalfast195/N_totalfast)*100, "/pm", ((N_totalfast195**(1/2))/N_totalfast)*100, "$") print("binarypercent_03 = $", (N_totalfast_03/N_totalfast)*100, "/pm", ((N_totalfast_03**(1/2))/N_totalfast)*100, "$") print("binarypercent_1 = $", (N_totalfast_1/N_totalfast)*100, "/pm", ((N_totalfast_1**(1/2))/N_totalfast)*100, "$") print("binarypercent_10 = $", (N_totalfast_10/N_totalfast)*100, "/pm", ((N_totalfast_10**(1/2))/N_totalfast)*100, "$") print("binarypercent_30 = $", (N_totalfast_30/N_totalfast)*100, "/pm", ((N_totalfast_30**(1/2))/N_totalfast)*100, "$") print("binarypercent_100 = $", (N_totalfast_100/N_totalfast)*100, "/pm", ((N_totalfast_100**(1/2))/N_totalfast)*100, "$") print("binarypercent_1000 = $", (N_totalfast_1000/N_totalfast)*100, "/pm", ((N_totalfast_1000**(1/2))/N_totalfast)*100, "$") print("observablepercent_03 = $", (N_totalobservablefast_03/N_totalfast_03)*100, "/pm", ((N_totalobservablefast_03**(1/2))/N_totalfast_03)*100, "$") print("observablepercent_1 = $", (N_totalobservablefast_1/N_totalfast_1)*100, "/pm", ((N_totalobservablefast_1**(1/2))/N_totalfast_1)*100, "$") print("observablepercent_10 = $", (N_totalobservablefast_10/N_totalfast_10)*100, "/pm", ((N_totalobservablefast_10**(1/2))/N_totalfast_10)*100, "$") print("observablepercent_30 = $", (N_totalobservablefast_30/N_totalfast_30)*100, "/pm", ((N_totalobservablefast_30**(1/2))/N_totalfast_30)*100, "$") print("observablepercent_100 = $", (N_totalobservablefast_100/N_totalfast_100)*100, "/pm", ((N_totalobservablefast_100**(1/2))/N_totalfast_100)*100, "$") print("observablepercent_1000 = $", (N_totalobservablefast_1000/N_totalfast_1000)*100, "/pm", ((N_totalobservablefast_1000**(1/2))/N_totalfast_1000)*100, "$") print("observablepercent = $", (N_totalobservablefast/N_totalfast)*100, "/pm", ((N_totalobservablefast**(1/2))/N_totalfast)*100, "$") print("observablepercent22 = $", (N_totalobservablefast22/N_totalfast22)*100, "/pm", ((N_totalobservablefast22**(1/2))/N_totalfast22)*100, "$") print("observablepercent195 = $", (N_totalobservablefast195/N_totalfast195)*100, "/pm", ((N_totalobservablefast195**(1/2))/N_totalfast195)*100, "$") for fileobsDist_ in sorted(allFiles_obsDist): filename = fileobsDist_[77:] #when file path no longer has /old in it, will be fileobsDist_[73:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datobsDist = pd.read_csv(fileobsDist_, sep = ',', header=2) PeriodIn = datobsDist['p'] # input period -- 'p' in data file ########################################################## datobsDist1 = pd.read_csv(fileobsDist_, sep = ',', header=0, nrows=1) N_tri = datobsDist1["NstarsTRILEGAL"][0] Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datobsDist["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datobsDist['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datobsDist['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datobsDist.loc[PeriodOut != -999].index observable_03 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datobsDist.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datobsDist.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datobsDist.loc[PeriodIn <= 0.3].index P1 = datobsDist.loc[PeriodIn <= 1].index P10 = datobsDist.loc[PeriodIn <= 10].index P30 = datobsDist.loc[PeriodIn <= 30].index P100 = datobsDist.loc[PeriodIn <= 100].index P1000 = datobsDist.loc[PeriodIn <= 1000].index P_22 = datobsDist.loc[appMagMean <= 22.].index P03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datobsDist.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datobsDist.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datobsDist.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datobsDist.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datobsDist.loc[appMagMean <= 19.5].index P03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datobsDist.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datobsDist.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datobsDist.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datobsDist.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalobsDist_array.append(float(N_all)) N_totalobservableobsDist_array.append(float(N_obs)) N_totalrecoverableobsDist_array.append(float(N_rec)) N_totalobsDist_array_03.append(float(N_all03)) N_totalobservableobsDist_array_03.append(float(N_obs03)) N_totalrecoverableobsDist_array_03.append(float(N_rec03)) N_totalobsDist_array_1.append(float(N_all1)) N_totalobservableobsDist_array_1.append(float(N_obs1)) N_totalrecoverableobsDist_array_1.append(float(N_rec1)) N_totalobsDist_array_10.append(float(N_all10)) N_totalobservableobsDist_array_10.append(float(N_obs10)) N_totalrecoverableobsDist_array_10.append(float(N_rec10)) N_totalobsDist_array_30.append(float(N_all30)) N_totalobservableobsDist_array_30.append(float(N_obs30)) N_totalrecoverableobsDist_array_30.append(float(N_rec30)) N_totalobsDist_array_100.append(float(N_all100)) N_totalobservableobsDist_array_100.append(float(N_obs100)) N_totalrecoverableobsDist_array_100.append(float(N_rec100)) N_totalobsDist_array_1000.append(float(N_all1000)) N_totalobservableobsDist_array_1000.append(float(N_obs1000)) N_totalrecoverableobsDist_array_1000.append(float(N_rec1000)) N_totalobsDist22_array.append(float(N_all_22)) N_totalobservableobsDist22_array.append(float(N_obs_22)) N_totalrecoverableobsDist22_array.append(float(N_rec_22)) N_totalobsDist22_array_03.append(float(N_all03_22)) N_totalobservableobsDist22_array_03.append(float(N_obs03_22)) N_totalrecoverableobsDist22_array_03.append(float(N_rec03_22)) N_totalobsDist22_array_1.append(float(N_all1_22)) N_totalobservableobsDist22_array_1.append(float(N_obs1_22)) N_totalrecoverableobsDist22_array_1.append(float(N_rec1_22)) N_totalobsDist22_array_10.append(float(N_all10_22)) N_totalobservableobsDist22_array_10.append(float(N_obs10_22)) N_totalrecoverableobsDist22_array_10.append(float(N_rec10_22)) N_totalobsDist22_array_30.append(float(N_all30_22)) N_totalobservableobsDist22_array_30.append(float(N_obs30_22)) N_totalrecoverableobsDist22_array_30.append(float(N_rec30_22)) N_totalobsDist22_array_100.append(float(N_all100_22)) N_totalobservableobsDist22_array_100.append(float(N_obs100_22)) N_totalrecoverableobsDist22_array_100.append(float(N_rec100_22)) N_totalobsDist22_array_1000.append(float(N_all1000_22)) N_totalobservableobsDist22_array_1000.append(float(N_obs1000_22)) N_totalrecoverableobsDist22_array_1000.append(float(N_rec1000_22)) N_totalobsDist195_array.append(float(N_all_195)) N_totalobservableobsDist195_array.append(float(N_obs_195)) N_totalrecoverableobsDist195_array.append(float(N_rec_195)) N_totalobsDist195_array_03.append(float(N_all03_195)) N_totalobservableobsDist195_array_03.append(float(N_obs03_195)) N_totalrecoverableobsDist195_array_03.append(float(N_rec03_195)) N_totalobsDist195_array_1.append(float(N_all1_195)) N_totalobservableobsDist195_array_1.append(float(N_obs1_195)) N_totalrecoverableobsDist195_array_1.append(float(N_rec1_195)) N_totalobsDist195_array_10.append(float(N_all10_195)) N_totalobservableobsDist195_array_10.append(float(N_obs10_195)) N_totalrecoverableobsDist195_array_10.append(float(N_rec10_195)) N_totalobsDist195_array_30.append(float(N_all30_195)) N_totalobservableobsDist195_array_30.append(float(N_obs30_195)) N_totalrecoverableobsDist195_array_30.append(float(N_rec30_195)) N_totalobsDist195_array_100.append(float(N_all100_195)) N_totalobservableobsDist195_array_100.append(float(N_obs100_195)) N_totalrecoverableobsDist195_array_100.append(float(N_rec100_195)) N_totalobsDist195_array_1000.append(float(N_all1000_195)) N_totalobservableobsDist195_array_1000.append(float(N_obs1000_195)) N_totalrecoverableobsDist195_array_1000.append(float(N_rec1000_195)) N_totalobsDist = np.sum(N_totalobsDist_array) N_totalobsDist_03 = np.sum(N_totalobsDist_array_03) N_totalobsDist_1 =
np.sum(N_totalobsDist_array_1)
numpy.sum
"""a module that houses TOV solvers in the "standard" formulation """ __author__ = "<NAME> (<EMAIL>)" #------------------------------------------------- import numpy as np from scipy.integrate import odeint from scipy.special import hyp2f1 from universality.utils.units import (G, c2, Msun) #------------------------------------------------- #DEFAULT_MAX_DR = 1e5 ### maximum step size allowed within the integrator (in standard units, which should be in cm) DEFAULT_MAX_DR = 1e6 DEFAULT_MIN_DR = 1.0 ### the smallest step size we allow (in standard units, which should be cm) DEFAULT_GUESS_FRAC = 0.1 ### how much of the way to the vanishing pressure we guess via Newton's method DEFAULT_INITIAL_FRAC = 1e-3 ### the initial change in pressure we allow when setting the intial conditions DEFAULT_RTOL = 1e-4 DEFAULT_MXSTEP = 10000 #------------------------ TWOPI = 2*np.pi FOURPI = 2*TWOPI Gc2 = G/c2 #------------------------------------------------- ### Standard formulation of the TOV equations #------------------------------------------------- ### basic evolutionary equations def dmdr(r, epsc2): return FOURPI * r**2 * epsc2 def dmbdr(r, rho, m): return dmdr(r, rho) * (1 - 2*Gc2*m/r)**-0.5 def dpc2dr(r, pc2, m, epsc2): return - Gc2 * (epsc2 + pc2)*(m + FOURPI * r**3 * pc2)/(r * (r - 2*Gc2*m)) def detadr(r, pc2, m, eta, epsc2, cs2c2): invf = (1. - 2.*Gc2*m/r)**-1 A = 2. * invf * (1. - 3.*Gc2*m/r - TWOPI*Gc2*r**2 * (epsc2 + 3.*pc2)) B = invf * (6. - FOURPI*Gc2*r**2 * (epsc2 + pc2)*(3. + 1./cs2c2)) return -1.*(eta*(eta - 1.) + A*eta - B)/r def domegadr(r, pc2, m, omega, epsc2): P = FOURPI * Gc2 * r**3 * (epsc2 + pc2)/ (r - 2.*Gc2*m) return (P*(omega + 4.) - omega*(omega + 3.))/r #------------------------------------------------- # functions for values at the stellar surface #------------------------------------------------- def eta2lambda(r, m, eta): ### dimensionless tidal deformability C = Gc2*m/r # compactness fR = 1.-2.*C F = hyp2f1(3., 5., 6., 2.*C) # a hypergeometric function z = 2.*C dFdz = (5./(2.*z**6.)) * (z*(z*(z*(3.*z*(5. + z) - 110.) + 150.) - 60.) / (z - 1.)**3 + 60.*np.log(1. - z)) RdFdr = -2.*C*dFdz # log derivative of hypergeometric function k2el = 0.5*(eta - 2. - 4.*C/fR) / (RdFdr -F*(eta + 3. - 4.*C/fR)) # gravitoelectric quadrupole Love number return (2./3.)*(k2el/C**5) def omega2i(r, omega): ### moment of inertia return (omega/(3. + omega)) * r**3/(2.*Gc2) #------------------------------------------------- # initial conditions #------------------------------------------------- def initial_pc2(pc2i, frac): return (1. - frac)*pc2i ### assume a constant slope over a small change in the pressure def initial_r(pc2i, ec2i, frac): return (frac*pc2i / ( G * (ec2i + pc2i) * (ec2i/3. + pc2i) * TWOPI ) )**0.5 ### solve for the radius that corresponds to that small change def initial_m(r, ec2i): return FOURPI * r**3 * ec2i / 3. # gravitational mass def initial_mb(r, rhoi): return FOURPI * r**3 * rhoi / 3. # gravitational mass def initial_eta(r, pc2i, ec2i, cs2c2i): return 2. + FOURPI * Gc2 * r**2 * (9.*pc2i + 13.*ec2i + 3.*(pc2i+ec2i)/cs2c2i)/21. # intial perturbation for dimensionless tidal deformability def initial_omega(r, pc2i, ec2i): return 16.*np.pi * Gc2 * r**2 * (pc2i + ec2i)/5. # initial frame-dgragging function #------------------------------------------------- # central loop that solves the TOV equations given a set of coupled ODEs #------------------------------------------------- def engine( r, vec, eos, dvecdr_func, min_dr=DEFAULT_MIN_DR, max_dr=DEFAULT_MAX_DR, guess_frac=DEFAULT_GUESS_FRAC, initial_frac=DEFAULT_INITIAL_FRAC, rtol=DEFAULT_RTOL, mxstp=DEFAULT_MXSTEP, ): """integrate the TOV equations with central pressure "pc" and equation of state described by energy density "eps" and pressure "p" expects eos = (pressure, energy_density) """ vec = np.array(vec, dtype=float) while vec[0] > 0: ### continue until pressure vanishes vec0 = vec[:] # store the current location as the old location r0 = r ### estimate the radius at which this p will vanish via Newton's method r = r0 + max(min_dr, min(max_dr, guess_frac * abs(vec[0]/dvecdr_func(vec, r, eos)[0]))) ### integrate out until we hit that estimate vec[:] = odeint(dvecdr_func, vec0, (r0, r), args=(eos,), rtol=rtol, hmax=max_dr, mxstep=mxstep)[-1,:] ### retain only the last point ### return to client, who will then interpolate to find the surface ### interpolate to find stellar surface p = [vec0[0], vec[0]] # radius r = np.interp(0, p, [r0, r]) # the rest of the macro properties vals = [np.interp(0, p, [vec0[i], vec[i]]) for i in range(1, len(vec))] return r, vals #------------------------------------------------- ### the solver that yields all known macroscopic quantites MACRO_COLS = ['M', 'R', 'Lambda', 'I', 'Mb'] ### the column names for what we compute def dvecdr(vec, r, eos): pc2, m, eta, omega, mb = vec epsc2 = np.interp(pc2, eos[0], eos[1]) rho = np.interp(pc2, eos[0], eos[2]) cs2c2 = np.interp(pc2, eos[0], eos[3]) return \ dpc2dr(r, pc2, m, epsc2), \ dmdr(r, epsc2), \ detadr(r, pc2, m, eta, epsc2, cs2c2), \ domegadr(r, pc2, m, omega, epsc2), \ dmbdr(r, rho, m) def initial_condition(pc2i, eos, frac=DEFAULT_INITIAL_FRAC): """determines the initial conditions for a stellar model with central pressure pc this is done by analytically integrating the TOV equations over very small radii to avoid the divergence as r->0 """ ec2i = np.interp(pc2i, eos[0], eos[1]) rhoi = np.interp(pc2i, eos[0], eos[2]) cs2c2i = np.interp(pc2i, eos[0], eos[3]) pc2 = initial_pc2(pc2i, frac) r = initial_r(pc2i, ec2i, frac) m = initial_m(r, ec2i) mb = initial_mb(r, rhoi) eta = initial_eta(r, pc2i, ec2i, cs2c2i) omega = initial_omega(r, pc2i, ec2i) return r, (pc2, m, eta, omega, mb) def integrate( pc2i, eos, min_dr=DEFAULT_MIN_DR, max_dr=DEFAULT_MAX_DR, guess_frac=DEFAULT_GUESS_FRAC, initial_frac=DEFAULT_INITIAL_FRAC, rtol=DEFAULT_RTOL, ): """integrate the TOV equations with central pressure "pc" and equation of state described by energy density "eps" and pressure "p" expects eos = (pressure, energy_density, baryon_density, cs2c2) """ r, vec = initial_condition(pc2i, eos, frac=initial_frac) if vec[0] < 0: ### guarantee that we enter the loop raise RuntimeError('bad initial condition!') r, (m, eta, omega, mb) = engine( r, vec, eos, dvecdr, min_dr=min_dr, max_dr=max_dr, guess_frac=guess_frac, rtol=rtol, ) # compute tidal deformability l = eta2lambda(r, m, eta) # compute moment of inertia i = omega2i(r, omega) # convert to "standard" units m /= Msun ### reported in units of solar masses, not grams mb /= Msun r *= 1e-5 ### convert from cm to km i /= 1e45 ### normalize this to a common value but still in CGS return m, r, l, i, mb #------------------------------------------------- ### light-weight solver that only includes M and R MACRO_COLS_MR = ['M', 'R'] def dvecdr_MR(vec, r, eos): '''returns d(p, m)/dr expects: pressurec2, energy_densityc2 = eos ''' pc2, m = vec epsc2 = np.interp(pc2, eos[0], eos[1]) rho = np.interp(pc2, eos[0], eos[2]) return \ dpc2dr(r, pc2, m, epsc2), \ dmdr(r, epsc2) def initial_condition_MR(pc2i, eos, frac=DEFAULT_INITIAL_FRAC): """determines the initial conditions for a stellar model with central pressure pc this is done by analytically integrating the TOV equations over very small radii to avoid the divergence as r->0 """ ec2i = np.interp(pc2i, eos[0], eos[1]) rhoi = np.interp(pc2i, eos[0], eos[2]) pc2 = initial_pc2(pc2i, frac) r = initial_r(pc2i, ec2i, frac) m = initial_m(r, ec2i) return r, (pc2, m) def integrate_MR( pc2i, eos, min_dr=DEFAULT_MIN_DR, max_dr=DEFAULT_MAX_DR, guess_frac=DEFAULT_GUESS_FRAC, initial_frac=DEFAULT_INITIAL_FRAC, rtol=DEFAULT_RTOL, ): """integrate the TOV equations with central pressure "pc" and equation of state described by energy density "eps" and pressure "p" expects eos = (pressure, energy_density, baryon_density, cs2c2) """ r, vec = initial_condition_MR(pc2i, eos, frac=initial_frac) if vec[0] < 0: ### guarantee that we enter the loop raise RuntimeError('bad initial condition!') r, (m,) = engine( r, vec, eos, dvecdr_MR, min_dr=min_dr, max_dr=max_dr, guess_frac=guess_frac, rtol=rtol, ) # convert to "standard" units m /= Msun ### reported in units of solar masses, not grams r *= 1e-5 ### convert from cm to km return m, r #------------------------------------------------- ### light-weight solver that only includes M, R, and Lambda MACRO_COLS_MRLambda = ['M', 'R', 'Lambda'] def dvecdr_MRLambda(vec, r, eos): '''returns d(p, m)/dr expects: pressurec2, energy_densityc2 = eos ''' pc2, m, eta = vec epsc2 = np.interp(pc2, eos[0], eos[1]) rho =
np.interp(pc2, eos[0], eos[2])
numpy.interp
""" Tests functions in the spiketools module """ import numpy as np import pyret.spiketools as spk def test_binspikes(): # assert the proper indices are returned spike_times = [1.0, 2.0, 2.5, 3.0] dt = 0.01 bin_edges = np.arange(0, 3, dt) bspk = spk.binspikes(spike_times, bin_edges) assert np.allclose(np.where(bspk)[0], [100, 200, 250, 299]) # maximum absolute error is dt binned_times = bin_edges[np.where(bspk)] assert np.all(np.abs(binned_times - spike_times) <= dt) # test for no spikes assert np.allclose(spk.binspikes([], bin_edges), np.zeros_like(bin_edges)) def test_estfr(): T = 100 dt = 1e-2 # test an empty array bspk = np.zeros(T,) time = np.arange(0, 1, dt) fr = spk.estfr(bspk, time, sigma=0.01) assert np.allclose(fr, bspk) # test a single spike bspk[T // 2] = 1. fr = spk.estfr(bspk, time, sigma=0.01) assert np.isclose((fr.sum() * dt), bspk.sum()) def test_spiking_events(): np.random.seed(1234) # generate spike times spiketimes = np.array([0.1, 0.25, 0.5, 0.75, 0.9]) N = len(spiketimes) T = 50 jitter = 0.01 spikes = [] for trial_index in range(T): s = spiketimes + jitter * np.random.randn(N,) spikes.append(np.stack((s, trial_index * np.ones(N,)))) spikes = np.hstack(spikes).T # detect events t, psth, bspk, events = spk.detectevents(spikes) # correct number of events assert len(events) == N # test SpikingEvent class ev = events[0] assert isinstance(ev, spk.SpikingEvent) # mean jitter should be close to the selected amount of jitter mean_jitter = np.mean([e.jitter() for e in events]) assert np.allclose(mean_jitter, jitter, atol=1e-3) # time to first spike (TTFS) should match the only spike in each trial assert np.allclose(ev.spikes[:, 0], ev.ttfs()) # one spike per trial mu, sigma = ev.stats() assert mu == 1 assert sigma == 0 # test sorting sorted_spks = ev.sort() sorted_spks = sorted_spks[
np.argsort(sorted_spks[:, 1])
numpy.argsort
#################################################################### from __future__ import absolute_import from __future__ import division from __future__ import print_function import networkx as networkx import numpy as numpy import scipy as scipy import scipy.integrate import types import random ################################################################################################################################################# # Main stochastic model class SEIRSNetworkModel(): """ A class to simulate the SEIRS Stochastic Network Model =================================================== Params: G Network adjacency matrix (numpy array) or Networkx graph object. beta Rate of transmission (exposure) (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals (optional) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth p Probability of interaction outside adjacent nodes Q Quarantine adjacency matrix (numpy array) or Networkx graph object. beta_D Rate of transmission (exposure) for individuals with detected infections (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals with detected infections (optional) sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals phi_E Rate of contact tracing testing for exposed individuals phi_I Rate of contact tracing testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interaction outside adjacent nodes initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (all remaining nodes initialized susceptible) p_extern Probability of spontaneous infection p_periodic Prob of period test period Period for resting batch True - periodic testing done in batches of p_periodic*numNodes new people min_time : minimum time period to pass between testing same person twice count_non_random : count tests apart from random routine tests policy: policy function """ def policy(self): pass def __init__(self, G, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, beta_local=None, p=0, Q=None, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, beta_D_local=None, theta_E=0, theta_I=0, phi_E=0, phi_I=0, psi_E=1, psi_I=1, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0, node_groups=None, store_Xseries=False, p_extern=0, p_periodic=0, period=1, batch=True, min_time=1, count_non_random=False, policy=None, test_recovered=False, initT=0): self.has_policy = False self.verbose = False if policy: self.has_policy = True policy.__name__ = "policy" self.policy = types.MethodType(policy, self) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Adjacency matrix: self.update_G(G) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Quarantine Adjacency matrix: if (Q is None): Q = G # If no Q graph is provided, use G in its place self.update_Q(Q) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.parameters = {'beta': beta, 'sigma': sigma, 'gamma': gamma, 'xi': xi, 'mu_I': mu_I, 'mu_0': mu_0, 'nu': nu, 'beta_D': beta_D, 'sigma_D': sigma_D, 'gamma_D': gamma_D, 'mu_D': mu_D, 'beta_local': beta_local, 'beta_D_local': beta_D_local, 'p': p, 'q': q, 'theta_E': theta_E, 'theta_I': theta_I, 'phi_E': phi_E, 'phi_I': phi_I, 'psi_E': psi_E, 'psi_I': psi_I, 'p_extern': p_extern, 'p_periodic': p_periodic, "period": period, "batch": batch, "min_time": min_time, "count_non_random": count_non_random, "test_recovered": test_recovered} self.init_parameters = dict(self.parameters) self.node_groups = node_groups self.update_parameters() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Each node can undergo up to 4 transitions (sans vitality/re-susceptibility returns to S state), # so there are ~numNodes*4 events/timesteps expected; initialize numNodes*5 timestep slots to start # (will be expanded during run if needed) self.tseries = numpy.zeros(5 * self.numNodes) self.numE = numpy.zeros(5 * self.numNodes) self.numI = numpy.zeros(5 * self.numNodes) self.numD_E = numpy.zeros(5 * self.numNodes) self.numD_I = numpy.zeros(5 * self.numNodes) self.numR = numpy.zeros(5 * self.numNodes) self.numF = numpy.zeros(5 * self.numNodes) self.numS = numpy.zeros(5 * self.numNodes) self.N = numpy.zeros(5 * self.numNodes) self.numTested = numpy.zeros(5 * self.numNodes) self.numPositive = numpy.zeros(5 * self.numNodes) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if isinstance(initT, (int, float)): self.t = initT else: self.t = random.uniform(initT[0], initT[1]) self.tmax = 0 # will be set when run() is called self.tidx = 0 self.tseries[0] = self.t self.wait_until_t = 0 self.currentR = 0 if (node_groups): self.nodeToTest = {groupName: 0 for groupName in node_groups} else: self.nodeToTest = 0 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.numE[0] = int(initE) self.numI[0] = int(initI) self.numD_E[0] = int(initD_E) self.numD_I[0] = int(initD_I) self.numR[0] = int(initR) self.numF[0] = int(initF) self.numS[0] = self.numNodes - self.numE[0] - self.numI[0] - self.numD_E[0] - self.numD_I[0] - self.numR[0] - \ self.numF[0] self.N[0] = self.numS[0] + self.numE[0] + self.numI[0] + self.numD_E[0] + self.numD_I[0] + self.numR[0] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Node states: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.S = 1 self.E = 2 self.I = 3 self.D_E = 4 self.D_I = 5 self.R = 6 self.F = 7 self.X = numpy.array( [self.S] * int(self.numS[0]) + [self.E] * int(self.numE[0]) + [self.I] * int(self.numI[0]) + [ self.D_E] * int(self.numD_E[0]) + [self.D_I] * int(self.numD_I[0]) + [self.R] * int(self.numR[0]) + [ self.F] * int(self.numF[0])).reshape((self.numNodes, 1)) numpy.random.shuffle(self.X) self.store_Xseries = store_Xseries if (store_Xseries): self.Xseries = numpy.zeros(shape=(5 * self.numNodes, self.numNodes), dtype='uint8') self.Xseries[0, :] = self.X.T self.transitions = { 'StoE': {'currentState': self.S, 'newState': self.E}, 'EtoI': {'currentState': self.E, 'newState': self.I}, 'ItoR': {'currentState': self.I, 'newState': self.R}, 'ItoF': {'currentState': self.I, 'newState': self.F}, 'RtoS': {'currentState': self.R, 'newState': self.S}, 'EtoDE': {'currentState': self.E, 'newState': self.D_E}, 'ItoDI': {'currentState': self.I, 'newState': self.D_I}, 'DEtoDI': {'currentState': self.D_E, 'newState': self.D_I}, 'DItoR': {'currentState': self.D_I, 'newState': self.R}, 'DItoF': {'currentState': self.D_I, 'newState': self.F}, '_toS': {'currentState': True, 'newState': self.S}, 'StoNS': {'currentState': self.S, 'newState': self.S} } self.last_tested = numpy.zeros((self.numNodes, 1)) - 100 # everybody has a fake last tested time of -100 days self.time_detected = 0 self.small_step = False self.count_non_random = count_non_random # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize node subgroup data series: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.nodeGroupData = None if (node_groups): self.nodeGroupData = {} for groupName, nodeList in node_groups.items(): self.nodeGroupData[groupName] = {'nodes': numpy.array(nodeList), 'mask': numpy.isin(range(self.numNodes), nodeList).reshape( (self.numNodes, 1))} self.nodeGroupData[groupName]['numS'] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]['numE'] = numpy.zeros(5 * self.numNodes) self.nodeGroupData[groupName]['numI'] =
numpy.zeros(5 * self.numNodes)
numpy.zeros
import pandas as pd import numpy as np import matplotlib.pyplot as plt import math import libs.utils.gpy_finite_diff as gpy_finite_diff import libs.utils.gpy_estimation_lib as gpy_estimation_lib from GPy.util.linalg import pdinv, dpotrs from GPy.util import diag import sklearn.linear_model def plot_paramz_likelihood_path(model, label): nominal = np.array([27.04301504, 83.37540132]) param_one = nominal.copy() param_two = model.X.std(0) scipy_param_one = model.kern.lengthscale.constraints.properties()[0].finv(param_one) scipy_param_two = model.kern.lengthscale.constraints.properties()[0].finv(param_two) grid_1d = np.linspace(-0.3, 1.5, 1000) y_1d = [] for i in range(grid_1d.shape[0]): x = grid_1d[i] scipy_param = x * scipy_param_one + (1 - x) * scipy_param_two model.kern.lengthscale.optimizer_array = scipy_param.copy() model = gpy_estimation_lib.analytical_mean_and_variance_optimization(model) y_1d.append(model.objective_function()) plt.plot(grid_1d, y_1d, label=label) def plot_likelihood_path(model, estimate_mean=True, estimate_var=True): param_one = np.array([27.04301504, 83.37540132]) param_two = np.array([8.76182561, 21.70946319]) mean_one = 1210.116506 variance_one = 2274398.204448 mean_two = 176.754115 variance_two = 18221.51397 grid_1d = np.linspace(0, 1, 1000) y_1d = [] gradient_norm = [] for i in range(grid_1d.shape[0]): x = grid_1d[i] param = x * param_one + (1 - x) * param_two if estimate_mean: mean_value = None else: mean_value = np.array([[x * mean_one + (1 - x) * mean_two]]) if estimate_var: variance_value = None else: variance_value = np.array([[x * variance_one + (1 - x) * variance_two]]) obj, grad, hessian, model = gpy_finite_diff.get_cost_and_grad_and_hessian(model, param, mean_value, variance_value) if i == 0: print("first mode, obj : {}, grad : {}, hessian : \n {}, \n spec hessian : {}".format(obj, grad, hessian, np.linalg.eig( hessian)[0])) elif i == grid_1d.shape[0] - 1: print("second mode, obj : {}, grad : {}, hessian : \n {}, \n spec hessian : {}".format(obj, grad, hessian, np.linalg.eig( hessian)[0])) y_1d.append(obj) gradient_norm.append((grad ** 2).sum()) plot_xaxis = "path : lengthscales" if not estimate_mean: plot_xaxis = plot_xaxis + ', mean' if not estimate_var: plot_xaxis = plot_xaxis + ', var' plt.figure() plt.plot(grid_1d, y_1d) plt.title("NLL vs Path") plt.xlabel(plot_xaxis) plt.ylabel("Negative log likelihood") plt.show() plt.figure() plt.semilogy() plt.plot(grid_1d, gradient_norm) plt.title("Log gradient norm vs Path") plt.xlabel(plot_xaxis) plt.ylabel("Log gradient norm of negative log likelihood") plt.show() def plot_neg_likelihood_var(model): var_init = model.Mat52.variance.values[0] cost_var_init = model._objective_grads(model.optimizer_array)[0] grid_1d = np.linspace(-1, 1, 2001) grid_1d = [var_init * math.exp(x * math.log(10)) for x in grid_1d] y_1d = [] for x in grid_1d: model.Mat52.variance = x y_1d.append((model._objective_grads(model.optimizer_array)[0])) plt.figure() plt.semilogx() plt.plot(grid_1d, y_1d) plt.title("Negative log likelihood vs var : lengthscales : [{}, {}]".format(model.Mat52.lengthscale[0], model.Mat52.lengthscale[1])) plt.xlabel("var") plt.ylabel("Negative log likelihood") plt.vlines(var_init, ymin=min(y_1d), ymax=max(y_1d), label='estimated_var : {0:.3f}, nll : {1:.3f}'.format(var_init, cost_var_init)) plt.legend() plt.show() def plot_multistart_optimization(model, n, mean_value, variance_value, optimum, init_type): model.constmap.C = mean_value model.Mat52.variance = variance_value bounds = [-1, 1] log_rho_data = np.random.random((n, 2)) * (bounds[1] - bounds[0]) + bounds[0] + np.log10(optimum) rho_data = np.exp(log_rho_data * math.log(10)) data = pd.DataFrame({'rho1': [], 'rho2': [], 'sigma2': [], 'm': [], 'cost': [], 'status': []}) for rho in rho_data: model.Mat52.lengthscale = rho if init_type == 'profiled': model = gpy_estimation_lib.analytical_mean_and_variance_optimization(model) elif init_type == 'classic': model.constmap.C = model.Y.mean() model.kern.variance = model.Y.var() else: ValueError(init_type) optim = model.optimize() data = data.append(pd.DataFrame({'rho1': [model.Mat52.lengthscale[0]], 'rho2': [model.Mat52.lengthscale[1]], 'sigma2': model.Mat52.variance, 'm': [model.constmap.C], 'cost': [model._objective_grads(model.optimizer_array)[0]], 'status': optim.status}), ignore_index=True) colors = {"Errorb'ABNORMAL_TERMINATION_IN_LNSRCH'": 'red', 'Converged': 'blue', 'Maximum number of f evaluations reached': 'green'} if not data['status'].apply(lambda x: x in colors.keys()).min(): raise ValueError('Unknown status : {}'.format(data['status'].unique())) plt.figure() plt.scatter(x=np.log10(data['rho1']), y=np.log10(data['rho2']), c=data['status'].apply(lambda x: colors[x])) plt.scatter(x=math.log10(optimum[0]), y=math.log10(optimum[1]), c='k') plt.xlabel("ln(rho_1)") plt.ylabel("ln(rho_2)") plt.vlines(x=math.log(10) * bounds[0] + math.log10(optimum[0]), ymin=math.log(10) * bounds[0] + math.log10(optimum[1]), ymax=math.log(10) * bounds[1] + math.log10(optimum[1]), linestyles="--", colors="g") plt.vlines(x=math.log(10) * bounds[1] + math.log10(optimum[0]), ymin=math.log(10) * bounds[0] + math.log10(optimum[1]), ymax=math.log(10) * bounds[1] + math.log10(optimum[1]), linestyles="--", colors="g") plt.hlines(y=math.log(10) * bounds[0] + math.log10(optimum[1]), xmin=math.log(10) * bounds[0] + math.log10(optimum[0]), xmax=math.log(10) * bounds[1] + math.log10(optimum[0]), linestyles="--", colors="g") plt.hlines(y=math.log(10) * bounds[1] + math.log10(optimum[1]), xmin=math.log(10) * bounds[0] + math.log10(optimum[0]), xmax=math.log(10) * bounds[1] + math.log10(optimum[0]), linestyles="--", colors="g") plt.plot([math.log10(optimum[0]) - 2, math.log10(optimum[0]) + 2], [math.log10(optimum[1]) - 2, math.log10(optimum[1]) + 2], label='constant anisotropy') plt.legend() plt.title(init_type) plt.show() ############################################# plt.figure() plt.scatter(x=np.log10(data['rho1']), y=np.log10(data['sigma2']), c=data['status'].apply(lambda x: colors[x])) plt.scatter(x=math.log10(optimum[0]), y=math.log10(variance_value), c='k') plt.vlines(x=math.log(10) * bounds[0] + math.log10(optimum[0]), ymin=np.log10(data['sigma2']).min(), ymax=np.log10(data['sigma2']).max(), linestyles="--", colors="g") plt.vlines(x=math.log(10) * bounds[1] + math.log10(optimum[0]), ymin=np.log10(data['sigma2']).min(), ymax=np.log10(data['sigma2']).max(), linestyles="--", colors="g") plt.plot([np.log10(data['rho1']).min(), np.log10(data['rho1']).max()], [math.log10(variance_value) - (math.log10(optimum[0]) - np.log10(data['rho1']).min())*5, math.log10(variance_value) + (np.log10(data['rho1']).max() - math.log10(optimum[0]))*5], label='constant microergodicity') plt.xlabel("ln(rho_1)") plt.ylabel("ln(sigma2)") plt.legend() plt.title(init_type) plt.show() return data def get_noise_level(x, y): sk_model = sklearn.linear_model.LinearRegression(fit_intercept=True) X_data = np.concatenate((np.array(x).reshape(-1, 1), (np.array(x)**2).reshape(-1, 1)), axis=1) Y_data = np.array(y).reshape(-1, 1) sk_model.fit(X_data, Y_data) print("noise level (std) : {}".format((Y_data - sk_model.predict(X_data)).std(ddof=3))) def plot_taylor(model, idx_param, diagonalize=False, width=1e-2, n=1000): obj_value, grad = model._objective_grads(model.optimizer_array) print("obj value : {}".format(obj_value)) hessian, model = gpy_finite_diff.get_hessian(model) if diagonalize: v, W =
np.linalg.eig(hessian)
numpy.linalg.eig
from __future__ import print_function import unittest import numpy as np import sqaod as sq import sqaod.common as common from .example_problems import * from math import log from math import exp class TestBipartiteGraphBFSearcherBase: def __init__(self, anpkg, dtype) : self.anpkg = anpkg self.dtype = dtype self.epu = 1.e-6 if dtype == np.float32 else 1.e-12 def new_searcher(self, N0, N1) : searcher = self.anpkg.bipartite_graph_bf_searcher(dtype=self.dtype) b0, b1, W = bipartite_graph_random(N0, N1, self.dtype) searcher.set_qubo(b0, b1, W) return searcher def test_calling_sequence(self) : N0, N1 = 8, 8 searcher = self.new_searcher(N0, N1) searcher.prepare() searcher.search_range() searcher.make_solution() searcher.search() searcher.calculate_E() searcher.get_E() searcher.get_problem_size() searcher.get_preferences() x = searcher.get_x() def test_problem_size(self) : N0, N1 = 8, 8 searcher = self.new_searcher(N0, N1) N0out, N1out = searcher.get_problem_size() self.assertEqual(N0, N0out) self.assertEqual(N1, N1out) def _test_search(self, opt, b0, b1, W, Eexp, xexp): N0, N1 = b0.shape[0], b1.shape[0] searcher = self.new_searcher(N0, N1) searcher.set_qubo(b0, b1, W, opt) searcher.search() searcher.calculate_E() E = searcher.get_E() res = np.allclose(E[0], Eexp, atol=self.epu) #print(E[0], Eexp) self.assertTrue(res) searcher.make_solution() xlist = searcher.get_x() self.assertEqual(len(xlist), 1) x0, x1 = xlist[0] #print(x0, x1) self.assertTrue(np.allclose(x0, xexp)) self.assertTrue(np.allclose(x1, xexp)) def test_min_energy_positive_W(self): N0, N1 = 8, 8 b0 = np.ones((N0), np.int8) b1 = np.ones((N1), np.int8) W = np.ones((N1, N0), np.int8) self._test_search(sq.minimize, b0, b1, W, 0, 0) def test_min_energy_negative_W(self): N0, N1 = 8, 8 b0 = - np.ones((N0), np.int8) b1 = - np.ones((N1), np.int8) W = - np.ones((N1, N0), np.int8) #print(b0, b1, W) self._test_search(sq.minimize, b0, b1, W, np.sum(b0) +
np.sum(b1)
numpy.sum
""" Python implementation of the LiNGAM algorithms. The LiNGAM Project: https://sites.google.com/site/sshimizu06/lingam """ import numpy as np from scipy.stats import gamma from statsmodels.nonparametric import bandwidths __all__ = ['get_kernel_width', 'get_gram_matrix', 'hsic_teststat', 'hsic_test_gamma'] def get_kernel_width(X): """Calculate the bandwidth to median distance between points. Use at most 100 points (since median is only a heuristic, and 100 points is sufficient for a robust estimate). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- float The bandwidth parameter. """ n_samples = X.shape[0] if n_samples > 100: X_med = X[:100, :] n_samples = 100 else: X_med = X G = np.sum(X_med * X_med, 1).reshape(n_samples, 1) Q = np.tile(G, (1, n_samples)) R = np.tile(G.T, (n_samples, 1)) dists = Q + R - 2 * np.dot(X_med, X_med.T) dists = dists - np.tril(dists) dists = dists.reshape(n_samples ** 2, 1) return np.sqrt(0.5 * np.median(dists[dists > 0])) def _rbf_dot(X, Y, width): """Compute the inner product of radial basis functions.""" n_samples_X = X.shape[0] n_samples_Y = Y.shape[0] G =
np.sum(X * X, 1)
numpy.sum
###################################################################### # Deep Reinforcement Learning for Autonomous Driving # Created/Modified on: February 5, 2019 # Author: <NAME> ####################################################################### from __future__ import division, print_function, absolute_import from queue import * import os import numpy as np import os os.environ['SDL_AUDIODRIVER'] = 'dsp' import pygame from urban_env.road.graphics import WorldSurface, RoadGraphics from urban_env.vehicle.graphics import VehicleGraphics from urban_env.envdict import ACTIONS_DICT from urban_env.vehicle.dynamics import Obstacle class EnvViewer(object): """ A viewer to render a urban driving environment. """ SCREEN_WIDTH = 1750 SCREEN_HEIGHT = 150 SAVE_IMAGES = False def __init__(self, env): self.env = env pygame.init() panel_size = (self.SCREEN_WIDTH, self.SCREEN_HEIGHT) self.screen = pygame.display.set_mode([self.SCREEN_WIDTH, self.SCREEN_HEIGHT]) self.sim_surface = WorldSurface(panel_size, 0, pygame.Surface(panel_size)) self.sim_surface.centering_position = env.config.get("centering_position", self.sim_surface.INITIAL_CENTERING) self.clock = pygame.time.Clock() self.enabled = True if "SDL_VIDEODRIVER" in os.environ and os.environ["SDL_VIDEODRIVER"] == "dummy": self.enabled = False self.agent_display = None self.agent_surface = None self.vehicle_trajectory = None self.vehicle_trajectories = [] self.frame = 0 def set_agent_display(self, agent_display): """ Set a display callback provided by an agent, so that they can render their behaviour on a dedicated agent surface, or even on the simulation surface. :param agent_display: a callback provided by the agent to display on surfaces """ if self.agent_display is None: if self.SCREEN_WIDTH > self.SCREEN_HEIGHT: self.screen = pygame.display.set_mode((self.SCREEN_WIDTH, 2 * self.SCREEN_HEIGHT)) else: self.screen = pygame.display.set_mode((2 * self.SCREEN_WIDTH, self.SCREEN_HEIGHT)) self.agent_surface = pygame.Surface((self.SCREEN_WIDTH, self.SCREEN_HEIGHT)) self.agent_display = agent_display def handle_events(self): """ Handle pygame events by forwarding them to the display and environment vehicle. """ for event in pygame.event.get(): if event.type == pygame.QUIT: self.env.close() self.sim_surface.handle_event(event) if self.env.vehicle: VehicleGraphics.handle_event(self.env.vehicle, event) def display(self): """ Display the road and vehicles on a pygame window. """ if not self.enabled: return '''if self.env.actions is not None: if self.env.actions: self.set_agent_action_sequence(self.env.actions) el''' del self.vehicle_trajectories[:] self.vehicle_trajectories.append(self.env.vehicle.projection) self.sim_surface.move_display_window_to(self.window_position()) RoadGraphics.display(self.env.road, self.sim_surface) if self.vehicle_trajectories: for vehicle_trajectory in self.vehicle_trajectories: if vehicle_trajectory is not None: VehicleGraphics.display_trajectory( vehicle_trajectory, self.sim_surface) RoadGraphics.display_traffic(self.env.road, self.sim_surface) if self.agent_display: self.agent_display(self.agent_surface, self.sim_surface) if self.SCREEN_WIDTH > self.SCREEN_HEIGHT: self.screen.blit(self.agent_surface, (0, self.SCREEN_HEIGHT)) else: self.screen.blit(self.agent_surface, (self.SCREEN_WIDTH, 0)) self.screen.blit(self.sim_surface, (0, 0)) self.clock.tick(self.env.config["SIMULATION_FREQUENCY"]+1) pygame.display.flip() if self.SAVE_IMAGES: pygame.image.save(self.screen, "urban-env_{}.png".format(self.frame)) self.frame += 1 caption = "Urban-AD ( " #caption += "action = " + str(ACTIONS_DICT[self.env.previous_action]) caption += " v = {:.2f}".format(self.env.vehicle.velocity) if self.env.vehicle.PRNDL: caption += " PRNDL = "+self.env.vehicle.PRNDL if self.env.vehicle.braking is not None: caption += " brake = {:.2f}".format(self.env.vehicle.braking) if self.env.vehicle.throttle is not None: caption += " throttle = {:.2f}".format(self.env.vehicle.throttle) if self.env.vehicle.control_action: caption += " accel = {:.2f}".format(self.env.vehicle.control_action['acceleration']) caption += " steering = {:.2f}".format(self.env.vehicle.control_action['steering']) caption += " steps = " + str(self.env.steps) if hasattr( self.env, 'episode_travel'): caption += ', ep travel = {:.2f}'.format(self.env.episode_travel) #caption += ', reward = {:.2f}'.format(self.env.reward) caption += ', ep reward = {:.2f}'.format(self.env.episode_reward) caption += " )" pygame.display.set_caption(caption) def get_image(self): """ :return: the rendered image as a rbg array """ data = pygame.surfarray.array3d(self.screen) return np.moveaxis(data, 0, 1) def window_position(self): """ :return: the world position of the center of the displayed window. """ if self.env.vehicle: return self.env.vehicle.position else: return
np.array([0, 0])
numpy.array
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Common functions that are utilized by neural network models @author: dbasaran """ import numpy as np from keras.optimizers import SGD, Adam from keras.callbacks import EarlyStopping,ModelCheckpoint,ReduceLROnPlateau,Callback import keras as K import logging import h5py import json import os import csv import sys import pandas as pd import mir_eval from sklearn.preprocessing import LabelBinarizer,normalize import argparse def parse_input(input_args): ''' Parsing the input arguments :param input_args: Input arguments from the console :return: args: List of parsed arguments ''' parser = argparse.ArgumentParser() parser.add_argument("-v", "--verbose", action="store_true", help="Print the procedure") parser.add_argument("--gpu-segment", action="store", dest="gpu", type=int, help="CUDA_VISIBLE_DEVICES setting", default=0) parser.add_argument("--patch-size", action="store", dest="patch_size", type=int, help="The width (length) of a CNN patch/image", default=25) parser.add_argument("--number-of-patches", action="store", dest="number_of_patches", type=int, help="The number of consecutive CNN patches to be fed into RNN layer", default=20) parser.add_argument("--batch-size", action="store", dest="batch_size", type=int, help="The number of samples in the training phase", default=16) parser.add_argument("--epochs", action="store", dest="epochs", type=int, help="The number epochs in the training phase", default=100) parser.add_argument("--drop-out", action="store", dest="drop_out", type=float, help="The dropout ratio in the network", default=0.3) parser.add_argument("--number-of-classes", action="store", dest="number_of_classes", type=int, help="The number of target note classes (Including the non-melody class)", default=62) parser.add_argument("--step-notes", action="store", dest="step_notes", type=int, help="The number of F0's between each semitone", default=5) parser.add_argument("--sampling-rate", action="store", dest="SR", type=int, help="Sampling rate for the signals", default=22050) parser.add_argument("--hop-size", action="store", dest="hop_size", type=int, help="Hopsize for the signals", default=256) parser.add_argument("--dataset-number", action="store", dest="dataset_number", type=int, help="The number of the dataset i.e., dataset 1, dataset 2 etc.", default=1) parser.add_argument("--RNN-type", action="store", dest="RNN", type=str, help="Type of the RNN LSTM/GRU", default='GRU') parser.add_argument("--model-name", action="store", dest="model_name", type=str, help="The name of the model", default=None) parser.add_argument("--early-stopping-patience", action="store", dest="early_stopping_patience", type=int, help="The patience value for the EarlyStopping callback", default=20) parser.add_argument("--reduce-LR-patience", action="store", dest="reduce_LR_patience", type=int, help="The patience value for the ReduceLROnPlateau callback", default=10) parser.add_argument("--feature-size", action="store", dest="feature_size", type=int, help="The feature size of the input (Default for step_size=5, minFreq=55, maxFreq=1760)", default=301) parser.add_argument("--augment-data", action="store_true", default=False, help="Use augmentation if this option is assigned to True") parser.add_argument("--dataset-name", action="store", dest="dataset_name", type=str, help="The name of dataset medleydb/jazzomat", default='medleydb') parser.add_argument("--use-part-of-training-set", action="store_true", default=False, help="Use augmentation if this option is assigned to True") parser.add_argument("--training-amount-percentage", action="store", dest="training_amount_percentage", type=float, help="The amount of the training data that is going to be used for training. Effective only if " "--use-part-of-training indicator is True.", default=80.) parser.add_argument("--use-part-of-training-set-per-epoch", action="store_true", default=False, help="Use augmentation if this option is assigned to True") parser.add_argument("--training-amount-number-of-samples", action="store", dest="training_amount_number_of_samples", type=float, help="The number of batches in the training data that is going to be used for training in one " "epoch. Effective only if --use-part-of-training-set-per-epoch indicator is True.", default=120.) args = parser.parse_args(input_args) return args class Logger(object): def __init__(self, args): self.terminal = sys.stdout self.log = open('{0}/CRNN-model_{1}-dataset-{2}.log'.format(get_path(), args.model_name, args.dataset_number), "w") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): #this flush method is needed for python 3 compatibility. #this handles the flush command by doing nothing. #you might want to specify some extra behavior here. pass def read_arguments(input_args): ''' Reads the arguments from the user and makes the number_of_classes, step_notes and dataset_name parameters compatible with the chosen dataset. :param input_args: Input arguments :return: args: List of parsed arguments ''' args = parse_input(input_args[1:]) args.model_name = input_args[0].split('_')[-1].split('.')[0].split('del')[-1] with open('{0}/dataset-{1}_parameters.json'.format(get_dataset_load_path(), args.dataset_number), 'r') as f: parameters = json.load(f) args.number_of_classes = parameters['number_of_classes'] args.step_notes = parameters['step_notes'] args.dataset_name = parameters['dataset_name'] return args def print_arguments(args): print('\n\n******* Experiment *******') print('Model {0}: '.format(args.model_name)) print('Parameters:') print(' number_of_classes: {0}'.format(args.number_of_classes)) print(' step_notes: {0}'.format(args.step_notes)) print(' patch_size: {0}'.format(args.patch_size)) print(' number_of_patches: {0}'.format(args.number_of_patches)) print(' feature_size: {0}'.format(args.feature_size)) print(' segment length: {0}'.format(np.int(args.patch_size*args.number_of_patches))) print(' augment: {0}'.format(args.augment_data)) print(' batch_size:{0}'.format(args.batch_size)) print(' number of epochs: {0}'.format(args.epochs)) print(' dropout value: {0}'.format(args.drop_out)) print(' dataset_number: {0}'.format(args.dataset_number)) print(' dataset_name: {0}'.format(args.dataset_name)) print(' use_part_of_training_set: {0}'.format(args.use_part_of_training_set)) if args.use_part_of_training_set: print(' training_amount_percentage: {0:.1f}'.format(args.training_amount_percentage)) ######################################################### ## GET PATH FUNCTIONS: Functions to return paths def get_path(): ''' Gets the path of the main folder :return: path (string) ''' path = os.getcwd() path = path[:path.rfind('/')] return path def get_path_to_quantized_annotations(): quantized_annotations_path = '{0}/quantized_annotations'.format(get_path()) return quantized_annotations_path def get_path_to_pitch_estimations(): # Wrapper function results_path = get_model_output_save_path() return results_path def get_model_output_save_path(): model_output_save_path = '{0}/medleydb_melody_results/C-RNN_results'.format(get_path()) if not os.path.exists(model_output_save_path): os.makedirs(model_output_save_path) return model_output_save_path def get_dataset_splits_save_path(): dataset_splits_save_path = '{0}/medleydb_dataset_splits'.format(get_path()) if not os.path.exists(dataset_splits_save_path): os.makedirs(dataset_splits_save_path) return dataset_splits_save_path def get_hf0_path(): path = '{0}/medleydb_features/HF0s_STFT'.format(get_path()) return path def get_dataset_test_load_path(): dataset_test_load_path = get_hf0_path() return dataset_test_load_path def get_dataset_load_path(): dataset_load_path = get_dataset_splits_save_path() return dataset_load_path def get_trained_model_save_path(dataset_name): trained_model_save_path = '{0}/trained_models'.format(get_path(dataset_name=dataset_name)) if not os.path.exists(trained_model_save_path): os.makedirs(trained_model_save_path) return trained_model_save_path def get_model_output_save_path(dataset_name, args): model_output_save_path = '{0}/{1}_melody_results/C-RNN_results/model-{2}_datasetNumber-{3}_batchSize-{4}_patchSize-{5}_numberOfPatches-{6}'.format(get_path(dataset_name=dataset_name), dataset_name, args.model_name, args.dataset_number, args.batch_size, args.patch_size, args.number_of_patches) if not os.path.exists(model_output_save_path): os.makedirs(model_output_save_path) return model_output_save_path ####################################################### def get_labels(track_name): ''' Get labels for the track :param track_name: String - Name of the track in the MedleyDB dataset :return: labels: Numpy array - quantized labels of the track with -1 for non-melody and all other target classes starting from 0 ''' quantized_annotation_path = get_path_to_quantized_annotations() \ + '/{0}_quantized_labels_Fs-22050_hop-256.h5'.format(track_name) labels_file = h5py.File(quantized_annotation_path , 'r') labels = np.array(labels_file['labels']) return labels def get_pitch_estimation_from_csv(track_name): ''' Gets the pitch estimation of a track from the csv file :param track_name: String - Name of the track in the MedleyDB dataset :return: pitch_estimation: Numpy array - Estimations for each frame ''' estimation_path = get_path_to_pitch_estimations() + '/{0}.csv'.format(track_name) data = pd.read_csv(estimation_path, delimiter=',', header=None) pitch_estimation = np.array(data)[:, 1] return pitch_estimation def train_model(model, args): ''' The function that trains a certain neural network model with the given arguments. :param model: Keras.Model - Constructed model :param args: List - Input arguments :return: ''' x_train, y_train, x_validation, y_validation = load_dataset_TD(dataset_number=args.dataset_number, args=args) dataset_train_size = x_train.shape[0] # First dimension gives the number of samples dataset_validation_size = x_validation.shape[0] # Set the optimizers opt_ADAM = Adam(clipnorm=1., clipvalue=0.5) opt_SGD = SGD(lr=0.0005, decay=1e-4, momentum=0.9, nesterov=True) # Compile the model model.compile(loss='categorical_crossentropy', optimizer=opt_ADAM, metrics=['accuracy']) # Use either a part of training set per epoch or all the set per epoch if args.use_part_of_training_set_per_epoch: number_of_batches_train = np.int(np.floor(args.training_amount_number_of_samples/args.batch_size)) else: number_of_batches_train = np.max((np.floor((dataset_train_size) / args.batch_size), 1)) number_of_batches_validation = np.max((
np.floor(dataset_validation_size / args.batch_size)
numpy.floor
"""Differential privacy computing of count, sum, mean, variance.""" import numpy as np import pipeline_dp # TODO: import only modules https://google.github.io/styleguide/pyguide.html#22-imports from pipeline_dp.aggregate_params import NoiseKind from dataclasses import dataclass @dataclass class MeanVarParams: """The parameters used for computing the dp sum, count, mean, variance.""" eps: float delta: float low: float high: float max_partitions_contributed: int max_contributions_per_partition: int noise_kind: NoiseKind # Laplace or Gaussian def l0_sensitivity(self): """"Returns the L0 sensitivity of the parameters.""" return self.max_partitions_contributed def squares_interval(self): """Returns the bounds of the interval [low^2, high^2].""" if self.low < 0 and self.high > 0: return 0, max(self.low**2, self.high**2) return self.low**2, self.high**2 def compute_middle(low: float, high: float): """"Returns the middle point of the interval [low, high].""" return low + (high - low) / 2 def compute_l1_sensitivity(l0_sensitivity: float, linf_sensitivity: float): """Calculates the L1 sensitivity based on the L0 and Linf sensitivities. Args: l0_sensitivity: The L0 sensitivity. linf_sensitivity: The Linf sensitivity. Returns: The L1 sensitivity. """ return l0_sensitivity * linf_sensitivity def compute_l2_sensitivity(l0_sensitivity: float, linf_sensitivity: float): """Calculates the L2 sensitivity based on the L0 and Linf sensitivities. Args: l0_sensitivity: The L0 sensitivity. linf_sensitivity: The Linf sensitivity. Returns: The L2 sensitivity. """ return np.sqrt(l0_sensitivity) * linf_sensitivity def compute_sigma(eps: float, delta: float, l2_sensitivity: float): """Returns the optimal value of sigma for the Gaussian mechanism. Args: eps: The epsilon value. delta: The delta value. l2_sensitivity: The L2 sensitivity. """ # TODO: use the optimal sigma. # Theorem 3.22: https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf return np.sqrt(2 * np.log(1.25 / delta)) * l2_sensitivity / eps def apply_laplace_mechanism(value: float, eps: float, l1_sensitivity: float): """Applies the Laplace mechanism to the value. Args: value: The initial value. eps: The epsilon value. l1_sensitivity: The L1 sensitivity. Returns: The value resulted after adding the noise. """ # TODO: use the secure noise instead of np.random return value + np.random.laplace(0, l1_sensitivity / eps) def apply_gaussian_mechanism(value: float, eps: float, delta: float, l2_sensitivity: float): """Applies the Gaussian mechanism to the value. Args: value: The initial value. eps: The epsilon value. delta: The delta value. l2_sensitivity: The L2 sensitivity. Returns: The value resulted after adding the noise. """ sigma = compute_sigma(eps, delta, l2_sensitivity) # TODO: use the secure noise instead of np.random return value + np.random.normal(0, sigma) def _add_random_noise( value: float, eps: float, delta: float, l0_sensitivity: float, linf_sensitivity: float, noise_kind: NoiseKind, ): """Adds random noise according to the parameters. Args: value: The initial value. eps: The epsilon value. delta: The delta value. l0_sensitivity: The L0 sensitivity. linf_sensitivity: The Linf sensitivity. noise_kind: The kind of noise used. Returns: The value resulted after adding the random noise. """ if noise_kind == NoiseKind.LAPLACE: l1_sensitivity = compute_l1_sensitivity(l0_sensitivity, linf_sensitivity) return apply_laplace_mechanism(value, eps, l1_sensitivity) if noise_kind == NoiseKind.GAUSSIAN: l2_sensitivity = compute_l2_sensitivity(l0_sensitivity, linf_sensitivity) return apply_gaussian_mechanism(value, eps, delta, l2_sensitivity) raise ValueError("Noise kind must be either Laplace or Gaussian.") @dataclass class AdditiveVectorNoiseParams: eps_per_coordinate: float delta_per_coordinate: float max_norm: float l0_sensitivity: float linf_sensitivity: float norm_kind: pipeline_dp.NormKind noise_kind: NoiseKind def _clip_vector(vec: np.ndarray, max_norm: float, norm_kind: pipeline_dp.NormKind): norm_kind = norm_kind.value # type: str if norm_kind == "linf": return np.clip(vec, -max_norm, max_norm) if norm_kind in {"l1", "l2"}: norm_kind = int(norm_kind[-1]) vec_norm =
np.linalg.norm(vec, ord=norm_kind)
numpy.linalg.norm
import sys import gym import numpy as np from gym import spaces from .edit_photo import PhotoEditor, edit_demo import cv2 import random import logging import os DATASET_DIR = "./fivek_dataset/" TARGET_DIR = "expertC/" ORIGINAL_DIR = "original/" class PhotoEnhancementEnv(gym.Env): action_space = None observation_space = None reward_range = None viewer = None metadata = { 'render.modes': ['human', 'rgb_array'], } def __init__(self, batch_size, logger=None, imsize=512, max_episode_steps=1): super().__init__() self.tags = {'max_episode_steps': max_episode_steps} self.logger = logger or logging.getLogger(__name__) self.imsize = imsize self.batch_size = batch_size try: self.file_names except: self.file_names = [] with open(os.path.join(DATASET_DIR, "trainSource.txt")) as f: s = f.read() self.file_names.extend(s.split("\n")[:-1]) self.file_names = \ list(map(lambda x: os.path.join(DATASET_DIR, ORIGINAL_DIR, x), self.file_names)) self.photo_editor = PhotoEditor() self.num_parameters = self.photo_editor.num_parameters # action space self.action_space = spaces.Dict({ 'parameters': spaces.Box(low=-1.0, high=1.0, shape=(self.batch_size, self.num_parameters), dtype=np.float32), }) # observation space self.observation_space = spaces.Dict({ 'image': spaces.Box(low=0, high=255, shape=(self.batch_size, self.imsize, self.imsize, 3), dtype=np.uint8) }) # reset canvas and set current position of the pen self.reset() def reset(self): self.logger.debug('reset the drawn picture') self.original_images = [] self.editted_images = [] for i in range(self.batch_size): original_image = cv2.imread(random.choice(self.file_names)) original_image = cv2.resize(original_image, (64, 64)) / 255.0 if random.randint(0, 1) == 0: original_image = original_image[:, ::-1, :] editted_image = original_image.copy() self.original_images.append(original_image) self.editted_images.append(editted_image) ob = { 'images': self._get_rgb_array() } return ob def step(self, action): parameters_space = self.action_space.spaces['parameters'] clipped_action = np.clip(action['parameters'] / 1.0, parameters_space.low, parameters_space.high) for i in range(self.batch_size): self.editted_images[i] = self.photo_editor(self.original_images[i].copy(), clipped_action[i]) reward = 0.0 done = False ob = { 'images': self._get_rgb_array() } return ob, reward, done, {} def render(self, mode='human'): """ render the current drawn picture image for human """ if mode == 'human': if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.SimpleImageViewer() self.viewer.imshow(self._get_rgb_array()) elif mode == 'rgb_array': return self._get_rgb_array() else: raise NotImplementedError def _get_rgb_array(self, cut=True): """ render the current canvas as a rgb array """ rgb_array = np.zeros((self.batch_size, self.imsize, self.imsize, 3), dtype=np.uint8) for i in range(self.batch_size): shape = self.original_images[i].shape rgb_array[i, :shape[0], :shape[1], :] = \ (self.editted_images[i][:, :, ::-1] * 255).astype(np.uint8) return rgb_array def calc_mse(self): return ((
np.array(self.original_images)
numpy.array
import numpy as np import HyperUtils as hu check_eps = np.array([0.3,0.05]) check_sig = np.array([8.0,0.5]) check_alp = np.array([[0.2,0.1], [0.18,0.1], [0.16,0.1], [0.14,0.1], [0.14,0.1]]) check_chi = np.array([[0.9,0.1], [1.0,0.1], [1.1,0.1], [1.2,0.1], [1.2,0.1]]) file = "hnepmk_ser_cbh" name = "nD Linear Elastic - Plastic with Multisurface Kinematic Hardening - Series Bounding HARM" mode = 1 const = [2, 100.0, 4, 0.154936, 100.0, 0.436529, 33.33333, 1.653964, 20.0, 1.169595, 10.0, 0.1] mu = 0.1 def deriv(): global E, k, recip_k, H, R, name_const, n_int, n_inp, n_y, n_const, ndim ndim = int(const[0]) E = float(const[1]) n_int = int(const[2]) + 1 n_inp = int(const[2]) n_y = 1 n_const = 3 + 2*n_int + 1 k = np.array(const[3:3 + 2*n_inp:2]) H = np.array(const[4:4 + 2*n_inp:2]) recip_k = 1.0 / k R = float(const[3 + 2*n_inp]) name_const = ["ndim", "E", "N"] for i in range(n_inp): name_const.append("k"+str(i+1)) name_const.append("H"+str(i+1)) name_const.append("R") deriv() def ep(alp): return np.einsum("ni->i",alp) def f(eps,alp): return (E*sum((eps-ep(alp))**2)/2.0 + np.einsum("n,ni,ni->",H,alp[:n_inp],alp[:n_inp])/2.0) def dfde(eps,alp): return E*(eps-ep(alp)) def dfda(eps,alp): temp =
np.zeros([n_int,ndim])
numpy.zeros
import numpy as np import warnings import os import pickle as pkl from sklearn.model_selection import train_test_split from sklearn.metrics.scorer import _BaseScorer from solnml.components.ensemble.base_ensemble import BaseEnsembleModel from solnml.components.utils.constants import CLS_TASKS from solnml.components.evaluators.base_evaluator import fetch_predict_estimator class Blending(BaseEnsembleModel): def __init__(self, stats, ensemble_size: int, task_type: int, metric: _BaseScorer, output_dir=None, meta_learner='lightgbm'): super().__init__(stats=stats, ensemble_method='blending', ensemble_size=ensemble_size, task_type=task_type, metric=metric, output_dir=output_dir) try: from lightgbm import LGBMClassifier except: warnings.warn("Lightgbm is not imported! Blending will use linear model instead!") meta_learner = 'linear' self.meta_method = meta_learner # We use Xgboost as default meta-learner if self.task_type in CLS_TASKS: if meta_learner == 'linear': from sklearn.linear_model.logistic import LogisticRegression self.meta_learner = LogisticRegression(max_iter=1000) elif meta_learner == 'gb': from sklearn.ensemble.gradient_boosting import GradientBoostingClassifier self.meta_learner = GradientBoostingClassifier(learning_rate=0.05, subsample=0.7, max_depth=4, n_estimators=250) elif meta_learner == 'lightgbm': from lightgbm import LGBMClassifier self.meta_learner = LGBMClassifier(max_depth=4, learning_rate=0.05, n_estimators=150) else: if meta_learner == 'linear': from sklearn.linear_model import LinearRegression self.meta_learner = LinearRegression() elif meta_learner == 'lightgbm': from lightgbm import LGBMRegressor self.meta_learner = LGBMRegressor(max_depth=4, learning_rate=0.05, n_estimators=70) def fit(self, data): # Split training data for phase 1 and phase 2 test_size = 0.2 # Train basic models using a part of training data model_cnt = 0 suc_cnt = 0 feature_p2 = None for algo_id in self.stats["include_algorithms"]: model_to_eval = self.stats[algo_id]['model_to_eval'] for idx, (node, config) in enumerate(model_to_eval): X, y = node.data if self.task_type in CLS_TASKS: x_p1, x_p2, y_p1, y_p2 = train_test_split(X, y, test_size=test_size, stratify=data.data[1], random_state=self.seed) else: x_p1, x_p2, y_p1, y_p2 = train_test_split(X, y, test_size=test_size, random_state=self.seed) if self.base_model_mask[model_cnt] == 1: estimator = fetch_predict_estimator(self.task_type, config, x_p1, y_p1, weight_balance=node.enable_balance, data_balance=node.data_balance ) with open(os.path.join(self.output_dir, '%s-blending-model%d' % (self.timestamp, model_cnt)), 'wb') as f: pkl.dump(estimator, f) if self.task_type in CLS_TASKS: pred = estimator.predict_proba(x_p2) n_dim = np.array(pred).shape[1] if n_dim == 2: # Binary classificaion n_dim = 1 # Initialize training matrix for phase 2 if feature_p2 is None: num_samples = len(x_p2) feature_p2 =
np.zeros((num_samples, self.ensemble_size * n_dim))
numpy.zeros
# ------------------------------------------------------------------ # # ╦═╗╔═╗╔╦╗╔═╗╔═╗╔═╗ # ╠╦╝║ ║║║║╚═╗║ ║║ # ╩╚═╚═╝╩ ╩╚═╝╚═╝╚═╝ # Reduced Order Modelling, Simulation, Optimization of Coupled Systems # 2017-2021 # # Authors : # <NAME>, <NAME>, <NAME> # # Disclaimer : # In downloading this SOFTWARE you are deemed to have read and agreed # to the following terms: This SOFTWARE has been designed with an # exclusive focus on civil applications. It is not to be used for any # illegal, deceptive, misleading or unethical purpose or in any # military applications. This includes ANY APPLICATION WHERE THE USE # OF THE SOFTWARE MAY RESULT IN DEATH, PERSONAL INJURY OR SEVERE # PHYSICAL OR ENVIRONMENTAL DAMAGE. Any redistribution of the software # must retain this disclaimer. BY INSTALLING, COPYING, OR OTHERWISE # USING THE SOFTWARE, YOU AGREE TO THE TERMS ABOVE. IF YOU DO NOT # AGREE TO THESE TERMS, DO NOT INSTALL OR USE THE SOFTWARE. # # Acknowledgements: # The ROMSOC project has received funding from the European Union’s # Horizon 2020 research and innovation programme under the Marie # Skłodowska-Curie Grant Agreement No. 765374. # ------------------------------------------------------------------- # # ------------------------------------------------------------------- # # Planewave Scattering by a rigid Sphere # using the classical quadratic PML absorption function # # NOTE: # It can also used for approximating the strength of (frequency-specific) # PML absorption coefficients, since exact solution is known and errors # can be computed. Although, the monopole test case is suggested for it. # ------------------------------------------------------------------- # import dolfin as d from complex import * import os.path as path import numpy as np #d.set_log_level(d.LogLevel.DEBUG) # ------------------------------------------------------------------------------------------------- # PARAMETERS print('[*] Reading Parameters') # PHYSICAL PARAMS # Acoustic Fluid Properties c = 340. # sound speed rho = 1.2 # MESH INPUT meshfile = '../../00_meshes/sphere.xml.gz' # MODEL PARAMS # # Incident plane wave params inc_mag = 1. # Incident plane wave amplitude inc_dir = np.array([1., 0., 0.]) # Incident plane wave direction # # Geometry parameters radius = 0.05 Lx = Ly = Lz = Lpml = 0.2 # PROBLEM PARAMETERS freqs = np.array([800, 1200]) # np.arange(50, 401, 50) nfreqs = freqs.size omegas = 2 * np.pi * freqs # PML calibration params sigma0s = np.array([1.32e4, 1.05e5]) # IO PARAMS # Directory where results are written. End with '/' results_path = path.abspath('results/') # ------------------------------------------------------------------------------------------------- # PROBLEM SETUP print('[*] Setting up objects acc to Parameters') # MESH mesh = d.Mesh(meshfile) # SUB-DOMAINS # # Extract Sub-domain markers subdomains = d.MeshFunction("size_t", mesh, mesh.topology().dim()) # # Sub-domain specifications tol = 1e-10 pml_x = d.CompiledSubDomain("fabs(x[0])>Lx-tol && fabs(x[1])<Ly+tol && fabs(x[2])<Lz+tol", Lx=Lx, Ly=Ly, Lz=Lz, tol=tol) pml_y = d.CompiledSubDomain("fabs(x[0])<Lx+tol && fabs(x[1])>Ly-tol && fabs(x[2])<Lz+tol", Lx=Lx, Ly=Ly, Lz=Lz, tol=tol) pml_z = d.CompiledSubDomain("fabs(x[0])<Lx+tol && fabs(x[1])<Ly+tol && fabs(x[2])>Lz-tol", Lx=Lx, Ly=Ly, Lz=Lz, tol=tol) pml_xy = d.CompiledSubDomain("fabs(x[0])>Lx-tol && fabs(x[1])>Ly-tol && fabs(x[2])<Lz+tol", Lx=Lx, Ly=Ly, Lz=Lz, tol=tol) pml_yz = d.CompiledSubDomain("fabs(x[0])<Lx+tol && fabs(x[1])>Ly-tol && fabs(x[2])>Lz-tol", Lx=Lx, Ly=Ly, Lz=Lz, tol=tol) pml_zx = d.CompiledSubDomain("fabs(x[0])>Lx-tol && fabs(x[1])<Ly+tol && fabs(x[2])>Lz-tol", Lx=Lx, Ly=Ly, Lz=Lz, tol=tol) pml_xyz = d.CompiledSubDomain("fabs(x[0])>Lx-tol && fabs(x[1])>Ly-tol && fabs(x[2])>Lz-tol", Lx=Lx, Ly=Ly, Lz=Lz, tol=tol) # # Mark Sub-domains subdomains.set_all(0) pml_x.mark(subdomains, 1) pml_y.mark(subdomains, 2) pml_z.mark(subdomains, 3) pml_xy.mark(subdomains, 4) pml_yz.mark(subdomains, 5) pml_zx.mark(subdomains, 6) pml_xyz.mark(subdomains, 7) # # Obtain volume integral measures for each sub-domain for volume integrals dx = d.Measure('dx', domain=mesh, subdomain_data=subdomains) # BOUNDARIES # # Get all face markers boundary_markers = d.MeshFunction("size_t", mesh, mesh.topology().dim()-1) # # Specify expressions for boundaries pml_bnd = d.CompiledSubDomain("on_boundary && (fabs(x[0])>Lx+Lpml-tol || fabs(x[1])>Ly+Lpml-tol || fabs(x[2])>Lz+Lpml-tol)", Lx=Lx, Ly=Ly, Lz=Lz, Lpml=Lpml, tol=tol) object_bnd = d.CompiledSubDomain("on_boundary && fabs(x[0])<Lx+tol && fabs(x[1])<Ly+tol && fabs(x[2])<Lz+tol", Lx=Lx, Ly=Ly, Lz=Lz, tol=tol) # # Enumerate boundaries boundary_markers.set_all(0) object_bnd.mark(boundary_markers, 2) pml_bnd.mark(boundary_markers, 1) # # Obtain measures for boundary for boundary integrals ds = d.Measure('ds', domain=mesh, subdomain_data=boundary_markers) # NORMALS # Compute normal vectors n_vec = d.FacetNormal(mesh) # FUNCTION SPACE SPECIFICATIONS # # Define function space (Lagrange 1st polynomials) P1 = d.FiniteElement("Lagrange", mesh.ufl_cell(), 1) Q = d.FunctionSpace(mesh, P1) # # Define 2D-Real function space to substitute for Complex space V = d.FunctionSpace(mesh, P1 * P1) # NOTE: V.sub(0) and V.sub(1) are the subspaces # INIT OUTPUT FILES xdmf_file = d.XDMFFile(path.join(results_path, 'results.xdmf')) xdmf_file.parameters['rewrite_function_mesh'] = False xdmf_file.parameters['functions_share_mesh'] = True # ------------------------------------------------------------------------------------------------- # DIAGNOSTIC OUTPUTS # Write Problem Configuration log finfo = open(path.join(results_path, 'INFO.log'), 'w') finfo.write('MESH INFO:\n') finfo.write('Mesh Name = '+meshfile) finfo.write('\nNumber of vertices in mesh = ' + str(mesh.coordinates().shape[0])+'\n') finfo.write('h_min = ' + str(mesh.hmin()) + '\n') finfo.write('h_max = ' + str(mesh.hmax()) + '\n') finfo.write('\nPHYSICAL PARAMETERS : \n') finfo.write('Lx = '+str(Lx)+'\nLy = '+str(Ly)+'\nLz = '+str(Lz)+'\nLpml = '+str(Lpml)+'\n') finfo.write('\nFLUID PARAMETERS:\n') finfo.write('c = '+str(c)+'\nrho = '+str(rho)+'\n') finfo.write('\nPROBLEM CONFIG:\n') finfo.write('Freqs = '+str(freqs)+'\nSigma0 = '+str(sigma0s)+'\n') finfo.close() # Write to file boundary and domain markers fboundaries = d.File(path.join(results_path, 'BoundaryMarkers.pvd')) fboundaries << boundary_markers fdomains = d.File(path.join(results_path, 'DomainMarkers.pvd')) fdomains << subdomains # ------------------------------------------------------------------------------------------------- # SOLVER print('[*] Setting up solver objects and expressions') # Zero Expression (needed?) zero = d.Constant("0.") # Declare Variational form expressions # # PML Absorption function sx = d.Expression('fabs(x[0]) > Lx ? s0*pow(fabs(x[0])-Lx,2)/(Lpml*Lpml*w) : 0.', Lx=Lx, Lpml=Lpml, w=0., # Will be overwritten later s0=0., # Will be overwritten later degree=2) sy = d.Expression('fabs(x[1]) > Ly ? s0*pow(fabs(x[1])-Ly,2)/(Lpml*Lpml*w) : 0.', Ly=Ly, Lpml=Lpml, w=0., # Will be overwritten later s0=0., # Will be overwritten later degree=2) sz = d.Expression('fabs(x[2]) > Lz ? s0*pow(fabs(x[2])-Lz,2)/(Lpml*Lpml*w) : 0.', Lz=Lz, Lpml=Lpml, w=0., # Will be overwritten later s0=0., # Will be overwritten later degree=2) # Neumann boundary conditions # # At Object Boundary cpp_g_re = ("A*k*k0_*sin(k*(k0_*x[0] + k1_*x[1] + k2_*x[2]))", "A*k*k1_*sin(k*(k0_*x[0] + k1_*x[1] + k2_*x[2]))", "A*k*k2_*sin(k*(k0_*x[0] + k1_*x[1] + k2_*x[2]))") g_re = d.Expression(cpp_code=cpp_g_re, A=inc_mag, k=0., # Will be overwritten later k0_=inc_dir[0], k1_=inc_dir[1], k2_=inc_dir[2], degree=4) cpp_g_im = ("-A*k*k0_*cos(k*(k0_*x[0] + k1_*x[1] + k2_*x[2]))", "-A*k*k1_*cos(k*(k0_*x[0] + k1_*x[1] + k2_*x[2]))", "-A*k*k2_*cos(k*(k0_*x[0] + k1_*x[1] + k2_*x[2]))") g_im = d.Expression(cpp_code=cpp_g_im, A=inc_mag, k=0., # Will be overwritten later k0_=inc_dir[0], k1_=inc_dir[1], k2_=inc_dir[2], degree=4) # Field due to Plane Wave : $ p = A * exp( |k| \hat{k} \cdot \vec{r}) $ u_pw_re = d.Expression("A*cos(k*( k0_*x[0] + k1_*x[1] + k2_*x[2]))", A=inc_mag, k=0., # Will be overwritten later k0_=inc_dir[0], k1_=inc_dir[1], k2_=inc_dir[2], degree=4) u_pw_im = d.Expression("A*sin(k*(k0_*x[0] + k1_*x[1] + k2_*x[2]))", A=inc_mag, k=0., # Will be overwritten later k0_=inc_dir[0], k1_=inc_dir[1], k2_=inc_dir[2], degree=4) # Exact Solution expressions cpp_uex_re = open("exact/uex_re.cpp").read() cpp_uex_im = open("exact/uex_im.cpp").read() # # Real part uex_re_exp = d.CompiledExpression(d.compile_cpp_code(cpp_uex_re).ScatteringExact_Re(), degree=4) uex_re_exp.p0 = inc_mag uex_re_exp.a = radius # # Imaginary Part uex_im_exp = d.CompiledExpression(d.compile_cpp_code(cpp_uex_im).ScatteringExact_Im(), degree=4) uex_im_exp.p0 = inc_mag uex_im_exp.a = radius # Total Field expressions u_tot_exp = d.Expression('f1+f2', f1=d.Function(Q), # Will be overwritten later f2=d.Function(Q), # Will be overwritten later degree=4) # Error expressions error_exp = d.Expression('f1-f2', f1=d.Function(Q), # Will be overwritten later f2=d.Function(Q), # Will be overwritten later degree=4) # Store L2 Errors errors =
np.zeros(nfreqs)
numpy.zeros
import time import numpy as np import pandas as pd import streamlit as st from keras.layers import Bidirectional from keras.layers import ConvLSTM2D from keras.layers import Dense from keras.layers import LSTM from keras.layers import TimeDistributed from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.models import Sequential from numpy import array from tensorflow.keras.layers import Flatten def main(): """Sentiment Analysis Emoji App """ st.title("Jamaica Stock Exchange LSTM prediction") st.subheader('About LSTM:') st.write('Long Short-Term Memory networks, or LSTMs for short, can be applied to time series forecasting. ' 'There are many types of LSTM models that can be used for each specific type of time series ' 'forecasting problem. In this scenario we are using Univariate LSTM Models based on linear data ' 'Though this method is not ideal for investment purposes it is interesting to see it put into practice') st.markdown( "**Acknowledgments:** I'd like to thank <NAME> for his contribution of algorithms and explanation towards this " "project. His work relating to LSTM sequence predictions can be found at: " "https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/ ") LSTM_T = ["Vanilla LSTM", "Bidirectional LSTM", "CNN LSTM", "Conv LSTM", "Multilayer Perceptron Regression"] choice = st.sidebar.selectbox("vanilla LSTM", LSTM_T) # if choice == 'Multilayer Perceptron Regression': if choice == 'Vanilla LSTM': url = 'https://www.jamstockex.com/market-data/download-data/index-history/main-market/JSE-Index/2010-08-08/2020-08-10' df = pd.read_html(url) jse = df[0] # JSE PLot # plt.figure(figsize=(18, 18)) # plt.plot(jse['Value']) # New DF jse_value = jse['Value'] raw_seq = jse_value st.subheader("Jamaica stock Exchange graph:") def split_sequence(sequence, n_steps): X, y = list(), list() for i in range(len(sequence)): # find the end of this pattern end_ix = i + n_steps # check if we are beyond the sequence if end_ix > len(sequence) - 1: break # gather input and output parts of the pattern seq_x, seq_y = sequence[i:end_ix], sequence[end_ix] X.append(seq_x) y.append(seq_y) return array(X), array(y) # choose a number of time steps n_steps = 3 # split into samples X, y = split_sequence(raw_seq, n_steps) # reshape from [samples, timesteps] into [samples, timesteps, features] n_features = 1 X = X.reshape((X.shape[0], X.shape[1], n_features)) # define model model = Sequential() model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # fit model model.fit(X, y, epochs=200, verbose=0) # demonstrate prediction x_input = array(jse_value.tail(3).tolist()) x_input = x_input.reshape((1, n_steps, n_features)) yhat = model.predict(x_input, verbose=0) # Charts progress_bar = st.sidebar.progress(0) status_text = st.sidebar.empty() last_rows = np.random.randn(1, 1) chart = st.line_chart(jse_value, use_container_width=True) for i in range(1, 101): new_rows = last_rows[-1, :] + np.random.randn(5, 1).cumsum(axis=0) status_text.text("%i%% Complete" % i) # chart.add_rows(new_rows) progress_bar.progress(i) # last_rows = new_rows time.sleep(0.05) progress_bar.empty() # rerun. st.button("Re-run") st.subheader('About Vanilla LSTM:') st.write(' Vanilla LSTM is an LSTM model that has a single hidden layer of LSTM units, and an output layer ' 'used to make a prediction. ') st.write('The LSTM model has predicted that the next value in the sequence will be ' + str(yhat[0][0])) last_price = jse_value.iloc[-1] st.write('The current jamaica stock exchange index value is ' + str(last_price)) difference = yhat[0][0] - jse_value.iloc[-1] st.write('This reflects a difference of ' + str(round(difference, 2))) if choice == 'Bidirectional LSTM': st.subheader("Bidirectional LSTM") url = 'https://www.jamstockex.com/market-data/download-data/index-history/main-market/JSE-Index/2010-08-08/2021-01-01' df = pd.read_html(url) jse = df[0] # New DF jse_value = jse['Value'] # split a univariate sequence into samples def split_sequence(sequence, n_steps): X, y = list(), list() for i in range(len(sequence)): # find the end of this pattern end_ix = i + n_steps # check if we are beyond the sequence if end_ix > len(sequence) - 1: break # gather input and output parts of the pattern seq_x, seq_y = sequence[i:end_ix], sequence[end_ix] X.append(seq_x) y.append(seq_y) return array(X), array(y) def split_sequence(sequence, n_steps): X, y = list(), list() for i in range(len(sequence)): # find the end of this pattern end_ix = i + n_steps # check if we are beyond the sequence if end_ix > len(sequence) - 1: break # gather input and output parts of the pattern seq_x, seq_y = sequence[i:end_ix], sequence[end_ix] X.append(seq_x) y.append(seq_y) return array(X), array(y) raw_seq = jse_value # choose a number of time steps n_steps = 3 # split into samples X, y = split_sequence(raw_seq, n_steps) # reshape from [samples, timesteps] into [samples, timesteps, features] n_features = 1 X = X.reshape((X.shape[0], X.shape[1], n_features)) # define model model = Sequential() model.add(Bidirectional(LSTM(50, activation='relu'), input_shape=(n_steps, n_features))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # fit model model.fit(X, y, epochs=200, verbose=0) # demonstrate prediction x_input = array(jse_value.tail(3).tolist()) x_input = x_input.reshape((1, n_steps, n_features)) yhat = model.predict(x_input, verbose=0) progress_bar = st.sidebar.progress(0) status_text = st.sidebar.empty() last_rows = np.random.randn(1, 1) chart = st.line_chart(jse_value, use_container_width=True) for i in range(1, 101): new_rows = last_rows[-1, :] +
np.random.randn(5, 1)
numpy.random.randn
"""Tests for Argo checks.""" import numpy as np from numpy import ma import pytest import argortqcpy.profile from argortqcpy.checks import ArgoQcFlag, CheckOutput, PressureIncreasingCheck def test_check_is_required(fake_check): """Check that the base check is required.""" assert fake_check.is_required() def test_output_ensure_output_for_property(profile_from_dataset): """Test ensuring a property is given an output array.""" output = CheckOutput(profile=profile_from_dataset) output.ensure_output_for_property("PRES") flags = output.get_output_flags_for_property("PRES") assert flags is not None assert isinstance(flags, ma.MaskedArray) assert np.all(flags == ArgoQcFlag.GOOD.value) def test_output_set_output_flag_for_property(profile_from_dataset): """Test setting a flag for a given property.""" output = CheckOutput(profile=profile_from_dataset) output.ensure_output_for_property("PRES") output.set_output_flag_for_property("PRES", ArgoQcFlag.GOOD) flags = output.get_output_flags_for_property("PRES") assert flags is not None assert isinstance(flags, ma.MaskedArray) assert np.all(flags == ArgoQcFlag.GOOD.value) def test_output_set_output_flag_for_property_where(profile_from_dataset): """Test setting a flag for a given property for a limited set of indices.""" output = CheckOutput(profile=profile_from_dataset) output.ensure_output_for_property("PRES") output.set_output_flag_for_property("PRES", ArgoQcFlag.PROBABLY_GOOD, where=slice(None, 2)) flags = output.get_output_flags_for_property("PRES") assert flags is not None assert isinstance(flags, ma.MaskedArray) assert np.all(flags[:2] == ArgoQcFlag.PROBABLY_GOOD.value) assert np.all(flags[2:] == ArgoQcFlag.GOOD.value) def test_output_set_output_flag_for_property_where_array(profile_from_dataset): """Test setting a flag for a given property for indices limited by array.""" output = CheckOutput(profile=profile_from_dataset) where = np.full_like(profile_from_dataset.get_property_data("PRES"), False, dtype=bool) where[0] = True where[-1] = True output.ensure_output_for_property("PRES") output.set_output_flag_for_property("PRES", ArgoQcFlag.PROBABLY_GOOD, where=where) flags = output.get_output_flags_for_property("PRES") assert flags is not None assert isinstance(flags, ma.MaskedArray) assert np.all(flags[0] == ArgoQcFlag.PROBABLY_GOOD.value) assert np.all(flags[1:-1] == ArgoQcFlag.GOOD.value) assert np.all(flags[-1] == ArgoQcFlag.PROBABLY_GOOD.value) @pytest.mark.parametrize( "lower,higher", ( (ArgoQcFlag.PROBABLY_GOOD, ArgoQcFlag.BAD), (ArgoQcFlag.PROBABLY_GOOD, ArgoQcFlag.PROBABLY_BAD), (ArgoQcFlag.PROBABLY_BAD, ArgoQcFlag.BAD), ), ) def test_output_set_output_flag_for_property_with_precendence(profile_from_dataset, lower, higher): """Test setting a flag for a given property for a limited set of indices.""" output = CheckOutput(profile=profile_from_dataset) output.ensure_output_for_property("PRES") output.set_output_flag_for_property("PRES", lower, where=slice(None, 2)) output.set_output_flag_for_property("PRES", higher, where=slice(None, 1)) output.set_output_flag_for_property("PRES", lower, where=slice(None, 2)) flags = output.get_output_flags_for_property("PRES") assert flags is not None assert isinstance(flags, ma.MaskedArray) assert np.all(flags[:1] == higher.value) assert np.all(flags[1:2] == lower.value) assert np.all(flags[2:] == ArgoQcFlag.GOOD.value) @pytest.mark.parametrize( "pressure_values", ( range(10), [1, 3, 5, 10, 100], [0, 2, 2.5, 6.85], ), ) def test_pressure_increasing_check_all_pass(mocker, pressure_values): """Test that the pressure increasing test succeeds.""" profile = mocker.patch.object(argortqcpy.profile, "Profile") profile.get_property_data = mocker.Mock(return_value=ma.masked_array(pressure_values)) pic = PressureIncreasingCheck(profile, None) output = pic.run() assert np.all(output.get_output_flags_for_property("PRES").data == ArgoQcFlag.GOOD.value) @pytest.mark.parametrize( "pressure_values,expected", ( ( [0, 2, 1, 5], [ArgoQcFlag.GOOD.value, ArgoQcFlag.GOOD.value, ArgoQcFlag.BAD.value, ArgoQcFlag.GOOD.value], ), ), ) def test_pressure_increasing_check_some_bad(mocker, pressure_values, expected): """Test that the pressure increasing works when some values are bad.""" profile = mocker.patch.object(argortqcpy.profile, "Profile") profile.get_property_data = mocker.Mock(return_value=
ma.masked_array(pressure_values)
numpy.ma.masked_array
#!/usr/bin/env python3 """utils tests""" import numpy as np import tensorflow as tf from lm_human_preferences.utils import core as utils def test_exact_div(): assert utils.exact_div(12, 4) == 3 assert utils.exact_div(12, 3) == 4 try: utils.exact_div(7, 3) assert False except ValueError: pass def test_ceil_div(): for b in range(1, 10 + 1): for a in range(-10, 10 + 1): assert utils.ceil_div(a, b) == int(np.ceil(a / b)) def test_expand_tile(): np.random.seed(7) size = 11 with tf.Session(): for shape in (), (7,), (3, 5): data = np.asarray(np.random.randn(*shape), dtype=np.float32) x = tf.constant(data) for axis in range(-len(shape) - 1, len(shape) + 1): y = utils.expand_tile(x, size, axis=axis).eval() assert np.all(np.expand_dims(data, axis=axis) == y) def test_sample_buffer(): capacity = 100 batch = 17 lots = 100 with tf.Graph().as_default(), tf.Session() as sess: buffer = utils.SampleBuffer(capacity=capacity, schemas=dict(x=utils.Schema(tf.int32, ()))) tf.variables_initializer(tf.global_variables() + tf.local_variables()).run() i_p = tf.placeholder(dtype=tf.int32, shape=()) add = buffer.add(x=batch * i_p + tf.range(batch)) sample = buffer.sample(lots, seed=7)['x'] all_data_1 = buffer.data() all_data_2 = buffer.read(tf.range(buffer.size())) for i in range(20): add.run(feed_dict={i_p: i}) samples = sample.eval() hi = batch * (i + 1) lo = max(0, hi - capacity) assert lo <= samples.min() <= lo + 3 assert hi - 5 <= samples.max() < hi np.testing.assert_equal(sess.run(all_data_1), sess.run(all_data_2)) def test_where(): with tf.Session(): assert np.all(utils.where([False, True], 7, 8).eval() == [8, 7]) assert np.all(utils.where([False, True, True], [1, 2, 3], 8).eval() == [8, 2, 3]) assert np.all(utils.where([False, False, True], 8, [1, 2, 3]).eval() == [1, 2, 8]) assert np.all(utils.where([False, True], [[1, 2], [3, 4]], -1).eval() == [[-1, -1], [3, 4]]) assert np.all(utils.where([False, True], -1, [[1, 2], [3, 4]]).eval() == [[1, 2], [-1, -1]]) def test_map_flat(): with tf.Session() as sess: inputs = [2], [3, 5], [[7, 11], [13, 17]] inputs = map(np.asarray, inputs) outputs = sess.run(utils.map_flat(tf.square, inputs)) for i, o in zip(inputs, outputs): assert np.all(i * i == o) def test_map_flat_bits(): with tf.Session() as sess: inputs = [2], [3, 5], [[7, 11], [13, 17]], [True, False, True] dtypes = np.uint8, np.uint16, np.int32, np.int64, np.bool inputs = [np.asarray(i, dtype=d) for i, d in zip(inputs, dtypes)] outputs = sess.run(utils.map_flat_bits(lambda x: x + 1, inputs)) def tweak(n): return n + sum(2 ** (8 * i) for i in range(n.dtype.itemsize)) for i, o in zip(inputs, outputs): assert np.all(tweak(i) == o) def test_cumulative_max(): np.random.seed(7) with tf.Session().as_default(): for x in [ np.random.randn(10), np.random.randn(11, 7), np.random.randint(-10, 10, size=10), np.random.randint(-10, 10, size=(12, 8)), np.random.randint(-10, 10, size=(3, 3, 4)), ]: assert np.all(utils.cumulative_max(x).eval() == np.maximum.accumulate(x, axis=-1)) def test_index_each(): np.random.seed(7) x =
np.random.randn(7, 11)
numpy.random.randn
"""Utility functions for operating on geometry. See the :class:`Geometry3D` documentation for the core geometry class. .. versionadded:: 0.8.6 [functions moved here from :mod:`klampt.model.sensing`] Working with geometric primitives ================================= :func:`box` and :func:`sphere` are aliases for the functions in :mod:`klampt.model.create.primitives`. Working with point clouds ========================= :func:`point_cloud_normals` estimates normals from a normal-free :class:`PointCloud`. The :func:`fit_plane`, :func:`fit_plane3`, and :class:`PlaneFitter` class help with plane estimation. :func:`point_cloud_simplify` simplifies a PointCloud. :func:`point_cloud_colors` and :func:`point_cloud_set_colors` sets / gets colors from a PointCloud. """ from ..robotsim import Geometry3D,PointCloud import math from .create import primitives from ..math import vectorops,so3,se3 _has_numpy = False _tried_numpy_import = False np = None _has_scipy = False _tried_scipy_import = False sp = None box = primitives.box """Alias for :func:`klampt.model.create.primitives.box`""" sphere = primitives.sphere """Alias for :func:`klampt.model.create.primitives.sphere`""" def _try_numpy_import(): global _has_numpy,_tried_numpy_import global np if _tried_numpy_import: return _has_numpy _tried_numpy_import = True try: import numpy as np _has_numpy = True #sys.modules['numpy'] = numpy except ImportError: import warnings warnings.warn("klampt.model.geometry.py: numpy not available.",ImportWarning) _has_numpy = False return _has_numpy def _try_scipy_import(): global _has_scipy,_tried_scipy_import global sp if _tried_scipy_import: return _has_scipy _tried_scipy_import = True try: import scipy as sp _has_scipy = True #sys.modules['scipy'] = scipy except ImportError: import warnings warnings.warn("klampt.model.geometry.py: scipy not available.",ImportWarning) _has_scipy = False return _has_scipy class PlaneFitter: """ Online fitting of planes through 3D point clouds Attributes: normal (3-vector): best-fit normal centroid (3-vector): centroid of points count (int): # of points sse (float): fitting sum of squared errors cov (3x3 array): covariance of points """ def __init__(self,points=None): _try_numpy_import() if points is None: self.count = 0 self.centroid = np.zeros(3) self.cov = np.zeros((3,3)) self.normal = np.array([0,0,1]) self.sse = 0 else: self.count = len(points) self.centroid = np.average(points,axis=0) pprime = points - [self.centroid]*len(points) self.cov = np.dot(pprime.T,pprime)/self.count self._update_plane() def plane_equation(self): """Returns (a,b,c,d) with ax+by+cz+d=0 the plane equation""" offset = np.dot(self.centroid,self.normal) return (self.normal[0],self.normal[1],self.normal[2],-offset) def goodness_of_fit(self): """Returns corrected RMSE""" if self.count <= 3: return float('inf') return math.sqrt(self.sse*self.count / (self.count-3)) def add_point(self,pt): """Online estimation of best fit plane""" new_count = self.count + 1 new_centroid = self.centroid + (pt-self.centroid)/new_count old_sse = (self.cov + np.outer(self.centroid,self.centroid))*self.count new_sse = old_sse + np.outer(pt,pt) new_cov = new_sse/new_count - np.outer(new_centroid,new_centroid) self.count = new_count self.centroid = new_centroid self.cov = new_cov self._update_plane() def merge(self,fitter,inplace = False): """Online merging of two plane fitters. If inplace = False, returns a new PlaneFitter. If inplace = True, self is updated with the result. """ if not inplace: res = PlaneFitter() else: res = self new_count = self.count + fitter.count old_sum = self.centroid*self.count new_sum = old_sum + fitter.centroid*fitter.count new_centroid = new_sum/new_count old_sse = (self.cov + np.outer(self.centroid,self.centroid))*self.count fitter_sse = (fitter.cov + np.outer(fitter.centroid,fitter.centroid))*fitter.count new_sse = old_sse + fitter_sse new_cov = new_sse/new_count - np.outer(new_centroid,new_centroid) res.count = new_count res.centroid = new_centroid res.cov = new_cov res._update_plane() return res def distance(self,pt): """Returns the signed distance to this plane""" return np.dot(self.normal,pt)-np.dot(self.normal,self.centroid) def _update_plane(self): w,v = np.linalg.eig(self.cov) index = np.argmin(w) self.normal = v[:,index] self.sse = self.count * np.dot(self.normal,np.dot(self.cov,self.normal)) def point_cloud_simplify(pc,radius): """Simplifies a point cloud by averaging points within neighborhoods. Uses a fast hash grid data structure. Args: pc (Geometry3D or PointCloud): the point cloud radius (float): the neighborhood radius. """ if radius <= 0: raise ValueError("radius must be > 0") if isinstance(pc,Geometry3D): assert pc.type() == 'PointCloud',"Must provide a point cloud to point_cloud_simplify" return pc.convert('PointCloud',radius) else: return Geometry3D(pc).convert('PointCloud',radius).getPointCloud() def point_cloud_normals(pc,estimation_radius=None,estimation_knn=None,estimation_viewpoint=None,add=True): """Returns the normals of the point cloud. If pc has the standard ``normal_x, normal_y, normal_z`` properties, these will be returned. Otherwise, they will be estimated using plane fitting. The plane fitting method uses scipy nearest neighbor detection if scipy is available. Otherwise it uses a spatial grid. The process is as follows: - If ``estimation_radius`` is provided, then it will use neighbors within this range. For a spatial grid, this is the grid size. - If ``estimation_knn`` is provided, then planes will be fit to these number of neighbors. - If neither is provided, then estimation_radius is set to 3 * max dimension of the point cloud / sqrt(N). - If not enough points are within a neighborhood (either 4 or ``estimation_knn``, whichever is larger), then the normal is set to 0. - If ``estimation_viewpoint`` is provided, this must be a 3-list. The normals are oriented such that they point toward the viewpoint. Returns: A list of N 3-lists, or an N x 3 numpy array if numpy is available. If ``add=True``, estimated normals will be added to the point cloud under the ``normal_x, normal_y, normal_z`` properties. """ geom = None if isinstance(pc,Geometry3D): assert pc.type() == 'PointCloud',"Must provide a point cloud to point_cloud_normals" geom = pc pc = pc.getPointCloud() assert isinstance(pc,PointCloud) inds = [-1,-1,-1] props = ['normal_x','normal_y','normal_z'] for i in range(pc.numProperties()): try: ind = props.index(pc.propertyNames[i]) inds[ind] = i except ValueError: pass if all(i>=0 for i in inds): #has the properties! normal_x = pc.getProperties(inds[0]) normal_y = pc.getProperties(inds[1]) normal_z = pc.getProperties(inds[2]) if _has_numpy: return np.array([normal_x,normal_y,normal_z]).T else: return list(zip(normal_x,normal_y,normal_z)) if not all(i < 0 for i in inds): raise ValueError("Point cloud has some normal components but not all of them?") #need to estimate normals _try_numpy_import() _try_scipy_import() N = len(pc.vertices)//3 if not _has_numpy: raise RuntimeError("Need numpy to perform plane fitting") positions = np.array(pc.vertices) positions = positions.reshape((N,3)) if estimation_radius is None and estimation_knn is None: R = max(positions.max(axis=0)-positions.min(axis=0)) estimation_radius = 3*R/math.sqrt(N) if estimation_knn is None or estimation_knn < 4: estimation_knn = 4 normals = [] if _has_scipy: import scipy.spatial tree = scipy.spatial.cKDTree(positions) if estimation_radius is not None: neighbors = tree.query_ball_point(positions,estimation_radius) for n in neighbors: if len(n) < estimation_knn: normals.append([0,0,0]) else: #fit a plane to neighbors normals.append(fit_plane([positions[i] for i in n])[:3]) else: d,neighbors = tree.query(positions,estimation_knn) for n in neighbors: normals.append(fit_plane([positions[i] for i in n])[:3]) else: if estimation_radius is None: raise ValueError("Without scipy, can't do a k-NN plane estimation") #do a spatial hash normals = np.zeros((N,3)) indices = (positions * (1.0/estimation_radius)).astype(int) from collections import defaultdict pt_hash = defaultdict(list) for i,(ind,p) in enumerate(zip(indices,positions)): pt_hash[ind].append((i,p)) successful = 0 for (ind,iplist) in pt_hash.items(): if len(iplist) < estimation_knn: pass else: pindices = [ip[0] for ip in iplist] pts = [ip[1] for ip in iplist] n = fit_plane(pts)[:3] normals[pindices,:] = n successful += len(pindices) normals = np.asarray(normals) if estimation_viewpoint is not None: #flip back-facing normals disp = positions - estimation_viewpoint for i,(n,d) in enumerate(zip(normals,disp)): if np.dot(n,d) < 0: normals[i,:] = -n else: #flip back-facing normals assuming centroid is interior centroid = np.average(positions,axis=0) for i,(n,p) in enumerate(zip(normals,positions)): if np.dot(n,p-centroid) < 0: normals[i,:] = -n if add: normal_x = normals[:,0].tolist() normal_y = normals[:,1].tolist() normal_z = normals[:,2].tolist() pc.addProperty('normal_x',normal_x) pc.addProperty('normal_y',normal_y) pc.addProperty('normal_z',normal_z) if geom is not None: geom.setPointCloud(pc) return normals def fit_plane3(point1,point2,point3): """Returns a 3D plane equation fitting the 3 points. The result is (a,b,c,d) with the plane equation ax+by+cz+d=0 """ _try_numpy_import() normal = np.cross(point2-point1,point3-point1) nlen = np.linalg.norm(normal) if nlen < 1e-4: #degenerate raise ValueError("Points are degenerate") normal = normal / nlen offset = -np.dot(normal,point1) return (normal[0],normal[1],normal[2],offset) def fit_plane(points): """Returns a 3D plane equation that is a least squares fit through the points (len(points) >= 3).""" centroid,normal = fit_plane_centroid(points) return normal[0],normal[1],normal[2],-vectorops.dot(centroid,normal) def fit_plane_centroid(points): """Similar to :func:`fit_plane`, but returns a (centroid,normal) pair.""" if len(points)<3: raise ValueError("Need to have at least 3 points to fit a plane") #if len(points)==3: # return fit_plane3(points[0],points[1],points[2]) _try_numpy_import() points = np.asarray(points) centroid = np.average(points,axis=0) U,W,Vt = np.linalg.svd(points-[centroid]*len(points),full_matrices=False) if np.sum(W<1e-6) > 1: raise ValueError("Point set is degenerate") normal = Vt[2,:] return centroid.tolist(),normal.tolist() def _color_format_from_uint8_channels(format,r,g,b,a=None): import numpy as np if a is None: a = 0xff if format == 'rgb': return np.bitwise_or.reduce((np.left_shift(r,16),np.left_shift(g,8),b)).tolist() elif format == 'bgr': return np.bitwise_or.reduce((np.left_shift(b,16),np.left_shift(g,8),r)).tolist() elif format=='rgba': return np.bitwise_or.reduce((np.left_shift(r,24),np.left_shift(g,16),np.left_shift(b,8),a)).tolist() elif format=='bgra': return np.bitwise_or.reduce((np.left_shift(g,24),np.left_shift(g,16),np.left_shift(r,8),a)).tolist() elif format=='argb': return np.bitwise_or.reduce((np.left_shift(a,24),np.left_shift(r,16),np.left_shift(g,8),b)).tolist() elif format=='abgr': return np.bitwise_or.reduce((np.left_shift(a,24),np.left_shift(b,16),np.left_shift(g,8),r)).tolist() elif format=='channels': one_255 = 1.0/255.0 if not hasattr(a,'__iter__'): return (r*one_255).tolist(),(g*one_255).tolist(),(b*one_255).tolist() else: return (r*one_255).tolist(),(g*one_255).tolist(),(b*one_255).tolist(),(a*one_255).tolist() elif format=='opacity': one_255 = 1.0/255.0 if not hasattr(a,'__iter__'): return np.ones(len(r)) return (a*one_255).tolist() elif tuple(format)==('r','g','b'): one_255 = 1.0/255.0 return np.column_stack((r*one_255,g*one_255,b*one_255)).tolist() elif tuple(format)==('r','g','b','a'): one_255 = 1.0/255.0 if not hasattr(a,'__iter__'): a = np.full(len(r),a) return np.column_stack((r*one_255,g*one_255,b*one_255,a*one_255)).tolist() else: raise ValueError("Invalid format specifier "+str(format)) def _color_format_to_uint8_channels(format,colors): import numpy as np if format=='channels': return tuple((np.asarray(c)*255).astype(np.uint8).tolist() for c in colors) colors = np.asarray(colors) if format == 'rgb': r,g,b = np.right_shift(np.bitwise_and(colors,0xff0000),16),np.right_shift(np.bitwise_and(colors,0xff00),8),np.bitwise_and(colors,0xff) return r.tolist(),g.tolist(),b.tolist() elif format == 'bgr': b,g,r = np.right_shift(np.bitwise_and(colors,0xff0000),16),np.right_shift(np.bitwise_and(colors,0xff00),8),np.bitwise_and(colors,0xff) return r.tolist(),g.tolist(),b.tolist() elif format=='rgba': r,g,b,a = np.right_shift(np.bitwise_and(colors,0xff000000),24),np.right_shift(np.bitwise_and(colors,0xff0000),16),np.right_shift(np.bitwise_and(colors,0xff00),8),np.bitwise_and(colors,0xff) return r.tolist(),g.tolist(),b.tolist(),a.tolist() elif format=='bgra': b,g,r,a = np.right_shift(np.bitwise_and(colors,0xff000000),24),np.right_shift(np.bitwise_and(colors,0xff0000),16),np.right_shift(np.bitwise_and(colors,0xff00),8),np.bitwise_and(colors,0xff) return r.tolist(),g.tolist(),b.tolist(),a.tolist() elif format=='argb': a,r,g,b = np.right_shift(np.bitwise_and(colors,0xff000000),24),np.right_shift(np.bitwise_and(colors,0xff0000),16),np.right_shift(
np.bitwise_and(colors,0xff00)
numpy.bitwise_and
""" Read the FISS fts file and its header. """ from __future__ import absolute_import, division __author__ = "<NAME>" __email__ = "<EMAIL>" from astropy.io import fits from scipy.signal import savgol_filter from scipy.signal import fftconvolve as conv import numpy as np import os __all__ = ['frame', 'pca_read', 'raster', 'getheader', 'frame2raster', 'sp_av', 'sp_med', 'wavecalib', 'simple_wvcalib'] def frame(file, x1=0, x2=False, pca=True, ncoeff=False, xmax=False, smooth=False, **kwargs): """Read the FISS fts file. Parameters ---------- file : str A string of file name to be read. x1 : int A starting index of the frame along the scanning direction. x2 : (optional) int An ending index of the frame along the scanning direction. If not, then the only x1 frame is read. pca : (optional) bool If True, the frame is read from the PCA file. Default is True, but the function automatically check the existance of the pca file. ncoeff : (optional) int The number of coefficients to be used for the construction of frame in a pca file. xmax : (optional) bool If True, the x2 value is set as the maximum end point of the frame. * Default is False. smooth : (optional) bool If True, apply the Savitzky-Golay filter to increase the signal to noise without greatly distorting the signal of the given fts file. * Default is False. nsmooth : (optional) int The number of smooting. Default is 1 for the case of the compressed file, and is 2 for the case of the uncompresseed file. kwargs The parameters for smooth (savitzky-golay filter), \n See the docstring of the `scipy.signal.savgol_filter`. Returns ------- frame : ~numpy.ndarray FISS data frame with the information of (wavelength, y, x). References ---------- `Savitzky-Golay filter <https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter>`_.\n `scipy.signal.savgol_filter <https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter>`_ Notes ----- This function is based on the IDL code FISS_READ_FRAME.PRO written by <NAME>, 2013. This function automatically check the existance of the pca file by reading the fts header. Example ------- .. plot:: :include-source: import matplotlib.pyplot as plt from fisspy.io import read import fisspy import fisspy.data.sample data=read.frame(fisspy.data.sample.FISS_IMAGE,xmax=True) plt.imshow(data[:,75],cmap=fisspy.cm.ca,origin='lower',interpolation='bilinear') plt.title(r"GST/FISS 8542 $\AA$ Spectrogram") plt.show() """ if not file: raise ValueError('Empty filename') if x2 and x2 <= x1: raise ValueError('x2 must be larger than x1') header=fits.getheader(file) try: header['pfile'] except: pca=False if xmax and not x2: x2=header['naxis3'] elif not x2: x2=x1+1 if pca: spec=pca_read(file,header,x1,x2,ncoeff=ncoeff) else: spec=fits.getdata(file)[x1:x2] if x1+1 == x2: spec=spec[0] return spec spec=spec.transpose((1,0,2)).astype(float) if smooth: winl=kwargs.pop('window_length',7) pord=kwargs.pop('polyorder',3) deriv=kwargs.pop('deriv',0) delta=kwargs.pop('delta',1.0) mode=kwargs.pop('mode','interp') cval=kwargs.pop('cval',0.0) nsmooth=kwargs.pop('nsmooth',int(not pca)+1) for i in range(nsmooth): spec=savgol_filter(spec,winl,pord,deriv=deriv, delta=delta,mode=mode,cval=cval) return spec def pca_read(file,header,x1,x2=False,ncoeff=False): """ Read the pca compressed FISS fts file. Parameters ---------- file : str A string of file name to be read. header : astropy.io.fits.header.Header The fts file header. x1 : int A starting index of the frame along the scanning direction. x2 : (optional) int An ending index of the frame along the scanning direction. If not, then the only x1 frame is read. ncoeff : (optional) int The number of coefficients to be used for the construction of frame in a pca file. Returns ------- frame : ~numpy.ndarry FISS data frame with the information of (wavelength, y, x). Notes ----- This function is based on the IDL code FISS_PCA_READ.PRO written by <NAME>, 2013. The required fts data are two. One is the "_c.fts", and the other is "_p.fts" """ if not file: raise ValueError('Empty filename') if not x2: x2 = x1+1 dir = os.path.dirname(file) pfile = header['pfile'] if dir: pfile = os.path.join(dir, pfile) pdata = fits.getdata(pfile) data = fits.getdata(file)[x1:x2] ncoeff1 = data.shape[2]-1 if not ncoeff: ncoeff = ncoeff1 elif ncoeff > ncoeff1: ncoeff = ncoeff1 spec = np.dot(data[:,:,0:ncoeff],pdata[0:ncoeff,:]) spec *= 10.**data[:,:,ncoeff][:,:,None] return spec def raster(file, wv, hw=0.05, x1=0, x2=False, y1=0, y2=False, pca=True, smooth=False, absScale = False, **kwargs): """ Make raster images for a given file at wv of wavelength within width hw Parameters ---------- file : str A string of file name to be read. wv : float or 1d ndarray Referenced wavelengths. hw : float A half-width of wavelength integration in unit of Angstrom. Default is 0.05 x1 : (optional) int A starting index of the frame along the scanning direction. x2 : (optional) int An ending index of the frame along the scanning direction. If not, x2 is set to the maximum end point of the frame. y1 : (optional) int A starting index of the frame along the slit position. y2 : (optional0 int A ending index of the frame along the slit position. pca : (optional) bool If True, the frame is read from the PCA file. Default is True, but the function automatically check the existance of the pca file. absScale : (optional) bool If True, the wavelength should be given in absolute scale. If Flase, the wavelength should be given in relative scale. smooth : (optional) bool If True, apply the Savitzky-Golay filter to increase the signal to noise without greatly distorting the signal of the given fts file. * Default is False. kwargs Any additional keyword arguments to read frame. See the docstring of `fisspy.io.read.frame` Returns ------- Raster : ~numpy.ndarray Raster image at given wavelengths. Notes ----- This function is based on the IDL code FISS_RASTER.PRO written by <NAME>, 2013. This function automatically check the existance of the pca file by reading the fts header. Example ------- .. plot:: :include-source: import matplotlib.pyplot as plt from fisspy.io import read from fisspy import cm import fisspy.data.sample raster=read.raster(fisspy.data.sample.FISS_IMAGE,0.3) plt.imshow(raster, cmap=cm.ca, origin='lower', interpolation='bilinear') plt.title(r"GST/FISS 8542+0.3 $\AA$ Spectrogram") plt.show() """ header = getheader(file,pca) ny = header['NAXIS2'] nx = header['NAXIS3'] dldw = header['CDELT1'] if not file: raise ValueError('Empty filename') if x2 and x2 <= x1+1: raise ValueError('x2 must be larger than x1+1') try: num = wv.shape[0] except: num = 1 wv = np.array([wv]) if not x2: x2 = int(nx) if not y2: y2 = int(ny) wl = simple_wvcalib(header, absScale= absScale) if hw < abs(dldw)/2.: hw = abs(dldw)/2. s = np.abs(wl-wv[:,None])<=hw sp = frame(file,x1,x2,pca=pca,smooth=smooth,**kwargs) leng = s.sum(1) if num == 1: img = sp[y1:y2,:,s[0,:]].sum(2)/leng[0] return img.reshape((y2-y1,x2-x1)) else: img=np.array([sp[y1:y2,:,s[i,:]].sum(2)/leng[i] for i in range(num)]) return img.reshape((num,y2-y1,x2-x1)) def getheader(file,pca=True): """ Get the FISS fts file header. Parameters ---------- file : str A string of file name to be read. pca : (optional) bool If True, the frame is read from the PCA file. Default is True, but the function automatically check the existance of the pca file. Returns ------- header : astropy.io.fits.Header The fts file header. Notes ----- This function automatically check the existance of the pca file by reading the fts header. Example ------- >>> from fisspy.io import read >>> h=read.getheader(file) >>> h['date'] '2014-06-03T16:49:42' """ header0 = fits.getheader(file) pfile = header0.pop('pfile',False) if not pfile: return header0 header = fits.Header() if pca: header['pfile']=pfile for i in header0['comment']: sori = i.split('=') if len(sori) == 1: skv = sori[0].split(None,1) if len(skv) == 1: pass else: header[skv[0]] = skv[1] else: key = sori[0] svc = sori[1].split('/') try: item = float(svc[0]) except: item = svc[0].split("'") if len(item) != 1: item = item[1].split(None,0)[0] else: item = item[0].split(None,0)[0] try: if item-int(svc[0]) == 0: item = int(item) except: pass if len(svc) == 1: header[key] = item else: header[key] = (item,svc[1]) header['simple'] = True alignl=header0.pop('alignl',-1) if alignl == 0: keys=['reflect','reffr','reffi','cdelt2','cdelt3','crota2', 'crpix3','shift3','crpix2','shift2','margin2','margin3'] header['alignl'] = (alignl,'Alignment level') for i in keys: header[i] = (header0[i],header0.comments[i]) header['history'] = str(header0['history']) if alignl == 1: keys=['reflect','reffr','reffi','cdelt2','cdelt3','crota1', 'crota2','crpix3','crval3','shift3','crpix2','crval2', 'shift2','margin2','margin3'] header['alignl'] = (alignl,'Alignment level') for i in keys: header[i] = (header0[i],header0.comments[i]) header['history'] = str(header0['history']) return header def frame2raster(frame, header, wv, absScale = False): """ Make a raster image by using the frame data. Parameters ---------- frame : ~numpy.ndarray Data which is read from the fisspy.io.read.frame header : astropy.io.fits.Header FISS data header wv : float or ~numpy.ndarray Referenced wavelengths to draw raster image. It must be the one single float, or 1D array absScale : (optional) bool If True, the wavelength should be given in absolute scale. If Flase, the wavelength should be given in relative scale. Returns ------- Raster : ~numpy.ndarray Raster image at gieven wavelength. """ hw = 0.05 wl = simple_wvcalib(header, absScale= absScale) s = np.abs(wl - wv) <= hw img = frame[:, :, s].sum(2) / s.sum() return img def sp_av(file) : a = frame(file, xmax = True) return a.mean(axis = 1) def sp_med(file) : a = frame(file, xmax = True) return np.median(a, axis = 1) def wavecalib(band,profile,method=True): """ Calibrate the wavelength for FISS spectrum profile. Parameters ---------- band : str A string to identify the wavelength. Allowable wavelength bands are '6562','8542','5890','5434' profile : ~numpy.ndarray A 1 dimensional numpy array of spectral profile. Method : (optional) bool * Default is True. If true, the reference lines for calibration are the telluric lines. Else if False, the reference lines are the solar absorption lines. Returns ------- wavelength : ~numpy.ndarray Calibrated wavelength. Notes ----- This function is based on the FISS IDL code FISS_WV_CALIB.PRO written by <NAME>, 2013. Example ------- >>> from fisspy.analysis import doppler >>> wv=doppler.wavecalib('6562',profile) """ band=band[0:4] nw=profile.shape[0] if method: if band == '6562': line=np.array([6561.097,6564.206]) lamb0=6562.817 dldw=0.019182 elif band == '8542': line=np.array([8540.817,8546.222]) lamb0=8542.090 dldw=-0.026252 elif band == '5890': line=np.array([5889.951,5892.898]) lamb0=5889.9509 dldw=0.016847 elif band == '5434': line=np.array([5434.524,5436.596]) lamb0=5434.5235 dldw=-0.016847 else: raise ValueError("The wavelength band value is not allowable.\n"+ "Please select the wavelenth "+ "among '6562','8542','5890','5434'") else: if band == '6562': line=np.array([6562.817,6559.580]) lamb0=6562.817 dldw=0.019182 elif band == '8542': line=np.array([8542.089,8537.930]) lamb0=8542.090 dldw=-0.026252 else: raise ValueError("The wavelength band value is not allowable.\n" "Please select the wavelenth " "among '6562','8542','5890','5434'") w=np.arange(nw) wl=
np.zeros(2)
numpy.zeros
from __future__ import print_function # modiofied based on PythTB python tight binding module. import numpy as np from builtins import range, zip from pyglib.iface.wannierio import get_wannier_data def tb_wigner_seitz(ngrid,lat): deg_ws = [] rvec_ws = [] ndiff = np.zeros(3) for n0 in range(-ngrid[0], ngrid[0]+1): for n1 in range(-ngrid[1], ngrid[1]+1): for n2 in range(-ngrid[2], ngrid[2]+1): dist_list = [] for i0 in [0,1,2,-1,-2]: ndiff[0] = n0 - i0*ngrid[0] for i1 in [0,1,2,-1,-2]: ndiff[1] = n1 - i1*ngrid[1] for i2 in [0,1,2,-1,-2]: ndiff[2] = n2 - i2*ngrid[2] dist_list.append(np.linalg.norm(ndiff.dot(lat))) dist_list = np.asarray(dist_list) dist_min = np.min(dist_list) if np.abs(dist_list[0]-dist_min) < 1.e-7: deg_ws.append(np.count_nonzero(\ np.abs(dist_list-dist_min) < 1.e-7)) rvec_ws.append(np.array([n0,n1,n2])) # sum-rule check deg_ws = np.array(deg_ws) rvec_ws = np.asarray(rvec_ws) tot1 = np.sum(1./deg_ws) tot2 = np.prod(ngrid) if np.abs(tot1 - tot2) > 1.e-7: raise ValueError("error in finding wigner-seitz points {} vs {}".\ format(tot1, tot2)) return deg_ws, rvec_ws def get_tb_hr(kpoints,rpoints,wfwans,evals): phase_mat = np.exp(-2.j*np.pi*np.asarray(kpoints).dot(rpoints.T)) \ /len(kpoints) hk_list = [[wfwansk1.T.conj().dot(np.diag(evalsk1)).dot(wfwansk1) \ for wfwansk1, evalsk1 in zip(wfwans1,evals1)]\ for wfwans1, evals1 in zip(wfwans,evals)] hk_list = np.array(hk_list).swapaxes(1,2).swapaxes(2,3) hr_list = np.tensordot(hk_list, phase_mat, axes=(3,0)) return hr_list class tb_model(object): r""" This is the main class of the PythTB package which contains all information for the tight-binding model. :param lat: Array containing lattice vectors in Cartesian coordinates (in arbitrary units). In example the below, the first lattice vector has coordinates [1.0,0.5] while the second one has coordinates [0.0,2.0]. By default, lattice vectors are an identity matrix. """ def __init__(self,lat,deg_ws,rpoints,hr_list): self._dim_k = 3 self._dim_r = 3 self._lat=np.array(lat,dtype=float) if self._lat.shape != (self._dim_r,self._dim_r): raise Exception("\nWrong lat array dimensions") # check that volume is not zero and that have right handed system if np.abs(np.linalg.det(self._lat))<1.0E-6: raise Exception(\ "\nLattice vectors length/area/volume too"+\ " close to zero, or zero.") if np.linalg.det(self._lat)<0.0: raise Exception(\ "\n\nLattice vectors need to form right handed system.") self.deg_ws = np.asarray(deg_ws) self.rpoints = np.asarray(rpoints) self.hr_list = np.asarray(hr_list) self._norb = self.hr_list.shape[2] def _gen_ham(self,kpt,isp): """Generate Hamiltonian for a certain k-point, which is given in reduced coordinates!""" phase_mat = np.exp(-2.j*np.pi*self.rpoints.dot(kpt))/self.deg_ws ham = np.tensordot(self.hr_list[isp],phase_mat,axes=(2,0)) return ham def _sol_ham(self,ham,eig_vectors=False): """Solves Hamiltonian and returns eigenvectors, eigenvalues""" # check that matrix is hermitian if np.max(ham-ham.T.conj())>1.0E-9: raise Exception("\n\nHamiltonian matrix is not hermitian?!") #solve matrix if eig_vectors==False: # only find eigenvalues eval = np.linalg.eigvalsh(ham) # sort eigenvalues and convert to real numbers eval = _nicefy_eig(eval) return np.array(eval,dtype=float) else: # find eigenvalues and eigenvectors eval,eig = np.linalg.eigh(ham) # sort evectors, eigenvalues and convert to real numbers eval,eig = _nicefy_eig(eval,eig) # reshape eigenvectors if doing a spinfull calculation return eval, eig def k_uniform_mesh(self,mesh_size): r""" Returns a uniform grid of k-points that can be passed to passed to function :func:`pythtb.tb_model.solve_all`. This function is useful for plotting density of states histogram and similar. Returned uniform grid of k-points always contains the origin. :param mesh_size: Number of k-points in the mesh in each periodic direction of the model. :returns: * **k_vec** -- Array of k-vectors on the mesh that can be directly passed to function :func:`pythtb.tb_model.solve_all`. Example usage:: # returns a 10x20x30 mesh of a tight binding model # with three periodic directions k_vec = my_model.k_uniform_mesh([10,20,30]) # solve model on the uniform mesh my_model.solve_all(k_vec) """ # get the mesh size and checks for consistency use_mesh=np.array(list(map(round,mesh_size)),dtype=int) if use_mesh.shape!=(self._dim_k,): print(use_mesh.shape) raise Exception("\n\nIncorrect size of the specified k-mesh!") if np.min(use_mesh)<=0: raise Exception("\n\nMesh must have positive non-zero number of elements.") # construct the mesh if self._dim_k==1: # get a mesh k_vec=np.mgrid[0:use_mesh[0]] # normalize the mesh norm=np.tile(np.array(use_mesh,dtype=float),use_mesh) norm=norm.reshape(use_mesh.tolist()+[1]) norm=norm.transpose([1,0]) k_vec=k_vec/norm # final reshape k_vec=k_vec.transpose([1,0]).reshape([use_mesh[0],1]) elif self._dim_k==2: # get a mesh k_vec=np.mgrid[0:use_mesh[0],0:use_mesh[1]] # normalize the mesh norm=np.tile(np.array(use_mesh,dtype=float),use_mesh) norm=norm.reshape(use_mesh.tolist()+[2]) norm=norm.transpose([2,0,1]) k_vec=k_vec/norm # final reshape k_vec=k_vec.transpose([1,2,0]).reshape([use_mesh[0]*use_mesh[1],2]) elif self._dim_k==3: # get a mesh k_vec=np.mgrid[0:use_mesh[0],0:use_mesh[1],0:use_mesh[2]] # normalize the mesh norm=np.tile(np.array(use_mesh,dtype=float),use_mesh) norm=norm.reshape(use_mesh.tolist()+[3]) norm=norm.transpose([3,0,1,2]) k_vec=k_vec/norm # final reshape k_vec=k_vec.transpose([1,2,3,0]).reshape([use_mesh[0]*use_mesh[1]*use_mesh[2],3]) else: raise Exception("\n\nUnsupported dim_k!") return k_vec def k_path(self,kpts,nk,report=True): r""" Interpolates a path in reciprocal space between specified k-points. In 2D or 3D the k-path can consist of several straight segments connecting high-symmetry points ("nodes"), and the results can be used to plot the bands along this path. The interpolated path that is returned contains as equidistant k-points as possible. :param kpts: Array of k-vectors in reciprocal space between which interpolated path should be constructed. These k-vectors must be given in reduced coordinates. As a special case, in 1D k-space kpts may be a string: * *"full"* -- Implies *[ 0.0, 0.5, 1.0]* (full BZ) * *"fullc"* -- Implies *[-0.5, 0.0, 0.5]* (full BZ, centered) * *"half"* -- Implies *[ 0.0, 0.5]* (half BZ) :param nk: Total number of k-points to be used in making the plot. :param report: Optional parameter specifying whether printout is desired (default is True). :returns: * **k_vec** -- Array of (nearly) equidistant interpolated k-points. The distance between the points is calculated in the Cartesian frame, however coordinates themselves are given in dimensionless reduced coordinates! This is done so that this array can be directly passed to function :func:`pythtb.tb_model.solve_all`. * **k_dist** -- Array giving accumulated k-distance to each k-point in the path. Unlike array *k_vec* this one has dimensions! (Units are defined here so that for an one-dimensional crystal with lattice constant equal to for example *10* the length of the Brillouin zone would equal *1/10=0.1*. In other words factors of :math:`2\pi` are absorbed into *k*.) This array can be used to plot path in the k-space so that the distances between the k-points in the plot are exact. * **k_node** -- Array giving accumulated k-distance to each node on the path in Cartesian coordinates. This array is typically used to plot nodes (typically special points) on the path in k-space. Example usage:: # Construct a path connecting four nodal points in k-space # Path will contain 401 k-points, roughly equally spaced path = [[0.0, 0.0], [0.0, 0.5], [0.5, 0.5], [0.0, 0.0]] (k_vec,k_dist,k_node) = my_model.k_path(path,401) # solve for eigenvalues on that path evals = tb.solve_all(k_vec) # then use evals, k_dist, and k_node to plot bandstructure # (see examples) """ # processing of special cases for kpts if kpts=='full': # full Brillouin zone for 1D case k_list=np.array([[0.],[0.5],[1.]]) elif kpts=='fullc': # centered full Brillouin zone for 1D case k_list=np.array([[-0.5],[0.],[0.5]]) elif kpts=='half': # half Brillouin zone for 1D case k_list=np.array([[0.],[0.5]]) else: k_list=np.array(kpts) # in 1D case if path is specified as a vector, convert it to an (n,1) array if len(k_list.shape)==1 and self._dim_k==1: k_list=np.array([k_list]).T # make sure that k-points in the path have correct dimension if k_list.shape[1]!=self._dim_k: print('input k-space dimension is',k_list.shape[1]) print('k-space dimension taken from model is',self._dim_k) raise Exception("\n\nk-space dimensions do not match") # must have more k-points in the path than number of nodes if nk<k_list.shape[0]: raise Exception("\n\nMust have more points in the path than number of nodes.") # number of nodes n_nodes=k_list.shape[0] # extract the lattice vectors from the TB model lat_per=np.copy(self._lat) # compute k_space metric tensor k_metric = np.linalg.inv(np.dot(lat_per,lat_per.T)) # Find distances between nodes and set k_node, which is # accumulated distance since the start of the path # initialize array k_node k_node=np.zeros(n_nodes,dtype=float) for n in range(1,n_nodes): dk = k_list[n]-k_list[n-1] dklen = np.sqrt(np.dot(dk,np.dot(k_metric,dk))) k_node[n]=k_node[n-1]+dklen # Find indices of nodes in interpolated list node_index=[0] for n in range(1,n_nodes-1): frac=k_node[n]/k_node[-1] node_index.append(int(round(frac*(nk-1)))) node_index.append(nk-1) # initialize two arrays temporarily with zeros # array giving accumulated k-distance to each k-point k_dist=np.zeros(nk,dtype=float) # array listing the interpolated k-points k_vec=np.zeros((nk,self._dim_k),dtype=float) # go over all kpoints k_vec[0]=k_list[0] for n in range(1,n_nodes): n_i=node_index[n-1] n_f=node_index[n] kd_i=k_node[n-1] kd_f=k_node[n] k_i=k_list[n-1] k_f=k_list[n] for j in range(n_i,n_f+1): frac=float(j-n_i)/float(n_f-n_i) k_dist[j]=kd_i+frac*(kd_f-kd_i) k_vec[j]=k_i+frac*(k_f-k_i) if report==True: if self._dim_k==1: print(' Path in 1D BZ defined by nodes at '+str(k_list.flatten())) else: print('----- k_path report begin ----------') original=np.get_printoptions()
np.set_printoptions(precision=5)
numpy.set_printoptions
# # Copyright (C) 2019 <NAME> # University of Siena - Artificial Intelligence Laboratory - SAILab # # # USienaRL is licensed under a BSD 3-Clause. # # You should have received a copy of the license along with this # work. If not, see <https://opensource.org/licenses/BSD-3-Clause>. # Import packages import os import numpy import logging import matplotlib.pyplot as plot import matplotlib.ticker as mticker import enum import time # Import required src from usienarl import Environment, Volley, Agent, Interface class EpisodeVolleyType(enum.Enum): """ Enum type of the episode volley: training, validation or test. """ training = 0 validation = 1 test = 2 class EpisodeVolley(Volley): """ Episode based volley. Used for training, validation and test volleys. It is executed for a certain amount of episodes. When run in training and validation modes, plots of each episodes (averaged to always be 100 episodes) are saved. """ def __init__(self, environment: Environment, agent: Agent, interface: Interface, parallel: int, episode_volley_type: EpisodeVolleyType, plots_path: str or None, plots_dpi: int or None, episodes_required: int, episode_length: int): # Generate base volley super(EpisodeVolley, self).__init__(environment, agent, interface, parallel) # Make sure additional parameters are correct assert(episode_volley_type is not None) # Note: plots path and DPI are required only if the volley is not a test one if episode_volley_type != EpisodeVolleyType.test: assert(plots_path is not None and plots_path) assert(plots_dpi is not None and plots_dpi > 0) assert(episodes_required > 0 and episode_length > 0) assert(parallel > 0) assert(episodes_required % parallel == 0) # Define internal attributes self._episode_volley_type: EpisodeVolleyType = episode_volley_type self._plots_path: str or None = plots_path self._plots_dpi: int = plots_dpi self._episodes_required: int = episodes_required self._episode_length: int = episode_length # Define empty attributes self._last_episode_done: numpy.ndarray or None = None self._last_reward: numpy.ndarray or None = None self._avg_total_reward: float or None = None self._avg_scaled_reward: float or None = None self._std_total_reward: float or None = None self._std_scaled_reward: float or None = None self._avg_episode_length: int or None = None self._avg_action_duration: float or None = None self._rewards: [] = [] self._total_rewards: [] = [] self._scaled_rewards: [] = [] self._episode_lengths: [] = [] self._actions_durations: [] = [] def _initialize(self) -> bool: # Reset empty attributes self._last_episode_done = None self._last_reward = None self._avg_total_reward = None self._avg_scaled_reward = None self._std_total_reward = None self._std_scaled_reward = None self._avg_episode_length = None self._avg_action_duration = None self._rewards = [] self._total_rewards = [] self._scaled_rewards = [] self._episode_lengths = [] self._actions_durations = [] # This initialization always succeed return True def run(self, logger: logging.Logger, session, render: bool = False): # Print info if self._episode_volley_type == EpisodeVolleyType.training: logger.info("Training for " + str(self._episodes_required) + " episodes...") elif self._episode_volley_type == EpisodeVolleyType.validation: logger.info("Validating for " + str(self._episodes_required) + " episodes...") else: logger.info("Testing for " + str(self._episodes_required) + " episodes...") # Get the amount of parallel batches required parallel_episode_batches: int = self._episodes_required // self._parallel # Execute the parallel episode batches for parallel_episode_batch in range(parallel_episode_batches): # Print current progress every once in a while (if length is not too short) if parallel_episode_batches >= 100 and (parallel_episode_batch + 1) % (parallel_episode_batches // 10) == 0 and parallel_episode_batch > 0: if self._episode_volley_type == EpisodeVolleyType.training: logger.info("Trained for " + str((parallel_episode_batch + 1) * self._parallel) + "/" + str(self._episodes_required) + " episodes...") elif self._episode_volley_type == EpisodeVolleyType.validation: logger.info("Validated for " + str((parallel_episode_batch + 1) * self._parallel) + "/" + str(self._episodes_required) + " episodes...") else: logger.info("Tested for " + str((parallel_episode_batch + 1) * self._parallel) + "/" + str(self._episodes_required) + " episodes...") # Initialize last reward and last episode done flags self._last_reward = numpy.nan * numpy.ones(self._environment.parallel, dtype=float) self._last_episode_done = numpy.zeros(self._environment.parallel, dtype=bool) # Execute actions until the all parallel step batches are completed or the maximum episode length is exceeded episode_rewards: [] = [] episode_actions_durations: [] = [] state_current: numpy.ndarray = self._environment.reset(logger, session) for parallel_step_batch in range(self._episode_length): # Get the action decided by the agent observation_current: numpy.ndarray = self._interface.environment_state_to_observation(logger, session, state_current) time_before_action = time.clock() if self._episode_volley_type == EpisodeVolleyType.training: agent_action: numpy.ndarray = self._agent.act_train(logger, session, self._interface, observation_current, self._start_steps + self._steps, self._start_episodes + self._episodes) else: agent_action: numpy.ndarray = self._agent.act_inference(logger, session, self._interface, observation_current, self._start_steps + self._steps, self._start_episodes + self._episodes) time_after_action = time.clock() # Save the time, converted to milliseconds episode_actions_durations.append((time_after_action - time_before_action) * 1000) # Get the next state with relative reward and episode done flag environment_action: numpy.ndarray = self._interface.agent_action_to_environment_action(logger, session, agent_action) state_next, reward, episode_done = self._environment.step(logger, session, environment_action) # Send back information to the agent observation_next: numpy.ndarray = self._interface.environment_state_to_observation(logger, session, state_next) # Complete the step if self._episode_volley_type == EpisodeVolleyType.training: self._agent.complete_step_train(logger, session, self._interface, observation_current, agent_action, reward, episode_done, observation_next, self._start_steps + self._steps, self._start_episodes + self._episodes) else: self._agent.complete_step_inference(logger, session, self._interface, observation_current, agent_action, reward, episode_done, observation_next, self._start_steps + self._steps, self._start_episodes + self._episodes) # Render if required if render: self._environment.render(logger, session) # Save the reward at the last step self._last_reward = numpy.where(episode_done * (1 - self._last_episode_done), reward, self._last_reward) if parallel_step_batch + 1 == self._episode_length: self._last_reward = numpy.where(numpy.isnan(self._last_reward), reward, self._last_reward) # Add the reward to the list of rewards for this episode # Note: make sure the reward saved is NaN for all already completed episodes in the parallel batch episode_rewards.append(numpy.where(self._last_episode_done, numpy.nan, reward)) # Update the current state with the previously next state state_current = state_next.copy() # Increase the number of trained steps # Note: the counter should be increased according to the completed episodes of the current parallel batch self._steps += numpy.count_nonzero(episode_done == 0) # Save volley steps at termination time # Note: saving the step of each final step of each volley is required to compute the average episode length step_array: numpy.ndarray = numpy.ones(self._environment.parallel, dtype=int) * (parallel_step_batch + 1) self._episode_lengths += step_array[episode_done * numpy.logical_not(self._last_episode_done)].tolist() if parallel_step_batch + 1 == self._episode_length: self._episode_lengths += step_array[
numpy.logical_not(episode_done)
numpy.logical_not
''' ''' import os import pickle import numpy as np import pandas as pd from scipy.interpolate import interp1d from itertools import chain, combinations_with_replacement # -- astropy -- import astropy.units as u from astropy.time import Time # -- specsim -- import specsim from specsim.atmosphere import Moon # -- feasibgs -- from . import util as UT def Isky_regression(airmass, moonill, moonalt, moonsep, sunalt, sunsep): ''' Sky surface brightness as a function of airmass, moon parameters, and sun parameters. The sky surface brightness uses a regression model fit using BOSS and DESI CMX sky fibers to predict V-band moonlight surface brightness. This V-band magnitude is then used to scale up the dark time sky. :param airmass: airmass :param moonill: moon illumination fraction: 0 - 1 :param moonalt: moon altitude: 0 - 90 deg :param moonsep: moon separation angle: 0 - 180 deg :param sunalt: sun altitude: 0 - 90 deg :param sunsep: sun separation: 0 - 90 deg :return specsim_wave, Isky: returns wavelength [Angstrom], sky surface brightness [$10^{-17} erg/cm^{2}/s/\AA/arcsec^2$] ''' # initialize atmosphere model using hacked version of specsim.atmosphere.initialize specsim_sky = _specsim_initialize('desi', model='regression') specsim_wave = specsim_sky._wavelength # Ang specsim_sky.airmass = airmass specsim_sky.moon.moon_phase = np.arccos(2.*moonill - 1)/np.pi specsim_sky.moon.moon_zenith = (90. - moonalt) * u.deg specsim_sky.moon.separation_angle = moonsep * u.deg Isky = specsim_sky.surface_brightness.value # twilight contribution if sunalt > -20.: w_twi, I_twi = _cI_twi(sunalt, sunsep, airmass) I_twi /= np.pi I_twi_interp = interp1d(10. * w_twi, I_twi, fill_value='extrapolate') Isky += np.clip(I_twi_interp(specsim_wave), 0, None) return specsim_wave, Isky def Isky_newKS_twi(airmass, moonill, moonalt, moonsep, sunalt, sunsep): ''' Sky surface brightness as a function of airmass, moon parameters, and sun parameters. The sky surface brightness uses the KS model scaling with coefficients re-fit to match BOSS sky data and includes a twilight contribution from Parker's thesis. :param airmass: airmass :param moonill: moon illumination fraction: 0 - 1 :param moonalt: moon altitude: 0 - 90 deg :param moonsep: moon separation angle: 0 - 180 deg :param sunalt: sun altitude: 0 - 90 deg :param sunsep: sun separation: 0 - 90 deg :return specsim_wave, Isky: returns wavelength [Angstrom] and sky surface brightness [$10^{-17} erg/cm^{2}/s/\AA/arcsec^2$] ''' # initialize atmosphere model using hacked version of specsim.atmosphere.initialize specsim_sky = _specsim_initialize('desi', model='refit_ks') specsim_wave = specsim_sky._wavelength # Ang specsim_sky.airmass = airmass specsim_sky.moon.moon_phase = np.arccos(2.*moonill - 1)/np.pi specsim_sky.moon.moon_zenith = (90. - moonalt) * u.deg specsim_sky.moon.separation_angle = moonsep * u.deg # updated KS coefficients specsim_sky.moon.KS_CR = 458173.535128 specsim_sky.moon.KS_CM0 = 5.540103 specsim_sky.moon.KS_CM1 = 178.141045 _sky = specsim_sky._surface_brightness_dict['dark'].copy() _sky *= specsim_sky.extinction I_ks_rescale = specsim_sky.surface_brightness Isky = I_ks_rescale.value # twilight contribution if sunalt > -20.: w_twi, I_twi = _cI_twi(sunalt, sunsep, airmass) I_twi /= np.pi I_twi_interp = interp1d(10. * w_twi, I_twi, fill_value='extrapolate') Isky += np.clip(I_twi_interp(specsim_wave), 0, None) return specsim_wave, Isky def Isky_parker(airmass, ecl_lat, gal_lat, gal_lon, tai, sun_alt, sun_sep, moon_phase, moon_ill, moon_alt, moon_sep): ''' Parker's sky model, which is a function of: :param airmass: airmass :param ecl_lat: ecliptic latitude (used for zodiacal light contribution) :param gal_lat: galactic latitude (used for ISL contribution) :param gal_lon: galactic longitude (used for ISL contribution) :param tai: time in seconds :param sunalt: sun altitude: 0 - 90 deg :param sunsep: sun separation: 0 - 90 deg :param moonill: moon illumination fraction: 0 - 1 :param moonalt: moon altitude: 0 - 90 deg :param moonsep: moon separation angle: 0 - 180 deg ''' from astroplan import Observer from astropy.coordinates import EarthLocation X = airmass # air mass beta = ecl_lat # ecliptic latitude ( used for zodiacal light contribution ) l = gal_lat # galactic latitude ( used for ISL contribution ) b = gal_lon # galactic longitude ( used for ISL contribution ) _kpno = EarthLocation.of_site('kitt peak') obs_time = Time(tai/86400., scale='tai', format='mjd', location=_kpno) mjd = obs_time.mjd # fractional months ( used for seasonal contribution) month_frac = obs_time.datetime.month + obs_time.datetime.day/30. # fractional hour ( used for hourly contribution) kpno = Observer(_kpno) sun_rise = kpno.sun_rise_time(obs_time, which='next') sun_set = kpno.sun_set_time(obs_time, which='previous') hour = ((obs_time - sun_set).sec)/3600. hour_frac = hour/((Time(sun_rise, format='mjd') - Time(sun_set,format = 'mjd')).sec/3600.) alpha = sun_alt # sun altitude delta = sun_sep # sun separation (separation between the target and the sun's location) # used for scattered moonlight g = moon_phase # moon phase altm = moon_alt illm = moon_ill delm = moon_sep # get coefficients coeffs = _read_parkerCoeffs() # sky continuum _w, _Icont = _parker_Icontinuum(coeffs, X, beta, l, b, mjd, month_frac, hour_frac, alpha, delta, altm, illm, delm, g) S_continuum = _Icont / np.pi # BOSS has 2 arcsec diameter # sky emission from the UVES continuum subtraction w_uves, S_uves = np.loadtxt(''.join([UT.code_dir(), 'dat/sky/UVES_sky_emission.dat']), unpack=True, usecols=[0,1]) f_uves = interp1d(w_uves, S_uves, bounds_error=False, fill_value='extrapolate') S_emission = f_uves(_w) return _w, S_continuum + S_emission def Isky_parker_radecobs(ra, dec, obs_time): ''' wrapper for Isky_parker, where the input parameters are calculated based on RA, Dec, and obs_time ''' from astroplan import download_IERS_A from astropy.coordinates import EarthLocation, SkyCoord, AltAz, get_sun, get_moon download_IERS_A() # target coordinates coord = SkyCoord(ra=ra * u.deg, dec=dec * u.deg) # observed time (UTC) utc_time = Time(obs_time) kpno = EarthLocation.of_site('kitt peak') kpno_altaz = AltAz(obstime=utc_time, location=kpno) coord_altaz = coord.transform_to(kpno_altaz) airmass = coord_altaz.secz elc_lat = coord.barycentrictrueecliptic.lat.deg gal_lat = coord.galactic.l.deg # galactic latitude ( used for ISL contribution ) gal_lon = coord.galactic.b.deg # galactic longitude ( used for ISL contribution ) tai = utc_time.tai # sun altitude (degrees) sun = get_sun(utc_time) sun_altaz = sun.transform_to(kpno_altaz) sunalt = sun_altaz.alt.deg # sun separation sunsep = sun.separation(coord).deg # used for scattered moonlight moon = get_moon(utc_time) moon_altaz = moon.transform_to(kpno_altaz) moon_alt = moon_altaz.alt.deg moon_sep = moon.separation(coord).deg #coord.separation(self.moon).deg elongation = sun.separation(moon) phase = np.arctan2(sun.distance * np.sin(elongation), moon.distance - sun.distance*np.cos(elongation)) moon_phase = phase.value moon_ill = (1. + np.cos(phase))/2. return Isky_parker(airmass, ecl_lat, gal_lat, gal_lon, tai, sun_alt, sun_sep, moon_phase, moon_ill, moon_alt, moon_sep) def _specsim_initialize(config, model='regression'): ''' hacked version of specsim.atmosphere.initialize, which initializes the atmosphere model from configuration parameters. ''' if specsim.config.is_string(config): config = specsim.config.load_config(config) atm_config = config.atmosphere # Load tabulated data. surface_brightness_dict = config.load_table( atm_config.sky, 'surface_brightness', as_dict=True) extinction_coefficient = config.load_table( atm_config.extinction, 'extinction_coefficient') # Initialize an optional atmospheric seeing PSF. psf_config = getattr(atm_config, 'seeing', None) if psf_config: seeing = dict( fwhm_ref=specsim.config.parse_quantity(psf_config.fwhm_ref), wlen_ref=specsim.config.parse_quantity(psf_config.wlen_ref), moffat_beta=float(psf_config.moffat_beta)) else: seeing = None # Initialize an optional lunar scattering model. moon_config = getattr(atm_config, 'moon', None) if moon_config: moon_spectrum = config.load_table(moon_config, 'flux') c = config.get_constants(moon_config, ['moon_zenith', 'separation_angle', 'moon_phase']) moon = _Moon( config.wavelength, moon_spectrum, extinction_coefficient, atm_config.airmass, c['moon_zenith'], c['separation_angle'], c['moon_phase'], model=model) else: moon = None atmosphere = specsim.atmosphere.Atmosphere( config.wavelength, surface_brightness_dict, extinction_coefficient, atm_config.extinct_emission, atm_config.sky.condition, atm_config.airmass, seeing, moon) if config.verbose: print( "Atmosphere initialized with condition '{0}' from {1}." .format(atmosphere.condition, atmosphere.condition_names)) if seeing: print('Seeing is {0} at {1} with Moffat beta {2}.' .format(seeing['fwhm_ref'], seeing['wlen_ref'], seeing['moffat_beta'])) if moon: print( 'Lunar V-band extinction coefficient is {0:.5f}.' .format(moon.vband_extinction)) return atmosphere class _Moon(Moon): ''' specimsim.atmosphere.Moon object hacked to work with a Krisciunas & Schaefer (1991) model with extra free parameters ''' def __init__(self, wavelength, moon_spectrum, extinction_coefficient, airmass, moon_zenith, separation_angle, moon_phase, model='regression'): # initialize via super function super().__init__(wavelength, moon_spectrum, extinction_coefficient, airmass, moon_zenith, separation_angle, moon_phase) self.model = model # default KS coefficients self.KS_CR = 10**5.36 # proportionality constant in the Rayleigh scattering function # constants for the Mie scattering function term self.KS_CM0 = 6.15 self.KS_CM1 = 40. self.KS_M0 = -12.73 self.KS_M1 = 0.026 self.KS_M2 = 4. def _update(self): """Update the model based on the current parameter values. """ self._update_required = False # Calculate the V-band surface brightness of scattered moonlight. if self.model == 'refit_ks': self._scattered_V = krisciunas_schaefer_free( self.obs_zenith, self.moon_zenith, self.separation_angle, self.moon_phase, self.vband_extinction, self.KS_CR, self.KS_CM0, self.KS_CM1, self.KS_M0, self.KS_M1, self.KS_M2) elif self.model == 'regression': self._scattered_V = _scattered_V_regression( self.airmass, 0.5 * (np.cos(np.pi * self.moon_phase) + 1.), 90 - self.moon_zenith.value, self.separation_angle.value) * u.mag / u.arcsec**2 else: raise NotImplementedError # Calculate the wavelength-dependent extinction of moonlight # scattered once into the observed field of view. scattering_airmass = ( 1 - 0.96 * np.sin(self.moon_zenith) ** 2) ** (-0.5) extinction = ( 10 ** (-self._extinction_coefficient * scattering_airmass / 2.5) * (1 - 10 ** (-self._extinction_coefficient * self.airmass / 2.5))) self._surface_brightness = self._moon_spectrum * extinction # Renormalized the extincted spectrum to the correct V-band magnitude. raw_V = self._vband.get_ab_magnitude( self._surface_brightness, self._wavelength) * u.mag area = 1 * u.arcsec ** 2 self._surface_brightness *= 10 ** ( -(self._scattered_V * area - raw_V) / (2.5 * u.mag)) / area @property def KS_CR(self): return self._KS_CR @KS_CR.setter def KS_CR(self, ks_cr): self._KS_CR = ks_cr self._update_required = True @property def KS_CM0(self): return self._KS_CM0 @KS_CM0.setter def KS_CM0(self, ks_cm0): self._KS_CM0 = ks_cm0 self._update_required = True @property def KS_CM1(self): return self._KS_CM1 @KS_CM1.setter def KS_CM1(self, ks_cm1): self._KS_CM1 = ks_cm1 self._update_required = True @property def KS_M0(self): return self._KS_M0 @KS_M0.setter def KS_M0(self, ks_m0): self._KS_M0 = ks_m0 self._update_required = True @property def KS_M1(self): return self._KS_M1 @KS_M1.setter def KS_M1(self, ks_m1): self._KS_M1 = ks_m1 self._update_required = True @property def KS_M2(self): return self._KS_M2 @KS_M2.setter def KS_M2(self, ks_m2): self._KS_M2 = ks_m2 self._update_required = True reg_model_coeffs = np.array([ 0.00000000e+00, -1.24246947e-01, -2.19592318e-01, -1.27371956e-02, 4.16108739e-02, -8.96992463e-02, -6.74266151e-01, 2.67170371e-02, -1.54258481e-02, -3.52318515e-01, -4.12007754e-03, 6.44355466e-02, 2.70616098e-04, -2.52914043e-04, -6.59789181e-04, -1.00704130e-01, -1.17732794e+00, 1.00074153e-02, 2.02381309e-02, -1.03468867e+00, 7.06332796e-02, 1.80523919e-02, -8.04924203e-04, -8.78033445e-04, -1.93926394e-04, -6.88153692e-01, -1.34713209e-01, 1.85076523e-03, 5.65520710e-05, -1.30331216e-05, -4.89722809e-04, 2.99858228e-06, 8.39852557e-06, 8.86494950e-06, 4.35592782e-06]) reg_model_intercept = 20.507688847655775 def _scattered_V_regression(airmass, moon_frac, moon_alt, moon_sep): ''' 4th degree polynomial regression fit to the V-band scattered moonlight from BOSS and DESI CMX data. ''' theta = np.atleast_2d(np.array([airmass, moon_frac, moon_alt, moon_sep]).T) combs = chain.from_iterable(combinations_with_replacement(range(4), i) for i in range(0, 4)) theta_transform = np.empty((theta.shape[0], len(reg_model_coeffs))) for i, comb in enumerate(combs): theta_transform[:, i] = theta[:, comb].prod(1) return np.dot(theta_transform, reg_model_coeffs.T) + reg_model_intercept def krisciunas_schaefer_free(obs_zenith, moon_zenith, separation_angle, moon_phase, vband_extinction, C_R, C_M0, C_M1, M0, M1, M2): """Calculate the scattered moonlight surface brightness in V band. Based on Krisciunas and Schaefer, "A model of the brightness of moonlight", PASP, vol. 103, Sept. 1991, p. 1033-1039 (http://dx.doi.org/10.1086/132921). Equation numbers in the code comments refer to this paper. The function :func:`plot_lunar_brightness` provides a convenient way to plot this model's predictions as a function of observation pointing. Units are required for the angular inputs and the result has units of surface brightness, for example: >>> sb = krisciunas_schaefer(20*u.deg, 70*u.deg, 50*u.deg, 0.25, 0.15) >>> print(np.round(sb, 3)) 19.855 mag / arcsec2 The output is automatically broadcast over input arrays following the usual numpy rules. This method has several caveats but the authors find agreement with data at the 8% - 23% level. See the paper for details. Parameters ---------- obs_zenith : astropy.units.Quantity Zenith angle of the observation in angular units. moon_zenith : astropy.units.Quantity Zenith angle of the moon in angular units. separation_angle : astropy.units.Quantity Opening angle between the observation and moon in angular units. moon_phase : float Phase of the moon from 0.0 (full) to 1.0 (new), which can be calculated as abs((d / D) - 1) where d is the time since the last new moon and D = 29.5 days is the period between new moons. The corresponding illumination fraction is ``0.5*(1 + cos(pi * moon_phase))``. vband_extinction : float V-band extinction coefficient to use. Returns ------- astropy.units.Quantity Observed V-band surface brightness of scattered moonlight. """ moon_phase = np.asarray(moon_phase) if np.any((moon_phase < 0) | (moon_phase > 1)): raise ValueError( 'Invalid moon phase {0}. Expected 0-1.'.format(moon_phase)) # Calculate the V-band magnitude of the moon (eqn. 9). abs_alpha = 180. * moon_phase #m = -12.73 + 0.026 * abs_alpha + 4e-9 * abs_alpha ** 4 (default value) m = M0 + M1 * abs_alpha + M2 * 1e-9 * abs_alpha ** 4 # Calculate the illuminance of the moon outside the atmosphere in # foot-candles (eqn. 8). Istar = 10 ** (-0.4 * (m + 16.57)) # Calculate the scattering function (eqn.21). rho = separation_angle.to(u.deg).value f_scatter = (C_R * (1.06 + np.cos(separation_angle) ** 2) + 10 ** (C_M0 - rho / C_M1)) # Calculate the scattering airmass along the lines of sight to the # observation and moon (eqn. 3). X_obs = (1 - 0.96 * np.sin(obs_zenith) ** 2) ** (-0.5) X_moon = (1 - 0.96 * np.sin(moon_zenith) ** 2) ** (-0.5) # Calculate the V-band moon surface brightness in nanoLamberts. B_moon = (f_scatter * Istar * 10 ** (-0.4 * vband_extinction * X_moon) * (1 - 10 ** (-0.4 * (vband_extinction * X_obs)))) # Convert from nanoLamberts to to mag / arcsec**2 using eqn.19 of # Garstang, "Model for Artificial Night-Sky Illumination", # PASP, vol. 98, Mar. 1986, p. 364 (http://dx.doi.org/10.1086/131768) return ((20.7233 - np.log(B_moon / 34.08)) / 0.92104 * u.mag / (u.arcsec ** 2)) def _cI_twi(alpha, delta, airmass): ''' twilight contribution :param alpha: :param delta: :param airmass: :retrun wave: :return twi: ''' ftwi = os.path.join(UT.dat_dir(), 'sky', 'twilight_coeffs.p') twi_coeffs = pickle.load(open(ftwi, 'rb')) twi = ( twi_coeffs['t0'] * np.abs(alpha) + # CT2 twi_coeffs['t1'] * np.abs(alpha)**2 + # CT1 twi_coeffs['t2'] * np.abs(delta)**2 + # CT3 twi_coeffs['t3'] * np.abs(delta) # CT4 ) * np.exp(-twi_coeffs['t4'] * airmass) + twi_coeffs['c0'] return twi_coeffs['wave'], np.array(twi) def _twilight_coeffs(): ''' save twilight coefficients from Parker ''' f = os.path.join(UT.code_dir(), 'dat', 'sky', 'MoonResults.csv') coeffs = pd.DataFrame.from_csv(f) coeffs.columns = [ 'wl', 'model', 'data_var', 'unexplained_var',' X2', 'rX2', 'c0', 'c_am', 'tau', 'tau2', 'c_zodi', 'c_isl', 'sol', 'I', 't0', 't1', 't2', 't3', 't4', 'm0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec', 'c2', 'c3', 'c4', 'c5', 'c6'] # keep moon models twi_coeffs = coeffs[coeffs['model'] == 'twilight'] coeffs = coeffs[coeffs['model'] == 'moon'] # order based on wavelengths for convenience wave_sort = np.argsort(np.array(coeffs['wl'])) twi = {} twi['wave'] = np.array(coeffs['wl'])[wave_sort] for k in ['t0', 't1', 't2', 't3', 't4', 'c0']: twi[k] = np.array(twi_coeffs[k])[wave_sort] # save to file ftwi = os.path.join(UT.dat_dir(), 'sky', 'twilight_coeffs.p') pickle.dump(twi, open(ftwi, 'wb')) return None ########################################################################## # contributions to parker's sky surface brightness model ########################################################################## def _read_parkerCoeffs(): ''' read the coefficients of parker's model ''' f = ''.join([UT.code_dir(), 'dat/sky/MoonResults.csv']) _coeffs = pd.DataFrame.from_csv(f) _coeffs.columns = [ 'wl', 'model', 'data_var', 'unexplained_var',' X2', 'rX2', 'c0', 'c_am', 'tau', 'tau2', 'c_zodi', 'c_isl', 'sol', 'I', 't0', 't1', 't2', 't3', 't4', 'm0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec', 'c2', 'c3', 'c4', 'c5', 'c6' ] # keep moon models coeffs = _coeffs[coeffs['model'] == 'moon'] # order based on wavelengths for convenience wave_sort = np.argsort(np.array(coeffs['wl'])) for k in coeffs.keys(): coeffs[k] = np.array(coeffs[k])[wave_sort] return coeffs def _parker_Icontinuum(coeffs, X, beta, l, b, mjd, month_frac, hour_frac, alpha, delta, altm, illm, delm, g): ''' sky continuum (Fragelius thesis Eq. 4.23) ''' # airmass contrib. _Iairmass = coeffs['c_am'] * X # zodiacal contrib. (func. of ecliptic latitude) _Izodiacal = coeffs['c_zodi'] * _parker_Izodi(beta) _Iisl = coeffs['c_isl'] * _parker_Iisl(l, b) _Isolar_flux = coeffs['sol'] * _parker_Isf(mjd - coeffs['I']) _Iseasonal = _parker_cI_seas(month_frac, coeffs) _Ihourly = _parker_cI_hour(hour_frac, coeffs) _dT = _parker_deltaT(X, coeffs) # When the sun is above -20 altitude, some of its light will back-scatter # off the atmosphere into the field of view. (Fragelius thesis Eq. 4.27) _Itwilight = _parker_cI_twi_exp(alpha, delta, X, coeffs) # light from the moon that is scattered into our field of view (Fragelius thesis Eq. 4.28, 4.29) _Imoon = _parker_cI_moon_exp(altm, illm, delm, g, X, coeffs) _Iadd_continuum = coeffs['c0'] # I_continuum(lambda) Icont = (_Iairmass + _Izodiacal + _Iisl + _Isolar_flux + _Iseasonal + _Ihourly + _Iadd_continuum) * _dT + _Itwilight + _Imoon return 10*coeffs['wl'], np.array(Icont) def _parker_cI_moon_exp(altm, illm, deltam, g, airmass, coeffs): ''' light from the moon that is scattered into our field of view (Fragelius thesis Eq. 4.28, 4.29) ''' Alambda = _parker_albedo(g, coeffs) # albedo factor moon = (coeffs['m0'] * altm**2 + coeffs['m1'] * altm + coeffs['m2'] * illm**2 + coeffs['m3'] * illm + coeffs['m4'] * deltam**2 + coeffs['m5'] * deltam ) * Alambda * np.exp(-coeffs['m6'] * airmass) return moon def _parker_albedo(g, coeffs): ''' albedo, i.e. reflectivity of the moon (Fragelius thesis Eq. 4.28) g is the lunar phase (g = 0 for full moon and 180 for new moon) ''' albedo_table = pd.read_csv(''.join([UT.code_dir(), 'dat/sky/albedo_constants.csv']), delim_whitespace=True) albedo_constants = {} for col in list(albedo_table): line = interp1d(albedo_table['WAVELENGTH'], albedo_table[col], bounds_error=False, fill_value=0) albedo_constants[col] = line p1 = 4.06054 p2 = 12.8802 p3 = -30.5858 p4 = 16.7498 A = [] for i in range(4): A.append(albedo_constants['a%d'%i](coeffs['wl'])*(g**i)) A.append(albedo_constants['d1'](coeffs['wl']) * np.exp(-g/p1)) A.append(albedo_constants['d2'](coeffs['wl']) * np.exp(-g/p2)) A.append(albedo_constants['d3'](coeffs['wl']) * np.cos((g - p3)/p4)) lnA = np.sum(A, axis=0) Al = np.exp(lnA) return Al def _parker_cI_twi_exp(alpha, delta, airmass, coeffs): ''' When the sun is above -20 altitude, some of its light will back-scatter off the atmosphere into the field of view. (Fragelius thesis Eq. 4.27) no observations are made when sun is above -14 altitude. ''' if alpha > -20.: twi = ( coeffs['t0'] * np.abs(alpha) + # CT2 coeffs['t1'] * alpha**2 + # CT1 coeffs['t2'] * delta**2 + # CT3 coeffs['t3'] * delta # CT4 ) * np.exp(-coeffs['t4'] * airmass) else: twi = np.zeros(len(coeffs['t0'])) return twi def _parker_deltaT(airmass, coeffs): '''effective transmission curve that accounts for the additional extinction for observing at higher airmass (Fragelius thesis Eq. 4.24) ''' zen_ext = np.loadtxt(''.join([UT.code_dir(), 'dat/sky/ZenithExtinction-KPNO.dat'])) zen_wave = zen_ext[:,0]/10. ext = zen_ext[:,1] zext = interp1d(zen_wave, ext, bounds_error=False, fill_value='extrapolate') k = zext(coeffs['wl']) return 1 - (10**(-0.4*k) - 10**(-0.4*k*airmass)) def _parker_cI_hour(hour_frac, coeffs): ''' Fragelius thesis Eq. 4.26 ''' levels = np.linspace(0,1,7) idx = np.argmin(np.abs(levels - hour_frac)) _hours = np.zeros(6) _hours[idx] = 1 for i in range(1,6): if i == 1: hours = coeffs['c'+str(i+1)] * _hours[i] else: hours += coeffs['c'+str(i+1)] * _hours[i] return hours def _parker_cI_seas(month_frac, coeffs): # Fragelius thesis Eq. 4.25 mm = np.rint(month_frac) if mm == 13: mm = 1 _months =
np.zeros(12)
numpy.zeros
#!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. import collections import numpy as np from copy import copy from transformations import quaternion_from_matrix, quaternion_matrix, quaternion_multiply, quaternion_slerp from .analytical_inverse_kinematics import AnalyticalLimbIK from .numerical_ik_exp import NumericalInverseKinematicsExp from .utils import normalize, project_on_intersection_circle, smooth_root_positions from ..animation_data.skeleton_node import SkeletonEndSiteNode from ..animation_data.utils import quaternion_from_vector_to_vector from ..animation_data.motion_blending import create_transition_for_joints_using_slerp, BLEND_DIRECTION_FORWARD, BLEND_DIRECTION_BACKWARD, smooth_translation_in_quat_frames from ..animation_data.skeleton_models import IK_CHAINS_DEFAULT_SKELETON FOOT_STATE_GROUNDED = 0 FOOT_STATE_SWINGING = 1 def add_heels_to_skeleton(skeleton, left_foot, right_foot, left_heel, right_heel, offset=[0, -5, 0]): left_heel_node = SkeletonEndSiteNode(left_heel, [], skeleton.nodes[left_foot]) left_heel_node.offset = np.array(offset) skeleton.nodes[left_heel] = left_heel_node skeleton.nodes[left_foot].children.append(left_heel_node) right_heel_node = SkeletonEndSiteNode(right_heel, [], skeleton.nodes[right_foot]) right_heel_node.offset = np.array(offset) skeleton.nodes[right_heel] = right_heel_node skeleton.nodes[right_foot].children.append(right_heel_node) return skeleton def get_heel_offset(skeleton, foot_name, toe_name, frame): """ calculate heel offset from foot assuming the "y" axis of the foot coordinate system is aligned to the ground """ m = skeleton.nodes[foot_name].get_global_matrix(frame) foot_position = m[:3,3] print("foot_position", foot_position) toe_offset = skeleton.nodes[toe_name].offset #if len(skeleton.nodes[toe_name].children) > 0: # toe_offset += skeleton.nodes[toe_name].children[0].offset up_vector = np.array(skeleton.skeleton_model["cos_map"][foot_name]["y"]) up_vector /= np.linalg.norm(up_vector) #project toe offset on up vector that should be aligned with the ground scale = np.dot(up_vector, toe_offset) # get global position of toe aligned to ground local_offset = scale*up_vector local_offset = [local_offset[0],local_offset[1],local_offset[2], 1] projected_toe_pos = np.dot(m, local_offset)[:3] print("projected_toe_pos", projected_toe_pos) # use offset from projected toe position to position to get the global heel position toe_pos = skeleton.nodes[toe_name].get_global_position(frame) heel_position = foot_position + (toe_pos - projected_toe_pos) # bring into local coordinate system heel_position = [heel_position[0],heel_position[1],heel_position[2], 1] heel_offset = np.dot(np.linalg.inv(m), heel_position)[:3] print("heel_offset", heel_offset) print("toe_offset", toe_offset) return heel_offset def get_heel_offset2(skeleton, foot_name, toe_name, frame): """ calculate heel offset from foot assuming the "y" axis of the foot coordinate system is aligned to the ground """ m = skeleton.nodes[foot_name].get_global_matrix(frame) foot_position = m[:3,3] print("foot_position", foot_position) toe_offset = skeleton.nodes[toe_name].offset #if len(skeleton.nodes[toe_name].children) > 0: # toe_offset += skeleton.nodes[toe_name].children[0].offset up_vector = np.array(skeleton.skeleton_model["cos_map"][foot_name]["y"]) up_vector /= np.linalg.norm(up_vector) x_vector = np.array(skeleton.skeleton_model["cos_map"][foot_name]["x"]) x_vector /= np.linalg.norm(x_vector) z_vector = np.cross(up_vector, x_vector) z_vector /= np.linalg.norm(z_vector) #project toe offset on up vector that should be aligned with the ground scale = np.dot(z_vector, toe_offset) heel_offset = scale*z_vector # bring into local coordinate system print("heel_offse2", heel_offset) print("toe_offset", toe_offset) return heel_offset def add_temporary_heels_to_skeleton(skeleton, left_foot, right_foot, left_toe, right_toe, left_heel, right_heel): left_heel_node = SkeletonEndSiteNode(left_heel, [], skeleton.nodes[left_foot]) left_heel_node.offset = get_heel_offset2(skeleton, left_foot, left_toe, skeleton.reference_frame) skeleton.nodes[left_heel] = left_heel_node skeleton.nodes[left_foot].children.append(left_heel_node) skeleton.skeleton_model["joints"]["left_heel"] = left_heel right_heel_node = SkeletonEndSiteNode(right_heel, [], skeleton.nodes[right_foot]) right_heel_node.offset = get_heel_offset2(skeleton, right_foot, right_toe, skeleton.reference_frame) skeleton.nodes[right_heel] = right_heel_node skeleton.nodes[right_foot].children.append(right_heel_node) skeleton.skeleton_model["joints"]["right_heel"] = right_heel return skeleton def create_grounding_constraint_from_frame(skeleton, frames, frame_idx, joint_name): position = skeleton.nodes[joint_name].get_global_position(frames[frame_idx]) m = skeleton.nodes[joint_name].get_global_matrix(frames[frame_idx]) m[:3, 3] = [0, 0, 0] orientation = normalize(quaternion_from_matrix(m)) return MotionGroundingConstraint(frame_idx, joint_name, position, None, orientation) def generate_ankle_constraint_from_toe(skeleton, frames, frame_idx, ankle_joint_name, heel_joint, toe_joint_name, target_ground_height, toe_pos=None): """ create a constraint on the ankle position based on the toe constraint position""" #print "add toe constraint" if toe_pos is None: ct = skeleton.nodes[toe_joint_name].get_global_position(frames[frame_idx]) ct[1] = target_ground_height # set toe constraint on the ground else: ct = toe_pos a = skeleton.nodes[ankle_joint_name].get_global_position(frames[frame_idx]) t = skeleton.nodes[toe_joint_name].get_global_position(frames[frame_idx]) target_toe_offset = a - t # difference between unmodified toe and ankle at the frame ca = ct + target_toe_offset # move ankle so toe is on the ground m = skeleton.nodes[heel_joint].get_global_matrix(frames[frame_idx]) m[:3, 3] = [0, 0, 0] oq = quaternion_from_matrix(m) oq = normalize(oq) return MotionGroundingConstraint(frame_idx, ankle_joint_name, ca, None, oq) def create_ankle_constraint_from_toe_and_heel(skeleton, frames, frame_idx, ankle_joint, heel_joint, toe_joint,heel_offset, target_ground_height, heel_pos=None, toe_pos=None, is_swinging=False): if toe_pos is None: ct = skeleton.nodes[toe_joint].get_global_position(frames[frame_idx]) ct[1] = target_ground_height else: ct = toe_pos if heel_pos is None: ch = skeleton.nodes[heel_joint].get_global_position(frames[frame_idx]) ch[1] = target_ground_height else: ch = heel_pos target_direction = normalize(ct - ch) t = skeleton.nodes[toe_joint].get_global_position(frames[frame_idx]) h = skeleton.nodes[heel_joint].get_global_position(frames[frame_idx]) original_direction = normalize(t - h) global_delta_q = quaternion_from_vector_to_vector(original_direction, target_direction) global_delta_q = normalize(global_delta_q) m = skeleton.nodes[heel_joint].get_global_matrix(frames[frame_idx]) m[:3, 3] = [0, 0, 0] oq = quaternion_from_matrix(m) oq = normalize(oq) orientation = normalize(quaternion_multiply(global_delta_q, oq)) # set target ankle position based on the grounded heel and the global target orientation of the ankle m = quaternion_matrix(orientation)[:3, :3] target_heel_offset = np.dot(m, heel_offset) ca = ch - target_heel_offset print("set ankle constraint both", ch, ca, target_heel_offset, target_ground_height) foot_state = FOOT_STATE_GROUNDED if is_swinging: foot_state = FOOT_STATE_SWINGING return MotionGroundingConstraint(frame_idx, ankle_joint, ca, None, orientation, foot_state) def interpolate_constraints(c1, c2): p = (c1.position + c2.position)/2 o = quaternion_slerp(c1.orientation, c2.orientation, 0.5) o = normalize(o) return MotionGroundingConstraint(c1.frame_idx, c1.joint_name, p, None, o) class MotionGroundingConstraint(object): def __init__(self, frame_idx, joint_name, position, direction=None, orientation=None, foot_state=FOOT_STATE_GROUNDED): self.frame_idx = frame_idx self.joint_name = joint_name self.position = position self.direction = direction self.orientation = orientation self.toe_position = None self.heel_position = None self.global_toe_offset = None self.foot_state = foot_state def evaluate(self, skeleton, q_frame): d = self.position - skeleton.nodes[self.joint_name].get_global_position(q_frame) return np.dot(d, d) class IKConstraintSet(object): def __init__(self, frame_range, joint_names, positions): self.frame_range = frame_range self.joint_names = joint_names self.constraints = [] for idx in range(frame_range[0], frame_range[1]): for idx, joint_name in enumerate(joint_names): c = MotionGroundingConstraint(idx, joint_name, positions[idx], None) self.constraints.append(c) def add_constraint(self, c): self.constraints.append(c) def evaluate(self, skeleton, q_frame): error = 0 for c in self.constraints: d = c.position - skeleton.nodes[c.joint_name].get_global_position(q_frame) error += np.dot(d, d) return error def add_fixed_dofs_to_frame(skeleton, frame): o = 3 full_frame = frame[:3].tolist() for key, node in list(skeleton.nodes.items()): if len(node.children) == 0: continue if not node.fixed: full_frame += frame[o:o+4].tolist() o += 4 else: full_frame += node.rotation.tolist() return full_frame def extract_ik_chains(skeleton, damp_angle, damp_factor): joints_map = skeleton.skeleton_model["joints"] cos_map = skeleton.skeleton_model["cos_map"] new_ik_chains = dict() for j in IK_CHAINS_DEFAULT_SKELETON: mapped_j = joints_map[j] root_joint = IK_CHAINS_DEFAULT_SKELETON[j]["root"] free_joint = IK_CHAINS_DEFAULT_SKELETON[j]["joint"] if root_joint in joints_map and free_joint in joints_map: mapped_free_joint = joints_map[free_joint] if mapped_free_joint in cos_map: data = copy(IK_CHAINS_DEFAULT_SKELETON[j]) data["root"] = joints_map[root_joint] data["joint"] = mapped_free_joint data["joint_axis"] = cos_map[mapped_free_joint]["x"] data["end_effector_dir"] = cos_map[mapped_free_joint]["y"] new_ik_chains[mapped_j] = AnalyticalLimbIK.init_from_dict(skeleton, mapped_j, data, damp_angle=damp_angle, damp_factor=damp_factor) return new_ik_chains class MotionGrounding(object): def __init__(self, skeleton, ik_settings, skeleton_model, use_analytical_ik=True, damp_angle=None, damp_factor=None): self.skeleton = skeleton self._ik = NumericalInverseKinematicsExp(skeleton, ik_settings) self._constraints = collections.OrderedDict() self.transition_window = 10 self.root_smoothing_window = 20 self.translation_blend_window = 40 self._blend_ranges = collections.OrderedDict() self.use_analytical_ik = use_analytical_ik self.skeleton_model = skeleton_model self.damp_angle = damp_angle self.damp_factor = damp_factor if "joints" in skeleton_model and "left_toe" in skeleton_model["joints"] and "right_toe" in skeleton_model["joints"]: joints_map = skeleton_model["joints"] self.ik_chains = extract_ik_chains(skeleton, self.damp_angle, self.damp_factor) add_temporary_heels_to_skeleton(skeleton, joints_map["left_ankle"], joints_map["right_ankle"], joints_map["left_toe"], joints_map["right_toe"], "left_heel", "right_heel") self.initialized = True else: self.ik_chains = dict() self.initialized = False def set_constraints(self, constraints): self._constraints = constraints def add_constraint(self, joint_name, frame_range, position, direction=None): for frame_idx in range(*frame_range): c = MotionGroundingConstraint(frame_idx, joint_name, position, direction) if frame_idx not in list(self._constraints.keys()): self._constraints[frame_idx] = [] self._constraints[frame_idx].append(c) def add_blend_range(self, joint_names, frame_range): if frame_range not in list(self._constraints.keys()): self._blend_ranges[frame_range] = [] for j in joint_names: self._blend_ranges[frame_range].append(j) def clear_constraints(self): self._constraints = collections.OrderedDict() def clear_blend_ranges(self): self._blend_ranges = collections.OrderedDict() def clear(self): self.clear_constraints() self.clear_blend_ranges() def run(self, motion_vector, scene_interface=None): new_frames = motion_vector.frames[:] if scene_interface is not None: self.shift_root_to_ground(new_frames, scene_interface) self.shift_root_to_reach_constraints(new_frames) if len(new_frames) > 1: self.blend_at_transitions(new_frames) if self.use_analytical_ik: self.apply_analytical_ik(new_frames) else: self.apply_ik_constraints(new_frames) if len(new_frames) > 1: self.blend_at_transitions(new_frames) return new_frames def apply_on_frame(self, frame, scene_interface): x = frame[0] z = frame[2] target_ground_height = scene_interface.get_height(x, z) shift = target_ground_height - frame[1] frame[1] += shift #self.apply_analytical_ik_on_frame(frame, constraints) return frame def _blend_around_frame_range(self, frames, start, end, joint_names): for joint_name in joint_names: transition_start = max(start - self.transition_window, 0) transition_end = min(end + self.transition_window, frames.shape[0]-1) - 1 forward_steps = start - transition_start backward_steps = transition_end - end if joint_name == self.skeleton.root: if start > 0: frames = smooth_translation_in_quat_frames(frames, start, self.translation_blend_window) temp_frame = min(end + 1, frames.shape[0]-1) frames = smooth_translation_in_quat_frames(frames, temp_frame, self.translation_blend_window) idx = self._ik.skeleton.animated_joints.index(joint_name)*4+3 joint_parameter_indices = [idx, idx+1, idx+2, idx+3] if start > 0: create_transition_for_joints_using_slerp(frames, joint_parameter_indices, transition_start, start, forward_steps, BLEND_DIRECTION_FORWARD) create_transition_for_joints_using_slerp(frames, joint_parameter_indices, end, transition_end, backward_steps, BLEND_DIRECTION_BACKWARD) def apply_ik_constraints(self, frames): for frame_idx, constraints in self._constraints.items(): if 0 <= frame_idx < len(frames): frames[frame_idx] = self._ik.modify_frame(frames[frame_idx], constraints) def shift_root_to_reach_constraints(self, frames): root_positions = self.generate_root_positions_from_foot_constraints(frames) root_positions = smooth_root_positions(root_positions, self.root_smoothing_window) self.apply_root_constraints(frames, root_positions) def generate_root_positions_from_foot_constraints(self, frames): root_constraints = [] for frame_idx, constraints in self._constraints.items(): if 0 <= frame_idx < len(frames): grounding_constraints = [c for c in constraints if c.foot_state==FOOT_STATE_GROUNDED] n_constraints = len(grounding_constraints) p = None if n_constraints == 1: p = self.generate_root_constraint_for_one_foot(frames[frame_idx], grounding_constraints[0]) elif n_constraints > 1: p = self.generate_root_constraint_for_two_feet(frames[frame_idx], grounding_constraints[0], grounding_constraints[1]) if p is None: p = frames[frame_idx, :3] root_constraints.append(p) return np.array(root_constraints) def apply_root_constraints(self, frames, constraints): for frame_idx, p in enumerate(constraints): if p is not None: frames[frame_idx][:3] = p def generate_root_constraint_for_one_foot(self, frame, c): pelvis = self.skeleton.skeleton_model["joints"]["pelvis"] pelvis_pos = self.skeleton.nodes[pelvis].get_global_position(frame) target_length =
np.linalg.norm(c.position - pelvis_pos)
numpy.linalg.norm
from __future__ import print_function from builtins import next from builtins import str from builtins import object import re import numpy as nm import os.path as osp import pyfits as pf def scarray(li, scal=False): if len(li) == 1 and scal: return li[0] else: if type(li[0]) != str: return nm.array(li) return li def read_array(fname, dirname): fname = lookupfile(fname, dirname) try: pfits = pf.open(fname) ii = 0 while pfits[ii].data == None: ii += 1 return pfits[ii].data except Exception: return
nm.loadtxt(fname)
numpy.loadtxt
import argparse from pathlib import Path import networkx as nx import nxmetis import torch import torch.nn as nn import torch.multiprocessing as mp from torch_geometric.data import Data, DataLoader, Batch from torch_geometric.nn import SAGEConv, GATConv, GlobalAttention, graclus, avg_pool, global_mean_pool from torch_geometric.utils import to_networkx, k_hop_subgraph, degree import numpy as np from numpy import random import scipy from scipy.sparse import coo_matrix from scipy.io import mmread from scipy.spatial import Delaunay #import random_p import copy import math import timeit import os from itertools import combinations import ctypes libscotch = ctypes.cdll.LoadLibrary('scotch/build/libSCOTCHWrapper.so') # Networkx geometric Delaunay mesh with n random points in the unit square def graph_delaunay_from_points(points): mesh = Delaunay(points, qhull_options="QJ") mesh_simp = mesh.simplices edges = [] for i in range(len(mesh_simp)): edges += combinations(mesh_simp[i], 2) e = list(set(edges)) return nx.Graph(e) # Pytorch geometric Delaunay mesh with n random points in the unit square def random_delaunay_graph(n): points = np.random.random_sample((n, 2)) g = graph_delaunay_from_points(points) adj_sparse = nx.to_scipy_sparse_matrix(g, format='coo') row = adj_sparse.row col = adj_sparse.col one_hot = [] for i in range(g.number_of_nodes()): one_hot.append([1., 0.]) edges = torch.tensor([row, col], dtype=torch.long) nodes = torch.tensor(np.array(one_hot), dtype=torch.float) graph_torch = Data(x=nodes, edge_index=edges) return graph_torch # Build a pytorch geometric graph with features [1,0] form a networkx graph def torch_from_graph(g): adj_sparse = nx.to_scipy_sparse_matrix(g, format='coo') row = adj_sparse.row col = adj_sparse.col one_hot = [] for i in range(g.number_of_nodes()): one_hot.append([1., 0.]) edges = torch.tensor([row, col], dtype=torch.long) nodes = torch.tensor(np.array(one_hot), dtype=torch.float) graph_torch = Data(x=nodes, edge_index=edges) degs = np.sum(adj_sparse.todense(), axis=0) first_vertices = np.where(degs == np.min(degs))[0] first_vertex =
np.random.choice(first_vertices)
numpy.random.choice
# coding: utf-8 """ チョコボールの検出 """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import io import os import glob import numpy as np from PIL import Image from io import BytesIO import random from chainercv.visualizations import vis_bbox from chainercv.links import FasterRCNNVGG16 class ChocoballDetector: class_file = 'data/classes.txt' pretrain_model = 'model/snapshot_model.npz' MAX_WIDTH = 500 def __init__(self): self.getClasses() self.setModel() def getClasses(self): classes = list() with open(self.class_file) as fd: for one_line in fd.readlines(): cl = one_line.split('\n')[0] classes.append(cl) self.classes = classes return classes def setModel(self): self.model_frcnn = FasterRCNNVGG16(n_fg_class=len(self.classes), pretrained_model=self.pretrain_model) return 0 def detectChocoball(self, img): """ ChocoBallの個数をカウントする Args: img : jpeg image (binary) Returns: dict{'box':[[ymin,xmin,ymax,xmax]], 'objects':[object_id], 'scores':[score]} """ #img_pil = Image.open(BytesIO(img)) img_pil = Image.open(img) img_arr =
np.asarray(img_pil)
numpy.asarray
# -*- coding: utf-8 -*- """ Created on Mon Aug 10 14:31:17 2015 @author: <NAME>. Description: This script does CPU and GPU matrix element time complexity profiling. It has a function which applies the matrix element analysis for a given set of parameters, profiles the code and plots the time complexity results (with fit) and plots the matrix elements from each case. """ import numpy as np import scipy as sp import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from my_timer import timer from math import log from scipy.optimize import curve_fit def f_MEplaceholder(neval, mode): # Placeholder integration instead of ME calc result, error = (sp.integrate.quad(lambda x: sp.special.jv(2.5, x), 0, neval) if mode == 'gpu' else sp.integrate.quadrature(lambda x: sp.special.jv(2.5, x), 0, neval)) return result, error def flinear(N, mode): """ O(n) function """ y = np.asarray([i for i in range(N)]) np.asarray([i for i in range(N)]) np.asarray([i for i in range(N)]) return y ,1 def fsquare(N, mode): """ O(n^2) function """ for i in range(N): for j in range(N): y = i*j return y,1 def algoAnalysis(fn, nMin, nMax, mode): """ Run timer and plot time complexity """ n = [] time_result = [] y_result = [] y_err = [] for i in [j*32 for j in range(nMin,nMax+1)]: with timer() as t: temp_result, temp_err = fn(i, mode) time_result.append(t.msecs) y_result.append(temp_result) y_err.append(temp_err) n.append(i) return n, time_result, y_result, y_err def plotAll(n, time_data, y_data, err_data): n = np.asarray(n) time_data = np.asarray(time_data) y_data = np.asarray(y_data) err_data =
np.asarray(err_data)
numpy.asarray
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import tqdm import torch import pickle import resource import numpy as np import matplotlib.pyplot as plt from args import parse_args from modelSummary import model_dict from pytorchtools import load_from_file from torch.utils.data import DataLoader from helperfunctions import mypause, stackall_Dict from loss import get_seg2ptLoss from utils import get_nparams, get_predictions from utils import getSeg_metrics, getPoint_metric, generateImageGrid, unnormPts sys.path.append(os.path.abspath(os.path.join(os.getcwd(), os.pardir))) rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (2048*10, rlimit[1])) #%% if __name__ == '__main__': args = parse_args() device=torch.device("cuda") torch.cuda.manual_seed(12) if torch.cuda.device_count() > 1: print('Moving to a multiGPU setup.') args.useMultiGPU = True else: args.useMultiGPU = False torch.backends.cudnn.deterministic=False if args.model not in model_dict: print("Model not found.") print("valid models are: {}".format(list(model_dict.keys()))) exit(1) LOGDIR = os.path.join(os.getcwd(), 'logs', args.model, args.expname) path2model = os.path.join(LOGDIR, 'weights') path2checkpoint = os.path.join(LOGDIR, 'checkpoints') path2writer = os.path.join(LOGDIR, 'TB.lock') path2op = os.path.join(os.getcwd(), 'op', str(args.curObj)) os.makedirs(LOGDIR, exist_ok=True) os.makedirs(path2model, exist_ok=True) os.makedirs(path2checkpoint, exist_ok=True) os.makedirs(path2writer, exist_ok=True) os.makedirs(path2op, exist_ok=True) model = model_dict[args.model] netDict = load_from_file([args.loadfile, os.path.join(path2checkpoint, 'checkpoint.pt')]) startEp = netDict['epoch'] if 'epoch' in netDict.keys() else 0 if 'state_dict' in netDict.keys(): model.load_state_dict(netDict['state_dict']) print('Parameters: {}'.format(get_nparams(model))) model = model if not args.useMultiGPU else torch.nn.DataParallel(model) model = model.to(device).to(args.prec) f = open(os.path.join('curObjects', 'baseline', 'cond_'+str(args.curObj)+'.pkl'), 'rb') _, _, testObj = pickle.load(f) testObj.path2data = os.path.join(args.path2data, 'Datasets', 'All') testObj.augFlag = False testloader = DataLoader(testObj, batch_size=args.batchsize, shuffle=False, num_workers=args.workers, drop_last=False) if args.disp: fig, axs = plt.subplots(nrows=1, ncols=1) #%% accLoss = 0.0 imCounter = 0 ious = [] dists_pupil_latent = [] dists_pupil_seg = [] dists_iris_latent = [] dists_iris_seg = [] model.eval() opDict = {'id':[], 'archNum': [], 'archName': [], 'code': [], 'scores':{'iou':[], 'lat_dst':[], 'seg_dst':[]}, 'pred':{'pup_latent_c':[], 'pup_seg_c':[], 'iri_latent_c':[], 'iri_seg_c':[], 'mask':[]}, 'gt':{'pup_c':[], 'mask':[]}} with torch.no_grad(): for bt, batchdata in enumerate(tqdm.tqdm(testloader)): img, labels, spatialWeights, distMap, pupil_center, iris_center, elNorm, cond, imInfo = batchdata out_tup = model(img.to(device).to(args.prec), labels.to(device).long(), pupil_center.to(device).to(args.prec), elNorm.to(device).to(args.prec), spatialWeights.to(device).to(args.prec), distMap.to(device).to(args.prec), cond.to(device).to(args.prec), imInfo[:, 2].to(device).to(torch.long), 0.5) output, elOut, latent, loss = out_tup latent_pupil_center = elOut[:, 0:2].detach().cpu().numpy() latent_iris_center = elOut[:, 5:7].detach().cpu().numpy() _, seg_pupil_center = get_seg2ptLoss(output[:, 2, ...].cpu(), pupil_center, temperature=4) _, seg_iris_center = get_seg2ptLoss(-output[:, 0, ...].cpu(), iris_center, temperature=4) loss = loss if args.useMultiGPU else loss.mean() accLoss += loss.detach().cpu().item() predict = get_predictions(output) iou, iou_bySample = getSeg_metrics(labels.numpy(), predict.numpy(), cond[:, 1].numpy())[1:] latent_pupil_dist, latent_pupil_dist_bySample = getPoint_metric(pupil_center.numpy(), latent_pupil_center, cond[:,0].numpy(), img.shape[2:], True) # Unnormalizes the points seg_pupil_dist, seg_pupil_dist_bySample = getPoint_metric(pupil_center.numpy(), seg_pupil_center, cond[:,1].numpy(), img.shape[2:], True) # Unnormalizes the points latent_iris_dist, latent_iris_dist_bySample = getPoint_metric(iris_center.numpy(), latent_iris_center, cond[:,1].numpy(), img.shape[2:], True) # Unnormalizes the points seg_iris_dist, seg_iris_dist_bySample = getPoint_metric(iris_center.numpy(), seg_iris_center, cond[:,1].numpy(), img.shape[2:], True) # Unnormalizes the points dists_pupil_latent.append(latent_pupil_dist) dists_iris_latent.append(latent_iris_dist) dists_pupil_seg.append(seg_pupil_dist) dists_iris_seg.append(seg_iris_dist) ious.append(iou) pup_latent_c = unnormPts(latent_pupil_center, img.shape[2:]) pup_seg_c = unnormPts(seg_pupil_center, img.shape[2:]) iri_latent_c = unnormPts(latent_iris_center, img.shape[2:]) iri_seg_c = unnormPts(seg_iris_center, img.shape[2:]) dispI = generateImageGrid(img.numpy().squeeze(), predict.numpy(), elOut.detach().cpu().numpy().reshape(-1, 2, 5), pup_seg_c, cond.numpy(), override=True, heatmaps=False) for i in range(0, img.shape[0]): archNum = testObj.imList[imCounter, 1] opDict['id'].append(testObj.imList[imCounter, 0]) opDict['code'].append(latent[i,...].detach().cpu().numpy()) opDict['archNum'].append(archNum) opDict['archName'].append(testObj.arch[archNum]) opDict['pred']['pup_latent_c'].append(pup_latent_c[i, :]) opDict['pred']['pup_seg_c'].append(pup_seg_c[i, :]) opDict['pred']['iri_latent_c'].append(iri_latent_c[i, :]) opDict['pred']['iri_seg_c'].append(iri_seg_c[i, :]) if args.test_save_op_masks: opDict['pred']['mask'].append(predict[i,...].numpy().astype(np.uint8)) opDict['scores']['iou'].append(iou_bySample[i, ...]) opDict['scores']['lat_dst'].append(latent_pupil_dist_bySample[i, ...]) opDict['scores']['seg_dst'].append(seg_pupil_dist_bySample[i, ...]) opDict['gt']['pup_c'].append(pupil_center[i,...].numpy()) if args.test_save_op_masks: opDict['gt']['mask'].append(labels[i,...].numpy().astype(np.uint8)) imCounter+=1 if args.disp: if bt == 0: h_im = plt.imshow(dispI.permute(1, 2, 0)) plt.pause(0.01) else: h_im.set_data(dispI.permute(1, 2, 0)) mypause(0.01) opDict = stackall_Dict(opDict) ious = np.stack(ious, axis=0) ious = np.nanmean(ious, axis=0) print('mIoU: {}. IoUs: {}'.format(np.mean(ious), ious)) print('Latent space PUPIL dist. Med: {}, STD: {}'.format(np.nanmedian(dists_pupil_latent),
np.nanstd(dists_pupil_latent)
numpy.nanstd
import numpy as np from sklearn.cluster import DBSCAN from faster_particles.ppn_utils import crop as crop_util from faster_particles.display_utils import extract_voxels class CroppingAlgorithm(object): """ Base class for any cropping algorithm, they should inherit from it and implement crop method (see below) """ def __init__(self, cfg, debug=False): self.cfg = cfg self.d = cfg.SLICE_SIZE # Patch or box/crop size self.a = cfg.CORE_SIZE # Core size self.N = cfg.IMAGE_SIZE self._debug = debug def crop(self, coords): """ coords is expected to be dimensions (None, 3) = list of non-zero voxels Returns a list of patches centers and sizes (of cubes centered at the patch centers) """ pass def process(self, original_blob): # FIXME cfg.SLICE_SIZE vs patch_size patch_centers, patch_sizes = self.crop(original_blob['voxels']) return self.extract(patch_centers, patch_sizes, original_blob) def extract(self, patch_centers, patch_sizes, original_blob): batch_blobs = [] for i in range(len(patch_centers)): patch_center, patch_size = patch_centers[i], patch_sizes[i] blob = {} # Flip patch_center coordinates # because gt_pixels coordinates are reversed # FIXME here or before blob['data'] ?? patch_center = np.flipud(patch_center) blob['data'], _ = crop_util(np.array([patch_center]), self.cfg.SLICE_SIZE, original_blob['data'], return_labels=False) patch_center = patch_center.astype(int) # print(patch_center, original_blob['data'][0, patch_center[0], patch_center[1], patch_center[2], 0], np.count_nonzero(blob['data'])) # assert np.count_nonzero(blob['data']) > 0 if 'labels' in original_blob: blob['labels'], _ = crop_util(np.array([patch_center]), self.cfg.SLICE_SIZE, original_blob['labels'][..., np.newaxis], return_labels=False) blob['labels'] = blob['labels'][..., 0] # print(np.nonzero(blob['data'])) # print(np.nonzero(blob['labels'])) # assert np.array_equal(np.nonzero(blob['data']), np.nonzero(blob['labels'])) if 'weight' in original_blob: blob['weight'], _ = crop_util(np.array([patch_center]), self.cfg.SLICE_SIZE, original_blob['weight'][..., np.newaxis], return_labels=False) blob['weight'][blob['weight'] == 0.0] = 0.1 blob['weight'] = blob['weight'][..., 0] # Select gt pixels if 'gt_pixels' in original_blob: indices = np.where(np.all(np.logical_and( original_blob['gt_pixels'][:, :-1] >= patch_center - patch_size/2.0, original_blob['gt_pixels'][:, :-1] < patch_center + patch_size/2.0), axis=1)) blob['gt_pixels'] = original_blob['gt_pixels'][indices] blob['gt_pixels'][:, :-1] = blob['gt_pixels'][:, :-1] - (patch_center - patch_size / 2.0) # Add artificial gt pixels artificial_gt_pixels = self.add_gt_pixels(original_blob, blob, patch_center, self.cfg.SLICE_SIZE) if artificial_gt_pixels.shape[0]: blob['gt_pixels'] = np.concatenate([blob['gt_pixels'], artificial_gt_pixels], axis=0) # Select voxels # Flip patch_center coordinates back to normal patch_center = np.flipud(patch_center) if 'voxels' in original_blob: voxels = original_blob['voxels'] blob['voxels'] = voxels[np.all(np.logical_and( voxels >= patch_center - patch_size / 2.0, voxels < patch_center + patch_size / 2.0), axis=1)] blob['voxels'] = blob['voxels'] - (patch_center - patch_size / 2.0) blob['entries'] = original_blob['entries'] # Crops for small UResNet if self.cfg.NET == 'small_uresnet': blob['crops'], blob['crops_labels'] = crop_util( blob['gt_pixels'][:, :-1], self.cfg.CROP_SIZE, blob['data']) # FIXME FIXME FIXME # Make sure there is at least one ground truth pixel in the patch (for training) if self.cfg.NET not in ['ppn', 'ppn_ext', 'full'] or len(blob['gt_pixels']) > 0: batch_blobs.append(blob) return batch_blobs, patch_centers, patch_sizes def compute_overlap(self, coords, patch_centers, sizes=None): """ Compute overlap dict: dict[x] gives the number of voxels which belong to x patches. """ if sizes is None: sizes = self.d/2.0 overlap = [] for voxel in coords: overlap.append(np.sum(np.all(np.logical_and( patch_centers-sizes <= voxel, patch_centers + sizes >= voxel ), axis=1))) return dict(zip(*np.unique(overlap, return_counts=True))) def add_gt_pixels(self, original_blob, blob, patch_center, patch_size): """ Add artificial pixels after cropping """ # Case 1: crop boundaries is intersecting with data nonzero_idx = np.array(np.where(blob['data'][0, ..., 0] > 0.0)).T # N x 3 border_idx = nonzero_idx[np.any(np.logical_or(nonzero_idx == 0, nonzero_idx == self.cfg.IMAGE_SIZE - 1), axis=1)] # Case 2: crop is partially outside of original data (thus padded) # if patch_center is within patch_size of boundaries of original blob # boundary intesecting with data padded_idx = nonzero_idx[np.any(np.logical_or(nonzero_idx + patch_center - patch_size / 2.0 >= self.cfg.IMAGE_SIZE - 2, nonzero_idx + patch_center - patch_size / 2.0 <= 1), axis=1)] # dbscan on all found voxels from case 1 and 2 coords = np.concatenate([border_idx, padded_idx], axis=0) artificial_gt_pixels = [] if coords.shape[0]: db = DBSCAN(eps=10, min_samples=3).fit_predict(coords) for v in np.unique(db): cluster = coords[db == v] artificial_gt_pixels.append(cluster[np.argmax(blob['data'][0, ..., 0][cluster.T[0], cluster.T[1], cluster.T[2]]), :]) artificial_gt_pixels = np.concatenate([artificial_gt_pixels, np.ones((len(artificial_gt_pixels), 1))], axis=1) return np.array(artificial_gt_pixels) def reconcile(self, batch_results, patch_centers, patch_sizes): """ Reconcile slices result together using batch_results, batch_blobs, patch_centers and patch_sizes """ final_results = {} if len(batch_results) == 0: # Empty batch return final_results # UResNet predictions if 'predictions' and 'scores' and 'softmax' in batch_results[0]: final_voxels = np.array([], dtype=np.int32).reshape(0, 3) # Shape N_voxels x dim final_scores = np.array([], dtype=np.float32).reshape(0, self.cfg.NUM_CLASSES) # Shape N_voxels x num_classes final_counts = np.array([], dtype=np.int32).reshape(0,) # Shape N_voxels x 1 for i, result in enumerate(batch_results): # Extract voxel and voxel values # Shape N_voxels x dim v, values = extract_voxels(result['predictions']) # Extract corresponding softmax scores # Shape N_voxels x num_classes scores = result['softmax'][v[:, 0], v[:, 1], v[:, 2], :] # Restore original blob coordinates v = (v + np.flipud(patch_centers[i]) - patch_sizes[i] / 2.0).astype(np.int64) v = np.clip(v, 0, self.cfg.IMAGE_SIZE-1) # indices are indices of the *first* occurrences of the unique values # hence for doublons they are indices in final_voxels # We assume the only overlap that can occur is between # final_voxels and v, not inside these arrays themselves n = final_voxels.shape[0] final_voxels, indices, counts = np.unique(np.concatenate([final_voxels, v], axis=0), axis=0, return_index=True, return_counts=True) final_scores = np.concatenate([final_scores, scores], axis=0)[indices] lower_indices = indices[indices < n] upper_indices = indices[indices >= n] final_counts[lower_indices] += counts[lower_indices] - 1 final_counts = np.concatenate([final_counts, np.ones((upper_indices.shape[0],))], axis=0) final_scores = final_scores / final_counts[:, np.newaxis] # Compute average final_predictions = np.argmax(final_scores, axis=1) final_results['predictions'] = np.zeros((self.cfg.IMAGE_SIZE,) * 3) final_results['predictions'][final_voxels.T[0], final_voxels.T[1], final_voxels.T[2]] = final_predictions final_results['scores'] = np.zeros((self.cfg.IMAGE_SIZE,) * 3) final_results['scores'][final_voxels.T[0], final_voxels.T[1], final_voxels.T[2]] = final_scores[np.arange(final_scores.shape[0]), final_predictions] final_results['softmax'] = np.zeros((self.cfg.IMAGE_SIZE,) * 3 + (self.cfg.NUM_CLASSES,)) final_results['softmax'][final_voxels.T[0], final_voxels.T[1], final_voxels.T[2], :] = final_scores final_results['predictions'] = final_results['predictions'][np.newaxis, ...] # PPN if 'im_proposals' and 'im_scores' and 'im_labels' and 'rois' in batch_results[0]: # print(batch_results[0]['im_proposals'].shape, batch_results[0]['im_scores'].shape, batch_results[0]['im_labels'].shape, batch_results[0]['rois'].shape) final_im_proposals = np.array([], dtype=np.float32).reshape(0, 3) final_im_scores = np.array([], dtype=np.float32).reshape(0,) final_im_labels = np.array([], dtype=np.int32).reshape(0,) final_rois = np.array([], dtype=np.float32).reshape(0, 3) for i, result in enumerate(batch_results): im_proposals = result['im_proposals'] + np.flipud(patch_centers[i]) - patch_sizes[i] / 2.0 im_proposals = np.clip(im_proposals, 0, self.cfg.IMAGE_SIZE-1) # print(final_im_proposals, im_proposals) final_im_proposals = np.concatenate([final_im_proposals, im_proposals], axis=0) final_im_scores =
np.concatenate([final_im_scores, result['im_scores']], axis=0)
numpy.concatenate
# coding: utf-8 import sys, os sys.path.append(os.pardir) # 親ディレクトリのファイルをインポートするための設定 import numpy as np from common.functions import softmax, cross_entropy_error from common.gradient import numerical_gradient class simpleNet: def __init__(self): self.W = np.random.randn(2,3) def predict(self, x): return
np.dot(x, self.W)
numpy.dot
#!/usr/bin/env python3 from timeit import default_timer import numpy as np from ortools.linear_solver import pywraplp import json import argparse from topology_parser import get_topology_matrix parser = argparse.ArgumentParser(description="create transfer plan.") parser.add_argument("mode", type=str, help="scatter, gather or all2all") parser.add_argument("main_gpu", type=int, help="source for scatter or target for gather") args=parser.parse_args() modes = {"scatter":0, "gather":1, "all2all":2} if args.mode in modes.keys(): mode = args.mode else: print("invalid mode") parser.print_help() raise SystemExit main_gpu = args.main_gpu capacities = get_topology_matrix() bisection_width = 0 # dgx1 volta: 6 nvlink per gpu # capacities = get_topology_matrix("dgx1_topology.txt") # bisection_width = 6 # ps0001 pascal: 4 nvlink per gpu # capacities = get_topology_matrix("ps0001_topology.txt") # bisection_width = 4 # ps0001 pascal: 4 nvlink per gpu # num_gpus = 4 # capacities = np.eye(num_gpus) * num_gpus # capacities += np.array([[0,2,1,1], # [2,0,1,1], # [1,1,0,2], # [1,1,2,0]]) # bisection_width = 4 # like ps0001 but volta: 6 nvlink per gpu # num_gpus = 4 # capacities = np.eye(num_gpus) * num_gpus # capacities += np.array([[0,2,2,2], # [2,0,2,2], # [2,2,0,2], # [2,2,2,0]]) # bisection_width = 6 # half of dgx1 volta: 6 nvlink per gpu # num_gpus = 4 # capacities = np.eye(num_gpus) * num_gpus # capacities += np.array([[0,1,1,2], # [1,0,2,1], # [1,2,0,2], # [2,1,2,0]]) # bisection_width = 5 # dgx1 volta: 6 nvlink per gpu # num_gpus = 8 # capacities = np.eye(num_gpus) * num_gpus # capacities += np.array([[0,1,1,2,2,0,0,0], # [1,0,2,1,0,2,0,0], # [1,2,0,2,0,0,1,0], # [2,1,2,0,0,0,0,1], # [2,0,0,0,0,1,1,2], # [0,2,0,0,1,0,2,1], # [0,0,1,0,1,2,0,2], # [0,0,0,1,2,1,2,0]]) # bisection_width = 6 # like dgx1 volta: 6 nvlink per gpu, different ring structure # num_gpus = 8 # capacities = np.eye(num_gpus) * num_gpus # capacities += np.array([[0,2,1,1,2,0,0,0], # [2,0,1,1,0,2,0,0], # [1,1,0,2,0,0,2,0], # [1,1,2,0,0,0,0,2], # [2,0,0,0,0,1,1,2], # [0,2,0,0,1,0,2,1], # [0,0,2,0,1,2,0,1], # [0,0,0,2,2,1,1,0]]) # bisection_width = 8 num_gpus = capacities.shape[0] if bisection_width == 0: bisection_width = np.sum(capacities[num_gpus//2:,:num_gpus//2]).astype(int) main_degree = int(np.sum(capacities[main_gpu, :]) - capacities[main_gpu,main_gpu]) print("main:", main_gpu, "degree:", main_degree, "bisection width:", bisection_width) print("topology:") print(capacities) max_capacity = np.max(capacities * (1-np.eye(num_gpus))) print("max links:", max_capacity) if max_capacity > 2: print("topologies with more than 2 nvlinks at the same edge are not supported.") raise SystemExit() lengths = np.where(capacities <= max_capacity, max_capacity / capacities, 1) # print("lengths:") # print(lengths) if modes[mode] == 0: # scatter num_commodities = 1 parts_per_commodity = int(main_degree // np.gcd(main_degree, num_gpus-1)) # one gpu starts with one chunk of the commodity source = main_gpu commodities_out = np.ones(num_gpus) * parts_per_commodity commodities_in = np.zeros(num_gpus) commodities_in[source] += np.sum(commodities_out) elif modes[mode] == 1: # gather num_commodities = 1 parts_per_commodity = int(main_degree // np.gcd(main_degree, num_gpus-1)) # one gpu starts with all chunks of the commodity target = main_gpu commodities_in = np.ones(num_gpus) * parts_per_commodity commodities_out = np.zeros(num_gpus) commodities_out[target] += np.sum(commodities_in) elif modes[mode] == 2: # all-to-all num_commodities = num_gpus parts_per_commodity = int(bisection_width // np.gcd(bisection_width, int(np.ceil(num_gpus/2)*np.floor(num_gpus/2)))) # each gpu starts with one of each commodity commodities_in = np.ones((num_gpus,num_commodities)) * parts_per_commodity commodities_out = np.diagflat( np.sum(commodities_in, axis=0) ) else: raise SystemExit() # parts_per_commodity = 1 capacities +=
np.eye(num_gpus)
numpy.eye
from copy import deepcopy from dataclasses import dataclass from typing import Dict, List, Tuple, Any, Union import warnings import numpy as np import pandas as pd from floodlight.utils.types import Numeric from floodlight.core.definitions import essential_events_columns, protected_columns from floodlight.core.code import Code @dataclass class Events: """Event data fragment. Core class of floodlight. Event data is stored in `pandas` ``DataFrame``, where each row stores one event with its different properties organized in columns. You may put whatever information you like in these columns. Yet, the columns `"eID"` and `"gameclock"` are mandatory to identify and time-locate events. Some special column names are reserved for properties that follow conventions. These may be necessary and their existence is checked for running particular analyses. Parameters ---------- events: pd.DataFrame DataFrame containing rows of events and columns of respective event properties. direction: str, optional Playing direction of players in data fragment, should be either 'lr' (left-to-right) or 'rl' (right-to-left). Attributes ---------- essential: list List of essential columns available for stored events. protected: list List of protected columns available for stored events. custom: list List of custom (i.e. non-essential and non-protected) columns available for stored events. essential_missing: list List of missing essential columns. essential_invalid: list List of essential columns that violate the definitions. protected_missing: list List of missing protected columns. protected_invalid: list List of protected columns that violate the definitions. """ events: pd.DataFrame direction: str = None def __post_init__(self): # check for missing essential columns missing_columns = self.essential_missing if missing_columns: raise ValueError( f"Floodlight Events object is missing the essential " f"column(s) {missing_columns}!" ) # warn if value ranges are violated incorrect_columns = self.essential_invalid if incorrect_columns: for col in incorrect_columns: warnings.warn( f"Floodlight Events column {col} does not match the defined value" f"range (from floodlight.core.definitions). You can pursue at this " f"point, however, be aware that this may lead to unexpected " f"behavior in the future." ) def __str__(self): return f"Floodlight Events object of shape {self.events.shape}" def __len__(self): return len(self.events) def __getitem__(self, key): return self.events[key] def __setitem__(self, key, value): self.events[key] = value @property def essential(self): essential = [ col for col in self.events.columns if col in essential_events_columns ] return essential @property def protected(self): protected = [col for col in self.events.columns if col in protected_columns] return protected @property def custom(self): custom = [ col for col in self.events.columns if col not in essential_events_columns and col not in protected_columns ] return custom @property def essential_missing(self): missing_columns = [ col for col in essential_events_columns if col not in self.essential ] return missing_columns @property def essential_invalid(self): invalid_columns = [ col for col in self.essential if not self.column_values_in_range(col, essential_events_columns) ] return invalid_columns @property def protected_missing(self): missing_columns = [ col for col in protected_columns if col not in self.protected ] return missing_columns @property def protected_invalid(self): invalid_columns = [ col for col in self.protected if not self.column_values_in_range(col, protected_columns) ] return invalid_columns def column_values_in_range(self, col: str, definitions: Dict[str, Dict]) -> bool: """Check if values for a single column of the inner event DataFrame are in correct range using using the specifications from floodlight.core.definitions. Parameters ---------- col: str Column name of the inner event DataFrame to be checked definitions: Dict Dictionary (from floodlight.core.definitions) containing specifications for the columns to be checked. The definitions need to contain an entry for the column to be checked and this entry needs to contain information about the value range in the form: ``definitions[col][value_range] = (min, max)``. Returns ------- bool True if the checks for value range pass and False otherwise Notes ----- Non-integer results of this computation will always be rounded to the next smaller integer. """ # skip if value range is not defined if definitions[col]["value_range"] is None: return True # skip values that are None or NaN col_nan_free = self.events[col].dropna() # retrieve value range from definitions min_val, max_val = definitions[col]["value_range"] # check value range for remaining values if not (min_val <= col_nan_free).all() & (col_nan_free <= max_val).all(): return False # all checks passed return True def add_frameclock(self, framerate: int): """Add the column "frameclock", computed as the rounded multiplication of gameclock and framerate, to the inner events DataFrame. Parameters ---------- framerate: int Temporal resolution of data in frames per second/Hertz. """ frameclock = np.full((len(self.events)), -1, dtype=int) frameclock[:] = np.floor(self.events["gameclock"].values * framerate) self.events["frameclock"] = frameclock def select( self, conditions: Tuple[str, Any] or List[Tuple[str, Any]] ) -> pd.DataFrame: """Returns a DataFrame containing all entries from the inner events DataFrame that satisfy all given conditions. Parameters ---------- conditions: Tuple or List of Tuples A single or a list of conditions used for filtering. Each condition should follow the form ``(column, value)``. If ``value`` is given as a variable (can also be None), it is used to filter for an exact value. If given as a tuple ``value = (min, max)`` that specifies a minimum and maximum value, it is filtered for a value range. For example, to filter all events that have the ``eID`` of ``"Pass"`` and that happened within the first 1000 seconds of the segment, conditions should look like: ``conditions = [("eID", "Pass"), ("gameclock", (0, 1000))]`` Returns ------- filtered_events: pd.DataFrame A view of the inner events DataFrame with rows fulfilling all criteria specified in conditions. The DataFrame can be empty if no row fulfills all specified criteria. """ filtered_events = self.events # convert single non-list condition to list if not isinstance(conditions, list): conditions = [conditions] # loop through and filter by conditions for column, value in conditions: # if the value is None filter for all entries with None, NaN or NA if value is None: filtered_events = filtered_events[filtered_events[column].isna()] # check if a single value or a value range is given else: # value range: filter by minimum and maximum value if isinstance(value, (list, tuple)): min_val, max_val = value filtered_events = filtered_events[ filtered_events[column] >= min_val ] filtered_events = filtered_events[ filtered_events[column] <= max_val ] # single value: filter by that value else: filtered_events = filtered_events[filtered_events[column] == value] return filtered_events def translate(self, shift: Tuple[Numeric, Numeric]): """Translates data by shift vector. Parameters ---------- shift : list or array-like Shift vector of form v = (x, y). Any iterable data type with two numeric entries is accepted. """ if "at_x" in self.protected and self.events["at_x"].dtype in [ "int64", "float64", ]: self.events["at_x"] = self.events["at_x"].map(lambda x: x + shift[0]) if "at_y" in self.protected and self.events["at_y"].dtype in [ "int64", "float64", ]: self.events["at_y"] = self.events["at_y"].map(lambda x: x + shift[1]) if "to_x" in self.protected and self.events["to_x"].dtype in [ "int64", "float64", ]: self.events["to_x"] = self.events["to_x"].map(lambda x: x + shift[0]) if "to_y" in self.protected and self.events["to_y"].dtype in [ "int64", "float64", ]: self.events["to_y"] = self.events["to_y"].map(lambda x: x + shift[1]) def scale(self, factor: float, axis: str = None): """Scales data by a given factor and optionally selected axis. Parameters ---------- factor : float Scaling factor. axis : {None, 'x', 'y'}, optional Name of scaling axis. If set to 'x' data is scaled on x-axis, if set to 'y' data is scaled on y-axis. If None, data is scaled in both directions (default). """ if axis not in ["x", "y", None]: raise ValueError(f"Expected axis to be one of ('x', 'y', None), got {axis}") if axis is None or axis == "x": if "at_x" in self.protected and self.events["at_x"].dtype in [ "int64", "float64", ]: self.events["at_x"] = self.events["at_x"].map(lambda x: x * factor) if "to_x" in self.protected and self.events["to_x"].dtype in [ "int64", "float64", ]: self.events["at_x"] = self.events["at_x"].map(lambda x: x * factor) if axis is None or axis == "y": if "at_y" in self.protected and self.events["at_y"].dtype in [ "int64", "float64", ]: self.events["at_y"] = self.events["at_y"].map(lambda x: x * factor) if "to_y" in self.protected and self.events["to_y"].dtype in [ "int64", "float64", ]: self.events["to_y"] = self.events["to_y"].map(lambda x: x * factor) def reflect(self, axis: str): """Reflects data on given `axis`. Parameters ---------- axis : {'x', 'y'} Name of reflection axis. If set to "x", data is reflected on x-axis, if set to "y", data is reflected on y-axis. """ if axis == "x": self.scale(factor=-1, axis="y") elif axis == "y": self.scale(factor=-1, axis="x") else: raise ValueError(f"Expected axis to be one of ('x', 'y'), got {axis}") def rotate(self, alpha: float): """Rotates data on given angle 'alpha' around the origin. Parameters ---------- alpha: float Rotation angle in degrees. Alpha must be between -360 and 360. If positive alpha, data is rotated in counter clockwise direction. If negative, data is rotated in clockwise direction around the origin. """ if not (-360 <= alpha <= 360): raise ValueError( f"Expected alpha to be from -360 to 360, got {alpha} instead" ) phi = np.radians(alpha) cos = np.cos(phi) sin = np.sin(phi) # construct rotation matrix r = np.array([[cos, -sin], [sin, cos]]).transpose() if "at_x" in self.protected and self.events["at_x"].dtype in [ "int64", "float64", ]: if "at_y" in self.protected and self.events["at_y"].dtype in [ "int64", "float64", ]: self.events[["at_x", "at_y"]] = pd.DataFrame( np.round(np.dot(self.events[["at_x", "at_y"]], r), 3) ) if "to_x" in self.protected and self.events["to_x"].dtype in [ "int64", "float64", ]: if "to_y" in self.protected and self.events["to_y"].dtype in [ "int64", "float64", ]: self.events[["to_x", "to_y"]] = pd.DataFrame( np.round(np.dot(self.events[["to_x", "to_y"]], r), 3) ) def slice( self, start: float = None, end: float = None, slice_by="gameclock", inplace: bool = False, ): """Return copy of object with events sliced in a time interval. Intended columns for using this function are ``gameclock`` (total seconds) or ``frameclock``. However, also allows slicing by any other column that manifests a temporal relation between events (e.g. ``minute``). Excludes all entries without a valid entry in the specified column (e.g. None). Parameters ---------- start : float, optional Start frame or second of slice. Defaults to beginning of segment. end : float, optional End frame or second of slice (endframe is excluded). Defaults to last event of segment (including). slice_by: {'gameclock', 'frameclock'}, optional Column used to slice the events. Defaults to ``gameclock``. inplace: bool, optional If set to ``False`` (default), a new object is returned, otherwise the operation is performed in place on the called object. Returns ------- events_sliced: Union[Event, None] """ if slice_by not in self.events: ValueError(f"Events object does not contain column {slice_by}!") if start is None: start = 0 if end is None: end = np.nanmax(self.events[slice_by].values) + 1 sliced_data = self.events[self.events[slice_by] >= start].copy() sliced_data = sliced_data[sliced_data[slice_by] < end] sliced_data.reset_index(drop=True, inplace=True) events_sliced = None if inplace: self.events = sliced_data else: events_sliced = Events( events=sliced_data, direction=deepcopy(self.direction), ) return events_sliced def get_event_stream( self, fade: Union[int, None] = 0, **kwargs, ) -> Code: """Generates a Code object containing the eIDs of all events at the respective frame and optionally subsequent frames as defined by the fade argument. This function translates the object's DataFrame of temporally irregular events to a continuous frame-wise representation. This can be especially helpful to connect event data with spatiotemporal data, e.g., for filtering the latter based on the former. Events overwrite preceding event's fade, and unfilled values are set to np.nan. Notes ------ Requires the DataFrame to contain the protected ``frameclock`` column. Parameters ---------- fade: int, optional Number of additional frames for which the Code object should stay at a value after the event occurred. The value is overwritten if another event occurs within the fade duration. If chosen to zero, the value is maintained only for a single frame. If chosen to None, the value is maintained until either the next event or until the end of the sequence. Defaults to 0. kwargs: Keyword arguments of the Code object ("name", "definitions", "framerate") that are passed down to instantiate the returned event_stream. Returns ------- event_stream: Code Generated continuous event stream describing the designated game state. """ if "frameclock" in self.protected_missing: raise ValueError( "Cannot create event stream from Events object missing " "the protected column 'frameclock'. Consider calling " "add_frameclock to the Events object first!" ) if fade is not None and fade < 0: raise ValueError( f"Expected fade to be a positive integer or None, got {fade} instead." ) sorted_events = self.events.sort_values("frameclock") start = int(np.round(np.nanmin(sorted_events["frameclock"].values))) end = int(np.round(np.nanmax(sorted_events["frameclock"].values))) + 1 code = np.full((end - start,), np.nan, dtype=object) for _, event in sorted_events.iterrows(): if pd.isna(event["frameclock"]): continue frame = int(
np.round(event["frameclock"])
numpy.round
# -*- coding: utf-8 -*- """ Created on Sat Apr 16 12:41:30 2022 @author: DanielT17 """ # %% Imports from crcengine import get_algorithm_params,algorithms_available,new,create from logging import Formatter,DEBUG,INFO,WARNING,ERROR,CRITICAL,getLogger,StreamHandler import numpy as np from math import ceil from collections import Counter from itertools import product # %% Formatter class Custom_Formatter(Formatter): """ Description: This function configurates the logger object. Inputs: logging.Formatter - logging - logging foramatter. Outputs: formatter.format(record) - formatter - recorded dictionary turns it to string. """ grey = "\x1b[38;20m"; green = "\x1b[32;1m"; yellow = "\x1b[33;20m" red = "\x1b[31;20m"; bold_red = "\x1b[31;1m"; reset = "\x1b[0m" format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s (%(filename)s:%(lineno)d)" FORMATS = {DEBUG: grey + format + reset, INFO: green + format + reset, WARNING: yellow + format + reset, ERROR: red + format + reset, CRITICAL: bold_red + format + reset} def format(self, record): log_fmt = self.FORMATS.get(record.levelno) formatter = Formatter(log_fmt) return formatter.format(record) def Logger_Object(): """ Description: This function creates and configurates the logger object. Inputs: None. Outputs: logger - logging module - a logging object configured. """ logger = getLogger("CRC reversing") logger.setLevel(DEBUG) ch = StreamHandler() ch.setLevel(DEBUG) ch.setFormatter(Custom_Formatter()) logger.addHandler(ch) return logger # %% Helper functions def Swap(a,b): ''' Description: This function swaps two variables. Inputs: a,b - ints. Outputs: c,d - ints. ''' c = b d = a return c,d def Bitstring_To_Bytes(s,endian='big'): ''' Description: This function gets a bit string binary and turns it to bytes array. Inputs: s - string - binary string. endian - str - big or little endian representation Outputs: return - byte array of s. ''' return int(s, 2).to_bytes((len(s) + 7) // 8, byteorder=endian) def Bytearray_To_Int(s,endian="big"): ''' Description: This function turn a byte array into an int. Inputs: s - byte array. Outputs: returns - int. ''' return int.from_bytes(s, endian) def Int_To_Bytearray(s,endian="big"): ''' Description: This function turns an int into a bytearray. Inputs: s - int. Outputs: returns - byte array. ''' return s.to_bytes(ceil(s.bit_length()/8),endian) def Remove_Zeros_From_Binary_String(string): ''' Description: This function removes preappended zeros to a binary string. Inputs: string - a string sequence of ones and zeros. Outputs: string - without preappended zeros. ''' counter = 0 for char in string: if char == '0': counter += 1 else: break return string[counter:] def Turn_Bitstring_To_Numpy_Array_Of_Bits(string,crc_width): ''' Description: This function turns a bit string into a numpy array of size crc_width where each arr[i] is equal to string[i]. A binary vector in GF(2). Inputs: string - string - a binary string. crc_width - int - the crc polynomial width Outputs: arr - numpy array - vector version of the binary string in GF(2). ''' arr = np.zeros((1,crc_width),dtype=np.uint8) for i in range(crc_width): arr[0,i] = int(string[i]) return arr def Turn_Numpy_Array_Of_Bits_To_Bitstring(arr,crc_width): ''' Description: This function turns a numpy array of bits in GF(2) to a bit string. Inputs: arr - numpy array - a vector of bits in GF(2). crc_width - int - the crc polynomial width Outputs: string - string - a binary string. ''' string = '' for i in range(crc_width): string += str(arr[i]) return string def Byte_Xor(ba1, ba2): """ Description: This function computes the xor between two byte arrays. Inputs: ba1, ba2 - byte arrays - are byte arrays of the same size to be xored. Outputs: xored - byte array - A byte array with the xored result. """ xored = bytes([_a ^ _b for _a, _b in zip(ba1, ba2)]) return xored def Print_Crc_Parameters(crc_algorithm_name): ''' Description: This functions returns crc algorithm parameters. Inputs: crc_algorithm_name - str - the name of the crc algorithm. Outputs: None. Prints text. ''' params = get_algorithm_params(crc_algorithm_name) print('\nCyclic redundancy check parameters: \n') for _,param in enumerate(params.items()): if param[0] == 'poly': print('poly: ' + str(hex(param[1]))) else: print(str(param[0]) + ': ' + str(param[1]) + '.') print('\n') return params['width'] def Get_CRC(data,crc_algorithm): ''' Description: This functions computes the crc of some byte array named data, and returns a byte array object named crc_bytes. Inputs: data - byte array - we want to calculate the crc of this input. crc_algorithm - crcengine.calc._CrcLsbf - the crc object which will be used for the calculation. Outputs: crc_bytes - byte array - the byte array of object of the resulting crc. ''' crc = crc_algorithm(data) length_in_bits = crc.bit_length() crc_bytes = crc.to_bytes(ceil(length_in_bits/8),'big') return crc_bytes def Print_Packets(packets): ''' Description: This function prints packets entered by the user in hexadecimal. Inputs: packets - list - a list of packets. Outputs: None. Prints the packets in hexadecimal as inputed by the user. ''' print('\nPresenting packets inputed by user: \n') for i in range(len(packets)): print('Packet ' + str(i+1) + ': ' + packets[i].hex()) def reverse_poly(poly,order): ''' Description: Printing reverse polynomial representation. Inputs: poly - int - polynomial coefficents order - int - polynomial degree Outputs: return - int - reverse polynomial represenation ''' len_string = order - len(bin(poly)[2:]) return int(bin(poly)[::-1][:-2],2) << len_string def recipolar_poly(poly,order): ''' Description: Printing recipolar polynomial representation: p(x) -> p(x^(-1))*x^n. Inputs: poly - int - polynomial coefficents order - int - polynomial degree Outputs: return - int - reverse polynomial represenation ''' temp = bin(poly)[::-1][:-2][1:] temp = temp + '0'*(order-len(temp)-1) + '1' return int(temp,2) def Generate_All_Poly_Representations(poly,crc_width,enb_combinations=False): ''' Description: This function calculates all possible polynomial representations. Inputs: poly - int - polynomial coefficents crc_width - int - polynomial degree enb_combinations - boolean - if enabled returns a list of all possible polynomil combinations. Outputs: estimated_reverse_poly,estimated_poly_recipolar, estimated_poly_recipolar_reverese,estimated_reverse_poly_recipolar, estimated_reverse_poly_recipolar_reverese - ints - polynomial representations. ''' estimated_reverse_poly = reverse_poly(poly,crc_width) estimated_poly_recipolar = recipolar_poly(poly,crc_width) estimated_poly_recipolar_reverese = reverse_poly(poly,crc_width) estimated_reverse_poly_recipolar = recipolar_poly(estimated_reverse_poly,crc_width) estimated_reverse_poly_recipolar_reverese = reverse_poly(estimated_poly_recipolar,crc_width) if enb_combinations: ls = [poly,estimated_reverse_poly,estimated_poly_recipolar,estimated_poly_recipolar_reverese,estimated_reverse_poly_recipolar,estimated_reverse_poly_recipolar_reverese] polys = [] for cur_poly in ls: for i in range(4): if i == 0: polys.append(cur_poly) elif i == 1: polys.append(cur_poly+1) elif i == 2: polys.append(cur_poly+2**(crc_width)) elif i == 3: counter = 0; hex_cur_poly = hex(cur_poly)[2:] for j in reversed(hex_cur_poly): if j == '0': counter += 1 else: break; if counter != 0: polys.append(int(hex_cur_poly[:-counter],16)) return polys else: return estimated_reverse_poly,estimated_poly_recipolar,estimated_poly_recipolar_reverese,estimated_reverse_poly_recipolar,estimated_reverse_poly_recipolar_reverese def Print_All_Polynomial_Representations(poly,crc_width): ''' Description: This function prints all possible polynomial representations. Inputs: poly - int - polynomial coefficents crc_width - int - polynomial degree Outputs: None. Prints all possible polynomial representations. ''' estimated_reverse_poly,estimated_poly_recipolar,estimated_poly_recipolar_reverese,estimated_reverse_poly_recipolar,estimated_reverse_poly_recipolar_reverese = Generate_All_Poly_Representations(poly,crc_width) print('\n') print('----------------------------------------') print('Estimated CRC polynomial:') print('Normal mode: ' + str(hex(poly))) print('Reverse mode: ' + str(hex(estimated_reverse_poly))) print('Recipolar mode: ' + str(hex(estimated_poly_recipolar))) print('Reversed recipolar mode: ' + str(hex(estimated_poly_recipolar_reverese))) print('Recipolar reverse mode: ' + str(hex(estimated_reverse_poly_recipolar))) print('Reversed recipolar reverse mode: ' + str(hex(estimated_reverse_poly_recipolar_reverese))) print('----------------------------------------\n') def Ranking_Estimated_Polynomial(polys): ''' Description: This function gets a list of possible candidate polynomials, and outputs the three (or two or one) most likely polynomials. Inputs: polys - list - list of intgers which are candidate polynomials. Outputs: polys_best - list - list of the most likely polynomial to be a correct polynomial, ranked from most likely to least likely. occurrence - list - the probability (in this case percentage) of a polynomial to be the correct polynomial according to the algorithm. ''' polys = np.asarray(polys,dtype = object) polys = polys[polys != 0] values, counts = Unique(polys) for i in reversed(range(3)): try: inds = np.argpartition(counts, -(i+1))[-(i+1):]; break; except: continue; occurrence = []; polys_best = []; for ind in inds: occurrence.append(counts[ind]); polys_best.append(values[ind]); occurrence = occurrence[::-1]; polys_best = polys_best[::-1] occurrence = occurrence/np.sum(occurrence) * 100; ranking = np.argsort(occurrence)[::-1]; occurrence = occurrence[ranking]; polys_best = [x for _,x in sorted(zip(list(ranking),polys_best))][::-1] return polys_best,occurrence def Print_Estimated_Polynomial_By_Ranking_After_Method(polys,occurrence,crc_width,enable_pre_text=True): ''' Description: This fucntion gets a list of ranking (occurrence) and polynomial and print them in this order. Inputs: polys - list - list of possible candidate polynomials. occurrence - numpy array - Ordered ranking of the polynomials. crc_width - int - estimated polynomial degree Outputs: None. Prints polynomial in order of ranking. ''' if enable_pre_text: print('\n\nPrinting the three most likely polynomials: \n') else: print('\n\n\n\n\n') print('-------------------------------------------------------------------------------------') print('The list of polynomials we will continue to use in our XorIn estimation procedure:') print('-------------------------------------------------------------------------------------\n\n') for i in range(len(polys)): print('\nProbability to be the right polynomial is: ' + str(np.round(occurrence[i],2)) + '%.') Print_All_Polynomial_Representations(polys[i],crc_width) if not enable_pre_text: print('\n\n\n\n\n') def Merge_By_Ranking_Polynomials(occurrence1,polys1,occurrence2,polys2): ''' Description: This function gets 2 lists of polynomial and two lists of there respective ranking, merges and rescores them with respect to unique values. Inputs: occurrence1,occurrence2 - numpy arrays - Ordered ranking of the polynomials. polys1,polys2 - numpy arrays - A numpy array of the ordered polynomials. Outputs: polys_unique - list - list of the remaining ranked unique polynomials. new_occurrences - numpy array - array of the ranking of the polynomials. ''' occurrences = np.array(list(occurrence1) + list(occurrence2)); occurrences = occurrences/np.sum(occurrences)*100 ranking = np.argsort(occurrences) occurrences = list(occurrences[ranking])[::-1] polys = list(polys1) + list(polys2) polys = [x for _,x in sorted(zip(list(ranking),polys))][::-1] polys_unique,_ = Unique(polys) new_occurrences = []; for cur_poly in polys_unique: indcies = np.where(cur_poly ==
np.array(polys)
numpy.array
# Copyright 2017 Division of Medical Image Computing, German Cancer Research Center (DKFZ) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from builtins import range, zip import random import numpy as np from copy import deepcopy from scipy.ndimage import map_coordinates from scipy.ndimage.filters import gaussian_filter, gaussian_gradient_magnitude from scipy.ndimage.morphology import grey_dilation from skimage.transform import resize from scipy.ndimage.measurements import label as lb def generate_elastic_transform_coordinates(shape, alpha, sigma): n_dim = len(shape) offsets = [] for _ in range(n_dim): offsets.append(gaussian_filter((np.random.random(shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha) tmp = tuple([np.arange(i) for i in shape]) coords = np.meshgrid(*tmp, indexing='ij') indices = [np.reshape(i + j, (-1, 1)) for i, j in zip(offsets, coords)] return indices def create_zero_centered_coordinate_mesh(shape): tmp = tuple([np.arange(i) for i in shape]) coords = np.array(np.meshgrid(*tmp, indexing='ij')).astype(float) for d in range(len(shape)): coords[d] -= ((np.array(shape).astype(float) - 1) / 2.)[d] return coords def convert_seg_image_to_one_hot_encoding(image, classes=None): ''' Takes as input an nd array of a label map (any dimension). Outputs a one hot encoding of the label map. Example (3D): if input is of shape (x, y, z), the output will ne of shape (n_classes, x, y, z) ''' if classes is None: classes = np.unique(image) out_image = np.zeros([len(classes)]+list(image.shape), dtype=image.dtype) for i, c in enumerate(classes): out_image[i][image == c] = 1 return out_image def elastic_deform_coordinates(coordinates, alpha, sigma): n_dim = len(coordinates) offsets = [] for _ in range(n_dim): offsets.append( gaussian_filter((np.random.random(coordinates.shape[1:]) * 2 - 1), sigma, mode="constant", cval=0) * alpha) offsets = np.array(offsets) indices = offsets + coordinates return indices def rotate_coords_3d(coords, angle_x, angle_y, angle_z): rot_matrix = np.identity(len(coords)) rot_matrix = create_matrix_rotation_x_3d(angle_x, rot_matrix) rot_matrix = create_matrix_rotation_y_3d(angle_y, rot_matrix) rot_matrix = create_matrix_rotation_z_3d(angle_z, rot_matrix) coords = np.dot(coords.reshape(len(coords), -1).transpose(), rot_matrix).transpose().reshape(coords.shape) return coords def rotate_coords_2d(coords, angle): rot_matrix = create_matrix_rotation_2d(angle) coords = np.dot(coords.reshape(len(coords), -1).transpose(), rot_matrix).transpose().reshape(coords.shape) return coords def scale_coords(coords, scale): return coords * scale def uncenter_coords(coords): shp = coords.shape[1:] coords = deepcopy(coords) for d in range(coords.shape[0]): coords[d] += (shp[d] - 1) / 2. return coords def interpolate_img(img, coords, order=3, mode='nearest', cval=0.0, is_seg=False): if is_seg and order != 0: unique_labels = np.unique(img) result = np.zeros(coords.shape[1:], img.dtype) for i, c in enumerate(unique_labels): res_new = map_coordinates((img == c).astype(float), coords, order=order, mode=mode, cval=cval) result[res_new >= 0.5] = c return result else: return map_coordinates(img.astype(float), coords, order=order, mode=mode, cval=cval).astype(img.dtype) def generate_noise(shape, alpha, sigma): noise = np.random.random(shape) * 2 - 1 noise = gaussian_filter(noise, sigma, mode="constant", cval=0) * alpha return noise def find_entries_in_array(entries, myarray): entries = np.array(entries) values = np.arange(np.max(myarray) + 1) lut = np.zeros(len(values), 'bool') lut[entries.astype("int")] = True return np.take(lut, myarray.astype(int)) def center_crop_3D_image(img, crop_size): center = np.array(img.shape) / 2. if type(crop_size) not in (tuple, list): center_crop = [int(crop_size)] * len(img.shape) else: center_crop = crop_size assert len(center_crop) == len( img.shape), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" return img[int(center[0] - center_crop[0] / 2.):int(center[0] + center_crop[0] / 2.), int(center[1] - center_crop[1] / 2.):int(center[1] + center_crop[1] / 2.), int(center[2] - center_crop[2] / 2.):int(center[2] + center_crop[2] / 2.)] def center_crop_3D_image_batched(img, crop_size): # dim 0 is batch, dim 1 is channel, dim 2, 3 and 4 are x y z center = np.array(img.shape[2:]) / 2. if type(crop_size) not in (tuple, list): center_crop = [int(crop_size)] * (len(img.shape) - 2) else: center_crop = crop_size assert len(center_crop) == (len( img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" return img[:, :, int(center[0] - center_crop[0] / 2.):int(center[0] + center_crop[0] / 2.), int(center[1] - center_crop[1] / 2.):int(center[1] + center_crop[1] / 2.), int(center[2] - center_crop[2] / 2.):int(center[2] + center_crop[2] / 2.)] def center_crop_2D_image(img, crop_size): center = np.array(img.shape) / 2. if type(crop_size) not in (tuple, list): center_crop = [int(crop_size)] * len(img.shape) else: center_crop = crop_size assert len(center_crop) == len( img.shape), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (2d)" return img[int(center[0] - center_crop[0] / 2.):int(center[0] + center_crop[0] / 2.), int(center[1] - center_crop[1] / 2.):int(center[1] + center_crop[1] / 2.)] def center_crop_2D_image_batched(img, crop_size): # dim 0 is batch, dim 1 is channel, dim 2 and 3 are x y center = np.array(img.shape[2:]) / 2. if type(crop_size) not in (tuple, list): center_crop = [int(crop_size)] * (len(img.shape) - 2) else: center_crop = crop_size assert len(center_crop) == (len( img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (2d)" return img[:, :, int(center[0] - center_crop[0] / 2.):int(center[0] + center_crop[0] / 2.), int(center[1] - center_crop[1] / 2.):int(center[1] + center_crop[1] / 2.)] def random_crop_3D_image(img, crop_size): if type(crop_size) not in (tuple, list): crop_size = [crop_size] * len(img.shape) else: assert len(crop_size) == len( img.shape), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" if crop_size[0] < img.shape[0]: lb_x = np.random.randint(0, img.shape[0] - crop_size[0]) elif crop_size[0] == img.shape[0]: lb_x = 0 else: raise ValueError("crop_size[0] must be smaller or equal to the images x dimension") if crop_size[1] < img.shape[1]: lb_y = np.random.randint(0, img.shape[1] - crop_size[1]) elif crop_size[1] == img.shape[1]: lb_y = 0 else: raise ValueError("crop_size[1] must be smaller or equal to the images y dimension") if crop_size[2] < img.shape[2]: lb_z = np.random.randint(0, img.shape[2] - crop_size[2]) elif crop_size[2] == img.shape[2]: lb_z = 0 else: raise ValueError("crop_size[2] must be smaller or equal to the images z dimension") return img[lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1], lb_z:lb_z + crop_size[2]] def random_crop_3D_image_batched(img, crop_size): if type(crop_size) not in (tuple, list): crop_size = [crop_size] * (len(img.shape) - 2) else: assert len(crop_size) == (len( img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (3d)" if crop_size[0] < img.shape[2]: lb_x = np.random.randint(0, img.shape[2] - crop_size[0]) elif crop_size[0] == img.shape[2]: lb_x = 0 else: raise ValueError("crop_size[0] must be smaller or equal to the images x dimension") if crop_size[1] < img.shape[3]: lb_y = np.random.randint(0, img.shape[3] - crop_size[1]) elif crop_size[1] == img.shape[3]: lb_y = 0 else: raise ValueError("crop_size[1] must be smaller or equal to the images y dimension") if crop_size[2] < img.shape[4]: lb_z = np.random.randint(0, img.shape[4] - crop_size[2]) elif crop_size[2] == img.shape[4]: lb_z = 0 else: raise ValueError("crop_size[2] must be smaller or equal to the images z dimension") return img[:, :, lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1], lb_z:lb_z + crop_size[2]] def random_crop_2D_image(img, crop_size): if type(crop_size) not in (tuple, list): crop_size = [crop_size] * len(img.shape) else: assert len(crop_size) == len( img.shape), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (2d)" if crop_size[0] < img.shape[0]: lb_x = np.random.randint(0, img.shape[0] - crop_size[0]) elif crop_size[0] == img.shape[0]: lb_x = 0 else: raise ValueError("crop_size[0] must be smaller or equal to the images x dimension") if crop_size[1] < img.shape[1]: lb_y = np.random.randint(0, img.shape[1] - crop_size[1]) elif crop_size[1] == img.shape[1]: lb_y = 0 else: raise ValueError("crop_size[1] must be smaller or equal to the images y dimension") return img[lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1]] def random_crop_2D_image_batched(img, crop_size): if type(crop_size) not in (tuple, list): crop_size = [crop_size] * (len(img.shape) - 2) else: assert len(crop_size) == (len( img.shape) - 2), "If you provide a list/tuple as center crop make sure it has the same len as your data has dims (2d)" if crop_size[0] < img.shape[2]: lb_x = np.random.randint(0, img.shape[2] - crop_size[0]) elif crop_size[0] == img.shape[2]: lb_x = 0 else: raise ValueError("crop_size[0] must be smaller or equal to the images x dimension") if crop_size[1] < img.shape[3]: lb_y = np.random.randint(0, img.shape[3] - crop_size[1]) elif crop_size[1] == img.shape[3]: lb_y = 0 else: raise ValueError("crop_size[1] must be smaller or equal to the images y dimension") return img[:, :, lb_x:lb_x + crop_size[0], lb_y:lb_y + crop_size[1]] def resize_image_by_padding(image, new_shape, pad_value=None): shape = tuple(list(image.shape)) new_shape = tuple(np.max(np.concatenate((shape, new_shape)).reshape((2, len(shape))), axis=0)) if pad_value is None: if len(shape) == 2: pad_value = image[0, 0] elif len(shape) == 3: pad_value = image[0, 0, 0] else: raise ValueError("Image must be either 2 or 3 dimensional") res = np.ones(list(new_shape), dtype=image.dtype) * pad_value start = np.array(new_shape) / 2. - np.array(shape) / 2. if len(shape) == 2: res[int(start[0]):int(start[0]) + int(shape[0]), int(start[1]):int(start[1]) + int(shape[1])] = image elif len(shape) == 3: res[int(start[0]):int(start[0]) + int(shape[0]), int(start[1]):int(start[1]) + int(shape[1]), int(start[2]):int(start[2]) + int(shape[2])] = image return res def resize_image_by_padding_batched(image, new_shape, pad_value=None): shape = tuple(list(image.shape[2:])) new_shape = tuple(np.max(np.concatenate((shape, new_shape)).reshape((2, len(shape))), axis=0)) if pad_value is None: if len(shape) == 2: pad_value = image[0, 0] elif len(shape) == 3: pad_value = image[0, 0, 0] else: raise ValueError("Image must be either 2 or 3 dimensional") start = np.array(new_shape) / 2. - np.array(shape) / 2. if len(shape) == 2: res = np.ones((image.shape[0], image.shape[1], new_shape[0], new_shape[1]), dtype=image.dtype) * pad_value res[:, :, int(start[0]):int(start[0]) + int(shape[0]), int(start[1]):int(start[1]) + int(shape[1])] = image[:, :] elif len(shape) == 3: res = np.ones((image.shape[0], image.shape[1], new_shape[0], new_shape[1], new_shape[2]), dtype=image.dtype) * pad_value res[:, :, int(start[0]):int(start[0]) + int(shape[0]), int(start[1]):int(start[1]) + int(shape[1]), int(start[2]):int(start[2]) + int(shape[2])] = image[:, :] return res def create_matrix_rotation_x_3d(angle, matrix=None): rotation_x = np.array([[1, 0, 0], [0, np.cos(angle), -np.sin(angle)], [0, np.sin(angle), np.cos(angle)]]) if matrix is None: return rotation_x return np.dot(matrix, rotation_x) def create_matrix_rotation_y_3d(angle, matrix=None): rotation_y = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)]]) if matrix is None: return rotation_y return np.dot(matrix, rotation_y) def create_matrix_rotation_z_3d(angle, matrix=None): rotation_z = np.array([[np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) if matrix is None: return rotation_z return np.dot(matrix, rotation_z) def create_matrix_rotation_2d(angle, matrix=None): rotation = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) if matrix is None: return rotation return np.dot(matrix, rotation) def create_random_rotation(angle_x=(0, 2 * np.pi), angle_y=(0, 2 * np.pi), angle_z=(0, 2 * np.pi)): return create_matrix_rotation_x_3d(np.random.uniform(*angle_x), create_matrix_rotation_y_3d(np.random.uniform(*angle_y), create_matrix_rotation_z_3d( np.random.uniform(*angle_z)))) def illumination_jitter(img, u, s, sigma): # img must have shape [....., c] where c is the color channel alpha = np.random.normal(0, sigma, s.shape) jitter = np.dot(u, alpha * s) img2 = np.array(img) for c in range(img.shape[0]): img2[c] = img[c] + jitter[c] return img2 def general_cc_var_num_channels(img, diff_order=0, mink_norm=1, sigma=1, mask_im=None, saturation_threshold=255, dilation_size=3, clip_range=True): # img must have first dim color channel! img[c, x, y(, z, ...)] dim_img = len(img.shape[1:]) if clip_range: minm = img.min() maxm = img.max() img_internal = np.array(img) if mask_im is None: mask_im = np.zeros(img_internal.shape[1:], dtype=bool) img_dil = deepcopy(img_internal) for c in range(img.shape[0]): img_dil[c] = grey_dilation(img_internal[c], tuple([dilation_size] * dim_img)) mask_im = mask_im | np.any(img_dil >= saturation_threshold, axis=0) if sigma != 0: mask_im[:sigma, :] = 1 mask_im[mask_im.shape[0] - sigma:, :] = 1 mask_im[:, mask_im.shape[1] - sigma:] = 1 mask_im[:, :sigma] = 1 if dim_img == 3: mask_im[:, :, mask_im.shape[2] - sigma:] = 1 mask_im[:, :, :sigma] = 1 output_img = deepcopy(img_internal) if diff_order == 0 and sigma != 0: for c in range(img_internal.shape[0]): img_internal[c] = gaussian_filter(img_internal[c], sigma, diff_order) elif diff_order == 1: for c in range(img_internal.shape[0]): img_internal[c] = gaussian_gradient_magnitude(img_internal[c], sigma) elif diff_order > 1: raise ValueError("diff_order can only be 0 or 1. 2 is not supported (ToDo, maybe)") img_internal = np.abs(img_internal) white_colors = [] if mink_norm != -1: kleur = np.power(img_internal, mink_norm) for c in range(kleur.shape[0]): white_colors.append(np.power((kleur[c][mask_im != 1]).sum(), 1. / mink_norm)) else: for c in range(img_internal.shape[0]): white_colors.append(np.max(img_internal[c][mask_im != 1])) som = np.sqrt(np.sum([i ** 2 for i in white_colors])) white_colors = [i / som for i in white_colors] for c in range(output_img.shape[0]): output_img[c] /= (white_colors[c] * np.sqrt(3.)) if clip_range: output_img[output_img < minm] = minm output_img[output_img > maxm] = maxm return white_colors, output_img def convert_seg_to_bounding_box_coordinates(data_dict, dim, get_rois_from_seg_flag=False, class_specific_seg_flag=False): ''' :param data_dict: :param dim: :param get_rois_from_seg: :return: coords (y1, x1, y2, x2) ''' bb_target = [] roi_masks = [] roi_labels = [] out_seg = np.copy(data_dict['seg']) for b in range(data_dict['seg'].shape[0]): p_coords_list = [] p_roi_masks_list = [] p_roi_labels_list = [] if
np.sum(data_dict['seg'][b]!=0)
numpy.sum
#!/usr/bin/python import matplotlib.pyplot as plt import numpy as np import pandas as pd def user_bias_update(A, u, v, mu, c): m = np.shape(A)[0] n = np.shape(A)[1] b = np.array([0.] * m) for i in xrange(m): for j in xrange(n): b[i] += (-1. / n) * (np.dot(u[i], v[j].T) + c[j] + mu - A[i, j]) return b def user_vector_update(A, v, k, mu, b, c): m = np.shape(A)[0] n = np.shape(A)[1] u = np.zeros([m, k]) v_matrix = np.dot(v.T, v) for i in xrange(m): right_side = np.zeros([k, ]) for j in xrange(n): right_side += b[i] * v[j] right_side += c[j] * v[j] right_side += mu * v[j] right_side -= A[i, j] * v[j] u[i, :] = -np.dot(np.linalg.inv(v_matrix), right_side) return u def movie_bias_update(A, u, v, mu, b): m = np.shape(A)[0] n = np.shape(A)[1] c = np.array([0.] * n) for i in xrange(m): for j in xrange(n): c[j] += (-1. / m) * (np.dot(u[i], v[j].T) + b[i] + mu - A[i, j]) return c def movie_vector_update(A, u, k, mu, b, c): m = np.shape(A)[0] n = np.shape(A)[1] v = np.zeros([n, k]) u_matrix = np.dot(u.T, u) for j in xrange(n): right_side = np.zeros([k, ]) for i in xrange(m): right_side += b[i] * u[i] right_side += c[j] * u[i] right_side += mu * u[i] right_side -= A[i, j] * u[i] v[j, :] = -np.dot(np.linalg.inv(u_matrix), right_side) return v def log_update(A, u, v, T, mu, b, c): log_iter = 0 m = np.shape(A)[0] n = np.shape(A)[1] for i in xrange(m): for j in xrange(n): log_iter += (-1. / 2) * \ ((np.dot(u[i], v[j].T) + b[i] + c[j] + mu - A[i, j])**2) return log_iter def alt_least_squares(A, k, T): """ Inputs: A: input data k: number of dimensions for movie vectors & user vectors T: number of iterations Output: Log-likelihood function for each iteration """ # Calculate average rating in A mu = np.mean(A["ratings"]) # Independently draw u_i and v_j vectors from multivariate normal m = max(A["i"]) n = max(A["j"]) omega = len(A["i"]) # Total # of elements in matrix A_matrix = np.zeros([m, n]) for l in xrange(omega): A_matrix[A["i"][l] - 1][A["j"][l] - 1] = A["ratings"][l] mean_vect = np.array([0] * k) cov_matrix = (1. / k) * np.identity(k) u = [] v = [] for i in xrange(m): u.append(np.random.multivariate_normal(mean_vect, cov_matrix)) for j in xrange(n): v.append(np.random.multivariate_normal(mean_vect, cov_matrix)) # Initalize b_i and c_j to 0 u =
np.array(u)
numpy.array
import typing as tp import flax.linen as nn import flax_tools as ft import jax import jax.numpy as jnp import numpy as np import optax class TestOptimizer: def test_apply_updates(self): key = jax.random.PRNGKey(0) optax_optim = optax.adam(0.1) optimizer = ft.Optimizer(optax_optim) x = jnp.ones((2, 4)) linear = ft.ModuleManager.new(nn.Dense(3)).init(key, x) optimizer = optimizer.init(linear["params"]) opt_state = optax_optim.init(linear["params"]) @jax.grad def loss_fn(params): return sum(jnp.mean(x**2) for x in jax.tree_leaves(params)) grads = loss_fn(linear["params"]) optax_params: tp.Dict[str, tp.Any] optax_updates, opt_state = optax_optim.update( grads, opt_state, linear["params"] ) optax_params = optax.apply_updates(optax_updates, linear["params"]) optimizer_params, optimizer = optimizer.update(grads, linear["params"]) assert all( np.allclose(a, b) for a, b in zip(jax.tree_leaves(opt_state), jax.tree_leaves(optimizer)) ) assert all(
np.allclose(a, b)
numpy.allclose
"""Generate specific tensor network states and operators. """ import math import functools import itertools import collections from numbers import Integral import numpy as np import opt_einsum as oe from ..core import make_immutable, ikron from ..utils import deprecated, unique, concat from ..gen.operators import ( spin_operator, eye, _gen_mbl_random_factors, ham_heis ) from ..gen.rand import randn, choice, random_seed_fn, rand_phase from .tensor_core import (Tensor, new_bond, TensorNetwork, rand_uuid, tensor_direct_product) from .array_ops import asarray, sensibly_scale from .decomp import eigh from .tensor_arbgeom import TensorNetworkGen, TensorNetworkGenVector from .tensor_1d import MatrixProductState, MatrixProductOperator from .tensor_2d import gen_2d_bonds, TensorNetwork2D from .tensor_3d import TensorNetwork3D from .tensor_1d_tebd import LocalHam1D from .tensor_2d_tebd import LocalHam2D @random_seed_fn def rand_tensor(shape, inds, tags=None, dtype='float64', left_inds=None): """Generate a random tensor with specified shape and inds. Parameters ---------- shape : sequence of int Size of each dimension. inds : sequence of str Names of each dimension. tags : sequence of str Labels to tag this tensor with. dtype : {'float64', 'complex128', 'float32', 'complex64'}, optional The underlying data type. left_inds : sequence of str, optional Which, if any, indices to group as 'left' indices of an effective matrix. This can be useful, for example, when automatically applying unitary constraints to impose a certain flow on a tensor network but at the atomistic (Tensor) level. Returns ------- Tensor """ data = randn(shape, dtype=dtype) return Tensor(data=data, inds=inds, tags=tags, left_inds=left_inds) @random_seed_fn def rand_phased(shape, inds, tags=None, dtype=complex): """Generate a random tensor with specified shape and inds, and randomly 'phased' (distributed on the unit circle) data, such that ``T.H @ T == T.norm()**2 == T.size``. Parameters ---------- shape : sequence of int Size of each dimension. inds : sequence of str Names of each dimension. tags : sequence of str Labels to tag this tensor with. dtype : {'complex128', 'complex64'}, optional The underlying data type - can only be complex. Returns ------- Tensor """ data = rand_phase(shape, dtype=dtype) return Tensor(data=data, inds=inds, tags=tags) def gen_unique_edges(edges): seen = set() for node_a, node_b in edges: if node_b < node_a: node_a, node_b = node_b, node_a key = (node_a, node_b) if key in seen: continue yield (node_a, node_b) seen.add(key) def TN_from_edges_and_fill_fn( fill_fn, edges, D, phys_dim=None, site_tag_id='I{}', site_ind_id='k{}', ): """Create a tensor network from a sequence of edges defining a graph, and a 'fill' function that maps shapes to data. Parameters ---------- fill_fn : callable A function with signature ``fill_fn(shape) -> array``, used to fill each tensor. edges : sequence of tuple[hashable, hashable] The graph edges, as a sequence of pairs of hashable objects, for example integers, representing the nodes. You can redundantly specify ``(u, v)`` and ``(v, u)`` and only one edge will be added. D : int The bond dimension connecting tensors. phys_dim : int, optional If not ``None``, give each tensor a 'physical', free index of this size at each node. site_tag_id : str, optional String with formatter to tag sites. site_ind_id : str, optional String with formatter to tag indices (if ``phys_dim`` specified). Returns ------- TensorNetworkGen or TensorNetworkGenVector """ terms = collections.defaultdict(list) bonds = collections.defaultdict(rand_uuid) for node_a, node_b in gen_unique_edges(edges): bond = bonds[node_a, node_b] # insert at 0 to exactly match geometry of old TN_rand_reg terms[node_a].insert(0, bond) terms[node_b].insert(0, bond) ts = [] sites = [] for node, inds in sorted(terms.items(), key=lambda x: x[0]): sites.append(node) shape = [D] * len(inds) if phys_dim is not None: inds.append(site_ind_id.format(node)) shape.append(phys_dim) data = fill_fn(shape) tags = site_tag_id.format(node) ts.append(Tensor(data=data, inds=inds, tags=tags)) tn = TensorNetwork(ts) if phys_dim is not None: tn.view_as_( TensorNetworkGenVector, sites=sites, site_tag_id=site_tag_id, site_ind_id=site_ind_id ) else: tn.view_as_( TensorNetworkGen, sites=sites, site_tag_id=site_tag_id ) return tn def TN_from_edges_empty( edges, D, phys_dim=None, site_tag_id='I{}', site_ind_id='k{}', dtype='float64', ): """Create a tensor network from a sequence of edges defining a graph, initialized with empty tensors. Parameters ---------- edges : sequence of tuple[hashable, hashable] The graph edges, as a sequence of pairs of hashable objects, for example integers, representing the nodes. You can redundantly specify ``(u, v)`` and ``(v, u)`` and only one edge will be added. D : int The bond dimension connecting tensors. phys_dim : int, optional If not ``None``, give each tensor a 'physical', free index of this size at each node. site_tag_id : str, optional String with formatter to tag sites. site_ind_id : str, optional String with formatter to tag indices (if ``phys_dim`` specified). dtype : str, optional The data type of the tensors. Returns ------- TensorNetworkGen or TensorNetworkGenVector """ def fill_fn(shape): return np.empty(shape, dtype=dtype) return TN_from_edges_and_fill_fn( edges=edges, D=D, fill_fn=fill_fn, phys_dim=phys_dim, site_tag_id=site_tag_id, site_ind_id=site_ind_id) def TN_from_edges_with_value( value, edges, D, phys_dim=None, site_tag_id='I{}', site_ind_id='k{}', dtype=None, ): """Create a tensor network from a sequence of edges defining a graph, initialized with a constant value. This uses ``numpy.broadcast_to`` and therefore essentially no memory. Parameters ---------- value : scalar The value to fill the tensors with. edges : sequence of tuple[hashable, hashable] The graph edges, as a sequence of pairs of hashable objects, for example integers, representing the nodes. You can redundantly specify ``(u, v)`` and ``(v, u)`` and only one edge will be added. D : int The bond dimension connecting tensors. phys_dim : int, optional If not ``None``, give each tensor a 'physical', free index of this size at each node. site_tag_id : str, optional String with formatter to tag sites. site_ind_id : str, optional String with formatter to tag indices (if ``phys_dim`` specified). dtype : str, optional The data type of the tensors. Returns ------- TensorNetworkGen or TensorNetworkGenVector """ element = np.array(value, dtype=dtype) def fill_fn(shape): return np.broadcast_to(element, shape) return TN_from_edges_and_fill_fn( edges=edges, D=D, fill_fn=fill_fn, phys_dim=phys_dim, site_tag_id=site_tag_id, site_ind_id=site_ind_id) def TN_rand_from_edges( edges, D, phys_dim=None, seed=None, dtype='float64', site_tag_id='I{}', site_ind_id='k{}', ): """Create a random tensor network with geometry defined from a sequence of edges defining a graph. Parameters ---------- G : sequence of tuple[node, node] The edges defining a graph, each element should be a pair of nodes described by hashable objects. D : int The bond dimension connecting tensors. phys_dim : int, optional If not ``None``, give each tensor a 'physical', free index of this size to mimic a wavefunction of ``len(G)`` sites. seed : int, optional A random seed. site_tag_id : str, optional String with formatter to tag sites. site_ind_id : str, optional String with formatter to tag indices (if ``phys_dim`` specified). Returns ------- TensorNetworkGen or TensorNetworkGenVector """ ts = {} sites = tuple(sorted(set(concat(edges)))) for node in sites: t = Tensor(tags=site_tag_id.format(node)) if phys_dim is not None: t.new_ind(site_ind_id.format(node), size=phys_dim) ts[node] = t for node_a, node_b in gen_unique_edges(edges): new_bond(ts[node_a], ts[node_b], size=D) tn = TensorNetwork(ts.values()) tn.randomize_(seed=seed, dtype=dtype) if phys_dim is not None: tn.view_as_( TensorNetworkGenVector, sites=sites, site_tag_id=site_tag_id, site_ind_id=site_ind_id ) else: tn.view_as_( TensorNetworkGen, sites=sites, site_tag_id=site_tag_id ) return tn def TN_rand_reg( n, reg, D, phys_dim=None, seed=None, dtype='float64', site_tag_id='I{}', site_ind_id='k{}', ): """Create a random regular tensor network. Parameters ---------- n : int The number of tensors. reg : int The degree of the tensor network (how many tensors each tensor connects to). D : int The bond dimension connecting tensors. phys_dim : int, optional If not ``None``, give each tensor a 'physical', free index of this size to mimic a wavefunction of ``n`` sites. seed : int, optional A random seed. site_tag_id : str, optional String with formatter to tag sites. site_ind_id : str, optional String with formatter to tag indices (if ``phys_dim`` specified). Returns ------- TensorNetwork """ import networkx as nx G = nx.random_degree_sequence_graph([reg] * n, seed=seed) return TN_rand_from_edges( G.edges, D=D, phys_dim=phys_dim, seed=seed, dtype=dtype, site_tag_id=site_tag_id, site_ind_id=site_ind_id) def TN2D_from_fill_fn( fill_fn, Lx, Ly, D, cyclic=False, site_tag_id='I{},{}', row_tag_id='ROW{}', col_tag_id='COL{}', ): """A scalar 2D lattice tensor network with tensors filled by a function. Parameters ---------- fill_fn : callable A function with signature ``fill_fn(shape) -> array``, used to fill each tensor. Lx : int Length of side x. Ly : int Length of side y. D : int The bond dimension connecting sites. cyclic : bool or (bool, bool), optional Whether to use periodic boundary conditions. X and Y can be specified separately using a tuple. site_tag_id : str, optional String specifier for naming convention of site tags. row_tag_id : str, optional String specifier for naming convention of row tags. col_tag_id : str, optional String specifier for naming convention of column tags. Returns ------- TensorNetwork2D """ try: cyclic_x, cyclic_y = cyclic except TypeError: cyclic_x = cyclic_y = cyclic ts = [] bonds = collections.defaultdict(rand_uuid) for i, j in itertools.product(range(Lx), range(Ly)): directions = "" inds = [] if j > 0 or cyclic_y: directions += 'l' inds.append(bonds[(i, (j - 1) % Ly), (i, j)]) if j < Ly - 1 or cyclic_y: directions += 'r' inds.append(bonds[(i, j), (i, (j + 1) % Ly)]) if i < Lx - 1 or cyclic_x: directions += 'u' inds.append(bonds[(i, j), ((i + 1) % Lx, j)]) if i > 0 or cyclic_x: directions += 'd' inds.append(bonds[((i - 1) % Lx, j), (i, j)]) shape = (D,) * len(inds) data = fill_fn(shape) tags = [site_tag_id.format(i, j), row_tag_id.format(i), col_tag_id.format(j)] ts.append(Tensor(data=data, inds=inds, tags=tags)) tn = TensorNetwork(ts) return tn.view_as_( TensorNetwork2D, Lx=Lx, Ly=Ly, site_tag_id=site_tag_id, row_tag_id=row_tag_id, col_tag_id=col_tag_id, ) def TN2D_empty( Lx, Ly, D, cyclic=False, site_tag_id='I{},{}', row_tag_id='ROW{}', col_tag_id='COL{}', dtype='float64', ): """A scalar 2D lattice tensor network initialized with empty tensors. Parameters ---------- Lx : int Length of side x. Ly : int Length of side y. D : int The bond dimension connecting sites. cyclic : bool or (bool, bool), optional Whether to use periodic boundary conditions. X and Y can be specified separately using a tuple. site_tag_id : str, optional String specifier for naming convention of site tags. row_tag_id : str, optional String specifier for naming convention of row tags. col_tag_id : str, optional String specifier for naming convention of column tags. dtype : str, optional The data type of the tensors. Returns ------- TensorNetwork2D """ def fill_fn(shape): return np.empty(shape, dtype=dtype) return TN2D_from_fill_fn( fill_fn, Lx=Lx, Ly=Ly, D=D, cyclic=cyclic, site_tag_id=site_tag_id, row_tag_id=row_tag_id, col_tag_id=col_tag_id, ) def TN2D_with_value( value, Lx, Ly, D, cyclic=False, site_tag_id='I{},{}', row_tag_id='ROW{}', col_tag_id='COL{}', dtype=None, ): """A scalar 2D lattice tensor network with every element set to ``value``. This uses ``numpy.broadcast_to`` and therefore essentially no memory. Parameters ---------- value : scalar The value to fill the tensors with. Lx : int Length of side x. Ly : int Length of side y. D : int The bond dimension connecting sites. cyclic : bool or (bool, bool), optional Whether to use periodic boundary conditions. X and Y can be specified separately using a tuple. site_tag_id : str, optional String specifier for naming convention of site tags. row_tag_id : str, optional String specifier for naming convention of row tags. col_tag_id : str, optional String specifier for naming convention of column tags. dtype : str, optional The data type of the tensors. Returns ------- TensorNetwork2D """ element = np.array(value, dtype=dtype) def fill_fn(shape): return np.broadcast_to(element, shape) return TN2D_from_fill_fn( fill_fn, Lx=Lx, Ly=Ly, D=D, cyclic=cyclic, site_tag_id=site_tag_id, row_tag_id=row_tag_id, col_tag_id=col_tag_id, ) @random_seed_fn def TN2D_rand( Lx, Ly, D, cyclic=False, site_tag_id='I{},{}', row_tag_id='ROW{}', col_tag_id='COL{}', dtype='float64', ): """A random scalar 2D lattice tensor network. Parameters ---------- Lx : int Length of side x. Ly : int Length of side y. D : int The bond dimension connecting sites. cyclic : bool or (bool, bool), optional Whether to use periodic boundary conditions. X and Y can be specified separately using a tuple. site_tag_id : str, optional String specifier for naming convention of site tags. row_tag_id : str, optional String specifier for naming convention of row tags. col_tag_id : str, optional String specifier for naming convention of column tags. dtype : dtype, optional Data type of the random arrays. seed : int, optional A random seed. Returns ------- TensorNetwork2D """ def fill_fn(shape): return randn(shape, dtype=dtype) return TN2D_from_fill_fn( fill_fn, Lx=Lx, Ly=Ly, D=D, cyclic=cyclic, site_tag_id=site_tag_id, row_tag_id=row_tag_id, col_tag_id=col_tag_id, ) def TN3D_from_fill_fn( fill_fn, Lx, Ly, Lz, D, cyclic=False, site_tag_id='I{},{},{}', x_tag_id='X{}', y_tag_id='Y{}', z_tag_id='Z{}', ): """A scalar 3D lattice tensor network with tensors filled by a function. Parameters ---------- fill_fn : callable A function with signature ``fill_fn(shape) -> array``, used to fill each tensor. Lx : int Length of side x. Ly : int Length of side y. Lz : int Length of side z. D : int The bond dimension connecting sites. cyclic : bool or (bool, bool, bool), optional Whether to use periodic boundary conditions. X, Y and Z can be specified separately using a tuple. site_tag_id : str, optional String formatter specifying how to label each site. dtype : dtype, optional Data type of the random arrays. Returns ------- TensorNetwork3D """ try: cyclic_x, cyclic_y, cyclic_z = cyclic except TypeError: cyclic_x = cyclic_y = cyclic_z = cyclic ts = [] bonds = collections.defaultdict(rand_uuid) for i, j, k in itertools.product(range(Lx), range(Ly), range(Lz)): directions = "" inds = [] if k > 0 or cyclic_z: directions += 'b' inds.append(bonds[(i, j, (k - 1) % Lz), (i, j, k)]) if k < Lz - 1 or cyclic_z: directions += 'a' inds.append(bonds[(i, j, k), (i, j, (k + 1) % Lz)]) if j > 0 or cyclic_y: directions += 'l' inds.append(bonds[(i, (j - 1) % Ly, k), (i, j, k)]) if j < Ly - 1 or cyclic_y: directions += 'r' inds.append(bonds[(i, j, k), (i, (j + 1) % Ly, k)]) if i < Lx - 1 or cyclic_x: directions += 'u' inds.append(bonds[(i, j, k), ((i + 1) % Lx, j, k)]) if i > 0 or cyclic_x: directions += 'd' inds.append(bonds[((i - 1) % Lx, j, k), (i, j, k)]) shape = (D,) * len(inds) data = fill_fn(shape) tags = [site_tag_id.format(i, j, k), x_tag_id.format(i), y_tag_id.format(j), z_tag_id.format(k)] ts.append(Tensor(data=data, inds=inds, tags=tags)) tn = TensorNetwork(ts) return tn.view_as_( TensorNetwork3D, Lx=Lx, Ly=Ly, Lz=Lz, site_tag_id=site_tag_id, x_tag_id=x_tag_id, y_tag_id=y_tag_id, z_tag_id=z_tag_id, ) def TN3D_empty( Lx, Ly, Lz, D, cyclic=False, site_tag_id='I{},{},{}', x_tag_id='X{}', y_tag_id='Y{}', z_tag_id='Z{}', dtype='float64', ): """A scalar 3D lattice tensor network initialized with empty tensors. Parameters ---------- Lx : int Length of side x. Ly : int Length of side y. Lz : int Length of side z. D : int The bond dimension connecting sites. cyclic : bool or (bool, bool, bool), optional Whether to use periodic boundary conditions. X, Y and Z can be specified separately using a tuple. site_tag_id : str, optional String formatter specifying how to label each site. dtype : dtype, optional Data type of the random arrays. seed : int, optional Random seed. Returns ------- TensorNetwork3D """ def fill_fn(shape): return np.empty(shape, dtype=dtype) return TN3D_from_fill_fn( fill_fn, Lx, Ly, Lz, D, cyclic=cyclic, site_tag_id=site_tag_id, x_tag_id=x_tag_id, y_tag_id=y_tag_id, z_tag_id=z_tag_id, ) def TN3D_with_value( value, Lx, Ly, Lz, D, cyclic=False, site_tag_id='I{},{},{}', x_tag_id='X{}', y_tag_id='Y{}', z_tag_id='Z{}', dtype=None, ): """A scalar 2D lattice tensor network with every element set to ``value``. This uses ``numpy.broadcast_to`` and therefore essentially no memory. Parameters ---------- value : scalar The value to fill the tensors with. Lx : int Length of side x. Ly : int Length of side y. Lz : int Length of side z. D : int The bond dimension connecting sites. cyclic : bool or (bool, bool, bool), optional Whether to use periodic boundary conditions. X, Y and Z can be specified separately using a tuple. site_tag_id : str, optional String formatter specifying how to label each site. dtype : dtype, optional Data type of the random arrays. seed : int, optional Random seed. Returns ------- TensorNetwork3D """ element = np.array(value, dtype=dtype) def fill_fn(shape): return np.broadcast_to(element, shape) return TN3D_from_fill_fn( fill_fn, Lx, Ly, Lz, D, cyclic=cyclic, site_tag_id=site_tag_id, x_tag_id=x_tag_id, y_tag_id=y_tag_id, z_tag_id=z_tag_id, ) @random_seed_fn def TN3D_rand( Lx, Ly, Lz, D, cyclic=False, site_tag_id='I{},{},{}', x_tag_id='X{}', y_tag_id='Y{}', z_tag_id='Z{}', dtype='float64', ): """A random scalar 3D lattice tensor network. Parameters ---------- Lx : int Length of side x. Ly : int Length of side y. Lz : int Length of side z. D : int The bond dimension connecting sites. cyclic : bool or (bool, bool, bool), optional Whether to use periodic boundary conditions. X, Y and Z can be specified separately using a tuple. site_tag_id : str, optional String formatter specifying how to label each site. dtype : dtype, optional Data type of the random arrays. seed : int, optional Random seed. Returns ------- TensorNetwork """ def fill_fn(shape): return randn(shape, dtype=dtype) return TN3D_from_fill_fn( fill_fn, Lx, Ly, Lz, D, cyclic=cyclic, site_tag_id=site_tag_id, x_tag_id=x_tag_id, y_tag_id=y_tag_id, z_tag_id=z_tag_id, ) # ---------------------------- classical models ----------------------------- # @functools.lru_cache(128) def classical_ising_S_matrix(beta, j=1.0): """The interaction term for the classical ising model. """ S = np.array( [[math.exp(+j * beta), math.exp(-j * beta)], [math.exp(-j * beta), math.exp(+j * beta)]]) make_immutable(S) return S @functools.lru_cache(128) def classical_ising_H_matrix(beta, h=0.0): """The magnetic field term for the classical ising model. """ H = np.array([math.exp(-beta * h), math.exp(beta * h)]) make_immutable(H) return H @functools.lru_cache(128) def classical_ising_sqrtS_matrix(beta, j=1.0, asymm=None): """The sqrt factorized interaction term for the classical ising model. If ``j`` is negative you can supply ``asymm='l'`` or ``'r'`` to keep the matrix real, but it must be paired with the opposite in a tensor network. """ if (j < 0.0) and (asymm is not None): Slr = eigh(classical_ising_S_matrix(beta=beta, j=j)) S_1_2 = { 'l': Slr[0], 'lT': Slr[0].T, 'r': Slr[-1], 'rT': Slr[-1].T, }[asymm] else: S_1_2 = np.array( [[math.cosh(j * beta)**0.5 + math.sinh(j * beta)**0.5, math.cosh(j * beta)**0.5 - math.sinh(j * beta)**0.5], [math.cosh(j * beta)**0.5 - math.sinh(j * beta)**0.5, math.cosh(j * beta)**0.5 + math.sinh(j * beta)**0.5]] ) / 2**0.5 make_immutable(S_1_2) return S_1_2 @functools.lru_cache(128) def classical_ising_T_matrix( beta, j=1.0, h=0.0, directions='lrud', asymm=None, ): """The single effective TN site for the classical ising model. """ try: js = tuple(j) except TypeError: js = (j,) * len(directions) try: asymms = tuple(asymm) except TypeError: asymms = (asymm,) * len(directions) arrays = ( [ classical_ising_sqrtS_matrix(beta=beta, j=j, asymm=a) for j, a in zip(js, asymms) ] + [classical_ising_H_matrix(beta, h)] ) lhs = ",".join(f'i{x}' for x in directions) eq = lhs + ",i->" + directions return oe.contract(eq, *arrays) def HTN2D_classical_ising_partition_function( Lx, Ly, beta, h=0.0, j=1.0, ind_id='s{},{}', cyclic=False, ): """Hyper tensor network representation of the 2D classical ising model partition function. The indices will be shared by 4 or 5 tensors depending on whether ``h`` is non-zero. As opposed to the 'normal' tensor network, here each classical spin is still a single index, which is easier to contract exactly. Parameters ---------- Lx : int Length of side x. Ly : int Length of side y. beta : float The inverse temperature. h : float, optional The magnetic field strength. j : float, optional The interaction strength, positive being *ferromagnetic*. cyclic : bool or (bool, bool), optional Whether to use periodic boundary conditions. X and Y can be specified separately using a tuple. ind_id : str, optional How to label the indices i.e. ``ind_id.format(i, j)``, each of which corresponds to a single classical spin. Returns ------- TensorNetwork See Also -------- TN2D_classical_ising_partition_function """ try: cyclic_x, cyclic_y = cyclic except TypeError: cyclic_x = cyclic_y = cyclic if callable(j): j_factory = j else: def j_factory(node_a, node_b): return j ts = [] for ni, nj in itertools.product(range(Lx), range(Ly)): if ni < Lx - 1 or cyclic_x: node_a, node_b = (ni, nj), ((ni + 1) % Lx, nj) inds = ind_id.format(*node_a), ind_id.format(*node_b) data = classical_ising_S_matrix( beta=beta, j=j_factory(node_a, node_b)) ts.append(Tensor(data, inds=inds)) if nj < Ly - 1 or cyclic_y: node_a, node_b = (ni, nj), (ni, (nj + 1) % Ly) inds = ind_id.format(*node_a), ind_id.format(*node_b) data = classical_ising_S_matrix( beta=beta, j=j_factory(node_a, node_b)) ts.append(Tensor(data, inds=inds)) if h != 0.0: data = classical_ising_H_matrix(beta=beta, h=h) ts.append(Tensor(data, inds=(ind_id.format(ni, nj),))) return TensorNetwork(ts) def HTN3D_classical_ising_partition_function( Lx, Ly, Lz, beta, j=1.0, h=0.0, cyclic=False, ind_id='s{},{},{}', ): """Hyper tensor network representation of the 3D classical ising model partition function. The indices will be shared by 6 or 7 tensors depending on whether ``h`` is non-zero. As opposed to the 'normal' tensor network, here each classical spin is still a single index, which is easier to contract exactly. Parameters ---------- Lx : int Length of side x. Ly : int Length of side y. Lz : int Length of side z. beta : float The inverse temperature. j : float, optional The interaction strength, positive being *ferromagnetic*. h : float, optional The magnetic field strength. cyclic : bool or (bool, bool, bool), optional Whether to use periodic boundary conditions. X, Y and Z can be specified separately using a tuple. ind_id : str, optional How to label the indices i.e. ``ind_id.format(i, j, k)``, each of which corresponds to a single classical spin. Returns ------- TensorNetwork See Also -------- TN3D_classical_ising_partition_function """ try: cyclic_x, cyclic_y, cyclic_z = cyclic except TypeError: cyclic_x = cyclic_y = cyclic_z = cyclic if callable(j): j_factory = j else: def j_factory(node_a, node_b): return j ts = [] for ni, nj, nk in itertools.product(range(Lx), range(Ly), range(Lz)): if ni < Lx - 1 or cyclic_x: node_a, node_b = (ni, nj, nk), ((ni + 1) % Lx, nj, nk) inds = (ind_id.format(*node_a), ind_id.format(*node_b)) data = classical_ising_S_matrix( beta=beta, j=j_factory(node_a, node_b)) ts.append(Tensor(data, inds=inds)) if nj < Ly - 1 or cyclic_y: node_a, node_b = (ni, nj, nk), (ni, (nj + 1) % Ly, nk) inds = (ind_id.format(*node_a), ind_id.format(*node_b)) data = classical_ising_S_matrix( beta=beta, j=j_factory(node_a, node_b)) ts.append(Tensor(data, inds=inds)) if nk < Lz - 1 or cyclic_z: node_a, node_b = (ni, nj, nk), (ni, nj, (nk + 1) % Lz) inds = (ind_id.format(*node_a), ind_id.format(*node_b)) data = classical_ising_S_matrix( beta=beta, j=j_factory(node_a, node_b)) ts.append(Tensor(data, inds=inds)) if h != 0.0: data = classical_ising_H_matrix(beta=beta, h=h) ts.append(Tensor(data, inds=(ind_id.format(ni, nj, nk),))) return TensorNetwork(ts) def TN2D_classical_ising_partition_function( Lx, Ly, beta, j=1.0, h=0.0, cyclic=False, site_tag_id='I{},{}', row_tag_id='ROW{}', col_tag_id='COL{}', ): """The tensor network representation of the 2D classical ising model partition function. Parameters ---------- Lx : int Length of side x. Ly : int Length of side y. beta : float The inverse temperature. j : float, optional The interaction strength, positive being *ferromagnetic*. h : float, optional The magnetic field strength. cyclic : bool or (bool, bool), optional Whether to use periodic boundary conditions. X and Y can be specified separately using a tuple. site_tag_id : str, optional String specifier for naming convention of site tags. row_tag_id : str, optional String specifier for naming convention of row tags. col_tag_id : str, optional String specifier for naming convention of column tags. Returns ------- TensorNetwork2D See Also -------- HTN2D_classical_ising_partition_function """ try: cyclic_x, cyclic_y = cyclic except TypeError: cyclic_x = cyclic_y = cyclic if callable(j): j_factory = j else: def j_factory(node_a, node_b): return j ts = [] bonds = collections.defaultdict(rand_uuid) for ni, nj in itertools.product(range(Lx), range(Ly)): directions = "" inds = [] js = () asymms = () for inbounds, pair, direction in [ (nj > 0 or cyclic_y, ((ni, (nj - 1) % Ly), (ni, nj)), 'l'), (nj < Ly - 1 or cyclic_y, ((ni, nj), (ni, (nj + 1) % Ly)), 'r'), (ni < Lx - 1 or cyclic_x, ((ni, nj), ((ni + 1) % Lx, nj)), 'u'), (ni > 0 or cyclic_x, (((ni - 1) % Lx, nj), (ni, nj)), 'd'), ]: if inbounds: js += (j_factory(*pair),) directions += direction # this is logic for handling negative j without imag tensors # i.e. add the left factor if the first instance of bond, right # factor if second. If j > 0.0 this doesn't matter anyhow asymms += ('l' if pair not in bonds else 'rT',) inds.append(bonds[pair]) ts.append(Tensor( data=classical_ising_T_matrix( beta=beta, directions=directions, j=js, h=h, asymm=asymms, ), inds=inds, tags=[site_tag_id.format(ni, nj), row_tag_id.format(ni), col_tag_id.format(nj)])) tn = TensorNetwork(ts) return tn.view_as_( TensorNetwork2D, Lx=Lx, Ly=Ly, site_tag_id=site_tag_id, row_tag_id=row_tag_id, col_tag_id=col_tag_id, ) def TN3D_classical_ising_partition_function( Lx, Ly, Lz, beta, j=1.0, h=0.0, cyclic=False, site_tag_id='I{},{},{}', x_tag_id='X{}', y_tag_id='Y{}', z_tag_id='Z{}', ): """Tensor network representation of the 3D classical ising model partition function. Parameters ---------- Lx : int Length of side x. Ly : int Length of side y. Lz : int Length of side z. beta : float The inverse temperature. j : float, optional The interaction strength, positive being *ferromagnetic*. h : float, optional The magnetic field strength. cyclic : bool or (bool, bool, bool), optional Whether to use periodic boundary conditions. X, Y and Z can be specified separately using a tuple. site_tag_id : str, optional String formatter specifying how to label each site. Returns ------- TensorNetwork See Also -------- HTN3D_classical_ising_partition_function """ try: cyclic_x, cyclic_y, cyclic_z = cyclic except TypeError: cyclic_x = cyclic_y = cyclic_z = cyclic if callable(j): j_factory = j else: def j_factory(node_a, node_b): return j ts = [] bonds = collections.defaultdict(rand_uuid) for ni, nj, nk in itertools.product(range(Lx), range(Ly), range(Lz)): directions = "" inds = [] js = () asymms = () for inbounds, pair, direction in [ (nk > 0 or cyclic_z, ((ni, nj, (nk - 1) % Lz), (ni, nj, nk)), 'b'), (nk < Lz - 1 or cyclic_z, ((ni, nj, nk), (ni, nj, (nk + 1) % Lz)), 'a'), (nj > 0 or cyclic_y, ((ni, (nj - 1) % Ly, nk), (ni, nj, nk)), 'l'), (nj < Ly - 1 or cyclic_y, ((ni, nj, nk), (ni, (nj + 1) % Ly, nk)), 'r'), (ni < Lx - 1 or cyclic_x, ((ni, nj, nk), ((ni + 1) % Lx, nj, nk)), 'u'), (ni > 0 or cyclic_x, (((ni - 1) % Lx, nj, nk), (ni, nj, nk)), 'd'), ]: if inbounds: js += (j_factory(*pair),) directions += direction # this is logic for handling negative j without imag tensors # i.e. add the left factor if the first instance of bond, right # factor if second. If j > 0.0 this doesn't matter anyhow asymms += ('l' if pair not in bonds else 'rT',) inds.append(bonds[pair]) ts.append(Tensor( data=classical_ising_T_matrix( beta=beta, directions=directions, j=js, h=h, asymm=asymms, ), inds=inds, tags=[ site_tag_id.format(ni, nj, nk), x_tag_id.format(ni), y_tag_id.format(nj), z_tag_id.format(nk), ], )) tn = TensorNetwork(ts) return tn.view_as_( TensorNetwork3D, Lx=Lx, Ly=Ly, Lz=Lz, site_tag_id=site_tag_id, x_tag_id=x_tag_id, y_tag_id=y_tag_id, z_tag_id=z_tag_id, ) def HTN_classical_partition_function_from_edges( edges, beta, j=1.0, h=0.0, site_ind_id="s{}", site_tag_id="I{}", bond_tag_id="B{},{}", ): """Build a hyper tensor network representation of a classical ising model partition function by specifying graph edges. There will be a single tensor *per interaction* rather than per site, as well as a single tensor for each site, if ``h != 0.0``. Parameters ---------- edges : sequence of tuple[hashable, hashable] The graph edges, as a sequence of pairs of hashable objects, for example integers, representing the nodes. You can redundantly specify ``(u, v)`` and ``(v, u)`` and only one edge will be added. beta : float, optional The inverse temperature. j : float, or callable, optional The interaction strength, positive being *ferromagnetic*. If a callable should have the signature ``j(node_a, node_b)`` and return a float. h : float, or callable, optional The magnetic field strength. If a callable should have the signature ``h(node)`` and return a float. site_ind_id : str, optional A string formatter for naming tensor indices like ``site_ind_id.format(node)``. site_tag_id : str, optional A string formatter for naming tensor tags like ``site_tag_id.format(node)``. bond_tag_id : str, optional A string formatter for naming tensor tags like ``bond_tag_id.format(node_a, node_b)``. Returns ------- TensorNetwork """ if callable(j): j_factory = j else: def j_factory(node_a, node_b): return j ts = [] for node_a, node_b in gen_unique_edges(edges): data = classical_ising_S_matrix(beta=beta, j=j_factory(node_a, node_b)) inds = [site_ind_id.format(node_a), site_ind_id.format(node_b)] tags = [bond_tag_id.format(node_a, node_b), site_tag_id.format(node_a), site_tag_id.format(node_b)] ts.append(Tensor(data=data, inds=inds, tags=tags)) if h != 0.0: if callable(h): h_factory = h else: def h_factory(node): return h for node in unique(concat(edges)): data = classical_ising_H_matrix(beta, h=h_factory(node)) inds = [site_ind_id.format(node)] tags = [site_tag_id.format(node)] ts.append(Tensor(data=data, inds=inds, tags=tags)) return TensorNetwork(ts) def TN_classical_partition_function_from_edges( edges, beta, j=1.0, h=0.0, site_tag_id="I{}", bond_ind_id="b{},{}", ): """Build a regular tensor network representation of a classical ising model partition function by specifying graph edges. There will be a single tensor per site. Parameters ---------- edges : sequence of tuple[hashable, hashable] The graph edges, as a sequence of pairs of hashable objects, for example integers, representing the nodes. You can redundantly specify ``(u, v)`` and ``(v, u)`` and only one edge will be added. beta : float, optional The inverse temperature. j : float, or callable, optional The interaction strength, positive being *ferromagnetic*. If a callable should have the signature ``j(node_a, node_b)`` and return a float. h : float, or callable, optional The magnetic field strength. If a callable should have the signature ``h(node)`` and return a float. site_tag_id : str, optional A string formatter for naming tensor tags like ``site_ind_id.format(node)``. bond_ind_id : str, optional A string formatter for naming the indices bewteen tensors like ``bond_ind_id.format(node_a, node_b)``. Returns ------- TensorNetwork """ if callable(j): j_factory = j else: def j_factory(node_a, node_b): return j to_contract = collections.defaultdict(list) ts = [] for node_a, node_b in gen_unique_edges(edges): j_ab = j_factory(node_a, node_b) bond_ab = bond_ind_id.format(node_a, node_b) # left tensor factor data = classical_ising_sqrtS_matrix(beta=beta, j=j_ab, asymm='l') inds = [f's{node_a}', bond_ab] tags = [site_tag_id.format(node_a)] ts.append(Tensor(data=data, inds=inds, tags=tags)) # right tensor factor data = classical_ising_sqrtS_matrix(beta=beta, j=j_ab, asymm='r') inds = [bond_ab, f's{node_b}'] tags = [site_tag_id.format(node_b)] ts.append(Tensor(data=data, inds=inds, tags=tags)) to_contract[f's{node_a}'].append(bond_ab) to_contract[f's{node_b}'].append(bond_ab) sites = tuple(sorted(set(concat(edges)))) if h != 0.0: if callable(h): h_factory = h else: def h_factory(node): return h for node in sites: data = classical_ising_H_matrix(beta, h=h_factory(node)) inds = [f's{node}'] tags = [site_tag_id.format(node)] ts.append(Tensor(data=data, inds=inds, tags=tags)) to_contract[f's{node}'].extend(()) tn = TensorNetwork(ts) for ind, output_inds in to_contract.items(): tn.contract_ind(ind, output_inds=output_inds) tn.view_as_(TensorNetworkGen, sites=sites, site_tag_id=site_tag_id) return tn @functools.lru_cache(128) def dimer_data(d, cover_count=1, dtype=float): shape = [2] * d x = np.zeros(shape, dtype=dtype) index_sum = np.indices(shape).sum(axis=0) x[index_sum == cover_count] = 1 make_immutable(x) return x def TN_dimer_covering_from_edges( edges, cover_count=1, site_tag_id="I{}", bond_ind_id="b{},{}", dtype=float, ): """Make a tensor network from sequence of graph edges that counts the number of ways to cover the graph exactly with dimers. See https://arxiv.org/abs/1805.10598 for the construction. Parameters ---------- edges : sequence of tuple The edges, each item should be a pair of hashable objects describing nodes linked. cover_count : int, optional The exact number of times each node must be 'covered'. For example 1 for a standard dimer covering or 2 for 'ice rules'. site_tag_id : str, optional A string formatter for naming tensor tags like ``site_ind_id.format(node)``. bond_ind_id : str, optional A string formatter for naming the indices bewteen tensors like ``bond_ind_id.format(node_a, node_b)``. Returns ------- TensorNetwork """ nodes2inds = collections.defaultdict(list) for ni, nj in edges: bond = bond_ind_id.format(ni, nj) nodes2inds[ni].append(bond) nodes2inds[nj].append(bond) ts = [] for node, inds in nodes2inds.items(): data = dimer_data(len(inds), cover_count=cover_count, dtype=dtype) tag = site_tag_id.format(node) ts.append(Tensor(data, inds=inds, tags=tag)) tn = TensorNetwork(ts) sites = tuple(sorted(nodes2inds)) tn.view_as_(TensorNetworkGen, sites=sites, site_tag_id=site_tag_id) return tn # --------------------------------------------------------------------------- # # Weighted Model Counting # # --------------------------------------------------------------------------- # def clause_negmask(clause): return int("".join('0' if x > 0 else '1' for x in clause), 2) @functools.lru_cache(128) def or_clause_data(ndim, m=0, dtype=float, q=2): """Get the array representing satisfiability of ``ndim`` clauses with unsatisfied condition encoded in ``m``. """ shape = [q] * ndim t = np.ones(shape, dtype=dtype) t[np.unravel_index(m, shape)] = 0 return t def or_clause_tensor(ndim, m, inds, tags=None): """Get the tensor representing satisfiability of ``ndim`` clauses with unsatisfied condition encoded in ``m`` labelled by ``inds`` and ``tags``. """ data = or_clause_data(ndim, m=m) return Tensor(data=data, inds=inds, tags=tags) def or_clause_mps_tensors(ndim, m, inds, tags=None): """Get the set of MPS tensors representing satisfiability of ``ndim`` clauses with unsatisfied condition encoded in ``m`` labelled by ``inds`` and ``tags``. """ mps = ( MPS_computational_state('+' * ndim, tags=tags) * (2**(ndim / 2)) - MPS_computational_state(f'{m:0>{ndim}b}', tags=tags) ) mps.reindex_({ mps.site_ind(i): ind for i, ind in enumerate(inds) }) return mps.tensors @functools.lru_cache(2**10) def or_clause_parafac_data(ndim, m): """Get the set of PARAFAC arrays representing satisfiability of ``ndim`` clauses with unsatisfied condition encoded in ``m``. """ inds = [f'k{i}' for i in range(ndim)] bond = 'b' pfc_ones = np.ones((2, 1)) pfc_up = np.array([[1.], [0.]]) pfc_dn = np.array([[0.], [1.]]) ts_ones = [Tensor(data=pfc_ones, inds=[ix, bond]) for ix in inds] bmask = f'{m:0>{ndim}b}' ts_mask = [Tensor(data=(pfc_dn if b == '1' else pfc_up), inds=[ix, bond]) for ix, b in zip(inds, bmask)] # just need to multiply a single mask tensor by -1 ts_mask[0] *= -1 ts = [tensor_direct_product(t1, t2, sum_inds=(ix,)) for ix, t1, t2 in zip(inds, ts_ones, ts_mask)] return tuple(t.data for t in ts) def clause_parafac_tensors(ndim, m, inds, tags=None): """Get the set of PARAFAC tensors representing satisfiability of ``ndim`` clauses with unsatisfied condition encoded in ``m`` labelled by ``inds`` and ``tags``. """ bond = rand_uuid() return [Tensor(x, inds=[ix, bond], tags=tags) for x, ix in zip(or_clause_parafac_data(ndim, m), inds)] def HTN_from_cnf(fname, mode='parafac'): """Create a hyper tensor network from a '.cnf' or '.wcnf' file - i.e. a model counting or weighted model counting instance specification. Parameters ---------- fname : str Path to a '.cnf' or '.wcnf' file. mode : {'parafac', 'mps', 'dense', int}, optional How to represent the clauses: * 'parafac' - `N` rank-2 tensors connected by a single hyper index. You could further call :meth:`hyperinds_resolve` for more options to convert the hyper index into a (decomposed) COPY-tensor. * 'mps' - `N` rank-3 tensors connected along a 1D line. * 'dense' - contract the hyper index. * int - use the 'parafac' mode, but only if the length of a clause is larger than this threshold. Returns ------- htn : TensorNetwork """ ts = [] weights = {} weighted = set() clause_counter = 1 with open(fname, 'r') as f: for line in f: args = line.split() # global info, don't need if args[0] == 'p': # num_vars = int(args[2]) # num_clauses = int(args[3]) continue # translate mc2021 style weight to normal if args[:3] == ['c', 'p', 'weight']: args = ('w', *args[3:5]) # variable weight if args[0] == 'w': sgn_var, w = args[1:] sgn_var = int(sgn_var) sgn = '-' if sgn_var < 0 else '+' var = str(abs(sgn_var)) w = float(w) weights[var, sgn] = w weighted.add(var) continue # ignore empty lines, other comments and info line if (not args) or (args == ['0']) or (args[0][0] in 'c%'): continue # clause tensor clause = tuple(map(int, filter(None, args[:-1]))) # encode the OR statement with possible negations as int m = clause_negmask(clause) inds = [str(abs(var)) for var in clause] tag = f'CLAUSE{clause_counter}' if ( # parafac mode (mode == 'parafac' and len(inds) > 2) or # parafac above cutoff size mode (isinstance(mode, int) and len(inds) > mode) ): ts.extend(clause_parafac_tensors(len(inds), m, inds, tag)) elif mode == 'mps' and len(inds) > 2: ts.extend(or_clause_mps_tensors(len(inds), m, inds, tag)) else: # dense ts.append(or_clause_tensor(len(inds), m, inds, tag)) clause_counter += 1 for var in sorted(weighted): wp_specified = (var, '+') in weights wm_specified = (var, '-') in weights if wp_specified and wm_specified: wp, wm = weights[var, '+'], weights[var, '-'] elif wp_specified: wp = weights[var, '+'] wm = 1 - wp elif wm_specified: wm = weights[var, '-'] wp = 1 - wm ts.append(Tensor([wm, wp], inds=[var], tags=[f'VAR{var}'])) return TensorNetwork(ts, virtual=True) # --------------------------------------------------------------------------- # # MPSs # # --------------------------------------------------------------------------- # @random_seed_fn def MPS_rand_state(L, bond_dim, phys_dim=2, normalize=True, cyclic=False, dtype='float64', trans_invar=False, **mps_opts): """Generate a random matrix product state. Parameters ---------- L : int The number of sites. bond_dim : int The bond dimension. phys_dim : int, optional The physical (site) dimensions, defaults to 2. normalize : bool, optional Whether to normalize the state. cyclic : bool, optional Generate a MPS with periodic boundary conditions or not, default is open boundary conditions. dtype : {float, complex} or numpy dtype, optional Data type of the tensor network. trans_invar : bool (optional) Whether to generate a translationally invariant state, requires cyclic=True. mps_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductState`. """ if trans_invar and not cyclic: raise ValueError("State cannot be translationally invariant with open " "boundary conditions.") # check for site varying physical dimensions if isinstance(phys_dim, Integral): phys_dims = itertools.repeat(phys_dim) else: phys_dims = itertools.cycle(phys_dim) cyc_dim = (bond_dim,) if cyclic else () def gen_shapes(): yield (*cyc_dim, bond_dim, next(phys_dims)) for _ in range(L - 2): yield (bond_dim, bond_dim, next(phys_dims)) yield (bond_dim, *cyc_dim, next(phys_dims)) def gen_data(shape): return randn(shape, dtype=dtype) if trans_invar: array = sensibly_scale(gen_data(next(gen_shapes()))) arrays = (array for _ in range(L)) else: arrays = map(sensibly_scale, map(gen_data, gen_shapes())) rmps = MatrixProductState(arrays, **mps_opts) if normalize == 'left': rmps.left_canonize(normalize=True) elif normalize == 'right': rmps.left_canonize(normalize=True) elif normalize: rmps /= (rmps.H @ rmps)**0.5 return rmps def MPS_product_state(arrays, cyclic=False, **mps_opts): """Generate a product state in MatrixProductState form, i,e, with bond dimension 1, from single site vectors described by ``arrays``. """ cyc_dim = (1,) if cyclic else () def gen_array_shapes(): yield (*cyc_dim, 1, -1) for _ in range(len(arrays) - 2): yield (1, 1, -1) yield (*cyc_dim, 1, -1) mps_arrays = (asarray(array).reshape(*shape) for array, shape in zip(arrays, gen_array_shapes())) return MatrixProductState(mps_arrays, shape='lrp', **mps_opts) def MPS_computational_state(binary, dtype='float64', cyclic=False, **mps_opts): """A computational basis state in Matrix Product State form. Parameters ---------- binary : str or sequence of int String specifying the state, e.g. ``'00101010111'`` or ``[0, 0, 1]``. cyclic : bool, optional Generate a MPS with periodic boundary conditions or not, default open boundary conditions. mps_opts Supplied to MatrixProductState constructor. """ array_map = { '0': np.array([1., 0.], dtype=dtype), '1': np.array([0., 1.], dtype=dtype), '+': np.array([2**-0.5, 2**-0.5], dtype=dtype), '-': np.array([2**-0.5, -2**-0.5], dtype=dtype), } def gen_arrays(): for s in binary: yield array_map[str(s)] return MPS_product_state(tuple(gen_arrays()), cyclic=cyclic, **mps_opts) def MPS_neel_state(L, down_first=False, dtype='float64', **mps_opts): """Generate the neel state in Matrix Product State form. Parameters ---------- L : int The number of spins. down_first : bool, optional Whether to start with '1' (down) or '0' (up) first. mps_opts Supplied to MatrixProductState constructor. """ binary_str = "01" * (L // 2) + (L % 2 == 1) * "0" if down_first: binary_str = "1" + binary_str[:-1] return MPS_computational_state(binary_str, dtype=dtype, **mps_opts) def MPS_ghz_state(L, dtype='float64', **mps_opts): """Build the chi=2 OBC MPS representation of the GHZ state. Parameters ---------- L : int Number of qubits. dtype : {'float64', 'complex128', 'float32', 'complex64'}, optional The underlying data type. mps_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductState`. """ def gen_arrays(): yield 2**-0.5 * np.array([[1., 0.], [0., 1.]]).astype(dtype) for i in range(1, L - 1): yield np.array([[[1., 0.], [0., 0.]], [[0., 0.], [0., 1.]]]).astype(dtype) yield np.array([[1., 0.], [0., 1.]]).astype(dtype) return MatrixProductState(gen_arrays(), **mps_opts) def MPS_w_state(L, dtype='float64', **mps_opts): """Build the chi=2 OBC MPS representation of the W state. Parameters ---------- L : int Number of qubits. dtype : {'float64', 'complex128', 'float32', 'complex64'}, optional The underlying data type. mps_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductState`. """ def gen_arrays(): yield (np.array([[1., 0.], [0., 1.]]) / L ** 0.5).astype(dtype) for i in range(1, L - 1): yield np.array([[[1., 0.], [0., 1.]], [[0., 0.], [1., 0.]]]).astype(dtype) yield np.array([[0., 1.], [1., 0.]]).astype(dtype) return MatrixProductState(gen_arrays(), **mps_opts) @random_seed_fn def MPS_rand_computational_state(L, dtype='float64', **mps_opts): """Generate a random computation basis state, like '01101001010'. Parameters ---------- L : int The number of qubits. seed : int, optional The seed to use. dtype : {float, complex} or numpy dtype, optional Data type of the tensor network. mps_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductState`. """ cstr = (choice(('0', '1')) for _ in range(L)) return MPS_computational_state(cstr, dtype=dtype, **mps_opts) def MPS_zero_state(L, bond_dim=1, phys_dim=2, cyclic=False, dtype='float64', **mps_opts): """The all-zeros MPS state, of given bond-dimension. Parameters ---------- L : int The number of sites. bond_dim : int, optional The bond dimension, defaults to 1. phys_dim : int, optional The physical (site) dimensions, defaults to 2. cyclic : bool, optional Generate a MPS with periodic boundary conditions or not, default is open boundary conditions. dtype : {float, complex} or numpy dtype, optional Data type of the tensor network. mps_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductState`. """ cyc_dim = (bond_dim,) if cyclic else () def gen_arrays(): yield np.zeros((*cyc_dim, bond_dim, phys_dim), dtype=dtype) for _ in range(L - 2): yield np.zeros((bond_dim, bond_dim, phys_dim), dtype=dtype) yield np.zeros((bond_dim, *cyc_dim, phys_dim), dtype=dtype) return MatrixProductState(gen_arrays(), **mps_opts) def MPS_sampler(L, dtype=complex, squeeze=True, **mps_opts): """A product state for sampling tensor network traces. Seen as a vector it has the required property that ``psi.H @ psi == d`` always for hilbert space size ``d``. """ arrays = [rand_phase(2, dtype=dtype) for _ in range(L)] psi = MPS_product_state(arrays, **mps_opts) if squeeze: psi.squeeze_() return psi # --------------------------------------------------------------------------- # # MPOs # # --------------------------------------------------------------------------- # def MPO_identity(L, phys_dim=2, dtype='float64', cyclic=False, **mpo_opts): """Generate an identity MPO of size ``L``. Parameters ---------- L : int The number of sites. phys_dim : int, optional The physical (site) dimensions, defaults to 2. dtype : {float, complex} or numpy dtype, optional Data type of the tensor network. cyclic : bool, optional Generate a MPO with periodic boundary conditions or not, default is open boundary conditions. mpo_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductOperator`. """ II = np.identity(phys_dim, dtype=dtype) cyc_dim = (1,) if cyclic else () def gen_arrays(): yield II.reshape(*cyc_dim, 1, phys_dim, phys_dim) for _ in range(L - 2): yield II.reshape(1, 1, phys_dim, phys_dim) yield II.reshape(1, *cyc_dim, phys_dim, phys_dim) return MatrixProductOperator(gen_arrays(), **mpo_opts) def MPO_identity_like(mpo, **mpo_opts): """Return an identity matrix operator with the same physical index and inds/tags as ``mpo``. """ return MPO_identity(L=mpo.L, phys_dim=mpo.phys_dim(), dtype=mpo.dtype, site_tag_id=mpo.site_tag_id, cyclic=mpo.cyclic, upper_ind_id=mpo.upper_ind_id, lower_ind_id=mpo.lower_ind_id, **mpo_opts) def MPO_zeros(L, phys_dim=2, dtype='float64', cyclic=False, **mpo_opts): """Generate a zeros MPO of size ``L``. Parameters ---------- L : int The number of sites. phys_dim : int, optional The physical (site) dimensions, defaults to 2. dtype : {float, complex} or numpy dtype, optional Data type of the tensor network. cyclic : bool, optional Generate a MPO with periodic boundary conditions or not, default is open boundary conditions. mpo_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductOperator`. """ cyc_dim = (1,) if cyclic else () def gen_arrays(): yield np.zeros((*cyc_dim, 1, phys_dim, phys_dim), dtype=dtype) for _ in range(L - 2): yield np.zeros((1, 1, phys_dim, phys_dim), dtype=dtype) yield np.zeros((1, *cyc_dim, phys_dim, phys_dim), dtype=dtype) return MatrixProductOperator(gen_arrays(), **mpo_opts) def MPO_zeros_like(mpo, **mpo_opts): """Return a zeros matrix operator with the same physical index and inds/tags as ``mpo``. """ return MPO_zeros(L=mpo.L, phys_dim=mpo.phys_dim(), dtype=mpo.dtype, site_tag_id=mpo.site_tag_id, upper_ind_id=mpo.upper_ind_id, cyclic=mpo.cyclic, lower_ind_id=mpo.lower_ind_id, **mpo_opts) @random_seed_fn def MPO_rand(L, bond_dim, phys_dim=2, normalize=True, cyclic=False, herm=False, dtype='float64', **mpo_opts): """Generate a random matrix product state. Parameters ---------- L : int The number of sites. bond_dim : int The bond dimension. phys_dim : int, optional The physical (site) dimensions, defaults to 2. normalize : bool, optional Whether to normalize the operator such that ``trace(A.H @ A) == 1``. cyclic : bool, optional Generate a MPO with periodic boundary conditions or not, default is open boundary conditions. dtype : {float, complex} or numpy dtype, optional Data type of the tensor network. herm : bool, optional Whether to make the matrix hermitian (or symmetric if real) or not. mpo_opts Supplied to :class:`~quimb.tensor.tensor_1d.MatrixProductOperator`. """ cyc_shp = (bond_dim,) if cyclic else () shapes = [(*cyc_shp, bond_dim, phys_dim, phys_dim), *((bond_dim, bond_dim, phys_dim, phys_dim),) * (L - 2), (bond_dim, *cyc_shp, phys_dim, phys_dim)] def gen_data(shape): data = randn(shape, dtype=dtype) if not herm: return data trans = (0, 2, 1) if len(shape) == 3 else (0, 1, 3, 2) return data + data.transpose(*trans).conj() arrays = map(sensibly_scale, map(gen_data, shapes)) rmpo = MatrixProductOperator(arrays, **mpo_opts) if normalize: rmpo /= (rmpo.H @ rmpo)**0.5 return rmpo @random_seed_fn def MPO_rand_herm(L, bond_dim, phys_dim=2, normalize=True, dtype='float64', **mpo_opts): """Generate a random hermitian matrix product operator. See :class:`~quimb.tensor.tensor_gen.MPO_rand`. """ return MPO_rand(L, bond_dim, phys_dim=phys_dim, normalize=normalize, dtype=dtype, herm=True, **mpo_opts) # ---------------------------- MPO hamiltonians ----------------------------- # def maybe_make_real(X): """Check if ``X`` is real, if so, convert to contiguous array. """ if np.allclose(X.imag,
np.zeros_like(X)
numpy.zeros_like
from __future__ import annotations import typing from typing_extensions import TypedDict from ctc import evm from ctc import rpc from ctc import spec from . import coracle_spec class FeiPcvStats(TypedDict): pcv: int user_fei: int protocol_equity: int valid: bool async def async_get_pcv_stats( block: spec.BlockNumberReference | None = None, wrapper: bool = False, provider: spec.ProviderSpec = None, ) -> FeiPcvStats: if block is None: block = 'latest' if block is not None: block = await evm.async_block_number_to_int(block=block) to_address = coracle_spec.get_coracle_address( wrapper, block=block, ) result = await rpc.async_eth_call( function_name='pcvStats', block_number=block, provider=provider, to_address=to_address, ) return { 'pcv': result[0], 'user_fei': result[1], 'protocol_equity': result[2], 'valid': result[3], } async def async_get_pcv_stats_by_block( blocks: typing.Sequence[spec.BlockNumberReference], wrapper: bool = False, provider: spec.ProviderSpec = None, nullify_invalid: bool = True, ) -> spec.DataFrame: import asyncio import numpy as np if blocks is not None: blocks = await evm.async_block_numbers_to_int(blocks=blocks) # assemble kwargs provider = rpc.get_provider(provider) if provider['chunk_size'] is None: provider['chunk_size'] = 1 async def _wrapped_call( block: spec.BlockNumberReference, to_address: spec.Address ) -> typing.Sequence[None | list[typing.Any]]: try: return await rpc.async_eth_call( function_name='pcvStats', block_number=block, provider=provider, to_address=to_address, ) except spec.RpcException as e: invalid_message = 'execution reverted: chainlink is down' if ( nullify_invalid and len(e.args) > 0 and e.args[0].endswith(invalid_message) ): return [None] * 4 else: raise e coroutines = [] for block in blocks: to_address = coracle_spec.get_coracle_address( wrapper, block=block, ) coroutine = _wrapped_call(block, to_address) coroutines.append(coroutine) result = await asyncio.gather(*coroutines) # arrange results transpose = list(zip(*result)) data = {} keys = ['pcv', 'user_fei', 'protocol_equity', 'valid'] for k, key in enumerate(keys): data[key] = transpose[k] as_array = { 'pcv':
np.array(data['pcv'], dtype=float)
numpy.array
""" Copyright (C) 2019, Monash University, Geoscience Australia Copyright (C) 2018, <NAME> Bluecap is released under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. The project uses third party components which may have different licenses. Please refer to individual components for more details. """ # external libraries import numpy as np import pylab as pl # Managers from .OreBodyDataManager import OreBodyDataManager from .MiningSystemDataManager import MiningSystemDataManager from .ProcessingSystemDataManager import ProcessingSystemDataManager from .EconomicDataManager import EconomicDataManager from .InfrastructureDataManager import InfrastructureDataManager # Functions from Functions.FunctionManager import FunctionManager # IO from IO.XML import HasChild,GetChild,AddChild from IO.XML import GetAttributeValue, SetAttributeString class MineDataManager(): def __init__(self): """ Create an empty mine data manager and default variables. """ self.mineLatLong = np.array([0.0,0.0]) self.theOreBody = OreBodyDataManager() self.theMiningSystem = MiningSystemDataManager() self.theProcessingSystem = ProcessingSystemDataManager() self.theEconomicDataManager = EconomicDataManager() self.theInfrastructureManager = InfrastructureDataManager() def ParseXMLNode(self, mineDataNode): """ Generate Mine Data Manager data from xml tree node. """ # Location if(HasChild(mineDataNode,"Location")): locNode = GetChild(mineDataNode,"Location") self.mineLatLong[0] = GetAttributeValue(locNode,"lat") self.mineLatLong[1] = GetAttributeValue(locNode,"long") # Orebody if(HasChild(mineDataNode,"Orebody")): orebodyNode = GetChild(mineDataNode,"Orebody") self.theOreBody.ParseXMLNode(orebodyNode) theFunctionManager = FunctionManager() if( (self.theOreBody.cover < 0.0 ) and (theFunctionManager.HasFunction("DepthOfCover") ) ): self.theOreBody.cover = theFunctionManager.GetFunction("DepthOfCover").f( self.mineLatLong ) print("Cover set to: ", self.theOreBody.cover) # Infrastructure if(HasChild(mineDataNode,"Infrastructure")): infrastructureNode = GetChild(mineDataNode,"Infrastructure") self.theInfrastructureManager.ParseXMLNode(infrastructureNode) # Economics if(HasChild(mineDataNode,"Economics")): economicsNode = GetChild(mineDataNode,"Economics") self.theEconomicDataManager.ParseXMLNode(economicsNode) def WriteXMLNode(self, node): """ Write problem to xml node """ # Location locNode = AddChild(node,"Location") SetAttributeString(locNode,"lat",self.mineLatLong[0]) SetAttributeString(locNode,"long",self.mineLatLong[1]) # Orebody orebodyNode = AddChild(node,"Orebody") self.theOreBody.WriteXMLNode(orebodyNode) # Economics Node economicsNode = AddChild(node,"Economics") self.theEconomicDataManager.WriteXMLNode(economicsNode) # Mining System Node miningNode = AddChild(node,"Mining") self.theMiningSystem.WriteXMLNode(miningNode) # Processing System Node processingNode = AddChild(node,"Processing") self.theProcessingSystem.WriteXMLNode(processingNode) # Infrastructure Node infrastructureNode = AddChild(node,"Infrastructure") self.theInfrastructureManager.WriteXMLNode(infrastructureNode) return node def SetMineType(self,mineType): self.theMiningSystem.mineType = mineType def CaculateMineProductionAndValue(self,problemManager): """ Determine after tax NPV for the mine """ # Mining Model self.DetermineMiningSystem(problemManager) # Processing Model self.DetermineProcessingSystem(problemManager) # G&A Model self.CalculateGandAExpenses(problemManager) # Infrastructure Model self.CalculateInfrastructureCosts(problemManager) # Cash flow self.CalculateBeforeTaxCashFlow(problemManager) self.CalculateTaxes(problemManager) self.CalculateAfterTaxCashFlow(problemManager) # EconomicIndicators self.CalculateEconomicIndicators(problemManager) value = self.theEconomicDataManager.atNPV return value def SetMiningMethod(self,miningMethod): """ Set the mining method (mine production and value need to be determined separately) """ self.theMiningSystem.miningMethod = miningMethod def SetCoverDepth(self,cover): self.theOreBody.cover = cover return None def DetermineMiningSystem(self,problemManager): self.theMiningSystem.DetermineMiningSystem(problemManager,self) return self.theMiningSystem def DetermineProcessingSystem(self,problemManager): self.theProcessingSystem.DetermineProcessingSystem(problemManager,self) return self.theProcessingSystem # G&A Model def CalculateGandAExpenses(self,problemManager): """ General and administrative costs are estimated based on a fixed percentage of the overall mining and processing costs. """ self.theEconomicDataManager.CalculateGandAExpenses(problemManager,self) return self.theEconomicDataManager.GandAOpex # Infrastructure Model def CalculateInfrastructureCosts(self,problemManager): self.theInfrastructureManager.DetermineDistanceToInfrastructure(problemManager,self) self.theInfrastructureManager.CalculateInfrastructureExpenses(problemManager,self) return None # Cash flow def CalculateBeforeTaxCashFlow(self,problemManager): self.theEconomicDataManager.CalculateBeforeTaxCashFlow(problemManager,self) return self.theEconomicDataManager.btNCF def CalculateTaxes(self,problemManager): self.theEconomicDataManager.CalculateTaxes(problemManager,self) return self.theEconomicDataManager.taxes def CalculateAfterTaxCashFlow(self,problemManager): self.theEconomicDataManager.CalculateAfterTaxCashFlow(problemManager,self) return self.theEconomicDataManager.atNCF # EconomicIndicators def CalculateEconomicIndicators(self,problemManager): self.theEconomicDataManager.CalculateBeforeTaxNPV(problemManager,self) self.theEconomicDataManager.CalculateAfterTaxNPV(problemManager,self) return self.theEconomicDataManager.atNPV def PlotResults(self): pl.plot(self.theEconomicDataManager.btNCF/1e6,"b-",label="btNCF") pl.plot(self.theEconomicDataManager.royalties/1e6,"r--",label="Royalties") pl.plot(self.theEconomicDataManager.taxes/1e6,"r-",label="Income tax") pl.plot(self.theEconomicDataManager.atNCF/1e6,'g-',label="atNCF") pl.legend() pl.figure() pl.plot(self.theMiningSystem.materialMined/1e6,"k-",label="total mined") pl.plot(self.theMiningSystem.oreMined/1e6,"b-",label="ore") pl.plot(self.theMiningSystem.wasteMined/1e6,"r-",label="waste") pl.plot(self.theProcessingSystem.oreProcessed/1e6,"g-",label="processed") pl.plot(self.theProcessingSystem.concentrateProduced/1e6,"g--",label="concentrate") pl.legend(loc="lower right") pl.figure() inflation = (1.0+self.theEconomicDataManager.inflation)**np.array( list(range( self.theMiningSystem.mineLife)) ) pl.plot(self.theEconomicDataManager.btNCF/1e6,"b-",label="btNCF(MMAUD)") pl.plot(self.theEconomicDataManager.revenue/1e6,"g-",label="Revenue") pl.plot(inflation*self.theMiningSystem.miningCapex/1e6,"r--",label="Mining Startup") pl.plot(inflation*self.theMiningSystem.miningOpex/1e6,"r-",label="Mining Sustaining") pl.plot(inflation*self.theProcessingSystem.processingCapex/1e6,"m--",label="Processing Startup") pl.plot(inflation*self.theProcessingSystem.processingOpex/1e6,"m-",label="Processing Sustaining") pl.plot(inflation*self.theEconomicDataManager.GandAOpex/1e6,"r:",label="G&A") pl.plot(inflation*self.theInfrastructureManager.infrastructureCapex/1e6,"k--",label="Infrastructure Startup") pl.plot(inflation*self.theInfrastructureManager.infrastructureOpex/1e6,"k-",label="Infrastructure Sustaining") pl.legend(loc="lower right") pl.show() def RecordResults(self,problemManager): fid = open(problemManager.outputPrefix + ".txt","wt") fid.write("#BTNCF:\n") np.savetxt(fid,self.theEconomicDataManager.btNCF,newline=" ") fid.write("\n") fid.write("#Royalties:\n") np.savetxt(fid,self.theEconomicDataManager.royalties,newline=" ") fid.write("\n") fid.write("#taxes:\n") np.savetxt(fid,self.theEconomicDataManager.taxes,newline=" ") fid.write("\n") fid.write("#ATNCF:\n") np.savetxt(fid,self.theEconomicDataManager.atNCF,newline=" ") fid.write("\n") fid.write("#Total Mined:\n") np.savetxt(fid,self.theMiningSystem.materialMined,newline=" ") fid.write("\n") fid.write("#Ore Mined:\n") np.savetxt(fid,self.theMiningSystem.oreMined,newline=" ") fid.write("\n") fid.write("#Waste Mined:\n") np.savetxt(fid,self.theMiningSystem.wasteMined,newline=" ") fid.write("\n") fid.write("#Ore processed:\n") np.savetxt(fid,self.theProcessingSystem.oreProcessed,newline=" ") fid.write("\n") fid.write("#Concentrate:\n") np.savetxt(fid,self.theProcessingSystem.concentrateProduced,newline=" ") fid.write("\n") fid.write("#Revenue:\n") np.savetxt(fid,self.theEconomicDataManager.revenue,newline=" ") fid.write("\n") fid.write("#Mining Startup:\n") np.savetxt(fid,self.theMiningSystem.miningCapex,newline=" ") fid.write("\n") fid.write("#Mining Sustaining:\n") np.savetxt(fid,self.theMiningSystem.miningOpex,newline=" ") fid.write("\n") fid.write("#Processing Startup:\n") np.savetxt(fid,self.theProcessingSystem.processingCapex,newline=" ") fid.write("\n") fid.write("#Processing Sustaining:\n")
np.savetxt(fid,self.theProcessingSystem.processingOpex,newline=" ")
numpy.savetxt
"""@package Methods.Machine.NotchEvenDist.build_geometry NotchEvenDist build_geometry method @date Created on 03-09-2019 15:47 @author sebastian_g @todo: intermediate solution, <nittest it ony if needed """ from pyleecan.Classes.Arc1 import Arc1 import numpy as np def build_geometry(self, alpha_begin, alpha_end, label=""): """Compute the curve (Line) needed to plot the object. The ending point of a curve is the starting point of the next curve in the list Parameters ---------- self : NotchEvenDist A NotchEvenDist object Returns ------- curve_list: list A list of every individual notches lines """ Rbo = self.get_Rbo() alphaM = np.array([]) alpha0 = np.array([]) alpha1 = np.array([]) _line_list = list() # collect all notches data for idx, shape in enumerate(self.notch_shape): Zs = shape.Zs ang_open = self.notch_shape[idx].comp_angle_opening() aM = np.linspace(0, Zs, Zs, endpoint=False) * 2 * np.pi / Zs + self.alpha[idx] a0 = aM - ang_open / 2 a1 = aM + ang_open / 2 sid =
np.ones_like(alphaM)
numpy.ones_like
from __future__ import absolute_import, division, print_function import inspect import itertools import os import warnings from collections import defaultdict from contextlib import contextmanager from numbers import Number from typing import Optional, Tuple import numpy as np import pandas as pd import scanpy as sc import scipy as sp import tensorflow as tf from anndata._core.aligned_mapping import AxisArrays from bigarray import MmapArrayWriter from scipy.sparse import issparse from scipy.stats import pearsonr, spearmanr from six import string_types from sklearn.cluster import MiniBatchKMeans, SpectralClustering from sklearn.decomposition import IncrementalPCA from sklearn.exceptions import ConvergenceWarning from sklearn.feature_selection import (mutual_info_classif, mutual_info_regression) from sklearn.mixture import GaussianMixture from odin import visual as vs from odin.search import diagonal_linear_assignment from odin.stats import (describe, is_discrete, sparsity_percentage, train_valid_test_split) from odin.utils import (MPI, IndexedList, as_tuple, batching, cache_memory, catch_warnings_ignore, cpu_count, is_primitive) from odin.utils.crypto import md5_checksum from sisua.data._single_cell_base import BATCH_SIZE, _OMICbase from sisua.data.const import MARKER_ADT_GENE, MARKER_ADTS, MARKER_GENES, OMIC from sisua.data.utils import (apply_artificial_corruption, get_library_size, is_binary_dtype, is_categorical_dtype, standardize_protein_name) from sisua.label_threshold import ProbabilisticEmbedding # =========================================================================== # Helper # =========================================================================== def _threshold(x, nmin=2, nmax=5): if x.ndim == 1: x = x[:, np.newaxis] models = [] aic = [] for n_components in range(int(nmin), int(nmax)): gmm = GaussianMixture(n_components=n_components, random_state=1) gmm.fit(x) models.append(gmm) aic.append(gmm.aic(x)) # select the best model gmm = models[np.argmax(aic)] y = gmm.predict(x) idx = np.argmax(gmm.means_.ravel()) return (y == idx).astype(np.bool) # =========================================================================== # Main # =========================================================================== class _OMICanalyzer(_OMICbase): def get_x_probs(self, omic=None): r""" Return the probability embedding of an OMIC """ return self.probabilistic_embedding(omic=omic)[1] def get_x_bins(self, omic=None): r""" Return the binary embedding of an OMIC """ return self.probabilistic_embedding(omic=omic)[2] # ******************** transformation ******************** # def corrupt(self, omic=None, dropout_rate=0.2, retain_rate=0.2, distribution='binomial', inplace=True, seed=1): r""" omic : `OMIC`, which omic type will be corrupted dropout_rate : scalar (0.0 - 1.0), (default=0.25) how many entries (in percent) be selected for corruption. retain_rate : scalar (0.0 - 1.0), (default=0.2) how much percent of counts retained their original values. distribution : {'binomial', 'uniform} (default='binomial') omic : `sisua.data.OMIC`, which OMIC type will be corrupted inplace : `bool` (default=True). Perform computation inplace or return new `SingleCellOMIC` with the corrupted data. seed : `int` (default=8). Seed for the random state. """ if omic is None: omic = self.current_omic om = self if inplace else self.copy() om._record('corrupt', locals()) if not (0. < retain_rate < 1. or 0. < dropout_rate < 1.): return om for o in omic: apply_artificial_corruption(om.numpy(o), dropout=dropout_rate, retain_rate=retain_rate, distribution=distribution, copy=False, seed=seed) om._calculate_statistics(o) return om def filter_highly_variable_genes(self, min_disp: float = 1.0, max_disp: float = np.inf, min_mean: float = 0.01, max_mean: float = 8, n_top_genes: int = 1000, n_bins: int = 20, flavor: str = 'seurat', inplace: bool = True): r""" Annotate highly variable genes [Satija15]_ [Zheng17]_. https://www.rdocumentation.org/packages/Seurat/versions/2.3.4/topics/FindVariableGenes `Expects logarithmized data`. Depending on `flavor`, this reproduces the R-implementations of Seurat [Satija15]_ and Cell Ranger [Zheng17]_. The normalized dispersion is obtained by scaling with the mean and standard deviation of the dispersions for genes falling into a given bin for mean expression of genes. This means that for each bin of mean expression, highly variable genes are selected. Arguments: min_disp : `float`, optional (default=0.5) If `n_top_genes` unequals `None`, this and all other cutoffs for the means and the normalized dispersions are ignored. max_disp : `float`, optional (default=`np.inf`) If `n_top_genes` unequals `None`, this and all other cutoffs for the means and the normalized dispersions are ignored. min_mean : `float`, optional (default=0.0125) If `n_top_genes` unequals `None`, this and all other cutoffs for the means and the normalized dispersions are ignored. max_mean : `float`, optional (default=3) If `n_top_genes` unequals `None`, this and all other cutoffs for the means and the normalized dispersions are ignored. n_top_genes : {`float`, int`, `None`}, optional (default=`None`) Number of highly-variable genes to keep., if the value is in (0, 1], intepret as percent of genes n_bins : `int`, optional (default: 20) Number of bins for binning the mean gene expression. Normalization is done with respect to each bin. If just a single gene falls into a bin, the normalized dispersion is artificially set to 1. flavor : `{'seurat', 'cell_ranger'}`, optional (default='seurat') Choose the flavor for computing normalized dispersion. In their default workflows, Seurat passes the cutoffs whereas Cell Ranger passes `n_top_genes`. inplace : `bool` (default=True) if False, copy the `SingleCellOMIC` and apply the vargene filter. Returns: New `SingleCellOMIC` with filtered features if `applying_filter=True` else assign `SingleCellOMIC.highly_variable_features` with following attributes. highly_variable : bool boolean indicator of highly-variable genes **means** means per gene **dispersions** dispersions per gene **dispersions_norm** normalized dispersions per gene Notes: Proxy to `scanpy.pp.highly_variable_genes`. It is recommended to do `log1p` normalization before if `flavor='seurat'`. """ flavor = str(flavor).lower() if n_top_genes is not None: if 0. < n_top_genes < 1.: n_top_genes = int(n_top_genes * self.n_vars) # prepare the data # this function will take the exponential of X all the time, # so non-logarithmzed data might led to overflow omics = self if inplace else self.copy() omics._record('filter_highly_variable_genes', locals()) sc.pp.highly_variable_genes(omics, min_disp=min_disp, max_disp=max_disp, min_mean=min_mean, max_mean=max_mean, n_top_genes=n_top_genes, n_bins=int(n_bins), flavor=flavor, subset=True, inplace=False) omics._name += '_vargene' omics._n_vars = omics._X.shape[1] # recalculate library info omics._calculate_statistics() return omics def filter_genes(self, min_counts=None, max_counts=None, min_cells=None, max_cells=None, inplace=True): r""" Filter features (columns) based on number of rows or counts. Keep columns that have at least ``[min_counts, max_counts]`` or are expressed in at least ``[min_row_counts, max_row_counts]`` Arguments: min_counts : {int, None} (default=None) Minimum number of counts required for a gene to pass filtering. max_counts : {int, None} (default=None) Maximum number of counts required for a gene to pass filtering. min_cells : {int, None} (default=None) Minimum number of cells expressed required for a feature to pass filtering. max_cells : {int, None} (default=None) Maximum number of cells expressed required for a feature to pass filtering. inplace : `bool` (default=True) if False, return new `SingleCellOMIC` with the filtered genes applied Returns: if `applying_filter=False` annotates the `SingleCellOMIC`, otherwise, return new `SingleCellOMIC` with the new subset of genes gene_subset : `numpy.ndarray` Boolean index mask that does filtering. `True` means that the gene is kept. `False` means the gene is removed. number_per_gene : `numpy.ndarray` Depending on what was thresholded (`counts` or `cells`), the array stores `n_counts` or `n_cells` per gene. Note: Proxy method to Scanpy preprocessing """ omics = self if inplace else self.copy() omics._record('filter_genes', locals()) sc.pp.filter_genes(omics, min_counts=min_counts, max_counts=max_counts, min_cells=min_cells, max_cells=max_cells, inplace=True) omics._name += '_filtergene' omics._n_vars = omics._X.shape[1] # recalculate library info omics._calculate_statistics() return omics def filter_cells(self, min_counts=None, max_counts=None, min_genes=None, max_genes=None, inplace=True): r""" Filter examples (rows) based on number of features or counts. Keep rows that have at least ``[min_counts, max_counts]`` or are expressed in at least ``[min_col_counts, max_col_counts]`` Arguments: min_counts : {int, None} (default=None) Minimum number of counts required for a cell to pass filtering. max_counts : {int, None} (default=None) Maximum number of counts required for a cell to pass filtering. min_genes : {int, None} (default=None) Minimum number of genes expressed required for a cell to pass filtering. max_genes : {int, None} (default=None) Maximum number of genes expressed required for a cell to pass filtering. inplace : `bool` (default=True) if False, return new `SingleCellOMIC` with the filtered cells applied Returns: if `applying_filter=False` annotates the `SingleCellOMIC`, otherwise, return new `SingleCellOMIC` with the new subset of cells cells_subset : numpy.ndarray Boolean index mask that does filtering. ``True`` means that the cell is kept. ``False`` means the cell is removed. number_per_cell : numpy.ndarray Depending on what was tresholded (``counts`` or ``genes``), the array stores ``n_counts`` or ``n_cells`` per gene. Note: Proxy method to Scanpy preprocessing """ # scanpy messed up here, the obs was not updated with the new indices cells_subset, number_per_cell = sc.pp.filter_cells(self, min_counts=min_counts, max_counts=max_counts, min_genes=min_genes, max_genes=max_genes, inplace=False) omics = self if inplace else self.copy() omics._record('filter_cells', locals()) omics.apply_indices(cells_subset, observation=True) omics._name += '_filtercell' # recalculate library info omics._calculate_statistics() return omics def probabilistic_embedding(self, omic=None, n_components_per_class=2, positive_component=1, log_norm=True, clip_quartile=0., remove_zeros=True, ci_threshold=-0.68, seed=1, pbe: Optional[ProbabilisticEmbedding] = None): r""" Fit a GMM on each feature column to get the probability or binary representation of the features Return: `ProbabilisticEmbedding` model np.ndarray : probabilities X np.ndarray : binary X Arguments: pbe : {`sisua.ProbabilisticEmbedding`, `None`}, optional pretrained instance of `ProbabilisticEmbedding` """ if omic is None: omic = self.current_omic self._record('probabilistic_embedding', locals()) # We turn-off default log_norm here since the data can be normalized # separately in advance. omic = OMIC.parse(omic) X = self.numpy(omic) if X.shape[1] >= 100: warnings.warn("%d GMM will be trained!" % self.shape[1]) name = omic.name pbe_name = '%s_pbe' % name prob_name = '%s_prob' % name bin_name = '%s_bin' % name label_name = self.get_labels_name(name) if is_binary_dtype(X): X_prob = X X_bin = X self.uns[pbe_name] = None else: if pbe is None: if pbe_name not in self.uns: pbe = ProbabilisticEmbedding( n_components_per_class=n_components_per_class, positive_component=positive_component, log_norm=log_norm, clip_quartile=clip_quartile, remove_zeros=remove_zeros, ci_threshold=ci_threshold, random_state=seed) with catch_warnings_ignore(ConvergenceWarning): pbe.fit(X) self.uns[pbe_name] = pbe else: pbe = self.uns[pbe_name] else: assert isinstance(pbe, ProbabilisticEmbedding), \ 'pbe, if given, must be instance of sisua.ProbabilisticEmbedding' # make prediction X_prob = np.clip(pbe.predict_proba(X), 0. + 1e-8, 1. - 1e-8) X_bin = pbe.predict(X) # store the data if prob_name not in self.obsm: self.obsm[prob_name] = X_prob if label_name not in self.obs and name + '_var' in self.uns: omic_id = self.get_var(name).index labels = [omic_id[i] for i in np.argmax(self.obsm[prob_name], axis=1)] self.obs[label_name] = pd.Categorical(labels) if bin_name not in self.obsm: self.obsm[bin_name] = X_bin return pbe, self.obsm[prob_name], self.obsm[bin_name] def dimension_reduce(self, omic=None, n_components=100, algo='pca', random_state=1): r""" Perform dimension reduction on given OMIC data. """ if omic is None: omic = self.current_omic self._record('dimension_reduce', locals()) algo = str(algo).lower().strip() assert algo in ('pca', 'tsne', 'umap'), \ "Only support algorithm: 'pca', 'tsne', 'umap'; but given: '{algo}'" omic = OMIC.parse(omic) name = f"{omic.name}_{algo}" ## already transformed if name in self.obsm: return self.obsm[name] if n_components is None else \ self.obsm[name][:, :int(n_components)] X = self.numpy(omic) n_components = min(n_components, X.shape[1]) ### train new PCA model if algo == 'pca': X_ = np.empty(shape=(X.shape[0], n_components), dtype=X.dtype) model = IncrementalPCA(n_components=n_components) # fitting for start, end in batching(BATCH_SIZE, n=X.shape[0]): chunk = X[start:end] chunk = chunk.toarray() if issparse(chunk) else chunk model.partial_fit(chunk) # transforming for start, end in batching(BATCH_SIZE, n=X.shape[0]): chunk = X[start:end] chunk = chunk.toarray() if issparse(chunk) else chunk X_[start:end] = model.transform(chunk) ### TSNE elif algo == 'tsne': from odin.ml import fast_tsne X_ = fast_tsne(X, n_components=n_components, return_model=False) model = None ## UMAP elif algo == 'umap': try: import cuml method = 'rapids' except ImportError: method = 'umap' connectivities, distances, nn = self.neighbors(omic, method='umap', random_state=random_state) self.uns['neighbors'] = nn self.obsp['connectivities'] = connectivities self.obsp['distances'] = distances with catch_warnings_ignore(UserWarning): sc.tl.umap(self, method=method, random_state=random_state, copy=False) X_ = self.obsm['X_umap'] model = self.uns['umap'] del self.obsm['X_umap'] del self.uns['umap'] del self.uns['neighbors'] del self.obsp['connectivities'] del self.obsp['distances'] ## store and return the result self.obsm[name] = X_ # the model could be None, in case of t-SNE self.uns[name] = model return self.obsm[name] if n_components is None else \ self.obsm[name][:, :int(n_components)] def expm1(self, omic=None, inplace=True): if omic is None: omic = self.current_omic om = self if inplace else self.copy() om._record('expm1', locals()) _expm1 = lambda x: (np.expm1(x.data, out=x.data) if issparse(x) else np.expm1(x, out=x)) X = om.numpy(omic) for s, e in batching(n=self.n_obs, batch_size=BATCH_SIZE): X[s:e] = _expm1(X[s:e]) om._calculate_statistics(omic) return om def normalize(self, omic=None, total=False, log1p=False, scale=False, target_sum=None, exclude_highly_expressed=False, max_fraction=0.05, max_value=None, inplace=True): r""" If ``exclude_highly_expressed=True``, very highly expressed genes are excluded from the computation of the normalization factor (size factor) for each cell. This is meaningful as these can strongly influence the resulting normalized values for all other genes [1]_. Arguments: total : bool (default=False). Normalize counts per cell. log1p : bool (default=False). Logarithmize the data matrix. scale : bool (default=False). Scale data to unit variance and zero mean. target_sum : {float, None} (default=None) If None, after normalization, each observation (cell) has a total count equal to the median of total counts for observations (cells) before normalization. exclude_highly_expressed : bool (default=False) Exclude (very) highly expressed genes for the computation of the normalization factor (size factor) for each cell. A gene is considered highly expressed, if it has more than ``max_fraction`` of the total counts in at least one cell. The not-excluded genes will sum up to ``target_sum``. max_fraction : bool (default=0.05) If ``exclude_highly_expressed=True``, consider cells as highly expressed that have more counts than ``max_fraction`` of the original total counts in at least one cell. max_value : `float` or `None`, optional (default=`None`) Clip (truncate) to this value after scaling. If `None`, do not clip. inplace : `bool` (default=True) if False, return new `SingleCellOMIC` with the filtered cells applied References: Weinreb et al. (2016), SPRING: a kinetic interface for visualizing high dimensional single-cell expression data, bioRxiv. Note: Proxy to `scanpy.pp.normalize_total`, `scanpy.pp.log1p` and `scanpy.pp.scale` """ if omic is None: omic = self.current_omic om = self if inplace else self.copy() om._record('normalize', locals()) if omic != OMIC.transcriptomic: org_X = om._X om._X = om.numpy(omic) if total: sc.pp.normalize_total(om, target_sum=target_sum, exclude_highly_expressed=exclude_highly_expressed, max_fraction=max_fraction, inplace=True) # since the total counts is normalized, store the old library size om._name += '_total' if log1p: sc.pp.log1p(om, chunked=True, chunk_size=BATCH_SIZE, copy=False) om._name += '_log1p' del om.uns['log1p'] # scaling may result negative total counts if scale: sc.pp.scale(om, zero_center=True, max_value=max_value, copy=False) om._name += '_scale' if omic != OMIC.transcriptomic: om.obsm[omic.name] = om.X om._X = org_X om._calculate_statistics(omic) return om # ******************** metrics ******************** # def neighbors(self, omic=None, n_neighbors=12, n_pcs=100, knn=True, method='umap', metric='euclidean', random_state=1): r"""\ Compute a neighborhood graph of observations [McInnes18]_. The neighbor search efficiency of this heavily relies on UMAP [McInnes18]_, which also provides a method for estimating connectivities of data points - the connectivity of the manifold (`method=='umap'`). If `method=='gauss'`, connectivities are computed according to [Coifman05]_, in the adaption of [Haghverdi16]_. Arguments: n_neighbors : `int` (default=12) The size of local neighborhood (in terms of number of neighboring data points) used for manifold approximation. Larger values result in more global views of the manifold, while smaller values result in more local data being preserved. In general values should be in the range 2 to 100. If `knn` is `True`, number of nearest neighbors to be searched. If `knn` is `False`, a Gaussian kernel width is set to the distance of the `n_neighbors` neighbor. n_pcs : {`int`, `None`} (default=None) Use this many PCs. If n_pcs==0 use .X if use_rep is None. if n_pcs==None, use obsm['X_pca']. use_rep : {`None`, ‘X’} or any key for .obsm, optional (default=None) Use the indicated representation. If None, the representation is chosen automatically: for .n_vars < 50, .X is used, otherwise ‘X_pca’ is used. If ‘X_pca’ is not present, it’s computed with default parameters. knn : `bool` (default=True) If `True`, use a hard threshold to restrict the number of neighbors to `n_neighbors`, that is, consider a knn graph. Otherwise, use a Gaussian Kernel to assign low weights to neighbors more distant than the `n_neighbors` nearest neighbor. method : {{'umap', 'gauss', `rapids`}} (default: `'umap'`) Use 'umap' [McInnes18]_ or 'gauss' (Gauss kernel following [Coifman05]_ with adaptive width [Haghverdi16]_) for computing connectivities. Use 'rapids' for the RAPIDS implementation of UMAP (experimental, GPU only). metric : {`str`, `callable`} (default='euclidean') A known metric’s name or a callable that returns a distance. Returns: returns neighbors object with the following: **[OMIC]_connectivities** : sparse matrix (dtype `float32`) Weighted adjacency matrix of the neighborhood graph of data points. Weights should be interpreted as connectivities. **[OMIC]_distances** : sparse matrix (dtype `float32`) Instead of decaying weights, this stores distances for each pair of neighbors. **[OMIC]_neighbors** : dictionary configuration and params of fitted k-NN. """ if omic is None: omic = self.current_omic self._record('neighbors', locals()) omic = OMIC.parse(omic) name = f"{omic.name}_neighbors" if name not in self.uns: omic_name = omic.name if self.get_dim(omic) > 100: self.dimension_reduce(omic, algo='pca', random_state=random_state) omic_name = omic.name + '_pca' with catch_warnings_ignore(Warning): obj = sc.pp.neighbors(self, n_neighbors=n_neighbors, knn=knn, method=method, metric=metric, n_pcs=int(n_pcs), use_rep=omic_name, random_state=random_state, copy=True) self.uns[name] = obj.uns['neighbors'] self.obsp[f"{omic.name}_connectivities"] = obj.obsp['connectivities'] self.obsp[f"{omic.name}_distances"] = obj.obsp['distances'] del obj return (self.obsp[f"{omic.name}_connectivities"], self.obsp[f"{omic.name}_distances"], self.uns[name]) def clustering(self, omic=None, n_clusters=None, n_init='auto', algo='kmeans', matching_labels=True, return_key=False, random_state=1): r""" Perform clustering for given OMIC type, the cluster labels will be assigned to `obs` with key "{omic}_{algo}{n_clusters}" Arguments: algo : {'kmeans', 'knn', 'pca', 'tsne', 'umap'}. Clustering algorithm, in case algo in ('pca', 'tsne', 'umap'), perform dimension reduction before clustering. matching_labels : a Boolean. Matching OMIC var_names to appropriate clusters, only when `n_clusters` is string or OMIC type. return_key : a Boolean. If True, return the name of the labels stored in `.obs` instead of the labels array. """ if omic is None: omic = self.current_omic self._record('clustering', locals()) ## clustering algorithm algo = str(algo).strip().lower() ## input data omic = OMIC.parse(omic) cluster_omic = None if n_clusters is None: cluster_omic = omic n_clusters = self.get_dim(omic) elif isinstance(n_clusters, Number): n_clusters = int(n_clusters) else: cluster_omic = OMIC.parse(n_clusters) n_clusters = self.get_dim(cluster_omic) n_clusters = int(n_clusters) n_init = int(n_init) if isinstance(n_init, Number) else \ int(n_clusters) * 3 ## check if output already extracted output_name = f"{omic.name}_{algo}{n_clusters}" if output_name in self.obs: return output_name if return_key else self.obs[output_name] ## warning if n_clusters > 50: warnings.warn( f"Found omic type:{cluster_omic} with {n_clusters} clusters") ## fit KMeans if algo in ('pca', 'tsne', 'umap', 'kmeans'): if algo in ('pca', 'tsne', 'umap'): X = self.dimension_reduce(omic=omic, n_components=100, algo=algo) else: X = self.numpy(omic) model = MiniBatchKMeans(n_clusters=int(n_clusters), max_iter=1000, n_init=int(n_init), compute_labels=False, batch_size=BATCH_SIZE, random_state=random_state) # better suffering the batch for s, e in batching(BATCH_SIZE, self.n_obs, seed=random_state): x = X[s:e] model.partial_fit(x) # make prediction labels = [] for s, e in batching(BATCH_SIZE, self.n_obs): x = X[s:e] labels.append(model.predict(x)) labels = np.concatenate(labels, axis=0) ## fit KNN elif algo == 'knn': connectivities, distances, nn = self.neighbors(omic) n_neighbors = min(nn['params']['n_neighbors'], np.min(np.sum(connectivities > 0, axis=1))) model = SpectralClustering(n_clusters=n_clusters, random_state=random_state, n_init=n_init, affinity='precomputed_nearest_neighbors', n_neighbors=n_neighbors) labels = model.fit_predict(connectivities) else: raise NotImplementedError(algo) ## correlation matrix if cluster_omic is not None and matching_labels: _, X, _ = self.probabilistic_embedding(cluster_omic) # omic-cluster correlation matrix corr = np.empty(shape=(X.shape[1], n_clusters), dtype=np.float32) for i, x in enumerate(X.T): for lab in range(n_clusters): mask = labels == lab corr[i, lab] = np.sum(x[mask]) ids = diagonal_linear_assignment(corr) varnames = self.get_var_names(cluster_omic) labels_to_omic = {lab: name for lab, name, in zip(ids, varnames)} labels = np.array([labels_to_omic[i] for i in labels]) ## saving data and model self.obs[output_name] = pd.Categorical(labels) # self.uns[output_name] = model return output_name if return_key else labels def louvain(self, omic=None, resolution=None, restrict_to=None, adjacency=None, flavor='vtraag', directed=True, use_weights=False, partition_type=None, partition_kwargs={}, random_state=1): r"""Cluster cells into subgroups [Blondel08]_ [Levine15]_ [Traag17]_. Cluster cells using the Louvain algorithm [Blondel08]_ in the implementation of [Traag17]_. The Louvain algorithm has been proposed for single-cell analysis by [Levine15]_. This requires having ran :func:`~scanpy.pp.neighbors` or `~scanpy.external.pp.bbknn` first, or explicitly passing a ``adjacency`` matrix. Arguments: resolution For the default flavor (``'vtraag'``), you can provide a resolution (higher resolution means finding more and smaller clusters), which defaults to 1.0. See “Time as a resolution parameter” in [Lambiotte09]_. restrict_to Restrict the clustering to the categories within the key for sample annotation, tuple needs to contain ``(obs_key, list_of_categories)``. key_added Key under which to add the cluster labels. (default: ``'louvain'``) adjacency Sparse adjacency matrix of the graph, defaults to ``adata.uns['neighbors']['connectivities']``. flavor : {``'vtraag'``, ``'igraph'``} Choose between to packages for computing the clustering. ``'vtraag'`` is much more powerful, and the default. directed Interpret the ``adjacency`` matrix as directed graph? use_weights Use weights from knn graph. partition_type Type of partition to use. Only a valid argument if ``flavor`` is ``'vtraag'``. partition_kwargs Key word arguments to pass to partitioning, if ``vtraag`` method is being used. random_state : Change the initialization of the optimization. Return: array `[n_samples]` : louvain community indices array `[n_samples]` : decoded louvain community labels """ if omic is None: omic = self.current_omic self._record('louvain', locals()) try: import louvain except ImportError: raise ImportError("pip install louvain>=0.6 python-igraph") omic = OMIC.parse(omic) output_name = omic.name + '_louvain' if output_name not in self.obs: with catch_warnings_ignore(Warning): connectivities, distances, nn = self.neighbors(omic) self.uns["neighbors"] = nn self.obsp["connectivities"] = connectivities self.obsp["distances"] = distances sc.tl.louvain(self, resolution=resolution, random_state=random_state, restrict_to=restrict_to, key_added=output_name, adjacency=adjacency, flavor=flavor, directed=directed, use_weights=use_weights, partition_type=partition_type, partition_kwargs=partition_kwargs, copy=False) del self.uns['neighbors'] del self.obsp["connectivities"] del self.obsp["distances"] model = self.uns['louvain'] del self.uns['louvain'] self.uns[output_name] = model y = self.obs[output_name].to_numpy().astype(np.float32) ### decode louvain community into labels output_labels = f"{output_name}_labels" if output_labels not in self.obs: var_names = self.get_var_names(omic) # mapping community_index -> confident value for each variables confidence = defaultdict(float) for i, x in zip(y, self.get_x_probs(omic=omic)): confidence[int(i)] += x # thresholding the variables labels = {} for community, x in confidence.items(): labels[community] = '_'.join(var_names[_threshold(x, 2, 5)]) # store in obs self.obs[output_labels] = np.array([labels[i] for i in y]) ### return y_labels = self.obs[output_labels].to_numpy() return y, y_labels # ******************** Genes metrics and ranking ******************** # def top_vars(self, n_vars=100, return_indices=False): r""" The genes that are highly variated, high dispersion, less dropout (i.e. smallest counts of zero-values), and appeared in most cells will be returned. Arguments: return_indices : a Boolean. If True, return the index of top genes, otherwise, return the genes' ID. """ self.calculate_quality_metrics() fnorm = lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)) # prepare data n_cells = fnorm(self.var['n_cells'].values) zeros = fnorm(self.var['pct_dropout'].values) dispersion = fnorm(self.var['dispersions'].values) # higher is better TODO: check again what is the best strategy here rating = n_cells + (1. - zeros) + dispersion ids = np.argsort(rating)[::-1] # indexing the genes genes =
np.arange(self.n_vars, dtype=np.int64)
numpy.arange
''' Defines dataset classes for various used datasets, some are not used anymore Contains test functions for volume visualization and slice visualization Author: <NAME> https://github.com/dscarmo ''' import os from os.path import join as add_path import glob import pickle from sys import argv from matplotlib import pyplot as plt from tqdm import tqdm import numpy as np import cv2 as cv import h5py import collections import nibabel as nib import psutil import time import copy import json import torch import torch.utils.data as data from torch.utils.data import ConcatDataset import torchvision from transforms import ToTensor, ToFloat32, Compose, RandomAffine, Intensity, Noisify, SoftTarget, CenterCrop import multiprocessing as mp from multiprocessing import Lock, Process, Queue, Manager from utils import normalizeMri, viewnii, myrotate, int_to_onehot, chunks, HALF_MULTI_TASK_NCHANNELS, MULTI_TASK_NCHANNELS from utils import half_multi_task_labels, limit_multi_labels, imagePrint, type_assert, one_hot, get_slice, ITKManager, split_l_r from nathip import NatHIP, get_group cla_lock = Lock() adni_lock = Lock() orientations = ["sagital", "coronal", "axial"] # original data orientations DEFAULT_PATH = "../data" VALID_MODES = ['train', 'validation', 'test'] # Post migration paths default_datapath = os.path.join("/home", "diedre", "Dropbox", "bigdata", "mni_hip_data") default_adni = os.path.join("/home", "diedre", "Dropbox", "bigdata", "manual_selection_rotated", "isometric") mni_adni = os.path.join("/home", "diedre", "Dropbox", "bigdata", "manual_selection_rotated", "raw2mni") mni_harp = os.path.join("/home", "diedre", "Dropbox", "bigdata", "harp", "mniharp") default_harp = os.path.join("/home", "diedre", "Dropbox", "bigdata", "harp") multitask_path = os.path.join("/home", "diedre", "Dropbox", "bigdata", "Hippocampus", "volbrain", "PACIENTES_E_CONTROLES") multitask_hip_processed = os.path.join("/home", "diedre", "Dropbox", "bigdata", "Hippocampus", "processed") multitask_hip_processed_slices = os.path.join("/home", "diedre", "Dropbox", "bigdata", "Hippocampus", "processed_slices") HARP_CLASSES = ["cn", "mci", "ad"] class DTISegDataset(data.Dataset): ''' Abstracts segmentation with DTI data ''' def __init__(self, mode, path=DEFAULT_PATH, transform=None, verbose=True, orientation=None, zero_background=True, balance="balanced_205", norm_type="zero_to_plus", split=(0.8, 0.2), overhide_folder_name=None, limit_masks=False, patch_size=64, register_strategy='v01', use_t1=False, displasia=False, t1_separate=False): ''' path: folder containing data mode: one of ['train', 'validation', 'test'], test will return volumes, other will return patches transform: list of transforms to apply verbose: wether to print a lot of stuff or not orientation: one of ['sagital', 'coronal', 'axial'] or None if using test mode nlr: wether to return left and right labels display_samples: if different than 0, displays number of samples given ''' super(DTISegDataset, self).__init__() assert mode in VALID_MODES, "mode {} should be one of {}".format(mode, VALID_MODES) assert orientation in orientations or orientation is None, "orientation {} should be one of {}".format(orientation, orientations) if mode == 'test': assert orientation is None, "test mode does not support orientation other than None" assert balance == "test", "in test mode, balance does not matter, use balance='test'" assert norm_type in ["zero_to_plus", "minus_to_plus", "mixed"], "norm type {} not support".format(norm_type) assert balance in ["test", "2020", "205", "51010", "355", "51515", "510"], "norm type {} not support".format(balance) assert np.array(split).sum() == 1, "split makes no sense, should sum to 1" assert patch_size in [32, 64] assert register_strategy in ["v01", "v02"] assert use_t1 in [False, "t1only", "t1dti"] self.use_t1 = use_t1 self.mode = mode self.orientation = orientation self.zero_background = zero_background self.transform = transform self.verbose = verbose self.limit_masks = limit_masks self.displasia = displasia self.t1_separate = t1_separate separator = os.sep path_tokens = path.split(separator) folder_name = None if overhide_folder_name is not None: folder_name = overhide_folder_name else: if self.displasia: if mode == "test": folder_name = "01" elif balance == "510": if norm_type == "zero_to_plus": if orientation == "sagital": folder_name = "01" elif orientation == "coronal": folder_name = "02" elif orientation == "axial": folder_name = "03" else: if register_strategy == "v01": if balance == "2020": folder_name = "00" elif balance == "205" or balance == "test": if norm_type == "zero_to_plus": folder_name = "01" elif norm_type == "minus_to_plus": folder_name = "02" elif norm_type == "mixed": folder_name = "03" elif norm_type == "zero_to_plus": if patch_size == 32: if balance == "51010": folder_name = "04" elif balance == "355": folder_name = "05" elif patch_size == 64: if balance == "51010": folder_name = "06" elif balance == "355": folder_name = "07" elif register_strategy == "v02": if balance == "test": folder_name = "04" elif norm_type == "zero_to_plus": if patch_size == 64: if balance == "355": folder_name = "16" elif balance == "51010": folder_name = "18" elif balance == "51515": if orientation == "sagital": if limit_masks: folder_name = "23" else: # folder_name = "19" folder_name = "20" elif orientation == "coronal": folder_name = "21" elif orientation == "axial": folder_name = "22" elif patch_size == 32: if balance == "355": folder_name = "14" elif balance == "51010": folder_name = "15" if folder_name is None: raise ValueError("Unsupported combination of patch_size, balance, norm_type and register_strategy: " "{} {} {} {}".format(patch_size, balance, norm_type, register_strategy)) self.folder_name = folder_name if self.displasia: if self.mode == "test": pre_folder = "Displasia/test" else: pre_folder = "Displasia/patches" elif self.mode == "test": pre_folder = "TestData" else: pre_folder = "patches" if path_tokens[0] == "..": # Work around relative pathing glob_args = [os.path.dirname(os.getcwd())] + path_tokens[1:] + [pre_folder, folder_name, "*.npz"] self.items = glob.glob(os.path.join(*glob_args)) else: glob_args = (path, pre_folder, folder_name, "*.npz") self.items = glob.glob(os.path.join(*glob_args)) glob_args[-1] = "*.txt" try: print(glob_args) readme_path = glob.glob(os.path.join(*glob_args))[0] except IndexError: print("Readme file for dataset not found.") data_folder = os.path.join(*glob_args[:-1]) if self.mode != "test": print(os.path.join(data_folder, self.mode + ".pkl")) if os.path.isfile(os.path.join(data_folder, self.mode + ".pkl")): with open(os.path.join(data_folder, self.mode + '.pkl'), 'rb') as saved_items: self.items = pickle.load(saved_items) for i, v in enumerate(self.items): self.items[i] = os.path.join(data_folder, os.path.basename(self.items[i])) # support different folders else: print("PKL items file not saved, creating new ones...") stop_point = int(len(self.items)*split[0]) print("Dividing dataset in point: {}".format(stop_point)) with open(os.path.join(data_folder, 'train.pkl'), 'wb') as to_save_items: pickle.dump(self.items[:stop_point], to_save_items) with open(os.path.join(data_folder, 'validation.pkl'), 'wb') as to_save_items: pickle.dump(self.items[stop_point:], to_save_items) if self.mode == "train": self.items = self.items[:stop_point] elif self.mode == "validation": self.items = self.items[stop_point:] print("DTISegDataset initialized with nitems: {}, mode: {}, path: {}, transform: {}, " "orientation: {}, zero_background: {}, " "balance: {}, norm_type: {}, limit_masks: {}" "folder_name: {}".format(len(self.items), mode, path, transform, orientation, zero_background, balance, norm_type, limit_masks, folder_name)) with open(readme_path) as readme_file: readme = readme_file.read() print(('-'*20 + "\nREADME: {}\n" + '-'*20).format(readme)) def __len__(self): ''' Returns number of items in the dataset ''' return len(self.items) def __getitem__(self, i): ''' Returns input data and target ''' if self.verbose: print("Dataset returning {}".format(self.items[i])) npz = np.load(self.items[i]) if self.mode == "test": dti, target, t1 = (npz["DTI_measures"], npz["mask_onehot"], npz["T1"]) else: dti, target, t1 = (npz["DTI_measures"], npz[(self.mode != "test")*"patch_" + "mask_onehot"], npz[(self.mode != "test")*"patch_" + "T1"]) if self.displasia: t2 = npz["test_T2"] if self.mode == "test" else npz["patch_T2"] if self.use_t1 == "t1only": data =
np.zeros((1,) + t1.shape, dtype=t1.dtype)
numpy.zeros
import pdb import torch import sys # NOQA sys.path.insert(0, '..') # NOQA: E402 import numpy as np import argparse import torch.multiprocessing as mp import os import glob import copy import math import pathlib from logger.logger import Logger import matplotlib import matplotlib.pyplot as plt import datetime, time #from debugtools import compile_results from utils import step_wrapper, reset_wrapper import copy import pygame from alternateController.potential_field_controller import PotentialFieldController as PFController from alternateController.social_forces_controller import SocialForcesController from rlmethods.b_actor_critic import ActorCritic from rlmethods.b_actor_critic import Policy from tqdm import tqdm from envs.drone_data_utils import classify_pedestrians from envs.drone_data_utils import get_pedestrians_in_viscinity DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") parser = argparse.ArgumentParser() #general arguments parser.add_argument('--render', action='store_true', help="show the env.") parser.add_argument('--num-trajs', type=int, default=50) parser.add_argument('--max-ep-length', type=int, default=600, help='Max length of a single episode.') parser.add_argument('--feat-extractor', type=str, default=None, help='The name of the \ feature extractor to be used in the experiment.') parser.add_argument('--run-exact', action='store_true') parser.add_argument('--subject', type=int, default=None) parser.add_argument('--seed', type=int, default=789) parser.add_argument('--on-server', action='store_true') #**************************************************************************# #arguments related to the environment parser.add_argument('--annotation-file', type=str, default='../envs/expert_datasets/\ university_students/annotation/processed/frame_skip_1/\ students003_processed_corrected.txt', help='The location of the annotation file to \ be used to run the environment.') parser.add_argument('--reward-path' , type=str, nargs='?', default= None) parser.add_argument('--reward-net-hidden-dims', nargs="*", type=int, default=[128]) #**************************************************************************# #agent related arguments parser.add_argument('--agent-type', type=str, default='Potential_field', help='The type of agent to be used to \ in the environment. It can be either a RL/IRL agent, or an alternative controller agent. \ Different agents will then have different arguments.') #arguments for a network based agent parser.add_argument('--policy-path', type=str, nargs='?', default=None) parser.add_argument('--policy-net-hidden-dims', nargs="*", type=int, default=[128]) #arguments for a potential field agent ''' /home/abhisek/Study/Robotics/deepirl/experiments/results/Beluga/IRL Runs/ Drone_environment_univ_students003_DroneFeatureRisk_updated_risk_v2_general_3kiter2019-09-27 10:24:41-reg-0-seed-8788-lr-0.001/ saved-models/17.pt ''' #argument for some other agent #*************************************************************************# #parameters for informatio collector parser.add_argument('--save-plots', action='store_true', default=False) parser.add_argument('--store-results', action='store_true', default=False) parser.add_argument('--save-folder', type=str, default=None, help= 'The name of the folder to \ store experiment related information.') #************************************************************************# parser.add_argument('--reward-analysis', action='store_true', default=False) parser.add_argument('--crash-analysis', action='store_true', default=False) parser.add_argument('--plain-run', action='store_true', default=True) def check_parameters(args): if args.agent_type=='Policy_network': if args.policy_path is None or args.policy_net_hidden_dims is None: print("Please provide correct information to load a policy network.") exit() if args.feat_extractor is None: print("Please provide a feature extractor to continue.") exit() if args.reward_analysis: if args.reward_path is None or args.reward_net_hidden_dims is None: print("Please provide reward network details to perform reward analysis.") exit() #************************************************** thresh1 = 10 thresh2 = 15 step_size = 2 agent_width = 10 obs_width = 10 grid_size = 3 #************************************************** ts=time.time() st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') args = parser.parse_args() #checks if all the parameters are in order check_parameters(args) if args.on_server: matplotlib.use('Agg') os.environ['SDL_VIDEODRIVER'] = 'dummy' #************************************************* #initialize information collector from envs.drone_env_utils import InformationCollector info_collector = InformationCollector(run_info=args.agent_type, thresh=thresh2*step_size, plot_info=args.save_plots, store_info=args.store_results, ) #************************************************* #initialize environment from envs.gridworld_drone import GridWorldDrone consider_heading = True np.random.seed(args.seed) env = GridWorldDrone(display=args.render, is_onehot=False, seed=args.seed, obstacles=None, show_trail=True, is_random=False, subject=args.subject, annotation_file=args.annotation_file, tick_speed=60, obs_width=10, step_size=step_size, agent_width=agent_width, external_control=True, replace_subject=args.run_exact, show_comparison=True, consider_heading=consider_heading, show_orientation=True, rows=576, cols=720, width=grid_size) print('Environment initalized successfully.') #************************************************* #initialize the feature extractor from featureExtractor.drone_feature_extractor import DroneFeatureSAM1, DroneFeatureMinimal from featureExtractor.drone_feature_extractor import DroneFeatureOccup, DroneFeatureRisk from featureExtractor.drone_feature_extractor import DroneFeatureRisk_v2, DroneFeatureRisk_speed, DroneFeatureRisk_speedv2 if args.feat_extractor == 'DroneFeatureSAM1': feat_ext = DroneFeatureSAM1(agent_width=agent_width, obs_width=obs_width, step_size=step_size, grid_size=grid_size, thresh1=thresh1, thresh2=thresh2) if args.feat_extractor == 'DroneFeatureOccup': feat_ext = DroneFeatureOccup(agent_width=agent_width, obs_width=obs_width, step_size=step_size, grid_size=grid_size, window_size=window_size) if args.feat_extractor == 'DroneFeatureRisk': feat_ext = DroneFeatureRisk(agent_width=agent_width, obs_width=obs_width, step_size=step_size, grid_size=grid_size, show_agent_persp=True, thresh1=thresh1, thresh2=thresh2) if args.feat_extractor == 'DroneFeatureRisk_v2': feat_ext = DroneFeatureRisk_v2(agent_width=agent_width, obs_width=obs_width, step_size=step_size, grid_size=grid_size, show_agent_persp=False, thresh1=thresh1, thresh2=thresh2) if args.feat_extractor == 'DroneFeatureRisk_speed': feat_ext = DroneFeatureRisk_speed(agent_width=agent_width, obs_width=obs_width, step_size=step_size, grid_size=grid_size, show_agent_persp=True, thresh1=thresh1, thresh2=thresh2) if args.feat_extractor == 'DroneFeatureRisk_speedv2': feat_ext = DroneFeatureRisk_speedv2(agent_width=agent_width, obs_width=obs_width, step_size=step_size, grid_size=grid_size, thresh1=18, thresh2=30) #************************************************* #initialize the agent if args.agent_type == 'Policy_network': #initialize the network print (args.policy_net_hidden_dims) print (feat_ext.state_rep_size) print (env.action_space) pdb.set_trace() agent = Policy(feat_ext.state_rep_size, env.action_space.n, hidden_dims=args.policy_net_hidden_dims) if args.policy_path: agent.load(args.policy_path) else: print('Provide a policy path') if args.agent_type == 'Potential_field': #initialize the PF agent max_speed = env.max_speed orient_quant = env.orient_quantization orient_div = len(env.orientation_array) speed_quant = env.speed_quantization speed_div = len(env.speed_array) attr_mag = 3 rep_mag = 2 agent = PFController(speed_div, orient_div, orient_quant) if args.agent_type == 'Social_forces': orient_quant = env.orient_quantization orient_div = len(env.orientation_array) speed_quant = env.speed_quantization speed_div = len(env.speed_array) agent = SocialForcesController(speed_div, orient_div, orient_quant) if args.agent_type == 'Default': env.external_control = False agent = None #the person from the video pass #************************************************* #load reward network if present if args.reward_path is not None: from irlmethods.deep_maxent import RewardNet state_size = feat_ext.extract_features(env.reset()).shape[0] reward_net = RewardNet(state_size, args.reward_net_hidden_dims) reward_net.load(args.reward_path) #************************************************* #play def reward_analysis(): ''' A function to analysis the rewards against actions for a given policy. A helpful visualization/ debugging tool ''' for i in range(args.num_trajs): #reset the world state=env.reset() if args.feat_extractor is not None: feat_ext.reset() state_feat = feat_ext.extract_features(state) #pass #reset the information collector info_collector.reset_info(state) done=False t = 0 while t < args.max_ep_length and not done: reward_arr = np.zeros(9) reward_arr_true = np.zeros(9) if args.feat_extractor is not None: #************reward analysis block************* if args.reward_analysis: for i in range(9): #as there are 9 actions action = i state, reward_true, _ , _ = env.step(action) print('Taking a step', action) if args.feat_extractor is not None: state_feat_temp = feat_ext.extract_features(state) reward_arr[i] = reward_net(state_feat_temp) reward_arr_true[i] = reward_true state = env.rollback(1) state_feat = feat_ext.rollback(2, state) #print(reward_arr) #********************************************** #making sure the graphics are consistent #if t>0: #skip if this is the first frame # state_feat = feat_ext.extract_features(state) #********************************************** #selecting the action #action selection for network if args.agent_type=='Policy_network': #pdb.set_trace() action = agent.eval_action(state_feat) else: #action selection for alternate controller namely potential field action = agent.eval_action(state) #pdb.set_trace() #print('The action finally taken :', action) #action = int(np.argmax(reward_arr_true)) #********************************************** if args.reward_analysis: #comparing the reward network true_reward_norm = (reward_arr_true - reward_arr_true.mean())/(reward_arr_true.std()+np.finfo(float).eps) network_reward_norm = (reward_arr - reward_arr.mean())/(reward_arr.std()+np.finfo(float).eps) #print('The true reward normalized:\n', true_reward_norm) #print('The network reward normalized: \n', network_reward_norm) plt.plot(true_reward_norm, c='r') plt.plot(network_reward_norm, c='b') plt.plot(probs.cpu().detach().numpy(), c='g') #action = np.argmax(true_reward_norm) #print('Action taken from here:', action) #comparing the policy network if args.render: feat_ext.overlay_bins(state) else: action = agent.eval_action(state) #pdb.set_trace() state, reward, done, _ = env.step(action) if args.feat_extractor is not None: state_feat = feat_ext.extract_features(state) if args.reward_path is not None: reward = reward_net(state_feat) #if args.reward_analysis: print('Reward : {} for action {}:'.format(reward, action)) #pdb.set_trace() plt.show() info_collector.collect_information_per_frame(state) t+=1 info_collector.collab_end_traj_results() info_collector.collab_end_results() info_collector.plot_information() def crash_analysis(): ''' A visualizing/ debugging tool to analyse with ease the states and conditions right before an agent crashes ''' for i in range(args.num_trajs): #reset the world crash_analysis = False state = env.reset() print('Current subject :', env.cur_ped) if args.feat_extractor is not None: feat_ext.reset() state_feat = feat_ext.extract_features(state) #pass #reset the information collector done = False t = 0 while t < args.max_ep_length and not done: if args.feat_extractor is not None: if args.agent_type == 'Policy_network': action = agent.eval_action(state_feat) else: #action selection for alternate controller namely potential field action = agent.eval_action(state) if args.render: feat_ext.overlay_bins(state) else: action = agent.eval_action(state) #pdb.set_trace() state, reward_true, done, _ = env.step(action) if args.feat_extractor is not None: state_feat = feat_ext.extract_features(state) if crash_analysis: pdb.set_trace() if args.reward_path is not None: reward = reward_net(state_feat) else: reward = reward_true #if args.reward_analysis: print('Reward : {} for action {}:'.format(reward, action)) #pdb.set_trace() if done: print('Crash frame : ', env.current_frame) print('Agent position history :') for i in range(len(feat_ext.agent_state_history)): print(feat_ext.agent_state_history[i]['position'], env.heading_dir_history[i]) if args.crash_analysis: if reward_true < -0.5: if not crash_analysis: if t > 10: state = env.rollback(10) state_feat = feat_ext.rollback(11, state) else: state = env.rollback(t-1) state_feat = feat_ext.rollback(t, state) print('Current frame after rollback :', env.current_frame) for i in range(len(feat_ext.agent_state_history)): print(feat_ext.agent_state_history[i]['position'], env.heading_dir_history[i]) done = False crash_analysis = True else: break else: break t += 1 def agent_drift_analysis(agent=agent, agent_type=args.agent_type, ped_list=None, pos_reset=20, ): ''' if order='by_ped' the drift information is collected per pedestrian if order='by_density' the drift information is collected per density of nearby peds step interval after which to reset the position input : agent, agent_type and pos_reset. Plays the agent on the provided environment with the assigned reset value for the assigned number of trajectories. Can be played with or without render returns : The an array that contains the drift analysis for each of the pedestrians in the list for the given pos_reset. ''' drift_value = 0 segment_counter = 0 env.cur_ped = None print('Starting drift analysis of agent :{}. Reset\ interval :{}'.format(agent_type, pos_reset)) if ped_list is not None: num_trajs = len(ped_list) else: num_trajs = args.num_trajs #an array containing the drift value for each pedestrian drift_info_detailed = np.zeros(num_trajs) for i in tqdm(range(num_trajs)): #reset the world crash_analysis = False if ped_list is None: state = env.reset() else: state = env.reset_and_replace(ped=ped_list[i]) env.goal_state = copy.deepcopy(env.return_position(env.cur_ped, env.current_frame + pos_reset)['position']) env.state['goal_state'] = copy.deepcopy(env.goal_state) state = copy.deepcopy(env.state) #print('Current subject :', env.cur_ped) final_frame = env.final_frame if args.feat_extractor is not None: feat_ext.reset() state_feat = feat_ext.extract_features(state) state_feat = torch.from_numpy(state_feat).type(torch.FloatTensor).to(DEVICE) #pass #reset the information collector info_collector.reset_info(state) done = False t = 0 drift_per_ped = 0 segment_counter_per_ped = 0 abs_counter = env.current_frame while abs_counter < final_frame: stop_points = [] if args.feat_extractor is not None: if agent_type == 'Policy_network': action = agent.eval_action(state_feat) else: #action selection for alternate controller namely potential field action = agent.eval_action(state) ''' if args.render: feat_ext.overlay_bins(state) ''' else: action = agent.eval_action(state) state, reward_true, done, _ = env.step(action) drift_value +=
np.linalg.norm(env.ghost_state['position'] - env.agent_state['position'], 2)
numpy.linalg.norm
# coding=utf-8 # Copyright 2018 The DisentanglementLib Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Downstream classification task.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from disentanglement_lib.evaluation.metrics import utils import numpy as np from six.moves import range import gin.tf @gin.configurable( "downstream_task", blacklist=["ground_truth_data", "representation_function", "random_state"]) def compute_downstream_task(ground_truth_data, representation_function, random_state, num_train=gin.REQUIRED, num_test=gin.REQUIRED, batch_size=16): """Computes loss of downstream task. Args: ground_truth_data: GroundTruthData to be sampled from. representation_function: Function that takes observations as input and outputs a dim_representation sized representation for each observation. random_state: Numpy random state used for randomness. num_train: Number of points used for training. num_test: Number of points used for testing. batch_size: Batch size for sampling. Returns: Dictionary with scores. """ scores = {} for train_size in num_train: mus_train, ys_train = utils.generate_batch_factor_code( ground_truth_data, representation_function, train_size, random_state, batch_size) mus_test, ys_test = utils.generate_batch_factor_code( ground_truth_data, representation_function, num_test, random_state, batch_size) predictor_model = utils.make_predictor_fn() train_err, test_err = _compute_loss( np.transpose(mus_train), ys_train, np.transpose(mus_test), ys_test, predictor_model) size_string = str(train_size) scores[size_string + ":mean_train_accuracy"] =
np.mean(train_err)
numpy.mean
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from torch import Tensor import numpy as np from collections import OrderedDict # https://discuss.pytorch.org/t/torch-round-gradient/28628/6 class Round_fn(torch.autograd.function.InplaceFunction): @staticmethod def forward(ctx, input): ctx.input = input return torch.round(input) @staticmethod def backward(ctx, grad_output): grad_input = grad_output.clone() return grad_input def softmax_init(bits): degree = 4 theta = (bits ** degree)/(bits ** degree).sum return theta """ @inproceedings{ esser2020learned, title={LEARNED STEP SIZE QUANTIZATION}, author={<NAME> and <NAME> and <NAME> and <NAME> and <NAME>}, booktitle={International Conference on Learning Representations}, year={2020}, url={https://openreview.net/forum?id=rkgO66VKDS} } """ def grad_scale(x, scale): yOut = x yGrad = x * scale return (yOut-yGrad).detach() + yGrad class Q_ReLU(nn.Module): def __init__(self, act_func=True, inplace=False): super(Q_ReLU, self).__init__() self.bits = Parameter(Tensor([32])) self.act_func = act_func self.inplace = inplace self.a = Parameter(Tensor(1)) self.c = Parameter(Tensor(1)) def initialize(self, bits, offset, diff): self.bits = Parameter(Tensor(bits), requires_grad=True) self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def initialize_qonly(self, offset, diff): self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def forward(self, x): if self.act_func: x = F.relu(x, self.inplace) if len(self.bits)==1 and self.bits[0]==32: return x else: a = F.softplus(self.a) c = F.softplus(self.c) nlvs = torch.pow(2, self.bits) # soft forward #nlvs = torch.round(bits ** 2) # hard forward x = F.hardtanh(x / a, 0, 1) x_bar = Round_fn.apply(x.mul(nlvs-1)).div_(nlvs-1) * c #x_bar = RoundQuant.apply(x, nlvs) * c return x_bar class Q_ReLU6(Q_ReLU): def __init__(self, act_func=True, inplace=False): super(Q_ReLU6, self).__init__(act_func, inplace) def initialize(self, bits, offset, diff): self.bits = Parameter(Tensor(bits), requires_grad=True) self.n_lvs = 2 ** self.bits self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) if offset + diff > 6: self.a.data.fill_(np.log(np.exp(6)-1)) self.c.data.fill_(np.log(np.exp(6)-1)) else: self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) #print("Q_ReLU6") #print("self.bits", self.bits) #print("self.a", self.a) #print("self.c", self.c) def initialize_qonly(self, offset, diff): if offset + diff > 6: self.a.data.fill_(np.log(np.exp(6)-1)) self.c.data.fill_(np.log(np.exp(6)-1)) else: self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) class Q_Sym(nn.Module): def __init__(self): super(Q_Sym, self).__init__() self.bits = Parameter(Tensor([32])) self.a = Parameter(Tensor(1)) self.c = Parameter(Tensor(1)) def initialize(self, bits, offset, diff): self.bits = Parameter(Tensor(bits), requires_grad=True) self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def initialize_qonly(self, offset, diff): self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def forward(self, x): if len(self.bits)==1 and self.bits[0]==32: return x else: a = F.softplus(self.a) c = F.softplus(self.c) nlvs = torch.pow(2, self.bits) x = F.hardtanh(x / a, -1, 1) x_bar = Round_fn.apply(x.mul(nlvs/2-1)).div_(nlvs/2-1) * c #x_bar = RoundQuant.apply(x, torch.round(nlvs / 2)) * c return x_bar ################## didn't modify Q_HSwish ################# class Q_HSwish(nn.Module): def __init__(self, act_func=True): super(Q_HSwish, self).__init__() self.n_lvs = [1] self.bits = [32] self.act_func = act_func self.a = Parameter(Tensor(1)) self.b = 3/8 self.c = Parameter(Tensor(1)) self.d = -3/8 def initialize(self, n_lvs, offset, diff): self.n_lvs = n_lvs self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def forward(self, x): if self.act_func: x = x * (F.hardtanh(x + 3, 0, 6) / 6) if len(self.bits)==1 and self.bits[0]==32: return x else: a = F.softplus(self.a) c = F.softplus(self.c) x = x + self.b x = F.hardtanh(x / a, 0, 1) x = Round_fn.apply(x.mul(self.n_lvs-1)).div_(self.n_lvs) * c #x = RoundQuant.apply(x, self.n_lvs) * c x = x + self.d return x ########################################################## class Q_Conv2d(nn.Conv2d): def __init__(self, *args, **kargs): super(Q_Conv2d, self).__init__(*args, **kargs) self.bits = Parameter(Tensor([32])) self.a = Parameter(Tensor(1)) self.c = Parameter(Tensor(1)) self.weight_old = None self.computation = 0 def initialize(self, bits): self.bits = Parameter(Tensor(bits), requires_grad=True) self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) max_val = self.weight.data.abs().max().item() self.a.data.fill_(np.log(np.exp(max_val * 0.9)-1)) self.c.data.fill_(np.log(np.exp(max_val * 0.9)-1)) #print(self.bits) def initialize_qonly(self): max_val = self.weight.data.abs().max().item() self.a.data.fill_(np.log(np.exp(max_val * 0.9)-1)) self.c.data.fill_(np.log(np.exp(max_val * 0.9)-1)) def _weight_quant(self): #print(self.bits) a = F.softplus(self.a) c = F.softplus(self.c) nlvs = torch.pow(2, self.bits) w_bar = F.hardtanh(self.weight / a, -1, 1) w_bar = Round_fn.apply(w_bar.mul(nlvs/2-1)).div_(nlvs/2-1) * c #w_bar = RoundQuant.apply(w_bar, torch.round(nlvs / 2)) * c return w_bar def forward(self, x): if len(self.bits)==1 and self.bits[0]==32: return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) else: weight = self._weight_quant() return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class Q_Linear(nn.Linear): def __init__(self, *args, **kargs): super(Q_Linear, self).__init__(*args, **kargs) self.bits = Parameter(Tensor(1), requires_grad=False) self.a = Parameter(Tensor(1)) self.c = Parameter(Tensor(1)) self.weight_old = None self.computation = 0 def initialize(self, bits): #self.bits = Parameter(Tensor(bits), requires_grad=True) self.bits = Parameter(Tensor([8]), requires_grad=False) self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) max_val = self.weight.data.abs().max().item() self.a.data.fill_(np.log(
np.exp(max_val * 0.9)
numpy.exp
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 4 18:13:18 2018 @author: matteo """ """References PGPE: Sehnke, Frank, et al. "Policy gradients with parameter-based exploration for control." International Conference on Artificial Neural Networks. Springer, Berlin, Heidelberg, 2008. """ import numpy as np from baselines import logger import warnings from contextlib import contextmanager import time from baselines.common import colorize @contextmanager def timed(msg): print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta')) def eval_trajectory(env, pol, gamma, horizon, feature_fun): ret = disc_ret = 0 t = 0 ob = env.reset() done = False while not done and t<horizon: s = feature_fun(ob) if feature_fun else ob a = pol.act(s) ob, r, done, _ = env.step(a) ret += r disc_ret += gamma**t * r t+=1 return ret, disc_ret, t #BINARY line search def line_search_binary(pol, newpol, actor_params, rets, alpha, natgrad, normalize=True, use_rmax=True, use_renyi=True, max_search_ite=30, rmax=None, delta=0.2, reassign=None): rho_init = newpol.eval_params() bound_init = newpol.eval_bound(actor_params, rets, pol, rmax, normalize, use_rmax, use_renyi, delta) n_bounds = len(bound_init) low = np.zeros(n_bounds) high = np.nan * np.ones(n_bounds) #old_delta_bound = 0. rho_opt = rho_init i_opt = 0. delta_bound_opt = np.zeros(n_bounds) epsilon_opt = np.zeros(n_bounds) epsilon = np.ones(n_bounds) if max_search_ite<=0: rho = rho_init + alpha*natgrad newpol.set_params(rho) delta_bound = newpol.eval_bound(actor_params, rets, pol, rmax, normalize, use_rmax, use_renyi, delta) - bound_init return rho, np.ones(len(epsilon)), delta_bound, 0 for i in range(max_search_ite): rho = rho_init + reassign(epsilon) * natgrad * alpha newpol.set_params(rho) bound = newpol.eval_bound(actor_params, rets, pol, rmax, normalize, use_rmax, use_renyi, delta) delta_bound = bound - bound_init cond = np.logical_or(delta_bound<=delta_bound_opt, np.isnan(bound)) cond = np.logical_not(cond) if np.any(np.isnan(bound)): warnings.warn('Got NaN bound value') delta_bound = np.where(np.isnan(delta_bound), -np.inf*np.ones(n_bounds), delta_bound) high = np.where(cond, high, epsilon) low = np.where(cond, epsilon, low) rho_opt = np.where(reassign(cond), rho, rho_opt) if np.any(delta_bound>delta_bound_opt): i_opt = i delta_bound_opt = np.where(cond, delta_bound, delta_bound_opt) epsilon_opt = np.where(cond, epsilon, epsilon_opt) old_epsilon = epsilon epsilon = np.where(np.isnan(high), 2*epsilon, (low + high)/2) if np.linalg.norm(old_epsilon - epsilon) < 1e-6: break return rho_opt, epsilon_opt, delta_bound_opt, i_opt+1 def line_search_parabola(pol, newpol, actor_params, rets, alpha, natgrad, normalize=True, use_rmax=True, use_renyi=True, max_search_ite=30, rmax=None, delta=0.2, reassign=None): rho_init = newpol.eval_params() bound_init = newpol.eval_bound(actor_params, rets, pol, rmax, normalize, use_rmax, use_renyi, delta) n_bounds = len(bound_init) epsilon = np.ones(n_bounds) epsilon_old = np.zeros(n_bounds) max_increase=2. delta_bound_tol=1e-4 delta_bound_old = -np.inf * np.ones(n_bounds) rho_old = rho_init if max_search_ite<=0: rho = rho_init + alpha*natgrad newpol.set_params(rho) delta_bound = newpol.eval_bound(actor_params, rets, pol, rmax, normalize, use_rmax, use_renyi, delta) - bound_init return rho, np.ones(len(epsilon)), delta_bound, 0 for i in range(max_search_ite): stepsize = alpha*reassign(epsilon) stepsize = np.where(np.isnan(stepsize), np.zeros(len(stepsize)), stepsize) rho = rho_init + stepsize * natgrad newpol.set_params(rho) bound = newpol.eval_bound(actor_params, rets, pol, rmax, normalize, use_rmax, use_renyi, delta) if np.any(np.isnan(bound)): warnings.warn('Got NaN bound value!') if np.all(np.isnan(bound)): return rho_old, epsilon_old, delta_bound_old, i + 1 epsilon_old = epsilon delta_bound = bound - bound_init epsilon = np.where(delta_bound > (1. - 1. / (2 * max_increase)) * epsilon_old, epsilon_old*max_increase, epsilon_old ** 2 / (2 * (epsilon_old - delta_bound))) if np.all(delta_bound <= delta_bound_old + delta_bound_tol): if np.all(delta_bound_old < 0.): return rho_init, np.zeros(n_bounds), np.zeros(n_bounds), i + 1 else: return rho_old, epsilon_old, delta_bound_old, i+1 epsilon = np.where(np.logical_and(delta_bound <= delta_bound_old + delta_bound_tol, delta_bound_old < 0.), np.zeros(n_bounds), epsilon) epsilon = np.where(np.logical_and(delta_bound <= delta_bound_old + delta_bound_tol, delta_bound_old >= 0.), epsilon_old, epsilon) epsilon = np.where(np.isnan(epsilon), np.zeros(len(epsilon)), epsilon) delta_bound = np.where(np.isnan(delta_bound), np.zeros(len(delta_bound)), delta_bound) delta_bound_old = delta_bound rho_old = rho delta_bound_old = np.where(np.isnan(epsilon_old), np.zeros(len(delta_bound_old)), delta_bound_old) epsilon_old = np.where(np.isnan(epsilon_old), np.zeros(len(epsilon_old)), epsilon_old) epsilon_old = np.where(
np.isinf(epsilon_old)
numpy.isinf
""" General functions that can be used by multiple modules """ import numpy as np import scipy.optimize as spo import logging logger = logging.getLogger(__name__) def solve_root(func, args=(), method="bisect", x0=None, bounds=None, options={}): """ This function will setup and dispatch thermodynamic jobs. Parameters ---------- func : function Function used in job. Can be any of the following scipy methods: "brent", "least_squares", "TNC", "L-BFGS-B", "SLSQP", 'hybr', 'lm', 'linearmixing', 'diagbroyden', 'excitingmixing', 'krylov', 'df-sane', 'anderson', 'hybr_broyden1', 'hybr_broyden2', 'broyden1', 'broyden2', 'bisect'. args : tuple, Optional, default=() Each entry of this list contains the input arguments for each job method : str, Optional, default="bisect" Choose the method used to solve the dew point calculation x0 : float, Optional, default=None Initial guess in parameter to be optimized bounds : tuple, Optional, default=None Parameter boundaries options : dict, Optional, default={} These options are used in the scipy method Returns ------- output : tuple This structure contains the outputs of the jobs given """ if method not in [ "brentq", "least_squares", "TNC", "L-BFGS-B", "SLSQP", "hybr", "lm", "linearmixing", "diagbroyden", "excitingmixing", "krylov", "df-sane", "anderson", "hybr_broyden1", "hybr_broyden2", "broyden1", "broyden2", "bisect", ]: raise ValueError("Optimization method, {}, not supported.".format(method)) if x0 is None: logger.debug("Initial guess in optimization not provided") if np.any(bounds is None): logger.debug("Optimization bounds not provided") if x0 is None and method in [ "broyden1", "broyden2", "anderson", "hybr", "lm", "linearmixing", "diagbroyden", "excitingmixing", "krylov", "df-sane", ]: if np.any(bounds is None): raise ValueError( "Optimization method, {}, requires x0. Because bounds were not provided, so problem cannot be solved.".format( method ) ) else: logger.error( "Optimization method, {}, requires x0, using bisect instead".format( method ) ) method = "bisect" if np.size(x0) > 1 and method in ["brentq", "bisect"]: logger.error( "Optimization method, {}, is for scalar functions, using {}".format( method, "least_squares" ) ) method = "least_squares" if ( np.size(x0) == 1 and np.any(bounds is not None) and np.shape(x0) != np.shape(bounds)[0] ): bounds = tuple([bounds]) if np.any(bounds is None) and method in ["brentq", "bisect"]: if x0 is None: raise ValueError( "Optimization method, {}, requires bounds. Because x0 was not provided, so problem cannot be solved.".format( method ) ) else: logger.error( "Optimization method, {}, requires bounds, using hybr".format(method) ) method = "hybr" if np.any(bounds is not None): for bnd in bounds: if len(bnd) != 2: raise ValueError("bounds are not of length two") #################### Root Finding without Boundaries ################### if method in ["broyden1", "broyden2"]: outer_dict = { "fatol": 1e-5, "maxiter": 25, "jac_options": {"reduction_method": "simple"}, } for key, value in options.items(): outer_dict[key] = value logger.debug( "Using the method, {}, with the following options:\n{}".format( method, outer_dict ) ) sol = spo.root(func, x0, args=args, method=method, options=outer_dict) elif method == "anderson": outer_dict = {"fatol": 1e-5, "maxiter": 25} for key, value in options.items(): outer_dict[key] = value logger.debug( "Using the method, {}, with the following options:\n{}".format( method, outer_dict ) ) sol = spo.root(func, x0, args=args, method=method, options=outer_dict) elif method in [ "hybr", "lm", "linearmixing", "diagbroyden", "excitingmixing", "krylov", "df-sane", ]: outer_dict = {} for key, value in options.items(): outer_dict[key] = value logger.debug( "Using the method, {}, with the following options:\n{}".format( method, outer_dict ) ) sol = spo.root(func, x0, args=args, method=method, options=outer_dict) #################### Minimization Methods with Boundaries ################### elif method in ["TNC", "L-BFGS-B"]: outer_dict = { "gtol": 1e-2 * np.sqrt(np.finfo("float").eps), "ftol": np.sqrt(np.finfo("float").eps), } for key, value in options.items(): outer_dict[key] = value logger.debug( "Using the method, {}, with the following options:\n{}".format( method, outer_dict ) ) if len(bounds) == 2: sol = spo.minimize( func, x0, args=args, method=method, bounds=tuple(bounds), options=outer_dict, ) else: sol = spo.minimize(func, x0, args=args, method=method, options=outer_dict) elif method == "SLSQP": outer_dict = {} for key, value in options.items(): outer_dict[key] = value logger.debug( "Using the method, {}, with the following options:\n{}".format( method, outer_dict ) ) if len(bounds) == 2: sol = spo.minimize( func, x0, args=args, method=method, bounds=tuple(bounds), options=outer_dict, ) else: sol = spo.minimize(func, x0, args=args, method=method, options=outer_dict) #################### Root Finding with Boundaries ################### elif method == "brentq": outer_dict = {"rtol": 1e-7} for key, value in options.items(): if key in ["xtol", "rtol", "maxiter", "full_output", "disp"]: outer_dict[key] = value logger.debug( "Using the method, {}, with the following options:\n{}".format( method, outer_dict ) ) sol = spo.brentq(func, bounds[0][0], bounds[0][1], args=args, **outer_dict) elif method == "least_squares": outer_dict = {} for key, value in options.items(): outer_dict[key] = value logger.debug( "Using the method, {}, with the following options:\n{}".format( method, outer_dict ) ) bnd_tmp = [[], []] for bnd in bounds: bnd_tmp[0].append(bnd[0]) bnd_tmp[1].append(bnd[1]) sol = spo.least_squares( func, x0, bounds=tuple(bnd_tmp), args=args, **outer_dict ) elif method == "bisect": outer_dict = {"maxiter": 100} for key, value in options.items(): if key in ["xtol", "rtol", "maxiter", "full_output", "disp"]: outer_dict[key] = value logger.debug( "Using the method, {}, with the following options:\n{}".format( method, outer_dict ) ) sol = spo.bisect(func, bounds[0][0], bounds[0][1], args=args, **outer_dict) # Given final P estimate if method not in ["brentq", "bisect"]: solution = sol.x logger.info( "Optimization terminated successfully: {} {}".format( sol.success, sol.message ) ) else: logger.info("Optimization terminated successfully: {}".format(sol)) solution = sol return solution def central_difference(x, func, step_size=1e-5, relative=False, args=()): """ Take the derivative of a dependent variable calculated with a given function using the central difference method. Parameters ---------- x : numpy.ndarray Independent variable to take derivative with respect too, using the central difference method. Must be first input of the function. func : function Function used in job to calculate dependent factor. This function should have a single output. step_size : float, Optional, default=1E-5 Either the step size used in the central difference method, or if ``relative=True``, this variable is a scaling factor so that the step size for each value of x is x * step_size. args : tuple, Optional, default=() Each entry of this list contains the input arguments for each job relative : bool, Optional, default=False If False, the step_size is directly used to calculate the derivative. If true, step_size becomes a scaling factor, where the step size for each value of x becomes step_size*x. Returns ------- dydx : numpy.ndarray Array of derivative of y with respect to x, given an array of independent variables. """ if not isiterable(x): x - np.array([x]) elif not isinstance(x, np.ndarray): x = np.array(x) if relative: step = x * step_size if not isiterable(step): step = np.array([step]) step = np.array( [2 * np.finfo(float).eps if xx < np.finfo(float).eps else xx for xx in step] ) else: step = step_size y = func(np.append(x + step, x - step), *args) lx = int(len(y)/2) dydx = (y[:lx] - y[lx:]) / (2.0 * step) return dydx def isiterable(array): """ Check if variable is an iterable type with a length (e.g. np.array or list). Note that this could be tested with ``isinstance(array, Iterable)``, however ``array=np.array(1.0)`` would pass that test and then fail in ``len(array)``. Parameters ---------- array Variable of some type, that should be iterable Returns ------- isiterable : bool Will be True if indexing is possible and False if not. """ array_tmp = np.array(array, dtype=object) tmp = np.shape(array_tmp) if tmp: isiterable = True else: isiterable = False return isiterable def check_length_dict(dictionary, keys, lx=None): """ This function compared the entries, keys, in the provided dictionary to ensure they're the same length. All entries in the list ``keys``, will be made into numpy arrays (if present). If a float or array of length one is provided, it will be expanded to the length of other arrays. Parameters ---------- dictionary : dict Dictionary containing all or some of the keywords, ``keys``, of what should be arrays of identical size. keys : list Possible keywords representing array entries lx : int, Optional, default=None The size that arrays should conform to Returns ------- new_dictionary : dict Dictionary of arrays of identical size. """ if lx == None: lx_array = [] for key in keys: if key in dictionary: tmp = dictionary[key] if np.shape(tmp): lx_array.append(len(tmp)) else: lx_array.append(1) if not len(lx_array): raise ValueError( "None of the provided keys are found in the given dictionary" ) lx = max(lx_array) new_dictionary = {} for key in keys: if key in dictionary: tmp = dictionary[key] if isiterable(tmp): l_tmp = len(tmp) if l_tmp == 1: new_dictionary[key] = np.array([tmp[0] for x in range(lx)], float) elif l_tmp == lx: new_dictionary[key] = np.array(tmp, float) else: raise ValueError( "Entry, {}, should be length {}, not {}".format(key, lx, l_tmp) ) else: new_dictionary[key] = np.array([tmp for x in range(lx)], float) return new_dictionary def set_defaults(dictionary, keys, values, lx=None): """ This function checks a dictionary for the given keys, and if it's not there, the appropriate value is added to the dictionary. Parameters ---------- dictionary : dict Dictionary of data keys : list Keys that should be present (of the same length as ``lx``) values : list Default values for the keys that aren't in dictionary lx : int, Optional, default=None If not None, and values[i] is a float, the key will be set to an array of length, ``lx``, populated by ``values[i]`` Returns ------- new_dictionary : dict Dictionary of arrays of identical size. """ new_dictionary = dictionary.copy() key_iterable = isiterable(keys) if not isiterable(values): if key_iterable: values = np.ones(len(keys)) * values else: values =
np.array([values])
numpy.array
from os import read import os import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np import datetime import sys from tqdm import tqdm import cppsolver as cs from ..solver import Solver, Solver_jac from ..preprocess import Reading_Data, LM_data, LM_data_2mag from ..filter import lowpass_filter, mean_filter, median_filter, Magnet_KF, Magnet_UKF, Magnet_KF_cpp from ..preprocess import read_data def ang_convert(x): a = x//(2*np.pi) result = x-a*(2*np.pi) if result > np.pi: result -= np.pi * 2 return result def sigmoid(x): return 1 / (1 + np.exp(-x)) def show_track_1mag_csv_cpp(reading_path, cali_path, gt_path, pSensor, My_M, use_kalman=False): fig = plt.figure() ax = fig.gca(projection='3d') ax.set_xlim([-10, 15]) ax.set_ylim([-10, 15]) ax.set_zlim([0, 25]) # ax.set_title("Reconstructed Magnet Position") ax.set_xlabel('x(cm)') ax.set_ylabel('y(cm)') ax.set_zlabel('z(cm)') # M_choice = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] # M_choice = [0.8, 1, 1.2, 1.4] M_choice = [2] reading_data = Reading_Data(data_path=reading_path, cali_path=cali_path) data = reading_data.readings lm_data = LM_data(gt_path) # set the origin of the gt lm_data.offset = np.array([-1.5614192, -0.31039926, 0.90800506]) result_parameter = [] color = ['r', 'b', 'g', 'y', 'm'] for index, M in enumerate(M_choice): # model = Solver(1) # model = Finexus_Solver(-5e-2, -5e-2, 8e-2) pred_position = [] changingM = [] changingG = [] changingTheta = [] changingPhy = [] directions = [] SNR = [] cut = 5 starting_point = lm_data.get_gt(reading_data.tstamps[cut])[0] if use_kalman: kf_params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( My_M), 1e-2 * starting_point[0], 1e-2 * starting_point[1], 1e-2 * starting_point[2], 0, 0]) model = Magnet_KF_cpp( 1, pSensor, [0.8, 0.8, 1.5]*pSensor.shape[0], kf_params, dt=1/17, ord=3) else: params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( My_M), 1e-2 * starting_point[0], 1e-2 * starting_point[1], 1e-2 * starting_point[2], 0, 0]) params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( My_M), 1e-2 * (-2), 1e-2 * (2), 1e-2 * (20), 0, 0]) for i in tqdm(range(cut, data.shape[0] - cut)): # fix m value and gx gy gz datai = data[i].reshape(-1, 3) if use_kalman: model.predict() result = model.update(datai) else: result = cs.solve_1mag( datai.reshape(-1), pSensor.reshape(-1), params) params = result.copy() [x0, y0, z0, Gx, Gy, Gz] = [ result[4] * 1e2, result[5] * 1e2, result[6] * 1e2, result[0], result[1], result[2] ] # [m, theta, phy] = [np.exp(result['m0'].value), np.pi * sigmoid( # result['theta0'].value), np.pi * np.tanh(result['phy0'].value)] [m, theta, phy, direction] = [ np.exp(result[3]), ang_convert(result[7]), ang_convert(result[8]), np.array([np.sin(ang_convert(result[7]))*np.cos(ang_convert(result[8])), np.sin(ang_convert(result[7]))*np.sin(ang_convert(result[8])), np.cos(ang_convert(result[7]))]), ] # [x, y, z, m] = [result['X'].value*1e2, result['Y'].value*1e2, # result['Z'].value*1e2, result['m'].value] G = np.array([Gx, Gy, Gz]) noise = np.linalg.norm(G, 2) signal = np.linalg.norm(datai - G, 2) pred_position.append(x0) pred_position.append(y0) pred_position.append(z0) changingM.append(m) changingTheta.append(theta) changingPhy.append(phy) changingG.append([Gx, Gy, Gz]) directions.append(direction) changingG = np.array(changingG) changingM = np.array(changingM) changingTheta = np.array(changingTheta) changingPhy = np.array(changingPhy) changingAng = np.stack([changingTheta, changingPhy], axis=0).T directions = np.stack(directions, axis=0) pred_position = np.array(pred_position).reshape(-1, 3) compare_label = [' ', '(fixing G)'] ax.plot(pred_position[:, 0], pred_position[:, 1], pred_position[:, 2], c=color[index % len(color)], label='Magnet') print(np.mean(pred_position, axis=0)) # sensor position ax.scatter(1e2 * pSensor[:, 0], 1e2 * pSensor[:, 1], 1e2 * pSensor[:, 2], c='r', s=1, alpha=0.5) # calculate loss gt_route = [] losses = {} losses_count = {} gt_directions = [] losses_angle = {} losses_count_angle = {} for i in range(pred_position.shape[0]): # Get gt gt = lm_data.get_gt(reading_data.tstamps[i + cut]) gt_pos = gt[0] gt_route.append(gt_pos) gt_direction = gt[1] gt_directions.append(gt_direction) # calculate loss dis = np.linalg.norm(gt_pos - np.mean(pSensor, axis=0), 2) loss1 = np.linalg.norm(gt_pos - pred_position[i], 2) loss2 = np.arccos(np.dot(gt_direction, directions[i])) # store route loss if not dis in losses.keys(): losses[dis] = loss1 losses_count[dis] = 1 else: losses[dis] += loss1 losses_count[dis] += 1 # store ang loss if not dis in losses_angle.keys(): losses_angle[dis] = loss2 losses_count_angle[dis] = 1 else: losses_angle[dis] += loss2 losses_count_angle[dis] += 1 gt_route = np.stack(gt_route, axis=0) gt_directions = np.stack(gt_directions, axis=0) ax.plot(gt_route[:, 0], gt_route[:, 1], gt_route[:, 2], c='b', alpha=0.5, linewidth=2, label='Ground Truth') plt.legend() # store the gt route and the reconstructed route tmp = reading_path.split('/') file_name = tmp[-1].split('.')[0] + '.npz' tmp.pop(0) tmp.pop(-1) result_path = os.path.join('result', 'reconstruction_result', *tmp) if not os.path.exists(result_path): os.makedirs(result_path) np.savez(os.path.join(result_path, file_name), gt=gt_route, result=pred_position, gt_ang=gt_directions, result_ang=directions, G=changingG) fig5 = plt.figure() plt.title("Reconstuct Loss") plot_loss_data = [] for dis in sorted(losses.keys()): plot_loss_data.append(dis) plot_loss_data.append(losses[dis] / losses_count[dis]) plot_loss_data = np.array(plot_loss_data).reshape(-1, 2) plt.plot(plot_loss_data[:, 0], plot_loss_data[:, 1], label='Position loss') plt.legend() fig6 = plt.figure() plt.title("Reconstuct angle Loss") plot_loss_data = [] for dis in sorted(losses_angle.keys()): plot_loss_data.append(dis) plot_loss_data.append(losses_angle[dis] / losses_count_angle[dis]) plot_loss_data = np.array(plot_loss_data).reshape(-1, 2) plt.plot(plot_loss_data[:, 0], plot_loss_data[:, 1], label='Ang loss') plt.legend() fig2 = plt.figure() plt.title("Magnet Moment") # plt.ylim(0, 10) plt.plot(changingM, label='M') plt.legend() fig3 = plt.figure() plt.title("G") plt.plot(changingG[:, 0], label='Gx') plt.plot(changingG[:, 1], label='Gy') plt.plot(changingG[:, 2], label='Gz') plt.legend() fig4 = plt.figure() plt.title("orientation") plt.ylim(-5, 5) plt.plot(changingTheta, label='theta') plt.plot(changingPhy, label='phy') plt.legend() plt.show() # plt.savefig("result/result.jpg", dpi=900) def show_track_2mag_csv_cpp(reading_path, cali_path, gt_path, pSensor, My_M, use_kalman=False): fig = plt.figure() ax = fig.gca(projection='3d') ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) # ax.set_zlim([-2, 30]) ax.set_title("Reconstructed Magnet Position") ax.set_xlabel('x(cm)') ax.set_ylabel('y(cm)') ax.set_zlabel('z(cm)') # M_choice = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] # M_choice = [0.8, 1, 1.2, 1.4] M_choice = [2] reading_data = Reading_Data(data_path=reading_path, cali_path=cali_path) data = reading_data.readings lm_data = LM_data_2mag(gt_path) # set the origin of the gt lm_data.offset = np.array([-1.5614192, -0.31039926, 0.90800506]) result_parameter = [] color = ['r', 'b', 'g', 'y', 'm'] for index, M in enumerate(M_choice): pred_position = [] changingM = [] changingG = [] changingTheta = [] changingPhy = [] changingTheta2 = [] changingPhy2 = [] changingDir = [] changingDir2 = [] SNR = [] cut = 0 starting_point = lm_data.get_gt(reading_data.tstamps[cut]) params = { 'X0': 1e-2 * starting_point[0][0], 'Y0': 1e-2 * starting_point[0][1], 'Z0': 1e-2 * starting_point[0][2], 'm0': np.log(My_M), 'theta0': 0.1, 'phy0': 0.1, 'X1': 1e-2 * starting_point[2][0], 'Y1': 1e-2 * starting_point[2][1], 'Z1': 1e-2 * starting_point[2][2], 'm1': np.log(My_M), 'theta1': 0.1, 'phy1': 0.1, 'gx': 0, 'gy': 0, 'gz': 0, } params = np.array([ 40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log(My_M), 1e-2 * starting_point[0][0], 1e-2 * starting_point[0][1], 1e-2 * starting_point[0][2], 0, 0, 1e-2 * starting_point[2][0], 1e-2 * starting_point[2][1], 1e-2 * starting_point[2][2], 0, 0, ]) params = np.array([ 40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0,
np.log(3)
numpy.log
import os import time import math import json import codecs import argparse ##python自带的命令行参数解析包 import numpy as np from tqdm import tqdm from numpy import finfo from sklearn.metrics import accuracy_score from transformers import BertTokenizer from pytorch_pretrained_bert import BertModel import torch import torch.nn as nn import torch.distributed as dist from torch.autograd import Variable from torch.nn import functional as F from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from distributed import apply_gradient_allreduce import parse_nk from models import G2PTransformerMask, poly_tonesandhi, Cascaded_Tacotron2 from data_utils import TextMelLoader, TextMelCollate, G2PDatasetMask, get_dataloader, polyTTS_get_dataloader from loss_function import Tacotron2Loss from logger import Tacotron2Logger from hparams import create_hparams def reduce_tensor(tensor, n_gpus): ##? rt = tensor.clone() ## 返回一个张量的副本,其与原张量的尺寸和数据类型相同 dist.all_reduce(rt, op=dist.reduce_op.SUM) ## 在所有机器上减少张量数据,通过获得最终的结果。在调用之后张量在所有过程中都是按位相同的。 rt /= n_gpus ## /=是除法赋值运算符 rt=rt/n_gpus return rt def init_distributed(hparams, n_gpus, rank, group_name): assert torch.cuda.is_available(), "Distributed mode requires CUDA." ## cuda是否可用,cuda(compute unified device architecture)是显卡厂商NVIDIA推出的运算平台 print("Initializing Distributed") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) ## torhc.cuda.set_device(device)设置当前设备。不鼓励使用此函数来设置,在大多数情况下,最好使用CUDA_VISIBLE_DEVICES环境变量。参数device(int)-所选设备,如果此参数为负,则此函数是无效操作。 ## torch.cuda.device_count() 返回可得到的GPU数量 # Initialize distributed communication dist.init_process_group( backend=hparams.dist_backend, init_method=hparams.dist_url, world_size=n_gpus, rank=rank, group_name=group_name) ## pytorch分布式训练 ## backend str/Backend 是通信所用的后端,可以是'nccl''gloo'或者是一个torch.distributed.Backend类(Backend.GLOO) ## init_method str 这个URL指定了如何初始化互相通信的进程 ## world_size init 执行训练的所有进程数 ## rank int 这个进程的编号,也是其优先级 ## group_name str 进程所在group的name print("Done initializing distributed") def prepare_dataloaders(hparams): # Get data, data loaders and collate function ready ## if not 用法: if true才执行 (即 if not false) if not hparams.load_mel_from_disk: trainset = TextMelLoader(hparams.training_files, hparams.polyphone_dict_files, hparams.mask_dict_files, hparams) valset = TextMelLoader(hparams.validation_files, hparams.polyphone_dict_files, hparams.mask_dict_files, hparams) else: trainset = TextMelLoader(hparams.mel_training_files, hparams.polyphone_dict_files, hparams.mask_dict_files, hparams) valset = TextMelLoader(hparams.mel_validation_files, hparams.polyphone_dict_files, hparams.mask_dict_files, hparams) collate_fn = TextMelCollate(hparams.n_frames_per_step, hparams.num_classes) if hparams.distributed_run: ##False train_sampler = DistributedSampler(trainset) ## 在多机多卡情况下分布式训练数据的读取,不同的卡读到的数据应该是不同的,利用sampler确保dataloader只会load到整个数据集的一个特定子集 ## 它为每个子进程划分出一部分数据集,以避免不同进程之间的数据重复。 shuffle = False else: train_sampler = None shuffle = True ## 定义一个可迭代的数据加载器 train_loader = DataLoader(trainset, num_workers=0, shuffle=shuffle, sampler=train_sampler, batch_size=hparams.batch_size, pin_memory=False, drop_last=True, collate_fn=collate_fn) ## dataset(Dataset类,决定数据从哪里读取及如何读取) batch_size(每个batch的大小,批大小) shuffle(是否进行shuffle操作,每个epoch是否乱序) ## num_workers(加载数据时使用几个子进程) drop_last(当样本数不能被batchsize整除时,是否舍弃最后一批数据) return train_loader, valset, collate_fn def prepare_directories_and_logger(output_directory, log_directory, rank): if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) logger = Tacotron2Logger(os.path.join(output_directory, log_directory)) else: logger = None return logger def load_model(hparams): model = Cascaded_Tacotron2(hparams).cuda()## 参数是hparams,因为继承了nn.module,所以有.cuda() if hparams.fp16_run: ## False model.decoder.attention_layer.score_mask_value = finfo('float16').min ##? if hparams.distributed_run: ## False model = apply_gradient_allreduce(model) return model def warm_start_model(checkpoint_path, model, ignore_layers): assert os.path.isfile(checkpoint_path) print("Warm starting model from checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model_dict = checkpoint_dict['state_dict'] if len(ignore_layers) > 0: model_dict = {k: v for k, v in model_dict.items() if k not in ignore_layers} dummy_dict = model.state_dict() dummy_dict.update(model_dict) model_dict = dummy_dict model.load_state_dict(model_dict) return model def load_checkpoint(checkpoint_path, model, optimizer): assert os.path.isfile(checkpoint_path) print("Loading checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model.load_state_dict(checkpoint_dict['state_dict']) optimizer.load_state_dict(checkpoint_dict['optimizer']) learning_rate = checkpoint_dict['learning_rate'] iteration = checkpoint_dict['iteration'] print("Loaded checkpoint '{}' from iteration {}" .format( checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, filepath): print("Saving model and optimizer state at iteration {} to {}".format( iteration, filepath)) torch.save({'iteration': iteration, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'learning_rate': learning_rate}, filepath) def validate(model, criterion, valset, iteration, batch_size, n_gpus, collate_fn, logger, distributed_run, rank): """Handles all the validation scoring and printing""" model.eval() with torch.no_grad(): val_sampler = DistributedSampler(valset) if distributed_run else None val_loader = DataLoader(valset, sampler=val_sampler, num_workers=0, shuffle=False, batch_size=batch_size, pin_memory=False, collate_fn=collate_fn) val_loss = 0.0 val_mel_loss = 0.0 val_gate_loss = 0.0 val_select_loss = 0.0 for i, batch in enumerate(val_loader): x, y = model.parse_batch(batch) y_pred = model(x) # original_words = x[3] # # print('CHECK original_words IN validate:', original_words) # _, _, select_target = y # select_target = np.array(select_target.cpu()) # # print('CHECK select_target IN validate:', select_target) # np.savetxt('select_target.txt',select_target) # _, _, _, _, select_pred = y_pred # select_pred = np.array(select_pred.cpu()) # select_pred = np.argmax(select_pred, axis=2) # # print('CHECK select_pred IN validate:', select_pred) # np.savetxt('select_pred.txt',select_pred) # mask_padded_to_show = np.array(mask_padded.cpu()) # mask_padded_to_show = np.sum(mask_padded_to_show, axis=2) # # print('CHECK mask_padded_to_show IN validate:', mask_padded_to_show) # np.savetxt('select_mask.txt',mask_padded_to_show) mask_padded = x[3] loss, mel_loss, gate_loss, select_loss = criterion(y_pred, y, mask_padded) if distributed_run: reduced_val_loss = reduce_tensor(loss.data, n_gpus).item() reduced_val_mel_loss = reduce_tensor(mel_loss.data, n_gpus).item() reduced_val_gate_loss = reduce_tensor(gate_loss.data, n_gpus).item() reduced_val_select_loss = reduce_tensor(select_loss.data, n_gpus).item() else: reduced_val_loss = loss.item() reduced_val_mel_loss = mel_loss.item() reduced_val_gate_loss = gate_loss.item() reduced_val_select_loss = select_loss.item() val_loss += reduced_val_loss val_mel_loss += reduced_val_mel_loss val_gate_loss += reduced_val_gate_loss val_select_loss += reduced_val_select_loss val_loss = val_loss / (i + 1) val_mel_loss = val_mel_loss / (i + 1) val_gate_loss = val_gate_loss / (i + 1) val_select_loss = val_select_loss / (i + 1) model.train() if rank == 0: print("Validation loss {}: {:9f} ".format(iteration, val_loss)) logger.log_validation(val_loss, val_mel_loss, val_gate_loss, val_select_loss, model, y, y_pred, iteration) def train_tts(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, rank, group_name, hparams): """Training and validation logging results to tensorboard and stdout Params ------ output_directory (string): directory to save checkpoints log_directory (string) directory to save tensorboard logs checkpoint_path(string): checkpoint path n_gpus (int): number of gpus rank (int): rank of current gpu hparams (object): comma separated list of "name=value" pairs. """ if hparams.distributed_run: init_distributed(hparams, n_gpus, rank, group_name) torch.manual_seed(hparams.seed) ##设置(CPU)生成随机数的种子,在每次重新运行程序时,同样的随机数生成代码得到的是同样的结果。 torch.cuda.manual_seed(hparams.seed)## 设置当前GPU的随机数生成种子 torch.cuda.manual_seed_all(seed)设置所有GPU的随机数生成种子 ## 手动设置种子一般可用于固定随机初始化的权重值,这样就可以让每次重新从头训练网络时的权重的初始值虽然是随机生成的但却是固定的。 model = load_model(hparams) learning_rate = hparams.learning_rate # optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, # weight_decay=hparams.weight_decay) for name, param in model.named_parameters(): # frozen except tts # if name.split('.')[0] == 'poly_phoneme_classifier': # param.requires_grad = False # frozen poly module except tone sandhi & tts # if name.split('.')[0] == 'poly_phoneme_classifier': # if name.split('.')[1] != 'linear_pre' and name.split('.')[1] != 'conv_layers' and name.split('.')[1] != 'linear_aft': # param.requires_grad = False # frozen except structure CNN & tonesandhi & tts if name.split('.')[0] == 'poly_phoneme_classifier': if name.split('.')[1] == 'g2ptransformermask': if name.split('.')[2] != 'structure_cnn_tts': param.requires_grad = False elif name.split('.')[1] != 'linear_pre' and name.split('.')[1] != 'conv_layers' and name.split('.')[1] != 'linear_aft': param.requires_grad = False # else: # param.requires_grad = False training_parameters_list = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.Adam(training_parameters_list, lr=learning_rate, weight_decay=hparams.weight_decay) if hparams.fp16_run: from apex import amp model, optimizer = amp.initialize( model, optimizer, opt_level='O2') ## apex是一款由Nvidia开发的基于PyTorch的混合精度训练加速神奇,用短短几行代码就能实现不同程度的混合精度加速,训练时间直接缩小一半。 ## fp16:半精度浮点数,是一种计算机使用的二进制浮点数数据类型,使用2字节(16位)存储。 ## fp16优点:减少显存占用;加快训练和推断的计算;张量核心的普及。缺点:量化误差。 if hparams.distributed_run: model = apply_gradient_allreduce(model) criterion = Tacotron2Loss() logger = prepare_directories_and_logger( output_directory, log_directory, rank) train_loader, valset, collate_fn = prepare_dataloaders(hparams) # Load checkpoint if one exists iteration = 0 epoch_offset = 0 if checkpoint_path is not None: if warm_start: model = warm_start_model( checkpoint_path, model, hparams.ignore_layers) else: model, optimizer, _learning_rate, iteration = load_checkpoint( checkpoint_path, model, optimizer) if hparams.use_saved_learning_rate: learning_rate = _learning_rate iteration += 1 # next iteration is iteration + 1 epoch_offset = max(0, int(iteration / len(train_loader))) model.train() is_overflow = False # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, hparams.epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): start = time.perf_counter() ## 返回当前的计算机系统时间 for param_group in optimizer.param_groups: param_group['lr'] = learning_rate # print('CHECK batch:', batch) model.zero_grad() x, y = model.parse_batch(batch) y_pred = model(x) mask_padded = x[3] loss, mel_loss, gate_loss, select_loss = criterion(y_pred, y, mask_padded) ## Tacotron2Loss(model_output,targets,mask_padded) ## 区分几种loss if hparams.distributed_run: reduced_loss = reduce_tensor(loss.data, n_gpus).item() reduced_val_mel_loss = reduce_tensor(mel_loss.data, n_gpus).item() reduced_val_gate_loss = reduce_tensor(gate_loss.data, n_gpus).item() reduced_val_select_loss = reduce_tensor(select_loss.data, n_gpus).item() else: reduced_loss = loss.item() reduced_val_mel_loss = mel_loss.item() reduced_val_gate_loss = gate_loss.item() reduced_val_select_loss = select_loss.item() if hparams.fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # print('CHECK structure_cnn.convs.0.weight IS CHANGE:', model.structure_cnn.convolutions[0][0].conv.weight) if hparams.fp16_run: grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), hparams.grad_clip_thresh) is_overflow = math.isnan(grad_norm) else: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), hparams.grad_clip_thresh) optimizer.step() ## 在用pytorch训练模型时,通常会在遍历epochs的过程中依次用到optimizer.zero_grad(),loss.backward(),optimizer.step()三个函数,总的来说,这三个函数的作用是先将梯度归零(optimizer.zero_grad()), ## 然后反向传播计算得到每个参数的梯度值(loss.backward()),最后通过梯度下降执行一步参数更新(optimizer.step()) if not is_overflow and rank == 0: duration = time.perf_counter() - start ## time.perf_counter()返回当前的计算机系统时间,只有连续两次perf_counter()进行差值才能有意义,一般用于计算程序运行时间。 print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format( iteration, reduced_loss, grad_norm, duration)) logger.log_training( reduced_loss, reduced_val_mel_loss, reduced_val_gate_loss, reduced_val_select_loss, grad_norm, learning_rate, duration, iteration) if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0): validate(model, criterion, valset, iteration, hparams.batch_size, n_gpus, collate_fn, logger, hparams.distributed_run, rank) if rank == 0: checkpoint_path = os.path.join( output_directory, "checkpoint_{}".format(iteration)) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 class Mask_Softmax(nn.Module): def __init__(self, plus=1.0): super(Mask_Softmax, self).__init__() self.plus = plus def forward(self, logits, output_mask): logits = logits + (output_mask + 1e-45).log() return torch.nn.functional.log_softmax(logits, dim=-1) class Gumbel_Softmax(nn.Module): def __init__(self, temperature=1): super(Gumbel_Softmax, self).__init__() self.softmax = nn.Softmax(dim=-1) ## dim=-1 最后一维取softmax # initial temperature for gumbel softmax (default: 1) self.temperature = temperature self.mask_softmax = Mask_Softmax() # self.mask_softmax = nn.LogSoftmax() def forward(self, logits, output_mask, hard=False): y = self._gumbel_softmax_sample(logits, output_mask, hard) return y def _sample_gumbel(self, shape, eps=1e-20): U = torch.rand(shape) return -torch.log(-torch.log(U + eps) + eps) def _gumbel_softmax_sample(self, logits, output_mask, hard=False): sample = Variable(self._sample_gumbel(logits.size()[-1]), requires_grad=True) if logits.is_cuda: sample = sample.cuda() y = logits + sample # return self.softmax(y / self.temperature) y_soft = self.mask_softmax(y / self.temperature, output_mask) # y_soft = self.mask_softmax(y / self.temperature) if hard: # Straight through. index = y_soft.max(-1, keepdim=True)[1] y_hard = torch.zeros_like(logits).scatter_(-1, index, 1.0) ret = y_hard - y_soft.detach() + y_soft else: # Reparametrization trick. ret = y_soft return ret def masked_augmax(logits, mask, dim, min_val=-1e7): logits = logits.exp() logits = logits.mul(mask) # one_minus_mask = (1.0 - mask).byte() # replaced_vector = vector.masked_fill(one_minus_mask, min_val) # max_value, _ = replaced_vector.max(dim=dim) max_value = torch.argmax(logits, dim=1) return max_value def train_poly(args, hparams): torch.manual_seed(42) torch.cuda.manual_seed(42) np.random.seed(42) print('CHECK HERE train poly ONLY') train_dataloader = get_dataloader(hparams.use_output_mask, hparams.train_file, hparams.train_label, hparams, hparams.poly_batch_size, hparams.poly_max_length, shuffle=True) val_dataloader = get_dataloader(hparams.use_output_mask, hparams.val_file, hparams.val_label, hparams, hparams.poly_batch_size, hparams.poly_max_length, shuffle=True) # test_dataloader = get_dataloader(args.use_output_mask, args.test_file, args.test_label, # args.class2idx, args.merge_cedict, args.poly_batch_size, # args.max_length, shuffle=True) with codecs.open(hparams.class2idx, 'r', 'utf-8') as usernames: class2idx = json.load(usernames) print("num classes: {}".format(len(class2idx))) num_classes = len(class2idx) model = G2PTransformerMask(num_classes, hparams) device = torch.cuda.current_device() ## 查看当前使用的gpu序号 model = model.to(device) ## 将模型加载到指定设备上 for name, param in model.named_parameters(): # frozen syntax module if name.split('.')[0] != 'tree_shared_linear' and name.split('.')[0] != 'structure_cnn_poly' \ and name.split('.')[0] != 'linear_pre' and name.split('.')[0] != 'poly_phoneme_classifier' \ and name.split('.')[0] != 'linear_aft': param.requires_grad = False training_parameters_list = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.Adam(training_parameters_list, lr=hparams.poly_lr) criterion = nn.NLLLoss() # mask_criterion = Mask_Softmax() mask_criterion = Gumbel_Softmax() model_dir = "./save/poly_only_syntax_frozen" if not os.path.exists(model_dir): os.makedirs(model_dir) best_acc = 0 for epoch in range(hparams.poly_epochs): model.train() for idx, batch in enumerate(train_dataloader, start=1): # print('CEHCK batch:', batch) # if idx > 200: # break batch = tuple(t.to(device) for t in batch) if hparams.use_output_mask: input_ids, poly_ids, labels, output_mask = batch mask = torch.sign(input_ids) inputs = {"input_ids": input_ids, "poly_ids": poly_ids, "attention_mask": mask} else: input_ids, poly_ids, labels = batch mask = torch.sign(input_ids) ## torch.sign(input,out=None) 符号函数,返回一个新张量,包含输入input张量每个元素的正负(大于0的元素对应1,小于0的元素对应-1,0还是0) inputs = {"input_ids": input_ids, "poly_ids": poly_ids, "attention_mask": mask} # inputs = {"input_ids": input_ids, # "poly_ids": poly_ids, # "attention_mask": mask} logits, _ = model(**inputs) batch_size = logits.size(0) logits = logits[torch.arange(batch_size), poly_ids] # logits = mask_criterion(logits, output_mask, True) logits = mask_criterion(logits, output_mask) loss = criterion(logits, labels) loss.backward() # nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() model.zero_grad() if idx % 100 == 0: ## %取余 print("loss : {:.4f}".format(loss.item())) all_preds = [] all_mask_preds = [] all_labels = [] model.eval() for batch in tqdm(val_dataloader, total=len(val_dataloader)): batch = tuple(t.to(device) for t in batch) # input_ids, poly_ids, labels = batch # mask = torch.sign(input_ids) # inputs = {"input_ids": input_ids, # "poly_ids": poly_ids, # "attention_mask": mask} if hparams.use_output_mask: input_ids, poly_ids, labels, output_mask = batch mask = torch.sign(input_ids) inputs = {"input_ids": input_ids, "poly_ids": poly_ids, "attention_mask": mask} else: input_ids, poly_ids, labels = batch mask = torch.sign(input_ids) inputs = {"input_ids": input_ids, "poly_ids": poly_ids, "attention_mask": mask} with torch.no_grad(): logits, _ = model(**inputs) batch_size = logits.size(0) logits = logits[torch.arange(batch_size), poly_ids] # logits = logits.exp() # output_mask_false = 1.0 - output_mask # logits = logits - output_mask_false # logits = mask_criterion(logits, output_mask, True) logits = mask_criterion(logits, output_mask) preds = torch.argmax(logits, dim=1).cpu().numpy() mask_preds = masked_augmax(logits, output_mask, dim=1).cpu().numpy() if not (preds == mask_preds).all(): print('CHECK preds:', preds) print('CHECK mask_preds:', mask_preds) print('CHECK labels:', labels) print('CHECK output_mask:', np.where(output_mask.cpu().numpy()==1.0)) all_preds.append(preds) all_mask_preds.append(mask_preds) all_labels.append(labels.cpu().numpy()) preds = np.concatenate(all_preds, axis=0) mask_preds = np.concatenate(all_mask_preds, axis=0) labels = np.concatenate(all_labels, axis=0) # print('CHECK preds:', preds) # print('CHECK mask_preds:', mask_preds) # print('CHECK labels:', labels) val_acc = accuracy_score(labels, preds) mask_val_acc = accuracy_score(labels, mask_preds) pred_diff_acc = accuracy_score(preds, mask_preds) print("epoch :{}, acc: {:.2f}, mask acc: {:.2f}, pred_diff_acc: {:.2f}".format(epoch, val_acc*100, mask_val_acc*100, pred_diff_acc*100)) if val_acc > best_acc: best_acc = val_acc state_dict = model.state_dict() save_file = os.path.join( model_dir, "{:.2f}_model.pt".format(val_acc*100)) torch.save(state_dict, save_file) def train_poly_tts(args, hparams): torch.manual_seed(42) torch.cuda.manual_seed(42) np.random.seed(42) print('CHECK HERE train TTS poly') train_dataloader = polyTTS_get_dataloader(hparams.use_output_mask, hparams.training_files, hparams, hparams.poly_batch_size, hparams.poly_max_length, shuffle=True) val_dataloader = polyTTS_get_dataloader(hparams.use_output_mask, hparams.validation_files, hparams, hparams.poly_batch_size, hparams.poly_max_length, shuffle=True) with codecs.open(hparams.class2idx, 'r', 'utf-8') as usernames: class2idx = json.load(usernames) print("num classes: {}".format(len(class2idx))) num_classes = len(class2idx) model = poly_tonesandhi(num_classes, hparams) device = torch.cuda.current_device() model = model.to(device) for name, param in model.named_parameters(): # frozen syntax module if name.split('.')[0] == 'g2ptransformermask': if name.split('.')[1] != 'tree_shared_linear' and name.split('.')[1] != 'structure_cnn_poly' \ and name.split('.')[1] != 'linear_pre' and name.split('.')[1] != 'poly_phoneme_classifier' \ and name.split('.')[1] != 'linear_aft': param.requires_grad = False training_parameters_list = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.Adam(training_parameters_list, lr=hparams.poly_lr) # criterion = nn.CrossEntropyLoss() criterion = nn.NLLLoss() # mask_criterion = Mask_Softmax() mask_criterion = Gumbel_Softmax() model_dir = "./save/poly_tts_CNN_syntax_frozen" if not os.path.exists(model_dir): os.makedirs(model_dir) best_acc = 0 for epoch in range(hparams.poly_epochs): model.train() for idx, batch in enumerate(train_dataloader, start=1): # print('CEHCK batch:', batch) # if idx > 200: # break batch = tuple(t.to(device) for t in batch) if hparams.use_output_mask: input_ids, poly_ids, labels, output_mask = batch mask = torch.sign(input_ids) inputs = {"input_ids": input_ids, "poly_ids": poly_ids, "attention_mask": mask} else: input_ids, poly_ids, labels = batch mask = torch.sign(input_ids) inputs = {"input_ids": input_ids, "poly_ids": poly_ids, "attention_mask": mask} logits, _ = model(**inputs) # logits = mask_criterion(logits, output_mask, True) labels, logits, output_mask = model.select_poly(labels, logits, output_mask, poly_ids) logits = mask_criterion(logits, output_mask) loss = criterion(logits, labels) loss.backward() # nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() model.zero_grad() if idx % 100 == 0: print("loss : {:.4f}".format(loss.item())) all_preds = [] all_labels = [] model.eval() for batch in tqdm(train_dataloader, total=len(train_dataloader)): batch = tuple(t.to(device) for t in batch) if hparams.use_output_mask: input_ids, poly_ids, labels, output_mask = batch mask = torch.sign(input_ids) inputs = {"input_ids": input_ids, "poly_ids": poly_ids, "attention_mask": mask} else: input_ids, poly_ids, labels = batch mask = torch.sign(input_ids) inputs = {"input_ids": input_ids, "poly_ids": poly_ids, "attention_mask": mask} with torch.no_grad(): logits, _ = model(**inputs) labels, logits, output_mask = model.select_poly(labels, logits, output_mask, poly_ids) logits = mask_criterion(logits, output_mask) # labels, logits = model.select_poly(labels, logits, poly_ids) preds = torch.argmax(logits, dim=1).cpu().numpy() all_preds.append(preds) all_labels.append(labels.cpu().numpy()) preds =
np.concatenate(all_preds, axis=0)
numpy.concatenate
import os import sys import unittest from typing import Dict from nptyping import NDArray import numpy as np # TODO: Handle module imports in another way if it is possible sys.path.append(os.path.join(os.path.dirname(__file__), '../../')) from dea.utils.symbols import * from dea.technical.dea_radial import DEARadial from dea.core.abstract_dea_technical import AbstractDEATechnical class TestDEARadial(unittest.TestCase): """ Tests for RadialDEA model. """ # test data X = np.array( [[5, 13], [16, 12], [16, 26], [17, 15], [18, 14], [23, 6], [25, 10], [27, 22], [37, 14], [42, 25], [5, 17]]) Y = np.array([[12], [14], [25], [26], [8], [9], [27], [30], [31], [26], [12]]) def test_inputs(self): self.assertEqual(self.X.shape, (11, 2)) self.assertEqual(self.Y.shape, (11, 1)) all_models: Dict[str, AbstractDEATechnical] = {} all_models_type: Dict[str, type] = {} all_models_ndmu: Dict[str, int] = {} all_models_ninp: Dict[str, int] = {} all_models_nout: Dict[str, int] = {} all_models_efficiency: Dict[str, NDArray] = {} all_models_slacks_X: Dict[str, NDArray] = {} all_models_slacks_Y: Dict[str, NDArray] = {} all_models_peersmatrix: Dict[str, NDArray] = {} # ------------------------------------------------------------ # TEST - Input Oriented CRS # ------------------------------------------------------------ # input oriented crs input_crs_radial_dea = DEARadial(orient=Orient.Input, rts=RTS.CSR, disposX=Dispos.Strong, disposY=Dispos.Strong) input_crs_radial_dea.fit(X, Y) all_models["input_csr"] = input_crs_radial_dea all_models_type["input_csr"] = DEARadial all_models_ndmu["input_csr"] = 11 all_models_ninp["input_csr"] = 2 all_models_nout["input_csr"] = 1 all_models_efficiency["input_csr"] = np.array([ [1.0000000000], [0.6222896791], [0.8198562444], [1.0000000000], [0.3103709311], [0.5555555556], [1.0000000000], [0.7576690896], [0.8201058201], [0.4905660377], [1.0000000000] ], dtype=np.float64) all_models_slacks_X["input_csr"] = np.array([ [0.000000000, 0], [0.000000000, 0], [0.000000000, 0], [0.000000000, 0], [0.000000000, 0], [4.444444444, 0], [0.000000000, 0], [0.000000000, 0], [1.640211640, 0], [0.000000000, 0], [0.000000000, 4] ], dtype=np.float64) all_models_slacks_Y["input_csr"] =
np.zeros((11, 1), dtype=np.float64)
numpy.zeros
""" Convert the rating matrix into conversion rate matrix; Generate the simulated prediction conversion rate matrix. """ import pickle import numpy as np file = open("data/predicted_matrix", "rb") prediction = np.array(pickle.load(file), dtype=float) user_num = pickle.load(file) item_num = pickle.load(file) file.close() # CVR = [0.1, 0.3, 0.5, 0.7, 0.9] # ratio = [0.53, 0.24, 0.14, 0.06, 0.03] (the same distribution as in Yahoo R3! MAR test set) total_num = prediction.shape[0] index = np.argsort(prediction) index_inverse = np.argsort(index) prediction = prediction[index] prediction[:int(total_num*0.53)] = 0.1 prediction[int(total_num*0.53):int(total_num*0.77)] = 0.3 prediction[int(total_num*0.77):int(total_num*0.91)] = 0.5 prediction[int(total_num*0.91):int(total_num*0.98)] = 0.7 prediction[int(total_num*0.98):] = 0.9 ground_truth = prediction[index_inverse] print(ground_truth[:20]) # Simulated prediction 1 - ONE # Randomly select n_0.9 0.1, and set 0.1 to 0.9, where n_0.9 denotes the number of the 0.9 in ground_truth n_0_1 = np.count_nonzero(np.where(ground_truth == 0.1)) n_0_9 = np.count_nonzero(np.where(ground_truth == 0.9)) select = np.random.choice(n_0_1, n_0_9, replace=False) prediction = ground_truth[index] prediction[select] = 0.9 one = prediction[index_inverse] # Simulated prediction 2 - THREE # Randomly select n_0.9 0.3, and set 0.3 to 0.9, where n_0.9 denotes the number of the 0.9 in ground_truth n_0_3 = np.count_nonzero(np.where(ground_truth == 0.3)) select = np.random.choice(n_0_3, n_0_9, replace=False)+int(total_num*0.53) prediction = ground_truth[index] prediction[select] = 0.9 three = prediction[index_inverse] # Simulated prediction 3 - FIVE # Randomly select n_0.9 0.5, and set 0.5 to 0.9, where n_0.9 denotes the number of the 0.9 in ground_truth n_0_5 = np.count_nonzero(np.where(ground_truth == 0.5)) select = np.random.choice(n_0_5, n_0_9, replace=False)+int(total_num*0.77) prediction = ground_truth[index] prediction[select] = 0.9 five = prediction[index_inverse] # Simulated prediction 4 - SKEW # r ~ N(\mu=r, \sigma=(1-r)/2), and then r is clipped to [0.1~0.9] prediction =
np.copy(ground_truth)
numpy.copy
import matplotlib.pyplot as plt import numpy as np np.set_printoptions(threshold=np.inf) from mpl_toolkits.mplot3d import Axes3D from scipy.spatial import distance fig = plt.figure(figsize=(6,8)) ax1 = fig.add_subplot(211,projection='3d') ax2 = fig.add_subplot(212) ax2.set_title("learing curve") ax2.set_xlim(0,30) ax2.set_ylim(0,1) x_min = -5 x_max = 5 y_min = -5 y_max = 5 z_min = 0 z_max = 15 X = np.arange(x_min, x_max, 0.25) Y =
np.arange(y_min, y_max, 0.25)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates id import itertools import datetime import matplotlib.colors as colors import matplotlib.cm as cm import os import statistics import pysolar #----------------------------------------------------------------------------- # Motivación codigo ----------------------------------------------------------- 'Codigo para la relación y análisis de los indices de cielo despejado (Kt*) y el indice de claridad (Kt).' 'Se incluye tambien un análisis de su tasa de cambio para evaluar su variabilidad y junto con la fracción' 'de cobertura de nubes. Se hace sobre los datos historicos porque se quiere analizar la variabilidad.' Theoric_Model = 'GIS' ##---> 'GIS' para que coja el de Gis o 'Piranometro' para que tome el de el piranometro ############################################################################## #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- ############################################################################## prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ########################################################################################################## ##-----------------------------------LECTURA DE LOS DATOS DE PIRANOMETRO-------------------------------## ########################################################################################################## df_pira_TS = pd.read_table('/home/nacorreasa/Maestria/Datos_Tesis/Piranometro/60012018_2019.txt', parse_dates=[2]) df_pira_TS = df_pira_TS.set_index(["fecha_hora"]) df_pira_TS.index = df_pira_TS.index.tz_localize('UTC').tz_convert('America/Bogota') df_pira_TS.index = df_pira_TS.index.tz_localize(None) df_pira_TS = df_pira_TS[df_pira_TS['radiacion'] >=0] df_pira_CI = pd.read_table('/home/nacorreasa/Maestria/Datos_Tesis/Piranometro/60022018_2019.txt', parse_dates=[2]) df_pira_CI = df_pira_CI.set_index(["fecha_hora"]) df_pira_CI.index = df_pira_CI.index.tz_localize('UTC').tz_convert('America/Bogota') df_pira_CI.index = df_pira_CI.index.tz_localize(None) df_pira_CI = df_pira_CI[df_pira_CI['radiacion'] >=0] df_pira_JV = pd.read_table('/home/nacorreasa/Maestria/Datos_Tesis/Piranometro/60032018_2019.txt', parse_dates=[2]) df_pira_JV = df_pira_JV.set_index(["fecha_hora"]) df_pira_JV.index = df_pira_JV.index.tz_localize('UTC').tz_convert('America/Bogota') df_pira_JV.index = df_pira_JV.index.tz_localize(None) df_pira_JV = df_pira_JV[df_pira_JV['radiacion'] >=0] ## ------------------------------------DATOS HORARIOS DE RADIACON----------------------------- ## df_pira_JV_h = df_pira_JV.groupby(pd.Grouper(freq="H")).mean() df_pira_CI_h = df_pira_CI.groupby(pd.Grouper(freq="H")).mean() df_pira_TS_h = df_pira_TS.groupby(pd.Grouper(freq="H")).mean() df_pira_JV_h = df_pira_JV_h.between_time('06:00', '17:59') df_pira_CI_h = df_pira_CI_h.between_time('06:00', '17:59') df_pira_TS_h = df_pira_TS_h.between_time('06:00', '17:59') ############################################################################## ## ----------------LECTURA DE LOS DATOS DE RADIACION TEORICA--------------- ## ############################################################################## import datetime def daterange(start_date, end_date): 'Para el ajuste de las fechas en el modelo de Kumar cada 10 min. Las fechas final e inicial son en str: %Y-%m-%d' start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d') end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d') delta = timedelta(minutes=60) while start_date <= end_date: yield start_date start_date += delta fechas = [] for i in daterange('2018-01-01', '2019-01-01'): fechas.append(i) fechas = fechas[0:-1] if Theoric_Model == 'Piranometro': df_Theoric = pd.read_csv("/home/nacorreasa/Maestria/Datos_Tesis/RadiacionTeorica_DataFrames/df_PIR.csv", sep=',', index_col =0) df_Theoric.index = pd.to_datetime(df_Theoric.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') elif Theoric_Model == 'GIS': df_Theoric = pd.read_csv("/home/nacorreasa/Maestria/Datos_Tesis/RadiacionTeorica_DataFrames/df_GIS.csv", sep=',', index_col =0) df_Theoric.index = pd.to_datetime(df_Theoric.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') fechas_new = [df_Theoric.index[i].replace(year = 2018) for i in range(len(df_Theoric.index))] df_Theoric.index = fechas_new df_Theoric.index = pd.to_datetime(df_Theoric.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_Fechas = pd.DataFrame(fechas, index = fechas, columns = ['fechas']) df_Theoric = pd.concat([df_Fechas,df_Theoric ], axis=1) df_Theoric = df_Theoric.drop(['fechas' ], axis=1) ##-------------------------------------DUPLICANDO PARA Q SEAN DOS AÑOS-----------------------------## df_Theoric_2 = df_Theoric.copy() df_Theoric_2.index = [df_Theoric_2.index[i].replace(year=2019) for i in range(len(df_Theoric_2.index))] df_result = pd.concat([df_Theoric, df_Theoric_2]) del df_Theoric_2, df_Theoric df_Theoric = df_result ############################################################################## ## ---------------------------INDICE DE CLARIDAD--------------------------- ## ############################################################################## # def Radiacion_Tope_Atmosfera(Latitud): # 'Función para la estimación de la radiación al tope de la atmosfera a partir del lo explicado en el libro de Iqbal(1983), a ventana diaria' # '(Qd) y horaria (Io), en el que el parametro de entrada es la Latitud de la superficie horizontal, en coordenadas feográdicas, como float.' # 'El tiempo solar está acotado apra el meridiano 75.' # ##---DECLINACION SOLAR---## # J = np.arange(1, 366, 1) # g = 2*m.pi*(J-1)/365 # d = (0.006918 - 0.399912*np.cos(g) + 0.070257*np.sin(g) - 0.006758*np.cos(2*g) + 0.000907*np.sin(2*g) - 0.002697*np.cos(3*g) + 0.00148*np.sin(3*g)+ 0.000907*np.sin(2*g) - 0.002697*np.cos(3*g) + 0.00148*np.sin(3*g)) # # ##---LOCAL STANDART TIME---## # LT = np.arange(0, 24, 1) # # ##---ECUACION DEL TIEMPO---## # B = 2*m.pi*(J-81)/365 # ET = 9.87*np.sin(2*B)-7.53*np.cos(B)-1.5*np.cos(B) # # ##---TIEMPO SOLAR---## # Ls = -75. #Meridiano estándar en grados decimales # # Ls = -75*m.pi/180. #Meridiano estándar en radianes # Ll = -75.56359 #Meridiano local en grados decimales # # Ll = -75.56359 *m.pi/180. #Meridiano local en radianes # L = (Ls-Ll)/15 # TS = [] # for j in range(len(ET)): # for i in range(len(LT)): # TS.append(LT[i]+(ET[j]/60)+L) # # ##----ANGULO HORARIO-----## # w = [] # for i in range(len(TS)): # w.append(15*(12-TS[i])) #En grados decimales # # w = np.array(w)*m.pi/180 #En radianes # # ##---EXCENTRICIDAD---## # Eo = 1+(0.0033*np.cos((2*np.pi*J)/365)) # # ##---CAMBIO A RESOLUCIÓN HORARIA---# # d_h = list(itertools.chain.from_iterable(itertools.repeat(x, 24) for x in list(d))) # Eo_h = list(itertools.chain.from_iterable(itertools.repeat(x, 24) for x in Eo)) # # ##---LATITUD DE UBICACIÓN---# # Lat = Latitud*m.pi/180. #En radianes # # ##---DISTANCIA ENTRE LA TIERRA Y EL SOL---## # dist = 1 - 0.01672*(np.cos(0.985*(J-4))) # dist = dist*10E10 # distM = 1.5*10E11 # Verificar unidades # So = 1367 # W/m2 # # ##---ANGULOS HORARIOS DE AMANECIDA Y ATARDECIDA---## # ##---Ángulo horario por día (amanecer)---## # ho = np.arccos(-1*(np.tan(Lat)*np.tan(d))) # En grados # ho = ho*180/np.pi # ##---Ángulo horario por día (atardecer)---## # hf = -1*ho # En grados # # ##---TIEMPOR DE AMANECIDA Y ATARDECIDA---## # ##---Tiempo en horas de amanecida a partir del ángulo horario---## # to = 12 - ho/15 # En horas decimales # to_m = np.mean(to) # # time_o = [] # for i in range(len(to)): # a = (str(datetime.timedelta(seconds = to[i]*3600))[0:7]) # time_o.append(datetime.datetime.strptime(a, '%H:%M:%S').time()) # # ##---Tiempo en horas de atardecer a partir del ángulo horario---## # tf = 12 - hf/15 # En horas decimales # tf_m = np.mean(tf) # # time_f = [] # for i in range(len(tf)): # a = (str(datetime.timedelta(seconds = tf[i]*3600))[0:7]) # time_f.append(datetime.datetime.strptime(a, '%H:%M:%S').time()) # # ##---INSOLACIÓN PROMEDIO DIARIA AL TOPE DE LA ATMOSFERA---## # Qd = So/np.pi*((distM/dist)**2)*(ho*np.sin(Lat)*np.sin(d) + np.cos(Lat)*np.cos(d)*np.sin(ho)) # # ##---RADIACIÓN HORARIA AL TOPE DE LA ATMOSFERA---## # Io = [] # for i in range(len(d_h)): # Io.append(So*Eo_h[i]*(np.sin(d_h[i])*np.sin(Lat) + np.cos(d_h[i])*np.cos(Lat)*np.cos(w[i]))) # return Io, Qd # #Ioh, Qd = Radiacion_Tope_Atmosfera(6.217) import pvlib Io_h = [pvlib.irradiance.get_extra_radiation(fechas[i], solar_constant=1366.1, method='spencer', epoch_year=2019) for i in range(len(fechas))] ## Wm2 df_Kt = pd.DataFrame(Io_h, index=fechas, columns = ['TAR'] ) df_Kt = pd.concat([df_Kt, df_pira_TS_h['radiacion']], axis=1).reindex(df_Kt.index) df_Kt = pd.concat([df_Kt, df_pira_CI_h['radiacion']], axis=1).reindex(df_Kt.index) df_Kt = pd.concat([df_Kt, df_pira_JV_h['radiacion']], axis=1).reindex(df_Kt.index) df_Kt.columns = ['TAR', 'radiacion_975', 'radiacion_350', 'radiacion_348'] df_Kt['Kt_TS'] = df_Kt['radiacion_975']/df_Kt['TAR'] df_Kt['Kt_CI'] = df_Kt['radiacion_350']/df_Kt['TAR'] df_Kt['Kt_JV'] = df_Kt['radiacion_348']/df_Kt['TAR'] ##################################################################################### ## ---------------------------INDICE DE CIELO DESPEJADO--------------------------- ## ##################################################################################### if Theoric_Model == 'GIS': df_Kt['Kt*_TS'] = df_Kt['radiacion_975']/ df_Theoric['Rad_teo_975'] df_Kt['Kt*_CI'] = df_Kt['radiacion_350']/ df_Theoric['Rad_teo_350'] df_Kt['Kt*_JV'] = df_Kt['radiacion_348']/ df_Theoric['Rad_teo_348'] elif Theoric_Model == 'Piranometro': df_Kt['Kt*_TS'] = df_Kt['radiacion_975']/ df_Theoric['Io'] df_Kt['Kt*_CI'] = df_Kt['radiacion_350']/ df_Theoric['Io'] df_Kt['Kt*_JV'] = df_Kt['radiacion_348']/ df_Theoric['Io'] # df_Kt = df_Kt[(df_Kt['Kt*_TS']<=1)] # df_Kt = df_Kt[(df_Kt['Kt*_CI']<=1)] # df_Kt = df_Kt[(df_Kt['Kt*_JV']<=1)] "El dataframe creado esta a resolución de una hora" # ######################################################################################################## # ## ---------------------------APLICANDO UNA ADICIONAL LIMPUEZA A LOS DATOS--------------------------- ## # ######################################################################################################## # # # df_Kt = df_Kt[(df_Kt['Kt*_TS']<=1)&(df_Kt['Kt*_CI']<=1)&(df_Kt['Kt*_JV']<=1)&(df_Kt['Kt_TS']<=1)&(df_Kt['Kt_CI']<=1)&(df_Kt['Kt_JV']<=1)] # # df_Kt = df_Kt[(df_Kt['Kt*_TS']>=0)&(df_Kt['Kt*_CI']>=0)&(df_Kt['Kt*_JV']>=0)&(df_Kt['Kt_TS']>=0)&(df_Kt['Kt_CI']>=0)&(df_Kt['Kt_JV']>=0)] # # def normalize_df_column(dfcol): # x, y = np.nanmin(dfcol.values), np.nanmax(dfcol.values) # list = (dfcol-[x]).div(y-x) # dfcol = list # return dfcol # # normalize_df_column(df_Kt['Kt*_TS']) # normalize_df_column(df_Kt['Kt*_CI']) # normalize_df_column(df_Kt['Kt*_JV']) # normalize_df_column(df_Kt['Kt_TS']) # normalize_df_column(df_Kt['Kt_CI']) # normalize_df_column(df_Kt['Kt_JV']) # ###################################################################################### ## ---------------------------CICLOS DIURNOS Y MENSUALES--------------------------- ## ###################################################################################### new_idx_CD = np.arange(6, 18, 1) df_Kt_CD = df_Kt.groupby(by=[df_Kt.index.hour]).mean() df_Kt_CD = df_Kt_CD.reindex(new_idx_CD) new_idx_CA =
np.arange(1, 13, 1)
numpy.arange
import math import numpy as np import numpy.random as npr import torch import torch.utils.data as data import torch.utils.data.sampler as torch_sampler from torch.utils.data.dataloader import default_collate from torch._six import int_classes as _int_classes from core.config import cfg from roi_data.minibatch import get_minibatch import utils.blob as blob_utils # from model.rpn.bbox_transform import bbox_transform_inv, clip_boxes class RoiDataLoader(data.Dataset): def __init__(self, roidb, num_classes, training=True): self._roidb = roidb self._num_classes = num_classes self.training = training self.DATA_SIZE = len(self._roidb) def __getitem__(self, index_tuple): index, ratio = index_tuple single_db = [self._roidb[index]] blobs, valid = get_minibatch(single_db) #TODO: Check if minibatch is valid ? If not, abandon it. # Need to change _worker_loop in torch.utils.data.dataloader.py. # Squeeze batch dim for key in blobs: if key != 'roidb': blobs[key] = blobs[key].squeeze(axis=0) if self._roidb[index]['need_crop']: self.crop_data(blobs, ratio) # Check bounding box entry = blobs['roidb'][0] boxes = entry['boxes'] invalid = (boxes[:, 0] == boxes[:, 2]) | (boxes[:, 1] == boxes[:, 3]) valid_inds = np.nonzero(~ invalid)[0] valid_keys = ['boxes', 'gt_classes', 'seg_areas', 'gt_overlaps', 'is_crowd', 'box_to_gt_ind_map', 'gt_keypoints'] if cfg.MODEL.IDENTITY_TRAINING is True: valid_keys = valid_keys + ['instance_id', 'global_instance_id', 'gt_overlaps_id'] if len(valid_inds) < len(boxes): for key in valid_keys: if key in entry: entry[key] = entry[key][valid_inds] entry['segms'] = [entry['segms'][ind] for ind in valid_inds] blobs['roidb'] = blob_utils.serialize(blobs['roidb']) # CHECK: maybe we can serialize in collate_fn return blobs def crop_data(self, blobs, ratio): data_height, data_width = map(int, blobs['im_info'][:2]) boxes = blobs['roidb'][0]['boxes'] if ratio < 1: # width << height, crop height size_crop = math.ceil(data_width / ratio) # size after crop min_y = math.floor(np.min(boxes[:, 1])) max_y = math.floor(np.max(boxes[:, 3])) box_region = max_y - min_y + 1 if min_y == 0: y_s = 0 else: if (box_region - size_crop) < 0: y_s_min = max(max_y - size_crop, 0) y_s_max = min(min_y, data_height - size_crop) y_s = y_s_min if y_s_min == y_s_max else \ npr.choice(range(y_s_min, y_s_max + 1)) else: # CHECK: rethinking the mechnism for the case box_region > size_crop # Now, the crop is biased on the lower part of box_region caused by # // 2 for y_s_add y_s_add = (box_region - size_crop) // 2 y_s = min_y if y_s_add == 0 else \ npr.choice(range(min_y, min_y + y_s_add + 1)) # Crop the image blobs['data'] = blobs['data'][:, y_s:(y_s + size_crop), :,] # Update im_info blobs['im_info'][0] = size_crop # Shift and clamp boxes ground truth boxes[:, 1] -= y_s boxes[:, 3] -= y_s np.clip(boxes[:, 1], 0, size_crop - 1, out=boxes[:, 1]) np.clip(boxes[:, 3], 0, size_crop - 1, out=boxes[:, 3]) blobs['roidb'][0]['boxes'] = boxes else: # width >> height, crop width size_crop = math.ceil(data_height * ratio) min_x = math.floor(np.min(boxes[:, 0])) max_x = math.floor(np.max(boxes[:, 2])) box_region = max_x - min_x + 1 if min_x == 0: x_s = 0 else: if (box_region - size_crop) < 0: x_s_min = max(max_x - size_crop, 0) x_s_max = min(min_x, data_width - size_crop) x_s = x_s_min if x_s_min == x_s_max else \ npr.choice(range(x_s_min, x_s_max + 1)) else: x_s_add = (box_region - size_crop) // 2 x_s = min_x if x_s_add == 0 else \ npr.choice(range(min_x, min_x + x_s_add + 1)) # Crop the image blobs['data'] = blobs['data'][:, :, x_s:(x_s + size_crop)] # Update im_info blobs['im_info'][1] = size_crop # Shift and clamp boxes ground truth boxes[:, 0] -= x_s boxes[:, 2] -= x_s np.clip(boxes[:, 0], 0, size_crop - 1, out=boxes[:, 0]) np.clip(boxes[:, 2], 0, size_crop - 1, out=boxes[:, 2]) blobs['roidb'][0]['boxes'] = boxes def __len__(self): return self.DATA_SIZE def cal_minibatch_ratio(ratio_list): """Given the ratio_list, we want to make the RATIO same for each minibatch on each GPU. Note: this only work for 1) cfg.TRAIN.MAX_SIZE is ignored during `prep_im_for_blob` and 2) cfg.TRAIN.SCALES containing SINGLE scale. Since all prepared images will have same min side length of cfg.TRAIN.SCALES[0], we can pad and batch images base on that. """ DATA_SIZE = len(ratio_list) ratio_list_minibatch = np.empty((DATA_SIZE,)) num_minibatch = int(np.ceil(DATA_SIZE / cfg.TRAIN.IMS_PER_BATCH)) # Include leftovers for i in range(num_minibatch): left_idx = i * cfg.TRAIN.IMS_PER_BATCH right_idx = min((i+1) * cfg.TRAIN.IMS_PER_BATCH - 1, DATA_SIZE - 1) if ratio_list[right_idx] < 1: # for ratio < 1, we preserve the leftmost in each batch. target_ratio = ratio_list[left_idx] elif ratio_list[left_idx] > 1: # for ratio > 1, we preserve the rightmost in each batch. target_ratio = ratio_list[right_idx] else: # for ratio cross 1, we make it to be 1. target_ratio = 1 ratio_list_minibatch[left_idx:(right_idx+1)] = target_ratio return ratio_list_minibatch class MinibatchSampler(torch_sampler.Sampler): def __init__(self, ratio_list, ratio_index): self.ratio_list = ratio_list self.ratio_index = ratio_index self.num_data = len(ratio_list) if cfg.TRAIN.ASPECT_GROUPING: # Given the ratio_list, we want to make the ratio same # for each minibatch on each GPU. self.ratio_list_minibatch = cal_minibatch_ratio(ratio_list) def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices =
np.arange(round_num_data)
numpy.arange
import numpy as np from scipy import constants import matplotlib.pyplot as plt import matplotlib as mpl import meep import meep_ext import pinboard job = pinboard.pinboard() nm = 1e-9 um = 1e-6 ### geometry radius = 75*nm gold = meep_ext.material.Au() # gold = meep.Medium(index=3.5) ### source wavelength = 550*nm fcen = 1/wavelength src_time = meep.GaussianSource(frequency=1.3/um, fwidth=4.0/um) source = lambda sim: meep_ext.rhc_polarized_plane_wave(sim, src_time) ### monitor info pml_monitor_gap = 50*nm particle_monitor_gap = 50*nm norm_file_ext = 'norm_{}' ### grid resolution = 1/(10*nm) pml = meep.PML(100*nm) @job.cache def norm_sim(monitor_size, unique_id): """perform normalization simulation with a given box size""" monitor_size = np.asarray(monitor_size) cell_size = monitor_size + 2*pml_monitor_gap + 2*pml.thickness cell = meep.Vector3(*cell_size) norm = meep.Simulation(cell_size=cell, boundary_layers=[pml], geometry=[], resolution=resolution) norm.init_fields() source(norm) flux_inc = meep_ext.add_flux_plane(norm, fcen, 0, 1, [0,0,0], [2*radius, 2*radius, 0]) flux_box_inc = meep_ext.add_flux_box(norm, fcen, 0, 1, [0,0,0], monitor_size) norm.run(until_after_sources=meep.stop_when_fields_decayed(.5*um, meep.Ex, pt=meep.Vector3(0,0,monitor_size[2]/2), decay_by=1e-3)) norm.save_flux(norm_file_ext.format(unique_id), flux_box_inc) return {'area': (2*radius)**2, 'norm': np.asarray(meep.get_fluxes(flux_inc))} @job.cache def sim(separation, monitor_size, unique_id): """perform scattering simulation""" monitor_size =
np.asarray(monitor_size)
numpy.asarray
import scipy import numpy as np def GSPCA( data, labels, nComp, param ): #GSPCA calculates generalised advanced supervised PCA with respect to [1]. # [ V, D ] = GSPCA( data, labels, nComp, kind ) return n-by-nComp # matrix V with PCs as columns and diagonal nComp-by-nComp # matrix D with eigenvalues corresponding to PCs. # data is n-by-m matrix of data (covariance matrix is unacceptable). Data # MUST be centred before. # labels is numeric vector with n elements. The same labels corresponds # to points of the same class. Number of unique values in labels is # L. Classes are numerated in the order of increasing value of labels. # nComp is number of required component. # param is parameter of method: # scalar numeric value is parameter of intraclass attraction: the # functional to maximise is mean squared distances between points # of different classes minus param multiplied to sum of mean # squared distances between points of each class # numeric vector with L elements is vector of attractions in each # class: the functional to maximise is mean squared distances # between points of different classes minus sum of sum of mean # squared distances between points of each class multiplied by # corresponding element of vector param. # numeric matrix L-by-L is matrix of repulsion coefficients. The # elements upper than main diagonal are coefficients of repulsion # between corresponding clusses. The diagonal elements are # attraction coefficients for corresponding classes. # #References #1. Mirkes, <NAME>., <NAME>., Zinovyev, <NAME>., # Supervised PCA, Available online in https://github.com/Mirkes/SupervisedPCA/wiki #2. Gorban, <NAME>., Zinovyev, <NAME>. “Principal Graphs and Manifolds”, # Chapter 2 in: Handbook of Research on Machine Learning Applications and Trends: # Algorithms, Methods, and Techniques, <NAME> et al. (eds), # IGI Global, Hershey, PA, USA, 2009, pp. 28-59. #3. Zinovyev, <NAME>. "Visualisation of multidimensional data" Krasnoyarsk: KGTU, # p. 180 (2000) (In Russian). #4. Koren, Yehuda, and <NAME>. "Robust linear dimensionality # reduction." Visualization and Computer Graphics, IEEE Transactions on # 10.4 (2004): 459-470. # #Licensed from CC0 1.0 Universal - Author <NAME> https://github.com/Mirkes/SupervisedPCA/blob/master/ #Get sizes of data n, m = data.shape data = data.astype(float) labels = labels.astype(float) # List of classes labs = np.unique(labels) # Number of classes L = len(labs) # Check the type of nComp if nComp > m or nComp < 1: raise ValueError('Incorrect value of nComp: it must be positive integer equal to or less than m') # Form matrix of coefficients if type(param) in [int,float]: coef = np.ones((L,L)) coef = coef + np.diag((param - 1) * np.diag(coef)) elif len(param.shape) == 1: if len(param) != L: raise ValueError(['Argument param must be scalar, or vector with L elements of L-by-L matrix,\n where L is number of classes (unique values in labels)']) coef = np.ones((L,L)) coef = coef + np.diag(np.diag(param - 1)) elif len(param.shape) == 2: [a, b] = param.shape if a != L or b != L: raise ValueError(['Argument param must be scalar, or vector with L elements of L-by-L matrix,\n where L is number of classes (unique values in labels)']) else: raise ValueError(['Argument param must be scalar, or vector with L elements of L-by-L matrix,\n where L is number of classes (unique values in labels)']) # Symmetrize coef matrix coef = coef - np.tril(coef, -1) + np.triu(coef, 1).T # Calculate diagonal terms of Laplacian matrix without devision by # number of elements in class diagV = np.diag(coef) diagC = np.sum(coef,axis=0) - diagV # Calculate transformed covariance matrix M = np.zeros((m,m)) means = np.zeros((L, m)) # Loop to form the diagonal terms and calculate means for c in range(L): # Get index of class ind = labels == labs[c] # Calculate mean means[c, :] = np.mean(data[ind, :],axis=0) # Calculate coefficient for Identity term nc = np.sum(ind,axis=0) coefD = diagC[c] / nc - 2 * diagV[c] / (nc - 1) # Add the diagonal term M = (M + 2 * diagV[c] * nc / (nc - 1) * (means[[c], :].T @ means[[c], :]) + coefD * data[ind, :].T @ data[ind, :]) # Loop for off diagonal parts for c in range(L - 1): for cc in range(c + 1, L): tmp = means[[c], :].T @ means[[cc], :] M = M - coef[c, cc] * (tmp + tmp.T) #Request calculations from eigs if nComp<m-1: D, V = scipy.sparse.linalg.eigs(M, nComp) else: D, V = scipy.linalg.eig(M) ind =
np.argsort(D)
numpy.argsort
import os import numpy as np import tensorflow as tf from keras import backend as K from keras.models import load_model from model.network import AdaptiveInstanceNormalization from keras.layers import Input, Dense, Flatten from keras.layers import Lambda, Conv2D from keras.models import Model from keras.optimizers import Adam from keras.constraints import UnitNorm from keras.regularizers import l2 from keras.applications import VGG16 from keras.preprocessing.image import ImageDataGenerator from random_eraser import apply_random_eraser_and_mask from random_eraser import get_random_eraser_and_mask import hdf5storage from tqdm import tqdm from sklearn.metrics import auc def euclidean_distance(vects): x, y = vects sum_square = K.sum(K.square(x - y), axis=1, keepdims=True) return K.sqrt(K.maximum(sum_square, K.epsilon())) def contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' margin = 10 square_pred = K.square(y_pred) margin_square = K.square(K.maximum(margin - y_pred, 0)) return K.mean(y_true * square_pred + (1 - y_true) * margin_square) # GPU allocation K.clear_session() tf.reset_default_graph() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"; os.environ["CUDA_VISIBLE_DEVICES"] = "0"; # Tensorflow memory allocation config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 1. session = tf.Session(config=config) K.tensorflow_backend.set_session(session) K.set_learning_phase(False) tf.set_random_seed(1234) # Directories of pretrained models/data model_dir = 'trained_models/lord/model/' data_loc = 'trained_models/lord/data/celeba_test.npz' train_data_loc = 'trained_models/lord/data/celeba_vgg.npz' cbk_loc = 'trained_codebooks/one_sample_fixed.mat' train_cbk_loc = 'trained_codebooks/train_one_sample_fixed.mat' # Load all data all_data = np.load(train_data_loc) x_d_all = np.copy(all_data['imgs'] / 255.) y_d_all = np.copy(all_data['classes']) # Load test data data = np.load(data_loc) x_d_test = np.copy(data['imgs'] / 255.) y_d_test = np.copy(data['classes']) # Rearrange y_test as ordinal classes (since absolute value of class doesn't matter) _, y_d_test_ordinal = np.unique(y_d_test, return_inverse=True) # Filter test data from training data is_train = np.logical_not(np.isin(y_d_all, y_d_test)) x_d_train = np.copy(x_d_all[is_train]) y_d_train = np.copy(y_d_all[is_train]) # Free up memory del all_data, x_d_all, y_d_all # Rearrange y_train as ordinal classes (since absolute value of class doesn't matter) _, y_d_train_ordinal = np.unique(y_d_train, return_inverse=True) # Load model by parts content_encoder = load_model(os.path.join(model_dir, 'content_encoder.h5py')) class_encoder = load_model(os.path.join(model_dir, 'class_encoder.h5py')) class_modulation = load_model(os.path.join(model_dir, 'class_modulation.h5py')) generator = load_model(os.path.join(model_dir, 'generator.h5py'), custom_objects={ 'AdaptiveInstanceNormalization': AdaptiveInstanceNormalization}) # Predict content # Train train_content = content_encoder.predict(x_d_train) # Test test_content = content_encoder.predict(x_d_test) # Load modulation codebooks contents = hdf5storage.loadmat(train_cbk_loc) train_person_mod_codebook = contents['frozen_class_mod'] train_person_codebook = contents['frozen_class'] contents = hdf5storage.loadmat(cbk_loc) person_mod_codebook = contents['frozen_class_mod'] person_codebook = contents['frozen_class'] # Construct training and validation sets np.random.seed(2020) # Current year num_train_persons = 2000 num_val_persons = 100 # Drawn from test persons train_persons = np.random.choice(np.max(y_d_train_ordinal)+1, size=num_train_persons, replace=False) val_persons = np.random.choice(np.max(y_d_test_ordinal)+1, size=num_val_persons, replace=False) x_train = np.copy(x_d_train[np.isin(y_d_train_ordinal, train_persons)]) x_val = np.copy(x_d_test[np.isin(y_d_test_ordinal, val_persons)]) y_train = np.copy(y_d_train_ordinal[np.isin(y_d_train_ordinal, train_persons)]) y_val = np.copy(y_d_test_ordinal[np.isin(y_d_test_ordinal, val_persons)]) c_train = np.copy(train_content[np.isin(y_d_train_ordinal, train_persons)]) c_val = np.copy(test_content[np.isin(y_d_test_ordinal, val_persons)]) # Once we pick validation persons, construct their clean reconstructions x_match_val = generator.predict([c_val, person_mod_codebook[y_val]]) # Free up memory del x_d_train, x_d_test, train_content, test_content # Training parameters batch_size = 256 mining_steps = 2 num_steps = 20000 alpha = 1e-3 # Weight decay coefficient best_area_val = 0. best_val_loss = 1e9 # Learning algorithm trainer = 'adam' adv_steps = 10 adv_lr = 16. / 255 # Pixels at once symmetrical_adv = True # Train symmetrically # Architecture latent_dim = 128 # Universal labels (for a single batch) train_pair_labels = np.concatenate((np.ones(batch_size//2), np.zeros(batch_size//2)))[:, None] val_pairs = len(x_val) val_pair_labels = np.concatenate((np.ones(val_pairs), np.zeros(val_pairs)))[:, None] # Input tensors input_img = Input(shape=(64, 64, 3)) # Dynamic architecture # Load a VGG16 core_model = VGG16(input_shape=(64, 64, 3), include_top=False) encoded = core_model(input_img) # Feature layer encoded = Flatten()(encoded) encoded = Dense(latent_dim, activation='linear', kernel_constraint=UnitNorm())(encoded) # Create shared model shared_model = Model(input_img, encoded) # Two input tensors img_real = Input(shape=(64, 64, 3)) img_gen = Input(shape=(64, 64, 3)) # Get features features_real = shared_model(img_real) features_gen = shared_model(img_gen) # Compute distance sim_score = Lambda(euclidean_distance)([features_real, features_gen]) # Siamese model model = Model([img_real, img_gen], sim_score) # Optimizer optimizer = Adam(lr=0.001, amsgrad=True) # Compile model.compile(optimizer, loss=contrastive_loss, metrics=['accuracy']) # Apply L2 weight regularization post-factum for layer in core_model.layers: if isinstance(layer, Conv2D) or isinstance(layer, Dense): layer.add_loss(lambda: l2(alpha)(layer.kernel)) if hasattr(layer, 'bias_regularizer') and layer.use_bias: layer.add_loss(lambda: l2(alpha)(layer.bias)) # Instantiate cutout eraser = get_random_eraser_and_mask(p=0.5, s_l=0.02, s_h=0.2, r_1=0.5, r_2=2., v_l=0., v_h=1., pixel_level=True) # Instantiate augmentation generator image_generator = ImageDataGenerator(width_shift_range=5, height_shift_range=5, horizontal_flip=True) # Setup a graph for patch adversarial attacks x_adv = tf.placeholder(dtype=tf.float32, shape=(None, 64, 64, 3)) x_adv_pair = tf.placeholder(dtype=tf.float32, shape=(None, 64, 64, 3)) # Get features of both adv_real_features = shared_model(x_adv) adv_pair_features = shared_model(x_adv_pair) # Loss function and its gradient adv_loss = tf.norm(adv_real_features - adv_pair_features, axis=-1) grad, = tf.gradients(adv_loss, x_adv) # Where to save weights result_dir = 'trained_models/proposed' if not os.path.exists(result_dir): os.mkdir(result_dir) weight_name = result_dir + '/steps%d_lr%.1f' % (adv_steps, adv_lr*255.) # Granularity of AUC num_points = 100 tpr_val = np.zeros((num_steps, num_points)) fpr_val = np.zeros((num_steps, num_points)) area_val = np.zeros((num_steps,)) # Training/validation logs train_loss_log = np.zeros((num_steps,)) val_loss_log = np.zeros((num_steps,)) # Train for each batch for step_idx in tqdm(range(num_steps)): # Draw a half batch of samples random_idx = np.random.choice(len(x_train), size=batch_size//2, replace=False) # Augment and generate them with their correct class codebook x_match_real_half_batch = image_generator.flow(x_train[random_idx], shuffle=False, batch_size=batch_size//2)[0] # Random erasure x_match_real_half_batch, x_real_mask_half_batch = apply_random_eraser_and_mask(eraser, x_match_real_half_batch) # Get content code and generate images with correct class codes real_content = content_encoder.predict(x_match_real_half_batch) x_match_gen_half_batch = generator.predict([real_content, train_person_mod_codebook[y_train[random_idx]]]) # Adversarial attack on positive pair if symmetrical_adv: if adv_steps > 0: # Find indices where patch augmentation is applied patch_attack_idx = np.where(np.sum(x_real_mask_half_batch, axis=(1, 2, 3)))[0] # Check if at least one such sample exists if len(patch_attack_idx) > 0: # Compute feature differences before adversarial attack - enable if manual verification is desired, but will slow down processing # diff_before = model.predict([x_match_real_half_batch[patch_attack_idx], # x_match_gen_half_batch[patch_attack_idx]]) # Further minimize distance by adversarial attacks x_orig = np.copy(x_match_real_half_batch[patch_attack_idx]) x_mask_aug = x_real_mask_half_batch[patch_attack_idx] for internal_step_idx in range(adv_steps): # Get gradients and outputs grad_np = session.run(grad, feed_dict={x_adv: x_orig, x_adv_pair: x_match_gen_half_batch[patch_attack_idx]}) # Normalize, apply and clip x_orig = np.clip(x_orig + adv_lr * np.sign(grad_np) * x_mask_aug, 0., 1.) # Compute feature differences after adversarial attack # diff_after = model.predict([x_orig, x_match_gen_half_batch[patch_attack_idx]]) # Replace samples with adversarials x_match_real_half_batch[patch_attack_idx] = x_orig # Mine for hard candidates that use the same class vectors fake_person_idx = np.asarray([np.random.choice(np.where(np.logical_not(np.isin(y_train, y_train[random_idx[idx]])))[0], size=mining_steps, replace=False) for idx in range(batch_size//2)]).flatten() # Generate fake images with the target's class codes fake_input_candidates = x_train[fake_person_idx] mod_input = train_person_mod_codebook[np.mod(np.repeat(y_train[random_idx], mining_steps, axis=0), len(train_person_mod_codebook)).astype(np.int)] # Augment all negative pairs and generate them fake_input_candidates_aug = image_generator.flow(fake_input_candidates, shuffle=False, batch_size=batch_size//2*mining_steps)[0] # Random erasure - save the mask for potential attacks fake_input_candidates_aug, fake_erasure_mask = apply_random_eraser_and_mask(eraser, fake_input_candidates_aug) # Get content code and generate images with swapped class codes fake_content = content_encoder.predict(fake_input_candidates_aug) fake_output_candidates = generator.predict([fake_content, mod_input]) # Get their similarity on input-output pairs fake_sim_candidates = model.predict([fake_input_candidates_aug, fake_output_candidates]) # Reshape fake_sim_candidates = np.reshape(fake_sim_candidates, (-1, mining_steps)) fake_output_candidates = np.reshape(fake_output_candidates, (batch_size//2, mining_steps, 64, 64, 3)) fake_input_candidates_aug = np.reshape(fake_input_candidates_aug, (batch_size//2, mining_steps, 64, 64, 3)) fake_masks = np.reshape(fake_erasure_mask, (batch_size//2, mining_steps, 64, 64, 3)) # Pick closest pairs fake_idx = np.argmin(fake_sim_candidates, axis=-1) # Assign the other half of batches x_fake_real_half_batch = fake_input_candidates_aug[np.arange(batch_size//2), fake_idx] x_fake_mask_half_batch = fake_masks[np.arange(batch_size//2), fake_idx] x_fake_gen_half_batch = fake_output_candidates[np.arange(batch_size//2), fake_idx] if adv_steps > 0: # Find indices where patch augmentation is applied patch_attack_idx = np.where(
np.sum(x_fake_mask_half_batch, axis=(1, 2, 3))
numpy.sum
"""Fama-French and Momentum Research Factors - CRSP, Compustat, Wharton Research Data Services <NAME> License: MIT """ import numpy as np import pandas as pd from pandas import DataFrame, Series import matplotlib.pyplot as plt import time from settings import settings import os from finds.database import SQL, Redis from finds.busday import BusDay from finds.structured import PSTAT, CRSP, Benchmarks, Signals from finds.backtesting import BackTest from finds.solve import fractiles LAST_DATE = settings['crsp_date'] sql = SQL(**settings['sql']) user = SQL(**settings['user']) rdb = Redis(**settings['redis']) bd = BusDay(sql) pstat = PSTAT(sql, bd) crsp = CRSP(sql, bd, rdb) bench = Benchmarks(sql, bd) signals = Signals(user) backtest = BackTest(user, bench, 'RF', LAST_DATE) logdir = os.path.join(settings['images'], 'ff') # None # Load items from Compustat Annual # Construct HML as shareholders equity plus investment tax credits, less # preferred stock divided by December market cap. # Require 6 month reporting lag and at least two years history in Compustat label = 'hml' lag = 6 # number of months to lag fundamental data df = pstat.get_linked( # retrieve required fields from compustat dataset = 'annual', date_field = 'datadate', fields = ['seq', 'pstk', 'pstkrv', 'pstkl', 'txditc'], where = (f"indfmt = 'INDL' AND datafmt = 'STD' AND curcd = 'USD' " f" AND popsrc = 'D' AND consol = 'C' AND seq > 0 ")) # subtract preferred stock, add back deferred investment tax credit df[label] = np.where(df['pstkrv'].isna(), df['pstkl'], df['pstkrv']) df[label] = np.where(df[label].isna(), df['pstk'], df[label]) df[label] = np.where(df[label].isna(), 0, df[label]) df[label] = df['seq'] + df['txditc'].fillna(0) - df[label] df.dropna(subset = [label], inplace=True) df = df[df[label] > 0][['permno', 'gvkey','datadate',label]] # years in Compustat df = df.sort_values(by=['gvkey','datadate']) df['count'] = df.groupby(['gvkey']).cumcount() # construct b/m ratio df['rebaldate'] = 0 for datadate in sorted(df['datadate'].unique()): f = df['datadate'].eq(datadate) df.loc[f, 'rebaldate'] = crsp.bd.endmo(datadate, abs(lag)) # 6 month lag df.loc[f, 'cap'] = crsp.get_cap(crsp.bd.endyr(datadate))\ .reindex(df.loc[f, 'permno']).values # Dec mktcap print(datadate, sum(f)) df[label] /= df['cap'] df = df[df[label].gt(0) & df['count'].gt(1)] # 2+ years in Compustat signals.write(df, label) ## Fama French portfolio bi-sort def famafrench_sorts(stocks, label, signals, rebalbeg, rebalend, window=0, pctiles=[30, 70], leverage=1, months=[], minobs=100, minprc=0, mincap=0, maxdecile=10): """Generate monthly time series of holdings by two-way sort procedure Parameters ---------- stocks : Structured object Stock returns and price data label : string Signal name to retrieve either from Signal sql table or {data} dataframe signals : Signals, or chunk_signal object Call to extract cross section of values for the signal rebalbeg : int First rebalance date (YYYYMMDD) rebalend : int Last holding date (YYYYMMDD) pctiles : tuple of int, default is [30, 70] Percentile breakpoints to sort into high, medium and low buckets window: int, optional (default 0) Number of months to look back for signal values (non-inclusive day), 0 (default) is exact date months: list of int, optional Month/s (e.g. 6 = June) to retrieve universe and market cap, [] (default) means every month maxdecile: int, default is 10 Include largest stocks from decile 1 through decile (10 is smallest) minobs: int, optional Minimum required universe size with signal values leverage: numerical, default is 1.0 Leverage multiplier, if any Notes ----- Independent sort by median (NYSE) mkt cap and 30/70 (NYSE) HML percentiles Subportfolios of the intersections are value-weighted; spread portfolios are equal-weighted subportfolios Portfolio are resorted every June, and other months' holdings are adjusted by monthly realized retx """ rebaldates = stocks.bd.date_range(rebalbeg, rebalend, 'endmo') holdings = {label: dict(), 'smb': dict()} # to return two sets of holdings sizes = {h : dict() for h in ['HB','HS','MB','MS','LB','LS']} for rebaldate in rebaldates: #[:-1] # check if this is a rebalance month if not months or (rebaldate//100)%100 in months or not holdings[label]: # rebalance: get this month's universe of stocks with valid data df = stocks.get_universe(rebaldate) # get signal values within lagged window start = (stocks.bd.endmo(rebaldate, months=-abs(window)) if window else stocks.bd.offset(rebaldate, offsets=-1)) signal = signals(label=label, date=rebaldate, start=start) df[label] = signal[label].reindex(df.index) df = df[df['prc'].abs().gt(minprc) & df['cap'].gt(mincap) & df['decile'].le(maxdecile)].dropna() if (len(df) < minobs): # skip if insufficient observations continue # split signal into desired fractiles, and assign to subportfolios df['fractile'] = fractiles(df[label], pctiles=pctiles, keys=df[label][df['nyse']], ascending=False) subs = {'HB' : (df['fractile'] == 1) & (df['decile'] <= 5), 'MB' : (df['fractile'] == 2) & (df['decile'] <= 5), 'LB' : (df['fractile'] == 3) & (df['decile'] <= 5), 'HS' : (df['fractile'] == 1) & (df['decile'] > 5), 'MS' : (df['fractile'] == 2) & (df['decile'] > 5), 'LS' : (df['fractile'] == 3) & (df['decile'] > 5)} weights = {label: dict(), 'smb': dict()} for subname, weight in zip(['HB','HS','LB','LS'], [0.5, 0.5, -0.5, -0.5]): cap = df.loc[subs[subname], 'cap'] weights[label][subname] = leverage * weight * cap / cap.sum() sizes[subname][rebaldate] = sum(subs[subname]) for subname, weight in zip(['HB','HS','MB','MS','LB','LS'], [-0.5, 0.5, -0.5, 0.5, -0.5, 0.5]): cap = df.loc[subs[subname], 'cap'] weights['smb'][subname] = leverage * weight * cap / cap.sum() sizes[subname][rebaldate] = sum(subs[subname]) #print("(famafrench_sorts)", rebaldate, len(df)) else: # else not a rebalance month, so simply adjust holdings by retx retx = 1 + stocks.get_ret(stocks.bd.begmo(rebaldate), rebaldate, field='retx')['retx'] for port, subports in weights.items(): for subport, old in subports.items(): new = old * retx.reindex(old.index, fill_value=1) weights[port][subport] = new / (abs(np.sum(new)) * len(subports) / 2) # combine this month's subportfolios for h in holdings: holdings[h][rebaldate] = pd.concat(list(weights[h].values())) return {'holdings': holdings, 'sizes': sizes} label = 'hml' rebalend = LAST_DATE rebalbeg = 19640601 portfolios = famafrench_sorts(crsp, label, signals, rebalbeg, rebalend, window=12, months=[6]) # Helper for plotting to compare portfolio returns from finds.display import plot_date, plot_scatter def plot_ff(y, label, corr=0, num=1, logdir=None): """Helper to plot similarity of portfolio and benchmark returns""" fig, (ax1, ax2) = plt.subplots(2, 1, num=num, clear=True, figsize=(10,12)) plot_date(y, ax=ax1, title=" vs ".join(y.columns)) plot_scatter(y.iloc[:,0], y.iloc[:,1], ax=ax2) ax2.set_title(f"corr={corr:.4f}", fontsize=8) plt.tight_layout(pad=3) if logdir is not None: plt.savefig(os.path.join(logdir, label + '.jpg')) with open(os.path.join(logdir, 'index.html'), 'at' if num > 1 else 'wt') as f: f.write(f"<h2>Correlation of {label} vs {benchname}" f" ({y.index[0]} - {y.index[-1]}):" f" corr={corr:.4f}</h2>\n") f.write(f"<img src='{label}.jpg'><hr><p>\n") ## Construct HML portfolio returns and compare to benchmark label, benchname = 'hml', 'HML(mo)' holdings = portfolios['holdings'][label] result = backtest(crsp, holdings, label) y = backtest.fit([benchname], 19700101, LAST_DATE) plot_ff(y, label, corr=np.corrcoef(backtest.excess, rowvar=False)[0,1], num=1, logdir=logdir) ## Compare SMB label, benchname = 'smb', 'SMB(mo)' holdings = portfolios['holdings'][label] result = backtest(crsp, holdings, label) y = backtest.fit([benchname], 19700101, LAST_DATE) plot_ff(y, label, corr=np.corrcoef(backtest.excess, rowvar=False)[0,1], num=2, logdir=logdir) ## Construct Mom # Load monthly universe and stock returns from CRSP. # Signal is stocks' total return from 12 months ago, skipping most recent month # Construct 2-way portfolio sorts, and backtest returns label, benchname, past, leverage = 'mom', 'Mom(mo)', (2,12), 1 rebalbeg, rebalend = 19260101, LAST_DATE df = [] # collect each month's momentum signal values for rebaldate in bd.date_range(rebalbeg, rebalend, 'endmo'): beg = bd.endmo(rebaldate, -past[1]) # require price at this date start = bd.offset(beg, 1) # start date, inclusive, of signal end = bd.endmo(rebaldate, 1-past[0]) # end date of signal p = [crsp.get_universe(rebaldate), # retrieve prices and construct signal crsp.get_ret(start, end)['ret'].rename(label), crsp.get_section('monthly', ['prc'], 'date', beg)['prc'].rename('beg'), crsp.get_section('monthly', ['prc'], 'date', end)['prc'].rename('end')] q = pd.concat(p, axis=1, join='inner').reset_index().dropna() q['rebaldate'] = rebaldate df.append(q[['permno', 'rebaldate', label]]) print(rebaldate, len(df), len(q)) df = pd.concat(df) signals.write(df, label, overwrite=True) portfolios = famafrench_sorts(crsp, label, signals, rebalbeg, rebalend, window=0, months=[], leverage=leverage) holdings = portfolios['holdings'][label] result = backtest(crsp, holdings, label) y = backtest.fit([benchname]) plot_ff(y, label, corr=
np.corrcoef(backtest.excess, rowvar=False)
numpy.corrcoef
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import numpy as np import warnings from math import ceil from math import cos from math import sin from math import tan from math import pi from warnings import warn from pymatgen.symmetry.analyzer import SpacegroupAnalyzer """ Created on March 25, 2013 @author: geoffroy """ class HighSymmKpath: """ This class looks for path along high symmetry lines in the Brillouin Zone. It is based on <NAME>., & <NAME>. (2010). High-throughput electronic band structure calculations: Challenges and tools. Computational Materials Science, 49(2), 299-312. doi:10.1016/j.commatsci.2010.05.010 It should be used with primitive structures that comply with the definition from the paper. The symmetry is determined by spglib through the SpacegroupAnalyzer class. The analyzer can be used to produce the correct primitive structure (method get_primitive_standard_structure(international_monoclinic=False)). A warning will signal possible compatibility problems with the given structure. Args: structure (Structure): Structure object symprec (float): Tolerance for symmetry finding angle_tolerance (float): Angle tolerance for symmetry finding. atol (float): Absolute tolerance used to compare the input structure with the one expected as primitive standard. A warning will be issued if the lattices don't match. """ def __init__(self, structure, symprec=0.01, angle_tolerance=5, atol=1e-8): self._structure = structure self._sym = SpacegroupAnalyzer(structure, symprec=symprec, angle_tolerance=angle_tolerance) self._prim = self._sym \ .get_primitive_standard_structure(international_monoclinic=False) self._conv = self._sym.get_conventional_standard_structure(international_monoclinic=False) self._prim_rec = self._prim.lattice.reciprocal_lattice self._kpath = None # Note: this warning will be issued for space groups 38-41, since the primitive cell must be # reformatted to match Setyawan/Curtarolo convention in order to work with the current k-path # generation scheme. if not np.allclose(self._structure.lattice.matrix, self._prim.lattice.matrix, atol=atol): warnings.warn("The input structure does not match the expected standard primitive! " "The path can be incorrect. Use at your own risk.") lattice_type = self._sym.get_lattice_type() spg_symbol = self._sym.get_space_group_symbol() if lattice_type == "cubic": if "P" in spg_symbol: self._kpath = self.cubic() elif "F" in spg_symbol: self._kpath = self.fcc() elif "I" in spg_symbol: self._kpath = self.bcc() else: warn("Unexpected value for spg_symbol: %s" % spg_symbol) elif lattice_type == "tetragonal": if "P" in spg_symbol: self._kpath = self.tet() elif "I" in spg_symbol: a = self._conv.lattice.abc[0] c = self._conv.lattice.abc[2] if c < a: self._kpath = self.bctet1(c, a) else: self._kpath = self.bctet2(c, a) else: warn("Unexpected value for spg_symbol: %s" % spg_symbol) elif lattice_type == "orthorhombic": a = self._conv.lattice.abc[0] b = self._conv.lattice.abc[1] c = self._conv.lattice.abc[2] if "P" in spg_symbol: self._kpath = self.orc() elif "F" in spg_symbol: if 1 / a ** 2 > 1 / b ** 2 + 1 / c ** 2: self._kpath = self.orcf1(a, b, c) elif 1 / a ** 2 < 1 / b ** 2 + 1 / c ** 2: self._kpath = self.orcf2(a, b, c) else: self._kpath = self.orcf3(a, b, c) elif "I" in spg_symbol: self._kpath = self.orci(a, b, c) elif "C" in spg_symbol or "A" in spg_symbol: self._kpath = self.orcc(a, b, c) else: warn("Unexpected value for spg_symbol: %s" % spg_symbol) elif lattice_type == "hexagonal": self._kpath = self.hex() elif lattice_type == "rhombohedral": alpha = self._prim.lattice.lengths_and_angles[1][0] if alpha < 90: self._kpath = self.rhl1(alpha * pi / 180) else: self._kpath = self.rhl2(alpha * pi / 180) elif lattice_type == "monoclinic": a, b, c = self._conv.lattice.abc alpha = self._conv.lattice.lengths_and_angles[1][0] # beta = self._conv.lattice.lengths_and_angles[1][1] if "P" in spg_symbol: self._kpath = self.mcl(b, c, alpha * pi / 180) elif "C" in spg_symbol: kgamma = self._prim_rec.lengths_and_angles[1][2] if kgamma > 90: self._kpath = self.mclc1(a, b, c, alpha * pi / 180) if kgamma == 90: self._kpath = self.mclc2(a, b, c, alpha * pi / 180) if kgamma < 90: if b * cos(alpha * pi / 180) / c \ + b ** 2 * sin(alpha * pi / 180) ** 2 / a ** 2 < 1: self._kpath = self.mclc3(a, b, c, alpha * pi / 180) if b * cos(alpha * pi / 180) / c \ + b ** 2 * sin(alpha * pi / 180) ** 2 / a ** 2 == 1: self._kpath = self.mclc4(a, b, c, alpha * pi / 180) if b * cos(alpha * pi / 180) / c \ + b ** 2 * sin(alpha * pi / 180) ** 2 / a ** 2 > 1: self._kpath = self.mclc5(a, b, c, alpha * pi / 180) else: warn("Unexpected value for spg_symbol: %s" % spg_symbol) elif lattice_type == "triclinic": kalpha = self._prim_rec.lengths_and_angles[1][0] kbeta = self._prim_rec.lengths_and_angles[1][1] kgamma = self._prim_rec.lengths_and_angles[1][2] if kalpha > 90 and kbeta > 90 and kgamma > 90: self._kpath = self.tria() if kalpha < 90 and kbeta < 90 and kgamma < 90: self._kpath = self.trib() if kalpha > 90 and kbeta > 90 and kgamma == 90: self._kpath = self.tria() if kalpha < 90 and kbeta < 90 and kgamma == 90: self._kpath = self.trib() else: warn("Unknown lattice type %s" % lattice_type) @property def structure(self): """ Returns: The standardized primitive structure """ return self._prim @property def conventional(self): """ Returns: The conventional cell structure """ return self._conv @property def prim(self): """ Returns: The primitive cell structure """ return self._prim @property def prim_rec(self): """ Returns: The primitive reciprocal cell structure """ return self._prim_rec @property def kpath(self): """ Returns: The symmetry line path in reciprocal space """ return self._kpath def get_kpoints(self, line_density=20, coords_are_cartesian=True): """ Returns: the kpoints along the paths in cartesian coordinates together with the labels for symmetry points -Wei """ list_k_points = [] sym_point_labels = [] for b in self.kpath['path']: for i in range(1, len(b)): start = np.array(self.kpath['kpoints'][b[i - 1]]) end = np.array(self.kpath['kpoints'][b[i]]) distance = np.linalg.norm( self._prim_rec.get_cartesian_coords(start) - self._prim_rec.get_cartesian_coords(end)) nb = int(ceil(distance * line_density)) sym_point_labels.extend([b[i - 1]] + [''] * (nb - 1) + [b[i]]) list_k_points.extend( [self._prim_rec.get_cartesian_coords(start) + float(i) / float(nb) * (self._prim_rec.get_cartesian_coords(end) - self._prim_rec.get_cartesian_coords(start)) for i in range(0, nb + 1)]) if coords_are_cartesian: return list_k_points, sym_point_labels else: frac_k_points = [self._prim_rec.get_fractional_coords(k) for k in list_k_points] return frac_k_points, sym_point_labels def cubic(self): self.name = "CUB" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'X': np.array([0.0, 0.5, 0.0]), 'R': np.array([0.5, 0.5, 0.5]), 'M': np.array([0.5, 0.5, 0.0])} path = [["\\Gamma", "X", "M", "\\Gamma", "R", "X"], ["M", "R"]] return {'kpoints': kpoints, 'path': path} def fcc(self): self.name = "FCC" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'K': np.array([3.0 / 8.0, 3.0 / 8.0, 3.0 / 4.0]), 'L': np.array([0.5, 0.5, 0.5]), 'U': np.array([5.0 / 8.0, 1.0 / 4.0, 5.0 / 8.0]), 'W': np.array([0.5, 1.0 / 4.0, 3.0 / 4.0]), 'X': np.array([0.5, 0.0, 0.5])} path = [["\\Gamma", "X", "W", "K", "\\Gamma", "L", "U", "W", "L", "K"], ["U", "X"]] return {'kpoints': kpoints, 'path': path} def bcc(self): self.name = "BCC" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'H': np.array([0.5, -0.5, 0.5]), 'P': np.array([0.25, 0.25, 0.25]), 'N': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "H", "N", "\\Gamma", "P", "H"], ["P", "N"]] return {'kpoints': kpoints, 'path': path} def tet(self): self.name = "TET" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'A': np.array([0.5, 0.5, 0.5]), 'M': np.array([0.5, 0.5, 0.0]), 'R': np.array([0.0, 0.5, 0.5]), 'X': np.array([0.0, 0.5, 0.0]), 'Z': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "X", "M", "\\Gamma", "Z", "R", "A", "Z"], ["X", "R"], ["M", "A"]] return {'kpoints': kpoints, 'path': path} def bctet1(self, c, a): self.name = "BCT1" eta = (1 + c ** 2 / a ** 2) / 4.0 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'M': np.array([-0.5, 0.5, 0.5]), 'N': np.array([0.0, 0.5, 0.0]), 'P': np.array([0.25, 0.25, 0.25]), 'X': np.array([0.0, 0.0, 0.5]), 'Z': np.array([eta, eta, -eta]), 'Z_1': np.array([-eta, 1 - eta, eta])} path = [["\\Gamma", "X", "M", "\\Gamma", "Z", "P", "N", "Z_1", "M"], ["X", "P"]] return {'kpoints': kpoints, 'path': path} def bctet2(self, c, a): self.name = "BCT2" eta = (1 + a ** 2 / c ** 2) / 4.0 zeta = a ** 2 / (2 * c ** 2) kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'N': np.array([0.0, 0.5, 0.0]), 'P': np.array([0.25, 0.25, 0.25]), '\\Sigma': np.array([-eta, eta, eta]), '\\Sigma_1': np.array([eta, 1 - eta, -eta]), 'X': np.array([0.0, 0.0, 0.5]), 'Y': np.array([-zeta, zeta, 0.5]), 'Y_1': np.array([0.5, 0.5, -zeta]), 'Z': np.array([0.5, 0.5, -0.5])} path = [["\\Gamma", "X", "Y", "\\Sigma", "\\Gamma", "Z", "\\Sigma_1", "N", "P", "Y_1", "Z"], ["X", "P"]] return {'kpoints': kpoints, 'path': path} def orc(self): self.name = "ORC" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'R': np.array([0.5, 0.5, 0.5]), 'S': np.array([0.5, 0.5, 0.0]), 'T': np.array([0.0, 0.5, 0.5]), 'U': np.array([0.5, 0.0, 0.5]), 'X': np.array([0.5, 0.0, 0.0]), 'Y': np.array([0.0, 0.5, 0.0]), 'Z': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "X", "S", "Y", "\\Gamma", "Z", "U", "R", "T", "Z"], ["Y", "T"], ["U", "X"], ["S", "R"]] return {'kpoints': kpoints, 'path': path} def orcf1(self, a, b, c): self.name = "ORCF1" zeta = (1 + a ** 2 / b ** 2 - a ** 2 / c ** 2) / 4 eta = (1 + a ** 2 / b ** 2 + a ** 2 / c ** 2) / 4 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'A': np.array([0.5, 0.5 + zeta, zeta]), 'A_1': np.array([0.5, 0.5 - zeta, 1 - zeta]), 'L': np.array([0.5, 0.5, 0.5]), 'T': np.array([1, 0.5, 0.5]), 'X': np.array([0.0, eta, eta]), 'X_1': np.array([1, 1 - eta, 1 - eta]), 'Y': np.array([0.5, 0.0, 0.5]), 'Z': np.array([0.5, 0.5, 0.0])} path = [["\\Gamma", "Y", "T", "Z", "\\Gamma", "X", "A_1", "Y"], ["T", "X_1"], ["X", "A", "Z"], ["L", "\\Gamma"]] return {'kpoints': kpoints, 'path': path} def orcf2(self, a, b, c): self.name = "ORCF2" phi = (1 + c ** 2 / b ** 2 - c ** 2 / a ** 2) / 4 eta = (1 + a ** 2 / b ** 2 - a ** 2 / c ** 2) / 4 delta = (1 + b ** 2 / a ** 2 - b ** 2 / c ** 2) / 4 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'C': np.array([0.5, 0.5 - eta, 1 - eta]), 'C_1': np.array([0.5, 0.5 + eta, eta]), 'D': np.array([0.5 - delta, 0.5, 1 - delta]), 'D_1': np.array([0.5 + delta, 0.5, delta]), 'L': np.array([0.5, 0.5, 0.5]), 'H': np.array([1 - phi, 0.5 - phi, 0.5]), 'H_1': np.array([phi, 0.5 + phi, 0.5]), 'X': np.array([0.0, 0.5, 0.5]), 'Y': np.array([0.5, 0.0, 0.5]), 'Z': np.array([0.5, 0.5, 0.0])} path = [["\\Gamma", "Y", "C", "D", "X", "\\Gamma", "Z", "D_1", "H", "C"], ["C_1", "Z"], ["X", "H_1"], ["H", "Y"], ["L", "\\Gamma"]] return {'kpoints': kpoints, 'path': path} def orcf3(self, a, b, c): self.name = "ORCF3" zeta = (1 + a ** 2 / b ** 2 - a ** 2 / c ** 2) / 4 eta = (1 + a ** 2 / b ** 2 + a ** 2 / c ** 2) / 4 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'A': np.array([0.5, 0.5 + zeta, zeta]), 'A_1': np.array([0.5, 0.5 - zeta, 1 - zeta]), 'L': np.array([0.5, 0.5, 0.5]), 'T': np.array([1, 0.5, 0.5]), 'X': np.array([0.0, eta, eta]), 'X_1': np.array([1, 1 - eta, 1 - eta]), 'Y': np.array([0.5, 0.0, 0.5]), 'Z': np.array([0.5, 0.5, 0.0])} path = [["\\Gamma", "Y", "T", "Z", "\\Gamma", "X", "A_1", "Y"], ["X", "A", "Z"], ["L", "\\Gamma"]] return {'kpoints': kpoints, 'path': path} def orci(self, a, b, c): self.name = "ORCI" zeta = (1 + a ** 2 / c ** 2) / 4 eta = (1 + b ** 2 / c ** 2) / 4 delta = (b ** 2 - a ** 2) / (4 * c ** 2) mu = (a ** 2 + b ** 2) / (4 * c ** 2) kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'L': np.array([-mu, mu, 0.5 - delta]), 'L_1': np.array([mu, -mu, 0.5 + delta]), 'L_2': np.array([0.5 - delta, 0.5 + delta, -mu]), 'R': np.array([0.0, 0.5, 0.0]), 'S': np.array([0.5, 0.0, 0.0]), 'T': np.array([0.0, 0.0, 0.5]), 'W': np.array([0.25, 0.25, 0.25]), 'X': np.array([-zeta, zeta, zeta]), 'X_1': np.array([zeta, 1 - zeta, -zeta]), 'Y': np.array([eta, -eta, eta]), 'Y_1': np.array([1 - eta, eta, -eta]), 'Z': np.array([0.5, 0.5, -0.5])} path = [["\\Gamma", "X", "L", "T", "W", "R", "X_1", "Z", "\\Gamma", "Y", "S", "W"], ["L_1", "Y"], ["Y_1", "Z"]] return {'kpoints': kpoints, 'path': path} def orcc(self, a, b, c): self.name = "ORCC" zeta = (1 + a ** 2 / b ** 2) / 4 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'A': np.array([zeta, zeta, 0.5]), 'A_1': np.array([-zeta, 1 - zeta, 0.5]), 'R': np.array([0.0, 0.5, 0.5]), 'S': np.array([0.0, 0.5, 0.0]), 'T': np.array([-0.5, 0.5, 0.5]), 'X': np.array([zeta, zeta, 0.0]), 'X_1': np.array([-zeta, 1 - zeta, 0.0]), 'Y': np.array([-0.5, 0.5, 0]), 'Z': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "X", "S", "R", "A", "Z", "\\Gamma", "Y", "X_1", "A_1", "T", "Y"], ["Z", "T"]] return {'kpoints': kpoints, 'path': path} def hex(self): self.name = "HEX" kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'A': np.array([0.0, 0.0, 0.5]), 'H': np.array([1.0 / 3.0, 1.0 / 3.0, 0.5]), 'K': np.array([1.0 / 3.0, 1.0 / 3.0, 0.0]), 'L': np.array([0.5, 0.0, 0.5]), 'M': np.array([0.5, 0.0, 0.0])} path = [["\\Gamma", "M", "K", "\\Gamma", "A", "L", "H", "A"], ["L", "M"], ["K", "H"]] return {'kpoints': kpoints, 'path': path} def rhl1(self, alpha): self.name = "RHL1" eta = (1 + 4 * cos(alpha)) / (2 + 4 * cos(alpha)) nu = 3.0 / 4.0 - eta / 2.0 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'B': np.array([eta, 0.5, 1.0 - eta]), 'B_1': np.array([1.0 / 2.0, 1.0 - eta, eta - 1.0]), 'F': np.array([0.5, 0.5, 0.0]), 'L': np.array([0.5, 0.0, 0.0]), 'L_1': np.array([0.0, 0.0, -0.5]), 'P': np.array([eta, nu, nu]), 'P_1': np.array([1.0 - nu, 1.0 - nu, 1.0 - eta]), 'P_2': np.array([nu, nu, eta - 1.0]), 'Q': np.array([1.0 - nu, nu, 0.0]), 'X': np.array([nu, 0.0, -nu]), 'Z': np.array([0.5, 0.5, 0.5])} path = [["\\Gamma", "L", "B_1"], ["B", "Z", "\\Gamma", "X"], ["Q", "F", "P_1", "Z"], ["L", "P"]] return {'kpoints': kpoints, 'path': path} def rhl2(self, alpha): self.name = "RHL2" eta = 1 / (2 * tan(alpha / 2.0) ** 2) nu = 3.0 / 4.0 - eta / 2.0 kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'F': np.array([0.5, -0.5, 0.0]), 'L': np.array([0.5, 0.0, 0.0]), 'P': np.array([1 - nu, -nu, 1 - nu]), 'P_1': np.array([nu, nu - 1.0, nu - 1.0]), 'Q': np.array([eta, eta, eta]), 'Q_1': np.array([1.0 - eta, -eta, -eta]), 'Z': np.array([0.5, -0.5, 0.5])} path = [["\\Gamma", "P", "Z", "Q", "\\Gamma", "F", "P_1", "Q_1", "L", "Z"]] return {'kpoints': kpoints, 'path': path} def mcl(self, b, c, beta): self.name = "MCL" eta = (1 - b * cos(beta) / c) / (2 * sin(beta) ** 2) nu = 0.5 - eta * c * cos(beta) / b kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'A': np.array([0.5, 0.5, 0.0]), 'C': np.array([0.0, 0.5, 0.5]), 'D': np.array([0.5, 0.0, 0.5]), 'D_1': np.array([0.5, 0.5, -0.5]), 'E': np.array([0.5, 0.5, 0.5]), 'H': np.array([0.0, eta, 1.0 - nu]), 'H_1': np.array([0.0, 1.0 - eta, nu]), 'H_2': np.array([0.0, eta, -nu]), 'M': np.array([0.5, eta, 1.0 - nu]), 'M_1': np.array([0.5, 1 - eta, nu]), 'M_2': np.array([0.5, 1 - eta, nu]), 'X': np.array([0.0, 0.5, 0.0]), 'Y': np.array([0.0, 0.0, 0.5]), 'Y_1': np.array([0.0, 0.0, -0.5]), 'Z': np.array([0.5, 0.0, 0.0])} path = [["\\Gamma", "Y", "H", "C", "E", "M_1", "A", "X", "H_1"], ["M", "D", "Z"], ["Y", "D"]] return {'kpoints': kpoints, 'path': path} def mclc1(self, a, b, c, alpha): self.name = "MCLC1" zeta = (2 - b * cos(alpha) / c) / (4 * sin(alpha) ** 2) eta = 0.5 + 2 * zeta * c * cos(alpha) / b psi = 0.75 - a ** 2 / (4 * b ** 2 * sin(alpha) ** 2) phi = psi + (0.75 - psi) * b * cos(alpha) / c kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'N': np.array([0.5, 0.0, 0.0]), 'N_1': np.array([0.0, -0.5, 0.0]), 'F': np.array([1 - zeta, 1 - zeta, 1 - eta]), 'F_1': np.array([zeta, zeta, eta]), 'F_2': np.array([-zeta, -zeta, 1 - eta]), # 'F_3': np.array([1 - zeta, -zeta, 1 - eta]), 'I': np.array([phi, 1 - phi, 0.5]), 'I_1': np.array([1 - phi, phi - 1, 0.5]), 'L': np.array([0.5, 0.5, 0.5]), 'M': np.array([0.5, 0.0, 0.5]), 'X': np.array([1 - psi, psi - 1, 0.0]), 'X_1': np.array([psi, 1 - psi, 0.0]), 'X_2': np.array([psi - 1, -psi, 0.0]), 'Y': np.array([0.5, 0.5, 0.0]), 'Y_1': np.array([-0.5, -0.5, 0.0]), 'Z': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "Y", "F", "L", "I"], ["I_1", "Z", "F_1"], ["Y", "X_1"], ["X", "\\Gamma", "N"], ["M", "\\Gamma"]] return {'kpoints': kpoints, 'path': path} def mclc2(self, a, b, c, alpha): self.name = "MCLC2" zeta = (2 - b * cos(alpha) / c) / (4 * sin(alpha) ** 2) eta = 0.5 + 2 * zeta * c * cos(alpha) / b psi = 0.75 - a ** 2 / (4 * b ** 2 * sin(alpha) ** 2) phi = psi + (0.75 - psi) * b * cos(alpha) / c kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'N': np.array([0.5, 0.0, 0.0]), 'N_1': np.array([0.0, -0.5, 0.0]), 'F': np.array([1 - zeta, 1 - zeta, 1 - eta]), 'F_1': np.array([zeta, zeta, eta]), 'F_2': np.array([-zeta, -zeta, 1 - eta]), 'F_3': np.array([1 - zeta, -zeta, 1 - eta]), 'I': np.array([phi, 1 - phi, 0.5]), 'I_1': np.array([1 - phi, phi - 1, 0.5]), 'L': np.array([0.5, 0.5, 0.5]), 'M': np.array([0.5, 0.0, 0.5]), 'X': np.array([1 - psi, psi - 1, 0.0]), 'X_1': np.array([psi, 1 - psi, 0.0]), 'X_2': np.array([psi - 1, -psi, 0.0]), 'Y': np.array([0.5, 0.5, 0.0]), 'Y_1': np.array([-0.5, -0.5, 0.0]), 'Z': np.array([0.0, 0.0, 0.5])} path = [["\\Gamma", "Y", "F", "L", "I"], ["I_1", "Z", "F_1"], ["N", "\\Gamma", "M"]] return {'kpoints': kpoints, 'path': path} def mclc3(self, a, b, c, alpha): self.name = "MCLC3" mu = (1 + b ** 2 / a ** 2) / 4.0 delta = b * c * cos(alpha) / (2 * a ** 2) zeta = mu - 0.25 + (1 - b * cos(alpha) / c) / (4 * sin(alpha) ** 2) eta = 0.5 + 2 * zeta * c * cos(alpha) / b phi = 1 + zeta - 2 * mu psi = eta - 2 * delta kpoints = {'\\Gamma': np.array([0.0, 0.0, 0.0]), 'F': np.array([1 - phi, 1 - phi, 1 - psi]), 'F_1': np.array([phi, phi - 1, psi]), 'F_2': np.array([1 - phi, -phi, 1 - psi]), 'H': np.array([zeta, zeta, eta]), 'H_1': np.array([1 - zeta, -zeta, 1 - eta]), 'H_2': np.array([-zeta, -zeta, 1 - eta]), 'I': np.array([0.5, -0.5, 0.5]), 'M':
np.array([0.5, 0.0, 0.5])
numpy.array
import numpy as np import pandas as pd from sklearn.utils.estimator_checks import check_estimator from autofeat import AutoFeatRegressor, AutoFeatClassifier def get_random_data(seed=15): # generate some toy data np.random.seed(seed) x1 = np.random.rand(1000) x2 = np.random.randn(1000) x3 = np.random.rand(1000) target = 2 + 15*x1 + 3/(x2 - 1/x3) + 5*(x2 + np.log(x1))**3 X = np.vstack([x1, x2, x3]).T return X, target def test_do_almost_nothing(): X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_steps=0, featsel_runs=0) df = afreg.fit_transform(pd.DataFrame(X, columns=["x1", "x2", "x3"]), target) assert list(df.columns) == ["x1", "x2", "x3"], "Only original columns" df = afreg.transform(pd.DataFrame(X, columns=["x1", "x2", "x3"])) assert list(df.columns) == ["x1", "x2", "x3"], "Only original columns" def test_regular_X_y(): # autofeat with numpy arrays X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_steps=3) df = afreg.fit_transform(X, target) assert afreg.score(X, target) >= 0.999, "R^2 should be 1." assert afreg.score(df, target) >= 0.999, "R^2 should be 1." assert list(df.columns)[:3] == ["x000", "x001", "x002"], "Wrong column names" def test_regular_df_X_y(): # autofeat with df without column names X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_steps=3) df = afreg.fit_transform(pd.DataFrame(X), pd.DataFrame(target)) # score once with original, once with transformed data assert afreg.score(pd.DataFrame(X), target) >= 0.999, "R^2 should be 1." assert afreg.score(df, target) >= 0.999, "R^2 should be 1." assert list(df.columns)[:3] == ["0", "1", "2"], "Wrong column names" def test_weird_colnames(): # autofeat with df with weird column names X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_steps=3) df = afreg.fit_transform(pd.DataFrame(X, columns=["x 1.1", 2, "x/3"]), pd.DataFrame(target)) assert afreg.score(pd.DataFrame(X, columns=["x 1.1", 2, "x/3"]), target) >= 0.999, "R^2 should be 1." assert list(df.columns)[:3] == ["x 1.1", "2", "x/3"], "Wrong column names" # error if the column names aren't the same as before try: afreg.score(pd.DataFrame(X, columns=["x 11", 2, "x/3"]), target) except ValueError: pass else: raise AssertionError("Should throw error on mismatch column names") def test_nans(): # nans are ok in transform but not fit or predict (due to sklearn model) X, target = get_random_data() X[998, 0] = np.nan X[999, 1] = np.nan afreg = AutoFeatRegressor(verbose=1, feateng_steps=3) try: _ = afreg.fit_transform(pd.DataFrame(X, columns=["x 1.1", 2, "x/3"]), pd.DataFrame(target)) except ValueError: pass else: raise AssertionError("fit with NaNs should throw an error") _ = afreg.fit_transform(pd.DataFrame(X[:900], columns=["x 1.1", 2, "x/3"]), pd.DataFrame(target[:900])) try: _ = afreg.predict(pd.DataFrame(X[900:], columns=["x 1.1", 2, "x/3"])) except ValueError: pass else: raise AssertionError("predict with NaNs should throw an error") df = afreg.transform(pd.DataFrame(X, columns=["x 1.1", 2, "x/3"])) assert all([pd.isna(df.iloc[998, 0]), pd.isna(df.iloc[999, 1])]), "Original features should be NaNs" assert np.sum(np.array(pd.isna(df.iloc[998]), dtype=int)) >= 2, "There should be at least 2 NaNs in row 998" assert np.sum(np.array(pd.isna(df.iloc[999]), dtype=int)) >= 2, "There should be at least 3 NaNs in row 999" def test_feateng_cols(): X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_cols=["x1", "x3", "x4"], feateng_steps=3) try: df = afreg.fit_transform(pd.DataFrame(X, columns=["x1", "x2", "x3"]), target) except ValueError: pass else: raise AssertionError("feateng_cols not in df should throw an error") afreg = AutoFeatRegressor(verbose=1, feateng_cols=["x1", "x3"], feateng_steps=3) df = afreg.fit_transform(pd.DataFrame(X, columns=["x1", "x2", "x3"]), target) for c in df.columns[3:]: assert "x2" not in c, "only feateng_cols should occur in engineered features" def test_categorical_cols(): np.random.seed(15) x1 = np.random.rand(1000) x2 = np.random.randn(1000) x3 = np.random.rand(1000) x4 = np.array(200*[4] + 300*[5] + 500*[2], dtype=int) target = 2 + 15*x1 + 3/(x2 - 1/x3) + 5*(x2 + np.log(x1))**3 + x4 X = pd.DataFrame(
np.vstack([x1, x2, x3, x4])
numpy.vstack
# <NAME> (github: @elaguerta) # LBNL GIG # File created: 19 February 2021 # Create NR3 Solution class, a namespace for calculations used by nr3 from . solution import Solution from . circuit import Circuit import numpy as np from . nr3_lib.compute_NR3FT import compute_NR3FT from . nr3_lib.compute_NR3JT import compute_NR3JT from . nr3_lib.map_output import map_output class SolutionNR3(Solution): CONVERGENCE_TOLERANCE = 10**-6 @classmethod def set_zip_values(cls, zip_v): """ sets zip values for the Solution class param zip_V: List or nd.array with 7 values [a_z_p, a_i_p, a_pq_p, a_z_q, a_i_q, a_pq_q, min voltage pu] Note that zip values are set both on the Solution class and Circuit class """ Solution.set_zip_values(zip_v) def __init__(self, dss_fp: str, **kwargs): super().__init__(dss_fp, **kwargs) # sets self.circuit self._set_orient('cols') self._init_XNR() self._init_slack_bus_matrices() self._init_KVL_matrices() self._init_KCL_matrices() self._init_KVL_matrices_vregs() def _init_XNR(self): """ adapted from https://github.com/msankur/LinDist3Flow/blob/vectorized/20180601/PYTHON/lib/basematrices.py written by @kathleenchang """ V0, I0 = None, None Vslack = self.__class__.VSLACK nline = self.circuit.lines.num_elements nnode = self.circuit.buses.num_elements tf_lines = self.circuit.transformers.get_num_lines_x_ph() vr_lines = self.circuit.voltage_regulators.get_num_lines_x_ph() # XNR order is bus voltages, line currents, transformer line currents, # voltage regulator line currents * 2 XNR = np.zeros((2*3*(nnode + nline) + 2*tf_lines + 2*2*vr_lines, 1), dtype=float) # intialize node voltage portion of XNR if V0 is None or len(V0) == 0: for ph in range(3): for k1 in range(nnode): XNR[2*ph*nnode + 2*k1] = Vslack[ph].real XNR[2*ph*nnode + 2*k1+1] = Vslack[ph].imag # If initial V is given (usually from CVX) elif len(V0) != 0: for ph in range(3): for k1 in range(nnode): XNR[2*ph*nnode + 2*k1] = V0[ph, k1].real XNR[2*ph*nnode + 2*k1+1] = V0[ph, k1].imag # intialize line current portion of XNR if I0 is None or len(I0) == 0: XNR[(2*3*nnode):] = 0.0*
np.ones((6*nline + 2*tf_lines + 2*2* vr_lines, 1), dtype = float)
numpy.ones
import sys import cv2 import numpy as np from src.common.image import CoordinateStore from src.settings.local import LOCAL_X_AXIS_ITERATIONS, LOCAL_Y_AXIS_ITERATIONS def roi_selection(numpy_frame: np.ndarray): """ Generates the Region of Interest points selection for posterior processing. :param numpy_frame: Input image decided in the project settings read as a Numpy frame. :return: Points list. """ image = numpy_frame coordinate_handler = CoordinateStore(numpy_frame=image) cv2.namedWindow("Test Image") cv2.setMouseCallback("Test Image", coordinate_handler.select_point) while True: cv2.imshow("Test Image", image) if cv2.waitKey(0) == 27: cv2.destroyAllWindows() break print("Selected Coordinates: ") print(coordinate_handler.points) return coordinate_handler.points def roi_processing(numpy_frame: np.ndarray, roi_points: list): """ Processing of the Region of Interest points on the input image and overlays it on the background image by rotating it across the X-Axis and Y-Axis. :param numpy_frame: Input image decided in the project settings read as a Numpy frame. :param roi_points: Points list. :return: Generated masks with the Region of Interest rotated. """ final_images = list() if len(roi_points) == 0: print("Incorrect number of Region of Interest points selected... Exiting") sys.exit(1) base_masked_out = roi_extraction(roi_points=roi_points, numpy_frame=numpy_frame) x_intervals = round(numpy_frame.shape[1] / 20) y_intervals = round(numpy_frame.shape[0] / 30) x_start_interval = 0 y_start_interval = 0 for x_index in range(0, LOCAL_X_AXIS_ITERATIONS): x_start_interval, generated_images = roi_rotation( masked_image=base_masked_out, x_start_interval=x_start_interval, y_start_interval=y_start_interval, x_intervals=x_intervals, y_intervals=y_intervals ) final_images.extend(generated_images) return final_images def roi_extraction(roi_points: list, numpy_frame: np.ndarray): points = np.array(roi_points, dtype=np.int32) image = numpy_frame # Masked image generation mask = np.zeros((image.shape[0], image.shape[1])) cv2.fillConvexPoly(mask, points, 1) mask = mask.astype(np.bool) masked_out = np.zeros_like(image) masked_out[mask] = image[mask] base_masked_out = masked_out return base_masked_out def roi_rotation(masked_image, x_start_interval, y_start_interval, x_intervals, y_intervals): images = list() masked_out = np.roll(masked_image, (x_start_interval, 0), axis=(1, 0)) # Add shifting capabilities to the image images.append(masked_out) frame_mask_scan(masked_out) for y_index in range(0, LOCAL_Y_AXIS_ITERATIONS): # Add shifting capabilities to the image masked_out = np.roll( masked_image, (x_start_interval, y_start_interval), axis=(0, 1) ) images.append(masked_out) y_start_interval = y_start_interval + y_intervals x_start_interval = x_start_interval + x_intervals images.append(masked_out) return x_start_interval, images def frame_mask_scan(numpy_frame: np.ndarray): threshold_value = 0 # Columns 0 -> Last column_indexes = list() limit = numpy_frame.shape[1] for i in range(0, limit): current_value =
np.count_nonzero(numpy_frame[:, i])
numpy.count_nonzero
from __future__ import division from future.utils import viewitems from builtins import int, zip import concurrent.futures import os import itertools from ._adaptive_threshold import threshold as athreshold from .pool import pooler from ._moving_window import moving_window # from mpglue.raster_tools import create_raster # from mpglue import moving_window import numpy as np import cv2 # SciPy from scipy.ndimage.measurements import label as nd_label from scipy.ndimage.measurements import mean as nd_mean import scipy.stats as sci_stats from scipy.stats import mode as sci_mode from sklearn.preprocessing import StandardScaler # Scikit-image from skimage.exposure import rescale_intensity from skimage.filters import threshold_local from skimage.morphology import remove_small_objects, skeletonize from skimage.morphology import thin as sk_thin from skimage.feature import peak_local_max from skimage.measure import regionprops from skimage.measure import label as sk_label import pymorph from mahotas import thin as mthin from mahotas.morph import hitmiss as mhitmiss # from tqdm import tqdm # from joblib import Parallel, delayed def local_straightness(arr, kernel_filter, w, sigma_color, sigma_space): """ https://ieeexplore-ieee-org.ezproxy.library.uq.edu.au/document/1334256 https://docs.opencv.org/master/d4/d70/tutorial_anisotropic_image_segmentation_by_a_gst.html Example: >>> conv_kernels = set_kernel_pairs(methods=['compass']) >>> kernel_filter = conv_kernels['compass']['kernels'] >>> local_straightness(array, kernel_filter, 3, 1, 1) """ diff_x = cv2.filter2D(np.float32(arr), cv2.CV_32F, kernel_filter[1], borderType=cv2.BORDER_CONSTANT) diff_y = cv2.filter2D(np.float32(arr), cv2.CV_32F, kernel_filter[0], borderType=cv2.BORDER_CONSTANT) diff_xy = diff_x * diff_y diff_xx = diff_x * diff_x diff_yy = diff_y * diff_y c11 = cv2.boxFilter(np.float32(diff_xx), cv2.CV_32F, (w, w)) c22 = cv2.boxFilter(np.float32(diff_yy), cv2.CV_32F, (w, w)) c12 = cv2.boxFilter(np.float32(diff_xy), cv2.CV_32F, (w, w)) # c11 = cv2.bilateralFilter(np.float32(diff_xx), w, sigma_color, sigma_space) # c22 = cv2.bilateralFilter(np.float32(diff_yy), w, sigma_color, sigma_space) # c12 = cv2.bilateralFilter(np.float32(diff_xy), w, sigma_color, sigma_space) gamma_max = (c11 + c22 + np.sqrt((c11 - c22)**2 + 4*c12**2)) / 2.0 gamma_min = (c11 + c22 - np.sqrt((c11 - c22)**2 + 4*c12**2)) / 2.0 s = 1.0 - (gamma_min / gamma_max) return s def logistic(x, **params): return sci_stats.logistic.cdf(x, **params) def sigmoid(x, a, b): return 1.0 / (1.0 + np.exp(-b * (x - a))) def log_transform(egm, scale=1e-6, logistic_alpha=1.6, logistic_beta=0.5): """ Transforms an EGM to probabilities Args: egm (2d array) scale (Optional[float]): The scaling factor logistic_alpha (Optional[float]) logistic_beta (Optional[float]) Returns: Probabilities (2d array) """ # Mask egm[egm == 0] = np.nan log_min = np.nanpercentile(np.log(egm * scale), 2) egm[np.isnan(egm)] = 0 # Log transform egm_proba = np.where(egm > 0, np.log(egm * scale), log_min) # Scale and clip r, c = egm_proba.shape zegm = np.where(egm_proba.ravel() > log_min)[0] scaler = StandardScaler().fit(egm_proba.ravel()[zegm][:, np.newaxis]) egm_proba = scaler.transform(egm_proba.ravel()[:, np.newaxis]).reshape(r, c) egm_proba = rescale_intensity(egm_proba, in_range=(-3, 3), out_range=(-3, 3)) # CDF return logistic(egm_proba, loc=logistic_alpha, scale=logistic_beta) def bayes(prior_a, prior_b, likelihood): """ Bayes rule Args: prior_a (float): The class prior probability. prior_b (float): The class prior probability. likelihood (float) """ posterior = (likelihood * prior_a) / (likelihood * prior_a + prior_b * (1.0 - prior_a)) posterior[np.isnan(posterior)] = 0 return posterior class Params(object): def __init__(self, **kwargs): for k, v in viewitems(kwargs): setattr(self, k, v) def mopen(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=iters) def mclose(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_CLOSE, se, iterations=iters) def merode(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_ERODE, se, iterations=iters) def mdilate(array2morph, se, iters=1): return cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_DILATE, se, iterations=iters) def closerec(array2morph, se, r=3, iters=5): """ Close by reconstruction Args: array2morph (2d array) se (str) r (Optional[int]) iters (Optional[int]) """ if se == 'disk': se = np.uint8(pymorph.sedisk(r=r)) elif se == 'cross': se = np.uint8(pymorph.secross(r=r)) evi2_dist = np.float32(cv2.distanceTransform(np.uint8(np.where(array2morph >= 20, 1, 0)), cv2.DIST_L2, 3)) seed = np.uint8(np.where(evi2_dist >= 2, cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=1), 0)) im_result = seed.copy() for iter in range(0, iters): im_dilated = cv2.morphologyEx(np.uint8(im_result), cv2.MORPH_DILATE, se, iterations=1) im_rec = np.minimum(im_dilated, array2morph) im_result = im_rec.copy() if np.allclose(seed, im_rec): break return im_result def openrec(array2morph, se, iters=5): """ Open by reconstruction Args: array2morph (2d array) se (2d array) iters (Optional[int]) """ evi2_dist = np.float32(cv2.distanceTransform(np.uint8(np.where(array2morph >= 20, 1, 0)), cv2.DIST_L2, 3)) seed = np.uint8(np.where(evi2_dist >= 2, cv2.morphologyEx(np.uint8(array2morph), cv2.MORPH_OPEN, se, iterations=1), 0)) im_result = seed.copy() for iter in range(0, iters): im_dilated = merode(im_result, se, iters=1) im_rec = np.minimum(im_dilated, array2morph) im_result = im_rec.copy() if np.allclose(seed, im_rec): break return im_result def set_kernel_pairs(methods=None): """ Creates 2d convolution kernels Args: methods (Optional[str list]): Choices are ['compass', 'kirsch', 'prewitt', 'roberts', 'scharr', 'sobel']. Returns: List of kernel filters """ returned_filters = dict() if methods: returned_filters['custom'] = dict(kernels=methods, compass=True) methods = ['compass', 'kirsch', 'prewitt', 'roberts', 'sobel'] # Prewitt compass compass_filters = np.array([[[-1, -1, -1], [1, -2, 1], [1, 1, 1]], [[-1, -1, 1], [-1, -2, 1], [1, 1, 1]], [[-1, 1, 1], [-1, -2, 1], [-1, 1, 1]], [[1, 1, 1], [-1, -2, 1], [-1, -1, 1]], [[1, 1, 1], [1, -2, 1], [-1, -1, -1]], [[1, 1, 1], [1, -2, -1], [1, -1, -1]], [[1, 1, -1], [1, -2, -1], [1, 1, -1]]], dtype='float32') # Sobel sobel_filters = np.array([[[1, 2, 0], [2, 0, -2], [0, -2, -1]], [[-1, -2, 0], [-2, 0, 2], [0, 2, 1]], [[0, 2, 1], [-2, 0, 2], [-1, -2, 0]], [[0, -2, -1], [2, 0, -2], [1, 2, 0]], [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], [[1, 0, -1], [2, 0, -2], [1, 0, -1]], [[-1, -2, -1], [0, 0, 0], [1, 2, 1]], [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]], dtype='float32') # Scharr scharr_filters = np.array([[[10, 3, 0], [3, 0, -3], [0, -3, -10]], [[-10, -3, 0], [-3, 0, 3], [0, 3, 10]], [[0, 3, 10], [-3, 0, 3], [-10, -3, 0]], [[0, -3, -10], [3, 0, -3], [10, 3, 0]], [[-10, 0, 10], [-3, 0, 3], [-10, 0, 10]], [[10, 0, -10], [3, 0, -3], [10, 0, -10]], [[-10, -3, -10], [0, 0, 0], [10, 3, 10]], [[10, 3, 10], [0, 0, 0], [-10, -3, -10]]], dtype='float32') # Roberts cross roberts_filters = np.array([[[0, -1], [1, 0]], [[0, 1], [-1, 0]], [[-1, 0], [0, 1]], [[1, 0], [0, -1]]], dtype='float32') # Prewitt prewitt_filters = np.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]], [[-1, -1, -1], [0, 0, 0], [1, 1, 1]], [[1, 1, 0], [1, 0, -1], [0, -1, -1]], [[-1, -1, 0], [-1, 0, 1], [0, 1, 1]], [[1, 0, -1], [1, 0, -1], [1, 0, -1]], [[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]], [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]], [[0, -1, -1], [1, 0, -1], [1, 1, 0]]], dtype='float32') # Kirsch compass kirsch_filters = np.array([[[5, 5, 5], [-3, 0, -3], [-3, -3, -3]], [[5, 5, -3], [5, 0, -3], [-3, -3, -3]], [[5, -3, -3], [5, 0, -3], [5, -3, -3]], [[-3, -3, -3], [5, 0, -3], [5, 5, -3]], [[-3, -3, -3], [-3, 0, -3], [5, 5, 5]], [[-3, -3, -3], [-3, 0, 5], [-3, 5, 5]], [[-3, -3, 5], [-3, 0, 5], [-3, -3, 5]]], dtype='float32') if 'compass' in methods: returned_filters['compass'] = dict(kernels=compass_filters, compass=True) if 'kirsch' in methods: returned_filters['kirsch'] = dict(kernels=kirsch_filters, compass=True) if 'prewitt' in methods: returned_filters['prewitt'] = dict(kernels=prewitt_filters, compass=False) if 'roberts' in methods: returned_filters['roberts'] = dict(kernels=roberts_filters, compass=False) if 'scharr' in methods: returned_filters['scharr'] = dict(kernels=scharr_filters, compass=False) if 'sobel' in methods: returned_filters['sobel'] = dict(kernels=sobel_filters, compass=False) return returned_filters def find_circles(intensity_array, kernel_size): """ Finds circles Args: intensity_array (2d array) kernel_size (int) """ kernel_radius = int(kernel_size / 2.0) kernel_circle = np.uint8(pymorph.sedisk(r=kernel_radius, dim=2, metric='euclidean', flat=True, h=0) * 1) kernel_square = np.uint8(pymorph.sebox(r=kernel_radius) * 1) circles = cv2.filter2D(np.float32(intensity_array), cv2.CV_32F, kernel_circle, borderType=cv2.BORDER_CONSTANT) squares = cv2.filter2D(np.float32(intensity_array), cv2.CV_32F, kernel_square, borderType=cv2.BORDER_CONSTANT) diff = circles - squares local_max_coords = peak_local_max(diff, min_distance=kernel_size, indices=True) local_max =
np.zeros(intensity_array.shape, dtype='uint8')
numpy.zeros
__author__ = 'mricha56' __version__ = '4.0' # Interface for accessing the PASCAL in Detail dataset. detail is a Python API # that assists in loading, parsing, and visualizing the annotations of PASCAL # in Detail. Please visit https://sites.google.com/view/pasd/home for more # information about the PASCAL in Detail challenge. For example usage of the # detail API, see detailDemo.ipynb. # Throughout the API "ann"=annotation, "cat"=category, "img"=image, # "bbox"= bounding box, "kpts"=keypoints, "occl"=occlusion, # "bounds"=boundaries. # To import: # from detail import Detail # For help: # help(Detail) # PASCAL in Detail Toolbox version 4.0 # Modifications of COCO toolbox made by <NAME> and <NAME> # Forked from: # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by <NAME> and <NAME>, 2014. # Licensed under the Simplified BSD License [see bsd.txt] import json import time import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Polygon,Rectangle,Circle,Arrow,FancyArrow import matplotlib.colors import numpy as np import skimage.io as io import copy import itertools from scipy.ndimage.morphology import binary_dilation from . import mask as maskUtils import os from collections import defaultdict import sys PYTHON_VERSION = sys.version_info[0] if PYTHON_VERSION == 2: from urllib import urlretrieve elif PYTHON_VERSION == 3: from urllib.request import urlretrieve # When displaying boundaries, dilate the mask before displaying it, to # improve visibility NUM_BOUNDARY_DILATION_ITERATIONS = 1 # When displaying occlusion, draw an arrow every OCCLUSION_ARROW_DISTANCE # pixels OCCLUSION_ARROW_DISTANCE = 7 class Detail: def __init__(self, annotation_file='json/trainval_withkeypoints.json', image_folder='VOCdevkit/VOC2010/JPEGImages', phase='trainval'): """ Constructor of Detail helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that has pascal JPEG images. :param phase (str): image set to look at: train, val, test, or any combination of the three (trainval, trainvaltest) :return: """ # load dataset self.phase = phase self.img_folder = image_folder print('loading annotations into memory...') tic = time.time() self.data = json.load(open(annotation_file, 'r')) assert type(self.data)==dict, 'annotation file format {} not supported'.format(type(self.data)) print('JSON root keys:' + str(self.data.keys())) print('Done (t={:0.2f}s)'.format(time.time()- tic)) self.waiting = False self.__createIndex() def __createIndex(self): # create index tic = time.time() print('creating index...') # create class members self.cats,self.imgs,self.segmentations,self.occlusion,self.parts,\ self.kpts, self.bounds= {},{},{},{},{},{},{} # Organize data into instance variables for img in self.data['images']: self.imgs[img['image_id']] = img for segm in self.data['annos_segmentation']: # many per image self.segmentations[segm['id']] = segm for occl in self.data['annos_occlusion']: # one per image self.occlusion[occl['image_id']] = occl for bound in self.data['annos_boundary']: # one per image self.bounds[bound['image_id']] = bound #for skeleton in self.data['annos_joints']: # many per image # # skeletons are 1-indexed in JSON file and # # 0-indexed in self.kpts # self.kpts[skeleton['person_id'] - 1] = skeleton # Follow references for img in self.data['images']: img['annotations'] = [] img['categories'] = [] img['parts'] = [] img['keypoints'] = [] for part in self.data['parts']: part['categories'] = [] part['annotations'] = [] part['images'] = [] self.parts[part['part_id']] = part # fixed eval_orders here for classification task self.eval_orders = {} eval_orders = [2, 23, 25, 31, 34, 45, 59, 65, 72, 98, 397, 113, 207, 258, 284, 308, 347, 368, 416, 427, 9, 18, 22, 33, 44, 46, 68, 80, 85, 104, 115, 144, 158, 159, 162, 187, 189, 220, 232, 259, 260, 105, 296, 355, 295, 324, 326, 349, 354, 360, 366, 19, 415, 420, 424, 440, 445, 454, 458] for i in range(len(eval_orders)): self.eval_orders[i] = eval_orders[i] for order, cat in enumerate(self.data['categories']): cat['images'] = [] cat['annotations'] = [] #print('adding cat id: %d'%(cat['category_id'])) self.cats[cat['category_id']] = cat # self.eval_orders[order] = cat['category_id'] if cat.get('parts'): for partId in cat['parts']: part = self.parts[partId] if cat['category_id'] not in part['categories']: part['categories'].append(cat['category_id']) self.keypoints_str = ['head', 'neck', 'lsho', 'lelb', 'lhip', 'lwri', 'lknee', 'lank', 'rsho', 'relb', 'rwri', 'rhip', 'rknee', 'rank'] for skeleton_id, skeleton in self.kpts.items(): self.imgs[skeleton['image_id']]['keypoints'].append(skeleton_id) for segm_id, segm in self.segmentations.items(): img = self.imgs[segm['image_id']] cat = self.cats[segm['category_id']] img['annotations'].append(segm_id) cat['annotations'].append(segm_id) if cat['category_id'] not in img['categories']: img['categories'].append(cat['category_id']) if img['image_id'] not in cat['images']: cat['images'].append(img['image_id']) if segm.get('parts'): for partsegm in segm['parts']: if partsegm['part_id'] == 255: continue part = self.parts[partsegm['part_id']] part['annotations'].append(segm_id) if img['image_id'] not in part['images']: part['images'].append(img['image_id']) if part['part_id'] not in img['parts']: img['parts'].append(part['part_id']) print('index created! (t={:0.2f}s)'.format(time.time() - tic)) def info(self): """ Print information about the annotation file. :return: """ for key, value in self.data['info'].items(): print('{}: {}'.format(key, value)) def __getSegmentationAnns(self, anns=[], imgs=[], cats=[], areaRng=[], supercat=None, crowd=None): """ Get segmentation annotations that satisfy given filter conditions. default is no filter :param anns (int array) : get anns with the given IDs imgs (image array) : get anns in the given imgs cats (category array) : get anns for given cats areaRng (float array) : get anns for given area range (e.g. [0 inf]) supercat (str) : filter anns by supercategory crowd (True/False) : filter anns by 'iscrowd' key :return: anns (annotation array) : array of annotations """ if len(imgs) > 0: imgs = self.getImgs(imgs) if len(cats) > 0: cats = self.getCats(cats) anns = self.__toList(anns) # Get starting list of anns if len(anns) == 0: anns = list(self.segmentations.values()) else: for i in range(len(anns)): try: if type(anns[i]) is int: anns[i] = self.segmentations[anns[i]] elif type(anns[i]) is dict: anns[i] = self.segmentations[anns[i]['id']] except IndexError: assert False, 'Annotation with id %s not found' % anns[i]['id'] # Filter anns according to params imgAnns = np.unique(np.array([img['annotations'] for img in imgs]).flatten()) catAnns = np.unique(np.array([cat['annotations'] for cat in cats]).flatten()) if len(imgs) > 0: anns = [ann for ann in anns if ann['id'] in imgAnns] if len(cats) > 0: anns = [ann for ann in anns if ann['id'] in catAnns] if len(areaRng) == 2: anns = [ann for ann in anns if ann['area'] >= areaRng[0] and ann['area'] <= areaRng[1]] if supercat is not None: subcats = [cat['category_id'] for cat in self.getCats(supercat=supercat)] anns = [ann for ann in anns if ann['category_id'] in subcats] if crowd is not None: if (crowd): anns = [ann for ann in anns if ann['iscrowd']] else: anns = [ann for ann in anns if not ann['iscrowd']] return anns # getX() functions # def getOccl(self, img, show=False): img = self.getImgs(img)[0] occl = self.occlusion[img['image_id']] if show: self.showOccl(occl, img) return occl def getBounds(self, img, show=False): """ Get boundary mask for given image. """ img = self.getImgs(img)[0] bound = self.bounds[img['image_id']] mask = self.decodeMask(bound['boundary_mask']) if show: if np.count_nonzero(mask) > 0: self.showBounds(mask, img) else: print('Mask is empty') return mask def getBboxes(self, img, cat='object', show=False): """ Get bounding box for each instance of given category in image. :param img : image containing bounding boxes :param cat : category or supercategory to filter by. Default returns bboxes for all "object" (non-background) categories. :param show (boolean): whether to pass result to self.showBboxes() before proceeding. :return: bboxes : list of bboxes, where each bbox is a dict: {'bbox':[pos_x, pos_y, width, height], 'category': 'category_name'} """ img = self.getImgs(img)[0] if cat in ['object', 'animal', 'background']: # supercategory anns = self.__getSegmentationAnns(imgs=img, supercat=cat,crowd=False) else: cat = self.getCats(cat)[0] assert not cat['onlysemantic'], 'No instance-level data for category %s' % cat['name'] anns = self.__getSegmentationAnns(imgs=img, cats=cat, crowd=False) bboxes = [] for ann in anns: bboxes.append({ 'bbox': ann['bbox'], 'category': self.getCats(ann['category_id'])[0]['name']}) if show: self.showBboxes(bboxes, img) return bboxes def getMask(self, img, cat=None, instance=None, superpart=None, part=None, show=False): """ Get mask for a particular level of segmentation. You may "drill down" to the desired level of detail by specifying more parameters. If semantic segmentation of an image is requested (cat=instance=superpart=part=None), the result is an image whose pixel values are the class IDs for that image. If instance-level segmentation for one category of an image is requested (img and cat provided), the result is an image whose pixel values are the instance IDs for that class and 0 everywhere else. If part-level segmentation of an instance is requested (img, cat, and instance provided), the result is an image whose pixel values are the part IDs for that instance and 0 everywhere else. If a single-part binary mask for a part or superpart is requested (img, cat, instance, and part or superpart provided), the result is an image whose pixel values are 0 everywhere except for the given part/superpart. :param img (string/int/dict) : image that mask describes cat (string/int/dict) : category or supercategory that mask describes instance (string/int/dict) : instance that the mask describes. If integer, interpreted as id of an "annotation" object in JSON. If string starting with #, e.g. '#0', interpreted as 0-based index of instance within the image (cat is None) or of instance within the given class (cat not None). part (string or int) : part that mask describes (None means all parts) superpart (string): superpart that mask describes show (boolean) : whether to pass the mask to self.showMask() before returning. :return: mask (numpy 2D array) : a mask describing the requested annotation. """ # Validate params and convert them to dicts img = self.getImgs(img)[0] supercat = None if cat is not None: if cat in ['object', 'animal', 'background']: supercat = cat cat = None else: cat = self.getCats(cat)[0] if part is not None: part = self.getParts(part)[0] # When part or superpart is requested, instance is assumed to be first instance # of the given category if (cat or supercat) and (part or superpart) and not instance: instance = '#0' if instance is not None: try: if type(instance) is str: if instance.startswith('#'): # If instance is set to '#N' where N is an integer, # get the Nth (0-indexed) instance of the given category. if cat is not None: instance = self.__getSegmentationAnns(imgs=img, cats=cat)[int(instance[1:])] else: instance = self.__getSegmentationAnns(imgs=img, supercat='object')[int(instance[1:])] else: instance = self.__getSegmentationAnns(int(instance))[0] elif type(instance) is int: instance = self.__getSegmentationAnns(instance)[0] except IndexError: assert False, 'Couldn\'t find the requested instance' anns = self.__getSegmentationAnns(imgs=img, cats=[] if cat is None else cat, supercat=supercat, crowd=None if instance is None else False) mask = np.zeros((img['height'], img['width'])) # Generate mask based on params if not (cat or supercat or instance or part): # Generate class mask for ann in anns: m = self.decodeMask(ann['segmentation']) mask[np.nonzero(m)] = ann['category_id'] elif (cat or supercat) and not (instance or part): # Generate instance (or single-class semantic) mask i = 1 for ann in anns: m = self.decodeMask(ann['segmentation']) if cat and cat['onlysemantic']: mask[np.nonzero(m)] = 1 else: mask[np.nonzero(m)] = i i = i + 1 elif instance and not part: assert not instance['iscrowd'], 'Instance-level segmentation not available' # Generate part mask for p in instance['parts']: m = self.decodeMask(p['segmentation']) mask[np.nonzero(m)] = p['part_id'] if superpart is not None: parts = [p['part_id'] for p in self.getParts(superpart=superpart)] newmask = np.zeros(mask.shape) for p in parts: newmask += p * (mask == p) mask = newmask elif instance and part: # Generate single-part mask partMask = [p['segmentation'] for p in instance['parts'] \ if p['part_id'] == part['part_id']] assert len(partMask) > 0, 'Coudn\'t find a part mask for the given part and instance' partMask = partMask[0] m = self.decodeMask(partMask) mask[np.nonzero(m)] = part['part_id'] else: assert False, 'Invalid parameters' if show: if np.count_nonzero(mask) > 0: self.showMask(mask, img) else: print('Mask is empty') return mask def getKptAnno(self, skeleton_id=0): """ Get keypoints annotations by skeleton_id :param skeleton_id (int): get the #skeleton_id of kpts annotations :return: kpt_annotation (dict) : kpts dicts """ assert(type(skeleton_id) is int) # skeleton_id must be int assert(skeleton_id < len(self.kpts) and skeleton_id >= 0) # skeleton_id can not get out of bound return self.kpts[skeleton_id] def getKpts(self, img, show=False): """ Get human keypoints for the image. :param imgs (int/string/dict array) : get cats present in at least one of the given image names/ids :return: kpts (dict array) : array of kpts dict in the img """ img = self.getImgs(img)[0] kpts = [] for skeleton_id in img['keypoints']: kpts.append(self.kpts[skeleton_id]) if show: self.showKpts(kpts, img) return kpts def getCats(self, cats=[], imgs=[], supercat=None, with_instances=None): """ Get categories abiding by the given filters. default is no filter. :param cats (int/string/dict array) : get cats for given cat names/ids/dicts :param imgs (int/string/dict array) : get cats present in at least one of the given image names/ids :param supercat : get cats that belong to the specified supercategory :param with_instances (boolean): filter cats based on whether they have instance-level annotations :return: cats (dict array) : array of category dicts """ cats = self.__toList(cats) if len(cats) == 0: cats = list(self.cats.values()) else: for i in range(len(cats)): if type(cats[i]) == int: cats[i] = self.cats[cats[i]] elif type(cats[i]) == dict: cats[i] = self.cats[cats[i]['category_id']] elif type(cats[i]) == str: try: cats[i] = [c for c in self.cats.values() if c['name'] == cats[i]][0] except IndexError: assert False, 'Category "%s" not found' % cats[i] if type(imgs) is not list or len(imgs) > 0: imgs = self.getImgs(imgs) catIds = np.unique(np.array([img['categories'] for img in imgs]).flatten()) cats = [cat for cat in cats if cat['category_id'] in catIds] if supercat is not None: scs = [] if supercat is 'object': scs = ['object', 'animal'] else: scs = [supercat] cats = [cat for cat in self.cats.values() if cat['supercategory'] in scs] if with_instances is not None: cats = [cat for cat in cats if not cat['onlysemantic'] == with_instances] return cats def getSuperparts(self, cat=None): """ Get list of all defined superparts. :return: superparts (string array): list of superpart names """ superparts = set() parts = self.getParts(cat=cat) for part in parts: if part['superpart'] != 'none': superparts.add(part['superpart']) return list(superparts) def getParts(self, parts=[], cat=None, superpart=None): """ Get parts of a particular category. :param parts (int/string/dict array) : list of parts to get :param cat (int, string, or dict) : category to get parts for (default: any) :param superpart (string) : superpart to get parts for - one of ["object", "background", "animal"] :return: parts (dict array) : array of part dicts, e.g. [{"name": "mouth", "superpart": "head", "part_id": 110},...] """ parts = self.__toList(parts) if len(parts) == 0: parts = list(self.parts.values()) else: for i in range(len(parts)): if type(parts[i]) == int: parts[i] = self.parts[parts[i]] elif type(parts[i]) == dict: parts[i] = self.parts[parts[i]['part_id']] elif type(parts[i] == str): try: parts[i] = [p for p in self.parts.values() if p['name'] == parts[i]][0] except IndexError: assert False, 'No part named \"%s\"' % parts[i] if cat is not None: cat = self.getCats(cat)[0] if cat is not None: oldparts = copy.copy(parts) for part in oldparts: if part['part_id'] not in cat['parts']: parts.remove(part) if superpart is not None: oldparts = copy.copy(parts) for part in oldparts: if part['superpart'] != superpart: parts.remove(part) return parts def getImgs(self, imgs=[], cats=[], supercat=None, phase=None): ''' Get images that satisfy given filter conditions. :param imgs (int/string/dict array) : get imgs with given ids :param cats (int/string/dict array) : get imgs with all given cats :param supercat (string) : get imgs with the given supercategory :param phase (string) : filter images by phase. If None, the phase provided to the Detail() constructor is used. :return: images (dict array) : array of image dicts ''' if phase is None: phase = self.phase phases = [] if "train" in phase: phases.append("train") if "val" in phase: phases.append("val") if "test" in phase: phases.append("test") assert len(phases) > 0, 'Invalid phase, {}'.format(phase) imgs = self.__toList(imgs) if len(imgs) == 0: imgs = list(self.imgs.values()) else: for i in range(len(imgs)): if type(imgs[i]) == int: imgs[i] = self.imgs[imgs[i]] elif type(imgs[i]) == dict: imgs[i] = self.imgs[imgs[i]['image_id']] elif type(imgs[i]) == str: imstr = imgs[i] imgs[i] = self.imgs[int(imstr[:4] + imstr[5:])] if type(cats) is not list or len(cats) > 0: cats = self.getCats(cats) oldimgs = copy.copy(imgs) for img in oldimgs: for cat in cats: if cat['category_id'] not in img['categories']: imgs.remove(img) break if supercat is not None: catIds = set([c['category_id'] for c in self.getCats(supercat=supercat)]) oldimgs = copy.copy(imgs) for img in oldimgs: if len(catIds & set(img['categories'])) == 0: imgs.remove(img) oldimgs = copy.copy(imgs) for img in oldimgs: if img['phase'] not in phases: imgs.remove(img) return imgs # showX() functions # def showImg(self, img, wait=False, ax=None): """ Display the given image """ img = self.getImgs(img)[0] jpeg = io.imread(os.path.join(self.img_folder, img['file_name'])) # print image details print('showing image %s: ' % img['file_name']) keys = ['image_id', 'width', 'height', 'phase', 'date_captured'] for k in keys: print('\t%s: %s,' % (k, img[k] if img.get(k) else 'N/A')) if ax is not None: ax.imshow(jpeg) else: plt.imshow(jpeg) plt.axis('off') if wait: self.waiting = True else: plt.show() def showMask(self, mask, img=None): """ Display given mask (numpy 2D array) as a colormapped image. """ if img is not None and not self.waiting: self.showImg(img, wait=True) # Draw mask, random colormap, 0s transparent self.waiting = False mycmap = self.__genRandColormap() mycmap.set_under(alpha=0.0) nonzero = np.unique(mask[np.nonzero(mask)]) plt.imshow(mask, cmap=mycmap, vmin=np.min(nonzero), vmax=np.max(nonzero)+1) plt.axis('off') plt.show() def showBboxes(self, bboxes, img=None): """ Display given bounding boxes. """ fig,ax = plt.subplots(1) if img is not None and not self.waiting: self.showImg(img, wait=True, ax=ax) for bbox in bboxes: ax.add_patch(Rectangle((bbox['bbox'][0],bbox['bbox'][1]), bbox['bbox'][2], bbox['bbox'][3], linewidth=2, edgecolor=np.random.rand(3), facecolor='none', label=bbox['category'])) print('categories: %s' % [bbox['category'] for bbox in bboxes]) self.waiting = False plt.legend() plt.axis('off') plt.show() def showKpts(self, kpts, img=None): """ Display given kpts. """ fig,ax = plt.subplots(1) if img is not None: self.showImg(img, wait=True, ax=ax) pv = np.zeros(14) px = np.zeros(14) py = np.zeros(14) for kpt in kpts: skeleton_color = np.random.rand(3) num_kpt = len(kpt['keypoints'])/3 # always 14 assert num_kpt == 14, 'Expected 14 keypoints but found {}'.format(num_kpt) for i in range(int(num_kpt)): px[i] = kpt['keypoints'][3*i] py[i] = kpt['keypoints'][3*i+1] pv[i] = kpt['keypoints'][3*i+2] kpt_pair = [[0, 1], [1, 2], [2, 3], [3, 4], [2, 5], [5, 6], [6, 7], [1, 8], [8, 9], [9, 10], [8, 11], [11, 12], [12, 13]] for p in kpt_pair: p0 = p[0] p1 = p[1] if pv[p0] == 0 or pv[p1] == 0: continue if pv[p0] == 2 or pv[p1] == 2: pcolor = 'blue' else: pcolor = 'red' ax.add_patch(Arrow(px[p0], py[p0], px[p1]-px[p0], py[p1]-py[p0], width=2.0, facecolor=skeleton_color, edgecolor=skeleton_color)) for i in range(int(num_kpt)): if pv[i] == 0: continue pcolor = 'none' if pv[i] == 1: pcolor = 'red' else: pcolor = 'blue' ax.add_patch(Circle((px[i], py[i]), radius=3, facecolor=pcolor, edgecolor=skeleton_color, linewidth=2.0)) self.waiting = False plt.axis('off') plt.show() def showBounds(self, mask, img): """ Dilate mask before passing it to showMask() """ img = self.getImgs(img)[0] # dilate mask (creates new ndarray of bools) mask = binary_dilation(mask, iterations=NUM_BOUNDARY_DILATION_ITERATIONS) # show mask self.showMask(mask, img) def showOccl(self, occl, img): """ Show occlusion data """ img = self.getImgs(img)[0] fig,ax = plt.subplots(1) if img is not None and not self.waiting: self.showImg(img, wait=True, ax=ax) bounds = np.zeros(occl['imsize']) for i in range(occl['ne']): # ne = "number of edges" pixel_indices = occl['edges']['indices'][i] num_pixels = len(pixel_indices) pixel_coords =
np.unravel_index(pixel_indices, occl['imsize'], order='F')
numpy.unravel_index
from typing import Sequence, Union import numpy as np import scipy.stats from sklearn.metrics import classification_report, confusion_matrix from .registry import registry @registry.register_metric('mse') def mean_squared_error(target: Sequence[float], prediction: Sequence[float]) -> float: target_array = np.asarray(target) prediction_array = np.asarray(prediction) return np.mean(np.square(target_array - prediction_array)) @registry.register_metric('mae') def mean_absolute_error(target: Sequence[float], prediction: Sequence[float]) -> float: target_array = np.asarray(target) prediction_array = np.asarray(prediction) return np.mean(
np.abs(target_array - prediction_array)
numpy.abs
import unittest import dgl import networkx as nx from scipy import sparse import numpy as np from photonai_graph.GraphConversions import check_dgl class DglToNetworkxTest(unittest.TestCase): def setUp(self): # create dgl graphs dgl_graph = dgl.DGLGraph() dgl_graph.add_nodes(3) dgl_graph.add_edges([0, 0, 1, 1, 2, 2], [1, 2, 0, 2, 0, 1]) self.dgl_graph_list = [dgl_graph] * 10 # create networkx graphs nx_graph = nx.cycle_graph(5) self.nx_graph_list = [nx_graph] * 10 # create scipy matrix sparse_matrix = sparse.csr_matrix([[0, 1, 1], [1, 0, 1], [1, 1, 0]]) self.sp_matrix_list = [sparse_matrix] * 10 # create numpy matrix array = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]) m4d_array = array[np.newaxis, :, :, np.newaxis] individuals_array =
np.repeat(m4d_array, 5, axis=0)
numpy.repeat
import pytest import numpy as np import scipy as sp import pandas as pd import scdrs from .test_method_score_cell_main import load_toy_data def test_select_ctrl_geneset(): """ Test scdrs.method._select_ctrl_geneset """ np.random.seed(0) adata, df_cov, df_gs, dic_res_ref = load_toy_data() df_gene = pd.DataFrame( index=adata.var_names[:100], columns=["gene", "categorical", "continuous"] ) df_gene["gene"] = df_gene.index df_gene["categorical"] = [1] * 50 + [2] * 50 df_gene["continuous"] = np.random.rand(100) gene_list = list(df_gene.index[[0, 55, 27, 80, 2]]) gene_weight = [1.1, 2.5, 3.8, 4.1, 5.2] for ctrl_match_key in ["categorical", "continuous"]: dic_ctrl_list, dic_ctrl_weight = scdrs.method._select_ctrl_geneset( df_gene, gene_list, gene_weight, ctrl_match_key, 1, 10, 0 ) ctrl_gene_list_sort = np.array(dic_ctrl_list[0])[
np.argsort(dic_ctrl_weight[0])
numpy.argsort
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_cop_marg_stresstest [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_cop_marg_stresstest&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=sdoc-copula-stresstest). # + import numpy as np from scipy.stats import lognorm, gamma from scipy.linalg import toeplitz import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from arpym.statistics import simulate_t, quantile_sp, cop_marg_sep,\ cop_marg_comb from arpym.tools import add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_cop_marg_stresstest-parameters) j_ = 10**4 # number of scenarios n_ = 30 # dimension of the target X mu_eps = np.zeros(n_) # location of epsilon sigma2_eps = np.eye(n_) # dispersion of epsilon nu_eps = 20 # dof of epsilon k_ = 15 # dimension of the factors Z mu_z = np.zeros(k_) # location of Z sigma2_z = np.eye(k_) # dispersion of Z nu_z = 5 # dof of Z b1 = toeplitz(np.linspace(-0.9, 1.1, n_), np.linspace(-0.6, 1.2, k_)) b2 = toeplitz(np.linspace(-2, 0.5, n_), np.linspace(-0.7, 1, k_)) b = b1 + np.sin(b1@((b2.T@([email protected]))@b1)) mu_1 = 0.2 # lognormal location sigma2_1 = 0.25 # lognormal scale parameter k_grid = np.linspace(1, 10, (n_-1)) # Gamma degree of freedom theta_grid = np.linspace(1, 20, (n_-1)) # Gamma scale parameter # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_cop_marg_stresstest-implementation-step00): Generate scenarios for target variable with equal probabilities z = simulate_t(mu_z, sigma2_z, nu_z, j_) eps = simulate_t(mu_eps, sigma2_eps, nu_eps, j_) y = [email protected] + eps p = np.ones(j_)/j_ # flat flexible probabilities # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_cop_marg_stresstest-implementation-step01): Separation step u, y_sort, cdf_y = cop_marg_sep(y, p=p) # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_cop_marg_stresstest-implementation-step02): Marginal cdf's # + # lognormal marginal cdf_x_l = lognorm.cdf(y_sort[:, 0], np.sqrt(sigma2_1), np.exp(mu_1)) cdf_x_g = np.zeros((j_, (n_-1))) for n in range((n_-1)): # Gamma marginals cdf_x_g[:, n] = gamma.cdf(y_sort[:, n], k_grid[n], scale=theta_grid[n]) cdf_x = np.c_[cdf_x_l, cdf_x_g] # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_cop_marg_stresstest-implementation-step03): Combination step x = cop_marg_comb(u, y_sort, cdf_x) # ## Plots # + plt.rcParams['mathtext.fontset'] = 'custom' plt.rcParams['mathtext.it'] = 'STIXGeneral:italic' plt.rcParams['mathtext.bf'] = 'STIXGeneral:italic:bold' plt.style.use('arpm') # Colors y_color = [153/255, 205/255, 129/255] u_color = [60/255, 149/255, 145/255] x_color = [4/255, 63/255, 114/255] # Copula-marginal separation # Figure specifications plt.figure() mydpi = 72.0 f = plt.figure(figsize=(1280.0/mydpi, 720.0/mydpi), dpi=mydpi) gs0 = gridspec.GridSpec(2, 2) xlim = [np.percentile(y[:, 0], 0.5), np.percentile(y[:, 0], 99.5)] ylim = [np.percentile(y[:, 1], 0.5), np.percentile(y[:, 1], 99.5)] u_lim = [0, 1] # Marginal X1 gs00 = gridspec.GridSpecFromSubplotSpec(23, 20, subplot_spec=gs0[0]) ax1 = plt.Subplot(f, gs00[:-5, 4:-5], ylim=u_lim) f.add_subplot(ax1) ax1.tick_params(labelsize=14) ax1.set_xlim([-20, 20]) plt.plot(y_sort[:, 0], cdf_y[:, 0], lw=2, color=y_color) plt.title(r'Distribution of $Y_1$', fontsize=20, fontweight='bold', y=1.03) # Copula scenarios gs01 = gridspec.GridSpecFromSubplotSpec(46, 18, subplot_spec=gs0[1], wspace=0, hspace=0.6) ax2 = plt.Subplot(f, gs01[:-10, 3:-8], ylim=[0, 1], xlim=[0, 1]) f.add_subplot(ax2) plt.scatter(u[:, 1], u[:, 0], s=5, color=u_color) ax2.tick_params(labelsize=14) plt.title(r'Copula $\mathbf{U}$', fontsize=20, fontweight='bold', y=1.03) ax2_txt = ax2.text(0.1, 0.9 ,"",fontsize=20) ax2_title_1 = r'$\mathrm{\mathbb{C}}$'+r'r'+r"$\{U_1,U_2\}=%2.2f$" % (np.corrcoef(u[:,:2].T)[0,1]) ax2_txt.set_text(ax2_title_1) # Grade U1 ax3 = plt.Subplot(f, gs01[:-10, 1]) ax3.tick_params(labelsize=14) f.add_subplot(ax3) plt.xlim([0, 2]) plt.ylim([0, 1]) ax3.get_yaxis().set_visible(False) plt.hist(np.sort(u[:, 0]), weights=p, bins=int(10*np.log(j_)), density=True, color=u_color, orientation='horizontal') plt.title('Grade $U_1$', fontsize=16, fontweight='bold', y=1.03) # Grade U2 ax4 = plt.Subplot(f, gs01[41:46, 3:-8], sharex=ax2) f.add_subplot(ax4) ax4.tick_params(labelsize=14) ax4.get_xaxis().set_visible(False) plt.hist(np.sort(u[:, 1]), weights=p, bins=int(10*np.log(j_)), density=True, color=u_color) ax4.set_title('Grade $U_2$', fontsize=16, fontweight='bold', x=-0.27, y=0) ax4.yaxis.tick_right() plt.ylim([0, 2]) plt.xlim([0, 1]) # Joint scenarios gs02 = gridspec.GridSpecFromSubplotSpec(24, 20, subplot_spec=gs0[2], wspace=0.2, hspace=0.5) ax5 = plt.Subplot(f, gs02[7:, 4:-5]) f.add_subplot(ax5) plt.scatter(y[:, 0], y[:, 1], s=5, color=y_color, label=r'$F_{X_{1}}(x)$') ax5.set_xlim([-20, 20]) ax5.set_ylim([-8, 8]) ax5.tick_params(labelsize=14) plt.xlabel('$Y_1$', fontsize=17) plt.ylabel('$Y_2$', fontsize=17) ax5_title = 'Joint'+r' $\mathbf{Y}=\mathbf{\beta}\mathbf{Z} + \mathbf{\varepsilon}$' plt.title(ax5_title, fontsize=20, fontweight='bold', y=-0.3) ax5_txt = ax5.text(-7, 6.5 ,"",fontsize=20) ax5_title_1 = r'$\mathrm{\mathbb{C}}$'+r'r'+r"$\{Y_1,Y_2\}=%2.2f$" % (np.corrcoef(y[:,:2].T)[0,1]) ax5_txt.set_text(ax5_title_1) # Histogram Y1 ax7 = plt.Subplot(f, gs02[0:5, 4:-5]) f.add_subplot(ax7) plt.hist(y[:, 0], weights=p, bins=int(20*np.log(j_)), density=True, color=y_color) ax7.tick_params(labelsize=14) ax7.set_ylim([0, 0.45]) ax7.set_xlim([-20, 20]) ax7.get_xaxis().set_visible(False) # Histogram Y2 ax8 = plt.Subplot(f, gs02[7:, -4:-1]) f.add_subplot(ax8) plt.hist(y[:, 1], weights=p, bins=int(20*np.log(j_)), density=True, orientation='horizontal', color=y_color) ax8.tick_params(labelsize=14) ax8.set_xlim([0, 0.4]) ax8.set_ylim([-8, 8]) ax8.get_yaxis().set_visible(False) # Marginal Y2 gs03 = gridspec.GridSpecFromSubplotSpec(25, 18, subplot_spec=gs0[3]) ax6 = plt.Subplot(f, gs03[7:, 3:-8]) f.add_subplot(ax6) plt.plot(cdf_y[:, 1], y_sort[:, 1], lw=2, color=y_color) plt.title(r'Distribution of $Y_2$', fontsize=20, fontweight='bold', y=-0.3) ax6.tick_params(labelsize=14) ax6.set_ylim([-8, 8]) plt.xlim([0, 1]) add_logo(f, location=4, set_fig_size=False) plt.tight_layout() # Copula-marginal combination plt.style.use('arpm') y_lim = [np.percentile(x[:, 0], 0.5), np.percentile(x[:, 0], 99.5)] x_lim = [np.percentile(x[:, 1], 0.5), np.percentile(x[:, 1], 99.5)] u_lim = [0, 1] plt.figure() mydpi = 72.0 f = plt.figure(figsize=(1280.0/mydpi, 720.0/mydpi), dpi=mydpi) gs0 = gridspec.GridSpec(2, 2) # # Marginal X2 gs00 = gridspec.GridSpecFromSubplotSpec(44, 18, subplot_spec=gs0[0], wspace=2, hspace=2.5) ax1 = plt.Subplot(f, gs00[:-15, 4:-6], ylim=x_lim, xlim=[0, 1]) f.add_subplot(ax1) plt.plot(np.sort(u[:, 1]), gamma.ppf(
np.sort(u[:, 1])
numpy.sort
from __future__ import print_function from psychopy import event, sound, visual import numpy as np import string, math from copy import deepcopy import random, os def drawResponses(responses,respStim,numCharsWanted,drawBlanks): '''Draw the letters the user has entered drawBlanks is whether to show empty spaces with _, that's why numCharsWanted would be needed ''' respStr = ''.join(responses) #converts list of characters (responses) into string #print 'responses=',responses,' respStr = ', respStr #debugOFF if drawBlanks: blanksNeeded = numCharsWanted - len(respStr) respStr = respStr + '_'*blanksNeeded respStim.setText(respStr,log=False) respStim.draw(); def drawChoiceArrayAndCollectResponse(targetImage,lineupImages,lineupImageIndexes, clickSound,myMouse,myWin,imageSz,expStop): event.clearEvents() numInArray = len(lineupImages) + 1 targetPos = random.randint(0, numInArray-1) lineupImages.insert(targetPos,targetImage) lineupImageIndexes.insert(targetPos,'T') xPosRange = 2; yPosRange = 2 coords =
np.array( [ [.5,.5],[-.5,.5],[-.5,-.5],[.5,-.5] ] )
numpy.array
from konlpy.tag import Mecab from sklearn.preprocessing import normalize from soynlp.hangle import decompose, character_is_korean import numpy as np class Word2Vec: def __init__(self, vecs_txt_fname, vecs_bin_fname=None, method="word2vec", tokenizer_name="mecab"): self.tokenizer = get_tokenizer(tokenizer_name) self.tokenizer_name = tokenizer_name self.method = method self.dictionary, self.words, self.vecs = self.load_vectors(vecs_txt_fname, method) self.dim = self.vecs.shape[1] if "fasttext" in method: from fasttext import load_model as load_ft_model self.model = load_ft_model(vecs_bin_fname) def get_word_vector(self, word): if self.method == "fasttext-jamo": word = jamo_sentence(word) if self._is_in_vocabulary(word): vector = self.dictionary[word] else: if "fasttext" in self.method: vector = self.model.get_word_vector(word) else: vector =
np.zeros(self.dim)
numpy.zeros
#CSTAT+ A GPU-accelerated spatial pattern analysis algorithm for high-resolution 2D/3D hydrologic connectivity using array vectorization and convolutional neural network #Author: <NAME>, <NAME> #Department of Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907 USA. #Email: <EMAIL>; Alternative: <EMAIL> #This is the omnidirectional version: CSTAT+/OMNI import os from osgeo import gdal import numpy as np import copy as cp from numpy import genfromtxt as gft from scipy.ndimage.measurements import label from itertools import combinations_with_replacement,product from mxnet import nd,gpu from timeit import default_timer as timer import pandas as pd #Binarize pattern def prep(expe0,threshold,NoData): #Provide threshold for High/Low, usually the depth of shallow sheetflow expe1=cp.deepcopy(expe0) expe2=cp.deepcopy(expe0) expe1[(expe1>=threshold)]=1 expe1[(expe1<threshold)]=0 expe2[(expe2==NoData)]=-1 expe2[(expe2>0)]=0 connection_structure = np.array([[1,1,1],[1,1,1],[1,1,1]]) expela, num_features =label (expe1,structure=connection_structure) expe3=expe2+expela return (expe3) def itercontrol(regions,k,bins,dibins,dibins4,binnum): #Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin co0=nd.zeros(binnum-1,gpu(0),dtype="float32") codi0=nd.zeros((4,binnum-1),gpu(0),dtype="float32") count0=nd.zeros(binnum-1,gpu(0),dtype="float32") count4=nd.zeros((4,binnum-1),gpu(0),dtype="float32") co4=nd.zeros((4,binnum-1),gpu(0),dtype="float32") bins=nd.array(bins,gpu(0)) dibins=nd.array(dibins,gpu(0)) dibins4=nd.array(dibins4,gpu(0)) if k==2: #Create segment index for the input array to meet the memory requirement imax=list(range(int(regions.shape[0]/broadcdp)+(regions.shape[0]%broadcdp!=0))) #Combinations with repeated indicies iterator=list(combinations_with_replacement(imax,2)) for i in iterator: if i[0]==i[1]: vout=distanceAA2(regions,i,binnum,dibins,dibins4) co0+=vout[0] codi0+=vout[1] count0+=vout[2] co4+=vout[3] count4+=vout[4] else: vout=distanceAA1(regions,i,binnum,dibins,dibins4) co0+=vout[0] codi0+=vout[1] count0+=vout[2] co4+=vout[3] count4+=vout[4] return (co0.asnumpy(),codi0.asnumpy(),count0.asnumpy(),co4.asnumpy(),count4.asnumpy()) elif k==1: #Create segment index for the input array to meet the memory requirement imax=list(range(int(regions.shape[0]/broadcdp)+(regions.shape[0]%broadcdp!=0))) #Combinations with repeated indicies iterator=list(combinations_with_replacement(imax,2)) for i in iterator: if i[0]==i[1]: count0+=distance2(regions,i,binnum,bins) else: count0+=distance1(regions,i,binnum,bins) return (count0.asnumpy()) else: #Unpack the tuple regions_high,regions_low=regions #Create segment index for the input array to meet the memory requirement imax_high=list(range(int(regions_high.shape[0]/broadcdp)+(regions_high.shape[0]%broadcdp!=0))) imax_low=list(range(int(regions_low.shape[0]/broadcdp)+(regions_low.shape[0]%broadcdp!=0))) #Combinations with repeated indicies iterator=list(product(imax_high,imax_low)) for i in iterator: count0+=distance11(regions_high,regions_low,i,binnum,bins) return (count0.asnumpy()) def distanceAA1(regions,i,binnum,dibins,dibins4): #Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin co0=nd.zeros(binnum-1,gpu(0),dtype="float32") codi0=nd.zeros((5,binnum-1),gpu(0),dtype="float32") count0=nd.zeros(binnum-1,gpu(0),dtype="float32") count4=nd.zeros((5,binnum-1),gpu(0),dtype="float32") co4=nd.zeros((5,binnum-1),gpu(0),dtype="float32") #Calculate index coordinates and directions by chuncks a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:] b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2)) x1_x2=a1_b1[:,0] y1_y2=a1_b1[:,1] labels=nd.zeros(x1_x2.shape[0],gpu(0),dtype="float32") sdi0=(nd.degrees(nd.arctan((y1_y2)/(x1_x2)))+90).reshape((-1,)) ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) #Change 0 to 180 so it can apply sum of boolean mask without losing values sdi0=nd.where(condition=(sdi0==0),x=labels+180,y=sdi0) #Store sum of distances co0 and histogram of directions in each range bin for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) co0[p]+=nd.nansum(ldis*booleanmask) #Exclue values not in distance range bin sdi1=nd.where(condition=(booleanmask==0),x=labels-1,y=sdi0) for q in range (0,5): booleanmaskdi=nd.equal((sdi1>=dibins[q]),(sdi1<dibins[q+1])) codi0[q,p]+=nd.nansum(booleanmaskdi) for k in range (0,5): booleanmaskdi=nd.equal((sdi0>=dibins4[k]),(sdi0<dibins4[k+1])) ldis0=ldis*booleanmaskdi for l in range (0,binnum-1): booleanmask=nd.equal((ldis0>=bins[l]),(ldis0<bins[l+1])) count4[k,l]+=nd.nansum(booleanmask) co4[k,l]+=nd.nansum(ldis0*booleanmask) codi0[0,:]+=codi0[4,:] codi0=codi0[0:4,:] count4[0,:]+=count4[4,:] count4=count4[0:4,:] co4[0,:]+=co4[4,:] co4=co4[0:4,:] return(co0,codi0,count0,co4,count4) def distanceAA2(regions,i,binnum,dibins,dibins4): #Initiate empty array for storing histogram for directions, distances, and number of counted pairs in each distance range bin co0=nd.zeros(binnum-1,gpu(0),dtype="float32") codi0=nd.zeros((5,binnum-1),gpu(0),dtype="float32") count0=nd.zeros(binnum-1,gpu(0),dtype="float32") count4=nd.zeros((5,binnum-1),gpu(0),dtype="float32") co4=nd.zeros((5,binnum-1),gpu(0),dtype="float32") seed=nd.zeros((1,2),gpu(0)) #Calculate index coordinates and directions by chuncks a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:] b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) # print ("a1",a1,"b1",b1) for ii in range (a1.shape[0]-1): a1_b1=(nd.expand_dims(a1[ii].reshape((1,2)),axis=1)-b1[ii+1:,:]).reshape((a1[ii+1:,:].shape[0],2)) seed=nd.concat(seed,a1_b1,dim=0) if seed.shape[0]>1: x1_x2=seed[1:,0] y1_y2=seed[1:,1] labels=nd.zeros(x1_x2.shape[0],gpu(0),dtype="float32") sdi0=(nd.degrees(nd.arctan((y1_y2)/(x1_x2)))+90).reshape((-1,)) ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) #Change 0 to 180 so it can apply sum of boolean mask without losing values sdi0=nd.where(condition=(sdi0==0),x=labels+180,y=sdi0) #Store sum of distances co0 and histogram of directions in each range bin for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) co0[p]+=nd.nansum(ldis*booleanmask) #Exclue values not in distance range bin sdi1=nd.where(condition=(booleanmask==0),x=labels-1,y=sdi0) for q in range (0,5): booleanmaskdi=nd.equal((sdi1>=dibins[q]),(sdi1<dibins[q+1])) codi0[q,p]+=nd.nansum(booleanmaskdi) for k in range (0,5): booleanmaskdi=nd.equal((sdi0>=dibins4[k]),(sdi0<dibins4[k+1])) ldis0=ldis*booleanmaskdi for l in range (0,binnum-1): booleanmask=nd.equal((ldis0>=bins[l]),(ldis0<bins[l+1])) count4[k,l]+=nd.nansum(booleanmask) co4[k,l]+=nd.nansum(ldis0*booleanmask) codi0[0,:]+=codi0[4,:] codi0=codi0[0:4,:] count4[0,:]+=count4[4,:] count4=count4[0:4,:] co4[0,:]+=co4[4,:] co4=co4[0:4,:] return(co0,codi0,count0,co4,count4) #Full permutation distance computation def distance1(regions,i,binnum,bins): #Initiate empty array for storing the number of counted pairs in each distance range bin count0=nd.zeros(binnum-1,gpu(0),dtype="float32") #Calculate index coordinates and directions by chuncks a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:] b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2)) x1_x2=a1_b1[:,0] y1_y2=a1_b1[:,1] ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) return(count0) #Full permutation distance computation between different regions: high and low def distance11(regions_high,regions_low,i,binnum,bins): #Initiate empty array for storing the number of counted pairs in each distance range bin count0=nd.zeros(binnum-1,gpu(0),dtype="float32") #Calculate index coordinates and directions by chuncks a=regions_high[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions_high.shape[0]),:] b=regions_low[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions_low.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) a1_b1=(nd.expand_dims(a1,axis=1)-b1).reshape((-1,2)) x1_x2=a1_b1[:,0] y1_y2=a1_b1[:,1] ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) return(count0) #Full combination distance computation def distance2(regions,i,binnum,bins): #Initiate empty array for storing the number of counted pairs in each distance range bin count0=nd.zeros(binnum-1,gpu(0),dtype="float32") seed=nd.zeros((1,2),gpu(0)) #Calculate index coordinates and directions by chuncks a=regions[i[0]*broadcdp:min((i[0]+1)*broadcdp,regions.shape[0]),:] b=regions[i[1]*broadcdp:min((i[1]+1)*broadcdp,regions.shape[0]),:] a1=nd.array(a,gpu(0)) b1=nd.array(b,gpu(0)) for ii in range (a1.shape[0]-1): a1_b1=(nd.expand_dims(a1[ii].reshape((1,2)),axis=1)-b1[ii+1:,:]).reshape((a1[ii+1:,:].shape[0],2)) seed=nd.concat(seed,a1_b1,dim=0) if seed.shape[0]>1: x1_x2=seed[1:,0] y1_y2=seed[1:,1] ldis=nd.broadcast_hypot(x1_x2,y1_y2).reshape((-1,)) for p in range (0,binnum-1): booleanmask=nd.equal((ldis>=bins[p]),(ldis<bins[p+1])) count0[p]+=nd.nansum(booleanmask) return(count0) def omni(taoh_W,mean_d,cardh_his,taoh_W4,mean_d4,binnum): #Compute OMNI OMNIW=np.zeros(binnum,dtype="float32") OMNIW4=np.zeros((4,binnum),dtype="float32") #Convert Nan to zero to avoid issues taoh_W1=np.nan_to_num(taoh_W) mean_d1=np.nan_to_num(mean_d) taoh_W41=np.nan_to_num(taoh_W4) mean_d41=
np.nan_to_num(mean_d4)
numpy.nan_to_num
"""Preprocessing workflow definition.""" import os import os.path as op import numpy as np import pandas as pd import nibabel as nib import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import decomposition as decomp from moss.mosaic import Mosaic import seaborn as sns from nipype.interfaces import io, fsl, freesurfer as fs from nipype import Node, MapNode, Workflow, IdentityInterface from nipype.interfaces.base import (BaseInterface, BaseInterfaceInputSpec, InputMultiPath, OutputMultiPath, TraitedSpec, File, traits) from nipype.workflows.fmri.fsl import create_susan_smooth import lyman from lyman.tools import (SingleInFile, SingleOutFile, ManyOutFiles, SaveParameters, list_out_file) def create_preprocessing_workflow(name="preproc", exp_info=None): """Return a Nipype workflow for fMRI preprocessing. This mostly follows the preprocessing in FSL, although some of the processing has been moved into pure Python. Parameters ---------- name : string workflow object name exp_info : dict dictionary with experimental information """ preproc = Workflow(name) if exp_info is None: exp_info = lyman.default_experiment_parameters() # Define the inputs for the preprocessing workflow in_fields = ["timeseries", "subject_id"] if exp_info["whole_brain_template"]: in_fields.append("whole_brain") if exp_info["fieldmap_template"]: in_fields.append("fieldmap") inputnode = Node(IdentityInterface(in_fields), "inputs") # Remove equilibrium frames and convert to float prepare = MapNode(PrepTimeseries(), "in_file", "prep_timeseries") prepare.inputs.frames_to_toss = exp_info["frames_to_toss"] # Unwarp using fieldmap images if exp_info["fieldmap_template"]: unwarp = create_unwarp_workflow(fieldmap_pe=exp_info["fieldmap_pe"]) # Motion and slice time correct realign = create_realignment_workflow( temporal_interp=exp_info["temporal_interp"], TR=exp_info["TR"], slice_order=exp_info["slice_order"], interleaved=exp_info["interleaved"]) # Estimate a registration from funtional to anatomical space coregister = create_bbregister_workflow( partial_brain=bool(exp_info["whole_brain_template"]), init_with=exp_info["coreg_init"]) # Skullstrip the brain using the Freesurfer segmentation skullstrip = create_skullstrip_workflow() # Smooth intelligently in the volume susan = create_susan_smooth() susan.inputs.inputnode.fwhm = exp_info["smooth_fwhm"] # Scale and filter the timeseries filter_smooth = create_filtering_workflow("filter_smooth", exp_info["hpf_cutoff"], exp_info["TR"], "smoothed_timeseries") filter_rough = create_filtering_workflow("filter_rough", exp_info["hpf_cutoff"], exp_info["TR"], "unsmoothed_timeseries") # Automatically detect motion and intensity outliers artifacts = MapNode(ArtifactDetection(), ["timeseries", "mask_file", "motion_file"], "artifacts") artifacts.inputs.intensity_thresh = exp_info["intensity_threshold"] artifacts.inputs.motion_thresh = exp_info["motion_threshold"] artifacts.inputs.spike_thresh = exp_info["spike_threshold"] # Extract nuisance variables from anatomical sources confounds = create_confound_extraction_workflow("confounds", exp_info["wm_components"]) # Save the experiment info for this run saveparams = MapNode(SaveParameters(exp_info=exp_info), "in_file", "saveparams") preproc.connect([ (inputnode, prepare, [("timeseries", "in_file")]), (realign, artifacts, [("outputs.motion_file", "motion_file")]), (realign, coregister, [("outputs.timeseries", "inputs.timeseries")]), (inputnode, coregister, [("subject_id", "inputs.subject_id")]), (realign, skullstrip, [("outputs.timeseries", "inputs.timeseries")]), (inputnode, skullstrip, [("subject_id", "inputs.subject_id")]), (coregister, skullstrip, [("outputs.tkreg_mat", "inputs.reg_file")]), (skullstrip, artifacts, [("outputs.mask_file", "mask_file")]), (skullstrip, susan, [("outputs.mask_file", "inputnode.mask_file"), ("outputs.timeseries", "inputnode.in_files")]), (susan, filter_smooth, [("outputnode.smoothed_files", "inputs.timeseries")]), (skullstrip, filter_smooth, [("outputs.mask_file", "inputs.mask_file")]), (skullstrip, filter_rough, [("outputs.timeseries", "inputs.timeseries")]), (skullstrip, filter_rough, [("outputs.mask_file", "inputs.mask_file")]), (filter_rough, artifacts, [("outputs.timeseries", "timeseries")]), (filter_rough, confounds, [("outputs.timeseries", "inputs.timeseries")]), (inputnode, confounds, [("subject_id", "inputs.subject_id")]), (skullstrip, confounds, [("outputs.mask_file", "inputs.brain_mask")]), (coregister, confounds, [("outputs.tkreg_mat", "inputs.reg_file")]), (inputnode, saveparams, [("timeseries", "in_file")]), ]) # Optionally add a connection for unwarping if bool(exp_info["fieldmap_template"]): preproc.connect([ (inputnode, unwarp, [("fieldmap", "inputs.fieldmap")]), (prepare, unwarp, [("out_file", "inputs.timeseries")]), (unwarp, realign, [("outputs.timeseries", "inputs.timeseries")]) ]) else: preproc.connect([ (prepare, realign, [("out_file", "inputs.timeseries")]), ]) # Optionally connect the whole brain template if bool(exp_info["whole_brain_template"]): preproc.connect([ (inputnode, coregister, [("whole_brain_template", "inputs.whole_brain_template")]) ]) # Define the outputs of the top-level workflow output_fields = ["smoothed_timeseries", "unsmoothed_timeseries", "example_func", "mean_func", "functional_mask", "realign_report", "mask_report", "artifact_report", "confound_file", "flirt_affine", "tkreg_affine", "coreg_report", "json_file"] if bool(exp_info["fieldmap_template"]): output_fields.append("unwarp_report") outputnode = Node(IdentityInterface(output_fields), "outputs") preproc.connect([ (realign, outputnode, [("outputs.example_func", "example_func"), ("outputs.report", "realign_report")]), (skullstrip, outputnode, [("outputs.mask_file", "functional_mask"), ("outputs.report", "mask_report")]), (artifacts, outputnode, [("out_files", "artifact_report")]), (coregister, outputnode, [("outputs.tkreg_mat", "tkreg_affine"), ("outputs.flirt_mat", "flirt_affine"), ("outputs.report", "coreg_report")]), (filter_smooth, outputnode, [("outputs.timeseries", "smoothed_timeseries")]), (filter_rough, outputnode, [("outputs.timeseries", "unsmoothed_timeseries"), ("outputs.mean_file", "mean_func")]), (confounds, outputnode, [("outputs.confound_file", "confound_file")]), (saveparams, outputnode, [("json_file", "json_file")]), ]) if bool(exp_info["fieldmap_template"]): preproc.connect([ (unwarp, outputnode, [("outputs.report", "unwarp_report")]), ]) return preproc, inputnode, outputnode # =========================================================================== # def create_unwarp_workflow(name="unwarp", fieldmap_pe=("y", "y-")): """Unwarp functional timeseries using reverse phase-blipped images.""" inputnode = Node(IdentityInterface(["timeseries", "fieldmap"]), "inputs") # Calculate the shift field # Note that setting readout_times to 1 will give a fine # map of the field, but the units will be off # Since we don't write out the map of the field itself, it does # not seem worth it to add another parameter for the readout times. # (It does require that they are the same, but when wouldn't they be?) topup = MapNode(fsl.TOPUP(encoding_direction=fieldmap_pe, readout_times=[1] * len(fieldmap_pe)), ["in_file"], "topup") # Unwarp the timeseries applytopup = MapNode(fsl.ApplyTOPUP(method="jac", in_index=[1]), ["in_files", "in_topup_fieldcoef", "in_topup_movpar", "encoding_file"], "applytopup") # Make a figure summarize the unwarping report = MapNode(UnwarpReport(), ["orig_file", "corrected_file"], "unwarp_report") # Define the outputs outputnode = Node(IdentityInterface(["timeseries", "report"]), "outputs") # Define and connect the workflow unwarp = Workflow(name) unwarp.connect([ (inputnode, topup, [("fieldmap", "in_file")]), (inputnode, applytopup, [("timeseries", "in_files")]), (topup, applytopup, [("out_fieldcoef", "in_topup_fieldcoef"), ("out_movpar", "in_topup_movpar"), ("out_enc_file", "encoding_file")]), (inputnode, report, [("fieldmap", "orig_file")]), (topup, report, [("out_corrected", "corrected_file")]), (applytopup, outputnode, [("out_corrected", "timeseries")]), (report, outputnode, [("out_file", "report")]), ]) return unwarp def create_realignment_workflow(name="realignment", temporal_interp=True, TR=2, slice_order="up", interleaved=True): """Motion and slice-time correct the timeseries and summarize.""" inputnode = Node(IdentityInterface(["timeseries"]), "inputs") # Get the middle volume of each run for motion correction extractref = MapNode(ExtractRealignmentTarget(), "in_file", "extractref") # Motion correct to middle volume of each run mcflirt = MapNode(fsl.MCFLIRT(cost="normcorr", interpolation="spline", save_mats=True, save_rms=True, save_plots=True), ["in_file", "ref_file"], "mcflirt") # Optionally emoporally interpolate to correct for slice time differences if temporal_interp: slicetime = MapNode(fsl.SliceTimer(time_repetition=TR), "in_file", "slicetime") if slice_order == "down": slicetime.inputs.index_dir = True elif slice_order != "up": raise ValueError("slice_order must be 'up' or 'down'") if interleaved: slicetime.inputs.interleaved = True # Generate a report on the motion correction mcreport = MapNode(RealignmentReport(), ["target_file", "realign_params", "displace_params"], "mcreport") # Define the outputs outputnode = Node(IdentityInterface(["timeseries", "example_func", "report", "motion_file"]), "outputs") # Define and connect the sub workflow realignment = Workflow(name) realignment.connect([ (inputnode, extractref, [("timeseries", "in_file")]), (inputnode, mcflirt, [("timeseries", "in_file")]), (extractref, mcflirt, [("out_file", "ref_file")]), (extractref, mcreport, [("out_file", "target_file")]), (mcflirt, mcreport, [("par_file", "realign_params"), ("rms_files", "displace_params")]), (extractref, outputnode, [("out_file", "example_func")]), (mcreport, outputnode, [("realign_report", "report"), ("motion_file", "motion_file")]), ]) if temporal_interp: realignment.connect([ (mcflirt, slicetime, [("out_file", "in_file")]), (slicetime, outputnode, [("slice_time_corrected_file", "timeseries")]) ]) else: realignment.connect([ (mcflirt, outputnode, [("out_file", "timeseries")]) ]) return realignment def create_skullstrip_workflow(name="skullstrip"): """Remove non-brain voxels from the timeseries.""" # Define the workflow inputs inputnode = Node(IdentityInterface(["subject_id", "timeseries", "reg_file"]), "inputs") # Mean the timeseries across the fourth dimension origmean = MapNode(fsl.MeanImage(), "in_file", "origmean") # Grab the Freesurfer aparc+aseg file as an anatomical brain mask getaseg = Node(io.SelectFiles({"aseg": "{subject_id}/mri/aparc+aseg.mgz"}, base_directory=os.environ["SUBJECTS_DIR"]), "getaseg") # Threshold the aseg volume to get a boolean mask makemask = Node(fs.Binarize(dilate=4, min=0.5), "makemask") # Transform the brain mask into functional space transform = MapNode(fs.ApplyVolTransform(inverse=True, interp="nearest"), ["reg_file", "source_file"], "transform") # Convert the mask to nifti and rename convertmask = MapNode(fs.MRIConvert(out_file="functional_mask.nii.gz"), "in_file", "convertmask") # Use the mask to skullstrip the timeseries stripts = MapNode(fs.ApplyMask(), ["in_file", "mask_file"], "stripts") # Use the mask to skullstrip the mean image stripmean = MapNode(fs.ApplyMask(), ["in_file", "mask_file"], "stripmean") # Generate images summarizing the skullstrip and resulting data reportmask = MapNode(MaskReport(), ["mask_file", "orig_file", "mean_file"], "reportmask") # Define the workflow outputs outputnode = Node(IdentityInterface(["timeseries", "mean_file", "mask_file", "report"]), "outputs") # Define and connect the workflow skullstrip = Workflow(name) skullstrip.connect([ (inputnode, origmean, [("timeseries", "in_file")]), (inputnode, getaseg, [("subject_id", "subject_id")]), (origmean, transform, [("out_file", "source_file")]), (getaseg, makemask, [("aseg", "in_file")]), (makemask, transform, [("binary_file", "target_file")]), (inputnode, transform, [("reg_file", "reg_file")]), (transform, stripts, [("transformed_file", "mask_file")]), (transform, stripmean, [("transformed_file", "mask_file")]), (inputnode, stripts, [("timeseries", "in_file")]), (origmean, stripmean, [("out_file", "in_file")]), (stripmean, reportmask, [("out_file", "mean_file")]), (origmean, reportmask, [("out_file", "orig_file")]), (transform, reportmask, [("transformed_file", "mask_file")]), (transform, convertmask, [("transformed_file", "in_file")]), (stripts, outputnode, [("out_file", "timeseries")]), (stripmean, outputnode, [("out_file", "mean_file")]), (convertmask, outputnode, [("out_file", "mask_file")]), (reportmask, outputnode, [("out_files", "report")]), ]) return skullstrip def create_bbregister_workflow(name="bbregister", contrast_type="t2", partial_brain=False, init_with="fsl"): """Find a linear transformation to align the EPI file with the anatomy.""" in_fields = ["subject_id", "timeseries"] if partial_brain: in_fields.append("whole_brain_template") inputnode = Node(IdentityInterface(in_fields), "inputs") # Take the mean over time to get a target volume meanvol = MapNode(fsl.MeanImage(), "in_file", "meanvol") # Do a rough skullstrip using BET skullstrip = MapNode(fsl.BET(), "in_file", "bet") # Estimate the registration to Freesurfer conformed space func2anat = MapNode(fs.BBRegister(contrast_type=contrast_type, init=init_with, epi_mask=True, registered_file=True, out_reg_file="func2anat_tkreg.dat", out_fsl_file="func2anat_flirt.mat"), "source_file", "func2anat") # Make an image for quality control on the registration report = MapNode(CoregReport(), "in_file", "coreg_report") # Define the workflow outputs outputnode = Node(IdentityInterface(["tkreg_mat", "flirt_mat", "report"]), "outputs") bbregister = Workflow(name=name) # Connect the registration bbregister.connect([ (inputnode, func2anat, [("subject_id", "subject_id")]), (inputnode, report, [("subject_id", "subject_id")]), (inputnode, meanvol, [("timeseries", "in_file")]), (meanvol, skullstrip, [("out_file", "in_file")]), (skullstrip, func2anat, [("out_file", "source_file")]), (func2anat, report, [("registered_file", "in_file")]), (func2anat, outputnode, [("out_reg_file", "tkreg_mat")]), (func2anat, outputnode, [("out_fsl_file", "flirt_mat")]), (report, outputnode, [("out_file", "report")]), ]) # Possibly connect the full_fov image if partial_brain: bbregister.connect([ (inputnode, func2anat, [("whole_brain_template", "intermediate_file")]), ]) return bbregister def create_filtering_workflow(name="filter", hpf_cutoff=128, TR=2, output_name="timeseries"): """Scale and high-pass filter the timeseries.""" inputnode = Node(IdentityInterface(["timeseries", "mask_file"]), "inputs") # Grand-median scale within the brain mask scale = MapNode(ScaleTimeseries(statistic="median", target=10000), ["in_file", "mask_file"], "scale") # Gaussian running-line filter hpf_sigma = (hpf_cutoff / 2.0) / TR filter = MapNode(fsl.TemporalFilter(highpass_sigma=hpf_sigma), "in_file", "filter") # Possibly replace the mean # (In later versions of FSL, the highpass filter removes the # mean component. Put it back, but be flexible so this isn't # broken on older versions of FSL). replacemean = MapNode(ReplaceMean(output_name=output_name), ["orig_file", "filtered_file"], "replacemean") # Compute a final mean functional volume meanfunc = MapNode(fsl.MeanImage(out_file="mean_func.nii.gz"), "in_file", "meanfunc") outputnode = Node(IdentityInterface(["timeseries", "mean_file"]), "outputs") filtering = Workflow(name) filtering.connect([ (inputnode, scale, [("timeseries", "in_file"), ("mask_file", "mask_file")]), (scale, filter, [("out_file", "in_file")]), (scale, replacemean, [("out_file", "orig_file")]), (filter, replacemean, [("out_file", "filtered_file")]), (replacemean, meanfunc, [("out_file", "in_file")]), (replacemean, outputnode, [("out_file", "timeseries")]), (meanfunc, outputnode, [("out_file", "mean_file")]), ]) return filtering def create_confound_extraction_workflow(name="confounds", wm_components=6): """Extract nuisance variables from anatomical sources.""" inputnode = Node(IdentityInterface(["timeseries", "brain_mask", "reg_file", "subject_id"]), "inputs") # Find the subject's Freesurfer segmentation # Grab the Freesurfer aparc+aseg file as an anatomical brain mask getaseg = Node(io.SelectFiles({"aseg": "{subject_id}/mri/aseg.mgz"}, base_directory=os.environ["SUBJECTS_DIR"]), "getaseg") # Select and erode the white matter to get deep voxels selectwm = Node(fs.Binarize(erode=3, wm=True), "selectwm") # Transform the mask into functional space transform = MapNode(fs.ApplyVolTransform(inverse=True, interp="nearest"), ["reg_file", "source_file"], "transform") # Extract eigenvariates of the timeseries from WM and whole brain extract = MapNode(ExtractConfounds(n_components=wm_components), ["timeseries", "brain_mask", "wm_mask"], "extract") outputnode = Node(IdentityInterface(["confound_file"]), "outputs") confounds = Workflow(name) confounds.connect([ (inputnode, getaseg, [("subject_id", "subject_id")]), (getaseg, selectwm, [("aseg", "in_file")]), (selectwm, transform, [("binary_file", "target_file")]), (inputnode, transform, [("reg_file", "reg_file"), ("timeseries", "source_file")]), (transform, extract, [("transformed_file", "wm_mask")]), (inputnode, extract, [("timeseries", "timeseries"), ("brain_mask", "brain_mask")]), (extract, outputnode, [("out_file", "confound_file")]), ]) return confounds # =========================================================================== # class PrepTimeseriesInput(BaseInterfaceInputSpec): in_file = File(exists=True) frames_to_toss = traits.Int() class PrepTimeseries(BaseInterface): input_spec = PrepTimeseriesInput output_spec = SingleOutFile def _run_interface(self, runtime): # Load the input timeseries img = nib.load(self.inputs.in_file) data = img.get_data() aff = img.get_affine() hdr = img.get_header() # Trim off the equilibrium TRs data = self.trim_timeseries(data) # Save the output timeseries as float32 hdr.set_data_dtype(np.float32) new_img = nib.Nifti1Image(data, aff, hdr) new_img.to_filename("timeseries.nii.gz") return runtime def trim_timeseries(self, data): """Remove frames from beginning of timeseries.""" return data[..., self.inputs.frames_to_toss:] _list_outputs = list_out_file("timeseries.nii.gz") class UnwarpReportInput(BaseInterfaceInputSpec): orig_file = File(exists=True) corrected_file = File(exists=True) class UnwarpReport(BaseInterface): input_spec = UnwarpReportInput output_spec = SingleOutFile def _run_interface(self, runtime): # Make a discrete colormap cmap = mpl.colors.ListedColormap(["black", "#d65f5f", "white"]) # Initialize the figure f, axes = plt.subplots(1, 2, figsize=(9, 2.75), facecolor="black", edgecolor="black") for ax, fname in zip(axes, [self.inputs.orig_file, self.inputs.corrected_file]): # Combine the frames from this image and plot img = nib.load(fname) ax.imshow(self.combine_frames(img), cmap=cmap, vmin=0, vmax=2) ax.set_axis_off() # Save the figure and close f.subplots_adjust(0, 0, 1, 1, 0, 0) f.savefig("unwarping.png", facecolor="black", edgecolor="black") plt.close(f) return runtime def combine_frames(self, img): # Find a value to loosely segment the brain d = img.get_data() counts, bins = np.histogram(d[d > 0], 50) thresh = bins[np.diff(counts) > 0][0] # Show the middle slice middle = d.shape[0] // 2 # Combine a binary mask for each phase direction a = np.rot90(d[middle, ..., 0] > thresh) b = np.rot90(d[middle, ..., 1] > thresh) # Make an image showing overlap and divergence c = np.zeros_like(a, int) c[a ^ b] = 1 c[a & b] = 2 return c _list_outputs = list_out_file("unwarping.png") class ExtractRealignmentTarget(BaseInterface): input_spec = SingleInFile output_spec = SingleOutFile def _run_interface(self, runtime): # Load the input timeseries img = nib.load(self.inputs.in_file) # Extract the target volume targ = self.extract_target(img) # Save a new 3D image targ_img = nib.Nifti1Image(targ, img.get_affine(), img.get_header()) targ_img.to_filename("example_func.nii.gz") return runtime def extract_target(self, img): """Return a 3D array with data from the middle TR.""" middle_vol = img.shape[-1] // 2 targ = np.empty(img.shape[:-1]) targ[:] = img.dataobj[..., middle_vol] return targ _list_outputs = list_out_file("example_func.nii.gz") class RealignmentReportInput(BaseInterfaceInputSpec): target_file = File(exists=True) realign_params = File(exists=True) displace_params = InputMultiPath(File(exists=True)) class RealignmentReportOutput(TraitedSpec): realign_report = OutputMultiPath(File(exists=True)) motion_file = File(exists=True) class RealignmentReport(BaseInterface): input_spec = RealignmentReportInput output_spec = RealignmentReportOutput def _run_interface(self, runtime): self.out_files = [] # Load the realignment parameters rot = ["rot_" + dim for dim in ["x", "y", "z"]] trans = ["trans_" + dim for dim in ["x", "y", "z"]] df = pd.DataFrame(np.loadtxt(self.inputs.realign_params), columns=rot + trans) # Load the RMS displacement parameters abs, rel = self.inputs.displace_params df["displace_abs"] = np.loadtxt(abs) df["displace_rel"] = pd.Series(np.loadtxt(rel), index=df.index[1:]) df.loc[0, "displace_rel"] = 0 # Write the motion file to csv self.motion_file = op.abspath("realignment_params.csv") df.to_csv(self.motion_file) # Plot the motion timeseries f = self.plot_motion(df) self.plot_file = op.abspath("realignment_plots.png") f.savefig(self.plot_file, dpi=100) plt.close(f) # Plot the target image m = self.plot_target() self.target_file = op.abspath("example_func.png") m.savefig(self.target_file) m.close() return runtime def plot_motion(self, df): """Plot the timecourses of realignment parameters.""" with sns.axes_style("whitegrid"): fig, axes = plt.subplots(3, 1, figsize=(9, 5), sharex=True) # Trim off all but the axis name def axis(s): return s[-1] # Plot rotations pal = sns.color_palette("Reds_d", 3) rot_df = np.rad2deg(df.filter(like="rot")).rename(columns=axis) rot_df.plot(ax=axes[0], color=pal, lw=1.5) # Plot translations pal = sns.color_palette("Blues_d", 3) trans_df = df.filter(like="trans").rename(columns=axis) trans_df.plot(ax=axes[1], color=pal, lw=1.5) # Plot displacement def ref(s): return s[-3:] pal = sns.color_palette("Greens_d", 2) disp_df = df.filter(like="displace").rename(columns=ref) disp_df.plot(ax=axes[2], color=pal, lw=1.5) # Label the graphs axes[0].set_xlim(0, len(df) - 1) axes[0].axhline(0, c=".4", ls="--", zorder=1) axes[1].axhline(0, c=".4", ls="--", zorder=1) for ax in axes: ax.legend(frameon=True, ncol=3, loc="best") ax.legend_.get_frame().set_color("white") axes[0].set_ylabel("Rotations (degrees)") axes[1].set_ylabel("Translations (mm)") axes[2].set_ylabel("Displacement (mm)") fig.tight_layout() return fig def plot_target(self): """Plot a mosaic of the motion correction target image.""" m = Mosaic(self.inputs.target_file, step=1) return m def _list_outputs(self): outputs = self._outputs().get() outputs["realign_report"] = [self.target_file, self.motion_file, self.plot_file] outputs["motion_file"] = self.motion_file return outputs class CoregReportInput(BaseInterfaceInputSpec): in_file = File(exists=True) subject_id = traits.Str() class CoregReport(BaseInterface): input_spec = CoregReportInput output_spec = SingleOutFile def _run_interface(self, runtime): subjects_dir = os.environ["SUBJECTS_DIR"] wm_file = op.join(subjects_dir, self.inputs.subject_id, "mri/wm.mgz") wm_data = nib.load(wm_file).get_data().astype(bool).astype(int) m = Mosaic(self.inputs.in_file, wm_data, step=3) m.plot_contours(["#DD2222"]) m.savefig("func2anat.png") m.close() return runtime _list_outputs = list_out_file("func2anat.png") class MaskReportInput(BaseInterfaceInputSpec): mask_file = File(exists=True) orig_file = File(exists=True) mean_file = File(exsits=True) class MaskReport(BaseInterface): input_spec = MaskReportInput output_spec = ManyOutFiles def _run_interface(self, runtime): self.out_files = [] self.plot_mean_image() self.plot_mask_image() return runtime def plot_mean_image(self): cmap = sns.cubehelix_palette(as_cmap=True, reverse=True, light=1, dark=0) m = Mosaic(self.inputs.mean_file, self.inputs.mean_file, self.inputs.mask_file, step=1) m.plot_overlay(vmin=0, cmap=cmap, fmt="%d") m.savefig("mean_func.png") m.close() def plot_mask_image(self): m = Mosaic(self.inputs.orig_file, self.inputs.mask_file, self.inputs.mask_file, show_mask=False, step=1) m.plot_mask() m.savefig("functional_mask.png") m.close() def _list_outputs(self): outputs = self._outputs().get() outputs["out_files"] = [op.abspath("mean_func.png"), op.abspath("functional_mask.png")] return outputs class ArtifactDetectionInput(BaseInterfaceInputSpec): timeseries = File(exists=True) mask_file = File(exists=True) motion_file = File(exists=True) intensity_thresh = traits.Float() motion_thresh = traits.Float() spike_thresh = traits.Either(traits.Float(), None) class ArtifactDetection(BaseInterface): input_spec = ArtifactDetectionInput output_spec = ManyOutFiles def _run_interface(self, runtime): # Load the timeseries and mask files ts = nib.load(self.inputs.timeseries).get_data() mask = nib.load(self.inputs.mask_file).get_data().astype(bool) # Normalize the timeseries using robust statistics norm_ts = self.normalize_timeseries(ts, mask) # Find the intensity artifacts art_intensity =
np.abs(norm_ts)
numpy.abs
import pandas as pd import os import portalocker import contextlib import yaml import subprocess from gnn_acopf.experimental.opf_dataset import OPFDataset from gnn_acopf.training.training_run import QualityMetric from gnn_acopf.utils.timer import Timer from pathlib import Path import copy from gnn_acopf.utils.observers import DefaultObserver, Scaler from gnn_acopf.utils.power_net import PowerNetwork from gnn_acopf.models.summarize_encoding_model import SummarizedEncodingModel from gnn_acopf.julia_interface import JuliaInterface import torch import numpy as np class EvaluateOPF: def __init__(self, model, results_path): self.model = model self.results_path = results_path self.results_fp = results_path / "results.csv" self.run_fp = results_path / "runs.yaml" self.scenarios = None with self.synced_results(): pass @contextlib.contextmanager def synced_runs(self): with portalocker.Lock(self.results_path / ".runs.lock", timeout=120) as lockfile: lockfile.flush() os.fsync(lockfile.fileno()) try: with self.run_fp.open("r") as run_file: exp_states = yaml.load(run_file, Loader=yaml.FullLoader) except FileNotFoundError: exp_states = {} yield exp_states with self.run_fp.open("w") as run_file: yaml.dump(exp_states, run_file) lockfile.flush() os.fsync(lockfile.fileno()) def get_slurm_id(self): # returns either the slurm ID or "running" if no slurm ID can be found. try: slurm_id = os.environ["SLURM_JOB_ID"] except KeyError: # no slurm available slurm_id = "running" return slurm_id def is_running(self, exp_state): try: slurm_id = os.environ["SLURM_JOB_ID"] except KeyError: slurm_id = None if exp_state in [None, "stopped", slurm_id]: return False try: result = subprocess.check_output("squeue -hO jobid:15", shell=True, stderr=subprocess.DEVNULL).decode("utf-8").strip() result = result.split("\n") result = [int(line.strip()) for line in result] return exp_state in result except subprocess.CalledProcessError: return True @contextlib.contextmanager def synced_results(self): with portalocker.Lock(self.results_path / ".results.lock", timeout=120) as lockfile: lockfile.flush() os.fsync(lockfile.fileno()) try: self.results = pd.read_csv(self.results_fp) except (pd.errors.EmptyDataError, FileNotFoundError): self.results = pd.DataFrame(columns=[ "scenario_id", "opf_method", "time_taken", "solved", "power_generated", "power_loss" ]) yield self.results.to_csv(self.results_fp, index=False) lockfile.flush() os.fsync(lockfile.fileno()) def eval_method(self, eval_func, case_dict, jl, data, observer): with Timer() as optimization_timer: solution = eval_func(case_dict, jl, data=data, observer=observer) ac_pf_result, _ = jl.run_pf(case_dict, method="ac", previous_result=solution, print_level=0, max_iter=1) solved = "SOLVED" in ac_pf_result["termination_status"] power_demand = sum([g["pd"] for g in case_dict["load"].values() if g["pd"] is not None]) power_generated = sum([g["pg"] for g in ac_pf_result["solution"]["gen"].values() if g["pg"] is not None]) power_loss = power_generated / power_demand return { "time_taken": optimization_timer.interval, "solved": solved, "power_generated": power_generated, "power_loss": power_loss } def set_run_state(self, exp_name, state): with self.synced_runs() as exp_states: exp_states[exp_name] = state def eval_ac_opf(self, case_dict, jl, print_level=0, **kwargs): ac_opf_result, _ = jl.run_opf(case_dict, method="ac", print_level=print_level) return ac_opf_result def eval_dc_opf(self, case_dict, jl, print_level=0, **kwargs): ac_opf_result, _ = jl.run_opf(case_dict, method="dc", print_level=print_level) return ac_opf_result def eval_dcac_opf(self, case_dict, jl, print_level=0, **kwargs): ac_opf_result, _ = jl.run_opf(case_dict, method="dcac", print_level=print_level) return ac_opf_result def eval_model_and_ac_opf(self, case_dict, jl, data, observer, print_level=0, **kwargs): output = self.model(data) model_output_dict = observer.translate_output_to_results_dict( data, output, case_dict ) ac_opf_result, _ = jl.run_opf(case_dict, method="ac", previous_result=model_output_dict, print_level=print_level) return ac_opf_result def eval_model_and_ac_opf_nobranch(self, case_dict, jl, data, observer, print_level=0, **kwargs): output = self.model(data) model_output_dict = observer.translate_output_to_results_dict( data, output, case_dict, keys_to_consider=["bus", "gen"] ) ac_opf_result, _ = jl.run_opf(case_dict, method="ac", previous_result=model_output_dict, print_level=print_level) return ac_opf_result def eval_model_pf_ac_opf(self, case_dict, jl, data, observer, print_level=0, **kwargs): output = self.model(data) model_output_dict = observer.translate_output_to_results_dict( data, output, case_dict ) pf_result, _ = jl.run_pf(case_dict, method="ac", previous_result=model_output_dict, print_level=print_level) # TODO: Maybe need to combine it. ac_opf_result, _ = jl.run_opf(case_dict, method="ac", previous_result=pf_result, print_level=print_level) return ac_opf_result def eval_model_pf(self, case_dict, jl, data, observer, print_level=0, **kwargs): output = self.model(data) model_output_dict = observer.translate_output_to_results_dict( data, output, case_dict ) pf_result, _ = jl.run_pf(case_dict, method="ac", previous_result=model_output_dict, print_level=print_level) return pf_result def eval_model(self, case_dict, jl, data, observer, print_level=0, **kwargs): output = self.model(data) output_dict = observer.translate_output_to_results_dict( data, output, case_dict ) return output_dict def eval_model_feasibility_check_opf(self, case_dict, jl, data, observer, print_level=0, **kwargs): output = self.model(data) output_dict = observer.translate_output_to_results_dict( data, output, case_dict ) ac_pf_result, _ = jl.run_pf(case_dict, method="ac", previous_result=output_dict, print_level=0) solved = "SOLVED" in ac_pf_result["termination_status"] if not solved: output_dict, _ = jl.run_opf(case_dict, method="ac", previous_result=output_dict, print_level=print_level) return output_dict def statistical_summary(self, filter_by_solved): group_by = ["opf_method"] results = self.results if filter_by_solved: results = results[results["solved"] == 1] grouped_results = results.groupby(group_by) agg_dict = {c: ["mean", "std"] for c in list(self.results.columns.values) if c not in group_by + ["scenario_id", "solved"]} agg_dict["solved"] = ["mean", "sum"] statistics_df = grouped_results.agg(agg_dict) # statistics_df = statistics_df.unstack(level=[1]).reorder_levels([2, 0, 1], axis=1) # sort whole group according to test acc statistics_df = statistics_df.sort_values(by=[("time_taken", "mean")], ascending=True) return statistics_df def pretty_statistics(self, filter_by_solved): with pd.option_context('display.max_rows', None, 'display.max_columns', None, "display.width", 200): pretty_statistic_string = str(self.statistical_summary(filter_by_solved)) return pretty_statistic_string def pprint_results(self, results_by_method, n_evaluated): for method, results in results_by_method.items(): print(method) n_solved = len([r for r in results["solved"] if r]) print(f"\tSolved: {n_solved}") print(f"\tTime (solved): {np.mean([results['time_taken'][i] for i in range(n_evaluated) if results['solved'][i]])}") print(f"\tTime (all): {np.mean(results['time_taken'])}") print(f"\tCost (solved): {np.mean([results['cost'][i] for i in range(n_evaluated) if results['solved'][i]])}") print(f"\tPower Gen (solved): {np.mean([results['power_generated'][i] for i in range(n_evaluated) if results['solved'][i]])}") def claim_scenario_idx(self, scenario_id): with self.synced_runs() as exp_states: scen_state = exp_states.get(scenario_id, None) if not self.is_running(scen_state): exp_states[scenario_id] = self.get_slurm_id() return True return False def eval_opf(self, dataloader, observer, device, print_level=0): jl = JuliaInterface() self.model.eval() self.model.to(device) methods = { "ac_opf": self.eval_ac_opf, "dcac_opf": self.eval_dcac_opf, "dc_opf": self.eval_dc_opf, "model_ac_opf": self.eval_model_and_ac_opf, "model": self.eval_model, # "model_feasibility_acopf": self.eval_model_feasibility_check_opf # "model_pf_ac_opf": self.eval_model_pf_ac_opf, # "model_ac_opf_nobranch": self.eval_model_and_ac_opf_nobranch, # "model_pf": self.eval_model_pf } results_by_method = {m: {"solved": [], "time_taken": [], "cost": []} for m in methods} n_evaluated = 0 with torch.no_grad(): for i, data in enumerate(dataloader): scenario_idx = data["scenario_idx"].item() if not self.claim_scenario_idx(scenario_idx): continue scenario_df = pd.DataFrame() data.to(device) n_evaluated += 1 base_case_dict = dataloader.dataset.get_orig_data(data.scenario_idx.item()) for m, eval_m in methods.items(): case_dict = copy.deepcopy(base_case_dict) result_dict = self.eval_method( eval_m, case_dict, jl, data=data, observer=observer ) result_dict["scenario_id"] = scenario_idx result_dict["opf_method"] = m result_dict["solved"] = float(result_dict["solved"]) single_results_df = pd.DataFrame.from_dict({k: [v] for k, v in result_dict.items()}) scenario_df = pd.concat([scenario_df, single_results_df], ignore_index=True, axis=0, sort=False) with self.synced_results(): self.results = pd.concat([self.results, scenario_df], ignore_index=True, axis=0, sort=False) print(f"Finished {self.results.scenario_id.nunique()} scenarios") print("CURSTATE: ALL SCENARIOS") print(self.pretty_statistics(filter_by_solved=False)) print("CURSTATE: SOLVED SCENARIOS") print(self.pretty_statistics(filter_by_solved=True)) with self.synced_runs() as exp_states: exp_states[scenario_idx] = "finished" print("FINALSTATE: ALL SCENARIOS") print(self.pretty_statistics(filter_by_solved=False)) print("FINALSTATE: SOLVED SCENARIOS") print(self.pretty_statistics(filter_by_solved=True)) def main(casename, area_name, pgmin_to_zero, cluster, scaler, model_folder): device = "cpu" from gnn_acopf.experimental.train_models import OPFTrainAndEval if cluster: datapath = Path("/experiment/data") trained_models_path = Path("/experiment/trained_models") model_results_path = trained_models_path / model_folder / "results" model_checkpoint_path = trained_models_path / model_folder / "checkpoints" results_path = Path("/experiment/results") # checkpoint_path = Path("/experiment/checkpoints") print_level = 0 else: datapath = Path("../../data") results_path = Path("../../experiment") model_results_path = results_path model_checkpoint_path = Path("../../experiment") print_level = 5 pn = PowerNetwork.from_pickle(datapath / f"case_{casename}.pickle", area_name=area_name, pgmin_to_zero=pgmin_to_zero) pn.load_scenarios_file(datapath / f"scenarios_{casename}.m") obs = DefaultObserver( jl=JuliaInterface(), solution_cache_dir=datapath / f"generated_solutions/case_{casename}_solutions", # solution_cache_dir=Path("/tmp/power_results"), area_name=area_name, scaler=scaler ) dataset = OPFDataset(pn, obs) batchnorm = True quality_metric = QualityMetric(name="mse", compare_func="min") # model = SimpleModel(n_features=obs.n_node_features, n_targets=obs.n_node_targets, # n_hiddens=32, n_targets_edge=obs.n_branch_targets, # n_edge_features=obs.n_branch_features, # n_layers=8, batchnorm=batchnorm, residuals=True) model = SummarizedEncodingModel(n_features=obs.n_node_features, n_targets=obs.n_node_targets, n_hiddens=48, n_targets_edge=obs.n_branch_targets, n_edge_features=obs.n_branch_features, n_layers=8, batchnorm=batchnorm, residuals=True) train_and_eval = OPFTrainAndEval(model, dataset, model_results_path, model_checkpoint_path, quality_metric, # datasetloader=PowerDataSetLoader ) train_and_eval.load_best_model() data_loaders = train_and_eval.datasetloader.from_dataset( train_and_eval.dataset, batch_size=1, shuffle=False, num_workers=0 ) eval_opf = EvaluateOPF(model, results_path) eval_opf.eval_opf(data_loaders.test, device=device, observer=obs, print_level=print_level) def with_parsed_args(): from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("--run_local", action="store_true") parser.add_argument("-d", "--dataset", required=True) parser.add_argument("--model_to_use", default=None) args = parser.parse_args() scaler_200 = Scaler(scales={ "bus": (np.array([13.8, 0.85, 1.05], dtype=np.float32), np.array([230, 0.95, 1.15], dtype=np.float32)), "load": (np.array([0, 0], dtype=np.float32), np.array([0.76, 0.22], dtype=np.float32)), "gen": (np.array([-0.55, 0, 0, 0, 0, 0], dtype=np.float32), np.array([0, 0.13, 1.1, 0.28, 0.09, 33.5], dtype=np.float32)), "shunt": (
np.array([0.3], dtype=np.float32)
numpy.array
import itertools import numpy as np from PartSegCore.segmentation.border_smoothing import IterativeVoteSmoothing, OpeningSmoothing, VoteSmoothing from PartSegCore.segmentation.watershed import NeighType class TestVoteSmoothing: def test_cube_sides(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 3}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 4}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 5}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 6}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_cube_edges(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 6}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 7}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 9}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 10}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 13}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 14}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_cube_vertex(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 7}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 8}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 11}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 12}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 17}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 18}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_square_sides(self): data = np.zeros((1, 50, 50), dtype=np.uint8) data[:, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 2}) assert
np.all(res == data)
numpy.all
""" k means on the sphere Adapted from this stack overflow answer http://stackoverflow.com/questions/5529625/is-it-possible-to-specify-your-own-distance-function-using-scikit-learn-k-means """ from __future__ import print_function from __future__ import division import random import numpy _TOL_DEF=1.0e-5 _MAXITER_DEF=100 _VERBOSE_DEF=1 class KMeans(object): """ A class to perform K-means on the input ra,dec using spherical distances parameters ---------- centers_guess: array [ncen, ra, dec] starting guesses. Can reset later with set_centers() tol: float, optional The relative change in the average distance to centers, signifies convergence verbose: int, optional How verbose. 0 silent, 1 minimal starting info, 2 prints running distances attributes after running ------------------------ .converged: bool True if converged .centers: array the found centers .labels: array [N,ra,dec] array .distances: array Distance from each point to each center .X: array The data that was processed example ------- import kmeans_radec from kmeans_radec import KMeans cen_guess=numpy.zeros( (ncen, 2) ) cen_guess[:,0] = ra_guesses cen_guess[:,1] = dec_guesses km=KMeans(cen_guess) km.run(X, maxiter=100) # did it converge? if not km.converged: # did not converge. This might be ok, but if we want # to run more we can km.run(X, maxiter=maxiter) # or we could try a different set of center guesses... km.set_centers(cen_guess2) km.run(X, maxiter=100) # results are saved in attributes print(km.centers, km.labels, km.distances) print("copy of centers:",km.get_centers()) # once we have our centers, we can identify to which cluster # a *different* set of points belong. This could be a set # of random points we want to associate with the same regions labels=km.find_nearest(X2) # you can save the centers and load them into a KMeans # object at a later time km=KMeans(centers) labels=km.find_nearest(X) """ def __init__(self, centers, tol=_TOL_DEF, verbose=_VERBOSE_DEF): self.set_centers(centers) self.tol=float(tol) self.verbose=verbose def run(self, X, maxiter=_MAXITER_DEF): """ run k means, either until convergence is reached or the indicated number of iterations are performed parameters ---------- X: array [N, ra, dec] array maxiter: int, optional Max number of iterations to run. """ centers=self.get_centers() _check_dims(X, self.centers) N, dim = X.shape ncen, cdim = centers.shape if self.verbose: tup=(X.shape, centers.shape, self.tol, maxiter) print("X %s centers %s tol=%.2g maxiter=%d" % tup) self.converged=False allx = numpy.arange(N) prevdist = 0 for jiter in xrange( 1, maxiter+1 ): D = cdist_radec(X, centers) # npoints x ncenters labels = D.argmin(axis=1) # X -> nearest centre distances = D[allx,labels] avdist = distances.mean() # median ? if self.verbose >= 2: print(" av |X - nearest centre| = %.4g" % avdist) self.converged = (1 - self.tol) * prevdist <= avdist <= prevdist if self.converged: break if jiter==maxiter: break prevdist = avdist for jc in range(ncen): # (1 pass in C) c, = numpy.where( labels == jc ) if len(c) > 0: centers[jc] = X[c].mean( axis=0 ) if self.verbose: print(jiter,"iterations cluster " "sizes:", numpy.bincount(labels)) if self.verbose >= 2: self._print_info() self.X=X self.centers=centers self.labels=labels self.distances=distances def set_centers(self, centers): """ set starting centers parameters ---------- centers: array [Ncen] array of centers """ centers=
numpy.asanyarray(centers)
numpy.asanyarray
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime from numpy import random import numpy as np from pandas.compat import lrange, lzip, u from pandas import (compat, DataFrame, Series, Index, MultiIndex, date_range, isnull) import pandas as pd from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) from pandas.core.common import PerformanceWarning import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameSelectReindex(tm.TestCase, TestData): # These are specific reindex-based tests; other indexing tests should go in # test_indexing _multiprocess_can_split_ = True def test_drop_names(self): df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]], index=['a', 'b', 'c'], columns=['d', 'e', 'f']) df.index.name, df.columns.name = 'first', 'second' df_dropped_b = df.drop('b') df_dropped_e = df.drop('e', axis=1) df_inplace_b, df_inplace_e = df.copy(), df.copy() df_inplace_b.drop('b', inplace=True) df_inplace_e.drop('e', axis=1, inplace=True) for obj in (df_dropped_b, df_dropped_e, df_inplace_b, df_inplace_e): self.assertEqual(obj.index.name, 'first') self.assertEqual(obj.columns.name, 'second') self.assertEqual(list(df.columns), ['d', 'e', 'f']) self.assertRaises(ValueError, df.drop, ['g']) self.assertRaises(ValueError, df.drop, ['g'], 1) # errors = 'ignore' dropped = df.drop(['g'], errors='ignore') expected = Index(['a', 'b', 'c'], name='first') self.assert_index_equal(dropped.index, expected) dropped = df.drop(['b', 'g'], errors='ignore') expected = Index(['a', 'c'], name='first') self.assert_index_equal(dropped.index, expected) dropped = df.drop(['g'], axis=1, errors='ignore') expected = Index(['d', 'e', 'f'], name='second') self.assert_index_equal(dropped.columns, expected) dropped = df.drop(['d', 'g'], axis=1, errors='ignore') expected = Index(['e', 'f'], name='second') self.assert_index_equal(dropped.columns, expected) def test_drop_col_still_multiindex(self): arrays = [['a', 'b', 'c', 'top'], ['', '', '', 'OD'], ['', '', '', 'wx']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.randn(3, 4), columns=index) del df[('a', '', '')] assert(isinstance(df.columns, MultiIndex)) def test_drop(self): simple = DataFrame({"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]}) assert_frame_equal(simple.drop("A", axis=1), simple[['B']]) assert_frame_equal(simple.drop(["A", "B"], axis='columns'), simple[[]]) assert_frame_equal(simple.drop([0, 1, 3], axis=0), simple.ix[[2], :]) assert_frame_equal(simple.drop( [0, 3], axis='index'), simple.ix[[1, 2], :]) self.assertRaises(ValueError, simple.drop, 5) self.assertRaises(ValueError, simple.drop, 'C', 1) self.assertRaises(ValueError, simple.drop, [1, 5]) self.assertRaises(ValueError, simple.drop, ['A', 'C'], 1) # errors = 'ignore' assert_frame_equal(simple.drop(5, errors='ignore'), simple) assert_frame_equal(simple.drop([0, 5], errors='ignore'), simple.ix[[1, 2, 3], :]) assert_frame_equal(simple.drop('C', axis=1, errors='ignore'), simple) assert_frame_equal(simple.drop(['A', 'C'], axis=1, errors='ignore'), simple[['B']]) # non-unique - wheee! nu_df = DataFrame(lzip(range(3), range(-3, 1), list('abc')), columns=['a', 'a', 'b']) assert_frame_equal(nu_df.drop('a', axis=1), nu_df[['b']]) assert_frame_equal(nu_df.drop('b', axis='columns'), nu_df['a']) nu_df = nu_df.set_index(pd.Index(['X', 'Y', 'X'])) nu_df.columns = list('abc') assert_frame_equal(nu_df.drop('X', axis='rows'), nu_df.ix[["Y"], :]) assert_frame_equal(nu_df.drop(['X', 'Y'], axis=0), nu_df.ix[[], :]) # inplace cache issue # GH 5628 df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc')) expected = df[~(df.b > 0)] df.drop(labels=df[df.b > 0].index, inplace=True) assert_frame_equal(df, expected) def test_drop_multiindex_not_lexsorted(self): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [('a', ''), ('b1', 'c1'), ('b2', 'c2')], names=['b', 'c']) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) self.assertTrue(lexsorted_df.columns.is_lexsorted()) # define the non-lexsorted version not_lexsorted_df = DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) not_lexsorted_df = not_lexsorted_df.pivot_table( index='a', columns=['b', 'c'], values='d') not_lexsorted_df = not_lexsorted_df.reset_index() self.assertFalse(not_lexsorted_df.columns.is_lexsorted()) # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.drop('a', axis=1) with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.drop('a', axis=1) tm.assert_frame_equal(result, expected) def test_merge_join_different_levels(self): # GH 9455 # first dataframe df1 = DataFrame(columns=['a', 'b'], data=[[1, 11], [0, 22]]) # second dataframe columns = MultiIndex.from_tuples([('a', ''), ('c', 'c1')]) df2 = DataFrame(columns=columns, data=[[1, 33], [0, 44]]) # merge columns = ['a', 'b', ('c', 'c1')] expected = DataFrame(columns=columns, data=[[1, 11, 33], [0, 22, 44]]) with tm.assert_produces_warning(UserWarning): result = pd.merge(df1, df2, on='a') tm.assert_frame_equal(result, expected) # join, see discussion in GH 12219 columns = ['a', 'b', ('a', ''), ('c', 'c1')] expected = DataFrame(columns=columns, data=[[1, 11, 0, 44], [0, 22, 1, 33]]) with tm.assert_produces_warning(UserWarning): result = df1.join(df2, on='a') tm.assert_frame_equal(result, expected) def test_reindex(self): newFrame = self.frame.reindex(self.ts1.index) for col in newFrame.columns: for idx, val in compat.iteritems(newFrame[col]): if idx in self.frame.index: if np.isnan(val): self.assertTrue(np.isnan(self.frame[col][idx])) else: self.assertEqual(val, self.frame[col][idx]) else: self.assertTrue(np.isnan(val)) for col, series in compat.iteritems(newFrame): self.assertTrue(tm.equalContents(series.index, newFrame.index)) emptyFrame = self.frame.reindex(Index([])) self.assertEqual(len(emptyFrame.index), 0) # Cython code should be unit-tested directly nonContigFrame = self.frame.reindex(self.ts1.index[::2]) for col in nonContigFrame.columns: for idx, val in compat.iteritems(nonContigFrame[col]): if idx in self.frame.index: if np.isnan(val): self.assertTrue(np.isnan(self.frame[col][idx])) else: self.assertEqual(val, self.frame[col][idx]) else: self.assertTrue(np.isnan(val)) for col, series in compat.iteritems(nonContigFrame): self.assertTrue(tm.equalContents(series.index, nonContigFrame.index)) # corner cases # Same index, copies values but not index if copy=False newFrame = self.frame.reindex(self.frame.index, copy=False) self.assertIs(newFrame.index, self.frame.index) # length zero newFrame = self.frame.reindex([]) self.assertTrue(newFrame.empty) self.assertEqual(len(newFrame.columns), len(self.frame.columns)) # length zero with columns reindexed with non-empty index newFrame = self.frame.reindex([]) newFrame = newFrame.reindex(self.frame.index) self.assertEqual(len(newFrame.index), len(self.frame.index)) self.assertEqual(len(newFrame.columns), len(self.frame.columns)) # pass non-Index newFrame = self.frame.reindex(list(self.ts1.index)) self.assert_index_equal(newFrame.index, self.ts1.index) # copy with no axes result = self.frame.reindex() assert_frame_equal(result, self.frame) self.assertFalse(result is self.frame) def test_reindex_nan(self): df = pd.DataFrame([[1, 2], [3, 5], [7, 11], [9, 23]], index=[2, np.nan, 1, 5], columns=['joe', 'jim']) i, j = [np.nan, 5, 5, np.nan, 1, 2, np.nan], [1, 3, 3, 1, 2, 0, 1] assert_frame_equal(df.reindex(i), df.iloc[j]) df.index = df.index.astype('object') assert_frame_equal(df.reindex(i), df.iloc[j], check_index_type=False) # GH10388 df = pd.DataFrame({'other': ['a', 'b', np.nan, 'c'], 'date': ['2015-03-22', np.nan, '2012-01-08', np.nan], 'amount': [2, 3, 4, 5]}) df['date'] = pd.to_datetime(df.date) df['delta'] = (pd.to_datetime('2015-06-18') - df['date']).shift(1) left = df.set_index(['delta', 'other', 'date']).reset_index() right = df.reindex(columns=['delta', 'other', 'date', 'amount']) assert_frame_equal(left, right) def test_reindex_name_remains(self): s = Series(random.rand(10)) df = DataFrame(s, index=np.arange(len(s))) i = Series(np.arange(10), name='iname') df = df.reindex(i) self.assertEqual(df.index.name, 'iname') df = df.reindex(Index(np.arange(10), name='tmpname')) self.assertEqual(df.index.name, 'tmpname') s = Series(random.rand(10)) df = DataFrame(s.T, index=np.arange(len(s))) i = Series(np.arange(10), name='iname') df = df.reindex(columns=i) self.assertEqual(df.columns.name, 'iname') def test_reindex_int(self): smaller = self.intframe.reindex(self.intframe.index[::2]) self.assertEqual(smaller['A'].dtype, np.int64) bigger = smaller.reindex(self.intframe.index) self.assertEqual(bigger['A'].dtype, np.float64) smaller = self.intframe.reindex(columns=['A', 'B']) self.assertEqual(smaller['A'].dtype, np.int64) def test_reindex_like(self): other = self.frame.reindex(index=self.frame.index[:10], columns=['C', 'B']) assert_frame_equal(other, self.frame.reindex_like(other)) def test_reindex_columns(self): newFrame = self.frame.reindex(columns=['A', 'B', 'E']) assert_series_equal(newFrame['B'], self.frame['B']) self.assertTrue(np.isnan(newFrame['E']).all()) self.assertNotIn('C', newFrame) # length zero newFrame = self.frame.reindex(columns=[]) self.assertTrue(newFrame.empty) def test_reindex_axes(self): # GH 3317, reindexing by both axes loses freq of the index df = DataFrame(np.ones((3, 3)), index=[datetime(2012, 1, 1), datetime(2012, 1, 2), datetime(2012, 1, 3)], columns=['a', 'b', 'c']) time_freq = date_range('2012-01-01', '2012-01-03', freq='d') some_cols = ['a', 'b'] index_freq = df.reindex(index=time_freq).index.freq both_freq = df.reindex(index=time_freq, columns=some_cols).index.freq seq_freq = df.reindex(index=time_freq).reindex( columns=some_cols).index.freq self.assertEqual(index_freq, both_freq) self.assertEqual(index_freq, seq_freq) def test_reindex_fill_value(self): df = DataFrame(np.random.randn(10, 4)) # axis=0 result = df.reindex(lrange(15)) self.assertTrue(np.isnan(result.values[-5:]).all()) result = df.reindex(lrange(15), fill_value=0) expected = df.reindex(lrange(15)).fillna(0) assert_frame_equal(result, expected) # axis=1 result = df.reindex(columns=lrange(5), fill_value=0.) expected = df.copy() expected[4] = 0. assert_frame_equal(result, expected) result = df.reindex(columns=lrange(5), fill_value=0) expected = df.copy() expected[4] = 0 assert_frame_equal(result, expected) result = df.reindex(columns=lrange(5), fill_value='foo') expected = df.copy() expected[4] = 'foo' assert_frame_equal(result, expected) # reindex_axis result = df.reindex_axis(lrange(15), fill_value=0., axis=0) expected = df.reindex(lrange(15)).fillna(0) assert_frame_equal(result, expected) result = df.reindex_axis(lrange(5), fill_value=0., axis=1) expected = df.reindex(columns=lrange(5)).fillna(0) assert_frame_equal(result, expected) # other dtypes df['foo'] = 'foo' result = df.reindex(lrange(15), fill_value=0) expected = df.reindex(lrange(15)).fillna(0) assert_frame_equal(result, expected) def test_reindex_dups(self): # GH4746, reindex on duplicate index error messages arr = np.random.randn(10) df = DataFrame(arr, index=[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]) # set index is ok result = df.copy() result.index = list(range(len(df))) expected = DataFrame(arr, index=list(range(len(df)))) assert_frame_equal(result, expected) # reindex fails self.assertRaises(ValueError, df.reindex, index=list(range(len(df)))) def test_align(self): af, bf = self.frame.align(self.frame) self.assertIsNot(af._data, self.frame._data) af, bf = self.frame.align(self.frame, copy=False) self.assertIs(af._data, self.frame._data) # axis = 0 other = self.frame.ix[:-5, :3] af, bf = self.frame.align(other, axis=0, fill_value=-1) self.assert_index_equal(bf.columns, other.columns) # test fill value join_idx = self.frame.index.join(other.index) diff_a = self.frame.index.difference(join_idx) diff_b = other.index.difference(join_idx) diff_a_vals = af.reindex(diff_a).values diff_b_vals = bf.reindex(diff_b).values self.assertTrue((diff_a_vals == -1).all()) af, bf = self.frame.align(other, join='right', axis=0) self.assert_index_equal(bf.columns, other.columns) self.assert_index_equal(bf.index, other.index) self.assert_index_equal(af.index, other.index) # axis = 1 other = self.frame.ix[:-5, :3].copy() af, bf = self.frame.align(other, axis=1) self.assert_index_equal(bf.columns, self.frame.columns) self.assert_index_equal(bf.index, other.index) # test fill value join_idx = self.frame.index.join(other.index) diff_a = self.frame.index.difference(join_idx) diff_b = other.index.difference(join_idx) diff_a_vals = af.reindex(diff_a).values # TODO(wesm): unused? diff_b_vals = bf.reindex(diff_b).values # noqa self.assertTrue((diff_a_vals == -1).all()) af, bf = self.frame.align(other, join='inner', axis=1) self.assert_index_equal(bf.columns, other.columns) af, bf = self.frame.align(other, join='inner', axis=1, method='pad') self.assert_index_equal(bf.columns, other.columns) # test other non-float types af, bf = self.intframe.align(other, join='inner', axis=1, method='pad') self.assert_index_equal(bf.columns, other.columns) af, bf = self.mixed_frame.align(self.mixed_frame, join='inner', axis=1, method='pad') self.assert_index_equal(bf.columns, self.mixed_frame.columns) af, bf = self.frame.align(other.ix[:, 0], join='inner', axis=1, method=None, fill_value=None) self.assert_index_equal(bf.index, Index([])) af, bf = self.frame.align(other.ix[:, 0], join='inner', axis=1, method=None, fill_value=0) self.assert_index_equal(bf.index, Index([])) # mixed floats/ints af, bf = self.mixed_float.align(other.ix[:, 0], join='inner', axis=1, method=None, fill_value=0) self.assert_index_equal(bf.index, Index([])) af, bf = self.mixed_int.align(other.ix[:, 0], join='inner', axis=1, method=None, fill_value=0) self.assert_index_equal(bf.index, Index([])) # try to align dataframe to series along bad axis self.assertRaises(ValueError, self.frame.align, af.ix[0, :3], join='inner', axis=2) # align dataframe to series with broadcast or not idx = self.frame.index s = Series(range(len(idx)), index=idx) left, right = self.frame.align(s, axis=0) tm.assert_index_equal(left.index, self.frame.index) tm.assert_index_equal(right.index, self.frame.index) self.assertTrue(isinstance(right, Series)) left, right = self.frame.align(s, broadcast_axis=1) tm.assert_index_equal(left.index, self.frame.index) expected = {} for c in self.frame.columns: expected[c] = s expected = DataFrame(expected, index=self.frame.index, columns=self.frame.columns) assert_frame_equal(right, expected) # GH 9558 df = DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) result = df[df['a'] == 2] expected = DataFrame([[2, 5]], index=[1], columns=['a', 'b']) assert_frame_equal(result, expected) result = df.where(df['a'] == 2, 0) expected = DataFrame({'a': [0, 2, 0], 'b': [0, 5, 0]}) assert_frame_equal(result, expected) def _check_align(self, a, b, axis, fill_axis, how, method, limit=None): aa, ab = a.align(b, axis=axis, join=how, method=method, limit=limit, fill_axis=fill_axis) join_index, join_columns = None, None ea, eb = a, b if axis is None or axis == 0: join_index = a.index.join(b.index, how=how) ea = ea.reindex(index=join_index) eb = eb.reindex(index=join_index) if axis is None or axis == 1: join_columns = a.columns.join(b.columns, how=how) ea = ea.reindex(columns=join_columns) eb = eb.reindex(columns=join_columns) ea = ea.fillna(axis=fill_axis, method=method, limit=limit) eb = eb.fillna(axis=fill_axis, method=method, limit=limit) assert_frame_equal(aa, ea) assert_frame_equal(ab, eb) def test_align_fill_method_inner(self): for meth in ['pad', 'bfill']: for ax in [0, 1, None]: for fax in [0, 1]: self._check_align_fill('inner', meth, ax, fax) def test_align_fill_method_outer(self): for meth in ['pad', 'bfill']: for ax in [0, 1, None]: for fax in [0, 1]: self._check_align_fill('outer', meth, ax, fax) def test_align_fill_method_left(self): for meth in ['pad', 'bfill']: for ax in [0, 1, None]: for fax in [0, 1]: self._check_align_fill('left', meth, ax, fax) def test_align_fill_method_right(self): for meth in ['pad', 'bfill']: for ax in [0, 1, None]: for fax in [0, 1]: self._check_align_fill('right', meth, ax, fax) def _check_align_fill(self, kind, meth, ax, fax): left = self.frame.ix[0:4, :10] right = self.frame.ix[2:, 6:] empty = self.frame.ix[:0, :0] self._check_align(left, right, axis=ax, fill_axis=fax, how=kind, method=meth) self._check_align(left, right, axis=ax, fill_axis=fax, how=kind, method=meth, limit=1) # empty left self._check_align(empty, right, axis=ax, fill_axis=fax, how=kind, method=meth) self._check_align(empty, right, axis=ax, fill_axis=fax, how=kind, method=meth, limit=1) # empty right self._check_align(left, empty, axis=ax, fill_axis=fax, how=kind, method=meth) self._check_align(left, empty, axis=ax, fill_axis=fax, how=kind, method=meth, limit=1) # both empty self._check_align(empty, empty, axis=ax, fill_axis=fax, how=kind, method=meth) self._check_align(empty, empty, axis=ax, fill_axis=fax, how=kind, method=meth, limit=1) def test_align_int_fill_bug(self): # GH #910 X = np.arange(10 * 10, dtype='float64').reshape(10, 10) Y = np.ones((10, 1), dtype=int) df1 = DataFrame(X) df1['0.X'] = Y.squeeze() df2 = df1.astype(float) result = df1 - df1.mean() expected = df2 - df2.mean() assert_frame_equal(result, expected) def test_align_multiindex(self): # GH 10665 # same test cases as test_align_multiindex in test_series.py midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') df1 = pd.DataFrame(np.arange(12, dtype='int64'), index=midx) df2 = pd.DataFrame(
np.arange(2, dtype='int64')
numpy.arange
import os, glob import numpy as np from scipy.stats import pearsonr sub_list = [] sub_list_file = f'{os.environ.get("FD_DIR")}/sublist.txt' with open(sub_list_file) as f: lines = f.readlines() for line in lines: sub_list.append(line.strip('\n').replace('_', '-')) low_motion_sub_list = [] low_motion_sub_list_file = f'{os.environ.get("FD_DIR")}/good_30.txt' with open(low_motion_sub_list_file) as f: lines = f.readlines() for line in lines: low_motion_sub_list.append(line.strip('\n').replace('_', '-')) high_motion_sub_list = [] for sub in sub_list: if sub not in low_motion_sub_list: high_motion_sub_list.append(sub) print('subject list length: ' + str(len(sub_list))) print('low motion subject list length: ' + str(len(low_motion_sub_list))) print('high motion subject list length: ' + str(len(high_motion_sub_list))) def get_fd_corr(sub_list, type, name): run_path = f'{os.environ.get("PH_SERVER_ROOT")}/sgia/XinMotion/runs/' afni = 'v181-MotionVariation' afni_last_folder = 'v181-MotionVariation-last' fsl = 'v181-MotionVariation-MC' fsl_last_folder = 'v181-MotionVariation-last-MC' afni_mean, afni_median, afni_first, afni_last, fsl_mean, fsl_median, fsl_first, fsl_last = [], [], [], [], [], [], [], [] for sub in sub_list: print(sub) # mean volume 1 afni_mean_file = glob.glob(run_path+afni+'/output/cpac_cpac-default-pipeline/'+sub+'_ses-1/func/'+sub+'_ses-1_task-movieTP_desc-1_framewise-displacement-'+type+'.1D')[0] afni_mean.append(np.loadtxt(afni_mean_file)) fsl_mean_file = glob.glob(run_path+fsl+'/output/cpac_cpac-default-pipeline/'+sub+'_ses-1/func/'+sub+'_ses-1_task-movieTP_desc-1_framewise-displacement-'+type+'.1D')[0] fsl_mean.append(np.loadtxt(fsl_mean_file)) # median volume 2 afni_median_file = glob.glob(run_path+afni+'/output/cpac_cpac-default-pipeline/'+sub+'_ses-1/func/'+sub+'_ses-1_task-movieTP_desc-2_framewise-displacement-'+type+'.1D')[0] afni_median.append(np.loadtxt(afni_median_file)) fsl_median_file = glob.glob(run_path+fsl+'/output/cpac_cpac-default-pipeline/'+sub+'_ses-1/func/'+sub+'_ses-1_task-movieTP_desc-2_framewise-displacement-'+type+'.1D')[0] fsl_median.append(np.loadtxt(fsl_median_file)) # first volume 3 afni_first_file = glob.glob(run_path+afni+'/output/cpac_cpac-default-pipeline/'+sub+'_ses-1/func/'+sub+'_ses-1_task-movieTP_desc-3_framewise-displacement-'+type+'.1D')[0] afni_first.append(np.loadtxt(afni_first_file)) fsl_first_file = glob.glob(run_path+fsl+'/output/cpac_cpac-default-pipeline/'+sub+'_ses-1/func/'+sub+'_ses-1_task-movieTP_desc-3_framewise-displacement-'+type+'.1D')[0] fsl_first.append(np.loadtxt(fsl_first_file)) # last volume afni_last_file = glob.glob(run_path+afni_last_folder+'/output/cpac_cpac-default-pipeline/'+sub+'_ses-1/func/'+sub+'_ses-1_task-movieTP_framewise-displacement-'+type+'.1D')[0] afni_last.append(np.loadtxt(afni_last_file)) fsl_last_file = glob.glob(run_path+fsl_last_folder+'/output/cpac_cpac-default-pipeline/'+sub+'_ses-1/func/'+sub+'_ses-1_task-movieTP_framewise-displacement-'+type+'.1D')[0] fsl_last.append(np.loadtxt(fsl_last_file)) print('AFNI mean') print( np.mean(afni_mean), np.std(afni_mean) ) print('FSL mean') print( np.mean(fsl_mean), np.std(fsl_mean) ) print('AFNI median') print( np.mean(afni_median), np.std(afni_median) ) print('FSL median') print( np.mean(fsl_median), np.std(fsl_median) ) print('AFNI first') print( np.mean(afni_first), np.std(afni_first) ) print('FSL first') print( np.mean(fsl_first), np.std(fsl_first) ) print('AFNI last') print( np.mean(afni_last), np.std(afni_last) ) print('FSL last') print(
np.mean(fsl_last)
numpy.mean
""" Copyright (c) 2018-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import itertools import math import warnings from collections import namedtuple import numpy as np from ..adapters import Adapter from ..config import ConfigValidator, NumberField, StringField, ListField, ConfigError from ..postprocessor.nms import NMS from ..representation import DetectionPrediction FaceDetectionLayerOutput = namedtuple('FaceDetectionLayerOutput', [ 'prob_name', 'reg_name', 'anchor_index', 'anchor_size', 'win_scale', 'win_length', 'win_trans_x', 'win_trans_y' ]) class TFObjectDetectionAPIAdapter(Adapter): """ Class for converting output of SSD model to DetectionPrediction representation """ __provider__ = 'tf_object_detection' def validate_config(self): super().validate_config(on_extra_argument=ConfigValidator.ERROR_ON_EXTRA_ARGUMENT) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'classes_out': StringField(description="Classes output layer name."), 'boxes_out': StringField(description="Boxes output layer name."), 'scores_out': StringField(description="Scores output layer name."), 'num_detections_out': StringField(description="Number of detections output layer name.") }) return parameters def configure(self): self.classes_out = self.get_value_from_config('classes_out') self.boxes_out = self.get_value_from_config('boxes_out') self.scores_out = self.get_value_from_config('scores_out') self.num_detections_out = self.get_value_from_config('num_detections_out') def process(self, raw, identifiers=None, frame_meta=None): """ Args: identifiers: list of input data identifiers raw: output of model Returns: list of DetectionPrediction objects """ prediction_batch = self._extract_predictions(raw, frame_meta) classes_batch = prediction_batch[self.classes_out] scores_batch = prediction_batch[self.scores_out] boxes_batch = prediction_batch[self.boxes_out] num_detections_batch = prediction_batch[self.num_detections_out].astype(int) result = [] for identifier, classes, scores, boxes, num_detections in zip( identifiers, classes_batch, scores_batch, boxes_batch, num_detections_batch ): valid_classes = classes[:num_detections] valid_scores = scores[:num_detections] valid_boxes = boxes[:num_detections] y_mins, x_mins, y_maxs, x_maxs = valid_boxes.T result.append(DetectionPrediction(identifier, valid_classes, valid_scores, x_mins, y_mins, x_maxs, y_maxs)) return result class MTCNNPAdapter(Adapter): __provider__ = 'mtcnn_p' @classmethod def parameters(cls): parameters = super().parameters() parameters.update( { 'probability_out': StringField(description='Name of Output layer with detection boxes probabilities'), 'region_out': StringField(description='Name of output layer with detected regions'), 'regions_format': StringField( optional=True, choices=['hw', 'wh'], default='wh', description='determination of coordinates order in regions, wh uses order x1y1x2y2, hw - y1x1y2x2' ) } ) return parameters def configure(self): self.probability_out = self.get_value_from_config('probability_out') self.region_out = self.get_value_from_config('region_out') self.regions_format = self.get_value_from_config('regions_format') @staticmethod def nms(boxes, threshold, overlap_type): """ Args: boxes: [:,0:5] threshold: 0.5 like overlap_type: 'Min' or 'Union' Returns: indexes of passed boxes """ if boxes.shape[0] == 0: return np.array([]) x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] scores = boxes[:, 4] area = np.multiply(x2 - x1 + 1, y2 - y1 + 1) inds = np.array(scores.argsort()) pick = [] while np.size(inds) > 0: xx1 = np.maximum(x1[inds[-1]], x1[inds[0:-1]]) yy1 = np.maximum(y1[inds[-1]], y1[inds[0:-1]]) xx2 = np.minimum(x2[inds[-1]], x2[inds[0:-1]]) yy2 = np.minimum(y2[inds[-1]], y2[inds[0:-1]]) width = np.maximum(0.0, xx2 - xx1 + 1) height = np.maximum(0.0, yy2 - yy1 + 1) inter = width * height if overlap_type == 'Min': overlap = inter / np.minimum(area[inds[-1]], area[inds[0:-1]]) else: overlap = inter / (area[inds[-1]] + area[inds[0:-1]] - inter) pick.append(inds[-1]) inds = inds[np.where(overlap <= threshold)[0]] return pick def process(self, raw, identifiers=None, frame_meta=None): total_boxes_batch = self._extract_predictions(raw, frame_meta) results = [] for total_boxes, identifier in zip(total_boxes_batch, identifiers): if np.size(total_boxes) == 0: results.append(DetectionPrediction(identifier, [], [], [], [], [], [])) continue pick = self.nms(total_boxes, 0.7, 'Union') total_boxes = total_boxes[pick] regh = total_boxes[:, 3] - total_boxes[:, 1] regw = total_boxes[:, 2] - total_boxes[:, 0] x_mins = total_boxes[:, 0] + total_boxes[:, 5] * regw y_mins = total_boxes[:, 1] + total_boxes[:, 6] * regh x_maxs = total_boxes[:, 2] + total_boxes[:, 7] * regw y_maxs = total_boxes[:, 3] + total_boxes[:, 8] * regh scores = total_boxes[:, 4] results.append( DetectionPrediction(identifier, np.full_like(scores, 1), scores, x_mins, y_mins, x_maxs, y_maxs) ) return results @staticmethod def generate_bounding_box(mapping, reg, scale, t, r_format): stride = 2 cellsize = 12 mapping = mapping.T indexes = [0, 1, 2, 3] if r_format == 'wh' else [1, 0, 3, 2] dx1 = reg[indexes[0], :, :].T dy1 = reg[indexes[1], :, :].T dx2 = reg[indexes[2], :, :].T dy2 = reg[indexes[3], :, :].T (x, y) = np.where(mapping >= t) yy = y xx = x score = mapping[x, y] reg = np.array([dx1[x, y], dy1[x, y], dx2[x, y], dy2[x, y]]) if reg.shape[0] == 0: pass bounding_box = np.array([yy, xx]).T bb1 = np.fix((stride * bounding_box + 1) / scale).T # matlab index from 1, so with "boundingbox-1" bb2 = np.fix((stride * bounding_box + cellsize - 1 + 1) / scale).T # while python don't have to score = np.array([score]) bounding_box_out = np.concatenate((bb1, bb2, score, reg), axis=0) return bounding_box_out.T def _extract_predictions(self, outputs_list, meta): scales = [1] if not meta[0] or 'scales' not in meta[0] else meta[0]['scales'] total_boxes = np.zeros((0, 9), np.float) for idx, outputs in enumerate(outputs_list): scale = scales[idx] mapping = outputs[self.probability_out][0, 1, :, :] regions = outputs[self.region_out][0] boxes = self.generate_bounding_box(mapping, regions, scale, 0.6, self.regions_format) if boxes.shape[0] != 0: pick = self.nms(boxes, 0.5, 'Union') if
np.size(pick)
numpy.size
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: base_tomophantom_loader :platform: Unix :synopsis: A loader that generates synthetic 3D projection full-field tomo data\ as hdf5 dataset of any size. .. moduleauthor:: <NAME> <<EMAIL>> """ import os import h5py import logging import numpy as np from mpi4py import MPI from savu.data.chunking import Chunking from savu.plugins.utils import register_plugin from savu.plugins.loaders.base_loader import BaseLoader from savu.plugins.savers.utils.hdf5_utils import Hdf5Utils from savu.data.plugin_list import PluginList import tomophantom from tomophantom import TomoP2D, TomoP3D @register_plugin class BaseTomophantomLoader(BaseLoader): def __init__(self, name='BaseTomophantomLoader'): super(BaseTomophantomLoader, self).__init__(name) self.cor = None self.n_entries = None def setup(self): exp = self.exp data_obj = exp.create_data_object('in_data', 'synth_proj_data') data_obj.set_axis_labels(*self.parameters['axis_labels']) self.__convert_patterns(data_obj,'synth_proj_data') self.__parameter_checks(data_obj) self.tomo_model = self.parameters['tomo_model'] # setting angles for parallel beam geometry self.angles = np.linspace(0.0, 180.0-(1e-14), self.parameters['proj_data_dims'][0], dtype='float32') path = os.path.dirname(tomophantom.__file__) self.path_library3D = os.path.join(path, "Phantom3DLibrary.dat") data_obj.backing_file = self.__get_backing_file(data_obj, 'synth_proj_data') data_obj.data = data_obj.backing_file['/']['entry1']['tomo_entry']['data']['data'] # create a phantom file data_obj2 = exp.create_data_object('in_data', 'phantom') data_obj2.set_axis_labels(*['voxel_x.voxel', 'voxel_y.voxel', 'voxel_z.voxel']) self.__convert_patterns(data_obj2, 'phantom') self.__parameter_checks(data_obj2) data_obj2.backing_file = self.__get_backing_file(data_obj2, 'phantom') data_obj2.data = data_obj2.backing_file['/']['phantom']['data'] data_obj.set_shape(data_obj.data.shape) group_name = '1-TomoPhantomLoader-phantom' self.n_entries = data_obj.get_shape()[0] cor_val = 0.5*(self.parameters['proj_data_dims'][2]) self.cor = np.linspace(cor_val, cor_val, self.parameters['proj_data_dims'][1], dtype='float32') self._set_metadata(data_obj, self._get_n_entries()) return data_obj, data_obj2 def __get_backing_file(self, data_obj, file_name): fname = '%s/%s.h5' % \ (self.exp.get('out_path'), file_name) if os.path.exists(fname): return h5py.File(fname, 'r') self.hdf5 = Hdf5Utils(self.exp) dims_temp = self.parameters['proj_data_dims'].copy() proj_data_dims = tuple(dims_temp) if (file_name == 'phantom'): dims_temp[0] = dims_temp[1] dims_temp[2] = dims_temp[1] proj_data_dims = tuple(dims_temp) patterns = data_obj.get_data_patterns() p_name = list(patterns.keys())[0] p_dict = patterns[p_name] p_dict['max_frames_transfer'] = 1 nnext = {p_name: p_dict} pattern_idx = {'current': nnext, 'next': nnext} chunking = Chunking(self.exp, pattern_idx) chunks = chunking._calculate_chunking(proj_data_dims, np.int16) h5file = self.hdf5._open_backing_h5(fname, 'w') if file_name == 'phantom': group = h5file.create_group('/phantom', track_order=None) else: group = h5file.create_group('/entry1/tomo_entry/data', track_order=None) data_obj.dtype = np.dtype('<f4') dset = self.hdf5.create_dataset_nofill(group, "data", proj_data_dims, data_obj.dtype, chunks=chunks) self.exp._barrier() slice_dirs = list(nnext.values())[0]['slice_dims'] nDims = len(dset.shape) total_frames = np.prod([dset.shape[i] for i in slice_dirs]) sub_size = \ [1 if i in slice_dirs else dset.shape[i] for i in range(nDims)] # need an mpi barrier after creating the file before populating it idx = 0 sl, total_frames = \ self.__get_start_slice_list(slice_dirs, dset.shape, total_frames) # calculate the first slice for i in range(total_frames): if sl[slice_dirs[idx]].stop == dset.shape[slice_dirs[idx]]: idx += 1 if idx == len(slice_dirs): break tmp = sl[slice_dirs[idx]] if (file_name == 'synth_proj_data'): #generate projection data gen_data = TomoP3D.ModelSinoSub(self.tomo_model, proj_data_dims[1], proj_data_dims[2], proj_data_dims[1], (tmp.start, tmp.start + 1), -self.angles, self.path_library3D) else: #generate phantom data gen_data = TomoP3D.ModelSub(self.tomo_model, proj_data_dims[1], (tmp.start, tmp.start + 1), self.path_library3D) dset[tuple(sl)] = np.swapaxes(gen_data,0,1) sl[slice_dirs[idx]] = slice(tmp.start+1, tmp.stop+1) self.exp._barrier() try: #nxsfile = NXdata(h5file) #nxsfile.save(file_name + ".nxs") h5file.close() except IOError as exc: logging.debug('There was a problem trying to close the file in random_hdf5_loader') return self.hdf5._open_backing_h5(fname, 'r') def __get_start_slice_list(self, slice_dirs, shape, n_frames): n_processes = len(self.exp.get('processes')) rank = self.exp.get('process') frames = np.array_split(
np.arange(n_frames)
numpy.arange
import numpy as np import pytest from scipy.stats import (bootstrap, BootstrapDegenerateDistributionWarning, monte_carlo_test, permutation_test) from numpy.testing import assert_allclose, assert_equal, suppress_warnings from scipy import stats from scipy import special from .. import _resampling as _resampling from scipy._lib._util import rng_integers from scipy.optimize import root def test_bootstrap_iv(): message = "`data` must be a sequence of samples." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean) message = "`data` must contain at least one sample." with pytest.raises(ValueError, match=message): bootstrap(tuple(), np.mean) message = "each sample in `data` must contain two or more observations..." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1]), np.mean) message = ("When `paired is True`, all samples must have the same length ") with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1, 2, 3, 4]), np.mean, paired=True) message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean, vectorized='ekki') message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, axis=1.5) message = "could not convert string to float" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, confidence_level='ni') message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=1000.5) message = "`method` must be in" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, method='ekki') message = "`method = 'BCa' is only available for one-sample statistics" def statistic(x, y, axis): mean1 = np.mean(x, axis) mean2 = np.mean(y, axis) return mean1 - mean2 with pytest.raises(ValueError, match=message): bootstrap(([.1, .2, .3], [.1, .2, .3]), statistic, method='BCa') message = "'herring' cannot be used to seed a" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, random_state='herring') @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_bootstrap_batch(method, axis): # for one-sample statistics, batch size shouldn't affect the result np.random.seed(0) x = np.random.rand(10, 11, 12) res1 = bootstrap((x,), np.mean, batch=None, method=method, random_state=0, axis=axis, n_resamples=100) res2 = bootstrap((x,), np.mean, batch=10, method=method, random_state=0, axis=axis, n_resamples=100) assert_equal(res2.confidence_interval.low, res1.confidence_interval.low) assert_equal(res2.confidence_interval.high, res1.confidence_interval.high) assert_equal(res2.standard_error, res1.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_paired(method): # test that `paired` works as expected np.random.seed(0) n = 100 x = np.random.rand(n) y = np.random.rand(n) def my_statistic(x, y, axis=-1): return ((x-y)**2).mean(axis=axis) def my_paired_statistic(i, axis=-1): a = x[i] b = y[i] res = my_statistic(a, b) return res i = np.arange(len(x)) res1 = bootstrap((i,), my_paired_statistic, random_state=0) res2 = bootstrap((x, y), my_statistic, paired=True, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) @pytest.mark.parametrize("paired", [True, False]) def test_bootstrap_vectorized(method, axis, paired): # test that paired is vectorized as expected: when samples are tiled, # CI and standard_error of each axis-slice is the same as those of the # original 1d sample if not paired and method == 'BCa': # should re-assess when BCa is extended pytest.xfail(reason="BCa currently for 1-sample statistics only") np.random.seed(0) def my_statistic(x, y, z, axis=-1): return x.mean(axis=axis) + y.mean(axis=axis) + z.mean(axis=axis) shape = 10, 11, 12 n_samples = shape[axis] x = np.random.rand(n_samples) y = np.random.rand(n_samples) z = np.random.rand(n_samples) res1 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=0, n_resamples=100) reshape = [1, 1, 1] reshape[axis] = n_samples x = np.broadcast_to(x.reshape(reshape), shape) y = np.broadcast_to(y.reshape(reshape), shape) z = np.broadcast_to(z.reshape(reshape), shape) res2 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=axis, n_resamples=100) assert_allclose(res2.confidence_interval.low, res1.confidence_interval.low) assert_allclose(res2.confidence_interval.high, res1.confidence_interval.high) assert_allclose(res2.standard_error, res1.standard_error) result_shape = list(shape) result_shape.pop(axis) assert_equal(res2.confidence_interval.low.shape, result_shape) assert_equal(res2.confidence_interval.high.shape, result_shape) assert_equal(res2.standard_error.shape, result_shape) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_against_theory(method): # based on https://www.statology.org/confidence-intervals-python/ data = stats.norm.rvs(loc=5, scale=2, size=5000, random_state=0) alpha = 0.95 dist = stats.t(df=len(data)-1, loc=np.mean(data), scale=stats.sem(data)) expected_interval = dist.interval(confidence=alpha) expected_se = dist.std() res = bootstrap((data,), np.mean, n_resamples=5000, confidence_level=alpha, method=method, random_state=0) assert_allclose(res.confidence_interval, expected_interval, rtol=5e-4) assert_allclose(res.standard_error, expected_se, atol=3e-4) tests_R = {"basic": (23.77, 79.12), "percentile": (28.86, 84.21), "BCa": (32.31, 91.43)} @pytest.mark.parametrize("method, expected", tests_R.items()) def test_bootstrap_against_R(method, expected): # Compare against R's "boot" library # library(boot) # stat <- function (x, a) { # mean(x[a]) # } # x <- c(10, 12, 12.5, 12.5, 13.9, 15, 21, 22, # 23, 34, 50, 81, 89, 121, 134, 213) # # Use a large value so we get a few significant digits for the CI. # n = 1000000 # bootresult = boot(x, stat, n) # result <- boot.ci(bootresult) # print(result) x = np.array([10, 12, 12.5, 12.5, 13.9, 15, 21, 22, 23, 34, 50, 81, 89, 121, 134, 213]) res = bootstrap((x,), np.mean, n_resamples=1000000, method=method, random_state=0) assert_allclose(res.confidence_interval, expected, rtol=0.005) tests_against_itself_1samp = {"basic": 1780, "percentile": 1784, "BCa": 1784} @pytest.mark.parametrize("method, expected", tests_against_itself_1samp.items()) def test_bootstrap_against_itself_1samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n = 100 # size of sample n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The true mean is 5 dist = stats.norm(loc=5, scale=1) stat_true = dist.mean() # Do the same thing 2000 times. (The code is fully vectorized.) n_replications = 2000 data = dist.rvs(size=(n_replications, n)) res = bootstrap((data,), statistic=np.mean, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 tests_against_itself_2samp = {"basic": 892, "percentile": 890} @pytest.mark.parametrize("method, expected", tests_against_itself_2samp.items()) def test_bootstrap_against_itself_2samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n1 = 100 # size of sample 1 n2 = 120 # size of sample 2 n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The statistic we're interested in is the difference in means def my_stat(data1, data2, axis=-1): mean1 = np.mean(data1, axis=axis) mean2 = np.mean(data2, axis=axis) return mean1 - mean2 # The true difference in the means is -0.1 dist1 = stats.norm(loc=0, scale=1) dist2 = stats.norm(loc=0.1, scale=1) stat_true = dist1.mean() - dist2.mean() # Do the same thing 1000 times. (The code is fully vectorized.) n_replications = 1000 data1 = dist1.rvs(size=(n_replications, n1)) data2 = dist2.rvs(size=(n_replications, n2)) res = bootstrap((data1, data2), statistic=my_stat, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 @pytest.mark.parametrize("method", ["basic", "percentile"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_3samp(method, axis): def statistic(*data, axis=0): # an arbitrary, vectorized statistic return sum((sample.mean(axis) for sample in data)) def statistic_1d(*data): # the same statistic, not vectorized for sample in data: assert sample.ndim == 1 return statistic(*data, axis=0) np.random.seed(0) x = np.random.rand(4, 5) y = np.random.rand(4, 5) z = np.random.rand(4, 5) res1 = bootstrap((x, y, z), statistic, vectorized=True, axis=axis, n_resamples=100, method=method, random_state=0) res2 = bootstrap((x, y, z), statistic_1d, vectorized=False, axis=axis, n_resamples=100, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.xfail_on_32bit("Failure is not concerning; see gh-14107") @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_1samp(method, axis): def statistic(x, axis=0): # an arbitrary, vectorized statistic return x.mean(axis=axis) def statistic_1d(x): # the same statistic, not vectorized assert x.ndim == 1 return statistic(x, axis=0) np.random.seed(0) x = np.random.rand(4, 5) res1 = bootstrap((x,), statistic, vectorized=True, axis=axis, n_resamples=100, batch=None, method=method, random_state=0) res2 = bootstrap((x,), statistic_1d, vectorized=False, axis=axis, n_resamples=100, batch=10, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_degenerate(method): data = 35 * [10000.] if method == "BCa": with np.errstate(invalid='ignore'): with pytest.warns(BootstrapDegenerateDistributionWarning): res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (np.nan, np.nan)) else: res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (10000., 10000.)) assert_equal(res.standard_error, 0) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_gh15678(method): # Check that gh-15678 is fixed: when statistic function returned a Python # float, method="BCa" failed when trying to add a dimension to the float rng = np.random.default_rng(354645618886684) dist = stats.norm(loc=2, scale=4) data = dist.rvs(size=100, random_state=rng) data = (data,) res = bootstrap(data, stats.skew, method=method, n_resamples=100, random_state=np.random.default_rng(9563)) # this always worked because np.apply_along_axis returns NumPy data type ref = bootstrap(data, stats.skew, method=method, n_resamples=100, random_state=np.random.default_rng(9563), vectorized=False)
assert_allclose(res.confidence_interval, ref.confidence_interval)
numpy.testing.assert_allclose
import torch.utils.data import torch import os import numpy as np from model import Model import omegaconf from train import load_test_set from dataset import ShapeNetPartDataset from tqdm import tqdm from multiprocessing import cpu_count N_PARTS = 50 N_CATS = 16 seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43], 'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46], 'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27], 'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40], 'Chair': [12, 13, 14, 15], 'Knife': [22, 23]} seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table} for cat in seg_classes.keys(): for label in seg_classes[cat]: seg_label_to_cat[label] = cat color_map = { 0: (0.65, 0.95, 0.05), 1: (0.35, 0.05, 0.35), 2: (0.65, 0.35, 0.65), 3: (0.95, 0.95, 0.65), 4: (0.95, 0.65, 0.05), 5: (0.35, 0.05, 0.05), 8: (0.05, 0.05, 0.65), 9: (0.65, 0.05, 0.35), 10: (0.05, 0.35, 0.35), 11: (0.65, 0.65, 0.35), 12: (0.35, 0.95, 0.05), 13: (0.05, 0.35, 0.65), 14: (0.95, 0.95, 0.35), 15: (0.65, 0.65, 0.65), 16: (0.95, 0.95, 0.05), 17: (0.65, 0.35, 0.05), 18: (0.35, 0.65, 0.05), 19: (0.95, 0.65, 0.95), 20: (0.95, 0.35, 0.65), 21: (0.05, 0.65, 0.95), 36: (0.05, 0.95, 0.05), 37: (0.95, 0.65, 0.65), 38: (0.35, 0.95, 0.95), 39: (0.05, 0.95, 0.35), 40: (0.95, 0.35, 0.05), 47: (0.35, 0.05, 0.95), 48: (0.35, 0.65, 0.95), 49: (0.35, 0.05, 0.65) } import hydra @hydra.main(config_path='config', config_name='shapenet') def main(cfg): weight_path = hydra.utils.to_absolute_path('prin/state79.pkl') torch.backends.cudnn.benchmark = True model = Model(N_PARTS, cfg) model.cuda() model.load_state_dict(torch.load(weight_path)) print("{} paramerters in total".format(sum(x.numel() for x in model.parameters()))) test_set = load_test_set(rand_rot=True, aug=False, bw=cfg.bw) test_loader = torch.utils.data.DataLoader(test_set, batch_size=cfg.batch_size, shuffle=False, num_workers=cpu_count() // 2, drop_last=False) model.eval() # -------------------------------------------------------------------------------- # total_correct = 0 shape_ious = {cat: [] for cat in seg_classes.keys()} for batch_idx, (data, target_index, target, pt_cloud, category) in enumerate(test_loader): # Transform category labels to one_hot. category_labels = torch.LongTensor(category) one_hot_labels = torch.zeros(category.size(0), 16).scatter_(1, category_labels, 1).cuda() data, target_index, target = data.cuda(), target_index.cuda(), target.cuda() # print (data.shape) with torch.no_grad(): _, prediction = model(data, target_index, one_hot_labels) prediction = prediction.view(-1, 2048, 50) target = target.view(-1, 2048) for j in range(target.size(0)): cat = seg_label_to_cat[target.cpu().numpy()[j][0]] prediction_np = prediction.cpu().numpy()[j][:, seg_classes[cat]].argmax(1) + seg_classes[cat][0] target_np = target.cpu().numpy()[j] correct = np.mean((prediction_np == target_np).astype(np.float32)) total_correct += correct segp = prediction_np segl = target_np part_ious = [0.0 for _ in range(len(seg_classes[cat]))] for l in seg_classes[cat]: if (np.sum(segl == l) == 0) and (np.sum(segp == l) == 0): # part is not present, no prediction as well part_ious[l - seg_classes[cat][0]] = 1.0 else: part_ious[l - seg_classes[cat][0]] =
np.sum((segl == l) & (segp == l))
numpy.sum
# coding: utf-8 import numpy as np import matplotlib.pylab as plt def sigmoid(x): return 1 / (1 + np.exp(-x)) def step_function(x): return
np.array(x > 0, dtype=np.int)
numpy.array
from re import L import numpy as np from pyrsistent import discard from sympy import Q import torch import matplotlib.pyplot as plt from tqdm import tqdm import torch.nn.functional as F import math from scipy.special import softmax from scipy.ndimage.filters import gaussian_filter, uniform_filter from sklearn.preprocessing import normalize from matplotlib.colors import LinearSegmentedColormap from numpy import linalg as LA from SpikeVidUtils import get_frame_idx from utils import top_k_top_p_filtering from scipy import signal def convolve_atts_3D(stim_atts): ''' input: (ID, T, Y, X) ''' sigma = 2.0 # width of kernel x = np.arange(-3,4,1) # coordinate arrays -- make sure they contain 0! y = np.arange(-3,4,1) z = np.arange(-3,4,1) xx, yy, zz = np.meshgrid(x,y,z) kernel = np.exp(-(xx**2 + yy**2 + zz**2)/(2*sigma**2)) for n_id in range(stim_atts.shape[0]): stim_atts[n_id] = signal.convolve(stim_atts[n_id], kernel, mode="same") return stim_atts def rollout_attentions(att): ''' Rollout attentions Input: (L, H, ID, F) ''' rollout_att = torch.eye(att.shape[-2], att.shape[-1]) for i in range(att.shape[0]): if i==0: continue I = torch.eye(att.shape[-2], att.shape[-1]) a = att[i] a = a.max(axis=0)[0] a = (a + 1.0*I) / 2 a = a / a.sum(axis=-1, keepdims=True) rollout_att = a @ rollout_att return rollout_att def grad_rollout(attentions, gradients, discard_ratio=0.8, idx=None, n_layers=0): result = None # attentions = [rollout_attentions(torch.cat(attentions))] # if len(attentions) > 1: # attentions = [torch.cat(attentions).sum(0)[None, ...]] n_layers = len(attentions) if n_layers is None else n_layers with torch.no_grad(): for i, (attention, grad) in enumerate(zip(attentions, gradients)): if i <= n_layers: continue # attention = attention if idx is None else attention[:, :, idx] # grad = grad if idx is None else grad[:, :, idx] attention_heads_fused = (grad*attention).mean(axis=1) # attention_heads_fused[attenti,on_heads_fused < discard_ratio] = 0 # Drop the lowest attentions, but # don't drop the class token # flat = attention_heads_fused.view(attention_heads_fused.size(0), -1) # _, indices = flat.topk(int(flat.size(-1)*discard_ratio), -1, False) # #indices = indices[indices != 0] # flat[0, indices] = 0 I = torch.eye(attention_heads_fused.size(-2), attention_heads_fused.size(-1)) # a = (attention_heads_fused + 1.0*I)/2 a = attention_heads_fused # a = a.clamp(min=0) # a = a[:, pos_index] if result == None: result = a else: # print(result.shape, a.shape) result = result + a * result # print(result.shape) # # Look at the total attention between the class token, # # and the image patches # mask = result[0, 0 ,pos_index] # # In case of 224x224 image, this brings us from 196 to 14 # width = int(mask.size(-1)**0.5) # mask = mask.reshape(width, width).numpy() # mask = mask / np.max(mask) return result def grad_att(attentions, gradients, discard_ratio=0.8): with torch.no_grad(): # atts = attentions * gradients # return atts return attentions def interpret(x, y, model, idx=None, n_layer=0): def get_attention(module, n_blocks, block_size, pad=0, rollout=False): # aggregate attention from n_Blocks atts = [] T = block_size for n in range(n_blocks): att = module[n].attn.att # n_heads = att.size()[1] if pad != 0: att = att[:, :, T - pad, :,] atts.append(att) return atts model.zero_grad(set_to_none=True) mconf = model.config preds, _, _ = model(x) logits_id = preds['id'] category_mask = torch.zeros(logits_id.size()).detach().cpu().numpy() y_id = x['id'].flatten() y_idx = y_id if idx == None else y_id[idx] category_mask[:, torch.arange(len(y_id)), y_idx] = 1 category_mask = torch.from_numpy(category_mask).requires_grad_(True) loss = torch.sum(logits_id * category_mask) model.zero_grad() id_id_att = get_attention(model.neural_visual_transformer.neural_state_blocks, mconf.n_state_layers, mconf.id_block_size) id_vis_att = get_attention(model.neural_visual_transformer.neural_state_stimulus_blocks, mconf.n_stimulus_layers, mconf.id_block_size) R_id = torch.eye(id_id_att[0].shape[-2], id_id_att[0].shape[-1]) for blk_att in id_id_att: grad = torch.autograd.grad(loss, blk_att, retain_graph=True)[0].detach() blk_att = blk_att.detach() blk_att = grad * blk_att blk_att = blk_att.clamp(min=0).mean(dim=1) R_id = R_id + torch.matmul(blk_att, R_id) del grad # R_id_vis = torch.eye(id_vis_att[0].shape[-2], id_vis_att[0].shape[-1]) R_id_vis = None R_vis = torch.eye(id_vis_att[0].shape[-1], id_vis_att[0].shape[-1]) for i, blk_att in enumerate(id_vis_att): if i < n_layer: continue grad = torch.autograd.grad(loss, blk_att, retain_graph=True)[0].detach() blk_att = blk_att.detach() blk_att = grad.clamp(min=0) * blk_att blk_att = blk_att.clamp(min=0).mean(dim=1) # blk_att[blk_att < 0.75] = 0 R_id_vis = blk_att if R_id_vis is None else R_id_vis + blk_att # R_id_vis = R_id_vis + torch.transpose(R_id, -1, -2) @ blk_att @ R_vis del grad if idx is not None: R_id_vis = R_id_vis[:, idx, :,] else: R_id_vis = R_id_vis model.zero_grad(set_to_none=True) del loss del category_mask return R_id, R_id_vis class VITAttentionGradRollout: """ This class is an adaptation of Jacob Gildenblat's implementation: https://github.com/jacobgil/vit-explain We calculate Attention Rollou (<NAME>, 2020), for stimuluts-state attention, and condition it on the gradient of a specific target neuron. This way we can get neuron-specific attentions. """ def __init__(self, model, module, attn_layer_name='attn_drop', discard_ratio=0.5, idx=None): self.model = model self.module = module self.idx = idx self.discard_ratio = discard_ratio for name, module in self.module.named_modules(): if attn_layer_name in name: module.register_forward_hook(self.get_attention) module.register_full_backward_hook(self.get_attention_gradient) self.attentions = [] self.attention_gradients = [] def get_attention(self, module, input, output): # output = output if self.idx is None else output[:, :, self.idx] self.attentions.append(output.cpu()) # print(output.shape) def get_attention_gradient(self, module, grad_input, grad_output): grad = grad_input[0] # grad = grad if self.idx is None else grad[:, :, self.idx] self.attention_gradients.append(grad_input[0].cpu()) # print(grad_input[0].shape) def __call__(self, x, y): self.model.zero_grad() preds, _, _ = self.model(x) logits_id = preds['id'] # if self.idx==None else preds['id'][:, self.idx] # return preds['id'] category_mask = torch.zeros(logits_id.size()).detach().cpu().numpy() y_id = y['id'].flatten() y_idx = y_id if self.idx==None else y_id[self.idx] # y_idx = self.idx category_mask[:, :, y_idx] = 1 category_mask = torch.from_numpy(category_mask).requires_grad_() loss = (logits_id*category_mask).sum() # loss = loss['id'] loss.backward() # print(len(self.attention_gradients)) return grad_rollout(self.attentions, self.attention_gradients, self.discard_ratio, self.idx) # return grad_att(torch.cat(self.attentions), torch.cat(self.attention_gradients)) # grad_rollout(self.attentions, self.attention_gradients, self.discard_ratio) @torch.no_grad() def get_attention(module, n_blocks, block_size, pad=0, rollout=False): # aggregate attention from n_Blocks atts = None T = block_size # TODO: get index of 166, get attentions up until that stage for n in range(n_blocks): att = module[n].attn.att # n_heads = att.size()[1] if pad != 0: att = att[:, :, T - pad, :,] att = att.detach().squeeze(0).to('cpu').numpy() atts = att[None, ...] if atts is None else np.concatenate((atts, att[None, ...])) return atts class AttentionVis: '''attention Visualizer''' # def getAttention(self, spikes, n_Blocks): # spikes = spikes.unsqueeze(0) # b, t = spikes.size() # token_embeddings = self.model.tok_emb(spikes) # position_embeddings = self.model.pos_emb(spikes) # # position_embeddings = self.model.pos_emb(spikes) # x = token_embeddings + position_embeddings # # aggregate attention from n_Blocks # atts = None # for n in n_Blocks: # attBlock = self.model.blocks[n].attn # attBlock(x).detach().numpy() # forward model # att = attBlock.att.detach().numpy() # att = att[:, 1, :, :,].squeeze(0) # atts = att if atts is None else np.add(atts, att) # # normalize # atts = atts/len(n_Blocks) # return atts def visAttention(att): plt.matshow(att) att_range = att.max() cb = plt.colorbar() cb.ax.tick_params() plt.show() def grad_attentions(self, model, x, y, stoi, n_layer=0): grad_attentions = None for idx, id_ in enumerate(y['id'].flatten()): y_id = y['id'].flatten() T = len(y_id) y_id = y_id[: T - int(x['pad'])] # idx = np.arange(len(y_id)) _, att = interpret(x, y, model, idx=idx, n_layer=n_layer) # grad_attentions = att[None, ...] if grad_attentions is None else torch.cat((grad_attentions, att[None, ...])) grad_attentions = att if grad_attentions is None else torch.cat((grad_attentions, att)) model.zero_grad() if id_ >= stoi['SOS']: break return grad_attentions # def grad_attentions(self, model, x, y, stoi, n_layer=0): # grad_attentions = None # y_id = y['id'].flatten() # T = len(y_id) # y_id = y_id[: T - int(x['pad'])] # # idx = np.arange(len(y_id)) # _, att = interpret(x, y, model, n_layer=n_layer) # # grad_attentions = att[None, ...] if grad_attentions is None else torch.cat((grad_attentions, att[None, ...])) # grad_attentions = att if grad_attentions is None else torch.cat((grad_attentions, att)) # grad_attentions = grad_attentions[0][:T - int(x['pad'])] # model.zero_grad() # return grad_attentions # @torch.no_grad() def att_interval_frames(self, model, module, loader, n_blocks, block_size, rollout=False, pad_key=None, agg=False, stoi=None, max_it=None, n_layer=0): device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu' device = 'cpu' model.to(device) mconf = model.config model = model.eval() T = block_size attention_scores = None len_loader = len(loader) if max_it is None else max_it pbar = tqdm(enumerate(loader), total=len_loader) if rollout: grad_rollout = VITAttentionGradRollout(model, module) for it, (x, y) in pbar: pad = x[pad_key] if pad_key is not None else 0 # place data on the correct device for key, value in x.items(): x[key] = x[key].to(device) for key, value in y.items(): y[key] = y[key].to(device) # att = np.swapaxes(att, -1, -2) if rollout: # preds, features, loss, = model(x, y) # att = AttentionVis.get_attention(module, n_blocks, T) # att = self.rollout_attentions(att) # grad_rollout = VITAttentionGradRollout(model, module) # att = grad_rollout(x, y)[0] att = self.grad_attentions(model, x, y, stoi, n_layer=n_layer) if att == None: continue if not rollout: with torch.no_grad(): preds, features, loss, = model(x, y) # preds_id = F.softmax(preds['id'] / 0.8, dim=-1).squeeze(0) # ix = torch.multinomial(preds_id, num_samples=1).flatten() att = get_attention(module, n_blocks, T) ## predict iteratively # ix, att = self.predict_iteratively(model, mconf, x, stoi, top_k=0, top_p=0.5, temp=0.5, sample=True, pred_dt=False) with torch.no_grad(): if agg: t_seq = int(T - x['pad']) # att = att - att.mean(axis=-2, keepdims=True) # att = att - att.mean(axis=(0, 1, 2), keepdims=True) if not rollout: att = np.max(att, axis=1) att = np.mean(att, axis=0) # att = np.sum(att, axis=0) # att = np.max(att, axis=(0, 1)) score = np.zeros((mconf.id_vocab_size, mconf.frame_block_size)) # score = score.reshape(-1, 20, 8, 14).min(axis=1) xid = x['id'].cpu().flatten().tolist()[:t_seq] yid = y['id'].cpu().flatten().tolist()[:t_seq] # score[ix] = att score[xid] = att[:t_seq] # score[t_seq:] == 0 else: score = att if attention_scores is None: attention_scores = score[None, ...] else: attention_scores = np.concatenate((attention_scores, score[None, ...])) if max_it is not None and it == max_it: break # att_dict[int(y['id'][:, n])] = step # atts[tuple(x['interval'].cpu().numpy().flatten())] = att_dict return attention_scores # take attentions from last step @torch.no_grad() def att_models(model, module, loader, n_blocks, block_size, pad_key=None): device = torch.cuda.current_device() if torch.cuda.is_available() else 'cpu' device = 'cpu' model.to(device) model = model.eval() mconf = model.config T = block_size attention_scores = np.zeros(mconf.id_vocab_size) pbar = tqdm(enumerate(loader), total=len(loader)) for it, (x, y) in pbar: pad = x[pad_key] if pad_key is not None else 0 # place data on the correct device for key, value in x.items(): x[key] = x[key].to(device) for key, value in y.items(): y[key] = y[key].to(device) # forward model to calculate attentions _, _, _ = model(x) # scores = np.array(np.zeros(len(neurons))) att = np.zeros(len(mconf.id_vocab_size)) score = get_attention(module, n_blocks, T, pad) score = np.sum(score, axis=0) # sum over all heads score =
np.sum(score, axis=0)
numpy.sum
import numpy as np # import matplotlib.pylab as plt import proper # from medis.Utils.plot_tools import quicklook_im, quicklook_wf, loop_frames,quicklook_IQ from medis.params import tp, cp, mp, ap,iop#, fp # from medis.Utils.misc import dprint import medis.Atmosphere.atmos as atmos def offset_companion(wf_array, it): cont_scaling =
np.linspace(1./ap.C_spec, 1, ap.nwsamp)
numpy.linspace
from collections.abc import Iterable import numpy as np def _chunks_(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] def __get_lambdas__(data): if len(data.shape) == 4: # RGB mode (4D volume) lambdas = {'x': lambda x: data[:, :, x, :], 'y': lambda x: data[:, x, :, :], 'z': lambda x: data[x, :, :, :]} else: # standard 3D label volume lambdas = {'x': lambda x: data[:, :, x], 'y': lambda x: data[:, x, :], 'z': lambda x: data[x, :, :]} return lambdas def __get_abs_minmax(data, axis, slices, margin=5): bb = {} lambdas = __get_lambdas__(data) for a, chunk in enumerate(slices): bb[a] = [] for i, slice_index in enumerate(chunk): test = np.flip(np.swapaxes(np.abs(lambdas[axis](int(slice_index))), 0, 1), 0) xs, ys = np.where(test != 0) bb[a].append((xs, ys)) min_xs, max_xs = 9999, 0 min_ys, max_ys = 9999, 0 for a, bba in bb.items(): for xs, ys in bba: min_xs = min(min_xs, min(xs)) max_xs = max(max_xs, max(xs)) min_ys = min(min_ys, min(ys)) max_ys = max(max_ys, max(ys)) # Create mock bounding-box res = {} for a, bba in bb.items(): res[a] = [] for each in bba: i = [max(int(min_xs - margin), 0), int(max_xs + margin)],\ [max(int(min_ys - margin), 0), int(max_ys + margin)] res[a].append(i) return res def __maxsize__(data): d = [] lambdas = __get_lambdas__(data) maxsize = 0 slice_index = 0 for slice_index in range(0, data.shape[2]): test = np.flip(np.swapaxes(np.abs(lambdas['x'](int(slice_index))), 0, 1), 0) if len(data.shape) == 4: black_pixels_mask = np.all(test == [0, 0, 0], axis=-1) else: black_pixels_mask =
np.all(test == 0, axis=-1)
numpy.all
import numpy as np from env.flatland.Flatland import get_new_position class RailGraph(): def __init__(self): pass def reset(self, env): self.env = env # self._build() # self._recalc_weights() # self.any_deadlocked = False self.env.distance_map.reset(self.env.agents, self.env.rail) def deadlock_agent(self, handle): return h, w = self.env.agents[handle].position for d in range(4): if (h, w, d) in self.nodes: node_i = self.nodes_dict[(h, w, d)] if min(np.min(self.amatrix[node_i]), np.min(self.amatrix[:, node_i])) != np.inf: self.any_deadlocked = True self.amatrix[node_i, :] = np.inf self.amatrix[:, node_i] = np.inf for edge in self.cell_to_edge[h][w]: if self.amatrix[edge] != 0: self.any_deadlocked = True self.amatrix[edge] = np.inf def update(self): return if self.any_deadlocked: self._recalc_weights() self.any_deadlocked = False def dist_to_target(self, handle, h, w, d): return self.env.distance_map.get()[handle, h, w, d] i = self.target_i[self.env.agents[handle].target] return self.dtarget[i, h, w, d] def _build(self): self.nodes = set(agent.target for agent in self.env.agents) height, width = self.env.height, self.env.width self.valid_pos = list() for h in range(height): for w in range(width): pos = (h, w) transition_bit = bin(self.env.rail.get_full_transitions(*pos)) total_transitions = transition_bit.count("1") if total_transitions > 2: self.nodes.add(pos) if total_transitions > 0: self.valid_pos.append((h, w)) n_nodes = set() for h, w in self.nodes: for d in range(4): cell_transitions = self.env.rail.get_transitions(h, w, d) if np.any(cell_transitions): n_nodes.add((h, w, d)) self.nodes = n_nodes self.dist_to_node = -np.ones((height, width, 4, 4)) self.next_node = [[[[None for _ in range(4)] for _ in range(4)] for _ in range(width)] for _ in range(height)] self.dfs_used = np.zeros((height, width, 4)) for h in range(height): for w in range(width): for d in range(4): if not self.dfs_used[h, w, d]: self.dfs(h, w, d) self.n_nodes = len(self.nodes) self.nodes_dict =
np.empty((height, width, 4), dtype=np.int)
numpy.empty
""" Tests for periodogram module. """ import numpy as np import utide.periodogram as pgram def random_ts(ndays, dt_hours, is_complex=True): """Returns t (time in days) and x (random series).""" np.random.seed(1) npts = int(ndays * 24 / dt_hours) if npts % 2: npts -= 1 t = np.arange(npts, dtype=float) * dt_hours / 24 if is_complex: x = np.random.randn(npts) + 1j * np.random.randn(npts) else: x = np.random.randn(npts) return t, x def test_fft_ls_consistency(): """ With the exception of the frequency band including the Nyquist, band_psd should yield identical results with equi=True (fft method) and False (Lomb-Scargle method). """ t, x = random_ts(20, 0.5) y_fft = pgram.band_psd(t, x, [1 / 12.42], equi=True) y_ls = pgram.band_psd(t, x, [1 / 12.42], equi=False) # skip the last frequency bin because y_fft includes nyquist sl = slice(0, -1) for key in ["Puu", "Pvv", "Puv"]: np.testing.assert_array_almost_equal(y_fft[key][sl], y_ls[key][sl]) def test_uv_consistency(): t, x = random_ts(20, 0.5, is_complex=False) xx = x + 1j * x y_fft = pgram.band_psd(t, xx, [1 / 12.42], equi=True) y_ls = pgram.band_psd(t, xx, [1 / 12.42], equi=False) for y in y_fft, y_ls:
np.testing.assert_array_almost_equal(y.Puu, y.Pvv)
numpy.testing.assert_array_almost_equal
""" Primal and dual cuts for two stage bidding strategies of energy hubs """ from energy_hub.bidding_strategy.bidding_strategy import EnergyHubManagement # import the energy hub management class from numpy import zeros, ones, array, eye, hstack, vstack, inf, transpose import numpy as np from solvers.mixed_integer_solvers_cplex import mixed_integer_linear_programming as lp from solvers.benders_decomposition import BendersDecomposition class TwoStageBidding(): def __init__(self): self.name = "two_stage_bidding_strategy" def problem_formualtion(self, ELEC_DA=None, ELEC_RT=None, BIC=None, ESS=None, CCHP=None, HVAC=None, THERMAL=None, CHIL=None, BOIL=None, T=None, N=None): """ :param ELEC: Scenarios in the second stage scheduling :param BIC: :param ESS: :param CCHP: :param HVAC: :param THERMAL: :param CHIL: :param BOIL: :param T: :param N: The number of scenarios in the second stage operation. :return: """ energy_hub_management = EnergyHubManagement() # Initialize the solutions # The second stage decision are shown as follows, no decomposition model = energy_hub_management.problem_formulation(ELEC=ELEC_DA, CCHP=CCHP, THERMAL=THERMAL, BIC=BIC, ESS=ESS, HVAC=HVAC, BOIL=BOIL, CHIL=CHIL, T=T) neq = model["Aeq"].shape[0] nx = model["Aeq"].shape[1] if model["A"] is None: nineq = 0 else: nineq = model["A"].shape[0] self.nx = nx self.T = T self.N = N Aeq_second_stage = zeros((neq * N, nx * N)) beq_second_stage = zeros((neq * N, 1)) lb_second_stage = zeros((nx * N, 1)) ub_second_stage = zeros((nx * N, 1)) c_second_stage = zeros((nx * N, 1)) elec = [0] * N # using the list to store the data set model_second_stage = [0] * N for i in range(N): elec[i] = {"UG_MAX": ELEC_DA["UG_MAX"], "UG_MIN": ELEC_DA["UG_MIN"], "UG_PRICE": ELEC_RT["UG_PRICE"][:, i], "AC_PD": ELEC_RT["AC_PD"][:, i], "DC_PD": ELEC_RT["DC_PD"][:, i], "PV_PG": ELEC_RT["PV_PG"][:, i], } model_second_stage[i] = energy_hub_management.problem_formulation(ELEC=elec[i], CCHP=CCHP, THERMAL=THERMAL, BIC=BIC, ESS=ESS, HVAC=HVAC, BOIL=BOIL, CHIL=CHIL, T=T) lb_second_stage[i * nx:(i + 1) * nx] = model_second_stage[i]["lb"] Aeq_second_stage[i * neq:(i + 1) * neq, i * nx:(i + 1) * nx] = model_second_stage[i]["Aeq"] beq_second_stage[i * neq:(i + 1) * neq] = model_second_stage[i]["beq"] lb_second_stage[i * nx:(i + 1) * nx] = model_second_stage[i]["lb"] ub_second_stage[i * nx:(i + 1) * nx] = model_second_stage[i]["ub"] c_second_stage[i * nx:(i + 1) * nx] = model_second_stage[i]["c"] / N lb_first_stage = zeros((T, 1)) ub_first_stage = zeros((T, 1)) c_first_stage = zeros((T, 1)) Aeq_first_stage = zeros((neq * N, T)) A_first_stage = zeros((2 * T * N, T)) A_second_stage = zeros((2 * T * N, nx * N)) b_second_stage = zeros((2 * T * N, 1)) b_second_stage[0:T * N] = ELEC_DA["UG_MAX"] b_second_stage[T * N:2 * T * N] = -ELEC_DA["UG_MIN"] for i in range(N): A_first_stage[i * T:(i + 1) * T, :] = eye(T) # The upper limit A_first_stage[N * T + i * T:N * T + (i + 1) * T, :] = -eye(T) # The lower limit for j in range(T): A_second_stage[i * T + j, i * nx + j * model["nx"] + model["pug"]] = 1 # The upper limit A_second_stage[N * T + i * T + j, i * nx + j * model["nx"] + model["pug"]] = -1 # The lower limit for i in range(T): lb_first_stage[i] = ELEC_DA["UG_MIN"] ub_first_stage[i] = ELEC_DA["UG_MAX"] c_first_stage[i] = ELEC_DA["UG_PRICE"][i] for i in range(N): Aeq_first_stage[i * neq + model["ac_eq"][0]:i * neq + model["ac_eq"][1], 0:T] = eye(T) model["Aeq"] = hstack([Aeq_first_stage, Aeq_second_stage]) model["beq"] = beq_second_stage if model["A"] is None: model["A"] = hstack([A_first_stage, A_second_stage]) model["b"] = b_second_stage else: model["A"] = vstack([model["A"], hstack([A_first_stage, A_second_stage])]) model["b"] = vstack([model["A"], b_second_stage]) model["lb"] = vstack([lb_first_stage, lb_second_stage]) model["ub"] = vstack([ub_first_stage, ub_second_stage]) model["c"] = vstack([c_first_stage, c_second_stage]) # Test model for the boundary information n = N - 1 nslack = 2 * T nx_first_stage = T + nslack neq_extended = neq + nslack # The decision of the first stage optimization c_first_stage = vstack([ELEC_DA["UG_PRICE"], zeros((nslack, 1)), model_second_stage[0]["c"]]) lb_first_stage = vstack([ones((T, 1)) * ELEC_DA["UG_MIN"], zeros((nslack, 1)), model_second_stage[0]["lb"]]) ub_first_stage = vstack( [ones((T, 1)) * ELEC_DA["UG_MAX"], inf * ones((nslack, 1)), model_second_stage[0]["ub"]]) nx_extended_first_stage = nx_first_stage + nx Aeq = zeros((neq_extended, nx_extended_first_stage)) Aeq[model["ac_eq"][0]:model["ac_eq"][1], 0:T] = eye(T) Aeq[0:neq, nx_first_stage:nx_extended_first_stage] = model_second_stage[0]["Aeq"] Aeq[neq:neq + T, 0:T] = eye(T) Aeq[neq:neq + T, T:2 * T] = eye(T) Aeq[neq + T:neq + 2 * T, 0:T] = -eye(T) Aeq[neq + T:neq + 2 * T, 2 * T:3 * T] = eye(T) beq = vstack( [model_second_stage[0]["beq"], ones((T, 1)) * ELEC_DA["UG_MAX"], -ones((T, 1)) * ELEC_DA["UG_MIN"]]) Aeq_first_stage = zeros((neq_extended * n, nx_extended_first_stage)) Aeq_second_stage =
zeros((neq_extended * n, nx * n))
numpy.zeros
#!/usr/bin/env python import os import h5py import numpy as np import matplotlib.pyplot as plt import fluidsim as fls from base import ( _k_f, set_figsize, matplotlib_rc, set_figsize, _index_where, load_sim as load_sim_from_path, ) from paths import paths_lap as paths_sim, exit_if_figure_exists from make_fig_phys_fields_wave import fig_phys_subplot load_sim = lambda short_name: load_sim_from_path( paths_sim.get(short_name), coarse=False ) if __name__ == "__main__": matplotlib_rc(fontsize=10) path_fig = exit_if_figure_exists(__file__) set_figsize(6.65, 5.8) fig, axes = plt.subplots(2, 2) short_names = [ "noise_c10nh960Buinf", # WL1 "noise_c10nh2880Buinf", # WL3 "noise_c200nh960Buinf", # WL17 "noise_c200nh2880Buinf", # WL18 ] # 'noise_c20nh2880Buinf', # WL7 # 'noise_c200nh2880Buinf' # WL13 # ] # sim0 = load_sim(short_names[0]) # sim1 = sim0 # sim1 = load_sim(short_names[1]) # keys = ['<KEY>', '<KEY>'] # for ax, sim, key_field in zip(axes.ravel(), [sim0, sim0, sim1, sim1], keys): keys = ["div"] * 4 for ax, sim, key_field in zip(axes.ravel(), map(load_sim, short_names), keys): vmax = 10 if key_field == "div" else 3.5 vmin = -50 if key_field == "div" else -3.5 fig_phys_subplot( sim, fig, ax, key_field, x_slice=[0, 3.01], y_slice=[0, 3.01], vmax=vmax, vmin=vmin, ) sim.output.close_files() ax.set_xticks(
np.arange(0, 4.0)
numpy.arange
from __future__ import unicode_literals from __future__ import absolute_import # system modules import math import os import tempfile import pandas as pd from numpy import random from random import sample import matplotlib.pyplot as plt from scipy import stats import math import numpy as np import scipy.linalg # QGIS modules from qgis.core import * from qgis.PyQt.QtCore import Qt from qgis.PyQt.QtWidgets import * from qgis.PyQt import uic from PyQt5.QtCore import * from .environment import get_ui_path UI_PATH = get_ui_path('ui_rain_generator.ui') class PluginDialog(QDialog): def __init__(self, iface, parent=None, flags=Qt.WindowFlags()): QDialog.__init__(self, parent, flags) uic.loadUi(UI_PATH, self) self.iface = iface self.input_layer = None self.RainGaugeLayer.setFilters(QgsMapLayerProxyModel.PointLayer) self.GenerationAreaLayer.setFilters(QgsMapLayerProxyModel.PolygonLayer) self.DataAddressField.setFilters(QgsFieldProxyModel.String) self.RainGaugeLayer.layerChanged.connect(self.UpdateFields) self.AnalyzeAllDataBox.stateChanged.connect(self.UpdateUntilFromBoxes) self.SpatialInterpolationMethodBox.activated.connect(self.UpdateExponentFactorField) self.SaveSpatialInterpolationBox.stateChanged.connect(self.UpdateOutputLocation) self.SaveStormStatisticsBox.stateChanged.connect(self.UpdateOutputLocation) self.RainGaugeLayer.setLayer(None) self.GenerationAreaLayer.setLayer(None) self.SpatialInterpolationMethodBox.addItem("Inversed Distance Weighting") self.SpatialInterpolationMethodBox.addItem("Trend Surface Analysis (Polynomial 1st Order)") self.SpatialInterpolationMethodBox.addItem("Trend Surface Analysis (Polynomial 2nd Order)") # self.SpatialInterpolationMethodBox.setCurrentIndex(-1) self.DelimiterBox.addItem("space") self.DelimiterBox.addItem(",") self.DelimiterBox.addItem("-") self.dxBox.setValue(5000) self.dyBox.setValue(5000) self.browseButton.clicked.connect(self.onBrowseButtonClicked) self.browseButton_dataanalysis.clicked.connect(self.onBrowseButtonClicked_dataanalysis) self.browseButton.setAutoDefault(False) self.browseButton_dataanalysis.setAutoDefault(False) self.FromBox.setEnabled(False) self.UntilBox.setEnabled(False) self.CheckButton2.setEnabled(False) self.label_30.setEnabled(False) self.label_31.setEnabled(False) self.folderEdit_dataanalysis.setEnabled(False) self.browseButton_dataanalysis.setEnabled(False) self.ProcessButton.setEnabled(False) self.CheckButton.setEnabled(False) self.ExponentFactorBox.setEnabled(False) self.label_32.setEnabled(False) self.groupBox_2.setEnabled(False) self.groupBox_3.setEnabled(False) self.groupBox_5.setEnabled(False) def UpdateFields(self, layer): self.DataAddressField.setLayer(self.RainGaugeLayer.currentLayer()) self.FromBox.clear() self.UntilBox.clear() self.groupBox_2.setEnabled(False) self.groupBox_3.setEnabled(False) self.groupBox_5.setEnabled(False) self.ProcessButton.setEnabled(False) def UpdateOutputLocation(self): if self.SaveSpatialInterpolationBox.isChecked() or self.SaveStormStatisticsBox.isChecked(): self.folderEdit_dataanalysis.setEnabled(True) self.browseButton_dataanalysis.setEnabled(True) else: self.folderEdit_dataanalysis.setEnabled(False) self.browseButton_dataanalysis.setEnabled(False) def UpdateExponentFactorField(self): if self.SpatialInterpolationMethodBox.currentText() == "Inversed Distance Weighting": self.ExponentFactorBox.setEnabled(True) self.label_32.setEnabled(True) else: self.ExponentFactorBox.setEnabled(False) self.label_32.setEnabled(False) def UpdateUntilFromBoxes(self): if self.AnalyzeAllDataBox.isChecked(): self.FromBox.setEnabled(False) self.UntilBox.setEnabled(False) self.CheckButton2.setEnabled(False) self.label_30.setEnabled(False) self.label_31.setEnabled(False) self.groupBox_2.setEnabled(True) else: self.FromBox.setEnabled(True) self.UntilBox.setEnabled(True) self.CheckButton2.setEnabled(True) self.label_30.setEnabled(True) self.label_31.setEnabled(True) self.groupBox_2.setEnabled(False) self.groupBox_3.setEnabled(False) def onBrowseButtonClicked(self): currentFolder = self.folderEdit.text() folder = QFileDialog.getExistingDirectory(self.iface.mainWindow(), 'Rain Generator', currentFolder) if folder != '': self.folderEdit.setText(folder) self.folderEdit.editingFinished.emit() def onBrowseButtonClicked_dataanalysis(self): currentFolder = self.folderEdit_dataanalysis.text() folder = QFileDialog.getExistingDirectory(self.iface.mainWindow(), 'Rain Generator', currentFolder) if folder != '': self.folderEdit_dataanalysis.setText(folder) self.folderEdit_dataanalysis.editingFinished.emit() class RainGenerator(object): def __init__(self, iface): self.iface = iface self.dialog = None self.cancel = False self.act = QAction('Rain Generator', iface.mainWindow()) self.act.triggered.connect(self.execDialog) def initGui(self, menu=None): if menu is not None: menu.addAction(self.act) else: self.iface.addToolBarIcon(self.act) def unload(self, menu=None): if menu is None: menu.removeAction(self.act) else: self.iface.removeToolBarIcon(self.act) def execDialog(self): """ """ self.dialog = PluginDialog(self.iface, self.iface.mainWindow()) self.dialog.accepted.connect(self.execTool) self.dialog.rejected.connect(self.quitDialog) self.dialog.setModal(False) self.act.setEnabled(False) self.dialog.show() self.dialog.ProcessAreaButton.clicked.connect(self.CreateGenerationArea) self.dialog.CheckButton.clicked.connect(self.CheckFiles) self.dialog.ProcessButton.clicked.connect(self.PreSpatialInterpolation) self.dialog.CheckButton2.clicked.connect(self.AnalyzeFromUntil) self.dialog.UpdateButton.clicked.connect(self.PreCheckFiles) def scheduleAbort(self): self.cancel = True def quitDialog(self): self.dialog = None self.act.setEnabled(True) self.cancel = False #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### # checking files data = [] ngauges = 0 ntimes = 0 nrains = 0 ############################################################ # updates the time and rain column values def PreCheckFiles(self): if type(self.dialog.RainGaugeLayer.currentLayer()) == type(None): self.dialog.iface.messageBar().pushCritical( 'Rain Generator', 'No Layer Selected !' ) return files, ok = QgsVectorLayerUtils.getValues(self.dialog.RainGaugeLayer.currentLayer(), self.dialog.DataAddressField.expression(), False) if not ok: return for i, locations in enumerate(files): address = locations.replace("\\", "/") self.dialog.TimeColumnBox.clear() self.dialog.RainColumnBox.clear() try: if self.dialog.DelimiterBox.currentText() == "space": df = pd.read_csv(address.strip("\u202a"), delimiter=" ") else: df = pd.read_csv(address.strip("\u202a"), delimiter=self.dialog.DelimiterBox.currentText()) for c in df.columns: self.dialog.TimeColumnBox.addItem(c) self.dialog.RainColumnBox.addItem(c) except: return self.dialog.CheckButton.setEnabled(True) self.dialog.FromBox.clear() self.dialog.UntilBox.clear() self.dialog.groupBox_2.setEnabled(False) self.dialog.groupBox_3.setEnabled(False) self.dialog.groupBox_5.setEnabled(False) self.dialog.ProcessButton.setEnabled(False) self.data = [] def CheckFiles(self): self.data = [] files, ok = QgsVectorLayerUtils.getValues(self.dialog.RainGaugeLayer.currentLayer(), self.dialog.DataAddressField.expression(), False) if not ok: self.iface.messageBar().pushCritical( 'Rain Generator', 'Invalid File Locations!' ) return numberoftimes = 0 numberofrains = 0 for i, locations in enumerate(files): address = locations.replace("\\", "/") if not os.path.isfile(address.strip("\u202a")): self.iface.messageBar().pushCritical( 'Rain Generator', 'File Does Not Exist!' ) return ################################### # f = open(address.strip("\u202a"), "r") # if self.dialog.HeaderBox.isChecked(): # lines = f.readlines()[1:] # else: # lines = f.readlines() # times = [] # rains = [] # for x in lines: # times.append(x.split(' ')[0]) # rains.append(x.split(' ')[1]) # f.close() # if len(times) >= numberoftimes: # numberoftimes = len(times) # if len(rains) >= numberofrains: # numberofrains = len(rains) ####################################### try: if self.dialog.DelimiterBox.currentText() == "space": df = pd.read_csv(address.strip("\u202a"), delimiter=" ") else: df = pd.read_csv(address.strip("\u202a"), delimiter=self.dialog.DelimiterBox.currentText()) times = df[self.dialog.TimeColumnBox.currentText()].tolist() rains = df[self.dialog.RainColumnBox.currentText()].tolist() if len(times) >= numberoftimes: numberoftimes = len(times) if len(rains) >= numberofrains: numberofrains = len(rains) except: self.iface.messageBar().pushCritical( 'Rain Generator', 'Could not read Files!' ) return ####################################### # putting data in an array self.ngauges = len(files) self.ntimes = numberoftimes self.nrains = numberofrains for x in range(self.ngauges): self.data.append([]) for y in range(2): self.data[x].append([]) # for z in range(nrains): # data[x][y].append(0) for i, locations in enumerate(files): address = locations.replace("\\", "/") if self.dialog.DelimiterBox.currentText() == "space": df = pd.read_csv(address.strip("\u202a"), delimiter=" ") else: df = pd.read_csv(address.strip("\u202a"), delimiter=self.dialog.DelimiterBox.currentText()) times = df[self.dialog.TimeColumnBox.currentText()].tolist() rains = df[self.dialog.RainColumnBox.currentText()].tolist() for j in range(len(times)): self.data[i][0].append(times[j]) self.data[i][1].append(rains[j]) print(self.data) # filling the for and until boxes self.dialog.FromBox.clear() self.dialog.UntilBox.clear() lengths = [] for j in range(len(self.data)): lengths.append(len(self.data[j][0])) for k in self.data[lengths.index(max(lengths))][0]: # adds the time values for the shortest time series self.dialog.FromBox.addItem(str(k)) self.dialog.UntilBox.addItem(str(k)) # self.dialog.FromBox.currentIndex(0) # self.dialog.UntilBoxBox.currentIndex(min(lengths)-1) if self.dialog.AnalyzeAllDataBox.isChecked(): self.dialog.groupBox_2.setEnabled(True) self.iface.messageBar().pushSuccess( 'Rain Generator', 'Files seem ok !' ) ################################################################################## def AnalyzeFromUntil(self): # checks if the values in the from and until boxes are correct and puts them in self.data tempdata = [] for x in range(len(self.data)): tempdata.append([]) for y in range(2): tempdata[x].append([]) fromindex = 0 untilindex = 0 for i in range(len(self.data)): if self.dialog.FromBox.currentText() not in str( self.data[i][0]) or self.dialog.UntilBox.currentText() not in str(self.data[i][0]): self.iface.messageBar().pushCritical( 'Rain Generator', 'Entered Values Dont Exist in At least One of the Input Files !' ) return for j in range(len(self.data[i][0])): if str(self.data[i][0][j]) == self.dialog.FromBox.currentText(): fromindex = j if str(self.data[i][0][j]) == self.dialog.UntilBox.currentText(): untilindex = j if fromindex > untilindex: self.iface.messageBar().pushCritical( 'Rain Generator', 'The Values Entered Are Not Valid !' ) return for k in range(fromindex, untilindex + 1): tempdata[i][0].append(self.data[i][0][k]) tempdata[i][1].append(self.data[i][1][k]) self.data = tempdata self.dialog.groupBox_2.setEnabled(True) print(self.data) #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### # spatial interpolation ########################################################################## # layer2 = spatial interpolation layer layer2 = QgsVectorLayer("Polygon", 'Generation_Area', 'memory') nx = 0 ny = 0 def CreateGenerationArea(self): if type(self.dialog.GenerationAreaLayer.currentLayer()) == type(None): self.dialog.iface.messageBar().pushCritical( 'Rain Generator', 'No Layer Selected !' ) return self.layer2 = QgsVectorLayer("Polygon", 'Generation_Area', 'memory') layer = self.dialog.GenerationAreaLayer.currentLayer() ex = layer.extent() xmax = ex.xMaximum() ymax = ex.yMaximum() xmin = ex.xMinimum() ymin = ex.yMinimum() prov = self.layer2.dataProvider() fields = QgsFields() fields.append(QgsField('ID', QVariant.Int, '', 10, 0)) fields.append(QgsField('XMIN', QVariant.Double, '', 24, 6)) fields.append(QgsField('XMAX', QVariant.Double, '', 24, 6)) fields.append(QgsField('YMIN', QVariant.Double, '', 24, 6)) fields.append(QgsField('YMAX', QVariant.Double, '', 24, 6)) prov.addAttributes(fields) self.layer2.updateExtents() self.layer2.updateFields() if self.dialog.dxBox.value() <= 0 or self.dialog.dyBox.value() <= 0: self.dialog.iface.messageBar().pushCritical( 'Rain Generator', 'Invalid Values for dx or dy !' ) return else: hspacing = self.dialog.dxBox.value() vspacing = self.dialog.dyBox.value() self.nx = math.ceil((xmax - xmin) / hspacing) self.ny = math.ceil((ymax - ymin) / vspacing) id = 0 y = ymax while y >= ymin: x = xmin while x <= xmax: point1 = QgsPointXY(x, y) point2 = QgsPointXY(x + hspacing, y) point3 = QgsPointXY(x + hspacing, y - vspacing) point4 = QgsPointXY(x, y - vspacing) vertices = [point1, point2, point3, point4] # Vertices of the polygon for the current id inAttr = [id, x, x + hspacing, y - vspacing, y] feat = QgsFeature() feat.setGeometry(QgsGeometry().fromPolygonXY([vertices])) # Set geometry for the current id feat.setAttributes(inAttr) # Set attributes for the current id prov.addFeatures([feat]) x = x + hspacing id += 1 y = y - vspacing self.layer2.setCrs( QgsCoordinateReferenceSystem(self.iface.mapCanvas().mapSettings().destinationCrs().authid())) self.layer2.updateExtents() QgsProject.instance().addMapLayer(self.layer2) self.dialog.groupBox_5.setEnabled(True) self.dialog.ProcessButton.setEnabled(True) #################################################################### def PreSpatialInterpolation(self): self.dialog.StatusIndicator.setText("Performing Spatial Interpolation...") QTimer.singleShot(50, self.SpatialInterpolation) # waits half a second for the message to be displayed ############################################################################################# def SpatialInterpolation(self): foldername = self.dialog.folderEdit_dataanalysis.text() if self.dialog.SaveSpatialInterpolationBox.isChecked() or self.dialog.SaveStormStatisticsBox.isChecked(): if not foldername: self.iface.messageBar().pushCritical( 'Rain Generator', 'No output folder given!' ) return filepath = os.path.join(tempfile.gettempdir(), "RainfallSpatialInterpolation" + '.txt') try: # deletes previous files if os.path.isfile(filepath): os.remove(filepath) except: pass try: file = open(filepath, 'w') file.close() except: pass with open(filepath, 'a') as SpatialInterpolation: raingaugelocations = [] generationlocations = [] # getting the locations of raingauges point_layer = self.dialog.RainGaugeLayer.currentLayer() features = point_layer.getFeatures() for feature in features: buff = feature.geometry() raingaugelocations.append(buff.asPoint()) # getting the generation locations area_layer = self.layer2 features = area_layer.getFeatures() for feature in features: buff = feature.geometry() generationlocations.append(buff.centroid().asPoint()) # calculate generation duration rainlengths = [] for j in range(len(self.data)): rainlengths.append(len(self.data[j][0])) ############################################################### # time viewer layer if self.dialog.TImeVieweLayerBox.isChecked(): layer = self.layer2 feats = [feat for feat in layer.getFeatures()] timeviewerlayer = QgsVectorLayer("Polygon", 'Time_Viewer_Layer', 'memory') timeviewerlayer_data = timeviewerlayer.dataProvider() attr = layer.dataProvider().fields().toList() timeviewerlayer_data.addAttributes(attr) timeviewerlayer.dataProvider().addAttributes( [QgsField("Boundary Value", QVariant.Double), QgsField("date_time", QVariant.Double)]) for i in range(min(rainlengths)): timeviewerlayer_data.addFeatures(feats) fieldids = [] fields = timeviewerlayer.dataProvider().fields() # deleting extra fields fieldstodelete = ["XMIN", "XMAX", "YMIN", "YMAX"] for field in fields: if field.name() in fieldstodelete: fieldids.append(fields.indexFromName(field.name())) timeviewerlayer.dataProvider().deleteAttributes(fieldids) timeviewerlayer.setCrs( QgsCoordinateReferenceSystem(self.iface.mapCanvas().mapSettings().destinationCrs().authid())) timeviewerlayer.updateFields() ################################################################## ################################################################################################# # Inversed Distance Weighting if self.dialog.SpatialInterpolationMethodBox.currentText() == "Inversed Distance Weighting": # writing the file for i in range(len(generationlocations)): SpatialInterpolation.write('BEGIN\n') SpatialInterpolation.write( '%s %s area #Length [m²/s], Area [m/s], waterlevel [m], point [m³/s]\n' % ( str(i), str(min(rainlengths)))) counter = 0 n = self.dialog.ExponentFactorBox.value() # exponent factor for the invert distance weighting formula while counter + 1 <= min(rainlengths): upperformula = 0 lowerformula = 0 for j in range(len(self.data)): distance = raingaugelocations[j].distance(generationlocations[i]) upperformula = upperformula + ((1 / (distance ** n)) * float(self.data[j][1][counter])) lowerformula = lowerformula + (1 / (distance ** n)) rainvalue = round((upperformula / lowerformula), 3) SpatialInterpolation.write( '%s %s #%s mm/h\n' % (str(counter), str(rainvalue), str(rainvalue))) ############################################### # time viewer layer if self.dialog.TImeVieweLayerBox.isChecked(): fields = timeviewerlayer.dataProvider().fields() datetimefieldid = fields.indexFromName("date_time") rainvaluefieldid = fields.indexFromName("Boundary Value") idfieldid = fields.indexFromName("ID") featureids = [] for feature in timeviewerlayer.getFeatures(): if float(feature.attributes()[idfieldid]) == float(i): featureids.append(feature.id()) try: atts = { datetimefieldid: float(self.data[rainlengths.index(min(rainlengths))][0][counter]), rainvaluefieldid: rainvalue} except: atts = {datetimefieldid: self.data[rainlengths.index(min(rainlengths))][0][counter], rainvaluefieldid: rainvalue} timeviewerlayer.dataProvider().changeAttributeValues({featureids[counter]: atts}) ############################################### if counter + 1 == min(rainlengths): SpatialInterpolation.write('!END') SpatialInterpolation.write('\n\n') counter = counter + 1 ###################################################################################################### # Trend Surface Analysis (Polynomial 1st Order) elif self.dialog.SpatialInterpolationMethodBox.currentText() == "Trend Surface Analysis (Polynomial 1st Order)": allrainvalues = [] for counter in range(min(rainlengths)): xs = [] ys = [] zs = [] # putting all x and y and z values in seperate arrays for r, i in enumerate(raingaugelocations): xs.append(i.x()) ys.append(i.y()) zs.append(float(self.data[r][1][counter])) data = np.c_[xs, ys, zs] # grid covering the domain of the data # getting the minimum and maximum x and ys of generation area layer = self.dialog.GenerationAreaLayer.currentLayer() ex = layer.extent() xmax = ex.xMaximum() ymax = ex.yMaximum() xmin = ex.xMinimum() ymin = ex.yMinimum() X, Y = np.meshgrid(np.linspace(xmin, xmax, self.dialog.dxBox.value()), np.linspace(ymin, ymax, self.dialog.dyBox.value())) order = 1 # 1: linear, 2: quadratic if order == 1: # best-fit linear plane A = np.c_[data[:, 0], data[:, 1], np.ones(data.shape[0])] C, _, _, _ = scipy.linalg.lstsq(A, data[:, 2]) # coefficients # formula # Z = C[0] * X + C[1] * Y + C[2] rainvaluesintimestep = [] for i in generationlocations: value = (C[0] * i.x()) + (C[1] * i.y()) + C[2] rainvaluesintimestep.append(value) allrainvalues.append(rainvaluesintimestep) # writing the file for i in range(len(generationlocations)): SpatialInterpolation.write('BEGIN\n') SpatialInterpolation.write( '%s %s area #Length [m²/s], Area [m/s], waterlevel [m], point [m³/s]\n' % ( str(i), str(min(rainlengths)))) counter = 0 while counter + 1 <= min(rainlengths): rainvalue = float(allrainvalues[counter][i]) ############################################### # time viewer layer if self.dialog.TImeVieweLayerBox.isChecked(): fields = timeviewerlayer.dataProvider().fields() datetimefieldid = fields.indexFromName("date_time") rainvaluefieldid = fields.indexFromName("Boundary Value") idfieldid = fields.indexFromName("ID") featureids = [] for feature in timeviewerlayer.getFeatures(): if float(feature.attributes()[idfieldid]) == float(i): featureids.append(feature.id()) try: atts = { datetimefieldid: float(self.data[rainlengths.index(min(rainlengths))][0][counter]), rainvaluefieldid: rainvalue} except: atts = {datetimefieldid: self.data[rainlengths.index(min(rainlengths))][0][counter], rainvaluefieldid: rainvalue} timeviewerlayer.dataProvider().changeAttributeValues({featureids[counter]: atts}) ############################################### SpatialInterpolation.write( '%s %s #%s mm/h\n' % (str(counter), str(rainvalue), str(rainvalue))) if counter + 1 == min(rainlengths): SpatialInterpolation.write('!END') SpatialInterpolation.write('\n\n') counter = counter + 1 ###################################################################################### elif self.dialog.SpatialInterpolationMethodBox.currentText() == "Trend Surface Analysis (Polynomial 2nd Order)": allrainvalues = [] for counter in range(min(rainlengths)): xs = [] ys = [] zs = [] # putting all x and y and z values in seperate arrays for r, i in enumerate(raingaugelocations): xs.append(i.x()) ys.append(i.y()) zs.append(float(self.data[r][1][counter])) data = np.c_[xs, ys, zs] # grid covering the domain of the data # getting the minimum and maximum x and ys of generation area layer = self.dialog.GenerationAreaLayer.currentLayer() ex = layer.extent() xmax = ex.xMaximum() ymax = ex.yMaximum() xmin = ex.xMinimum() ymin = ex.yMinimum() X, Y = np.meshgrid(np.linspace(xmin, xmax, self.dialog.dxBox.value()), np.linspace(ymin, ymax, self.dialog.dyBox.value())) order = 2 # 2: quadratic if order == 2: # best-fit quadratic curve A = np.c_[np.ones(data.shape[0]), data[:, :2], np.prod(data[:, :2], axis=1), data[:, :2] ** 2] C, _, _, _ = scipy.linalg.lstsq(A, data[:, 2]) # formula # Z = C[4]*X**2. + C[5]*Y**2. + C[3]*X*Y + C[1]*X + C[2]*Y + C[0] rainvaluesintimestep = [] for i in generationlocations: value = C[4] * i.x() ** 2. + C[5] * i.y() ** 2. + C[3] * i.x() * i.y() + C[1] * i.x() + C[ 2] * i.y() + C[0] rainvaluesintimestep.append(value) allrainvalues.append(rainvaluesintimestep) # writing the file for i in range(len(generationlocations)): SpatialInterpolation.write('BEGIN\n') SpatialInterpolation.write( '%s %s area #Length [m²/s], Area [m/s], waterlevel [m], point [m³/s]\n' % ( str(i), str(min(rainlengths)))) counter = 0 while counter + 1 <= min(rainlengths): rainvalue = float(allrainvalues[counter][i]) ############################################### # time viewer layer if self.dialog.TImeVieweLayerBox.isChecked(): fields = timeviewerlayer.dataProvider().fields() datetimefieldid = fields.indexFromName("date_time") rainvaluefieldid = fields.indexFromName("Boundary Value") idfieldid = fields.indexFromName("ID") featureids = [] for feature in timeviewerlayer.getFeatures(): if float(feature.attributes()[idfieldid]) == float(i): featureids.append(feature.id()) try: atts = { datetimefieldid: float(self.data[rainlengths.index(min(rainlengths))][0][counter]), rainvaluefieldid: rainvalue} except: atts = {datetimefieldid: self.data[rainlengths.index(min(rainlengths))][0][counter], rainvaluefieldid: rainvalue} timeviewerlayer.dataProvider().changeAttributeValues({featureids[counter]: atts}) ############################################### SpatialInterpolation.write( '%s %s #%s mm/h\n' % (str(counter), str(rainvalue), str(rainvalue))) if counter + 1 == min(rainlengths): SpatialInterpolation.write('!END') SpatialInterpolation.write('\n\n') counter = counter + 1 ########################################################## # time viewer layer if self.dialog.TImeVieweLayerBox.isChecked(): timeviewerlayer.updateFields() QgsProject.instance().addMapLayer(timeviewerlayer) ########################################################## if self.dialog.SaveSpatialInterpolationBox.isChecked(): self.dialog.StatusIndicator.setText("Writing Spatial Interpolation Output...") QTimer.singleShot(50, self.SpatialInterpolationforPromaides) self.dialog.StatusIndicator.setText("Analyzing Storm Statistics...") QTimer.singleShot(50, self.StormAnalysis) ################################################################################################ def SpatialInterpolationforPromaides(self): filepath = os.path.join(self.dialog.folderEdit_dataanalysis.text(), "RainfallSpatialInterpolation" + '.txt') try: # deletes previous files if os.path.isfile(filepath): os.remove(filepath) except: pass with open(filepath, 'a') as generateddata: generateddata.write('# comment\n') generateddata.write('# !BEGIN\n') generateddata.write('# number begining from 0 ++ number of points\n') generateddata.write('# hour [h] discharge [m³/s]\n') generateddata.write('# !END\n\n\n') raingaugelocations = [] generationlocations = [] # getting the locations of raingauges point_layer = self.dialog.RainGaugeLayer.currentLayer() features = point_layer.getFeatures() for feature in features: buff = feature.geometry() raingaugelocations.append(buff.asPoint()) # getting the generation locations area_layer = self.layer2 features = area_layer.getFeatures() for feature in features: buff = feature.geometry() generationlocations.append(buff.centroid().asPoint()) # calculate generation duration rainlengths = [] for j in range(len(self.data)): rainlengths.append(len(self.data[j][0])) ################################################################################################# # Inversed Distance Weighting if self.dialog.SpatialInterpolationMethodBox.currentText() == "Inversed Distance Weighting": # writing the file for i in range(len(generationlocations)): generateddata.write('!BEGIN #%s\n' % "raingaugename") generateddata.write( '%s %s area #Length [m²/s], Area [m/s], waterlevel [m], point [m³/s]\n' % ( str(i), str(min(rainlengths) * 2))) counter = 0 n = self.dialog.ExponentFactorBox.value() # exponent factor for the invert distance weighting formula while counter + 1 <= min(rainlengths): upperformula = 0 lowerformula = 0 for j in range(len(self.data)): distance = raingaugelocations[j].distance(generationlocations[i]) upperformula = upperformula + ((1 / (distance ** n)) * float(self.data[j][1][counter])) lowerformula = lowerformula + (1 / (distance ** n)) rainvalue = round((upperformula / lowerformula), 3) generateddata.write( '%s %s #%s mm/h\n' % (str(counter), str(rainvalue / 3600000), str(rainvalue))) generateddata.write( '%s.99 %s #%s mm/h\n' % (str(counter), str(rainvalue / 3600000), str(rainvalue))) if counter + 1 == min(rainlengths): generateddata.write('!END') generateddata.write('\n\n') counter = counter + 1 ###################################################################################################### # Trend Surface Analysis (Polynomial 1st Order) elif self.dialog.SpatialInterpolationMethodBox.currentText() == "Trend Surface Analysis (Polynomial 1st Order)": allrainvalues = [] for counter in range(min(rainlengths)): xs = [] ys = [] zs = [] # putting all x and y and z values in seperate arrays for r, i in enumerate(raingaugelocations): xs.append(i.x()) ys.append(i.y()) zs.append(float(self.data[r][1][counter])) data = np.c_[xs, ys, zs] # grid covering the domain of the data # getting the minimum and maximum x and ys of generation area layer = self.dialog.GenerationAreaLayer.currentLayer() ex = layer.extent() xmax = ex.xMaximum() ymax = ex.yMaximum() xmin = ex.xMinimum() ymin = ex.yMinimum() X, Y = np.meshgrid(np.linspace(xmin, xmax, self.dialog.dxBox.value()), np.linspace(ymin, ymax, self.dialog.dyBox.value())) order = 1 # 1: linear, 2: quadratic if order == 1: # best-fit linear plane A = np.c_[data[:, 0], data[:, 1], np.ones(data.shape[0])] C, _, _, _ = scipy.linalg.lstsq(A, data[:, 2]) # coefficients # formula # Z = C[0] * X + C[1] * Y + C[2] rainvaluesintimestep = [] for i in generationlocations: value = (C[0] * i.x()) + (C[1] * i.y()) + C[2] rainvaluesintimestep.append(value) allrainvalues.append(rainvaluesintimestep) # writing the file for i in range(len(generationlocations)): generateddata.write('!BEGIN #%s\n' % "raingaugename") generateddata.write( '%s %s area #Length [m²/s], Area [m/s], waterlevel [m], point [m³/s]\n' % ( str(i), str(min(rainlengths) * 2))) counter = 0 while counter + 1 <= min(rainlengths): rainvalue = float(allrainvalues[counter][i]) generateddata.write( '%s %s #%s mm/h\n' % (str(counter), str(rainvalue / 3600000), str(rainvalue))) generateddata.write( '%s.99 %s #%s mm/h\n' % (str(counter), str(rainvalue / 3600000), str(rainvalue))) if counter + 1 == min(rainlengths): generateddata.write('!END') generateddata.write('\n\n') counter = counter + 1 ###################################################################################### elif self.dialog.SpatialInterpolationMethodBox.currentText() == "Trend Surface Analysis (Polynomial 2nd Order)": allrainvalues = [] for counter in range(min(rainlengths)): xs = [] ys = [] zs = [] # putting all x and y and z values in seperate arrays for r, i in enumerate(raingaugelocations): xs.append(i.x()) ys.append(i.y()) zs.append(float(self.data[r][1][counter])) data = np.c_[xs, ys, zs] # grid covering the domain of the data # getting the minimum and maximum x and ys of generation area layer = self.dialog.GenerationAreaLayer.currentLayer() ex = layer.extent() xmax = ex.xMaximum() ymax = ex.yMaximum() xmin = ex.xMinimum() ymin = ex.yMinimum() X, Y = np.meshgrid(np.linspace(xmin, xmax, self.dialog.dxBox.value()), np.linspace(ymin, ymax, self.dialog.dyBox.value())) order = 2 # 2: quadratic if order == 2: # best-fit quadratic curve A = np.c_[ np.ones(data.shape[0]), data[:, :2], np.prod(data[:, :2], axis=1), data[:, :2] ** 2] C, _, _, _ = scipy.linalg.lstsq(A, data[:, 2]) # formula # Z = C[4]*X**2. + C[5]*Y**2. + C[3]*X*Y + C[1]*X + C[2]*Y + C[0] rainvaluesintimestep = [] for i in generationlocations: value = C[4] * i.x() ** 2. + C[5] * i.y() ** 2. + C[3] * i.x() * i.y() + C[1] * i.x() + C[ 2] * i.y() + C[0] rainvaluesintimestep.append(value) allrainvalues.append(rainvaluesintimestep) # writing the file for i in range(len(generationlocations)): generateddata.write('!BEGIN #%s\n' % "raingaugename") generateddata.write( '%s %s area #Length [m²/s], Area [m/s], waterlevel [m], point [m³/s]\n' % ( str(i), str(min(rainlengths) * 2))) counter = 0 while counter + 1 <= min(rainlengths): rainvalue = float(allrainvalues[counter][i]) generateddata.write( '%s %s #%s mm/h\n' % (str(counter), str(rainvalue / 3600000), str(rainvalue))) generateddata.write( '%s.99 %s #%s mm/h\n' % (str(counter), str(rainvalue / 3600000), str(rainvalue))) if counter + 1 == min(rainlengths): generateddata.write('!END') generateddata.write('\n\n') counter = counter + 1 ########################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### #################################################################################### # data analysis # shared arrays StormTraveledDistance = [] StormVolume = [] StormDirection = [] StormDuration = [] StormPeakIntensity = [] StormPeakIntensityTimestep = [] StormPeakIntensityLocation = [] StormSize = [] NoStormDuration = [] CellCoordinates = [] StormLocations = [] StormIDs = [] StormCount = 0 MaxNumberofStorms = 100000 def StormAnalysis(self): # getting the center x y of each square cell for feature in self.layer2.getFeatures(): self.CellCoordinates.append(feature.geometry().centroid().asPoint()) print(self.nx, "nx") print(self.ny, "ny") # calculates angle between two points clockwise # east is 0 # north is 90 def angle_between(p1, p2): ang1 = np.arctan2(*p1[::-1]) ang2 = np.arctan2(*p2[::-1]) return np.rad2deg((ang1 - ang2) % (2 * np.pi)) self.StormCount = 0 nostormcount = 0 # reset self.StormTraveledDistance = [] self.StormVolume = [] self.StormDirection = [] self.StormDuration = [] self.StormPeakIntensity = [] self.StormSize = [] self.NoStormDuration = [] for i in range(self.MaxNumberofStorms): self.StormTraveledDistance.append(0) self.StormVolume.append(0) self.StormDirection.append([]) self.StormLocations.append([]) self.StormDuration.append(0) self.StormPeakIntensity.append(0) self.StormPeakIntensityTimestep.append(0) self.StormPeakIntensityLocation.append(0) self.StormSize.append(0) Storm = [] StormConnectivity = [] PreviousStormConnectivity = [] # reading file filepath = os.path.join(tempfile.gettempdir(), "RainfallSpatialInterpolation" + '.txt') f = open(filepath) lines = f.readlines() StartingLine = 2 for linecount in range(len(self.data[0][0])): print(StartingLine, "startingline") for i in range(StartingLine, StartingLine + ((self.nx * self.ny - 1) * (len(self.data[0][0]) + 4)) + 1, len(self.data[0][0]) + 3 + 1): Storm.append(lines[i].split(' ')[1]) # place to put test arrays for i in range(len(Storm)): StormConnectivity.append(0) Storm = [float(i) for i in Storm] StartingLine = StartingLine + 1 ################################################################################### # storm cluster identification StormThreshhold = self.dialog.StormThreshholdBox.value() for i, value in enumerate(Storm): try: if Storm[i - 1] > StormThreshhold and value > StormThreshhold and (i - 1) >= 0: StormConnectivity[i] = StormConnectivity[i - 1] continue except: pass try: if Storm[i - self.nx] > StormThreshhold and value > StormThreshhold and (i - self.nx) >= 0: StormConnectivity[i] = StormConnectivity[i - self.nx] continue except: pass try: if Storm[i - self.nx - 1] > StormThreshhold and value > StormThreshhold and (i - self.nx - 1) >= 0: StormConnectivity[i] = StormConnectivity[i - self.nx - 1] continue except: pass if value > StormThreshhold: self.StormCount = self.StormCount + 1 StormConnectivity[i] = self.StormCount #################################################################################### print(PreviousStormConnectivity, "previous connectivity1") print(StormConnectivity, "storm connectivity1") print(Storm, "storm") # find overlapping storms for i, value in enumerate(StormConnectivity): for j, previousvalue in enumerate(PreviousStormConnectivity): if i == j and value > 0 and previousvalue > 0: for k, value2 in enumerate(StormConnectivity): if value2 == value: StormConnectivity[k] = previousvalue ###################################################################################### # getting storm statistics if all(i <= self.dialog.StormThreshholdBox.value() for i in Storm): nostormcount = nostormcount + 1 else: self.NoStormDuration.append(nostormcount) nostormcount = 0 # storm volume for i, value in enumerate(StormConnectivity): if value > 0: self.StormVolume[value] = self.StormVolume[value] + Storm[i] # saving the storm id for stormid in list(set(StormConnectivity)): if stormid != 0 and (stormid not in self.StormIDs): self.StormIDs.append(stormid) # saving storm locations for stormid in list(set(StormConnectivity)): indexes=[] if stormid != 0: for index, element in enumerate(StormConnectivity): if element == stormid: indexes.append(index) self.StormLocations[stormid].append(indexes) # storm duration print(StormConnectivity, "storm connectivity2") for value in list(set(StormConnectivity)): if value != 0: self.StormDuration[value] = self.StormDuration[value] + 1 # peak intensity and storm area and velocity and direction rainintensities = [] currentstormcoordinates = [] previousstormcoordinates = [] stormarea = 0 for i, id in enumerate(StormConnectivity): if id == value and id != 0: rainintensities.append(Storm[i]) currentstormcoordinates.append(self.CellCoordinates[i]) stormarea = stormarea + 1 for i, id in enumerate(PreviousStormConnectivity): if id == value and id != 0: previousstormcoordinates.append(self.CellCoordinates[i]) if value != 0: if max(rainintensities) > self.StormPeakIntensity[value]: self.StormPeakIntensity[value] = max(rainintensities) self.StormPeakIntensityTimestep[value] = StartingLine self.StormPeakIntensityLocation[value] = rainintensities.index(max(rainintensities)) self.StormSize[value] = self.StormSize[value] + stormarea # traveled distance and direction if value != 0 and (value in PreviousStormConnectivity): currentstormcenterx = 0 currentstormcentery = 0 for xy in currentstormcoordinates: currentstormcenterx = currentstormcenterx + xy.x() currentstormcentery = currentstormcentery + xy.y() currentstormcenterx = currentstormcenterx / len(currentstormcoordinates) currentstormcentery = currentstormcentery / len(currentstormcoordinates) previousstormcenterx = 0 previousstormcentery = 0 for xy in previousstormcoordinates: previousstormcenterx = previousstormcenterx + xy.x() previousstormcentery = previousstormcentery + xy.y() if len(previousstormcoordinates) > 0: previousstormcenterx = previousstormcenterx / len(previousstormcoordinates) previousstormcentery = previousstormcentery / len(previousstormcoordinates) # both need averaging out self.StormTraveledDistance[value] = self.StormTraveledDistance[value] + math.sqrt( (currentstormcenterx - previousstormcenterx) ** 2 + ( currentstormcentery - previousstormcentery) ** 2) angle = angle_between([previousstormcenterx, previousstormcentery], [currentstormcenterx, currentstormcentery]) if 0 < angle < 22.5 or 337.5 < angle < 360: direction = "E" elif 22.5 <= angle <= 67.5: direction = "NE" elif 67.5 <= angle <= 112.5: direction = "N" elif 112.5 <= angle <= 157.5: direction = "NW" elif 157.5 <= angle <= 202.5: direction = "W" elif 202.5 <= angle <= 247.5: direction = "SW" elif 247.5 <= angle <= 292.5: direction = "S" elif 292.5 <= angle <= 337.5: direction = "W" self.StormDirection[value].append(direction) PreviousStormConnectivity = StormConnectivity Storm = [] StormConnectivity = [] # print(self.StormPeakIntensity[:self.StormCount+1],"peak") # print(self.StormSize[:self.StormCount+1],"size") # print(self.StormDuration[:self.StormCount+1],"duration") # print(self.StormTraveledDistance[:self.StormCount+1],"distance") #print(self.StormDirection[:self.StormCount + 1], "direction") #print(self.StormLocations,"locations") #print(self.StormIDs,"stormids") #print(self.StormPeakIntensityTimestep,"timestep") #print(self.StormPeakIntensityLocation,"location") if self.dialog.SaveStormStatisticsBox.isChecked(): self.dialog.StatusIndicator.setText("Writing Storm Statistics to File...") QTimer.singleShot(50, self.WriteStormStatistics) N = 0 for i in self.StormDuration: if i > 0: N = N + 1 self.dialog.StatusIndicator.setText("Processing Complete, %s Storms Identified" % (N)) self.iface.messageBar().pushSuccess( 'Rain Generator', 'Processing Complete !' ) self.dialog.groupBox_3.setEnabled(True) # function to write storm statistics to file def WriteStormStatistics(self): filepath = os.path.join(self.dialog.folderEdit_dataanalysis.text(), "StormStatistics" + '.txt') try: # deletes previous files if os.path.isfile(filepath): os.remove(filepath) except: pass try: file = open(filepath, 'w') file.close() except: pass with open(filepath, 'a') as StormStatistics: StormStatistics.write( 'Storm_id Storm_Duration Storm_Volume Storm_PeakIntensity Storm_TotalArea Storm_TraveledDistance StormTotalAngle\n') for i in range(1, self.StormCount + 1): StormStatistics.write('%s %s %s %s %s %s %s\n' % ( i, self.StormDuration[i], self.StormVolume[i], self.StormPeakIntensity[i], (self.StormSize[i]), (self.StormTraveledDistance[i]), (self.StormDirection[i]))) ############################################################################################# ############################################################################################# #generation def Generation(self): StormIDUniqueValues = self.StormIDs RequestedNumberofTimesteps = self.dialog.RequestedGenerationDurationBox.value() def execTool(self): print("hello") ############################################################################################# ############################################################################################# ############################################################################################# ############################################################################################# ############################################################################################# ############################################################################################# # copula class # https://github.com/ashiq24/Copula # multivariate Gaussian copulas class Copula(): def __init__(self, data): self.data = np.array(data) if (len(data) < 2): raise Exception('input data must have multiple samples') if not isinstance(data[0], list): raise Exception('input data must be a 2D array') self.cov =
np.cov(self.data.T)
numpy.cov
import datetime as dt from pathlib import Path from typing import List import matplotlib.pyplot as plt import numpy as np import pandas as pd from syaroho_rating.utils import perf_to_color def get_colorlist(performances: pd.Series, n_col: int) -> np.ndarray: colordefs = [] for p in performances: rgb = (3.0 + perf_to_color(p)) / 4.0 # type: np.ndarray colordef_row = np.tile(rgb, reps=(n_col, 1)) colordefs.append(colordef_row) return
np.stack(colordefs)
numpy.stack
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from future.utils import viewkeys from multiprocessing import Process, Queue import numpy as np import os import shutil import tempfile import unittest from caffe2.proto import caffe2_pb2 from caffe2.python import core, cnn, data_parallel_model, dyndep, optimizer, \ rnn_cell, workspace, model_helper, brew from caffe2.python.test_util import TestCase dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops") class TemporaryDirectory: def __enter__(self): self.tmpdir = tempfile.mkdtemp() return self.tmpdir def __exit__(self, type, value, traceback): shutil.rmtree(self.tmpdir) # Note(jiayq): we are yet to find out why Travis gives out an error in gloo # like: # RuntimeError: [enforce fail at /home/travis/build/caffe2/caffe2/third_party/gloo/gloo/transport/tcp/device.cc:113] ifa != nullptr. Unable to find interface for: [127.0.1.1] # See for example https://travis-ci.org/caffe2/caffe2/jobs/262433866 # As a result, we will check if this is travis, and if yes, disable it. @unittest.skipIf(os.environ.get("TRAVIS"), "DPMTest has a known issue with Travis.") class DataParallelModelTest(TestCase): def run_model(self, devices, gpu): ''' Helper function for test_equiv ''' def input_builder_fun(model): return None def model_build_fun(model, loss_scale): fc = model.FC("data", "fc", 16, 1, ("ConstantFill", {}), ("ConstantFill", {})) fc_fl = model.FlattenToVec(fc, "fc_fl") sigm = model.Sigmoid(fc_fl, "sigm") sq = model.SquaredL2Distance([sigm, "label"], "sq") loss = model.AveragedLoss(sq, "loss") loss = model.Scale(loss, scale=loss_scale) # For testing explicit sync model.param_init_net.UniformFill([], ["sync_num"], shape=[1]) return [loss] def add_optimizer(model): return optimizer.build_sgd( model, 0.1, policy="fixed", max_gradient_norm=5.0, allow_lr_injection=True, ) workspace.ResetWorkspace() model = cnn.CNNModelHelper( order="NHWC", name="test{}".format(devices), ) data_parallel_model.Parallelize( model, input_builder_fun=input_builder_fun, forward_pass_builder_fun=model_build_fun, optimizer_builder_fun=add_optimizer, devices=devices, cpu_device=not gpu, shared_model=not gpu, ) data_parallel_model.AddBlobSync(model, ["sync_num"]) np.random.seed(2603) # Each run has same input, independent of number of gpus batch_size = 64 for i in range(0, 10): full_data = np.random.rand(batch_size, 16) full_labels =
np.round(full_data[:, 0])
numpy.round
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test hardcoded decomposition rules and matrix definitions for standard gates.""" import inspect import numpy as np from ddt import ddt, data, unpack from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import Operator from qiskit.test import QiskitTestCase from qiskit.circuit import ParameterVector, Gate, ControlledGate from qiskit.circuit.library import standard_gates from qiskit.circuit.library import ( HGate, CHGate, IGate, RGate, RXGate, CRXGate, RYGate, CRYGate, RZGate, CRZGate, SGate, SdgGate, CSwapGate, TGate, TdgGate, U1Gate, CU1Gate, U2Gate, U3Gate, CU3Gate, XGate, CXGate, ECRGate, CCXGate, YGate, CYGate, ZGate, CZGate, RYYGate, PhaseGate, CPhaseGate, UGate, CUGate, SXGate, SXdgGate, CSXGate, RVGate, ) from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from .gate_utils import _get_free_params class TestGateDefinitions(QiskitTestCase): """Test the decomposition of a gate in terms of other gates yields the equivalent matrix as the hardcoded matrix definition up to a global phase.""" def test_ch_definition(self): # TODO: expand this to all gates """Test ch gate matrix and definition.""" circ = QuantumCircuit(2) circ.ch(0, 1) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_ccx_definition(self): """Test ccx gate matrix and definition.""" circ = QuantumCircuit(3) circ.ccx(0, 1, 2) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_crz_definition(self): """Test crz gate matrix and definition.""" circ = QuantumCircuit(2) circ.crz(1, 0, 1) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_cry_definition(self): """Test cry gate matrix and definition.""" circ = QuantumCircuit(2) circ.cry(1, 0, 1) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_crx_definition(self): """Test crx gate matrix and definition.""" circ = QuantumCircuit(2) circ.crx(1, 0, 1) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_cswap_definition(self): """Test cswap gate matrix and definition.""" circ = QuantumCircuit(3) circ.cswap(0, 1, 2) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_cu1_definition(self): """Test cu1 gate matrix and definition.""" circ = QuantumCircuit(2) circ.append(CU1Gate(1), [0, 1]) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_cu3_definition(self): """Test cu3 gate matrix and definition.""" circ = QuantumCircuit(2) circ.append(CU3Gate(1, 1, 1), [0, 1]) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_cx_definition(self): """Test cx gate matrix and definition.""" circ = QuantumCircuit(2) circ.cx(0, 1) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_ecr_definition(self): """Test ecr gate matrix and definition.""" circ = QuantumCircuit(2) circ.ecr(0, 1) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_rv_definition(self): """Test R(v) gate to_matrix and definition.""" qreg = QuantumRegister(1) circ = QuantumCircuit(qreg) vec = np.array([0.1, 0.2, 0.3], dtype=float) circ.rv(*vec, 0) decomposed_circ = circ.decompose() self.assertTrue(Operator(circ).equiv(Operator(decomposed_circ))) def test_rv_r_equiv(self): """Test R(v) gate is equivalent to R gate.""" theta = np.pi / 5 phi = np.pi / 3 rgate = RGate(theta, phi) axis = np.array([np.cos(phi),
np.sin(phi)
numpy.sin
import numpy as np import pandas as pd from sklearn.preprocessing import PolynomialFeatures # TODO: implement what I need from this package class Design: """ Class Docstring. """ def __init__(self, experiments=None, levels=None): """ :param int experiments: Number of Experiments to design :param dict levels: Levels of factors Constructor Docstring. """ self.experiments = experiments self.levels = levels self.features = len(levels.keys()) self.order = None self.interactions_only = None self.bias = None self.epochs = None self.engine = None # ---------------DUNDER, GETTERS AND SETTERS FUNCTION--------------------------------------------------------------- def __repr__(self): return f"Design(experiments={self.experiments}, levels={self.levels})" def set_model(self, order, interactions_only=False, bias=True): """ :param int order: Order of the polynomial (1-main effects, 2-quadratic effects, ...) :param bool interactions_only: Include terms as x1^2 or not :param bool bias: Include a beta_0 on the design matrix or not Setter for model parameters """ self.order = order self.interactions_only = interactions_only self.bias = bias def set_algorithm(self, epochs, engine): """ :param int epochs: Number of random start to check :param str engine: What engine to use for maximization. Includes ("A", "C", "D", "E", "S", "T", "G", "I", "V") Setter for algorithm parameters """ self.epochs = epochs self.engine = engine # ------------------------------------------------------------------------------------------------------------------ def gen_random_design(self) -> pd.DataFrame: """ Generate a random starting design matrix. """ df = pd.DataFrame(np.random.random((self.experiments, self.features))) df.columns = ['x' + str(x) for x in list(range(self.features))] return df def gen_model_matrix(self, data=None) -> pd.DataFrame: """ :param pd.DataFrame data: Design matrix Generate the model matrix of a design matrix (argument) """ if any(var is None for var in [self.order, self.interactions_only, self.bias]): raise Exception('Parameters: \'order\', \'interactions_only\' and \'bias\' cannot be None') poly = PolynomialFeatures(degree=self.order, interaction_only=self.interactions_only, include_bias=self.bias) df = pd.DataFrame(poly.fit_transform(data)) df.columns = poly.get_feature_names(data.columns) return df @staticmethod def clear_histories(optimalities, designs, design_mat): """ :param list designs: Number of Experiments to design :param list optimalities: Number of random start to check :param pd.DataFrame design_mat: Should the engine be maximized (True) or minimizes (False)? Run the coordinate exchange algorithm and produce the best model matrix, according to the engine chosen, as well as a history of all other possible model matrices and the history of the selected engine used. """ hstry_designs = pd.DataFrame(designs, columns=['epoch', *list(design_mat.columns)]) hstry_opt_cr = pd.DataFrame(optimalities).rename(columns={0: 'epoch', 1: 'experiment', 2: 'feature'}) hstry_opt_cr['max'] = hstry_opt_cr.iloc[:, 3:].max(axis=1) return hstry_designs, hstry_opt_cr @staticmethod def find_best_design(histories, designs, max_bool=True): """ :param pd.DataFrame histories: Dataframe of all the histories per epoch :param pd.DataFrame designs: Dataframe of all the designs per epoch :param bool max_bool: Should the engine be maximized (True) or minimizes (False)? Group the histories per epoch and getting the max. Then, the function uses that max index (best epoch) to retrieve the design of that epoch and save it as the best design. The function also changes behaviour according to the max_bool flag which is used to tell the function if we are searching for a maximum of a minimum. """ if max_bool: per_epoch = histories.groupby('epoch')['max'].max() return designs[designs['epoch'] == per_epoch.idxmax()].reset_index().iloc[:, 2:] else: per_epoch = histories.groupby('epoch')['min'].min() return designs[designs['epoch'] == per_epoch.idxmin()].reset_index().iloc[:, 2:] @staticmethod def guards(): pass # Engines -------------------------------------------------------------------------------------------------------- @staticmethod def d_opt(matrix): # Priority: Estimation # Maximize the determinant of the information matrix X'X of the design. # This engine results in maximizing the differential Shannon information content of the parameter estimates. return
np.linalg.det(matrix.T @ matrix)
numpy.linalg.det
''' Design of a Neural Network from scratch *************<IMP>************* Mention hyperparameters used and describe functionality in detail in this space - carries 1 mark ''' import numpy as np import pandas as pd from sklearn.model_selection import train_test_split #Allowed for splitting dataset #global dictionary to store weight and bias matrices parameters=dict() def clean(x): #We round mean values to appropriate number of decimal places #Filling missing values in age column with mean of the column x['Age']=x['Age'].fillna(round(x['Age'].mean())) #filling missing values in weight column with mean of the column x['Weight']=x['Weight'].fillna(round(x['Weight'].mean())) #filling missing values in delivery column with the mode of the column as it has categorical values x['Delivery phase']=x['Delivery phase'].fillna(x['Delivery phase'].mode()[0]) #Fillin HB values with mean of the column values x['HB']=x['HB'].fillna(round(x['HB'].mean(),1)) #Filling IFA values with mode of the column as it is has categorical values x['IFA']=x['IFA'].fillna(x['IFA'].mode()[0]) #Missing BP values are willing with the mean of the column. Rounded to 3 decial places x['BP']=x['BP'].fillna(round(x['BP'].mean(),3)) #Education and residence are filled with the mode of the column as they are a categorical column x['Education']=x['Education'].fillna(x['Education'].mode()[0]) x['Residence']=x['Residence'].fillna(x['Residence'].mode()[0]) #All non categorical columns are scaled from a range of 1 to 10 x['Age']=(x['Age']-x['Age'].min())/(x['Age'].max()-x['Age'].min())*10 x['Weight']=(x['Weight']-x['Weight'].min())/(x['Weight'].max()-x['Weight'].min())*10 x['HB']=(x['HB']-x['HB'].min())/(x['HB'].max()-x['HB'].min())*10 x['BP']=(x['BP']-x['BP'].min())/(x['BP'].max()-x['BP'].min())*10 return x #The below functions can be used if it is desired to change the neural network archiecture in the future def sigmoid(x): return 1/(1+np.exp(-x)) def sigmoid_derivative(y): return y * (1 - y) # np.tanh(x) will suffice for tanh activation function def tanh_derivative(y): return 1-(y*y) def relu(x): if x<0: return 0 else: return x def relu_derivative(y): if y<0: return 0 else: return 1 class NN: #init function for the NN class #The hidden layer size is set #Weight matrices and bias matrices are initialized #X and Y are initialized ''' X and Y are dataframes ''' def __init__(self,X,Y): np.random.seed(2) #random seed 2 #Network consists of input layer, 1 hidden layer and then output layer #Number of neurons in hidden layer is set to 4 self.h_size=4 #Input is intialized with the features dataframe self.input = X #Learning rate is set as 0.08. Learning rate defines at what rate we progress down the slope during gradient descent self.learning_rate=0.08 #learning rate is 0.05, 0.08 ''' Weight Matrix dimensions are (number of neruons in current layer) X (number of neurons in previous layer) Accordingly, weights1 size is (number of neurons in hidden layer) X (number of neurons in input layer) weights2 size is (number of neurons in output layer) X (number of neurons in hidden layer) Weight matrices multiplies by 0.01 to avoid exploding gradient problem ''' self.weights1 = np.random.randn(self.h_size,self.input.shape[1])*0.01#We have 4 nodes in first hidden layer, 4X9 self.weights2 = np.random.randn(Y.shape[1],self.h_size)*0.01#Second hidden layer also has 4 nodes ''' Bias is column vector with length corresponding to number of neurons in that particular layer Both the bias vectors are initialized to zero vectors in the beginning. ''' self.bias1=np.zeros((self.h_size,1)) self.bias2=
np.zeros((Y.shape[1],1))
numpy.zeros
import pendsim.sim, pendsim.utils import copy from scipy import integrate import numpy as np from scipy.signal import cont2discrete # needed for LQR + UKF from filterpy.kalman import UnscentedKalmanFilter, sigma_points # needed for typeannotations from typing import Tuple LABELS = ["x", "xd", "t", "td"] class Controller(object): """ Base class for controllers. A controller executes a `policy` during the simulation loop. It takes some measured `state` and takes some `action` on that state. The `action` is a force applied to the base of the cart. A controller's `policy` can include a state estimator or functions we can use to record data. Methods ------- policy: control policy do_swingup: get action from Astrom's "swing-up" policy do_lqr: get action from an LQR policy get_linear_sys: get the linearized system from jacobians store_4tuple: store a 4-tuple into multi-index wrapPi: wrap an angular value to [-pi, pi] interval create_ukf: create an unscented kalman filter for the system do_pid: get action from a PID control policy get_and_store_priors: utility function for storing state priors in a moving backwards horizon """ def __init__(self, init_state: np.ndarray): """init function for Controller object. Rare that this would be used directly. Parameters ---------- init_state : np.ndarray Initial state. """ self.init_state = init_state self.prev_err = 0 def policy(self, state: np.ndarray, dt: float) -> Tuple[float, dict]: raise NotImplementedError def do_swingup( self, pend: pendsim.sim.Pendulum, state: np.ndarray, k: float ) -> float: """Implement a swing-up by Energy control method described by Astrom and Furuta. Typically, we want to implement the swing-up strategy if the pendulum is below some threshold (i.e. theta > pi/2). See Åström, <NAME>, and <NAME>. "Swinging up a pendulum by energy control." Automatica 36.2 (2000): 287-295. at https://doi.org/10.1016/S1474-6670(17)57951-3 Parameters ---------- pend : pendsim.sim.Pendulum The pendulum object containing `m`,`g`,`l` parameters we use to estimate the energy of the system. state : np.ndarray The current state k : float Swing-up gain Returns ------- float controller action. """ m, g, l = pend.m, pend.g, pend.l E_norm = 2 * m * g * l E = m * g * l * (np.cos(state[2]) - 1) # 0 = upright beta = E / E_norm u = k * beta * pendsim.utils.sign(state[3] * np.cos(state[2])) return -u def do_lqr( self, w: int, A: np.ndarray, B: np.ndarray, Q: np.ndarray, R: np.ndarray, x: np.ndarray, ) -> np.ndarray: """Finite-horizon discrete Linear Quadratic Regulator policy. An LQR controller produces an optimal control policy over a finite horizon according to a quadratic cost over the system state. See https://underactuated.mit.edu/lqr.html Parameters ---------- w : int window over which to perform LQR control A : np.ndarray linear plant transition matrix B : np.ndarray linear control matrix Q : np.ndarray controller gain matrix R : np.ndarray control action penalty x : np.ndarray system state Returns ------- np.ndarray sequence of control actions """ P = [None] * (w + 1) P[w] = Q for k in range(w, 0, -1): p1 = A.T @ P[k] @ A # (4,4) p2 = A.T @ P[k] @ B # (4,1) p3 = R + B.T @ P[k] @ B # (4,1) p3 = np.linalg.pinv(R + B.T @ P[k] @ B) p4 = B.T @ P[k] @ A P[k - 1] = p1 - p2 @ p3 @ p4 + Q u = [None] * w for k in range(w): c1 = np.linalg.inv(R + B.T @ P[k] @ B) c2 = B.T @ P[k] @ A u[k] = c1 @ c2 @ x return np.squeeze(u) def get_linear_sys( self, Adot: np.ndarray, Bdot: np.ndarray, dt: float ) -> Tuple[np.ndarray, np.ndarray]: """Get linearize from jacobians of system with timestep `dt`. Parameters ---------- Adot : np.ndarray The (4,4) jacobian of the plant matrix A Bdot : np.ndarray The (4,1) jacobian of the control matrix B dt : float control timestep Returns ------- Tuple[np.ndarray, np.ndarray] linearized system matrices A, B. """ A, B = Adot, Bdot C, D = np.zeros((1, A.shape[0])), np.zeros((1, 1)) sys_disc = cont2discrete((A, B, C, D), dt, method="zoh") return sys_disc[0], sys_disc[1] def store_4tuple(self, level1_key: str, val: np.ndarray) -> dict: """Helper function for storing a 4-tuple of values. A level 0 key is given, and the level 1 keys are populated with 'x', 'xd', 't','td' values. Use this when you need to easily return data from a 4-tuple produced by the simulation that maps to each of the 4 state values. Example >>> val = [1,2,3,4] >>> key = "count" >>> store4tuple(key, val) { ('count','x') : 1, ('count','xd') : 2, ('count','t') : 3, ('count','td') : 4, } Parameters ---------- level1_key : str outer key val : np.ndarray values. Must be shape (4,1) or (4,) Returns ------- dict dict containing new data values """ labels = ["x", "xd", "t", "td"] return pendsim.utils.array_to_kv(level1_key, labels, np.squeeze(val)) def wrapPi(self, val: float) -> float: """Wrap an angle to the interval between [-pi, pi]. Parameters ---------- val : float angle Returns ------- float wrapped angle """ return (val + np.pi) % (2 * np.pi) - np.pi def create_ukf( self, dt: float, hx: callable, fx: callable ) -> UnscentedKalmanFilter: """Create an unscented Kalman filter with state transition functions `fx`, measurement function `hx` with timestep between measurements estimated as `dt`. Parameters ---------- dt : float control timestep hx : callable function describing mapping between sensor inputs and measurements fx : callable function describing system. Can be non-linear. Returns ------- UnscentedKalmanFilter UKF object with sensible defaults for sigma points. """ n = 4 points = sigma_points.MerweScaledSigmaPoints( n, alpha=1e-4, beta=2, kappa=3 - n, ) kf = UnscentedKalmanFilter( dim_x=n, dim_z=n, dt=dt, hx=hx, fx=fx, points=points, ) return kf def do_pid( self, dt: float, kp: float, ki: float, kd: float, state: np.array ) -> float: """Perform PID (proportional-integral-derivative) control policy given a system state. This policy executes on the pendulum angle (i.e. attempts) to keep the pendulum in the upright position. Parameters ---------- dt : float control timestep kp : float proportional gain ki : float integral gain kd : float derivative gain state : np.array input state Returns ------- float control action """ err = -self.wrapPi(state[2]) errd = (err - self.prev_err) / dt self.integrator += err action = kp * err + ki * self.integrator + kd * errd self.prev_err = err return action def get_and_store_priors(self, state: np.ndarray, n: int) -> Tuple[int, int]: """utility function for getting and storing priors in some window `n`. This function returns two values `l` and `u` which provide the indices to a moving window over prior_states. You must include an attr `tick`, which is incremented to determine the window, as well as an attr `prior_states` to store states to use this function, and this function alters those attrs. Parameters ---------- state : np.ndarray input state to store n : int window for returning `l`, `u` pair. Returns ------- Tuple[int, int] l, u pair. If you want to get n most recent prior measurements, call self.prior_states[l:u] """ l = max(0, self.tick - n) u = self.tick self.tick += 1 self.prior_states.append(state) return l, u class PID(Controller): """Basic PID Control class. This class produces a basic PID controller that takes the state as it is measured and executes a pid policy on it. Parameters ---------- pid : Tuple[float, float, float] kp, ki, kd gains for the controller """ def __init__(self, pid: Tuple[float, float, float]) -> None: self.kp, self.ki, self.kd = pid self.integrator = 0 self.prev_err = 0 self.first = True def policy(self, state: np.ndarray, dt: float) -> Tuple[float, dict]: """PID policy. This just calls `do_pid` on the state, but you can add data collection values to it. Parameters ---------- state : np.ndarray system state dt : float control timestep Returns ------- Tuple[float, dict] action, data pair """ action = self.do_pid(dt, self.kp, self.ki, self.kd, state) return action, {} class PID_UKF(Controller): """PID controller with unscented kalman filter. The unscented kalman filter uses variance on the scale of `var_t` to get the measurement noise estimate. (`var_t` is a measurement of time in seconds.) Parameters ---------- pid : Tuple[float, float, float] kp, ki, kd gains for the controller pend : [type] object containing the pendulum under control. dt : float control timestep var_t : float window over which to collect the measurement """ def __init__( self, pid: Tuple[float, float, float], pend, dt: float, var_t: float ) -> None: # PID Parameters self.kp, self.ki, self.kd = pid self.integrator = 0 self.prev_err = 0 # UKF Parameters self.var_t = var_t self.A, self.B = self.get_linear_sys(pend.jacA, pend.jacB, dt) self.pend = pend def sys_dynamics(t0, x): # unpack variables _, xd, t, td, u = x[0], x[1], x[2], x[3], x[4] m, M, l, g, cfric, pfric = ( self.pend.m, self.pend.M, self.pend.l, self.pend.g, self.pend.cfric, self.pend.pfric, ) cost, sint = np.cos(t), np.sin(t) # system dynamics xdd = (g * m * sint * cost + u - m * l * td * td * sint) / ( M + m - m * cost * cost ) tdd = (g * sint + xdd * cost) / l # viscous friction xdd += -1 * cfric * xd tdd += -1 * pfric * td # [state] + [u] is returned for the solver return np.array([xd, xdd, td, tdd, u]) def fx(x, dt, u=0): # we just tack u onto the end so one arg is passed into the solver x_in = np.concatenate((x, np.atleast_1d(u)), axis=0) # solve IVP sol = integrate.solve_ivp(sys_dynamics, (0, dt), x_in) return sol.y[:4, -1] def hx(x): return x self.kf = self.create_ukf(dt, hx, fx) self.prior_states = [] self.tick = 0 def policy(self, state: np.ndarray, dt: float) -> Tuple[float, dict]: """Measure variance from prior states over `var_t`, then use that variance to compute an estimated state with an unscented kalman filter. The measured state is then used for the PID control policy. Parameters ---------- state : np.ndarray system state dt : float timestep Returns ------- Tuple[float, dict] action, data pair """ self.get_and_store_priors(state, round(self.var_t * 1 / dt)) prior = np.array(self.prior_states) if self.tick > 1: var = np.cov(prior.T) else: var = np.eye(4) * 1 self.kf.Q = var ** 2 self.kf.update(state) est = self.kf.x res = self.kf.y action = self.do_pid(dt, self.kp, self.ki, self.kd, est) self.kf.predict(dt, **{"u": action}) labels = ["x", "xd", "t", "td"] data = {} data.update(pendsim.utils.array_to_kv("res", labels, res)) data.update(pendsim.utils.array_to_kv("est", labels, est)) return action, data class LQR_UKF(Controller): """LQR controller with unscented kalman filter state estimation. Parameters ---------- qr : Tuple[np.ndarray, float] tuple of (Q, R) matrices. In this case R is a 1x1 matrix or float. lqrw : int the window over which to perform LQR. Longer windows are more accurate, because they take into account a longer approximation of the system response. However, they take more time to compute and can be numerically unstable. pend : pendsim.sim.Pendulum pendulum object with jacobians of A and B matrices. dt : float control timestep var_t : float window over which to collect variances, in units of seconds. """ def __init__( self, qr: Tuple[np.ndarray, float], lqrw: int, pend, dt: float, var_t: float ) -> None: # LQR Parameters self.Q, self.R = qr self.lqrw = lqrw # UKF Parameters self.A, self.B = self.get_linear_sys(pend.jacA, pend.jacB, dt) def fx(x, dt, u=0): return
np.dot(self.A, x)
numpy.dot
import os import numpy as np import torch id = [] statuses_count = [] followers_count = [] friends_count = [] favourites_count = [] listed_count = [] default_profile = [] geo_enabled = [] profile_uses_background_image = [] verified = [] protected = [] for i in range(1, 41): files = os.listdir('./profile/' + str(i)) for file in files: f = open('./profile/' + str(i) + '/' + file, 'r', encoding='UTF-8') wnn = f.readlines() # print('this is a error ID with error code' in wnn[0]) if 'this is a error ID with error code' in wnn[0]: # print('Error!' + file) f.close() continue # print('#' + str(len(id))) id.append(file[: -8]) # print(len(id)) flag = 0 for line in wnn: if line == 'statuses_count\n' and len(statuses_count) != len(id): flag = 1 continue if flag == 1: statuses_count.append(float(line)) flag = 0 continue if line == 'followers_count\n' and len(followers_count) != len(id): flag = 2 continue if flag == 2: followers_count.append(float(line)) flag = 0 continue if line == 'friends_count\n' and len(friends_count) != len(id): flag = 3 continue if flag == 3: friends_count.append(float(line)) flag = 0 continue if line == 'favourites_count\n' and len(favourites_count) != len(id): flag = 4 continue if flag == 4: favourites_count.append(float(line)) flag = 0 continue if line == 'listed_count\n' and len(listed_count) != len(id): flag = 5 continue if flag == 5: listed_count.append(float(line)) flag = 0 continue if line == 'default_profile\n' and len(default_profile) != len(id): flag = 6 continue if flag == 6: default_profile.append(1.) if line == 'True\n' else default_profile.append(0.) flag = 0 continue if line == 'geo_enabled\n' and len(geo_enabled) != len(id): flag = 7 continue if flag == 7: geo_enabled.append(0.) if line == 'False\n' else geo_enabled.append(1.) flag = 0 continue if line == 'profile_background_image_url\n' and len(profile_uses_background_image) != len(id): flag = 8 continue if flag == 8: profile_uses_background_image.append(0.) if line == 'None\n' else profile_uses_background_image.append(1.) flag = 0 continue if line == 'verified\n' and len(verified) != len(id): flag = 9 continue if flag == 9: verified.append(0.) if line == 'False\n' else verified.append(1.) flag = 0 continue if line == 'protected\n' and len(protected) != len(id): flag = 10 continue if flag == 10: protected.append(0.) if line == 'False\n' else protected.append(1.) flag = 0 continue f.close() if len(statuses_count) == len(followers_count)\ == len(friends_count) == len(favourites_count)\ == len(listed_count) == len(default_profile)\ == len(geo_enabled) == len(profile_uses_background_image)\ == len(verified) == len(protected) == len(id): pass else: print(str(i) + '#' + str(file)) print(len(statuses_count)) print(len(followers_count)) print(len(friends_count)) print(len(favourites_count)) print(len(listed_count)) print(len(default_profile)) print(len(geo_enabled)) print(len(profile_uses_background_image)) print(len(verified)) print(len(protected)) print(len(id)) assert 1 == 0 statuses_count = (statuses_count - np.mean(statuses_count)) / np.sqrt(np.var(statuses_count)) followers_count = (followers_count - np.mean(followers_count)) / np.sqrt(np.var(followers_count)) friends_count = (friends_count - np.mean(friends_count)) / np.sqrt(
np.var(friends_count)
numpy.var
import unittest import numpy as np from scipy.stats import binom, hypergeom from pyapprox.numerically_generate_orthonormal_polynomials_1d import * from pyapprox.orthonormal_polynomials_1d import * from pyapprox.univariate_quadrature import gauss_jacobi_pts_wts_1D from scipy.stats import beta as beta_rv from functools import partial from pyapprox.variables import float_rv_discrete class TestNumericallyGenerateOrthonormalPolynomials1D(unittest.TestCase): def test_krawtchouk(self): num_coef=6 ntrials = 10 p = 0.5 xk = np.array(range(ntrials+1),dtype='float') pk = binom.pmf(xk, ntrials, p) ab_lanzcos = lanczos(xk,pk,num_coef) ab_stieltjes = stieltjes(xk,pk,num_coef) ab_exact = krawtchouk_recurrence(num_coef, ntrials, p) assert np.allclose(ab_lanzcos,ab_exact) assert np.allclose(ab_stieltjes,ab_exact) from pyapprox.univariate_quadrature import gauss_quadrature x,w = gauss_quadrature(ab_lanzcos,num_coef) moments = np.array([(x**ii).dot(w) for ii in range(num_coef)]) true_moments = np.array([(xk**ii).dot(pk)for ii in range(num_coef)]) assert
np.allclose(moments,true_moments)
numpy.allclose
""" Simulate allocating FOBOS apertures to a randomly drawn set of targets. Contains code originally written by 2021 Akamai intern, <NAME>. .. include:: ../include/links.rst """ from IPython import embed import numpy from matplotlib import pyplot, patches, ticker from . import scriptbase from ..targets import random_targets from ..plan import configure_observations class AllocSim(scriptbase.ScriptBase): @classmethod def get_parser(cls, width=None): import argparse parser = super().get_parser(description='FOBOS Allocation Simulation', width=width) parser.add_argument('-d', '--density', nargs=3, default=[2.5, 40, 5], help='Target density sampling: minimum, maximum, number of samples. ' 'Density is sampled geometrically.') parser.add_argument('-s', '--sims', type=int, default=1, help='Number of simulations to use for mean and standard deviation ' 'of trends.') parser.add_argument('-m', '--mode', type=int, default=1, help='The spectrograph mode. All spectrographs are put in the same ' 'mode. Use 1 for MOS mode, 2 for multi-IFU mode.') parser.add_argument('-e', '--embed', default=False, action='store_true', help='Embed using IPython before completing the script.') return parser @staticmethod def main(args): rng = numpy.random.default_rng(99) ndens = args.density[-1] nsim = args.sims density = numpy.geomspace(*args.density) nobj = numpy.zeros((nsim, ndens), dtype=int) nobs = numpy.zeros((nsim, ndens), dtype=int) nalloc = numpy.empty((nsim, ndens), dtype=object) nap = numpy.empty((nsim, ndens), dtype=object) completeness = numpy.empty((nsim, ndens), dtype=object) efficiency = numpy.empty((nsim, ndens), dtype=object) mean_efficiency = numpy.empty((nsim, ndens), dtype=object) for j in range(nsim): for i in range(ndens): print(f'Density {i+1}/{ndens}', end='\r') objx, objy = random_targets(10., density=density[i], rng=rng) aptype = numpy.zeros(nobj[j,i], dtype=int) n_in_fov, obs_obj, obs_nap, obs_ap, obs_mode \ = configure_observations(objx, objy, aptype) nobj[j,i] = n_in_fov nobs[j,i] = len(obs_obj) nalloc[j,i] = numpy.array([len(o) for o in obs_obj]) nap[j,i] = numpy.array(obs_nap) completeness[j,i] = numpy.cumsum(nalloc[j,i])/nobj[j,i] efficiency[j,i] = nalloc[j,i]/nap[j,i] mean_efficiency[j,i] = numpy.cumsum(efficiency[j,i])/(numpy.arange(nobs[j,i])+1) print(f'Density {ndens}/{ndens}') obs_mask = numpy.empty((nsim, ndens), dtype=object) max_nobs = numpy.amax(nobs, axis=0) for j in range(nsim): for i in range(ndens): obs_mask[j,i] = numpy.zeros(max_nobs[i], dtype=bool) if nobs[j,i] < max_nobs[i]: obs_mask[j,i][nobs[j,i]:] = True nalloc[j,i] = numpy.append(nalloc[j,i], numpy.zeros(max_nobs[i] - nobs[j,i])) nap[j,i] = numpy.append(nap[j,i], numpy.zeros(max_nobs[i] - nobs[j,i])) completeness[j,i] = numpy.append(completeness[j,i], numpy.zeros(max_nobs[i] - nobs[j,i])) efficiency[j,i] = numpy.append(efficiency[j,i], numpy.zeros(max_nobs[i] - nobs[j,i])) mean_efficiency[j,i] = numpy.append(mean_efficiency[j,i], numpy.zeros(max_nobs[i] - nobs[j,i])) m_completeness = numpy.empty(ndens, dtype=object) m_efficiency = numpy.empty(ndens, dtype=object) m_fom = numpy.empty(ndens, dtype=object) s_completeness = numpy.empty(ndens, dtype=object) s_efficiency = numpy.empty(ndens, dtype=object) s_fom = numpy.empty(ndens, dtype=object) for i in range(ndens): comp = numpy.ma.MaskedArray(numpy.stack(completeness[:,i]), mask=numpy.stack(obs_mask[:,i])) m_completeness[i] = numpy.ma.mean(comp, axis=0).filled(0.0) s_completeness[i] = numpy.ma.std(comp, axis=0).filled(0.0) arr = numpy.ma.MaskedArray(numpy.stack(efficiency[:,i]), mask=numpy.stack(obs_mask[:,i])) m_efficiency[i] = numpy.ma.mean(arr, axis=0).filled(0.0) s_efficiency[i] = numpy.ma.std(arr, axis=0).filled(0.0) arr = numpy.ma.sqrt(comp) \ * numpy.ma.MaskedArray(numpy.stack(mean_efficiency[:,i]), mask=numpy.stack(obs_mask[:,i])) m_fom[i] = numpy.ma.mean(arr, axis=0).filled(0.0) s_fom[i] = numpy.ma.std(arr, axis=0).filled(0.0) w,h = pyplot.figaspect(1) fig = pyplot.figure(figsize=(1.5*w,1.5*h)) ax = fig.add_axes([0.2, 0.69, 0.6, 0.3]) ax.minorticks_on() ax.tick_params(which='major', length=8, direction='in', top=True, right=True) ax.tick_params(which='minor', length=4, direction='in', top=True, right=True) ax.set_xlim(0.8, numpy.amax(nobs) + 0.2) ax.set_ylim(0., 1.05) ax.xaxis.set_major_formatter(ticker.NullFormatter()) for i in range(ndens): ax.fill_between(
numpy.arange(max_nobs[i])
numpy.arange
#!/usr/bin/env python # Copyright 2017 <NAME>, ASL, ETH Zurich, Switzerland # Copyright 2017 <NAME>, ASL, ETH Zurich, Switzerland # Copyright 2017 <NAME>, ASL, ETH Zurich, Switzerland #!/usr/bin/env python import unittest import numpy as np import ActivationFunction as activation import GradientDescentOptimizer as gdo import FCLayer as layer import FCNetwork as network import LossFunction as loss import Support as sup # TODO: Update and extend tests # Global variables for test network in order to be accessible in all test cases. # Input x = np.random.randn(1, 3) # Layer 1 w_1 = np.random.randn(3,4) b_1 = np.random.randn(1,4) # Layer 2 w_out = np.random.randn(4,2) b_out = np.random.randn(1,2) # Output labels y_target = np.random.randn(1, 2) input_dim = x.shape[1] hidden_layer_specs = [] hidden_layer_specs.append({'activation': activation.SigmoidActivation(), 'dim': w_1.shape[1]}) output_dim = y_target.shape[1] fc_net = network.FCNetwork(input_dim, output_dim, hidden_layer_specs) fc_net.layers[0].setWeights(w_1) fc_net.layers[0].setBiases(b_1) fc_net.layers[1].setWeights(w_out) fc_net.layers[1].setBiases(b_out) class TestNetwork(unittest.TestCase): # Was tested above, can be used now sigmoid = activation.SigmoidActivation() def testGradients(self): # General computations loss_function = loss.SquaredErrorFunction() y = fc_net.output(x) loss_derivative = loss_function.derivative(y, y_target) # Manually compute gradients h_1 = fc_net.evaluateLayer(1, x) output_sigmoid = self.sigmoid.evaluate(np.dot(h_1, w_out) + b_out) output_sigmoid_derivative = output_sigmoid * (1 - output_sigmoid) ## Output layer delta_out = loss_derivative * output_sigmoid_derivative L_w_out = np.dot(h_1.T, delta_out) L_b_out = delta_out ## Hidden layer delta_1 = np.dot(delta_out, w_out.T) * self.sigmoid.derivative(np.dot(x, w_1) + b_1) L_w_1 =
np.dot(x.T, delta_1)
numpy.dot